
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Aksel Hauge Slettemark

A Plan 9 port to RISC-V

Master’s thesis in Computer Science
Supervisor: Michael Engel

June 2021

M
as

te
r’s

 th
es

is

Aksel Hauge Slettemark

A Plan 9 port to RISC-V

Master’s thesis in Computer Science
Supervisor: Michael Engel
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

The Plan 9 operating system has been ported to many instruction set architec-
tures (ISAs) since its introduction in the 1980s. The RISC-V family of ISAs is an
emerging open standard suitable for a wide range of computing systems. To test
the claims of Plan 9s portability, a port of Plan 9 to supervisor-mode on 32-bit
RISC-V is implemented. The port has no device drivers, but implements most of
the necessary RISC-V specific functionality. The claims of Plan 9s portability are
judged as being valid, as the port did not necessitate any changes to the portable
parts of the Plan 9 source code. Furthermore, RISC-V is found to be suitable as a
target for a Plan 9 port. RISC-Vs privilege model provides convenient mechanisms
for privilege level separation and abstraction of higher privilege levels.

ii

Sammendrag

Operativsystemet Plan 9 har blitt tilpasset til å kjøre på mange instruks-
jonssettarkitekturer (ISAer) siden det ble introdusert på 1980-tallet. ISA-familien
RISC-V er en stadig mer populær åpen standard egnet for et bredt spektrum av
datasystemer. For å teste påstander om Plan 9s tilpasningsevne til nye instruks-
jonssettarkitekturer implementeres en tilpasning av Plan 9 for supervisor mode på
32-bit RISC-V. Implementasjonen har ingen utstyrsdrivere, men implementerer
mesteparten av den nødvendige RISC-V-spesifikke funksjonaliteten. Påstandene
om Plan 9s tilpasningsevne viser seg å være gyldige, ettersom tilpasningen
ikke nødvendiggjorde noen endringer i den arkitekturuavhengige delen av
Plan 9s kildekode. RISC-V viser seg å være en egnet ISA for Plan 9. RISC-Vs
privilegiemodell gir praktiske mekanismer for separasjon av privilegiumsnivå og
abstraksjon av de høyere privilegiumsnivåene.

iii

Preface

This project is the continuation of a specialization project. Because the special-
ization project report [1] is not generally available, and because this project is a
direct continuation, some chapters are re-stated with varying degrees of modifica-
tions. This is considered standard practice when basing the master’s thesis on the
specialization project at NTNU. The adapted chapters are listed below.

• Chapter 1 – Introduction The first two paragraphs are adapted with modi-
fications.
• Section 2.2.2 – Compiling on and for Plan 9 The first two paragraphs are

adapted with modifications.
• Sections 4.1 to 4.4 The underlying work described in these sections was

first performed during the specialization project, but has since seen modi-
fications.
• Section 4.2 – Kernel source setup This section is adapted with modifica-

tions.
• Section 4.4 – Calling SBI functions This section is adapted with modifica-

tions.

iv

Acknowledgements

I would like to thank my supervisor Michael Engel for his invaluable support,
advice, and genuine interest in the outcome of this project.

v

Contents

Abstract . ii
Sammendrag . iii
Preface . iv
Acknowledgements . v
Contents . vi
Figures . viii
Tables . ix
Code Listings . x
Acronyms . xi
1 Introduction . 1
2 Technologies . 3

2.1 RISC-V . 3
2.1.1 Privilege modes . 3
2.1.2 Supervisor binary interface . 3
2.1.3 Control and Status Registers . 4
2.1.4 The Sv32 virtual memory scheme 4

2.2 Plan 9 . 6
2.2.1 Plan 9 C . 6
2.2.2 Compiling on and for Plan 9 . 6
2.2.3 Portability . 7

3 Previous work . 9
3.1 Toolchain by Richard Miller . 9

3.1.1 Noteworthy non-standard behaviour 9
3.2 Other contributions by Richard Miller 11

4 Implementation . 12
4.1 OpenSBI . 12
4.2 Kernel source setup . 13
4.3 Entering C . 14
4.4 Calling SBI functions . 14
4.5 Plan 9 initialization . 15
4.6 MMU . 15

4.6.1 Initializing virtual memory . 18
4.6.2 Mapping pages . 18
4.6.3 Flushing the MMU and switching between processes 20

vi

Contents vii

4.7 Trap handling . 21
4.7.1 Initialization . 21
4.7.2 Low-level trap handler . 22
4.7.3 Page faults . 25
4.7.4 System calls . 26

4.8 Crafting the first process . 28
4.8.1 Jumping to user mode . 29
4.8.2 The first user program . 29
4.8.3 The boot program . 30

5 Results . 31
5.1 Virtual memory . 31
5.2 Processes and system calls . 32
5.3 Toolchain usage . 32

6 Conclusion and future work . 33
6.1 Future work . 33

Bibliography . 35
A Replicating the development environment 37

A.1 Running 9vx . 37
A.2 Getting the Miller toolchain and RISC-V kernel source 37
A.3 Compiling OpenSBI . 38
A.4 Running with QEMU . 38

B System call trace for the first process . 40

Figures

2.1 Sv32 virtual address. 4
2.2 Sv32 page table entry. 5
2.3 Sv32 physical address. 5
2.4 The satp control and status register (CSR) on RV32. 6

4.1 The emulated "physical" memory layout. 13
4.2 The virtual memory layout. 17
4.3 The stvec control and status register (CSR) for RV32. 22

viii

Tables

2.1 Full name and function of Sv32 PTE flags. 5
2.2 Line numbers of shared source files for C compilers. 7

3.1 Register mnemonics in the standard ABI [8] compared to Plan 9
toolchain by Miller [12]. 10

ix

Code Listings

4.1 Entering C. 14
4.2 Using the ECALL instruction to interact with SBI. 14
4.3 Printing to console. 15
4.4 The mmuinit function. 18
4.5 The putmmu and map_single_page functions. 19
4.6 The flushmmu function. 20
4.7 The assembly trap handler. 23
4.8 The c_trap function. 24
4.9 The faultriscv function. 26
4.10 The syscall function. 26
4.11 The execregs function. 27
4.12 The userinit function. 28
4.13 The touser function. 29
4.14 Jumping to startboot in the first user-space program. 30
4.15 The startboot function in the first user-space program. 30

A.1 Git command to generate patch file. 38
A.2 QEMU command for running kernel with OpenSBI firmware. 39

B.1 Trace of all performed system calls. 40

x

Acronyms

ABI application binary interface. ix, 3, 4, 10, 14, 38

AEE application execution environment. 3, 4

CSR control and status register. viii, 3–6, 15, 18, 21–25, 29

EID SBI extension ID. 4

FID SBI function ID. 4

hart RISC-V hardware thread. 3, 12, 21, 22

ISA instruction set architecture. ii, 1, 3, 6, 8, 10, 30, 31, 34

M-mode machine-mode. 3, 12

MMIO Memory-mapped I/O. 13

MMU memory management unit. 7, 8, 18, 20, 21, 25

PC program counter. 4, 8, 11, 14, 22, 23, 26–29

PTE page table entry. viii, ix, 5, 18, 19, 31

RISC reduced instruction set computer. 1

RV32 RISC-V 32-bit. viii, 2–4, 6, 9, 22

RV32GC RISC-V 32-bit with extensions G and C. 9, 12

RV64 RISC-V 64-bit. 2, 9

RV64GC RISC-V 64-bit with extensions G and C. 9

S-mode supervisor-mode. ii, 2–5, 12, 15, 22, 23, 28, 33

SB static base. 10, 11, 14, 22

xi

Code Listings xii

SBI supervisor binary interface. xi, 3, 4, 12, 15, 33

SEE supervisor execution environment. 3, 4, 12

SP stack pointer. 10, 14, 22, 27–29

TLB translation lookaside buffer. 21

U-mode user-mode. 3–5, 12, 15, 22, 26, 28, 29

Chapter 1

Introduction

Plan 9 from Bell Labs [2] is an operating system developed by the Computing
Science Research Center at Bell Labs. Started in the late 1980s, Plan 9 replaced
Unix (also of Bell Labs) as Bell Labs’ primary research operating system. Unix is
important in the history of portability. Being the first operating system implemen-
ted in the C programming language (also of Bell Labs), the first Unix port [3] was
a major milestone in operating system development.

Plan 9 is a distributed operating system, using the 9P protocol [2] to access files
locally and across machines. Files represent much more than just storage, and
9P is at the core of Plan 9s distributed nature. As 9P is agnostic to the instruc-
tion set architecture (ISA) of the other end of the communication, and because
Plan 9 comes with a suite of cross compilers for various architectures, a distrib-
uted system can be heterogeneous with respect to the instruction set. An oper-
ating system kernel naturally contains a lot of architecture-dependent code. Plan
9 separates the architecture-independent (portable) and architecture-dependent
code. The portable code requires a number of functions whose implementation is
architecture-dependent to be implemented.

RISC-V [4, 5] is an emerging family of ISAs originating at the University of Califor-
nia, Berkeley. As its name suggests, it is based on reduced instruction set computer
(RISC) principles, and its specification is published under a Creative Commons li-
cense. The use of the ISA is unrestricted, and companies implementing their own
designs, hardware or otherwise, are not subject to licensing fees. It is a modular
standard intended to be suitable for teaching, embedded systems, personal com-
puters, data centers, virtualization, and everything between.

This report aims to validate the claims the authors of Plan 9 make about its port-
ability, exploring the suitability of RISC-V as a target for Plan 9 along the way. At
the time of writing, it has been 30 years since Presotto et al. [6] presented Plan 9
as a "general-purpose, multi-user, portable distributed system implemented on a
variety of computers and networks". Since then, it has been ported to several new

1

Chapter 1: Introduction 2

architectures, such as PowerPC. RISC-V is considerably newer than PowerPC and
is, much like Plan 9, an exercise in simplicity. If a RISC-V port of Plan 9 is possible
without modifying the portable parts of the Plan 9 kernel, this is an affirmation of
the claims of the Plan 9 authors, as well as a demonstration of the suitability of
RISC-V for such purposes.

To test the portability of Plan 9 and the suitability of RISC-V as a target for a Plan
9 port, a port of Plan 9 running in supervisor-mode (S-mode) on a single-core
32-bit RISC-V implementation is implemented. This is thought to be the simplest
case, but is sufficient to demonstrate the capabilities of portable Plan 9 code and
RISC-V. Even though RV32 is not a strict subset of RV64 [4], we see no reason
RV64 should be less capable of running Plan 9.

Chapter 2

Technologies

2.1 RISC-V

This chapter gives an introduction to the RISC-V instruction set architecture (ISA)
and the aspects of it which are most relevant to the Plan 9 port. 32-bit RISC-V is
used for the implementation, so this chapter is written with that in mind, although
most of the information is equally valid for 64-bit RISC-V. In particular, the width
of control and status registers (CSRs) and the available virtual memory schemes
are different. The Sv32 virtual memory scheme described in Section 2.1.4 is only
available for RV32.

2.1.1 Privilege modes

The RISC-V instruction set manual [5] defines several privilege levels called modes
a RISC-V hardware thread (hart) can operate in. The most privileged mode is
machine-mode (M-mode), and it is the only mandatory mode in a hardware RISC-
V implementation. To isolate user processes from each other and prevent priv-
ileged operations, an implementation can add the user-mode (U-mode), which is
the least privileged mode. Supervisor-mode (S-mode) is an optional mode with a
privilege level between M-mode and U-mode. On an implementation with all three
modes a Unix-like operating system would typically run in S-mode [5], supported
by firmware running in M-mode providing a supervisor execution environment
(SEE) [7]. The interface between S-mode and M-mode is called supervisor bin-
ary interface (SBI), and is described in Section 2.1.2. Similarly, the OS running
in S-mode provides an application execution environment (AEE) to the user code
running in U-mode. The application binary interface (ABI), which is OS-specific,
defines a set of system calls to interact with the AEE/S-mode operating system.

2.1.2 Supervisor binary interface

The purpose of the supervisor binary interface (SBI) is to make S-mode software
portable across different RISC-V implementations such as different hardware plat-

3

Chapter 2: Technologies 4

forms and hypervisors, by abstracting away the platform-specific details [7]. SBI,
much like RISC-V itself, is a modular standard. The modularity comes in the form
of SBI extension IDs (EIDs). An EID, optionally in combination with a SBI func-
tion ID (FID), identifies a specific SBI function that can be invoked. Calling into
SBI is quite similar to calling a regular function, and generally follows the same
calling convention as the standard ABI [8] in terms of register usage. Instead of
jumping to a different program code location, the ECALL instruction is used, trap-
ping and transferring control to the supporting supervisor execution environment
(SEE). The ECALL instruction is used to perform environment calls from all priv-
ilege modes to a higher mode [4, 5]. In the case of S-mode software and SBI that
environment is the SEE, but the instruction is also used for environment calls from
U-mode to the application execution environment (AEE), enabling system calls.

2.1.3 Control and Status Registers

The RISC-V specification [5] defines a number of control and status registers
(CSRs). These registers are identified by a 12-bit address separate from the normal
address space and are accessed using special instructions. Each CSR is associated
with a specific privilege level, but software running at a higher privilege level or
the hardware can access it regardless. The associated privilege level is prefixed to
the CSR name, like mstatus, sstatus, and ustatus. Some CSRs are read-only and
used to read the current state, for instance the mcycle CSR, which is the machine
cycle counter register. Other CSRs can be written to and are used to handle things
such as enabling/disabling interrupts, setting the interrupt handler address, etc.
The RISC-V implementation provides details about exceptions and interrupts to
the trap handler by setting certain CSRs such as sepc, scause, and stval for the S-
mode trap handler. In this case, sepc is used both for communicating the program
counter at the time of the trap to the trap handler and in reverse by letting the
trap handler use it to specify the address at which execution should be resumed.

2.1.4 The Sv32 virtual memory scheme

The RISC-V standard defines several virtual memory schemes [5]. Of them, only
the Sv32 scheme is supported by RV32. Sv32 is based on a two-level page table.
Level 1 is the top level, and level 0 is the last. Virtual addresses are divided into a
10-bit VPN[1] that is used as an index in the top-level table, a 10-bit VPN[0] that
is used as an index in the last level table, and a 12-bit page offset that is the same
in the virtual address and the physical address. This can be seen in Figure 2.1.

01112212231

VPN[1] VPN[0] page offset

Figure 2.1: Sv32 virtual address. Adapted from Waterman and Asanović [5].

Normal pages are 212B = 4KiB large, but megapages can be mapped at the top

Chapter 2: Technologies 5

level and are 4 MiB large [5]. Each page table entry (PTE) is 4 bytes, and each
page table contains 1024 entries, making the page table page-sized. The table
must also be page-aligned, meaning the lower 12 bits of the memory address of
the start of the table must be all 0. The structure of a PTE can be seen in Figure 2.2.
Bits 9 and 8 (RSW) are reserved for use by S-mode software. The full name and
function of each flag is displayed in Table 2.1. PPN[i] denotes a part of a physical
address, and the relation between a physical address and its PPNs can be seen in
Figure 2.3. Sv32 supports 34-bit physical addresses, as can be seen from the bit
width of Figure 2.3. A valid PTE in the top-level table, using its PPNs, either points
to a mapped megapage, or the start of the last level page table. A valid PTE in the
last level page table points to the start of a mapped 4 KiB page.

012345678910192031

PPN[1] PPN[0] RSW D A G U X W R V

Figure 2.2: Sv32 page table entry. Adapted from Waterman and Asanović [5].

01112212233

PPN[1] PPN[0] page offset

Figure 2.3: Sv32 physical address. Adapted from Waterman and Asanović [5].

Table 2.1: Full name and function of Sv32 PTE flags.

Flag Name Function

D Dirty The page has been written to since flag was last cleared
A Accessed The page has been read since flag was last cleared
G Global The page mapping is valid in all address spaces
U User The page is accessible to U-mode
X Execute The page is executable
W Write The page is writable
R Read The page is readable
V Valid The PTE is valid

To enable virtual memory the satp CSR is written with a 1 in the MODE field and
the PPNs of the top-level page table in the lower bits [5]. The bit layout can be
seen in Figure 2.4. Bit 31 is the MODE field. ASID is an address space identifier,
but its mechanism will not be used in this thesis.

Chapter 2: Technologies 6

091021223031

M ASID PPN[1] PPN[0]

Figure 2.4: The satp control and status register (CSR) on RV32. Adapted from
Waterman and Asanović [5].

2.2 Plan 9

A brief introduction to Plan 9 was given in Chapter 1. This section will focus on
the technological aspects of Plan 9 that are relevant for a port to RISC-V.

2.2.1 Plan 9 C

Plan 9 is written in its own version of the C language. The details are thoroughly
explained by Thompson [9]. The two most consequential for our purposes are that
the preprocessor directive #if is not supported, and the concept of unnamed sub-
structures. Unnamed substructures allow struct members without names, mean-
ing only the type is provided. An example that is ubiquitous throughout the Plan 9
kernel is including unnamed Lock structs in various other structs. The outer struct
may then be passed to functions expecting a Lock argument, and the compiler will
automatically pass the inner unnamed Lock. Named members of the inner struct
can be accessed directly as if they were a member of the outer struct.

2.2.2 Compiling on and for Plan 9

Each instruction set architecture supported by Plan 9 has its own toolchain with
an assembler, a C compiler, and a linker. The linker is often referred to as a loader
in various Plan 9 literature, but this is a misnomer when considering the modern
use of the term. All toolchains in Plan 9 are cross-architecture and are identified
by a single number or letter. For instance, the toolchain for i386 is identified by
the number 8, and so the assembler program is called 8a, the compiler is called
8c, and the linker is called 8l. As all the toolchains are cross-architecture, the 8
toolchain runs on all architectures supported by Plan 9 itself, not just i386.
Even though three standalone programs are created for every architecture, a lot of
architecture-independent code is shared between the different toolchains. For the
compilers, it amounts to a little over 12000 lines of shared source files, as seen in
Table 2.2. For the ARM compiler, 5c, the number of lines in architecture-specific
source files is just under 7500. The assemblers and linkers rely less on sharing
code. Instead, code is duplicated and modified when a new toolchain is written.
All the assemblers and the shared C compiler code use a version of Yacc [10] to
parse their respective input languages.
All three components of the toolchains are unique in some way. The compilers
accept a custom version of the C programming language, as described in Sec-
tion 2.2.1. The assemblers use a custom syntax that generally looks quite differ-

Chapter 2: Technologies 7

Table 2.2: Line numbers of shared source files for C compilers in sys/src/cm-
d/cc/*.(h|c|y). Copied from Slettemark [1].

File Lines

acid.c 303
bits.c 89
com64.c 619
com.c 1462
compat.c 47
dcl.c 1636
dpchk.c 494
funct.c 400
lex.c 1561
mac.c 3
omachcap.c 8
pgen.c 591
pickle.c 268
pswt.c 199
scon.c 606
sub.c 2032
cc.h 782
cc.y 1183
total 12283

ent from what is used with mainstream toolchains such as the GNU Compiler
Collection. Instead, the assembly syntaxes for the different architectures on Plan
9 are quite similar to each other. The Plan 9 assembler manual [11] describes
the syntax and important architecture-dependent differences between the assem-
blers. Both the compilers and assemblers output a binary encoded representation
of assembly-like instructions and leave the selection of concrete instructions up to
the linker. The toolchain components are typically not invoked manually. Instead,
they are driven by mk and mkfiles, which provide similar functionality to Make
and Makefiles.

2.2.3 Portability

The Plan 9 kernel code is located in sys/src/9/. Each architecture-specific kernel
has its own directory, for instance pc for i386, ppc for PowerPC and so on. The
portable code shared between the kernels is located in the port directory. Port con-
tains portable code for process management, scheduling, memory management
(except MMU calls), communication protocols, and mostly complete implement-
ations of all system calls, and more [6]. Some system calls rely on architecture-
specific functions, particularly those that deal with spawning/forking processes

Chapter 2: Technologies 8

and manipulating program stacks.

Toolchain

Plan 9, with its custom C dialect and custom executable header format, requires a
custom toolchain for every new instruction set architecture. Porting the toolchain
is a substantial task. Luckily, a Plan 9 toolchain for RISC-V is already released by
Miller [12]. The Miller toolchain for RISC-V will be presented in Section 3.1.

Virtual memory

Virtual memory is a requirement for running Plan 9. The portable code in the
kernel is naturally not able to manipulate architecture-specific page tables. The
portfns.h header defines several MMU-related functions that must be implemen-
ted. These are putmmu, flushmmu, mmurelease, and mmuswitch.

Trap handling

Trap-setup and -handling is not portable. Saving and restoring registers requires
architecture-specific assembly code. Setting up a stack and static base, jumping to
C code, and returning from trap handling are all highly non-portable procedures.
Different architectures also have very different mechanisms for communicating
the trap cause. The non-portable trap handlers rely heavily on portable code to
do the heavy lifting regarding system calls, scheduling, keeping track of process
memory, and more.

Various low-level functions

Some low-level functions like atomic test-and-set (tas), functions that read or
modify the PC such as setlabel and gotolabel, and functions for reading ma-
chine state such as clock cycle counters are not portable and must in most cases
be written in assembly. Setting up clock interrupts, and the trap handling itself is
not portable, but the actual scheduling algorithm is.

Chapter 3

Previous work

This chapter describes the previous work done specifically towards a RISC-V port
of Plan 9. RISC-V ports of other operating systems are not described. All the work
covered is done by Richard Miller, who is also considered the first person to port
Unix [3], a major milestone in the history of portable operating systems.

3.1 Toolchain by Richard Miller

Miller [12] presents a RISC-V toolchain for Plan 9 that supports RISC-V 32-bit
with extensions G and C (RV32GC) and RISC-V 64-bit with extensions G and C
(RV64GC). The release1 assigns the letter i to the RV32GC version and the let-
ter j to the RV64GC version, as is required by the naming scheme explained in
Section 2.2.2. The G extension is shorthand for extensions IMAFD, Z_icsr, and
Z_ifencei [4, Chapter 27]. These extensions are sufficient for our purposes. Miller
[12] refers to the RV32 architecture as riscv and to RV64 as riscv64.
On March third 2021, Miller uploaded an updated version of the toolchain con-
taining some architecture-specific library code for Plan 9, some updated docu-
mentation, and some minor changes to the C compiler and linker. The March
3rd version of the i toolchain for RV32GC consisting of the assembler ia, the C
compiler ic, and the linker il will be discussed in this chapter and used for the
implementation. Like the other Plan 9 toolchains, the selection of specific RISC-V
instructions is performed by the linker.

3.1.1 Noteworthy non-standard behaviour

Being a Plan 9 toolchain, it is both written in and made for compiling the Plan
9 version of C. By default, the object header format is the Plan 9 format. Other
aspects that may be considered non-standard or surprising are laid out in this
section.

1http://9p.io/sources/contrib/miller/riscv.tar

9

http://9p.io/sources/contrib/miller/riscv.tar

Chapter 3: Previous work 10

Assembler and registers

The assembler accepts a syntax that is very unlike what is seen in mainstream
toolchains such as GCC but rather more aligned with the other Plan 9 assemblers.
It uses neither the register names x0-x31 nor the register names used in the stand-
ard ABI [8]. Table 3.1 summarizes the difference in naming between the register
numbers, the standard ABI names, and the Plan 9 toolchain names.

Table 3.1: Register mnemonics in the standard ABI [8] compared to Plan 9 tool-
chain by Miller [12].

Register Standard ABI Name Plan 9 Name Plan 9 Function

x0 zero R0 Zero constant
x1 ra R1 Link Register
x2 sp R2 Stack pointer
x3 gp R3 Static base (SB)
x4 tp R4 Loader temporary
x5-7 t0-2 R5-7

x8 s0/fp R8
First function

argument/return value
x9 s1 R9

x10-17 a0-7 R10-17
x18-27 s2-11 R18-27
x28-31 t3-6 R28-31

The assembler does not directly expose the instructions in the RISC-V ISA. For
instance, when encountering MOVW, the linker will output a sw (store word) in-
struction if the source is a register and the target is a memory address, lw (load
word) in the opposite case, or yet another instruction if both the source and des-
tination are registers. If the source is a constant value, it will generate different
instructions depending on whether the constant fits in the 12 bits available for
immediate values. When using MOVW to store a word to main memory using a base
register and an offset that requires too many bits to represent, the linker will gen-
erate instructions to place the target address in R4. The fact that R4 is modified is
not visible in the assembly source file.

C compiler

The C compiler by Miller [12] does not follow the standard RISC-V calling con-
vention as laid out by the RISC-V ISA manual [4]. Instead, it uses a fairly simple
scheme where the first function argument is placed in R8, and any additional ar-
guments are on the stack. R8 is also used to pass the return value.

Chapter 3: Previous work 11

Static Base

The C compiler and assembler both reference global symbols relative to a special
value called the static base (SB). In the Miller toolchain, this value is always kept
in the R3 register. To load this value into the register the special pseudo-instruction
MOV $setSB(SB), R3 is used, which instructs the linker to generate instructions
to store or otherwise construct the SB value in R3.

3.2 Other contributions by Richard Miller

With his toolchain release, Miller [12] also included several other files and lib-
rary patches that are useful for compiling for RISC-V on Plan 9. Some parts of
libc must be implemented in assembly, and some parts are usually implemented
in assembly for performance reasons. The release includes every part of libc ne-
cessary to compile the Plan 9 user-space. This also includes a patch to 9syscall
that inserts architecture-specific code for performing system calls. In the case of
RISC-V, this means placing the arguments and issuing the ECALL instruction. The
headers u.h and ureg.h were also included for the riscv and riscv64 architec-
tures. u.h contains typedefs for various primitive types, such as u32int and macro
definitions for variadic functions (varargs). ureg.h contains the definition of the
Ureg struct, which is typically used for saving registers and execution state such
as the program counter on traps.
Miller [12] also includes patched versions of libmach and mkfile.proto, which
makes it possible for the host Plan 9 installation to recognize and conveniently
compile for the new architectures.

Chapter 4

Implementation

This project targets the QEMU [13] emulator. Specifically, version 5.0.0 of the
qemu-system-riscv32 emulator with the virt machine preset emulating a single
RISC-V hardware thread (hart). QEMU is configured with 256 MiB of RAM. The
Miller [12] toolchain described in Section 3.1 is used. The kernel is based on the
January 10th 2015 release of the fourth edition of Plan 9. While the kernel is
built in a Plan 9 environment, an operating system that supports QEMU is re-
quired to run the compiled kernel. The ported operating system exclusively runs
in S-mode, and U-mode for its processes. A completely unmodified, off-the-shelf
M-mode firmware provides the supervisor binary interface (SBI) and acts as the
supervisor execution environment (SEE).

The full implementation can be found in my GitHub repository1. The exact version
delivered with this document is tagged with the name thesis_state. Appendix A
is a step-by-step guide for replicating the development environment used, and
includes instructions to produce a patch containing the Miller [12] toolchain and
this kernel implementation.

4.1 OpenSBI

OpenSBI [14] is an open-source implementation of the RISC-V SBI [7]. It includes
support for QEMU and will serve as our M-mode firmware, and provide the su-
pervisor execution environment (SEE) for our kernel which will run exclusively
in S-mode. OpenSBI is cross-compiled with GCC for RV32GC with the ilp32 ABI
targeting the generic OpenSBI platform. QEMU starts in M-mode, executing the
fw_jump version of the OpenSBI firmware which jumps to the beginning of the
Plan 9 kernel in S-mode.
The kernel is placed at memory address 0x80400000. Memory between 0x80000000
(ram zero) and 0x80200000 is assumed to be reserved. This range is 2 MiB and
is a very conservative reservation. In reality, OpenSBI typically uses around 128

1https://github.com/aslettemark/plan9_riscv

12

https://github.com/aslettemark/plan9_riscv

Chapter 4: Implementation 13

KiB. Since we are not using a device tree with exact information and to err on
the side of caution, it is assumed that 2 MiB is reserved, just like the Linux ker-
nel assumes. Figure 4.1 summarizes the layout of the emulated physical memory.
The area between 0x80200000 and 0x80400000 is used as a manually managed
memory area for when compile-time known addresses are convenient, such as
when writing assembly code.

0xFFFF_FFFF

0x9000_0000
unused

0x8FFF_FFFF

0x8040_0000

Kernel code and managed
memory

0x803F_FFFF

0x8020_0000

Manually managed kernel
memory

0x801F_FFFF

0x8000_0000

Reserved for OpenSBI
firmware



















































































RAM

0x7FFF_FFFF

0x0000_0000
MMIO and unused

Figure 4.1: The emulated "physical" memory layout.

4.2 Kernel source setup

To get started, a new folder with a kernel configuration file and mkfile need to be
created in sys/src/9/. This implementation will be called qrv32, short for QEMU
RISC-V 32-bit. Some headers, fns.h, mem.h, and dat.h need to be filled with vari-
ous macros and definitions related to memory addresses. All hard-coded memory
addresses are defined in mem.h. Some structs need to be defined in dat.h, like
the Mach, Lock, Conf, and Proc structs. Each of these structs has some mandatory
fields that are used by other parts of the kernel, such as performance counters in
Mach, and some fields that may be needed in architecture-specific code. All the
non-portable functions the portable code expects must be implemented or writ-
ten as stubs to satisfy the linker. The kernel is then compiled and linked as an ELF
file with load address 0x80400000, which is the address the OpenSBI firmware is
programmed to jump to.

Chapter 4: Implementation 14

4.3 Entering C

The kernel entry point is the _start symbol defined in the assembly source file
l.s. To enter C code, we need to set the stack pointer (SP) register to support
the stack. We also need to set the special static base (SB) register as described in
Section 3.1.1. A 8 KiB memory region starting at address 0x80200000 is reserved
for the stack. Because the stack grows downwards, and the stack pointer points
to the next available memory location, the value is modified to point to the top of
the stack minus 4 B. The assembly code for jumping to the C function main(void)
is shown in Code listing 4.1.

Code listing 4.1: Entering C.

1 TEXT _start(SB), $-4
2 MOVW $setSB(SB), R3
3
4 MOVW $(KSTACK_LOW_END), R2
5 ADD $(KSTKSIZE), R2, R2
6 ADD $-4, R2
7
8 JAL R1, main(SB)
9 RET

4.4 Calling SBI functions

To be able to call SBI functions we must define a routine for using the ECALL in-
struction [4]. The interface for ECALL is defined in terms of the standard calling
convention, and requires arguments in registers a0, a1, and a2, and the SBI ex-
tension ID in register a7 [7]. As can be seen in Table 3.1 registers a0 to a2, and
a7 correspond to R10 through R12, and R17 in the Plan 9 toolchain by Miller [12].
It also uses R8 as the register for first argument and return value, contrary to the
standard RISC-V ABI [8] which uses different registers. The sbi_ecall procedure
translates between the two calling conventions, issues the ECALL instruction, and
moves the return value to R8. The code is shown in Code listing 4.2. The number
1 between the function name and $-4 means the function will not be profiled,
and is present for syscall-like functions as recommended by the Plan 9 assembler
manual [11]. The value $-4 is a special value that makes sure the linker does
not automatically reserve area on the stack or generate any PC save and restore
instructions [11].

Code listing 4.2: Using the ECALL instruction to interact with SBI.

1 TEXT sbi_ecall(SB), 1, $-4
2 MOVW R8, R10 // __a0
3 MOVW 4(FP), R11 // __a1
4 MOVW 8(FP), R12 // __a2
5 MOVW 12(FP), R17 // __num (a7)
6 ECALL
7 MOVW R10, R8 // a0 to ret. val
8 RET

Chapter 4: Implementation 15

To use the sbi_ecall routine for printing text we need to use SBI extension ID
0x01 (sbi_console_putchar) as defined in the SBI specification [7]. The C code
for printing null-terminated C strings to console is shown in Code listing 4.3.

Code listing 4.3: Printing to console.

1 #define SBI_CONSOLE_PUTCHAR 0x1
2 extern int opensbi_ecall(unsigned int a0,
3 unsigned int a1,
4 unsigned int a2,
5 unsigned int sbi_ext_id);
6
7 void console_print(char *str) {
8 while (*str) {
9 opensbi_ecall(*str, 0, 0, SBI_CONSOLE_PUTCHAR);

10 str++;
11 }
12 }

4.5 Plan 9 initialization

When starting Plan 9, various parts of the kernel must be initialized. We begin
by clearing the BSS and Mach struct with memset. The global variable m is set to
point to the Mach struct, and it is populated with data about the number of pro-
cessors. The global variable up which is a pointer to the Proc struct representing
the currently scheduled process is set to nil. up is widely used throughout both
the portable and non-portable parts of the kernel. A series of argument-less port-
able Plan 9 initialization functions are called to initialize Plan 9s internal data
structures related to page handling and allocation, such as xinit, initseg and
pageinit.

4.6 MMU

To give each process its own address space, we need to use virtual memory. Func-
tions for using the Sv32 virtual memory scheme as described in Section 2.1.4 will
be implemented. Sv32 supports 32-bit virtual addresses and 34-bit physical ad-
dresses. As the portable parts of the Plan 9 kernel source code represents physical
addresses using pointer-sized unsigned integers, there is no way to utilize the two
extra bits of address space without significant changes.
In addition to using Sv32, the implementation also sets the SUM bit in the sstatus
CSR to be able to access pages mapped for U-mode. This allows the operating
system to read memory like system call arguments from user programs, but still
prevents S-mode software from executing code from a U-mode-accessible page
[5].

The virtual memory layout is summarized in Figure 4.2. The addresses at the re-
gion borders are defined mem.h. The QEMU virt machine for RISC-V has memory

Chapter 4: Implementation 16

starting at address 0x80000000. All used addresses above this base are identity
mapped to form the kernel address space. User programs place all their segments
in the range 0x00000000 to 0x80000000. ESEG is a temporary stack used by the
sysexec function in the portable code to set up a new stack when a process uses
the exec system call.

Chapter 4: Implementation 17

0xFFFF_FFFF

0x9000_0000
unused

0x8FFF_FFFF

0x8040_0000

Kernel code and managed
memory

0x803F_FFFF

0x8020_0000

Manually managed kernel
memory

0x801F_FFFF

0x8000_0000

Reserved for OpenSBI
firmware











































































































Kernel address space

0x7FFF_FFFF

0x7F80_0000
User stack segment

0x7F7F_FFFF

0x7F00_0000
ESEG (temporary stack)

0x7E00_0000

Available memory

User BSS segment

User data segment

0x0000_1000
User text segment

0x0000_0FFF

0x0000_0000
First page (not mapped)











































































































































User address space

Figure 4.2: The virtual memory layout.

Chapter 4: Implementation 18

4.6.1 Initializing virtual memory

Initializing virtual memory is handled by the mmuinit function, which is called
from main when booting the kernel. The function is displayed in Code listing 4.4.
First, the top-level page table is cleared with all 0s. ROOT_PAGE_TABLE is a memory
address in the manually-managed region of kernel memory as described in Sec-
tion 4.1 and Figure 4.1. An identity mapping of all memory in the kernel segment
is performed with read, write, and execute flags set. Notice that the user flag
as described in Table 2.1 is not set, so it is safe to leave this mapping in place
even when executing user code. The map_single_page function will be described
in Section 4.6.2. A value for the satp CSR is then constructed to enable virtual
memory and register the top level page table address as described in Section 2.1.4.
write_satp and set_sstatus_sum_bit are tiny assembler functions that write to
their respective CSRs.

Code listing 4.4: The mmuinit function.

1 #define BY2PG (4 * 1024)
2 typedef u32int PTE;
3 PTE *toplevel_pagetable = UINT2PTR(ROOT_PAGE_TABLE);
4
5 void mmuinit() {
6 memset(toplevel_pagetable, 0, BY2PG);
7
8 for (u32 i = 0; i < MEMSIZE; i += BY2PG) {
9 map_single_page(

10 RAMZERO + i,
11 RAMZERO + i,
12 (PTEREAD | PTEWRITE | PTEEXECUTE),
13 toplevel_pagetable
14);
15 }
16
17 uintptr satp = (1 << 31) | (ROOT_PAGE_TABLE >> 12);
18 write_satp(satp);
19 set_sstatus_sum_bit();
20 }

4.6.2 Mapping pages

The portable part of the Plan 9 kernel (port) maps addresses in the MMU by
calling the putmmu function that is implemented once per architecture. Port keeps
track of which pages are mapped in each process, so it already knows the physical
address (pa) and virtual address (va) that should be mapped. Our implementation
is listed in Code listing 4.5. The interpret_fixfault_flags function called from
putmmu translates from the portable PTE flags that the portable code sets before
calling putmmu to the actual flags as defined in the RISC-V specification. Plan 9 uses
internal flags such as PTERONLY (read-only) that are not a direct match with a flag
in every architecture. When applied to Sv32, READONLY implies the absence of the
PTEWRITE flag, so some degree of interpretation of the internal flags is needed.

Chapter 4: Implementation 19

interpret_fixfault_flags also adds the PTEUMODE flag to make the mapping
available to user-space.
We begin in the map_single_page function in Code listing 4.5 by extracting the
VPNs and PPNs of the virtual and physical address to be mapped. Line 11 checks
if there is an entry in the top-level page table pointing to a level 0 (L0) page table
for this virtual address. If there is, we extract the physical address of the L0 table
based on the PTE on line 18. Recall that kernel space identity-maps the available
memory, meaning we can use this physical address even though we are currently
operating with virtual memory enabled. We index the L0 table and check if there
is already an entry with the valid bit set, as this would be an error. The PTE is
then constructed on line 22 using the PPNs and entered into the L0 table on the
following line. Going back to the case where there is no L0 table, we begin by
allocating a new zero-initialized page to back the L0 table on line 26. We then
construct and enter the entry for the L0 table as before. On line 35, a PTE for
linking the newly constructed L0 table to the top-level page table is constructed.
This implementation does not utilize the megapage mechanism.

Code listing 4.5: The putmmu and map_single_page functions.

1 #define PTE2PA(pte) (((pte) >> 10) << 12)
2
3 void map_single_page(u32 va, u32 pa, u32 flags, PTE *l1_table) {
4 u32 vpn1 = (va >> 22) & 0x3FF;
5 u32 vpn0 = (va >> 12) & 0x3FF;
6
7 u32 ppn1 = (pa >> 22) & 0x3FF;
8 u32 ppn0 = (pa >> 12) & 0x3FF;
9

10 PTE entry = l1_table[vpn1];
11 if (entry & PTEVALID) {
12 u32 mask = PTEEXECUTE | PTEWRITE | PTEREAD;
13 if (entry & mask) {
14 panic("Top␣level␣remap␣va␣=␣0x%p\n", va);
15 }
16
17 // Now we know entry is a pointer to next level
18 PTE *l0_table = UINT2PTR(PTE2PA(entry));
19 if (l0_table[vpn0] & PTEVALID) {
20 panic("L0␣remap␣va␣=␣0x%p\n", va);
21 }
22 PTE leaf_entry = (ppn1 << 20) | (ppn0 << 10) | flags | PTEVALID;
23 l0_table[vpn0] = leaf_entry;
24 } else {
25 // Create new l0 table and entry
26 Page *page = newpage(1, 0, 0);
27
28 // Fill the entry in the l0 table
29 PTE leaf_entry = (ppn1 << 20) | (ppn0 << 10) | flags | PTEVALID;
30 PTE *l0_table = UINT2PTR(page->pa);
31 l0_table[vpn0] = leaf_entry;
32
33 // Write the new page to root level table
34 u32 ppn_full = page->pa;
35 PTE l1_entry = (ppn_full >> 2) | PTEVALID;
36 l1_table[vpn1] = l1_entry;

Chapter 4: Implementation 20

37 }
38 }
39
40 void putmmu(uintptr va, uintptr pa, Page* page) {
41 u32 flags = pa & 0xFFF;
42 pa = page->pa;
43
44 u32 our_actual_flags = interpret_fixfault_flags(flags);
45
46 map_single_page(va, pa, our_actual_flags, toplevel_pagetable);
47 }

4.6.3 Flushing the MMU and switching between processes

As the system should support more than one process, the virtual memory map-
pings need to be flushed on several occasions. Plan 9 requires us to implement the
flushmmu, mmurelease, and mmuswitch functions. The kernel address space is al-
ways kept mapped, so only the mappings for virtual addresses between 0x00000000
and 0x80000000 are cleared. The code for flushing the user-space addresses is
shown in Code listing 4.6. Note that the pages backing the L0 tables are not deal-
located but instead wiped. Plan 9 uses portable data structures to keep track of
which physical pages belong to each process. Therefore the MMU implementa-
tion is free to wipe its entries when flushing. This keeps the implementation very
simple and avoids duplicating the data structures that keep track of page owner-
ship and mappings for processes. However, it comes at the cost of performance,
as process switching typically will cause many page faults.

Code listing 4.6: The flushmmu function.

1 void flush_userspace() {
2 u32 va = UZERO;
3
4 while (va < KZERO) {
5 u32 vpn1 = (va >> 22) & 0x3FF;
6 u32 vpn0 = (va >> 12) & 0x3FF;
7
8 PTE entry = toplevel_pagetable[vpn1];
9 if (entry & PTEVALID) {

10 PTE *l0_table = UINT2PTR(PTE2PA(entry));
11 memset(l0_table, 0, BY2PG);
12 }
13
14 // Skip over all 1024 page entries in one l0 table
15 va += BY2PG * 1024;
16 }
17 }
18
19 void flushmmu() {
20 int s = splhi();
21 flush_userspace();
22 sfence_vma();
23 splx(s);
24 }

Chapter 4: Implementation 21

The implementation is fairly straightforward, iterating over the entries in the top-
level page table by incrementing a virtual address. This particular implementation
assumes the kernel space boundary is megapage-aligned because it skips over en-
tire level 0 tables at a time. splhi and splx disables interrupts and restores the
previous interrupt state. sfence_vma is a low-level assembly function that con-
sists of a supervisor memory-management fence instruction. The mnemonic used
in the RISC-V specification [5] is SFENCE.VMA. It forces the RISC-V implementa-
tion to synchronize with main memory memory-management data structures. This
means that a RISC-V implementation with a translation lookaside buffer (TLB) for
caching MMU entries must invalidate its entries. The SFENCE.VMA instruction can
be used in conjunction with the address space identifier (ASID) mechanism to
only invalidate a subset of entries. As stated in Section 2.1.4 this project does not
use the ASID mechanism, so the sfence_vma function is not parameterized with
an ASID and instead forces a full invalidation. SFENCE.VMA is not implemented
in the Miller [12] assembler, but is emitted using a WORD macro manually crafted
according to the RISC-V specification [5].

In mmuswitch, which is called on a process switch, it is only necessary to perform
a user-space flush as previously described. The MMU page mappings are wiped,
but the portable parts of the Plan 9 kernel keep track of the pages for us, and the
process pages will be mapped again by the fault handler and putmmu if the original
process is re-scheduled in the future. Likewise, mmurelease only performs a user-
space flush.

4.7 Trap handling

In accordance with the RISC-V specification [4] exception refers to an unusual
condition occurring associated with an instruction, while interrupt refers to an ex-
ternal asynchronous event that may cause a transfer of control. Traps or trapping
refers to the transfer of control to the trap handler caused by either an exception
or an interrupt.

4.7.1 Initialization

Trap initialization is very simple on RISC-V. The address of the trap handling func-
tion must be written to the stvec CSR. As can seen in Figure 4.3 the lower two
bits of stvec encode a mode. This means the address of the trap handler must be
aligned with the lower 2 bits set to 0. A mode value of 00 means direct mode, and
01 means vectored mode [5]. Direct mode means all traps jump to the handler
registered in the CSR. Vectored mode means a subset of trap causes will cause the
hart to jump directly to an offset from the registered address. Direct mode is used
in this implementation, so we simply write the address of the function stvec_asm,
which is described in the next section, to the stvec control and status register.

Chapter 4: Implementation 22

01231

Higher 30 bits of trap handler address M

Figure 4.3: The stvec control and status register (CSR) for RV32.

4.7.2 Low-level trap handler

When an exception or interrupt happens, the PC is set to point to the stvec_asm
function as shown in Code listing 4.7. This section describes the steps taken by
this function and what must be done in C to determine the trap cause and handle
it accordingly.

Saving the registers

First, the registers must be saved to an Ureg struct pointed to by UREGADDR. The
Ureg definition by Miller [12] is used. Register R4 is moved to the sscratch CSR
for temporary storage while R4 is used to index main memory. The UREG_field
macro addresses relative to R0, which is hard-wired to zero, and does not expli-
citly use R4. As was discovered during this implementation, the offset used in the
macro is too large to fit in a single instruction. This means the linker generates
instructions to construct the address in R4 as explained in Section 3.1.1, which
cannot be seen by reading the assembly instructions. Therefore R4 is skipped on
line 9, and it is finally saved to main memory on lines 15 and 16. Some additional
Ureg fields are then filled by reading supervisor-level trap-related CSRs.

Selecting a stack location and entering C

The sstatus CSR is then inspected to check if the trap was from supervisor-mode
(S-mode). Specifically, bit 8 (sstatus.SPP) is 0 if the trap occurred while in user-
mode (U-mode), or 1 if the hart was in S-mode [5]. If the trap was from U-mode,
we get the location of the allocated kernel stack for the current process on lines
45 to 47 and add the kernel stack size to it. If the trap handler triggers a page
fault while handling a trap from U-mode, such as when reading or writing process
memory during a system call, we need to use a different stack to fix the page fault.
We detect this condition by checking if the system was running in S-mode when
the trap occurred. Aside from programming errors and assuming we correctly
disable interrupts while in the kernel, these should be the only traps occurring
while in S-mode. In either case a stack pointer is loaded in R2.
Before entering C code we have to set the static base (SB) as described in Sec-
tion 3.1.1 and already done once in Section 4.3. This is done on line 56 in Code
listing 4.7. We are then ready to call into C to perform the rest of the trap hand-
ling. The implementation of c_trap will be explained shortly. For now, it suffices
to know that it returns a pointer to the Ureg struct we should restore registers
from. Recall that return values are passed in R8.

Chapter 4: Implementation 23

Restoring registers and exiting the trap handler

After returning to assembly, we start the restoration process by reading the stored
PC from Ureg, and writing it to the sepc CSR. This is the address we want to
resume execution from when exiting the trap handler. sepc was automatically
written with the current PC when the trap occurred, but we want to load the saved
value because the C handler might have changed it and because sepc might have
been overwritten if we handled another trap in the middle of handling the one we
are currently returning from. All the registers except R8 are then restored using
the pointer in R8, and then finally R8 itself is restored. Finally, we issue the SRET
instruction to return to the previous privilege level as indicated by sstatus.SPP
and resume execution with the current registers from the PC stored in sepc. Note
that sstatus.SPP is set to 0 by the implementation when executing SRET [5]. This
ensures we return to the correct privilege mode even when a nested trap has been
handled from S-mode. Also, note that the assembler does not implement SRET.
Instead, it is a macro for a manually constructed WORD based on the instruction
listing in the RISC-V specification [5].

Code listing 4.7: The assembly trap handler.

1 #define UREG_field(x) (UREGADDR + 4*(x))(R0)
2
3 TEXT stvec_asm(SB), $-4
4 MOVW R4, CSR(sscratch)
5
6 MOVW R1, UREG_field(1)
7 MOVW R2, UREG_field(2)
8 MOVW R3, UREG_field(3)
9 // not R4

10 MOVW R5, UREG_field(5)
11 [...]
12 MOVW R30, UREG_field(30)
13 MOVW R31, UREG_field(31)
14
15 MOVW CSR(sscratch), R1
16 MOVW R1, UREG_field(4)
17
18 MOVW CSR(sepc), R1
19 MOVW R1, UREG_field(0)
20
21 MOVW CSR(sstatus), R1
22 MOVW R1, UREG_field(32)
23
24 MOVW CSR(sie), R1
25 MOVW R1, UREG_field(33)
26
27 MOVW CSR(scause), R1
28 MOVW R1, UREG_field(34)
29
30 MOVW CSR(stval), R1
31 MOVW R1, UREG_field(35)
32
33 // Are we handling a trap from S-mode?
34 // Faults may occur in S-mode while handling syscalls using the
35 // per-process kernel stack, so we have a separate stack for this

Chapter 4: Implementation 24

36
37 MOVW CSR(sstatus), R10
38
39 MOVW $(0x100), R9
40 AND R9, R10, R10
41 BEQ R9, R10, use_smode_stack
42
43 /* Fall through */
44 use_process_kstack: // Load mach->proc->kstack
45 MOVW $(MACHADDR), R9
46 MOVW 12(R9), R10 // proc* in R10
47 MOVW 4(R10), R2
48 ADD $(KSTACK - 4), R2
49 JMP goto_c
50
51 use_smode_stack: // Use the S-mode trap stack
52 MOVW $(INTR_STK_TOP), R2
53
54 /* Fall through */
55 goto_c:
56 MOVW $setSB(SB), R3
57 JAL R1, c_trap(SB)
58
59 // The Ureg address we should recover from is now in R8
60
61 // Load (optionally) modified pc value from Ureg
62 MOVW (0)(R8), R1
63 MOVW R1, CSR(sepc)
64
65 // Recover regs
66 MOVW (4 * 1)(R8), R1
67 MOVW (4 * 2)(R8), R2
68 [...]
69 MOVW (4 * 7)(R8), R7
70 // not R8 yet
71 MOVW (4 * 9)(R8), R9
72 [...]
73 MOVW (4 * 30)(R8), R30
74 MOVW (4 * 31)(R8), R31
75
76 MOVW (4 * 8)(R8), R8
77
78 SRET

Handling the trap in C

The c_trap function is quite simple. It is shown in Code listing 4.8. First, a copy
of Ureg must be saved. The location chosen is the bottom of the stack address
range for the trap handling. This means we must decide between two stack areas,
as was done in the assembly handler. This is shown on lines 7 to 11 in the listing.
ureg is then copied using memmove, and the rest of the trap handling works with
the copy from now on. The cause field of ureg is then inspected to decide how to
handle the trap. Recall that cause is written with the value of the scause CSR on
trap entry.

Chapter 4: Implementation 25

Code listing 4.8: The c_trap function.

1 Ureg *c_trap() {
2 Ureg *ureg = (Ureg *) UREGADDR;
3 uintptr spp = (ureg->status & 0x100);
4 u32 user_trap = !(spp >> 8);
5 Ureg *ureg_copy_location;
6
7 if (spp) {
8 ureg_copy_location = UINT2PTR(INTR_STK_LOW_END);
9 } else {

10 ureg_copy_location = (Ureg *) up->kstack;
11 }
12
13 memmove(ureg_copy_location, ureg, sizeof(Ureg));
14 ureg = ureg_copy_location;
15
16 switch (ureg->cause) {
17 case ErrInstrPageFault:
18 faultriscv(ureg, ureg->tval, user_trap, 1);
19 break;
20 case ErrLoadPageFault:
21 faultriscv(ureg, ureg->tval, user_trap, 1);
22 break;
23 case ErrStorePageFault:
24 faultriscv(ureg, ureg->tval, user_trap, 0);
25 break;
26 case UECALL:
27 syscall(ureg);
28 break;
29
30 default:
31 print("Trap␣cause␣not␣yet␣handled\n");
32 printureg(ureg);
33 spin();
34 break;
35 }
36
37 return ureg;
38 }

4.7.3 Page faults

Page fault handling happens mostly in portable code that calls into the architecture-
specific MMU implementation described in Section 4.6. The faultriscv function
is listed in Code listing 4.9. It is called from the trap handler and contains mostly
bookkeeping. The most important part is the call to fault on line 11, which calls
into the portable part of the kernel. It, in turn, then calls into putmmu if there is a
page to map. The virtual address (va) parameter comes from ureg.tval, which is
written with the value of the stval CSR. Its value is the address that caused the
fault and needs to be mapped. Recall that up is a pointer to the currently scheduled
process.

Chapter 4: Implementation 26

Code listing 4.9: The faultriscv function.

1 static void faultriscv(Ureg *ureg, uintptr va, int user, int read) {
2 char buf[ERRMAX];
3
4 if(up == nil) {
5 printureg(ureg);
6 panic("fault:␣nil␣up␣in␣faultriscv,␣accessing␣%#p", va);
7 }
8 int insyscall = up->insyscall;
9 up->insyscall = 1;

10
11 int n = fault(va, read);
12 if(n < 0){
13 if(!user){
14 printureg(ureg);
15 panic("fault:␣kernel␣accessing␣%#p", va);
16 }
17
18 snprint(buf, sizeof(buf), "sys:␣trap:␣fault␣%s␣va=%#p",
19 read ? "read": "write", va);
20 postnote(up, 1, buf, NDebug);
21 }
22 up->insyscall = insyscall;
23 }

4.7.4 System calls

System calls are handled mostly in portable code. Before issuing an ECALL instruc-
tion in U-mode to perform a system call a system call number is placed in R8. This
is handled by 9syscall, a part of libc for Plan 9. The 9syscall implementation by
Miller [12] as described in Section 3.2 is used. The system call number is used to
index the systab array, which is a table of function pointers to system call handler
functions that all live in the portable part of the kernel. Code listing 4.10 shows
the implementation of syscall. The arguments and the system call number are
extracted on lines 7 and 9. The system call table is indexed and the retrieved
function called on line 27, returning a value. The return value is written to ureg
on line 39, meaning the value will be in the return register when registers are
restored for the user process. The program counter in ureg is incremented by 4
bytes to skip over the ECALL instruction that was used to perform this system call.
Note that even when using the compressed instruction format, ECALL is always 4
bytes.

Code listing 4.10: The syscall function.

1 void syscall(Ureg *ureg) {
2 m->syscall++;
3 up->insyscall = 1;
4 up->pc = ureg->pc;
5 spllo();
6 uintptr sp = ureg->sp;
7 Sargs *sargs = (Sargs *) (sp + BY2WD);
8
9 u32 syscallnr = ureg->r8;

Chapter 4: Implementation 27

10 syscallfmt(syscallnr, ureg->pc, (va_list)(sargs));
11
12 u32 ret = -1;
13 char *e = nil;
14 if(!waserror()){
15 if(syscallnr >= nsyscall){
16 print("bad␣syscall␣nr␣%d␣pc␣%#p\n", syscallnr, ureg->pc);
17 postnote(up, 1, "sys:␣bad␣sys␣call", NDebug);
18 error(Ebadarg);
19 }
20
21 if(sp < (USTKTOP-BY2PG) || sp > (USTKTOP-sizeof(Sargs)-BY2WD)) {
22 validaddr(sp, sizeof(Sargs)+BY2WD, 0);
23 }
24 up->s = *(sargs);
25 up->psstate = sysctab[syscallnr];
26
27 ret = systab[syscallnr](up->s.args);
28 poperror();
29 } else {
30 /* failure: save the error buffer for errstr */
31 e = up->syserrstr;
32 up->syserrstr = up->errstr;
33 up->errstr = e;
34 }
35
36 up->insyscall = 0;
37 splhi();
38
39 ureg->r8 = ret;
40
41 // Skip over ECALL instruction
42 ureg->pc += 4;
43 }

Some system calls rely on architecture-specific functions. The exec system call,
used to replace the currently running program with a new executable, relies on the
execregs function. Code listing 4.11 shows the implementation. The stack pointer
is calculated based on the amount of memory pushed to the new stack by the
portable code. Then the number of args is pushed to the stack, and ureg is updated
with the correct PC and SP. This code is very similar between architectures but not
perfectly portable as, for instance, the stack pointer semantics can be different.
The return value is the start of user/kernel shared data, as defined by the Tos
struct (top of stack). It is used for bookkeeping and communication of per-process
profiling data.

Code listing 4.11: The execregs function.

1 long execregs(ulong entry, ulong ssize, ulong nargs) {
2 Ureg *ureg = (Ureg *) up->kstack;
3
4 ulong *sp = (ulong*)(USTKTOP - ssize);
5 *--sp = nargs;
6
7 ureg->pc = entry;
8 ureg->sp = PTR2UINT(sp);
9

Chapter 4: Implementation 28

10 return USTKTOP - sizeof(Tos);
11 }

Similar to exec, forking processes also requires manually crafting the Ureg struct
to ensure proper behaviour when a process resumes. This has to be implemented
in the forkchild function. This was not implemented as it was not in the "critical
path" to booting the system.

4.8 Crafting the first process

The first process is hand-crafted in the userinit function. An abbreviated ver-
sion of the function is shown in Code listing 4.12. First, a Proc struct to repres-
ent the process is allocated and initialized with default values using the portable
newproc function. A kernel stack (kstack) is also allocated and attached to the
process. On lines 10 to 12 the PC and SP are set to the init0 function and top
of the kernel stack. This is because the process will start out as a kernel process
(kproc) executing the init0 function in S-mode. The user stack segment is cre-
ated and initialized on lines 14 to 19. user_sp is a global variable that will be
used when it is time to enter U-mode. The user text segment is created and ini-
tialized with a single mapped page on lines 21 to 26. The mapped page has the
virtual address 0x00001000 (UTZERO) as was previously displayed in Figure 4.2.
On line 29, the code for the user program (qrv32_initcode) to be executed is
copied to the mapped text page. The qrv32_initcode program will be explained
in Section 4.8.2. The process is then marked as ready to be scheduled. When it is
scheduled, execution will start in init0, which will switch to user mode and jump
to the user program code we just copied.

Code listing 4.12: The userinit function.

1 void userinit(void) {
2 /* no processes yet */
3 up = nil;
4
5 Proc *proc = newproc();
6 [...]
7
8 kstrdup(&proc->text, "*init*");
9

10 proc->sched.pc = PTR2UINT(init0);
11 proc->sched.sp = PTR2UINT(proc->kstack + KSTACK
12 -sizeof(up->s.args) - sizeof(uintptr));
13
14 Segment *seg = newseg(SG_STACK, USTKTOP-USTKSIZE, USTKSIZE/BY2PG);
15 seg->flushme++;
16 proc->seg[SSEG] = seg;
17 Page *pg = newpage(1, 0, USTKTOP-BY2PG);
18 segpage(seg, pg);
19 user_sp = stackspace(pg->pa);
20
21 seg = newseg(SG_TEXT, UTZERO, 1);
22 proc->seg[TSEG] = seg;
23 pg = newpage(1, 0, UTZERO);

Chapter 4: Implementation 29

24 memset(pg->cachectl, PG_TXTFLUSH, sizeof(pg->cachectl));
25 segpage(seg, pg);
26 uintptr text_pa = seg->map[0]->pages[0]->pa;
27
28 assert(sizeof(qrv32_initcode) < BY2PG);
29 memmove(UINT2PTR(text_pa), qrv32_initcode, sizeof(qrv32_initcode));
30
31 ready(proc);
32 }

4.8.1 Jumping to user mode

The init0 function is very simple. It consists mainly of Plan 9 bookkeeping and
setting environment variables. At the end it calls the function touser with user_sp
from Code listing 4.12 as a parameter. The touser function is shown in Code
listing 4.13. It begins by moving the stack passed as an argument from R8 to R2
(SP). R8 is then re-used to hold the user program entry point, which is then written
to the sepc CSR. The program entry is offset by 32 bytes from the start of the text
segment because that’s the size of the program header. With the user PC in sepc,
the stack pointer in R2, and sstatus.SPP set to 0 the SRET instruction is used as
if we were returning from trap handling, entering U-mode.

Code listing 4.13: The touser function.

1 TEXT touser(SB), 1, $-4
2 MOVW R8, R2
3
4 MOVW $(UTZERO + 0x20), R8
5 MOVW R8, CSR(sepc)
6
7 SRET // sstatus.SPP should be 0 at this point, so SRET returns to user mode

4.8.2 The first user program

The user-space program we just entered is called qrv32_initcode. It’s purpose is
to start the portable boot program with an exec system call, transforming itself
into a boot process. It is done this way because it is easier to manually craft and
jump into such a simple process, compared to the whole boot program. This is
done almost identically in the Plan 9 kernels for other architectures, except they
support more sophisticated passing of parameters to boot. The code in Code list-
ing 4.14 and Code listing 4.15 is compiled together independently of the kernel
as a user-space program. When compiling the kernel, the program is read byte-
by-byte and written to a new file called qrv32_initcode.h that defines the byte
array qrv32_initcode. Recall that this array was copied to the user text segment
of the first process at the beginning of Section 4.8. The startboot function in Code
listing 4.15 calls exec with a hard-coded command, transforming the program if
succeeding, or exiting with an error string if unsuccessful.

Chapter 4: Implementation 30

Code listing 4.14: Jumping to startboot in the first user-space program.

1 TEXT _main(SB), $-4
2 MOVW $setSB(SB), R3
3 JAL R1, startboot(SB)

Code listing 4.15: The startboot function in the first user-space program.

1 /*
2 * IMPORTANT! DO NOT ADD LIBRARY CALLS TO THIS FILE.
3 * The entire text image must fit on one page
4 */
5
6 #include <u.h>
7 #include <libc.h>
8
9 char *boot_cmd[] = {"/boot/boot", "boot", nil};

10
11 void startboot()
12 {
13 char buf[200];
14
15 exec(boot_cmd[0], boot_cmd);
16
17 rerrstr(buf, sizeof buf);
18 buf[sizeof buf - 1] = ’\0’;
19 _exits(buf);
20 }

4.8.3 The boot program

The program transforms into the boot program. It is a portable program that per-
forms a lot of setup of the user space by connecting to a file server, starting a shell,
authenticates, and more, depending on how the system is configured. Starting the
boot program is the last non-portable operation necessary to boot the system. The
boot program performs a number of system calls but eventually exits when it can-
not bind the /net file. No drivers have been ported to this kernel, so this is as far
as we get. Porting drivers have more to do with the specific hardware, rather than
the instruction set architecture.

Chapter 5

Results

The results in this thesis are the working RISC-V Plan 9 implementation itself and
the fact that no changes were necessary in the portable parts of the kernel. RISC-V
is found to be a suitable architecture for a Plan 9 kernel. Likewise, Plan 9 is found
to hold up to almost 30 years of evolution in the instruction set architecture space.
The claims made about Plan 9s portability by Presotto et al. [6] are validated by
porting Plan 9 to an architecture that would not even be invented for almost
20 years without changing anything in the portable source code. Some specific
observations about the process and tools are elaborated on in this chapter.

5.1 Virtual memory

In Section 4.6 it is noted that Plan 9 would require changes in the portable code
to take advantage of the Sv32 virtual memory schemes ability to address 34 bits
of physical memory. This is not regarded as something that breaks Plan 9s portab-
ility, as it is an optional mechanism that software may make use of, not something
that the architecture imposes on the software. It is not reasonable to expect the
software to utilize every optional mechanism an architecture provides to qualify
as being portable, even though support for this particular mechanism could be
quite useful.

The portability mechanism for page table entry (PTE) flags is a bit awkward.
As elaborated on in Section 4.6.2, the correct PTE flags must be set based on
the semi-portable flags given by the portable code. They are considered semi-
portable because, while they can be a one-to-one match with some architecture-
dependent flags, they carry a semantic meaning that may not directly match a
specific architecture-dependent flag. Instead of going through this trouble, the
portable code could just pass the segment type to the architecture-specific code
and let it determine the appropriate flags.

31

Chapter 5: Results 32

5.2 Processes and system calls

Code listing B.1 in Appendix B shows the trace for all system calls performed by
the first process. This is included to demonstrate the kernels ability to support
the user space. In total, 36 system calls are performed and served before the boot
process exits due to the /net device file not existing.

The architecture-specific functionality needed to support the fork and rfork sys-
tem calls was not implemented. Neither were timer interrupts. These two rel-
atively small additions together would arguably make the implementation "com-
plete", although as with any operating system, there is an endless supply of devices
to make drivers for. Neither of the two changes are considered likely to require
changes in the portable source code.

5.3 Toolchain usage

In Section 4.7.2 an issue with the use of the R4 register in the Miller toolchain [12]
came up. The cause of the issue won’t be re-stated here, but the effect is "hidden"
use of the R4 register, which is highly unexpected when writing assembly code.
Workarounds and avoiding the problem is possible if the programmer is aware of
the issue. The issue is seen as a sign of immaturity in the toolchain and something
that should be re-designed to get more predictable results.

Chapter 6

Conclusion and future work

In short, the conclusion is that the claims made about Plan 9s portability [6]when
it was first introduced still hold up. Even if there are some minor aspects that, in
hindsight, could be improved, Plan 9 manages to keep almost everything that
could realistically be written as portable code portable. Supervisor-mode RISC-V
with SBI is considered a suitable target for Plan 9.

Portability aside, Plan 9 does not come across as a viable operating system for
general-purpose computing in the current year. Today, developers expect to be
able to use standard tools such as GCC or LLVM-based toolchains regardless of
target architecture. While the Plan 9 C compilers are relatively, compared to main-
stream optimizing compilers, low-effort to implement, the C custom language they
support, along with the scripting language rc, remain the only well-supported pro-
gramming languages available on Plan 9. As there are already operating systems
running everywhere, even on tiny embedded devices, the issue is not only getting
an operating system up and running quickly, but support for the user-space and
application programmers have come to expect and rely on. Plan 9 falls short in
this regard.

6.1 Future work

The implementation is currently very minimal and missing functionality for sup-
porting the rfork system call as well as timer interrupts. These will have to be
implemented for the port to be of any practical use. To boot a fully-functional
Plan 9 user-space some drivers are needed. At the very least, a driver providing
network capabilities is needed to integrate a machine running this implementa-
tion as a cpuserver in a Plan 9 network. To function as a full terminal, drivers for
graphical interaction are needed. A 64-bit version using the 64-bit toolchain from
Miller [12] would also be interesting, particularly for general purpose computing
or server computing purposes. In this space, a multi-core port is also of interest.
On the other end of the scale, a toolchain and kernel for the RV32E standard could
be interesting if RV32E sees wider adoption in the future. RV32E is the 32-bit em-

33

Chapter 6: Conclusion and future work 34

bedded base ISA. It is a subset of the RV32I base ISA and only has 16 integer
registers, compared to RV32Is 32 [4].

Bibliography

[1] A. Slettemark, ‘Porting Plan 9 to RISC-V,’ Department of Computer Science,
NTNU – Norwegian University of Science and Technology, Project report
in TDT4501, Dec. 2020.

[2] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey et
al., ‘Plan 9 from Bell Labs,’ Computing systems, vol. 8, no. 3, pp. 221–254,
1995.

[3] R. Miller, ‘The First Unix Port,’ in Proceedings of the annual conference on
USENIX Annual Technical Conference, USENIX Association, 1998, p. 25.

[4] A. Waterman and K. Asanović, Eds., The RISC-V Instruction Set Manual,
Volume I: Unprivileged ISA, Document Version 20191213. RISC-V Founda-
tion, Dec. 2019.

[5] A. Waterman and K. Asanović, Eds., The RISC-V Instruction Set Manual,
Volume II: Privileged Architecture, Document Version 20190608-Priv-MSU-
Ratified. RISC-V Foundation, Jun. 2019.

[6] D. Presotto, R. Pike, K. Thompson and H. Trickey, ‘Plan 9, a distributed
system,’

[7] P. Dabbelt and A. Patra, ‘RISC-V Supervisor Binary Interface Specification,’
[Accessed 28th May 2021]. [Online]. Available: https://github.com/
riscv/riscv-sbi-doc/blob/master/riscv-sbi.adoc.

[8] P. Dabbelt, S. O’Rear, K. Cheng, A. Waterman, M. Clark, A. Bradbury et
al., ‘RISC-V ELF psABI Specification,’ [Accessed 27th May 2021]. [Online].
Available: https://github.com/riscv/riscv-elf-psabi-doc/blob/
master/riscv-elf.md.

[9] K. Thompson, ‘Plan 9 C compilers,’ in Proceedings of the Summer 1990
UKUUG Conference, 1990, pp. 41–51.

[10] S. C. Johnson et al., ‘Yacc: Yet another compiler-compiler,’ in Computing
Science Technical Report No. 32, Bell Laboratories Murray Hill, NJ, 1975.

[11] R. Pike, ‘A Manual for the Plan 9 assembler,’ [Accessed 28th May 2021].
[Online]. Available: https://9p.io/sys/doc/asm.html.

35

https://github.com/riscv/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/riscv/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md
https://9p.io/sys/doc/asm.html

Bibliography 36

[12] R. Miller, ‘A Plan 9 C Compiler for RV32GC and RV64GC,’ London Open
Source Meetup for RISC-V, Oct. 2020, [Accessed 28th May 2021]. [Online].
Available: https://riscv.org/news/2020/10/a-plan-9-c-compiler-
for-rv32gc-and-rv64gc/.

[13] F. Bellard, ‘QEMU, a fast and portable dynamic translator,’ in USENIX An-
nual Technical Conference, FREENIX Track, USENIX Association, 2005, pp. 41–
46.

[14] OpenSBI. RISC-V International, [Accessed 5th June 2021]. [Online]. Avail-
able: https://github.com/riscv/opensbi.

[15] B. Ford and R. Cox, ‘Vx32: Lightweight user-level sandboxing on the x86.,’
in USENIX Annual Technical Conference, 2008, pp. 293–306.

https://riscv.org/news/2020/10/a-plan-9-c-compiler-for-rv32gc-and-rv64gc/
https://riscv.org/news/2020/10/a-plan-9-c-compiler-for-rv32gc-and-rv64gc/
https://github.com/riscv/opensbi

Appendix A

Replicating the development
environment

This appendix describes how to set up the development environment used for the
implementation. There are many different ways to get a Plan 9 environment. This
setup uses the 9vx environment on a x86_64 Linux host machine. 9vx is a virtual
environment enabled by the vx32 sandboxing library [15].

A.1 Running 9vx

First, 9vx must be downloaded and extracted from the official site1. Disregard
the Plan 9 file system included in the download. If, as was the case for myself,
the 9vx.Linux executable does not work, 9vx can be compiled from source. The
source code is distributed with the vx32 [15] library, which can be downloaded
from its official site2. Add the 9vx executable to your PATH. Then, a Plan 9 ISO file
(CD image) must be downloaded from the Plan 9 site3. Extract it to a directory,
using for instance 7z x plan9.iso. You can now run Plan 9 from this directory
using 9vx -r . -u glenda. If everything went as expected, you should now have
a graphical Plan 9 environment running the rio windowing system.

A.2 Getting the Miller toolchain and RISC-V kernel source

Start by cloning my public GitHub repository4. If you want to get the exact ver-
sion delivered with this thesis, git checkout the thesis_state tag. It’s now time
to create a patch. The command used to create a patch file called riscv.patch
including both the Miller [12] toolchain and the RISC-V kernel is shown in Code
listing A.1.

1https://swtch.com/9vx/
2https://pdos.csail.mit.edu/~baford/vm/
3https://9p.io/plan9/download.html
4https://github.com/aslettemark/plan9_riscv

37

https://swtch.com/9vx/
https://pdos.csail.mit.edu/~baford/vm/
https://9p.io/plan9/download.html
https://github.com/aslettemark/plan9_riscv

Appendix A: Replicating the development environment 38

Code listing A.1: Git command to generate patch file.

1 git format-patch upstream..HEAD --stdout > riscv.patch

Navigate back to the root directory where you extracted the Plan 9 file system
in the previous section. Execute git apply path/to/riscv.patch. You can now
start Plan 9 using 9vx -r . -u glenda. Inside Plan 9, navigate to /sys/src and
execute mk release to update your user-space with the new commands and lib-
rary updates. This might take several minutes. It is recommended to enable scrolling
in the terminal. After your user-space has compiled, execute objtype=riscv mk
libs to compile system libraries for RISC-V. You should now be ready to compile
the kernel.

Navigate to /sys/src/9/qrv32. Execute mk. The kernel should now compile suc-
cessfully. The output file name is 9qrv32. This is the kernel that QEMU will run
later.

A.3 Compiling OpenSBI

Back on the host machine, start by getting a cross-compiler for 32-bit RISC-
V. My cross-compiler is GCC version 9.2.0 with the ilp32 (soft float) ABI.
Set the environment variable CROSS_COMPILE to the prefix allowing a Make-
file to use the different programs in the toolchain. For example, mine is
/opt/riscv32gc_ilp32/bin/riscv32-unknown-linux-gnu-.

The OpenSBI source code is obtained by cloning the official GitHub re-
pository5. The most recent tested version for this project is commit hash
54d7def6c254058f9458a0e26205b3c93a48bb42 (May 24, 2021). With your cross-
compiler installed, compile OpenSBI firmwares for QEMU by running make PLAT-
FORM=generic. The firmware we want to use should now be located at build/-
platform/generic/firmware/fw_jump.bin.

A.4 Running with QEMU

The qemu-system-riscv32 emulator from QEMU version 5.0.0 was used. The full
command to run the compiled kernel using the previously compiled OpenSBI
fw_jump firmware is shown in Code listing A.2. Substitute your exact path for
the -bios and -kernel options. This configuration lets you use Ctrl-C to exit the
kernel, which is very convenient. To read the machine state in the QEMU monitor
connect using telnet with the command telnet localhost 55555.

5https://github.com/riscv/opensbi

https://github.com/riscv/opensbi

Appendix A: Replicating the development environment 39

Code listing A.2: QEMU command for running kernel with OpenSBI firmware.

1 qemu-system-riscv32 -M virt -m 256M -nographic
2 -bios [..]/build/platform/generic/firmware/fw_jump.bin
3 -kernel [..]/sys/src/9/qrv32/9qrv32
4 -monitor telnet:127.0.0.1:55555,server,nowait

Appendix B

System call trace for the first
process

Code listing B.1 displays the trace for all system calls performed. The format is
process id (pid), program name, system call name, and arguments. String argu-
ments are displayed, reading from the character pointer. The formatting is done
by syscallfmt.c in port/.

Code listing B.1: Trace of all performed system calls.

1 1 *init* Open 10bc 0x11e0/"#c/cons" 0x0
2 1 *init* Open 10bc 0x11e0/"#c/cons" 0x1
3 1 *init* Open 10bc 0x11e0/"#c/cons" 0x1
4 1 *init* Bind 10d4 0x11b8/"#c" 0x11c8/"/dev" 0x2
5 1 *init* Bind 10d4 0x11c4/"#ec" 0x11d0/"/env" 0x2
6 1 *init* Bind 10d4 0x11bc/"#e" 0x11d0/"/env" 0x6
7 1 *init* Bind 10d4 0x11c0/"#s" 0x11d8/"/srv" 0x4
8 1 *init* Exec 10c8 0x11f8/"/boot/boot" 0x11f8/"/boot/boot" 0x1203/"boot"
9 1 boot Close 8aa4 0

10 1 boot Close 8aa4 1
11 1 boot Close 8aa4 2
12 1 boot Bind 8ab0 0x13868/"#c" 0x1386b/"/dev" 0x1
13 1 boot Open 8a2c 0x13870/"/dev/cons" 0x0
14 1 boot Open 8a2c 0x1387a/"/dev/cons" 0x1
15 1 boot Open 8a2c 0x13884/"/dev/cons" 0x1
16 1 boot Bind 8ab0 0x1388e/"#ec" 0x13892/"/env" 0x0
17 1 boot Bind 8ab0 0x13897/"#e" 0x1389a/"/env" 0x5
18 1 boot Bind 8ab0 0x1389f/"#s" 0x138a2/"/srv/" 0x4
19 1 boot Open 8a2c 0x7ffffec4/"/env/debugboot" 0x0
20 1 boot Open 8a2c 0x7ffffec4/"/env/nousbboot" 0x0
21 1 boot Open 8a2c 0x13ab1/"#e/cputype" 0x0
22 1 boot Pread 8a16 0 0x101a8 63 -1
23 1 boot Close 8aa4 0
24 1 boot Brk ce64 0x16950
25 1 boot Stat 89b6 0x14e68/"#u/usb/ctl" 0x15994 115
26 1 boot Open 8a2c 0x13b37/"#e/nobootprompt" 0x0
27 1 boot Open 8a2c 0x13b8d/"#e/bootargs" 0x0
28 1 boot Pwrite ce4e 1 0x7ffffbc0/"root.is.from.(tcp)[tcp]:." 25 -1
29 1 boot Pread 8a16 0 0x7ffffd1c 255 -1
30 1 boot Bind 8ab0 0x14ec8/"#I" 0x100a8/"/net" 0x2
31 1 boot Errstr 8a82 0x7ffffe74 128

40

Appendix B: System call trace for the first process 41

32 1 boot Pwrite ce4e 2 0x7ffffd18/"boot:.bind.#I:.’/net’.file.does.not.exist." 42 -1
33 1 boot Open 8a2c 0x10550/"#c/pid" 0x0
34 1 boot Pread 8a16 0 0x7ffffe34 20 -1
35 1 boot Close 8aa4 0
36 1 boot Exits 8ac8 0x15978/"bind #I: ’/net’ file does not exist"

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Aksel Hauge Slettemark

A Plan 9 port to RISC-V

Master’s thesis in Computer Science
Supervisor: Michael Engel

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Acknowledgements
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Technologies
	RISC-V
	Privilege modes
	Supervisor binary interface
	Control and Status Registers
	The Sv32 virtual memory scheme

	Plan 9
	Plan 9 C
	Compiling on and for Plan 9
	Portability

	Previous work
	Toolchain by Richard Miller
	Noteworthy non-standard behaviour

	Other contributions by Richard Miller

	Implementation
	OpenSBI
	Kernel source setup
	Entering C
	Calling SBI functions
	Plan 9 initialization
	MMU
	Initializing virtual memory
	Mapping pages
	Flushing the MMU and switching between processes

	Trap handling
	Initialization
	Low-level trap handler
	Page faults
	System calls

	Crafting the first process
	Jumping to user mode
	The first user program
	The boot program

	Results
	Virtual memory
	Processes and system calls
	Toolchain usage

	Conclusion and future work
	Future work

	Bibliography
	Replicating the development environment
	Running 9vx
	Getting the Miller toolchain and RISC-V kernel source
	Compiling OpenSBI
	Running with QEMU

	System call trace for the first process

