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Abstract— This paper presents a control framework for shape
control of snake robots for the purpose of locomotion. An
advantage of the framework is that it allows the macroscopic
shape of a snake robot to be controlled explicitly and intuitively.
The framework is based on specifying the desired shape of
the snake robot as a continuous shape curve defined by a set
of shape control points interconnected by Bézier curves. We
propose a novel approach for motion generation in which the
shape curve is repeatedly extended according to a desired gait
pattern while a virtual snake robot is progressed along the shape
curve to retrieve joint reference angles for the physical snake
robot. Practical applications of the proposed control framework
are exemplified along with simulation results.

I. INTRODUCTION

Inspired by biological snakes, snake robots carry the
potential of meeting the growing need for robotic mobil-
ity in challenging environments. Snake robots consist of
serially connected modules capable of bending in one or
more planes. The many degrees of freedom of snake robots
make them difficult to control, but provide traversability in
irregular environments which surpasses the mobility of more
conventional wheeled, tracked and legged robots.

Locomotion of a snake robot is achieved by body shape
changes which cause the body to interact with its environ-
ment and propel the robot in some direction. The literature
contains numerous approaches for shape control of snake
robots. Some approaches mainly consider the kinematics
of the snake robot [1]–[5], while other approaches also
take the dynamics of the locomotion into account [6]–[9].
The majority of previous approaches for motion control of
snake robots carry out shape control by specifying individual
trajectories for each joint angle of the robot (or a curvature
distribution along the body). While these approaches provide
explicit control of the local curvature along the snake body,
the macroscopic (i.e. the overall) shape of the robot is only
controlled implicitly (i.e. the macroscopic shape is a result
of the explicitly controlled curvature along the snake body).
The motivation behind this paper is to introduce a control
framework which allows the macroscopic shape of a snake
robot to be controlled explicitly and intuitively.

The control framework is based on specifying the desired
shape of the snake robot as a continuous shape curve defined
by a set of shape control points (SCPs). The macroscopic
shape of the snake robot is directly controlled by specifying
the coordinates and the shape angle associated with each
SCP. Note that shape control of snake robots according to

Affiliation of Pål Liljebäck is shared between the Dept. of Engineer-
ing Cybernetics at the Norwegian University of Science and Technology
(NTNU), NO-7491 Trondheim, Norway, and SINTEF ICT, Dept. of Applied
Cybernetics, N-7465 Trondheim, Norway. E-mail: Pal.Liljeback@sintef.no.

Kristin Y. Pettersen, Øyvind Stavdahl, and Jan Tommy Gravdahl are
with the Dept. of Engineering Cybernetics at the Norwegian University of
Science and Technology (NTNU), NO-7491 Trondheim, Norway. E-mail:
{Kristin.Y.Pettersen, Oyvind.Stavdahl, Tommy.Gravdahl}@itk.ntnu.no.

continuous curves has been considered in several previous
works (see e.g. [2], [3], [8], [10]). However, there are two
main contributions of this paper in comparison with previous
literature. The first contribution concerns our proposed ap-
proach for mathematically describing the desired shape of a
snake robot, which is based on interconnecting shape control
points by Bézier curves. The second contribution is a novel
approach for generating gait patterns for a snake robot. The
common approach in the literature for shape control based
on continuous curves is to continuously deform the curve
according to the desired gait. While this approach is also
possible with our proposed framework, we also propose to re-
peatedly extend the shape curve according to the gait pattern
rather than deforming the shape curve. With this approach,
the shape curve grows and ‘draws out’ the desired shape
motion, and joint reference angles corresponding to the gait
are retrieved from a virtual snake robot which is progressed
along the growing shape curve. The motivation behind this
approach is that it is (in the authors’ opinion) easier and
more intuitive to encode a gait pattern by ‘drawing’ the shape
motion as a growing curve rather than encoding the gait in
the deformations of an existing curve.

Note that the proposed framework can be employed to
specify the SCPs (and thereby the joint reference angles of
the snake robot) in open-loop, in which case the framework
can be regarded as a motion planning framework. However,
we still refer to the framework as a control framework since
practical applications will require the SCPs to be specified
as a function of measured state values of the snake robot.

The paper is organized as follows. Section II presents a
model of the snake robot dynamics, which has been used to
produce the simulation results presented in the paper. Section
III provides a short introduction to Bézier curves, which have
a central role in the control framework presented in Section
IV. Practical applications of the proposed control framework
are exemplified along with simulation results in Section V.
Finally, Section VI presents concluding remarks.

II. A MODEL OF PLANAR SNAKE ROBOT LOCOMOTION

This section summarizes a model of a planar snake robot
previously presented in [9]. We will use this model in Section
V to simulate various gait patterns implemented with the
control framework proposed in Section IV. The model is
also presented in order to introduce notation used during the
presentation of the control framework.

We consider a planar snake robot consisting of N links
of length l interconnected by N − 1 motorized joints. The
kinematics of the robot is defined in terms of the symbols
illustrated in Fig. 1. All N links have the same mass m and
moment of inertia J . The mass of each link is uniformly
distributed so that the link CM (center of mass) is located
at its center point. The snake robot moves in the horizontal



Fig. 1. Kinematic parameters of the snake robot.

plane and has N + 2 degrees of freedom. The position of
the CM (center of mass) of the robot is denoted by p =
[px, py]

T ∈ R2. The absolute angle θi of link i is expressed
with respect to the global x axis with counterclockwise
positive direction. As seen in Fig. 1, the relative angle
between link i and link i + 1 (i.e. the angle of joint i) is
defined as φi = θi − θi+1.

The CM of each link is subjected to a Coulomb ground
friction force. The links have anisotropic friction properties,
which means that each link has two friction coefficients,
µt and µn, describing the Coulomb friction force in the
tangential and normal direction of the link, respectively. For
snake robots, it is common to assume that µn > µt, which
is a property also found in biological snakes [1].

We have shown in [9] that the equations of motion of
the snake robot in terms of the joint angles, φ ∈ RN−1,
the absolute angle of the head link, θN ∈ R, and the CM
position, p, can be written as

φ̈ = u, θ̈N = g(φ, θN , φ̇, θ̇N , ṗx, ṗy,u),

Nmp̈x =
∑N
i=1 fx,i, Nmp̈y =

∑N
i=1 fy,i

(1)

where u ∈ RN−1 is a transformed control input
corresponding to the acceleration of the joint angles,
g(φ, θN , φ̇, θ̇N , ṗx, ṗy,u) ∈ R is a nonlinear function of the
state vector and the control input, and where fx,i and fy,i
are the Coulomb friction force components on link i in the
global x and y direction, respectively.

III. AN INTRODUCTION TO BÉZIER CURVES

In this section, we provide a short introduction to Bézier
curves, which have a central role in the control framework
presented in Section IV. A more detailed description of
Bézier curves may be found in e.g. [11], [12].

Bézier curves are parametric curves commonly used in
computer graphics to model smooth curves, and are popular
due to their compact and intuitive mathematical description.
A Bézier curve is defined by a set of control points b0, b1,
. . . , bn, where n is the order of the curve. The first (b0)
and last (bn) control points are always the end points of
the curve. The intermediate control points, however, do not
generally lie on the curve. A linear (i.e. first order) Bézier
curve is defined in terms of the two control points b0 and
b1, and is simply the straight line between these two points,
which is written as

B(s) = b0 + s (b1 − b0) = (1− s) b0 + sb1 (2)

where s ∈ [0, 1] is a curve parameter whose value maps to a
location on the line segment between b0 and b1. A quadratic

Fig. 2. A plot of three quadratic Bézier curves.

(i.e. second order) Bézier curve is defined in terms of the
three control points b0, b1, and b2, and can be regarded
as the interpolation between the linear Bézier curves from
b0 to b1 and from b1 to b2, respectively. Using (2), this
interpolation can be written as

B(s) = (1− s) [(1− s) b0 + sb1] +
s [(1− s) b1 + sb2]

(3)

After collecting terms, the quadratic Bézier curve is given as

B(s) = (1− s)2 b0 + 2(1− s)sb1 + s2b2 (4)

where s ∈ [0, 1]. Three examples of quadratic Bézier curves
are plotted in Fig. 2. As seen from the plots, the curve tan-
gents at b0 and b2, respectively, both pass through b1. Note
that the curve parameter s does not in general correspond
to the arc length along the curve. The parameter is always
contained in the interval s ∈ [0, 1], where s = 0 corresponds
to b0 and s = 1 corresponds to b2. Higher order Bézier
curves can also be defined. In this paper, however, we will
only consider quadratic Bézier curves.

IV. A CONTROL FRAMEWORK FOR SNAKE ROBOT
LOCOMOTION

In this section, we propose a control framework for
shape control of snake robots. Practical applications of the
framework are exemplified in Section V.

A. Overview of the Control Framework
The control framework is based on specifying the desired

shape of the snake robot in terms of a continuous curve,
denoted the shape curve. As illustrated in Fig. 3, the shape
curve is a mathematical tool for generating joint reference
angles for a snake robot. The shape curve passes through
the coordinates of a set of shape control points (SCPs).
Furthermore, each SCP is associated with an angle which
specifies the tangent angle of the shape curve at the location
of the SCP. The shape curve is constructed by intercon-
necting consecutive SCPs by quadratic Bézier curves, which
were introduced in Section III. Joint reference angles for the
physical snake robot are calculated as the joint angles of a
virtual snake robot aligned at any desired location along the
shape curve. With this approach, the macroscopic shape of
the robot is directly controlled with the coordinates and the
shape angle associated with each SCP. Note that the SCPs
can also be used to explicitly control the local body curvature



Fig. 3. The general structure of the control framework.

TABLE I
THE PARAMETERS EMPLOYED IN THE CONTROL FRAMEWORK.

Symbol Description

P i =

[
Pi,x

Pi,y

]
The global frame coordinates of SCP i.

∆i =

[
∆i,x

∆i,y

]
The relative coordinates of SCP i + 1 with respect
to SCP i.

ψi The angle between the local x axis of SCP i and the
global x axis.

αi The angle of the shape curve tangent at SCP i.

Bi(s) The Bézier curve between SCP i and SCP i+ 1.

S(s) The complete shape curve of the snake robot.

shead, stail The shape curve location of the head and tail of the
virtual snake robot.

s1, . . . , sN−1 The shape curve location of joint 1, . . . , N − 1 of
the virtual snake robot.

∆GS Vector of relative displacements between the SCPs
of a gait segment.

αGS Vector of shape curve angles at each SCP of a gait
segment.

along the snake body. The details of the control framework
are presented in the following subsections, where we will
make use of the parameters summarized in Table I.

B. The Shape Control Point
The shape control point (hereafter denoted SCP) repre-

sents the building block of the shape curve and is defined
in terms of the parameters illustrated in Fig. 4. The SCPs
are denoted by P 0,P 1, . . . ,P k−1, where k is the number
of SCPs in the shape curve and P i = [Pi,x, Pi,y]

T ∈ R2 are
the global frame coordinates of the ith SCP. We associate a
local coordinate system with each SCP (hereafter denoted the
SCP frame), where the x and y axes of the ith SCP frame are
denoted by xSCP,i and ySCP,i, respectively. As seen in Fig.
4, the angle between the xSCP,i axis and the global x axis
is denoted by ψi with counterclockwise positive direction.

The angle of the shape curve at the ith SCP is denoted by
αi and is described with respect to the local xSCP,i axis. The
purpose of describing the shape curve angles with respect
to the local SCP frames instead of the global frame is to
have more flexibility when designing motion patterns. One

Fig. 4. The parameters defining a shape control point (SCP).

useful approach is to always align the x axis of each SCP
frame with the desired forward direction of the snake robot.
The angle αi will then specify the angle of the body shape
with respect to the forward direction, which is an essential
parameter during snake locomotion.

In some situations it may be useful to describe the position
of a SCP with respect to the previous SCP instead of the
global frame. We therefore define the position of SCP i+ 1
with respect to SCP i by ∆i = [∆i,x,∆i,y]

T ∈ R2, where
∆i is described in the local coordinate system of SCP i (see
Fig. 4). The relation between global frame coordinates and
relative coordinates is given by

P i+1 = P i +Rglobal
SCP,i∆i , i ∈ {0, . . . , k − 2} (5)

where the rotation matrix from the global frame to the ith
SCP frame is given by

Rglobal
SCP,i =

[
cosψi − sinψi
sinψi cosψi

]
(6)

C. The Shape Curve Between Two Shape Control Points
The shape curve between each pair of consecutive SCPs is

defined as a quadratic Bézier curve (see Section III). Many
other types of curves could have been used to interpolate be-
tween the SCPs, such as circle segments, elliptical segments,
or even straight line segments. However, we chose to employ
quadratic Bézier curves due to their compact and analytically
tractable form. Moreover, the curve tangents at each end of
a Bézier curve are easy to control, which makes it easy to
ensure that the shape curve complies with the shape angle
specified for each SCP.

As illustrated in Fig. 4, the Bézier curve between SCP i
and SCP i+1 is denoted by Bi(s). According to Section III,
a quadratic Bézier curve is defined in terms of three control
points, i.e. two end points and one intermediate point. We
choose the coordinates of the two SCPs, i.e. P i and P i+1,
as the two end points and we denote the intermediate point
by P i,i+1, as shown in Fig. 4. The Bézier curve between P i

and P i+1 is now given from (4) as

Bi(s) = (1− s)2P i + 2(1− s)sP i,i+1 + s2P i+1 (7)

where s ∈ [0, 1]. The intermediate point P i,i+1 can be
calculated from the shape curve angles at P i and P i+1,



which are given with respect to the global x axis by ψi+αi
and ψi+1 + αi+1, respectively. In particular, we know from
Section III that P i,i+1 is located at the crossing of the two
lines which are tangent to the shape curve at P i and P i+1,
respectively. These two lines can be written as

T a(sa) = P i + sa

[
cos (ψi + αi)
sin (ψi + αi)

]
(8)

T b(sb) = P i+1 + sb

[
cos (ψi+1 + αi+1)
sin (ψi+1 + αi+1)

]
(9)

where T a and T b denote the two line tangents, and sa, sb ∈
R are the curve parameters along the lines. The crossing of
these two line tangents can be found by solving T a(sa) =
T b(sb) for sa, which gives the solution

s∗a =
Pi+1,y − Pi,y + tan (ψi+1 + αi+1) (Pi,x − Pi+1,x)

sin (ψi + αi)− cos (ψi + αi) tan (ψi+1 + αi+1)
(10)

The intermediate point P i,i+1 can therefore be calculated as

P i,i+1 = T a(s∗a) (11)

Note that the denominator in (10) is zero when ψi+αi =
ψi+1+αi+1, which means that P i,i+1 is not properly defined
when the line tangents at P i and P i+1 are parallel. A special
case occurs when the line tangents are coincident, i.e. when
the line tangents are parallel to the straight line from P i

to P i+1. In this case, the location of the intermediate point
P i,i+1 along the two overlapping line tangents is arbitrary,
but a natural choice is to place P i,i+1 at the center point of
the straight line from P i to P i+1.

The singularity occurring when two consecutive shape
curve tangents are parallel (except when they are coincident)
can easily be avoided by choosing the SCP parameters
appropriately. We could also have avoided the singularity
by employing cubic (i.e. third order) instead of quadratic
Bézier curves to interpolate between the SCPs. However,
a cubic Bézier curve has two intermediate control points,
which means that the coordinates and shape angle at each
SCP would not be sufficient to uniquely determine the
intermediate points. Moreover, a cubic Bézier curve can
always be defined in terms of two quadratic Bézier curves
[11], [12], which suggests that the singularity outlined above
is caused by a lack of SCPs along the shape curve.

D. The Complete Shape Curve
Given a set of k SCPs, the complete shape curve is

spliced together from the k − 1 Bézier curves Bi(s), i ∈
{0, . . . , k − 2}, defined by (7). The complete shape curve is
denoted by S(s) and can be compactly written as

S(s) =

{
Bbsc(s− bsc) , s ∈ [0, k − 1)
Bk−2(1) , s = k − 1

(12)

where the brackets b.c mean that the value is rounded down
to the nearest integer. To explain the specific form of (12),
we provide an example of a shape curve with k = 5 SCPs in
Fig. 5. Note that the range of the curve parameter s along the
complete shape curve S(s) is s ∈ [0, k− 1], while the range
of the curve parameter along a single Bézier curve segment
Bi(s) is s ∈ [0, 1]. With this convention, the integer part of
the curve parameter along S(s) denotes the index i of the
current Bézier curve segment Bi(s), while the decimal part
denotes the curve parameter along the Bézier curve segment.

Fig. 5. A shape curve with k = 5 SCPs.

E. Generating Joint Reference Angles from the Shape Curve
As described in Section II, the snake robot consists of N

links interconnected by N−1 motorized joints. We generate
joint reference angles for the snake robot by aligning the
robot virtually at some desired location along the shape curve
S(s). To this end, we denote the curve parameters along the
shape curve corresponding to the locations of the head and
tail of the virtual snake robot by shead and stail, respectively
(see illustration in Fig. 6). Furthermore, we denote the shape
curve location of joint i by si, where i ∈ {1, . . . , N − 1}.
The curve parameters stail, s1, . . . , sN−1, shead are, in other
words, the location of each end point of the N links of the
virtual snake robot along the shape curve.

Note that the curve parameters of the virtual snake robot
are not independent. At any time, it is sufficient to specify
only one of these parameters since all the remaining pa-
rameters will follow from the specific kinematic structure of
the snake robot. We have still chosen to introduce explicit
notation for the location of each link end point since the
point on the snake robot which is employed to specify the
location along the shape curve may then be chosen freely.

We have chosen to align the locations of the joints to
the shape curve since this approach makes the alignment
process particularly simple. For example, given a specified
curve parameter for the head shead, the location along the
shape curve of the joint next to the head sN−1 is found by
moving along the shape curve (either backward or forward
depending on the defined motion planning strategy) until the
linear distance to S(shead) equals the link length l. This
process must be repeated until all the link ends of the virtual
snake robot are aligned, at which point the resulting joint
angles of the virtual snake robot represent the joint reference
angles for the physical snake robot.

Note that we also could have employed other approaches
for aligning the snake robot to the shape curve, such as
aligning the center point of each link instead of the link
ends. However, when the length l of the links is small, we
conjecture that the difference between joint reference angles
generated from different alignment methods is negligible.

F. Generating Motion Patterns for the Snake Robot
Motion patterns are defined by the way the shape curve

parameters and/or the location of the virtual snake robot
along the shape curve are manipulated over time. In the
following, we propose two general approaches for generating



Fig. 6. A virtual snake robot with N = 8 links aligned along a shape
curve with k = 11 SCPs.

motion patterns based on the shape curve. The approaches
are exemplified in Section V.

1) Virtual snake robot progressing along a growing
shape curve: In the first approach, one of the parameters
stail, s1, . . . , sN−1, shead are explicitly changed at each time
step in order to progress the virtual snake robot along the
shape curve at some desired velocity vshape(t) (for example
by progressing the head forward along the shape curve
such that

∣∣∣Ṡ(shead)
∣∣∣ = vshape(t)). At each time step, the

virtual snake robot is aligned along the shape curve and its
joint angles are used as the joint reference angles of the
physical snake robot. If, for instance, the shape curve has a
sinusoidal shape with several wave cycles, then the physical
snake robot will propagate similar sinusoidal wave shapes
backwards along its body when the virtual snake robot is
progressed forward along the sinusoidal shape curve. Note
that the displacement of the virtual snake robot along the
shape curve will generally not be equal to the displacement
of the physical snake robot. In particular, the displacement
of the physical snake robot depends on its ground friction
properties, while the displacement of the virtual snake robot
is specified directly by the specific motion planning strategy.

When the head or tail of the virtual snake robot reaches
the end of the shape curve (for example when shead reaches
the value k − 1), the shape curve should be extended with
a new SCP such that the extension of the shape curve
reflects the continuation of the desired motion pattern. To
facilitate extensions of the shape curve at these discrete time
instants, we propose that a gait segment is defined for each
specific motion pattern. A gait segment defines the form
of the shape curve over one cycle of a specific motion
pattern and is repeatedly concatenated with the shape curve
to create a cyclic motion. We denote the number of SCPs
in a gait segment by j. Furthermore, since the gait segment
is concatenated with the shape curve, we specify the gait
segment in terms of the relative coordinates ∆ defined in
(5). In particular, we define a general gait segment (GS) by
the parameters

∆GS =
[
∆GS

0 ,∆GS
1 , . . . ,∆GS

j−1

]
(13)

αGS =
[
αGS
0 , αGS

1 , . . . , αGS
j−1
]T

(14)

where ∆GS ∈ Rj×2 contains the j relative SCP coordinates
of the gait segment and αGS ∈ Rj contains the shape curve
angle of each SCP. Practical use of the gait segment is
exemplified in Section V.

2) Virtual snake robot fixed along a continuously de-
formed shape curve: The second approach for generating
motion patterns from the shape curve is to fix the parameters
stail, s1, . . . , sN−1, shead and instead modify the coordinates
and/or shape angle of the existing SCPs according to the
desired motion pattern. At each time step, the virtual snake
robot is aligned along the shape curve, which means that the
generated joint reference angles reflect the deformations of
the shape curve. In the authors’ opinion, this second approach
is more complex than the first approach described above
since it is easier and more intuitive to encode a gait pattern
by ‘drawing’ the shape motion as a growing curve rather
than encoding it in the deformations of an existing curve.

V. EXAMPLES OF APPLICATIONS OF THE CONTROL
FRAMEWORK

In this section, we demonstrate how the proposed control
framework can be employed in practice to control snake
robot locomotion. The section presents simulation results
based on the model of the snake robot in (1).

A. Implementation of the Model and the Control Framework
The model of the snake robot in (1) and the control

framework presented in Section IV were implemented in
Matlab R2008b. The dynamics of the model was calculated
using the ode3 solver with a step length of 0.01 s.

We considered a snake robot with links of length l =
0.1 m, mass m = 1 kg, and moment of inertia J = ml2/3.
The number of links N and the friction coefficients of the
links, µt and µn, are presented with each simulation result
below. All initial state values of the robot were zero.

In order to make the joint angles φ = [φ1, . . . , φN−1]
T ∈

RN−1 of the simulated snake robot track the joint reference
angles φref = [φ1,ref , . . . , φN−1,ref ]

T ∈ RN−1 from the
virtual snake robot on the shape curve, we set the control
input u ∈ RN−1 of the model (1) according to the controller

u = kp (φref − φ)− kdφ̇ (15)

where kp > 0 and kd > 0 are controller gains, and where
φ̇ref = 0 since the purpose of the derivative part is simply to
dampen the joint motion if the joint velocities become large.

B. Lateral Undulation
Lateral undulation is the most common form of snake

locomotion and is achieved by propagating continuous waves
backwards along the snake body from head to tail [1].
During this wave motion, the sides of the snake body push
against irregularities in the surface, thereby pushing the
snake forward. To demonstrate how the proposed control
framework can be used to generate joint reference angles for
this gait pattern, we considered a snake robot with N = 10
links with friction coefficients µt = 0.1 and µn = 1. The
shape curve was initialised as a single SCP with parameters
P 0 = [0, 0]

T , α0 = 0◦, and ψ0 = 0◦. Furthermore,
we employed the approach described in Section IV-F.1 and
specified the gait segment parameters in (13) and (14) as

∆GS = l

[
3/2 3/2 3/2 3/2
1 1 −1 −1

]
(16)

αGS =
[
60◦ 0◦ −60◦ 0◦

]T
(17)



Using (5), the gait segment is plotted in Fig. 7(a) with respect
to the initial shape curve. The figure shows that the Bézier
curve interpolation in (7) between each SCP creates a smooth
curve which complies with the shape angles specified in (17).

To demonstrate how the control framework can be em-
ployed to achieve directional control of the locomotion, we
set the frame orientation ψi of each new SCP according to
the directional controller

ψi = kθ
(
θref − θ

)
(18)

where i is the index of the SCP, kθ > 0 is a controller
gain, θref is the reference direction of the motion, and
θ is the current orientation of the simulated snake robot,
which was estimated as the average of the link angles, i.e.
as θ = 1/N

∑N
i=1 θi. For each SCP added to the shape

curve, the controller in (18) rotates the SCP frame in the
direction towards which the robot should turn. This affects
the direction of motion since the gait segment is defined
with respect to the SCP frames. Note that the orientation
of each SCP frame was fixed after being set at the time
instant when the SCP was added to the shape curve. We
chose the reference direction as θref = 0◦ for t ∈ [0, 30)
and θref = 45◦ for t ∈ [30, 70]. The controller gain was
kθ = 0.2.

To generate joint reference angles, we initialised the
location of the head of the virtual snake robot along the
shape curve as shead = 0 and propagated the virtual snake
forward such that

∣∣∣Ṡ(shead)
∣∣∣ = vshape(t) = 15 cm/s. The

SCPs in (16) were consecutively added (one by one) to the
shape curve each time shead reached the end of the shape
curve (shead = k−1). When the last SCP of (16) was added,
the concatenation process started over from the first SCP of
(16) in order to create a cyclic motion pattern. Note that the
virtual snake robot was initially located outside the shape
curve (except for the head). By convention, the angles of
joints outside the shape curve were set to zero.

The resulting shape curve after t = 70 s of simulated
motion is plotted in Fig. 7(b), where the shape curve location
of the virtual snake robot is plotted for t = 10 s, t = 30 s,
and t = 65 s, respectively. A close-up of the virtual snake
robot at t = 30 s is shown in Fig. 7(c). The resulting motion
of the simulated snake robot is shown in Fig. 7(d), where we
see that the locomotion is parallel with the global x axis at
first (in accordance with θref = 0◦), but changes according to
θref = 45◦ after t = 30 s. Note that the robot turned slightly
to its right during the first seconds of the simulation since
the directional controller did not have full effect until the
virtual snake robot had entered the shape curve completely.

As explained in Section IV-F.1 and clearly illustrated in
Figures 7(b) and (d), the displacement of the virtual and the
simulated snake robot, respectively, are generally not equal.
In particular, the virtual snake robot follows the shape curve,
which expands in the direction defined by the controller in
(18). The displacement of the simulated snake robot, on the
other hand, depends on its ground friction properties.

Remark 1: The common approach in the literature for
achieving lateral undulation is to control each joint angle
according to a sinusoidal reference trajectory [9]. With this
approach, however, it is not trivial to determine the resulting
macroscopic shape of the body wave motion, which is a

geometric function of the robot kinematics and the sinusoidal
joint motion. The simulation results in Fig. 7 illustrate that
the control framework allows the macroscopic shape motion
to be controlled explicitly and intuitively.

Remark 2: The common approach in the literature for
achieving directional control during lateral undulation is
to add an offset to the sinusoidal reference trajectory of
each joint [9]. This approach causes the entire snake to
attempt to turn simultaneously. On the other hand, biological
snakes turn during lateral undulation by first introducing a
turning action at the head, which is repeated in turn by
the consecutive body segments. This approach, which we
believe to be more efficient than turning with the whole snake
body at once, is achieved with the directional controller in
(18) since a turning action is propagated backwards along
the snake body according to the forward progression of the
virtual snake robot along the shape curve.

C. Concertina Motion

A snake robot can display a concertina-like motion pattern
by curling (i.e. contracting) a small part of its body while
the rest of the body is lying straight, and then propagating
the curled shape forward along the body. When the curled
shape has propagated over the entire body length, the robot
will have displaced its center of mass a step forward.
We implemented this motion pattern using the exact same
approach as in Section V-B. In particular, we defined the
gait segment parameters in (13) and (14) as

∆GS = l

[
0 1 1 1 l 1 1 10
0 3/2 −3/2 −3/2 3/2 3/2 −3/2 0

]
(19)

αGS =
[
80◦ 0◦ −80◦ 0◦ 80◦ 0◦ −80◦ 0◦

]T
(20)

The gait segment is plotted in Fig. 8(a) and consists of an ini-
tial curl followed by a long straight segment. We considered
a snake robot with N = 20 links and friction coefficients
µt = µn = 0.1, which were equal since concertina motion
does not require anisotropic ground friction. The shape curve
propagation velocity was vshape(t) = 20 cm/s.

The simulated motion of the snake robot is shown in
Fig. 8(b). Note that the robot moved in the negative global
x direction since the curled shape travelled backwards along
the body. Although the motion was not very efficient, it is
clearly seen that the motion pattern successfully propelled
the robot. This simulation result illustrates how a completely
different gait pattern easily can be designed within the
control framework simply by redefining the gait segment.

D. Lateral Rolling

During lateral rolling, a snake robot undergoes a con-
tinuous rolling motion about its tangential body axis (see
e.g. [9]), which requires that the snake robot can form its
body into an arc in both the horizontal and the vertical
plane. In the following, we will demonstrate how the control
framework can be employed to generate a ‘planar version’ of
lateral rolling, where the body of the snake is continuously
bent back and forth in the horizontal plane. Although this
motion will not produce propulsion, the simulation results
demonstrate that lateral rolling easily can be achieved with
the proposed control framework by extending the framework
with 3D curves (which is a topic of future work).



(a) The gait segment of lateral undulation.

(b) The shape curve after t = 70 s.

(c) Close-up of the virtual snake robot at t = 30 s.

(d) The resulting motion of the snake robot.

Fig. 7. Simulation of lateral undulation. The reference direction is θref =
0◦ for t < 30 s and θref = 45◦ for t ≥ 30 s.

(a) The gait segment of concertina-like motion.

(b) The resulting motion of the simulated
snake robot.

Fig. 8. Simulation of a concertina-like motion pattern.

Since the approach of progressing the virtual snake robot
forward along the shape curve is not suitable for producing
a continuous bending motion back and forth, we chose to
employ the approach described in Section IV-F.2. In partic-
ular, we defined the shape curve in terms of the following
three SCPs with time-varying coordinates:

P 0 =

[
0

2l sin
(
π
4 t
)],P 1 =

[
Nl/2

0

]
,P 2 =

[
Nl

2l sin
(
π
4 t
)] (21)

Furthermore, we defined the shape curve angles as

α0 = −π3 sin
(
π
4 t
)
, α1 = 0 , α2 = π

3 sin
(
π
4 t
)

ψ0 = 0 , ψ1 = 0 , ψ2 = 0
(22)

This time-varying shape curve is plotted to the left in Fig. 9,
where we can see that the shape curve is bent back and forth
in the horizontal plane. In order to produce joint reference
angles corresponding to this shape motion for a snake robot
with N = 10 links, we simply fixed the middle joint of the
virtual snake robot in the second SCP by setting s5 = 1.
The simulated motion of the snake robot according to the
model in (1) is shown in Fig. 9. As expected, the snake
robot displayed the desired arc shape motion.



Fig. 9. The planar motion component of lateral rolling. Left: A shape
curve with three SCPs, where the first and third SCP oscillate about the
global x axis. Right: The resulting motion of the snake robot.

Notice how the control framework allows us to easily
and explicitly specify the desired time-varying shape of the
snake robot without being concerned about the motion of the
individual joints. Note also that if this approach is employed
in a 3D setting in order to achieve actual rolling motion, then
directional control can be achieved by displacing the SCPs
at each end point with different amplitudes.

E. Achieving Environment Adaptation
The gait patterns demonstrated previously in this section

work well for snake robot locomotion over relatively flat
surfaces. However, efficient locomotion in cluttered and
challenging environments, which is more in line with prac-
tical applications of snake robots, requires that the robot
can sense its environment and adapt its body shape and
movements accordingly [9]. We argue that the proposed
control framework is particularly well suited for achieving
environment adaptation during locomotion. In particular,
since the framework allows us to explicitly specify the
macroscopic shape of a snake robot in terms of shape control
points, we can achieve environment adaptation by placing
shape control points in direct accordance with the geometry
of the environment (which can be estimated from e.g. contact
force measurements). This approach is illustrated in Fig. 10.
Investigating the applicability of the control framework for
motion in cluttered environments represents an important
topic of future work.

VI. CONCLUSIONS

This paper has presented a control framework for snake
robot locomotion which allows the macroscopic shape of a
snake robot to be controlled explicitly. The framework is

Fig. 10. Top: A shape curve defined in terms of shape control points placed
with respect to detected external objects. Bottom: A snake robot adapting
to its environment by tracking the shape of the shape curve.

based on specifying the desired shape of the snake robot as
a continuous shape curve defined by a set of shape control
points interconnected by Bézier curves. We have proposed an
approach for motion generation in which the shape curve is
repeatedly extended according to a desired gait pattern while
a virtual snake robot is progressed along the shape curve
to retrieve joint reference angles. Practical applications of
the proposed control framework were exemplified along with
simulation results. In future work, the authors will extend the
framework to support 3D curves.
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