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Arctic sea ice contains a substantial amount of living biota of which part is lost through
melt and export out of the Arctic Ocean every year. It is unclear how populations can
be maintained within the Arctic Ocean. A representative ice inhabitant, the amphipod
Apherusa glacialis was previously assumed to spend its entire life in the sea ice habitat,
hence being dependent on sea ice to complete its life cycle. However, several recent
studies report pelagic occurrences and suggest that seasonal vertical migrations might
be an adaptive life history trait enabling a viable population size in the Arctic Ocean.
In this study we use a particle-tracking model to investigate to what extent vertical
migration might affect the species’ retention in the Arctic Ocean and the sea ice habitat.
The modeled trajectories of A. glacialis were calculated based on ice drift and ocean
currents from a coupled ocean – sea ice model covering the Arctic Ocean. We test
two scenarios: (1) trajectories of A. glacialis that stay attached to the ice or follow
the surface currents if they melt out of the ice and (2) trajectories of A. glacialis that
undertake a seasonal vertical migration to drift with the currents at depth for parts
of the year. In the multi-year model simulations it is assumed that after an initial
period of 2 years A. glacialis that are located outside sea-ice cover each spring will
perish while those located within the ice-covered region will reproduce. The model
results show that a seasonal vertical migration both increases the total number of
individuals and leads to a population distribution within the Arctic Ocean more in line
with previous findings than the results from the non-migrating A. glacialis. Our results
support the hypothesis that a seasonal migration may be an adaptive life history strategy
in this species.
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INTRODUCTION

In general, the Arctic pelagic marine ecosystem contains very
few endemic species, mostly due to the absence of barriers and
isolation between the Arctic Ocean and its surrounding seas.
Rather, strong biogeographic connections and interchange of
water masses with the North Atlantic sub-Arctic seas, and to a
lesser extent with the North Pacific are characteristic features.
Yet, Arctic sea ice provides a unique habitat absent from sub-
Arctic seas, with a high biodiversity including a number of
endemic species [examples in Bluhm et al. (2011)]. More than
1,000 species, ranging from unicellular bacteria and algae up to
larger crustaceans, mammals and sea birds are known to live on,
in, or in close connection to the sea ice during at least parts of
their life cycle (Poulin et al., 2011; Bluhm et al., 2017). The ice
habitat also serves as platform for breeding seals (Laidre et al.,
2008; Kovacs et al., 2011), as protective habitat from predators for
young polar cod (Gradinger and Bluhm, 2004), as feeding habitat
for metazoan meiofauna in the brine channel systems (Gradinger
and Bluhm, 2020) and the underside as habitat for e.g., sea ice
associated algae and amphipods and for pelagic flora and fauna
such as various copepods, amphipods, comb jellies, etc. (Ehrlich
et al., 2020). Questions remain on how the sea ice taxa, which
mainly drift passively with ice and currents, can maintain their
populations within the Arctic Ocean when sea ice is continuously
exported from the Arctic.

The ice-cover and its drift are closely related to Arctic
Ocean hydrography and circulation. The Arctic Ocean is a
semi-enclosed ice-covered ocean, with extensive shelves and a
deep basin with maximum depths of more than 4,000 m, as
first described by Nansen (1902). The main large-scale wind-
driven surface circulation and sea ice drift features of the
Arctic Ocean are the Beaufort Gyre and the Transpolar Drift
(Figure 1). The fundamental features and current systems of
the Norwegian Sea including the Greenland-Iceland-Norwegian
(GIN) Seas and the connection to the Arctic Ocean were later
described by Helland-Hansen and Nansen mainly based on
the data collected between 1900 and 1904 (Helland-Hansen
and Nansen, 1909). A prominent feature of this circulation
is the inflow of warm surface water from the North Atlantic
that submerges under colder Arctic water when entering the
Arctic, and continues to flow through the Arctic and along
the pan-Arctic slope; modified Atlantic water in fact fills all
deep Arctic basins (Rudels et al., 2000, 2013; Figure 1). Our
knowledge of these interconnected systems has been updated
and documented in several fundamental studies (Hansen and
Østerhus, 2000; Rachold et al., 2004; Falk-Petersen et al., 2007;
Rudels, 2015; Semper et al., 2020; Wassmann et al., 2020). The
ocean current system (Figure 1) provides exchange of water,
particulate matter, phytoplankton, zooplankton, ice biota and
other matter including sediments from the Siberian shelf and
rivers, between the North Atlantic and the Arctic (Timmermans
and Marshall, 2020; Daase et al., 2021). Connectivity to the Pacific
is limited to northward inflow into the Arctic through the shallow
Bering Strait (Woodgate et al., 2005). Sea ice is a unique feature
of the Arctic Ocean, consisting of drifting pack ice and land fixed
fast ice. Approximately 50% of the ice cover has been seasonally

melting in the past, leaving the central Arctic ice covered year-
round by multi-year ice floes, yet with less and less multi-year ice
remaining in recent decades. Both annual and perennial sea ice
formed inside the Arctic are exported out following the surface
currents and prevailing winds, with the major export happening
through western Fram Strait. This transport accounts for an
estimated average export of 14% of the sea ice volume every year,
and has a strong seasonality, with most of the export happening in
the winter months from November to April (Spreen et al., 2020).

Historically, organisms living in or on the underside of the sea
ice habitat were classified into two groups: the allochthonous and
autochthonous ice-associated species. The former group consists
of species that spend parts of their life cycle in connection to the
sea ice, the latter classified organisms that were assumed to be
fully dependent on sea ice throughout their life cycle. In terms of
sea ice fauna biomass, the latter group is dominated by crustacean
amphipods (Lønne and Gulliksen, 1991a,b) originally with
four species (Gammarus wilkitzkii, Apherusa glacialis, Onisimus
nanseni, and Onisimus glacialis), later expanded to also include
Pleusymtes karstensi (Macnaughton et al., 2007). Since their
association with sea ice has been considered obligatory, these
organisms would lose both their sea ice habitat during ice melt
and be advected out of the Arctic Ocean by the Transpolar Drift
(Gulliksen and Lønne, 1991; Lønne and Gulliksen, 1991b; Arndt
and Swadling, 2006). When the sea ice melts, these organisms
are subjected to horizontal transport in the water column by
ocean currents. Unless they can remain in an area where ice
forms in the subsequent winter or they are transported back
into the ice within their lifespan, these organisms are inevitably
lost from the population. Several studies have investigated the
biomass transport of ice biota into the Greenland and Barents
Seas and estimated it to be on the order of 3.55 ∗106 t wet weight
(4.2∗105 tC) year−1 and 1.5∗105t wet weight (1.8∗104tC) year−1,
respectively (Hop et al., 2006; Wassmann et al., 2006). These
calculations and estimates, however, are based on the general
assumption that the organisms in question are truly dependent
on sea ice for their survival.

For A. glacialis (Figure 2), the most abundant of the five
assumed obligate ice-associated amphipod species, the obligatory
sea ice association may be less strong than assumed. It had
been originally considered a pelagic species (Barnard, 1959),
but extensive and regular findings of the species living on
the underside of the Arctic drift ice changed the general
understanding of its ecology to that of an autochthonous ice
associated herbivorous species (Scott et al., 1999; Beuchel and
Lønne, 2002; Werner and Auel, 2005). Recently, however, Berge
et al. (2012) and Kunisch et al. (2020) have questioned the
obligate nature of the ice association for this species. Based on
findings of A. glacialis in the deep layers of inflowing Atlantic
water into the Arctic Ocean, Berge et al. (2012) suggested a
conceptual model in which deep migration was an integrated part
of A. glacialis’ 2-year life cycle (Poltermann et al., 2000; Beuchel
and Lønne, 2002) in at least parts of the Arctic. It was suggested
that A. glacialis grazes on ice algae during the productive spring,
summer and autumn as the sea ice drifts south into the Greenland
Sea, then migrates down to depths following the current system
across the Norwegian Sea and re-enters the Arctic Ocean via the
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FIGURE 1 | Schematic of major current features in the Arctic Ocean and North Atlantic. The colored contours indicate the bathymetry (from the ETOPO1 global
bathymetry model, scale bar: depth in m). Atlantic water (AW, red lines) enters the Arctic Ocean through the Fram Strait and via a separate branch through the
Barents/Kara Seas, then circulates the Arctic Basin as a subsurface current (light red). The Beaufort Gyre and the Transpolar Drift are surface features (indicated by
white arrows) that influence sea ice drift patterns. The Lomonosov Ridge divides the Arctic Basin into the Amerasian Basin and the Eurasian Basin. Pacific Water
inflow is omitted (doi: 10.7289/V5C8276M).

north flowing Atlantic Current. Kunisch et al. (2020) conducted
an extensive review of all reported pelagic findings of A. glacialis
in the Arctic and concluded that it was regularly found in the
water column throughout the year.

In this study we examine a hypothesis based on the findings
by Berge et al. (2012) and Kunisch et al. (2020), namely that
deep vertical migration after grazing on the ice-algal bloom would
enhance the return and retention of A. glacialis in the Arctic
Ocean. This can occur in summer and until the polar night.
Such deep migration may enhance their fitness by both avoiding
predation at a time when they carry young in a large brood
pouch, and secondly by allowing them to relocate themselves
either within or even back into the Arctic Ocean by advection as
proposed by Berge et al. (2012). To test the advective component
of the hypothesis, we use a particle trajectory model. We consider
two parallel model scenarios where initially A. glacialis (as seeded
particles) are located in identical areas covering large parts of the
ice-covered Arctic Ocean. The amphipods in the two scenario

populations follow the same strategy for the periods when sea
ice-based food is available, staying attached to the ice (if ice is
available) or close to the ocean surface. For the rest of the year
the two populations behave differently, with amphipods in one
migrating downwards to the core of the relatively warm Atlantic
layer (here chosen at a depth of about 250 m; Lind et al., 2016;
Bluhm et al., 2020), while in the other they remain attached to the
ice (if available) or otherwise in the surface water layer.

MODEL SETUP AND METHODS

The coupled ocean-sea ice model used in this study is a 4 km pan-
Arctic setup (Arctic-4) of the Regional Ocean Modeling System
(ROMS, Shchepetkin and McWilliams, 2005) with a coupled
sea-ice component (Budgell, 2005). For Arctic-4 the initial
hydrodynamic fields and boundary conditions are provided by
a monthly global ocean reanalysis (Storkey et al., 2010); surface
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FIGURE 2 | Four examples of egg carrying female A. glacialis collected in the water column in January 2017 North of Svalbard. All specimens were collected by
plankton nets below 200 m. Note that all specimens carry large and relatively few eggs, in contrast to what has been reported previously (Poltermann, 2000). Adult
females most commonly have body sizes between 9 and 12 mm, but can range from 7 to 16 mm (Poltermann et al., 2000; Kunisch et al., 2020).

atmospheric forcing fields, such as near-surface wind, sea-level
pressure and temperature are provided by a global atmospheric
reanalysis (ERA-Interim: Dee et al., 2011). Tidal forcing is added
at the open ocean boundaries from the tidal model TPXO (Egbert
and Erofeeva, 2002). The Arctic-4 model has previously been
run from 1993, with the 10 first years acting as a spin-up
from ice-free conditions. Here the ocean current and ice drift
from these simulations have been used as input for a separate
particle tracking model. A more detailed description of the
Arctic-4 model can be found in Hattermann et al. (2016). In the
present study the particle (amphipod) trajectories were calculated
from the Arctic-4 model fields from the years 2008–2017. The
currents and ice drift from Arctic-4 respond to the continuously
shifting atmospheric and boundary forcing conditions. Prevailing
atmospheric conditions and current patterns may lead to
significant year to year variations in ice cover and drift patterns,
which again lead to annual variations in particle distribution and
transport in and out of the Arctic Ocean.

Trajectories of the modeled A. glacialis were computed with
TRACMASS (Döös et al., 2013, 2017) forced by the daily averaged
model velocities from the Arctic-4 model. By using the daily
averages, high frequency variability such as tides were filtered
out. To simulate the trajectories of the particles in the ice,
the model forcing was modified so that particles at the surface
follow ice-velocities, which are largely forced by the wind (e.g.,
Spreen et al., 2011), if the ice cover in the region is above 10%.
Otherwise, the particles follow the water masses transported by
the ocean currents. This 10% threshold for ice drift to replace
surface current drift is slightly lower than the 15% often used
to describe the sea ice extent (e.g., Stroeve et al., 2012),1 but
was chosen as we assumed A. glacialis to have a high preference

1https://earth.gsfc.nasa.gov/cryo/data/current-state-sea-ice-cover

to stay in the ice when food is available, even at low sea ice
concentrations. To model vertical migration, the model was
run according to a specific procedure, where particles were
removed and subsequently reseeded at different depths. This
simplified procedure assumes that the migration itself is a short
process and the drift patterns during the vertical migration
itself were not considered. The dominating ocean circulation
patterns and associated sea ice drift are sketched in Figure 1.
However, there are temporal fluctuations in the current and ice-
drift due to changing weather patterns that can influence the
particle transport in the model. For example, the Norwegian
Atlantic Current can be ∼20% stronger in its mean flow in
winter (Andersson et al., 2011), and wind forcing accounts for
a large fraction of the variation of summer-fall sea ice extent
in the Arctic (Ogi et al., 2010). Yet in the present study our
focus is on the broad-scale differences in amphipod distributions
with and without vertical migrations, recognizing that absolute
magnitudes will differ between years.

With the applied setup, the trajectories could be followed
both as particles leave and re-entered the ice-covered regions.
In the experiments, a large sector of the Arctic was seeded with
approximately 350,000 particles (Figure 3) on 1 April 2008, and
the individual trajectories were followed for several years (first for
the period 2008–2013, and then in a separate run for 2008–2017).
For modeling purposes, the yearly cycle of A. glacialis was split
into two periods: the biologically active season (approximately
when A. glacialis are assumed to be feeding on fresh algal
material and algal detritus at/near the sea ice; Scott et al., 1999;
Poltermann, 2001) 1 April – 31 July, and the biologically passive
period 1 August – 31 March (little primary production (Leu et al.,
2015), with little or no feeding). The trajectory model was first
run for 2 years for two different scenarios: one with no vertical
migration, and the other with seasonal migration as was proposed
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FIGURE 3 | Ice cover in Arctic-4 1 April 2008 (left) and initial particle seeding sector in black (right). The color scale (left hand side) shows sea ice cover in percent.

by Berge et al. (2012). For the non-migrating scenario, we allowed
A. glacialis to follow the ice drift if located in an area with ice
cover greater than or equal to 10%. In contrast, A. glacialis was
allowed to drift with the surface current when they reached areas
with less ice cover (<10%). For the migrating scenario, A. glacialis
had the same behavior in the active period (1 April – 31 July)
but migrated down to 250 m (or the sea bottom if shallower) and
followed the ocean currents passively at that depth for the period
1 August – 31 March before they migrated back up to the surface
every 1 April. The water depth of 250 m was chosen because it
is a reasonable approximation of the Atlantic layer core in the
study area where temperatures are above 0◦C (and even warmer
in the Atlantic inflow area of the Fram Strait and Barents Sea) and
salinity is at 34.8–35.0 (Loeng, 1991; Lind and Ingvaldsen, 2012;
Bluhm et al., 2020) and current velocities northward can reach
upward of 15 cm s−1 (Aksenov et al., 2011; Menze et al., 2019).
For simplicity, vertical migration in the model was assumed to
occur at the same time every year for all individuals. The choice
of timing of the arrival after migration up to the sea ice is based
on the observation of the predominance of small size classes in
the sea ice habitat in spring months (Melnikov, 1997; Kunisch
et al., 2020). The timing of migration to depth is inferred from
observations of mating during early winter, the finding of gravid
females in deeper water layers, and the virtual absence of gravid
females in surface layers from spring to fall (Melnikov, 1997;
Poltermann et al., 2000; Berge et al., 2012; Kunisch et al., 2020).
The vertically migrating particles thus avoid following the ice
drift during the winter months, when the major sea-ice transport
through the Fram Strait occurs (Spreen et al., 2020). Although
the sea ice transport may vary from year to year, this behavior
was expected to lead to a significant reduction in the transport of
particles from the Arctic to the GIN seas.

For practical reasons the representation of mortality and
reproduction in the particle tracking model was simplified. From

the start of the simulation, 1 April 2008 until 1 April 2010, the
number of particles representing A. glacialis was kept constant
(unless they exited the model domain). Subsequently, starting in
2010 and each 1 April from then on, all particles were counted
and split into two groups: group one included those remaining or
having re-entered the ice-covered region (defined as greater than
or equal to 10% ice cover) and group two included those located
in the open ocean. The model was then reseeded with 2 particles
for each particle in group one (representing reproduction) and
run forwards until next 1 April. The particles in group two
were removed and accounted for mortality/population loss every
year. This procedure was used to represent a simplified life
cycle with mortality and reproduction, where an average of two
offspring survived each year (for particles in the sea ice). With this
simplistic 1:2 reproduction rate there was population growth for
both scenarios (migrating and non-migrating) and the number of
particles became impractical for the model to handle after 5 years
(2013). In addition, we assumed that individuals may survive in
the water column during the entire winter period but die if they
are located in a totally ice-free area the following 1 April. Hence,
the modeled A. glacialis may leave the sea-ice after 1 April and
still be able to survive and reproduce later if they re-enter the
sea-ice habitat before 1 April the following year. During such a
pelagic stage, one possible return-route to the sea-ice habitat for
the migrating particles could be to follow the Atlantic Current
northwards, as proposed by Berge et al. (2012).

To analyze general longer-term distribution patterns and
inter-annual variability, a separate run was performed for both
scenarios until 2017, only accounting for mortality (using a 1:1
reproduction rate for individual particles in sea-ice). The reason
for using a 1:1 reproductive rate in this model run is a practical
one, namely that the model could not handle the population
growth with the previously used 1:2 rate in the long term. These
simulations diverge from the first ones from 2010. For each 1
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FIGURE 4 | (Left panel) Start position 1 April 2008 (red) and end position 31 July 2008 (black, superimposed) of tracked particles. (Right panel) particle density 31
July 2008 (color scale indicates particles per box, dividing the domain into a 200 × 200 grid), with the ice-edge (10% ice cover) drawn as a black line.

April following this, particles that are located outside the sea
ice are removed from the simulation. This leads to a year-to-
year decline in particles for both migrating and non-migrating
particles but at different rates.

RESULTS

Particle Distribution Before Migration
Since both the migrating and non-migrating model particles
stayed at the ocean surface and followed the ice drift pattern
during the first period (1 April 2008 – 31 July 2008), the
trajectories of the two model scenarios were identical, and the
end positions for the particles are shown in Figure 4. Clearly,
the transport through the Fram Strait was significant, and
particularly high concentrations of particles could be found in
and south of the Fram Strait and in the marginal ice zone along
the Barents and Kara Sea shelves. The ice drift in the Bering,
Chukchi, and East Siberian Seas led to a northwards transport,
resulting in large parts of the marginal ice zone in those shelf
regions being devoid of A. glacialis during this period.

Particle Distribution After First Vertical
Migration
From the 1 August 2008 and the onset of amphipod vertical
migration in scenario 2, the particle densities of the two scenarios
differed, (Figure 5 shows the concentrations 1 April 2009 –
1 April 2010). It is clear that after the first period with deep
vertical migration (Figure 5A) a visibly larger amount of the
non-migrating particles was transported out through the Fram
Strait with the Transpolar Drift, exiting the Eurasian Basin
north of Svalbard. For the migrating particles that avoided the
upper ocean transport toward the Fram Strait for large parts

of the year, densities north of Svalbard and the Arctic Basin
remained high, especially along the shelf break to the Kara Sea
and the Siberian shelf, as well as the St. Anna Trough (Figure 5,
right hand side). In contrast, the number of non-migrating
particles in these areas are greatly reduced by 1 April 2010
(Figure 5, left hand side). Recounting the number of particles
after 2 years of simulations (Figure 5C) for both scenarios
revealed that about 88% of the migrating particles ended up
in ice-covered waters, whereas only 62% of the non-migrating
particles remained under ice.

Particle Distribution After Reproductive
and Mortality Events
From 1 April 2010 the scenarios were run with the 1:2
reproduction rate and the mortality assessment (particles in
open water by 1 April) as previously described. This led to
an increase in total population numbers in both cases, but the
vertically migrating population grew faster since a higher share
of these particles were located within the ice every 1 April. The
particle densities for both cases for each 1 April in the years
2010 – 2013 (Figure 6) showed clear differences between these
two cases. The migrating particles were more evenly spread
within the Arctic Ocean, except for low concentrations over the
Siberian shelf. The non-migrating particles on the other hand
largely exited the Eurasian Basin and were mostly located in
high concentrations within the Beaufort Gyre domain in the
Amerasian Basin. Also, the total amount of particles differed
between the two populations, with the migrating particle number
increasing at a higher rate. By 1 April 2013 the migrating
population was nearly twofold larger, consisted of more than
1.4 million particles whereas the non-migrating population had
reached about 750,000 particles. For the non-migrating particles,
the seasonal reproduction was not enough to compensate for the
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FIGURE 5 | Density plots of modeled particles for panel (A) 1 April 2009, (B) 1 August 2009, and (C) 1 April 2010. The left column represents the non-migrating
scenario, while the right column represents the migrating scenario. Black line delineates 10% ice cover margin. The color scale indicates particles per box, dividing
the domain into a 200 × 200 grid.

rapid transport away from the Eurasian Basin, leading to this
area being largely devoid of particles by 1 April 2013. Particles
that performed a vertical migration avoided the rapid transport

of ice with the Transpolar Drift toward the Fram Strait for the
winter period and could recolonize new ice the next spring when
migrating back toward the surface.
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FIGURE 6 | Density plots (snapshots) of particles under ice 1 April for the years (A) 2010, (B) 2011, (C) 2012, (D) 2013. These simulations represent a 2:1
reproduction rate. The left column represents the non-migrating scenario while the right column shows the migrating scenario. The 10% ice cover margin is not
delineated in this figure.

Mortality Effect
To get a longer-term perspective of mortality effects, both
scenarios were rerun for a longer period (from 2010 to 2017),

but assuming a lower reproductive rate where each particle in
the ice was reseeded 1:1 every 1 April. This scenario in both
cases (migrating and non-migrating) led to decreasing particle

Frontiers in Marine Science | www.frontiersin.org 8 December 2021 | Volume 8 | Article 772766

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-772766 December 9, 2021 Time: 20:33 # 9

Drivdal et al. Deep Vertical Migration of A. glacialis

FIGURE 7 | Density plots (snapshots) of particles under ice 1 April for the years (A) 2014, (B) 2015, (C) 2016, (D) 2017. These simulations represent a 1:1
reproduction rate. The left column represents the non-migrating scenario while the right column shows the migrating scenario. Note that the color scale differs from
Figure 6. The 10% ice cover margin is not delineated in this figure.

numbers. For these simulations, the distribution pattern was
similar to what is shown in Figure 6 for the years 2010 – 2013, but
with lower concentrations. The subsequent development for the
years 2014 – 2017 is shown in Figure 7. For the non-migrating

particles, the total population size initially dropped rapidly as
most A. glacialis in the Eurasian Basin exited through the Fram
Strait within the first few years. From 2013, the population size
decreased at a much lower rate, as most remaining particles
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were located in the Amerasian Basin and tended to circulate
the basin with the Beaufort Gyre rather than following the
Transpolar Drift toward and exiting through the Fram Strait.
The number of migrating particles decreased at a steadier yet
slower pace, as the transport out through the Fram Strait was
slowed due to the seasonal migration. From 2016 to 2017 the
spreading pattern of the non-migrating particles shifted quite
rapidly in that also particles in the Beaufort Gyre/Amerasian
Basin moved toward the Fram Strait, indicating a change in the
drift during this period.

DISCUSSION

In this paper we studied the possible effects of seasonal migration
of the amphipod A. glacialis on their population size and
distribution within the Arctic Ocean using a particle tracking
model. In our simulations we separately ran the model with two
scenarios: (a) A. glacialis that stay close to the surface, following
the ice drift or surface current year-round and (b) A. glacialis
that behave in the same manner 1 April to 31 July but perform
a deep vertical migration staying at 250 m for the rest of the
year. After the first summer (31 July 2008) the particles were
evenly distributed in the Arctic Ocean, the GIN Seas and the
Barents Sea. However, after the initial 2 years, the number of non-
migrating particles were reduced to nearly 60%, while the number
of migrating particles remained high, nearly 90% of the original.
Another interesting result was that, as years progressed to 2013,
the non-migrating particles were mostly retained in the ice-
covered Beaufort Gyre. Very few of the non-migrating particles
were found in the central Arctic Ocean Basin, along the shelf
break along Siberia, the shelf areas as well as the northern Barents
Sea, in Svalbard waters, the Fram Strait and the Greenland Sea.
The non-migrating particles were largely transported away from
these areas and lost as the ice is melting. This is not surprising
since the upper ocean currents in this region can lead to transport
from the Siberian shelf to the Fram Strait within approximately
1 year (Timmermans and Marshall, 2020). On the other hand,
the migrating particles were well distributed throughout the
Arctic Ocean, along the shelf breaks, the Fram Strait and the
northern Barents Sea.

The Transpolar Drift, along with the seasonal melting of sea
ice in the Fram Strait, Greenland and Barents Seas, represents a
large one-way transport of the core population of ice amphipods
out of the Arctic Ocean. Accordingly, the ice amphipods
(including A. glacialis) released as the ice melts over deep
oceans, have been assumed to be permanently lost from their
populations being subjected to predation in the pelagic system
and/or become part of the vertical carbon flux (Lønne and
Gabrielsen, 1992; Werner et al., 1999; Hop and Pavlova, 2008).
Our findings, however, support the hypothesis of Berge et al.
(2012) that A. glacialis instead reaches a more stable population
size through performing a seasonal vertical migration. After they
are transported by the ice drift into the GIN Seas, they migrate to
depths in autumn and into the inflowing Atlantic Currents, being
able to be transported back to the core population within the then
ice-covered parts of the Arctic Basin. Further, our results suggest

that without a seasonal vertical migration A. glacialis would be
absent from most of the Arctic Ocean and a core population
would only be maintained in the Beaufort Gyre. We argue that the
seasonal vertical migration is a generally useful trait in lipid-rich,
high-latitude herbivores as has been shown for the high-latitude
Calanus copepods (Falk-Petersen et al., 2007, 2009).

Is a Deep Migration Feasible?
Our model output supports the concept that vertical migration
behavior of A. glacialis as suggested based on observations of
A. glacialis in deeper water layers in the Arctic Ocean (Berge
et al., 2012; Kunisch et al., 2020) acts as a strategy that enhances
survival and maintains a stable population in the ice-covered
Arctic. Furthermore, since the suggested migrations are assumed
to occur in the autumn after the peak of primary production it is
a strategy that would not require additional energy reserves for
the period the species would spend at depth. Apherusa glacialis
is a mainly herbivorous species feeding on ice algae as well as
phytoplankton when those sources are available (Scott et al.,
1999; Kohlbach et al., 2016). During that time, it builds up lipid
resources resulting in high lipid content from 45 to 60% lipids
of dry mass (Berge et al., 2012; Kohlbach et al., 2016). These
are lipid levels on par with those found for other key Arctic
herbivorous species such as the copepods Calanus finmarchicus,
C. glacialis, and C. hyperboreus. These three Calanus species are
known for their unique life history strategies, feeding on high
latitude blooms until they have filled their lipid depots, then
migrating to depth for overwintering (Conover and Huntley,
1991; Falk-Petersen et al., 2000, 2009; Lee et al., 2006). While
the benefits of diel vertical migrations are linked to predator
avoidance, those of seasonal vertical migration have rather been
linked to enduring the food-poor season (for herbivores) with
lowered metabolic rates outside the often colder surface while
subsiding on stored energy (Hagen, 1999). Apherusa glacialis also
has the energy reserves needed to survive a long winter without
feeding (Werner and Auel, 2005). Arctic blooms, consisting of
ice algae and pelagic phytoplankton, are spatially variable and
can occur at any time between March and September, dependent
on light, nutrients, ice conditions, leads and opening in the sea
ice, and upwelling of nutrients through the halocline in the
Arctic Ocean and along the shelf break (Zenkevich, 1963; Daase
et al., 2013; Ardyna et al., 2014; Falk-Petersen et al., 2015; Darnis
et al., 2019; Randelhoff et al., 2020). The three Calanus species
have life history strategies which are geared to different bloom
situations. While C. finmarchicus mainly feeds on the traditional
spring – summer bloom, the two other species being larger in size
with large lipid stores, can utilize the bloom at any time during
the primary production period between the spring and autumn
equinoxes (Falk-Petersen et al., 2000). As soon as the Calanus
species have filled up their lipid reserves they will migrate down
to depth being transported by the interconnected current system
inside and outside of the Arctic Ocean (Falk-Petersen et al., 2007).
The seasonal migration to deep waters can take place as early as
May – June and as late as September (Falk-Petersen et al., 2009).
The present study, together with records of pelagic occurrences
(Kunisch et al., 2020) and high lipid content (Berge et al.,
2012; Kohlbach et al., 2016) suggest that similar strategies are
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conceivable for a sympagic species such as A. glacialis. Whether
or not A. glacialis is actively feeding during the phase at depth is
unclear, though recent trophic marker studies suggest they may
continue feeding (Kunisch et al., unpubl. data).

Another important part of the life history of A. glacialis
that needs to be considered in evaluating the feasibility and
ecological role of deep vertical migration is its life cycle. Apherusa
glacialis has a lifespan of 2 years (Melnikov and Kulikov, 1980;
Poltermann, 1998). Though it has initially been assumed to
have a high fecundity compared to most gammarid amphipods
with 370–727 eggs per female year−1 (Poltermann, 2000), our
recent observations show the number of eggs to be much lower
(pers. obs. by author group, Figure 2). The here evaluated deep
vertical migration is consistent with in situ observations that
gravid A. glacialis females are more or less absent from spring
to fall when these amphipods can be abundant under sea ice.
Gravid females have, however, lately been regularly observed in
deeper layers of the Arctic Ocean north of Svalbard in polar
night months (Berge et al., 2012; Kunisch et al., 2020). In terms
of required energy reserves and development, a deep migration
in the polar night to layers consisting of water masses with
temperatures several degrees higher than those found close to
the sea ice might be advantageous for the developing juveniles
carried in the brood pouch of the female. In spring, high
numbers of freshly hatched juvenile stages (1–2 mm body length)
directly under sea ice indicate upward migration of females
with fully developed juveniles (or even of juveniles themselves)
by that time. This timing is thought to take advantage of the
ice algal spring bloom in sea ice (Kunisch et al., 2020) that
precedes the pelagic bloom by weeks to months (Leu et al., 2015;
Wassmann et al., 2020).

Model Set-up, Performance, and Caveats
With the model approach used in this study we simulated
the trajectories of A. glacialis following both the sea-ice drift
and ocean currents for several years. The current model set-
up is clearly a simplistic first step to link the life strategy of
A. glacialis to the Arctic hydrographic conditions, and future
modifications to the model could reveal more details. Future runs
could be modified to use observation-based abundance estimates
of A. glacialis including their spatial variation. This species is
the most abundant of sympagic amphipods with densities that
vary from 0 to >150 ind. m−2 with large spatial variation at
multiple scales (Kunisch et al., 2020). Highest values reported are
from around Svalbard and the Beaufort shelf, and lowest from
the Beaufort Gyre (synthesized in Bluhm et al., 2017). Apherusa
glacialis have not been reported from the Bering and southern
Chukchi Seas (ibid.). In addition, experimental work focused on
reproductive success could constrain a reproductive ratio closer
to reality. Here our model estimates that a reproductive rate
between 1:1 (loss) and 1:2 (increasing populations) would result
in near constant abundances.

We chose a migration depth of 250 m, based on a combination
of highest current velocities thereabouts in the core Atlantic
layer in the Atlantic inflow region (Bluhm et al., 2020; Polyakov
et al., 2020) and known vertical migration behavior of Calanoid
copepods (Søreide et al., 2010; Daase et al., 2013). Modeled

outputs (especially years 2012 and 2013, Figures 6C,D) showed
the effect of this choice in enhanced A. glacialis particle
concentrations at the shelf break in the Kara and Siberian Seas
where the Arctic Circumpolar Boundary Current (ACBC) is the
likely vector and reaches velocities on the order of 20 cm s−1

(Bluhm et al., 2020). We did not adjust particle depth although
we are aware that the ACBC eventually becomes deeper during
its transit into and throughout the Amerasian Basin (Bluhm et al.,
2020). Adjusting the migration depth according to the ACBC
could result in the particles following the current trajectory
more closely. So far, however, the observational evidence rather
suggests that A. glacialis may occupy several depths (Kunisch
et al., 2020). Considering this, the choice of a constant migrating
depth probably underestimates the spread of the migrating
particles. The more important finding, however, is that the higher
numbers of migrating than non-migrating particles retained
inside the Arctic Ocean largely stems from avoiding the major
export with the ice in the winter months through the Fram Strait,
which indicates that a pelagic state at any depth is advantageous
for the retention in the Arctic. In the model simulations the
migrating A. glacialis all undertake a deep migration at fixed
dates and are assumed to passively stay at depth for the entire
period from 1 August to 31 March the following year. This is
clearly a simplification that possibly leads to an overestimated
difference in the spreading pattern between the migrating and
non-migrating particles. Algal productivity in the Arctic Ocean
can occur also past August 1, as recently shown through remotely
sensed algal autumn blooms (Ardyna and Arrigo, 2020). A more
likely vertical movement pattern is that the deep migration is
restricted to a shorter period. Furthermore, it seems reasonable
to assume that the timing of the migration is more flexible
and could be triggered at an individual and regional level, by
e.g., lipid reserves being filled or by reduced sea ice extent or
food concentrations. This is also more in line with the fact that
A. glacialis can be found in the entire water column throughout
the year (Kunisch et al., 2020). Adding individual behavior such
as feeding to the model would require information about the
quantity of food sources. A possible approach to this could be to
run a coupled hydrodynamic, sea ice and biogeochemical model
system that simulates e.g., ice algae blooms. However, running
such a coupled system would greatly increase the computational
cost. An advantage of the simpler approach in this study is
the computational efficiency and hence the possibility to run
simulations with a large number of particles. We consider
therefore our approach as a first step to investigate the possible
effect of vertical deep migration of A. glacialis. Although the
simplified migration pattern introduces uncertainty, the clear
results from the simulations show that a vertical deep migration
will have a large impact on the spreading of this species.

The model simulations showed a change in the drift pattern
during 2016–2017, as non-migrating particles that were in the
Beaufort Gyre and Amerasian Basin drifted quite rapidly toward
the Fram Strait. This feature is possibly related to the unusual sea
ice cover pattern in 2016, which exhibited a record-low sea ice
extent at the start of the year followed by a higher-than-expected
sea ice extent in July-September and a record late freeze-up in the
central Arctic (Petty et al., 2018).
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CONCLUSION

Seasonal vertical migration considerably enhanced both the
survival of A. glacialis and its retention within the Arctic Ocean
region in our model. With a simplified parametrization of
reproduction/mortality, the population increased from a factor
slightly above 2 to a factor of 4 over the course of 5 years when
vertical migration was included. We suggest that this behavior
will increase survival in a warmer Arctic with little sea ice. If
this pattern holds true even for a fully ice-free Arctic, however,
remains questionable, and additional targeted sampling will be
beneficial. Targeted sampling would help our understanding if
A. glacialis conducts vertical migrations en masse, similar to
Calanus spp. One way to further test this hypothesis is by
conducting a population genetics study in which we would
hypothesize less genetic structure if A. glacialis was indeed
conducting seasonal vertical migration, while we would expect
more genetic differences if the species was entirely sympagic
and more constrained to either the Transpolar Drift or the
Beaufort Gyre systems.
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