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Abstract: The ideal gas model is an important and useful model in classical thermodynamics. This
remains so for small systems. Molecules in a gas can be adsorbed on the surface of a sphere. Both
the free gas molecules and the adsorbed molecules may be modeled as ideal for low densities.
The adsorption energy, Us, plays an important role in the analysis. For small adsorbents this
energy depends on the curvature of the adsorbent. We model the adsorbent as a sphere with
surface area Ω = 4πR2, where R is the radius of the sphere. We calculate the partition function
for a grand canonical ensemble of two-dimensional adsorbed phases. When connected with the
nanothermodynamic framework this gives us the relevant thermodynamic variables for the adsorbed
phase controlled by the temperature T, surface area Ω, and chemical potential µ. The dependence of
intensive variables on size may then be systematically investigated starting from the simplest model,
namely the ideal adsorbed phase. This dependence is a characteristic feature of small systems which
is naturally expressed by the subdivision potential of nanothermodynamics. For surface problems,
the nanothermodynamic approach is different, but equivalent to Gibbs’ surface thermodynamics.
It is however a general approach to the thermodynamics of small systems, and may therefore be
applied to systems that do not have well defined surfaces. It is therefore desirable and useful to
improve our basic understanding of nanothermodynamics.

Keywords: adsorption; nanothermodynamics; small-system; size-dependent; thermodynamics;
statistical mechanics; ideal gas; nanoparticles

1. Introduction

The objective of the paper is to demonstrate an organized and transparent thermo-
dynamic framework for statistical model development for small systems. The main focus
from the thermodynamic side is on the characteristic feature of small systems, namely the
effect of size on intensive variables.

We do this by first obtaining the characteristic thermodynamic function for the ad-
sorbed phase from nanothermodynamics as introduced by Hill [1–3]. This function is the
one that provides us with the fundamental link to statistical mechanics, as it is equal to−kT
times the logarithm of the grand canonical partition function. The characteristic function
for the adsorbed phase depends on the size Ω of the system. In the macroscopic limit the
dependence becomes linear, however when the system is small the subdivision potential
measures the deviation from macroscopic behavior. We therefore derive an expression for
the subdivision potential in terms of the environment variables, and observe that the differ-
ential coefficients of this expression give the dependence of particular intensive properties
on size. The size dependence of other intensive thermodynamic properties may then be
expressed through thermodynamic relations in terms of the subdivision potential and its
derivatives. The close relationship between the subdivision potential and the characteristic
feature of small systems is a consequence of the generalization of thermodynamics to
small systems, and the framework’s internal structure that follows. This is what we wish
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to emphasize in this work. For surface problems, the nanothermodynamic approach is
different, but equivalent to Gibbs’ surface thermodynamics [1,4,5].

Since the quantities usually referred to as intensive now depend on size, the classical
meaning of the term intensive is not appropriate for small systems. It is still a useful
term to distinguish thermodynamic quantities, especially since nanothermodynamics
is a generalization of classical thermodynamics, and therefore goes over into classical
thermodynamics in the macroscopic limit, where this term is ingrained. For a small system
quantity, the term intensive is used to describe a quantity that becomes intensive in the
classical sense in the macroscopic limit.

We give the thermodynamic framework substance by calculating the subdivision
potential of the adsorbed phase. Taking advantage of the simplicity of the ideal gas model,
the thermodynamic quantities become more tangible, and it is possible later to gradually
increase the complexity from this model to include effects like crowding and cooperativity.

The model consists of an adsorbed phase that is ideal and has an adsorption energy
Us. The adsorption energy Us will in general depend on the curvature of the sphere,
the temperature T and the chemical potential µ. However, we want the simplest model
possible, in order to make the connection between the nanothermodynamic framework
and statistical mechanics as clear and minimal as possible. We therefore consider Us to only
depend on Ω, which is consistent with an inert and incompressible adsorbent. The control
variables are therefore T, Ω, and µ. The dependence on the curvature is characteristic for
small spheres.

If the structure of the adsorbent is taken into account, and different crystal structures
are considered, this will result in different size dependence for the intensive variables of
the adsorbed phase. This is because the surface to volume ratio of the adsorbent becomes a
different function of size, and also because edges and corners will have to be considered.
This is interesting, but comes at the expense of increased complexity, and is beyond the
scope of the article.

2. Nanothermodynamics

The thermodynamic system considered here is the adsorbed phase in the context of
adsorption of a single component gas on an inert adsorbent. The adsorbent is assumed to
be unaffected by the temperature, chemical potential and the adsorbed layer. It functions
only as an external field, and is therefore not included in the description of the system. The
adsorbed phase is in equilibrium with the gas. The temperature T, chemical potential µ,
and surface area of the sphere Ω = 4πR2 form a complete set of independent variables
for the adsorbed phase. The surface area Ω determines the radius R =

√
Ω/4π and

the curvature C = 2/R. The curvature dependence of the surface tension can therefore
be written as a dependence on the surface area Ω. All thermodynamic quantities of the
adsorbed phase are functions of T, µ, and Ω.

Following Hill [2,3] we consider an ensemble of N independent small systems at
temperature T, and component chemical potential µ. A complete set of independent
variables for the ensemble, with total properties denoted by subscript t, may then be taken
as the entropy St, area NΩ, the amount of adsorbed component Nt, and the number or
replicasN . We note here that we allow for an independent variation in the size of the small
systems, as given by Ω, in addition to the variation in the number of small systems N .
This is an essential new feature that allows us to investigate the size of the small system
the ensemble represents, and which makes the approach distinct from simply describing a
large sample of small systems by conventional thermodynamics.

The characteristic function for the ensemble in terms of the set of independent variables
St, Ω, Nt, and N is the internal energy Ut given by

dUt = TdSt + γN dΩ + µdNt + XdN (1)
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where γ is the ensemble mean surface tension. We will refer to this equation as the
Hill-Gibbs equation. The intensive quantities are given by

T =

(
∂Ut

∂St

)

Ω,Nt ,N
, γN =

(
∂Ut

∂Ω

)

St ,Nt ,N
, µ =

(
∂Ut

∂Nt

)

St ,Ω,N
(2)

And finally we have the so-called replica energy

X =

(
∂Ut

∂N

)

St ,Ω,Nt

(3)

This energy is needed when one ads a replica with a surface area Ω while redistributing
the total adsorbed entropy and number of particles over one more replica. Using that Ut,
St, Nt are Euler homogeneous in the number of replica N ([2]), i.e., proportional to N , it
follows that

Ut = TSt + µNt + XN (4)

The internal energy, entropy and number of particles of the adsorbed phase per replica
are defined by

U ≡ Ut/N , S ≡ St/N , N ≡ Nt/N (5)

Apart from the entropy S the quantities defined in Equation (5) are ensemble mean
values of fluctuating extensive quantities ([2], p. 9), ([6], p. 98). For small systems, if a
quantity does not fluctuate, but has the same value in every system of the ensemble, it is an
environment variable. Here these variables are T, Ω and µ. The exception to this rule is the
entropy, which is a property of the complete distribution in internal energy and particle
number for a single system ([2], p. 9), and is therefore the same for each system. Together
with Equation (4) it follows that

γ̂Ω ≡ X = U − TS− µN (6)

This equation also defines γ̂, the characteristic energy per unit area. Substitution
of Equation (5) into Equation (1) and using Equation (6) gives the Gibbs equation for
the replicas

dU = TdS + γdΩ + µdN (7)

The important difference of this equation with the usual Gibbs equation is that U, S, N
are, for a small sphere, not Euler homogeneous in the surface area Ω, i.e., not proportional
to Ω. Differentiating Equation (6) and using Equation (7) we obtain what we call the
Hill-Gibbs-Duhem equation

d(γ̂Ω) = −SdT + γdΩ− Ndµ (8)

It follows from this equation that
(

∂γ̂

∂T

)

Ω,µ
= − S

Ω
≡ −s,

(
∂γ̂

∂µ

)

T,Ω
= −N

Ω
≡ −n

(
∂(γ̂Ω)

∂Ω

)

T,µ
= γ̂ + Ω

(
∂γ̂

∂Ω

)

T,µ
= γ (9)

We define the subdivision potential E by

E ≡ (γ̂− γ)Ω (10)

While the form and physical significance of Equation (7) is the same for small and
large systems, we see by using Equations (6) and (10) that the Euler equation for a small
system takes a different form
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U = TS + γΩ + µN + E (11)

which shows the central role of the subdivision potential. Equation (7) together with
Equation (8) gives

dE = −SdT −Ωdγ− Ndµ (12)

Using the Gibbs-Duhem equation in the large surface area (thermodynamic) limit it
follows that E = 0 in this limit. This implies that γ̂ = γ in the thermodynamic limit.

Equation (12) shows furthermore that
(

∂E
∂T

)

γ,µ
= −S,

(
∂E
∂γ

)

T,µ
= Ω,

(
∂E
∂µ

)

T,γ
= −N (13)

The intensive variables T, γ, µ determine all the extensive variables S, Ω, N. This is
possible for a small sphere, and is a feature specific to small systems. In the large sphere
limit S, Ω, N all become infinitely large. The change in the subdivision potential may be
written in a form more appropriate for the environment the small system is in

dE = Ω2
(

∂s
∂Ω

)

T,µ
dT −Ω

(
∂γ

∂Ω

)

T,µ
dΩ + Ω2

(
∂n
∂Ω

)

T,µ
dµ (14)

The effects of size on intensive variables, a characteristic feature of small systems,
are now directly available as the differential coefficients of Equation (14). This relation is
especially useful because the independent variables are the environment variables.

3. The Model

The one-particle canonical partition function for a small sphere with surface adsorption
follows from statistical mechanics [7]:

Q1(T, Ω) =
Ω
Λ2 exp(−βUs) (15)

where Us is the potential energy of interaction between the adsorbent and an adsorbed
molecule, Λ ≡

√
h2/(2πmkBT) is the mean thermal de Broglie wave length. Here m is the

particle mass. The N-particle canonical partition function becomes:

Q(T, Ω, N) =
1

N!
QN

1 (T, Ω) (16)

The grand canonical partition function equals

Ξ(T, Ω, µ) =
∞

∑
N=0

exp(βµN)Q(T, Ω, N)

= exp(exp(βµ)Q1(T, Ω))

= exp
{

Ω
Λ2 exp[β(µ−Us)]

}
(17)

where we used Equation (16). By introducing the expressions above, thermodynamic
properties can be derived in terms of T, Ω, µ. From Equation (17) we find for the integral
surface tension

γ̂ = − kBT
Ω

ln Ξ(T, Ω, µ) = − kBT
Λ2 exp[β(µ−Us)] (18)

This is the equation of state for the adsorbed phase controlled by the grand canonical
ensemble. The differential surface tension is given by Equation (9)
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γ = − kBT
Λ2 exp[β(µ−Us)]

(
1− βΩ

(
∂Us

∂Ω

)

T,µ

)
(19)

By using Equation (10), we can now determine the subdivision potential:

E = −
(

Ω
Λ2

)
exp[β(µ−Us)]Ω

(
∂Us

∂Ω

)

T,µ
(20)

In the thermodynamic limit Us becomes independent of Ω so that E approaches zero.
The entropy density s = S/Ω becomes using Equation (9)

s = (kB/Λ2) exp[β(µ−Us)][2− β(µ−Us)] (21)

The particle density n = N/Ω becomes using Equation (9)

n = (1/Λ2) exp[β(µ−Us)] (22)

Thermodynamic quantities of the adsorbed phase may be expressed per molecule. The
quantities are then given by particularly simple expressions. It follows from Equations (18)–(22)
that

γ̂Ω
N

= −kBT (23)

γΩ
N

= −kBT + Ω
(

∂Us

∂Ω

)

T,µ
(24)

E
N

= −Ω
(

∂Us

∂Ω

)

T,µ
(25)

S
N

= kB[2− β(µ−Us)] (26)

U
N

=
X
N

+ T
S
N

+ µ = −kBT + kBT[2− β(µ−Us)] + µ = kBT + Us (27)

For the differential entropy and internal energy we have the model expressions
(

∂S
∂N

)

T,Ω
=

(
∂s
∂µ

)

T,Ω

/( ∂n
∂µ

)

T,Ω

= kB[1− β(µ−Us)]

(28)

(
∂U
∂N

)

T,Ω
= kBT + Us (29)

4. Correspondence with Experiment

Although comparisons with experimental results are not part of this work, the reader
may be interested in the relevant relations. Furthermore, the connection to experiment
may help make the description less abstract, so we allow ourselves this small detour here.
We are mainly interested in how the thermodynamic properties of the adsorbed phase
are affected when we vary Ω. The experimental system is typically a large collection of
spherical adsorbents, such as a powder, in equilibrium with the adsorbate gas. From
an experimental perspective, by using the environment variable Ω we imply that the
small system is rigid. This is because we do not have any direct means of controlling
the adsorbent size. We control the system experimentally through the surrounding gas.
Thus, if the adsorbent is not rigid, we cannot prevent the adsorbent size from fluctuating.
Instead we treat Ω as a variable parameter, and we control Ω by performing experimental
measurements on (monodisperse) samples prepared with different values of Ω.
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In order to assess the statistical model we may derive relations connecting thermody-
namic properties of the adsorbed phase to experimentally convenient variables, see [8,9],
and Appendix A. We may asses the adsorbed phase entropy and energy per molecule, and
the differential entropy and energy (all relative to the gas) by

S
N
− sG = −kT

(
∂ ln p

∂T

)

γ̂,Ω
(30)

U
N
− uG = kT

[
1− T

(
∂ log p

∂T

)

γ̂
T ,Ω

]
(31)

(
∂S
∂N

)

T,Ω
− sG = −kT

(
∂ ln p

∂T

)

Ω,N
(32)

(
∂U
∂N

)

T,Ω
− uG = kT

[
1− T

(
∂ log p

∂T

)

Ω,N

]
(33)

where sG ≡ SG/NG is the gas entropy SG per gas molecule NG, and uG ≡ UG/NG is the
gas internal energy UG per gas molecule. These are only a selection of relations that may
be useful.

5. The Potential Us

The adsorbent functioning as an external field was represented by a sphere of uniform
density ρ and radius a, see Figure 1. The total interaction energy U was determined
by integrating the interaction energy 4πρu(rLJ)a′2 da′ between a volume element of the
adsorbent, and a gas molecule separated by the distance rLJ . The interaction potential
u(rLJ) was given by the standard Lennard-Jones 12-6 potential:

u(rLJ) = 4ε

[(
σ

rLJ

)12
−
(

σ

rLJ

)6
]

(34)

where ε is the energy parameter of the interaction, and σ is the length parameter of the
interaction. We used reduced units; ε as the unit of energy, σ as the unit of length, the gas
molecular mass as the unit of mass, and kB = 1.
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rLJ

a

Figure 1. Illustration of the adsorbent with radius a. The distance between a volume element of the
adsorbent and a gas molecule is given by rLJ , and the distance between the adsorbent center and the
same gas molecule is given by r.

Integrating Equation (34) over the spherical adsorbent we have

Figure 1. Illustration of the adsorbent with radius a. The distance between a volume element of the
adsorbent and a gas molecule is given by rLJ , and the distance between the adsorbent center and the
same gas molecule is given by r.

Integrating Equation (34) over the spherical adsorbent we have

U (a, r) =
16περσ3

3

[(
15a3r6 + 63a5r4 + 45a7r2 + 5a9)σ9

15(r2 − a2)
9 − a3σ3

(r2 − a2)
3

]
, r > a (35)
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where r is the center to center distance between the adsorbent and a gas molecule. The
location of an adsorbed molecule relative to the center of the adsorbent is R, which is
determined by the control variable Ω by the equation Ω = 4πR2. Operationally it is more
practical to control a and determine Ω by a dividing surface condition involving a, than
it is the other way around. The correspondence between R and a is established by the
condition U (a, r = R) = min[U (a, r)], i.e., for a given adsorbent size a, the location R of the
dividing surface is the location of the minimum of the potential U . Thus, the adsorption
energy Us of an adsorbed molecule is determined by a, Equation (35), the fixed chosen
condition, and a fixed value of ρ. We choose ρ = 1/

([
4π(σ/2)3

]
/3
)

.

6. Results

In this section we present calculations for the ideal adsorbed phase to show the
size dependence of some important intensive properties, and give some substance to the
thermodynamic framework.

Figure 2 shows the integral surface tension γ̂ which is the characteristic energy per
unit area, the differential surface tension γ, and the subdivision potential per unit area
E/Ω, as functions of the adsorbent radius a at constant temperature and chemical potential.
The names integral and differential are here used to refer to the relation between γ̂ and γ in
Equation (9). The quantities γ̂, γ and E are calculated by Equations (18)–(20). We observe
that when the system becomes larger, E approaches zero, and γ̂ and γ both approach a
plateau value.

0 10 20 30 40 50
a /

1.5

1.0

0.5

0.0

(k
B
T

/[
4

(
/2

)2 ]
)

T = 1, = 11.2, penv(T, ) = 72 (MPa)

= nkBT

/

Figure 2. Adsorbed phase thermodynamic quantities per unit area at constant temperature and
chemical potential. The figure shows that when the system is small the characteristic energy of the
adsorbed phase per unit area depends on the size of the adsorbent. The transition from small to
macroscopic is continuous and may reasonably be considered to be beyond 50 σ for this system.

Figure 3 shows the characteristic energy per molecule, the energy γΩ per molecule,
and the subdivision potential per molecule E/N, as functions of the adsorbent radius a at
constant temperature and chemical potential. We observe that when the system becomes
larger, E approaches zero, and γ approaches the limit value −kBT. Here, the characteristic
energy per molecule follows the 2-dimensional analogue of the ideal gas law γ̂Ω = −nkBT.
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0 10 20 30 40 50
a /

2.0

1.5

1.0

0.5

0.0

0.5

1.0

k B
T

T = 1, = 11.2, penv(T, ) = 72 (MPa)

/N
/N

/N

Figure 3. Adsorbed phase thermodynamic quantities per molecule at constant temperature and
chemical potential.

7. Discussion

As we are considering a two-dimensional ideal gas, or a dilute adsorbed phase with
free mobility, we expect the phase to follow the two-dimensional analogue of the ideal
gas law γ̂ = −nkBT. This is consistent with Equation (23) and Figure 3. When the
adsorbent size a approaches zero, the dividing surface radius R should approach the
potential minimum distance of the interaction between a single adsorbent atom and an
adsorbed molecule. This distance is 21/6σ for the Lennard-Jones potential. This is because
of the way we have defined R.

In the macroscopic limit the energy γΩ is a linear function of Ω. The tension γ
then becomes equal to the characteristic energy per unit area of the adsorbed phase, i.e.,
γ = (U − TS − µN)/Ω , for the environment T, Ω, µ. When the system is small γΩ
deviates from the characteristic energy by E , as shown by Equation (12). The integral
surface tension was therefore defined to represent this important quantity, i.e., γ̂ = (U −
TS − µN)/Ω = X/Ω. The tension γ is now given by the relation γ = ∂X/∂Ω. This
relation is always valid whether the system is small or large. It is only in the special
case of the macroscopic limit that the relation ∂X/∂Ω = X/Ω is true. The integral and
differential surface tensions are then equal. This way of stating the smallness is expressed
by Equations (9) and (10), which may be rewritten as

γ̂Ω
Ω
−
(

∂γ̂Ω
∂Ω

)

T,µ
=

X
Ω
−
(

∂X
∂Ω

)

T,µ
=
E
Ω

(36)

where E goes to zero in the macroscopic limit. Both γ̂ and γ are functions of the system size,
thus E measures the difference expressed by Equation (36), and not simply the difference
between the characteristic energy and the limit of γΩ.

The effects of size on intensive variables, characteristic of small systems, may be
expressed by the subdivision potential E and its derivatives, according to Equation (14). The
physical significance of E is more clear if we use the definitions E ≡ (γ̂− γ)Ω = X− γΩ
and Ωt ≡ NΩ to rewrite Equation (1) as

dUt = T dSt + γ dΩt + µ dNt + E dN (37)
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An alternative definition of E is then

E ≡
(

∂Ut

∂N

)

St ,Ωt ,Nt

= −Ω
N

(
∂Ut

∂Ω

)

St ,Ωt ,Nt

(38)

By this definition, we see that E is the work required to increase the number of replicas
while keeping St, Ωt, and Nt constant. Since the total surface area is constant, it must be
redistributed across the new number of replicas. The area of each replica therefore becomes
smaller, which for a fixed shape means larger curvature. Thus, the subdivision potential
for the given system, with fixed shape, is also the work required to change the adsorbed
phase curvature while keeping St, Ωt, and Nt constant. If the process of adding a system to
the ensemble is at constant Ω instead of Ωt the work is given by X = γ̂Ω = γΩ + E .

When the intensive properties become independent of the curvature E = 0, which
is consistent with Equations (9) and (10). This occurs in the macroscopic limit, when the
adsorbent becomes large, which is consistent with Figures 2 and 3. All the differential
coefficients, expressing dependence of intensive properties on curvature, are then zero, and
dE = 0 by Equation (14). It also follows from these figures that a must be larger than 50σ
for E to become small.

8. Concluding Remarks

The above analysis shows that we can use the adsorbed phase as a small thermody-
namic system in the sense of Hill. The analysis for our ideal adsorbed gas model becomes
very simple. This allows the close relationship between the subdivision potential and the
dependence of intensive properties on size, and the internal structure of nanothermody-
namics to be seen more clearly.
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Appendix A

The Gibbs-Duhem relation for a single component homogeneous phase α is given by

dµα = −sα dTα + vα dpα (A1)

where sα ≡ Sα/Nα is the entropy per molecule, and vα ≡ Vα/Nα is the volume per
molecule. At chemical equilibrium the chemical potential µ of the adsorbed phase, and the
chemical potential µG of the gas phase are subject to the relations µ = µG and dµ = dµG.
The Gibbs-Duhem relation for the ideal gas may then be written as

dµ = −sG dT + kT d log p (A2)

where p is the equilibrium gas pressure, T is the equilibrium temperature, and superscript
G denotes the gas phase.
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Using Equations (6), (8) and (A2) we have

−(dX)/N − (S/N) dT + (γ/N) dΩ = −sG dT + kT d log p
S
N
− sG = −kT

(
∂ log p

∂T

)

X,Ω

= −kT
(

∂ log p
∂T

)

γ̂,Ω

(A3)

From Equation (8) and the definition F ≡ γ̂Ω + µN we have

dF = −S dT + γ dΩ + µ dN (A4)

From this equation we obtain the Maxwell relation
(

∂µ

∂T

)

Ω,N
= −

(
∂S
∂N

)

T,Ω
(A5)

For variations in the adsorbed phase chemical potential at constant Ω and N, at
equilibrium with the gas, we then have

dµ =

(
∂µ

∂T

)

Ω,N
dT = −

(
∂S
∂N

)

T,Ω
dT = −sG dT + kT d log p

(
∂S
∂N

)

T,Ω
− sG = −kT

(
∂ log p

∂T

)

Ω,N

(A6)

From Equation (6) and the equilibrium condition µ = µG we have

U − TS− X
N

=
UG − TSG + pVG

NG

= uG − TsG + kT
(A7)

where uG ≡ UG/NG is the gas internal energy per gas molecule. We also have from
Equation (8), using Equation (A7) to eliminate X/(TN):

dµ = − 1
N

dX− S
N

dT +
γ

N
dΩ

= − 1
N

d(TX/T)− S
N

dT +
γ

N
dΩ

= − T
N

d(X/T)−
(

X
TN

+
S
N

)
dT +

γ

N
dΩ

= −
(

X
TN

+
S
N

)
dT,

(
X
T

, Ω const.
)

=
uG − TsG + kT −U/N

T
dT,

(
X
T

, Ω const.
)

(A8)

Using dµ = dµG and Equation (A8) we obtain

uG − TsG + kT −U/N
T

dT = −sG dT + kT d log p

U
N
− uG = kT

[
1− T

(
∂ log p

∂T

)

X
T ,Ω

] (A9)
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Using Equations (7), (A2), (A4) and (A7) we have

−
(

∂S
∂N

)

T,Ω
= − 1

T

(
∂U
∂N

)

T,Ω
+

µ

T

= − 1
T

(
∂U
∂N

)

T,Ω
+

uG − TsG + kT
T

−sG dT + kT d log p =

[
− 1

T

(
∂U
∂N

)

T,Ω
+

uG − TsG + kT
T

]
dT

kT
(

∂ log p
∂T

)

Ω,N
= − 1

T

[(
∂U
∂N

)

T,Ω
− uG − kT

]

(
∂U
∂N

)

T,Ω
− uG = kT

[
1− T

(
∂ log p

∂T

)

Ω,N

]

(A10)
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