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Abstract

The human population is growing, leading to increased consumption of resources
and emission of greenhouse gases. As a result, the concentration of greenhouse
gases in the atmosphere is rising to dangerous levels, and the need for measures to
reduce emissions is growing. [1] One measure is CO2-capture and storage, which
opens up the possibility of removing CO2 from flue gas, compressing and storing
it instead of emitting it to the atmosphere.

One example of a CO2-capture technology is chemical absorption with an amine-
based solvent. With this technology, there are also difficulties, mainly degrada-
tion of the solvent. Therefore, further understanding of degradation is important
for reducing operational costs, solvent management and emission control.

In this thesis, the main focus has been on oxidative and thermal degradation
of monoethanolamine (MEA), one of the most researched solvents for chemical
absorption. Mathematical machine learning modelling has been used to make a
predictive model that can describe the degradation and trends in experimental
data. The objective of the work has been to see if machine learning modelling
has the potential to give good model predictions, describe the degradation of
MEA and the formation of selected degradation compounds.

For the oxidative degradation models, two models were developed. The first
model had 3 inputs (MEA-concentration, oxygen concentration, temperature),
and the second model had 10 or 11 inputs that included experimental data from
the other measured degradation products. This was done to see if the modelled
results would improve with more inputs to the model. The output was the
calculated experimental reaction rate. For the thermal degradation models, two
models were also developed. Here, there was one model with 3 inputs (MEA-
concentration, CO2-loading, temperature) and one with 6 inputs that included
the other measured degradation products.

From the results, the models seem to be able to capture the trend of the experi-
mental data. The models are data-driven, hence requiring a lot of experimental
data. However, the model seems to be sensitive to outliers in the datasets so that
the models can identify outliers in experimental data. The results are promising
for further modelling, and with more research and more experimental data, the
model predictions should quickly improve.
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Sammendrag

Folketallet i verden vokser, noe som fører til en økning i forbruket av ressurser
og utslipp av klimagasser. Som et resultat av dette øker konsentrasjonene av
klimagasser i atmosfæren til farlige nivåer, og behovet for tiltak for å redusere
utslippene øker. [1] Ett tiltak som kan redusere utslipp er CO2-fangst og lagring,
som åpner mulighetene for å fjerne CO2 fra røykgass, komprimere og lagre det i
stedet for å slippe den ut i atmosfæren.

Et eksempel på en CO2-fangstteknologi er kjemisk absorbsjon med aminbasert
solvent. Med denne teknologien er det også utfordringer, hovedsakelig degrader-
ing av solventen. Ytterligere forståelse av degradering er viktig for å redusere
driftskostnader, kontroll av solventen og utslippskontroll.

I denne oppgaven har hovedfokuset vært på oksidativ og termisk degradering
av monoetanolamin (MEA), som er et det absorbsjonskjemikaliet som er forsket
mest på innen kjemisk absorbsjon. Matematisk maskinlæringsmodellering har
blitt brukt til å lage en prediktiv modell som kan beskrive degradering og trender
i eksperimentelle data. Målet med arbeidet har vært å se om maskinlæringsmod-
ellering har potensial til å gi gode modellforutsigelser, beskrive degradering av
MEA og dannelsen av utvalgte degraderingsforbindelser.

For de oksidative degraderingsmodellene ble det utviklet to modeller. Den første
modellen hadde 3 inputs (MEA-konsentrasjon, oksygenkonsentrasjon, temper-
atur) og den andre modellen hadde 10 eller 11 inputs, og inkluderte eksperi-
mentelle data fra de andre målte degraderingsproduktene. Dette ble gjort for
å se om de modellerte resultatene ville forbedres med flere inputs til modellen.
Output fra modellene var den beregnede eksperimentelle reaksjonshastigheten.
For modellene for termisk degradering ble det også utviklet to modeller. Her var
det en modell med 3 inputs (MEA-konsentrasjon, CO2-loading, temperatur) og
en med 6 inputs, som inkluderte de andre målte degraderingsproduktene.

Fra resultatene ser modellene ut til å være i stand til å fange trenden til den
eksperimentelle dataen. Modellene er datadrevne, og krever derfor eksperimentell
data. Modellen ser ut til å være følsom for avvikende verdier i datasettene, og
kan anvendes til å identifisere avvikere i eksperimentelle data. Resultatene er
lovende for videre modellering, og med mer forskning og eksperimentelle data,
bør modellprediksjonene lett forbedres.
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1 Introduction

The Holocene is the name of the current geological epoch and has been one of
the most stable periods in the history of our planet, with relatively small-scale
climate shifts. During this period, the average temperature has not wavered
more than ± 1 °C. [8] This period has also been called Anthropocene, meaning
"The Age of Man", because of the impact humans have had on the planet. [9;10]

No other species has changed its habitat more and faster than humans, with
agriculture and urbanization of the wilderness. The human species have grown
exponentially with the help of improved sanitation and medical care, which has
led to increased pressure on the biodiversity of the planet. With an increasing
human population, there is also an increase in resource consumption, and the
need to meet demands has pushed technological progress forward. [8;9;10]

With increased production, there is also an increase of waste and emissions of
greenhouse gases, such as CO2, methane and nitrous oxide. As a result, green-
house gas concentrations in the atmosphere are growing, affecting human health
and global temperatures. In light of these effects, measures are needed to stop
the anthropogenic, human-made emissions and possibly slow down global warm-
ing. Today, most anthropogenic emissions are from combustion. One measure
that is very relevant and widely researched lately is CO2-capture and storage
technology, and one of the most promising CO2-capture technologies is chemical
absorption with amine-based solvents. Instead of emitting CO2 from flue gas to
the atmosphere, it can be removed for compression and storage.

1.1 Chemical absorption with amine-based solvents

Amines are well suited for separating CO2 from flue gas because of their tem-
perature dependant reversible reactions with CO2.

[11] A schematic of a typical
amine-based CO2-capture unit is shown in Figure 1.1. Flue gas is passed through
the absorber, where an aqueous amine-based solvent absorbs the CO2.

[2] The rich
amine is then sent to the top of the desorber to be separated from the solvent.
The aqueous solution is heated with steam from a steam cycle, which will trigger
the reversible reaction and thus separating the CO2 from the amine. The lean
amine is sent through a reboiler and back to the absorber again, and the cycle is
repeated. The separated stream of CO2 is taken out at the top of the desorber,
compressed and transported through a pipeline for storage. [2]

1
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Figure 1.1: Schematic of an absorption based CO2-capture unit. [2]

The ideal amine for amine-based CO2 capture combines a high absorption rate
and cyclic capacity with a low energy requirement for stripping, in addition to
low degradation and corrosion. [5] One of the most researched amines for CO2-
absorption is monoethanolamine (MEA). MEA has a high affinity for CO2 at low
temperatures and a low affinity at high temperatures. It is also a cheap solvent
that is not volatile, and it is therefore well suited for application in chemical
absorption of CO2.

[12]

There are, however, challenges with chemical absorption, such as corrosion in the
system and degradation of the solvent. These problems often have a significant
impact on the costs and efficiency of the plant. Degradation can occur oxidatively
or thermally and is when a chemical compound is broken down into smaller
compounds. Oxidative degradation happens mainly in the absorber, where there
is oxygen present in the gas stream. 80-90 % of degradation of amine solvents
used in an amine-based CO2-capture plant comes from oxidative degradation.
Thermal degradation occurs mainly in the stripper and reboiler and is impacted
by, for example, temperature and CO2-loading. Other factors can have an impact
on the degradation rate, such as the presence of NOx, SOx, iron and particles
in the system. [5;11;12] Understanding the degradation process is vital for emission
control and solvent management.
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It is estimated that 10 % of the operational cost of a chemical absorption CO2-
capture unit can be related to degradation of the solvent. [6;13] It has therefore
been essential to review issues related to degradation at an earlier stage of the
process before installing a unit.

Oxidative degradation is not well understood today compared to thermal degra-
dation. How fast oxidative degradation occurs, what products are formed, and in
how large quantities are questions that are raised. One method that can help to
understand further the degradation of solvents in absorption-based CO2-capture
plants is mathematical modelling and machine learning. By making a predictive
model that can anticipate how fast and in what quantities the most known degra-
dation products are formed, the plant may save money on operational costs. In
addition, it is important to research at which conditions, such as temperature,
oxygen levels and CO2-loading, the degradation process is affected the most.

1.2 Mathematical modelling and machine learning

Mathematical modelling is a helpful tool to increase the understanding of com-
plex problems that are not easily solved by hand and helps us describe the world
around us according to our understanding. With a mathematical model, it is
easier to see the effects of changes in the system and to get a deeper scientific
understanding of a problem. [14]

One category of modelling is a mechanistic model. A mechanistic model uses
mechanisms and theoretical information, such as equations of state or reaction
equations, together with empirically fitted parameters to describe changes in a
system. A mechanistic model often gives accurate predictions, but they are also
computationally complex. [4] Therefore, empirical models have also been devel-
oped. There is no consideration of mechanisms in empirical models. Instead, the
models try to account for changes in a system with different conditions quanti-
tatively. One drawback of an empirical model is that its validity range is often
limited. [4;14]

Machine learning (ML) has become increasingly popular because of its simplic-
ity and computational speed. Machine learning technology is used to classify,
find patterns and develop data predictions from a dataset. [4] There are three
paradigms of machine learning; supervised learning, unsupervised learning and
reinforcement learning. [15]
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1.3 Scope of work and objective

In this thesis, the focus is on oxidative and thermal degradation of MEA. Based
on experimental data from degradation experiments, a predictive model will be
developed using mathematical machine learning.

This thesis aims to see if the developed machine learning models have good
prediction abilities, capture trends in the datasets, and describe the degradation
of MEA. The ultimate goal is to develop an ML model that can be applied in
different chemical absorption plants to indicate how the solvent will degrade over
time and how fast the degradation happens at the given conditions used in that
specific plant. However, before this is possible, there is a need to see if machine
learning has potential and can be used as a start in the research and development
of predictive models for oxidative and thermal degradation.

Furthermore, the impact of the number of inputs have on the results is inves-
tigated. For oxidative degradation, two models are developed, one with three
inputs and one with ten or eleven inputs. Two models are also developed for
thermal degradation, one with three inputs and one with six inputs. The sec-
ond models use all the available experimental data as inputs to see if there is
a possible correlation between MEA and the measured degradation products.
Developing these models can help in the further understanding of degradation.
Compared to thermal degradation, oxidative degradation is not well understood
today. A better understanding of what affects the degradation rate in a capture
plant can help reduce operational costs, increase the understanding of the system
and the efficiency of the plant.

First, the theoretical background of oxidative and thermal degradation and ma-
chine learning is presented in Chapter 2. Then, the methodology of the thesis
is given in chapter 3 before the results are presented and discussed in Chapter
4. Finally, the conclusion and recommendations for future work are given in
Chapter 5 and 6.
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2 Theoretical background

In this chapter, the main principles for oxidative and thermal degradation are
presented. In this thesis, two publications were used as the primary sources,
one publication from Vevelstad et al. (2016) and one publication from Davis
(2009). The experimental data that has been used in the machine learning mod-
els were retrieved from these two papers. In this chapter, the experimental setup,
the methodology, and the main findings from these publications are presented.
Furthermore, the suggested reaction mechanisms for the formation of the degra-
dation compounds from MEA are shown. Also, the main principles of machine
learning and the theory behind artificial neural networks is explained.

Table 2.1: Table of abbreviations, compound names and CAS-numbers for the compounds
used for further modelling of oxidative and thermal degradation. [5;6;7]

Abbreviation Compound CAS

BHEOX N,N-bis(2-hydroxyethyl)oxalamide 1871-89-2
Formate N/A

HEA N-(2-hydroxyethyl)-acetamide 142-26-7
HEEDA N-(2-hydroxyethyl)ethylenediamine 111-41-1
HEF N-(2-hydroxyethyl)formamide 693-06-1
HEGly N-(2-hydroxyethyl)glycine 5835-28-9
HEI N-(2-hydroxyethyl)imidazole 1615-14-1
HEIA N-(2-hydroxyethyl)imidazolidin-2-one 3699-54-5
HEPO 4-(2-hydroxyethyl)-2-piperazinone 23936-04-1
MEA 2-Monoethanolamine 141-43-5

Oxalic acid 144-62-7
TriHEIA 1-(2-((2-hydroxyethyl)amino)ethyl)-2-imidazolidone N/A

2.1 Oxidative degradation

Oxidative degradation occurs when oxygen is present in the gas stream. Several
factors can affect the degradation rate, such as temperature and oxygen concen-
tration. There are still some gaps in the understanding of oxidative degradation.
The experimental data for oxidative degradation is from a systematic study of
the degradation of MEA under simulated absorber conditions in lab-scale exper-
iments. The study was conducted by Vevelstad et al. (2016). [5]
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Many degradation products have been identified in oxidative degradation stud-
ies, and these products are divided into primary and secondary degradation
compounds. Primary degradation compounds are those that are first formed
through oxidation reactions or radical reactions. [5] Many compounds are consid-
ered as primary degradation compounds, but in this study, the focus will be on
two of them, formate and oxalic acid, because of available experimental data.
Ammonia is also considered a primary degradation compound. However, due to
high ammonia volatility, there were uncertainties in the analyses, and the data
was not included in the modelling. The primary degradation compounds are
reactive, chemical species and may react further with MEA or other degradation
compounds to become secondary degradation compounds. [5] There are also many
secondary degradation compounds, but in this study, the compounds that will
be focused on are HEF, HEI, BHEOX, HEPO, HEA and HEGly. The compound
names, abbreviations and CAS-numbers are given in Table 2.1.

When comparing lab-scale experiments to pilot-scale, it is seen that similar degra-
dation products are formed. However, there is a larger variety of degradation
products formed in a pilot plant. This is expected, though, because the condi-
tions are more varied in a pilot plant than in the lab-scale experiments, where
the conditions are often constant. When comparing lab-scale and pilot-scale ex-
periments, the degraded solvent from the pilot was more similar to the solvent
from the oxidative degradation experiments than the solvent from the thermal
degradation experiments, suggesting that oxidative degradation dominates in
pilot plants. [16]

As mentioned, oxidative degradation is still not well understood. This applies
to, for example, under given conditions, what products are formed, their reaction
paths, how fast they are formed, and in what quantities. A further understanding
of these problems could help optimize the efficiency and possibly decrease the
operational costs of a capture plant.

2.1.1 Reaction equations describing the degradation of MEA

Suggested reaction equations for the formation of the degradation compounds
are presented in this subsection. They are simplified reaction equations collected
from previous research where oxidatively degraded solutions from lab-scale ex-
periments and pilot plants have been analyzed. Many components have been
found in solvent analyses, and likely reaction paths have been suggested based
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on these findings. There are still many uncertainties in the formation reactions,
there are several different reaction paths presented in different papers, and they
are often very complicated. When the reactions that occur are not entirely
understood, this has made it challenging to develop a model that accurately
describes oxidative degradation. Complex reaction mechanisms are often simpli-
fied in degradation modelling. This is also the case in this thesis. Only the most
relevant reaction equations have been included in this thesis.

2MEA + CO2 � MEACOO− + MEAH+ [2] (2.1)

MEA + 3H2O→ 2CH2O + NH3 + 2H3O+ [17] (2.2)

CH2O +
1

2
O2 → HCOOH [18] (2.3)

MEAH+ + HCOO− � HEF + H2O [18] (2.4)

MEA + O2 → C2H2O2 + H2O + NH3
[17] (2.5)

MEA + CH2O + C2H2O2 + NH3 � HEI + 3H2O [19] (2.6)

C2H2O2 + O2 → C2H2O4
[17] (2.7)

2MEA + C2H2O4 � BHEOX + 2H2O [18] (2.8)

MEA + C2H2O4 → HEGly + H2O + CO2
[18] (2.9)

MEAH+ + CH3COOH � HEA + H2O [18] (2.10)

MEA + HEGly→ HEPO + 2 H2O [18] (2.11)
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2.1.2 Extensive dataset for oxidative degradation of MEA

The experiments were conducted in an open batch reactor. The experimental
setup is shown in Figure 2.1. First, a feed gas, a mixture of CO2 (7.5 mL/min)
and air (0.35 L/min), was bubbled through a water vapour saturation tank.
Then, the feed gas and a recycle gas stream (50 L/min) were pumped to the
glass reactor filled with a preloaded solution of MEA (30 wt% MEA and 0.4 mol
CO2 per mol of MEA). [3;5]

Figure 2.1: Overview of the experimental setup for the oxidative degradation experiments. [3]

After the gas was bubbled through the glass reactor, it was led through two con-
densers. Here, the water vapour was condensed and returned to the reactor, and
the gas was passed through an acidic wash and a water wash to absorb volatile
and basic degradation products. The length of the experiments varied from 21
- 42 days, depending on temperature and oxygen concentration, and samples
were taken out from the glass reactor and analyzed with intervals between 3 - 6
days. The components that were measured and used for the models developed
in this study are MEA, formate, HEF, HEI, oxalic acid, BHEOX, HEPO, HEA,
and HEGly. The compound names, abbreviations and CAS-numbers for these
chemical compounds are given in Table 2.1. [5;7]
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The experiments were performed with four different O2-concentrations (6%, 21%,
49% and 98%) at three different temperatures (55 °C, 65 °C, 75 °C). An overview
of the experiments and their respective labels is given in Table 2.2. [5]

Table 2.2: Overview of the oxidative degradation experiments used in the models, the condi-
tions they were conducted at and their respective labels. [5]

T [°C] / O2[%] 6 21 49 98

55 A1 A2-I, A2-II A3 A4
65 B1 B2-II B3 B4
75 C1 C2 C3 C4

Because of experimental difficulties, some of the experimental data was not in-
cluded further in the modelling and data fitting. This applies to experiment
B2-I and experiment A2-III. In experiment B2-I, there was a significant water
loss resulting in deviations in the mass balance. A water loss will result in higher
concentrations of the measured components. This also applies to experiment
C2. A correction for water loss was done, and it was decided that experiment
C2 would be included in the modelling. Experiment A2-I, A2-II and A2-III were
performed at the same conditions, but the results measured from experiment A2-
III did not coincide with experiments A2-I and A2-II. It was therefore decided
to exclude the results from experiment A2-III in the optimization.

From the experimental results of the study performed by Vevelstad et al. (2016),
there was a trend of increased degradation rate with higher temperatures and
oxygen concentrations. There is a more significant increase in the degradation
rate with increasing temperature than increasing oxygen concentration in the
gas phase. This also applies to MEA, where an increased degradation rate was
observed with increasing temperature for all oxygen concentrations.

For all oxygen levels, the concentration and the rate of formation of the primary
degradation products, formate and oxalic acid, was increasing with increasing
temperatures. The concentration levels of oxalic acid are much smaller than for
formate, and according to Rooney et al. (1998), this is believed to be because
oxalic acid is formed in more steps than formate and the path of formation for
oxalic acid is less favorable. [20]

HEGly and HEPO are major degradation compounds found in pilot plants. [12]

A trend was seen where the highest concentration levels of HEGly occurred
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when the oxygen content was lowest, and it decreases with increasing oxygen
concentrations. Therefore, it is believed that HEGly is consumed as the reactant
in another reaction dependent on oxygen. [5] The suggested simplified mechanism
describing the formation of HEPO from MEA and HEGly is shown in Equation
2.11. [18] The formation rate of HEPO was not affected by the oxygen levels. As
mentioned, HEPO is a major degradation compound, but in the experiments
performed by Vevelstad et al. (2016), the formation of HEPO observed was low
compared to what is generally found in pilot plant samples, indicating that the
experiments were not able to capture the typical behaviour of HEPO. [5]

HEF, HEA and BHEOX are believed to be formed from the reaction between
MEA and different acids. The suggested reaction mechanism for HEF is shown
in Equation 2.4, where MEA and formate (HCOO−) react and HEF and water is
formed. HEF formation is believed to be rapid, and the formation rate increases
with increasing oxygen levels. [5] The reaction for the formation of HEA is shown
in Equation 2.10, where HEA is formed from MEA reacting with acetic acid.
HEA was produced in much lower amounts than HEF, about 10 % of the amount.
HEA had similar behaviour as the other degradation compounds, where the
concentrations increased with increasing temperatures and oxygen levels. [5;18]

The reaction for the formation of BHEOX is shown in Equation 2.8, where MEA
reacts with oxalic acid. The measured amounts of BHEOX and oxalic acid are
low, and this is because these components are formed after several reaction steps.
The concentration of BHEOX also increased with increasing oxygen levels, but
it seems to go through a maximum after 3-15 days. This might be because
BHEOX decomposes at higher temperatures. BHEOX is therefore not a major
degradation compound as it will decompose in stripper conditions. [5;18]

The suggested formation reaction for HEI is shown in Equation 2.6. HEI is
formed from MEA and primary degradation compounds. The measured concen-
tration levels are around the same as the concentration of HEGly. Therefore, it
is an important degradation compound. The formation rate of HEI was similar
to many of the other degradation products, favoured by high temperatures and
oxygen levels. [5]

The study observed that the accelerated degradation experiments performed at
98 % oxygen could not easily be extrapolated to what happens at 6 % oxygen.
The experiments performed at higher oxygen levels will not easily represent the
situation in an industrial amine absorption plant, where the oxygen levels are

10



Ingvild Emilie Solnes Master’s Thesis

around 3-11 % regarding products formed and the reaction rates. [5] However, to
optimize a model as much as possible, it is favourable to have as much data as
possible. When developing a machine learning model, a large amount of data
retrieved under various conditions is good for parameter optimization.

2.2 Thermal degradation

Thermal degradation occurs in the stripper and reboiler of an absorption-based
CO2-capture plant. Thermal degradation mechanisms describe the irreversible
reactions between MEA and CO2 without any oxygen present, and degradation
rates are affected by parameters such as temperature, T , and CO2-loading, α.

[21]

Thermal degradation of MEA in the presence of CO2 has been studied since
the 1950s. [16] Several degradation products have been identified, and the main
products are 2-oxazolidone (OZD), HEEDA and HEIA. More research has been
done on thermal degradation of MEA, and it is more understood than oxidative
degradation. Several models on thermal degradation have also been developed
in earlier work. The methodology, relevant results, and reaction equations from
a study performed by Davis (2009) are presented in the following section.

2.2.1 Thermal Degradation of Aqueous Amines Used for CO2-Capture

Davis (2009) conducted the thermal degradation experiments at the University
of Texas, and the experimental data used in this study is retrieved from this
thesis. The experiments were run for 56 days at two different temperatures,
120 ℃and 135 ℃, 3 different CO2-loadings, 0.2, 0.4 and 0.5 moles of CO2 per
mole of MEA, and three different initial MEA concentrations 6.58, 4.9 and 2.88
kmol/m3. [6] An overview of the experiments conducted, their respective labels
and the conditions they were conducted in is given in Table 2.3.

The experiments were performed in stainless steel tubes with endcaps. The tubes
were loaded with MEA solution and closed. There must be no leaks from the
tubes because then the experiment has to be discarded. The tubes were then
placed in an oven and heated to the correct temperatures. Samples were taken
and analyzed every seven to fourteen days for the eight weeks the experiment
was run. The components that were measured during the experiments were
MEA, HEEDA, HEIA, and TriHEIA. The compound names, abbreviations and
CAS-numbers of the chemical compounds are given in Table 2.1. [6;7;22]

11



Ingvild Emilie Solnes Master’s Thesis

Table 2.3: Overview of thermal degradation experiments, the conditions they were conducted
at and their respective labels. [6]

CMEA,0[kmol/m3] / α [mol CO2/mol MEA] 0.2 0.4 0.5

6.58 E1 E2 E3
120 °C 4.9 E4 E5 E6

2.88 E7 E8 E9

6.58 F1 F2 F3
135 °C 4.9 F4 F5 F6

2.88 F7 F8 F9

Since the experimental data used in this thesis is from Davis (2009), the suggested
mechanisms from his publications were also the focus. The suggested reaction
equations for the formation of HEEDA, HEIA and TriHEIA from MEA is shown
in Equation 2.12 - 2.17. Here, OZD and MEA trimer are known intermediate
products, as it is found in small amounts in thermal degradation experiments. [6;22]

2MEA + CO2 � MEACOO− + MEAH+ (2.12)

MEACOO− + MEAH+ � OZD + MEA + H2O (2.13)

MEA + OZD � HEEDA + CO2 (2.14)

HEEDA + CO2 � HEIA + H2O (2.15)

HEEDA + OZD � MEAtrimer + CO2 (2.16)

MEAtrimer + CO2 � TriHEIA + H2O (2.17)

In the reaction equations, HEIA is formed from HEEDA and not the other way
around, which is suggested in other publications on thermal degradation, such as
Polderman et al. (1955). [23] In a publication done by Gary and Rochelle (2009),
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this was researched further. Two reactors were filled with CO2-loaded HEEDA,
one with a solution of HEEDA and MEA, and one with HEIA and MEA was
placed in ovens at 135°C. When analyzing the solutions later, it was found that
in the reactors containing CO2-loaded HEEDA and MEA, HEEDA converted
rapidly to HEIA. On the other hand, in the reactor containing HEIA and MEA,
the conversion to HEEDA was not seen until very long hold times. [16;24] This
leads us to believe that the reaction presented in Equation 2.15 where HEIA is
formed from HEEDA, is reasonable.

In the analysis of the solvent, it was found that the rates of formation of the
thermal degradation compounds had a direct correlation with temperature, in-
creasing amine concentration, and increasing concentration of CO2. The most
substantial dependency was on the temperature, and the results showed that the
rate would double for every 7 °C increase in temperature. [6]

2.3 Machine learning

Machine learning is a subset of artificial intelligence. The objective of machine
learning is to emulate how a biological brain processes information. This enables
a system to be able to learn from data by analyzing it and eventually improving
itself.

Today, ML is a part of a human’s daily life. Possible applications of ML are
inventory predictions, recruitment, or marketing. An example of a common
interaction between humans and machine learning from day to day is targeted
ads. When one searches for something on the Internet or is in a specific target
group, relevant ads appear on social media and other web pages. This is because
the company making the ad has an ML algorithm designed to target specific
audiences. Another example of machine learning in marketing is contextual
relevance. For example, the algorithm identified that ads for chocolate had more
impact on consumers in the afternoon than in the morning, so the ads for a
specific chocolate product was run more in the afternoon. This saves the company
money used for marketing and increases the popularity of the product. Machine
learning has improved many fields and has allowed companies to become more
strategic and effective than before. [25]
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Rather than doing complicated programming, a machine learning model enables
a system to learn from data and often simplifies a complex program code. How-
ever, ML is not a simple process, but because of the fast-developing capabilities
of today’s computers, its popularity has increased more and more.

2.3.1 Paradigms of machine learning

Machine learning has three different paradigms; supervised learning, unsuper-
vised learning and reinforcement learning.

Supervised learning is based on training with a labelled and established set of
data. In that way, supervised learning can find patterns in a dataset and apply
them to the intended process. With the understanding of how a dataset is
classified, a machine learning model can distinguish between millions of animals
based on images and descriptions of the given animals. Machine learning in
supervised systems often uses a mapping method, such as a decision tree and
logistic regression where an input, x, produces an output, y. [15;26]

In unsupervised learning, the data is not labelled. The intention is to understand
the meaning of the data by using algorithms that find patterns or clusters and
classify the data based on them. Examples are in social media, where large
amounts of unlabeled data are generally hard to classify. Unsupervised learning
is built upon assumptions about the data, such as structural, combinatorial and
probabilistic properties. [15;26]

In reinforcement learning, there is no correct output for a given input. Instead,
the system learns through trial and error. The training data in reinforcement
learning gives only an indication of what is the correct output. If the system
gives an incorrect output, it will try again to find a correct output, and when a
series of correct outputs has been given, the understanding of the system of the
data will be reinforced. [15;26]

In this project, the machine learning models that have been developed are based
on supervised learning with a single hidden layer and is called a supervised
shallow neural network. In the following section, artificial neural networks and
the theory behind supervised shallow neural networks is presented.
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2.3.2 Artificial neural networks

An artificial neural network (ANN) is the part of a computing system that we
would want to analyze and process information similarly to the human brain.
Learning in this method happens through iteration. Deep learning uses neural
networks in several hidden layers, while shallow neural networks only have one
hidden layer. Artificial neural networks are explained in more detail in this sec-
tion. The procedure for making a supervised shallow neural network model with
the Deep Learning Toolbox from MATLAB R2019a is presented in Subsection
3.4. Artificial neural networks were first proposed by Warren McCullough and
Walter Pitts in 1944. [27] An ANN is a nonlinear vector of functions that takes in
a vector of inputs and weight parameters and provides a vector of outputs. An
ANN has the general form shown in the equation below. [4]

Ŷ = Ω(X;ω) (2.18)

Where Ω is a vector of nonlinear functions, X is a vector of input variables, and
ω is a set of weight variables. This gives the predicted vector of output variables,
Ŷ . [4]

In Figure 2.2 the Ω-function is illustrated and shows the training process of a
single layer feed-forward neural network (FFNN). The system in the figure has
three input variables, four neurons in a single hidden layer, and two output vari-
ables. Because the information only flows in one direction, forward, it is called
a forward propagation model. A single layer FFNN is the same as a supervised
shallow neural network. The loss function compares the predicted output vari-
ables, Ŷ , with the experimental or modelled values, Y e and calculates the error.
If the system does not meet a predetermined tolerance or the performance is not
satisfactory, a backpropagation signal is sent, and the process is repeated until
the predictions of the output variables stop improving or the tolerance is met. [4]

The Equations 2.19 - 2.23 describe the operations that occur in pre-processing
of the input data before the hidden layer, what happens in the hidden layer
and the post-processing of the predicted output data. The variables xn, xA,
xB, xC , yA, yB, yC , b1, b2, I and OT together form the weight parameter ω
from Equation 2.18. The five equations together form the vectors of nonlinear
functions, Ω, from Equation 2.18. Z is the result of a sigmoid transformation of
the normalized input variables and a is the result of a linear transformation of
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Figure 2.2: Schematic of a feed-forward neural network trained by a back propagation algo-
rithm. [4]

the vector Z. All the equations and a more detailed explanation of them is given
below. Example code is given in the appendix in Section C.

The hidden layer is a transformation of the input vector, X, to a vector Z, as
seen in Figure 2.2. Before the transformation, the vector of input variables is
normalized with the following equation.

xn = (X − xA). ∗ xB + xC (2.19)

Where xn is the vector of normalized input variables, X is the vector of input
variables and xA, xB and xC are constants or matrices of constants generated
by MATLAB. .∗ is used to do an element-wise multiplication. The sigmoid
transformation usually happens through a sigmoid symmetric transfer function,
which is a hyperbolic tangent function. This function is shown in Equation
2.20. The matrix Z represents the result of the sigmoid transformation of the
normalized variables.

Z = tansig(n) = 2./(1 + e−2n)− 1 (2.20)
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where n is a simplification of the expression below,

n = b1 ∗Q+ I ∗ xn (2.21)

Here tansig is mathematically equivalent to tanh with small numerical differences
between the two, but the tansig function runs faster with MATLAB. In neural
networks, the shape of the transfer function is not emphasized. However, speed
is important for effective models. [28] b1 is the bias of the hidden layer, and I is
the hidden layer weight matrix. Q is the number of samples in the dataset. ./ is
used to do an element-wise right division.

Afterwards, the vector Z together with the weight parameters b2 and OT are
transformed with a linear transformation function. [4] The linear transformation
function is shown below.

a = b2 ∗Q+OT ∗ Z (2.22)

Where b2 is the bias of the output layer, and OT is the output layer weight
matrix. Finally, to get the vector of predicted output variables, Ŷ , the data is
un-normalized with the following equation.

Ŷ =
(a− yC

yB

)
+ yA, (2.23)

where yA, yB, and yC are constants that MATLAB generates.
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3 Methodology

All the models presented in this report have a basis in experimental data. The
data for oxidative degradation is from work done by Vevelstad et al. (2016),
and the data for thermal degradation is from work done by Davis (2009). In
this chapter, the methodology of the thesis is described. The method used for
developing machine learning models and the different ways of presenting the
results, the simplifications and assumptions are presented.

The models that were made in this report are based on the rate of reaction
for each component. When using reaction rates, the problem is transformed
from requiring a neural network with feedback to a feedforward neural network.
Therefore, the data had to be treated and transformed from experimental con-
centration measurements to the experimental reaction rate for each component.
This was done with the following equation.

reC,n =
∆ce

∆t
=
ceC,n+1 − ceC,n

tC,n+1 − tC,n

(3.1)

∆ce is the change in experimental concentration of the component over the time
interval, ∆t. reC,n is the experimental reaction rate for each of the components,
C, and n is the measurement number. ceC,n is the experimental concentration of
the component, and tC,n is the time the measurement was made. This equation
measures the change in the concentration of the compounds over time and is a
commonly used equation for calculating reaction rates. [29] The rate of reaction
was used as an output in the machine learning models.

After developing the machine learning models, a modelled rate is obtained by
running the experimental input data through the ML model. This modelled
rate was used to find the modelled concentrations of the components at the
different measurement points. The modelled concentration, cmod

C,n+1 was calculated
by reversing Equation 3.1. The equation is shown below.

cmod
C,n+1 = rmod

C,n (tC,n+1 − tC,n) + cmod
C,n (3.2)

rmod
C,n is the modelled reaction rate for each of the components, C, at measurement
n.
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Several methods were tried to find the optimal fit, the best way to recreate the
experimental data, and optimizing the parameters. This included varying the
number of inputs of the machine learning models and how the concentrations
were calculated from the modelled rates.

3.1 Oxidative degradation models

An evaluation of the raw data from the oxidative degradation experiments has
been done. The results showed a significant difference in the measured values
between the different analytical methods that analyzed the data. As mentioned
in Section 2.1.2, this was because of some experimental difficulties. The results
from experiment A2-III did not coincide with experiment A2-I and A2-II, even
though the three experiments were performed under the same conditions. The
data from experiment A2-III was therefore not included further. Experiment B2-
I had a significant water loss, which resulted in a higher measured concentration
of MEA, and this data was also not used in any further research or development
of a model. [5]

The first modelling method that was tried out was a machine learning model
with 3 inputs and one output. The inputs of the model were the experimental
MEA-concentration, oxygen concentration, and temperature. The output was
the calculated rate of reaction for one of the nine different components. Thus,
nine ML models were created, one for each one of the chemical components.

The second ML model that was developed had 10 inputs and one output. The 10
inputs were temperature, oxygen concentration and the concentrations of eight of
the nine components. The only component not included was oxalic acid because
the measured concentrations from experiment A2-I were missing or too uncertain
to include in the results. Therefore, oxalic acid was excluded as an input in the
model. This was to include as much data as possible in the modelling of the
reaction rates. However, the oxalic acid model had 11 inputs because the data
for oxalic acid was included as an input. The output of the models was the rate
of reaction of each of the different components. Also here, nine ML models were
developed.

A few methods of calculating the modelled concentrations were tried out. The
first method was to use the instantaneous rate, which is the rate at which a
reaction is proceeding at a specific time. [29] The other method was to use the
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average rate of each experiment as the reaction rate, rC,n, assuming the rate is
independent of the concentration levels of the degradation compounds. This was
done to simplify the model and to attempt to make it more user-friendly. The
goal was to develop a model that can be applied in different chemical absorption
plants to indicate how the facility’s components will degrade over time and how
fast the degradation happens at the given conditions used in that specific plant.

3.2 Thermal degradation models

There was less available experimental data from the experiments performed by
Davis (2009). Some measurements for the different degradation products were
not available because of experimental difficulties and uncertainties. Two models
were developed for predicting the rates of thermal degradation. The first model
had 3 inputs and one output. The inputs were temperature, MEA-concentration
and CO2-concentration, and the output was the experimental reaction rate cal-
culated with Equation 3.1. Also here, one model was developed for each of the
four degradation compounds.

The second model that was developed used all the experimental data as in-
put. In total, there were 6 inputs, temperature, MEA-concentration and CO2-
concentration, in addition to the concentration of HEIA, HEEDA and TriHEIA.
Where experimental points were unavailable, the NaN (not a number) function
in MATLAB was used for these values.

3.3 Assumptions and simplifications

As described in Section 2.1.2, there was some water loss that occurred in the
duration of the oxidative degradation experiments. This resulted in concentra-
tion measurements that were too high and also some concentration jumps in the
measured data. When the reaction rate of MEA was calculated with Equation
3.1, there were some positive values for the rate, indicating that MEA had been
formed during the experiments. For the thermal degradation experiments, the
same issues were seen with positive values for the reaction rates for MEA. These
positive values were not wanted when developing the model. This is because, in
this thesis, it is assumed that MEA is not formed, only consumed in oxidative
and thermal degradation. Therefore, it was decided that the positive values for
the reaction rate of MEA would not be included when developing the machine
learning models that modelled the reaction rates of MEA. When making the
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plots of the results, all the experimental data was included again.

After the ML models were developed, all experimental data, including the re-
moved points before developing the model, were run through the model. This was
to obtain as many reaction rates as possible to have more modelled predictions to
compare with the experimental data. There was a problem with underprediction
in the plotted results for MEA from the 3 input model with instantaneous rate.
To avoid this, the data points or experiments where there were concentration
jumps were removed altogether. Therefore, the plotted curve for the 3 input
model with instantaneous rate is not included in many of the figures, or the first
measurement point is missing, and the plot starts at the second measurement
point. An example is Figure 4.2, where the ML model with three inputs and
instantaneous rate, which is the purple line, starts at the second measurement
point.

The average of the modelled rate was used when calculating the modelled con-
centration of the degradation products for one of the models. This assumes that
the rate is independent of the concentration of MEA and results in a linear trend
for the concentration curves. From previous research, it is seen that this is often
not the case, as the concentration often has exponential growth, and the con-
centration will flatten out after reaching a maximum or react further and form
other components. [5] Therefore, the concentration was also calculated by using
the instantaneous rate to compare the two methods.

The density is assumed to be constant for the duration of the experiments. The
density was measured at the beginning and end of every experiment. The change
in density was around 1 % for all experiments, so it can be assumed that it does
not significantly impact the results.

3.4 Developing a supervised shallow neural network model

Training a machine learning model is analogous to doing polynomial fitting, only
that the optimization equations are more complex. In this section, the steps
and considerations for making a supervised shallow neural network model are
presented. Example MATLAB code is given in the appendix in Section C.

Before training the model with a dataset, one first has to choose what fraction
of the data will be used for training, validation and testing. The data used
for training will fit the model. The validation dataset is held back from the
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model and used to evaluate and further fit the model. The testing dataset is for
evaluating the fit of the final model compared to the training dataset. [30]

Then the number of neurons in the hidden layer is chosen. The more neurons
there are in the hidden layer, the more computation is needed to solve the prob-
lem. The network often needs many neurons in the hidden layer to give an
appropriate model for more complicated problems. The fitting performance of
the model is then evaluated. If the model is overfitted, there are too many neu-
rons in the hidden layer. This will result in a model that is too well fitted to
the specific dataset, so its ability to generalize is negatively affected. When the
model has not learned enough from the training data, its predictions are unre-
liable and not generalized. This is known as underfitting and will result in the
model not capturing the dominant trend of the data. [31] If the model is overfitted
or underfitted, it will cause problems when introducing new data to it. When
finding the optimal number of neurons in the hidden layer where the model is
not overfitted or underfitted, a trial and error method is a common approach.

There are two main optimization methods available in MATLAB’s deep learning
toolbox. Levenberg-Marquardt (LM) backpropagation algorithm or the Bayesian
Regularization (BR) backpropagation algorithm. When the neural network is
moderate-sized, LM is the fastest method. [32] The BR algorithm typically re-
quires more time, but it has good generalization and prediction qualities and is a
combination of the LM optimization method and Bayesian interpolation method.
The BR algorithm can give good results for noisy or small datasets. [33]

Finally, the model can be trained with the chosen data and conditions. The
goal is for the correlation coefficient, R, to be close to 1, which indicates a close
relationship between the output and target variables. [4]

If the correlation coefficient is not optimal, the neural network can be retrained
several times to see if the results improve. Each time the model is retrained, dif-
ferent solutions are obtained, and the outputs will therefore change even though
the inputs are the same. One can often improve the accuracy of a model by
retraining it several times. [34]

The models developed in this thesis are shallow neural network models with
a single hidden layer. The number of neurons in the hidden layer was varied
from model to model to optimize the fit. An example model with 3 inputs, four
neurons in the hidden layer and one output is illustrated in Figure 3.1. Here
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one can see that there is one hidden layer and one output layer. The sigmoid
transformation of the input data happens in the hidden layer, and the linear
transformation of the output variables happens in the output layer. The w and
b represent the weight matrices and the biases, respectively.

For the machine learning models model in this thesis, the optimization method
used was Bayesian Regularization with three or four neurons in the hidden layer,
depending on the dataset. The number of neurons is determined by the com-
plexity of the problem, not by the amount of data. However, the amount of data
constrains the number of neurons that can be used. Because there was not a
lot of data available, the percentage of data used for validation and testing was
chosen to be 5-10 %, so most of the data would be used for training. This was
to optimize the fitting and predictions of the models.

Figure 3.1: Flow sheet of the setup of a supervised shallow neural network with three input
variables, four neurons in the hidden layer, one output layer and one output
variable. The figure is from MATLAB.

3.5 Statistical analysis methods

Statistical analysis can be a helpful tool to help uncover patterns and trends in a
dataset. In this thesis, the deviations that were calculated are average absolute
relative deviation (AARD) and absolute average deviation (AAD). The AARD
calculates the absolute average relative deviation between each data point in the
dataset and the model prediction and tells how much each data point deviates
from the mean of the data. AAD calculates the average absolute deviation
between each data point in the dataset and the model prediction. The AARD
was calculated with the following equation.

AARD =
1

N

∑∣∣∣ceC,n − cmod
C,n

ceC,n

∣∣∣ ∗ 100% (3.3)
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N is the number of values in the dataset, ce is the experimental value of compo-
nent C at measurement point n, and cmod is the modelled value of component C
in the measurement point n. The AD was calculated with the following equation,

AAD =
1

N

∑
|ceC,n − cmod

C,n | (3.4)
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4 Results and discussion

In this section, the main results and findings are presented and discussed. Also,
a review of the advantages and disadvantages of the models, methods and as-
sumptions made is done.

4.1 Oxidative degradation

In the following subsections, the experimental results from the oxidative degra-
dation models are presented and discussed. Each degradation compound is dis-
cussed separately, and a comparison of the developed models is made. For each
of the oxidative degradation components, some representative results are given.
All other figures are given in the appendix in Subsection A.

Table 4.1 and 4.2 gives the mean AAD and AARD values of all experiments
(A1-C4) for each one of the components for the three different ML-models. The
complete tables with the AAD and AARD for each one of the experiments are
given in the appendix in Subsection A.

Table 4.1: Mean AAD for experiment A1-C4 for each one of the components. (1) AAD
between the experimental values and the model with 3 inputs and average rate.
(2) AAD between experimental values and the model with 10 inputs. (3) AAD
between the experimental values and the model with 3 inputs and instantaneous
rate.

Experiment AAD (1) AAD (2) AAD (3)

MEA 0.362 0.127 0.127
Formate 0.044 0.024 0.047
Oxalic acid 0.002 0.001 0.002
HEGly 0.003 0.001 0.002
HEPO 0.053 0.010 0.041
HEF 0.014 0.006 0.010
HEA 0.041 0.025 0.035
BHEOX 0.001 0.001 0.002
HEI 0.005 0.001 0.002
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Table 4.2: Mean AARD for experiment A1-C4 for each on of the components. (1) AARDD
between the experimental values and the model with 3 inputs and average rate. (2)
AARD between the experimental values and the model with 10 inputs. (3) AARD
between the experimental values and the model with 3 inputs and instantaneous
rate.

Experiment AARD (1) [%] AARD (2) [%] AARD (3) [%]

MEA 6.96 2.46 2.55
Formate 35.9 12.5 34.6
Oxalic acid 30.8 10.3 10.8
HEGly 18.1 6.56 11.5
HEPO 16.9 4.89 12.6
HEF 19.5 11.6 15.0
HEA 11.1 10.5 10.4
BHEOX 62.5 22.4 58.1
HEI 19.0 19.2 13.8

4.1.1 MEA

The modelling results for MEA is shown in Figure 4.1 and 4.2. The rest of the
figures are given in the appendix in Subsection A.1.

Figure 4.1: The figure shows the plotted results from experiment B4 for MEA conducted at
65°C and with 98% O2. The blue dots are the experimental data points, the red
line is the ML-model with 3 inputs and average reaction rate, the yellow line is
the ML-model with 10 or 11 inputs, and the purple line is the ML-model with 3
inputs with instantaneous rate.
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Figure 4.2: The figure shows the plotted results from experiment C4 for MEA conducted at
75°C and with 98% O2. The blue dots are the experimental data points, the red
line is the ML-model with 3 inputs and average reaction rate, the yellow line is
the ML-model with 10 or 11 inputs, and the purple line is the ML-model with 3
inputs with instantaneous rate.

In Figure 4.1 experiment B4 is plotted. The experiment was performed at 65
°C with 98 % oxygen. One can see that all of the ML models have been able to
predict the experimental data trend. The red line, which is the ML model with 3
inputs and average rate, is linear for all of the experiments. For the time span of
the plot, the red curve has a reasonable development because the endpoint of the
ML model is similar to the last experimental point. However, the experimental
data has a curved shape, indicating that the degradation rate decreases over
time. This is in accordance with the expected trend and what earlier research
has shown. This trend will not be seen from the linear curve, where a constant
degradation rate is assumed. Therefore, this model will have a limited validity
range. The two other curves, the yellow and purple ones, have a decrease in
degradation rate with time, and if the same trends continue, it seems as though
these two curves will have a reasonable development over time.

Figure 4.2 shows the results from experiment C4, which was performed at 75
°C with 98% oxygen. Here, MEA degrades faster than in experiment B4, which
is expected as the solvent degrades faster with increasing temperature. In this
plot, the yellow and purple curves are similar to the curves in plot B4, where the
degradation rate decreases with time. It seems that the ML models for most of
the plots developed for MEA have captured the general trend for the data well.
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The values for the AAD and AARD are shown in the appendix in Table B.1
and B.2. The AAD seems to increase with increasing temperature for the 3
input model, with some exceptions. This is probably because the reaction rate
of MEA decreases faster with higher temperatures, and therefore has a more
concave shape as the temperature and oxygen concentration increases. The 3
input model with average rate is linear and will not follow the same trend, so the
AAD is expected to increase with increasing temperatures. From Table 4.1, it is
seen that the mean AAD is lower for the model with 10 inputs than the model
with 3 inputs and average rate. Several of the AADs for the 3 input model with
instantaneous rate is missing because of missing modelled reaction rates. For the
included values, results are promising, and the mean AAD is similar to the 10
input model. For the 10 input model, the AADs are good and steadily low for all
the calculated values. This coincides with the plotted results from the ML model,
which seemed to follow the experimental values well. The mean AARD is 6.96%
for the 3 input model with an average rate, with a minimum value of 0.892% and
a maximum value of 24.34%. For the 10 input model, the mean AARD is 2.46%
with a minimum value of 0.761% and a maximum of 5.688%. For experiment
B1, the AARD for the 3 input model with average rate deviates significantly
from the experimental values. For the 3 input model with simultaneous rate, the
mean value is similar to the 10 input model. The AARDs are low for all three
models, but a simultaneous rate improves the fit, as seen in the plots and the
deviations.

Because there were concentration jumps in the experimental data for MEA,
values were removed from the data in the model with 3 inputs. This was done so
that the data would have a decreasing concentration trend for the whole duration
of the experiments. The ML models were then trained with this data. This was
to support the assumption that MEA is only consumed, not formed, for the
whole duration of the experiments, from the suggested reaction mechanisms for
oxidative degradation. This is seen in Figure 4.2, where the purple line has
one less experimental point than the other plots. This has altered the results
compared to using the experimental data directly. However, if the concentration
of MEA increased and decreased during the experiments, this would not make
sense because MEA is not being formed in an absorber or simulated absorber
conditions, only consumed. For the model with ten inputs, these experimental
data points were not removed. As seen in Figure 4.2, the yellow curve does a jump
in the beginning before decreasing in concentration for the remaining duration
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of the experiment. This could indicate that the 10 input model is overfitted or
is sensitive to outliers in the dataset.

The model with 3 and 10 inputs are similar in many cases. It seems like the
model with ten inputs improved the overall fit of the model. This indicates that
the degradation rate is not only dependent on the MEA-concentration; it is also
dependent on the other degradation products that are formed.

4.1.2 Formate and oxalic acid

Selected results for formate are shown in Figure 4.3 and 4.4. These are the
plotted results from experiment A1 and C4. The remaining plots are given in
the appendix in Subsection A.2. In the ML model with three inputs, zero-values
were removed from the data before training the model. In the model with 10
inputs, this was not done.

Figure 4.3: The figure shows the plotted results from experiment A1 for formate conducted
at 55°C and with 6% O2. The blue dots are the experimental data points, the red
line is the ML-model with 3 inputs and average reaction rate, the yellow line is
the ML-model with 10 inputs, and the purple line is the ML-model with 3 inputs
with instantaneous rate.

The results of the ML model for formate are generally good. The values for
the modelled reaction rates of the 3 input model were close to constant. This
resulted in a concentration profile for the 3 input model with the instantaneous
rate to be similar to the 3 input model with average rate. From the figures, it
is seen that they are both close to linear. A similar linear trend for the 3 input
models is seen for all the experiments. The trend of the experimental data is
also linear, and it seems as though the ML model with 3 inputs has captured
this linear trend well.
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Figure 4.4: The figure shows the plotted results from experiment C4 for formate conducted
at 75°C and with 98% O2. The blue dots are the experimental data points, the
red line is the ML-model with 3 inputs and average reaction rate, the yellow line
is the ML-model with 10 inputs, and the purple line is the ML-model with 3
inputs with instantaneous rate.

From Figure 4.4 one can see that the yellow line, which is the 10 input model,
has noticeable step changes in the reaction rate. Some experiments had zeros in
the experimental data, such as in experiment C4, and these were not removed
before training. This seems to have caused disturbances and shows that the ML
model with ten inputs is sensitive to outliers in the dataset.

From reported results, the concentration levels and the reaction rate of formate
are expected to increase for the whole duration of the experiments. [5] From the
results, this trend is seen for most of the experiments. In experiment B3, C3 and
C4, the concentration either decreases or has zeros where the concentration could
not be measured, giving a negative rate for some points. This causes disturbances
in the ML model with 10 inputs. Except for these outliers, the concentration has
an increasing trend. When it comes to the reaction rate, the increase is linear for
the model with 3 inputs. For the model with 10 inputs, the reaction rate has an
even increase for many of the plots, and for other plots, it has a steeper growth.

From Table 4.1 it is seen that the mean AAD for formate is low for all ML models,
and the AAD for the 10 input model is the lowest. From the mean AARD of
formate in Table 4.2, there is a significant difference in the AARD for the 10 input
model (12.5%) and the 3 input model with average (35.9%) and simultaneous
rate (34.6%). This coincides with what is seen from the plotted results, where
the 10 input model more easily follows the experimental data points than both
of the plotted lines from the 3 input model, thus deviating more from the mean
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of the data.

The plotted results from experiment B2-II and C2 for oxalic acid are shown in
Figure 4.5 and 4.6. The remaining plots are given in the appendix in Subsection
A.3.

Figure 4.5: The figure shows the plotted results from experiment B2-II for oxalic acid con-
ducted at 65°C and with 21% O2. The blue dots are the experimental data
points, the red line is the ML-model with 3 inputs and average reaction rate, the
yellow line is the ML-model with 11 inputs, and the purple line is the ML-model
with 3 inputs with instantaneous rate.

Figure 4.6: The figure shows the plotted results from experiment C2 for oxalic acid conducted
at 75°C and with 21% O2. The blue dots are the experimental data points, the
red line is the ML-model with 3 inputs and average reaction rate, the yellow line
is the ML-model with 11 inputs, and the purple line is the ML-model with 3
inputs with instantaneous rate.

From the results, one can see that the fit is suitable for all the plots. In Figure
4.5 the red line has a very nice development, and the same applies to the purple
line. The yellow line, the 11 input model, is underpredicted, meaning that it
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predicts too low values. This can be because, in the experimental data, the first
two values are zero. As also seen from the formate results, the 10 or 11 input
model is sensitive to outliers and zero-values in the dataset. In Figure 4.6 all
three curves have a good fit. The yellow and purple lines have a curved shape,
which follows the pattern of the experimental data points. It seems like these
curves will have a reasonable development over time.

It seems as though the fit improves with increasing temperature and oxygen
concentration. When looking at the order of magnitude, the concentration levels
are around 10 times larger for the experiments performed at 55 °C and 75 °C, so
an error is more visible for the experiments performed at lower temperatures than
the higher ones. When looking at Table 4.1 with the mean AAD, the average
absolute deviation is very low for all models. This indicates that the fit is good
for both the ML models, and errors are more visible for the lower temperatures
in the graphs. From Table 4.2 with the AARD, the mean is much higher for the 3
input model with the average rate (30.8%), with the highest value being 153.1%
for A2-II, than the models with simultaneous rates with 11 inputs (10.3%) and
3 inputs (10.8%). This indicates that the modelled rates from the models with
simultaneous rates follow the experimental data better than with an average
rate. A reason for high AARD values can be because the order of magnitude for
oxalic acid is relatively low, as mentioned earlier. Therefore, the absolute average
relative deviation will be more visible because a deviation from the mean of the
data will make a more significant difference when the concentration levels are
lower.

4.1.3 HEGly and HEPO

The results from the plots of experiment A2-II and C2 for HEGly are shown in
Figure 4.7 and 4.8. The remaining plots are given in the appendix in Subsection
A.4.

HEGly is a major degradation compound found in pilot plants, and it has a
strong temperature dependency. From the results of the ML models, there is
an apparent increase in the concentration levels of HEGly with increasing tem-
perature. There is also a decrease in the concentration levels with increasing
oxygen content, coinciding with the expected development from research. [5] This
indicates that ML models have been able to capture the general trend of the
data.
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Figure 4.7: The figure shows the plotted results from experiment A2-II for HEGly conducted
at 55°C and with 21% O2. The blue dots are the experimental data points, the
red line is the ML-model with 3 inputs and average reaction rate, the yellow line
is the ML-model with 10 inputs, and the purple line is the ML-model with 3
inputs with instantaneous rate.

Figure 4.8: The figure shows the plotted results from experiment C2 for HEGly conducted at
75°C and with 21% O2. The blue dots are the experimental data points, the red
line is the ML-model with 3 inputs and average reaction rate, the yellow line is
the ML-model with 10 inputs, and the purple line is the ML-model with 3 inputs
with instantaneous rate.

For Figure 4.8 one can see a decrease in the concentration after around 6 days.
From the theory, HEGly is believed to be consumed as the reactant in other
reactions. [5] This is more visible for the highest temperature in the experimental
data, and the ML models seem to follow a similar trend. Also, the red line,
plotted with the average reaction rate, will have a limited validity range because
it has a linear development the whole time, and HEGly is expected to decrease
or stagnate in concentration levels. For the results for 55 °C and the experi-
ments done with 6 % oxygen for 65 and 75 °C, the results show a linear trend,
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similar to Figure 4.7. This is because the reactions with HEGly as an interme-
diate are believed to be reached faster for higher temperature and oxygen levels,
and the decrease in HEGly concentration is therefore not observed at the lower
temperature and oxygen levels.

Figure 4.9, 4.10 and 4.11 show the results from the ML models of experiment
A1, B1 and C3 for HEPO. The remaining figures are given in the appendix in
Subsection A.5. The majority of the results have a good fit, similar to B1 in
Figure 4.10.

Figure 4.9: The figure shows the plotted results from experiment A1 for HEPO conducted at
55°C and with 6% O2. The blue dots are the experimental data points, the red
line is the ML-model with 3 inputs and average reaction rate, the yellow line is
the ML-model with 10 inputs, and the purple line is the ML-model with 3 inputs
with instantaneous rate.

For almost all cases, the two models gave very similar results. For experiment
C3, in Figure 4.11 it is seen that the 10 input model is sensitive to concentration
jumps in the experimental data and outlier points. The model with 3 inputs has
a better-adjusted fit. The exception is Figure 4.9 where the 3 input model gives
negative values and low average rates. This may be because the first few data
points of the experimental data are low, and this seems to affect the modelled
rates a lot.

Lab-scale experiments do not seem to capture HEPO’s behaviour in pilot plants, [5]

therefore, experimental data from pilot plants or larger scale plants is needed for
models to be applicable to an industrial plant. However, since the models seemed
to easily capture the trends of the lab-scale experimental data for HEPO, this is
promising also for a model developed based on data from a pilot or a large-scale
capture plant.
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Figure 4.10: The figure shows the plotted results from experiment B1 for HEPO conducted
at 65°C and with 6% O2. The blue dots are the experimental data points, the
red line is the ML-model with 3 inputs and average reaction rate, the yellow
line is the ML-model with 10 inputs, and the purple line is the ML-model with
3 inputs with instantaneous rate.

Figure 4.11: The figure shows the plotted results from experiment C3 for HEPO conducted
at 75°C and with 49% O2. The blue dots are the experimental data points, the
red line is the ML-model with 3 inputs and average reaction rate, the yellow
line is the ML-model with 10 inputs, and the purple line is the ML-model with
3 inputs with instantaneous rate.

The mean AAD, as seen in Table 4.1, for both HEGly and HEPO are the smallest
for the 10 input models for both components. The values for the AAD are around
10 times higher for all models for HEPO than HEGly, and this is believed to be
because HEPO is formed in more significant concentrations than HEGly, and this
will have a greater impact on the absolute average deviations. The mean AARD
for HEGly and HEPO, as seen in Table 4.2, have a similar pattern, where they
are highest for the 3 input model with average rates (18.1% and 16.9%) than the
models with simultaneous rates with 10 inputs (6.56 and 4.89%) and 3 inputs
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(11.5 % and 12.6%). This is again because the model with an average rate will
have a linear development. The two other plotted lines will curve and thus follow
the development of the experimental data more accurately.

4.1.4 HEF, HEA and BHEOX

The result from HEA experiment C3 is shown in Figure 4.12, and the result from
HEF experiment C4 is shown in Figure 4.13. Both of these plots give a general
idea of how the plotted results of all the experiments turned out. The remaining
plots for HEF and HEA are given in the appendix in Subsection A.6 and A.7.

Figure 4.12: The figure shows the plotted results from experiment C3 for HEA conducted at
75°C and with 49% O2. The blue dots are the experimental data points, the
red line is the ML-model with 3 inputs and average reaction rate, the yellow
line is the ML-model with 10 inputs, and the purple line is the ML-model with
3 inputs with instantaneous rate.

For both HEF and HEA, the fit is good, although there are few outlier plots.
The models tend to overpredict and underpredict the concentrations, but this
also applies to several other degradation compounds. HEA has a similar trend as
the formate compound. The model with three inputs and average rate and the
model with three inputs and instantaneous rate are similar and follow an almost
identical path. From Table 4.1 and 4.2 with the mean AAD and AARD, the
values follow the trends that have also been seen for most of the other compounds,
where the deviations are lower for the model with 10 inputs than the model with
3 inputs.

Figure 4.14 and 4.15 show the results of experiment B4 and C3 for BHEOX. The
results were more varying than many of the plotted results for other compounds.
The remaining plots are given in the appendix in Subsection A.8.

38



Ingvild Emilie Solnes Master’s Thesis

Figure 4.13: The figure shows the plotted results from experiment C4 for HEF conducted at
75°C and with 98% O2. The blue dots are the experimental data points, the
red line is the ML-model with 3 inputs and average reaction rate, the yellow
line is the ML-model with 10 inputs, and the purple line is the ML-model with
3 inputs with instantaneous rate.

Figure 4.14: The figure shows the plotted results from experiment B4 for BHEOX conducted
at 65°C and with 98% O2. The blue dots are the experimental data points, the
red line is the ML-model with 3 inputs and average reaction rate, the yellow
line is the ML-model with 10 inputs, and the purple line is the ML-model with
3 inputs with instantaneous rate.

It is observed that the measured experimental concentrations of BHEOX are low
for all the experiments. From theory, it is known that BHEOX is not a major
degradation product. It is formed from oxalic acid, which is produced through
several and often non-favoured reaction steps. [5] The concentration development
will therefore be low. Because the concentrations levels are low, an error will be
more visible, as seen from other components with low concentration levels. From
Table B.16 the values for the AARD are high for many of the experiments. Nev-
ertheless, from Table B.15 it is seen that the AAD between each data point and
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Figure 4.15: The figure shows the plotted results from experiment C3 for BHEOX conducted
at 75°C and with 49% O2. The blue dots are the experimental data points, the
red line is the ML-model with 3 inputs and average reaction rate, the yellow
line is the ML-model with 10 inputs, and the purple line is the ML-model with
3 inputs with instantaneous rate.

the model prediction is low for all the values. From Figure 4.14 the inaccuracy
of the plotted red line with average, constant rate of reaction is also very visible.

4.1.5 HEI

Figure 4.16 and 4.17 show the results from experiment A1 and B4 for HEI,
respectively. The remaining plots are given in the appendix in Subsection A.9.

Figure 4.16: The figure shows the plotted results from experiment A1 for HEI conducted at
55°C and with 6% O2. The blue dots are the experimental data points, the red
line is the ML-model with 3 inputs and average reaction rate, the yellow line
is the ML-model with 10 inputs, and the purple line is the ML-model with 3
inputs with instantaneous rate.
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Figure 4.17: The figure shows the plotted results from experiment B4 for HEI conducted at
65°C and with 98% O2. The blue dots are the experimental data points, the
red line is the ML-model with 3 inputs and average reaction rate, the yellow
line is the ML-model with 10 inputs, and the purple line is the ML-model with
3 inputs with instantaneous rate.

Experiment B4 has a positive development and flattens out after some time, and
this is also representative of many of the other plots. All the ML models have
a good development. As expected, the red line, with average, constant reaction
rate, is not as accurate as the models with instantaneous rates. From Table
B.18 one can see that the average absolute relative deviation is 20.05 % for the
red line, 1.479 % and 4.281 % for the yellow and purple line, respectively. The
AARD for the red line is larger than the other models, indicating that it is not
as accurate, as also seen from the figure. The absolute average deviation, seen
in Table B.17 is also larger for the model with average rate than the other two
models. The fit for the 3 input model and 10 input model with instantaneous
rates are similar, and they follow the experimental data points well.

For experiment A1 all the curves have a negative development over time. The
purple line, which is the model with three inputs and instantaneous rate, has
a positive development in the beginning before becoming negative after about
15 days. One of the reasons for the inaccuracies shown in Figure 4.16 could be
caused by the discrepancy in the order of magnitude of the experimental data.
The order of magnitude varies substantially for the experimental data, which will
influence the modelled rate. The experimental values for A1 are low, impacting
the results notably. The experimental values are low for the other experiments
conducted at 55°C, but it seems only to have affected A1.
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4.1.6 Comparison of the models

Two machine learning models describing the oxidative degradation of MEA have
been developed in this thesis. The first model was trained with 3 inputs (MEA-
concentration, temperature and O2-concentration) and one output (the calcu-
lated experimental reaction rate of a component). The modelled rates were
obtained from this model, and the modelled concentrations were calculated in
two different ways, one with the average of the modelled rates, so a constant
rate, and one with the instantaneous rate.

From the results, it was seen that the plotted line with average rate is linear, and
it will therefore have a limited validity range. From previous experiments and
research, the degradation rates for MEA and reaction rates for the degradation
products are expected to decrease with time. When there is less MEA, there will
also be less formation of degradation products. Therefore, the linear model will
not be valid over time. Therefore it is not relevant to assume a constant reaction
rate. From the plotted line with instantaneous rate, it is seen that the results
improve substantially, and the curves have better accuracy and behaviour, with
some exceptions.

A second model was proposed to see if there was a dependency between the
reaction rates of MEA and the degradation products. In addition to the three
inputs from the first model, the experimental concentrations of formate, HEF,
HEI, BHEOX, HEGly, HEA and HEPO were also inputs. Oxalic acid was not
included as an input because the data from experiment A2-I was not available.
In the ML model for oxalic acid, all available data were included in the model.
For many of the results, the extra inputs seemed to give an improved fit. Looking
at the AAD and AARD for the experiments, the error is lowest for the 10 input
models in all cases. Because of improved results and lower deviations for the
10 input model, there is an indication that there is a dependency between the
degradation compounds.

It seems like the model with 10 inputs will give the most accurate results. This
indicates that the more data is available, the better. In machine learning, a
model will have better predictions if more data is available. More experimental
data could help improve the performance of the ML model. However, it is also
seen that the 10 input model is sensitive to outliers in the dataset. A screening
of the data and removal of apparent outliers could improve the fit of the model.
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One of the goals of this thesis was to see if machine learning can model the
oxidative degradation of MEA and the formation of degradation products in an
acceptable way. It could also be interesting to see if there is a possibility of
developing a model that could be applied in different CO2-capture plants. The
model is data-driven and requires experimental data from many degradation
compounds to obtain the modelled rates and accurate predictions. A model that
only requires plant conditions and kinetics as inputs would be optimal. Further
understanding of the chemical reactions and how conditions of the plant affect
the degradation is needed for this to be possible.

4.2 Thermal degradation

In this section, a selection of the plotted results is shown. The rest of the results
are given in the appendix in Subsection B. Table 4.3 and 4.4 gives the mean AAD
and AARD values from both of the ML models for each one of the components
for all experiments (E1-F9). The tables of AAD and AARD for each experiment
is given in the appendix in Subsection B.

Table 4.3: Mean AAD for all experiments (E1-E9) for each one of the thermal degradation
components. (1) AAD between the experimental values and the ML model with
3 inputs. (2) AAD between the experimental values and the model with 6 inputs.

Compound AAD (3) AAD (6)

MEA 0.235 0.153
HEIA 0.027 0.020
HEEDA 0.012 0.034
TriHEIA 0.015 0.003

Table 4.4: Mean AARD for all experiments (E1-E9) for each one of the thermal degradation
components. (1) AARD between the experimental values and the ML model with
3 inputs. (2) AARD between the experimental values and the model with 6 inputs.

Compound AARD (1) [%] AARD (2) [%]

MEA 5.3 3.8
HEIA 14.0 11.4
HEEDA 28.9 16.4
TriHEIA 38.8 7.7
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4.2.1 Modelling results

Figure 4.18 shows the plotted results for experiment E6 for MEA at 120°C and
a CO2-loading of 0.5. Figure 4.19 shows the plotted results for experiment F6
for HEEDA at 135°C and a CO2-loading of 0.5. Figure 4.20 shows the plotted
results for experiment F6 for HEIA at 135°C and a CO2-loading of 0.5. Figure
4.21 shows the plotted results for experiment E6 for TriHEIA at 120°C and a
CO2-loading of 0.5. All the experiments had an initial MEA concentration of
4.9 kmol/m3. The figures show the concentration of MEA plotted against time.
The experimental data points are the blue dots in the plot. The red line is the
ML model with 3 inputs and one output, and the yellow line is the ML model
with 6 inputs and one output. The remaining plots are given in the appendix in
Subsection B.1, B.2, B.3 and B.4.

Figure 4.18: The figure shows the plotted results from experiment E6 for MEA conducted
at 120°C and with a CO2-loading of 0.5. The blue dots are the experimental
datapoints, the red line is the ML-model with 3 inputs, and the yellow line is
the ML-model with 6 inputs.

From the thermal degradation models for MEA, a good fit is observed for most
of the experiments. The curves have the expected development, a decreasing
reaction rate with time, and a decreasing concentration of MEA over time. For
many of the experiments, the model with three inputs and six inputs had similar
fits. The model with six inputs gave slightly better results for some of the cases,
but all in all, there is not a significant difference. Figure 4.18 represents the
results well and is a good indication of how most of the plots for MEA turned
out. From Table 4.4 with the mean AARD, the observations from the plotted
results are confirmed, as the model with 6 inputs has a lower mean AARD (3.8%)
than the 3 input model (5.3%).
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Figure 4.19: The figure shows the plotted results from experiment F6 for HEEDA conducted
at 135°C and with a CO2-loading of 0.5. The blue dots are the experimental
datapoints, the red line is the ML-model with 3 inputs, and the yellow line is
the ML-model with 6 inputs.

Figure 4.20: The figure shows the plotted results from experiment F6 for HEIA conducted
at 135°C and with a CO2-loading of 0.5. The blue dots are the experimental
datapoints, the red line is the ML-model with 3 inputs, and the yellow line is
the ML-model with 6 inputs.

For several of the experiments, some of the data points were not available for
HEIA, HEEDA and TriHEIA. Therefore, for some of the experiments, the ML
models are not complete or not available. For all of the measured compounds, it
is seen that the model captures the trend of the data relatively well, but there is
also too little experimental data to make an optimal model. However, compared
to the amount of available data, the results are promising.

For HEEDA and HEIA, the trends have, for the majority of the results, an
increasing reaction rate in the beginning before it starts to decrease after some
time. This applies mainly to HEEDA, where almost all the curves have a concave
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Figure 4.21: The figure shows the plotted results from experiment E6 for TriHEIA conducted
at 120°C and with a CO2-loading of 0.5. The blue dots are the experimental
datapoints, the red line is the ML-model with 3 inputs, and the yellow line is
the ML-model with 6 inputs.

shape. The results for HEIA are primarily linear, but the curves are more concave
shaped with increasing temperature. As mentioned in Subsection 2.2.1, HEIA
is believed to be formed from HEEDA, which could explain the decrease in the
concentration levels of HEEDA over time. For HEIA, this conversion is not as
rapid. HEIA does react further in the system, but this is more visible at higher
temperatures. [6;24]

The accuracy of the TriHEIA results varies significantly. Some of the plotted
lines have increasing trends, some of the lines have decreasing trends, some are
linear, and some are curved. Figure 4.21 shows one of the plotted results that
had a reasonable development of the curves. The yellow line, which is the model
with 6 inputs, has a much better fit than the red line, which is the model with
3 inputs. Because data was missing in the datasets, it has caused disturbances
in the models’ ability to capture a trend. From the mean AARD in Table 4.4,
it is significantly smaller for the 6 input model (7.7%) compared to the 3 input
model (38.8%).

4.2.2 Comparison of the models

It is observed that the ML model with 6 inputs gives an improved trend. The
model follows the experimental data points better than the 3 input model for
most models. The model with 6 inputs was made because, as for the oxidative
degradation model, it was interesting to see if there was any correlation between
the concentration levels of the degradation compounds.

46



Ingvild Emilie Solnes Master’s Thesis

The AAD and AARD are lower or similar for the model with six inputs than
for the model with three inputs for most of the cases, as seen in the tables in
Subsection B in the appendix. This indicates that the fit of the second model
is better than the first one and that there is a correlation between the different
degradation compounds.

Models of thermal degradation have already been developed. These models are
mechanistic and often complex. A machine learning model can potentially sim-
plify such a model while still giving good model predictions if there is enough
data. If one has an accurate mechanistic model available, many data points
could be generated and used to make a relatively simple ML model. For the
model developed in this thesis, only experimental data was used. There was not
much data available, so the model is too simple to give satisfactory and accurate
predictions. However, the model that was developed shows potential. If more
data were available, the model would improve substantially.

4.3 Characteristics of the machine learning models

There are several advantages and disadvantages in the developed models, the
chosen modelling approach, and the simplifications and assumptions that were
made. In this subsection, this will be discussed further.

One of the main characteristics of the machine learning models is that they are
data-driven. Hence, they require a significant amount of experimental data. The
inputs of the model are experimental concentrations from experiments performed
in lab scale. To recreate or make a similar model to be used in predictive anal-
ysis of degradation that can be applied to CO2-capture plants, it would require
similar experiments to be performed on a larger scale. Application to a larger
scale would require further adaptations.

The predictions of the models are not generalized due to their data-driven nature,
leading to a variation in the quality of the results. Within the same experiment,
some of the plotted results have a good trend, and some results have a trend that
does not follow the trend of the experimental data. This indicates that there is
a lack of generalization in the model.

The developed models are empirical, so reaction equations or equations of state
have not been taken into account. The models are based purely on experimen-
tal data. A mechanistic approach with kinetic knowledge, experimental data
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performed at a broader period, and different conditions would help make the
model more generalized. However, in a mechanistic model, we extrapolate data
measured from experiments and assume that the information available is valid.
With both an empirical and a mechanistic approach to modelling degradation,
with the current data and knowledge available, an ML model will not be appli-
cable in a larger time scale before more research is done on a larger time frame
and a broader understanding of oxidative degradation. Also, the experiments
performed are done with increased speed and higher oxygen levels than usual
in a large scale plant, so what is seen from the results may not be what is the
expected development in an industrial plant.

One advantage of developing a simple machine learning model such as the ones
in this thesis is that it helps smoothen the data. Smoothening data is a way to
identify and eliminate outliers in a dataset and recognize patterns in a dataset. [35]

This method is ideal when developing a predictive model. It can help find suitable
patterns, and it is a good start, as it can find trends in the dataset. Identifying
outliers and finding patterns in a dataset is helpful if a mechanistic model is to
be developed in the future.

When developing the ML models describing oxidative and thermal degradation,
it was seen that outliers in the dataset were easier to identify. If one had a
lot more experimental data, the pattern and trends of the different degradation
products and MEA would be easier to spot. The model was able to find a
correlation between the different components because an improvement of the
models was seen when more inputs were included. This smoothening of the
data, as mentioned earlier, can be helpful when developing a predictive model.
It will be easier to fit a mechanistic model when the expected development of
the degradation is known. When it comes to a thermal degradation model,
the mechanisms and the process is more well known, so it would be easier to
develop a machine learning model that can predict the degradation over a wider
time frame. Much research is still needed for oxidative degradation, but the ML
models developed is a promising start. With more research and understanding
of oxidative degradation, the predictive abilities of the ML models are expected
to improve.

Measures can be taken to improve the models’ generalization abilities. Including
more parameters can help make the model more accurate. The model is only
based on experimental data, so including kinetic information into the neural
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network could be helpful. Another measure that can be taken is to include
even more experimental data from experiments conducted at the same or other
conditions. This will improve the learning abilities of the ML model.

The equation used to calculate the rate is a common way of calculating the reac-
tion rate for a compound. Because of the large amount of available experimental
data, this method was a good basis for further calculations and the develop-
ment of a model. However, it has the drawback that the numerical derivative
may provide additional uncertainties. Nevertheless, the method used seems to
give adequate modelled reaction rates and a satisfying result for most of the
experiments.

Several modelled rates for the experiments gave an uneven fit, and it seems that
the model is sensitive to outliers in the dataset. In the model developed with 3
inputs, obvious outlier points were removed before developing the ML models,
but all data was included in the model with 10 inputs. Therefore, some of the
modelled results from the 10 input model are uneven when there were zero-points
or concentration jumps in the dataset. Something that could improve the ma-
chine learning models would be to conduct several parallels for the experiments,
making it easier to identify outliers points in the experimental data.

When removing outliers in the experimental data, the results are altered to get
a better fit, and the results obtained may not be similar to reality. However,
the data was removed because it had some underlying issues and did not rep-
resent what wanted to be measured. If the concentration profile of MEA did
not decrease for the whole duration of the experiments, this would not coincide
with what is known from theory and previous research; that MEA is not formed,
only consumed, in oxidative and thermal degradation. It seems as this is a rea-
sonable assumption to make. If more data had been included in the model, the
ML model would identify the outliers in the datasets more efficiently. Therefore,
when considering the size of the available datasets, removing the obvious outliers
in the experimental data is further supported as something that will optimize
the model’s parameters.

The results showed that assuming an average degradation rate for the degrada-
tion compounds will limit the model’s validity range. For MEA, as an example,
the concentration will decrease rapidly and eventually go below zero. As has
been mentioned earlier, the expected development of the concentration is not
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linear. However, for many of the modelled results, the model’s predictions with
a linear rate were good. For a short interval of time, it can therefore be ok to
assume a linear reaction rate.
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5 Conclusion

The objective of this work was to see if there was potential for using machine
learning to model the oxidative and thermal degradation of MEA. Machine learn-
ing models have been developed by modelling the reaction rates of MEA and
known degradation compounds. The data used for the modelling is experimental
data from experiments performed at lab-scale. The experiments were conducted
by Vevelstad et al. (2016) and Davis (2009). The modelled degradation rates
were used to calculate the concentration profiles of the components, and the
modelled concentrations were compared to the experimental values.

From the results of the oxidative degradation modelling, it is seen that the results
are generally good. For the oxidative degradation model with three inputs, the
modelled concentration was calculated in two different ways. The first method
used the average of the modelled rates to calculate the concentrations, resulting
in a linear curve. However, for MEA and the degradation compounds, a linear
development will not be relevant over a longer time frame; thus, the validity range
will be limited. Therefore, the simultaneous rate was also used to calculate the
concentrations. This improved the model predictions and provided concentration
profiles and trends closer to what was seen in the experimental data. The second
model developed used all the available ten or eleven parameters as an input.
This was to see if the machine learning model would find a correlation between
the measured degradation compounds. This model improved the fit for many of
the plotted results, and the curves seem to follow the experimental data points
more accurately than the model with three inputs. However, the results show
that the second model is more sensitive to outliers or zero-values than the first
model, thus having more outlier plots than seen from the 3 input model.

More understanding of the chemical reactions and effect of the conditions used
are needed to improve the oxidative degradation modelling. In addition, more
experimental data could also improve the prediction abilities of the model. Nev-
ertheless, the results from the modelling are promising, and there is potential for
making a model that can predict oxidative degradation in a chemical absorption
plant.

There was less experimental data available for thermal degradation than for
oxidative degradation, but still, the results show potential. Also here two models
were developed. The first model had three inputs, and the second model used all

51



Ingvild Emilie Solnes Master’s Thesis

the available six parameters as inputs. The fit improved for the 6 input model,
and the curves seem to follow the experimental data points better than for the
model with three inputs.

Thermal degradation is, as mentioned, better understood than oxidative degra-
dation. Therefore, to improve the predictions of the thermal degradation model,
one could include more existing experimental data. Also, it would be interest-
ing to develop a mechanistic model in addition to the empirical model since the
reactions and products formed are more well known.

One of the main characteristics of the models is that they are data-driven and
require experimental data. This can be disadvantageous, and it will be challeng-
ing to apply the models to other plants because it would require experimental
data from each specific plant performed at its given conditions for the model
to give good model predictions. To make an ML model that would not require
experimental data, only parameters such as initial concentration of the solvent,
temperature, oxygen concentration and CO2-loading would simplify the mod-
elling and make the models more applicable to a larger variety of industrial
plants. Furthermore, from the results, outliers in the data are more easily iden-
tified. This is, as mentioned, called smoothening of data and can help identify
outliers and patterns in the dataset. This is one of the advantages of making a
simple model such as the ones developed in this thesis.

There is still much work to do on both models, and as mentioned, more research
and understanding of the degradation process is needed to improve the mod-
els. Also, understanding how oxidative and thermal degradation is connected is
essential if a model describing both processes in an industrial plant can be de-
veloped. However, the developed models in this thesis have potential, and they
are a good start and basis for further work.
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6 Further work

The results presented in this thesis are promising and show great potential for
further modelling of oxidative and thermal degradation with machine learning.
However, some issues were observed with the chosen modelling approach. In this
chapter, some recommendations and suggestions that could improve the models’
prediction abilities and ideas that would be interesting to implement in a future
model are given.

The developed models in this thesis are empirical, and as mentioned earlier, the
validity range is low. Therefore, there is a need for more experimental data to
increase the validity range and accuracy of the models. It will also be beneficial
if this experimental data is from experiments conducted for a wider time interval
and at a large variety of conditions.

As mentioned in the introduction of this thesis, the ultimate goal of this work
would be to make a model that ties oxidative and thermal degradation together.
The models developed in this thesis describing either the oxidative or thermal
degradation of MEA will not be applicable to a large scale plant because both
oxidative and thermal degradation will occur in the system. For this model
to have good prediction abilities, there is a need to understand how these two
types of degradation are connected and affect each other. A model that could
describe the two types of degradation could help understand the process further
and potentially save the plant money and reduce yearly expenses connected to
the degradation of the solvent. As of now not, such a model is not likely to be
developed any time soon, but it is a fascinating idea.

The models developed in this thesis are supervised, shallow neural network mod-
els. Another approach would be deep learning, meaning having several hidden
layers in the neural network. Deep learning is even more complex than shallow
neural and can generalize and recognize patterns in data even better than shal-
low neural networks. [15] The method is complicated and would require research,
but it has the potential to improve the results substantially.
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Appendix

A Figures

A Oxidative degradation

A.1 MEA

Figure A.1: Plotted results for experiment A1, A2-I, A2-II, A3 and A4 done at 55°C for MEA.
The blue dots are the experimental datapoints, the red line is the ML-model
with 3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.
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Figure A.2: Plotted results for experiment B1, B2-II and B3 done at 65°C for MEA. The
blue dots are the experimental data points, the red line is the ML-model with 3
inputs and average reaction rate, the yellow line is the ML-model with 10 inputs,
and the purple line is the ML-model with 3 inputs with instantaneous rate.

Figure A.3: Plotted results for experiment C1, C2 and C4 done at 75°C for MEA. The blue
dots are the experimental data points, the red line is the ML-model with 3 inputs
and average reaction rate, the yellow line is the ML-model with 10 inputs, and
the purple line is the ML-model with 3 inputs with instantaneous rate.

ii



Ingvild Emilie Solnes Master’s Thesis

A.2 Formate

Figure A.4: Plotted results for experiment A2-I, A2-II, A3 and A4 done at 55°C for formate.
The blue dots are the experimental data points, and the red line is the ML-model
with 3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, the purple line is the ML-model with 3 inputs with instantaneous rate.
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Figure A.5: Plotted results for experiment B1, B2-II, B3, B4 done at 65°C for formate. The
blue dots are the experimental data points, and the red line is the ML-model
with 3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, the purple line is the ML-model with 3 inputs with instantaneous rate.

Figure A.6: Plotted results for experiment C1, C2 and C3 done at 75°C for formate. The
blue dots are the experimental data points, the red line is the ML-model with 3
inputs and average reaction rate, the yellow line is the ML-model with 10 inputs,
and the purple line is the ML-model with 3 inputs with instantaneous rate.
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A.3 Oxalic acid

Figure A.7: Plotted results for experiment A1, A2-II, A3 and A4 done at 55°C for oxalic acid.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs and average reaction rate, the yellow line is the ML-model with 11
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.
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Figure A.8: Plotted results for experiment B1, B3 and B4 done at 65°C for oxalic acid. The
blue dots are the experimental data points, the red line is the ML-model with 3
inputs and average reaction rate, the yellow line is the ML-model with 11 inputs,
and the purple line is the ML-model with 3 inputs with instantaneous rate.

Figure A.9: Plotted results for experiment C1, C3 and C4 done at 75°C for oxalic acid. The
blue dots are the experimental data points, the red line is the ML-model with 3
inputs and average reaction rate, the yellow line is the ML-model with 11 inputs,
and the purple line is the ML-model with 3 inputs with instantaneous rate.
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A.4 HEGly

Figure A.10: Plotted results for experiment A1, A2-I, A3 and A4 done at 55°C for HEGly.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.
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Figure A.11: Plotted results for experiment B1, B2-II, B3 and B4 done at 65°C for HEGly.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.

Figure A.12: Plotted results for experiment C1, C3 and C4 done at 75°C for HEGly. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.
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A.5 HEPO

Figure A.13: Plotted results for experiment A2-I, A2-II, A3 and A4 done at 55°C for HEPO.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.
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Figure A.14: Plotted results for experiment B2-II, B3 and B4 done at 65°C for HEPO. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.

Figure A.15: Plotted results for experiment C1, C2 and C4 done at 75°C for HEPO. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.
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A.6 HEF

Figure A.16: Plotted results for experiment A1, A2-I, A2-II, A3 and A4 done at 55°C for
HEF. The blue dots are the experimental data points, the red line is the ML-
model with 3 inputs and average reaction rate, the yellow line is the ML-
model with 10 inputs, and the purple line is the ML-model with 3 inputs with
instantaneous rate.
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Figure A.17: Plotted results for experiment B1, B2-II, B3 and B4 done at 65°C for HEF. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.

Figure A.18: Plotted results for experiment C1, C2 and C3 done at 75°C for HEF. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.
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A.7 HEA

Figure A.19: Plotted results for experiment A1, A2-I, A2-II, A3 and A4 done at 55°C for
HEA. The blue dots are the experimental data points, the red line is the ML-
model with 3 inputs and average reaction rate, the yellow line is the ML-
model with 10 inputs, and the purple line is the ML-model with 3 inputs with
instantaneous rate.
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Figure A.20: Plotted results for experiment B1, B2-II, B3 and B4 done at 65°C for HEA. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.

Figure A.21: Plotted results for experiment C1, C2 and C4 done at 75°C for HEA. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.
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A.8 BHEOX

Figure A.22: Plotted results for experiment A1, A2-I, A2-II, A3 and A4 done at 55°C for
BHEOX. The blue dots are the experimental data points, the red line is the
ML-model with 3 inputs and average reaction rate, the yellow line is the ML-
model with 10 inputs, and the purple line is the ML-model with 3 inputs with
instantaneous rate.
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Figure A.23: Plotted results for experiment B1, B2-II, B3 and B4 done at 65°C for BHEOX.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.

Figure A.24: Plotted results for experiment C1, C2, C3 and C4 done at 75°C for BHEOX.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.
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A.9 HEI

Figure A.25: Plotted results for experiment A2-I, A2-II, A3 and A4 done at 55°C for HEI.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.
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Figure A.26: Plotted results for experiment B1, B2-II and B3 done at 65°C for HEI. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.

Figure A.27: Plotted results for experiment C1, C2, C3 and C4 done at 75°C for HEI. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs and average reaction rate, the yellow line is the ML-model with 10
inputs, and the purple line is the ML-model with 3 inputs with instantaneous
rate.
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B Thermal degradation

B.1 MEA

Figure A.28: Plotted results for experiment E1, E2, E3 and E4 done at 120°C for MEA. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.29: Plotted results for experiment E5, E6, E7, E8 and E9 done at 120°C for MEA.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.30: Plotted results for experiment F1, F2, F3 and F4 done at 135°C for MEA. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.31: Plotted results for experiment F5, F7, F8 and F9 done at 135°C for MEA. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs, and the yellow line is the ML-model with 6 inputs.
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B.2 HEEDA

Figure A.32: Plotted results for experiment E4, E5 and E6 done at 120°C for HEEDA. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.33: Plotted results for experiment E7, E8 and E9 done at 120°C for HEEDA. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.34: Plotted results for experiment F1, F2, F3 and F4 done at 135°C for HEEDA.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.35: Plotted results for experiment F5, F7, F8 and F9 done at 135°C for HEEDA.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs, and the yellow line is the ML-model with 6 inputs.
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B.3 HEIA

Figure A.36: Plotted results for experiment E1, E2, E3 and E4 done at 120°C for HEIA. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.37: Plotted results for experiment E5, E6, E7, E8 and E9 done at 120°C for HEIA.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.38: Plotted results for experiment F1, F2, F3 and F4 done at 135°C for HEIA. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.39: Plotted results for experiment F5, F7, F8 and F9 done at 135°C for HEIA. The
blue dots are the experimental data points, the red line is the ML-model with
3 inputs, and the yellow line is the ML-model with 6 inputs.
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B.4 TriHEIA

Figure A.40: Plotted results for experiment E1, E2, E3 and E4 done at 120°C for TriHEIA.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.41: Plotted results for experiment E5, E6, E7, E8 and E9 done at 120°C for Tri-
HEIA. The blue dots are the experimental data points, the red line is the
ML-model with 3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.42: Plotted results for experiment F1, F2, F3 and F4 done at 135°C for TriHEIA.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs, and the yellow line is the ML-model with 6 inputs.
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Figure A.43: Plotted results for experiment F5, F7, F8 and F9 done at 135°C for TriHEIA.
The blue dots are the experimental data points, the red line is the ML-model
with 3 inputs, and the yellow line is the ML-model with 6 inputs.
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B Tables with AAD and AARD

A Oxidative degradation

Table B.1: AAD for MEA. (1) AAD between the experimental values and the model with 3
inputs and average rate. (2) AAD between experimental values and the model
with 10 inputs. (3) AAD between the experimental values and the model with 3
inputs with simultaneous rate.

Experiment AAD (1) AAD (2) AAD (3)

A1 0.419 0.149 -
A2-I 0.077 0.038 -
A2-II 0.065 0.072 -
A3 0.065 0.066 -
A4 0.043 0.069 0.057
B1 1.307 0.132 -
B2-II 0.078 0.115 0.095
B3 0.312 0.299 0.159
B4 0.255 0.113 0.071
C1 0.422 0.161 -
C2 0.349 0.158 0.252
C3 0.741 0.223 -
C4 0.571 0.048 -

xxxv
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Table B.2: AARD for MEA. (1) AARDD between the experimental values and the model
with 3 inputs and average rate. (2) AARD between the experimental values and
the model with 10 inputs. (3) AARD between the experimental values and the
model with 3 inputs with simultaneous rate.

Experiment AARD (1) [%] AARD (2) [%] AARD (3) [%]

A1 7.350 2.610 -
A2-I 1.538 0.761 -
A2-II 1.322 1.480 -
A3 1.313 1.344 -
A4 0.892 1.436 1.175
B1 24.34 2.471 -
B2-II 1.640 2.414 1.989
B3 5.938 5.688 3.014
B4 5.325 2.359 1.480
C1 7.977 3.053 -
C2 7.059 3.188 5.095
C3 13.65 4.108 -
C4 12.16 1.031 -

xxxvi
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Table B.3: AAD for formate. (1) AAD between the experimental values and the model with
3 inputs and average rate. (2) AAD between the experimental values and the
model with 10 inputs. (3) AAD between the experimental values and the model
with 3 inputs with simultaneous rate.

Experiment AAD (1) AAD (2) AAD (3)

A1 0.030 0.003 0.030
A2-I 0.135 0.004 -
A2-II 0.014 0.001 0.014
A3 0.007 0.005 0.007
A4 0.006 0.006 0.006
B1 0.049 0.008 0.049
B2-II 0.006 0.012 0.006
B3 0.051 0.097 0.051
B4 0.052 0.001 0.051
C1 0.040 0.018 0.041
C2 0.007 0.007 0.080
C3 0.068 0.001 0.673
C4 0.158 0.145 0.158
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Table B.4: AARD for formate. (1) AARDD between the experimental values and the model
with 3 inputs and average rate. (2) AARD between the experimental values and
the model with 10 inputs. (3) AARD between the experimental values and the
model with 3 inputs with simultaneous rate.

Experiment AARD (1) [%] AARD (2) [%] AARD (3) [%]

A1 84.41 9.257 85.86
A2-I 54.68 17.70 -
A2-II 61.14 6.208 61.93
A3 13.97 10.84 14.46
A4 8.737 9.030 9.328
B1 78.66 12.52 78.92
B2-II 7.472 15.70 7.742
B3 20.84 39.56 20.72
B4 22.68 0.443 22.37
C1 29.70 13.56 30.34
C2 25.47 2.331 25.16
C3 32.41 0.470 31.95
C4 26.93 24.75 26.95

xxxviii
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Table B.5: AAD for oxalic acid. (1) AAD between the experimental values and the model
with 3 inputs and average rate. (2) AAD between the experimental values and
the model with 11 inputs. (3) AAD between the experimental values and the
model with 3 inputs with simultaneous rate.

Experiment AAD (1) AAD (2) AAD (3)

A1 0.0025 0.0003 -
A2-II 0.0014 0.0002 -
A3 0.0004 0.0003 -
A4 0.0003 0.0001 -
B1 0.0004 0.0008 -
B2-II 0.0003 0.0009 0.0003
B3 0.0030 0.0013 0.0029
B4 0.0026 0.0005 0.0010
C1 0.0055 0.0017 0.0039
C2 0.0022 0.0021 0.0020
C3 0.0040 0.0004 0.0018
C4 0.0012 0.0015 0.0010

Table B.6: AARD for oxalic acid. (1) AARDD between the experimental values and the
model with 3 inputs and average rate. (2) AARD between the experimental
values and the model with 11 inputs. (3) AARD between the experimental values
and the model with 3 inputs with simultaneous rate.

Experiment AARD (1) [%] AARD (2) [%] AARD (3) [%]

A1 78.16 10.11 -
A2-II 153.1 27.49 -
A3 17.04 12.51 -
A4 9.022 3.669 -
B1 6.697 14.84 -
B2-II 5.172 18.56 6.222
B3 13.87 6.179 13.70
B4 16.02 2.819 6.189
C1 53.37 16.72 38.22
C2 6.397 6.273 5.881
C3 7.989 0.893 3.626
C4 2.514 3.119 2.057
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Table B.7: AAD for HEGly. (1) AAD between the experimental values and the model with
3 inputs and average rate. (2) AAD between the experimental values and the
model with 10 inputs. (3) AAD between the experimental values and the model
with 3 inputs with simultaneous rate.

Experiment AAD (1) AAD (2) AAD (3)

A1 0.0013 0.0020 0.0015
A2-I 0.0009 0.0005 0.0010
A2-II 0.0004 0.0002 0.0005
A3 0.0008 0.0005 0.0010
A4 0.0004 0.0003 0.0004
B1 0.0031 0.0015 0.0030
B2-II 0.0038 0.0005 0.0031
B3 0.0030 0.0015 0.0020
B4 0.0017 0.0007 0.0008
C1 0.0105 0.0030 0.0050
C2 0.0055 0.0009 0.0015
C3 0.0064 0.0011 0.0038
C4 0.0032 0.0004 0.0007

xl



Ingvild Emilie Solnes Master’s Thesis

Table B.8: AARD for HEGly. (1) AARDD between the experimental values and the model
with 3 inputs and average rate. (2) AARD between the experimental values and
the model with 10 inputs. (3) AARD between the experimental values and the
model with 3 inputs with simultaneous rate.

Experiment AARD (1) [%] AARD (2) [%] AARD (3) [%]

A1 8.705 13.00 10.02
A2-I 12.26 7.391 13.39
A2-II 5.796 3.268 6.661
A3 11.06 6.904 12.29
A4 5.636 5.182 5.520
B1 9.139 4.421 8.873
B2-II 22.99 2.844 19.16
B3 26.32 13.21 17.95
B4 25.58 9.898 11.96
C1 15.32 4.354 7.019
C2 35.63 5.989 9.494
C3 38.09 6.633 22.59
C4 19.34 2.233 4.128

xli
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Table B.9: AAD for HEPO. (1) AAD between the experimental values and the model with
3 inputs and average rate. (2) AAD between the experimental values and the
model with 10 inputs. (3) AAD between the experimental values and the model
with 3 inputs with simultaneous rate.

Experiment AAD (1) AAD (2) AAD (3)

A1 0.037 0.010 0.050
A2-I 0.006 0.004 0.001
A2-II 0.013 0.005 0.007
A3 0.009 0.008 0.002
A4 0.011 0.005 0.005
B1 0.015 0.013 0.013
B2-II 0.018 0.008 0.009
B3 0.075 0.007 0.054
B4 0.014 0.009 0.023
C1 0.141 0.007 0.122
C2 0.178 0.004 0.147
C3 0.107 0.048 0.081
C4 0.059 0.001 0.017
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Table B.10: AARD for HEPO. (1) AARDD between the experimental values and the model
with 3 inputs and average rate. (2) AARD between the experimental values and
the model with 10 inputs. (3) AARD between the experimental values and the
model with 3 inputs with simultaneous rate.

Experiment AARD (1) [%] AARD (2) [%] AARD (3) [%]

A1 22.6 6.31 30.7
A2-I 10.3 8.00 1.25
A2-II 21.0 8.69 11.9
A3 11.5 9.51 2.63
A4 14.3 6.33 6.63
B1 5.08 4.39 4.43
B2-II 8.25 3.76 4.29
B3 19.9 1.84 14.4
B4 5.94 3.61 9.49
C1 41.4 2.12 35.9
C2 30.7 0.64 25.3
C3 18.7 8.25 14.0
C4 9.87 0.15 2.76

xliii
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Table B.11: AAD for HEF. (1) AAD between the experimental values and the model with
3 inputs and average rate. (2) AAD between the experimental values and the
model with 10 inputs. (3) AAD between the experimental values and the model
with 3 inputs with simultaneous rate.

Experiment AAD (1) AAD (2) AAD (3)

A1 0.011 0.008 0.009
A2-I 0.003 0.006 0.004
A2-II 0.009 0.004 0.007
A3 0.008 0.003 0.007
A4 0.008 0.003 0.008
B1 0.007 0.005 0.006
B2-II 0.005 0.002 0.002
B3 0.024 0.003 0.009
B4 0.023 0.002 0.005
C1 0.004 0.010 0.006
C2 0.010 0.005 0.009
C3 0.023 0.003 0.020
C4 0.052 0.022 0.034
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Table B.12: AARD for HEF. (1) AARDD between the experimental values and the model
with 3 inputs and average rate. (2) AARD between the experimental values and
the model with 10 inputs. (3) AARD between the experimental values and the
model with 3 inputs with simultaneous rate.

Experiment AARD (1) [%] AARD (2) [%] AARD (3) [%]

A1 31.61 25.28 26.48
A2-I 13.08 28.42 16.26
A2-II 22.49 9.982 18.10
A3 10.49 4.218 8.450
A4 9.811 3.160 9.321
B1 25.60 16.24 23.05
B2-II 10.94 5.119 4.341
B3 20.63 2.764 8.217
B4 20.05 1.479 4.281
C1 8.845 25.57 14.23
C2 24.72 11.75 22.27
C3 22.14 2.545 18.74
C4 32.86 13.69 21.74
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Table B.13: AAD for HEA. (1) AAD between the experimental values and the model with
3 inputs and average rate. (2) AAD between the experimental values and the
model with 10 inputs. (3) AAD between the experimental values and the model
with 3 inputs with simultaneous rate.

Experiment AAD (1) AAD (2) AAD (3)

A1 0.008 0.011 0.008
A2-I 0.016 0.017 0.016
A2-II 0.016 0.024 0.016
A3 0.012 0.008 0.013
A4 0.009 0.010 0.010
B1 0.031 0.031 0.033
B2-II 0.025 0.013 0.021
B3 0.064 0.013 0.059
B4 0.016 0.025 0.032
C1 0.053 0.083 0.032
C2 0.098 0.050 0.077
C3 0.032 0.023 0.066
C4 0.016 0.018 0.074
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Table B.14: AARD for HEA. (1) AARDD between the experimental values and the model
with 3 inputs and average rate. (2) AARD between the experimental values and
the model with 10 inputs. (3) AARD between the experimental values and the
model with 3 inputs with simultaneous rate.

Experiment AARD (1) [%] AARD (2) [%] AARD (3) [%]

A1 5.05 7.08 5.18
A2-I 25.8 27.0 25.9
A2-II 23.2 34.1 23.4
A3 12.3 8.55 12.6
A4 5.77 6.76 6.61
B1 10.4 10.4 11.0
B2-II 11.1 5.83 9.04
B3 8.69 1.82 7.99
B4 3.57 5.51 6.98
C1 13.2 21.1 7.94
C2 11.3 5.78 8.83
C3 2.28 1.68 4.74
C4 12.0 1.37 5.63
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Table B.15: AAD for BHEOX. (1) AAD between the experimental values and the model
with 3 inputs and average rate. (2) AAD between the experimental values and
the model with 10 inputs. (3) AAD between the experimental values and the
model with 3 inputs with simultaneous rate.

Experiment AAD (1) AAD (2) AAD (3)

A1 0.0010 0.0010 0.0010
A2-I 0.0001 0.0000 0.0001
A2-II 0.0002 0.0002 0.0002
A3 0.0012 0.0002 0.0011
A4 0.0005 0.0004 0.0006
B1 0.0011 0.0003 -
B2-II 0.0008 0.0003 0.0008
B3 0.0020 0.0012 0.0020
B4 0.0020 0.0004 0.0002
C1 0.0012 0.0002 0.0017
C2 0.0013 0.0007 0.0011
C3 0.0028 0.0013 0.0031
C4 0.0044 0.0007 0.0056
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Table B.16: AARD for BHEOX. (1) AARDD between the experimental values and the model
with 3 inputs and average rate. (2) AARD between the experimental values and
the model with 10 inputs. (3) AARD between the experimental values and the
model with 3 inputs with simultaneous rate.

Experiment AARD (1) [%] AARD (2) [%] AARD (3) [%]

A1 62.97 65.15 64.15
A2-I 8.386 1.121 7.144
A2-II 11.40 11.39 10.28
A3 34.19 6.884 32.29
A4 10.97 7.645 13.02
B1 181.9 47.37 -
B2-II 47.56 18.93 44.44
B3 42.64 25.93 42.61
B4 29.78 6.599 2.974
C1 166.1 20.18 234.7
C2 63.16 34.63 53.78
C3 73.57 33.82 81.93
C4 79.23 11.70 100.3
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Table B.17: AAD for HEI. (1) AAD between the experimental values and the model with
3 inputs and average rate. (2) AAD between the experimental values and the
model with 10 inputs. (3) AAD between the experimental values and the model
with 3 inputs with simultaneous rate.

Experiment AAD (1) AAD (2) AAD (3)

A1 0.0013 0.0023 0.0009
A2-I 0.0004 0.0007 0.0006
A2-II 0.0003 0.0004 0.0004
A3 0.0012 0.0007 0.0011
A4 0.0004 0.0003 0.0004
B1 0.0014 0.0045 0.0011
B2-II 0.0025 0.0018 0.0016
B3 0.0030 0.0010 0.0021
B4 0.0067 0.0006 0.0018
C1 0.0028 0.0012 0.0018
C2 0.0049 0.0056 0.0027
C3 0.0065 0.0011 0.0015
C4 0.0278 0.0004 0.0088
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Table B.18: AARD for HEI. (1) AARDD between the experimental values and the model
with 3 inputs and average rate. (2) AARD between the experimental values and
the model with 10 inputs. (3) AARD between the experimental values and the
model with 3 inputs with simultaneous rate.

Experiment AARD (1) [%] AARD (2) [%] AARD (3) [%]

A1 49.91 91.54 37.24
A2-I 19.59 30.42 25.74
A2-II 16.83 24.55 22.61
A3 27.47 15.49 23.93
A4 4.887 3.798 4.754
B1 17.31 57.14 13.44
B2-II 15.48 11.35 9.824
B3 10.41 3.438 7.412
B4 12.45 1.110 3.404
C1 12.16 5.084 7.948
C2 21.33 2.427 11.90
C3 14.47 2.587 3.284
C4 24.21 0.368 7.677
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B Thermal degradation

Table B.19: AAD for MEA. (1) AAD between the experimental values and the ML model
with 3 inputs. (2) AAD between the experimental values and the model with 6
inputs.

Experiment AAD (1) AAD 6 (2)

E1 0.38 -
E2 0.18 -
E3 0.57 -
E4 0.39 0.10
E5 0.20 0.14
E6 0.09 0.17
E7 0.47 0.17
E8 0.29 0.18
E9 0.20 0.21

F1 0.24 0.36
F2 0.18 -
F3 0.10 -
F4 0.13 0.10
F5 0.12 0.12
F6 0.11 0.09
F7 0.17 0.06
F8 0.04 0.06
F9 0.37 0.23
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Table B.20: AARD for MEA. (1) AARD between the experimental values and the ML model
with 3 inputs. (2) AARD between the experimental values and the model with
6 inputs.

Experiment AARD (1) [%] AARD (2) [%]

E1 5.7 -
E2 2.7 -
E3 8.7 -
E4 7.7 2.0
E5 4.1 2.8
E6 1.9 3.4
E7 14.4 5.1
E8 9.1 5.7
E9 6.3 6.7

F1 3.7 5.4
F2 2.8 -
F3 1.6 -
F4 2.7 2.1
F5 2.4 2.4
F6 2.1 1.8
F7 6.0 2.0
F8 1.3 2.1
F9 12.0 7.5
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Table B.21: AAD for HEIA. (1) AAD between the experimental values and the ML model
with 3 inputs. (2) AAD between the experimental values and the model with 6
inputs.

Experiment AAD (1) AAD (2)

E1 0.02 -
E2 0.04 -
E4 0.01 0.01
E5 0.01 0.01
E6 0.01 0.01
E7 0.01 0.01
E8 0.01 0.01
E9 0.01 0.01

F1 0.07 0.01
F4 0.01 0.01
F5 0.03 0.02
F6 0.04 0.01
F7 0.03 0.04
F8 0.04 0.04
F9 0.06 0.07
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Table B.22: AARD for HEIA. (1) AARD between the experimental values and the ML model
with 3 inputs. (2) AARD between the experimental values and the model with
6 inputs.

Experiment AARD (1)[%] AARD (2)[%]

E1 16.6 -
E2 13.3 -
E4 8.82 11.1
E5 6.28 4.28
E6 4.45 3.29
E7 17.3 15.6
E8 12.3 13.6
E9 9.60 5.03

F1 31.4 3.82
F4 6.58 6.32
F5 7.93 5.44
F6 8.61 2.74
F7 30.0 39.8
F8 20.4 19.4
F9 17.0 17.9
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Table B.23: AAD for HEEDA. (1) AAD between the experimental values and the ML model
with 3 inputs. (2) AAD between the experimental values and the model with 6
inputs.

Experiment AARD (1) AAD (2)

E4 0.03 0.01
E5 0.01 0.01
E6 0.01 0.01
E7 0.10 0.04
E8 0.02 0.02
E9 0.03 0.02

F1 0.01 0.02
F2 0.02 -
F3 0.05 -
F4 0.04 0.02
F5 0.07 0.02
F6 0.04 0.02
F7 0.02 0.02
F8 0.02 0.02
F9 0.04 0.01
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Table B.24: AARD for HEEDA. (1) AARD between the experimental values and the ML
model with 3 inputs. (2) AARD between the experimental values and the model
with 6 inputs.

Experiment AARD (1) [%] AARD (2) [%]

E4 81.2 16.8
E5 7.04 9.30
E6 7.69 7.17
E7 - -
E8 20.1 22.3
E9 28.6 17.6

F1 5.99 8.69
F2 12.1 -
F3 29.9 -
F4 25.4 13.1
F5 44.1 12.8
F6 33.6 19.7
F7 28.5 27.8
F8 21.5 21.8
F9 58.9 20.2
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Table B.25: AAD for TriHEIA. (1) AAD between the experimental values and the ML model
with 3 inputs. (2) AAD between the experimental values and the model with 6
inputs.

Experiment AAD (1) AAD (2)

E1 0.00 -
E2 0.00 -
E3 0.01 -
E4 0.00 0.01
E5 0.01 0.00
E6 0.01 0.00
E7 0.00 0.00
E8 0.01 0.00
E9 0.00 0.01

F1 0.01 0.00
F2 0.02 -
F3 0.04 -
F4 0.01 0.00
F5 0.01 0.00
F6 0.01 0.00
F7 0.01 0.00
F8 0.02 0.00
F9 0.03 0.01
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Table B.26: AARD for TriHEIA. (1) AARD between the experimental values and the ML
model with 3 inputs. (2) AARD between the experimental values and the model
with 6 inputs.

Experiment AARD (1) [%] AARD (2) [%]

E1 29.0 -
E2 12.7 -
E3 15.3 -
E4 - -
E5 37.7 7.68
E6 36.2 7.50
E7 - -
E8 - -
E9 - -

F1 74.1 11.0
F2 14.8 -
F3 20.1 -
F4 - -
F5 15.1 7.99
F6 9.76 1.36
F7 - -
F8 110 8.37
F9 67.4 10.0
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C MATLAB code

In this chapter, some example code from the modelling in MATLAB is given.

A MATLAB code oxidative degradation

A.1 Example: HEPO 3 input model data file

1 c l e a r
2 c l c
3 c l o s e a l l
4

5 DOT = [
6

7 5.560000000 6 328 .15
8 5.711823131 6 328 .15
9 5.465229927 6 328 .15

10 5.341912612 6 328 .15
11 5.052484218 6 328 .15
12 4.963055823 6 328 .15
13 4.631034815 6 328 .15
14 4.712075773 6 328 .15
15

16 4 .95 21 328 .15
17 4.948427315 21 328 .15
18 4.925410918 21 328 .15
19 4.830016762 21 328 .15
20 4.774658871 21 328 .15
21 4.716091961 21 328 .15
22 4.576204533 21 328 .15
23 4.472071886 21 328 .15
24

25 4 .875 21 328 .15
26 4.737944046 21 328 .15
27 4.692972306 21 328 .15
28 4.626608838 21 328 .15
29 4.548468095 21 328 .15
30 4.448673133 21 328 .15
31

32 4 .87 49 328 .15
33 4.56647853 49 328 .15
34 4.539215368 49 328 .15
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35 4.479785934 49 328 .15
36 4.313389169 49 328 .15
37 4.263836337 49 328 .15
38

39 4 .817 98 328 .15
40 4.55720619 98 328 .15
41 4.311055911 98 328 .15
42 4.167074428 98 328 .15
43 3.991948363 98 328 .15
44 3.859212836 98 328 .15
45

46 5 .37 6 338 .15
47 4.911035228 6 338 .15
48 4.863074058 6 338 .15
49 4.716951419 6 338 .15
50 4.974640781 6 338 .15
51 4.690677151 6 338 .15
52 4.446093649 6 338 .15
53 4.492912239 6 338 .15
54

55 4 .775 21 338 .15
56 4.651566177 21 338 .15
57 4.498363888 21 338 .15
58 4.334036235 21 338 .15
59 4.249692067 21 338 .15
60 4.142513473 21 338 .15
61 3.955865155 21 338 .15
62 3.753967639 21 338 .15
63

64 5 .26 49 338 .15
65 4.506904135 49 338 .15
66 4.470774185 49 338 .15
67 3.980779552 49 338 .15
68 3.555425284 49 338 .15
69 3.337613545 49 338 .15
70 2.651222746 49 338 .15
71

72 4 .798 98 338 .15
73 4.405681764 98 338 .15
74 3.896320554 98 338 .15
75 3.606477896 98 338 .15
76 3.373334889 98 338 .15
77 3.022642215 98 338 .15
78 2.714667974 98 338 .15
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79 2.387096959 98 338 .15
80

81 5 .27 6 348 .15
82 5.2879338 6 348 .15
83 4.974793126 6 348 .15
84 4.769646356 6 348 .15
85 4.97394122 6 348 .15
86 4.870772163 6 348 .15
87 4.526150579 6 348 .15
88 4.238312461 6 348 .15
89 4.069101956 6 348 .15
90 4.139477397 6 348 .15
91 3.968698224 6 348 .15
92

93 4 .944 21 348 .15
94 4.690061157 21 348 .15
95 4.196898229 21 348 .15
96 3.836553249 21 348 .15
97 3.499202912 21 348 .15
98 3.0930167 21 348 .15
99 2.824493483 21 348 .15

100 2.362609886 21 348 .15
101

102 5 .06 49 348 .15
103 5.428108647 49 348 .15
104 4.165642573 49 348 .15
105 3.434605249 49 348 .15
106 3.129162546 49 348 .15
107 3.139614905 49 348 .15
108 2.045924558 49 348 .15
109

110 4 .62 98 348 .15
111 4.69620739 98 348 .15
112 3.041796127 98 348 .15
113 2.276859458 98 348 .15
114 1.896128731 98 348 .15
115 1.704424298 98 348 .15
116 1.601117644 98 348 .15
117 1.693475041 98 348 .15
118

119 ] ;
120

121

122
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123

124 rHEPO = [
125

126 0
127 5 .4500E-04
128 1 .3625E-03
129 3 .1143E-03
130 2 .6471E-03
131 7 .4743E-03
132 9 .1871E-03
133 6 .0729E-03
134

135

136 0 .0000E+00
137 1 .3015E-03
138 1 .6010E-03
139 2 .5832E-03
140 3 .2332E-03
141 3 .9625E-03
142 5 .4721E-03
143 8 .8939E-03
144

145

146 0 .0000E+00
147 6 .2460E-03
148 3 .9194E-03
149 4 .0720E-03
150 5 .9992E-03
151 7 .2398E-03
152

153

154 0 .0000E+00
155 6 .2479E-03
156 4 .8167E-03
157 6 .1967E-03
158 7 .8763E-03
159 4 .9998E-03
160

161

162 0 .0000E+00
163 6 .9940E-03
164 4 .3770E-03
165 6 .8378E-03
166 4 .1261E-03
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167 6 .1547E-03
168

169

170 0 .0000E+00
171 2 .1800E-03
172 5 .4500E-03
173 9 .8100E-03
174 9 .1871E-03
175 9 .4986E-03
176 9 .8100E-03
177 1 .1367E-02
178

179

180 0 .0000E+00
181 7 .0850E-03
182 1 .0426E-02
183 1 .6350E-02
184 1 .5260E-02
185 1 .4533E-02
186 1 .5805E-02
187 1 .3824E-02
188

189

190 4 .3600E-03
191 1 .4715E-02
192 2 .7523E-02
193 2 .8703E-02
194 1 .7985E-02
195 1 .0744E-02
196 -8 .0971E-03
197

198

199 0 .0000E+00
200 1 .8530E-02
201 1 .4217E-02
202 2 .6569E-02
203 2 .2176E-02
204 1 .5260E-02
205 4 .5195E-03
206 2 .6585E-04
207

208

209 3 .6333E-03
210 5 .1905E-03
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211 8 .5879E-03
212 1 .0173E-02
213 7 .5826E-03
214 1 .2403E-02
215 1 .1160E-02
216 1 .2535E-02
217 1 .2068E-02
218 1 .6627E-02
219 1 .7258E-02
220

221

222 1 .2974E-02
223 5 .4801E-02
224 7 .4791E-02
225 5 .8104E-02
226 4 .5633E-02
227 2 .5921E-02
228 1 .4741E-03
229 -4 .6728E-03
230

231

232 1 .5260E-02
233 5 .8315E-02
234 5 .7225E-02
235 -1 .4533E-03
236 5 .4773E-02
237 -3 .3634E-02
238 -3 .1143E-04
239

240

241 2 .4222E-02
242 7 .0071E-02
243 5 .6103E-02
244 2 .5006E-02
245 1 .3625E-02
246 2 .1800E-02
247 2 .5693E-02
248 9 .2650E-03
249

250 ] ;

lxv
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A.2 Example: HEPO 10 input model data file

1 c l e a r
2 c l c
3 c l o s e a l l
4

5

6 Input = [
7

8

9 5.560000000 6 328 .15 0.000000000 0.001167320 2.675430E-05
0.0000000000 0.0000671596 0.0000000000 0.0000000000

10 5.711823131 6 328 .15 0.000000000 0.002559941 1.248930E-04
0.0000000000 0.0001175670 0.0000000000 0.0000000000

11 5.465229927 6 328 .15 0.000680503 0.005370319 2.856530E-04
0.0000000000 0.0006050160 0.0109000000 0.0010900000

12 5.341912612 6 328 .15 0.003139448 0.010990578 6.256630E-04
0.0007168170 0.0023474270 0.0185300000 0.0065400000

13 5.052484218 6 328 .15 0.009611549 0.018399819 1.200369E-03
0.0010491140 0.0065098750 0.0468700000 0.0283400000

14 4.963055823 6 328 .15 0.014842849 0.026519892 1.598068E-03
0.0015486010 0.0095921610 0.0850200000 0.0468700000

15 4.631034815 6 328 .15 0.025515765 0.028028314 2.078502E-03
0.0012141410 0.0125694890 0.1122700000 0.0991900000

16 4.712075773 6 328 .15 0.035207176 0.033447441 2.524977E-03
0.0014406820 0.0152543180 0.1613200000 0.1635000000

17

18 4 .95 21 328 .15 0.000000000 0.001851997 0.000178362
0.0000340580 0.0000839496 0.0000000000 0.0000000000

19 5.020220179 21 328 .15 0.000000000 0.00178473 0.000160533
0.0000283829 0.0000755579 0.0011554000 0.0000000000

20 4.948427315 21 328 .15 0.000000000 0.005171952 0.000384133
0.0001990110 0.0004456920 0.0024198000 0.0000000000

21 4.925410918 21 328 .15 0.000000000 0.009195184 0.000672327
0.0005078140 0.0015442440 0.0069869000 0.0027250000

22 4.830016762 21 328 .15 0.000000000 0.011668854 0.000827321
0.0007555360 0.0028527350 0.0128838000 0.0057770000

23 4.774658871 21 328 .15 0.000000000 0.014033799 0.001226909
0.0010163460 0.0039148910 0.0197290000 0.0107910000

24 4.716091961 21 328 .15 0.000000000 0.016564843 0.001504684
0.0012404260 0.0053328910 0.0309996000 0.0201650000

25 4.576204533 21 328 .15 0.021625775 0.018791558 0.001803706
0.0014205660 0.0063456700 0.0449407000 0.0322640000
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26 4.472071886 21 328 .15 0.024610715 0.021589855 0.002227916
0.0015989620 0.0071806080 0.0626968000 0.0539550000

27

28 4 .875 21 328 .15 0.000000000 0.000325503 5 .35E-05 0.0000000000
0.0000000000 0.0015478000 0.0000000000

29 4.884367008 21 328 .15 0.000000000 0.00467921 0.000303861
0.0002104710 0.0003112740 0.0037060000 0.0000000000

30 4.784768453 21 328 .15 0.001464546 0.011321236 0.000717463
0.0004509530 0.0009033140 0.0081750000 0.0000000000

31 4.737944046 21 328 .15 0.003355889 0.016008308 0.000765136
0.0006417010 0.0018302860 0.0134070000 0.0000000000

32 4.692972306 21 328 .15 0.005187114 0.022311813 0.001192687
0.0010581940 0.0029003620 0.0240890000 0.0125350000

33 4.626608838 21 328 .15 0.009688289 0.027709017 0.001299333
0.0012492030 0.0043706960 0.0366567000 0.0243070000

34 4.548468095 21 328 .15 0.014359781 0.031770166 0.001443485
0.0012967470 0.0057104280 0.0489083000 0.0362970000

35 4.448673133 21 328 .15 0.022750730 0.038750445 0.001832231
0.0015061050 0.0070636630 0.0703486000 0.0615850000

36

37 4 .87 49 328 .15 0.000000000 0.000538763 0 0.0000000000
0.0000000000 0.0000000000 0.0000000000

38 4.914460858 49 328 .15 0.000000000 0.008852726 0.000499868
0.0005170160 0.0001596490 0.0039948500 0.0000000000

39 4.632419663 49 328 .15 0.004658231 0.024365776 0.001189298
0.0011838520 0.0009595980 0.0104727200 0.0000000000

40 4.56647853 49 328 .15 0.006273717 0.034143841 0.001593174
0.0016634930 0.0018030270 0.0158235300 0.0000000000

41 4.539215368 49 328 .15 0.014272319 0.050486006 0.002423489
0.0024509230 0.0037599550 0.0330052000 0.0187436400

42 4.479785934 49 328 .15 0.021596268 0.058413341 0.002888367
0.0027662380 0.0049211750 0.0483883700 0.0331937700

43 4.313389169 49 328 .15 0.036498834 0.069041742 0.003955089
0.0030576570 0.0065281280 0.0742159200 0.0579803700

44 4.263836337 49 328 .15 0.049114278 0.078088735 0.004517778
0.0035209550 0.0072612140 0.0994614100 0.0816093900

45

46 4 .817 98 328 .15 0.000000000 0.001459149 0 0.0000000000
0.0000923445 0.0181724800 0.0000000000

47 4.709764828 98 328 .15 0.001652208 0.013356282 0.000794347
0.0006248960 0.0004032800 0.0185387200 0.0000000000

48 4.579582871 98 328 .15 0.006131649 0.028350565 0.002189999
0.0016101240 0.0014472770 0.0261719900 0.0000000000

49 4.55720619 98 328 .15 0.008912293 0.033451455 0.002746423
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0.0020441770 0.0019537200 0.0363482300 0.0000000000
50 4.311055911 98 328 .15 0.019774405 0.051583293 0.004619679

0.0033686160 0.0037913700 0.0669587000 0.0244301700
51 4.167074428 98 328 .15 0.029152302 0.055753351 0.00504187

0.0035180250 0.0040777550 0.0680487000 0.0351753900
52 3.991948363 98 328 .15 0.047633520 0.075498269 0.007266176

0.0046535750 0.0062289120 0.1196351300 0.0625736300
53 3.859212836 98 328 .15 0.065180119 0.08330043 0.008224628

0.0048782680 0.0067467300 0.1508309300 0.0762128000
54

55 5 .37 6 338 .15 0.000000000 0.000987732 2 .68E-05 0.0000000000
0.0000419748 0.0000000000 0.0000000000

56 4.911035228 6 338 .15 0.000000000 0.003962987 0.00042816
0.0000000000 0.0005122000 0.0119900000 0.0000000000

57 4.863074058 6 338 .15 0.001991993 0.007603608 0.001481343
0.0000000000 0.0025200800 0.0218000000 0.0043600000

58 4.716951419 6 338 .15 0.007074489 0.014669234 0.00335816
0.0000000000 0.0092901160 0.0566800000 0.0261600000

59 4.974640781 6 338 .15 0.014167669 0.020139413 0.005330886
0.0000000000 0.0212766710 0.1318900000 0.0948300000

60 4.690677151 6 338 .15 0.026593320 0.020687649 0.006413643
0.0000000000 0.0294787090 0.1667700000 0.1591400000

61 4.446093649 6 338 .15 0.032193193 0.025956834 0.007741769
0.0000000000 0.0330433870 0.2354400000 0.2256300000

62 4.492912239 6 338 .15 0.062638069 0.028075417 0.007833983
0.0006175680 0.0339629310 0.2964800000 0.2943000000

63

64 4 .775 21 338 .15 0.000000000 0.000112242 0 0.0000000000
0.0000000000 0.0000000000 0.0000000000

65 4.651566177 21 338 .15 0.002340968 0.006600521 0.001843104
0.0001473490 0.0010393130 0.0130800000 0.0000000000

66 4.498363888 21 338 .15 0.008552750 0.015929131 0.005848906
0.0010224990 0.0038766140 0.0414200000 0.0141700000

67 4.334036235 21 338 .15 0.015387731 0.024773839 0.009116822
0.0014183400 0.0070920160 0.0708500000 0.0381500000

68 4.249692067 21 338 .15 0.037208405 0.029849656 0.011069013
0.0014146880 0.0090912710 0.0904700000 0.0643100000

69 4.142513473 21 338 .15 0.037809127 0.035913554 0.013455512
0.0016983480 0.0122200100 0.1318900000 0.1100900000

70 3.955865155 21 338 .15 0.054237290 0.040410995 0.014778864
0.0016789690 0.0145121150 0.1744000000 0.1536900000

71 3.753967639 21 338 .15 0.079352092 0.046067145 0.016157756
0.0013697710 0.0163208270 0.2278100000 0.2169100000

72
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73 5 .26 49 338 .15 0.000000000 0.000729575 4 .46E-05 0.0000170290
0.0000419748 0.0054500000 0.0000000000

74 4.506904135 49 338 .15 0.006615347 0.026706538 0.003270701
0.0014918510 0.0014261630 0.0207100000 0.0043600000

75 4.470774185 49 338 .15 0.026190101 0.052578019 0.008962048
0.0031438780 0.0052779300 0.0784800000 0.0337900000

76 3.980779552 49 338 .15 0.073265974 0.082179843 0.016144102
0.0041803040 0.0101425040 0.2147300000 0.1438800000

77 3.555425284 49 338 .15 0.000000000 0.096411945 0.020592286
0.0046621050 0.0113220920 0.3433500000 0.2299900000

78 3.337613545 49 338 .15 0.193603882 0.108328919 0.024509937
0.0044580750 0.0113822460 0.4915900000 0.3019300000

79 2.651222746 49 338 .15 0.245713982 0.115392159 0.028917644
0.0041958820 0.0108057640 0.7335700000 0.3771400000

80

81 4 .798 98 338 .15 0.000000000 0.000123466 0 0.0000000000
0.0000000000 0.0000000000 0.0000000000

82 4.405681764 98 338 .15 0.004653673 0.023913146 0.005704446
0.0018295870 0.0011979450 0.0163500000 0.0000000000

83 3.896320554 98 338 .15 0.028780374 0.058827431 0.019158696
0.0038674840 0.0037603760 0.0773900000 0.0370600000

84 3.606477896 98 338 .15 0.055686743 0.076957314 0.027256169
0.0051977960 0.0061696820 0.1438800000 0.0697600000

85 3.373334889 98 338 .15 0.082330280 0.086042401 0.035489743
0.0046138850 0.0055762320 0.1951100000 0.1122700000

86 3.022642215 98 338 .15 0.136031584 0.101637866 0.044142745
0.0053419660 0.0064319290 0.2779500000 0.1765800000

87 2.714667974 98 338 .15 0.190521427 0.110543766 0.049440438
0.0050832180 0.0066625530 0.3640600000 0.2223600000

88 2.387096959 98 338 .15 0.228195067 0.11359935 0.053636501
0.0048147350 0.0068384530 0.4599800000 0.2408900000

89

90 5 .27 6 348 .15 0.000000000 0.001762204 0.000160526 0.0000567634
0.0000419748 0.0032700000 0.0000000000

91 5.2879338 6 348 .15 0.001727214 0.004698776 0.001250412 0.0001193820
0.0016983290 0.0109000000 0.0032700000

92 4.974793126 6 348 .15 0.007389358 0.009204843 0.005297005
0.0002453050 0.0102678330 0.0348800000 0.0141700000

93 4.769646356 6 348 .15 0.017186234 0.015289402 0.010796278
0.0003785790 0.0279438440 0.0763000000 0.0425100000

94 4.97394122 6 348 .15 0.024549150 0.017317112 0.012638919
0.0003680160 0.0366279330 0.0915600000 0.0577700000

95 4.870772163 6 348 .15 0.027835989 0.019368704 0.013838528
0.0003751830 0.0425886800 0.1079100000 0.0752100000
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96 4.526150579 6 348 .15 0.040684708 0.022304952 0.01656503
0.0004929610 0.0542248230 0.1613200000 0.1111800000

97 4.238312461 6 348 .15 0.058853583 0.02856616 0.018999795
0.0005722550 0.0619548780 0.2147300000 0.1580500000

98 4.069101956 6 348 .15 0.080063623 0.031285096 0.02005575
0.0006171110 0.0645127190 0.2637800000 0.2081900000

99 4.139477397 6 348 .15 0.098401549 0.03574572 0.021491243
0.0006671280 0.0675194400 0.3215500000 0.2419800000

100 3.968698224 6 348 .15 0.134400736 0.040338486 0.023118009
0.0007449620 0.0682646830 0.3978500000 0.3400800000

101

102 4 .944 21 348 .15 0.000000000 0.000325503 0 0.0000000000
0.0000000000 0.0000000000 0.0000000000

103 4.690061157 21 348 .15 0.013281985 0.014537159 0.003434418
0.0008883610 0.0028045260 0.0372322200 0.0123802200

104 4.196898229 21 348 .15 0.043611634 0.027905986 0.010699939
0.0018113740 0.0114955820 0.1676975900 0.1198117100

105 3.836553249 21 348 .15 0.084608760 0.032382334 0.014696422
0.0020773510 0.0147639920 0.3057537200 0.2689749400

106 3.499202912 21 348 .15 0.131368185 0.034062035 0.016939144
0.0020153040 0.0154780480 0.4164355900 0.3822771700

107 3.0930167 21 348 .15 0.193529959 0.037686142 0.020461174
0.0020589730 0.0141670720 0.6028288600 0.5209208100

108 2.824493483 21 348 .15 0.231152006 0.039631362 0.022839995
0.0020314080 0.0137465540 0.7213609100 0.5739863700

109 2.362609886 21 348 .15 0.317002761 0.038941214 0.022911482
0.0017821280 0.0104450210 0.8719389600 0.5813068100

110

111 5 .06 49 348 .15 0.000000000 0.000561211 3 .37E-05 0.0000113527
0.0000167899 0.0000000000 0.0000000000

112 5.428108647 49 348 .15 0.009434389 0.024168562 0.005419413
0.0013391490 0.0041540550 0.0425100000 0.0152600000

113 4.165642573 49 348 .15 0.039496290 0.050893527 0.016975721
0.0024609550 0.0132921000 0.1863900000 0.1318900000

114 3.434605249 49 348 .15 0.117476598 0.077818173 0.028731141
0.0032332850 0.0167908450 0.5112100000 0.3607900000

115 3.129162546 49 348 .15 0.210658429 0.095263758 0.035233162
0.0038294940 0.0129668570 0.7117700000 0.3564300000

116 3.139614905 49 348 .15 0.000000000 0.093712041 0.042779156
0.0032875170 0.0158475720 1.0322300000 0.5755200000

117 2.045924558 49 348 .15 0.000000000 0.105605064 0.045181318
0.0030540700 0.0108002800 1.3875700000 0.3400800000

118

119 4 .62 98 348 .15 0.000937345 0.001784652 0.000224485 0.0000624397
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0.0000839496 0.0043600000 0.0000000000
120 4.69620739 98 348 .15 0.022051269 0.074199559 0.034610012

0.0036129080 0.0048735330 0.0817500000 0.0218000000
121 3.041796127 98 348 .15 0.172964598 0.146832164 0.084022431

0.0055591680 0.0110850240 0.3477100000 0.1689500000
122 2.276859458 98 348 .15 0.000000000 0.157442729 0.103384565

0.0044980790 0.0117188830 0.6649000000 0.3597000000
123 1.896128731 98 348 .15 0.482465869 0.154192835 0.103471215

0.0037811600 0.0127843360 0.7848000000 0.4022100000
124 1.704424298 98 348 .15 0.000000000 0.145383293 0.104696881

0.0036843310 0.0129858550 0.9232300000 0.4294600000
125 1.601117644 98 348 .15 0.000000000 0.141684896 0.106773968

0.0030743750 0.0135823620 1.0801900000 0.4926800000
126 1.693475041 98 348 .15 0.587886570 0.140393582 0.114854416

0.0028949970 0.0163160820 1.3123600000 0.6005900000
127

128

129

130 ] ;
131

132 Output = [
133

134

135 0.0000000000
136 0.0005450000
137 0.0013625000
138 0.0031142857
139 0.0026471429
140 0.0074742857
141 0.0091871429
142 0.0060728571
143

144 0.0000000000
145 0.0000000000
146 0.0013015236
147 0.0016010072
148 0.0025832045
149 0.0032331942
150 0.0039624681
151 0.0054721360
152 0.0088938779
153

154 0.0000000000
155 0.0000000000
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156 0.0000000000
157 0.0062459515
158 0.0039194273
159 0.0040719986
160 0.0059992408
161 0.0072397679
162

163 0.0000000000
164 0.0000000000
165 0.0000000000
166 0.0062478800
167 0.0048167100
168 0.0061966500
169 0.0078763400
170 0.0049998300
171

172 0.0000000000
173 0.0000000000
174 0.0000000000
175 0.0069940366
176 0.0043770500
177 0.0068377649
178 0.0041260800
179 0.0061546622
180

181 0.0000000000
182 0.0021800000
183 0.0054500000
184 0.0098100000
185 0.0091871429
186 0.0094985714
187 0.0098100000
188 0.0113671429
189

190 0.0000000000
191 0.0070850000
192 0.0104260870
193 0.0163500000
194 0.0152600000
195 0.0145333333
196 0.0158050000
197 0.0138243902
198

199 0.0043600000
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200 0.0147150000
201 0.0275225000
202 0.0287033333
203 0.0179850000
204 0.0107442857
205 -0 .0080971429
206

207 0.0000000000
208 0.0185300000
209 0.0142173913
210 0.0265687500
211 0.0221758621
212 0.0152600000
213 0.0045195122
214 0.0002658537
215

216 0.0036333333
217 0.0051904762
218 0.0085878788
219 0.0101733333
220 0.0075826087
221 0.0124034483
222 0.0111595238
223 0.0125350000
224 0.0120678571
225 0.0166271186
226 0.0172583333
227

228 0.0129744498
229 0.0548008009
230 0.0747910299
231 0.0581037077
232 0.0456334804
233 0.0259210434
234 0.0014741120
235 -0 .0046728307
236

237 0.0152600000
238 0.0583150000
239 0.0572250000
240 -0 .0014533333
241 0.0547725000
242 -0 .0336342857
243 -0 .0003114286
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244

245 0.0242222222
246 0.0700714286
247 0.0561029412
248 0.0250058824
249 0.0136250000
250 0.0218000000
251 0.0256928571
252 0.0092650000
253

254 ] ;

A.3 Example: HEPO machine learning model

1 f unc t i on [ y1 ] = myNeuralNetworkFunction ( x1 )
2 %MYNEURALNETWORKFUNCTION neura l network s imu la t i on func t i on .
3 %
4 % Auto - generated by MATLAB, 21 -Apr -2021 0 9 : 2 5 : 1 8 .
5 %
6 % [ y1 ] = myNeuralNetworkFunction ( x1 ) takes these arguments :
7 % x = Qx10 matrix , input #1
8 % and re tu rn s :
9 % y = Qx1 matrix , output #1

10 % where Q i s the number o f samples .
11

12 %#ok<∗RPMT0>
13

14 % ===== NEURAL NETWORK CONSTANTS =====
15

16 % Input 1
17 x1_step1 . x o f f s e t = [ 1 . 6 0 1 1 1 7 6 4 4 ; 6 ; 3 2 8 . 1 5 ; 0 ; 0 . 0 0 0 1 1 2 2 4 2 ; 0 ; 0 ; 0 ; 0 ; 0 ] ;
18 x1_step1 . ga in =

[0 . 486534490569793 ;0 . 0217391304347826 ;0 . 1 ; 3 . 40201682103403 ;
19 12 .7120943825719 ;17 .4133487388069 ;359 .766065713431 ;29 .2977263221159 ;
20 1 .44136872374006 ;3 .33005877553739 ] ;
21 x1_step1 . ymin = -1 ;
22

23 % Layer 1
24 b1 =

[ -0 .47872977914236120034 ;1 .2786511101914832533 ; -1 .4971016117307271998 ] ;

25 IW1_1 = [0.94312394416852174395 -0.11206548441644094416
0.93660825264448477334 1.1552573135201360532
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0.38025026570939007842 0.43469722227676665938
0.0035921397008878458608 -0.66351598580508719394
0.64149606969172934257
-0 .69253155682261591242; -0 .70454721456875890606
-0.81997983357239812019 -3.079652332314779084
-2.9685322158861500164 -1.352191162043323347
1.8328410582875043211 -2.2127753394987017543
-0.38577084088525881445 -1.8441903839229920603
0.040932223018159220873;1 .185659753415429174
-0.13202324897596046105 0.83415606577463041749
1.4506475481156042573 -0.027705190520301407192
1.5835386691143724658 -0.64379756074347771477
-0.46884830722346726439 0.76142373903767690546
-2 .0915975087964815415 ] ;

26

27 % Layer 2
28 b2 = -2 .084601385894188752 ;
29 LW2_1 = [2.7470944772556880054 1.0168490111870966963

-3 .4723638174334068296 ] ;
30

31 % Output 1
32 y1_step1 . ymin = -1 ;
33 y1_step1 . ga in = 18.4458766749488 ;
34 y1_step1 . x o f f s e t = -0 .0336342857 ;
35

36 % ===== SIMULATION ========
37

38 % Dimensions
39 Q = s i z e ( x1 , 1 ) ; % samples
40

41 % Input 1
42 x1 = x1 ' ;
43 xp1 = mapminmax_apply ( x1 , x1_step1 ) ;
44

45 % Layer 1
46 a1 = tansig_apply ( repmat (b1 , 1 ,Q) + IW1_1∗xp1 ) ;
47

48 % Layer 2
49 a2 = repmat (b2 , 1 ,Q) + LW2_1∗a1 ;
50

51 % Output 1
52 y1 = mapminmax_reverse ( a2 , y1_step1 ) ;
53 y1 = y1 ' ;
54 end
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55

56 % ===== MODULE FUNCTIONS ========
57

58 % Map Minimum and Maximum Input Proce s s ing Function
59 f unc t i on y = mapminmax_apply (x , s e t t i n g s )
60 y = bsxfun (@minus , x , s e t t i n g s . x o f f s e t ) ;
61 y = bsxfun (@times , y , s e t t i n g s . ga in ) ;
62 y = bsxfun (@plus , y , s e t t i n g s . ymin ) ;
63 end
64

65 % Sigmoid Symmetric Trans fe r Function
66 f unc t i on a = tansig_apply (n ,~)
67 a = 2 . / (1 + exp ( -2∗n) ) - 1 ;
68 end
69

70 % Map Minimum and Maximum Output Reverse - Proce s s ing Function
71 f unc t i on x = mapminmax_reverse (y , s e t t i n g s )
72 x = bsxfun (@minus , y , s e t t i n g s . ymin ) ;
73 x = bsxfun ( @rdivide , x , s e t t i n g s . ga in ) ;
74 x = bsxfun (@plus , x , s e t t i n g s . x o f f s e t ) ;
75 end

A.4 Example: Obtaining modelled rates 3-input model

1 c l e a r
2 c l c
3 c l o s e a l l
4 %% Experiment #1, A1
5

6 %Inputs [ Time [ days ] , O2- concent ra t i on [%] , Temperature [K] ]
7 X1 = [
8 5.560000000 6 328 .15
9 5.711823131 6 328 .15

10 5.465229927 6 328 .15
11 5.341912612 6 328 .15
12 5.052484218 6 328 .15
13 4.963055823 6 328 .15
14 4.631034815 6 328 .15
15 4.712075773 6 328 .15
16

17 ] ;
18

19 %Output : rHEF [ kg/kmol ] ?
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20 Y1 = [
21 0
22 5 .4500E-04
23 1 .3625E-03
24 3 .1143E-03
25 2 .6471E-03
26 7 .4743E-03
27 9 .1871E-03
28 6 .0729E-03
29

30 ] ;
31

32

33 %% Experiment #2, A2- I
34

35 X2 = [
36 4 .95 21 328 .15
37 5.020220179 21 328 .15
38 4.948427315 21 328 .15
39 4.925410918 21 328 .15
40 4.830016762 21 328 .15
41 4.774658871 21 328 .15
42 4.716091961 21 328 .15
43 4.576204533 21 328 .15
44 4.472071886 21 328 .15
45

46

47 ] ;
48

49 Y2 = [
50 0
51 0
52 1 .3015E-03
53 1 .6010E-03
54 2 .5832E-03
55 3 .2332E-03
56 3 .9625E-03
57 5 .4721E-03
58 8 .8939E-03
59

60

61 ] ;
62

63
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64 %% Experiment #3, A2- I I
65

66 X3 = [
67 4 .875 21 328 .15
68 4.884367008 21 328 .15
69 4.784768453 21 328 .15
70 4.737944046 21 328 .15
71 4.692972306 21 328 .15
72 4.626608838 21 328 .15
73 4.548468095 21 328 .15
74 4.448673133 21 328 .15
75

76

77 ] ;
78

79 Y3 = [
80 0
81 0
82 0
83 6 .2460E-03
84 3 .9194E-03
85 4 .0720E-03
86 5 .9992E-03
87 7 .2398E-03
88

89 ] ;
90

91 %% Experiment #4, A2- I I I
92

93

94 %% Experiment #5, A3
95

96 X5 = [
97 4 .87 49 328 .15
98 4.914460858 49 328 .15
99 4.632419663 49 328 .15

100 4.56647853 49 328 .15
101 4.539215368 49 328 .15
102 4.479785934 49 328 .15
103 4.313389169 49 328 .15
104 4.263836337 49 328 .15
105 ] ;
106

107 Y5 = [
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108 0
109 0
110 0
111 6 .2479E-03
112 4 .8167E-03
113 6 .1967E-03
114 7 .8763E-03
115 4 .9998E-03
116

117

118

119

120 ] ;
121

122 %% Experiment #6, A4
123

124 X6 = [
125 4 .817 98 328 .15
126 4.709764828 98 328 .15
127 4.579582871 98 328 .15
128 4.55720619 98 328 .15
129 4.311055911 98 328 .15
130 4.167074428 98 328 .15
131 3.991948363 98 328 .15
132 3.859212836 98 328 .15
133

134

135 ] ;
136

137 Y6 = [
138 0
139 0
140 0
141 6 .9940E-03
142 4 .3770E-03
143 6 .8378E-03
144 4 .1261E-03
145 6 .1547E-03
146

147

148 ] ;
149

150 %% Experiment #7, B1
151
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152 X7 = [
153 5 .37 6 338 .15
154 4.911035228 6 338 .15
155 4.863074058 6 338 .15
156 4.716951419 6 338 .15
157 4.974640781 6 338 .15
158 4.690677151 6 338 .15
159 4.446093649 6 338 .15
160 4.492912239 6 338 .15
161

162 ] ;
163

164 Y7 = [
165 0
166 2 .1800E-03
167 5 .4500E-03
168 9 .8100E-03
169 9 .1871E-03
170 9 .4986E-03
171 9 .8100E-03
172 1 .1367E-02
173

174

175

176 ] ;
177

178 %% Experiment #8, B2- I
179

180 %% Experiment #9, B2- I I
181

182 X9 = [
183 4 .775 21 338 .15
184 4.651566177 21 338 .15
185 4.498363888 21 338 .15
186 4.334036235 21 338 .15
187 4.249692067 21 338 .15
188 4.142513473 21 338 .15
189 3.955865155 21 338 .15
190 3.753967639 21 338 .15
191

192

193 ] ;
194

195 Y9 = [
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196 0
197 7 .0850E-03
198 1 .0426E-02
199 1 .6350E-02
200 1 .5260E-02
201 1 .4533E-02
202 1 .5805E-02
203 1 .3824E-02
204

205

206 ] ;
207

208 %% Experiment 10 , B3
209

210 X10 = [
211 5 .26 49 338 .15
212 4.506904135 49 338 .15
213 4.470774185 49 338 .15
214 3.980779552 49 338 .15
215 3.555425284 49 338 .15
216 3.337613545 49 338 .15
217 2.651222746 49 338 .15
218

219

220 ] ;
221

222 Y10 = [
223 4 .3600E-03
224 1 .4715E-02
225 2 .7523E-02
226 2 .8703E-02
227 1 .7985E-02
228 1 .0744E-02
229 -8 .0971E-03
230

231

232

233

234 ] ;
235

236 %% Experiment #11, B4
237

238 X11 = [
239 4 .798 98 338 .15
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240 4.405681764 98 338 .15
241 3.896320554 98 338 .15
242 3.606477896 98 338 .15
243 3.373334889 98 338 .15
244 3.022642215 98 338 .15
245 2.714667974 98 338 .15
246 2.387096959 98 338 .15
247

248 ] ;
249

250 Y11 = [
251 0
252 1 .8530E-02
253 1 .4217E-02
254 2 .6569E-02
255 2 .2176E-02
256 1 .5260E-02
257 4 .5195E-03
258 2 .6585E-04
259

260 ] ;
261

262 %% Experiment #12, C1
263

264 X12 = [
265 5 .27 6 348 .15
266 5.2879338 6 348 .15
267 4.974793126 6 348 .15
268 4.769646356 6 348 .15
269 4.97394122 6 348 .15
270 4.870772163 6 348 .15
271 4.526150579 6 348 .15
272 4.238312461 6 348 .15
273 4.069101956 6 348 .15
274 4.139477397 6 348 .15
275 3.968698224 6 348 .15
276

277 ] ;
278

279 Y12 = [
280 3 .6333E-03
281 5 .1905E-03
282 8 .5879E-03
283 1 .0173E-02
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284 7 .5826E-03
285 1 .2403E-02
286 1 .1160E-02
287 1 .2535E-02
288 1 .2068E-02
289 1 .6627E-02
290 1 .7258E-02
291

292

293 ] ;
294

295 %% Experiment #13, C2
296

297 X13 = [
298 4 .944 21 348 .15
299 4.690061157 21 348 .15
300 4.196898229 21 348 .15
301 3.836553249 21 348 .15
302 3.499202912 21 348 .15
303 3.0930167 21 348 .15
304 2.824493483 21 348 .15
305 2.362609886 21 348 .15
306

307

308 ] ;
309

310 Y13 = [
311 1 .2974E-02
312 5 .4801E-02
313 7 .4791E-02
314 5 .8104E-02
315 4 .5633E-02
316 2 .5921E-02
317 1 .4741E-03
318 -4 .6728E-03
319

320

321 ] ;
322

323 %% Experiment #14, C3
324

325 X14 = [
326 5 .06 49 348 .15
327 5.428108647 49 348 .15
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328 4.165642573 49 348 .15
329 3.434605249 49 348 .15
330 3.129162546 49 348 .15
331 3.139614905 49 348 .15
332 2.045924558 49 348 .15
333

334

335 ] ;
336

337 Y14 = [
338 1 .5260E-02
339 5 .8315E-02
340 5 .7225E-02
341 -1 .4533E-03
342 5 .4773E-02
343 -3 .3634E-02
344 -3 .1143E-04
345

346

347

348

349 ] ;
350

351 %% Experiment #15, C4
352

353 X15 = [
354 4 .62 98 348 .15
355 4.69620739 98 348 .15
356 3.041796127 98 348 .15
357 2.276859458 98 348 .15
358 1.896128731 98 348 .15
359 1.704424298 98 348 .15
360 1.601117644 98 348 .15
361 1.693475041 98 348 .15
362

363 ] ;
364

365 Y15 = [
366 2 .4222E-02
367 7 .0071E-02
368 5 .6103E-02
369 2 .5006E-02
370 1 .3625E-02
371 2 .1800E-02
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372 2 .5693E-02
373 9 .2650E-03
374

375 ] ;
376

377 Yc = [
378

379 HEPO_ML(X1)
380 HEPO_ML(X2)
381 HEPO_ML(X3)
382 HEPO_ML(X5)
383 HEPO_ML(X6)
384 HEPO_ML(X7)
385 HEPO_ML(X9)
386 HEPO_ML(X10)
387 HEPO_ML(X11)
388 HEPO_ML(X12)
389 HEPO_ML(X13)
390 HEPO_ML(X14)
391 HEPO_ML(X15)
392

393

394 ] ;
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A.5 Example: Oxidative degradation time measurements

1 A1 = [
2

3 0
4 1
5 3
6 7
7 14
8 21
9 28

10 35
11 %42
12

13 ] ;
14

15 A2I = [
16

17 0 .00
18 0 .03
19 1 .03
20 3 .12
21 5 .03
22 6 .97
23 9 .87
24 12 .92
25 16 .88
26 %21.03
27

28 ] ;
29

30 A2II = [
31

32 0
33 1 .1181
34 2 .9653
35 4 .9375
36 6 .9444
37 9 .9479
38 12.8924
39 17.1076
40 %20.9167
41
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42

43 ] ;
44

45 A3 = [
46

47 0
48 1
49 3
50 4
51 7
52 10
53 14
54 17
55 %21
56

57 ] ;
58

59 A4 = [
60

61 0
62 1 .0278
63 2 .9757
64 4 .0174
65 7 .5104
66 9 .9653
67 13.9722
68 17.2778
69 %21.1944
70

71 ] ;
72

73 B1 = [
74

75 0
76 1
77 3
78 7
79 14
80 21
81 28
82 35
83 %42
84

85 ] ;
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86

87 B2II = [
88

89 0
90 1
91 3
92 5 .3
93 6 .9
94 9 .9
95 12 .9
96 16 .9
97 %21
98

99

100 ] ;
101

102 B3 = [
103

104 0
105 1
106 3
107 7
108 10
109 14
110 21
111 %28
112

113 ] ;
114

115 B4 = [
116

117 0
118 0 .9
119 2 .9
120 5 .2
121 6 .8
122 9 .7
123 12 .7
124 16 .8
125 %20.9
126

127 ] ;
128

129 C1 = [
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130

131 0
132 0 .9
133 3
134 6 .3
135 7 .8
136 10 .1
137 13
138 17 .2
139 21 .2
140 24
141 29 .9
142 %35.9
143

144 ] ;
145

146 C2 = [
147

148 0
149 0 .9542
150 2 .9146
151 4 .909
152 6 .859
153 9 .8972
154 11.9444
155 16.9104
156 %19.909
157

158

159 ] ;
160

161 C3 = [
162

163 0
164 1
165 3
166 7
167 10
168 14
169 21
170 %28
171

172 ] ;
173
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174 C4 = [
175

176 0
177 0 .9
178 3
179 6 .4
180 8 .1
181 10 .1
182 13
183 17 .2
184 %21.2
185

186

187 ] ;

A.6 Example: Plotting 3-input model

1 c l e a r
2 c l c
3 c l o s e a l l
4 TIME
5

6

7 A1HEPO = [
8 0.0000000000 0.0000000000
9 0.0000000000 0.0004716359

10 0.0010900000 0.0014149078
11 0.0065400000 0.0033014516
12 0.0283400000 0.0066029031
13 0.0468700000 0.0099043547
14 0.0991900000 0.0132058063
15 0.1635000000 0.0165072579
16

17

18 ] ;
19

20 A2IHEPO = [
21

22 0.0000000000 0.0000000000
23 0.0000000000 0.0000813013
24 0.0000000000 0.0031608962
25 0.0027250000 0.0096086439
26 0.0057770000 0.0154792755
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27 0.0107910000 0.0214567691
28 0.0201650000 0.0303854385
29 0.0322640000 0.0397886734
30 0.0539550000 0.0519958794
31

32

33

34

35 ] ;
36

37 A2IIHEPO = [
38

39 0.0000000000 0.0000000000
40 0.0000000000 0.0047597572
41 0.0000000000 0.0126232967
42 0.0000000000 0.0210189618
43 0.0125350000 0.0295623449
44 0.0243070000 0.0423482592
45 0.0362970000 0.0548830102
46 0.0615850000 0.0728271373
47

48

49 ] ;
50

51 A3HEPO = [
52

53 0.0000000000 0.0000000000
54 0.0000000000 0.0046974149
55 0.0000000000 0.0140922447
56 0.0000000000 0.0187896597
57 0.0187436400 0.0328819044
58 0.0331937700 0.0469741491
59 0.0579803700 0.0657638088
60 0.0816093900 0.0798560536
61

62 ] ;
63

64 A4HEPO = [
65

66 0.0000000000 0.0000000000
67 0.0000000000 0.0051775459
68 0.0000000000 0.0149900986
69 0.0000000000 0.0202376658
70 0.0244301700 0.0378336648
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71 0.0351753900 0.0502002317
72 0.0625736300 0.0703850037
73 0.0762128000 0.0870369746
74

75

76 ] ;
77

78 B1HEPO = [
79

80 0.0000000000 0.0000000000
81 0.0000000000 0.0073584875
82 0.0043600000 0.0220754625
83 0.0261600000 0.0515094126
84 0.0948300000 0.1030188252
85 0.1591400000 0.1545282378
86 0.2256300000 0.2060376504
87 0.2943000000 0.2575470631
88

89

90

91

92 ] ;
93

94 B2IIHEPO = [
95

96 0.0000000000 0.0000000000
97 0.0000000000 0.0132478325
98 0.0141700000 0.0397434975
99 0.0381500000 0.0702135123

100 0.0643100000 0.0914100443
101 0.1100900000 0.1311535418
102 0.1536900000 0.1708970393
103 0.2169100000 0.2238883693
104

105

106

107 ] ;
108

109 B3HEPO = [
110

111 0.0000000000 0.0000000000
112 0.0043600000 0.0103306534
113 0.0337900000 0.0309919601
114 0.1438800000 0.0723145737
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115 0.2299900000 0.1033065338
116 0.3019300000 0.1446291473
117 0.3771400000 0.2169437210
118

119 ] ;
120

121 B4HEPO = [
122

123 0.0000000000 0.0000000000
124 0.0000000000 0.0129557024
125 0.0370600000 0.0417461523
126 0.0697600000 0.0748551697
127 0.1122700000 0.0978875296
128 0.1765800000 0.1396336819
129 0.2223600000 0.1828193567
130 0.2408900000 0.2418397789
131

132

133

134

135 ] ;
136

137 C1HEPO = [
138

139 0.0000000000 0.0000000000
140 0.0032700000 0.0188858549
141 0.0141700000 0.0629528497
142 0.0425100000 0.1322009844
143 0.0577700000 0.1636774092
144 0.0752100000 0.2119412606
145 0.1111800000 0.2727956820
146 0.1580500000 0.3609296716
147 0.2081900000 0.4448668045
148 0.2419800000 0.5036227976
149 0.3400800000 0.6274300686
150

151

152

153 ] ;
154

155 C2HEPO = [
156

157 0.0000000000 0.0000000000
158 0.0123802200 0.0183351820
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159 0.1198117100 0.0560047385
160 0.2689749400 0.0943276131
161 0.3822771700 0.1317973310
162 0.5209208100 0.1901770732
163 0.5739863700 0.2295145125
164 0.5813068100 0.3249373942
165

166

167 ] ;
168

169 C3HEPO = [
170 0.0000000000 0.0000000000
171 0.0152600000 0.0264356179
172 0.1318900000 0.0793068538
173 0.3607900000 0.1850493256
174 0.3564300000 0.2643561794
175 0.5755200000 0.3700986512
176 0.3400800000 0.5551479767
177

178

179 ] ;
180

181 C4HEPO = [
182

183 0.0000000000 0.0000000000
184 0.0218000000 0.0309656578
185 0.1689500000 0.1032188594
186 0.3597000000 0.2202002334
187 0.4022100000 0.2786909204
188 0.4294600000 0.3475034933
189 0.4926800000 0.4472817241
190 0.6005900000 0.5917881273
191

192

193 ] ;
194

195 a = f i g u r e ( ) ;
196

197 subplot ( 2 , 3 , 1 )
198 hold on
199 p lo t (A1 , A1HEPO( : , 1 ) , ' ∗ ' )
200 p lo t (A1 , A1HEPO( : , 2 ) , ' - ' )
201 x l ab e l ( 'Time [ days ] ' )
202 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
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203 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
204 t i t l e ( 'A1 , 55 \ circC , 6 % O_2, HEPO ' )
205

206 subplot ( 2 , 3 , 2 )
207 hold on
208 p lo t (A2I , A2IHEPO( : , 1 ) , ' ∗ ' )
209 p lo t (A2I , A2IHEPO( : , 2 ) , ' - ' )
210 x l ab e l ( 'Time [ days ] ' )
211 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
212 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
213 t i t l e ( 'A2- I , 55 \ circC , 21 % O_2, HEPO ' )
214

215 subplot ( 2 , 3 , 3 )
216 hold on
217 p lo t ( A2II , A2IIHEPO( : , 1 ) , ' ∗ ' )
218 p lo t ( A2II , A2IIHEPO( : , 2 ) , ' - ' )
219 x l ab e l ( 'Time [ days ] ' )
220 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
221 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
222 t i t l e ( 'A2- I I , 55 \ circC , 21 % O_2, HEPO ' )
223

224 subplot ( 2 , 3 , 4 )
225 hold on
226 p lo t (A3 , A3HEPO( : , 1 ) , ' ∗ ' )
227 p lo t (A3 , A3HEPO( : , 2 ) , ' - ' )
228 x l ab e l ( 'Time [ days ] ' )
229 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
230 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
231 t i t l e ( 'A3 , 55 \ circC , 49 % O_2, HEPO ' )
232

233 subplot ( 2 , 3 , 5 )
234 hold on
235 p lo t (A4 , A4HEPO( : , 1 ) , ' ∗ ' )
236 p lo t (A4 , A4HEPO( : , 2 ) , ' - ' )
237 x l ab e l ( 'Time [ days ] ' )
238 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
239 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
240 t i t l e ( 'A4 , 55 \ circC , 98 % O_2, HEPO ' )
241

242 b = f i g u r e ( ) ;
243

244

245 subplot ( 2 , 2 , 1 )
246 hold on
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247 p lo t (B1 , B1HEPO( : , 1 ) , ' ∗ ' )
248 p lo t (B1 , B1HEPO( : , 2 ) , ' - ' )
249 x l ab e l ( 'Time [ days ] ' )
250 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
251 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
252 t i t l e ( 'B1 , 65 \ circC , 6 % O_2, HEPO ' )
253

254 subplot ( 2 , 2 , 2 )
255 hold on
256 p lo t ( B2II , B2IIHEPO( : , 1 ) , ' ∗ ' )
257 p lo t ( B2II , B2IIHEPO( : , 2 ) , ' - ' )
258 x l ab e l ( 'Time [ days ] ' )
259 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
260 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
261 t i t l e ( 'B2- I I , 65 \ circC , 21 % O_2, HEPO ' )
262

263 subplot ( 2 , 2 , 3 )
264 hold on
265 p lo t (B3 , B3HEPO( : , 1 ) , ' ∗ ' )
266 p lo t (B3 , B3HEPO( : , 2 ) , ' - ' )
267 x l ab e l ( 'Time [ days ] ' )
268 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
269 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
270 t i t l e ( 'B3 , 65 \ circC , 49 % O_2, HEPO ' )
271

272 subplot ( 2 , 2 , 4 )
273 hold on
274 p lo t (B4 , B4HEPO( : , 1 ) , ' ∗ ' )
275 p lo t (B4 , B4HEPO( : , 2 ) , ' - ' )
276 x l ab e l ( 'Time [ days ] ' )
277 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
278 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
279 t i t l e ( 'B4 , 65 \ circC , 98 % O_2, HEPO ' )
280

281 c = f i g u r e ( ) ;
282

283

284 subplot ( 2 , 2 , 1 )
285 hold on
286 p lo t (C1 , C1HEPO( : , 1 ) , ' ∗ ' )
287 p lo t (C1 , C1HEPO( : , 2 ) , ' - ' )
288 x l ab e l ( 'Time [ days ] ' )
289 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
290 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
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291 t i t l e ( 'C1 , 75 \ circC , 6 % O_2, HEPO ' )
292

293 subplot ( 2 , 2 , 2 )
294 hold on
295 p lo t (C2 , C2HEPO( : , 1 ) , ' ∗ ' )
296 p lo t (C2 , C2HEPO( : , 2 ) , ' - ' )
297 x l ab e l ( 'Time [ days ] ' )
298 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
299 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
300 t i t l e ( 'C2 , 75 \ circC , 21 % O_2, HEPO ' )
301

302 subplot ( 2 , 2 , 3 )
303 hold on
304 p lo t (C3 , C3HEPO( : , 1 ) , ' ∗ ' )
305 p lo t (C3 , C3HEPO( : , 2 ) , ' - ' )
306 x l ab e l ( 'Time [ days ] ' )
307 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
308 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
309 t i t l e ( 'C3 , 75 \ circC , 49 % O_2, HEPO ' )
310

311 subplot ( 2 , 2 , 4 )
312 hold on
313 p lo t (C4 , C4HEPO( : , 1 ) , ' ∗ ' )
314 p lo t (C4 , C4HEPO( : , 2 ) , ' - ' )
315 x l ab e l ( 'Time [ days ] ' )
316 y l ab e l ( 'C_{HEPO} [ kmol/kg ] ' )
317 l egend ({ 'C_{HEPO, exp} ' , 'C_{HEPO, mod} ' } , ' Locat ion ' , ' southeas t ' )
318 t i t l e ( 'C4 , 65 \ circC , 98 % O_2, HEPO ' )
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B MATLAB code thermal degradation

B.1 Example: MEA 3 input model data file
1 c l e a r
2 c l c
3 c l o s e a l l
4

5 DOT = [
6

7 393 6 .58 0 .2
8 %393 6 .12 0 .2
9 393 6 .33 0 .2

10 %393 5 .86 0 .2
11 393 6 .24 0 .2
12

13 393 6 .58 0 .4
14 393 6 .22 0 .4
15 393 5 .9 0 .4
16 393 5 .58 0 .4
17 393 5 .14 0 .4
18

19 393 6 .58 0 .5
20 393 6 .19 0 .5
21 %393 5 .76 0 .5
22 393 6 .1 0 .5
23 393 4 .18 0 .5
24

25 %393 4 .9 0 .2
26 393 5 .11 0 .2
27 %393 4 .57 0 .2
28 393 4 .6 0 .2
29 %393 4 .39 0 .2
30

31 393 4 .9 0 .4
32 393 4 .82 0 .4
33 393 4 .5 0 .4
34 %393 4 .25 0 .4
35

36 393 4 .9 0 .5
37 393 4 .6 0 .5
38 393 4 .22 0 .5
39 393 4 0 .5
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40 393 3 .68 0 .5
41

42 %393 2 .88 0 .2
43 393 3 .24 0 .2
44 393 2 .72 0 .2
45 393 2 .63 0 .2
46 %393 2 .59 0 .2
47

48 %393 2 .88 0 .4
49 393 3 .17 0 .4
50 393 2 .66 0 .4
51 393 2 .58 0 .4
52 %393 2 .48 0 .4
53

54 %393 2 .88 0 .5
55 393 3 .22 0 .5
56 393 2 .69 0 .5
57 393 2 .33 0 .5
58 %393 2 .31 0 .5
59

60 408 6 .58 0 .2
61 408 6 .42 0 .2
62 408 5 .92 0 .2
63 408 5 .61 0 .2
64 408 5 .18 0 .2
65

66 408 6 .58 0 .4
67 408 5 .8 0 .4
68 408 4 .43 0 .4
69 408 4 .26 0 .4
70 408 3 .27 0 .4
71

72 408 6 .58 0 .5
73 408 5 0 .5
74 408 4 .09 0 .5
75 408 2 .95 0 .5
76 408 2 .48 0 .5
77

78 408 4 .9 0 .2
79 408 4 .41 0 .2
80 408 4 .27 0 .2
81

82 408 4 .31 0 .4
83 408 4 .28 0 .4
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84 408 3 .42 0 .4
85

86 408 4 .9 0 .5
87 408 4 .05 0 .5
88 408 3 .46 0 .5
89 408 2 .69 0 .5
90 408 2 .42 0 .5
91

92 408 2 .88 0 .2
93 408 2 .79 0 .2
94 408 2 .71 0 .2
95 408 2 .58 0 .2
96 408 2 .54 0 .2
97

98

99 408 2 .88 0 .4
100 408 2 .72 0 .4
101 408 2 .43 0 .4
102 408 2 .24 0 .4
103

104 408 2 .88 0 .5
105 %408 2 .54 0 .5
106 408 3 .09 0 .5
107 408 2 .01 0 .5
108 408 1 .93 0 .5
109

110

111

112 ] ;
113

114 rMEA = [
115

116 -0 .065714286
117 %0.03
118 -0 .033571429
119 %0.027142857
120 -0 .032857143
121

122

123 -0 .051428571
124 -0 .045714286
125 -0 .022857143
126 -0 .031428571
127 -0 .019285714

c
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128

129

130 -0 .055714286
131 -0 .061428571
132 %0.024285714
133 -0 .137142857
134 -0 .016428571
135

136

137 %0.03
138 -0 .077142857
139 %0.002142857
140 -0 .015
141 %0.000714286
142

143

144 -0 .011428571
145 -0 .045714286
146 -0 .008928571
147 %0.004285714
148

149

150 -0 .042857143
151 -0 .054285714
152 -0 .015714286
153 -0 .022857143
154 -0 .012857143
155

156

157 %0.051428571
158 -0 .074285714
159 -0 .006428571
160 -0 .002857143
161 %0.002142857
162

163

164 %0.041428571
165 -0 .072857143
166 -0 .005714286
167 -0 .007142857
168 %0.025
169

170

171 %0.048571429
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172 -0 .075714286
173 -0 .025714286
174 -0 .001428571
175 %0.005714286
176

177 -0 .022857143
178 -0 .071428571
179 -0 .022142857
180 -0 .030714286
181 -0 .034285714
182

183

184 -0 .111428571
185 -0 .195714286
186 -0 .012142857
187 -0 .070714286
188 -0 .037142857
189

190

191 -0 .225714286
192 - 0 .13
193 -0 .081428571
194 -0 .033571429
195 -0 .045
196

197

198 -0 .074285714
199 - 0 .01
200 -0 .0275
201

202

203 -0 .004285714
204 -0 .061428571
205 -0 .0375
206

207

208 -0 .121428571
209 -0 .084285714
210 -0 .055
211 -0 .019285714
212 -0 .049285714
213

214

215 -0 .012857143
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216 -0 .011428571
217 -0 .009285714
218 -0 .002857143
219 -0 .015714286
220

221

222 -0 .022857143
223 -0 .041428571
224 -0 .013571429
225 -0 .078214286
226

227

228 -0 .048571429
229 %0.078571429
230 -0 .077142857
231 -0 .005714286
232 -0 .031428571
233

234

235 ] ;

B.2 Example: MEA 6 input model data file with all inputs and out-
puts

1 c l e a r
2 c l c
3 c l o s e a l l
4

5 Input = [
6

7 393 6 .58 0 .2 6 .58 NaN 0 0
8 393 6 .12 0 .2 6 .12 NaN 0.03 0
9 393 6 .33 0 .2 6 .33 NaN 0.07 0

10 393 5 .86 0 .2 5 .86 NaN 0.13 0
11 393 6 .24 0 .2 6 .24 NaN 0.09 0 .01
12 %393 5 .78 0 .2 5 .78 NaN 0.15 0 .01
13

14 393 6 .58 0 .4 6 .58 NaN 0 0
15 393 6 .22 0 .4 6 .22 NaN 0.02 0 .01
16 393 5 .9 0 .4 5 . 9 NaN 0.09 0 .01
17 393 5 .58 0 .4 5 .58 NaN 0.11 0 .02
18 393 5 .14 0 .4 5 .14 NaN 0.33 0 .03
19 %393 4 .87 0 .4 4 .87 NaN 0.41 0 .05
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20

21 393 6 .58 0 .5 6 .58 NaN NaN 0
22 393 6 .19 0 .5 6 .19 NaN NaN 0
23 393 5 .76 0 .5 5 .76 NaN NaN 0.02
24 393 6 .1 0 .5 6 . 1 NaN NaN 0.02
25 393 4 .18 0 .5 4 .18 NaN NaN 0.06
26 %393 3 .95 0 .5 3 .95 NaN NaN 0.09
27

28 393 4 .9 0 .2 4 . 9 0 0 0
29 393 5 .11 0 .2 5 .11 0 0 .02 0
30 393 4 .57 0 .2 4 .57 0 0 .05 0
31 393 4 .6 0 .2 4 . 6 0 0 .09 0
32 393 4 .39 0 .2 4 .39 0 .04 0 .1 0
33 %393 4 .4 0 .2 4 . 4 0 .08 0 .13 0
34

35 393 4 .9 0 .4 4 . 9 0 0 0
36 393 4 .82 0 .4 4 .82 0 .04 0 .03 0
37 393 4 .5 0 .4 4 . 5 0 .05 0 .05 0
38 393 4 .25 0 .4 4 .25 0 .1 0 .21 0 .02
39 %393 4 .31 0 .4 4 .31 0 .12 0 .35 0 .03
40

41 393 4 .9 0 .5 4 . 9 0 0 0
42 393 4 .6 0 .5 4 . 6 0 .05 0 .03 0
43 393 4 .22 0 .5 4 .22 0 .08 0 .07 0
44 393 4 0 .5 4 0 .09 0 .16 0 .02
45 393 3 .68 0 .5 3 .68 0 .12 0 .22 0 .04
46 %393 3 .5 0 .5 3 . 5 0 .12 0 .3 0 .06
47

48 393 2 .88 0 .2 2 .88 0 0 0
49 393 3 .24 0 .2 3 .24 0 0 .02 0
50 393 2 .72 0 .2 2 .72 0 0 .03 0
51 393 2 .63 0 .2 2 .63 0 0 .04 0
52 393 2 .59 0 .2 2 .59 0 0 .06 0
53 %393 2 .62 0 .2 2 .62 0 .17 0 .03 0
54

55 393 2 .88 0 .4 2 .88 0 0 0
56 393 3 .17 0 .4 3 .17 0 0 .02 0
57 393 2 .66 0 .4 2 .66 0 0 .04 0
58 393 2 .58 0 .4 2 .58 0 0 .02 0
59 393 2 .48 0 .4 2 .48 0 .09 0 .11 0
60 %393 2 .83 0 .4 2 .83 0 .07 0 .2 0 .02
61

62 393 2 .88 0 .5 2 .88 0 0 0
63 393 3 .22 0 .5 3 .22 0 0 .03 0

civ



Ingvild Emilie Solnes Master’s Thesis

64 393 2 .69 0 .5 2 .69 0 0 .05 0
65 393 2 .33 0 .5 2 .33 0 .07 0 .07 0
66 393 2 .31 0 .5 2 .31 0 .12 0 .12 0
67 %393 2 .39 0 .5 2 .39 0 .12 0 .17 0
68

69 408 6 .58 0 .2 6 .58 0 0 0
70 408 6 .42 0 .2 6 .42 0 .04 0 .11 0
71 408 5 .92 0 .2 5 .92 0 .1 0 .22 0
72 408 5 .61 0 .2 5 .61 0 .2 0 .22 0
73 408 5 .18 0 .2 5 .18 0 .22 0 .22 0 .02
74 %408 4 .7 0 .2 4 . 7 0 .26 0 .28 0 .05
75

76 408 6 .58 0 .4 6 .58 0 0 0
77 408 5 .8 0 .4 5 . 8 0 .15 0 .14 0
78 408 4 .43 0 .4 4 .43 0 .2 0 .36 0 .03
79 408 4 .26 0 .4 4 .26 0 .19 NaN 0.11
80 408 3 .27 0 .4 3 .27 0 .18 0 .47 0 .14
81 %408 2 .75 0 .4 2 .75 0 .16 NaN 0.25
82

83 408 6 .58 0 .5 6 .58 0 0 0
84 408 5 0 .5 5 0 .16 NaN 0.02
85 408 4 .09 0 .5 4 .09 0 .17 NaN 0.07
86 408 2 .95 0 .5 2 .95 0 .13 NaN 0.19
87 408 2 .48 0 .5 2 .48 0 .12 NaN 0.22
88 %408 1 .85 0 .5 1 .85 0 .09 NaN 0 .3
89

90 408 4 .9 0 .2 4 . 9 0 0 0
91 408 4 .38 0 .2 4 .38 0 .04 0 .02 0
92 408 4 .41 0 .2 4 .41 0 .11 0 .05 0
93 408 4 .27 0 .2 4 .27 0 .16 0 .11 0
94 %408 3 .5 0 .2 3 . 5 0 .18 0 .19 0 .03
95

96 408 4 .9 0 .4 4 . 9 0 0 0
97 408 4 .31 0 .4 4 .31 0 .1 0 .1 0
98 408 4 .28 0 .4 4 .28 0 .13 0 .26 0 .02
99 408 3 .42 0 .4 3 .42 0 .15 0 .39 0 .06

100 %408 2 .37 0 .4 2 .37 0 .13 0 .61 0 .13
101

102 408 4 .9 0 .5 4 . 9 0 0 0
103 408 4 .05 0 .5 4 .05 0 .11 0 .15 0
104 408 3 .46 0 .5 3 .46 0 .12 0 .32 0 .04
105 408 2 .69 0 .5 2 .69 0 .09 0 .49 0 .1
106 408 2 .42 0 .5 2 .42 0 .09 0 .45 0 .17
107 %408 1 .73 0 .5 1 .73 0 .08 0 .5 0 .19
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108

109 408 2 .88 0 .2 2 .88 0 0 0
110 408 2 .79 0 .2 2 .79 0 0 .06 0
111 408 2 .71 0 .2 2 .71 0 0 .1 0
112 408 2 .58 0 .2 2 .58 0 .08 0 .06 0
113 408 2 .54 0 .2 2 .54 0 .04 0 .09 0
114 %408 2 .32 0 .2 2 .32 0 .06 0 .12 0 .02
115

116 408 2 .88 0 .4 2 .88 0 0 0
117 408 2 .72 0 .4 2 .72 0 0 .03 0
118 408 2 .43 0 .4 2 .43 0 .02 0 .15 0
119 408 2 .24 0 .4 2 .24 0 .08 0 .21 0 .02
120 %408 0 .05 0 .4 0 .05 0 0 .36 0
121

122 408 2 .88 0 .5 2 .88 0 0 0
123 408 2 .54 0 .5 2 .54 0 .03 0 .09 0
124 408 3 .09 0 .5 3 .09 0 .06 0 .32 0 .02
125 408 2 .01 0 .5 2 .01 0 .04 0 .31 0 .03
126 408 1 .93 0 .5 1 .93 0 .03 0 .38 0 .05
127 %408 1 .49 0 .5 1 .49 0 .05 0 .37 0 .07
128

129 ] ;
130

131 Output_MEA = [
132

133 -0 .065714286
134 0 .03
135 -0 .033571429
136 0.027142857
137 -0 .032857143
138

139

140 -0 .051428571
141 -0 .045714286
142 -0 .022857143
143 -0 .031428571
144 -0 .019285714
145

146

147 -0 .055714286
148 -0 .061428571
149 0.024285714
150 -0 .137142857
151 -0 .016428571
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152

153

154 0 .03
155 -0 .077142857
156 0.002142857
157 -0 .015
158 0.000714286
159

160

161 -0 .011428571
162 -0 .045714286
163 -0 .008928571
164 0.004285714
165

166

167 -0 .042857143
168 -0 .054285714
169 -0 .015714286
170 -0 .022857143
171 -0 .012857143
172

173

174 0.051428571
175 -0 .074285714
176 -0 .006428571
177 -0 .002857143
178 0.002142857
179

180

181 0.041428571
182 -0 .072857143
183 -0 .005714286
184 -0 .007142857
185 0 .025
186

187

188 0.048571429
189 -0 .075714286
190 -0 .025714286
191 -0 .001428571
192 0.005714286
193

194

195 -0 .022857143
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196 -0 .071428571
197 -0 .022142857
198 -0 .030714286
199 -0 .034285714
200

201

202 -0 .111428571
203 -0 .195714286
204 -0 .012142857
205 -0 .070714286
206 -0 .037142857
207

208

209 -0 .225714286
210 - 0 .13
211 -0 .081428571
212 -0 .033571429
213 -0 .045
214

215

216 -0 .074285714
217 0.004285714
218 - 0 .01
219 -0 .0275
220

221

222 -0 .084285714
223 -0 .004285714
224 -0 .061428571
225 -0 .0375
226

227

228 -0 .121428571
229 -0 .084285714
230 -0 .055
231 -0 .019285714
232 -0 .049285714
233

234

235 -0 .012857143
236 -0 .011428571
237 -0 .009285714
238 -0 .002857143
239 -0 .015714286
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240

241

242 -0 .022857143
243 -0 .041428571
244 -0 .013571429
245 -0 .078214286
246

247

248 -0 .048571429
249 0.078571429
250 -0 .077142857
251 -0 .005714286
252 -0 .031428571
253

254

255

256 ] ;
257

258

259 Output_HEEDA = [
260

261 NaN
262 NaN
263 NaN
264 NaN
265 NaN
266

267 NaN
268 NaN
269 NaN
270 NaN
271 NaN
272

273 NaN
274 NaN
275 NaN
276 NaN
277 NaN
278

279 0
280 0
281 0
282 0.002857143
283 0.002857143
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284

285 0.005714286
286 0.001428571
287 0.001785714
288 0.001428571
289

290 0.007142857
291 0.004285714
292 0.000714286
293 0.002142857
294 0
295

296 0
297 0
298 0
299 0
300 0.012142857
301

302 0
303 0
304 0
305 0.006428571
306 -0 .001428571
307

308 0
309 0
310 0 .005
311 0.003571429
312 0
313

314 0.005714286
315 0.008571429
316 0.007142857
317 0.001428571
318 0.002857143
319

320 0.021428571
321 0.007142857
322 -0 .000714286
323 -0 .000714286
324 -0 .001428571
325

326 0.022857143
327 0.001428571
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328 -0 .002857143
329 -0 .000714286
330 -0 .002142857
331

332 0.005714286
333 0 .01
334 0.003571429
335 0.000714286
336

337 0.014285714
338 0.004285714
339 0.001428571
340 -0 .000714286
341

342 0.015714286
343 0.001428571
344 -0 .002142857
345 0
346 -0 .000714286
347

348 0
349 0
350 0.005714286
351 -0 .002857143
352 0.001428571
353

354 0
355 0.002857143
356 0.004285714
357 -0 .002857143
358

359 0.004285714
360 0.004285714
361 -0 .001428571
362 -0 .000714286
363 0.001428571
364

365

366 ] ;
367

368

369 Output_HEIA = [
370

371 0.004285714
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372 0.005714286
373 0.004285714
374 -0 .002857143
375 0.004285714
376

377 0.002857143
378 0 .01
379 0.001428571
380 0.015714286
381 0.005714286
382

383 NaN
384 NaN
385 NaN
386 NaN
387 NaN
388

389 0.002857143
390 0.004285714
391 0.002857143
392 0.000714286
393 0.002142857
394

395 0.004285714
396 0.002857143
397 0.005714286
398 0 .01
399

400 0.004285714
401 0.005714286
402 0.006428571
403 0.004285714
404 0.005714286
405

406 0.002857143
407 0.001428571
408 0.000714286
409 0.001428571
410 -0 .002142857
411

412 0.002857143
413 0.002857143
414 -0 .001428571
415 0.006428571
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416 0.006428571
417

418 0.004285714
419 0.002857143
420 0.001428571
421 0.003571429
422 0.003571429
423

424 0.015714286
425 0.015714286
426 0
427 0
428 0.004285714
429

430 0 .02
431 0.031428571
432 NaN
433 NaN
434 NaN
435

436 NaN
437 NaN
438 NaN
439 NaN
440 NaN
441

442 0.002857143
443 0.004285714
444 0.004285714
445 0.002857143
446

447 0.014285714
448 0.022857143
449 0.009285714
450 0.007857143
451

452 0.021428571
453 0.024285714
454 0.012142857
455 -0 .002857143
456 0.003571429
457

458 0.008571429
459 0.005714286
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460 -0 .002857143
461 0.002142857
462 0.002142857
463

464 0.004285714
465 0.017142857
466 0.004285714
467 0.005357143
468

469 0.012857143
470 0.032857143
471 -0 .000714286
472 0 .005
473 -0 .000714286
474

475

476 ] ;
477

478 Output_TriHEIA = [
479

480 0
481 0
482 0
483 0.000714286
484 0
485

486 0.001428571
487 0
488 0.000714286
489 0.000714286
490 0.001428571
491

492 0
493 0.002857143
494 0
495 0.002857143
496 0.002142857
497

498 0
499 0
500 0
501 0
502 0
503
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504 0
505 0
506 0.000714286
507 0.000714286
508

509 0
510 0
511 0.001428571
512 0.001428571
513 0.001428571
514

515 0
516 0
517 0
518 0
519 0
520

521 0
522 0
523 0
524 0
525 0.001428571
526

527 0
528 0
529 0
530 0
531 0
532

533 0
534 0
535 0
536 0.001428571
537 0.002142857
538

539 0
540 0.004285714
541 0.005714286
542 0.002142857
543 0.007857143
544

545 0.002857143
546 0.007142857
547 0.008571429
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548 0.002142857
549 0.005714286
550

551 0
552 0
553 0
554 0.001071429
555

556 0
557 0.002857143
558 0.002857143
559 0 .0025
560

561 0
562 0.005714286
563 0.004285714
564 0 .005
565 0.001428571
566

567 0
568 0
569 0
570 0
571 0.001428571
572

573 0
574 0
575 0.001428571
576 -0 .000714286
577

578 0
579 0.002857143
580 0.000714286
581 0.001428571
582 0.001428571
583

584

585

586 ] ;
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B.3 Example: MEA machine learning model

1 f unc t i on [ y1 ] = myNeuralNetworkFunction ( x1 )
2 %MYNEURALNETWORKFUNCTION neura l network s imu la t i on func t i on .
3 %
4 % Auto - generated by MATLAB, 14 -Apr -2021 1 3 : 3 7 : 5 8 .
5 %
6 % [ y1 ] = myNeuralNetworkFunction ( x1 ) takes these arguments :
7 % x = Qx3 matrix , input #1
8 % and re tu rn s :
9 % y = Qx1 matrix , output #1

10 % where Q i s the number o f samples .
11

12 %#ok<∗RPMT0>
13

14 % ===== NEURAL NETWORK CONSTANTS =====
15

16 % Input 1
17 x1_step1 . x o f f s e t = [ 3 9 3 ; 1 . 9 3 ; 0 . 2 ] ;
18 x1_step1 . ga in =

[0 .133333333333333 ;0 . 43010752688172 ;6 . 66666666666667 ] ;
19 x1_step1 . ymin = -1 ;
20

21 % Layer 1
22 b1 =

[ -1 .5746388810380491652 ;0 .021319806190481817992 ; -0 .020786658904295585854 ] ;

23 IW1_1 = [0.51181388799705329617 0.88690316085691345283
0.72902402194927262702;0 .12431852575192366139
-0.032181772504924176237
0.13507381922287772791; -0 .1237962766908106832
0.032913040483900299349 -0 .1346362178511378016 ] ;

24

25 % Layer 2
26 b2 = -0.30807497583435677901;
27 LW2_1 = [ -1 .1547236028974714461 0.21763249586769245481

-0 .21695040679872487632 ] ;
28

29 % Output 1
30 y1_step1 . ymin = -1 ;
31 y1_step1 . ga in = 8.91719742383058 ;
32 y1_step1 . x o f f s e t = -0 .225714286 ;
33
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34 % ===== SIMULATION ========
35

36 % Dimensions
37 Q = s i z e ( x1 , 1 ) ; % samples
38

39 % Input 1
40 x1 = x1 ' ;
41 xp1 = mapminmax_apply ( x1 , x1_step1 ) ;
42

43 % Layer 1
44 a1 = tansig_apply ( repmat (b1 , 1 ,Q) + IW1_1∗xp1 ) ;
45

46 % Layer 2
47 a2 = repmat (b2 , 1 ,Q) + LW2_1∗a1 ;
48

49 % Output 1
50 y1 = mapminmax_reverse ( a2 , y1_step1 ) ;
51 y1 = y1 ' ;
52 end
53

54 % ===== MODULE FUNCTIONS ========
55

56 % Map Minimum and Maximum Input Proce s s ing Function
57 f unc t i on y = mapminmax_apply (x , s e t t i n g s )
58 y = bsxfun (@minus , x , s e t t i n g s . x o f f s e t ) ;
59 y = bsxfun (@times , y , s e t t i n g s . ga in ) ;
60 y = bsxfun (@plus , y , s e t t i n g s . ymin ) ;
61 end
62

63 % Sigmoid Symmetric Trans fe r Function
64 f unc t i on a = tansig_apply (n ,~)
65 a = 2 . / (1 + exp ( -2∗n) ) - 1 ;
66 end
67

68 % Map Minimum and Maximum Output Reverse - Proce s s ing Function
69 f unc t i on x = mapminmax_reverse (y , s e t t i n g s )
70 x = bsxfun (@minus , y , s e t t i n g s . ymin ) ;
71 x = bsxfun ( @rdivide , x , s e t t i n g s . ga in ) ;
72 x = bsxfun (@plus , x , s e t t i n g s . x o f f s e t ) ;
73 end
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B.4 Example: Thermal degradation time measurements

1 c l e a r
2 c l c
3 c l o s e a l l
4

5 TE1 = [
6

7 0
8 7
9 14

10 28
11 42
12

13 ] ;
14

15 TE2 = [
16

17 0
18 7
19 14
20 28
21 42
22

23 ] ;
24

25 TE3 = [
26

27 0
28 7
29 14
30 28
31 42
32

33 ] ;
34

35 TE4 = [
36

37 0
38 7
39 14
40 28
41 42
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42

43 ] ;
44

45 TE5 = [
46

47 0
48 7
49 14
50 42
51

52

53 ] ;
54

55 TE6 = [
56

57 0
58 7
59 14
60 28
61 42
62

63 ] ;
64

65 TE7 = [
66

67 0
68 7
69 14
70 28
71 42
72

73 ] ;
74

75 TE8 = [
76

77 0
78 7
79 14
80 28
81 42
82

83 ] ;
84

85 TE9 = [
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86

87 0
88 7
89 14
90 28
91 42
92

93 ] ;
94

95 TF1 = [
96

97 0
98 7
99 14

100 28
101 42
102

103 ] ;
104

105 TF2 = [
106

107 0
108 7
109 14
110 28
111 42
112

113 ] ;
114

115 TF3 = [
116

117 0
118 7
119 14
120 28
121 42
122

123 ] ;
124

125 TF4 = [
126

127 0
128 7
129 14
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130 28
131

132

133 ] ;
134

135 TF5 = [
136

137 0
138 7
139 14
140 28
141

142

143 ] ;
144

145 TF6 = [
146

147 0
148 7
149 14
150 28
151 42
152

153 ] ;
154

155 TF7 = [
156

157 0
158 7
159 14
160 28
161 42
162

163 ] ;
164

165 TF8 = [
166

167 0
168 7
169 14
170 28
171

172 ] ;
173
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174 TF9 = [
175

176 0
177 7
178 14
179 28
180 42
181

182 ] ;

B.5 Example: MEA all plots

1 c l e a r
2 c l c
3 c l o s e a l l
4 THERMAL_TIME
5 s e t ( groot , ' defaultLineLineWidth ' , 1 . 5 )
6

7 E1_MEA = [
8

9 6 .58 6.58000000000000 NaN
10 6 .12 6.32204413541079 NaN
11 6 .33 6.07707514441802 NaN
12 5 .86 5.57619058091935 NaN
13 6 .24 5.09801931107691 NaN
14

15 ] ;
16

17 E2_MEA = [
18

19 6 .58 6.58000000000000 NaN
20 6 .22 6.18559155445716 NaN
21 5 .9 5.84324777271713 NaN
22 5 .58 5.23441267993921 NaN
23 5 .14 4.68797130426874 NaN
24

25

26 ] ;
27

28 E3_MEA = [
29

30 6 .58 6.58000000000000 NaN
31 6 .19 5.94051797054882 NaN
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32 5 .76 5.40443449133772 NaN
33 6 .1 4.52486957379720 NaN
34 4 .18 3.49611022224730 NaN
35

36

37 ] ;
38

39 E4_MEA = [
40

41 4 .9 4.90000000000000 4.90000000000000
42 5 .11 4.67649471407249 4.80723428252824
43 4 .57 4.45022190942435 4.70490356923068
44 4 .6 4.01086561950235 4.56114697744983
45 4 .39 3.57085979685593 4.42265975947287
46

47

48 ] ;
49

50 E5_MEA = [
51

52 4 .9 4.90000000000000 4.90000000000000
53 4 .82 4.67540906123845 4.66951855276596
54 4 .5 4.45526678842533 4.46580084023358
55 4 .25 3.63738307488669 3.88034300379937
56

57

58 ] ;
59

60 E6_MEA = [
61

62 4 .9 4.90000000000000 4.90000000000000
63 4 .6 4.60023747267246 4.49596766314742
64 4 .22 4.33527562923556 4.16467568838407
65 4 3.87697366706872 3.69689137793502
66 3 .68 3.45294779708397 3.31295891335673
67

68 ] ;
69

70 E7_MEA = [
71

72 2 .88 2.88000000000000 2.88000000000000
73 3 .24 2.67393240901055 2.85672646120665
74 2 .72 2.46550949324481 2.82645111877345
75 2 .63 2.05535443589185 2.79250474939521
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76 2 .59 1.64628704830735 2.76430194262755
77

78

79 ] ;
80

81 E8_MEA = [
82

83 2 .88 2.88000000000000 2.88000000000000
84 3 .17 2.72061891964655 2.84739912154367
85 2 .66 2.55599258751855 2.80016288836989
86 2 .58 2.24416593767766 2.76670703440018
87 2 .48 1.93467240134749 2.73639533530704
88

89

90 ] ;
91

92 E9_MEA = [
93

94 2 .88 2.88000000000000 2.88000000000000
95 3 .22 2.72594167323439 2.80753429791252
96 2 .69 2.55844862117512 2.70469436348007
97 2 .33 2.26301421161241 2.60754032847966
98 2 .31 1.98787801077467 2.67862289030410
99

100

101 ] ;
102

103 F1_MEA = [
104

105 6 .58 6.58000000000000 6.58000000000000
106 6 .42 6.18702716254070 6.10856294981150
107 5 .92 5.82041179169698 5.67624756030738
108 5 .61 5.22435799969755 5.03817065938236
109 5 .18 4.69502930546699 4.52735323726988
110

111

112 ] ;
113

114 F2_MEA = [
115

116 6 .58 6.58000000000000 6.58000000000000
117 5 .8 5.53573764260373 5.56676534573707
118 4 .43 4.76109975395887 4.73554349398986
119 4 .26 3.96872448871623 NaN
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120 3 .27 3.24492012237961 3.06178197261633
121

122

123 ] ;
124

125 F3_MEA = [
126

127 6 .58 6.58000000000000 6.58000000000000
128 5 5.17008173688541 NaN
129 4 .09 4.26796404266877 NaN
130 2 .95 3.06568105880457 NaN
131 2 .48 2.42487440577308 NaN
132

133

134 ] ;
135

136 F4_MEA = [
137

138 4 .9 4.90000000000000 4.90000000000000
139 4 .38 4.69125808400730 4.68124062587235
140 4 .41 4.51003328670225 4.52132915491829
141 4 .27 4.14488399032678 4.26665642021020
142

143

144 ] ;
145

146 F5_MEA = [
147

148 4 .9 4.90000000000000 4.90000000000000
149 4 .31 4.39391281665650 4.39253637308310
150 4 .28 4.02222187017508 4.01999361833809
151 3 .42 3.29064500283009 3.28968517917833
152

153

154 ] ;
155

156 F6_MEA = [
157

158 4 .9 4.90000000000000 4.90000000000000
159 4 .05 4.03273798583193 4.12638924272244
160 3 .46 3.44356801399938 3.59273497603730
161 2 .69 2.58356341111304 2.79414101129343
162 2 .42 2.03499094323044 2.28416922077770
163
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164

165 ] ;
166

167 F7_MEA = [
168

169 2 .88 2.88000000000000 2.88000000000000
170 2 .79 2.74221500427992 2.77244804738971
171 2 .71 2.60600805555225 2.67224245747956
172 2 .58 2.33627346581151 2.48263217518174
173 2 .54 2.07065752021148 2.41139839015401
174

175

176 ] ;
177

178 F8_MEA = [
179

180 2 .88 2.88000000000000 2.88000000000000
181 2 .72 2.70461576344569 2.70808554773775
182 2 .43 2.54246944408620 2.55423090042582
183 2 .24 2.25978439727425 2.34214994344376
184

185 ] ;
186

187 F9_MEA = [
188

189 2 .88 2.88000000000000 2.88000000000000
190 2 .54 2.57263639632440 2.60774051495939
191 3 .09 2.32216481565399 2.40855536716565
192 2 .01 1.62635372590170 1.87356587912771
193 1 .93 1.26440243863403 1.65582517046464
194

195 ] ;
196

197

198 AD_E1_3 = mean( abs (E1_MEA( : , 1 ) -E1_MEA( : , 2 ) ) )
199 AD_E1_6 = mean( abs (E1_MEA( : , 1 ) -E1_MEA( : , 3 ) ) )
200

201 AD_E2_3 = mean( abs (E2_MEA( : , 1 ) -E2_MEA( : , 2 ) ) )
202 AD_E2_6 = mean( abs (E2_MEA( : , 1 ) -E2_MEA( : , 3 ) ) )
203

204 AD_E3_3 = mean( abs (E3_MEA( : , 1 ) -E3_MEA( : , 2 ) ) )
205 AD_E3_6 = mean( abs (E3_MEA( : , 1 ) -E3_MEA( : , 3 ) ) )
206

207 AD_E4_3 = mean( abs (E4_MEA( : , 1 ) -E4_MEA( : , 2 ) ) )
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208 AD_E4_6 = mean( abs (E4_MEA( : , 1 ) -E4_MEA( : , 3 ) ) )
209

210 AD_E5_3 = mean( abs (E5_MEA( : , 1 ) -E5_MEA( : , 2 ) ) )
211 AD_E5_6 = mean( abs (E5_MEA( : , 1 ) -E5_MEA( : , 3 ) ) )
212

213 AD_E6_3 = mean( abs (E6_MEA( : , 1 ) -E6_MEA( : , 2 ) ) )
214 AD_E6_6 = mean( abs (E6_MEA( : , 1 ) -E6_MEA( : , 3 ) ) )
215

216 AD_E7_3 = mean( abs (E7_MEA( : , 1 ) -E7_MEA( : , 2 ) ) )
217 AD_E7_6 = mean( abs (E7_MEA( : , 1 ) -E7_MEA( : , 3 ) ) )
218

219 AD_E8_3 = mean( abs (E8_MEA( : , 1 ) -E8_MEA( : , 2 ) ) )
220 AD_E8_6 = mean( abs (E8_MEA( : , 1 ) -E8_MEA( : , 3 ) ) )
221

222 AD_E9_3 = mean( abs (E9_MEA( : , 1 ) -E9_MEA( : , 2 ) ) )
223 AD_E9_6 = mean( abs (E9_MEA( : , 1 ) -E9_MEA( : , 3 ) ) )
224

225 AD_F1_3 = mean( abs (F1_MEA( : , 1 ) -F1_MEA( : , 2 ) ) )
226 AD_F1_6 = mean( abs (F1_MEA( : , 1 ) -F1_MEA( : , 3 ) ) )
227

228 AD_F2_3 = mean( abs (F2_MEA( : , 1 ) -F2_MEA( : , 2 ) ) )
229 AD_F2_6 = mean( abs (F2_MEA( : , 1 ) -F2_MEA( : , 3 ) ) )
230

231 AD_F3_3 = mean( abs (F3_MEA( : , 1 ) -F3_MEA( : , 2 ) ) )
232 AD_F3_6 = mean( abs (F3_MEA( : , 1 ) -F3_MEA( : , 3 ) ) )
233

234 AD_F4_3 = mean( abs (F4_MEA( : , 1 ) -F4_MEA( : , 2 ) ) )
235 AD_F4_6 = mean( abs (F4_MEA( : , 1 ) -F4_MEA( : , 3 ) ) )
236

237 AD_F5_3 = mean( abs (F5_MEA( : , 1 ) -F5_MEA( : , 2 ) ) )
238 AD_F5_6 = mean( abs (F5_MEA( : , 1 ) -F5_MEA( : , 3 ) ) )
239

240 AD_F6_3 = mean( abs (F6_MEA( : , 1 ) -F6_MEA( : , 2 ) ) )
241 AD_F6_6 = mean( abs (F6_MEA( : , 1 ) -F6_MEA( : , 3 ) ) )
242

243 AD_F7_3 = mean( abs (F7_MEA( : , 1 ) -F7_MEA( : , 2 ) ) )
244 AD_F7_6 = mean( abs (F7_MEA( : , 1 ) -F7_MEA( : , 3 ) ) )
245

246 AD_F8_3 = mean( abs (F8_MEA( : , 1 ) -F8_MEA( : , 2 ) ) )
247 AD_F8_6 = mean( abs (F8_MEA( : , 1 ) -F8_MEA( : , 3 ) ) )
248

249 AD_F9_3 = mean( abs (F9_MEA( : , 1 ) -F9_MEA( : , 2 ) ) )
250 AD_F9_6 = mean( abs (F9_MEA( : , 1 ) -F9_MEA( : , 3 ) ) )
251
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252

253 AARD_E1_3 = mean( abs ( (E1_MEA( : , 1 ) -E1_MEA( : , 2 ) ) /E1_MEA( : , 1 ) ) ) ∗100
254 AARD_E1_6 = mean( abs ( (E1_MEA( : , 1 ) -E1_MEA( : , 3 ) ) /E1_MEA( : , 1 ) ) ) ∗100
255

256 AARD_E2_3 = mean( abs ( (E2_MEA( : , 1 ) -E2_MEA( : , 2 ) ) /E2_MEA( : , 1 ) ) ) ∗100
257 AARD_E2_6 = mean( abs ( (E2_MEA( : , 1 ) -E2_MEA( : , 3 ) ) /E2_MEA( : , 1 ) ) ) ∗100
258

259 AARD_E3_3 = mean( abs ( (E3_MEA( : , 1 ) -E3_MEA( : , 2 ) ) /E3_MEA( : , 1 ) ) ) ∗100
260 AARD_E3_6 = mean( abs ( (E3_MEA( : , 1 ) -E3_MEA( : , 3 ) ) /E3_MEA( : , 1 ) ) ) ∗100
261

262 AARD_E4_3 = mean( abs ( (E4_MEA( : , 1 ) -E4_MEA( : , 2 ) ) /E4_MEA( : , 1 ) ) ) ∗100
263 AARD_E4_6 = mean( abs ( (E4_MEA( : , 1 ) -E4_MEA( : , 3 ) ) /E4_MEA( : , 1 ) ) ) ∗100
264

265 AARD_E5_3 = mean( abs ( (E5_MEA( : , 1 ) -E5_MEA( : , 2 ) ) /E5_MEA( : , 1 ) ) ) ∗100
266 AARD_E5_6 = mean( abs ( (E5_MEA( : , 1 ) -E5_MEA( : , 3 ) ) /E5_MEA( : , 1 ) ) ) ∗100
267

268 AARD_E6_3 = mean( abs ( (E6_MEA( : , 1 ) -E6_MEA( : , 2 ) ) /E6_MEA( : , 1 ) ) ) ∗100
269 AARD_E6_6 = mean( abs ( (E6_MEA( : , 1 ) -E6_MEA( : , 3 ) ) /E6_MEA( : , 1 ) ) ) ∗100
270

271 AARD_E7_3 = mean( abs ( (E7_MEA( : , 1 ) -E7_MEA( : , 2 ) ) /E7_MEA( : , 1 ) ) ) ∗100
272 AARD_E7_6 = mean( abs ( (E7_MEA( : , 1 ) -E7_MEA( : , 3 ) ) /E7_MEA( : , 1 ) ) ) ∗100
273

274 AARD_E8_3 = mean( abs ( (E8_MEA( : , 1 ) -E8_MEA( : , 2 ) ) /E8_MEA( : , 1 ) ) ) ∗100
275 AARD_E8_6 = mean( abs ( (E8_MEA( : , 1 ) -E8_MEA( : , 3 ) ) /E8_MEA( : , 1 ) ) ) ∗100
276

277 AARD_E9_3 = mean( abs ( (E9_MEA( : , 1 ) -E9_MEA( : , 2 ) ) /E9_MEA( : , 1 ) ) ) ∗100
278 AARD_E9_6 = mean( abs ( (E9_MEA( : , 1 ) -E9_MEA( : , 3 ) ) /E9_MEA( : , 1 ) ) ) ∗100
279

280 AARD_F1_3 = mean( abs ( (F1_MEA( : , 1 ) -F1_MEA( : , 2 ) ) /F1_MEA( : , 1 ) ) ) ∗100
281 AARD_F1_6 = mean( abs ( (F1_MEA( : , 1 ) -F1_MEA( : , 3 ) ) /F1_MEA( : , 1 ) ) ) ∗100
282

283 AARD_F2_3 = mean( abs ( (F2_MEA( : , 1 ) -F2_MEA( : , 2 ) ) /F2_MEA( : , 1 ) ) ) ∗100
284 AARD_F2_6 = mean( abs ( (F2_MEA( : , 1 ) -F2_MEA( : , 3 ) ) /F2_MEA( : , 1 ) ) ) ∗100
285

286 AARD_F3_3 = mean( abs ( (F3_MEA( : , 1 ) -F3_MEA( : , 2 ) ) /F3_MEA( : , 1 ) ) ) ∗100
287 AARD_F3_6 = mean( abs ( (F3_MEA( : , 1 ) -F3_MEA( : , 3 ) ) /F3_MEA( : , 1 ) ) ) ∗100
288

289 AARD_F4_3 = mean( abs ( (F4_MEA( : , 1 ) -F4_MEA( : , 2 ) ) /F4_MEA( : , 1 ) ) ) ∗100
290 AARD_F4_6 = mean( abs ( (F4_MEA( : , 1 ) -F4_MEA( : , 3 ) ) /F4_MEA( : , 1 ) ) ) ∗100
291

292 AARD_F5_3 = mean( abs ( (F5_MEA( : , 1 ) -F5_MEA( : , 2 ) ) /F5_MEA( : , 1 ) ) ) ∗100
293 AARD_F5_6 = mean( abs ( (F5_MEA( : , 1 ) -F5_MEA( : , 3 ) ) /F5_MEA( : , 1 ) ) ) ∗100
294

295 AARD_F6_3 = mean( abs ( (F6_MEA( : , 1 ) -F6_MEA( : , 2 ) ) /F6_MEA( : , 1 ) ) ) ∗100
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296 AARD_F6_6 = mean( abs ( (F6_MEA( : , 1 ) -F6_MEA( : , 3 ) ) /F6_MEA( : , 1 ) ) ) ∗100
297

298 AARD_F7_3 = mean( abs ( (F7_MEA( : , 1 ) -F7_MEA( : , 2 ) ) /F7_MEA( : , 1 ) ) ) ∗100
299 AARD_F7_6 = mean( abs ( (F7_MEA( : , 1 ) -F7_MEA( : , 3 ) ) /F7_MEA( : , 1 ) ) ) ∗100
300

301 AARD_F8_3 = mean( abs ( (F8_MEA( : , 1 ) -F8_MEA( : , 2 ) ) /F8_MEA( : , 1 ) ) ) ∗100
302 AARD_F8_6 = mean( abs ( (F8_MEA( : , 1 ) -F8_MEA( : , 3 ) ) /F8_MEA( : , 1 ) ) ) ∗100
303

304 AARD_F9_3 = mean( abs ( (F9_MEA( : , 1 ) -F9_MEA( : , 2 ) ) /F9_MEA( : , 1 ) ) ) ∗100
305 AARD_F9_6 = mean( abs ( (F9_MEA( : , 1 ) -F9_MEA( : , 3 ) ) /F9_MEA( : , 1 ) ) ) ∗100
306

307

308 a = f i g u r e ( ) ;
309

310 hold on
311 p lo t (TE1, E1_MEA( : , 1 ) , ' ∗ ' ) ;
312 p lo t (TE1, E1_MEA( : , 2 ) , ' - ' ) ;
313 p lo t (TE1, E1_MEA( : , 3 ) , ' - ' ) ;
314 x l ab e l ( 'Time [ days ] ' ) ;
315 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
316 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
317 t i t l e ( 'E1 , 120 \ circC , CO_2- load ing 0 . 2 , MEA' ) ;
318 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
319

320 b = f i g u r e ( ) ;
321

322 hold on
323 p lo t (TE2, E2_MEA( : , 1 ) , ' ∗ ' ) ;
324 p lo t (TE2, E2_MEA( : , 2 ) , ' - ' ) ;
325 p lo t (TE2, E2_MEA( : , 3 ) , ' - ' ) ;
326 x l ab e l ( 'Time [ days ] ' ) ;
327 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
328 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
329 t i t l e ( 'E2 , 120 \ circC , CO_2- load ing 0 . 4 , MEA' ) ;
330 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
331

332 c = f i g u r e ( ) ;
333

334 hold on
335 p lo t (TE3, E3_MEA( : , 1 ) , ' ∗ ' ) ;
336 p lo t (TE3, E3_MEA( : , 2 ) , ' - ' ) ;
337 p lo t (TE3, E3_MEA( : , 3 ) , ' - ' ) ;
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338 x l ab e l ( 'Time [ days ] ' ) ;
339 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
340 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
341 t i t l e ( 'E3 , 120 \ circC , CO_2- load ing 0 . 5 , MEA' ) ;
342 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
343

344 d = f i g u r e ( ) ;
345

346 hold on
347 p lo t (TE4, E4_MEA( : , 1 ) , ' ∗ ' ) ;
348 p lo t (TE4, E4_MEA( : , 2 ) , ' - ' ) ;
349 p lo t (TE4, E4_MEA( : , 3 ) , ' - ' ) ;
350 x l ab e l ( 'Time [ days ] ' ) ;
351 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
352 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
353 t i t l e ( 'E4 , 120 \ circC , CO_2- load ing 0 . 2 , MEA' ) ;
354 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
355

356 e = f i g u r e ( ) ;
357

358 hold on
359 p lo t (TE5, E5_MEA( : , 1 ) , ' ∗ ' ) ;
360 p lo t (TE5, E5_MEA( : , 2 ) , ' - ' ) ;
361 p lo t (TE5, E5_MEA( : , 3 ) , ' - ' ) ;
362 x l ab e l ( 'Time [ days ] ' ) ;
363 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
364 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
365 t i t l e ( 'E5 , 120 \ circC , CO_2- load ing 0 . 4 , MEA' ) ;
366 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
367

368 f = f i g u r e ( ) ;
369

370 hold on
371 p lo t (TE6, E6_MEA( : , 1 ) , ' ∗ ' ) ;
372 p lo t (TE6, E6_MEA( : , 2 ) , ' - ' ) ;
373 p lo t (TE6, E6_MEA( : , 3 ) , ' - ' ) ;
374 x l ab e l ( 'Time [ days ] ' ) ;
375 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
376 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
377 t i t l e ( 'E6 , 120 \ circC , CO_2- load ing 0 . 5 , MEA' ) ;
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378 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
379

380 g = f i g u r e ( ) ;
381

382 hold on
383 p lo t (TE7, E7_MEA( : , 1 ) , ' ∗ ' ) ;
384 p lo t (TE7, E7_MEA( : , 2 ) , ' - ' ) ;
385 p lo t (TE7, E7_MEA( : , 3 ) , ' - ' ) ;
386 x l ab e l ( 'Time [ days ] ' ) ;
387 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
388 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
389 t i t l e ( 'E7 , 120 \ circC , CO_2- load ing 0 . 2 , MEA' ) ;
390 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
391

392 h = f i g u r e ( ) ;
393

394 hold on
395 p lo t (TE8, E8_MEA( : , 1 ) , ' ∗ ' ) ;
396 p lo t (TE8, E8_MEA( : , 2 ) , ' - ' ) ;
397 p lo t (TE8, E8_MEA( : , 3 ) , ' - ' ) ;
398 x l ab e l ( 'Time [ days ] ' ) ;
399 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
400 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
401 t i t l e ( 'E8 , 120 \ circC , CO_2- load ing 0 . 4 , MEA' ) ;
402 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
403

404 i= f i g u r e ( ) ;
405

406 hold on
407 p lo t (TE9, E9_MEA( : , 1 ) , ' ∗ ' ) ;
408 p lo t (TE9, E9_MEA( : , 2 ) , ' - ' ) ;
409 p lo t (TE9, E9_MEA( : , 3 ) , ' - ' ) ;
410 x l ab e l ( 'Time [ days ] ' ) ;
411 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
412 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
413 t i t l e ( 'E9 , 120 \ circC , CO_2- load ing 0 . 5 , MEA' ) ;
414 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
415

416 j = f i g u r e ( ) ;
417

418 hold on
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419 p lo t (TF1 , F1_MEA( : , 1 ) , ' ∗ ' ) ;
420 p lo t (TF1 , F1_MEA( : , 2 ) , ' - ' ) ;
421 p lo t (TF1 , F1_MEA( : , 3 ) , ' - ' ) ;
422 x l ab e l ( 'Time [ days ] ' ) ;
423 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
424 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
425 t i t l e ( 'F1 , 135 \ circC , CO_2- load ing 0 . 2 , MEA' ) ;
426 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
427

428 k = f i g u r e ( ) ;
429

430 hold on
431 p lo t (TF2 , F2_MEA( : , 1 ) , ' ∗ ' ) ;
432 p lo t (TF2 , F2_MEA( : , 2 ) , ' - ' ) ;
433 p lo t (TF2 , F2_MEA( : , 3 ) , ' - ' ) ;
434 x l ab e l ( 'Time [ days ] ' ) ;
435 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
436 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
437 t i t l e ( 'F2 , 135 \ circC , CO_2- load ing 0 . 4 , MEA' ) ;
438 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
439

440 l = f i g u r e ( ) ;
441

442 hold on
443 p lo t (TF3 , F3_MEA( : , 1 ) , ' ∗ ' ) ;
444 p lo t (TF3 , F3_MEA( : , 2 ) , ' - ' ) ;
445 p lo t (TF3 , F3_MEA( : , 3 ) , ' - ' ) ;
446 x l ab e l ( 'Time [ days ] ' ) ;
447 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
448 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
449 t i t l e ( 'F3 , 135 \ circC , CO_2- load ing 0 . 5 , MEA' ) ;
450 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
451

452

453 m = f i g u r e ( ) ;
454

455 hold on
456 p lo t (TF4 , F4_MEA( : , 1 ) , ' ∗ ' ) ;
457 p lo t (TF4 , F4_MEA( : , 2 ) , ' - ' ) ;
458 p lo t (TF4 , F4_MEA( : , 3 ) , ' - ' ) ;
459 x l ab e l ( 'Time [ days ] ' ) ;
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460 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
461 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
462 t i t l e ( 'F4 , 135 \ circC , CO_2- load ing 0 . 2 , MEA' ) ;
463 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
464

465

466 n = f i g u r e ( ) ;
467

468 hold on
469 p lo t (TF5 , F5_MEA( : , 1 ) , ' ∗ ' ) ;
470 p lo t (TF5 , F5_MEA( : , 2 ) , ' - ' ) ;
471 p lo t (TF5 , F5_MEA( : , 3 ) , ' - ' ) ;
472 x l ab e l ( 'Time [ days ] ' ) ;
473 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
474 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
475 t i t l e ( 'F5 , 135 \ circC , CO_2- load ing 0 . 4 , MEA' ) ;
476 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
477

478

479 o = f i g u r e ( ) ;
480

481 hold on
482 p lo t (TF6 , F6_MEA( : , 1 ) , ' ∗ ' ) ;
483 p lo t (TF6 , F6_MEA( : , 2 ) , ' - ' ) ;
484 p lo t (TF6 , F6_MEA( : , 3 ) , ' - ' ) ;
485 x l ab e l ( 'Time [ days ] ' ) ;
486 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
487 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
488 t i t l e ( 'F6 , 135 \ circC , CO_2- load ing 0 . 5 , MEA' ) ;
489 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
490

491

492 p = f i g u r e ( ) ;
493

494 hold on
495 p lo t (TF7 , F7_MEA( : , 1 ) , ' ∗ ' ) ;
496 p lo t (TF7 , F7_MEA( : , 2 ) , ' - ' ) ;
497 p lo t (TF7 , F7_MEA( : , 3 ) , ' - ' ) ;
498 x l ab e l ( 'Time [ days ] ' ) ;
499 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
500 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6
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i nputs } ' , ' Locat ion ' , ' southwest ' ) ;
501 t i t l e ( 'F7 , 135 \ circC , CO_2- load ing 0 . 2 , MEA' ) ;
502 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
503

504 q = f i g u r e ( ) ;
505

506 hold on
507 p lo t (TF8 , F8_MEA( : , 1 ) , ' ∗ ' ) ;
508 p lo t (TF8 , F8_MEA( : , 2 ) , ' - ' ) ;
509 p lo t (TF8 , F8_MEA( : , 3 ) , ' - ' ) ;
510 x l ab e l ( 'Time [ days ] ' ) ;
511 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
512 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
513 t i t l e ( 'F8 , 135 \ circC , CO_2- load ing 0 . 4 , MEA' ) ;
514 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
515

516 r = f i g u r e ( ) ;
517

518 hold on
519 p lo t (TF9 , F9_MEA( : , 1 ) , ' ∗ ' ) ;
520 p lo t (TF9 , F9_MEA( : , 2 ) , ' - ' ) ;
521 p lo t (TF9 , F9_MEA( : , 3 ) , ' - ' ) ;
522 x l ab e l ( 'Time [ days ] ' ) ;
523 y l ab e l ( 'C_{MEA} [ kmol/m^3] ' ) ;
524 l egend ( 'C_{MEA, exp} ' , 'C_{MEA, mod, 3 inputs } ' , 'C_{MEA, mod, 6

inputs } ' , ' Locat ion ' , ' southwest ' ) ;
525 t i t l e ( 'F9 , 135 \ circC , CO_2- load ing 0 . 5 , MEA' ) ;
526 s e t ( f i n d a l l ( gcf , ' - property ' , ' FontSize ' ) , ' FontSize ' , 18) ;
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