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Abstract—A snake robot can traverse cluttered and irregular
environments by using irregularities around its body as push-
points to aid the propulsion. This characteristic feature of snake
locomotion, denoted obstacle-aided locomotion, has received
limited focus in previous literature. This paper presents a model
of this phenomenon and a control strategy employing measured
contact forces to maintain propulsion while simultaneously pre-
venting the snake robot from being jammed between obstacles
in its path. The simulation results validate the contact modelling
approach and the effectiveness of the proposed control strategy.

I. INTRODUCTION

Inspired by biological snake locomotion, snake robots
carry the potential of meeting the growing need for robotic
mobility in unknown and challenging environments. These
mechanisms typically consist of serially connected modules
capable of bending in one or more planes. The many degrees
of freedom of snake robots make them difficult to control,
but provides traversability in irregular environments that
surpasses the mobility of the more conventional wheeled,
tracked and legged forms of robotic mobility.

The unique feature of snake robot locomotion compared
to other forms of robotic mobility is that irregularities on
the ground are actually beneficial for the propulsion since
they provide push-points for the snake robot. While obstacle
avoidance is an important topic for wheeled, tracked and
legged robots, the goal of snake locomotion is rather ob-
stacle exploitation. The term obstacle-aided locomotion was
introduced by Transeth et al. [1] and captures the essence of
this concept.

The majority of previous snake robot research has focused
on understanding and demonstrating snake locomotion on flat
surfaces with preprogrammed motion patterns that resemble
gaits displayed by biological snakes. Gray [2] conducted
empirical and analytical studies of snake locomotion as far
back as the middle of the last century. Hirose [3] studied
biological snakes and developed mathematical relationships
characterizing their motion, such as the serpenoid curve.
Several mathematical models of the kinematics and dynamics
of snake locomotion have been developed. Some models [4]–
[6] assume that the links of the snake cannot move sideways
(no-slip conditions achieved by e.g. mounting passive wheels
along the snake body), while others assume isotropic or
anisotropic friction conditions [1], [7]–[12]. The works in
[1], [11], [12] present, to the authors’ best knowledge,
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the only known models of snake robot dynamics that also
include obstacle contact forces. These models are, however,
pure simulation models and not suited for synthesis of
model-based control strategies. The works in [11], [13], [14]
present, to the authors’ best knowledge, the only known
control strategies related to obstacle-aided snake locomotion.

This paper provides two contributions. The first contri-
bution is the development of a 2D model of snake robot
dynamics that incorporates obstacle contact forces based
on the introduction of nonholonomic constraints for con-
tacted links. The model has been developed to facilitate
synthesis of model-based control strategies for obstacle-aided
locomotion. The second contribution is a control strategy
for obstacle-aided locomotion aimed at resolving situations
where the snake robot is jammed between obstacles. The
concept of detecting and resolving snake robot jams has, to
the authors’ best knowledge, not been treated in previous
literature, but is a genuine challenge often encountered
during snake robot motion in cluttered environments. To our
knowledge, this is the first published control strategy for a
snake robot involving feedback and explicit use of measured
contact forces. The paper presents simulation results that
validate the contact modelling approach and the effectiveness
of the proposed control strategy.

The paper is organized as follows. Section II presents a
2D model of snake robot kinematics and dynamics without
obstacle contact forces. Section III extends the 2D model
with an obstacle contact force model. Section IV presents
the control strategy for the snake robot. Section V presents
simulation results, and Section VI presents concluding re-
marks.

II. SNAKE ROBOT MODEL WITHOUT OBSTACLES

This section presents a 2D model of the kinematics and
dynamics of a snake robot. The model is based on [7], but
is presented in a somewhat different format. The model is
extended with an obstacle contact model in Section III.

A. Notations and defined identities
The snake robot consists of n links of length 2l intercon-

nected by n−1 joints. The mathematical identities defined in
order to describe the kinematics and dynamics of the snake
robot are described in Table I and illustrated in Fig. 1 and
Fig. 2. All n links have the same length, mass and moment of
inertia. The total mass of the snake robot is therefore nm.
The mass of each link is uniformly distributed so that the
link CM (center of mass) is located at its center point (at
length l from the joint at each side).

Vectors are either expressed in the global coordinate
system or in the local link coordinate system of link i. This
is indicated by superscript global or link,i, respectively. If



Fig. 1. Kinematic parameters for the snake robot.

Fig. 2. Forces and torques acting on each link of the snake robot.

otherwise is not specified, a vector with no superscript is
expressed in the global coordinate system.

The following vectors and matrices are used in the
subsequent sections:

A :=

⎡⎢⎣1 1
. .

. .
1 1

⎤⎥⎦,D :=

⎡⎢⎣1 −1
. .

. .
1 −1

⎤⎥⎦
where A ∈ R(n−1)×n and D ∈ R(n−1)×n. Furthermore,
e :=

£
1 . . 1

¤T ∈ Rn
sin θ :=

£
sin θ1 .. sin θn

¤
T∈Rn cos θ :=

£
cos θ1 .. cos θn

¤
T∈Rn

Sθ := diag(sin θ1, .., sin θn) Cθ := diag(cos θ1, .., cos θn)

B. Kinematics
The snake robot is capable of 2D motion in the horizontal

plane and has a total of n + 2 degrees of freedom. The
absolute angle, θi, of link i is expressed with respect to the
global x axis with counterclockwise positive direction. As
seen in Fig. 1, the relative angle between link i and link
i+ 1 is given by

φi = θi − θi+1 (1)

The model of the snake robot will be derived using
absolute angles since this simplifies the mathematical ex-
pressions. The local coordinate system of each link is fixed
in the CM (center of mass) of the link with x (tangential)
and y (normal) axis oriented such that they are oriented in
the directions of the global x and y axis, respectively, when
the link angle is zero. The rotation matrix from the global
frame to the frame of link i is given by

Rglobal
link,i =

∙
cos θi − sin θi
sin θi cos θi

¸
(2)

The position of the snake robot, p, is described through the
coordinates of its CM (center of mass) and is given by

p :=

∙
px
py

¸
=

⎡⎢⎢⎣
1
nm

nP
i=1

mxi

1
nm

nP
i=1

myi

⎤⎥⎥⎦ = 1

n

∙
eTx
eT y

¸
(3)

Symbol Description Associated
vector

n Number of links.
l Half the length of a link.
m Mass of a link.
J Moment of inertia of a link. J =

1
3
ml2.

g Gravitational acceleration constant.
θi Angle between link i and global x axis. θ ∈ Rn
(xi, yi) Global coordinates of CM of link i. x, y ∈ Rn
(px, py) Global coordinates of CM of snake

robot.
p ∈ R2

ui Actuator torque exerted on link i from
link i+ 1.

u ∈ Rn−1

ui−1 Actuator torque exerted on link i from
link i− 1.

u ∈ Rn−1

fR,x,i Friction force on link i in x direction. fR,x ∈ Rn
fR,y,i Friction force on link i in y direction. fR,y ∈ Rn
τ i Friction torque about CM of link i. τ ∈ Rn
hx,i Joint constraint force in x direction on

link i from link i+ 1.
hx ∈ Rn

hy,i Joint constraint force in y direction on
link i from link i+ 1.

hy ∈ Rn

hx,i−1 Joint constraint force in x direction on
link i from link i− 1.

hx ∈ Rn

hy,i−1 Joint constraint force in y direction on
link i from link i− 1.

hy ∈ Rn

TABLE I
DEFINED MATHEMATICAL IDENTITIES.

The following derives an expression for the link positions as
a function of the CM position of the snake robot. The links
are constrained by the joints according to

Dx+ lA cos θ = 0
Dy + lA sin θ = 0

(4)

We may combine (3) and (4) into

Tx =

∙
−lA cos θ

px

¸
, Ty =

∙
−lA sin θ

py

¸
(5)

where
T :=

∙
D
1
ne

T

¸
∈ Rn×n (6)

We may now solve (5) for x and y to get

x = T−1
∙
−lA cos θ

px

¸
=−lNT cos θ + epx

y = T−1
∙
−lA sin θ

py

¸
= −lNT sin θ + epy

(7)

where
N := AT

¡
DDT

¢−1
D ∈ Rn×n (8)

and DDT is nonsingular and thereby invertible.

C. Differential kinematics
The linear velocities of the links are derived by differen-

tiating (7). This gives
ẋ = lNTSθθ̇ + eṗx
ẏ = −lNTCθθ̇ + eṗy

(9)

The above equations give the linear velocities of all the links.
However, the obstacle contact model derived in Section III
requires an expression for the velocity of a single link. This



expression may be found by investigating the structure of
each row in (9). The derivation is not included here due
to space restrictions, but it may be verified that the linear
velocity of link i is given by

ẋi = ṗx −
Pi−1

j=1 aj

³
sin θj θ̇j + sin θj+1θ̇j+1

´
−
Pn−1

j=i bj

³
sin θj θ̇j + sin θj+1θ̇j+1

´ (10)

ẏi = ṗy +
Pi−1

j=1 aj

³
cos θj θ̇j + cos θj+1θ̇j+1

´
+
Pn−1

j=i bj

³
cos θj θ̇j + cos θj+1θ̇j+1

´ (11)

where the two coefficients, aj and bj , are given by

aj :=
l
nj , bj := − l(n−j)

n
(12)

D. Coulomb friction model
Each link is subjected to a friction force from the ground

acting on the CM of the link and also a friction torque acting
about the CM. A Coulomb friction model is employed in a
form which allows for anisotropic friction on each link. This
means that a link has two Coulomb friction coefficients, μt
and μn, describing the friction force in the tangential (along
link x axis) and normal (along link y axis) direction of the
link, respectively. The friction force on link i in the local
link frame may be expressed as

f link,i
R,i = −mg

∙
μt 0
0 μn

¸
sgn

³
vlink,i
i

´
(13)

where g is the gravitational acceleration constant, vlink,i
i is the

link velocity expressed in the local link frame, and sgn(.)
is the signum function. Expressing f link,i

R,i and vlink,i
i in the

global frame by use of (2), the friction force on all links,
fR =

£
fTR,x, f

T
R,y

¤T ∈ R2n, may be expressed in matrix
form as

fR=−mg

∙
μtCθ −μnSθ
μtSθ μnCθ

¸
sgn
µ∙

Cθ Sθ
−Sθ Cθ

∙̧
ẋ
ẏ

¶̧
(14)

The friction torque about the CM of link i is a result of
friction forces acting normal to the link during link rotation
and is characterized by the normal friction coefficient, μn.
The direction of velocity of a point along the link with
respect to the ground is actually also dependent on the trans-
lational velocity of the link. However, in order to simplify the
friction model, the friction torque is modelled based on the
link rotation only. The friction force, df , on an infinitesimal
mass element, dm, of link i due to the link rotation, θ̇i,
produces a friction torque about the CM of the link given by

dτ i = sdfi = s
³
−μng · sgn

³
sθ̇i

´
· dm

´
(15)

where s is the distance from the CM of link i to the mass
element, dm. Using the relation dm = m

2lds, we may write
the total friction torque on link i as

τR,i =

lZ
−l

dτ i = −
1

2
μnmgl · sgn

³
θ̇i

´
(16)

The global frame friction torque on all links, τR ∈ Rn, may
be expressed in matrix form as

τR = −
1

2
μnmgl · sgn

³
θ̇
´

(17)

E. Equations of motion without contact forces
This section derives the equations of motion for the snake

robot in terms of the acceleration of the link angles, θ̈, and
the acceleration of the CM of the snake robot, p̈. These
coordinates describe all N + 2 DOFs of the snake robot.

The forces and torques acting on link i are visualized
in Fig. 2. The force balance for link i in global frame
coordinates is given by

mẍi = fR,x,i + hx,i − hx,i−1
mÿi = fR,y,i + hy,i − hy,i−1

(18)

The force balance equations for all links may be expressed
in matrix form as

mẍ = fR,x +DThx
mÿ = fR,y +DThy

(19)

Note that the link accelerations may also be expressed by
differentiating (4) twice with respect to time. This gives

Dẍ = lA
³
Cθθ̇

2
+ Sθθ̈

´
Dÿ = lA

³
Sθθ̇

2 − Cθθ̈
´ (20)

We obtain the acceleration of the CM by differentiating (3)
twice with respect to time, inserting (19), and noting that the
constraint forces, hx and hy, are cancelled out when the link
accelerations are summed. This gives∙

p̈x
p̈y

¸
=
1

n

∙
eT ẍ
eT ÿ

¸
=

1

nm

∙
eT 01×n
01×n eT

¸
fR (21)

This equation simply states, as would be expected, that the
acceleration of the CM of a snake robot equals the sum of
the external forces acting on the robot divided by its mass.

The torque balance for link i is given by

Jθ̈i = ui − ui−1 + τR,i
−l sin θi(hx,i + hx,i−1) + l cos θi(hy,i + hy,i−1)

(22)

The torque balance equations for all links may be expressed
in matrix form as

Jθ̈ = DTu+ τR − lSθA
Thx + lCθA

Thy (23)

What now remains is to remove the constraint forces from
(23). Premultiplying (19) by D, solving for hx and hy, and
also inserting (20), gives

hx =
¡
DDT

¢−1 ³
mlA

³
Cθθ̇

2
+ Sθθ̈

´
−DfR,x

´
hy =

¡
DDT

¢−1 ³
mlA

³
Sθθ̇

2 − Cθθ̈
´
−DfR,y

´ (24)

Inserting into (23) and solving for θ̈ finally gives

Mθ̈ =Wθ̇
2
+ lSθNfR,x − lCθNfR,y + τR +DTu (25)

where

M := JIn×n +ml2SθV Sθ +ml2CθV Cθ

W := ml2CθV Sθ −ml2SθV Cθ

N := AT
¡
DDT

¢−1
D

V := AT
¡
DDT

¢−1
A

(26)

The equations of motion for the snake robot are in other
words given by (21) and (25). These equations may be
combined into the following single differential equation:



Q (q) q̈ = F (q, q̇, u) (27)

where
q =

h
θT , px, py

iT
∈ Rn+2

Q (q) =

⎡⎣ M 0n×1 0n×1
01×n nm 0
01×n 0 nm

⎤⎦ ∈ Rn+2×n+2
F (q,q̇,u)=

⎡⎣lSθN −lCθN
eT 01×n
01×n eT

⎤⎦fR+
⎡⎣Wθ̇

2
+τR+D

Tu
0
0

⎤⎦
(28)

III. MODELLING OF OBSTACLE CONTACT FORCES

This section presents an obstacle contact model for the
snake robot as an extension to the model in (27).

A. Description of the approach
The interactions between the snake robot links and ex-

ternal obstacles are modelled by introducing a unilateral
nonholonomic constraint for each link in contact with an
obstacle. This constraint will prevent a link from moving
sideways towards (and thereby into) the obstacle. The con-
straint is unilateral (acts in one lateral direction only) since
the constraint force should not prevent the link from moving
away from the obstacle.

The approach is basically to directly calculate the forces
needed to satisfy the nonholonomic constraints on the links
and then add these constraint forces to the equations of
motion in (27) in order to cancel out the applied forces acting
against the constraints. The constraint forces are in other
words added to the equations of motion in order to convert
the accelerations of the links into admissible accelerations
that are consistent with the constraints. The main advantage
of this approach over more conventional approaches, such
as modelling interactions as mass-spring-damper systems, is
that it produces an explicit and analytical expression for the
contact forces on the snake robot. This facilitates model-
based controller design for obstacle-aided locomotion. More
information about modelling of systems with nonholonomic
constraints may be found in [15], [16].

Note that the proposed approach will not prevent a link
from continuing ‘into’ an obstacle with constant velocity
after the acceleration has been removed. A viscous damping
term is therefore added to the equations of motion in order to
damp out the normal direction velocity of a contacted link.
The friction forces between the links and the obstacles are
also modelled.

We will in the following extend the model in (27) with
obstacle contact forces, fC , velocity damping forces, fD, and
obstacle friction forces, fμ. The complete model of the snake
robot will have the form

Q(q)q̈=F (q, q̇, u)+

⎡⎣lSθN −lCθN
eT 01×n
01×n eT

⎤⎦(fC+fD+fμ) (29)

B. Nonholonomic constraint equations
This section derives a matrix equation containing the

nonholonomic constraint equations for all the links of the
snake robot on the form

C(q)q̇ = 0 (30)

where C(q) ∈ Rn×n+2 and q =
h
θT , px, py

iT
∈ Rn+2. In

the contact model, row i of this matrix equation will only be
valid if the link is in contact with an obstacle. A nonholo-
nomic constraint on link i means that the normal direction
velocity, here denoted vn,i, of the link is constrained to zero,
which will be the case when the link contacts an obstacle.
This constraint may be expressed as

vn,i = −ẋi sin θi + ẏi cos θi = 0 (31)

Inserting (10) and (11) into (31), and also using the trigono-
metrical relation sin θi sin θj + cos θi cos θj = cos (θi − θj)
and the notation cij = cos (θi − θj), the constraint equation
may be written as

−ṗxsin θi+ṗy cos θi+
Pi−1

j=1aj

³
cij θ̇j+ci,j+1θ̇j+1́

+
Pn−1

j=i bj

³
cij θ̇j + ci,j+1θ̇j+1

´
= 0

(32)

By inspecting (32), it is seen that this equation can be
expressed for all links in the following matrix form:⎡⎢⎢⎢⎣
b1c11 (b1+b2)c12 (b2+b3)c13 .. bn−1c1n −sθ1 cθ1
a1c21 (a1+b2)c22 (b2+b3)c23 .. bn−1c2n −sθ2 cθ2
a1c31 (a1+a2)c32 (a2+b3)c33 .. bn−1c3n −sθ3 cθ3
: :

a1cn1 (a1+a2)cn2 (a2+a3)cn3 .. an−1cnn−sθn cθn

⎤⎥⎥⎥⎦
⎡⎣ θ̇ṗx
ṗy

⎤⎦=0
(33)

where sθi = sinθi and cθi = cosθi. We have now derived (30).
From (33) it is easily seen that the matrix C (q) ∈ Rn×n+2
and that element ij of this matrix is given by

Cij (q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(bj−1 + bj) cij ∀ i < j 6 n
(aj−1 + bj) cij ∀ j = i
(aj−1 + aj) cij ∀ j < i
− sin θi ∀ j = n+ 1
cos θi ∀ j = n+ 2

(34)

As will be seen in the next section, the calculation of
contact forces requires the time derivative of the matrix
C (q). Differentiating each component in (34) and using the
notation sij = sin (θi − θj) gives

Ċij(q)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(bj−1+bj)
³
θ̇j−θ̇i

´
sij ∀ i < j 6 n

(aj−1+bj)
³
θ̇j−θ̇i

´
sij ∀ j = i

(aj−1+aj)
³
θ̇j−θ̇i

´
sij ∀ j < i

− cos θiθ̇i ∀ j = n+ 1

− sin θiθ̇i ∀ j = n+ 2

(35)

C. Calculation of the contact forces
With nonholonomic constraints, a term must be added to

the equations of motion in (27) that represents the forces
needed to satisfy these constraints [16]. The constrained
equations of motion therefore take on the form

Q (q) q̈ = F (q, q̇, u) +

∙bubf
¸
= F + bF (36)

where bu ∈ Rn is a vector containing the torques about the
CM of each link resulting from all the constraint forces,bf ∈ R2 contains the sum of the constraint forces in the



global x and y direction, respectively, and bF = hbuT , bfT iT ∈
Rn+2. Note that the term constraint forces denotes both the
constraint forces and constraint torques of the system.

Assume that m links of the snake robot are in contact
with obstacles. We express the m constraint equations for
the contacted links as

C(q)q̇ = 0 , C(q) ∈ Rm×n+2 (37)

where all rows from (33) corresponding to links that are not
in contact with an obstacle have been excluded. Differenti-
ating (37) gives

Ċ(q)q̇ + C(q)q̈ = 0 (38)

The matrix Ċ(q) is given by (35). Insertion of (36) gives

Ċq̇ + CQ−1
³
F + bF´ = 0 (39)

which are m equations with the n+ 2 > m components inbF as unknowns. We need an additional condition in order
to solve for bF . We get that condition by employing the
principle of virtual work [16], which states that the constraint
forces, bF , should not change the energy of the system, i.e.
they should not do any work. This gives us the additional
condition bFT q̇ = 0 ∀q̇ | C(q)q̇ = 0 (40)

where bFT q̇ is the work done by the constraint forces.
Comparing (30) and (40), we see that vectors bF that satisfy
this requirement can be expressed asbF = CTλ (41)

where λ ∈ Rm is a vector of scalars known as Lagrange
multipliers [16]. This vector is found by inserting (41) into
(39) and then solving for λ to get

λ = −
¡
CQ−1CT

¢−1 ³
CQ−1F + Ċq̇

´
(42)

By substituting (42) into (41), the constraint forces are found.
The term contact force denotes the translational force

exerted on a link from an obstacle. We now derive the
obstacle contact forces from the constraint forces in (41)
as these are needed in order to compute the obstacle friction
forces. The obstacle contact forces are assumed to only act
on the CM of the links and are denoted by

fC =

∙
fC,x
fC,y

¸
=

∙
−Sθ
Cθ

¸
fC,n (43)

where fC,x ∈ Rn and fC,y ∈ Rn contain the contact forces
on the links in the global x and y direction, respectively,
and fC,n ∈ Rn contains the contact force along the local
y axis of each link. A contact force always acts normal to
a link and thereby along the local y axis of the link. The
constraint forces bF =

hbuT , bfT iT derived in (41) are simply
the contact forces on each link, fC , mapped into the resulting
torques, bu, and forces, bf . The mapping between fC and bu
must necessarily be equal to the mapping between the ground
friction forces and the resulting link torques, which is seen
from (25). This gives the relationshipbu = lSθNfC,x − lCθNfC,y (44)

Using (43) and solving for fC,n gives

fC,n = − (lSθNSθ + lCθNCθ)
−1 bu (45)

The global frame contact forces are finally found by inserting
(45) into (43). Note that the contact forces should only act
on a link in the direction away from the obstacle and should
not prevent the link from moving away from the obstacle.
D. Velocity damping for contacted links

The constraint forces remove the normal direction accel-
eration, but not the normal direction velocity, vn,i, that a
link has at the moment it contacts an obstacle. A viscous
damping force, fD, is therefore calculated to damp out
the normal direction velocity of each contacted link. Note
that velocity damping would not have been necessary if
the nonholonomic constraints had been present all the time
(which is the case for more conventional nonholonomic
systems) since the permanent acceleration constraints then
would have prevented the system from ever reaching nonzero
velocities that conflict with the constraints. The obstacle
constraints are, however, only present when a snake robot
link makes contact with an obstacle.

We assume that the damping forces act on the CM of the
links and write the damping force, f link,i

D,i , on link i in the
local link frame as

f link,i
D,i = −d

∙
0
vn,i

¸
= −d

∙
0

−ẋi sin θi + ẏi cos θi

¸
(46)

where d is the damping coefficient. Expressing this force
in the global frame using (2) and assembling the damping
forces for all the links into matrix form gives

fD =

∙
fD,x

fD,y

¸
= −d

∙
(Sθ)

2 −SθCθ

−SθCθ (Cθ)
2

¸ ∙
ẋ
ẏ

¸
(47)

where fD,x ∈ Rn and fD,y ∈ Rn contain the damping forces
on all the links in the global x and y direction, respectively.
Note that the damping force is set to zero for any link that
is not in contact with an obstacle and also for contacted
links with normal direction velocity pointing away from the
obstacle.
E. Obstacle friction forces

A Coulomb friction model is employed in order to de-
scribe the gliding friction forces, here denoted fμ, between
the links and the obstacles. The local link frame friction
force, f link,i

μ,i , on link i acts in the tangential direction of this
link (along local x axis) and is given by

f link,i
μ,i =

∙
−μo · sgn (vt,i) · |fC,n,i|

0

¸
(48)

where μo is the Coulomb friction coefficient of the obstacles,
fC,n,i is given by (45), and vt,i is the tangential link velocity.
Expressing this force and the tangential link velocity in the
global frame using (2), and also assembling the obstacle
friction forces for all the links into matrix form gives

fμ =

∙
fμ,x
fμ,y

¸
= −μo

∙
Cθ

Sθ

¸
diag (|fC,n|) sgn (Cθẋ+ Sθẏ)

(49)
where fμ,x ∈ Rn and fμ,y ∈ Rn contain the obstacle friction
forces on all the links in the global x and y direction,
respectively. Note that the obstacle friction force is set to
zero for any link that is not in contact with an obstacle.



IV. CONTROL

A major challenge during obstacle-aided locomotion is
to prevent the snake robot from being jammed between the
obstacles. In a jammed situation, the propulsive components
of the contact forces from the obstacles are too small to
overcome the friction forces from the ground and the obsta-
cles, at the same time as the contact forces prevent a number
of the snake robot joints from moving to their commanded
angle. The control strategy proposed in the following has
two states consisting of a leader-follower algorithm with
automatic jam detection and resolution. A leader-follower
algorithm is carried out as long as the snake robot is able
to move without being jammed between the obstacles. If a
jam situation occurs, a jam resolution algorithm is carried
out in order to effectively ‘unlock’ the jammed joints. The
concept of detecting and resolving snake robot jams has, to
the authors’ best knowledge, not been treated in previous
literature.

A. The leader-follower algorithm
The leader-follower algorithm is inspired by coordinated

and cooperative control theory. We view the snake robot as
a constellation of n links that should cooperate in order
to achieve their common goal of locomotion. Choosing
between a coordinated and cooperative control approach, we
choose the coordinated leader-follower scheme. This choice
is motivated by the fact that each part of a biological snake
conducting lateral undulation follows the path traced out
by the head [2]. We therefore choose the head joint angle
(the foremost joint), φn−1, as the reference angle for all
subsequent joints. The preferred direction of motion for the
snake is defined to be along the global positive x axis.

The reference trajectory of the leader, i.e. the head link,
is given as follows. In order to achieve the sinusoidal motion
characteristic of lateral undulation, we alternate between
moving the head in the leftward and rightward direction
with respect to the global positive x axis (the direction in
which the snake should move). This may be achieved by
choosing the reference angle for the head link, θn,ref, equal
to a suitable positive constant α when the head should move
leftward and a negative constant −α when the head should
move rightward. The criterion for switching between these
two reference directions is defined to be the instant when
the distance, 4y, between the position of the head along
the global y axis, yn, (perpendicular to the direction of
locomotion) and the y axis coordinate of the CM of the snake
robot, py, becomes greater than some defined amplitude,
4ymax. This criterion is illustrated in Fig. 3. The distance,
4y, may easily be calculated as a function of the link angles
by following the same logical steps that led to the expression
in (11). The derivation is not included here due to space
restrictions, but leads to the expression

4y := yn − py =
n−1X
j=1

l

n
j (sin θj + sin θj+1) (50)

The reference angle of the head link is in other words set
according to the rule

Leftward motion: θn,ref=α until4y>4ymax
Rightward motion: θn,ref=−α until4y<−4ymax

(51)

Fig. 3. Control of the head of the snake robot.

Fig. 4. The contact force on a link.

To obtain this link angle, the head joint angle is controlled
according to the reference

φn−1,ref = θn−1 − θn,ref (52)

In order to generate a leader-follower based control ref-
erence to the remaining links, the head joint angle, φn−1,
is propagated backwards along the snake body at a constant
propagation velocity, vref, and used as the reference angle
for all subsequent joints. For a given choice of vref, the time
offset, 4t, between two consecutive joints with intermediate
distance 2l is found as 4t = 2l

vref
.

To summarize, the reference angles for all the joints of
the snake robot in this leader-follower scheme are

φn−1,ref (t) = θn−1 (t)− θn,ref
φi,ref(t) = φn−1(t−(n−i−1)4t) ∀ i=1..n−2 (53)

B. The jam resolution algorithm
A joint of the snake robot is defined to be jammed if

the deviation between the joint angle and its reference angle
exceeds a certain limit, 4φmax. It is reasonable to assume
that a jam of a single joint will resolve by itself. However,
two jammed joints could be caused by a situation where
the contact forces cause the jammed joints to act ‘against’
each other. This situation may not always resolve by itself.
If two joints are in a jammed state for a period longer than
tjam,max, the snake robot is defined to be in a jammed state.
This causes the leader-follower algorithm to be stopped in
order to carry out a jam resolution algorithm. The snake robot
stays in the jam resolution state for a predefined amount of
time, tresolution,max, since it is difficult to come up with a
specific criteria for when a jam has been resolved.

The idea behind the jam resolution algorithm is to rotate
the links affected by contact forces so that the propulsive
component of each contact force increases. In a jammed
situation, the propulsive components of the contact forces
from the obstacles are too small to overcome the friction
forces from the ground and the obstacles. Rotating the
contacted links (and thereby the direction of the contact
forces) to increase the total propulsive contact force should
therefore resolve the jammed situation.

The contact force on link i, illustrated in Fig. 4, is
assumed to be measured. This measurement is denoted

∧
f i.

The propulsive component, f̂prop,i, of a contact force on link



i is defined as the force component in the desired direction
of motion and is given by

f̂prop,i = −
∧
f i sin θi (54)

The change of the propulsive component due to a change of
the link angle is found by differentiating (54) with respect
to θi:

∂f̂prop,i

∂θi
= −

∧
f i cos θi (55)

This expression shows that a change of a contact force near
perpendicular to the direction of motion has greater effect
on the propulsive component than a similar change of a
contact force near parallel to the direction of motion. The
jam resolution algorithm should therefore prioritize to rotate
links with a high propulsive force gradient with respect to
the link angle. This suggests the following expression for the
desired change of the link angle during jam resolution:

4θi,ref = kθ
∂f̂prop,i

∂θi
= −kθ

∧
f i cos θi (56)

where kθ is the gain of the jam resolution controller. We
would only like to change the angle of link i while leaving
the angle of link i − 1 and i + 1 unchanged. This means
that 4θi−1,ref = 4θi+1,ref = 0 and that the resulting desired
change of the joint angles is given by

4φi−1,ref = 4θi−1,ref −4θi,ref = kθ
∧
f i cos θi

4φi,ref = 4θi,ref −4θi+1,ref = −kθ
∧
f i cos θi

(57)

During jam resolution, we leave the head joint angle un-
changed to maintain a smooth head angle. We also use the
measured contact forces at the instant the jam was detected
as feedback and do not update the force vector in the
jam resolution state. This ensures a steady rotation of the
contacted links in accordance with the contact forces that
produced the jam. The reference angles for all the joints
of the snake robot in the jam resolution state may now be
summarized as

φn−1,ref = φn−1

φi,ref=φi+kθ

µ
−
∧
f icosθi+

∧
f i+1cosθi+1

¶
∀ i=1..n−2 (58)

C. Low-level joint controller
A standard PD-controller is used to calculate the joint

actuator torques from the joint reference angles according to

ui = kP
¡
φi,ref− φi

¢
− kDφ̇i (59)

where kP and kD are the gains of the controller. A velocity
reference is not included in (59) since the transitions between
the two states of the proposed control strategy produce steps
in the reference angles, which would lead to large velocity
references. The joint reference angles are saturated to ensure
that they stay within the range [−φmax, φmax] corresponding
to the maximum joint angle of the snake robot joints. The
actual joint angles are also forced to stay within this range by
adding a large restoring joint torque towards the zero angle
if a joint is outside its legal range.
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Fig. 5. Path taken by the snake robot without jam resolution. The motion
is jammed after about 0.4 m.

V. SIMULATION RESULTS

This section presents results from simulations of the
model in (29) and the control strategy in (53) and (58).
The model was simulated using Matlab R2008a on a laptop
running Windows XP. The ode45 solver in Matlab was used
with a relative and absolute error tolerance of 10−3.

A. Simulation parameters

The parameters characterizing the simulated snake robot
were n = 10, l = 0.07 m, m = 1 kg, and J = 0.0016
kgm2. These parameters characterize a physical snake robot
currently under development in our lab.

The various controller parameters were set to kP = 20,
kD = 5, vref = 0.2 m/s, 4ymax = 0.14 m,α = 50◦, kθ = 0.05,
φmax = 50◦, 4φmax = 20◦, tjam,max = 0.5 s, tresolution,max =
0.5 s. These were found based on both physical insight and
through trial and error.

The ground and obstacle friction coefficients were set to
μt = μn = μo = 0.3, with obstacle damping coefficient d =
1000. The obstacles were chosen to be three rows (parallel
to the x axis) of cylindrical objects with a diameter of 10
cm each. The center distance between two obstacles in a row
and the distance between two rows were 25 cm. The middle
row was displaced with respect to the other two rows by half
this distance (12.5 cm) along the x axis.

The initial link angles and CM (center of mass)
position of the snake robot were set to θ0 =
[7,−32,−57,−46,−8, 33, 53, 45, 12,−23]T [deg] and p0 =
[0, 0]T , respectively. The initial shape was more or less
randomly chosen in order to give the snake an initial curl
around the obstacles.

B. Simulation without jam resolution

In order to demonstrate the problem of snake robot jams
during obstacle-aided locomotion, this section first presents
simulation results where the leader-follower algorithm was
employed, but where jam detection and resolution was dis-
abled. The initial (t = 0 s) and final (t = 7 s) shape and
position of the snake robot is shown in Fig. 5. The snake
robot managed to crawl about 0.4 m along the global positive
x axis before the motion stopped due to a jam between the
obstacles. The velocity of the CM is plotted in Fig. 6, which
clearly shows how the speed gained during the first 3.5 s
is reduced to zero after about 4.5 s. The snake robot was
jammed because the propulsive components of the contact
forces from the obstacles were too small to overcome the
friction forces from the ground and the obstacles.
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Fig. 6. Speed of the snake robot without jam resolution. The motion is
jammed after about 4.5 s.
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Fig. 7. Path taken by the snake robot with jam resolution.

C. Simulation with jam resolution

The next simulation results show the effect of the jam
resolution algorithm. The initial (t = 0 s) and final (t = 30
s) shape and position of the snake robot is shown in Fig. 7.
The trace of the head link is plotted with a dashed line in this
figure. After 30 s, the snake robot has managed to crawl more
than 2.5 m along the global positive x axis. The velocity of
the CM is plotted in Fig. 8, which shows that the speed varies
around 10 cm/s. The triangles in the figure indicate when
the snake robot is jammed (triangle pointing downwards),
which initiates jam resolution, and when the jam resolution
algorithm has finished (triangle pointing upwards). Each jam
resolution phase is characterized by a decrease in the speed
of the snake due to the reorientation of the links, but a
subsequent increase of the speed to a similar or higher value
compared to the speed the snake had at the instant it was
jammed. All the jams that occurred during a run of 30 s
were resolved by the proposed algorithm.

To clearly illustrate the effect of the jam resolution
algorithm, a plot of the snake robot before (dashed) and
after (solid) a jam resolution is shown in Fig. 9. The figure
shows the jam occurring at time t = 5.96 s and ending
at time t = 6.46 s. The jam is caused by obstacle contact
forces acting on links 7 and 9, and is resolved by rotating
link 7 clockwise and link 9 counterclockwise during the jam
resolution, thereby increasing the propulsive components of
the two contact forces enough to overcome the friction forces
from the ground and the obstacles.
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Fig. 8. Speed of the snake robot with jam resolution.
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Fig. 9. Snake robot before (dashed) and after (solid) jam resolution.

VI. CONCLUSION

This paper has presented a model of the dynamics of
a snake robot where interactions between the snake robot
and external obstacles are modelled as nonholonomic con-
straints. A control strategy was derived for enabling the
snake robot to propel itself forward by using obstacles along
its path as push-points (denoted obstacle-aided locomotion)
while simultaneously preventing the obstacles from jamming
the motion. The simulation results validated the contact
modelling approach and illustrated how the proposed jam
detection and resolution algorithm can help to maintain the
propulsion of a snake robot in a cluttered environment.

Future work will validate the presented simulation results
through experiments with a snake robot currently under
development at NTNU/SINTEF in Norway.
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