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Abstract        

The potential for bioenergy in Norway is significant. This potential can be realized by 

improving the properties of biomass and making it a convenient and competitive alternative 

to other fuels. Torrefaction is the most promising biomass pretreatment technique to date, 

improving its effectiveness as a fuel in various thermochemical processes. Torrefaction 

considerably reduces moisture content but increases the heating value, hydrophobicity and 

grindability of biomass. Torrefaction is influenced by many parameters, including biomass 

composition, temperature, holdup time and particle size. To evaluate the feasibility of 

torrefaction in a particular region, locally available biomass resources should be investigated. 

This approach forms the basis of the present study. To improve the viability of bioenergy in 

Norway, I undertook fundamental research on the torrefaction of Norwegian woody biomass 

and evaluated the behavior of torrefied biomass in thermochemical processes.   

Starting with a detailed literature review on the topic, torrefaction behavior of Norwegian 

Birch and Spruce was experimentally investigated. Torrefaction experiments were performed 

in a macro-TGA reactor with provisions for continuous measurement of volatiles. Process 

temperature (225 and 275 °C), holdup time (30 and 60 minutes) and sample size (10 and 40 

mm cubes) were varied. Fuel characterization, derivative thermogravimetric (DTG) curves, 

product yields, hydrophobicity tests, grinding energies and particle size distributions are 

discussed. Temperature had the strongest effect on the properties of torrefied biomass of all 

the studied parameters. Overall, considerable improvements in grindability and 

hydrophobicity were obtained in torrefied biomass from both feedstocks. 

To obtain information on the intrinsic kinetics of torrefaction, the pyrolysis kinetics of 

Norwegian spruce and birch wood was investigated in another study. Micro-TGA was 

employed with nine different heating programs, including linear, stepwise, modulated and 

constant reaction rate (CRR) experiments. The 18 experiments on the two feedstocks were 

evaluated simultaneously using the method of least squares. Part of the kinetic parameters 

could be assumed common for both woods without a considerable worsening of the fit 

quality. Three pseudocomponents were assumed. Two of them were described using 

distributed activation energy models (DAEM), while the decomposition of the cellulose 

pseudocomponent was described using self-accelerating kinetics. In another approach, all 

three pseudocomponents were described using n-order reactions. A table was calculated to 
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provide guidance about the extent of devolatilization during torrefaction at various 

temperatures and residence times. 

For understanding torrefied biomass reactivity in oxidative conditions, another micro-

TGA study was conducted with four torrefied wood samples and their original feedstocks 

(birch and spruce) at slow heating rate programs. Particularly low sample masses were 

employed to avoid self-heating of the samples due to heat of combustion. Linear, modulated 

and CRR temperature programs were employed in TGA experiments under gas flows of 5 

and 20% O2. The kinetic model consisted of two devolatilization reactions and a subsequent 

char burn-off reaction.  Cellulose decomposition in the presence of oxygen has self-

accelerating (autocatalytic) kinetics. Decomposition of the non-cellulosic components of the 

biomass was described using a distributed activation model.  The char burn-off was 

approximated by power-law (n-order) kinetics.  Each of these reactions has its own 

dependence on oxygen concentration, which was also expressed using power-law kinetics.  

The model contained 15 unknown parameters for a given biomass.  Certain of these 

parameters could be assumed to be identical for the six samples without a substantial 

worsening of fit.   

Lastly, the behavior of torrefied biomass in a gasification process was evaluated. A two-

stage biomass gasification model was selected using Aspen Plus as the simulation and 

modeling tool. The model included minimization of the Gibbs free energy of the produced 

gas to achieve chemical equilibrium, constrained by mass and energy balances for the system. 

Air and steam were used as the oxidizing agents with both untreated and torrefied biomass as 

feedstocks. Three process parameters were studied: equivalence ratio (ER), Gibbs reactor 

temperature and steam-to-biomass ratio (SBR). A total of 27 cases were included in the 

analysis, operating the system below the carbon deposition boundary with all carbon in the 

gaseous form in the product gas. Product gas composition [hydrogen (H2), carbon monoxide 

(CO), carbon dioxide (CO2) and nitrogen (N2)] was analyzed together with cold gas energy 

and exergy efficiencies for all cases. Torrefied biomass gave higher H2 and CO contents in 

the product gas, as well as higher energy and exergy efficiencies, than untreated biomass. The 

overall efficiency of an integrated torrefaction-gasification process depends on the mass yield 

of torrefaction. The results were validated using a C-H-O ternary diagram combined with 

results from similar studies.  
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Nomenclature 

 α = reacted fraction of a component or pseudocomponent (dimensionless) 

σ = width parameter (variance) of Gaussian distribution (kJ/mol) 

A = pre-exponential factor (s-1) 

E = activation energy (kJ/mol) or the mean of an activation energy distribution (kJ/mol) 

f = empirical function expressing the change of reactivity as reactions proceed 

(dimensionless) 

hk = the height of an experimental curve (s-1) or 5×10-4 s-1, whichever is higher  

m = the mass of the sample normalized by initial dry sample mass (dimensionless) 

n = reaction order (dimensionless) 

of = objective function minimized in the least squares evaluation (dimensionless) 

Nexper = number of experiments evaluated together by the method of least squares 

Nk = number of evaluated data points on the kth experimental curve 

Nparam = number of parameters determined in the evaluation of a series of experiments 

R = gas constant (8.3143×10-3 kJ mol-1 K-1) 

reldev = deviation between observed and calculated value, expressed as percent of the 

corresponding peak height 

reldev18 = root mean square of the reldev values of 18 experiments 

dev = root mean square of deviations between observed and calculated values of a DTG curve 

(µg/s) 

c = the amount of volatiles formed from a unit mass of a pseudocomponent 

t = time (s) 

T = temperature (°C, K) 

z = formal parameter (dimensionless) 

ν = reaction order with respect to oxygen concentration 

CO2 = V/V concentration of ambient oxygen (dimensionless) 

�������� = 1/100th of total ash determined by proximate analysis (dimensionless)  

y = yield (dimensionless).  ycell.char and yother_char represent char yield from cellulose and the 

rest of the biomass, respectively.  yash denotes ash yield from char. 
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,η
energy coldgas

= Cold gas energy efficiency of gasification (%) 

'
E = Total exergy of a material stream (J/sec) 

ε
ph

= Physical exergy of a material stream (J/sec) 

ε
ch = Chemical exergy of a material stream (J/sec) 

h = Material stream enthalpy (J/sec) 

0h = Material stream ambient enthalpy (J/sec) 

0T = Ambient temperature (K) 

s = Material stream entropy (J/kg-K) 

0s = Material stream ambient entropy (J/kg-K) 

,ε
ch gas

= Molar chemical exergy of a gaseous mixture (KJ/K•mol) 

ϕ
dry

= Ratio of chemical exergy to the lower heating value of dry matter of solid fuel 

(dimensionless) 

 εdm = Chemical exergy of the dry matter of solid fuel (J/sec) 

( )LHV dm
h = Lower heating value of the dry matter of solid fuel (J/kg) 

,η
exergy coldgas

= Exergetic efficiency of gasification (%) 

 

Subscripts 

i = digitized point on an experimental curve 

j = pseudocomponent 

k = experiment 

cell = cellulose 

other = non-cellulosic organic biomass constituents 

ur = unreacted sample 
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1 Introduction 

This chapter provides an introduction to the research presented in this thesis. The chapter 

begins with an overview of the topics of biomass and bioenergy, further divided into sub-

topics: bioenergy use in Norway and the world, biomass as a fuel for energy production, 

biomass thermochemical conversions and various available pretreatment options. This is 

followed by the motivation for pursuing this work and the specific objectives. Finally, an 

outline of the thesis and the list of publications are provided.  

1.1 Biomass and Bioenergy 

1.1.1 Bioenergy use in Norway and the World  
Biomass is biological material derived from living or recently deceased organisms. In the 

context of bioenergy, biomass often refers to plant-based materials. The heat value of 

biomass, which is referred to as biomass energy or bioenergy when utilized, is derived from 

solar energy through the process of photosynthesis. Plants take up carbon dioxide and water 

from their surroundings and use solar energy to convert them into glucose, which is 

converted in turn into other sugars, starches, hemicellulose, cellulose, lignin etc. Biomass is 

widely recognized as a vital renewable energy source to meet current as well as future world 

energy demands. The increased use of biomass in key sectors, including heat, power, 

transportation fuel and bio-product production, will gradually replace fossil fuel resources. 

The extended use of biomass will also help reduce greenhouse gas emissions, as bioenergy is 

considered CO2 neutral1, 2.  

Trends for gross global energy consumption from various sources are shown in Figure 1-

1. In 2011, the share of total energy consumption was 14% for bioenergy, 4% for other 

renewable sources such as hydro, solar and wind and 80% for fossil fuels3. It can be observed 

that, similar to other energy sources, bioenergy consumption has gradually increased over the 

past decade. However, the major contributions to the world bioenergy use came from Asia, 

followed by Africa, the Americas and Europe. As shown in Figure 1-2, 92% of bioenergy 

was used in household heating3. Bioenergy contributions to the transport and electricity 

sectors are negligible, with huge potential for future growth. In 2011, 89% of the bioenergy in 

the world was supplied as solid biomass, 5% as biofuels, 4% as wastes and 2% as biogas3.     

 

 



2 
 

 

Figure 1-1: Trend of gross final energy consumption by source since 20003 

 

 

Figure 1-2: Continental distribution of gross consumption of bioenergy for 20113 
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Nordic countries obtain a significant part of their energy supply from renewable sources, 

mainly for electricity and heat generation. In Norway, the energy market is characterized by a 

low electricity price, abundant hydroelectric power (hydro) and large oil and gas reserves. 

The estimated share of renewable energy in Norway is 58%, of which half is contributed by 

hydro power4.  In 2012, bioenergy amounted to 8.5% (0.06 EJ) of total energy consumption 

in Norway, mainly in households (0.03 EJ)5 where approximately 50% of the share comes 

from burning wood in wood stoves. The theoretical bioenergy potential for Norway is 

approximately 0.11 EJ, excluding aquatic resources5. Forests constitute the largest source of 

bioenergy, with a theoretical potential of 0.07 EJ4, 5. The market for bioenergy in several 

areas such as bio-fuels is fragmented and immature, which leads to under-utilization of the 

resource. Overall, the resource potential for bioenergy in Norway is significant; this potential 

can be realized through a variety of technologies and through creating market demand. The 

greatest challenge lies in technological improvements that can make biomass a convenient 

and competitive alternative to other fuels. Enhanced incentives, policies and R&D support for 

bioenergy can increase demand and support the development of a bioenergy market in 

Norway. According to Bioenergi i Norge5 and an IEA report6, Norway has a goal of reducing 

its greenhouse gas emissions by 30% before 2020 and by 100% before 2050, and an extended 

use of biomass will certainly help meet this goal.  

1.1.2 Biomass as a fuel for energy production 
Biomass can come from a wide range of sources, such as wood and agricultural residues, 

municipal and industry wastes and biological wastes. Biomass contains carbon, hydrogen and 

oxygen along with small amounts of nitrogen, sulfur, alkali metals, chlorine, and heavy 

metals. Biomass consists mainly of three polymers: cellulose, hemicellulose and lignin. These 

are associated with each other in a heteromatrix to different degrees based on the type, 

species and source of biomass7. Cellulose is the main constituent of the plant cell wall, 

conferring structural support and is a polymer of β-D-glucopyranose moieties linked via β-

(1,4) glycosidic bonds8. Cellulose chains are grouped together to form microfibrils that 

bundle together to form cellulose fibers. The structure of cellulose is largely due to the 

presence of covalent bonds, hydrogen bonding and Van der Waals forces. Hemicelluloses are 

branched heterogeneous polymers comprised of pentoses, hexoses and acetylated sugars. 

Their molecular weight is lower than that of cellulose, and branches are easy to hydrolyze, 

with high thermal and chemical sensitivity. Hemicelluloses differ in composition by biomass 

type and are thought to ‘coat’ cellulose fibrils. It has been proposed that at least 50% of 
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hemicelluloses should be removed to increase cellulose digestibility8. Lignin is the third most 

abundant polymer in nature and is present in plant cell walls. It confers rigidity and 

impermeability to microbial attack and oxidative stress. It is an amorphous heteropolymer 

network of phenylpropane units held together by different linkages. It is regarded as a ‘glue’ 

that binds various biomass components together, making it insoluble in water8.   

The mass balance of a kilogram of biomass is commonly conceptualized in three different 

ways: biochemical, proximate or ultimate analysis9. Biochemical analysis refers to the 

relative composition of various biopolymers (e.g., hemicellulose, cellulose, lignin, etc.) in 

biomass, whereas ultimate analysis refers to individual elements (e.g., C, H, O, N, and S). 

Proximate analysis involves the heating of biomass to quantify the relative proportions of 

fixed carbon (fC), volatile matter (VM) and ash. Moisture completes the mass balance. 

Various combinations of these properties result in different bulk properties (intensive 

properties) such as grindability, density and heating value9. The solid fuel most similar to 

biomass is peat, while coal is quite different. Their heating values are also very different, with 

averages approximately 28-33 MJ/kg for coal, 20-23 MJ/kg for peat and 17-20 MJ/kg for 

wood10, 11. The variation in energy content is explained by fuel H/C and O/C ratios, as shown 

in the Van Krevelen diagram in Figure 1-312. As the carbon content of fuel increases, energy 

content also increases. 

  

Figure 1-3: Van Krevelen diagram12  

Three main pathways are used for biomass conversion: thermochemical (heat treatment), 

biochemical (microbiological action), and physical/chemical processing. However, problems 

such as low bulk density, high moisture content, poor grindability and relatively low calorific 



 

value make biomass a challenging and expensive fuel to use. These problems have hindered 

its widespread use2, 8, 13, 14. L

difficult and costly. The heterogeneous nature of biomass results 

the release of pollutants, such as particulate matter, carbon monoxide and other gases, during 

combustion or other thermochemical processes

significant problem in countries where wood is burnt inefficiently in open fires for domestic 

cooking and space heating. If these proble

major energy source.  

1.1.3 Biomass thermochemical conversion
Thermal conversion, or thermochemical conversion, is the most common biomass 

conversion path. It is the controlled heating and/or oxidation of 

intermediate energy carriers or heat. It is generally categorized into three groups: pyrolysis, 

gasification, and combustion (Figure 1

Figure 1-4: Products of thermochemical conversion technologies and their potential end
uses7, 17  

The primary products are gas, liquid and solid char and/or heat, with yields dependent on 

the conversion technology applied.
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needed in relation to the stoichiometric condition. The characteristics of the products depend 

on a broad range of factors, such as the chemical and physical characteristics of the 

feedstock, heating rate, initial and final process temperature, pressure and reactor type17. All 

of these processes are fast compared to other biomass conversion routes, such as biological 

conversion. Evaluation of the potential utility of thermochemical biomass conversion for the 

production of power and heat requires extensive qualitative and quantitative analysis of the 

thermal and chemical behavior of various feedstocks as operating conditions are varied. 

Generally, the conversion characteristics of biomass can be grouped as follows18: 

1. Thermochemical parameters: ash and volatile product yields; reactivity of volatile 

products  

2. Intra-particle rate: thermal properties, moisture content, size, kinetics and energetics 

of chemical processes  

3. Extra-particle rate: heat transfer from reactor to particle, residence time and mass 

transfer conditions 

Pyrolysis 

Pyrolysis is the thermal degradation of biomass in the absence of an oxidizing agent. . 

This leads to the formation of a mixture of liquid (tar/bio-oil), gases and char. Parameters that 

affect the process, which is overall endothermic, include temperature, pressure, gas 

composition, residence time, heating rate, type of reactor, reaction time and the chemical and 

physical characteristics of the fuel18, 19. Pyrolysis is generally divided into three categories: 

conventional, fast and flash. The ranges of the main operating parameters, and the product 

yields for these categories, are given in Table 1-118, 19.  

Conventional pyrolysis occurs at a slow heating rate and permits the production of solid, 

liquid, and gaseous pyrolysis products at equal proportions. The first stage of biomass 

decomposition occurs between 395 and 475 K and results in some internal rearrangement, 

such as water removal by drying, bond breakage, appearance of free radicals, and formation 

of carbonyl, carboxyl and hydroperoxide groups. The second stage of solid decomposition 

occurs at high rates and leads to the formation of liquid and gaseous pyrolysis products. 

During the third stage, the char decomposes at a very slow rate, resulting in the formation of 

a carbon-rich residual solid. If the aim is the production of mainly liquid and/or gaseous 

products, fast pyrolysis is recommended. Fast pyrolysis requires high operating temperatures, 

very short residence times, and very fine particles. Flash pyrolysis gives mostly gaseous 

products due to the high heating rate and very small particle size.  
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Table 1-1: Typical process conditions for different pyrolysis modes20
 

Mode 
Temperature           

(K) 
Heating 

rate (K/s) 

Solid 
residence 
time (s) 

Particle 
size 

(mm) 

Yield (%) 

Liquid Char Gas 

Conventional 550-950 0.1-1.0 450-550 5-50 30 35 35 

Fast 850-1250 10-200 0.5-10 <1 50 20 30 

Flash 1050-1300 <1000 <0.5 <0.2 75 12 13 

 
Each component of biomass pyrolyzes at different rates and by different mechanisms and 

pathways. It is believed that as the reaction progresses, the carbon becomes less reactive and 

forms stable chemical structures. Consequently, activation energy increases as the conversion 

of biomass proceeds. Cellulose and hemicellulose decompose over a narrow temperature 

range compared to lignin. The hemicelluloses break down first, at temperatures 

approximately 470 to 600 K, and cellulose follows in the temperature range 510 to 650 K, 

with lignin being the last component to pyrolyze, at temperatures of 520 to 770 K19, 21. 

The char produced during pyrolysis can be converted to activated carbon, or used as 

domestic cooking fuel or for barbecuing22. The pyrolysis gas contains mainly hydrogen, 

carbon dioxide, water vapor, carbon monoxide, methane and light saturated and unsaturated 

hydrocarbons. The gas can be used for power generation or heat production, or alternatively 

converted to methanol or ammonia. The liquid product from pyrolysis is a heterogeneous 

mixture characterized by high oxygen content and alkalinity. It is also called pyrolysis oil or 

bio-oil, and can be converted to hydrocarbon liquid fuels or chemicals17, 23. 

Gasification  

A promising way to use biomass for the production of heat, electricity, and other biofuels 

is through biomass gasification, in which the biomass is converted through partial oxidation 

into synthesis gas (CO, H2, CH4, and CO2) and condensable compounds24. During 

gasification the chemical energy of the biomass is transferred into the thermal and chemical 

energy of the synthesis gas25. Figure 1-5 shows a simplified diagram of biomass 

gasification17. Biomass can be gasified in various ways by properly controlling the mix of 

fuel and oxidant within the gasifier. The oxidizing agents can be air, oxygen, steam, CO2 or a 

mixture thereof. The gas can be cleaned and used directly in a gas engine, or converted to 

liquid fuels or chemical feedstocks through catalytic conversion via e.g., the Fischer-Tropsch 

process26.  
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Figure 1-5: Simplified schematic of the gasification process17 

The process starts with thermal decomposition of biomass particles through pyrolysis into 

gas species, liquid tar, and solid char. Subsequently, the vapor phase is thermally converted to 

gas and char. Afterwards, char particles are gasified by means of the gasifying agent. Finally, 

all three phases (gas, vapor, and char) are partially oxidized to obtain synthesis gas. The 

liquid fractions (tars) are either cracked further and transformed into gaseous products or 

cleaned out. The temperature of gasification is usually quite high (800 – 1300 ºC) compared 

to pyrolysis (400 – 800 ºC)23. A high temperature is needed to drive the main gasification 

reactions forward.  

During biomass gasification, several parameters (such as gasifier type, reaction 

temperature, biomass fuels properties, bed material and gasifying agent) have a substantial 

influence on product gas composition, carbon conversion efficiency and tar formation27. 

Several decades of reactor design have yielded a number of different reactor technologies28, 29 

including fixed bed, fluidized bed and entrained flow reactors.  

Combustion  

Combustion consists of complete oxidation of fuel using excess air30. For solid fuels, 

combustion is a complex process that consists of both homogenous and heterogeneous 

reactions1. A combustion process is a set of reactions that is exothermic overall. There are 

several different zones in a combustion process where drying, pyrolysis, oxidation of char 

and gas phase reactions occur simultaneously. Several parameters in the combustion zone are 

crucial to the combustion process; among these are reactor technology, combustion 

temperature, residence time, air/fuel ratio, particle size and moisture content of the fuel. 

Although combustion is quite conventional compared to other thermal processes, research 

and technological improvements are ongoing.  
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The choice of technology for combustion of solid fuels will depend mainly on plant size 

and fuel type. The main combustion technologies are fixed bed, fluidized bed and pulverized 

fuel combustion31-33. Most of these technologies are air-staged combustion systems, where a 

portion of the combustion air is diverted (e.g., from the burners) to ‘over-fire' air ports above 

the burners. The objective is to form a fuel-rich flame zone, followed by a region where the 

residual char is burned out. After fuel is fed into the reactor, volatiles and char form, each 

containing fixed nitrogen. Oxygen-rich conditions favor formation of nitrogen oxides (NOx), 

while fuel-rich conditions (e.g., staged combustion) enhance conversion to nitrogen (N2)
34.  

1.1.4 Biomass pretreatment  
One of the most challenging aspects of bioenergy development is overcoming operational 

and logistical limitations, i.e., by pretreating or preprocessing the biomass. Pretreatment is 

often used to modify the size, shape and density of biomass to match the fuel specifications 

of a particular thermochemical process. Biomass chemical composition, particle shape, size 

and density differences greatly affect conversion processes and equipment operations. The 

main goals of biomass pretreatment are as follows35: 

� Homogenize biomass feedstock 

• Reduce handling difficulties 

• Convert multiple materials into a single feedstock 

� Increase biomass energy density  

• Reduce the oxygen content of raw biomass 

• Higher energy density reduces transportation and handling costs 

� Improve biomass storage stability  

• Address seasonality of some feedstock 

• Improve suitability for co-firing or co-gasification with coal 

Most of these pretreatment options are applicable to production of liquid biofuels such as 

bioethanol, produced from biomass via fermentation of sugars derived from cellulose and 

hemicelluloses8. Biological methods include the use of fungi whose enzymes can degrade 

cellulose, lignin, hemicellulose and polyphenol. Chemical methods include the use of acids, 

alkalis, organic solvents and ionic liquids with significant effects on the native structure of 

lignocellulosic biomass. Physiochemical pretreatment includes the vast majority of 

pretreatment technologies, such as steam explosion, hot water treatment, ammonia 

fiber/freeze explosion, aqueous ammonia pretreatment and organosolv pretreatment8.  
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For thermochemical processes, pretreatment options are based on the moisture content of 

the feedstock and are categorized into wet and dry biomass pretreatment35.    

Wet biomass pretreatment 

Generally these options are suitable for biomass feedstock with > 50% moisture content. 

Two basic technologies are applicable here: 

• Anaerobic digestion – a biological process that is well developed and applied in many 

biogas plants all over the world35. The products of the degradation process are biogas 

(composed mainly of carbon dioxide and methane) and a wet organic fraction called 

digestate, a high-quality fertilizer.  

• Hydrothermal treatment – This method is still in a very preliminary stage of 

development and many processes are under evaluation. The most promising process 

so far is wet torrefaction36, 37. It occurs under high pressure (up to 50 bar) at relatively 

low temperatures (approximately 175-260 °C)36, 37. Reaction time varies from 5-240 

min36. Process conditions can be varied to accommodate dry biomass as well. In the 

process, biomass decomposes in hot compressed water to produce a more energy-

dense solid fuel (on both mass and volume basis) after grinding and pelletization, with 

relatively uniform handling characteristics.  

Dry biomass pretreatment 

This pretreatment category is applicable to biomass of low moisture content (<50%). The 

most commonly used options are briefly mentioned here:  

• Physical pretreatment – coarse size reduction, chipping, shredding, grinding, and 

milling are amongst the different mechanical size reduction methods. These methods 

are used to enhance the subsequent processing/decomposition of lignocellulosic 

biomass by increasing the available surface area8, 13, 38.   

• Drying – reduction of water content in biomass after drying increases heating value 

and preservation potential, with less negative impact on the environment and more 

uniform combustion conditions39. Large boilers have often been scaled up for the use 

of biomass of varying moisture content. However, small scale combustors, 

gasification units and production of pellets and other processed biofuels demand drier 

feedstock and more controlled inputs.  

• Pelletization – drying and pressing of biomass under high pressure to produce 

cylinders of compressed, extruded biomass. Pellets are more efficient to store, ship 
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and convert into energy because of smaller volume and higher volumetric energy 

density35. It not only produces a uniform and stable fuel but also minimizes dust. 

Production of pellets requires small feedstock particles (3-20 mm) and moisture 

content below 15%. If the feedstock is too dry or wet, the required pressure increases 

dramatically. A moisture content of 10-25% is considered optimal. Therefore, the 

feedstock is first heated to 50-100 °C to obtain a desired moisture level, before 

performing mechanical densification at approximately 150 °C40.   

• Dry Torrefaction – mild pyrolysis of biomass that is typically conducted at 200–300 

°C, under approximately atmospheric pressure and mostly in the absence of oxygen at 

a relatively low heating rate (<50 °C/min)41-43. It is to date the most promising 

biomass pretreatment technique available for thermochemical processes. Torrefaction 

retains the benefits of drying, and can be combined with pelletization to produce 

torrefied pellets44. However, industrial technologies are still under development, with 

ongoing research on several fundamental topics related to the process. Dry 

torrefaction is the topic of this study. A detailed literature review is provided in 

Chapter 2, as well as Paper I.  
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1.2 Motivation  

Researchers are looking into solutions to improve the properties of biomass as a fuel, and 

thus overcome existing operational and logistical limitations. Torrefaction is one potential 

solution to these problems, and has gained considerable research momentum as a biomass 

pretreatment process in the last two decades42, 43. It is essentially a mild pyrolysis process 

carried out between 200 and 300 °C, usually under an inert atmosphere. During torrefaction 

the fuel retains most of its energy content. Torrefaction considerable reduces moisture 

content, increases heating value, converts hygroscopic raw biomass into a hydrophobic 

product, and enhances grindability and energy density when compressed. Because of these 

improved properties, the value of torrefied biomass as a fuel is significantly higher than that 

of raw biomass. Torrefaction can be dry or wet, depending upon feedstock characteristics and 

processing conditions. Only dry torrefaction was utilized in this work; therefore, all 

references to ‘torrefaction’ should be interpreted as ‘dry torrefaction’.    

Torrefaction is influenced by many parameters such as biomass composition, processing 

temperature, holdup time and particle size. Several previous torrefaction studies are available. 

However, to evaluate the feasibility of torrefaction in a particular region, locally available 

biomass should be investigated. So far, no study has investigated and compared the 

torrefaction behavior of Birch (hardwood) and Spruce (softwood), which are the two main 

wood species in Norway. A few studies45-47 have compared hardwoods and softwoods for 

torrefaction. However, only mass and energy yields or individual properties such as 

grindability were discussed. As mentioned earlier, development of a bioenergy market in 

Norway is essential to meet CO2 reduction targets. Therefore, it is important that research is 

carried out to improve the properties of biomass and make it a competitive fuel option in 

Norway. Carrying out fundamental research on torrefaction using Norwegian woods will 

definitely be a step forward in this direction and thus, forms the basis of this work. 

Additionally, the real test of a torrefaction process is how it affects the behavior of biomass in 

thermochemical conversion processes. So far, only a few studies have attempted to analyze 

the reactivity of torrefied biomass in these processes, and only limited information is 

available. Therefore, the behavior and reactivity of torrefied biomass in thermochemical 

conversion processes are also covered here.   
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1.3 Objectives 

The present thesis aims to contribute to our fundamental understanding of this topic as 

follows:  

• Review existing literature on biomass torrefaction.  

• Compare torrefaction behavior of Norwegian birch and spruce in terms of product 

yields and characteristics. 

• Evaluate decomposition kinetics of Norwegian birch and spruce during torrefaction. 

• Evaluate the kinetic behavior of torrefied biomass in an oxidative environment. 

• Simulate biomass gasification and quantify the effect of torrefaction on syngas 

composition and gasification efficiency.  

1.4 Thesis organization    

An introduction to the subject is provided in Chapter 1. Biomass and bioenergy basics, 

thermochemical conversion processes, and pretreatment options are briefly described, 

together with the motivation and objectives for this work. A literature review on biomass 

torrefaction, chemical reaction kinetics and thermodynamic equilibrium models is included in 

Chapter 2. Chapter 2 gives brief overviews of torrefied biomass behavior in thermochemical 

processes, torrefaction technologies and novel techniques, intrinsic kinetic modeling as 

applied to thermochemical processes and a summary of kinetic modeling studies applied to 

torrefaction and torrefied biomass reactivity. The experimental section of the thesis in 

Chapter 3 includes the characterization of fuels, macro- and micro-TGA set-ups, test 

procedures and assessment methods. In addition, methodologies for evaluation of intrinsic 

kinetics under oxidative and inert conditions, together with a process modeling approach to 

study biomass gasification, are also presented in Chapter 3. Major highlights and a short 

summary of published works are included in Chapter 4. Finally, some recommendations for 

future work are listed in Chapter 5.  Five publications (1 conference paper and 4 journal 

articles) covering the research performed for this thesis are attached as an appendix.     
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2 Literature Review 

In this chapter, I present a brief summary of recent published work on biomass 

torrefaction, product properties and the reactivity of torrefied biomass in thermochemical 

processes. The reader is referred to Paper I for a detailed literature review on this topic. Brief 

reviews of intrinsic chemical reaction kinetics, kinetic modeling of biomass thermochemical 

processes and kinetic modeling of torrefaction are then given. An introduction to the 

application of thermodynamic equilibrium models to biomass gasification is also provided.   

2.1 Biomass torrefaction 
During torrefaction, biomass partly decomposes, yielding a solid product (torrefied 

biomass) as well as condensable liquids and non-condensable gases46. The chemistry of 

torrefaction is influenced by many parameters, such as biomass composition, temperature, 

holdup time and particle size. The main reactions during torrefaction involve xylan-

containing hemicellulose polymers, which are the most reactive polymers in biomass48. 

However, as the temperature is increased, other biomass components such as cellulose, lignin 

and extractives also decompose, as shown in Figure 2-149.  

 

Figure 2-1: The main physicochemical processes during heating of biomass49  
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The following reactions take place in the torrefaction temperature range, at 200-300 °C: 

� Devolatilization and carbonization of hemicelluloses. 

� Depolymerization and devolatilization/softening of lignin. 

� Depolymerization and devolatilization of cellulose. 

The decomposition of hemicellulose during torrefaction changes the orientation of 

cellulose microfibrils in the lignin matrix, thereby improving biomass properties such as 

grindability, deterioration and fluidization. The ability of torrefaction to improve biomass 

properties has been investigated in several studies. Most of these studies have focused on 

compositional changes via proximate and ultimate analyses50-52 and mass and energy yields46, 

50-55 of woody biomass, agricultural residues and energy crops. Studies have also investigated 

torrefied biomass properties such as hydrophobicity56, grindability 47, 53, 54, 57, 58, particle size 

distribution54, 59, and reactivity during combustion56, 60, 61, gasification62, 63 and pyrolysis52, 64. 

This literature suggests that torrefaction is a promising technique to improve biomass energy 

utilization. However, despite a number of impressive studies on the topic, many aspects have 

still not been addressed in sufficient detail. This formed the basis for the studies presented in 

Papers II-V.  

2.1.1 Torrefaction and product properties 
Either micro-TGA45, 61, 65 or laboratory scale reactors46, 51, 58, 63, 66, 67 have been used in 

previous studies to perform torrefaction. The kinetically controlled thermal weight loss of 

biomass can be measured precisely in a micro-TGA, which in this respect makes it preferable 

to a laboratory or pilot scale reactor for mass loss kinetics studies. Due to the small sample 

weights used (a few milligrams), negligible heat and mass transfer limitations exist in a 

micro-TGA, which is not the case in a commercial plant. Therefore, micro-TGA has been 

used to study the effects of operating parameters on torrefaction products and to obtain data 

for modeling its kinetics, whereas reactors have been used to study and simulate torrefaction 

in conditions closer to the industrial environment. 

The properties of torrefied biomass obtained using both these methods have been 

determined using various analytical techniques. Considerable differences were found in the 

behavior of biomass materials during torrefaction. Solid product mass and energy yield are 

strongly influenced by raw biomass composition and operating conditions such as 

temperature and holdup time. Product yields from several types of biomass at different 

torrefaction temperatures and holdup times are shown in Figure 2-246. Among the product 
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properties evaluated, grindability is the most studied. Very few studies have attempted to 

investigate the densification, fluidization, storage and char reactivity of torrefied biomass.  

 

Figure 2-2: Overall mass balance of several torrefaction experiments46  

Torrefaction results in the following major improvements in biomass properties: 

(1) considerable reduction of moisture content due to drying63, 68, 69  

(2) increased energy density when compressed, and increased heat value due to the reduced  

O/C ratio45, 46, 61, 63  

(3) intrinsic conversion of hygroscopic raw biomass into hydrophobic torrefied biomass58, 70 

 (4) enhanced grindability, which reduces energy consumption during milling53, 54, 57  

A few studies have reported that torrefaction results in reduced biomass density and 

volume; the extent of this reduction increased with torrefaction severity71. However, this can 

be overcome by pelletizing the torrefied biomass. The compression step during pelletization 

increases volumetric energy density (GJ/m3) by a factor of 4-8, leading to significant cost 

savings in transportation and storage. Table 2-1 shows a comparison between torrefied pellets 

and other similar fuels72. Research is ongoing to reduce energy consumption during 

pelletization, as it has been reported that torrefied biomass consumes more energy during 

pelletization than raw biomass73. Process conditions during pelletization must be optimized to 

improve the viability of torrefied biomass during transport, handling and storage40, 74.  

Because of these advantages and high viability, the technique has attracted increasing 

interest over recent decades. However, Norwegian feedstocks such as spruce and birch have 
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not previously been tested for torrefaction behavior. This formed the basis for the study 

presented in Paper II.  

Table 2-1: Properties of various solid fuels72 

 

2.1.2 Torrefied biomass behavior in thermochemical processes   
Testing the behavior of torrefied biomass in a thermochemical process is an important 

aspect of improving the viability of torrefaction. A few studies have attempted to do these 

analyses by simulating combustion and gasification conditions in a laboratory/pilot plant or 

by evaluating the kinetics of torrefied biomass from thermogravimetric experiments (included 

in section 2.2.3).  

For combustion, being the main process used for biomass, understanding the behavior of 

torrefied biomass under oxidative conditions should be a priority. A few studies, listed in 

Paper I, conducted preliminary lab studies using Merker burners or lab-scale combustion 

simulators to study torrefied biomass behavior during combustion. The results showed 

decreased combustion time for volatiles in torrefied wood compared to untreated wood. 

Khalil et al.75 investigated the combustion of raw and torrefied spruce and spruce tree top and 

branch (T&B) pellets in a residential pellet stove, and evaluated emissions of gaseous 

pollutants and particulate matter (PM). Mild torrefaction reduced CO emissions, unburned 

hydrocarbons, and the organic content of particles smaller than 1 µm (PM1.0). However, 

these advantages were offset by a substantial increase in the inorganic share of PM1.0 

emissions.  

Similarly, a few studies investigated the behavior of torrefied biomass during entrained 

flow gasification (simulated in the lab), as listed in Paper I. Torrefied samples produced more 

Property Wood Wood 

pellets

Torrefied 

pellets

Charcoal Coal

Mositure content (% wt) 30 - 45 7 - 10 1 - 5 1 - 5 10 - 15

Lower heating value (MJ/kg) 9 - 12 15 - 18 20 - 24 30 - 32 23 - 28

Volatile matter (% db) 70 - 75 70 - 75 55 - 65 10 - 12 15 - 30

Fixed carbon (% db) 20 - 25 20 - 25 28 - 35 85 - 87 50 - 55

Density (kg/l) (bulk) 0.2 - 0.25 0.55 - 0.75 0.75 - 0.85 ~0.20 0.8 - 0.85

Energy density (GJ/m
3
) (bulk) 2.0 - 3.0 7.5 - 10.4 15.0 - 18.7 6 - 6.4 18.4 - 23.8

Dust Average Limited Limited High Limited

Hydroscopic properties Hydrophyllic Hydrophyllic Hydrophobic Hydrophobic Hydrophobic

Biological degradation Yes Yes No No No

Grindability Poor Poor Good Good Good

Handling Special Special Good Good Good

Quality variability High Limited Limited Limited Limited
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H2 and CO, but the reactivity of torrefied char was lower than that of the parent biomass. 

Recently, Berrueco et al.76 reported the influence of torrefaction temperature and gasification 

pressure on syngas yields and composition in lab-scale fluidized bed O2/steam gasification. 

The results revealed that syngas yield increased with gasification pressure and torrefaction 

temperature. However, increasing pressure reduced H2 and CO levels. Sarkar et al.77 

performed air gasification of torrefied, densified and torrefied/densified biomass in a lab-

scale, fixed-bed, externally heated reactor. Densified torrefied biomass gave higher H2 and 

CO yields, syngas LHV and process efficiencies at a gasification temperature of 900 °C. The 

experimental approaches used by these studies are quite different, and it is hard to compare 

results. Further investigations are needed to confirm these preliminary results on the behavior 

of torrefied biomass in gasification conditions.   

2.1.3 Torrefaction technologies and novel techniques 
More than 50 companies are developing torrefaction technologies. Because research is 

still ongoing into the fundamental understanding of torrefaction, as well as the applications of 

torrefied biomass, it will take some time to achieve recognition as a feasible biomass 

pretreatment technology78. The advantages of torrefaction are clear for co-firing in pulverized 

coal power plants, and in co-gasification in entrained-flow gasification plants, due to reduced  

power consumption in grinding, an attractive C/O ratio and low moisture content79. Concepts 

for reactor technologies are being borrowed from other biomass applications, such as drying, 

pyrolysis, gasification and combustion. Figure 2-3 shows some of the torrefaction reactor 

technologies currently in use72. Currently, no single technology is clearly superior; all of 

them have advantages and disadvantages. Proper reactor selection is important, as each 

design is well suited to specific types of biomass78. For commercialization, torrefaction 

reactors must still be optimized to meet end user requirements economically and to achieve 

standardization of the solid product.  

Reactors can be classified as either directly or indirectly heated80. In directly heated 

reactors, the biomass is in direct contact with hot flue gases, recirculated gases, or 

superheated steam. Many dryers and gasification technologies are based on direct heating: 

these include rotary drum, moving bed, fluidized bed, multiple hearth furnace (MHF), 

oscillating belt, turbodryer, torbed  and directly heated screw reactors72. The benefits of 

directly heated reactors include uniform and quick heating of biomass. Reactors such as the 

microwave type use direct heating, but the heating medium is not hot, flowing gas. In 

indirectly heated reactors, the biomass is not in direct contact with the heat carrier. Most 
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carbonization and slow pyrolysis processes are based on this principle, such as rotary kilns 

and indirectly heated screw reactors. These types of reactors can handle a wide range of 

biomass types and sizes, but their main flaws include low heat transfer rates and non-uniform 

heating of feedstock49. 

   

Figure 2-3: Some current torrefaction reactors72 

Recently, as novel torrefaction methods, a few studies have investigated non-inert 

environments81-85. Air or carbon dioxide were used as substitutes for nitrogen. Except for 

increased mass loss, biomass fuel properties such as grindability, energy density and heating 

value were comparable to those achieved in inert environments at the same degree of 

torrefaction. Increased mass loss under non-inert torrefaction conditions may be due to 

oxidation and to the catalytic effect of ash components on reactions that occur in the 

torrefaction temperature range. However, these results are preliminary. Further research is 

needed to explore the effect of different torrefaction media. 

2.2 Chemical reaction kinetics 

2.2.1 Overview of modeling intrinsic kinetics  
With its high precision and well-controlled experimental conditions, TGA is a useful tool 

for studying the devolatilization, gasification and combustion of biomass under a kinetic 
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regime86-90. However, TGA can be employed only at relatively low heating rates because the 

temperature of small samples is unknown at high heating rates. Accordingly, the results of 

TGA studies cannot be used alone in the modeling of industrial reactors; they serve as basic 

research to direct further development in the field. Heat and mass transfer limitations must be 

included in an overall model of industrial reactors. It is assumed that the samples are under 

kinetic control, meaning that heat and mass transport processes do not generate significant 

macroscopic heterogeneity in samples. Hence, product formation is governed by chemical 

reactions88.  

Rate Equations 

It is well known that thermogravimetric curves can be analyzed mathematically using the 

following type of kinetic equation91: 

( ) ( )
α

= α
d

k T f
dt

    (2-1) 

where α is the reacted fraction, f(α) is a continuous function representing the reaction model 

and k(T) is the temperature-dependent rate constant defined by the Arrhenius equation92: 

/
( ) e

E RT
k T A

−
=  (2-2) 

where A is the pre-exponential factor, E is the activation energy and R is the universal gas 

constant. Various forms of f(α) and g(α), the integral of 1/f(α), are listed in Table 2-292.  

Isothermal and non-isothermal kinetics 

General expectations for a good kinetic model include: description of the behavior of 

samples under a wide range of experimental conditions; prediction of behavior outside the 

domain of the observations; characteristics that can reveal similarities and differences 

between the samples; and finally a deeper insight into the processes taking place93. 

TGA experiments can be conducted under either isothermal conditions at a particular 

temperature, or with dynamic/non-isothermal heating programs that involve different heating 

rates. Non-isothermal heating resolves a major defect of isothermal experiments, which is 

that a sample requires some time to reach the experimental temperature. During the non-

isothermal period of an isothermal experiment, the sample undergoes transformations that are 

likely to affect the results of the following kinetic analysis. This problem restricts the use of 

high temperatures in isothermal experiments92, 94. 

It is generally believed that kinetic analysis yields an adequate kinetic description of 

thermal decomposition in terms of the reaction model and Arrhenius parameters. These three 
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components (f(α), E and ln A) are also called the ‘kinetic triplet’. To determine Arrhenius 

parameters using equation 2-1, one has to separate the temperature k(T) and conversion 

dependence f(α) of the reaction rate. The most popular way to do this is by fitting 

experimental data to different reaction models. This is also referred to as model fitting. Using 

this method, k(T) is determined by the form of f(α) chosen from Table 2-292.  

Table 2-2: Alternate reaction models92  

 

In isothermal kinetics, k(T) and f(α) are separated by the conditions of the experiment 

(k(T) is constant at constant T). The f(α) term is determined by fitting reaction models from 

Table 2-2 to the experimental data. After the f(α) term has been established for a series of 

temperatures, k(T) can be evaluated. Note that this procedure involves two sequential 

constrained fits: the first finds f(α) from data obtained at constant temperature, and the second 

finds E and A based on a fixed form of f(α)92. 

A single non-isothermal experiment also provides information on both k(T) and f(α), but 

not separately. The model fitting approach attempts to determine all three members of the 

kinetic triplet simultaneously. Therefore, almost any f(α) can fit data satisfactorily, at the cost 

of dramatic variations in the Arrhenius parameters, which compensate for the difference 

between the assumed form of f(α) and the true but unknown kinetic model. Isothermal 

experiments include temperature as an experimental variable, whereas non-isothermal 

experiments allow fits that vary temperature sensitivity (E, ln A) and reaction model f(α) 

simultaneously. This allows errors in the reaction model to be concealed by other 

compensating errors89, 91-93. To overcome this, one should collect experimental data under a 

broad range of experimental conditions and evaluate them21, 90, 93, 95. 

For both isothermal and non-isothermal studies, statistical methods are used in most cases 

to choose a unique kinetic triplet. The method of least squares is the most commonly used to 
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characterize the goodness of fit; the minimum value of the residual sum of squares is used to 

choose the unique kinetic triplet91, 92. For non-isothermal data, many studies have used Coats-

Redfern linearization as follows92, 93:  

2

)(
ln ln

g AR E

T E RTβ

α
≅ −          (2-3) 

where g(α) is the integral of 1/f(α) and β is the heating rate. This method is one of the most 

frequently used to process non-isothermal data. Inserting various g(α) into the equation 

results in a set of Arrhenius parameters. The left-hand side can be regarded as an 

experimental quantity, and this equation can then be used in least squares methods. However, 

this method is restricted to models containing only one reaction step, and the reaction should 

obey a variant of equation 2-193. Additionally, the evaluation is restricted to experiments with 

linear heating programs; f(α) should not contain unknown kinetic parameters, and α should be 

directly calculated from the experimental data. These criteria are rarely applicable to kinetic 

models involving wood. Therefore, these linearization techniques or ‘‘model-free’’ 

approaches may help to find initial values for iterations in the method of least squares, but 

these goals are better fulfilled by a method aiming directly at the description of the 

experimental data under a wide range of experimental conditions93. The least squares method 

works well for both isothermal and non-isothermal kinetics; there is no need to replace it with 

methods requiring simpler programming or less computation time. The method of least 

squares can be applied successfully to models of more than one partial process: competitive, 

consecutive and parallel reactions. Additionally, simultaneous evaluation of a series of 

experiments can be achieved91, 93.  

Heterogeneous samples 

Biomass is too complex a material to be described by only one chemical reaction. 

However, as an approximation, we can regard it as composed of pseudocomponents, where a 

pseudocomponent is a fraction of a reactive species exhibiting similar reactivities. A kinetic 

equation in the form of equation 2-1 is assumed for each pseudocomponent21, 90, 93, 95. Each 

reaction includes values for E, A and the weighting factors for the pseudocomponents. The 

resulting mass loss rate curve is the weighted sum of the individual reaction rates93: 
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where m is the normalized sample mass, Ncomp is the number of pseudocomponents and cj is 

the normalized mass of volatiles formed from pseudocomponent j. Obviously one experiment 

cannot provide enough information for so many parameters. Therefore, one should evaluate a 

series of experiments. Evaluation can be done in two ways: either the experiments are 

evaluated simultaneously, looking for a set of kinetic parameters describing all of the 

experiments, or the thermogravimetric curves are evaluated one by one, independently from 

each other, and the results are compared after evaluation. The latter approach works well if 

the information content of an experiment is sufficient for the determination of all unknown 

parameters, and if it is followed up to verify that the kinetic parameters vary with the 

experimental conditions93, 96.  

Recently, distributed activation energy models (DAEM) have been applied to the 

decomposition kinetics of biomass21, 90, 93, 97, 98. Several variants of DAEMs are known; 

usually a Gaussian distribution of activation energy is employed.  Due to the complexity of 

the investigated materials, the model was expanded to simultaneous parallel reactions 

(pseudocomponents) that were described by separate DAEMs99-102. According to this model, 

the sample is regarded as a sum of M pseudocomponents, where M is usually between 2 and 

4.  The reactivity differences between species in a pseudocomponent are described by 

different activation energy values. On a molecular level, each species in pseudocomponent j 

is assumed to undergo first-order decay. The distribution of the species differing by E within 

a given pseudocomponent is approximated by a Gaussian function, with a mean activation 

energy value and a width parameter (variation)97. 

2.2.2 Kinetic modeling of thermochemical processes 
Pyrolysis, gasification and combustion kinetics, coupled with the description of transport 

phenomena, produce advanced computational tools for the design and optimization of 

reactors for the thermochemical conversion of biomass. Weight loss results from the 

combined activity of numerous reactions. Therefore, TGA curves, measured under isothermal 

or non-isothermal conditions, are useful for the formulation of global or semi-global 

mechanisms, which can include the effects of reaction parameters and sample properties21, 95.  

Biomass pyrolysis 

Several studies suggest that the primary decomposition rate of biomass can be modeled, 

taking into account the thermal behavior of the major components (hemicellulose, cellulose, 

lignin) and their relative contribution to chemical composition21. The term “pseudo compo-
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nent” is appropriate, as it is impossible to avoid overlap between different components in the 

measured weight loss curves21, 90.  

A simplified description of primary decomposition processes, usually adopted for 

isothermal conditions or fast heating rates, is based on a one-component (or one-stage) 

reaction process. In this case, weight loss curves are often associated with additional 

measurements of the yields of the three product classes (gases, tar and char), to evaluate 

formation rates. Both yields and decomposition rate (conversion time) can be predicted if 

one-component mechanisms are coupled with transport equations. However, the assumption 

of one-component behavior generates inaccurate decomposition rates due to the 

heterogeneous nature of biomass21. 

Multi-component (or multi-stage) reaction mechanisms have also been proposed, where 

each reaction takes into account a pseudocomponent in the measured weight loss curves. 

Kinetic models make use of Arrhenius dependence on temperature, thus introducing the 

parameters E and A, and linear or power law dependence on the component mass fraction for 

each reaction21, 90. Several attempts have been made to develop DAEMs21, 93, 97, 98. 

Multicomponent mechanisms describe the devolatilization process, and the final char yields 

should be known. However, the product distribution cannot be predicted from these 

mechanisms. Usually, three parallel, first-order reactions are considered, for volatiles released 

from the pseudocomponents hemicellulose, cellulose and lignin21. The analysis of single 

dynamic (non-isothermal) TGA curves assumes that hemicellulose and cellulose are 

associated with the shoulder and peak of the rate curves, respectively, whereas lignin 

decomposes slowly over a very broad temperature range. Activation energies vary between 

80–116 kJ/mol for hemicellulose, 195–286 kJ/mol for cellulose, and 18–65 kJ/mol for 

lignin21. Comparison of results between studies is difficult, owing to variations in 

experimental conditions, mathematical treatment of the data, the nature of the fuel and 

possible flaws in the measurements. However, it appears that heating rate effects (thermal lag 

between sample and external temperature), when assuming first-order reactions, result in 

higher activation energies for the devolatilization of the pseudocomponents hemicellulose 

and lignin. Therefore, more complex reactions should be used for these two 

pseudocomponents21.  

Biomass gasification and combustion reactivity  

As mentioned earlier, chemistry and transport phenomena should be separated to evaluate 

intrinsic chemical kinetics. Therefore, reaction conditions, sample characteristics and sample 
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position in the reaction environment should be carefully chosen for TGA experiments. TGA 

curves are generally expressed as reactivity versus conversion, and it is widely accepted that 

the mechanisms of char combustion and gasification proposed for coal chars are also 

applicable to lignocellulosic fuels95. Pyrolysis also plays an important role as the first step in 

gasification and combustion. In numerous practical applications, solid conversion can be 

observed as a two-stage process: pyrolysis (or devolatilization) and slow heterogeneous 

conversion of char95, 103.   

Gasification reactivity 

The main reactions responsible for the gasification of solid carbon are the Boudouard 

reaction and the water-gas reaction, as shown in equations 2-5 and 2-6, respectively. Both 

reactions are relatively slow and are considered negligible at temperatures below 800 ºC. To 

predict the rate of the Boudouard reaction, several models have been developed. The 

common goal for all models is to find a suitable function that will predict the gasification rate 

of a carbon particle during its conversion to gaseous products23, 95.  

C + CO2   �  2CO                  (2-5) 

C + H2O �    CO + H2   (2-6) 

The simplest model for the prediction of global reaction rate is the nth order rate equation:  

= ⋅ n

x
r k p      (2-7) 

where r is the intrinsic reaction rate, 
Xp is the partial pressure of the gasification agent (either 

2COp or 
2H Op ), n is the true reaction order and k is the intrinsic rate coefficient, which is 

related to temperature through Arrhenius expression 2-223, 95.  

More complex expressions have been derived based on active site theory, postulating that 

chemical reactions occur at favored active sites on the surface of solid particles. Reactions 2-

8 and 2-9 are proposed for CO2 gasification and 2-10 and 2-11 for H2O gasification.  
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where 
fC  represents an active carbon site and ( )C O  a carbon-oxygen complex. By assuming 

a pseudo-steady state for the C(O) complex ( )( ) 0dC O dt = , the Langmuir-Hinshelwood 

kinetic equation can be derived23, 95: 
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Here t
C  is the total number of active carbon sites. Similar equations exist for steam 

gasification as well. To calculate A and E for all rate coefficients in equation 2-12, many 

thermogravimetric experiments are needed. The intrinsic reaction rate of equation 2-12 

depends on t
C , a variable likely to change with the particle conversion rate. The number of 

active carbon sites is difficult to measure, and attempts to relate it to other carbon char 

properties have been made95. 

When experimental conditions allow the Boudouard reaction to proceed in both 

directions, the Langmuir-Hinshelwood kinetics is usually employed. If the reaction is far 

from equilibrium, the kinetics can be well described by nth-order equations104. Several 

authors propose a rate of char conversion with a kinetic contribution and a structural term, but 

simple pure kinetic laws have also been used. In some cases the pre-exponential factor also 

incorporates partial pressure effects, so that the kinetic parameters have a more limited range 

of validity95. 

Combustion reactivity 

Similar to gasification reactivity, the simplest model for the prediction of a global reaction 

rate is the nth order intrinsic rate equation95:  

2
= ⋅ n

O
r k p         (2-13) 

where r is the intrinsic reaction rate, 
2Op is the partial pressure of oxygen, n is the true 

reaction order and k is the intrinsic rate coefficient, which is related to temperature through 

Arrhenius expression 2-2. This one-step global reaction is used by several authors to describe 
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the process up to complete conversion. More complex expressions have also been derived 

from active site theory. Equation 2-14 represents the chemisorption of oxygen on active sites 

and equation 2-15 the formation of CO through desorption95.   

1

22 2 ( )+ →
k
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C O C O  (2-14) 
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There can be additional reactions involved in the formation of CO2, but only the above two 

reactions are modeled in Langmuir-Hinshelwood form95:  
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However, the parameters of the above equation have not yet been evaluated for major 

biomass materials95. Multistep models have also been proposed that include additional steps 

for low-temperature devolatilization, or both devolatilization and combustion, of char. 

Several authors incorporate the dependence of reactivity on oxidant partial pressure into the 

pre-exponential factor95, 103. Char combustion experiments have been conducted either or at 

both isothermal and non-isothermal conditions. Low activation energies are generally 

obtained when a single-step reaction is assumed. However, the combination of a global one-

step reaction for char combustion with a first-order or n-order reaction for the devolatilization 

stage yields accurate predictions of weight loss curves, and a higher activation energy for the 

combustion reaction95. The most widely used treatment also includes a structural term 

describing the effects of porosity evolution, and available internal surface area or 

concentration of active sites, in addition to the kinetic term95.   

2.2.3 Kinetic modeling of torrefaction and torrefied biomass 

reactivity 
Many studies are available on the production and characterization of torrefaction 

products.  However, fewer works address torrefaction kinetics45, 105-110. Most of these studies 

are based on isothermal experiments and first order kinetics. Prins et al.45, Bates et al.105, 

Nocquet et al.111, Bach et al.112, Peduzzi et al.113, Ren et al.114, employed a one-component, 

two step successive first-order reaction model based on earlier work by Di Blasi and 

Lanzetta115 on xylan kinetics.  The same model was used in recent TGA studies by Shang et 

al.110, 116. Peng et al.109 used a one-component, single step reaction model for torrefaction with 

long residence times, but a two component, single step model for short residence times. Chen 



29 
 

and Kuo106 studied the torrefaction of hemicelluloses, cellulose and lignin separately, using a 

global single step reaction model for each. They described the torrefaction of biomass by 

superimposing the kinetics of the three components. Klinger et al.117 employed a one-

component, three step successive reaction model, and assumed first-order reactions for all 

steps. Recently, Sarvaramini et al.118 applied a DAEM model, but evaluated only isothermal 

experiments.    

Understanding torrefaction reaction mechanisms and kinetics is very important to identify 

the optimum conditions for this biomass pretreatment technology. Torrefaction kinetics are 

part of a broader subject: the pyrolysis kinetics of biomass materials. If a kinetic model 

describes biomass pyrolysis in the torrefaction temperature range well, then the model can 

also describe the pyrolysis behavior of the torrefied wood. This assumes that the experimental 

data used for the determination of model parameters include temperature programs where 

temperature increases are preceded by longer residence times in the torrefaction temperature 

range. This approach was followed in paper III. Because isothermal experiments involve 

substantial transient time, which is lost from the evaluation of thermogravimetric 

experiments, all experiments performed for paper III were evaluated together with the heat-

up period. 

Few studies have attempted to model the reactivity of torrefied biomass in 

thermochemical processes. Most of these are combustion reactivity studies, except for the 

studies by Ren at al.114 and Vincent et al.119. Ren et al.114 employed a model-free Friedman 

iso-conversional method and assumed one-step global kinetics for modeling torrefied 

biomass behavior during pyrolysis. Vincent et al.119 evaluated the kinetics of torrefied 

biomass under CO2 gasification conditions by performing isothermal experiments at 

temperatures between 750-900 °C. For combustion studies, Bridgeman et al.61, Arias et al.53, 

Jones et al.120 and Broström et al.121 utilized TGA to evaluate the combustion reactivity of 

torrefied samples. No kinetic analysis was performed by Bridgeman et al.61. Arias et al.53 

divided TGA experiments into low and high temperature stages (below and above ~400 °C, 

respectively) and described both stages using first order kinetics. Jones et al.120 performed 

TGA experiments on chars prepared from torrefied biomass samples, and applied a first order 

reaction model to deduce kinetic parameters for char reactivity under oxidizing conditions. 

They observed that chars from torrefied samples had lower reactivity than those from raw 

samples, but higher than those from coal.  In a later study, Broström et al.121 provided a 

detailed kinetic model for the devolatilization and oxidative kinetics of torrefied Norwegian 

spruce. For devolatilization, measured curves were predicted using three parallel reactions, 
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corresponding to the three main wood components: hemicellulose, cellulose and lignin. In the 

presence of oxygen, two additional reactions for char devolatilization and combustion were 

included. The work presented in paper IV continues the efforts of Broström et al.121 to 

establish a detailed model for these oxidation kinetics, using a wider set of experimental 

conditions, Norwegian feedstocks and a more comprehensive kinetic model. Details of the 

applied kinetic model are presented in Chapter 3. 

2.3 Thermodynamic equilibrium models  
Another way to investigate biomass gasification is to use thermodynamic equilibrium 

models to predict syngas composition122. Many studies have evaluated biomass behavior in 

gasification processes using this approach, and gave reasonable agreement between 

equilibrium predictions and experimental data123-129. Commercial tools such as Aspen Plus 

have been very useful in applying these thermodynamic equilibrium models to predict 

biomass gasification behavior as a sub-model with built-in solid properties. Mansaray et 

al.130 used Aspen Plus to simulate a dual-distributor-type fluidized-bed rice husk gasifier. 

Paviet et al.131 studied thermo-chemical equilibrium modeling of biomass gasification. In a 

few recent studies, it has been reported that torrefied biomass can significantly affect the 

efficiency of gasification. Chen et al.132 employed a process optimization technique, the 

Taguchi method, for identifying optimal process parameters for co-gasification of torrefied 

biomass and coal in an entrained-flow gasifier. In another study, Chen et al.133 simulated an 

entrained-flow gasifier using oxygen as the gasifying agent. The gasification performance of 

torrefied bamboo was quite similar to that of coal. Furthermore, Kuo et al.134 evaluated a two-

stage gasification process for raw and torrefied bamboo using a Gibbs minimization approach 

under isothermal conditions in Aspen Plus simulations. It was reported that carbon 

conversion and syngas yield were higher for torrefied materials than for raw biomass, 

whereas the trends for cold gas efficiency were the opposite. Biomass torrefied at 250 °C was 

found to be the best fuel for gasification considering all process parameters. However, this 

study did not account for tar formation, and assumed char to be pure carbon. Except for these 

few studies, there is a lack of information on the behavior of torrefied biomass under 

gasification conditions. Therefore, better data are needed. This formed the basis of the study 

conducted in Paper V. This extends the efforts of Kuo et al.134 to establish a detailed 

equilibrium model of the effect of torrefaction on syngas composition and efficiency of 

biomass gasification. The aim was to study a two-stage gasification process using Gibbs free 

energy minimization in Aspen Plus, giving improved accuracy, together with a 
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comprehensive thermodynamic analysis. The accuracy of the model was improved by 

including: tar formation during pyrolysis and further cracking in the gasification reactor; 

actual experimental decomposition yields as inputs for both untreated and torrefied biomass; 

the compositions of the chars produced during pyrolysis, as calculated from the elemental 

balance; and a C-H-O Ternary diagram for validating the results. The model was integrated in 

an Excel spreadsheet to study energy and exergy efficiencies under different gasifier 

operating conditions. Exergy analysis of a process is a supplement to energy analysis and is 

based on the 2nd law of thermodynamics. It is a useful tool to assess the work potential of 

input and output materials and heat streams and to pinpoint irreversible losses in a system135-

138.    
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3 Methodology 

This chapter includes details on the fuel characterization, the experimental set-up and 

procedures, the approach followed for the kinetic modeling of the biomass decomposition 

under inert and oxidative conditions and the process modeling for gasification process with 

Aspen Plus.   

3.1 Fuel characterization  
Two primary Norwegian woody biomass materials, namely, birch and spruce, were used 

as feedstocks for the studies performed in papers II-IV.  

Birch (Betula verrucosa) is a robust tree that thrives in cold climates. Its adaptive nature 

makes it easy for it to grow in almost any type of soil; in addition, birch can survive in 

extreme weather conditions. In Norway, birch is spread across the whole country and is 

commonly used as firewood. Birch is easy to process, which makes it an attractive material to 

work with for the manufacture of furniture and other small household articles.  

Spruce (Picea abies) is one of the most common wood species found in Norway. It is a 

large, fast-growing, evergreen coniferous tree that grows 35–55 m (115–180 ft) tall and has a 

trunk diameter of up to 1 to 1.5 m. Norway spruce grows throughout Europe from Norway in 

the northwest to Poland and eastward, as well as in the mountains of central Europe, 

southwest to the western end of the Alps, and southeast in the Carpathians and Balkans to the 

extreme north of Greece. 

Norwegian birch and spruce fuel samples were obtained from local sources in Trondheim, 

Norway. These samples were standardized wood boards that are typically used in buildings. 

The raw samples were characterized by proximate and ultimate analyses, the results of which 

are presented in Tables 3-1, including the higher heating values (HHVs). 

Table 3-1: Proximate and ultimate analyses of the samples (Paper II-III) 

Sample Proximate analysisa Ultimate analysisa HHVb 

 VM fC Ash C H O N S 
 

Birch 89.4 10.4 0.2 48.62 6.34 44.90 0.09 < 0.05 19.80 

Spruce 86.3 13.4 0.2 50.10 6.36 43.52 0.07 < 0.05 20.45 

a % (m/m), dry basis.  b Higher heating value, MJ/kg, dry basis. 

The proximate analyses of the raw samples were conducted according to ASTM standards 

ASTM E871, ASTM E872 and ASTM D1102 for the moisture content, volatile matter and 

ash content, respectively. In addition, the ASTM 1762-84 standard methods, which are 
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applicable to charcoal powders, were applied to conduct the proximate analyses of the 

torrefied biomass. The fixed carbon content was calculated by difference to 100 % in both 

cases. A determination of the C/H/N/S contents by ultimate analysis was conducted by using 

an "EA 1108 CHNS-O" elemental analyzer by Carlo Erba Instruments. The oxygen content 

was calculated by difference to 100 % for all samples. The HHV was calculated based on the 

elemental fuel composition139.  

Before the torrefaction experiments in the macro-TGA (Paper II), the samples were 

carefully cut to create cubes with sides of either 10 or 40 mm, and the cubes were then dried 

for 24 hours at 105 °C. The samples were heated at a heating rate of 5 °C/min up to either 

225 or 275 °C. For the micro-TGA experiments in Paper III, the samples were cut into 

smaller pieces and ground in a cutting mill that was equipped with a 1-mm bottom sieve. The 

samples were sieved afterwards, and particles ranging from 63 to 125 µm were used.  

For the micro-TGA experiments in Paper IV, 10-mm cubes from both feedstocks that 

were torrefied in the macro-TGA were used (only the samples with a 30-min holdup time 

were not included). A fine grinding of the torrefied samples was performed in a cutting mill 

equipped with a 1 mm bottom sieve. The powdered samples were sieved afterwards, and 

particles ranging from 63-125 µm were used. Six samples were prepared for this study in all, 

with four torrefied samples and two raw fuels.  Table 3-2 shows the ultimate and proximate 

analyses of the samples. 

Table 3-2: Proximate and ultimate analyses of the samples (Paper IV) 

Sample Proximate analysisa         Ultimate analysisa                        HHVb  

 VM fC Ash C H O N S 
 

B -- 89.4 10.4 0.2 48.62 6.34 44.90 0.09 < 0.05 19.80 

B225 86.4 13.2 0.4 49.90 5.98 44.00 0.10 < 0.05 19.90 

B275 77.7 21.9 0.4 54.16 5.65 40.00 0.12 < 0.05 21.40 

S -- 86.3 13.4 0.2 50.10 6.36 43.52 0.07 < 0.05 20.45 

S225 84.0 15.8 0.2 50.97 6.15 42.76 0.07 < 0.05 20.62 

S275 75.7 24.2 0.2 55.33 5.73 38.81 0.09 < 0.05 22.05 

a % (m/m), dry basis.  b MJ/kg, dry basis 

The proximate and ultimate analyses data for the feedstocks, which is included in the 

gasification modeling study (Paper V) and was obtained from Wannapeera et al.52, is listed in 

Tables 3-3. Torrefied biomass was produced at 250 °C with 30 minutes of residence time.  
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Table 3-3: Proximate and ultimate analyses of the samples (Paper V)52 

Sample Proximate analysisa     Ultimate analysisa        HHVb 

 VM fC Ash C H O N 
 

Leucaena 86.1 13.1 0.8 50.1 7.4 41.8 0.7 20.3 

Torrefied 
Leucaena 

82.2 16.9 0.9 53.0 6.4 39.9 0.7 21.2 

  a % (m/m), dry basis.  b MJ/kg, dry basis 

3.2 Experimental set-up and procedures  

3.2.1 Micro-TGA 
The TGA experiments for the kinetic studies (Papers III and IV) were performed with a 

Q5000 IR analyzer from TA Instruments, which has a sensitivity of 0.1 µg. With its high 

precision and well-controlled experimental conditions, the TGA is a useful tool for studying 

devolatilization and combustion during the kinetic regime21. However, TGA can be employed 

only at relatively low heating rates because the true temperature of the samples is unknown at 

high heating rates.  

For the experiments performed in an inert environment (Paper III), high purity nitrogen 

was used as the purge gas with a gas flow of 100 mL/min. The initial sample mass was 

between 3 and 10 mg. The samples from both woods were analyzed with nine different 

heating programs, as shown in Figure 3-1. The linear T(t) experiments had heating rates of 

40, 20, 10 and 5 °C/min. The isothermal experiment with a 30 min residence time at 275 °C 

mimicked the T(t) of the actual torrefaction experiments used in Paper II. In the modulated 

experiments, sinus waves with 5 °C amplitudes and a 200 s wavelength were superposed on a 

slow, 2 °C/min linear T(t).  The waves served to increase the rather limited information 

content of the linear T(t) experiments.  In the “constant reaction rate” (CRR) experiments, the 

equipment regulated the sample heating so that the reaction rate would oscillate around a 

preset limit140. The CRR experiments were aimed at obtaining very low mass loss rates 

within the whole domain of the reaction. The highest mass loss rate in these experiments was 

found to be 0.8 µg/s. This value corresponds to 0.8×10-4 s-1 after normalization by the initial 

dry sample mass. The T(t) program for a CRR experiment clearly depends on the behavior of 

the given sample. Two stepwise temperature programs were employed, which also served to 

increase the amount of experimental information for the kinetic evaluation86, 97, 100, 141, 142.  



 

    
Figure 3-1:  The temperature programs used in the TGA experiments for Paper III. Note 
the T(t) needed for a nearly constant heating rate in the CRR experiments was determined by 
the instrument and differed for the two samples.  
 

For the reactivity study under an oxidative environment (Paper IV), 5 % v/v and 20 % v/v 

oxygen-nitrogen mixtures were used as purge gases with a gas flow of 100 mL/min. Sample 

masses of 0.5 mg or less were used to avoid self

heat. Each sample was analyzed with three different heating programs, as shown in Figure 3

2; (i) 10°C/min linear T(t); (ii) modulated T(t); and (iii) “constant reaction rate” (CRR) T(t).

The DTG peak maxima of the CRR experiments varied between 0.04 and 0.07 µg/s.  The T(t) 

program for a CRR experiment obviously depends on the beh

Figure 3-2:  The temperature programs used in the TGA experiments for Paper IV. Note that 
each of the twelve constant heating rate experiments has a different T(t); this figure sh
four of them.   
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3.2.2 Macro-TGA 
The biomass torrefaction experiments for Paper II were conducted in 

shown in Figure 3-3.  

Figure 3-3: The macro-TGA reactor used for torrefaction

This reactor was built by Höker KFT (Hungary) according to design specifications from 

SINTEF Energy Research. The biomass fuel samples were placed in a rectangular basket that 

was connected to the balance, and the sample basket was lowered into the reactor

heating. The sample basket was composed of several separated layers, and care was taken to 

provide a small gap between the cubes on each layer to provide uniform heat and mass 

transfer conditions for all of the cubes. The balance was connected to

cooled with nitrogen gas to prevent overheating. The sample weight was 200

depending on the density and size of the feedstock. A constant flow rate of 100 l/min of 

nitrogen was used to provide an inert atmosphere inside the reac

to either 225 or 275 °C at a heating rate of 5 °C/min. The torrefaction start time was 

measured from the point when the temperature first reached the target torrefaction 

temperature. The reactor was purged with nitrogen for at 
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depending on the density and size of the feedstock. A constant flow rate of 100 l/min of 

nitrogen was used to provide an inert atmosphere inside the reactor. The samples were heated 

to either 225 or 275 °C at a heating rate of 5 °C/min. The torrefaction start time was 

measured from the point when the temperature first reached the target torrefaction 

temperature. The reactor was purged with nitrogen for at least 1 h prior to the start of the 

The biomass torrefaction experiments for Paper II were conducted in the macro-TGA 

 

This reactor was built by Höker KFT (Hungary) according to design specifications from 

SINTEF Energy Research. The biomass fuel samples were placed in a rectangular basket that 

was connected to the balance, and the sample basket was lowered into the reactor prior to 

heating. The sample basket was composed of several separated layers, and care was taken to 

provide a small gap between the cubes on each layer to provide uniform heat and mass 

the reactor top and 

cooled with nitrogen gas to prevent overheating. The sample weight was 200–300 g, 

depending on the density and size of the feedstock. A constant flow rate of 100 l/min of 

tor. The samples were heated 

to either 225 or 275 °C at a heating rate of 5 °C/min. The torrefaction start time was 

measured from the point when the temperature first reached the target torrefaction 

least 1 h prior to the start of the 
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experiment. Before starting the torrefaction experiments, an online oxygen analyzer was used 

to ensure that the reactor was free of oxygen.  

The macro-TGA experiments were focused on studying important parameters such as the 

fuel type (soft- and hardwood), holdup time in the torrefaction zone (30 and 60 minutes), 

sample size (10 and 40 mm cubes) and torrefaction temperature (225 and 275 °C). The 

complete experimental matrix produced 16 different types of torrefied materials. All the 

reaction products were collected and weighed to determine an overall mass balance. The gas 

produced in the experiments was measured by FTIR (Fourier transform infrared 

spectroscopy) and micro-GC (gas chromatography). The outlet tube from the reactor was 

maintained at an elevated temperature of approximately 200 °C to prevent the condensation 

of the released volatiles.  

Grindability, particle size distribution and hydrophobicity assessments were performed 

for the torrefied biomass that was obtained from the experiments. The grindability assessment 

was divided into two stages, namely pre-grinding and fine-grinding. In the pre-grinding stage, 

the raw and torrefied samples were ground in a cutting mill without a bottom sieve. This 

stage produced smaller particles that facilitated the feeding step of the fine-grinding stage. 

The fine-grinding stage was performed by using the same cutting mill equipped with a 1 mm 

bottom sieve. A numerical wattmeter, a Paladin 256-TWKW from Cromptan Instruments, 

was employed to record the amount of electricity consumed during grinding at both stages. A 

computer with a data logger was connected to the wattmeter for data acquisition every 2 

seconds. The mill was operated by using the same parameters for all samples. The power 

consumption for an empty load was logged prior to every grinding step to determine the 

increase in energy consumption when the mill was under load. The specific energy 

consumption for grinding was determined by integrating the area under the power 

consumption curve (watts-seconds) over the total time required to grind a given sample. 

Given that a known quantity of samples was used in each experiment, the energy 

consumption is divided by the mass of the ground samples to obtain the final values per unit 

mass for comparison. The integrated values from both grinding stages were added together to 

calculate the total grinding requirement for a sample. 

The powdered samples produced after the milling step were sieved in a vibrating sieving 

machine (Fritsch Analysette 3 Pro) that contained a series of sieves with the following mesh 

sizes: 1 mm, 500 µm, 180 µm, 125 µm and 63 µm. The mass of each sample collected on the 

different sieves was measured and recorded as a percentage of the initial sample mass to 

evaluate the particle size distribution as a function of the studied torrefaction parameters.  
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The hydrophobic characteristics of all raw and torrefied samples were investigated by 

immersing the samples in distilled water for 2 hours in glass beakers without stirring56. The 

water was drained from the beakers, and the moisture content of the samples was measured as 

a change in the corresponding initial sample weight. 

3.3 Kinetic modeling approach 

3.3.1 Method of least squares and the characterization of the fit 

quality   
Because of the complex composition of biomass materials, the conventional linearization 

techniques for the non-isothermal kinetics are not suitable for evaluating the TGA 

experiments. Therefore, the TGA experiments on biomass materials are usually evaluated by 

the non-linear method of least squares, assuming more than one reaction21, 143, 144. Fortran 95 

and C++ programs were used for numerical calculations and for graphics handling, 

respectively141.   

The kinetic evaluation was based on the least squares evaluation of the -dm
obs

/dt curves, 

where mobs is the sample mass normalized by the initial dry sample mass. The method used 

for the -dm
obs

/dt determination does not introduce considerable systematic errors into the least 

squares kinetic evaluation of the experimental results98. The model was solved numerically 

along the empirical temperature-time functions. The minimization of the least squares sum 

was performed by direct search method141. These values were searched for the unknown 

model parameters that minimized the objective function (of). We looked for: 

min of = ∑ ∑ �	
�
� �
��������	
�
� �

���������
�

�����
�����

 !"#!$%��  (3-1) 

where the minimization was done by all unknown model variables. Here, Nexper is the number 

of experiments evaluated together; its value is 18 in Paper III and 6 or 36 in Paper IV. Nk 

denotes the number of ti time points on a given curve, and m is the sample mass normalized 

by the initial sample dry mass.  Dividing by ℎ%' counterbalances the differences of the highest 

magnitudes. Traditionally, hk is the highest observed value of the given experiment: 

hk = max 	()(� %
*+�

 (3-2) 

The normalization by the highest observed values in the least squares sum implicitly assumes 

that the relative precision is roughly the same for the different experiments.    

The resulting fit quality was characterized separately for each of the experiments that 

were evaluated together. The relative deviation (reldev, %) was used for this purpose. The 
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root mean square (rms) difference between the observed and calculated values is expressed as 

the percent of the peak maximum.  For experiment k, we find the following: 

reldev (%) = 100 ( ∑ �	
�
� �
��������	
�
� �

���������
�

�����
�����  )

0.5

 (3-3) 

The fit quality for a given group of experiments is characterized by the root mean square 

of the corresponding relative deviations. The relative deviation of the 18 experiments that 

were evaluated together can be expressed by equations 3-1–3-3 as  

reldev18 (%) = 100 ,-. (3-4) 

Clearly, a smaller reldev18 value indicates a better fit. 

Note on hk value for Paper IV: The peak maxima of the CRR experiments were scattered 

around a very low value of 1×10-4 s-1, and the peak maxima of the 10 °C/min experiments 

were approximately 30 times higher. Test calculations showed that it is not possible to 

assume approximately equal relative precision at high magnitude differences.  No 

information was available on the absolute and relative precision of the -dm/dt values in the 

CRR experiments; hence, an arbitrary hk=5×10-4 s-1 value was used for the CRR experiments, 

which is ca. 5 times higher than the peak maximum.  

3.3.2 Kinetic models for the inert decomposition of biomass  
Three pseudocomponents were assumed, and they signified three simultaneous parallel 

reactions during the decomposition process. Here, a pseudocomponent is the totality of the 

decomposing species that can be described by the same reaction kinetic parameters in the 

given model. A pseudocomponent may involve a large number of different reacting species. 

The first primarily describes the decomposition of the hemicellulose, the second corresponds 

to the cellulose decomposition, and the third would be responsible for the long, flat lignin tail 

that can be observed for nearly all biomasses. 

The distributed activation energy model (DAEM)   

According to this model, the sample is regarded as a sum of M pseudocomponents, where 

M is usually between 2 and 4. The reactivity differences between the species in a 

pseudocomponent are described by different activation energy values. On a molecular level, 

each species in pseudocomponent j is assumed to undergo first-order decay. The 

corresponding rate constant (k) is thought to depend on the temperature according to an 

Arrhenius expression. Given αj(t,E) as the solution of the corresponding first order kinetic 

equation at a given E and T(t) with conditions αj(0,E)=0 and αj(∞,E)=1, 
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dαj(t,E)/dt = Aj e
-E/RT [1-αj(t,E)] (3-5) 

The distribution of the species differing in E within a given pseudocomponent is 

approximated by a Gaussian function with a mean value E0,j and a width-parameter 

(variation) σj.  

1/ 2 1 2 2

0,
( ) (2 ) exp[ ( ) / 2 ]

j j j j
D E E Eπ σ σ− −

= − −   (3-6) 

From a computational point of view, the approximate solution of a DAEM can simply be 

calculated from a discrete set of αj(t,E) functions145. The normalized sample mass and its 

derivative are the linear combinations of αj(t) and dαj/dt, as follows: 

-dm/dt = ∑ /0120/1450��     and    m(t) = 1 – ∑ /02050�� �4� (3-7) 

where weight factor cj is equal to the amount of volatiles formed from a unit mass of 

pseudocomponent j. 

N-order reactions 

The complex decomposition of the biomass pseudocomponents can be approximated 

formally by n-order (power-law) kinetics, as well.  Manyà et al. demonstrated that third order 

kinetics provide a better description for the lignin pseudocomponent of the biomass than the 

simpler first order kinetics146. The decomposition of the pseudocomponents can be 

approximated by n-order reactions as follows: 

(67
(�

 = 80exp	�− >7
?@� (1-αj)

nj      (j=1, 2, 3) (3-8) 

Self-accelerating cellulose decomposition 

The self-accelerating reactions can typically be described by an equation of type 

(6�
(�

 = 8'exp	�− >�
?@� f(α2) (3-9) 

where f is a function capable of expressing self-acceleration. The mathematical unambiguity 

requires a normalization for f(α2) because f functions differing only in their constant 

multipliers are equivalent in equation 3-9 (parameter A2 can compensate any multipliers of f). 

For a normalization, we require that the maximum of f be 1.  f(α2) is approximated formally 

by 

f(α2) ≅ normfactor (1-α2)
n

2 (α2+z2) (3-10) 

where n2 and z2 are model parameters, and normfactor ensures that max f=1.  Parameters n2 

and z2 do not have separate physical meanings; together, they determine the shape of f, and, 

in this way, they determine the self-accelerating capabilities of the model.   
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3.3.3 Kinetic model for the oxidative decomposition of biomass  
Four primary reactions that partly overlap with one another are assumed during the 

oxidative decomposition of raw or torrefied biomass103 as follows:  

(i) the decomposition of the hemicellulose and other thermally labile parts of the 

sample that dominate the DTG curves between approximately 200 and 300 °C; 

(ii) the oxidative decomposition of the cellulose component, which produces a sharper 

peak with a maximum at approximately 335 °C; 

(iii) a flat section; given the high temperature end of the lignin decomposition, the slow 

carbonization and other reactions of the formed char, these reactions dominate the 

DTG curves between approximately 360 and 430 °C; and 

(iv) the char burn-off, which results in a peak approximately 460 °C. 

All of the masses in the treatment are normalized by the initial sample mass. The 

normalized amounts of the unreacted part of the sample, char and ash are denoted by mur, 

mchar and mash, respectively. As the reactions proceed, mur decreases from 1 to 0 because no 

unreacted biomass remains at the end. mchar is zero at the beginning of an experiment. It 

reaches a maximum as the char forms and converges to zero again as the char burns off. mcalc 

is the sum of the normalized masses of the solid components as follows: 

m
calc

(t) = mur(t) + mchar(t) + mash(t) (3-11a) 

()����
(� =	 ()BC(� +	()�E�C(� +	()��E(�  (3-11b) 

The unreacted part of the sample, or mur, is regarded as the sum of the cellulose 

component and the rest of the sample. The pyrolysis kinetics models are usually written for 

variables that run from 0 to 1; accordingly, a reacted fraction for cellulose, or αcell(t), and 

another reacted fraction, or αother(t), is used for the other biomass components. The 

corresponding boundary conditions are αcell(0)=0, αcell(∞)=1, αother(0)=0 and αother(∞)=1.  

mur(t) is the weighted sum of its two constituents with weight factors ccell and cother as follows:  

mur(t) = ccell [1-αcell(t)] + cother [1-αother(t)] (3-12a) 

− ()BC
(�  = ccell

 (6�F��
(�

 + cother
 (6��EFC

(�  (3-12b) 

At t=0, eq. 3-12a reduces to  

1 = ccell + cother (3-12c) 
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Sub model for reactions (i) and (iii) 

The oxidative decomposition of the non-cellulosic part of the sample is described by a 

distributed activation energy model97, 98, 103. This pseudocomponent includes the 

decomposition of the extractives, hemicelluloses, and lignin. There is a high number of 

different reactive species here. The differences in their reactivity are described by different 

activation energies. First order reactions are assumed for the parts of the sample that 

decompose with the various E values as follows: 

2

/( , )
e [1 ( , )]other E RT

othe
other

O otherrA
d t

EC
E

t
dt

ν −α
= − α  (3-13) 

The oxygen effect is described by a power function, or GH�I��EFC , in which GH� is the 

dimensionless v/v concentration of the oxygen and νother is a reaction order parameter. Note 

that a dimensionless GH� concentration is needed in the kinetic equations. Otherwise, the 

dimension of the pre-exponential factor should depend on the νother. 

 The activation energies in this pseudocomponent are assumed to have a distribution 

function. The usual Gaussian distribution function is employed, by using an E0 mean and σ 

width, as follows:   

1/2 1 2 2

0( ) (2 ) exp[ ( ) / 2 ]D E E Eπ σ σ− −= − −  (3-14) 

The overall reacted fraction of this pseudo-component, or αother, is obtained by integration 

as follows: 

0

( ) ( ) ( , )other othert D E t E dE

∞

α = α∫  (3-15) 

Sub model for reaction (ii) 

In the presence of oxygen, the cellulose decomposition was assumed to be a self-

accelerating reaction103 as described by an equation of type 

(6�F��
(�

 = 8JK��GH�L�F�� 	exp	�− >�F��
?@ � f(αcell) (3-16) 

where f is a function that is capable of expressing self-acceleration. Mathematical 

unambiguity requires a normalization for f(αcell) because f functions differing only in their 

constant multipliers are equivalent in equation 3-16 (parameter Acell can compensate any 

multipliers of f). For a normalization, we require that the maximum of f be 1.  f(αcell) is 

approximated formally by 
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f(αcell) ≅ normfactor (1-αcell)
ncell (αcell+z) (3-17) 

where ncell and z are model parameters and normfactor ensures that max f=1.  Parameters ncell 

and z do not have separate physical meanings; together, they determine the shape of f, and, in 

this way, they determine the self-accelerating capabilities of the model. A differentiation of 

equation 3-17 by αcell indicates that f(αcell) reaches its maximum at 

αcell = (1–ncell z)/(ncell +1) (3-18) 

When equation 3-18 gives a negative value, f(αcell) is monotonously decreasing in the 

[0,1] interval. In the present work, the maximum for f(αcell) was approximately 0.4–0.5.  The 

normfactor in equation 3-17 is the maximum of (1-αcell)
ncell (αcell+z) in the [0,1] interval; 

hence, its value can be immediately calculated by substituting the αcell value from equation 3-

18. 

Sub model for reaction (iv) 

The char burn-off was described by power-law kinetics in which the reaction rate is nchar 

order with respect to mchar and νchar order with respect to the oxygen concentration, or GH� . 

Accordingly, the char burn-off rate is approximated as 

char burn-off rate = 8J��MGH�L�E�C  exp	�− >�E�C
?@ � �J��M��E�C  (3-19) 

Both the cellulose and the non-cellulosic parts of the biomass form char. The 

corresponding char yields are denoted by ycell.char and yother_char, respectively, which are 

dimensionless quantities.  The char is formed from the biomass decomposition and consumed 

by the burn-off, hence 

()�E�C
(�  = ccell

 (6�F��
(�

 
ycell.char + cother

 (6��EFC
(�

 
yother_char

 – 8J��MGH�L�E�C  exp	�− >�E�C
?@ � �J��M��E�C  (3-20) 

The ash is formed by the char burn-off reaction with a yield of yash as follows: 

()��E
(�  = 8J��MGH�L�E�C  exp	�− >�E�C

?@ � �J��M��E�C 	N��� (3-21) 

Parameter yash expresses the ash yield of the char burn-off. In the present work, yash is 

determined from the total ash obtained by proximate analysis. This finding is used as a 

dimensionless ratio, or ��������, which is equal to a hundredth of the corresponding percent 

value in Table 3-2. The overall ash yield of the model is forced to be equal to �������� by 

equation 
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(ccell ycell.char + cother yother_char) yash = ��������   (3-22) 

In this way, yash can be eliminated from the model because it can be expressed as a 

function of ��������,  yother_char and ccell by equations 3-22 and 3-12c.  

The model outlined above has 16 unknown parameters for each sample, as follows: 

Acell, νcell, Ecell, z, ncell, ycell.char, and ccell (cellulose decomposition); Aother, νother, E0, σ, and 

yother_char (the decomposition of the non-cellulosic parts of the sample; here, cother=1-ccell from 

equation 3-12c); and Achar, νchar, Echar, and nchar (char burn-off). 

These unknown model parameters were determined by the least squares evaluation of the 

six experiments of a given sample. Eight evaluations were performed based on the number of 

assumed common parameters for the samples.  

3.4 Simulation of biomass gasification  
The Gibbs free energy minimization method for the C–H–O–N atom blend of the biomass 

fuel and oxidant mixture can be applied to predict the thermodynamic equilibrium 

composition of the major product gas components that include H2, CO, CH4, CO2, H2O, and 

N2, in addition to char147-150. A thermodynamic equilibrium model for a biomass gasification 

system was developed by using the Gibbs minimizing approach in Aspen Plus software as 

shown in Figure 3-4. Mass and energy balance data were collected from Aspen Plus, and 

these data were used to calculate the cold gas energy and exergy efficiencies of the process.   

3.4.1 Aspen Plus model 
In Aspen Plus, streams represent mass or energy flows. Mass streams are divided by 

Aspen Plus into three categories, that is, mixed, solid, and non-conventional (biomass). 

Mixed streams contain mixtures of components, which can be in gaseous, liquid and solid 

phases. The solid phase component in this simulation is solid carbon (C). Thermodynamic 

properties are defined in the Aspen Plus libraries for chemical components. Non-conventional 

components (e.g., biomass) are defined in Aspen Plus by supplying the standard enthalpy of 

formation and the elementary composition (ultimate and proximate analyses) of the 

components151.  

Sub-systems 

The following sub-systems were included in the modeled gasification process:   

a) The Aspen Plus heat exchanger, or HEATER, was used to simulate biomass pre-heating 

to a pyrolyzer temperature of 500 °C 
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b) The Aspen Plus yield reactor, or RYIELD, was used to simulate the decomposition of 

biomass into individual elemental components at 500 °C. Actual experimental yield 

values for volatiles and char, as available in literature52, were included as inputs to this 

reactor   

c) The Aspen Plus Gibbs reactor, or RGIBBS, was used for the partial combustion of 

volatiles and char with the addition of air and steam. RGIBBS models chemical 

equilibrium by minimizing the Gibbs free energy, which is subject to elemental balance 

constraints. To closely simulate real conditions in a gasifier, an isothermal approach was 

used in this study   

d) The Aspen Plus heat exchanger, or HEATER, was used to simulate syngas cooling from 

the RGIBBS temperature to the ambient temperature   

 

 

Figure 3-4: The gasification process as modeled in Aspen Plus in this study   

Key process variables    

The optimal gasification operation reportedly involves operating a gasifier at or below the 

carbon boundary point, which indicates that all carbon is present in the gaseous phase as 

carbon monoxide, carbon dioxide or methane137. This theory has been applied to this study as 

well, and all 27 tested cases contain carbon in its gaseous form. This perspective is the basis 

for selecting the ranges for the three process variables listed in Table 3-4. The ER is defined 

as the amount of air added relative to the stoichiometric air requirement for combustion, and 

the SBR is defined as the ratio of steam to biomass molar flow rates. Steam is added to the 

system to improve the hydrogen production and thus increase the syngas quality149. Each of 
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the 27 cases will be referred to by using these three process variables, that is, SBR-GB-ER, in 

this study. 

Table 3-4: The tested ranges for process variables that resulted in 27 cases 

Process variable Low Mid High 

SBR 0.2 0.3 0.4 

Gibbs (GB) Temperature (°C) 900 1000 1100 

ER 0.1 0.2 0.3 

Assumptions for the Aspen Plus model 

a) All gases behave ideally, the process occurs at steady state, and the residence time was 

not considered. In addition, all of the biomass feedstocks were completely dry 

b) The biomass mass flow rate was calculated for a 10 MW fuel input plant, and 

atmospheric pressure was assumed for all equipment 

c) Air was introduced to RGIBBS at ambient temperature and pressure, and saturated steam 

was introduced to RGIBBS at 179.9 °C and 10 bar pressure 

d) The process was assumed to be autothermal, and the pressure drop and heat losses from 

the equipment and pipelines were not included  

e) Ambient condition data for each stream was collected from Aspen Plus to obtain 

consistent values for the reference conditions in the physical exergy calculations 

f) No physical exergy is associated with the biomass because they were assumed to be at 

ambient temperature and pressure, and kinetic and potential exergies were ignored in the 

analysis  

g) Minor products such as the sulfur species (e.g., S, COS and H2S) and nitrogen species 

(except N2) were not included in the chemical exergy of the streams because they are 

present, relatively speaking, in very negligible amounts. Additionally, no work exergy 

was included in the analysis  

h) Tar was considered to be a mixture of 70 % secondary (phenol), 14 % tertiary-alkyl 

(xylene) and 16 % tertiary-PNA (benzene) components on a mass basis152, 153. It was 

assumed that the tertiary-PNA component is not cracked at all, and the tertiary-alkyl 

component is 80 % cracked under the temperature conditions used in this study153. In 

addition, untreated biomass is assumed to contain 10 % aqueous phase acid (acetic acid), 

which remains un-reacted in RGIBBS154. For the torrefied biomass, these acids were 

assumed to be removed during torrefaction. The char composition of the pyrolyzed 

biomass (from both untreated and torrefied biomass) was calculated from the elemental 

C, H and O balance based on the assumed tar composition  
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3.4.2 Methods for cold gas energy and exergy efficiencies 
The cold gas efficiency of gasification in an allothermal plant is defined as follows147: 

 
,η =

+ +

coldgas

energy coldgas

biomass air steam

LHV

LHV Q Q
 (3-23) 

where LHVcoldgas is the heating value of the outgoing (product) heat stream; and LHVbiomass, 

Qsteam and Qair are the heating value and heat contents of incoming biomass, steam and air 

streams, respectively. Exergy is the maximum work that can be produced when a heat or 

material stream is brought to equilibrium relative to a reference environment, which consists 

of reference components and is characterized by an absence of pressure and temperature 

gradients. The exergy associated with a material stream is expressed as the sum of its 

physical and chemical exergies. The total exergy of a material stream is given by the 

following147, 155: 

 ' ( )ε ε= +
ph ch

E N   (3-24) 

where N is the flow rate. The molar physical exergy of a material stream is expressed in 

relation to the reference environmental conditions as follows147, 155: 

 0 0 0( ) ( )ph h h T s sε = − − −  (3-25) 

The mole flows, mole fractions, enthalpy and entropy of each material stream were taken 

from the Aspen Plus flowsheet results. The standard environmental conditions in Aspen Plus 

(T0 = 298.15 K, p0 = 1.013 bar) were adopted as reference conditions in this study. The molar 

chemical exergy of a gaseous material mixture is given by the following147, 155: 

 , 0, 0 lnch gas i i i i

i i

x RT x xε ε= +∑ ∑  (3-26) 

where xi is the mole fraction and 
0,ε

i
is the standard molar chemical exergy of each 

component i, in Jmol-1. The latter is available in the literature for the reference atmospheric 

composition156. 

The chemical exergy of solid fuels (raw biomass and torrefied biomass) was calculated by 

using the ratio of the chemical exergy to the lower heating value of the dry matter as shown 

in equation 3-27157. This ratio is a function of the elemental composition of the solid fuel.  

 

( )

dm
dry

LHV dm
h

ε
ϕ =  

(3-27) 

For dry solid fuels with a certain oxygen content, the ratio of chemical exergy to the 

lower heating value for the dry matter is expressed as follows157: 
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(3-28) 

Here, h/c is the ratio of hydrogen mass to carbon mass in the fuel, and n/c and o/c correspond 

to nitrogen and oxygen. This expression is valid for o/c from 0.667 to 2.67, and it is expected 

to be accurate within +- 1 %. By using Eqs. (3-24)–(3-28), the exergy was calculated for all 

material streams in the flow sheet. The exergetic efficiency of gasification in an autothermal 

plant is defined as follows147: 

 
,η =

+ +

coldgas

exergy coldgas

biomass air steam

E

E E E
 (3-29) 

where Ecoldgas is the outgoing (product) exergy stream, and Ebiomass, Esteam and Eair are the 

incoming biomass, steam and air exergies.    
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4 Summary and Conclusions of Papers 

Starting with a detailed literature review on the torrefaction process, the torrefaction of 

Norwegian birch and spruce was studied in a macro-TGA set-up. This review was followed 

by detailed kinetic evaluations of the torrefaction of these two feedstocks and the behavior of 

torrefied biomass under oxidative conditions by using weight loss data obtained from micro-

TGA experiments. Lastly, a two-stage gasification process was simulated in Aspen Plus to 

compare the syngas compositions, cold gas energy and exergy efficiencies from raw and 

torrefied biomass materials. A summary of all of these studies together with the primary 

conclusions are included in this chapter.  

4.1 Paper I: Biomass torrefaction – a review 
Several studies on biomass torrefaction have been documented for heat and power 

applications. Substantial amounts of data on the technique are available, which had to be 

reviewed and analyzed for further actions in the area. This analysis was the primary objective 

of this review paper. First, the review provided an introduction to the biomass torrefaction 

process. This introduction was followed by a critical analysis of the experimental methods 

used in the laboratory to perform torrefaction under various process conditions. Later, the 

tested biomass materials were discussed in terms of the product yields and the evaluated 

product properties. An overview of the kinetic modeling studies on the topic was also 

included. A review of the literature suggested that torrefaction is a promising technique to 

improve the performance of biomass for energy utilization. During torrefaction, the primary 

thermal decomposition reactions involve the hemicellulose polymers, resulting in improved 

fuel properties as exhibited by the torrefied samples. Considerable differences were found in 

the behavior of biomass materials during torrefaction. Mass and energy yields for torrefied 

biomass are strongly influenced by the raw biomass composition and the operating conditions 

such as the temperature and residence time. Torrefaction improves the properties of the 

biomass fuels; it reduces the moisture content, increases the energy density and the heating 

value per unit mass, changes the hygroscopic behavior of the raw biomass into a hydrophobic 

behavior, and enhances grindability. However, despite a number of impressive studies on the 

topic, many aspects were not investigated, especially the torrefaction behavior of Norwegian 

biomass and the behavior of torrefied biomass in the thermo-chemical processes. This gap 

formed the basis for the studies conducted in this thesis, Papers II-V.  



50 
 

4.2 Paper II: Torrefaction of Norwegian birch and spruce, 

an experimental study using macro-TGA 
The unique approach of a macro-TGA (thermogravimetric analysis) was used to evaluate 

the torrefaction behavior of Norwegian birch and spruce. Data obtained from the macro-TGA 

is an excellent indicator of the relations between the weight loss, process temperature and 

holdup time for an industrial-scale torrefaction process. Birch and spruce were selected as 

feedstock because they are typical Norwegian wood species, and because they present an 

opportunity to compare hardwood (birch) and softwood (spruce) behavior during torrefaction 

and the qualities of their torrefied versions. Torrefaction experiments were performed in a 

macro-TGA reactor with provisions for continuous measurements of the biomass weight loss 

rate and volatiles composition through micro-GC (gas chromatography) and FTIR (Fourier 

transform infrared spectroscopy). The process temperature (225 and 275 °C), holdup time (30 

and 60 minutes) and sample size (10 and 40 mm cubes) were included as variations in the 

experimental matrix. Fuel characterizations, DTG (derivative thermogravimetric) curves, 

product yields, hydrophobicity tests, grinding energies and particle size distributions were 

included as part of study assessment methods. The raw fuels were used as a reference for the 

comparisons. The raw and torrefied samples were characterized by using proximate and 

ultimate analyses. The primary conclusions of this work were as follows: 

(1) Compared with the raw samples, the composition of the torrefied samples was closer 

to that of coal, with a higher carbon content and a lower volatile matter content  

(2) The birch was found to be more reactive than the spruce, which resulted in a larger 

percentage increase in its carbon content. The birch exhibited a higher devolatilization 

rate and a lower solid yield than the spruce at all the tested conditions. These 

differences may be attributed to the composition of the hemicellulose fractions in 

these wood types, and it has been reported that the amount of the most reactive 

hemicellulose component (xylan) is present in lower quantities in softwoods than in 

hardwoods45  

(3) Of all of the process parameters, the torrefaction temperature had the strongest effect 

on the biomass composition, devolatilization rate and solid yield. At 275 °C, the solid 

yields decreased to 63 % and 75 % for the torrefied birch and spruce, respectively. 

The proximate and ultimate analyses of the feedstocks showed that the increases in 

the torrefaction temperature and holdup time result in a higher carbon content, lower 

hydrogen content and lower oxygen content in the samples. The sample cube size also 
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affected the solid yield. Higher solid yields were obtained for the larger cubes. 

However, the differences were not very significant, and they were primarily 

associated with the size-related limitations in the heat and mass transfer during 

torrefaction 

(4) The hydrophobicity of the torrefied samples was much higher than that of the raw 

samples. The torrefied samples absorbed approximately 1/3 of the moisture compared 

with the raw fuels. The percentage decrease in moisture absorbance was similar for 

both feedstocks. The larger particles were found to be more resistant to moisture 

absorbance. The amount of water uptake was lower for the 40 mm cubes than for the 

10 mm cubes for both feedstocks. However, most of the benefits for this property 

were achieved after torrefaction at 225 °C with 30 minutes of holdup time, and the 

improvements were limited when further increasing the temperature or holdup time  

(5) Overall, the specific energy consumption for grinding was significantly reduced by 

torrefaction for both feedstocks. The reduction was higher for the birch than for the 

spruce, which is likely because of the compositional differences between the birch 

and spruce. A 40-88 % decrease in the total grinding energy was observed for the 

torrefied samples of both feedstocks. Among all of the tested process parameters, an 

increase in the temperature had the largest effect on the grinding energy. The 

weakening of the biomass cell wall because of the decomposition of hemicellulose 

along with the depolymerization of cellulose and thermal softening of lignin is the 

probable reason for its improved grindability after torrefaction41    

(6) To evaluate the actual effect of torrefaction on the grindability of these two 

feedstocks, both the grinding energy and particle size distribution should be taken into 

account. Torrefaction considerably increased the percentage of fine particles (<180 

µm) in the particle size distribution after grinding. The torrefied birch samples 

exhibited up to a 120 % increase in fine particles compared with the raw fuel. For the 

spruce, an increase of 85 % was obtained. However, it was very interesting to note 

that these differences in the particle size distributions of the two feedstocks 

diminished when the torrefaction temperature was increased to 275 °C. A uniform and 

similar particle size distribution was obtained for the samples from both feedstocks 

treated at 275 °C   
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4.3 Paper III: Thermal decomposition kinetics of woods 

with an emphasis on torrefaction  
The pyrolysis kinetics of Norwegian spruce and birch wood was studied to obtain 

information on the kinetics of torrefaction.  Thermogravimetry (TGA) was employed with 

nine different heating programs, including linear, stepwise, modulated and constant reaction 

rate (CRR) experiments. The 18 experiments on the two feedstocks were evaluated 

simultaneously by the method of least squares. Three pseudocomponents were assumed, and 

several model variants were tested. The best performance was achieved when the cellulose 

decomposition was described by a submodel that can mimic self-acceleration tendencies. The 

decomposition of the non-cellulosic parts of the biomass was described by two reactions 

when assuming a distributed activation energy model in this case. The employed model 

contains 13 unknown parameters for a given biomass. In another approach, all three 

pseudocomponents were described by n-order reactions. Both approaches resulted in nearly 

the same fit quality, but the physical meaning of the model based on three n-order reactions 

was found to be problematic. In addition, part of the kinetic parameters could be assumed to 

be common to both woods without a considerable worsening of the fit quality. The tested 

model variants and evaluations are listed in Table 4-1.   

Table 4-1: Fit qualitiesa and the number of unknown parametersb for four model variants 
assuming various groups of common model parametersc 
Evaluations Common 

parameters 
Model variant 

  I 
2 DAEMs + 

1st order 
cellulose 

II 
2 DAEMs + 

n-order 
cellulose 

III 
2 DAEMs + 
accelerating 

cellulose 

IV 
3 n-order 
reactions 

1 none 4.78  (22) 2.31  (24) 2.06  (26) 2.19  (24) 

2 E3 4.78  (21) 2.35  (23) 2.10  (25) 2.21  (23) 

3 E3, σ3 or n3 4.78  (20) 2.37  (22) 2.14  (24) 2.21  (22) 

4 E3, σ3 or n3,  

E2, n2, z2 

4.80  (19) 2.46  (20) 2.25  (21) 2.32  (20) 

5 all except the A & 
c parameters 

4.83  (17) 2.61  (18) 2.37  (19) 2.33  (18) 

a 
reldev18 (%) values are listed (a smaller value indicates a better fit). b The total number of 

determined parameters are listed in parentheses. cRefer to the Nomenclature for the meanings 
of the symbols.  
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The results were checked by prediction tests. In these tests 10, 20 and 40 °C/min 

experiments were simulated by the model parameters obtained from the evaluation of 10 

experiments with lower reaction rates. Table 4-2 was calculated with preferred model variant 

III and Evaluation 3, which may provide guidance about the extent of devolatilization at 

various temperature-residence time values during wood torrefaction. 

Table 4-2: Simulated characteristics at various isothermal temperaturesa,b 

 0 min 10 min 30 min 60 min  120 min 

 Birch Spruce Birch Spruce Birch Spruce Birch Spruce Birch Spruce 

200°C           

1-m(t) 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.02 0.05 0.03 

c2α2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

α2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

225°C           

1-m(t) 0.01 0.01 0.03 0.03 0.07 0.04 0.10 0.06 0.14 0.09 

c2α2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

α2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

250°C           

1-m(t) 0.03 0.02 0.10 0.07 0.17 0.11 0.22 0.15 0.27 0.20 

c2α2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 

α2(t) 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.03 

275°C           

1-m(t) 0.08 0.06 0.22 0.16 0.30 0.24 0.35 0.30 0.42 0.38 

c2α2(t) 0 0.00 0.01 0.01 0.02 0.02 0.04 0.04 0.08 0.07 

α2(t) 0 0.00 0.02 0.02 0.04 0.05 0.08 0.10 0.17 0.20 

300°C           

1-m(t) 0.18 0.14 0.35 0.30 0.45 0.42 0.56 0.53 0.71 0.67 

c2α2(t) 0.00 0.00 0.04 0.03 0.10 0.09 0.20 0.17 0.34 0.28 

α2(t) 0.01 0.01 0.08 0.10 0.23 0.26 0.44 0.49 0.76 0.83 

a Isothermal torrefaction was assumed after 10°C/min heating until reaching the desired 
temperature.  The time values in the header line belong to the isothermal section.  bThree 
predicted torrefaction characteristics were tabulated at each temperature, that is, the normalized 

mass loss [1-m(t)], the normalized mass loss from cellulose decomposition [c2α2(t)], and the 

reacted fraction of the cellulose [α2(t)]. 
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4.4 Paper IV: Kinetic behavior of torrefied biomass in an 

oxidative environment 
The combustion of four torrefied wood samples and their feedstocks (a deciduous and an 

evergreen species) was studied in slow heating programs, under well-defined conditions. 

Particularly low sample masses were employed to avoid the self-heating of the samples from 

the considerable reaction heat of the combustion. Six TGA experiments were performed for 

each sample with three different temperature programs in 5 and 20 % O2, respectively. 

Highly different temperature programs were selected to increase the information content 

available for the modeling, namely linear, modulated and constant-reaction rate (CRR) 

temperature programs. The ratio of the highest and lowest peak maxima was approximately 

50 in the set of experiments used for the evaluation. In this way, the obtained models 

described the experiments over a wide range of experimental conditions. A recent 

combustion model consisting of two devolatilization reactions and a successive char burn-off 

reaction was employed with a minor modification103. The cellulose decomposition in the 

presence of oxygen was described by a model that had two adjustable parameters to mimic 

self-acceleration tendencies. The decomposition of the non-cellulosic parts of the biomass 

was described by a distributed activation model. The char burn-off was approximated by 

power-law (n-order) kinetics. Each of these reactions had its own dependence on the oxygen 

concentration that was also expressed by power-law kinetics.     

(1) The employed model contains 15 unknown parameters for a given biomass. The 

relatively wide range of experiments made the determination of so many parameters 

possible by the method of least squares. If all the parameters are assumed to depend 

on the sample type, then the 6 samples together have 6×15=90 unknown 

parameters. The total number of unknown parameters for the six samples is denoted 

by Nparam. There were 36 TGA experiments for the determination of the Nparam 

unknown parameters. The torrefaction has some impact on the parameters, 

especially on the ones describing the devolatilization of the hemicellulose and other 

thermally labile parts of a biomass sample. These parts more or less decompose 

during the torrefaction, as indicated by the corresponding ccell and cother=1- ccell 

parameters. The cellulose reactivity was also affected at the highest torrefaction 

temperature of the study, which was 275 °C  

(2) Part of the kinetic parameters could be assumed to be common to the six samples 

without a substantial worsening of the fit quality. This approach increased the 
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average experimental information for an unknown parameter and revealed the 

similarities in the behavior of the different samples. This finding helps to eliminate 

the usual ill-defined (compensation effect) problems of the non-isothermal kinetics.  

The compensation effects between A and E or A, E and n are well-known in the 

literature of the non-isothermal kinetics. Given that more and more parameters are 

assumed to be common during the evaluation, the objective function of the method 

of least squares (of in eq. 3-1) yields higher and higher values (i.e., the fit worsens); 

however, the condition of the parameter determination improves97, 141. One should 

find a reasonable compromise between the fit quality and the reliability of the 

parameter values.  This consideration was employed in the present work, as well, as 

illustrated by Table 4-3. The following kinetic parameters could be assumed to be 

identical for the six samples with only a slight worsening of the fit quality; the 

activation energies, the mean and the width of the activation energy distribution in 

the DAEM part of the model and the dependence of the reactions on the oxygen 

concentration are given in evaluation 4 of Table 4-3. 

Table 4-3: Evaluations with various groups of common model parametersa 

Evalu- 

ation 

Common 

parameters 

Nparam OPQRQS
OTUPTR  100,VW 

1 none 6×15 2.5 2.30 

2 Ecell, E0, Echar  75 2.1 2.40 

3 Ecell, E0, Echar, σ 70 1.9 2.42 

4 Ecell, E0, Echar, σ, 

νcell, νother, νchar 

55 1.5 2.46 

5 Ecell, E0, Echar, σ, 
z, ncell, nchar 

55 1.5 2.64 

6 Ecell, E0, Echar, σ, 

Acell, Aother, Achar 

55 1.5 2.71 

7 Ecell, E0, Echar, σ, 

yother_char 

65 1.8 3.11 

8 Ecell, E0, Echar, σ, 

νcell, νother, νchar, 
z, ncell, nchar 

40 1.1 2.68 

a See the Nomenclature for the meaning of the symbols in the Table. 
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4.5 Paper V: A simulation study on the torrefied biomass 

gasification 
Biomass gasification was simulated by using Aspen Plus with a two-stage gasification model 

based on a Gibbs free energy minimization approach for comparing untreated and torrefied 

biomasses as feedstocks. The model accuracy was improved by including tar, actual 

experimental decomposition yields and the compositions of the chars produced during 

pyrolysis in the evaluations. The model outcomes were validated by using a C-H-O ternary 

diagram and by comparisons with results from other similar studies. Three process 

parameters, namely, the steam-to-biomass ratio (SBR), Gibbs reactor temperature (GB 

Temperature) and equivalence ratio (ER), were varied. The ER is defined as the amount of air 

added relative to the stoichiometric air requirement for combustion, and the SBR is defined 

as the ratio of steam to biomass molar flow rates. Twenty-seven cases were selected with all 

having carbon in the gaseous form for the final syngas product. The syngas composition was 

found to vary quite a bit based on the process parameters, and the inlet conditions should be 

selected based on the end requirements for the syngas. The overall efficiencies of an 

integrated torrefaction-gasification process were also provided by including the mass yield in 

the torrefaction process. The results obtained from this study can be summarized as follows:  

1. Of the three process parameters, the ER had the most significant effect on the syngas 

composition and energy and exergy efficiencies. Table 4-4 lists the trends for the 

syngas composition and efficiencies based on an increase in any one of the process 

variables.  

Table 4-4: Trends for syngas composition (mole fractions) and efficiencies  

 Increase in 

SBR 

Increase in GB 

Temperature 

Increase in ER Torrefied wood 

(TW) vs Wood (W) 

H2 
Slightly 

increases 
Slightly 

decreases 
Decreases TW>W 

CO Decreases Slightly increases Decreases TW>W 

CO2 
Slightly 

Increases 
Slightly 

decreases 
Increases W>TW 

N2 
Slightly 

decreases 
Negligible effect Increases W>TW 

Energy 
Efficiency 

Slightly 
decreases 

Slightly 
decreases 

Decreases TW>W 

Exergy 
Efficiency 

Slightly 
decreases 

Slightly 
decreases 

Decreases TW>W 

 

2. Maximum energy and exergy efficiencies were achieved by operating the gasifier at 

or close to the carbon deposition boundary point at that temperature 
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3. The torrefied biomass gave higher H2 and CO contents and higher cold gas energy 

and exergy efficiencies than untreated biomass. Overall, the mole fractions of H2, CO, 

CO2 and N2 were between 0.23-0.40, 0.22-0.42, 0.01-0.09 and 0.14-0.36 for torrefied 

wood and 0.21-0.40, 0.17-0.34, 0.03-0.09 and 0.15-0.37 for untreated wood, 

respectively. Similarly, the cold gas energy and exergy efficiencies were between 

76.1-97.9 % and 68.3-85.8 % for torrefied wood and 67.9-91.0 % and 60.7-79.4 % for 

untreated wood, respectively 

4. The overall efficiencies of an integrated torrefaction-gasification process depend on 

the mass yields of the torrefaction process. Higher mass yields in the torrefaction 

process will result in improved overall efficiencies for the integrated process. The 

torrefaction mass yield of 88 % in the present study resulted in better overall energy 

and exergy efficiencies than untreated biomass. The energy and exergy efficiencies 

for the torrefaction process itself were 93.3 % and 92.6 %, respectively. The mass 

yields in a torrefaction process are highly dependent on the choice of the reactor, heat 

and mass transfer profiles, process control and the production scale 

5. The simulation results from this study correlated well with the simulation and 

experimental results from the Paviet et al.158 study. Based on the C-H-O ternary 

diagram analysis, the present study fits very well with the underlying gasification 

theory 

6. Biomass torrefaction did seem to have a positive effect on biomass gasification 

because of the improved CO and H2 contents. This effect was primarily related to the 

increased carbon content of torrefied biomass from the devolatilization, leading to 

relatively higher oxygen loss during torrefaction. This finding was evident from the 

increased chemical exergy of torrefied biomass as well, and this higher chemical 

exergy was used to improve the syngas quality                

  



58 
 

5 Recommendations for Further Work 

The following are some of the potential research areas that can be pursued to improve our 

understanding of the torrefaction process and its role in improving the biomass fuel 

properties: 

• Evaluate torrefied biomass yields and properties for the biomass materials that are 

potential fuels for a particular region. The results obtained from this research work 

form the basis of a torrefaction feasibility study in Norway 

• The effects of various torrefaction mediums (inert and non-inert) on the product yields 

and properties can be studied 

• Perform lab and pilot scale studies for understanding torrefied biomass reactivity in 

combustion and gasification applications by using various biomass feedstocks  

• Study the alkali and heavy metal release from the combustion and gasification of 

torrefied biomass 

• Investigate the intrinsic and apparent kinetics of torrefied biomass in different 

gasification conditions 

• The pelletization of torrefied biomass should be evaluated for additional biomass 

materials 

• Combine the heat and mass transfer limitations with the intrinsic torrefaction kinetics 

data obtained in Paper III for a better simulation of larger industrial scale reactors 

• Perform lab- or pilot-scale experiments for the pyrolysis of torrefied biomass that is 

obtained from Norwegian woods (birch and spruce) and evaluate the overall 

gasification energy and exergy efficiencies of these feedstocks 

• Integrate the torrefaction process model (the drying and torrefaction reactor with 

energy inputs) with the gasification model presented in Paper V, and evaluate the 

overall energy and exergy efficiencies  

• Reactors used at a laboratory scale may not provide a good simulation for pilot- or 

industry-scale reactors. Therefore, the overall efficiencies of an integrated 

torrefaction-gasification industrial process should be evaluated for a specific 

torrefaction reactor type 
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Abstract: Torrefaction is a mild-pyrolysis (200-300 

o
C) process that can be employed as a pre-

treatment to improve fuel properties of biomass materials.  The treatment can result in not only 
increased energy density, but also enhanced grindability, and better storage and transport 
characteristics for biomass fuels. Due to these promising results, torrefaction has attracted increasing 
research interests in the recent years. Several studies on torrefaction of biomass have been 
documented for heat and power applications. Substantial amounts of data on the technique are 
available, which need to be reviewed and analyzed for further actions in the area. This is the primary 
objective of the present study. Firstly, this review paper provides an introduction to the biomass 
torrefaction process. This is followed by a critical analysis of the experimental methods used in 
laboratory to carry out torrefaction under various process conditions. Later, the tested biomass 
materials are discussed in terms of the product yields and the evaluated product properties. An 
overview of the kinetic modeling studies on the topic is also included. Finally, the recommendations for 
future research work are provided. Reviewing the literature suggests that torrefaction is a promising 
technique to improve the performance of biomass for energy utilization. However, despite a number of 
impressive studies on the topic, a lot of information still needs to be recognized for improving the 
viability of the process. 
Keywords: Biomass torrefaction; Mild pyrolysis; Biomass pre-treatment 
 
1. Introduction   
Wider use of biomass can extend the lifetime of our fossil fuels resources. However, problems such as 
low bulk density, high moisture content, low grindability and relatively low calorific value, make 
biomass a challenging fuel to use and hinders its widespread use. Researchers are looking into 
solutions to overcome these drawbacks and thus, improve the properties of biomass as a fuel. 
Torrefaction is one of these solutions and is a mild pyrolysis of biomass with typical conditions of 200-
300 

o
C, near atmospheric pressure, absence of oxygen and relatively low particle heating rates (< 50 

o
C/min) [4, 10, 20, 23, 25] . The biomass is partly decomposed and yields a uniform solid product, 

condensable liquid and non-condensable gases [15, 18, 24]. Main thermal decomposition reactions 
during torrefaction occur with the xylan-containing hemicelluloses polymers, since these are the most 
reactive polymeric structures of biomass [6, 13]. The decomposition of hemicelluloses in the 
torrefaction process changes the orientation of the cellulose microfibrils in the lignin matrix, thereby 
improving the properties of biomass such as grindability, deterioration and fluidization characteristics 
[2]. Because of these advantages and the high level of viability, the technique has attracted increasing 
interests during the last decades. A number of studies have been implemented to investigate the role 
played by torrefaction in improving the properties of biomass materials. However, the information is 
quite scattered and covers a broad range of topics related to torrefaction. A critical review is required 
to avoid duplication of research efforts and to direct them in most important areas required to increase 
the viability of the process. This is the main objective of this present study. Available information on 
torrefaction is thoroughly reviewed and recommendations for future work are summarized in this 
paper. Experimental methods used for carrying out torrefaction are presented in detail along with the 
information on tested biomass materials and kinetic modeling studies. However, this study only covers 
the dry torrefaction process and a review of the wet torrefaction process is not part of the scope. 
    
2. Torrefaction Experimental Methods    
Studies reported in the literature used two basic experimental approaches to analyze the torrefaction 
process, (i) thermogravimetric analysis in which biomass weight loss is monitored over the duration of 
the test and (ii) small-scale reactor methods in which special bench-scale and pilot-scale reactors are 
designed to investigate torrefaction. Thermogravimetric methods were used to study the effects of 
operating parameters on the torrefaction products and to obtain data for modeling kinetics of 
torrefaction. Reactor investigations were used to study and simulate torrefaction in conditions which 
are closer to the actual industrial environment. Properties of the torrefied products obtained from both 
these methods were determined by using various analytical techniques.   
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2.1 Thermogravimetric Studies 
Three studies performed thermogravimetric analyses (TGA) to investigate biomass torrefaction. In a 
recent study by Chen and Kuo [26], biomass materials were first dried in an oven at 60 

o
C for 24 hrs. 

After drying, the materials were grinded and sieved and then kept in a desiccator until the TGA was 
performed. The temperature during each run was detected and recorded at a frequency of 2 Hz. From 
the recorded distribution of the weight loss, TGA and derivative thermogravimetric analysis (DTG) was 
obtained that was used to characterize the biomass components behavior during torrefaction. A 
similar TGA experimental design was used by Bridgeman et al. [7]. In addition to using the TGA, a 
Stanton Redcroft simultaneous Analyser STA-780 Series was also integrated in the set-up to 
simultaneously analyze the volatile products. Instead of drying the biomass separately in an oven 
before TGA, the temperature program included a 5 min isothermal period at 105 

o
C to remove the 

moisture after the dynamic heating period. After this drying period, a second dynamic heating period 
was included to heat the sample up to torrefaction temperature. In another TGA study, Prins et al. [14] 
used the weight loss graphs obtained from the TGA with auto sampler to determine the reaction 
kinetics of torrefaction. In the temperature program, drying of the biomass samples was achieved only 
during dynamic heating stage with varying heating rates, which is followed by an isothermal period at 
torrefaction temperature. This study used the weight loss graphs of the dry biomass to determine the 
torrefaction reaction kinetics.   

Thermogravimetric equipment used by these studies to study torrefaction was similar in design and 
capability as listed in table 1. However, biomass materials, quantities, particle sizes and the 
temperature program were different for the conducted experiments. All the TGA systems described 
above allowed independent temperature control of the biomass materials and the weight loss was 
constantly measured.  

Table 1: Comparisons of torrefaction TGA studies 

 

2.2 Reactor Studies 
Many studies designed special small-scale (bench and pilot scale) reactors to carry out torrefaction 
experiments. Deng et al. [6] designed a vertical corundum tube reactor. Nitrogen was used as a 
sample heating and was heated at the entrance of the tube. Condensable liquids coming out of the 
reactor were trapped using a two-necked flask immersed in liquid nitrogen. Non-condensable gases 
composition and concentration was recorded continuously during the process using infrared gas 
analysis. Methods used for heating nitrogen and for monitoring temperatures were not reported. 
Couhert et al. [9] designed a quartz tube reactor surrounded by a 2kW electrical furnace that was used 
to heat nitrogen entering at the bottom of the reactor. The reactor was sealed at the top by a ceramic 
wool swab to prevent air from entering the reactor. A thermocouple was placed inside the reactor to 
measure gas temperature upstream of the sample. The main purpose of designing this reactor was to 
produce torrefied wood that can be used in a gasification reactor as feedstock; therefore, the gases 
exiting this torrefaction reactor were not analyzed. Pach et al. [17] used a similar electrically heated 
reactor consisting of two cylinders. Sample was placed in the inner cylinder of the reactor. The 
volatiles were cooled in a water cooled condenser for condensing the tar and the water phase. Gas is 
passed through a cotton filter before being collected in a bag for further analysis by a gas 
chromatograph. Specifications for the electrical heaters and temperature monitoring instruments were 
not reported. Prins et al. [15] reported another torrefaction unit consisting of cylindrical reactor placed 
inside an electrical oven. Instead of nitrogen, as used by other researchers, argon was used as the 
inert gas. A thermocouple is used to measure sample temperature inside the reactor bed. The inlet 
and outlet of the reactor were heat-traced to prevent condensation of the products in the tubing. The 
argon inlet lines were also heat traced for a more stable temperature control. Permanent gases 
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removed by argon purge gas were collected in a gasbag and analyzed by Micro-GC (offline). 
Condensable liquids were collected in a cold trap at -15 

o
C and were analyzed by HPLC. Energy 

research center (ECN) in Netherlands has developed both batch and continuous pilot scale reactors to 
carry out torrefaction, as reported by Bergman et al. [18, 19]. The batch reactor was operated as a 
fixed bed reactor and the sample was heated by direct contact with heated nitrogen acting as the inert 
gas. Heat losses were minimized by wrapping tracer ribbons around the reactor. For temperature 
control, the reactor was equipped with thermocouples at several radial and axial positions. Nitrogen 
was heated in an electric heater at the bottom of the reactor. Specifications for the electric heater were 
not reported. Permanent gases exiting the reactor were analyzed online using Micro-GC. The 
condensable fraction of the volatiles were sampled using water filled impinge bottles and then 
analyzed by GC-FID and GC-MS (offline). The continuous torrefaction reactor designed by ECN was a 
25 kW indirectly-heated screw that was originally designed for carrying out biomass pyrolysis. The 
reactor was heated by independently controlled electrical heating elements wrapped around the 
reactor. Gas and solid temperatures were registered along the axis of the reactor and gas samples 
were analyzed.  Detailed specifications of the screw reactor, inert gas type and flow rates were not 
reported.   

Experimental approaches followed by these reactor studies are summarized in table 2. As listed, these 
studies used different design parameters, torrefaction operating conditions, sample types, quantities 
and particle sizes. The sample sizes used in the bench scale studies were an order of magnitude 
higher than the TGA studies. Of all the reactors that were reported, the ECN continuous reactor is 
definitely the most advanced reactor. Temperature monitoring and gas sampling capabilities are 
considerably higher than for the other reactors.   
 
Table 2: Comparisons of torrefaction reactor studies 

 
 
3. Tested Biomass Materials    
All biomass materials differ a lot in their compositions and they are commonly divided into four 
categories: coniferous (softwoods), deciduous (hardwoods), herbaceous species or agricultural 
residues and mixed woods. Quite often the biomass samples belonging to a particular category or 
even the same biomass sample from different regions differ substantially in elemental composition and 
it can be confusing to put them in the same category. However, for ease of comparison, an attempt 
has been made to include the tested samples from different torrefaction studies into these categories 
as listed in table 3.  
 
Table 3: Tested biomass materials for torrefaction 
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3.1 Product Yields 
The general result for all the tested feedstock is the decreased mass and energy yield of solid torrefied 
product as the temperature and residence time for torrefaction is increased. A few studies have 
reported that the deciduous woods (willow, beech) are more reactive than coniferous woods (larch) 
under the same torrefaction conditions (temperature and residence time) [15, 19]. Much more 
volatiles, such as acetic acid and methanol, are formed in the case of deciduous woods, which mainly 
originate from acetoxy- and methoxy-groups present as side chains in hemicelluloses xylose units, 
which are not present in the coniferous wood. Thermal behavior of a few herbaceous 
species/agricultural residues such as wheat straw, rice straw, rape stalk and reed canary grass was 
also tested and studies have concluded that these species have even lesser mass yield than 
deciduous woods [6, 7, 15, 19]. A higher percentage of hemicelluloses in these species was noted as 
the reason for the increased mass loss [6, 7]. However, hemicelluloses structural composition for 
these species was not reported in any of the studies. Chen at al. [26] compared bamboo, willow, 
coconut shell and wood each with hemicelluloses content of 33.30 %, 20.06 %, 21.03 % and 25.91 % 
respectively. It was reported that torrefaction of bamboo and willow was more pronounced than that of 
coconut shell and wood. Even though, the wood sample had more hemicelluloses percentage than 
willow and coconut shell, it was less reactive for torrefaction. This indicates that it is more important to 
investigate the structures of hemicelluloses when comparing the reactivity of two samples rather than 
just looking at the composition percentages. As the torrefaction conditions become more severe, 
celluloses and lignin decompositions are also increased. Including celluloses and lignin behavior for 
predicting torrefaction behavior or for comparing samples seems a logical step. Preliminary structure 
differences for hemicelluloses and cellulose can be inferred from the DTG analyses, but these provide 
only qualitative results [26].   
 
Results for energy yield of solid product is very similar to that of its mass yield with coniferous wood 
having the highest energy yield followed by deciduous and herbaceous species. Again, differences in 
hemicelluloses structural composition and overall content are the reasons for these variations [6, 7, 
15, 19]. Bergman et al. [19] reported that the increase in energy density of the solid product is up to 
15% for deciduous wood versus up to 7% for coniferous wood at 270°C and 15 minutes reaction time. 
Bridgeman et al. [7] reported that for all the samples tested for torrefaction, the energy yield of the 
solid product was greater than the mass yield, an effect which became more marked for higher 
temperature treatments. The results from this study are shown in figure 1. Relatively more oxygen and 
hydrogen are released compared to carbon, in the form of water and CO2, resulting in increased 
calorific value of the solid product.  

 
Figure 1: Comparison of mass yield and energy yield of torrefied reed canary grass (RCG), wheat 
straw (WS) and willow wood (WW) at 250 

o
C and 270 

o
C and 30 min residence time [7, 10] 

 

 
 

3.2 Effects of Operating Conditions 
Studies have used various torrefaction temperature and residence time combinations to evaluate the 
product yields for the tested samples. Temperatures less than 250 °C have been considered mild for 
most materials. Bergman et al. [19] reported that for larch, practically all the chemical energy was 
retained in the solid product up to a temperature of 250 °C and 30 min of residence time. The energy 
yield of willow, beech and wheat straw was about 95%, 92% and 88% respectively under same 
torrefaction conditions. Chen et al. [26] reported that at 240 °C and 2 hrs of residence time, 75, 73, 68 
and 63 wt% of biomass were remained in wood, coconut shell, willow and bamboo, respectively. 
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These values were further lowered to 61%, 61%, 48% and 45 % respectively when the temperature 
was increased to 275 °C and residence time kept at 2 hrs. Arias et al. [1] reported that at 280 °C, even 
at low residence times, there is large decrease in energy yield for Eucalyptus torrefaction and the 
mass yield undergoes an important reduction during the first 45min to 1 hr at all three temperatures – 
240, 260, 280 °C. It can be inferred from these results that temperature has more pronounced effect 
on product yields if a certain minimum residence time is achieved. 
 
Effects of additional variables such as biomass particle sizes, heating rates, inert gas type/flow rates 
and biomass mineral matter on the torrefaction product yields are scarcely studied topics. Bergman et 
al. [19] conducted experiments in the batch reactor for different willow size-bins (viz., 0-10, 10-30, 30-
50 mm). Rather similar solid mass and energy yields were observed despite of the size differences. 
Minor differences that existed were found to be inconsistent, indicating that particle size do not affect 
the process. Due to the availability of similar studies from slow pyrolysis investigations, the effects of 
heating rate variations, during the temperature ramping stage, were not evaluated. Similarly, the effect 
of inert gases on the torrefaction was not studied in detail. Only the study conducted by Pach et al. 
[17] reported that there is no strong influence of the role of the inert gas flow on the torrefaction of 
pine. During the investigations, the nitrogen gas flow was changed from 5 to 10 l/h and the results did 
show some differences but without any clear trends. The role of biomass mineral matter and metal 
content during torrefaction has also not been experimentally validated.   
 
3.3 Product Properties 
Many studies have evaluated the torrefied product properties to investigate the role played by 
torrefaction in improving the biomass fuel properties. Grindability, densification, storage, fluidization 
and char reactivity are the properties that were determined by these studies. This section attempts at 
discussing the results from these studies based on the tested biomass materials.    

 
3.3.1 Grindability 
Biomass feedstock must be dried and ground to particles before using it as a fuel for many 
combustion and gasification applications. Considerable power consumption is involved in the size 
reduction operations of raw biomass, thereby, lowering the economic feasibility of these operations. 
Four studies have attempted to check the size reduction behavior of solid torrefied products to validate 
the benefits of torrefaction in this regards [1, 6, 18, 19]. Bergman et al. [19] determined grindability by 
measuring the energy requirements of a heavy duty cutting mill needed to break-up coarse particles to 
a desired particle size. Considerably lower power consumption was observed for the torrefied biomass 
in comparison to the untreated biomass as shown in figure 2. Approximately 50% decrease was 
achieved for willow torrefied at 230 

o
C for 30 min. A maximum reduction of 85% was observed for the 

three willow samples torrefied at 250 
o
C, 261

 o
C and 271

 o
C, each for 30 min. It was reported that 

neither an increase of temperature in the range of 250 °C to 270 °C nor a decrease of the reaction 
time to 8 min at 264 °C (willow), reduced the power consumption any further. Similar reduction in 
power consumption was obtained for all tested biomass samples torrefied above 250 

o
C, despite the 

original differences in shape and polymeric structure. Analysis of dried willow showed that the 65% 
reduction in power consumtion was due to the chemical changes during torrefaction and the remaining 
contribution was due to the loss of moisture. Also, the variations in the particle sizes of torrefied willow 
did not influence the power reduction requirements. Bergman et al. [18] used similar grindability 
evaluation criteria and observed that the power consumptions of the cutting mill for torrefied biomass 
are fairly comparable to those of Australian bituminous coal. 

Instead of measuring the power consumption of a cutting mill, Arias et al. [1] compared grindability of 
untreated and torrefied Eucalyptus samples by checking the percentage of ground particles passing 
through four different size sieves: 425, 425–150, 150–75, and 75 µm. In all cases, the percentage of 
particles passing to the lower size fractions greatly increased for the torrefied samples. These particle 
sizes decreased even further with the rise in temperature and residence time for torrefaction. 
However, torrefaction temperatures greater than 250 

o
C were not recommended because the large 

decrease in mass and energy yields. Deng et al. [6] used similar evaluation criteria with four types of 
size fractions 450, 450–150, 150– 100 and 100 µm, for sieving ground particles of untreated and 
torrefied rice straw and rape stalk. It was observed that the ratio of coarse particle size decreased 
sharply for both kinds of samples after torrefaction. Removal of extra moisture from rice straw was 
listed as a factor for its better grindability than rape stalk. The percentage of fine particles increased 
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with the increase of the torrefaction temperature from 200 to 250 
o
C but the difference was negligible 

between 250 
o
C and 300 

o
C, indicating that grindability benefits were achieved until 250 

o
C for both 

the samples.   
 
Figure 2: Relation between power consumption and particle size for willow, beech and larch. Brackets 
lists the torrefaction temperature (C) and residence time (min). Moisture content (mass basis) values: 
10-13% for raw biomass, <1 % for dried willow and 1.2-6.6 % for torrefied biomass [19] 

 

As noted above, studies used different evaluation criteria to determine grindability. Criteria used by 
Bergman et al. [18, 19] seem to quantify the results with better accuracy in terms of power 
consumption of the cutting mill. Also, the classification options are less for the studies that used the 
sieve sizes as the criterion [1, 6]. However, based on the observations from all the grindability studies, 
it can be concluded that the benefits of grindability is achieved at 250 

o
C and < 30 min of residence 

time. These values can form the optimum temperature and residence time conditions if grindability is 
the main criteria for conducting torrefaction. Effect of operating conditions other than temperature and 
residence time on the grindability of torrefied biomass was not reported in the literature.   
 
3.3.2 Densification 
Studies have reported a decrease in volumetric density of biomass after torrefaction [3, 8, 19]. 
Bergman et al. [19] reported that the density of torrefied biomass was generally 10-20% lower than the 
parent feedstock. Rodrigues [8] observed that the increase in temperature resulted in even lower bulk 
density due to higher mass loss. A couple of studies have investigated the densification of torrefied 
biomass by pelletisation to form torrefied pellets [3, 21]. The densification process is pre-ceded by the 
biomass size reduction using a cutting mill. Feedstock involved in these studies include larch, willow, 
demolition wood, straw and verge grass [3]; and switch grass [21].  Bergman [3] used a piston press to 
form the pellets and evaluate the densification behavior of torrefied biomass materials produced under 
different conditions. The press was also operated at different pressures and temperatures and pellets 
of various diameters were produced. It was reported that the bulk density of torrefied pellets was in the 
range of 750 to 850 kg/m

3
 in comparison to 520 to 640 kg/m

3
 range for conventional wood pellets and 

230 to 550 kg/m
3
 for torrefied biomass. In addition to the increased bulk density, the energy density 

and mechanical strength of the torrefied pellets were also observed to be higher than the conventional 
wood pellets and torrefied biomass. Similar study was conducted by Gilbert et al. [21] using a 
pelletiser that consisted of a hydraulic press capable of providing up to 170 bar (2500 psi) of pressure 
and operating temperatures up to 300 

o
C. Torrefied switchgrass was prepared separately at final 

temperatures of around 250 
o
C. Tensile strength of the formed pellets was evaluated at varying 

pressures and temperatures. However, the results were contradictory to those provided by Bergman 
[3]. The torrefied pellets were observed to be very brittle, uneven and non-homogeneous in shape. 
The tensile strength of the pellets was reported even lower than that of the shredded grass cases.  
 
These contradictory results for the torrefied pellets can be due to the differences in feedstock used by 
both studies. The Bergman et al. [3] study had a variety of biomass materials, whereas the Gilbert et 
al. [21] had only one. Moreover, it is hard to make any conclusions from these studies as some of the 
key process parameters such as torrefaction temperature, particle sizes after the size reduction 
process and the pressure-time values actually used in the densification process were not reported. 
However, both studies included a cooling stage for the torrefied product before starting the size 
reduction and pelletisation process in order to avoid devolatilization of torrefied product during the 
operations.  
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3.3.3 Fluidization  
Many combustion and gasification applications require pneumatic transport of raw biomass materials 
from the feeding systems. Bergman et al. [19] compared the fluidization properties of the untreated 
willow, torrefied willow and coal using a cold-flow bubbling fluidized bed feeding system with 3 cm x 10 
cm x 20 cm particle bed and air as the carrier gas. This is the only study available in the literature that 
performed these investigations. Smooth fluidization was observed for coal and for wood torrefied at 
270 

o
C for 30 min with a mean particle size of approximately 100 mm. Additional biomass materials 

need to be tested to confirm the initial observations from this study.  
 
3.3.4 Deterioration  
An important property of torrefied biomass is its hydrophobic nature. It was reported that torrefied 
biomass loses the capability to form hydrogen bonds with water due to destruction of many OH groups 
during dehydration reactions [3, 6, 18]. However, very few studies have experimentally verified the 
hydrophobic nature of torrefied product. Pach et al. [17] observed that the torrefied product (birch, pine 
and bagasse) has absorbed small amounts of moisture after a period of 30-45 days. But, this moisture 
content was much less in comparison to the content of moisture of the raw biomass material. In 
another study, Felfli et al. [11] investigated the hydrophobic characteristics of torrefied briquettes by 
immersing several torrefied briquettes in water and determining the moisture content by measuring the 
change in briquette weight. It was determined that the absorbed humidity does not exceed 10 % over 
the 70-minute retention time and the briquette remains intact, whereas the ordinary briquettes 
disintegrate in a 10-minute test.  

The results from both of these studies are very encouraging in terms of the hydrophobic nature of the 
torrefied biomass. However, the effects of torrefaction conditions on this property were not reported.   

3.3.5 Torrefied Product Reactivity  
Testing the behavior of torrefied biomass in the thermo-chemical processes is an important aspect for 
improving the viability of the torrefaction process. A few studies have attempted to do these analyses 
by simulating the combustion [1, 7, 16, 18] and [9, 18] gasification conditions in the laboratory. 
Feedstock tested in these studies include Eucalytus [1]; reed canary grass, wheat straw and willow [7]; 
wood [16]; wood cuttings and demolition wood [18]; and beechwood [9, 18]. 
  
3.3.5.1 Combustion Studies  
Thermogravimetric studies [1, 7] and lab-scale burner flames [7, 16, 18] were utilized to study the 
combustion behavior of torrefied biomass. Arias et al [1] used a non-isothermal TGA for obtaining the 
differential mass loss (DTG) curves. Approximately 5 mg sample was heated at a constant rate of 15 
°C/min under an air flow rate of 50 mL/min. Analysis of the DTG curves for various torrefied samples 
indicated that the torrefaction only affected the first stage of combustion occurring at temperatures 
ranging from 235-400 

o
C. In this stage, mass losses were lower for the torrefied samples and the 

values decreased with the increase in torrefaction temperature and residence time.  In another study, 
Bridgeman et al. [7] determined differential temperature measurements (DTA) in addition to the DTG 
curves. A typical sample mass of 3 mg was heated at 20 

o
C/min in a purge of air to a final temperature 

of 900
 o

C. DTG curves showed shorter time period and narrower range of temperatures for the volatile 
combustion. Most significant changes were observed in wheat straw in comparison to reed canary 
grass and willow. DTA results indicated higher heats of reactions, lower temperatures for the ignition 
of the volatile matter and shorter time period for the volatile combustion in comparison to the raw fuel. 
Bridgeman et al. [7] also used a Meker-burner flame (natural gas) to conduct combustion studies of 
willow and torrefied willow particles, 2-4 mm in length. A video system was used to record the images 
of the combusting particles. Reduced volatile combustion times and increased overall char burnout 
times were observed for the torrefied samples, thus, confirming the results from the TGA studies. 
Again, these changes were more pronounced for the torrefied willow products of higher torrefaction 
temperatures and residence times. Pentananunt et al. [16] conducted a similar study and used alcohol 
flames to investigate combustion behavior of wood. It was observed that the smoking period was 
much less for torrefied wood than for ordinary wood. At the 50th min when burning was terminated, 15 
and 33% of the original combustibles were left in the residues of torrefied wood and wood, 
respectively. This indicated reduced volatile combustion times for the torrefied wood. In another flame 
study, Bergman et al. [18] designed a lab-scale combustion simulator (LCS) to simulate a flame/flue 
gas environment. Conversion behavior of torrefied woodcutting, demolition wood and bituminous coal 
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was studied after 1000 ms residence time. LCS comprised of a drop tube reactor together with a 
primary/secondary gas burner. It was observed that the carbon conversion of torrefied biomass is 
fairly comparable to that of untreated woodcuttings and significantly higher compared to the 
bituminous coal.        

The results from these studies seem logical due to the fact that most of the moisture and volatiles from 
hemicelluloses decompositions was already released during the torrefaction. This explains the lower 
mass loss during the first stage of combustion, increased heats of reaction and the shorter time 
periods for volatile combustion. However, since these studies involved very small samples (few mg), 
these results can only be regarded as preliminary findings and further investigations should be 
performed at a higher scale that simulates the industrial combustors more accurately [22]. Also, these 
observations are very basic and none of the study investigated the effects of torrefaction on the 
problems of biomass combustion such as alkali and heavy metal releases, ash characteristics, etc.  

3.3.5.2 Gasification Studies 
A couple of studies evaluated the thermal behavior of the torrefied biomass for gasification 
applications by simulating entrained flow gasification conditions in the laboratory [9, 18]. A bench-
scale high-temperature entrained flow gasification reactor (HT-EFR) was designed by Couhert et al. 
[9]. Two torrefied beechwood samples produced at 240 

o
C and 260 

o
C for 1 hour were used as the 

feedstock. The reactor was electrically heated by an 18 kW three-zone electrical furnace, and was 
able to reach 1600 

o
C in a 1 m long isothermal reaction zone. Constant mass flow rate of 0.5 g/min of 

torrefied wood particles were fed into the reactor and was swept by a pre-heated atmosphere gas 
containing 20 volume % of steam in N2. Gases and particles leaving the reactor were sampled and a 
then analyzed by a non dispersive IR analyzer and FTIR analyzer. Both the atmosphere gas and the 
reactor walls were heated to 1200 

o
C or 1400 

o
C for the experiments. Torrefied samples produced 7% 

more H2, 20% more CO and approximately same CO2 yields in comparison to the parent wood at both 
gasification temperatures. However, CO2, CO and H2 yields were lower at 1200 

o
C than at 1400 

o
C, 

indicating that the gasification was not complete at 1200 
o
C. Also, proximate analysis performed on 

solid residues after 1200 
o
C gasification showed 66% of ash in the char from the parent wood and only 

26% ash from the torrefied wood samples. This showed that the torrefied char is less reactive than the 
char from the untreated wood. In another study by Bergman et al. [18], the lab-scale combustion 
simulator (LCS) was used to simulate the entrained flow gasification conditions. Again, beechwood 
and torrefied beechwood were used as the feedstock. The torrefaction conditions were not reported. It 
was observed that the carbon conversion of beechwood reached 97-98% after 0.3 s residence time in 
comparison to 92% for torrefied beechwood. This indicated lower char reactivity for the torrefied 
samples and thus, achieved similar results as obtained by Couhert et al. [9].   

As can be seen from the studies, only torrefied beechwood samples have been tested for gasification 
application. Since, torrefied biomass can vary a lot due to the differences in the biomass type and the 
operating conditions, further investigations are needed to confirm these preliminary results. Also, 
effects of torrefaction on the biomass gasification problems such as alkali and heavy metal release, 
ash characteristics, etc were not reported.    

4. Kinetic Modeling Studies 
A few studies have attempted to model the kinetics of torrefaction based on the concepts proposed in 
the similar studies on pyrolysis kinetics. However, the feedstock, torrefaction methods and the 
modeling approach used by these studies were quite different. Prins et al. [14] modeled the 
torrefaction of willow by using the two step mechanism concept of the isothermal degradation of xylan, 
with parallel reactions for the formation of solids and volatiles [12]. Weight loss curves obtained from 
the TGA experiments were used for the determination of kinetic parameters. The model with the first 
order reactions for both the steps was found to be valid and a demarcation time existed between the 
steps. The model was verified by comparing the values of final char yields as found from the 
experiments and the ones calculated by the model. It was concluded that the torrefaction kinetics in 
the temperature range of 230-300 

o
C can be accurately described by this model. Hemicellulose and 

cellulose decompositions can be represented by the first and second steps respectively. However, the 
weight loss curves did not become completely horizontal and continued to decrease slowly due to the 
decompositions of less reactive components such as lignin that were not included in the model.  Felfli 
et al. [5] introduced a mathematical model for the torrefaction of wood logs and biomass briquettes. 
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The model aimed at estimating the operating parameters for torrefaction furnaces such as minimum 
time of torrefaction, energy consumption and the mass yield. It described both chemical and physical 
processes that take place in a moist piece of wood heated at temperatures between 230 and 300 

o
C. 

The torrefaction kinetics was based on a three-reaction scheme in which competing primary two-step 
reaction pyrolyze biomass to gas, tar and charcoal. The primary reaction rates were represented with 
Arrhenius-type temperature dependence and were first-order with respect to the mass of unreacted 
biomass. The model was validated by conducting torrefaction experiments on dry sample in an electric 
furnace at temperatures of 130, 230, 260 and 280 

o
C. Experimental and theoretical temperature 

profiles were then correlated. It was noticed that at 403 K, the data correlation is closer than on other 
conditions. The agreement between the model and experimental data is good in the temperature 
range 230 

o
C to 260 

o
C. However, the model lags experimental data for 280 

o
C. These differences 

were linked to the carbonization reactions for cellulose and lignin, as these were not included in the 
model. Deng et al. [6] proposed a kinetic model for the generation of gases during torrefaction for rice 
straw and rape stalk samples. A series of independent first order parallel reactions, each having 
individual apparent activation energy was assumed. Data was collected from the torrefaction 
experiments performed in the bench-scale reactor. The rate constant for each gas was found by 
plotting the change in gas moles with the time at different temperatures. These rate constant values 
were then used to find the activation energies by using the Arrhenius function. Model did not include 
any solid char yield determination and verification of the model was also not reported.     
 
The kinetic models presented by these studies are for individual feedstock and may not be valid for a 
wide range of biomass materials. Only willow [14]; wood logs and briquettes [5]; rice straw and rape 
stalk [6] have been tested so far. Due to the low temperature range of torrefaction, only hemicelluloses 
have been included in the kinetic models. However, at temperature higher than 250 

o
C, the 

degradation of cellulose and lignin do become important and this was the reason of deviation of the 
model results from the experimental values [5, 14]. Further kinetic studies that include steps for 
cellulose and lignin components should be performed with additional biomass materials. Also, kinetics 
of torrefied materials in the combustion and gasification processes should be investigated in order to 
better understand the effects of torrefaction on these processes.     
 
5. Recommendations for Future Work 
Thermogravimetric analysis (TGA) and reactor studies were the main experimental methods used to 
carry out torrefaction. Considerable differences were found in the behavior of biomass materials 
during torrefaction. Solid product mass and energy yields are strongly influenced by the raw biomass 
composition and the operating conditions such as temperature and residence time. Among the 
evaluated product properties, grindability is the most studied topic. Very few studies attempted to 
investigate the densification, fluidization, storage and char reactivity of torrefied products. Concepts 
from pyrolysis kinetics were utilized by a few studies to model kinetics of torrefaction, but only 
hemicelluloses decomposition was included in the analysis. Reviewing the literature suggests that 
torrefaction is a promising technique to improve the performance of biomass for energy utilization. 
However, despite a number of impressive studies on the topic, a lot of information is still not 
recognized in sufficient detail. Following are some of the potential research areas that can be pursued 
to improve our understanding of the torrefaction process and its role in improving the biomass fuel 
properties: 

1. Evaluate torrefied product yields and properties for the biomass materials that are potential 
fuels for a particular region   

2. Torrefied product reactivity analysis for combustion and gasification applications using other 
biomass types 

3. Study of alkali and heavy metal release from combustion and gasification of torrefied biomass 
4. Analyze effects of biomass mineral and metal content, biomass particle sizes, heating rates, 

inert gases composition and flow rates on the torrefied product yields and properties   
5. Verification of kinetic models with the reaction steps for hemicellulose, cellulose and lignin 

Investigate kinetics of torrefied products in combustion and gasification processes 
6. Analyze effects of torrefaction operating conditions on the densification, fluidization and 

storage properties of torrefied biomass 
7. Pelletisation of torrefied products should be evaluated for additional biomass materials 
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ABSTRACT: This work aims to analyze the torrefaction process with Norwegian birch and spruce as feedstocks. Torrefaction
experiments were performed in a macro-TGA (thermogravimetric analysis) reactor with provisions for continuous volatile
measurements through micro-GC (gas chromatography) and FTIR (Fourier transform infrared spectroscopy). The process
temperature (225 and 275 °C), holdup time (30 and 60 min), and sample size (10 and 40 mm cubes) were included as variations
in the experimental matrix. Fuel characterizations, DTG (derivative thermogravimetric) curves, product yields, hydrophobicity
tests, grinding energies, and particle-size distributions are discussed. The raw fuels were used as a reference for the comparisons.
It was found that the birch has a higher devolatilization rate than the spruce under all tested conditions, resulting in a larger
percentage increase in its carbon content. An increase in the temperature has the strongest effect on the properties of the
torrefied product among all of the studied parameters. At 275 °C, the solid yield decreased to 63% and 75% for the torrefied
birch and spruce, respectively. In terms of torrefied product properties, the torrefied samples absorbed approximately one-third of
the moisture compared to the raw fuels. The total grinding energy decreased up to 40−88% for the torrefied samples of both
feedstocks. An increased percentage of fine particles (<180 μm) was found in the particle-size distributions of most of the
torrefied samples. Overall, considerable improvements were observed in the properties of the torrefied products for both
feedstocks. Results obtained from this study form the basis of a torrefaction feasibility study in Norway.

1. INTRODUCTION

Biomass is an important renewable energy source and has the
potential to play a significant role in the energy future of
Norway. The potential of biomass to help meet the world
energy demand is widely recognized. The increased use of
biomass in key sectors, including heat, power, transportation
fuel, and bioproduct production, will also extend the lifetime of
fossil fuel resources. A number of thermal conversion processes
such as pyrolysis, combustion, and gasification have been
applied to develop biomass conversion technologies. In
addition, the energy consumption from biomass is considered
to be CO2 neutral. According to World Energy Outlook 2009,1

Norway has a goal of reducing its greenhouse gas emissions by
30% before 2020 and by 100% before 2050, and an extended
use of biomass will certainly help meet this goal.
To date, the widespread use of biomass has been hindered by

many problems, such as its low bulk density, high moisture
content, poor grindability properties, and relatively low calorific
value. Solutions for biomass pretreatment to overcome these
drawbacks are being studied by researchers.2,3 Torrefaction has
been recognized as one solution. It is basically a mild pyrolysis
of the biomass that is typically conducted at 200−300 °C,
under nearly atmospheric pressure, in the absence of oxygen
and with a relatively low particle heating rate (<50 °C/min).2−4

During torrefaction, the biomass is partly decomposed, which
yields a uniform, solid product as well as condensable liquids
and noncondensable gases.5 The main reactions during
torrefaction involve xylan-containing hemicellulose polymers,
which are the most reactive polymer structures in biomass.6−9

Torrefaction results in the following main improvements in the

biomass properties: (1) a considerable reduction in the
moisture content due to drying;10−12 (2) an increased energy
density and heating value due to a reduction in the O/C
ratio;5,8,11,13 (3) intrinsic conversion of the hygroscopic
behavior of the raw biomass into the hydrophobic behavior
of the torrefied biomass;14 (4) enhanced grindability, which
results in less energy consumption during milling.15−17 Because
of these altered properties, the value of the torrefied biomass as
a fuel is significantly higher than that of the raw biomass. The
role of torrefaction in improving the biomass properties has
been investigated in several studies. The majority of these
studies have focused on examining the compositional changes
in the form of proximate and ultimate analyses18−20 and mass
and energy yields5,13,14,21−23 of the woody biomass materials,
agricultural residues, and energy crops. Studies have also
attempted to investigate the torrefied product properties such
as hydrophobicity,24 grindability,14−17,25 particle-size distribu-
tion,16,26 and reactivity in combustion,13,24,27 gasification,11,28 or
pyrolysis18,29 processes. As reported in previous studies, the
chemistry of torrefaction is influenced by many parameters
such as the biomass composition, processing temperature,
holdup time, and particle size. This means that, in order to
evaluate the feasibility of torrefaction in a particular region,
local available biomass resources should be investigated. For
Norway, a comparison between hardwood (birch) and
softwood (spruce) is very important because these are the
two main wood species available. So far, no study is available
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that has investigated the torrefaction behavior of these two
wood species. This forms the main objective of this study.
There are a few studies available5,8,25 that have compared
hardwoods and softwoods for torrefaction; however, only mass
and energy yields or individual properties such as grindability
are discussed. This study tries to overcome this deficiency and
compares hardwood and softwood in terms of product yields as
well as product characteristics.
The second objective of this study is to utilize the concept of

macro-TGA (thermogravimetric analysis) to study the
torrefaction behavior of Norwegian birch and spruce. Either
micro-TGA8,13,21 or laboratory-scale reactors5,11,14,30−32 were
used in previous studies to perform torrefaction, and on the
basis of the literature review by the authors, no torrefaction
study has utilized macro-TGA so far. The kinetically controlled
thermal weight loss characteristics of biomass can be measured
precisely in micro-TGA, which in this respect makes it more
advantageous than a laboratory-scale reactor for mass loss
kinetic studies. Because of the small sample weights used (a few
milligrams), negligible heat- and mass-transfer limitations exist
in micro-TGA, which is not the case in a commercial plant.
This is not the case either in macro-TGA, which can
accommodate much larger biomass samples than micro-TGA
(in our case, 200−300 g and individual pieces with up to 40
mm sides). It then becomes possible to study thermal processes
with heat- and mass-transfer limitations and simultaneously
perform weight loss measurements. In another study conducted
by one of the authors,33 the pyrolysis behaviors of biomass
materials were compared using both micro-TGA and macro-
TGA. It was reported that the pyrolysis of wood occurs faster in
micro-TGA than macro-TGA because the heat- and mass-
transfer limitations of the larger samples used in macro-TGA
cause a lag in the temperature evolution of the wood samples.
Therefore, in order to understand the temperature lag in a
large-scale industrial torrefaction process, the unique approach
of macro-TGA is used in this study. In addition, the DTG
(derivative thermogravimetric) curves as collected from macro-
TGA can be evaluated further to deduce heat- and mass-
transfer limitations.
The focus of the work was to analyze the effects of the

torrefaction temperature, holdup time, and sample particle size
on the DTG curves, biomass compositions, product yields, and
fuel properties of both feedstocks. Proximate and ultimate
analyses of both the raw and torrefied products were performed
to determine their compositions. The evaluated fuel properties
include hydrophobicity, power requirements for grinding, and
particle-size distribution after grinding. Torrefaction experi-
ments were also performed in micro-TGA, using the same
feedstocks, to confirm the temperature lag in the macro-TGA
process.

2. MATERIALS AND METHODS

2.1. Sample Characterization and Preparation. Norwe-
gian birch and spruce fuel samples were obtained from local

sources in Trondheim, Norway. These samples were stand-
ardized wood boards that are typically used in buildings. The
raw samples and torrefied products obtained from macro-TGA
experiments were characterized with proximate and ultimate
analyses, the results of which are presented in Tables 1 and 3,
respectively, including the higher heating values (HHVs).
The proximate analyses of the raw samples were conducted

according to the ASTM standards ASTM E871, ASTM E872,
and ASTM D1102 for moisture content, volatile matter, and
ash content, respectively. In addition, the ASTM 1762-84
standard methods, applicable to charcoal powders, were applied
to conduct the proximate analyses of the torrefied products.
The fixed carbon content was calculated by difference to 100%
in both cases. The determination of the C/H/N/S content in
the ultimate analysis was conducted using an “EA 1108 CHNS-
O” elemental analyzer by Carlo Erba Instruments. The oxygen
content was calculated by difference to 100% for all samples.
The HHV was calculated based on the elemental composition
of the fuel.34 Before the torrefaction experiments in macro-
TGA, the samples were carefully cut to provide cubes with sides
of either 10 or 40 mm and the cubes were then dried for 24 h at
105 °C. For the micro-TGA experiments, raw samples were
ground in a cutting mill with a 1 mm bottom sieve.

2.2. Setup and Procedure for Torrefaction Experi-
ments. The biomass torrefaction experiments were conducted
in a batch reactor equipped with a macro-thermobalance
(macro-TGA), using the experimental setup shown in Figure 1.
This unique reactor was built by Höker KFT (Hungary)
according to the design specifications from SINTEF Energy
Research. The biomass fuel samples were placed in a
rectangular basket that was connected to the balance, and the
sample basket was lowered into the reactor prior to heating.

Table 1. Proximate and Ultimate Analyses of Feedstocks

proximate analysis ultimate analysis

sample VMa fCa asha Ca Ha Oa Na Sa HHVb

birch 89.43 10.35 0.22 48.62 6.34 44.90 0.09 0.05 19.80
spruce 86.34 13.43 0.23 50.10 6.36 43.52 0.07 0.05 20.45

awt %, dry basis. bMJ/kg.

Figure 1. Drawing of the torrefaction macro-TGA reactor.
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The sample basket was composed of several separated layers,
and care was taken to provide a small gap between the cubes on
each layer to provide uniform heat- and mass-transfer
conditions for all cubes. The balance was connected to the
reactor top and was cooled with nitrogen gas to prevent
overheating. The sample weight was 200−300 g, depending on
the density and size of the feedstock used. A constant flow rate
of 100 L/min of nitrogen was used to provide an inert
atmosphere inside the reactor. The samples were heated to
either 225 or 275 °C at a heating rate of 5 °C/min. The
torrefaction start time was measured from the point when the
temperature first reached the target torrefaction temperature.
The reactor was purged with nitrogen for at least 1 h prior to
the start of the experiment. Before the torrefaction experiments
were started, an online oxygen analyzer was used to ensure that
the reactor was free of oxygen.
The macro-TGA experiments focused on the study of

important parameters such as the fuel type (softwood and
hardwood), holdup time in the torrefaction zone (30 and 60
min), sample size (10 and 40 mm cubes), and torrefaction
temperature (225 and 275 °C). The complete experimental
matrix produced 16 different types of torrefied materials, as
shown in Table 2.

All of the reaction products were collected and weighed to
determine an overall mass balance. The gas produced in the
experiments was measured using FTIR (Fourier transform
infrared spectroscopy) and micro-GC (gas chromatography).
The outlet tube from the reactor was maintained at an elevated
temperature of approximately 200 °C to prevent condensation
of the released volatiles.
In order to show the differences between the micro-TGA and

macro-TGA processes, torrefaction experiments were con-
ducted in the micro-TGA Q5000 by TA Instruments.
Torrefaction temperatures of 225 and 275 °C with a holdup
time of 60 min were selected in the micro-TGA temperature
programs, resulting in a total of four experiments, two for each
feedstock. A heating rate of 5 °C/min, up to the torrefaction
temperatures, was included in the programs to ensure
maximum similarity with the macro-TGA experiments. The
sample weight was 3−5 mg, and the inert nitrogen gas

environment was maintained inside the micro-TGA instrument
during all experiments.

2.3. Assessment Methods. Grindability, particle-size
distribution, and hydrophobicity assessments were performed
for the torrefied products obtained from macro-TGA experi-
ments.
The grindability assessment was divided into two stages:

pregrinding and fine grinding. In the pregrinding stage, the raw
and torrefied samples were ground in a cutting mill without a
bottom sieve. This stage produced smaller particles that
facilitated the feeding step of the fine-grinding stage. The
fine-grinding stage was performed using the same cutting mill
equipped with a 1 mm bottom sieve. A numerical watt meter,
Paladin 256-TWKW from Cromptan Instruments, was
employed to record the amount of electricity consumed during
the grinding in both stages. A computer with a data logger was
connected to the watt meter for data acquisition every 2 s. The
mill was operated using the same parameters for all samples.
The power consumption for an empty load was logged prior to
every grinding step to determine the increase in the energy
consumption when the mill was under load. The specific energy
consumption for grinding was determined by integrating the
area under the power consumption curve (watts-seconds) over
the total time required to grind a given sample. Because a
known quantity of samples was used in each experiment, the
energy consumption is divided by the number of samples
grinded to obtain the final values per unit mass for comparison.
The integrated values from both grinding stages were added
together to calculate the total grinding requirement for a
sample.
The powder samples produced after the milling step were

sieved in a vibrating sieving machine (Fritsch Analysette 3 Pro)
that contained a series of sieves with the following mesh sizes: 1
mm, 500 μm, 180 μm, 125 μm, and 63 μm. The mass of each
sample collected on the different sieves was measured and
recorded as a percentage of the initial sample mass to evaluate
the particle-size distribution as a function of the torrefaction
parameters studied.
The hydrophobic characteristics of all raw and torrefied

samples were investigated by immersing the samples in distilled
water for 2 h in glass beakers without stirring.24 The water was
drained from the beakers and the moisture content of the
samples was measured as a change in the corresponding initial
sample weight.

3. RESULTS AND DISCUSSION
3.1. Fuel Characterization of the Torrefied Solids. As

mentioned previously, the proximate and ultimate analyses for
the torrefied solids obtained from the macro-TGA experiments
were performed according to the ASTM standards 1762-84.
Table 3 shows the results from these analyses. As observed in
the table, increasing the temperature or holdup time reduced
the volatile matter and increased the fixed carbon content of the
torrefied solids. In addition, at all tested torrefaction conditions,
the torrefied birch exhibited a higher percentage increase in the
fixed carbon content (or decrease in volatile matter) compared
to the torrefied spruce. The most significant difference between
these feedstocks is observed for the 40 mm cube samples that
were treated at 275 °C with a 60 min holdup time. The
maximum increase in the fixed carbon content of the torrefied
birch samples relative to the raw fuel is 176.7%; for the spruce,
the increase is 77.9%. Corresponding values for the increase in
the fixed carbon content as reported by previous studies for

Table 2. Experimental Design

expt
no. sample

final temperature
[°C]

sample cubes
[mm]

holdup time
[min]

1 birch 225 10 30
2 birch 225 40 30
3 birch 225 10 60
4 birch 225 40 60
5 spruce 225 10 30
6 spruce 225 40 30
7 spruce 225 10 60
8 spruce 225 40 60
9 birch 275 10 30
10 birch 275 40 30
11 birch 275 10 60
12 birch 275 40 60
13 spruce 275 10 30
14 spruce 275 40 30
15 spruce 275 10 60
16 spruce 275 40 60
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other wood materials treated at 275 °C with 30 min of holdup
time are 90.1% for leucaena,18 66.1% for logging residue
chips,15 and 69% for pine chips.15

Among all of the tested process parameters, temperature has
the strongest effect on the torrefied biomass composition. As
the temperature increases from 225 to 275 °C, the fixed carbon
content in the torrefied products rises from approximately 11%
to 28% for the birch samples and from 14% to 24% for the
spruce samples. For the samples treated at 225 °C, the effect of
increasing the holdup time is negligible for both feedstocks.
However, when the holdup time is increased at 275 °C, the
fixed carbon content increases from approximately 20% to 28%
for the birch samples and from 21% to 24% for the spruce
samples. These results suggest that most of the changes at 225
°C occur within the first 30 min of the holdup time, whereas
these changes occur for 60 min at 275 °C. The proximate
analysis results also show noticeable variations due to the
increase in the sample size. For both feedstocks, the 10 mm
cubes are more reactive than the 40 mm cubes when treated at
225 °C, but there are no clear trends at 275 °C.
The ultimate analyses of the feedstocks showed that increases

in the torrefaction temperature and holdup time result in a
higher carbon content, lower hydrogen content, and lower
oxygen content in the samples. The exceptions are the nitrogen
and sulfur contents, which remained nearly constant; this result
is in accordance with previous studies.13 Again, an increase in
the temperature has the largest effect on the compositional
changes compared to an increase in the holdup time or sample
size. In addition, the birch samples exhibited a larger percentage
increase in the carbon content and a larger decrease in the
hydrogen and oxygen contents than the spruce samples at all
tested conditions. Compared to the untreated samples, the
increase in the carbon content after torrefaction ranges from
2.1% to 17.7% for the birch samples and from 0.8% to 12.1%
for the spruce samples. For the birch samples, the
corresponding decreases in the hydrogen and oxygen contents
are 3.3% to 13.1% and 1.8% to 17.4%, respectively. For the
spruce samples, the decreases in the hydrogen and oxygen
contents are 0.6% to 11.0% and 0.8% to 12.3%, respectively.
The largest composition changes are exhibited by the 40 mm

cube birch and spruce samples that were treated at 275 °C with
a holdup time of 60 min.
A consequence of the higher carbon and lower hydrogen and

oxygen contents is a decrease in the atomic O/C and H/C
ratios for the torrefied samples compared to the raw samples.
These results are presented in a Van Krevelen diagram in
Figure 2. The O/C and H/C ratios are 0.69 and 1.56 for the

raw birch samples and 0.65 and 1.53 for the raw spruce
samples, respectively. For both feedstocks, these ratios decrease
only marginally at a torrefaction temperature of 225 °C.
However, there is a significant decrease when the torrefaction
temperature is increased. At 275 °C, the O/C and H/C ratios
decrease by up to 30% and 26% for the birch and by up to 21%
and 20% for the spruce, respectively.
These changes in the chemical compositions of the birch and

spruce samples are attributed to the extensive removal of
hydrogen and oxygen, forming mainly H2O and CO2 during
torrefaction. The decrease in the relative concentrations of
these elements in the solid residue leads to the improvement of
these feedstocks as energy sources, which is illustrated by the
HHVs shown in Table 3. As expected, the increase in the HHV

Table 3. Proximate and Ultimate Analyses of the Torrefied Samples

proximate analysis ultimate analysis

sample VMa fCa asha Ca Ha Oa Na Sa HHVb

birch; 225 °C; 10 mm; 30 min 87.68 12.09 0.23 49.63 6.13 44.09 0.10 0.05 20.00
birch; 225 °C; 40 mm; 30 min 88.24 11.64 0.12 49.93 5.99 43.93 0.10 0.05 19.90
birch; 225 °C; 10 mm; 60 min 86.38 13.23 0.39 49.90 5.98 43.97 0.10 0.05 19.90
birch; 225 °C; 40 mm; 60 min 87.14 12.67 0.19 50.22 5.99 43.64 0.10 0.05 20.10
spruce; 225 °C; 10 mm; 30 min 84.43 15.34 0.23 50.60 6.16 43.13 0.06 0.05 20.46
spruce; 225 °C; 40 mm; 30 min 85.52 14.22 0.26 50.40 6.32 43.17 0.06 0.05 20.58
spruce; 225 °C; 10 mm; 60 min 83.99 15.79 0.22 50.97 6.15 42.76 0.07 0.05 20.62
spruce; 225 °C; 40 mm; 60 min 84.94 14.75 0.31 50.77 6.17 42.94 0.07 0.05 20.55
birch; 275 °C; 10 mm; 30 min 79.98 19.77 0.25 53.71 5.65 40.47 0.12 0.05 21.20
birch; 275 °C; 40 mm; 30 min 77.14 22.64 0.22 55.55 5.77 38.50 0.13 0.05 22.20
birch; 275 °C; 10 mm; 60 min 77.67 21.93 0.40 54.16 5.65 40.02 0.12 0.05 21.40
birch; 275 °C; 40 mm; 60 min 71.02 28.64 0.34 57.21 5.51 37.10 0.13 0.05 22.60
spruce; 275 °C; 10 mm; 30 min 78.13 21.47 0.40 54.38 5.81 39.69 0.07 0.05 21.72
spruce; 275 °C; 40 mm; 30 min 76.68 23.01 0.31 55.01 5.77 39.10 0.07 0.05 21.96
spruce; 275 °C; 10 mm; 60 min 75.65 24.15 0.20 55.33 5.73 38.80 0.09 0.05 22.05
spruce; 275 °C; 40 mm; 60 min 75.77 23.89 0.34 56.04 5.66 38.17 0.08 0.05 22.28

awt%, dry basis. bMJ/kg.

Figure 2. Van Krevelen diagram for the raw and torrefied samples
[type; temperature (°C); cube size (mm); holdup time (min)].
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is larger for the birch than for the spruce. The raw birch and
spruce have HHVs of 19.8 and 20.45 MJ/kg, respectively. For
the samples treated at 225 °C, there is only approximately a
0.5−1% increase in these values. However, at 275 °C, the HHV
increase up to 14.3% for the birch samples and 8.9% for the
spruce samples. These results reflect the compositional
differences between these feedstocks, with the birch being
more reactive than the spruce under torrefaction conditions.
The percentage increases in HHV as reported by previous
studies for other wood samples treated at 225 and 275 °C with
30 min of holdup time are 4.4% and 12.3% for leucaena,18 5.3%
and 17.2% for logging residue chips,15 and 5.5% and 18.2% for
pine chips,15 respectively. This indicates that, for the samples
treated at 225 °C, a higher increase in HHV is reported in these
studies in comparison to this study. This can be attributed to
differences in the biomass compositions as well as the
torrefaction conditions in macro-TGA in comparison to the
reactors used in these studies.
3.2. Macro-TGA. The DTG curves obtained from the

macro-TGA experiments are shown in Figures 3a,b and 4a,b for
the two torrefaction temperatures (275 and 225 °C). To
facilitate interpretation, the experiments with a holdup time of
30 min are not included. From these figures, the following can
be observed: (1) the birch has a higher devolatilization rate
than the spruce at both temperatures; (2) the peaks for the
experiments at 275 °C are 1 order of magnitude higher than
those at 225 °C; (3) the weight loss rate flattens out before the
holdup time of 60 min is reached for all experiments at 275 °C;

(4) the experiments performed at 225 °C exhibit double peaks
compared to only one peak at 275 °C; (5) the differences in the
maximum and minimum devolatilization rates are much smaller
at 225 °C than at 275 °C; (6) for both the birch and spruce
samples at both temperatures, the DTG peaks for the 40 mm
cubes are shifted slightly to the right compared to the peaks for
the 10 mm cubes.
As mentioned previously, birch is a hardwood and spruce is a

softwood. Previous studies have shown that softwoods react
slower than hardwoods;5,8 this is confirmed by our results, as
shown in Figures 3 and 4. These differences may be attributed
to the composition of the hemicellulose fractions in these wood
types because it has been reported that the amount of the most
reactive hemicellulose component (xylan) is present in less
quantities in softwoods than in hardwoods.8 The higher
devolatilization rate at 275 °C compared to 225 °C is due to
the higher degradation of the hemicellulose fraction, along with
the initial reactions of cellulose decomposition that may occur
at temperatures above 250 °C.8,9,21

In Figure 4, the appearance of the first peaks may be due to
the chemically bound moisture released from the feedstocks,
and the second peaks may indicate limited hemicellulose
decompositions. The flattening of the weight loss rate before
reaching the 60 min holdup time may indicate completion of
the hemicellulose decomposition at 275 °C. Because of a lower
surface area per unit mass, more time is needed to start the
decomposition reactions for the 40 mm cubes than for the 10

Figure 3. DTG curves (weight loss rate in mg/min relative to the initial weight) for experiments conducted at 275 °C with a holdup time of 60 min
(a) for birch and (b) for spruce.

Figure 4. DTG curves (weight loss rate in mg/min relative to the initial weight) for experiments conducted at 225 °C with a holdup time of 60 min
(a) for birch and (b) for spruce.
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mm cubes. This results in shifting of the peaks of the DTG
curves to the right with increased sample cube sizes.
To show the differences between macro-TGA and micro-

TGA, DTG curves obtained from the four micro-TGA
experiments are also included in Figures 3 and 4. The DTG
peaks from these experiments lie to the left of the
corresponding peaks from the macro-TGA experiments. This
clearly indicates that there is a temperature lag associated with
the macro-TGA experiments because of much higher samples
weight and heat- and mass-transfer limitations. DTG curves
obtained from macro-TGA are much closer to the ones that will
be obtained in an actual industrial process.
3.3. Product Yields. During torrefaction of the birch and

spruce samples in macro-TGA, volatile compounds were
released into the gas phase, leaving solids as the main product
(torrefied biomass). The solids were collected and weighed for
mass balance calculations and further studies. The color of the
solid product varied from light brown for torrefaction at 225 °C
to dark brown at 275 °C. The volatiles were composed of
permanent (mainly CO2 and CO) and condensable gases. The
release of the gas fraction was quantitatively monitored by
FTIR in combination with micro-GC, as presented previously
in section 2.2. Figure 5 displays the overall weight distribution

from all of the torrefaction experiments that were performed in
this study. The liquid fraction was calculated as the difference
between the weight of the starting material and the sum of the
gas and solid fractions.
As observed in Figure 5, there is a general trend toward a

decrease in the solid yield and an increase in the volatile yield
for both feedstocks as the torrefaction temperature and/or the
holdup time is increased. However, the effect of the
temperature is more pronounced than that of the holdup
time. In addition, the spruce is found to produce higher solid
yields and thus be less reactive than the birch at all tested
conditions. This observation is in good agreement with the
DTG curves and confirms our earlier observation. Furthermore,
the most significant difference in the solid yield between the
two feedstocks is observed in torrefaction of the 40 mm cubes
at 275 °C, with 60 min holdup time. The solid yields amount to
63.5% for the birch and 75.8% for the spruce. The sample cube
size also affects the solid yield. For the larger cubes, higher solid
yields are obtained. However, the differences are not very
significant and are mainly due to the size-related limitations in

heat and mass transfer during torrefaction. Solid yield values for
wood materials, as investigated by other studies with similar
torrefaction parameters of 275 °C and 30 min of holdup time,
are 54.5% for leucaena,18 70% for logging residue chips,15 and
73% for pine chips.15

More interestingly, Figure 5 shows that the CO/CO2 ratio
increases with the torrefaction temperature and/or holdup
time. However, the CO/CO2 ratio is higher for the spruce at
275 °C compared to the birch. It has been reported in the
literature that CO2 formation from biomass torrefaction may be
due to decarboxylation of the acid groups and that CO
formation stems from the secondary reaction of CO2 and steam
with porous char.5 The CO/CO2 ratio increases with increasing
temperature because parts of the cellulose and lignin may also
decompose at higher temperatures.14 The higher lignin and
lower cellulose contents of softwoods compared to hardwoods
may be a reason for the higher CO/CO2 ratio of the spruce at
275 °C.5,14

3.4. Hydrophobicity. The results from the hydrophobicity
tests, presented in Figure 6, show that the torrefied biomass

samples absorb considerably less water than the untreated
samples. The percentage decrease in moisture absorbance is
similar for both feedstocks. Because the raw spruce absorbs less
moisture than the raw birch, the torrefied spruce also follows
the same trend. For example, for the 10 mm cubes treated at
275 °C with 60 min of holdup time, the increase in the
moisture content was 24.5% for the birch compared to 13.8%
for the spruce. The corresponding values for the increase in the
moisture content of the raw birch and spruce are 59.7% and
47.1%, respectively. In another study that used the same
immersion test, only a 3.27% moisture increase is reported for
torrefied sawdust samples treated at 270 °C with 1 h of holdup
time in comparison to a 150.33% increase for the raw sawdust
samples.24

Interestingly, it is observed that most of the hydrophobicity
benefits are achieved at 225 °C with 30 min of holdup time,
and the results do not change significantly when the
torrefaction temperature or holdup time is increased. For
example, the increases in the moisture content exhibited by the
40 mm spruce cubes treated with 60 min of holdup time are
6.7% at 225 °C and 6.4% at 275 °C. The larger particles are
found to be more resistant to moisture absorbance. As observed

Figure 5. Product distribution for all experiments in weight percent
relative to the initial mass.

Figure 6. Comparison of the hydrophobicity of the raw and torrefied
samples.
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in Figure 6, the amount of water uptake is lower for the 40 mm
cubes than for the 10 mm cubes for both feedstocks.
The improved hydrophobicity of the torrefied products is

mainly due to the loss of organic volatile components and
depolymerization of the long polysaccharide chains in the
biomass.14 The breakage of hydroxyls on the cellulose
microfibril monomers during torrefaction imparts hydrophobic
properties to the torrefied product.3 The lower moisture
absorption by the spruce compared to the birch is related to the
different anatomical properties of hardwoods and softwoods.
Hardwoods have larger cell cavities, thinner and more
permeable cell walls, and larger openings of the pits than
softwoods, resulting in their increased moisture absorption
capability.35

3.5. Grindability. Figure 7 shows the total specific energy
required to grind the tested samples, which includes the energy

requirements of both the pregrinding and fine-grinding steps in
the procedure described in section 2. Overall, the specific
energy consumption for grinding is significantly reduced by
torrefaction for both feedstocks. Furthermore, the reduction
was higher for the birch (from 171.9 to 20.5−85.1 kWh/t) than
for the spruce (from 161.4 to 22.7−96.5 kWh/t), which is likely
due to the compositional differences between the birch and
spruce. These values are comparable to those reported in the
literature for the grinding of torrefied biomass and coal. In a
previous study on torrefaction of pine chips,15 the specific
grinding energy consumption was reduced from 237.7 kWh/t

for the raw samples to 102.6 kWh/t for the sample treated at
225 °C and to 52.0 kWh/t for the sample treated at 275 °C,
both with 30 min of holdup time. The specific grinding energy
consumption for coal is 7−36 kWh/t.15 Weakening of the
biomass cell wall due to decomposition of hemicellulose along
with depolymerization of cellulose and thermal softening of
lignin is the probable reason for improved grindability after
torrefaction.3

Figure 7 also shows that the energy savings associated with
size reduction increased with increasing torrefaction temper-
atures. The decrease in the energy consumption compared to
the raw samples ranged from 45 to 60% at 225 °C to 65−82%
at 275 °C for the experiments with a holdup time of 30 min.
The increase in the holdup time had a negligible effect on the
grinding energy at 225 °C. However, at 275 °C, the total
grinding energy decreases by approximately 82−88% for the
birch and 73−86% for the spruce with a holdup time of 60 min.
In addition, the feedstock size is observed to have an effect on
the grinding energy requirements, but the trend is not clear.
To evaluate the actual effect of torrefaction on the

grindability of these two feedstocks, both the grinding energy
and particle-size distribution should be taken into account.
Figures 8a,b and 9a,b show the particle-size distributions of all
of the samples tested. Overall, it is observed that there is a
noticeable increase in the percentage of fine particles (<180
μm) after torrefaction. This result suggests that the average
particle size decreases and the weight distribution shifts toward
particle sizes of <180 μm. The torrefied birch samples exhibited
up to a 120% increase in fine particles compared to the raw fuel.
For the spruce, an increase of 85% is obtained. The only
exceptions to this trend are the birch samples, particularly the
40 mm cubes treated at 225 °C. These samples contained more
particles in the 500 μm to 1 mm size range than the raw birch
samples, with a negligible effect of torrefaction on the fine
particle distribution. These observations again point to the
structural differences between the birch and spruce samples.
However, it is very interesting to note that these differences in
the particle-size distributions of the two feedstocks diminish
when the torrefaction temperature is increased to 275 °C. As
observed in Figures 8 and 9, the particle-size distributions of
the samples treated at 275 °C are not influenced by the other
parametric variations. This result suggests that, with an increase
in the torrefaction temperature, the uniformity of the products
is also improved regardless of the biomass type, which supports

Figure 7. Total grinding energy requirements for the raw and torrefied
samples, given in kWh per metric ton.

Figure 8. Particle-size distributions for the birch samples as a function of the torrefaction temperature and particle size: (a) 30 min of holdup time;
(b) 60 min of holdup time.
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the use of torrefied biomass in applications that require more
homogeneous fuels and smaller particles, such as entrained-flow
reactors or during cofiring with coal. In addition, among all of
the tested process parameters, the temperature has the largest
effect on the particle-size distributions of the samples. These
results are in agreement with similar studies.16,17

4. CONCLUSIONS

The unique approach of macro-TGA was used to evaluate the
torrefaction behavior of Norwegian birch and spruce. Data
obtained from macro-TGA are excellent indicators of the
relationship between the weight loss, process temperature, and
holdup time for an industrial-scale torrefaction process, and this
is confirmed by comparisons of the DTG curves from macro-
TGA and micro-TGA experiments. Birch and spruce were
selected as feedstocks because they are typical Norwegian wood
species and because they present an opportunity to compare
hardwood (birch) and softwood (spruce) behavior during
torrefaction and the qualities of their torrefied versions. The
biomass weight loss rate and volatile composition were
continuously measured in the macro-TGA reactor. The raw
and torrefied samples were characterized using proximate and
ultimate analyses. The main product distribution between the
liquid, gas, and solid fractions is also reported. In addition, the
biomass fuel properties such as hydrophobicity, grinding energy
requirements, and particle-size distribution were analyzed for all
samples. The results suggest that torrefaction is a promising
technique for improving the biomass performance for energy
utilization. During torrefaction, the main thermal decom-
position reactions involve the hemicellulose polymers, resulting
in improved fuel properties exhibited by the torrefied samples.
The main conclusions of this work are as follows:
(1) Compared to the raw samples, the composition of the

torrefied samples is closer to that of coal, with a higher carbon
content and a lower volatile matter content.
(2) The birch is found to be more reactive than the spruce.

The birch exhibited a higher devolatilization rate and a lower
solid yield than the spruce at all of the tested conditions.
(3) Of all of the process parameters, the torrefaction

temperature has the strongest effect on the biomass
composition, devolatilization rate, and solid yield.
(4) The hydrophobicity of the torrefied samples is much

higher than that of the raw samples. However, most of the
benefits for this property are achieved after torrefaction at 225

°C with 30 min of holdup time, and the effects from further
increasing the temperature or holdup time are limited.
(5) A 40−88% decrease in the total grinding energy is

observed for the torrefied samples of both feedstocks. Among
all of the tested process parameters, an increase in the
temperature had the largest effect on the grinding energy.
(6) Torrefaction considerably increases the percentage of

fine particles (<180 μm) in the particle-size distribution after
grinding. A uniform and similar particle-size distribution is
obtained for the samples treated at 275 °C
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ABSTRACT: The pyrolysis kinetics of Norwegian spruce and birch wood was studied to obtain information on the kinetics of
torrefaction. Thermogravimetry (TGA) was employed with nine different heating programs, including linear, stepwise,
modulated and constant reaction rate (CRR) experiments. The 18 experiments on the 2 feedstocks were evaluated
simultaneously via the method of least-squares. Part of the kinetic parameters could be assumed common for both woods without
a considerable worsening of the fit quality. This process results in better defined parameters and emphasizes the similarities
between the woods. Three pseudo-components were assumed. Two of them were described by distributed activation energy
models (DAEMs), while the decomposition of the cellulose pseudo-component was described by a self-accelerating kinetics. In
another approach, the three pseudo-components were described by n-order reactions. Both approaches resulted in nearly the
same fit quality, but the physical meaning of the model, based on three n-order reactions, was found to be problematic. The
reliability of the models was tested by checking how well the experiments with higher heating rates can be described by the
kinetic parameters obtained from the evaluation of a narrower subset of 10 experiments with slower heating. A table of data was
calculated that may provide guidance about the extent of devolatilization at various temperature−residence time values during
wood torrefaction.

1. INTRODUCTION

There is a growing interest in lignocellulosic biomass fuels and
raw materials, because of climate change problems. However,
the widespread use of biomass fuels is frequently hindered by
their unfavorable fuel characteristics, such as high moisture
content, poor grindability, low calorific value, and low bulk
density. Torrefaction is one of the potential solutions to these
problems, and it has gained research momentum as a biomass
pretreatment process in the last two decades. It results in
improved biomass fuel properties, such as reduced moisture
content, higher energy density, improved hydrophobic
behavior, and less energy consumption during grinding.1−3

Torrefaction is typically conducted at 200−300 °C, at
atmospheric pressure, in the absence of oxygen and with
particle heating rates below 50 °C/min.4 The lignocellulosic
biomass is partially decomposed during the torrefaction,
releasing condensable liquids and noncondensable gases into
the gas phase.5 Primarily, the xylan-containing hemicellulose
polymers decompose because they are the most reactive
polymer structures in biomass.6,7 The extractives of the biomass
also decompose while the cellulose and lignin are moderately
impacted during torrefaction, depending on the feedstock
composition and the torrefaction temperature.8

Many studies are available on the production and character-
ization of torrefaction products. However, fewer works address
the torrefaction kinetics.9−15 Most of these studies are based on
isothermal experiments. Prins et al.9 and Bates et al.11 employed
a one-component, two-step successive reaction model, based on

an earlier work of Di Blasi and Lanzetta16 on xylan kinetics. The
same model was used in a recent thermogravimetric analysis−
mass spectroscopy (TGA-MS) study by Shang et al.15 Peng et
al.12 used a one-component, one-step reaction model for
torrefaction with long residence time and a two-component,
one-step reaction model for torrefaction with short residence
time. Chen and Kuo10 studied the torrefaction of hemi-
celluloses, cellulose, and lignin separately, using a global one-
step reaction model for each. They described the torrefaction
process of a biomass material by superimposed kinetics of the
three components.
The torrefaction kinetics is part of a broader subject: the

pyrolysis kinetics of biomass materials. If a kinetic model
describes the biomass pyrolysis well, then it can obviously be
used for torrefaction kinetics. Moreover, such a model also can
describe the pyrolysis behavior of the torrefied wood, if the
experimental data used to determine the model parameters
include temperature programs where the heating to higher
temperatures is preceded by longer residence times in the
temperature domain of the torrefaction. This pathway was
followed in the present work. Such kinetic descriptions will be
presented which describe both the lower- and the higher-
temperature regions of the wood pyrolysis well. The work is
based on TGA experiments, because TGA is a high-precision
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method that provides well-defined conditions in the kinetic
regime. The highest heating rate of the study was 40 °C/min, at
which the decomposition terminated at ∼600 °C. We did not
employ isothermal kinetics, because the “isothermal” concept
involves substantial transient time, which is lost from the
evaluation of the thermogravimetric experiments. Although an
“isothermal” experiment is involved in the study, it is evaluated
together with the heat-up period. The information content of
an essentially nonisothermal series of experiments was used to
draw dependable kinetic information.
Because of the complex composition of biomass materials,

the conventional linearization techniques of the nonisothermal
kinetics are not suitable for the evaluation of the TGA
experiments. Therefore, the TGA experiments of biomass
materials are usually evaluated by the nonlinear method of
least-squares, assuming more than one reaction.17−19 Biomass
fuels and residues contain a wide variety of reactive species. The
assumption of a distribution in the reactivity of the
decomposing species frequently helps the kinetic evaluation
of the pyrolysis of complex organic samples.20 The distributed
activation energy models (DAEM) have been used for biomass
pyrolysis kinetics since 1985, when Avni et al. applied a DAEM
for the formation of volatiles from lignin.21 Several variants of
DAEMs are known; usually a Gaussian distribution of the
activation energy is employed. The use of DAEM in pyrolysis
research was subsequently extended to a wider range of
biomasses and materials derived from plants. Because of the
complexity of the investigated materials, the model was
expanded to simultaneous parallel reactions (pseudo-compo-
nents) that were described by separate DAEMs.22−25 The
increased number of unknown model parameters required the
least-squares evaluation of larger series of experiments with
linear and nonlinear temperature programs.22,26−29 The model
parameters obtained in this way allowed accurate prediction
outside the domain of the experimental conditions of the given

kinetic evaluations.22,26,28,29 The prediction tests helped to
confirm the reliability of the model.
The complex decomposition of the biomass pseudo-

components also can be approximated formally by n-order
(power-law) kinetics. Manya ̀ et al. proved that third-order
kinetics gives a better description for the lignin pseudo-
component of the biomass than the simpler first-order
kinetics.30 Conesa and Domene showed the applicability of
high reaction orders (up to 9.5) for the formal description of
the pseudo-components in biomass pyrolysis kinetics.19 The
aims of the present work included a careful comparison of the
DAEM and the n-order approaches on a particularly wide
domain of temperature−time functions.

2. SAMPLES AND METHODS

2.1. Samples. Birch and spruce samples were taken from
standard Norwegian construction boards. Table 1 shows the
proximate and ultimate analyses, as well as the higher heating
values (HHVs) of the samples. A recent work of Tapasvi et al.3

lists the corresponding data for the torrefied products prepared
from the same woods. Before the experiments, the samples
were cut into smaller pieces and ground in a cutting mill that
was equipped with a 1-mm bottom sieve. The samples were
sieved afterward, and the particles in the range of 63−125 μm
were used for the kinetic study.

2.2. Experimental Setup and Procedure. The experi-
ments were carried out by a Q5000 IR analyzer from TA
Instruments, which has a sensitivity of 0.1 μg. High-purity
nitrogen was used as purge gas with a gas flow of 100 mL/min.
The initial sample mass was 3−10 mg. The samples of both
woods were analyzed with nine different heating programs, as
shown in Figure 1. The linear T(t) experiments had heating
rates of 40, 20, 10, and 5 °C/min. The isothermal experiment
with a residence time of 30 min at 275 °C mimicked the T(t)
function of the actual torrefaction experiments used in earlier
works.3,31 In the modulated experiments, sinusoidal waves with

Table 1. Proximate and Ultimate Analyses of the Samples

Proximate Analysisa Ultimate Analysisa

sample volatile matter fixed carbon ash C H O N S HHVb

birch 89.4 10.4 0.2 48.62 6.34 44.90 0.09 <0.05 19.80
spruce 86.3 13.4 0.2 50.10 6.36 43.52 0.07 <0.05 20.45

a% (m/m), dry basis. bHigher heating value, MJ/kg, dry basis.

Figure 1. Temperature programs used in the thermogravimetric analysis (TGA) experiments. Note that the T(t) functions in the “constant reaction
rate” (CRR) experiments were determined by the instrument and differed for the two samples.
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amplitudes of 5 °C and a wavelength of 200 s were superposed
on a slow, 2 °C/min linear T(t) function. They served to
increase the rather limited information content of the linear
T(t) experiments. In the “constant reaction rate” (CRR)
experiments, the equipment regulated the heating of the
samples, so that the reaction rate would oscillate around a
preset limit.32 The CRR experiments aimed at getting very low
mass-loss rates in the entire domain of the reaction. The
highest mass loss rate was found to be 0.8 μg/s in these
experiments. This value corresponds to 0.8 × 10−4 s−1 after
normalization by the initial dry sample mass. The T(t) program
for a CRR experiment obviously depends on the behavior of
the given sample. Two stepwise temperature programs were
employed, which also served to increase the amount of
experimental information for the kinetic evaluation.22,26−29

Figure 2 shows a test on the employed sample masses. The
comparison of experiments with initial sample masses of 3 and

10 mg (solid and dashed curves) indicates that the enthalpy
change of the decomposition does not result in a considerable
thermal lag at the higher sample mass. Figure 2 also compares
the decomposition of the birch and spruce samples (red and
blue lines). One can see that the low-temperature partial peak,
at ∼280−300 °C, is more separated in the case of the birch
sample. This is a usual difference between hardwoods
(angiosperm trees) and conifers.33 The main peak, belonging
to the cellulose decomposition,33 is very similar; its peak
maximum occurs at ∼383 °C for both samples in Figure 2.
2.3. Kinetic Evaluation by the Method of Least-

Squares and Characterization of the Fit Quality. Fortran
95 and C++ programs were used for the numerical calculations
and for graphics handling, respectively. The employed
numerical methods have been described in detail earlier.27

The kinetic evaluation was based on the least-squares
evaluation of the −dmobs/dt curves, where mobs is the sample
mass normalized by the initial dry sample mass. The method
used for the determination of −dmobs/dt does not introduce
considerable systematic errors into the least-squares kinetic
evaluation of experimental results.34 The model was solved
numerically along the empirical temperature−time functions.
The minimization of the least-squares sum was carried out by a
direct search method, as described earlier.27 Such values were
searched for the unknown model parameters that minimized
the following objective function (of):
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Here, Nexper is the number of experiments evaluated together;
its value is 18 in the present work. Nk denotes the number of ti
time points on a given curve, and m is the sample mass
normalized by the initial dry sample mass. The division by hk
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serves to counterbalance the high magnitude differences.
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The normalization by the highest observed values in the
least-squares sum implicitly assumes that the relative precision
is roughly the same for the different experiments. This
assumption has proved to be useful in numerous works on
nonisothermal kinetics since 1993.35 A recent work31 deviated
from this rule, because the extremely low mass loss rates of the
CRR experiments (0.04−0.07 μg/s) corresponded to a worse
relative precision than the rest of the experiments. In the
present work, however, we did not have as low mass loss rates;
the peak maxima of the CRR experiments were >10 times
higher (0.8 μg/s), while most of the decomposition occurred at
mass loss rates of 0.5 μg/s in these experiments.
The obtained fit quality can be characterized separately for

each of the experiments evaluated together. For this purpose,
the relative deviation (reldev, %) will be used. The root-mean-
square (rms) difference between the observed and calculated
values is expressed as a percentage of the peak maximum. For
experiment k, we get
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The fit quality for a given group of experiments is
characterized by the rms value of the corresponding relative
deviations. The relative deviation of the 18 experiments,
evaluated together, can be expressed by eqs 1−3 as

=reldev of(%) 10018 (4)

Obviously, a smaller reldev18 value indicates a better fit.
2.4. Distributed Activation Energy Model (DAEM). As

outlined in the Introduction, a model of parallel reactions with
Gaussian activation energy distribution was chosen as a starting
point, because favorable experience has been obtained by this
type of modeling on similarly complex materials.22−29

According to this model, the sample is regarded as a sum of
M pseudo-components, where M is usually between 2 and 4.
Here, a pseudo-component is the totality of those decomposing
species that can be described by the same reaction kinetic
parameters in the given model. A pseudo-component may
involve a large number of different reacting species. The
reactivity differences are described by different activation
energy values. On a molecular level, each species in pseudo-
component j is assumed to undergo a first-order decay. The
corresponding rate constant (k) is supposed to be dependent

Figure 2. A test on the effect of sample mass and the comparison of
the birch and spruce decomposition at a heating rate of 20 °C/min.
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on the temperature via an Arrhenius formula. Let αj(t,E) be the
solution of the corresponding first-order kinetic equation at a
given E and T(t) with conditions αj(0,E) = 0 and αj(∞,E) = 1:

α
α= − −⎜ ⎟
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⎞
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t E
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d
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The distribution of the species differing by E within a given
pseudo-component is approximated by a Gaussian function
with a mean value Ej and width parameter (variation) σj. From
a computational point of view, the approximate solution of a
DAEM can simply be calculated from a discrete set of αj(t,E)
functions.36 The normalized sample mass and its derivative are
the linear combinations of αj(t) and dαj/dt, respectively:
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where a weight factor cj is equal to the amount of volatiles
formed from a unit mass of pseudo-component j.
This model will be called Model Variant I in the later

treatment. Its modifications will be denoted by Model Variants
II and III, as outlined in Sections 3.1 and 3.3. Finally, the
results were compared to a simpler, but more formal
approximation, in which the decomposition of the pseudo-
components was described by n-order reactions:
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This n-order model will be referred as Model Variant IV in the
treatment.

3. RESULTS AND DISCUSSION
3.1. Evaluation by Assuming Distributed Activation

Energy Model for the Pseudo-components. Based on
earlier experience with this model,26,28,29 and keeping in mind
the shape of the DTG curves at linear heating programs (as
shown by Figure 2), three pseudo-components were assumed.
The first mainly describes the decomposition of the hemi-
celluloses; the second corresponds to the cellulose decom-
position, and the third would be responsible for the long, flat
tailing that can be observed at linear heating rates for almost all
biomasses. The graphical representation of these pseudo-
components will be shown in sections 3.4 and 3.5. The width of
distribution of the second reaction converged to zero, which
means a first-order kinetics. (The Gaussian distribution is a
well-known Dirac delta function, hence, a zero width cuts out a
single reaction from the multitude of first-order reactions.)
Therefore, the results of Model Variant I will be referred as
“2DAEMs + 1st order cellulose” in the treatment. In Model
Variant II, the cellulose decomposition was described by an n-
order reaction. This approach resulted in much better fit
qualities, as shown in section 3.2. The reaction order, n2, was
∼0.6. Model Variant II will be referred as “2DAEMs + n-order
cellulose” in the treatment. A further modification of the
cellulose decomposition kinetics is presented in section 3.3.

3.2. Evaluation by Assuming Common Parameters. If
some of the model parameters are assumed to be common for
both samples, two benefits can be achieved:

(i) The common parameters indicate the similarities in the
kinetic behavior of the samples; and

(ii) A given parameter value is based on more experimental
information; hence, it is less dependent on the various
experimental uncertainties.

Figure 3. The partial peaks at 40 °C/min obtained by Evaluation 1 and Model Variant II. Curves shown in the figure: observed and calculated −dm/
dt (gray and black); peaks of pseudo-components 1, 2, and 3 (blue, red, and green).

Table 2. Fit Qualitiesa and Number of Unknown Parametersb at Four Model Variants, Assuming Various Groups of Common
Model Parameters

Model Variant

evaluation common parameters
I, 2 DAEMs +1st order

cellulose
II, 2 DAEMs + n-order

cellulose
III, 2 DAEMs + accelerating

cellulosec
IV, 3 n-order
reactionsd

1 none 4.78 (22) 2.31 (24) 2.06 (26) 2.19 (24)
2 E3 4.78 (21) 2.35 (23) 2.10 (25) 2.21 (23)
3 E3, σ3, or n3

e 4.78 (20) 2.37 (22) 2.14 (24) 2.21 (22)
4 E3, σ3, or n3, E2, n2, z2

e 4.80 (19) 2.46 (20) 2.25 (21) 2.32 (20)
5 all except the A and c

parameters
4.83 (17) 2.61 (18) 2.37 (19) 2.33 (18)

areldev18 (%) values are listed, which characterize the fit quality of the entire series of experiments, as shown by eqs 1−4. bThe total number of the
parameters determined by the method of least-squares for the two biomasses is indicated in parentheses. cSee section 3.3. dSee section 3.6. eσ3
belongs to model variants I, II, and III while n3 corresponds to model variant IV. Parameter z2 will be introduced in section 3.3 (z2 occurs only in
Model Variant III).
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The basic case is Evaluation 1, where none of the parameters
were assumed to be common. It turned out that the fit quality
depends only slightly on the exact choice of the values of E3 and
σ3; hence, these parameters could be forced to have identical
values for both woods with only a slight worsening of the fit
qualities. This behavior can be attributed to the ill-defined
nature of pseudo-component 3. As the green curve in Figure 3
shows, it is a wide and flat partial peak. A major part of this
peak overlaps with the temperature domains of the first and
second pseudo-components. A change of the curve in this
domain can be compensated by relatively small changes in the
parameters of pseudo-components 1 and 2. The situation was

similar in two recent works describing biomass pyrolysis by
DAEMs.28,29 The existence of various ill-definition problems
(compensation effects) is well-known in nonisothermal
reactions. A similar problem was reported by de Jong et al. in
2007 for DAEMs.37 The assumption of a common E3 for both
woods is denoted as Evaluation 2, while the assumption of
common E3 and σ3 for both woods is called Evaluation 3.
The decomposition of the cellulose component resulted in

similar E2 and n2 values for both woods. (The cellulose
decomposition will be treated in detail in later sections.)
Accordingly, these parameters could also be forced to have
common values (Evaluation 4). Finally, we mention that the

Figure 4. f(α2) functions (a) and f(α2)/(1 − α2) ratios (b) obtained in Evaluation 3 by assuming self-accelerating kinetics (Model Variant III, solid
lines) and n-order kinetics (Model Variant II, dashed lines) for the decomposition of the cellulose pseudo-component.

Figure 5. Results obtained for the birch experiments by Evaluation 3 and Model Variant III. Curves shown in the figure: observed and calculated
−dm/dt (gray and black bold lines); peaks of pseudo-components 1, 2, and 3 (blue, red and green lines). The temperature is indicated by a thin gray
line in the experiments with nonlinear T(t).
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kinetics of the hemicellulose pyrolysis could also be described
by identical E1 and σ1 parameters with some loss in the fit
quality (Evaluation 5). Table 2 shows the fit quality and the
number of unknown parameters at the various model variants
and evaluation strategies. Model Variants III and IV will be
discussed in later sections.
3.3. Kinetics of the Cellulose Decomposition. In an

inert atmosphere, under the conditions of thermal analysis, the
cellulose decomposition is usually approximated by first-order
kinetics. In the present work, n-order kinetics with n2 ≈ 0.6
gave considerable better fit quality than the first-order kinetics,
as mentioned previously. More-complex models are also
employed in the literature. Among others, the use of self-
accelerating kinetics has been suggested by Conesa et al.38 and
Capart et al.39 In the presence of oxygen, the cellulose
decomposition was also found to be a self-accelerating reaction
in recent studies, based on evaluation strategies similar to the
present work.40,31 The self-accelerating reactions can typically
be described by an equation of type

α
α= −⎜ ⎟⎛
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d
d
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2

2
2
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where f is a function capable of expressing self-acceleration. The
mathematical unambiguity requires a normalization for f(α2),
because f functions differing only in constant multipliers are
equivalent in eq 8 (parameter A2 can compensate any
multipliers of f). As a normalization, we require that the
maximum of f be 1. f(α2) is approximated formally by

α α α≅ − +f z( ) normfactor(1 ) ( )n
2 2 2 2

2 (9)

where n2 and z2 are model parameters, and normfactor ensures
that max f = 1. Parameters n2 and z2 do not have separate
physical meanings; together, however, they determine the shape
of f and, in this way, the self-accelerating capabilities of the
model. Equation 9 is a slightly simplified version of an earlier
approximation that has been applied to different self-
accelerating reactions.40,41 In the present work, f(α2) reached
its maximum at α2 values in the range of 0.05−0.15. The results
obtained by the use of eq 9 are indicated as model variant III in
the treatment. Table 2 indicates that the use of eq 9 instead of
n-order kinetics decreases reldev18 by 0.21−0.25. This gain in
the fit quality is obtained by two extra parameter values in
Evaluations 1−3 (one z2 value for birch and another z2 value
for spruce) and one extra parameter value in Evaluations 4 and
5 (a common z2 for both woods). We cannot determine the
statistical significance of this decrease because the experimental
errors of the thermal analysis data are neither independent nor
random. Nevertheless, the observed changes in reldev18 are
greater than the other changes in reldev18 within Model Variant
II. Accordingly, the results of Model Variant III were selected
for a detailed presentation in the next section.
Figure 4a compares the f(α2) functions obtained by eq 9

(solid lines) to those obtained by n-order kinetics [f(α2) = (1 −
α2)

n
2, dashed lines].

The amount of the available cellulose is proportional to 1 −
α2; hence, the reaction rate of a unit mass of cellulose (i.e., the

Figure 6. Results obtained for the spruce experiments by Evaluation 3 and Model Variant III. (See Figure 5 for the notations.)
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intrinsic reactivity of the sample) is proportional to f(α2)/(1 −
α2). When this quantity increases with α2, as shown in Figure
4b, the intrinsic reactivity of the sample is increasing at constant
T. f(α2)/(1 − α2) is obviously increasing with α2 if f(α2) = (1 −
α2)

n
2 and n2 < 1. When f(α2) = (1 − α2)

n
2 is plotted as a

function of α2, the curve has a slight concave curvature, as the
dashed lines in Figure 4a show. However, the n-order kinetics
has only a limited ability to express kinetics with increasing
intrinsic reactivity.
3.4. The Results of Evaluation 3, Assuming Model

Variant III. As outlined above, common E3 and σ3 values were
assumed for both woods in Evaluation 3, because of the ill-
defined nature of these parameters, while the decomposition of
the cellulose pseudo-components was described by eq 9 in
Model Variant III. Figures 5 and 6 illustrate the corresponding
results for the birch and spruce experiments, respectively. These
figures show the variety of the experiments demonstrating that
the present study is based on a wider range of experiments than
its predecessors.28,29 The scaling of the vertical axes is
particularly noteworthy. The peak maximum of −dm/dt at
T(t) program 1 (40 °C/min) is almost a hundred times higher
than at T(t) program 7 (CRR).
Figures 5 and 6 contain the observed and calculated −dm/dt

curves (gray and black bold lines); the contributions of the
three pseudo-components to the calculated −dm/dt (blue, red,
and green lines), and the nonisothermal T(t) functions, too,
when appropriate (thin green line). The relative deviation (rms
difference between the observed and calculated points) is also
displayed. These values are ∼1% and ∼2%, except in the CRR
experiments, where the relative deviation is 5.1% and 4.2%.
However, the height of the CRR curves is very low; hence, the
higher relative deviations correspond to very low deviations
between the unnormalized mass loss rate data: 0.04 and 0.03
μg/s for the birch and spruce samples, respectively. It is
possible that these low deviations are near the experimental
uncertainty of the CRR experiments.
The obtained kinetic parameters are listed in Table 3. For

comparison, we have listed the corresponding values from two
recent works on agricultural residues that employed similar
kinetic models, as well as a least-squares evaluation of
experiments with linear and nonlinear T(t).28,29 In this table,
E1 and E3 are the means of the corresponding activation energy
distributions. The cellulose kinetics in the present work,
however, differs from its predecessors: E2 denotes an activation
energy in the columns of “birch” and “spruce”, while it is the
mean of an activation energy distribution in the columns
corresponding to the older works.
The kinetic parameters of the birch and spruce samples are

close to each other. The difference between the two E2 values is
only 5 kJ/mol. The differences in the Aj values follow the
differences in the Ej values due to the well-known
compensation effect between E and A. The n2 and z2 values
determine similar f(α2) functions, as shown in Figure 4. This
explains why the assumption of common E2, n2, and z2 values
resulted only in a slight increase of reldev18 in Evaluation 4.
The Ej, σ1, and σ3 values obtained in the present work are

comparable to the corresponding values from earlier work on
straws and corncobs. The listed differences cannot be regarded
as being high if we keep in mind the high ash content of the
agricultural residues (1.5%−16%, vs 0.2% in the present wood
samples); the well-known differences in the composition of the
hemicelluloses and lignin; the different model for the

description of the cellulose decomposition; and the much
wider range of T(t) functions in the present work.

3.5. Prediction Tests. A usable model should predict
approximately the behavior of the samples outside of the
temperature programs at which the model parameters were
determined. To test this feature, a narrower subset of the
experiments can be evaluated, and, on this basis, predictions can
be made for those experiments which were not included into
the evaluation.22,26,28,29 In the present work, the experiments
with temperature programs 4−9 were selected as a subset and
evaluated separately. Figures 5 and 6 show that these
experiments produced the lowest decomposition rates in our
dataset; the peaks of their −dm/dt curves, (−dm/dt)peak, were
in the range of (0.1−1) × 10−3 s−1. The evaluation of these 10
slow experiments by Model Variant III formed the basis for the
prediction of experiments at temperature programs 1−3
(heating rates of 10, 20, and 40 °C/min) that had much
higher decomposition rates: the peak of their −dm/dt were in
the range of (2−8) × 10−3 s−1. It may be interesting to note
that Evaluations 1−5 provided almost the same fit qualities in
the prediction tests. Figure 7 displays the results of these
prediction tests by Evaluation 3. As Figure 3 indicates, the fit
quality depends on the range of the extrapolations: it is better
at 10 °C [when (−dm/dt)peak ≈ 2 × 10−3 s−1] than at 40 °C/
min [when (−dm/dt)peak ≈ (7−8) × 10−3 s−1]. Nevertheless,
the simulated curves approximate reasonably the shape and
position of the experimental −dm/dt curves in all cases.

3.6. Modeling by n-order Kinetics. The n-order kinetics
has the same number of model parameters as the DAEM with
Gaussian distribution, while its numerical solution is simpler
and faster. Its solution is also easier than that of eqs 8 and 9. To
test this approach, all evaluations were carried out by a model

Table 3. Parameters Obtained in Evaluation 3 for Model
Variant III and Their Comparison with Earlier Resultsa

sample birch spruce
four agricultural

residuesb
two

corncobsc

E1/kJ mol−1 152 169 177 180
E2/kJ mol−1 174 169 185 187
E3/kJ mol−1 230 = 194 225

log10 A1/s
−1 11.58 12.62 ⟨14.43⟩ ⟨14.89⟩

log10 A2/s
−1 11.98 11.55 ⟨13.77⟩ 14.11

log10 A3/s
−1 16.33 16.11 ⟨14.23⟩ 16.25

σ1/kJ mol−1 6.0 8.6 4.3 3.9
σ2/kJ mol−1 n.a. n.a. 1.9 0.2
σ3/kJ mol−1 34.1 = 34.5 31.3

n2 0.80 0.73 n.a. n.a.

z2 1.04 1.26 n.a. n.a.

c1 0.32 0.34 ⟨0.10⟩ ⟨0.22⟩
c2 0.45 0.34 ⟨0.33⟩ ⟨0.32⟩
c3 0.12 0.17 ⟨0.29⟩ ⟨0.18⟩
aCharacter ‘=’ indicates parameter values that are identical for both
woods. Terms shown in angled brackets (⟨·⟩) indicate averages. The
term “n.a.” denotes “not applicable. bValues obtained for corn stalk,
rice husk, sorghum straw, and wheat straw were obtained from the
work of Vaŕhegyi et al.28 cValues obtained for two corncob samples
from different climates by Trninic ́ et al.29
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in which the decomposition of the pseudo-components was
described by n-order reactions (see eq 7 in section 2.4).
The results are shown as Model Variant IV in Table 2. Model

Variant IV provided fit qualities that were almost as good as
those for Model Variant III, and the prediction tests outlined in
section 3.5 also gave similar relative deviations. Figure 8 shows
the results obtained for the 40 °C/min experiments in the
evaluation and prediction tests by the model of n-order
reactions, using the assumptions of Evaluation 3.
The most striking difference between Figure 8 and the

corresponding parts of Figures 5−7 is the peculiar shape of the

curve belonging to the third pseudo-component (green line).
This problem appeared in all five evaluations with the n-order
model. In Model Variants I−III, the third pseudo-component
could be associated with the lignin decomposition and, at
higher temperatures, with the slow carbonization of the char. In
the present case, however, the decomposition of the hemi-
celluloses is also described mainly by pseudo-component 3, as
the peak maxima at ∼320−340 °C of the green curves indicate
in Figure 8. Accordingly, pseudo-component 3 describes most
of the decomposition of the hemicelluloses plus the lignin
pyrolysis plus the slow carbonization of the chars. This is a less

Figure 7. Predicting the faster experiments of the study using parameters obtained from the evaluation of 10 slower experiments in Evaluation 3 by
Model Variant III. (See Figure 5 for the notations.)

Figure 8. The 40 °C/min experiments in the evaluation and prediction tests by Model Variant IV (n-order kinetics) in Evaluation 3. (See Figure 5
for the notations.)
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clear reflection of the processes in the biomass pyrolysis than
the ones expressed by the other model variants of the present
study. Besides, the n-order kinetics describes the complexity of
the biomass materials in a rather formal way, while a DAEM
gives a simplified, but clear picture on the different reactivities
of the different biomass species. The faster numerical
calculation of the n-order kinetics has little importance
nowadays, keeping in mind the low price and high speed of
the modern desktop computers.
The corresponding kinetic parameters are listed in Table 4. A

recent work on corncobs29 and the work of Conesa and

Domene19 were used for comparison. The latter work studied
five lignocellulosic biomasses: a Mediterranean sort of grass,
wheat straw, an oceanic seaweed, and wastes from urban and
agricultural pruning. There are several works in the biomass
literature that describe the decomposition kinetics of the
pseudo-components with n-order reactions. The peculiarity of
the work of Conesa and Domene was the allowing of high
formal reaction order values. This line was followed later by
Trninic ́ et al., as well as in the present study. If the reaction
order has a lower upper limit, e.g., it is forced to be less than 3,
then more pseudo-components are needed for a given fit
quality than in the case of DAEM reactions.26 The improve-
ment is connected to the long tailing of a peak at high n that
can formally approximate the slow, flat tailing sections of the
DTG curves of lignocellulosic materials.
The activation energy values for the cellulose decomposition

(E2) are similar in Tables 3 and 4, as discussed in the next
section. The other parameters are rather diverse. The
parameters belonging to the birch and spruce samples are not
far from each other in Table 4, but differ very much from the
values reported for other biomasses as well as for the values in
Table 3. The pre-exponential factors follow the activation
energies, as usual. The very low pre-exponential factors for the
cellulose decomposition in the article of Conesa and Domene
appear to be misprints.

3.7. Notes on the Kinetics of the Cellulose Decom-
position in the Biomass. The common element in Tables 3
and 4 is the similarities in the activation energy values of the
cellulose decomposition (E2). The E2 values for the birch and
spruce samples differ only by 1 kJ/mol between Tables 3 and 4.
The cellulose activation energies taken from earlier works are
also similar in Tables 3 and 4, although their range (185−189
kJ/mol) is higher than that obtained in the present study
(169−175 kJ/mol). Nevertheless, these differences are not
high; the lowest and highest E2 values in Tables 3 and 4 differ
by only 11%. The activation energies reported in the literature
are obviously much more diverse, but we selected, for
comparison only, such works that employed models and
evaluations similar to the present study.
In the present work, 24 E2 values were obtained in

Evaluations 1−3 by Model Variants I−IV: 12 for birch and
12 for spruce. The birch values varied between 174.0 kJ/mol
and 175.6 kJ/mol, while the spruce values were between 169.1
kJ/mol and 170.7 kJ/mol. Evaluations 4 and 5 by Model
Variants I−IV yielded 8 E2 values that were common for the
birch and spruce samples; these values fell between 171.6 kJ/
mol and 172.7 kJ/mol. Keeping in mind the differences in the
modeling and the employed assumptions, the particularly
narrow ranges of the E2 values indicate that the experiments of
the present work strongly determine this variable. We believe
that this is connected to the particularly wide range of the
employed T(t) programs that resulted in the peak maxima of
the slowest and fastest experiments differing by a factor of
∼100. The earlier works quoted in Tables 3 and 4 reported E2
values ca. 10% higher, as noted above. It is possible that this
difference is associated with their narrower range of T(t)
programs.

3.8. Relevance to Torrefaction. As outlined in the
Introduction, the aim of the present model was to describe
the thermal decomposition both in the temperature domain of
the torrefaction and at higher temperatures. The kinetics of the
wood drying was not studied, because most of the drying
occurs before the start of the heating in the given apparatus,
while the air is flushed out from the furnace.
One can calculate predicted values for characteristics of the

torrefaction at any T(t) function by the models presented:

(i) The normalized mass loss after the drying (1 − m(t));
(ii) The normalized mass loss due to the cellulose

decomposition (c2α2(t));
(iii) The reacted fraction of the cellulose (0 ≤ α2(t) ≤ 1);
(iv) The normalized mass loss due to the noncellulosic parts

of the sample, which is the difference of 1 − m(t) and
c2α2(t).

The term “normalized” means a division with the mass
observed after the drying, as in the other parts of the article.
Table 5 lists models (i), (ii), and (iii) from the quantities listed
above at various temperature−time values. For this table, a
heating rate of 10 °C/min and a subsequent isothermal section
was assumed. The calculations were based on Model Variant
III, using the parameters of Table 3.
The mass loss is higher for birch than for spruce at all

temperature−time pairs of Table 5 (although the truncation to
two decimals hides this at the lowest values). This can be due
to the higher hemicellulose content of the birch wood.3 As the
data indicate, the devolatilization is negligible at 200 °C. One
can expect here only the decomposition of a small amount of
thermally instable species, which may be enough to hinder the

Table 4. Parameters Obtained in Evaluation 3 for Model
Variant IV and Their Comparison with Earlier Resultsa

sample birch spruce two corncobsb five biomassesc

E1/kJ mol
−1 84 111 173 ⟨195⟩

E2/kJ mol
−1 175 170 186 ⟨189⟩

E3/kJ mol
−1 172 = 261 ⟨157⟩

log10 A1/s
−1 5.54 8.70 ⟨14.32⟩ ⟨21.07⟩

log10 A2/s
−1 12.15 11.76 14.00 ⟨7.04⟩

log10 A3/s
−1 13.63 13.16 19.52 ⟨18.27⟩

n1 1.07 2.07 1.90 ⟨3.01⟩
n2 0.58 0.61 0.94 ⟨1.34⟩
n3 4.71 = 10.38 ⟨6.43⟩

c1 0.06 0.05 0.27 n.a.
c2 0.42 0.37 0.30 n.a.
c3 0.41 0.44 0.16 n.a.

aThe equals sign character (=) indicates parameter values that are
identical for both woods. Brackets ⟨·⟩ indicate averages. The term
“n.a.” means not applicable. bValues obtained for two corncob samples
from different climates by Trninic ́ et al.29 cAverage values calculated
from the results of Conesa and Domene on five lignocellulosic biomass
materials.19
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biological decay (rotting) but cannot increase the energy
density of the obtained fuels. It may be interesting to observe
that a 60-min decomposition at 250 °C and a 10-min
decomposition at 275 °C result in almost the same level of
devolatilization for both woods. On the other hand, a
prolonged heating at 275 °C leads to a considerable loss of
the cellulose component, which is not desired during
torrefaction.
The comparison of the values in Table 5 with actual

torrefaction data is left for a future work. Note that the
temperature values in the present case were much closer to the
actual temperatures than in a macro furnace or in an industrial
reactor. Accordingly, care is needed for such a comparison.

4. CONCLUSIONS

(1) The thermal decomposition of a deciduous and an
evergreen wood species were studied at slow heating
programs, under well-defined conditions. Nine TGA
experiments were carried out for each sample with
different temperature programs. Highly different temper-
ature programs were selected to increase the information
content available for the modeling. The ratio of the
highest and lowest peak maxima was ∼100 in the set of
the experiments used for the evaluation. In this way, the
models obtained described the experiments under a wide
range of experimental conditions.

(2) Several model variants were tested. The best perform-
ance was achieved when the cellulose decomposition was
described by a submodel that can mimic self-acceleration
tendencies. The decomposition of the noncellulosic parts
of the biomass was described by two reactions assuming
a distributed activation energy model in this case. The
complexity of the applied model reflects the complexity
of the studied materials.

(3) The model employed contains 13 unknown parameters
for a given biomass. Part of the kinetic parameters could
be assumed common for the samples without a
substantial worsening of the fit quality. This approach
increased the average experimental information for an
unknown parameter and revealed the similarities in the
behavior of the different samples. In the preferred
evaluation strategy of the paper, the number of model
parameters was similar to the number of the evaluated
differential thermogravimetry (DTG) curves.

(4) When each partial reaction was described by n-order
kinetics, similar fit qualities were obtained. However, the
n-order kinetics describes the complexity of the biomass
materials in a rather formal way.

(5) The results were checked by prediction tests. In these
tests, 10, 20, and 40 °C/min experiments were simulated
by the model parameters obtained from the evaluation of
10 experiments with lower reaction rates.

(6) A table was calculated by the preferred model variant that
may provide guidance about the extent of devolatilization
at various temperature−residence time values during
wood torrefaction.
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Table 5. Simulated Characteristics at Various Isothermal Temperaturesa,b,c

0 min 10 min 30 min 60 min 120 min

birch spruce birch spruce birch spruce birch spruce birch spruce

200 °C
1 − m(t) 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.02 0.05 0.03
c2α2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

225 °C
1 − m(t) 0.01 0.01 0.03 0.03 0.07 0.04 0.10 0.06 0.14 0.09
c2α2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

250 °C
1 − m(t) 0.03 0.02 0.10 0.07 0.17 0.11 0.22 0.15 0.27 0.20
c2α2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01
α2(t) 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.03

275 °C
1 − m(t) 0.08 0.06 0.22 0.16 0.30 0.24 0.35 0.30 0.42 0.38
c2α2(t) 0 0.00 0.01 0.01 0.02 0.02 0.04 0.04 0.08 0.07
α2(t) 0 0.00 0.02 0.02 0.04 0.05 0.08 0.10 0.17 0.20

300 °C
1 − m(t) 0.18 0.14 0.35 0.30 0.45 0.42 0.56 0.53 0.71 0.67
c2α2(t) 0.00 0.00 0.04 0.03 0.10 0.09 0.20 0.17 0.34 0.28
α2(t) 0.01 0.01 0.08 0.10 0.23 0.26 0.44 0.49 0.76 0.83

aModel Variant III was used for prediction with the parameters of Table 3. bIsothermal torrefaction was assumed after heating at a rate of 10 °C/
min until the desired temperature is reached. The time values in the header line belong to the isothermal section. cThree predicted torrefaction
characteristics were tabulated at each temperature: the normalized mass loss [1 − m(t)]; the normalized mass loss due to cellulose decomposition
[c2α2(t)]; and the reacted fraction of the cellulose [α2(t)].
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combustion plants”). STOP is also a part of the research center
CenBio (Bioenergy Innovation Centre).

■ NOMENCLATURE
α = reacted fraction of a component or pseudo-component
(dimensionless)
σ = width parameter (variance) of Gaussian distribution (kJ/
mol)
A = pre-exponential factor (s−1)
E = activation energy (kJ/mol) or the mean of an activation
energy distribution (kJ/mol)
f = empirical function (eq 9) expressing the change of the
reactivity as the reactions proceed (dimensionless)
hk = height of an experimental −dm/dt curve (s−1)
m = mass of the sample normalized by the initial dry sample
mass (dimensionless)
n = reaction order (dimensionless)
of = objective function minimized in the least-squares
evaluation (dimensionless)
Nexper = number of experiments evaluated together by the
method of least-squares
Nk = number of evaluated data on the kth experimental curve
R = gas constant; R = 8.3143 × 10−3 kJ mol−1 K−1

reldev = deviation between the observed and calculated data,
expressed as a percentage of the corresponding peak height
reldev18 = root-mean-square of the reldev values of 18
experiments
rms = root-mean-square
t = time (s)
T = temperature (°C, K)
z = formal parameter in eq 9 (dimensionless)

Subscripts
i = digitized point on an experimental curve
j = pseudo-component
k = experiment
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Dhruv Tapasvi,† Roger Khalil,‡ Gab́or Vaŕhegyi,*,§ Øyvind Skreiberg,‡ Khanh-Quang Tran,†

and Morten Grønli†

†Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim,
Norway
‡SINTEF Energy Research, Post Office Box 4761, Sluppen, NO-7465 Trondheim, Norway
§Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences,
Post Office Box 17, Budapest 1525, Hungary

*S Supporting Information

ABSTRACT: The combustion of four torrefied wood samples and their feedstocks (birch and spruce) was studied at slow
heating programs, under well-defined conditions by thermogravimetry (TGA). Particularly low sample masses were employed to
avoid the self-heating of the samples because of the huge reaction heat of the combustion. Linear, modulated, and constant
reaction rate (CRR) temperature programs were employed in the TGA experiments in gas flows of 5 and 20% O2. In this way,
the kinetics was based on a wide range of experimental conditions. The ratio of the highest and lowest peak maxima was around
50 in the experiments used for the kinetic evaluation. A recent kinetic model by Vaŕhegyi et al. (Vaŕhegyi, G.; Sebestyeń, Z.;
Czeǵeńy, Z.; Lezsovits, F.; Könczöl, S. Energy Fuels 2012, 26, 1323−1335) was employed with modifications. This model consists
of two devolatilization reactions and a successive char burnoff reaction. The cellulose decomposition in the presence of oxygen
has a self-accelerating (autocatalytic) kinetics. The decomposition of the non-cellulosic parts of the biomass was described by a
distributed activation model. The char burnoff was approximated by power-law (n-order) kinetics. Each of these reactions has its
own dependence upon the oxygen concentration that was expressed by power-law kinetics too. The complexity of the applied
model reflects the complexity of the studied materials. The model contained 15 unknown parameters for a given biomass. Part of
these parameters could be assumed common for the six samples without a substantial worsening of the fit quality. This approach
increased the average experimental information for an unknown parameter by a factor of 2 and revealed the similarities in the
behavior of the different samples.

1. INTRODUCTION

Biomass has been widely recognized as a vital renewable energy
source to meet current as well as future energy demands of the
world. The extended use of biomass will help to reduce the green-
house gas emissions and also extend the lifetime of fossil fuel
resources. To promote biomass usage, various countries have or are
trying to establish promising bioenergy policies. The Scandinavian
countries take particular efforts in this direction. Sweden, for
example, has set up a goal that 40% of its primary energy supply
should come from biomass by 2020.1 Similarly, Norway formu-
lated a goal of 30% reduction in greenhouse gas emissions
before 2020, and certainly, extended biomass usage will help
achieve this target.2

However, the widespread use of biomass is faced with many
challenges linked to the general properties of biomass, such as
high moisture content, poor grindability, low calorific value, and
low bulk density. Torrefaction is one of the potential solutions
to these problems, and it has gained a lot of research momentum
as a biomass pretreatment process in the last 2 decades.3,4 It is
essentially a mild pyrolysis process carried out at a temperature
between 200 and 300 °C in an inert atmosphere. During torre-
faction, the fuel retains most of its energy content. Torrefaction
affects mostly the hemicellulose fraction of biomass, but as the
process temperature is increased, other biomass components,
such as cellulose, lignin, and extractives, are also decomposed.
Torrefaction improves the properties of the biomass fuels;

among others, it reduces the moisture content, increases the
energy density and heating value, changes the hygroscopic
behavior of the raw biomass into a hydrophobic behavior, and
enhances grindability.3−5

Several torrefaction studies are available in the literature.
Most of these studies have focused on characterizing torrefied
products and evaluating product yields and product properties,
such as grindability, particle size distribution, and hydrophobi-
city, from various biomass materials, such as woods, agricultural
residues, and energy crops.3−5 However, because the eventual
use of biomass fuel is use in thermochemical processes, such as
combustion, gasification, and pyrolysis, the actual test of torre-
faction is how it affects the behavior of biomass in these pro-
cesses. Thus far, only a few studies have attempted to analyze
the reactivity of torrefied products in these processes, and only
limited information is available in this field.6−14 For combustion,
being the main process option for the use of biomass, the
understanding of the behavior of torrefied biomass under oxida-
tive conditions should be a priority. The present work aims at
studying the combustion process under kinetic control and
providing a background for future kinetic submodels. Because
thermogravimetric analysis (TGA) is a proven method to collect
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basic information on the partial processes and reaction kinetics
of the thermal degradation of biomass materials, it was chosen
for this study. With its high precision and well-controlled ex-
perimental conditions, TGA is a useful tool for studying devol-
atilization and combustion in the kinetic regime.15,16 However,
TGA can be employed only at relatively low heating rates
because the true temperature of the samples becomes unknown
at high heating rates. Accordingly, the results of the TGA
studies cannot be used directly in the modeling of industrial
combustors; they serve as basic research to direct further
development in the field.
Among the previous studies, Bridgeman et al.,13 Arias et al.,14

Jones et al.,10 and Broström et al.12 have used TGA to evaluate
the combustion reactivity of torrefied samples. No kinetic ana-
lysis was performed by Bridgeman et al.13 Arias et al.14 divided
the TGA experiments into low- and high-temperature stages
(below and above ca. 400 °C, respectively) and described both
stages by first-order kinetics. Jones et al.10 performed TGA ex-
periments on chars that were prepared from torrefied biomass
samples and applied a first-order reaction model to deduce
kinetic parameters for the char reactivity under oxidative con-
ditions. They observed that the chars from the torrefied
samples had lower reactivity than the chars produced from raw
samples, but they had higher reactivity than the chars produced
from coal. In a later study, Broström et al.12 provided a detailed
kinetic model for the devolatilization and oxidative kinetics of
torrefied Norwegian spruce wood. For the devolatilization, mea-
sured curves were predicted by three parallel reaction mechanisms
corresponding approximately to the three main wood compo-
nents: hemicellulose, cellulose, and lignin. In the presence of
oxygen, two additional reactions for the char devolatilization and
combustion were included.
The present work continues the efforts of Broström et al.12

to establish a detailed model for the oxidation kinetics with the
following extensions: (i) Broström et al.12 used TGA experi-
ments with heating rates of 2.5, 5, and 10 °C/min at one
oxygen concentration on samples prepared from one feedstock
(spruce). The TGA experiments of the present work cover a
wider set of experimental conditions, as outlined in section 2.2,
and the study is based on two feedstocks: a deciduous and an
evergreen species (birch and spruce). The presented kinetic
model is based on the least-squares evaluation of 36 experiments.
(ii) Broström et al.12 employed a kinetic model built from
n-order independent parallel reactions. In the present work, a
more complex model is used,17 which tries to reflect better the
real complexity of the biomass combustion. The model itself is
outlined in sections 3.2 and 3.3. We believe that the fast devel-
opment of both software and hardware will make it possible to
employ the more complex models too in practical calculations.

2. MATERIALS AND METHODS
2.1. Sample Characterization and Preparation. The samples

were composed of two wood types: birch and spruce, which are
commonly available in Norway. Sample particle sizes of 10 mm cubes
from both feedstocks were torrefied in a batch reactor (macro-TGA).
The details of the torrefaction process were presented in a recent
work.5 The samples were heated at a heating rate of 5 °C/min up to
either 225 or 275 °C. Samples with a 60 min holdup time at the
torrefaction temperature were used in this kinetic study. Fine grinding
of the torrefied samples was performed in a cutting mill equipped with
1 mm bottom sieve. The powder samples were sieved afterward with a
series of sieves with mesh sizes of 1 mm, 500 μm, 180 μm, 125 μm,
and 63 μm in a vibrating sieving machine. The particles belonging to
the size 63−125 μm were used for the kinetic study. In all, six samples

were prepared for this study, four torrefied samples and two raw fuels.
The torrefaction conditions under which the samples were generated,
along with the naming convention for these, are presented in Table 1.
Table 2 shows the ultimate and proximate analyses of the samples.

2.2. Experimental Setup and Procedure. The reactivity studies
were conducted in a Q5000 IR analyzer from TA Instruments, which
has a sensitivity of 0.1 μg. Oxygen−nitrogen mixtures at 5 and 20%
(v/v) were used as purge gas with a gas flow of 100 mL/min. Sample
masses of 0.5 mg or less were used to avoid self-heating of the samples
because of the high reaction heat. Each sample was analyzed with
three different heating programs, as shown in Figure 1: (i) 10 °C/min
linear T(t), (ii) modulated T(t), where sinus waves with 5 °C ampli-
tudes and 200 s wavelength were superposed on a slow, 2 °C/min
linear, and (iii) “constant reaction rate” (CRR) T(t), when the
employed equipment regulated the heating of the samples, so that
the reaction rate would oscillate around a preset limit.18 The CRR
experiments aimed at getting very low mass-loss rates in the whole
domain of the reaction. The differential thermogravimetry (DTG)
peak maxima of the CRR experiments varied between 0.04 and
0.07 μg/s. This interval corresponds to rates between 0.8 × 10−4 and
1.3 × 10−4 s−1 after normalization by the initial dry sample mass. The
T(t) program for a CRR experiment obviously depends upon the
behavior of the given sample. Figure 1 shows four of the CRR T(t)
programs of the present study.

The modulated and CRR temperature programs were employed to
increase the information content of the data, as outlined in earlier
work.19,20 From one point of view, the linear T(t) experiments with
different heating rates are rather similar to each other; hence, their
information content is limited.19 On the other hand, an acceptable
kinetic model should describe well the experiments at any T(t), in-
cluding the highly irregular CRR temperature programs too.20

2.3. Numerical Methods. Fortran 95 and C++ programs were
employed for the numerical calculations and for graphics handling,
respectively. The employed numerical methods have been described in
details earlier.21 The kinetic evaluation was based on the least-squares
evaluation of the −dmobs/dt curves, where mobs is the sample mass
normalized by the initial dry sample mass. The method22 used for the
determination of −dmobs/dt does not introduce considerable system-
atic errors into the least-squares kinetic evaluation of experimental
results.23 The model was solved numerically along the empirical
temperature−time functions. The model parameters were determined
by nonlinear least-squares minimization, as outlined in sections 3.1 and
3.4. The calculations were carried out on a desktop computer equipped
with a 3.4 GHz Intel Core i7 processor, under Windows. The run times
varied between 10 min and 10 h, depending upon the initial guess of the
parameters in the nonlinear least-squares minimization. The calculation of
one theoretical DTG curve by the model outlined in section 3.3 requires
23 μs on average without parallel computation. With the use of the four
cores of the processor, one can calculate one million theoretical curves in
96 min.

3. RESULTS AND DISCUSSION
3.1. Evaluation by the Method of Least Squares and

Characterization of the Fit Quality. The kinetic evaluation
is carried out by the method of least squares. Such values are
searched for the unknown model parameters that minimize the

Table 1. Samples Used for the Kinetic Modeling

name sample torrefaction temperature (°C)

B -- birch none
B225 birch 225
B275 birch 275
S -- spruce none
S225 spruce 225
S275 spruce 275
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following objective function:
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Here, Nexper is the number of experiments evaluated together;
its value in the present work is either 6 or 36, as outlined later.
The division by hk

2 serves to counterbalance the high magni-
tude differences. Traditionally, hk is the highest observed value
of the given experiment.24 The normalization by the highest
observed values in the least-squares sum assumes implicitly that
the relative precision is roughly the same for the different ex-
periments. This assumption has proven to be useful in numerous
works on non-isothermal kinetics since 1993.24 Among others,
the antecedents of the present work also used it.17,20,21 How-
ever, the magnitude differences were very high in the present
work. The peak maxima of the CRR experiments scattered
around a very low value, 1 × 10−4 s−1, while the peak maxima
of the 10 °C/min experiments were roughly 30 times higher.
The ratio of the highest and lowest peak maxima was around
50 in the given set of the experiments. Test calculations showed
that one cannot assume approximately equal relative preci-
sions at such high magnitude differences. No information was
available on the absolute and relative precision of the −dm/dt
values in the CRR experiments; hence, the choice of the hk
of the CRR experiments could not be based on theoretical
considerations. An arbitrary hk = 5 × 10−4 s−1 value was used
for the CRR experiments, which is ca. 5 times higher than
their peak maxima. The fit qualities obtained in this way
will be discussed in section 3.4. The peak maxima of the
10 °C/min linear T(t) experiments and the 2 °C/min

modulated experiments were much higher, around 33 × 10−4

and 9 × 10−4 s−1, respectively; hence, their peak maxima
could be used as hk values in the usual way. The fit qualities
obtained in this way will be shown in details in section 3.5 and
in the Supporting Information.
The obtained fit quality can be characterized separately for

each of the experiments evaluated together. The deviation be-
tween the observed and calculated DTG values of a given ex-
periment is given as a root mean square (rms).
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Here, subscript k indicates the experiments of the series
evaluated; ti denotes the time values in which the discrete
experimental values were taken; Nk is the number of ti points in
a given experiment; and G is the TGA signal without
normalization in micrograms.
The deviations defined by eq 2 can also be expressed as

percent of the peak maximum, obtaining in this way a sort of
relative deviation.
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The same relative deviations can obviously be calculated from
−dmobs/dt values too, because the G and m values differ only by
a constant divisor.
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In the tables of the present work, the magnitude of the ob-
jective function will be characterized by 100(of)1/2 because this
quantity is related to the relative deviations by eq 3b. If all hk
values were equal to the corresponding peak maxima, 100(of)1/2

would be equal to the rms formed from the relative deviations of
the evaluated experiments.

3.2. Four Main Reactions That Are Described by Three
Pseudo-components. Figure 2 compares the behavior of the
samples at 10 °C/min heating rate in 20% oxygen. As in a pre-
vious work,17 the DTG curves of the untreated samples (green
lines) can be interpreted as the results of four main reactions
that partly overlap each other: (i) the decomposition of the
hemicellulose and other thermally labile parts of the sample
that dominate the DTG approximately between 200 and 300 °C,

Table 2. Proximate and Ultimate Analyses of the Samplesa

proximate analysis ultimate analysis

sample volatile matter fixed carbon ash C H O N S HHVb

B -- 89.4 10.4 0.2 48.62 6.34 44.9 0.09 <0.05 19.80
B225 86.4 13.2 0.4 49.90 5.98 44.00 0.10 <0.05 19.90
B275 77.7 21.9 0.4 54.16 5.65 40.00 0.12 <0.05 21.40
S -- 86.3 13.4 0.2 50.1 6.36 43.52 0.07 <0.05 20.45
S225 84.0 15.8 0.2 50.97 6.15 42.76 0.07 <0.05 20.62
S275 75.7 24.2 0.2 55.33 5.73 38.81 0.09 <0.05 22.05

aIn units of % (m/m), dry basis. bIn units of MJ/kg.

Figure 1. Temperature programs used in the TGA experiments. Note
that each of the 12 constant heating rate experiments has different
T(t); this figure shows four of them.
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(ii) the oxidative decomposition of the cellulose component,
which produces a sharper peak with a maximum around 335 °C,
(iii) a flat section, which, because of the high-temperature end of
the lignin decomposition and the slow carbonization and other
reactions of the formed char, dominates the DTG approximately
between 360 and 430 °C, (iv) and the char burnoff, which results
in a peak around 460 °C.
Earlier works have shown that reactions i and iii can be de-

scribed by the same distributed activation energy model,17,23,25

as outlined in the next section.
The inorganic components are distributed in various forms in

the woody biomass.26 The ash formation includes chemical
reactions as well as the physical agglomeration of the inorganic
particles after the burnoff of the organic constituents. The
present samples contain only a low amount of mineral matter
(0.2−0.4%); hence, it is possible to neglect the ash-formation
reactions. However, this would reduce the future applicability
potential of the model. As an alternate solution, the parameter
connected to the ash formation will be determined from the total
ash of the proximate analysis, as outlined in the next section. In
this way, the inclusion of a global ash formation reaction will not
increase the number of unknown parameters in the least-squares
procedure. From a computational point of view, the ash formation
rates are proportional to the char burnoff rates; hence, their
calculation does not require any extra effort.
3.3. Employed Model. As mentioned in the Introduction,

the model of wood combustion is employed from a recent
work,17 except a minor change in the description of the cellu-
lose part of the samples. All masses in the treatment are normalized
by the initial sample mass. The normalized amounts of the
unreacted part of the sample, char, and ash will be denoted by mur,
mchar, and mash, respectively. As the reactions proceed, mur decreases
from 1 to 0 because no unreacted biomass remains at the end.
mchar is zero at the beginning of an experiment. It reaches a
maximum as the char forms and converges to zero again as the char
burns off. mcalc is the sum of the normalized masses of the solid
components.
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The unreacted part of the sample, mur, will be regarded as the
sum of the cellulose component and the rest of the sample. The
models for pyrolysis kinetics are usually written for variables

that run from 0 to 1; accordingly, we shall use a reacted fraction
for cellulose, αcell(t), and another reacted fraction, αother(t), for
the other components of the biomass. The corresponding
boundary conditions are αcell(0) = 0, αcell(∞) = 1, αother(0) = 0,
and αother(∞) = 1. mur(t) is the weighted sum of its two
constituents with weight factors ccell and cother.
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At t = 0, eq 5a reduces to

= +c c1 cell other (5c)

The char burnoff will be described by power-law kinetics where
the reaction rate is nchar-order with respect to mchar and νchar-
order with respect to the oxygen concentration, CO2

. Accordingly,
the char burnoff rate is approximated as
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Both the cellulose and non-cellulosic parts of the biomass form
char. The corresponding char yields are denoted by ycell.char and
yother_char, respectively, which are dimensionless quantities. The
char is formed from the biomass decomposition and consumed
by the burnoff; hence
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The ash is formed by the char burnoff reaction with a yield of yash.
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Note that a dimensionless CO2
concentration is needed in the

kinetic equations. Otherwise, the dimension of the pre-exponential
factor should depend upon νchar to obtain dmchar/dt and dmash/dt
in units of s−1.
In an inert atmosphere, under the conditions of thermal

analysis, the cellulose decomposition is usually regarded to have

Figure 2. Comparison of the experiments at 10 °C/min heating rate in 20% oxygen.
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approximately first-order kinetics, although more complex models
are also employed. Among others, the use of self-accelerating
kinetics has been suggested.27,28 In the presence of oxygen, the
cellulose decomposition was found to be a self-accelerating
reaction by Vaŕhegyi et al. too.17 The self-accelerating reactions
can typically be described by an equation of type

α
α= −ν ⎜ ⎟⎛

⎝
⎞
⎠t

A C
E
RT

f
d

d
exp ( )cell

cell O
cell

cell2
cell

(9)

where f is a function capable of expressing self-acceleration. The
mathematical unambiguity requires a normalization for f(αcell)
because f functions differing only in constant multipliers are
equivalent in eq 9 (parameter Acell can compensate any multi-
pliers of f). As a normalization, we require that the maximum of f
be 1. f(αcell) is approximated formally by

α α α≅ − +f z( ) normfactor(1 ) ( )n
cell cell cell

cell (10)

where ncell and z are model parameters and normfactor ensures
that max f = 1. Parameters ncell and z do not have separate
physical meaning; together, however, they determine the shape
of f and, in this way, the self-accelerating capabilities of the
model. Equation 10 is a slightly simplified version of an earlier
approximation that has been employed to different self-
accelerating reactions.17,29,30 These earlier works employed an
exponent on factor (αcell + z); the omission of this parameter did
not affect the fit quality in the present study. A differentiation of
eq 10 by αcell yields that f(αcell) reaches its maximum at

α = − +n z n(1 )/( 1)cell cell cell (11)

When eq 11 gives a negative value, f(αcell) is monotonously
decreasing in the [0,1] interval. In the present work, however,
the maximum of f(αcell) proved to be around 0.4−0.5. The
normfactor in eq 10 is the maximum of (1 − αcell)

ncell(αcell + z) in
the [0,1] interval; hence, its value can be immediately calculated
by substituting the αcell value from eq 11.
The oxidative decomposition of the non-cellulosic part of the

sample is described by a distributed activation energy model for
reasons as follows. This pseudo-component includes the de-
composition of the extractives, hemicelluloses, and lignin. There is
a high number of different reactive species here. The differences in
their reactivity are described by different activation energies. To
keep the number of unknown model parameters low, the activa-
tion energies in this pseudo-component are assumed to have a
distribution function. The usual Gaussian distribution function is
employed by an E0 mean and σ width. The effect of oxygen is
described by a power function, CO2

vother. The reacted fraction of
this pseudo-component, αother, is calculated by the same high-
precision numerical methods that were used in earlier
works.17,20,21,23,31 Note that the term AotherCO2

vother is a constant
multiplier during the numerical solution for a given experiment.
Parameter yash expresses the ash yield of the char burnoff. In

the present work, yash is determined from the total ash obtained
by proximate analysis. This latter will be used as a dimen-
sionless ratio, mash

anal, which is equal to the hundredth of the
corresponding percent value in Table 2. The overall ash yield of
the model is forced to be equal to mash

anal by equation

+ =_c y c y y m( )cell cell.char other other char ash ash
anal

(12)

In this way, yash can be eliminated from the model because it
can be expressed as a function of mash

anal, yother_char, and ccell by eqs
12 and 5c.

3.4. Evaluation by Assuming Common Parameters.
The model outlined above has 16 unknown parameters for each
sample, as follows: Acell, νcell, Ecell, z, ncell, ycell.char, and ccell (cellulose
decomposition); Aother, νother, E0, σ, and yother_char (the decomposition
of the non-cellulosic parts of the sample; here, cother = 1 − ccell
because of eq 5c); and Achar, νchar, Echar, and nchar (char burnoff).
It turned out during the evaluation that there is a strong

compensation effect between parameters ycell.char, ccell, and
yother_char. Practically any ycell.char value can be selected between 0
and ca. 0.2 because ccell and yother_char can compensate for its
effect, so that neither the fit quality nor the rest of the param-
eters are affected. Appendix: Compensation Effect between
Three Model Parameters at the end of this paper clarifies the
problem in detail. As explained there, the physical meaning of
the effect is connected to the temperature difference between
the devolatilization and char burnoff. As the figures of the next
section and the Supporting Information show, the cellulose
decomposition terminates before the start of the char burnoff. If
the value of ycell.char is altered, ccell and yother_char can be changed,
so that the amount of char formed until the start of the char
combustion would not change. To overcome this problem, all
of the results will be reported at ycell.char = 0.07, which was the
mean value of the cellulose experiments of eight European
laboratories in a round-robin work.32 It is important to em-
phasize that this choice affects only ccell and yother_char in the
tables. Anything else in the tables and figures is the same as it
would be with an assumption of another ycell.char value between 0
and 0.2 (this was carefully checked; all calculations of the present
paper were carried out with more than one ycell.char value). In this
way, the number of unknown parameters reduces to 15.
The remaining 15 unknown parameters of the model can be

determined by the least-squares evaluation of the 6 experiments
of a given sample. In this approach, there are 2.5 unknown
parameters for one TGA experiment. If all of the parameters are
assumed to depend upon the sample type, then the 6 samples
together have 6 × 15 = 90 unknown parameters. The total
number of the unknown parameters for the 6 samples will be
denoted by Nparam. There are 36 TGA experiments for the
determination of the Nparam unknown parameters.
If part of the model parameters is assumed to be common for

all samples, two benefits can be achieved: (i) The common
parameters will indicate the similarities in the kinetic behavior
of the samples. (ii) Less unknown parameters are derived from
the given amount of experimental information (i.e., a given
parameter value is based on more experimental information).
This helps to eliminate the usual ill-definition (compensation
effect) problems of the non-isothermal kinetics. The compensa-
tion effects between A and E or A, E, and n are well-known in
the literature of the non-isothermal kinetics. Many works on
non-isothermal kinetics proved that more than one kinetic
model of type dα/dt = A exp(−E/RT)f(α) can describe equally
well a given set of non-isothermal experiments. Besides, de Jong
et al. have also shown a strong compensation effect between A,
E0, and σ in the distributed activation energy model with
Gaussian distribution.33

As more and more parameters are assumed to be common
during the evaluation, the objective function of the method of
least-squares (of in eq 1) obtains higher and higher values (i.e.,
the fit worsens), while, on the other hand, the condition of the
parameter determination improves.25,34 One should find a
reasonable compromise between the fit quality and the reliabi-
lity of the parameter values. This way is followed in the present
work too, as illustrated by Table 3. No common parameters
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were assumed in evaluation 1; this case corresponds to the
separate least-squares evaluation of the six experiments for each
sample. In all other evaluations, the whole data set (36 TGA
experiments) was evaluated together by the method of least
squares.
The assumption of common Ecell, E0, and Echar values resulted

in a slight worsening in of. When σ was also assumed to be
common, of remained practically the same (cf. evaluations 2
and 3). The assumption of common Ecell, E0, Echar, σ, νcell, νother,
and νchar in evaluation 4 resulted only in a slight worsening of of
in comparison to evaluations 1−3. Evaluation 4 was found to be
the most suitable for the purposes of the present work because
its parameters retained the characteristic differences between
the samples, while its favorable Nparam/Nexper ratio (1.5) allowed
for the reliable determination of its parameters. Its 100(of)1/2

value, 2.46, is only 7% higher than that of evaluation 1.

Table 3. Evaluations with Various Groups of Common
Model Parametersa

evaluation common parameters Nparam Nparam/Nexper 100(of)1/2

1 none 6 × 15 2.5 2.30
2 Ecell, E0, and Echar 75 2.1 2.40
3 Ecell, E0, Echar, and σ 70 1.9 2.42
4 Ecell, E0, Echar, σ, νcell, νother,

and νchar
55 1.5 2.46

5 Ecell, E0, Echar, σ, z, ncell, and
nchar

55 1.5 2.64

6 Ecell, E0, Echar, σ, Acell, Aother,
and Achar

55 1.5 2.71

7 Ecell, E0, Echar, σ, and yother_char 65 1.8 3.11
8 Ecell, E0, Echar, σ, νcell, νother,

νchar, z, ncell, and nchar
40 1.1 2.68

aSee the Nomenclature for the meaning of the symbols in the
table.

Figure 3. Results of evaluation 4. The experiments with the samples torrefied at 225 °C are shown here at CO2
= 0.20 (the complete figure with 36

experiments is shown in the Supporting Information). Notation: experimental DTG curves normalized by the initial sample mass (gray bold line),
their calculated counterpart (black bold line), the simulated partial curves: −dmcell/dt (red line), −dmother/dt (blue line), −dmchar/dt (green line),
−dmash/dt (purple line); and the temperature programs of the modulated and CRR experiments (gray line). In this representation, the char
formation rate (green line) appears below 0 because mass loss rates (−dm/dt) are plotted.
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The results obtained by evaluation 4 are shown in details in the
next paragraph and in the Supporting Information.
When other parameters were assumed to be common instead

of νcell, νother, and νchar, worse objective function values were
obtained for the same number of the unknown parameters, as
evaluations 5−7 show in Table 3. In this latter group, the
mildest worsening of of was caused by the assumption of com-
mon nchar and f(αcell) parameters (z and ncell) in evaluation 5.
Hence, the assumptions of evaluations 4 and 5 were combined to
achieve a stronger reduction of the number of parameters in

evaluation 8. In this case, 10 model parameters were assumed
to be common for all samples: Ecell, E0, Echar, σ, νcell, νother, νchar,
z, ncell, and nchar; while 5 parameters have different values for the
different samples: Acell, Aother, Achar, yother_char, and ccell. In this
evaluation, Nparam = 10 + 6 × 5 = 40 parameters were
determined from the simultaneous evaluation of 36 experi-
ments; hence, Nparam/Nexper is close to 1. However, evaluation 8
blurs the distinction between the peculiarities of the samples. In
this model variant, the differences between the samples are
expressed by the height and position of the partial peaks
because the parameters determining the shape of these curves
(σ, z, ncell, and nchar) were kept common for all samples. Such
approaches may be useful in cases when the reduced com-
putational time and the smaller number of unknown parameters
are important.

3.5. Results of Evaluation 4. The fit quality and partial
curves obtained by evaluation 4 are shown for samples B225
and S225 in Figure 3 at CO2

= 0.20. The whole version of Figure 3
with all 36 experiments is given in the Supporting Information.
Table 4 shows the corresponding peak temperatures at 10 °C/min
and CO2

= 0.20. The peak temperature differences between the
spruce and birch samples are also indicated. These differences are
small for dαcell/dt. The highest difference was observed for dαother/dt
between samples S -- and B --. It reflects the DTG differences in
the low-temperature domain, as shown in Figure 2 (see the
shoulder of the green-colored curve in Figure 2a). This difference
is smaller between samples S225 and B225 and prac-
tically disappears between samples S275 and B275, as the amount
of hemicelluloses decreases during the 225 °C torrefaction and
becomes nearly zero in the 275 °C torrefaction. If the peak tem-
peratures of the dαother/dt curves of the torrefied samples are
compared to those of the untreated samples, high differences are
observed, because the importance of the thermally labile com-
pounds decreases in this pseudo-component by the torrefaction.
The torrefaction at 225 °C has a negligible effect on the peak
temperature of dαcell/dt because of the higher thermal stability of
the cellulose. The torrefaction at 275 °C, however, markedly

Table 4. Peak Temperatures at 10 °C/min Heating Rate in
20% O2 as Obtained by Evaluation 4

peak temperature (°C)

dαcell/dt dαother/dt −dmchar/dt

B -- 335 306 458
S -- 338 316 454
differencea 3 10 −4
B225 331 313 461
S225 335 321 455
differencea 4 8 −6
B275 322 344 473
S275 327 343 460
differencea 5 −1 −13

aThe difference between the peak temperatures of the spruce and
birch samples.

Table 5. Dependence of the Deviations and Relative
Deviations on the Heating Programs in Evaluation 4a

group of experiments
mean DTG peak
maxb (μg/s)

rms dev
(μg/s)

rms rel dev
(%)

linear T(t) 10 °C/min 1.35 0.03 2.2
modulated 2 °C/min 0.38 0.01 2.8
CRR 0.05 0.06 11.2
aThe rms of the absolute and relative deviations was calculated for the
10 °C/min, modulated, and CRR experiments. bThe averages of the
observed DTG peak maxima are given in μg/s.

Table 6. Parameters Obtained by Assuming Seven Common Parametersa

sample B -- B225 B275 S -- S225 S275 mean willow in earlier workb

Ecell (kJ mol
−1) 135 = = = = = 135 145

E0 (kJ mol
−1) 160 = = = = = 160 166

σ (kJ mol−1) 8.1 = = = = = 8.1 11.2
Echar (kJ mol

−1) 153 = = = = = 153 167
νcell 0.50 = = = = = 0.50 0.61
νother 0.24 = = = = = 0.24 0.37
νchar 0.47 = = = = = 0.47 0.62
ncell 0.94 0.93 1.23 0.80 0.81 1.06 0.96 na
zcell 0.01 0.02 0.03 0.04 0.05 0.04 0.03 na
nchar 0.58 0.48 0.39 0.64 0.62 0.57 0.55 0.95
log10 Acell (s

−1) 9.97 9.99 10.09 9.84 9.86 9.98 9.95 10.66
log10 Aother (s

−1) 12.44 12.24 11.47 12.16 12.05 11.51 11.98 13.04
log10 Achar (s

−1) 8.69 8.62 8.50 8.86 8.85 8.80 8.72 10.49
yother_char 0.22 0.30 0.51 0.33 0.38 0.55 0.38 0.23
ccell 0.30 0.35 0.38 0.30 0.33 0.35 0.34 0.30
cother = 1 − ccell 0.70 0.65 0.62 0.70 0.67 0.65 0.66 0.70
ycell.char

c 0.07 = = = = = 0.07 0.21
yash

c 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.20
aSee evaluation 4 in Table 3. “=” indicates parameter values that are identical in each column. bValues obtained in a recent work with a similar model
on an untreated willow sample.17 ncell and zcell are not listed here because the equation for f(αcell) was not the same as in the present work.

cIn the present
work, ycell.char was fixed, yash was calculated from the ash yield of the proximate analysis (mash

anal), and yother_char and ccell were calculated from eq 12.
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decreases the peak temperature of dαcell/dt, indicating that the
cellulose undergoes some reactions there. The peak temperatures
of partial curve −dmchar/dt reflect mainly the reactivity differences
of the formed char. This value increases with the torrefaction
temperature for both samples.
Table 5 shows how the fit quality depends upon the tempera-

ture programs of the TGA experiments in evaluations 4. For
this purpose, the rms deviation and the rms relative deviation
were calculated for the 10 °C/min, modulated, and CRR ex-
periments. The lowest deviation, 0.006 μg/s, was obtained for
the CRR experiments. The corresponding values of the 10 °C/min
experiments were 5 times higher. On the other hand, the
relative deviation of the 10 °C/min experiments were ca. 5
times lower than those of the CRR experiments because of the
huge differences in the heights of the corresponding peak
maxima, which are also shown in Table 5.
Table 6 lists the parameters obtained in evaluation 4. The

parameter values obtained in the present work cannot be com-
pared directly to the parameters of the earlier kinetic works on
the combustion of torrefied wood because of the high
differences in the assumptions, models, and evaluation. As an
example, let us consider an alternative model that contains first-
order devolatilization reactions. In first-order kinetics, the sharp-
ness of a peak mainly depends upon the magnitude of the corre-
sponding activation energy. Accordingly, the description of a
narrow peak (i.e., the cellulose decomposition) can be described
only by high activation energies, while a wide peak can be

described by low activation energies. In the present model, how-
ever, the width of the cellulose and non-cellulosic parts were
influenced mainly by the f(αcell) parameters and σ, respectively.
Similar basic differences may arise for other sorts of alternative
models too. Hence, the work by Vaŕhegyi et al.17 was selected for
comparison, where a similar model was employed on a willow
sample. The corresponding values are shown in the last column
of Table 6. The differences between the results of the two works
are not high. The activation energies show only 4−9% differ-
ences, which are less than the activation energy differences re-
ported on pure cellulose in an inert atmosphere in a round-robin
TGA study.32 The reaction order of the char burnoff, however,
shows a higher alteration. The nchar values were 0.58 and 0.64 for
the untreated birch and spruce samples, respectively, while a
nearly first-order reaction was observed in the earlier work. This
might reflect the differences between the samples. The work by
Vaŕhegyi et al.17 used young willow shoots from a Hungarian
energy farm with 1.2% ash content, while the present work was
based on Norwegian forest woods with particularly low ash
content. On the other hand, ccell and cother are the same for the
untreated birch and willow samples of the older work. In the
present work, the ccell parameters increase with the torrefaction,
reflecting that the partial devolatilization of the hemicellulose
increases the cellulose concentration.
ycell.char had a rather unrealistic value, 0.21, in the work by

Vaŕhegyi et al.17 because the ill definition of this parameter had not
been recognized yet there. Similarly, the high values of yash also

Figure 4. Dependence of the cellulose decomposition rate on the reacted fraction of the cellulose by eqs 9 and 10 in Evaluation 4. f(αcell) is plotted
as function of αcell. The corresponding parameter values are listed in Table 6.

Figure 5. Dependence of the char burn-off rate on the normalized amount of char by eq 6 in Evaluation 4. mchar
nchar is plotted as a function of mchar. The

corresponding parameter values are listed in Table 6.
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appear problematic in the earlier work, while this parameter was
determined from the proximate analysis in the present study.
The ncell and z parameters together determine f(αcell) in eqs 9

and 10. Figure 4 shows that the f(αcell) curves of the untreated
and mildly torrefied samples (green and blue lines) are nearly
identical. The torrefaction at 275 °C resulted in different f(αcell)
functions (denoted by red color), indicating that the 275 °C
torrefaction affects the cellulose reactivity too. Note that these
samples gave lower peak temperatures for the cellulose de-
composition, as mentioned above (see Table 4). All f(αcell)
functions obtained in the present work revealed a strong self-
acceleration, which is shown by the high increase from the
starting values of the f(αcell) functions until their peak maxima
in Figure 4. Mathematically, this is connected to the low values
of the z parameters obtained in the least-squares evaluation.
The dependence of the char burnoff rate on the normalized

amount of char by eq 6 is shown in Figure 5, where mchar
nchar is

plotted as a function of mchar. Here, the layout and coloring are
the same as in Figure 4. In Figure 5, a first-order kinetics would
give a straight line from coordinates 1,1 to 0,0. The alteration of
the obtained curves from the linear indicates a moderate self-
acceleration because the burnoff rate of a unit mass of char (the
ratio of the burnoff rate and mchar) is increasing as mchar is
decreasing. This self-acceleration, however, is much smaller
than that of a random-pore kinetics,35 indicating that the internal
pore surfaces have only a limited importance in the char burnoff
kinetics of these samples.

4. CONCLUSION
(1) The combustion of four torrefied wood samples and their
feedstocks (a deciduous and an evergreen species) was studied
at slow heating programs, under well-defined conditions.
Particularly low sample masses were employed to avoid the

self-heating of the samples because of the huge reaction heat of
the combustion. Six TGA experiments were carried out for each
sample with three different temperature programs in 5 and 20%
O2, respectively. Strongly different temperature programs were
selected to increase the information content available for the
modeling: linear, modulated, and CRR temperature programs.
The ratio of the highest and lowest peak maxima was around 50
in the set of experiments used for the evaluation. In this way,
the obtained models described the experiments in a wide range
of experimental conditions. (2) A recent combustion model
consisting of two devolatilization reactions and a successive char
burnoff reaction was employed with a minor modification. The
cellulose decomposition in the presence of oxygen was described
by a model that had two adjustable parameters to mimic self-
acceleration tendencies. The decomposition of the non-cellulosic
parts of the biomass was described by a distributed activation
model. The char burnoff was approximated by power-law
(n-order) kinetics. Each of these reactions had its own dependence
upon the oxygen concentration that was also expressed by
power-law kinetics. This model was tested earlier on one wood
sample (willow); hence, the present work is a further step to gain
experience with its applicability. The reliability of the model and
the obtained parameters was improved by decreasing the number
of parameters and by clarifying a compensation effect problem.
(3) The complexity of the applied model reflects the complexity
of the studied materials. The fast developing rate of the com-
puters will allow for the use of complex kinetic submodels in
actual industrial simulations too. Presently, a medium-priced
desktop computer can calculate one million −dm/dt curves by
this model within ca. 1.5 h at the highly irregular T(t) functions
of the present study. (4) The employed model contains 15
unknown parameters for a given biomass. The relatively wide
range of experiments made possible the determination of so many
parameters by the method of least squares. The torrefaction has
some impact on the parameters, especially on the parameters
describing the devolatilization of the hemicelluloses and other
thermally labile parts of a biomass sample. These parts decompose
more or less during the torrefaction, as the corresponding ccell and
cother = 1 − ccell parameters indicated. The cellulose reactivity was
also affected at the higher torrefaction temperature, 275 °C, of the
study. (5) Part of the kinetic parameters could be assumed common
for the six samples without a substantial worsening of the fit quality.
This approach increased the average experimental information
for an unknown parameter and revealed the similarities in
the behavior of the different samples. The following kinetic
parameters could be assumed identical for the six samples with
only a slight worsening of the fit quality: the activation energies,

Figure 6. Linear heating rate experiments of the untreated spruce sample in evaluation 1 (see Figure 3 for the notations).

Table 7. Least-Squares Determination of ccell and yother_char at
Various Values of ycell.char by the Evaluation of the Untreated
Spruce Experimentsa

ycell.char 0 0.1 0.2 0.3 0.4
ccell 0.285 0.316 0.356 0.407 0.475
yother_char 0.346 0.316 0.274 0.212 0.110
ccell(1 − ycell.char) 0.285 0.285 0.285 0.285 0.285
(1 − ccell)(1 − yother_char) 0.468 0.468 0.468 0.468 0.468
ccellycell.char + (1 − ccell)
(1 − yother_char)

0.247 0.247 0.247 0.248 0.248

100(of)1/2 2.127 2.127 2.127 2.128 2.129
aThe values of all other parameters were taken from evaluation 1 and
were not changed.
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the mean and width of the activation energy distribution in the
distributed activation energy model (DAEM) part of the model, and
the dependence of the reactions on the oxygen concentration.

■ APPENDIX: COMPENSATION EFFECT BETWEEN
THREE MODEL PARAMETERS

As outlined in section 3.4, there is a strong compensation effect
between parameters ycell.char, ccell, and yother_char. The problem
will be shown here for the behavior of the untreated spruce
sample (S --). Figure 6 shows the corresponding linear heating
rate experiments from evaluation 1. It is worth observing that
the rate of the char burnoff becomes higher than the rate of the
char formation between 380 and 390 °C. Note that mass loss
rates were plotted; hence, the dominance of the char burnoff is
indicated by the positive values of the overall char mass loss
rate (green curve). Most of the devolatilization is accomplished
until this temperature; only a small portion of the non-cellulosic
part of the sample (blue line) decomposes above ca. 380 °C.
The mass loss of the devolatilization depends upon the

amount of volatiles formed from the two pseudo-components.
Keeping in mind the definitions of the c and y parameters and
eq 5c, we obtain

α

α

= −

+ − − _

c y
t

c y
t

normalized mass loss rate of devolatilization

(1 )
d

d

(1 )(1 )
d

d

cell cell.char
cell

cell other char
other

(13)

Any ycell.char, ccell, and yother_char combination gives exactly the
same mass loss rate in eq 13 as long as the values of the
coefficients, ccell(1 − ycell.char) and (1 − ccell)(1 − yother_char), do
not change.
The normalized amount of char formed from the

devolatilization is

+ − _c y c y(1 )cell cell.char cell other char (14)

Most of the amount defined by eq 14 forms before the start of
the char burnoff, while a small portion is produced around ca.
380−420 °C, where the devolatilization of the non-cellulosic
part of the sample terminates. The ratio of these amounts,
however, has only a limited importance on the overall kinetics
because the char burnoff occurs mainly above 420 °C, as the
green curves show in Figure 6. If ycell.char, ccell, and yother_char vary
so that neither the devolatilization kinetics (eq 13) nor the
amount of formed char (eq 14) change, then the variation
affects only the ratio of the amounts of char formed before the
char burnoff and simultaneously with the char burnoff.
As an illustration, the untreated spruce experiments were

evaluated so that ycell.char obtained fixed values (0, 0.1, 0.2, 0.3,
and 0.4), while ccell and yother_char were determined from the
experimental data by the method of least squares. In this test,
all other model parameters were kept constant at the values
obtained in evaluation 1. The results are shown in Table 7.
Note that 100(of)1/2 was 2.127 for sample S -- in evaluation 1.
As the last row of Table 7 indicates, only the third digit of its
value changed at higher ycell.char. The normalized amount of the
formed char, ccellycell.char + (1 − ccell)(1 − yother_char), also shows
similarly small changes. On the other hand, ccell and yother_char
change markedly to keep the values of the rest of the Table
constant or nearly constant.
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■ NOMENCLATURE
α = reacted fraction of a component or pseudo-component
(dimensionless)
ν = reaction order with respect to the oxygen concentration
σ = width parameter (variance) of Gaussian distribution (kJ/
mol)
A = pre-exponential factor (s−1)
CO2

= v/v concentration of the ambient oxygen (dimensionless)
dev = rms of the deviations between the observed and
calculated values of a DTG curve (μg/s)
E = activation energy (kJ/mol) or mean activation energy in
a distributed activation energy model (kJ/mol)
f = empirical function (eq 10) expressing the change of the
reactivity as the reactions proceed (dimensionless)
hk = either the height of an experimental curve (s−1) or 5 ×
10−4 s−1, whichever is higher
m = mass of the sample or a component of the sample
normalized by the initial sample mass (dimensionless)
mash

anal = 1/100 of the total ash determined by proximate
analysis (dimensionless)
n = reaction order (dimensionless)
of = objective function minimized in the least-squares
evaluation (dimensionless)
Nexper = number of experiments evaluated together by the
method of least squares
Nk = number of evaluated data on the kth experimental curve
Nparam = number of parameters determined in the evaluation
of a series of experiments
R = gas constant (8.3143 × 10−3 kJ mol−1 K−1)
rel dev = deviation (dev) expressed as percent of the
corresponding peak height
t = time (s)
T = temperature (°C or K)
y = yield (dimensionless)
ycell.char = char yield from the cellulose
yother_char = char yield from the rest of the biomass
yash = ash yield from char
z = formal parameter in eq 10 (dimensionless)

Subscripts
cell = cellulose
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i = digitized point on an experimental curve
k = experiment
other = non-cellulosic organic biomass constituents
ur = unreacted sample
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(25) Vaŕhegyi, G.; Bobaĺy, B.; Jakab, E.; Chen, H. Energy Fuels 2011,
25, 24−32.
(26) Werkelin, J.; Skrifvars, B.-J.; Zevenhoven, M.; Holmbom, B.;
Hupa, M. Fuel 2010, 89, 481−493.
(27) Conesa, J. A.; Caballero, J. A.; Marcilla, A.; Font, R. Thermochim.
Acta 1995, 254, 175−192.
(28) Capart, R.; Khezami, L.; Burnham, A. K. Thermochim. Acta
2004, 417, 79−89.
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a b s t r a c t

Many studies have evaluated biomass behavior in a gasification process. Similar studies with torrefied
biomass are needed to evaluate the improvements in biomass properties with torrefaction. This forms
the basis of this study. A two-stage biomass gasification model is presented by using Aspen Plus as the
simulation and modeling tool. The model included the minimization of the Gibbs free energy of the pro-
duced gas to achieve chemical equilibrium in the process, constrained by mass and energy balances for
the system. Air and steam were used as the oxidizing agent in the process that uses both untreated and
torrefied biomass as feedstocks. Three process parameters, equivalence ratio (ER), Gibbs reactor temper-
ature and steam-to-biomass ratio (SBR), were studied. 27 cases were included in the analysis by operat-
ing the system below the carbon deposition boundary with all carbon in gaseous form in the product gas.
Product gas composition in the form of hydrogen (H2), carbon monoxide (CO), carbon dioxide (CO2),
methane (CH4) and nitrogen (N2) was analyzed together with cold gas energy and exergy efficiencies
for all the cases. Overall, mole fractions of H2, CO, CO2 and N2 were between 0.23–0.40, 0.22–0.42,
0.01–0.09 and 0.14–0.36 for torrefied wood and 0.21–0.40, 0.17–0.34, 0.03–0.09 and 0.15–0.37 for
untreated wood, respectively. Similarly, cold gas energy and exergy efficiencies were between 76.1–
97.9% and 68.3–85.8% for torrefied wood and 67.9–91.0% and 60.7–79.4% for untreated wood, respec-
tively. Torrefied biomass has higher H2 and CO contents in the product gas and higher energy and exergy
efficiencies than the untreated biomass. Overall efficiencies of an integrated torrefaction–gasification
process depend on the mass yields of the torrefaction process. Results from this study were validated
using a C–H–O ternary diagram and with results from other similar studies.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Biomass is one of the most important renewable energy sources
in the near future. Increased use of biomass can extend the lifetime
of our fossil fuel resources. The potential of biomass to help meet
the world energy demand has been widely recognized. However,
problems such as low bulk density, high moisture content and rel-
atively low calorific value, make biomass an expensive fuel to use
and hinder its widespread use. Researchers are looking into solu-
tions to overcome these drawbacks and thus, improve the proper-
ties of biomass as a fuel. A lot of research is underway to improve
the fuel quality of biomass via torrefaction. Torrefaction is a pre-
treatment method to upgrade raw biomass to a refined fuel with
improved properties such as higher heating value and carbon con-
tent and improved grindability. Torrefaction is carried out at 200–
300 �C for 30–60 min, in an inert environment at atmospheric

pressure. Torrefaction results in the following main improvements
in the biomass properties [1–14]:

� considerable reduction in the moisture content;
� increased heating value due to reduction in the O/C ratio, and

increased energy density when compressed;
� intrinsic conversion of the hygroscopic behavior of raw biomass

into the hydrophobic behavior of torrefied biomass;
� enhanced grindability, which results in less energy consump-

tion during milling.

Because of these improved properties, the value of the torrefied
biomass as a fuel is significantly higher than that of the raw
biomass.

A promising way to use biomass for production of heat, electric-
ity, and other biofuels is through biomass gasification, in which,
through a partial oxidation, the biomass is converted into synthesis
gas and condensable compounds. During the gasification the
chemical energy of the biomass is converted to the thermal and
chemical energy of the synthesis gas [15]. Gasification achieves a
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high carbon conversion rate for the formation of syngas [16,17].
Clean synthesis gas (syngas), produced from partial combustion
of biomass, can e.g. be burnt in a gas turbine combustion chamber
to run a biomass based combined cycle power plant [18]. Biomass
can be gasified in various ways by properly controlling the mix of
fuel and oxidant within the gasifier. The gasification of coal and
biomass began in the 1800s, and by the 1850s, gas light for streets
became common. Due to its high efficiency with respect to syngas
formation, it is desirable that gasification becomes increasingly
applied in the future for biofuels production rather than direct
combustion [19].

Many studies have evaluated biomass behavior in a gasification
process. Puig-Arnavat et al. [16] reviewed the various gasification
models based on thermodynamic equilibrium, kinetics and artifi-
cial neural networks. According to Puig-Arnavat et al. [16], thermo-
dynamic equilibrium models have been used widely. For example,
Schuster et al. [20] studied the fluidized bed process with main
focus on steam gasification; Altafini et al. [21] studied a saw dust
gasifier to analyze the operating conditions of an open top strati-
fied downdraft gasifier; Melgar et al. [22] used an equilibrium
approach and studied the influence of fuel/air ratio and the mois-
ture content of the biomass on the characteristics of the process
and the producer gas composition; Jarungthammachote and Dutta
[23,24] used a modified stoichiometric equilibrium approach by
accounting for a deviation factor from experiments to three types
of gasifiers: a central jet spouted bed, a circular split spouted bed
and a spout-fluid bed; Yoshida et al. [25] applied a two-stage equi-
librium model for a high temperature gasification process to pre-
dict the performance of commercial gasifiers. Similarly, Ghassemi
et al. [26], Altafini et al. [21], Bassyouni et al. [27], Ravikiran
et al. [28] and Li et al. [29] studied the biomass gasification process
by an equilibrium approach based on the minimization of Gibbs
free energy. All these authors have shown reasonable agreement
between equilibrium predictions and experimental data. Commer-
cial tools such as Aspen Plus are also very useful in predicting the
behavior of a biomass gasification process as a sub-model with
built-in solids properties. Mansaray et al. [30] used Aspen Plus to
simulate a dual-distributor-type fluidised-bed rice husk gasifier.
Paviet et al. [31] studied thermo-chemical equilibrium modeling
of a biomass gasification process. Based on these studies, it can
be concluded that an equilibrium model with Gibbs free energy
minimization approach in Aspen Plus is an acknowledged and real-
istic way of simulating a biomass gasification process.

In a few recent studies, it has been reported that torrefied bio-
mass can significantly affect the efficiency of biomass gasification.
Chen et al. [32] employed a process optimization technique, the
Taguchi method, for identifying optimum levels for process
parameters involved during co-gasification of torrefied biomass
and coal in an entrained flow gasifier. In another study, Chen
et al. [33] numerically simulated an entrained flow gasifier with
oxygen as the gasifying agent and the results indicated that the
gasification performance of torrefied bamboo is quite similar to
that of coal. Furthermore, Kuo et al. [34] evaluated a two-stage
gasification process for raw and torrefied bamboo by using Gibbs
minimization approach under isothermal conditions in Aspen Plus
simulations. It was reported that the carbon conversion and syn-
gas yield was higher for torrefied materials than the raw biomass,
whereas, the trends for cold gas efficiency were opposite. Torr-
efied biomass produced at 250 �C was found to be the most fea-
sible fuel for gasification when considering all process
parameters together. However, this study did not account for
tar formation and assumed char as a pure carbon. Except for
these few studies, there is a considerable lack of information on
the behavior of torrefied biomass under gasification conditions
and therefore, better knowledge on the topic is needed. This
forms the basis of this present study.

The present work extends the efforts of Kuo et al. [34] to estab-
lish a detailed equilibrium model for understanding the effect of
torrefaction on the syngas compositions and efficiency of the bio-
mass gasification process. The aim is to study a two-stage gasifica-
tion process by using Gibbs free energy minimization approach in
Aspen Plus with improved accuracy together with a comprehen-
sive thermodynamic analysis. A two-stage process refers to the
pyrolysis or decomposition of biomass in the first stage followed
by the gasification of the pyrolysis products in the second stage.
Accuracy of the model is improved by including tar formation dur-
ing pyrolysis and its further cracking in the gasification reactor;
actual experimental decomposition yields as inputs for both
untreated and torrefied biomass; the compositions of the chars
produced during pyrolysis, as calculated from the elemental bal-
ance; and a C–H–O Ternary diagram for validating the results.
The model is integrated with an Excel spreadsheet to study the
energy and exergy efficiencies of the process at different operating
conditions of the gasifier. Exergy analysis of a process is a supple-
ment to energy analysis and is based on the 2nd law of thermody-
namics. It is a very useful tool to assess work potentials of input
and output materials and heat streams, and to pinpoint irrevers-
ibility losses in a system. Ptasinski [35] studied exergetic efficiency
analysis for gasification of biofuels which includes wood, vegetable
oil, sludge, and manure. Rao et al. [36] reported results from an
investigation of the change in exergy content of the produced gas
in gasification for various biomass sources. Pellegreni et al. [37]
studied the parametric effect on exergy efficiency by considering
the influence of many variables inherent to the model, such as:
gasification temperature, moisture content, and air temperature,
among others. Abuadala et al. [38] presented an exergy analysis
of hydrogen production from gasification. Hosseini et al. [39] also
compared energy and exergy for steam fed and air fed gasification
systems using sawdust as a fuel. The present study can be regarded
as a maiden attempt to carry out a thermodynamic and exergetic
efficiency analysis of a gasification process using Gibbs free energy
minimization approach in Aspen Plus for comparing untreated and
torrefied biomass. Overall efficiencies of an integrated torrefac-
tion–gasification process are also provided by including mass yield
in the torrefaction process.

2. Methodology

The Gibbs free energy minimization method for the C–H–O–N
atom blend of the biomass fuel and oxidant mixture can be applied
for predicting the thermodynamic equilibrium composition of the
product gas major components: H2, CO, CH4, CO2, H2O, N2 and char
[40–43]. A thermodynamic equilibrium model for a biomass gasi-
fication system was developed using the Gibbs minimizing
approach in the Aspen Plus software as shown in Fig. 1. Material
and energy streams data from the Aspen Plus model were used
to calculate cold gas energy and exergy efficiencies of the process.

2.1. Aspen Plus model

In Aspen Plus, streams represent mass or energy flows. Mass
streams are divided by Aspen Plus into three categories: mixed,
solid, and non-conventional (biomass). Mixed streams contain
mixtures of components, which can be in gaseous, liquid and solid
phases. The solid phase component in this simulation is solid car-
bon (C). Thermodynamic properties are defined in the Aspen Plus
libraries for chemical components. Non-conventional components
are defined in Aspen Plus by supplying standard enthalpy of forma-
tion and the elementary composition (ultimate and proximate
analyses) of the components [44]. Biomass is characterized in this
manner in this study.
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2.1.1. Sub-systems
The following sub-systems were included in the modeled gasi-

fication process:

(a) Aspen Plus heat exchanger, HEATER, was used to simulate
pre-heating of the biomass to a pyrolyzer temperature of
500 �C.

(b) Aspen Plus yield reactor, RYIELD, was used to simulate
decomposition of biomass into individual elemental compo-
nents at 500 �C. This is done by specifying actual experimen-
tal yield values for volatiles and char, as available in
literature [45].

(c) Aspen Plus Gibbs reactor, RGIBBS, was used for partial com-
bustion of volatiles and char with the addition of air and
steam. RGIBBS models chemical equilibrium by minimizing
Gibbs free energy, subject to element balance constraints.
This model is useful when temperature and pressure are
known and reaction stoichiometry is unknown. Both iso-
thermal and adiabatic modeling options are available in
the setup of the RGIBBS. Temperature or the heat duty for
the RGIBBS unit needs to be specified for these options,
respectively. A number of approximations need to be applied
for estimating the heat duty for an actual reactor. Therefore,
in order to simulate more closely the real conditions in a
gasifier, an isothermal approach was used in this study.

(d) Aspen Plus heat exchanger, HEATER, was used to simulate
cooling of syngas from RGIBBS temperature to ambient
temperature.

2.1.2. Model input data
Based on a recent literature review, only one journal article by

Wannapeera et al. [45] listed an experimentally obtained pyrolysis
gas composition for both untreated and torrefied biomass. There-
fore, the feedstocks used by Wannapeera et al. [45] have been used
for this present simulation study. Proximate and ultimate analysis
data for the feedstocks and the pyrolysis product yields at 500 �C
are listed in Tables 1 and 2, respectively. Torrefied biomass was
produced at 250 �C with 30 min of residence time. Starting from
the ultimate analysis of biomass and mass fractions of all elements,
the biomass formula Ca1Ha2Oa3Na4 was calculated by assuming
that a1 is equal to 1.0 by the following Eqs. (1)–(3) [42]:

a2 ¼
mass fractionðHÞ �Molecular weightðCÞ
mass fractionðCÞ �Molecular weightðHÞ ð1Þ

a3 ¼
mass fractionðOÞ �Molecular weightðCÞ
mass fractionðCÞ �Molecular weightðOÞ ð2Þ

a4 ¼
mass fractionðNÞ �Molecular weightðCÞ
mass fractionðCÞ �Molecular weightðNÞ ð3Þ

Based on Eqs. (1)–(3), formulas for the feedstocks are calculated:
Biomass CH1.77O0.63N0.012; torrefied biomass CH1.45O0.57N0.011.

2.1.3. Key process variables
It has been reported that the optimal gasification operation

involves operating a gasifier at or below the carbon boundary
point, that means that all carbon is present in the gaseous phase
as carbon monoxide, carbon dioxide or methane [46]. This theory
has been applied for this study as well and all the 27 tested cases
have carbon in its gaseous form. This is the basis for selecting the
ranges for the three process variables listed in Table 3. ER is
defined as the amount of air added relative to the stoichiometric
air requirement for combustion and SBR is defined as the ratio of
steam to biomass molar flow rates.

Steam is added to the system to improve the hydrogen produc-
tion and thus increase the syngas quality [42]. Each of the 27 cases
will be referred to using these three process variables, as SBR–GB–
ER, in this study.

2.1.4. Assumptions made for Aspen Plus simulation and efficiency
calculations

(a) All gases behave ideally.
(b) The process occurs at steady state, and residence time was

not considered.
(c) Biomass mass flow rate was calculated for a 10 MW fuel

input plant.
(d) Air was introduced to RGIBBS at ambient temperature and

pressure.
(e) Saturated steam was introduced to RGIBBS at 179.9 �C and

10 bar pressure.
(f) Atmospheric pressure was assumed in all equipment.
(g) The process was assumed to be autothermal and the pres-

sure drop and heat losses from the equipment and pipelines
were not included.

(h) Ambient conditions data for each stream was collected from
Aspen Plus in order to have consistent values for the refer-
ence conditions in the physical exergy calculations.

Fig. 1. Gasification process as modeled in Aspen Plus in this study.
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(i) No physical exergy is associated with biomass as these were
assumed to be at ambient temperature and pressure.

(j) Minor products such as sulfur species (e.g. S, COS and H2S)
and nitrogen species except N2 were not included in the
chemical exergy of the streams as these are present, rela-
tively speaking, in very negligible amounts.

(k) Kinetic and potential exergies were ignored in the analysis.
(l) No work exergy was included in the exergy analysis.

(m) All biomass feedstocks were completely dry.
(n) Tar was considered as a mixture of 70% secondary (phenol),

14% tertiary-alkyl (xylene) and 16% tertiary-PNA (benzene)
components on mass basis [47,48]. Based on the previous
studies on tar cracking, it was assumed that tertiary-PNA
component is not cracked at all and tertiary-alkyl compo-
nent is 80% cracked at the temperatures conditions used in
this study [48]. In addition to this, untreated biomass is
assumed to have 10% aqueous phase acid (acetic acid),
which remains un-reacted in RGIBBS [49]. For the torrefied
biomass, these acids were assumed to be removed during
torrefaction. Char composition of pyrolyzed biomass (from
both untreated and torrefied biomass) was calculated from
the elemental carbon, hydrogen and oxygen balance based
on the assumed tar composition.

2.2. Methods for cold gas energy and exergy efficiencies

The cold gas efficiency of gasification in an allothermal plant is
defined in Eq. (4) [40]:

genergy;coldgas ¼
LHVcoldgas

LHVbiomass þ Q air þ Q steam
ð4Þ

where LHVcoldgas is the heating value of the outgoing (product) heat
stream; LHVbiomass, Qsteam and Qair are the heating value and heat
contents of incoming biomass, steam and air streams, respectively.
Exergy is the maximum work that can be produced when a heat or
material stream is brought to equilibrium relative to a reference
environment, which consists of reference components and which
is characterized by absence of pressure and temperature gradients.

Exergy associated with a material stream is expressed as the sum of
its physical and chemical exergies.

The total exergy of a material stream is given by Eq. (5) [40,50]:

E ¼ Nðeph þ echÞ ð5Þ

where N is the flow rate. The molar physical exergy of a material
stream is expressed in relation to the reference environmental con-
ditions as shown in Eq. (6) [40,50]:

eph ¼ ðh� h0Þ � T0ðs� s0Þ ð6Þ

Mole flows, mole fractions, enthalpy and entropy of each mate-
rial stream were taken from the Aspen Plus flowsheet results. The
standard environmental conditions of Aspen Plus (T0 = 25 �C,
p0 = 1.013 bar) were adopted as reference conditions in the study.
The molar chemical exergy of a gaseous material mixture is given
by Eq. (7) [40,50]:

ech;gas ¼
X

i

xie0;i þ RT0

X

i

xi ln xi ð7Þ

where xi is the mole fraction and e0,i is the standard molar chemical
exergy of each component i, in J mol�1. The latter is available in lit-
erature for the reference atmospheric composition [51].

The chemical exergy of solid fuels (biomass and torrefied prod-
uct) was calculated with the help of the ratio of the chemical exer-
gy to the lower heating value of the dry matter as shown in Eq. (8)
[52]. This ratio is a function of the elemental contents of the solid
fuel.

udry ¼
edm

hLHVdm

ð8Þ

For dry solid fuels with a certain content of oxygen, the ratio of
chemical exergy to lower heating value for the dry matter is
expressed in Eq. (9) [52]:

udry ¼
1:0438þ 0:1882 h

c � 0:2509 o
c 1þ 0:7256 h

c

� �
þ 0:0383 n

c

1� 0:3035 o
c

ð9Þ

Here, h/c is the ratio of hydrogen mass to carbon mass in the fuel,
and n/c and o/c correspondingly for nitrogen and oxygen. This
expression is valid for o/c from 0.667 to 2.67, and is expected to
be accurate within ±1%. Using Eqs. (5)–(9), exergy was calculated
for all material streams in the flow sheet. The exergetic efficiency
of gasification in an autothermal plant is defined in Eq. (10) [40]:

gexergy;coldgas ¼
Ecoldgas

Ebiomass þ Eair þ Esteam
ð10Þ

where Ecoldgas is the outgoing (product) exergy stream, and Ebiomass,
Esteam and Eair are the incoming biomass (or the torrefied biomass),
steam and air exergies.

Table 4 lists the standard chemical exergy and standard lower
heating values of the gases that form syngas [53–55].

Table 1
Proximate and ultimate analyses of the samples [45].

Sample Proximate analysisa Ultimate analysisa HHVb

VM fC Ash C H O N

Leucaena 86.1 13.1 0.8 50.1 7.4 41.8 0.7 20.3
Torrefied Leucaena 82.2 16.9 0.9 53.0 6.4 39.9 0.7 21.2

a % (m/m), dry basis.
b MJ/kg, dry basis.

Table 2
Pyrolysis products yield as input to RYIELD [45].

Sample Pyrolysis product molar yield at 500 �C

Char H2O Tar CO CH4 CO2

Leucaena 0.20 0.20 0.40 0.019 0.001 0.18
Torrefied Leucaena 0.29 0.16 0.34 0.029 0.001 0.18

Table 3
Tested ranges for process variables that resulted in 27 cases.

Process variable Low Mid High

SBR 0.2 0.3 0.4
Gibbs (GB) Temperature (�C) 900 1000 1100
ER 0.1 0.2 0.3
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3. Results and discussions

3.1. Syngas compositions

Mole fractions of hydrogen (H2), carbon monoxide (CO), carbon
dioxide (CO2), and nitrogen (N2) in the syngas generated from all
27 cases are shown in Figs. 2–5. For improved understanding for
the readers, the effect of the three process variables SBR, GB Tem-
perature and ER on these mole fractions is shown separately in
Figs. 6–8, where two of these variables are fixed and one is varied.
In previous studies in the literature, methane production decreases
sharply at temperatures above 500 �C [22,56]. Similar trends were
observed in this study and negligible amounts of methane is pro-
duced (mole fractions close to 1 � 10�5) since the temperatures
tested are close to 1000 �C. Therefore, the methane content is not
reported in these results. Table 5 lists the trends for the syngas
content based on increase in any one of the process variables.

These trends are explained in terms of common gasification
reactions as listed below (Eqs. (11)–(18)) [57]. Heat of reactions
are provided in the brackets for these reactions, with minus sign
for exothermic and plus sign for endothermic reactions:

Char partial combustion reaction

Cþ 0:5O2 ¼ CO ð�111 MJ=kmolÞ ð11Þ

Boudouard reaction

Cþ CO2 () 2CO ðþ172 MJ=kmolÞ ð12Þ

Water gas reaction

CþH2O() COþH2 ðþ131 MJ=kmolÞ ð13Þ

Methanation reaction

Cþ 2H2 () CH4 ð�75 MJ=kmolÞ ð14Þ

CO partial combustion reaction

COþ 0:5O2 ¼ CO2 ð�283 MJ=kmolÞ ð15Þ

H2 partial combustion reaction

H2 þ 0:5O2 ¼ H2O ð�242 MJ=kmolÞ ð16Þ

CO shift reaction

COþH2O() CO2 þH2 ð�41 MJ=kmolÞ ð17Þ

Steam-methane reforming reaction

CH4 þH2O() COþ 3H2 ðþ206 MJ=kmolÞ ð18Þ

As reactions (11)–(14) have carbon in solid state, applicability of
these reactions is up to the carbon boundary point. These reactions
can explain the differences in the gasification behaviors of torrefied
wood and untreated wood based on their carbon contents. Since
approximately 70–80% devolatilization of biomass has already
occurred in RYIELD (experimental values from Wannapeera et al.
[45]), the main reactions happening in RGIBBS are the gas phase
reactions (15)–(18).

3.1.1. Effect of increase in SBR
The main reaction by an increase in SBR is the CO shift reaction

where CO reacts with steam (H2O) to form CO2 and H2. This results
in decrease of CO and increase of CO2 and H2 production.

3.1.2. Effect of increase in GB Temperature
Increase in Gibbs reactor temperature also involves the CO shift

reaction but in the opposite direction. As the CO shift reaction is
exothermic (heat of reaction = �41 MJ/kmol), increase in tempera-
ture results in the formation of CO and H2O from CO2 and H2.

3.1.3. Effect of increase in ER
Increase in ER results in CO and H2 partial combustion where

these two gases react individually with oxygen to form CO2 and
H2O, respectively. Also, air increases the nitrogen content of syn-
gas. These two reactions result in increased CO2 and H2O produc-
tion and decreased CO and H2 contents.

Table 4
Standard chemical exergy and LHV values of gases.

Reference data CO (g) CO2 (g) H2 (g) N2 (g) H2O (g)

Standard chemical exergy (MJ/kmol) 275.1 19.87 236.1 0.72 9.5
Standard LHV (MJ/kg) 10.112 0 119.96 0 0

Fig. 2. Hydrogen mole fractions on dry basis for all cases.
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3.1.4. Differences between torrefied wood and untreated wood
Torrefied wood results in higher CO and H2 production in com-

parison to untreated wood due to higher carbon content. Char par-
tial combustion, Boudouard and water–gas reactions occur with
carbon in solid state to form CO and H2.

3.2. Cold gas energy and exergy efficiencies

Cold gas energy and exergy efficiencies of all the 27 cases are
shown in Figs. 9 and 10, respectively. The general trends are listed
in Table 6. It can be seen that both energy and exergy efficiencies

Fig. 3. Carbon monoxide mole fractions on dry basis for all cases.

Fig. 4. Carbon dioxide mole fractions on dry basis for all cases.

Fig. 5. Nitrogen mole fractions on dry basis for all cases.
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Fig. 6. Effect of SBR on the carbon monoxide and hydrogen (a) and carbon dioxide and nitrogen (b) mole fractions.

Fig. 7. Effect of GB Temperature on the carbon monoxide and hydrogen (a); carbon dioxide and nitrogen (b) mole fractions.

Fig. 8. Effect of ER on the carbon monoxide and hydrogen (a); carbon dioxide and nitrogen (b) mole fractions.

Table 5
Syngas composition trends with changes in SBR, GB Temperature and ER.

Mole fractions Increase in SBR Increase in GB Temperature Increase in ER Torrefied wood (TW) vs. Wood (W)

H2 Slightly increases Slightly decreases Decreases TW > W
CO Decreases Slightly increases Decreases TW > W
CO2 Slightly increases Slightly decreases Increases W > TW
N2 Slightly decreases Negligible effect Increases W > TW
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decrease with increase in SBR, GB Temperature and ER, with ER
having the most pronounced effect. Fig. 11(a), (b) and (c) shows
the effect of process variables on these efficiencies by varying
one of these variables and keeping the other two constant. From
Figs. 9–11 it can also be seen that the torrefied wood has higher
energy and exergy efficiencies than untreated wood for all cases.
Table 7 lists the maximum and minimum values of the energy
and exergy efficiencies for all cases.

3.2.1. Effect of increase in SBR
Increase in SBR results in increased CO2 and H2 production and

decreased CO production. As can be seen from Table 4, standard
chemical exergy and standard lower heating values (LHV) for H2

is lower than for CO and the values for CO2 are negligible. This
results in lower LHV and chemical exergy of the cold syngas and
thus, lower energy and exergy efficiencies with increasing SBR.

3.2.2. Effect of increase in GB Temperature
With increasing GB Temperature, CO and H2O production

increases and that of CO2 and H2 decreases. Since H2O and CO2

have zero LHVs and negligible standard chemical exergies, the
increase in CO is compensated by the decrease in H2. End result
is slightly lower (almost constant) energy and exergy efficiencies
with the increase in the Gibbs reactor temperature.

3.2.3. Effect of increase in ER
Increase in ER results in increased CO2, H2O and N2 production

and decreased CO and H2 contents. As CO2, H2O and N2 have very
low exergy and zero LHV values, reduction in CO and H2 results
in lower syngas chemical exergy and LHV. This results in lower
energy and exergy efficiencies with increase in ER.

3.2.4. Differences between torrefied wood and untreated wood
Higher energy and exergy efficiencies for torrefied wood in

comparison to untreated wood is mainly attributed to its higher
carbon content, which results in higher H2 and CO contents and
thus higher syngas LHV and chemical exergy.

3.2.5. Integrated torrefaction–gasification process
Overall efficiencies of an integrated torrefaction–gasification

process can be calculated by including the mass flow rates of the
untreated biomass needed for the production of torrefied biomass.
Higher mass yields in the torrefaction process will result in
improved overall efficiencies of the integrated process. For the cur-
rent study, torrefied Leucaena has 5.78% higher carbon content
than untreated Leucaena in the ultimate analysis with torrefaction
at 250 �C for 30 min. For similar torrefaction temperature and res-
idence time and with 8.7% increase in carbon content, mass yields
reported in the literature are around 88–90% [2,58]. By using 88%

Fig. 9. Cold gas energy efficiencies in percent for all 27 cases.

Fig. 10. Exergy efficiencies in percent for all 27 cases.
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as torrefaction mass yield for the current study, energy and exergy
efficiencies for the integrated process were calculated for a few
selected cases. For all of these cases, efficiencies for the integrated
process were found to be higher than the stand alone process with
untreated biomass as feedstock, as shown in Fig. 12. Effects of the
varied process parameters (SBR, GB Temperature and ER) on the
efficiencies is similar to the stand alone biomass gasification
process.

Efficiencies for the torrefaction process can also be calculated
by dividing LHV or the exergy values of torrefied biomass with
the corresponding values for untreated biomass. With 88% mass
yield and required torrefied biomass production for a 10 MW fuel
input plant, energy and exergy efficiencies for the torrefaction pro-
cess are 93.3% and 92.6%, respectively. Mass yields in a torrefaction
process are highly dependent on the choice of the reactor, heat and

mass transfer profiles, process control and the production scale.
Reactors used at a laboratory scale may not be a good simulation
for pilot or industry scale reactors. Therefore, overall efficiencies
of an integrated torrefaction–gasification industrial process should
be evaluated for a specific reactor type.

3.3. Comparisons of results with other similar studies

For both torrefied and untreated woods, the ranges for the mole
fractions of H2, CO, CO2 and N2 in the 27 cases are listed in Table 8.

Based on a literature review, it was found that there is a consid-
erable lack of data for two-stage biomass gasification. The simula-
tion work performed by Paviet et al. [56] is the only one that can be
compared to the present work and the results from that study are
listed in Table 9. Even though Paviet et al. [56] utilized different

Table 6
Cold gas energy and exergy efficiency trends.

Efficiency Increase in SBR Increase in GB Temperature Increase in ER Torrefied wood (TW) vs. Wood (W)

Energy efficiency Slightly decreases Slightly decreases Decreases TW > W
Exergy efficiency Slightly decreases Slightly decreases Decreases TW > W

Fig. 11. Effect of SBR (a), GB Temperature (b) and ER (c) on efficiencies.

Table 7
Maximum and minimum efficiencies.

Efficiency % (TW) % (W) SBR GB Temperature (�C) ER

Energy efficiency Maximum 97.9 91.0 0.2 1100 0.1
Minimum 76.1 67.9 0.4 900 0.3

Exergy efficiency Maximum 85.8 79.4 0.2 1100 0.1
Minimum 68.3 60.7 0.4 900 0.3
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operating conditions in the simulation, the two-stage gasification
is similar to this present study.

By comparing results from Tables 8 and 9, it can be seen that the
syngas contents are quite similar in both studies. The end results
for H2, CO, CO2 and N2 are very comparable to both simulation
and experimental results from Paviet et al. [56], depending upon
the selection of process conditions from the present study.
Recently, a few studies have utilized the concept of C–H–O Ternary

diagram to show the biomass gasification process with respect to
the carbon deposition boundaries [46,59]. Fig. 13 shows the C–
H–O ternary diagram for the present study for one case (SBR–
GB–ER = 0.3–900–0.2) using the calculation methods mentioned
in the literatures [46,59].

In Fig. 13, point A represents untreated biomass, point B repre-
sents the syngas produced from RGIBBS. Corresponding points for
the torrefied biomass are A0 and B0 respectively. As can be seen,

Fig. 12. Effect of SBR (a), GB Temperature (b) and ER (c) on the efficiencies of an integrated torrefaction–gasification process (88% mass yield for torrefaction).

Table 8
Product gas composition.

Syngas components Mole fraction (TW) Mole fraction (W) SBR GB Temperature (�C) ER

H2 Maximum 0.40 0.40 0.3 900 0.1
Minimum 0.23 0.21 0.3 1100 0.3

CO Maximum 0.42 0.34 0.2 1100 0.1
Minimum 0.22 0.17 0.4 900 0.3

CO2 Maximum 0.09 0.09 0.4 900 0.3
Minimum 0.01 0.03 0.2 1100 0.1

N2 Maximum 0.36 0.37 0.2 900 0.3
Minimum 0.14 0.15 0.4 1100 0.1

Table 9
Results from Paviet et al. [56] (dry basis).

Results from Paviet et al. H2 CO CH4 CO2 N2

Simulation results (H: 18.2%, T: 1300 K, Ra: 2.53, Rh: 0.40) 0.34 0.26 0.00 0.10 0.30
Experimental results from two-stage gasifier DTU 0.30 0.20 0.01 0.15 0.34

H = Moisture content of fuel; Ra = Air/fuel mass flow ratio; Rh = Steam/fuel mass flow ratio.
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point B lies close to the carbon deposition boundaries and this is
valid for all 27 cases tested in the present study. The line connect-
ing CO2 and H2O represents complete combustion of biomass and
in our case point B lies well above this line, thus, indicating a gas-
ification process. If only air is added in the process, the process
moves along a line connecting the biomass to the pure oxygen
point and the optimum gasification point is where this line inter-
sects the carbon boundary line for a particular temperature. How-
ever, with the addition of small amounts of steam, the gasification
point moves to point B (or B0) and is slightly below the carbon
boundary. This is because the reaction between biomass and steam
are endothermic (water gas shift reaction) and those between bio-
mass and air are exothermic (Char partial combustion) [60]. Based
on the C–H–O ternary diagram analysis, the present gasification
simulation study fits very well with the underlying gasification
theory.

4. Conclusions

Biomass gasification was simulated using Aspen Plus with a
two-stage gasification model based on Gibbs free energy minimi-
zation approach for comparing untreated and torrefied biomass
as feedstocks. Model accuracy was improved by including tar,
actual experimental decomposition yields and the compositions
of the chars produced during pyrolysis in the evaluations. The
model outcomes were validated by using a C–H–O Ternary dia-
gram and by comparisons with results from other similar studies.
Three process parameters: SBR, GB Temperature and ER were var-
ied. 27 cases were selected with all having carbon in the gaseous
form for the final syngas product. It was found that the syngas
compositions vary a lot based on the process parameters, and inlet
conditions should be selected based on the end requirements for
syngas. Here is the summary of results obtained from this study:

1. Out of the three process parameters, ER had the most significant
effect on the syngas composition, energy and exergy efficiency.

2. Maximum energy and exergy efficiencies are achieved by oper-
ating gasifier at or close to carbon deposition boundary point at
that temperature.

3. Torrefied biomass gives higher H2 and CO contents and higher
cold gas energy and exergy efficiencies than untreated biomass.

4. Overall efficiencies of an integrated torrefaction–gasification
process depend on the mass yields of the torrefaction process.
Torrefaction mass yield of 88% in the present study resulted
in better overall energy and exergy efficiencies.

5. Simulation results from this study correlates well with the sim-
ulation and experimental results from the Paviet et al. [56]
study.

Torrefaction of biomass does seem to have a positive effect on
biomass gasification due to improved CO and H2 contents. This
effect is mainly due to the increased carbon content of torrefied
biomass due to the devolatilization leading to relatively higher
oxygen loss during torrefaction. This is evident from the increased
chemical exergy of torrefied biomass as well, and this higher
chemical exergy is utilized for improvements in syngas quality.
As noted earlier in this study, there is considerable lack of data
on the gasification of torrefied biomass and therefore, the authors
recommend further studies on additional feedstocks.
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