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Abstract—This paper presents an analysis of snake loco-
motion that explains how non-uniform viscous ground friction
conditions enable snake robots to locomote forward on a planar
surface. The explanation is based on a simple mapping from
link velocities normal to the direction of motion into propulsive
forces in the direction of motion. From this analysis, a controller
for a snake robot is proposed. A Poincaré map is employed to
prove that all state variables of the snake robot, except for the
position in the forward direction, trace out an exponentially
stable periodic orbit.

I. INTRODUCTION

Inspired by biological snakes, snake robots carry the
potential of meeting the growing need for robotic mobility
in challenging environments. Snake robots consist of serially
connected modules capable of bending in one or more planes.
The many degrees of freedom of snake robots make them
difficult to control, but provides traversability in irregular
environments that surpasses the mobility of the more conven-
tional wheeled, tracked and legged forms of robotic mobility.

There are several reported works aimed at analysing and
understanding snake locomotion. Gray [1] conducted empiri-
cal and analytical studies of snake locomotion already in the
1940s. Hirose [2] studied biological snakes and developed
mathematical relationships characterizing their motion, such
as the serpenoid curve. Other works on modelling and
control of snake robots include [3]–[10]. All these works
provide interesting analyses and simulation results that con-
tribute to the understanding of snake locomotion. However,
in the authors’ opinion, previously published research on
snake robots has not presented an explicit mathematical
description that easily explains how a snake robot possessing
non-uniform friction properties is able to produce forward
motion on a flat surface (such a description represents the
first contribution of this paper).

The method of Poincaré maps [11] represents a widely
used tool for proving the existence and stability of periodic
orbits of dynamical systems [12]. To the authors’ best knowl-
edge, Poincaré maps have never before been employed for
the analysis of snake locomotion (such an analysis represents
the second contribution of this paper).

This paper provides two contributions. The first contribu-
tion is the development of a simple relationship between link
velocities normal to the direction of motion and propulsive
forces in the direction of motion that explains how snake
robots influenced by non-uniform viscous ground friction is
able to locomote forward on a planar surface. The second
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Fig. 1. Illustration of the Poincaré map corresponding to a Poincaré section
S.

contribution is the use of a Poincaré map to study stability
properties of snake robot locomotion. More specifically, a
Poincaré map is employed to prove that all state variables of
a snake robot, except for the position in the forward direction,
trace out an exponentially stable periodic orbit when the
proposed controller is applied.

The paper is organized as follows. Section II gives an
introduction to Poincaré maps. Section III presents a math-
ematical model of a planar snake robot. Section IV presents
an analysis of snake locomotion. Section V proposes a
controller for the snake robot. Stability analysis of the snake
locomotion based on a Poincaré map is presented in Section
VI. Finally, Section VII presents concluding remarks.

II. INTRODUCTION TO POINCARÉ MAPS

This section gives an informal presentation of the
Poincaré map since this is used as a stability analysis tool
in Section VI. The presentation is based on [11] and [12].

A. General description of Poincaré maps
The Poincaré map represents a widely used tool for

analysing the existence and stability of periodic orbits of
dynamical systems. Consider an autonomous (not explicitly
dependent on time) n-dimensional dynamical system of the
form

ẋ = f (x) , x ∈ Rn (1)

where f (x) is assumed to be continuously differentiable.
Assume that the solution of this differential equation for a
particular initial condition is a limit cycle. This means that
the flow of x in the n-dimensional state space will return
to the initial condition after a time T , corresponding to the
period of the limit cycle.

We now define an (n − 1)-dimensional hyperplane S
(called a Poincaré section) such that the limit cycle intersects
and passes through S at some instant in time. We denote
by x ∈ Rn−1 the (n − 1)-dimensional state vector when x
is constrained to S. The point on S where the limit cycle
intersects S is denoted x ∗ ∈ Rn−1. Assume now that we
initialize (1) on the hyperplane S somewhere close to x∗.
Due to the continuity of the solutions of (1) with respect
to the initial condition, the flow of x will, in approximately



T seconds, return to and intersect S somewhere close to x∗.
This is illustrated in Fig. 1. The mapping from an initial point
x on S to the next point where the flow of x intersects S is
called the Poincaré map and is denoted by P (x) ∈ Rn−1.
The Poincaré map is in other words a function that accepts
an initial point on a Poincaré section as input and outputs
where the Poincaré section will be intersected next by the
flow of x. This is written more formally as P : S → S. The
point x∗ is called a fixed point of the Poincaré map since the
Poincaré map maps x∗ back to itself. This is also illustrated
in Fig. 1. We only consider one-sided Poincaré maps, i.e. we
only consider crossings of S in directions corresponding to
the direction of ẋ when x initially left S.

The Poincaré map can be interpreted as a discrete-time
system with an (n− 1)-dimensional state space that evolves
on the Poincaré section. This is seen by denoting by x [k] ∈
S the point of the k-th intersection with S by the flow of x.
The Poincaré map may then be written as

x [k + 1] = P (x [k]) , x [0] ∈ S (2)

which is a discrete-time system.
The usefulness of the Poincaré map for stability analysis

lies in the fact that local exponential stability of the fixed
point x∗ on the Poincaré section is equivalent to local
exponential stability of the underlying periodic orbit [12], i.e.
nearby orbits converge exponentially to the periodic orbit.
Note that the stability is only asymptotic (i.e. not expo-
nential) if f (x) in (1) is continuous, but not continuously
differentiable [12]. The problem of determining if a periodic
orbit of the system (1) is exponentially stable is, in other
words, reduced to determining if x∗ is an exponentially
stable equilibrium point of the discrete-time system in (2),
which is a much simpler problem to solve. A significant
drawback of Poincaré maps is that they provide little insight
into properties of the system dynamics.

Note that the method of Poincaré maps may also be
applied to non-autonomous periodic systems, i.e. systems
of the form ẋ = f (x, t), by incapsulating the time t in
an augmented periodic state variable β = 2πt/T . This is
performed for the snake robot in Section VI-A.

B. Practical application of Poincaré maps
This section provides an informal description of the

practical use of Poincaré maps. The aim is to show how this
method can be employed in practice in order to investigate
the stability properties of a time-periodic dynamical system.
1) Calculating the Poincaré map: It is difficult to de-

termine the Poincaré map analytically since it requires
the solution of the differential equation (1). However, the
Poincaré map of (1) is simply the forward integration of
this differential equation. It is therefore possible to compute
the Poincaré map P (x0) numerically by initializing (1) on
S at x0 and simulating (1) until S is intersected. The state
corresponding to this intersection is the Poincaré map P (x0).
2) Locating fixed points of the Poincaré map: The easiest

way of locating a fixed point x∗ of the Poincaré map is to
simply let the simulation of (1) run until it reaches the steady
state. This is called the brute-force approach and has three
serious disadvantages. First of all, convergence to the fixed
point can be exceedingly slow. Secondly, the method can

only locate stable fixed points. Thirdly, it may be difficult to
tell when the steady state has been reached.

A more sophisticated method is to exploit the fact that
locating x∗ is equivalent to locating zeros of the error
function

E (x) = P (x)− x , E (x) ∈ Rn−1 (3)

since we have that x∗ = P (x∗). The Newton-Raphson
algorithm [11] is a general algorithm for locating zeros of
a differentiable function, and may therefore be employed
for locating x∗. By starting from an inital guess, xk, of the
fixed point, the Newton-Raphson algorithm calculates a more
accurate estimate of x∗ through the formula

xk+1 = xk − JE
¡
xk
¢−1

E
¡
xk
¢

(4)

where

JE =
∂E

∂x
=

⎡⎢⎢⎣
∂E1

∂x1
· · · ∂E1

∂xn−1
...

. . .
...

∂En−1
∂x1

· · · ∂En−1
∂xn−1

⎤⎥⎥⎦ ∈ Rn−1×n−1 (5)

is the Jacobian of the error function E (x). The Jacobian
JE
¡
xk
¢

can be calculated numerically by defining

dxi =
£
0 · · · 0 ∆i 0 · · · 0

¤T ∈ Rn−1 (6)

where the i-th element is non-zero and ∆i is a small
perturbation of xi along S. Column i of JE

¡
xk
¢

may then
be approximated numerically as

∂E

∂xi

¡
xk
¢
≈

E
¡
xk + dxi

¢
−E

¡
xk
¢

∆i
(7)

This enables a column-wise construction of JE
¡
xk
¢
. If the

initial condition is within the basin of attraction of a periodic
orbit, the Newton-Raphson algorithm will converge rapidly
towards the fixed point x∗.
3) Analysing stability of a periodic orbit: As explained

in Section II-A, a fixed point x∗ of the Poincaré map
corresponds to a periodic orbit of the underlying dynamical
system. Once the fixed point has been found using e.g.
the Newton-Raphson algorithm, the stability of the periodic
orbit may be tested by investigating if the fixed point is
a stable equilibrium point of the Poincaré map, i.e. of the
discrete-time system (2). This is done by calculating the
Jacobian linearization of the Poincaré map about the fixed
point, i.e. by calculating the Jacobian JP (x

∗) = ∂P
∂x

¯̄
x=x∗ ∈

Rn−1×n−1. JP (x
∗) is calculated by following the same

procedure as for calculating JE
¡
xk
¢

in (5). The Poincaré
map linearized about the fixed point is thereby given as
x [k + 1] = JP (x

∗)x [k]. This is a linear discrete-time
system which is exponentially stable if the magnitude of
all the eigenvalues of JP (x

∗) are strictly less than one.
The fixed point x∗ of the Poincaré map, and thereby also
the periodic orbit of the underlying dynamical system, is
therefore locally exponentially stable if the magnitude of all
the eigenvalues of JP (x∗) are strictly less than one.

III. A MODEL OF THE SNAKE ROBOT

This section gives a brief introduction to a mathematical
model of a planar snake robot previously presented in [10].



Fig. 2. Kinematic parameters for the snake robot.

Fig. 3. Forces and torques acting on each link of the snake robot.

A. Notations and defined identities
The snake robot consists of n links of length 2l intercon-

nected by n−1 joints. The mathematical identities defined in
order to describe the kinematics and dynamics of the snake
robot are described in Table I and illustrated in Fig. 2 and
Fig. 3. All n links have the same length, mass, and moment
of inertia. The total mass of the snake robot is therefore nm.
The mass of each link is uniformly distributed so that the link
CM (center of mass) is located at its center point (at length
l from the joint at each side).

The following vectors and matrices are used in the
subsequent sections:

A :=

⎡⎢⎣1 1
. .

. .
1 1

⎤⎥⎦,D :=

⎡⎢⎣1 −1
. .

. .
1 −1

⎤⎥⎦
where A ∈ R(n−1)×n and D ∈ R(n−1)×n. Furthermore,
e :=

£
1 . . 1

¤T ∈ Rn E =

∙
e 0n×1

0n×1 e

¸
∈ R2n×2

Symbol Description Associated
vector

θi Angle between link i and global x axis. θ ∈ Rn
(xi, yi) Global coordinates of CM of link i. x, y ∈ Rn
(px, py) Global coordinates of CM of snake

robot.
p ∈ R2

ui Actuator torque exerted on link i from
link i+ 1.

u ∈ Rn−1

ui−1 Actuator torque exerted on link i from
link i− 1.

u ∈ Rn−1

fR,x,i Friction force on link i in x direction. fR,x ∈ Rn
fR,y,i Friction force on link i in y direction. fR,y ∈ Rn
hx,i Joint constraint force in x direction on

link i from link i+ 1.
hx ∈ Rn−1

hy,i Joint constraint force in y direction on
link i from link i+ 1.

hy ∈ Rn−1

hx,i−1 Joint constraint force in x direction on
link i from link i− 1.

hx ∈ Rn−1

hy,i−1 Joint constraint force in y direction on
link i from link i− 1.

hy ∈ Rn−1

TABLE I
DEFINED MATHEMATICAL IDENTITIES.

sin θ :=
£
sin θ1 .. sin θn

¤
T∈Rn cos θ :=

£
cos θ1 .. cos θn

¤
T∈Rn

Sθ := diag(sin θ1, .., sin θn) Cθ := diag(cos θ1, .., cos θn)

B. Kinematics
The snake robot moves in the horizontal plane and has

a total of n + 2 degrees of freedom. The absolute angle,
θi, of link i is expressed with respect to the global x axis
with counterclockwise positive direction. As seen in Fig. 2,
the relative angle between link i and link i + 1 is given
by φi = θi − θi+1. The local coordinate system of each
link is fixed in the CM (center of mass) of the link with
x (tangential) and y (normal) axis oriented such that they
are oriented in the directions of the global x and y axis,
respectively, when the link angle is zero. The rotation matrix
from the global frame to the frame of link i is given by

Rgloballink,i =

∙
cos θi − sin θi
sin θi cos θi

¸
(8)

The position of the snake robot, p, is described through the
coordinates of its CM (center of mass) and is given by

p :=

∙
px
py

¸
=

⎡⎢⎢⎣
1
nm

nP
i=1

mxi

1
nm

nP
i=1

myi

⎤⎥⎥⎦ = 1

n

∙
eTx
eT y

¸
(9)

It is shown in [10] that the position of the CM of each link
along the global x and y axis, respectively, is given by

x =−lNT cos θ + epx
y = −lNT sin θ + epy

N := AT
¡
DDT

¢−1
D ∈ Rn×n

(10)

The linear velocities of the links are derived by differentiat-
ing (10) with respect to time. This gives

ẋ = lNTSθθ̇ + eṗx (11)
ẏ = −lNTCθθ̇ + eṗy (12)

C. Viscous friction model
We have chosen to employ a viscous ground friction

model in this study. Alternatively, we could have used a
Coulomb friction model. However, we conjecture that a
viscous and a Coulomb friction model are very similar
from a control perspective when the friction is non-uniform.
The work in e.g. [5] supports this conjecture. Moreover,
viscous friction leads to much simpler equations compared
to Coulomb friction. This greatly simplifies the analysis in
Section IV.

Under non-uniform friction conditions, a link has two
viscous friction coefficients, ct and cn, describing the friction
force in the tangential (along link x axis) and normal (along
link y axis) direction of the link, respectively. Using (8), the
friction force on link i in the global frame as a function of
the global link velocity, ẋi and ẏi, is given by

fglobalR,i =Rgloballink,i f
link,i
R,i =−Rgloballink,i

∙
ct 0
0 cn

¸
vlink,ii

= −Rgloballink,i

∙
ct 0
0 cn

¸³
Rgloballink,i

´T ∙ẋi
ẏi

¸ (13)

where f link,iR,i and vlink,ii are, respectively, the friction force
and the link velocity expressed in the local link frame.



Performing the matrix multiplication and assembling the
friction forces on all links in matrix form gives

fR=−
∙
ct (Cθ)

2 + cn (Sθ)
2 (ct − cn)SθCθ

(ct − cn)SθCθ ct (Sθ)
2 + cn (Cθ)

2

∙̧
ẋ
ẏ

¸
(14)

where fR=
£
fTR,x fTR,y

¤T ∈ R2n.

D. Equations of motion
This section presents the equations of motion of the snake

robot in terms of the acceleration of the link angles, θ̈, and
the acceleration of the CM of the snake robot, p̈. These
coordinates describe all n+ 2 DOFs of the snake robot.

The forces and torques acting on link i are visualized
in Fig. 3. The force balance for link i in global frame
coordinates is given by

mẍi = fR,x,i + hx,i − hx,i−1
mÿi = fR,y,i + hy,i − hy,i−1

(15)

while the torque balance for link i is given by
Jθ̈i = ui − ui−1

−l sin θi(hx,i + hx,i−1) + l cos θi(hy,i + hy,i−1)
(16)

Through straightforward calculations, it is shown in [10] that
(15) and (16) may be rewritten for all links and combined
into the following complete model of the snake robot:

Mθ̈ = Wθ̇
2
+lSθNfR,x−lCθNfR,y+D

Tu (17)

nmp̈ = nm

∙
p̈x
p̈y

¸
= ET fR =

∙
eT fR,x
eT fR,y

¸
(18)

where θ and p represent the n + 2 generalized coordinates
of the system, θ̇

2
= diag(θ̇)θ̇, and

M := JIn×n +ml2 (SθV Sθ + CθV Cθ)
W := ml2 (CθV Sθ − SθV Cθ)

N := AT
¡
DDT

¢−1
D

V := AT
¡
DDT

¢−1
A

(19)

The model may be written more compactly by introducing
the state variable x =

h
θT pT θ̇

T
ṗT
iT
∈ R2n+4 and

combining (17) and (18) into the single equation
ẋ = f (x, t) (20)

where we have assumed that u = u (x, t). See [13] for a
detailed outline of (20).

IV. ANALYSIS AND EXPLANATION OF SNAKE
LOCOMOTION

This section presents an analysis of snake locomotion that
explains how non-uniform viscous ground friction conditions
enable snake robots to locomote forward on a planar surface.

A. Analysis of propulsive forces during snake locomotion
Non-uniform friction generally means that the friction

coefficients in the tangential and normal direction of the
links are different (ct 6= cn). However, we will only focus
on the commonly assumed property of snake robots that the
normal direction friction is larger than the tangential friction
(ct < cn).

We first derive an expression for the total force propelling
the CM (center of mass) of the snake robot forward as a
function of the linear link velocities. We will call this the

propulsive force on the snake robot and denote it by Fprop.
The forward direction of motion is assumed to be along the
global positive x axis. As described in Section (III-B), the
angle θi of link i is expressed with respect to the global x
axis with counterclockwise positive direction. The propulsive
force is simply the sum of all external forces on the snake
robot in the global x direction and is given from (18) as

Fprop = nmp̈x = eT fR,x (21)

Inserting fR,x from (14) into (21) gives

Fprop=−eT
³³
ct(Cθ)

2
+cn(Sθ)

2́
ẋ+(ct−cn)SθCθ ẏ́ (22)

The purpose of the vector eT is to sum up the friction force
contributions from all the links. We may therefore write (22)
as a summation in order to investigate the propulsive force
contribution from a single link.

Fprop = −
Pn

i=1

¡¡
ct cos

2 θi + cn sin
2 θi
¢
ẋi

+(ct − cn) sin θi cos θiẏi)
(23)

The propulsive force from a single link, Fprop,i, is in other
words given by

Fprop,i = −Fx (θi) ẋi − Fy (θi) ẏi (24)

where
Fx (θi) := ct cos

2 θi + cn sin
2 θi

Fy (θi) := (ct − cn) sin θi cos θi
(25)

We see from (24) that Fprop,i consists of two components,
i.e. one involving the linear velocity of the link in the forward
direction of motion, Fx (θi) ẋi, and one involving the linear
velocity normal to the direction of motion, Fy (θi) ẏi. Due to
the minus signs in (24), the products Fx (θi) ẋi and Fy (θi) ẏi
provide a positive contribution to the propulsive force only
if they are negative. Since the viscous friction coefficients,
ct and cn, are always positive, the expression Fx (θi) is
obviously always positive. We assume that the snake robot
is not generating waves that involve x direction velocities
of any of the links opposite to the direction of motion.
When the snake robot is moving in the forward direction
(ṗx > 0), we therefore have that ẋi > 0, which means
that the product Fx (θi) ẋi of the propulsive force is always
positive. This product is therefore not contributing to the
forward propulsion of the robot, but rather opposing it. This
is also expected since the snake robot must naturally be
subjected to a friction force in the opposite direction of the
motion.
Any maintained propulsive force in the forward direction

of motion must therefore be produced by the sideways motion
of the links, i.e. the product Fy (θi) ẏi. A plot of Fy (θi) for
different values of the normal friction coefficient cn, while
keeping the tangential friction coefficient ct fixed, is shown
in Fig. 4. For each plot, the angle between the link and the
forward direction, θi, is varied from −90◦ to 90◦.

The sideways motion of the links have no effect on
the propulsive force on the snake robot when the friction
coefficients are equal since this gives Fy (θi) = 0. However,
when cn > ct, Fig. (4) reveals that Fy (θi) is negative as
long as θi is positive, and vice versa. This means that the
product Fy (θi) ẏi is negative as long as sgn (θi) = sgn (ẏi).
The sideways motion of a link is in other words contributing
to the propulsion of the snake robot as long as θi is positive
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Fig. 4. The mapping from sideways link motion to forward propulsion for
different viscous friction coefficients.

during leftward motion of the link (left with respect to the
direction of motion) and negative during rightward motion of
the link (right with respect to the direction of motion). This
fundamental relationship may be written sgn (Fprop,i) =
sgn (sgn (θi) sgn (ẏi)).

It is straightforward to calculate that the extrema of
Fy (θi) occur at θi = ±45◦. This is also seen from Fig. 4.
This means that, for a given ẏi, a link produces its highest
propulsive force when it forms an angle of ±45◦ with the
forward direction of motion. It is also evident from (24) that
the magnitude of Fy (θi) ẏi, and thereby the magnitude of
the propulsive force, |Fprop,i|, is increased by increasing cn
with respect to ct, or by increasing the magnitude of the
sideways link velocity, |ẏi|.

It should now be clear that the function Fy (θi) maps the
link velocities normal to the direction of motion into force
components in the direction of motion. The following simple
analogy may help understand this result. Imagine a small,
hand-held, wheeled wagon of some sort. The direction of
the wheels corresponds to the tangential direction of a snake
robot link. Obviously, the friction coefficient of the wagon
in the direction of the wheels is smaller than the friction
coefficient normal to the wheels. Now assume that you push
the wagon across a table in the direction of the wheels.
While maintaining constant direction of motion, assume that
you slowly rotate the wagon about the vertical axis, thereby
forcing the wheels to slip. The hand that push and rotate
the wagon will now feel a tendency of the wagon to move
sideways in the same direction towards which the wagon
was rotated. This is in accordance with the results presented
above. The above analysis proves the following propositions:
Proposition 1: A snake robot with non-uniform friction

properties on a flat surface achieves forward propulsion
through the sideways velocity components of its links (side-
ways with respect to the forward direction).
Proposition 2: The direction of the propulsive force gen-

erated by the sideways motion of link i is given by the funda-
mental relationship sgn (Fprop,i) = sgn (sgn (θi) sgn (ẏi)).
Proposition 3: The function Fy (θi) maps the link veloc-

ities normal to the direction of motion into force components
in the direction of motion.
Proposition 4: The magnitude of the propulsive force

generated by link i, |Fprop,i|, is increased by increasing cn
with respect to ct, or by increasing the magnitude of the
sideways link velocity, |ẏi|.
Proposition 5: For a given ẏi, a link produces its highest

propulsive force when it forms an angle of θi = ±45◦ with
the forward direction of motion.

Note that these results are general in the sense that no
assumptions have been made regarding the actual motion
pattern displayed by the snake robot.

B. Synthesis of propulsive motion for the snake robot
The analysis from the previous section enables us to

deduce how the snake robot links should be moved in
order to propel the snake robot forward along the positive
x axis. The following analysis focusses on manipulating
the magnitude, |Fprop,i|, and direction, sgn (Fprop,i), of the
propulsive force from each link.

From Proposition 1, we know that propulsive forces are
generated by moving the links in the normal direction with
respect to the desired direction of motion. We require the
amplitude of this normal direction link motion to be bounded
since the snake robot otherwise would diverge from the
desired path. We therefore conclude that the links must
have a periodic velocity component normal to the direction
of motion. This suggests that each link should be moved
alternatingly to the left and right with respect to the direction
of motion, and may be achieved by letting the trajectory of
each link angle have the form

θi = α sin (ωt) , i = {1, .., n} (26)

where α > 0 is the maximum amplitude of the link angles
during the locomotion, ω > 0 is the angular frequency of
the periodic motion, and t denotes time. For simplicity, we
assume that α and ω are constant and identical for all links.
A recent result in [13] shows that the joint angles of a snake
robot during locomotion should be out of phase since this
improves the controllability properties of the snake robot.
This suggests that (26) should be modified to

θi = α sin (ωt+ (i− 1) δ) , i = {1, .., n} (27)

where δ is the phase shift between adjacent links. For
simplicity, we assume a constant phase shift between the
links.

We now investigate how α, ω, and δ affect |Fprop,i| and
sgn (Fprop,i) as the snake robot moves along the global x
axis. To simplify the analysis, we assume that the snake
robot consists of only n = 3 links. This is the minimum
number of links required to achieve propulsion since phase
shift between joints requires at least two joints. The below
analysis for n = 3 links also apply to robots with n > 3
links since a snake robot can be regarded as a connection of
multiple three-linked segments. The trajectories of the link
angles are given from (27) as

θ1 = α sin (ωt)
θ2 = α sin (ωt+ δ)
θ3 = α sin (ωt+ 2δ)

(28)

which, when differentiated with respect to time, gives the
following angular link velocitites:

θ̇1 = αω cos (ωt)

θ̇2 = αω cos (ωt+ δ)

θ̇3 = αω cos (ωt+ 2δ)

(29)

The normal direction velocity of each link is given by (12).
We disregard the normal direction velocity of the CM of



Fig. 5. The relation between θ1 and ẏ1 for α = 70◦, ω = 70◦, and
δ = 10◦ (dotted) , 40◦ (dashed) , 70◦ (solid).

the snake robot by setting ṗy ≈ 0. This is a fairly accurate
approximation as long as the snake robot is moving along the
global x axis, which is the case for this analysis. Inserting
(28) and (29) into (12) gives

ẏ1 = −αωl
3 (2 cos (ωt) cos (α sin (ωt)))

−αωl
3 (3 cos (ωt+ δ) cos (α sin (ωt+ δ)))

−αωl
3 (cos (ωt+ 2δ) cos (α sin (ωt+ 2δ)))

(30)

ẏ2 =
αωl
3 (cos (ωt) cos (α sin (ωt)))

−αωl
3 (cos (ωt+ 2δ) cos (α sin (ωt+ 2δ)))

(31)

ẏ3 =
αωl
3 (cos (ωt) cos (α sin (ωt)))

+αωl
3 (3 cos (ωt+ δ) cos (α sin (ωt+ δ)))

+αωl
3 (2 cos (ωt+ 2δ) cos (α sin (ωt+ 2δ)))

(32)

Proposition 4 tells us that |Fprop,i| is increased by increasing
|ẏi|. From (30)-(32), it is therefore clear that |Fprop,i| is
increased by increasing α and/or ω. We now determine
if δ should be positive or negative in order to achieve
sgn (Fprop,i) = 1, which is necessary to propel the snake
robot forward along the global x axis. From Proposition 2,
we know that sgn (Fprop,i) = 1 requires sgn (θi) = sgn (ẏi).
Considering ẏ2 in (31) (since this expression is easy to
analyze), it is seen through pure inspection that ẏ2 = 0 when
ωt = −δ. When ωt = −δ, we see from (28) and (29) that
θ2 = 0 and θ̇2 = αω > 0. θ2 is in other words about to
become positive, which means that we also require ẏ2 to
become positive. This is the case if ÿ2 > 0 when ωt = −δ.
Differentiating (31) with respect to time gives

ÿ2
¯̄
ωt=−δ =

2α2ω2l
3 cos2 (δ) sin (α sin (δ))

+2αω2l
3 sin (δ) cos (α sin (δ))

(33)

from which it is easily seen that ÿ2 > 0 when δ > 0, i.e.
sgn (Fprop,i) = 1 when δ > 0. This indicates that the links
generate positive propulsive forces if δ > 0.

In order to verify that forward propulsion requires δ >
0, we have plotted (28) and (30)-(32) together in Fig. 5-7
for α = 70◦, ω = 70◦, and for different positive values
of δ over a period of ωt from 0 to 2π. The figures show
that sgn (Fprop,i) = sgn (sgn (θi) sgn (ẏi)) = 1 is always
satisfied for link 2, but only satisfied over about half the
period for link 1 and 3 when δ is small. As δ is increased,
sgn (Fprop,i) = 1 is satisfied over a larger portion of the
period. We do not attempt to determine the optimal choice
of δ in this analysis, but conclude that positive propulsive
forces requires δ > 0.

The above analysis proves the following propositions:

Fig. 6. The relation between θ2 and ẏ2 for α = 70◦, ω = 70◦, and
δ = 10◦ (dotted) , 40◦ (dashed) , 70◦ (solid). The plot is zoomed in.

Fig. 7. The relation between θ3 and ẏ3 for α = 70◦, ω = 70◦, and
δ = 10◦ (dotted) , 40◦ (dashed) , 70◦ (solid).

Proposition 6: A snake robot with non-uniform friction
properties on a flat surface achieves forward propulsion by
moving its links according to θi = α sin (ωt+ (i− 1) δ)
where i = {1, .., n}, α > 0, ω > 0, and δ > 0.
Proposition 7: The magnitude of the propulsive force

generated by link i, |Fprop,i|, is increased by increasing α
and/or ω.

Note that the expression for the link angle trajectories in
(27) is in accordance with previous work on snake robots
by Hirose [2], where the required motion of the links was
deduced from empirical studies of biological snakes. The
choices made in the above study are obviously inspired by
the work in [2]. However, an important purpose of this study
is to show that it is possible to develop logical arguments
merely from an analysis of the equations of motion of a snake
robot and thereby arrive at similar conclusions as Hirose.

V. CONTROLLER DESIGN

This section proposes a controller that will enable the
snake robot to locomote forward along the global positive
x axis. The analysis in Section IV-B suggests that this is
achieved by generating sinusoidal motion of the absolute link
angles while maintaining a positive phase shift δ between
adjacent links according to (27). However, since the snake
robot is underactuated with only n − 1 control inputs, it
is not possible to control all n link angles independently.
We therefore choose to control the n − 1 relative joint
angles (denoted by φ as described in Section III-B) in
order to generate a phase shifted sinusoidal motion of the
n absolute link angles, and introduce a joint angle offset in
order to control the absolute heading of the snake robot. The
reference motion of φ is therefore given by

φi,ref = α sin (ωt+ (i− 1) δ) + φoffset (34)

where α, ω, and δ were defined in Section IV-B, φoffset is
the joint angle offset, and i = {1, .., n − 1}. The offset is
identical for all joints and affects the direction of the motion



Fig. 8. The controller of the snake robot.

by making the link motion asymmetrical with respect to
the current heading of the robot. This joint angle reference
trajectory was first introduced in [2].

We denote the absolute heading of the snake robot by ψ
and calculate it as the mean of all the link angles:

ψ = 1
n

nP
i=1

θi , i = {1, .., n} (35)

We use the joint angle offset φoffset to control the heading ψ
of the robot by employing the simple proportional controller

φoffset = KDirection
p (ψref − ψ) (36)

where KDirection
p is the controller gain and ψref is the refer-

ence heading. We use the reference heading ψref to control
the y direction position, py, of the robot by employing the
additional proportional controller

ψref = KPosition
p (py,ref − py) (37)

where KPosition
p is the controller gain and py,ref is the

reference y direction position. Since the goal is locomotion
along the global x axis, we set py,ref = 0. The reason for
not including integral action in the above controllers is that
directional control will not work if φoffset becomes too large.
We use a PD-controller to control the relative joint angles of
the snake robot according to

ui = KJoint
p

¡
φi,ref − φi

¢
−KJoint

d φ̇i (38)

where i = {1, .., n − 1} and where we have chosen to set
φ̇i,ref = 0 since the purpose of the derivative part of the
controller is simply to damp the motion if the velocities
become large. The complete controller for the snake robot is
depicted in Fig. 8.

VI. STABILITY ANALYSIS BASED ON THE POINCARÉ MAP

This section employes the theory of Poincaré maps,
presented in Section II, to prove that the controller in (38)
generates a locally exponentially stable periodic orbit in the
state space of the snake robot.

A. Converting the snake robot model to a time-periodic
autonomous system

During locomotion along the global positive x axis, our
goal is that the x axis position of the snake robot, px,
increases, while all other states of the snake robot in (20)
trace out a stable limit cycle in the state space. We therefore
exclude px from the Poincaré map of the snake robot. This
corresponds to a partial Poincaré map [12]. Exclusion of
px has no effect on the other state variables since px is not
present in any of their derivatives in (20). The analysis of
snake locomotion in Section IV, which is the basis of the

controller in (38), enables us to argue that forward motion
along the x axis (increase of px) is achieved as long as the
remaining state variables trace out a stable periodic orbit.

Stability analysis of the time-periodic state variables of
the snake robot by use of Poincaré maps requires the model
of the snake robot in (20) to represent an autonomous system,
i.e. a system not explicitly dependent on time. The controller
in (38), however, makes the system non-autonomous since
time t is present in the expressions for the joint torque inputs.
We therefore follow the approach described in [11] in order
to convert the snake robot model to an autonomous system
by simply augmenting the state vector x with an extra state
β = 2πt/T , where T = 2π/ω is the period of the cyclic
locomotion generated by the controller in (38). We make β
periodic by enforcing that 0 ≤ β < 2π, i.e. we set β to zero
each time β = 2π. The model (20) with the controller (38)
therefore represents the following autonomous system:

ẋ = f
¡
x, T

2πβ
¢

, x (t0) = x0
β̇ = 2π

T , β (t0) =
2πt0
T

(39)

We have, in other words, encapsulated time t in the new state
variable β, which is periodic since 0 ≤ β < 2π.

B. Specification of the Poincaré section for the snake robot
We choose the global x axis as the Poincaré section S of

the system in (39). Since px is not included in the Poincaré
map, we write S =

n³
θ, py, θ̇, ṗ, β

´
|py = 0

o
. Following

the notation in Section II, the vector of independent time-
periodic states constrained to S is given by

x =
h
θT θ̇

T
ṗT β

iT
∈ R2n+3 (40)

C. Simulation and stability analysis
We consider a three-linked snake robot where n = 3, l =

0.07 m, m = 1 kg, and J = 0.0016 kgm2. The parameters
of the controller in (38) were (based on trial-and-error) set to
α = 70◦, ω = 70◦/s, δ = 70◦, KJoint

p = 20, KJoint
d = 5,

KDirection
p = 2, and KPosition

p = 5. The model in (39) was
simulated usingMatlab R2008a on a laptop runningWindows
XP. The ode45 solver in Matlab was used with a relative and
absolute error tolerance of 10−6.

The Poincaré map of the snake robot model in (39)
was calculated as described in Section II-B.1. The Newton-
Raphson algorithm described in Section II-B.2 calculated the
fixed point, x∗ ∈ R9, of the Poincaré map as

x∗ = [ −13.6◦ −34.5◦ 26.3◦ −81.2◦/s
10.0◦/s 89.3◦/s 5.1cm/s −1.6cm/s 170◦ ]T

(41)

A plot of the cyclic locomotion of the snake robot over
one period is shown in Fig. 9. The initial state of the snake
robot is given by x∗. The initial position is p = 0. After
one period of the motion, the state variables return to their
initial value, x∗. At this point, however, the position of the
snake robot along the x axis has increased, which was also
our goal. To clearly illustrate the limit cycle behaviour of
the periodic state variables in (40), a 3D plot of the three
absolute link angles over one period is given in Fig. 10.

The Jacobian linearization of the Poincaré map about the
fixed point (41) were calculated as described in Section II-
B.3. The eigenvalues the Jacobian matrix JP (x

∗) ∈ R9×9
were given by
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Fig. 9. The motion of the snake robot over one period of the cyclic
locomotion.
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Fig. 10. The limit cycle traced out by the link angles of the snake robot.

eig (JP (x
∗)) = [ 0.33 0.10 0.0035

−0.0026 −9.3× 10−4 5.4× 10−5
−3.1× 10−5 −5.5× 10−8 3.6× 10−6 ]

(42)

The magnitude of all the eigenvalues are strictly less than
one. The periodic orbit traced out by the variables in (40) is
therefore locally exponentially stable. All initial conditions
inside the basin of attraction of this periodic orbit will
converge exponentially to this periodic orbit. Identifying the
basin of attraction for x∗ is a topic of future research.

We have now proven that the controller in (38) generates a
stable periodic orbit comprising all state variables, except the
position px. Based on the analysis in Section IV, this implies
that the snake robot is locomoting forward. In particular,
Proposition 2 in Section IV-A states that the direction of the
propulsive force on the snake robot from link i is given by
sgn (Fprop,i) = sgn (sgn (θi) sgn (ẏi)). A plot of θi and ẏi
(i = 1, 2, 3) over one period is given in Fig. 11, which clearly
shows that sgn (Fprop,i) = 1 over the majority of the period.
This means that the net propulsive force on the snake robot
is positive.

VII. CONCLUSION

This paper has explained how non-uniform viscous
ground friction conditions enable snake robots to locomote
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ẏ1[mm/s]

2 3 4 5 6 7 8
−100

0

100

Time [s]

 

 
θ2[deg]
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Fig. 11. Plot of θi and ẏi (i = 1, 2, 3) over one period of the cyclic
locomotion.

forward on a planar surface. The explanation is based on a
simple mapping from link velocities normal to the direction
of motion into propulsive forces in the direction of motion.
The paper has also proposed a controller for propelling a
snake robot along the global x axis. We applied the method
of Poincaré maps to prove that the remaining state variables
of the robot traced out an exponentially stable periodic orbit,
which in turn implied that the snake robot is locomoting in
the desired forward direction.
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