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Path following control of planar snake robots using
a cascaded approach
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Abstract—This paper considers path following control of snake
robots along straight paths. Under the assumption that the
forward velocity of the snake robot is nonzero and positive, we
prove that the proposed path following controller K-exponentially
stabilizes a snake robot to any desired straight path. The
performance of the path following controller is investigated
through simulations and through experiments with a physical
snake robot where the controller successfully steers the snake
robot towards and along the desired straight path.

Index Terms—Snake robot, Path following, Cascaded system,
K-exponential stability.

I. INTRODUCTION

INSPIRED by biological snake locomotion, snake robots
carry the potential of meeting the growing need for robotic

mobility in challenging environments. Snake robots consist
of serially connected modules capable of bending in one or
more planes. The many degrees of freedom of snake robots
make them difficult to control, but provide traversability in
irregular environments that surpasses the mobility of the more
conventional wheeled, tracked and legged forms of robotic
mobility.

This paper considers planar path following control of snake
robots along straight paths. Straight line path following capa-
bilities are important since they enable a snake robot to follow
a desired path given by waypoints interconnected by straight
lines. Straight line path following is therefore relevant for
many future applications of snake robots, such as automated
inspection rounds in inaccessible areas of industrial process
facilities or mapping of confined spaces by moving along
prescribed paths. Note that this paper considers path following,
in contrast to trajectory tracking, where the goal is additionally
to control the position of the system along the path. During
path following, we steer the system towards and along the
path, but do not consider the temporal position of the system
along the path.

Research on snake locomotion has been conducted for
several decades. Early research efforts on this topic include
the work by Gray [1], who conducted empirical and analytical
studies of snake locomotion already in the 1940s, and the work
by Hirose [2], who studied biological snakes and developed
mathematical relationships characterizing their motion. The
emphasis in literature so far has mainly been on achieving
forward and turning locomotion. For instance, the works in
[3], [4] model the kinematics of a snake robot in terms of a
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continuous backbone curve and propose gaits for the backbone
curve, such as a sidewinding gait. Sidewinding motion on
slopes is considered in [5]. A variety of gaits for snake robots,
including climbing gaits, are presented in [6]–[8]. The works
in [9], [10] employ computer simulations to study properties
of lateral undulation, which is the most common form of snake
locomotion. [10] also proposes a forward velocity controller
for snake robots. Control strategies for wheelless snake robots
propelled by obstacle contact forces are proposed in [11], [12].

Previous research on not only achieving forward and turning
locomotion, but also making a snake robot follow a desired
path, is limited. A position and path following controller for a
wheeled snake robot is proposed in [13], where also Lyapunov
analysis is employed to analyze the controller. The work also
considers approaches for preventing the snake robot from
attaining a straight shape, which is singular with respect to
propulsion. Similar approaches are presented in [14], [15],
where a measure of dynamic manipulability that takes the
constraint forces on the wheels into account is employed
in order to control the position of the snake robot while
simultaneously ensuring a high manipulability. The work in
[16] considers trajectory tracking of snake robots where some,
but not all, of the links are assumed to be wheeled. This
gives the system more degrees of freedom and is utilized
to follow a trajectory while simultaneously maintaining a
high manipulability. Path following of a snake robot with
active wheels is considered in [17], but no stability analysis
of the controller is presented. The authors have previously
employed Poincaré maps to study the stability properties of
snake locomotion along a straight path [18]. The presented
analysis is, however, based on numerical calculations and is
thus only valid for a given set of controller parameters.

Research on robotic fish and eel-like mechanisms is rel-
evant to research on snake robots since these mechanisms
are very similar. The works in [19]–[21] synthesize gaits
for translational and rotational motion of various fish-like
mechanisms and propose controllers for tracking straight and
curved trajectories. However, an analysis that formally proves
that the fish-like mechanisms converge to the desired path still
remains.

In this paper, we consider the problem of planar path
following control of snake robots. As indicated by the above
literature review, previous research on path following control
of snake robots has focused on robots with nonholonomic
constraints, i.e. where each link is constrained from moving
sideways. In this paper, we consider snake robots where the
links are allowed to slip sideways as we consider such snake
robots to be more relevant to operations in unknown and
cluttered environments, which represent the longterm goal of
our research.

The contribution of this paper is a path following controller
that enables snake robots to track planar straight paths. Using
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cascaded systems theory, we prove that the proposed path
following controller K-exponentially stabilizes a snake robot
to any desired straight path. In particular, under the assumption
that the forward velocity of the snake robot is nonzero and
positive, we show that the model of the snake robot and the
controller can be written as a cascaded system where the
body shape changes affect the global orientation of the robot,
which subsequently affects the cross-track error between the
robot and the desired path. The K-exponential stability of the
cascaded system guarantees that the cross-track error and the
heading of the snake robot with respect to the direction of the
path converge to zero. To the authors’ best knowledge, this
is the first time the stability properties of a path following
controller for a snake robot without nonholonomic constraints
are formally proved. The performance of the path following
controller is investigated through simulations and through
experiments with a physical snake robot. The simulations and
the experimental results show that the proposed controller
successfully steers the snake robot towards and along the
desired straight path.

Note that this paper is based on and extends preliminary
work by the authors in [22], [23]. The extensions in this
paper include new simulation results and new experimental
results that better illustrate the performance of the proposed
controller, inclusion of proofs of two lemmas that were omitted
in [22], [23], and general improvements of the accuracy of
important statements concerning the main result of the paper.

The paper is organized as follows. Section II presents some
mathematical preliminaries. Section III presents the model
of the snake robot. Section IV presents the path following
controller. Simulation results and experimental results are
presented in Section V and Section VI, respectively. Finally,
Section VII presents some concluding remarks.

II. MATHEMATICAL PRELIMINARIES

We begin by presenting some stability concepts that will
be employed in Section IV to analyse the straight line path
following controller of the snake robot. The stability concepts
make use of class K and class KL functions. A function
being of class K basically means that the function is strictly
increasing with respect to its argument. A function of class
KL has two arguments, and is strictly increasing with respect
to the first argument when the second argument is fixed, and is
decreasing with respect to the second argument when the first
argument is fixed. A formal definition of class K functions
and class KL functions is given in [24] (Definition 4.2 and
4.3). Consider now the system

ẋ = f(t,x), (1)

where f : R≥0 × Rn → Rn is piecewise continuous in t and
locally Lipschitz in x.

Definition 1: (UGAS, see Lemma 4.5 in [24]).
The equilibrium point x = 0 of the system (1) is uniformly
globally asymptotically stable (UGAS) if there exists a class
KL function β such that for any initial state x(t0)

‖x(t)‖ ≤ β(‖x(t0)‖ , t− t0), ∀t ≥ t0 ≥ 0. (2)

A system being UGAS basically means that the state x
converges to zero as t → ∞. A special case of UGAS arises
when the class KL function β takes the form of an exponential
function as follows.

Definition 2: (UGES, see Definition 4.5 in [24]).
The equilibrium point x = 0 of the system (1) is uniformly
globally exponentially stable (UGES) if there exist positive
constants k and λ such that for any initial state x(t0)

‖x(t)‖ ≤ k ‖x(t0)‖ e−λ(t−t0), ∀t ≥ t0 ≥ 0. (3)

A slightly weaker form of stability than exponential stability
is K-exponential stability, which is defined as follows.

Definition 3: (Global K-exponential stability, see Defini-
tion 2 in [25]).
The equilibrium point x = 0 of the system (1) is globally
K-exponentially stable if there exist a positive constant λ and
a class K function α such that for any initial state x(t0)

‖x(t)‖ ≤ α(‖x(t0)‖)e−λ(t−t0), ∀t ≥ t0 ≥ 0. (4)

As first noted in [26], the following Corollary holds.
Corollary 4: Global K-exponential stability is equivalent to

the system being both UGAS and ULES (uniformly locally
exponentially stable).

Remark 5: For simplicity, if the equilibrium point x = 0
of a system is UGAS/UGES/globally K-exponentially stable,
we often say that the system itself is UGAS/UGES/globally
K-exponentially stable.

Next, consider the cascaded system

ẋ = f1(t,x) + g(t,x,y)y, (5)
ẏ = f2(t,y), (6)

where x ∈ Rn, y ∈ Rm, f1(t,x) is continuously differen-
tiable in (t,x), and f2(t,y), g(t,x,y) are continuous in their
arguments and locally Lipschitz in y and (x,y), respectively.
Many dynamical systems can be written in this cascaded form,
where we see that the y-dynamics in (6) perturbs the x-
dynamics in (5) through the interconnection term g(t,x,y)y.

Theorem 6: (See Theorem 2 in [27]).
The cascaded system (5), (6) is UGAS if the following three
assumptions are satisfied:
(A1) The system ẋ = f1(t,x) is UGAS with a radially
unbounded Lyapunov function satisfying∥∥∂V

∂x

∥∥ ‖x‖ ≤ cV (t,x), ∀ ‖x‖ ≥ η, (7)

where c > 0 and η > 0 are constants.
(A2) The function g(t,x,y) satisfies

‖g(t,x,y)‖ ≤ θ1(‖y‖) + θ2(‖y‖) ‖x‖ , (8)

where θ1, θ2 : R≥0 → R≥0 are continuous.
(A3) The system ẏ = f2(t,y) is UGAS and for all t0 ≥ 0

∞∫
t0

‖y(t)‖ dt ≤ κ(‖y(t0)‖), (9)

where the function κ(·) is a class K function.
Lemma 7: (See Lemma 8 in [28]).

If in addition to the assumptions in Theorem 6 both ẋ =
f1(t,x) and ẏ = f2(t,y) are globally K-exponentially stable,
then the cascaded system (5), (6) is globally K-exponentially
stable.

III. THE MODEL OF THE SNAKE ROBOT

This section summarizes the model of the snake robot which
the controller development in Section IV is based upon. For a
more detailed presentation of the model, the reader is referred
to [29].



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. Y, MONTH 2010 3

TABLE I
THE PARAMETERS OF THE SNAKE ROBOT.

Symbol Description
N Number of links.
l Length of a link.
m Mass of a link.

φ ∈ RN−1 Joint coordinates.
θ ∈ R Orientation of the robot.

(px, py) ∈ R2 CM position of the robot.
vφ ∈ RN−1 Joint velocities.
vθ ∈ R Angular velocity of the robot.

(vt, v n) ∈ R2 Translational velocity of the robot.
u ∈ RN−1 Joint actuator forces.

A. Overview of the model
In this work, we employ a lumped parameter model to

describe the dynamics of snake robots consisting of serially
connected rigid links. Note that alternative modelling ap-
proaches also exist, such as continuum models, which assume
that the snake robot can be described as a continuous curve
[30]–[32]. The model formulation described in the following
is based on a simplified modelling approach which is suitable
for controller design purposes.

We consider a planar snake robot with links interconnected
by active revolute joints. The surface beneath the robot is
flat and horizontal, and each link is subjected to a viscous
ground friction force. The body shape changes of the robot
induce friction forces on the links that produce the translational
and rotational motion of the robot. A simplified model that
captures only the most essential part of the snake robot
dynamics is proposed in [29]. The idea behind this model
is illustrated in Fig. 1 and motivated by an analysis presented
in [29], which shows that:
• The forward motion of a planar snake robot is produced

by the link velocity components that are normal to the
forward direction.

• The change in body shape during forward locomotion
primarily consists of relative displacements of the CM of
the links normal to the forward direction of motion.

Based on these two properties, the simplified model de-
scribes the body shape changes of a snake robot as linear
displacements of the links with respect to each other instead
of rotational displacements. The linear displacements occur
normal to the forward direction of motion and produce friction
forces that propel the robot forward. This essentially means
that the revolute joints of the snake robot are modelled as
prismatic (translational) joints and that the rotational motion of
the links during body shape changes is disregarded. However,
the model still captures the effect of the rotational link motion
during body shape changes, which is a linear displacement
of the CM of the links normal to the forward direction of
motion. Note that the relative link displacements transversal
to the direction of motion will not dominate over the relative
link displacements tangential to the direction of motion when
the amplitudes of the link angles become large. The simplified
model is therefore a valid description of snake robot locomo-
tion only as long as the link angles are limited.

The mathematical model of the snake robot is summarized
in the next subsection in terms of the symbols illustrated in
Fig. 2 and Fig. 3. The parameters of the snake robot are
summarized in Table I.

Fig. 1. The revolute joints of the snake robot are modelled as prismatic joints
that displace the CM of each link transversal to the direction of motion.

Fig. 2. Illustration of the two coordinate frames employed in the model. The
global x-y frame is fixed. The t-n frame is always aligned with the snake
robot.

B. Equations of motion

The snake robot has N links of length l and mass m
interconnected by N −1 prismatic joints. The prismatic joints
control the normal direction distance between the links. As
seen in Fig. 3, the normal direction distance from link i to
link i + 1 is denoted by φi and represents the coordinate of
joint i. The positive direction of φi is along the n axis.

The snake robot moves in the horizontal plane and has N+2
degrees of freedom. The motion is defined with respect to the
two coordinate frames illustrated in Fig. 2. The x-y frame
is the fixed global frame. The t-n frame is always aligned
with the snake robot, i.e. the t and n axis always point in the
tangential and normal direction of the robot, respectively. The
origin of both frames are fixed and coincide.

As seen in Fig. 2, the global frame position of the CM

Fig. 3. Symbols characterizing the kinematics and dynamics of the snake
robot.
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(center of mass) of the snake robot is denoted by (px, p y) ∈
R2. The global frame orientation, denoted by θ ∈ R, is defined
as the angle between the t axis and the global x axis with
counterclockwise positive direction.

Remark 8: A snake robot with revolute joints has no explic-
itly defined orientation since there is an independent link angle
associated with each link. A common approach in previous
literature has therefore been to describe the orientation of a
snake robot as the mean of the absolute link angles [33], [34].
The simplified model employed in this paper avoids this issue
since the scalar variable θ provides an explicit representation
of the orientation of the snake robot, which is a significant
advantage for control design purposes.

The state vector of the system is chosen as

x = (φ, θ, px, py,vφ, vθ, vt, vn) ∈ R2N+4, (10)

where φ = (φ1, · · · , φN−1) ∈ RN−1 are the joint coordinates,
θ ∈ R is the absolute orientation, (px, p y) ∈ R2 is the global
frame position of the CM, vφ = φ̇ ∈ RN−1 are the joint
velocities, vθ = θ̇ ∈ R is the angular velocity, and (vt, v n) ∈
R2 is the tangential and normal direction velocity of the snake
robot. Note that we define the position with respect to the
global frame, but the translational velocity with respect to the
t-n frame.

As illustrated in Fig. 3, each link is influenced by a ground
friction force (acting on the CM of the link) and constraint
forces that hold the joints together. A model of these forces
is presented in [29], where it is also shown that the complete
model of the snake robot can be written as

φ̇ = vφ, (11a)

θ̇ = vθ, (11b)
ṗx = vt cos θ − vn sin θ, (11c)
ṗy = vt sin θ + vn cos θ (11d)

v̇φ = −c1
m
vφ +

c2
m
vtAD

Tφ+
1
m
DDTu, (11e)

v̇θ = −c3vθ +
c4

N − 1
vte

Tφ, (11f)

v̇t = −c1
m
vt +

2c2
Nm

vne
Tφ− c2

Nm
φTADvφ, (11g)

v̇n = −c1
m
vn +

2c2
Nm

vte
Tφ, (11h)

where u ∈ RN−1 are the actuator forces at the joints and
e =

[
1 . . 1

]T ∈ RN−1,

D = DT
(
DDT

)−1

∈ RN×(N−1),

A =

1 1
. .

. .
1 1

,D =

1 −1
. .

. .
1 −1

 ,
and where A ∈ R(N−1)×N and D ∈ R(N−1)×N . The param-
eters c1, c2, c3, and c4 are positive scalar friction coefficients
that characterize the external forces acting on the snake robot.
In particular, the coefficient c1 determines the magnitude of
the friction forces resisting the link motion, c2 determines the
magnitude of the induced friction forces that propel the snake
robot forward, c3 determines the friction torque opposing the
rotation of the snake robot, while c4 determines the induced
torque that rotates the snake robot. This torque is induced
when the forward direction velocity and the average of the

joint coordinates are nonzero. The role of each coefficient is
explained in more detail in [29].

IV. DESIGN AND ANALYSIS OF THE PATH FOLLOWING
CONTROLLER

In this section, we design and analyse a straight line path
following controller for the snake robot.

A. Control objective
The control objective is to steer the snake robot so that

it converges to and subsequently tracks a straight path while
maintaining a heading which is parallel to the path. To this
end, we define the global coordinate system so that the global
x axis is aligned with the desired straight path. The position
of the snake robot along the global y axis, py , is therefore the
shortest distance from the robot to the desired path and the
orientation of the snake robot, θ, is the angle that the robot
forms with the desired path. The control objective is thus to
regulate py and θ to zero. Since snake robot locomotion is a
slow form of robotic mobility which is generally employed for
traversability purposes, the authors consider it less important
to accurately control the forward velocity of the robot. During
path following with a snake robot, it therefore makes sense
to focus all the control efforts on converging to the path
and subsequently progressing along the path at some nonzero
forward velocity vt ∈ [Vmin, Vmax], where Vmin and Vmax

represent the boundaries of some positive interval in which
we would like the forward velocity to be contained.

From the above discussion, the control problem is to design
a feedback control law

u = u(t,φ, θ, py,vφ, vθ, vt, vn) ∈ RN−1 (12)

such that the following control objectives are reached:

lim
t→∞

py(t) = 0, (13)

lim
t→∞

θ(t) = 0. (14)

B. Assumptions
A planar snake robot achieves forward motion through pe-

riodic body shape changes that generate external forces on the
robot from the environment which propel the robot forward.
The most common form of such periodic body shape changes
is called lateral undulation [2] and consists of horizontal
waves that are propagated backwards along the snake body
from head to tail. The work by the authors in [35], which
investigates the velocity dynamics of a snake robot during
lateral undulation, shows that the forward velocity during
lateral undulation oscillates around a positive nonzero average
velocity that can be predetermined based on the parameters
characterizing the gait pattern. In other words, when the snake
robot conducts lateral undulation, the results in [35] suggest
that the forward velocity is contained in some nonzero and
positive interval [Vmin, Vmax] that can be scaled based on a
set of gait pattern parameters. We therefore choose to base the
path following controller of the snake robot on the following
assumption:

Assumption 9: The snake robot conducts lateral undulation
and has a forward velocity which is always nonzero and pos-
itive, i.e. vt ∈ [Vmin, Vmax] ∀ t ≥ 0 where Vmax ≥ Vmin > 0.
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Remark 10: The validity of Assumption 9 can be seen by
inspecting the equations of motion in (11). The dynamics of
the forward velocity in (11g) contains three terms. As shown in
[35], the term − c2

Nmφ
TADvφ is positive and accelerates the

robot forward during lateral undulation, while the term − c1mvt
is the ground friction force. The combined effect of these two
terms can never make the forward velocity vt become zero
during lateral undulation. This leaves 2c2

Nmvne
Tφ as the only

term that can produce a negative forward acceleration that
forces vt to zero. This term is negative when the sideways
velocity vn and the sum of the joint coordinates eTφ have
opposite signs. However, it can be seen from (11h) that vn
and eTφ will always tend in the same rather than the opposite
direction when vt > 0. It is therefore unlikely for vn and eTφ
to have opposite signs over the long period required to force
vt to zero.

C. Model transformation

On the basis of the discussion above and Assumption 9, we
will not control the dynamics of the forward velocity vt given
by (11g) and instead treat the forward velocity as a positive
parameter satisfying vt ∈ [Vmin, Vmax].

As seen in (11f) and (11h), the joint coordinates φ are
present in the dynamics of both the angular velocity vθ and the
sideways velocity vn of the snake robot. This complicates the
controller design since the body shape changes will affect both
the heading and the sideways motion of the robot. Motivated
by [36], we see that it is possible to remove the effect of φ
on the sideways velocity by a coordinate transformation. In
particular, we move the point that determines the position of
the snake robot a distance ε along the tangential direction of
the robot from the CM to a new location, which is precisely
where the body shape changes of the robot (characterized by
eTφ) generate a pure rotational motion and no sideways force.
This coordinate transformation is illustrated to the left in Fig. 4
and is defined as

px = px + ε cos θ, (15a)
py = py + ε sin θ, (15b)
vn = vn + εvθ, (15c)

where ε is a constant parameter defined as

ε = −2 (N − 1)
Nm

c2
c4
. (16)

With the new coordinates in (15), the model (11) is trans-
formed into

φ̇ = vφ, (17a)

θ̇ = vθ, (17b)
.
py = vt sin θ + vn cos θ, (17c)

v̇φ = −c1
m
vφ +

c2
m
vtAD

Tφ+
1
m
DDTu, (17d)

v̇θ = −c3vθ +
c4

N − 1
vte

Tφ, (17e)
.
vn = Xvθ + Y vn, (17f)

where, by Assumption 9, the parameter vt ∈ [Vmin, Vmax] with

Vmax ≥ Vmin > 0, and where

X = ε
(c1
m
− c3

)
, (18a)

Y = −c1
m
. (18b)

The two scalar constants X and Y have been introduced in
(17f) for simplicity of notation in the following sections. Note
also that (11c) is not included in (17) since we do not consider
the temporal position of the system along the path during path
following.

D. The path following controller
The path following controller of the snake robot consists of

two main components. The first component is the gait pattern
controller, which propels the snake robot forward according to
the gait pattern lateral undulation (as stated in Assumption 9).
The second component is the heading controller, which steers
the snake robot towards and subsequently along the desired
path. The two components of the path following controller
are now presented.

1) Gait pattern controller: As proposed in [2], lateral
undulation is achieved by controlling joint i ∈ {1, · · · , N − 1}
of the snake robot according to the sinusoidal reference

φi,ref = α sin (ωt+ (i− 1) δ) + φo, (19)

where α and ω are the amplitude and frequency, respectively,
of the sinusoidal joint motion and δ determines the phase
shift between the joints. The parameter φo is a joint offset
coordinate that the heading controller will use to control the
direction of the locomotion. As shown in [37], the average
forward velocity v∗t of the snake robot during straight path
motion is given by

v∗t =
c2

2Nc1
α2ωkδ, (20)

where kδ is a constant parameter determined by the phase shift
δ. This relation can be used to choose the gait parameters α, ω,
and δ in order to achieve the desired average forward velocity.

In order to make the joints track the joint reference coor-
dinates given by (19), we set the actuator forces according to
the linearizing control law

u = m
(
DDT

)−1 (
u+

c1
m
φ̇− c2

m
vtAD

Tφ
)
, (21)

where u ∈ RN−1 is a new set of control inputs. This control
law transforms the joint dynamics (17d) into v̇φ = φ̈ = u.
Subsequently, we choose the new control input u as

u = φ̈ref + kvφ

(
φ̇ref − φ̇

)
+ kφ (φref − φ) , (22)

where kφ > 0 and kvφ > 0 are scalar controller gains and
φref = (φ1,ref , · · · , φN−1,ref) ∈ RN−1 are the joint reference
coordinates given by (19). By introducing the error variable

φ̃ = φ− φref , (23)

the joint dynamics given by (17a) and (17d) can be written in
terms of the error dynamics

..

φ̃+ kvφ

.

φ̃+ kφφ̃ = 0, (24)

which is clearly exponentially stable [24] as long as φref , φ̇ref ,
and φ̈ref are bounded. This means that the joint coordinates
exponentially track the reference coordinates given by (19).
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Fig. 4. Left: The coordinate transformation of the snake robot. Right: The
Line-of-Sight (LOS) guidance law.

2) Heading controller: In order to steer the snake robot
towards the desired straight path, we employ the Line-of-Sight
(LOS) guidance law

θref = − arctan(
py
∆

), (25)

where py is the cross-track error and ∆ > 0 is a design
parameter referred to as the look-ahead distance. This LOS
guidance law is commonly used during e.g. path following
control of marine surface vessels [38], [39]. As illustrated to
the right in Fig. 4, the LOS angle θref corresponds to the
orientation of the snake robot when it is headed towards the
point located a distance ∆ ahead of the snake robot along the
desired path. The value of ∆ is important since it determines
the rate of convergence to the desired path.

As mentioned in Section IV-D1, we will use the joint offset
coordinate φo in (19) to ensure that the heading of the snake
robot θ tracks the LOS angle given by (25). Motivated by
[39] and [40], we conjecture that making θ track the LOS
angle θref will make the snake converge to the desired path
and subsequently follow the path with its heading parallel to
the path. In other words, we conjecture that a control law
making θ track θref will fulfill the control objectives (13) and
(14). To derive the control law for φo, we first rewrite the
dynamics of vθ given by (17e) with the new coordinates φ̃ in
(23), which gives the dynamics of vθ as a function of the joint
reference coordinates given by (19). From (23), we have that
φ = φref + φ̃. Using (19), we can therefore rewrite (17e) as

v̇θ = −c3vθ + c4vtφo

+ c4
N−1vt

(
N−1∑
i=1

α sin(ωt+ (i− 1) δ) + eT φ̃
)
.

(26)

Consequently, choosing φo as

φo = 1
c4vt

(
θ̈ref + c3θ̇ref − kθ(θ − θref)

− c4
N−1vt

N−1∑
i=1

α sin(ωt+ (i− 1) δ)
)
,

(27)

where kθ > 0 is a scalar controller gain, enables us to write
the dynamics of the heading angle θ, which is given by (17b)
and (17e), in terms of the error dynamics

..

θ̃ + c3

.

θ̃ + kθ θ̃ =
c4

N − 1
vte

T φ̃, (28)

where we have introduced the error variable

θ̃ = θ − θref . (29)

Remark 11: The joint coordinate offset in (27) depends on
the inverse of the forward velocity vt. This does not represent
a problem since, by Assumption 9, the forward velocity
is always nonzero. When implementing the path following
controller, this issue can be avoided by activating the controller
after the snake robot has obtained a positive forward velocity.

Remark 12: The error dynamics of the joints in (24) and
the error dynamics of the heading in (28) represent a cascaded
system. In particular, the system (24) perturbs the system (28)
through the interconnection term c4

N−1vte
T φ̃. Using cascaded

systems theory, it will be shown in Section IV-F that the origin
of this cascaded system is globally K-exponentially stable.

We have now presented the complete path following con-
troller of the snake robot. The structure of the complete
controller is summarized in Fig. 5.

E. Main result
Based on the guidance and control laws presented in the

previous subsection, we now formulate the main result of this
paper. The result specifies a lower bound on the look-ahead
distance ∆ employed in (25). The bound on ∆, which is
formally derived in the proof presented in Section IV-F, is
given a physical interpretation in Remark 15 below.

Theorem 13: Consider a planar snake robot described by
the model (17) and suppose that Assumption 9 is satisfied. If
the look-ahead distance ∆ of the LOS guidance law (25) is
chosen such that

∆ >
|X|
|Y |

(
1 +

Vmax

Vmin

)
, (30)

then the path following controller defined by (19), (21), (22),
(25), and (27) guarantees that the control objectives (13) and
(14) are achieved for any set of initial conditions satisfying
vt ∈ [Vmin, Vmax].

Proof: The proof of this theorem is given in Section IV-F.

Remark 14: Theorem 13 does not specify the boundary
values Vmin and Vmax of the interval in which the forward
velocity vt is contained. By Assumption 9, however, there
exists a positive interval that contains vt for all time t ≥ 0.
In practice, conservative values for these boundary values can
be chosen, but in order to achieve a tighter bound on ∆, we
would like to specify Vmin and Vmax as a function of the gait
pattern parameters α, ω, δ, and φo. This remains a topic of
future work.

Remark 15: The lower bound on the look-ahead distance
∆ in (30) ensures that the sideways velocity vn of the snake
robot in (17f) is well behaved under the perturbations from the
angular velocity vθ. In particular, the magnitude of vθ during
convergence to the desired path is determined by the look-
ahead distance ∆, i.e. the robot rotates fast when ∆ is small
(and vice versa). We see from (17f) that vθ only has a small
influence on vn when |X| � |Y |, which means that we then
can allow the magnitude of vθ to be large, i.e. ∆ can be small.
Similarly, vθ has a great influence on vn when |X| � |Y |,
which means that the magnitude of vθ must be restricted, i.e.
∆ must be large. These conditions are directly reflected by
the lower bound in (30).
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Fig. 5. The structure of the path following controller.

Remark 16: As explained in Section III-A, the assumptions
underlying the simplified model are only valid as long as the
link angles with respect to the forward direction are limited.
The stability result in Theorem 13 is therefore claimed only
for snake robots conducting lateral undulation with limited
link angles.

F. Proof of the main result

We will prove Theorem 13 in three steps. In the first
step, we show that the complete system, including the path
following controller, can be written as a cascaded system. In
the second step, we prove stability of the nominal systems in
the cascade. Finally, we derive bounds on the interconnection
terms between the nominal systems, which, by Theorem 6
and Lemma 7, allow us to conclude stability of the complete
cascaded system. We will follow the steps of a similar proof
presented in [41].

We begin by rewriting the dynamics of the cross-track error
py and the sideways velocity vn in terms of the heading error
θ̃. From (29) and (25) we have that

θ = − arctan(
py
∆

) + θ̃. (31)

By using the relations sin(− arctan(py∆ )) = − py√
p2y+∆2

and

cos(− arctan(py∆ )) = ∆√
p2y+∆2

, it can be verified that (17c)

can be written in terms of the heading error θ̃ as

.
py = −vt

σ
py +

∆
σ
vn + γθ̃, (32)

where

σ =
√
p2
y + ∆2, (33)

γ =
sin θ̃

θ̃

(
vt∆ + vnpy

)
σ

+
1− cos θ̃

θ̃

(
vtpy − vn∆

)
σ

. (34)

Through similar manipulations, we can rewrite (17f) in the
new coordinates as

.
vn =

X∆vt
σ3

py +
(
Y − X∆2

σ3

)
vn −

X∆
σ2

γθ̃ +X
.

θ̃. (35)

Collecting the error variables as

η =

[
φ̃
.

φ̃

]
∈ R2N−2, ξ =

[
θ̃
.

θ̃

]
∈ R2, (36)

and using (24), (28), (32), and (35), the model of the snake
robot (17) during path following can be written as[ .

py.
vn

]
= C(py)

[
py
vn

]
+Hξ(py, vn, ξ)ξ, (37a)

ξ̇ =
[

0 1
−kθ −c3

]
ξ +Hηη, (37b)

η̇ =
[

0 I
−kφI −kvφI

]
η, (37c)

where I ∈ R(N−1)×(N−1) is the identity matrix and

Hη =
[

0 0
c4
N−1vte

T 0

]
, (38)

Hξ(py, vn, ξ) =
[

γ 0
−X∆

σ2 γ X

]
, (39)

C(py) =

[
− vtσ

∆
σ

X∆vt
σ3

(
Y − X∆2

σ3

)]
. (40)

The system (37) is a cascaded system. In particular, the η-
dynamics in (37c) perturbs the ξ-dynamics in (37b) through
the interconnection term Hηη, and the ξ-dynamics perturbs
the (py, vn)-dynamics in (37a) through the interconnection
term Hξ(py, vn, ξ)ξ.

We now investigate the stability of the nominal systems of
the cascade, i.e. all parts of (37) except the interconnection
terms. The origin η = 0 of the linear system (37c) and the
origin ξ = 0 of the linear nominal system in (37b) are globally
exponentially stable (see Definition 4.5 in [24]) since the
system matrices clearly are Hurwitz for kθ, c3, kφ, kvφ > 0.
The nominal system of (37a) is given by[ .

py.
vn

]
= C(py)

[
py
vn

]
(41)

and has the stability properties established by the following
two Lemmas.

Lemma 17: Under the conditions of Theorem 13, the origin
of the system (41) is UGAS with a quadratic Lyapunov
function.

Proof: The proof of this Lemma has previously been pre-
sented in [41] and is included in Appendix A for completeness.

Lemma 18: Under the conditions of Theorem 13, the origin
of the system (41) is globally K-exponentially stable.

Proof: The proof of this Lemma is presented in Ap-
pendix B.

Since exponential stability implies K-exponential stability,
we can conclude that all nominal systems of the cascade (37)
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are globally K-exponentially stable. Next, we derive bounds
on the interconnection terms in the cascade. The induced 2-
norm of the matrix Hη satisfies (see Appendix A in [24])

‖Hη‖2 ≤
√

2N − 2 max
j

2∑
i=1

{Hη}ij ≤
√

2c4Vmax√
N − 1

, (42)

while the induced 2-norm of the matrix Hξ(py, vn, ξ) satisfies

‖Hξ‖2 ≤
√

2max
j

∑2
i=1{Hξ}ij

≤
√

2 max
(
|γ|+ |X|∆

σ2 |γ|, |X|
)

≤
√

2
(
|γ|+ |X|∆

σ2 |γ|+ |X|
)
.

(43)

The function γ given by (34) is bounded according to

γ≤
∣∣∣ sin θ̃
θ̃

∣∣∣Vmax∆+|vn||py|
σ +

∣∣∣ 1−cos θ̃

θ̃

∣∣∣Vmax|py|+|vn|∆
σ

≤ Vmax∆
σ + |vn||py|

σ + Vmax|py|
σ + |vn|∆

σ
≤ 2Vmax + 2|vn|.

(44)

By inserting (44) into (43), it is straightforward to verify that

‖Hξ‖2 ≤ F1 + F2

∥∥∥∥[pyvn
]∥∥∥∥

2

, (45)

where

F1 =
√

2
(

2Vmax

(
1 +
|X|
∆

)
+ |X|

)
, (46)

F2 = 2
√

2
(

1 +
|X|
∆

)
. (47)

We are now ready to apply Theorem 6 to the cascaded
system (37). We first consider the cascade of (37b) and (37c),
for which it is straightforward to verify that Assumptions
A1 and A3 of Theorem 6 are satisfied since the system
(37c) and the nominal system of (37b) are both globally
exponentially stable. Furthermore, Assumption A2 is trivially
satisfied since ‖Hη‖2 is bounded by the constant derived in
(42). The cascaded system (37b), (37c) is therefore UGAS
and, by Lemma 7, also globally K-exponentially stable.

Next, we consider the cascade of (37a) and (37b), for
which Assumption A1 of Theorem 6 is satisfied since, by
Lemma 17, the nominal system of (37a) is UGAS with a
quadratic Lyapunov function. Furthermore, it follows directly
from (45) that Assumption A2 is satisfied. Finally, since the
perturbing system (37b) is globally K-exponentially stable,
Assumption A3 is satisfied since the bound in Assumption A3
is easily shown to hold for any K-exponentially stable system
by integrating both sides of (4) from t0 to ∞. The cascaded
system (37a), (37b) is therefore UGAS and, by Lemma 7, also
globally K-exponentially stable since the nominal system of
(37a) and the perturbing system (37b) are both globally K-
exponentially stable.

In summary, the complete cascaded system (37) is globally
K-exponentially stable. This means that py(t) → 0 and
θ̃(t)→ 0, which, by (31), implies that θ(t)→ 0, which means
that control objective (14) is achieved. It subsequently follows
from (15b) that py(t)→ 0, which means that control objective
(13) is achieved. This completes the proof of Theorem 13.

Remark 19: Any gait pattern controller that exponentially
stabilizes the error variable (23), i.e. not just the joint controller
proposed in (21) and (22), makes the complete cascaded
system globally K-exponentially stable. This is a nice feature
of cascaded systems theory.

V. SIMULATION STUDY

In this section, we present simulation results that illustrate
the performance of the proposed path following controller.

A. Simulation Parameters
The model of the snake robot (11) and the path following

controller defined by (19), (21), (22), (25), and (27) were
implemented and simulated in Matlab R2008b on a laptop
running Windows XP. The model dynamics was calculated
using the ode45 solver in Matlab with a relative and absolute
error tolerance of 10−6.

We considered a snake robot with N = 10 links of
length l = 0.14 m and mass m = 1 kg. Furthermore,
we chose the friction coefficients as c1 = 0.45, c2 = 3,
c3 = 0.5 and c4 = 20, the controller gains as kφ = 20,
kvφ = 5, and kθ = 0.05, and calculated the coordinate
transformation distance according to (16) as ε = −27 cm. The
gait parameters were α = 0.1 m, ω = 70◦/s, and δ = 40◦,
which by (20) corresponds to the average forward velocity
v∗t = c2

2Nc1
α2ωkδ = 0.1 m/s. By making the conjecture that

the forward velocity will always be contained in the interval
vt ∈ [Vmin, Vmax] = [0.5v∗t , 2v

∗
t ] = [0.05 m/s, 0.2 m/s], the

lower bound on the look-ahead distance ∆ is given by (30) as
∆ > 0.15 m. During the simulation, we chose the look-ahead
distance as ∆ = 1.4 m, which equals the length of the snake
robot, and which is well above the estimated lower limit.

The derivatives φ̇o, φ̈o, θ̇ref , and θ̈ref , which are needed
for the calculation of the control input in (22) and (27), were
obtained by passing φo and θref through a 3rd order low-pass
filtering reference model (see e.g. Chapter 5 in [38]).

The initial state of the snake robot was chosen as φ=0◦,
θ = 90◦, px = 0 m, py = 1 m, vφ = 0◦/s, vθ = 0◦/s,
vt=0.1 m/s, and vn=0 m/s, i.e. the snake robot was initially
oriented along the global y axis and located 1 m away from the
x axis with an initial forward velocity of 0.1 m/s, i.e. moving
away from the desired path.

B. Simulation Results
The simulation results are shown in Fig. 6. From Figures

6(a)-(b), we see that the position of the snake robot converges
nicely to the desired path (i.e. the x axis). Fig. 6(a) shows
the configuration of the snake robot at t = 1 s, t = 30 s,
and t = 70 s. Note that Fig. 6(b) shows the cross-track error
in terms of the y axis coordinate of the CM of the robot, not
the transformed y-axis coordinate given by (15b). The heading
of the snake robot, shown in Fig. 6(c), also converges nicely
to zero, i.e. to the direction of the desired path. As seen in
Fig. 6(e), the forward velocity is always nonzero and positive,
as required by Assumption 9, and converges to the velocity
v∗t = c2

2Nc1
α2ωkδ = 0.1 m/s, which was estimated above. Fig.

6(f) shows the joint coordinate of an arbitrarily chosen joint
(joint 5) during the path following. The plot shows a very good
tracking of the corresponding joint reference coordinates. In
summary, the simulation results illustrate that the proposed
path following controller successfully steers the snake robot
towards and along the desired straight path.

VI. EXPERIMENTAL STUDY

In this section, we present results from an experimental in-
vestigation of the performance of the proposed path following
controller.
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(a) The path of the snake robot. (b) Cross-track error, py .

(c) Heading angle, θ. (d) Angular velocity, θ̇.

(e) Velocity, vt and vn. (f) Coordinate of joint 5, φ5.

Fig. 6. Simulation of straight line path following with the snake robot initially headed away from the desired path.

A. The snake robot

The snake robot used in the experiments is shown in Fig. 7.
A detailed description of the internal components of the robot
is given in [42]. The snake robot consists of 10 identical joint
modules characterized by the parameters listed in Table II.
Each joint module has 2 degrees of freedom (pitch and yaw
motion) driven by two Hitec servo motors (HS-5955TG). The
pitch and yaw angle of the joint modules are measured with
magnetic rotary encoders (AS5043 from austriamicrosystems).

As shown to the left in Fig. 9, each joint module is covered
by 12 small wheels. These wheels ensure that the ground

friction forces acting on the snake robot are anisotropic, i.e.
that the friction coefficient characterizing the ground friction
forces in the normal (sideways) direction of each joint is larger
than the tangential (forward) direction friction coefficient. This
property is essential for efficient snake locomotion on a planar
surface and is also present in the model of the snake robot (11).
Note that the wheels are able to slip sideways, so they do not
introduce nonholonomic constraints in the system.

Each joint module is battery-powered and contains a
custom-designed microcontroller card used to control the joint
angles. A microcontroller card (the brain card) located in the
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Fig. 7. The snake robot used in the experiment.

TABLE II
PARAMETERS OF A JOINT MODULE.

Parameter Value
Total weight of a joint module 960 g
Outer diameter 130 mm
Degrees of freedom 2
Max joint travel ±45◦

Max continuous joint torque 4.5 Nm
Max joint speed (no load) 70◦/sec

head of the snake robot transmits joint reference angles to all
joint modules over a CAN bus running through the robot. The
joint reference angles are calculated on an external computer
and sent to the brain card via a wireless connection based on
Bluetooth. The refresh rate for the two reference angles of
each joint module is about 20 Hz.

B. The camera-based position measurement system

During the experiments, the snake robot moved on a white
horizontal surface measuring about 240 cm in width and 600
cm in length. This is shown in Fig. 8. The 2D position of
the robot was measured by use of the open source camera
tracking software SwisTrack [43]. SwisTrack was configured
to read camera data at 15 frames per second from three firewire
cameras (Unibrain Fire-i 520c) mounted in the ceiling above
the snake robot as shown in Fig. 8. The use of multiple
cameras allowed for position measurements over a greater
distance than the area covered by a single camera. The cameras
were mounted facing downwards approximately 218 cm above
the floor and 132 cm apart.

SwisTrack was configured to track black circular markers
(40 mm in diameter) mounted on the snake robot as shown
to the right in Fig. 9. The conversion from the pixel position
of a marker to the real-world position (in cm) was conducted
by SwisTrack based on a specific calibration method available
in this software. SwisTrack estimated the maximum position
error to be about 1.9 cm and the average position error to be
about 0.6 cm. The global frame position, xhead and yhead, and
the angle, θhead, of the head of the snake robot were calculated
from the individual marker positions. Knowing the position
and orientation of the head, and also the individual joint
angles, we employed simple kinematic relationships presented
in [18] in order to calculate the position of the center of mass,
px and py , of the snake robot. The orientation, which for the
physical robot is denoted by θ, was estimated as the average of
the individual absolute link angles. Furthermore, the forward
velocity, which for the physical robot is denoted by vt, was

Fig. 8. The experimental setup. Three cameras mounted in the ceiling
measured the position of the snake robot on a horizontal surface measuring
about 240 cm in width and 600 cm in length.

Fig. 9. Left: The wheels installed around each joint module in order to give
the robot anisotropic ground friction properties. Right: The black markers
mounted on the snake robot to allow the position to be tracked by SwisTrack.

estimated at 0.5 Hz as the displacement of the CM of the
robot divided by the sampling interval (i.e. 2 s). The sampling
interval was chosen to be large to obtain a reasonably accurate
velocity estimate, but was sufficiently short for the experiment
since the robot was moved at a slow pace.

C. Implementation of the path following controller
The controller of the physical snake robot was implemented

on an external computer according to (19), (25), and (27).
We did not implement the joint torque controller given by
(21) and (22) since accurate torque control is not supported
by the servo motors installed in the snake robot. The joint
angles were instead controlled according to a proportional
controller implemented in the microcontroller of each joint
module. Note that we can experimentally validate Theorem 13
without implementing the joint controller (21) and (22) since,
as stated in Remark 19, the global K-exponential stability of
the complete system only requires that the error dynamics of
the joints is exponentially stabilized.

The simplified model describes the qualitative behaviour
of a snake robot with revolute joints, and also approximates
the quantitative behaviour of the robot for some choice of the
ground friction coefficients c1, c2, c3, and c4. However, no def-
inite mapping exists between the ground friction coefficients of
a snake robot with revolute joints and the friction coefficients
c1 - c4. In other words, the values of c1 - c4 that reflected the
specific ground friction conditions of the experiments were
not know. Since c3 and c4 appear in the equations of the path
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following controller, we chose to treat these coefficients as
controller gains.

The unspecified values of c1 - c4 prevented us from deter-
mining the coordinate transformation distance ε in (16), which
depends on c2 and c4. During the experiments, we therefore
set this coordinate transformation distance to ε = 0, i.e. we
measured the cross-track error as py = py . Note that since the
ε transformation is tangential to the robot, the value of ε has
only a limited effect on the cross-track error when the heading
of the snake robot with respect to the path is close to zero.

The LOS angle θref given by (25) was calculated with a
look-ahead distance ∆ equal to half the length of the snake
robot, i.e. ∆ = 0.7 m. We conjecture that this value is well
above the lower limit of ∆ given by (30). The actual values
of Vmin and Vmax are not known a priori, and as noted in
Remark 14, specifying the bounds on ∆ as a function of the
gait pattern parameters α, ω, δ, and φo remains a topic of
future work. Note that ∆ = 0.7 m is well above the lower
value of ∆ estimated for the simulated snake robot in Section
V (i.e. ∆ > 0.15 m), although this lower bound estimate was
not based on friction coefficients corresponding to the ground
friction conditions of the experiment, which are unknown, as
described above.

To ensure a smooth control input, the LOS angle θref was
passed through a 3rd order low-pass filtering reference model
(see e.g. Chapter 5 in [38]). The output from this filter also
provided the derivatives θ̇ref and θ̈ref , which are required in the
calculation of φo in (27). The evolution of the reference values
from the filter were calculated with a first-order numerical
integration scheme.

The joint angle offset φo given by (27) was calculated with
the controller gains set to kθ = 1, c3 = 0.5 and c4 = 20. The
joint angle offset was saturated according to φo ∈ [−25◦, 25◦]
in order to keep the joint reference angles within reasonable
bounds with respect to the maximum allowable joint angles
of the physical snake robot. This saturation also avoided the
singularity in (27) at vt = 0 (see Remark 11). Furthermore, to
ensure that the joint angle offset was smooth despite of any
steps in the estimate of the forward velocity vt, we filtered φo
with a 1st order low-pass filter with cutoff frequency set to
1.25 Hz.

The reference angles corresponding to the horizontal joint
motion of the robot were calculated according to (19) with
N = 10 links and with gait parameters set to α = 30◦, ω =
50◦/s, and δ = 36◦. The reference angles corresponding to
the vertical joint motion were set to zero to achieve a purely
planar locomotion.

D. Experimental results
The straight line path following controller was experimen-

tally investigated from two different sets of initial conditions.
In the first trial, the initial state of the snake robot was
approximately φ = 0◦, θ = 0◦, px = 0 m, py = 1.3 m,
vφ = 0◦/s, vθ = 0◦/s, vt = 0 m/s, and vn = 0 m/s, i.e. the
snake robot was initially headed along the desired path (the x
axis) and the initial distance from the CM to the desired path
was 1.3 m. In the second trial, the initial state of the robot
was approximately φ= 0◦, θ = 90◦, px = 0 m, py = 0.5 m,
vφ=0◦/s, vθ=0◦/s, vt=0 m/s, and vn=0 m/s, i.e. the snake
robot was initially headed away from the desired path (the x
axis) and the initial distance from the CM to the desired path
was 0.5 m.

The experimentally measured motion of the snake robot
from the first trial is presented in Figures 10(a) and 11, and
from the second trial in Figures 10(b) and 12. The desired
path, i.e. the global x axis, is indicated with a black line on
the floor in the pictures of the snake robot during the two
trials.

The visualizations in Fig. 10 indicate that the snake robot
converged nicely towards and along the desired path during
both trials. This claim is supported by the plots of the cross-
track error in Figures 11(b) and 12(b), which show that the
cross-track error converges to and oscillates about zero. For
a snake robot with revolute joints, it is difficult to achieve a
purely non-oscillating motion of the CM, which was achieved
in the simulation results based on the simplified model in
Section V. We therefore expected the cross-track error to
oscillate about zero, as seen in the plots, rather than converge
to zero.

Similar to the oscillatory behaviour of the CM, the heading θ
of the snake robot was also expected to oscillate. In particular,
while θ provides an explicit representation of the heading in
the simplified model, such a representation is not available for
a snake robot with revolute joints, which forced us to estimate
the heading according to θ, i.e. as the average of the link an-
gles. The oscillatory behaviour of θ was thereby expected since
the average of the link angles will not always be identically
zero during forward locomotion. The heading during the trials
is shown in Figures 11(c) and 12(c), respectively, which clearly
show that θ oscillates nicely about the reference heading θref .
In both trials, the heading converges to and oscillates about
zero, i.e. the direction of the desired path.

The forward velocity of the robot during the trials is shown
in Figures 11(d) and 12(d), respectively. The variations in the
velocity were primarily caused by the joint angle offset φo
during turning motion, which sometimes interfered with the
oscillatory body wave motion and caused the robot to lose
momentum.

The joint angle of an arbitrarily chosen joint (joint 5) during
each trial is shown in Figures 11(f) and 12(f), respectively,
which indicate that the snake robot tracked its joint reference
coordinates very well.

In summary, the proposed path following controller success-
fully steered the snake robot towards and along the desired
straight path during both trials of the experiment.

VII. CONCLUSIONS

This paper has proposed a path following controller that
enables snake robots to track straight paths. Using cascaded
systems theory, we have proven that the proposed path fol-
lowing controller K-exponentially stabilizes the snake robot to
any desired straight path under the assumption that the forward
velocity of the robot is nonzero and positive. The performance
of the path following controller was investigated through
simulations and through experiments with a physical snake
robot where the proposed controller was shown to successfully
steer the snake robot towards and along the desired straight
path.

In future work, the authors will seek to specify the bounds
on the forward velocity of the snake robot in terms of the gait
pattern parameters.
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(a) Path following with an initial heading along the desired path.

(b) Path following with an initial heading away from the desired path.

Fig. 10. The motion of the physical snake robot during path following from two different sets of initial conditions. The black line on the floor indicates the
desired path, i.e. the global x axis.
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(a) Position along the path, px. (b) Cross-track error, py .

(c) Heading angle, θ. (d) Forward velocity, vt.

(e) Joint angle offset, φo. (f) Angle of joint 5, φ5.

Fig. 11. Straight line path following with the physical snake robot initially headed along the desired path.
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(a) Position along the path, px. (b) Cross-track error, py .

(c) Heading angle, θ. (d) Forward velocity, vt.

(e) Joint angle offset, φo. (f) Angle of joint 5, φ5.

Fig. 12. Straight line path following with the physical snake robot initially headed away from the desired path.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. Y, MONTH 2010 15

APPENDIX A
PROOF OF LEMMA 17

The proof of Lemma 17 has previously been presented
in [41] and is included here for completeness. The Lemma
is proved by showing that a quadratic Lyapunov function
candidate of the system (41) is negative definite, thereby
implying that (41) is UGAS.

The system (41) can be written as[ .
py.
vn

]
=

−
vt√
p2y+∆2

∆√
p2y+∆2

X∆vt

(
√
p2y+∆2)3

(
Y − X∆2

(
√
p2y+∆2)3

)[pyvn
]
. (48)

Consider the quadratic Lyapunov function candidate V =
1/2p2

y + κ/2v2
n with κ > 0. The derivative of V along the

solutions of (48) is given by

V̇ = py
.
py + κvn

.
vn = − vtp

2
y√

p2y+∆2
+ ∆pyvn√

p2y+∆2

+κ X∆vtpyvn

(
√
p2y+∆2)3 + κ

(
Y − X∆2

(
√
p2y+∆2)3

)
v2
n.

(49)

Since vt ∈ [Vmin, Vmax] by Assumption 9, and since X ≤ |X|,
we can estimate V̇ as

V̇ ≤ − Vminp
2
y√

p2y+∆2
+ ∆pyvn√

p2y+∆2

+κ |X|∆Vmaxpyvn

(
√
p2y+∆2)3 + κ

(
Y + |X|∆2

(
√
p2y+∆2)3

)
v2
n.

(50)

By introducing the variable z =
∣∣py∣∣ /√p2

y + ∆2, this esti-
mate can be written as

V̇ ≤ −Vminz
2
√
p2
y + ∆2

+
(
∆+κ |X|∆Vmax

p2y+∆2

)
z |vn|+κ

(
Y + |X|∆2

(
√
p2y+∆2)3

)
v2
n.

(51)

Finally, using the inequalities −
√
p2
y + ∆2 ≤ −∆ and

1/
(
p2
y + ∆2

)
≤ 1/∆2, we obtain

V̇ ≤ −Vmin∆z2

+
(

∆ + κ |X|Vmax
∆

)
z |vn|+ κ

(
Y + |X|

∆

)
v2
n.

(52)

We now choose κ = ∆2 (2β − 1) / (|X|Vmax), where

β =
Vmin (−∆Y − |X|)

Vmax |X|
. (53)

It is straightforward to show that condition (30) of Theorem
13 is equivalent to β > 1. The chosen value of κ is therefore
strictly positive. Substituting this κ into (52) gives

V̇ ≤ −Vmin∆z2 + 2β∆z |vn| − ∆(2β−1)β
Vmin

v2
n

= −∆
(√

Vminz − β|vn|√
Vmin

)2

− ∆(β−1)β
Vmin

v2
n.

(54)

Finally, substituting the expression for z into this estimate
gives

V̇ ≤ −∆

√Vmin

∣∣py∣∣√
p2
y + ∆2

− β |vn|√
Vmin

2

−∆ (β − 1)β
Vmin

v2
n. (55)

Since condition (30) guarantees that β > 1, we can conclude
that V̇ < 0, which implies that the origin of the system (41)
is UGAS (see [24]). This completes the proof of Lemma 17.

APPENDIX B
PROOF OF LEMMA 18

The lemma is proved by showing that the system (41)
is ULES (uniformly locally exponentially stable), which, to-
gether with the UGAS property established by Lemma 17,
implies that (41) is globally K-exponentially stable according
to Corollary 4.

The linearization of the system (41) about the origin is easily
calculated as [ .

py.
vn

]
=
[
− vt∆ 1
Xvt
∆2 Y − X

∆

] [
py
vn

]
. (56)

Denoting the system matrix of (56) by W , we can calculate
the eigenvalues of W from its characteristic equation

λ2 − tr (W )λ+ det (W ) = 0, (57)

where tr (W ) and det (W ) are the trace and the determinant
of W , respectively. W is Hurwitz (see e.g. [24]) if the
coefficients of this characteristic equation are strictly positive,
i.e. if tr (W ) < 0 and det (W ) > 0. Since vt > 0, Y < 0,
and ∆ > 2 |X| / |Y | (this follows from (30)), the trace of W
satisfies

tr (W ) = −vt∆ + Y − X
∆ ≤ −

vt
∆ − |Y |+

|X|
∆

≤ −vt∆ − |Y |+
1
2 |Y | = −

vt
∆ −

1
2 |Y | < 0,

(58)

and the determinant of W satisfies

det (W ) = −vt
∆

(
Y − X

∆

)
− Xvt

∆2
= −vt

∆
Y > 0. (59)

The system matrix W of the linearized system (56) is there-
fore Hurwitz, which implies that the origin of the system (41)
is ULES (see [24], Corollary 4.3). Since, by Lemma 17, the
origin of (41) is also UGAS, Corollary 4 implies that the origin
of (41) is globally K-exponentially stable. This completes the
proof of Lemma 18.
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