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Abstract

Aluminium high pressure die-castings have become essential elements of a modern car
body in recent years. The high pressure die-casting method enables to produce thin-
walled components of complex geometries. This advantage is used to create structural
nodes and connector elements as one-piece components. These components are subjec-
ted to extreme loads such as in crash situations and expected to maintain the structural
integrity of the car body. Numerical models are required to analyse the structural beha-
viour of aluminium high pressure die-casting components and to guarantee their struc-
tural reliability.

The material ductility in aluminium high pressure die-casting components is strongly
influenced by casting defects. Typical casting defects are shrinkage pores, gas pores and
oxide films. These casting defects are caused by the casting system and fluctuations dur-
ing the casting process. As a result, the casting defects are varying within a component.
Moreover, the variation can be separated into a global systematic variation depending on
the casting system and a local pseudo-random variation caused by the process fluctu-
ations. A casting defect can be considered as initial material damage which leads to a de-
crease of the local material ductility. As a result, the material ductility exhibits a global sys-
tematic variation and a local pseudo-random variation. The main objective of the present
work is the experimental and numerical analysis of these two types of variation.

The main objective of the experimental work was the investigation of the global sys-
tematic variation and the local pseudo-random variation in the material ductility of an
aluminium HPDC alloy. Here, a generic high pressure die-casting component made of
an AlSi9Mn alloy in casting condition was considered. An extensive material character-
isation was performed using uniaxial tensile tests. The specimens were machined from
different extraction positions as well as from duplicated extraction positions of the gen-
eric casting component. Through this sampling approach, it was possible to analyse the
systematic variation as well as the local pseudo-random variation in the material ductility.
The mechanical analysis of the tensile test results showed a reproducible strain hardening
behaviour in duplicated extraction positions, but the failure strain varied between differ-
ent extraction positions and within duplicated positions. A detailed statistical analysis was
performed on the tensile test results and hypothesis tests were applied to identify extrac-
tion positions with comparable material ductility. Based on the results obtained from the
hypothesis tests, it was concluded that the generic casting component can be separated
into characteristic parts of comparable material ductility. Moreover, it was shown that the
local pseudo-random variation of the material ductility can be described by a weakest-
link Weibull distribution. In addition, the fracture surfaces of selected specimens were
examined by a SEM analysis and, as expected, casting defects were found on each frac-
ture surface and identified as the dominating factor for fracture. Besides material testing,
bending tests and axial compression tests were carried out on the generic casting compon-
ent. Especially, the experimental results obtained from the bending tests exhibited strong



scatter. According to the results obtained from material testing, it was concluded that the
strong scatter is caused by the global systematic variation and the local pseudo-random
variation in the material ductility.

As a result, a probabilistic approach in failure modelling was considered in the numer-
ical work. Hence, it was possible to capture the local pseudo-random variation in the
material ductility. The probabilistic failure model was based on the phenomenological
Cockcroft-Latham failure criterion and the weakest-link model by Weibull. The required
quantities stress state and equivalent plastic strain were given by an isotropic hypoelastic-
plastic constitutive model. The focus was put on the numerical prediction of the fail-
ure probability of casting components. Usually, the failure probability is estimated from
a Monte-Carlo simulation based on various finite element simulations using a pseudo-
randomly distributed critical failure value. In the present work, an approach was presen-
ted to predict the failure probability from a single finite element simulation. Both ap-
proaches were compared in numerical analysis and it was shown that both approaches
lead to the same prediction of the failure probability. The approach based on the direct
computation of the failure probability was applied in finite element simulations of the
bending test and the axial compression test of the generic casting component. Accord-
ing to the material characterisation, the FE model of the generic casting component was
partitioned into three parts. For each part the parameters of the constitutive model and
the probabilistic failure model were found from the corresponding experimental results. It
was demonstrated that the numerically predicted failure probability and the experiment-
ally estimated failure probability are very well correlated in both load cases. Consequently,
the applied probabilistic failure model was considered as validated. Moreover, a novel ap-
proach for the pseudo-random distribution of a critical failure value was presented and
the concept of the uncoupled modelling approach was introduced. Due the uncoupled
modelling approach, it was possible to perform mesh convergence studies on finite ele-
ment models using a pseudo-randomly distributed critical failure value. However, the
probabilistic failure model captured only the local pseudo-random variation in the ma-
terial ductility. Hence, a through-process modelling approach was presented based on a
casting simulation result and the definition of casting qualities. This approach was only
numerically investigated.
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Chapter 1

Introduction

The lightweight design of a modern car body is characterised by weight reduction and
an increase of structural stiffness and crashworthiness. These requirements are met us-
ing high strength steels, aluminium alloys and fibre reinforced plastics for the structural
components. The structural behaviour is defined by the component geometry and the ap-
plied material. Further, the properties of the applied material are mostly influenced by the
manufacturing process. Especially, aluminium high pressure-die castings have become
essential elements in the car body design. The high pressure-die casting method enables
to produce thin-walled aluminium components of complex geometries. This advantage is
used to design performance optimised and multifunctional components. Therefore, alu-
minium high pressure-die casting components are mainly used as structural nodes and
connector elements where high forces are introduced locally and various components
need to be connected. However, the material ductility is dominated by casting defects
which are caused by the high pressure-die casting process. As a consequence of the cast-
ing defects, the material ductility varies strongly within a component. This variation needs
to be considered particularly in the crash design. Here, the most common tool for analys-
ing the crash design is the finite element method. The deformation and failure behaviour
of structures subjected to various loading scenarios can be predicted numerically using
the finite element method. A reliable numerical design of an aluminium high pressure-die
casting component requires that the variation in the material ductility caused by the cast-
ing defects is taken into account. This requirement is the overall objective of the present
work. In the following, the motivation, the objectives and the scope of the present work
are presented.

1.1 Motivation

The present work is motivated by the car body of the current Audi A8 (third generation
(D4), production 2010 - present), see Figure 1.1.1. In particular, the two aluminium high
pressure die-casting components in the rear-end are in the focus. For the first time, the
high pressure die-casting method is used to produce such large structural components
which are subjected to extreme loads in a rear-end crash. Furthermore, these two com-
ponents are applied in casting condition due to the use of a special aluminium casting
alloy. This means that these two components are processed directly after casting without
any heat treatment which reduces significantly the particular production costs. Here,
the applied aluminium casting alloy was introduced by Aluminium Rheinfelden GmbH
in 2004 and is technically called Castasil-37. The objective of the entire automotive in-
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Aluminium HPDC component
made of Castastil-37

Figure 1.1.1: Application of two high pressure die-casting components made of the
aluminium alloy Castasil-37 in the car body of the current Audi A8 (third generation
(D4), production 2010 - present).

dustry is to increase the application of large structural components made of aluminium
high pressure die-casting alloys like Castasil-37. Consequently, this increases the request
of numerical material models which allow predicting the deformation and failure beha-
viour of aluminium casting alloys, especially when they are applied in casting condition.

1.2 Objectives

The main objective of the present work is the development of a numerical material model
which allows to predict accurately the deformation and failure behaviour of aluminium
casting alloys considering the influence of casting defects on the material ductility. Fur-
thermore, the application of the numerical model in industrial applications should be
taken into account. This means that computational costs are a relevant key factor. The
present work is focused on the aluminium casting alloy Castasil-37. In summary, the main
objective of the present work can be divided into three objectives which are defined as
follows:

– Experimental analysis of the variation in the material ductility based on component
and material testing.

– Development and numerical implementation of a material model for aluminium
high pressure die-castings.

– Numerical analysis and validation of the material model based on finite element
simulations of material and component tests.
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1.3 Scope

The scope of the present work can be divided into three parts:

– Theoretical background: The high pressure die-casting process, the composition
and the properties of aluminium casting alloys and the application of high pressure
die-casting components in the car body need to be described to obtain a deeper
understanding of the problem. This is given in Chapter 2. As already mentioned,
the material ductility of aluminium casting alloys exhibits a strong variation. The
analysis of experimental results which are expected to show a strong variation re-
quires the use of statistical methods. Therefore, the basics of probability theory and
statistics are introduced in Chapter 3. The main objective of the present work is the
numerical prediction of the deformation and failure behaviour of aluminium high
pressure die-castings. Hence, a material model consisting of a constitutive model
and a failure criterion has to be defined. However, failure criteria are usually applied
in a deterministic sense. This requires that all involved quantities need to be exactly
known. This requirement cannot be met for aluminium casting alloys. Here, a prob-
abilistic approach in failure modelling has to be applied. The probabilistic approach
takes the variation in material quantities into account and assumes that the material
quantities are given in form of probability distributions. The basics of failure mod-
elling including the basics of continuum mechanics and finite element modelling
are presented in Chapter 4. The field of probabilistic failure modelling with focus on
the weakest-link approach is introduced in Chapter 5. A literature review on failure
modelling of casting materials is provided in Chapter 6.

– Experimental work: The aim of the experimental work is to characterise the ma-
terial behaviour of the aluminium casting alloy Castasil-37 and to analyse the vari-
ation in the material ductility. Material test specimens are usually machined from
sheets. However, high pressure die-castings consist of ribs, ejector domes and vary-
ing wall thicknesses and, consequently, the flow conditions are different to the ones
in a sheet. Since the flow conditions strongly influence the material behaviour, the
use of sheets would provide artificial results. Here, material test specimens have to
be machined from a generic high pressure die-casting component. Since it is ex-
pected that the material ductility of the aluminium casting alloy Castasil-37 exhibits
a strong variation, a material characterisation has to be focused on analysing the
variation. Here, the questions “How can the variation be described?” and “Does the
variation show a spatial dependence?” need to be answered. This requires a de-
tailed statistical analysis of the test results. In the current work, a generic U-shaped
component including ribs and ejector domes is investigated. The two mentioned
questions are answered using tensile test specimens which are machined from dif-
ferent extraction positions of the generic component and, further, from the same
extraction position of various generic components. It is noted that the material
characterisation is restricted to the analysis of the material tensile failure behaviour
under quasi-static loading conditions. Besides this, the influence of the variation
in the material ductility on the structural behaviour is analysed using component
tests. The results obtained from the component tests are presented and discussed
in Chapter 7 and the results obtained from the material characterisation are presen-
ted and discussed in Chapter 8.

– Numerical work: The numerical prediction of the deformation and failure behaviour
of aluminium high pressure die-castings requires the definition of a material model.
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As already mentioned, a probabilistic approach in failure modelling has to be ap-
plied to capture the variation in the material ductility of aluminium casting alloys.
In the present work, the finite element method is used for the numerical analyses.
The use of a probabilistic failure criterion leads to a pseudo-random distribution of
the critical failure value within a finite element model. A single simulation of such a
finite element model provides only one possible result and this result does not allow
to draw any conclusion of the failure behaviour. Here, the prediction of the failure
probability is the goal when a probabilistic failure criterion is applied. The most
common approach to estimate numerically the failure probability is a Monte-Carlo
simulation. This means that multiple simulations of a finite element model have
to performed and a new pseudo-random distribution of the critical failure value is
applied in each simulation. As a result, the failure probability can be estimated. The
numerical work is focused on the prediction of the failure probability of aluminium
high pressure die-castings. A novel approach to compute directly the failure prob-
ability using a single simulation is introduced. It is analysed if the failure probability
obtained from this approach leads to the same failure probability estimated from
an equivalent Monte-Carlo simulation. Moreover, different methods to distribute
pseudo-randomly the critical failure within a finite element model are analysed.
Numerical studies are performed on the uniaxial tensile tests and the component
tests which are investigated in the experimental work. The comparison of the nu-
merical and experimental results enables to validate the probabilistic approach in
failure modelling. The applied material model consisting of a constitutive model
and a probabilistic failure criterion based on the weakest-link approach and its im-
plementation are presented in Chapter 9. The results of the numerical studies are
presented and discussed in Chapter 10.



Chapter 2

About Aluminium Die-Casting

The casting process is probably one of the oldest manufacturing technologies. Liquid ma-
terial is poured into a mould that includes the negative shape of the casting product. When
the material is solidified the casting can be removed by opening or braking the mould.
Most common casting materials solidify due to cooling or chemical reactions. In gen-
eral, casting materials require, in liquid form, a high viscosity to flow into all parts of the
mould and sufficient strength properties in solid form to meet the structural requirements.
Hence, casting materials are evaluated regarding their casting and strength properties.
The best known casting materials are concrete, metal alloys and plastics. In Figure 2.0.1,
examples of castings made of these materials are presented. The casting technique en-
ables to produce components of complex geometries in any size with high accuracy. Since
the costs of the casting set-up and the moulds are relatively high, casting components are
usually produced in large scale production. Moreover, casting components are manufac-
tured individually when an alternative is not realisable or too cost intensive. In general,
the applied technique is defined by casting material, shape, size and usage of the casting
product. Common for all techniques is the fact that the work before and after casting takes
most of the time and the casting itself is done within comparatively short time. The form
filling is characterised by a complex flow and temperature field which reacts sensitively
to slight fluctuations of the external environment and process parameters. This means
that in reality a multiple repetition of an identical casting set-up produces varying flow
and temperature fields. Especially, the solidification is influenced by this physical field
and, further, the solidification influences the strength properties. Therefore, a variation of
the flow and temperature field lead directly to a variation of the strength properties and
a pseudo-random behaviour of the strength properties is natural. It is noted that even in
large scale production with a high standard of quality this variation cannot be avoided.

The aim of this chapter is to introduce the high pressure die-casting method which en-
ables to cast aluminium and magnesium alloys. Here, the basics of the process technology
is described and the chemical composition of die-casting alloys is shown. The formation
of casting defects and their influence on the material behaviour are discussed. Further-
more, the application of die-casting components in the car body is demonstrated by an ex-
ample and the requirements on the structural behaviour of these components are shown.
This chapter only covers briefly the topics since these are already well discussed in the
technical literature. Especially, the standard book about metal casting by Campbell [17] is
highly recommended to get a deeper understanding.
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(a) V8 engine block
made of aluminium,
see Chevy Hi-
Performance [19].

(b) Concrete bridge,
see Schlaich Berger-
mann und Partner
GmbH [102].

(c) Tool housing made
of plastic, see Impetus
Plastics Group [62].

Figure 2.0.1: Examples of casting products made of metal, concrete and plastic.

2.1 High Pressure Die-Casting Process

The High Pressure Die-Casting (HPDC) is a metal casting process which is characterised
by injecting molten metal under high pressure into a mould cavity. This casting method
enables to produce components with complex geometries in series. Here, only nonferrous
metals such as aluminium, magnesium or zinc alloys can be used. An excellent example
of an HPDC component is illustrated in Figure 2.1.1. It shows an aluminium gearbox of a
KTM motorcycle and it demonstrates the geometrical complexity that becomes realisable.
The basics of the HPDC production technique are introduced in the following. A detailed
introduction can be found in the technical literature by Campbell [17] and Ostermann
[92].

Figure 2.1.1: Aluminium HPDC gearbox of a KTM motorcycle, see Aluminium Rhein-
felden GmbH [6].

In general, HPDC machines are classified into hot-chamber and cold-chamber ma-
chines. If casting machine and holding furnace are directly connected to each other, it
is called a hot-chamber HPDC machine. Consequently, if casting machine and holding
furnace are separated, it is called a cold-chamber HPDC machine. In Figure 2.1.2a, the
casting process is illustrated based on a cold-chamber machine. It can be seen that the
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(b) Piston pressure.

Figure 2.1.2: Exemplary drawing of cold chamber HPDC machine with vacuum as-
sembly and piston pressure during HPDC process.

machine consists of two parts. One machine part is fixed, while the other machine part
is hydraulically movable to open and close the mould cavity. The two mould halves are
mounted to these machine parts. Besides the negative shape of the casting component,
the mould cavity includes incoming and outgoing casting channels. Usually, the mould is
made of an hardened high strength steel which resists the high temperature of the melt.
The two parts of the mould are technically called the casting tool. In the first step, the
melt is poured into the shot sleeve. Then, the melt is injected by the piston into the cavity.
The shot sleeve can be arranged in vertical or horizontal direction. After solidification, the
machine opens and the casting component can be removed using ejectors. It is common
to apply a release agent on each mould part prior to casting. The piston pressure is es-
sential for the quality of the solidified microstructure of the casting material. Hence, the
melt in the cavity is pressurised by the piston until the melt is solidified, see Figure 2.1.2b.
Due to constant pressure during solidification, the formation of pores is reduced and the
surface quality is improved. Furthermore, the solid material structure can additionally
be improved by vacuuming the cavity. Gas within the melt and gas due to vaporised re-
leased agent is removed by the vacuum and the amount of gas pores is strongly reduced.
It is common to combine the pressurising method with the vacuum method to produce
casting components of high quality. Components made of an aluminium alloy are usually
produced using a vertical cold-chamber HPDC machine with vacuum assembly.

The casting production cycle takes only a few seconds. The cavity is completely filled
out between 20 msec and 200 msec depending on the component size. The melt reaches
velocities of up to 140 m/sec. Here, the material flow is characterised by turbulent flow
conditions. The time until the material is solidified depends on the applied wall thick-
nesses in the casting component. In modern production plants, the HPDC process is fully
automated from the preparation of the mould until the removal of the solidified casting
component. Since an HPDC machine, including the casting tool, is very cost intensive,
HPDC components are only mass produced. Furthermore, it is common to heat treat the
components to homogenise the material structure and, thus, to improve the mechanical
properties. Here, component deformations due to thermal distortion are natural and have
to be adjusted manually. Besides the required energy for the heat treatment, this manual
work increases the production costs.

The HPDC technique enables engineers to create components with nearly unlimited
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design possibilities. HPDC components with weight from 2 g until 2000 g and including
wall thicknesses up to 1 mm are realisable. Hence, the integral construction principle can
be applied with best results. Requirements on the technical function and the mechanical
strength are best fulfilled by using HPDC components. Traditionally, the HPDC process
is used to produce engine blocks and gearboxes. Several elements within the drive line
and chassis of a car are die-casted. Moreover, HPDC components are applied as structural
components in the car body. Here, high strength casting alloys are needed to resist the
high mechanical loading in crash situations.

Furthermore, the HPDC process needs to be designed according to the component
which is to be produced. Here, the most important process parameters are as follows:

– Melt temperature of the casting alloy

– Temperature of the casting tool

– Velocity and pressure of the piston

– Distribution of the release agent

– Clamping force of the casting machine

These parameters have to be carefully chosen since they are defining the quality of the
casting product. Numerical simulations are commonly used for a precise parameter iden-
tification and to control the HPDC process. Cavity filling as well as material solidifica-
tion can be predicted by a casting simulation software. The melt flow is described by the
Navier-Stokes equations and the solidification is described by the heat equations. The
numerical solution of these partial differential equations is the main topic in the field of
Computational Fluid Dynamics (CFD). CFD software tools like MAGMAsoft [81], ProCAST
[38] and FLOW-3D Cast [40] are specialised on the simulation of metal and polymer cast-
ing processes. However, it is noted that the viscosity parameters and the thermal coeffi-
cients of the applied casting material as well as the boundary conditions need to be known
in advance. Based on a casting simulation result, thermal distortion and initial stresses of
the solidified casting component can be computed. Furthermore, a casting simulation
gives information about material flow length, air contact time, cooling rate and temper-
ature gradient. These results are useful to draw conclusions about the material structure,
as, for instance, the occurrence of pores and oxide films. In Figure 2.1.3, the result of a
casting simulation is illustrated. The first figure, Figure 2.1.3a, shows the melt distribution
at a certain filling state. The second figure, Figure 2.1.3b, shows the temperature distribu-
tion at a certain solidification state. It is noted that a casting simulation result only shows
one possible outcome and any variation of the process parameters needs to be analysed
through a stochastic approach.

2.2 Aluminium Die-Casting Alloys

Casting as well as strength properties are the most important items in the chemical com-
position of an aluminium HPDC alloy. Moreover, weldability, corrosion resistance and
properties under heat treatment are important characteristics to consider. Aluminium
HPDC alloys are separated into Aluminium-Silicon (Al-Si) and Aluminium-Magnesium
(Al-Mg) based alloys. The characteristic phase diagrams of these alloys are presented in
Figure 2.2.1. A phase diagram plots the temperature against relative concentration of two
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(a) Form filling. (b) Solidification.

Figure 2.1.3: Result of an HPDC simulation preformed with MAGMAsoft, see Klee-
berg [66].

substances and shows the phases which are present in a binary material system, see Horn-
bogen and Warlimont [58]. The phase diagrams of Al-Si and Al-Mg alloys are well dis-
cussed by Bargel and Schulze [9]. A brief summary is given in the following.

Eutectic Al-Si alloys with a Si content of approximate 11.7 %, Figure 2.2.1a, are char-
acterised by excellent casting and good strength properties. In contrast, eutectic Al-Mg
alloys with a Mg content of approximately 34.5 %, Figure 2.2.1b, lead to a brittle material
behaviour. The intermediary bond Al3Mg2 in Al-Mg alloys with a Mg content of approx-
imately 37.5 % reduces ductility and corrosion resistance. In general, Al-Mg alloys with
a Mg content between 3 % and 15 % are usually applied. However, eutectic Al-Si-Mg al-
loys are recommended for casting products with a Mg content of approximately 5 %, see
Bargel and Schulze [9]. Other essential elements in the chemical composition are Iron (Fe),
Manganese (Mn), Copper (Cu), Nickel (Ni), Zinc (Zn) and Titanium (Ti). Si enhances the
casting properties, whereas Mg causes hardening. Fe reduces the melt adhesive tendency
but also the ductility. Here, Mn can be used as an alternative or in addition. Cu and Ni in-
crease the high-temperature strength. Zn and Ti improve the strength. The microstructure
of an Al-Si-Mg HPDC alloy can be found in Figure 2.2.2. The light grey particles are α-Al
crystals. The dark grey areas in between is the Al-Si eutectic including Fe and Mn. The
image shows the microstructure directly after the HPDC process (heat-treatment is not
applied). In European Standard DIN EN 515:1993-12 [26], the casting condition is marked
with an F. Heat treated alloys are marked with a T and a number defining the degree of
heat-treatment. Examples of chemical compositions of aluminium HPDC alloys can be
found by the aluminium suppliers Aluminium Rheinfelden GmbH [5], Hydro Aluminium
ASA [89, 90] or Aleris Switzerland GmbH [2].

2.3 Casting Defects and Material Behaviour

Casting metals show less ductile material behaviour compared to metals produced in an-
other way such as sheet or extrusion production. The material behaviour is dominated by
microstructural defects caused by the casting process. These casting defects have a strong
influence on the fracture behaviour and lowers the material ductility. A high casting ma-
terial quality is achieved by using the HPDC method. However, casting defects cannot
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(a) Phase diagram Al-Si alloy. (b) Phase diagram Al-Mg alloy.

Figure 2.2.1: Characteristic phase diagrams of an Al-Si alloy and an Al-Mg alloy, see
Bargel and Schulze [9].

Figure 2.2.2: Microstructure of an HPDC Al-Si-Mg alloy, see Dørum et al. [33].

be avoided. The HPDC process is characterised by a turbulent form filling with long flow
lengths, high cooling rates and high temperature gradients. These conditions lead to the
formation of casting defects. The casting defects due to the HPDC process are very well de-
scribed in the literature, see Bargel and Schulze [9], Campbell [17], Hornbogen and Warli-
mont [58] and Ostermann [92]. The formation of casting defects as well as the influence
on the material behaviour is still discussed today. It is referred to Dispinar and Campbell
[28, 29], Eisa Abadi et al. [34, 35, 36], Lee et al. [71, 72], Teng et al. [105, 106] and Mohr and
Treitler [87]. Moreover, the PhD works by Dørum [30], Laukli [70] and Treitler [107] deal
with this topic and provide an overview of the necessary basics. In the following, a brief
introduction into this topic is given.

The casting defects can be classified into gas porosity, shrinkage porosity and oxide
films, see Mohr and Treitler [87]. Images of a aluminium microstructure containing these
casting defects are illustrated in Figure 2.3.1. The characteristics of the casting defects are
presented in the following:

– Shrinkage porosity is a result of volume contraction which occurs during the phase
transition from liquid to solid. Figure 2.3.1a shows a shrinkage pore and its char-
acteristic bubble structure can be seen. Shrinkage pores arise due to the fast solid-
ification of the material in the HPDC process. Furthermore, the high temperature
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(a) Shrinkage pore. (b) Gas pore. (c) Oxide films.

Figure 2.3.1: Microstructure of an aluminium HPDC alloy (AlSi9Mg) containing cast-
ing defects, see Teng et al. [106].

gradients in thick parts are critical. Hence, shrinkage pores can especially be found
in thick parts of an HPDC component. The pressurising method is used to avoid this
kind of defect.

– Gas porosity occurs due to three main reasons. The first reason is gaseous hydro-
gen. The hydrogen solubility in liquid metals decreases during cooling. As a result,
gaseous hydrogen exhausts from the solidifying HPDC melt and leads to gas poros-
ity. The second reason is air which is enclosed in the melt due to the turbulent form
filling in the HPDC process. The third reason is vaporised release agent. The char-
acteristic spherical shape of a gas pore can be seen in Figure 2.3.1b. In general, gas
porosity can be reduced when the vacuum technology and a controlled form filling
are used.

– Besides shrinkage and gas porosity, oxide films are critical casting defects since these
lead to internal microcracks. Molten metals have a strong tendency to form oxide
films in contact with the atmosphere. These oxide films are likely to act like micro-
cracks. In the HPDC process, oxide films can occur in the holding furnace, the shot
sleeve and during form filling. An initial microcrack is illustrated in Figure 2.3.1c.
Such material discontinuities arise also from so-called cold flow areas. Here, two
melt fronts with solidifying material meet and continuous connection of the mater-
ial is no longer possible. The amount of these casting defects are reduced using the
vacuum technology and a heated casting tool. However, these defects can especially
be found in HPDC component parts which are far off the gating system.

Unless the HPDC process is carried out under laboratory conditions, these casting de-
fects cannot be avoided. Casting defects can be found in every HPDC component, see
Dispinar and Campbell [28, 29]. However, the casting defect distribution within HPDC
components is neither uniform nor reproducible. The distribution is primarily domin-
ated by a stochastic character due to the sensitivity of the HPDC process, see Eisa Abadi et
al. [36] and Lee et al. [71]. The distribution can be described as follows: The probability
of the occurrence of a particular casting defect depends on the location within the HPDC
component. For instance, the probability to find a shrinkage poor is higher in a thick part
than in a thin part or the probability to find a discontinuity due to cold flow is higher in
parts close to vacuum channels than in parts close to gating channels. In summary, the
spatial distribution of casting defects consists of a systematic distribution depending on
the HPDC set-up on the global level and of a pseudo-random distribution on the local
level. Here, a casting simulation can be used to identify critical parts for casting defects as
seen by Dørum et al. [32], Greve [45] and Leppin et al. [76]. The casting defect distribution
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can be found from a scanning electron microscope analysis of the microstructure as seen
in the works by Eisa Abadi et al. [35] and Teng et al. [106].

The casting defects have strong influence on the material behaviour. In general, a cast-
ing defect denotes a material discontinuity and can be considered as an initial material
damage which lowers the material ductility. Therefore, the fracture initiation in HPDC
components is dominated by the casting defects, see Campbell [17]. In case the casting
material does not consist of any defect, the fracture initiation is a result of the nucleation,
growth and coalescence of voids and consequently a crack starts to grow. This mechanism
describes ductile failure in metals. However, usually the casting material contains defects.
Consequently, fracture initiation is dominated by growth and formation of microcracks.
A microcrack starts to grow from the casting defect when the material loading reaches a
critical value. Consequently, the material ductility of the purely casting material decreases
according to the magnitude and the amount of defects. It is noted that casting defects
are almost invariant during loading compared to the voids which grow during loading.
In contrast to the fracture behaviour, the elastic-plastic deformation behaviour of casting
materials is assumed to be unaffected by the defects. Hence, the deformation behaviour
can be described through standard metal plasticity such as v. Mises plasticity as seen by
Dørum et al. [31], Greve [45], Leppin et al. [76] and Mohr and Treitler [87].

The fracture initiation is usually described by ductile failure criteria, see Dørum et al.
[31], Greve [45], Leppin et al. [76] and Mohr and Treitler [87]. Here, the critical failure value
defines the fracture initiation and stays in one-to-one correspondence to the casting de-
fects. The critical failure value decreases when a casting defect is expected. Therefore, the
influence of casting defects can be directly detected by measuring the critical failure value
from mechanical material tests. Since the casting defects are of stochastic character, the
measured critical failure value varies pseudo-randomly between material tests using the
same test set-up and test specimens machined from the same position within an HPDC
component, see Dørum et al. [31], Lee et al. [72] and Teng et al. [105]. Consequently,
the critical failure value is given in form of a probability distribution. It is noted that the
probability distribution describes only the variation of the critical failure value within the
extraction position of the test specimen. This means that the probability distribution de-
pends on the material location within an HPDC component, see Dørum et al. [32]. In
summary, a failure analysis of HPDC components cannot be performed in a deterministic
sense. Here, a probabilistic evaluation of the failure criterion depending on the material
location within the component is required. Finally, it is noted that the influence of cast de-
fects on the material ductility can be reduced when the casting material is homogenised
through heat treatment, see Campbell [17].

2.4 Die-Castings in the Car Body

The HPDC process enables to produce aluminium components of complex geometries.
This advantage is applied in the car body design to create structural nodes and connector
elements. Here, HPDC components replace components of the car body which are as-
sembled of several parts. Therefore, this design approach is called the integral construc-
tion principle. Using this principle, the production steps are reduced and no additional
joining technique is required. Hence, the structural stiffness can be increased. Moreover,
the usage of an aluminium alloy reduces the car weight and, thus, the fuel consumption
can be reduced. An example is demonstrated in Figure 2.4.1. It shows the aluminium car
body of the current Audi A8 and the application of the different aluminium materials. The
green components mark aluminium sheets, the blue ones aluminium extrusions and the



2.4 DIE-CASTINGS IN THE CAR BODY 13

Figure 2.4.1: Car body of the current Audi A8 (third generation (D4), production 2010
- present): Application of aluminium sheets (green), aluminium extrusions (blue)
and aluminium die-castings (red).

red ones aluminium HPDC components. Only the B pillar is made of a steel alloy. The
connecting function of the aluminium HPDC components is clearly seen.

The design of a car body is mainly focused on the stiffness and the crash behaviour.
The stiffness is a function of the entire car body, whereas, the crash performance is shared
between the several components of the car body. In the Audi A8, the extrusions in the
front and rear end are considered to absorb most of the kinetic energy in a crash situation.
A side impact loading has to be carried by the B-pillar. The HPDC components are ex-
pected to preserve the connecting function in any crash situation. This means that the
components have to obey only small deformations. Furthermore, it is expected that these
components show no fracture initiation. In case an HPDC component fails and the con-
nection function is lost, the passenger safety is no longer guaranteed. These requirements
have to be considered in the design of aluminium HPDC components applied in the car
body.

Before a car body prototype is produced and tested, the car body and its several parts
are numerically analysed. Here, the most common approach is the finite element method.
The deformation and failure behaviour of the car body under different load cases can be
analysed by a finite element simulation. This makes it possible to optimise the structure
before a real test is performed. Here, constitutive models and failure criteria are required
to describe accurately the behaviour of the applied material. However, a reliable design
is only guaranteed when the correct parameters of the material model are identified. The
numerical prediction of fracture initiation in aluminium HPDC components is a challen-
ging task. The influence of the casting defects on the fracture behaviour and the pseudo-
random character of the casting defects are the main reasons. This means that the crash-
worthiness of aluminium HPDC components is defined by the casting defects within the
most loaded area of the component.





Chapter 3

Probability and Statistics

The mathematical field of stochastics consists of the two parts probability theory and stat-
istics. The probability theory deals with the mathematical modelling and analysis of non-
deterministic and random phenomena. Probabilities, random variables and stochastic
processes are central objects. Methods in probability theory enable to make conclusions
about characteristics of a hypothetical sample taken from a known population. This is
called a deductive reasoning. Statistics involves methods to gather, describe and interpret
an experimental sample and compare it with other samples. The field of statistics can
be subdivided into descriptive and interferential statistics. Descriptive statistics allows to
summarise, quantify and illustrate the sample data. It allows to assume characteristics of
the underlying population. The inferential statistics is applied to draw conclusions about
a hypothetical underlying population based on the sample data and considerations from
probability theory. This is called an inductive reasoning. The current chapter gives a brief
introduction in the field of probability theory and statistics. The objective is to introduce
the essential definitions and relations and to use them for further experimental and nu-
merical investigations. This chapter is mainly based on the standard book on probability
and statistics by Walpole [111]. Here, the underlying mathematical derivations are presen-
ted in detail and a great variety of examples can be found.

3.1 Statistical Experiment and Randomness

A statistical experiment is defined as a non-deterministic and random experiment. It is as-
sumed that the experiment can be repeated indefinitely under the same conditions. The
outcome is characterised by randomness which follows a certain pattern. It is called a
stochastic or probabilistic process. However, it is not possible to determine a particular
outcome of the experiment. It is only possible to state the probability of this particular
outcome. A statistical experiment with true randomness can be generated only theor-
etically (neglecting the latest results in the research of quantum mechanics). In reality,
the particular outcome is predictable when all conditions and relations of a particular
experiment are known. It is called a deterministic causal process. If such a real exper-
iment is repeated under exact same conditions, the outcome does not vary. However,
such experimental conditions cannot be guaranteed and a variation of the conditions
and the outcome is a natural consequence. In many real experiments, the observer often
marks the variation of the outcome as scatter and assumes randomness which is called
a pseudo-randomness. Pseudo-randomness is generated in deterministic systems where
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Ω

(a) A ∈Ω and B ∈Ω.

A B

Ω

(b) A ∪ B .

A B

Ω

(c) A ∩ B .

Figure 3.2.1: Two events A and B taken from the sample space Ω.

differences between pseudo-randomness and true randomness cannot be observed.

3.2 Sample Space, Event and Probability

The set of all possible outcomes of a statistical experiment is defined as sample space Ω,
also known as population. A sample space consists of sample points taken from either
a discrete or continuous scale. Furthermore, a distinction is made between a finite and
an infinite sample space. A sample space is finite if all possible outcomes are countable.
Each continuous sample space is infinite even if the sample points are taken from a limited
continuous scale. Only a discrete sample space can be finite. A subset of the sample space
is defined as event A, also known as sample, see Figure 3.2.1a. The complement event A ′

consists of sample points which are not included in A. The union of two events A and B
is denoted as A ∪ B , see Figure 3.2.1b, and the intersection between two events A and B is
denoted as A ∩ B , see Figure 3.2.1c.

If n events Ai are considered, the total union is written as

A1 ∪A2 ∪ . . .∪An =
n
⋃

i=1

Ai (3.2.1)

and the total intersection as

A1 ∩A2 ∩ . . .∩An =
n
⋂

i=1

Ai . (3.2.2)

If the intersection A ∩ B is empty, event A and event B are defined as mutually exclusive.
An empty intersection is written as A ∩ B = /o. Each sample space Ω can be subdivided in
n mutually exclusive events Ai .

A probability ranging from 0 to 1 is assigned to every sample point in a way that the sum
of all probabilities is 1. The probability of event A is the sum of all probabilities assigned
to the sample points in A. Therefore, the probability P (A) also ranges from 0 to 1 and
becomes

0≤ P (A)≤ 1. (3.2.3)

In this context, the following statements are made

P (Ω) = 1 and P
�

/o
�

= 0 (3.2.4)

and
P
�

A ′
�

= 1−P (A) . (3.2.5)
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If a sample space consists of n different equally likely outcomes and m of these outcomes
correspond to an event A, the probability P (A) becomes

P (A) =
m

n
. (3.2.6)

The probability of the union A ∪ B becomes

P (A ∪ B ) = P (A)+P (B )−P (A ∩ B ) . (3.2.7)

In case, the union consists of n events Ai the corresponding probability becomes

P

�

n
⋃

i=1

Ai

�

= P (A1)+P

�

n
⋃

i=2

Ai

�

−P

�

A1 ∩
n
⋃

i=2

Ai

�

. (3.2.8)

The probability simplifies to

P

�

n
⋃

i=1

Ai

�

= P (A1)+P (A2)+ . . .+P (An ) =
n
∑

i=1

P (Ai ) , (3.2.9)

if n events Ai are mutually exclusive. This leads to Boole’s inequality

P

�

n
⋃

i=1

Ai

�

≤
n
∑

i=1

P (Ai ) (3.2.10)

which is valid for any event Ai .
If the occurrence of an event B requires that an event A occurs previously, the probabil-

ity of event B is called conditional probability and is denoted as P (B | A). The conditional
probability is defined by

P (B | A) =
P (A ∩ B )

P (A)
(3.2.11)

where P (A) > 0 is provided. This equation allows to express the probability of the inter-
section A ∩ B as

P (A ∩ B ) = P (A)P (B | A) = P (B )P (A | B ) . (3.2.12)

Event A and event B are said to be independent if the occurrence of A has no influence on
the occurrence of B and it follows

P (B | A) = P (B ) (3.2.13)

otherwise A and B are dependent. Furthermore, the conditional probability P (B | A) =
P (B ) implies the conditional probability P (A | B ) = P (A) and vice versa. If A and B are
independent events, the probability that both events occur is the product of two individual
probabilities,

P (A ∩ B ) = P (A)P (B ) . (3.2.14)

If n events Ai can occur in a statical experiment, the probability of the total intersection is
given by

P

�

n
⋂

i=1

Ai

�

= P (A1)P (A2 | A1)P (A3 | A1 ∩A2) . . .

. . . P (An | A1 ∩A2 . . .∩An−1) . (3.2.15)
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Figure 3.2.2: Bayes’ theorem.

In case the n events Ai are independent, the probability of the total intersection becomes
the product of each individual probability,

P

�

n
⋂

i=1

Ai

�

= P (A1)P (A2)P (A3) . . . P (An ) =
n
∏

i=1

Pi (Ai ) . (3.2.16)

Furthermore, n events Ai are given in a collection� = {A1, A2, . . . , An }. A subset of� is
denoted as�∗ and consists of k events of� with k = 2, 3, . . . , n . If any subset�∗ follows
Equation (3.2.16), the collection� is called mutually independent.

It is considered that the sample space Ω is divided into n mutually exclusive subsets Bi

as illustrated in Figure 3.2.2. Using Equation (3.2.9) and Equation (3.2.12), the probability
of any event A in Ω becomes

P(A) = P

�

n
⋃

i=1

(Bi ∩A)

�

=
n
∑

i=1

P(Bi ∩A) =
n
∑

i=1

P(Bi )P(A | Bi ) (3.2.17)

which is known as theorem of total probability. Hence, the conditional probability for a
subset Bk with k = 1, 2, . . . , n given that A occurs can be expressed as

P (Bk | A) =
P (Bk ∩A)

P (A)
=

P (Bk )P(A | Bk )
∑n

i=1 P(Bi )P(A | Bi )
(3.2.18)

where P (A) > 0 and P (Bi ) > 0 are provided. This relation is called Bayes’ theorem, see
Walpole [111].

3.3 Fundamentals of Probability Theory

Probability theory allows the modelling of a statistical experiment and the prediction of
the probability that an event of the model occurs. The requirements, rules and constraints
for statistical modelling are stated in probability theory. Here, the concept of random vari-
ables provides the essential basis. A random variable is a variable whose value varies ran-
domly. Compared to other mathematical variables, a random variable has not a single
(fixed) value. All possible values of the random variable correspond to all outcomes or
sample points from a real-valued sample space. Therefore, a random variable is defined
as a function that associates each sample point of a real-valued sample space. According
to the difference between discrete and continuous sample spaces, random variables are
classified in either discrete or continuous random variables.

3.3.1 Random Variables and Probability Distributions

The random variable is denoted as X and its varying value as x . If a discrete random vari-
able is considered, the number of all possible values of x is countable and for each value xi
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Figure 3.3.1: Probability Density Function (PDF) and Cumulative Distribution Func-
tion (CDF) of a discrete and a continuous random variable.

a certain probability f (xi ) is assigned. This implies that the probability that xi occurs be-
comes P(X = xi ) = f (xi ). The set of n ordered pairs

�

xi , f (xi )
�

is defined as the probability
mass function of the discrete random variable X as long as the conditions

f (xi ) ≥ 0,
n
∑

i=1

f (xi ) = 1,

P (X = xi ) = f (xi ) (3.3.1)

are fulfilled for any x ∈ �. The probability that a value of X is less than or equal a certain
value xk becomes

F (xk ) = P (X ≤ xk ) =
k
∑

i=1

f (xi ) (3.3.2)

and F (xk ) is defined as the cumulative distribution function of the discrete random vari-
able X . An example of a probability mass function is given in Figure 3.3.1a with the cor-
responding cumulative distribution function in Figure 3.3.1b.

A continuous random variable X is characterised by an infinite number of its values x .
Therefore, the substantial difference to a discrete random variable is that the probability
that exactly the value x of a continuous random variable X occurs becomes P (X = x ) = 0.
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This statement can be clearly seen using Equation (3.2.6) with m = 1,

P(X = x ) = lim
n→∞

1

n
= 0. (3.3.3)

However, it is possible to determine the probability that X lies in the interval between a
and b and the probability P (a ≤ X ≤b ) is computed by

P (a ≤ X ≤b ) = P (X = a )
︸ ︷︷ ︸

=0

+P (a < X <b )+P (X =b )
︸ ︷︷ ︸

=0

= P (a < X <b ) . (3.3.4)

It is seen that it does not matter if the endpoints a and b are included in the interval.
The probability distribution f (x ) of a continuous random variable X can be stated as

a continuous formula of x . Then, the function f (x ) is defined as the Probability Density
Function (PDF) of the continuous random variable X as long as the conditions

f (x ) ≥ 0,ˆ +∞
−∞

f (x )d x = 1,

P (a ≤ X ≤b ) =
ˆ b

a
f (x )d x (3.3.5)

are fulfilled for any x ∈ �. The corresponding Cumulative Distribution Function (CDF)
F (x ) becomes

F (x ) = P (X ≤ x ) =
ˆ x

−∞
f (x )d x (3.3.6)

and it implies that P (X <∞) = 1. Furthermore, the probability P (a ≤ X ≤b ) is expressed
as

P (a ≤ X ≤b ) = F (b )− F (a ) (3.3.7)

and thus the complement relation of the CDF F (x ) becomes

P (x ≤ X <∞) = P (X ≥ x ) = 1− F (x ) . (3.3.8)

The derivative of the CDF F (x ) reproduces the PDF f (x ),

d F (x )
d x

= f (x ) . (3.3.9)

An example of a continuous PDF with corresponding CDF is given in Figure 3.3.1c and
Figure 3.3.1d, respectively.

From a strict mathematical point of view, the probability mass function of a discrete
random variable can be expressed as a continuous function using the Dirac function δ (x ).
The Dirac delta function can be expressed as

δ (x ) =

�

→∞ x = 0

0 x �= 0
(3.3.10)

with x ∈�. The function is characterised by the integral

ˆ +∞
−∞
δ (x )d x = 1. (3.3.11)
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Then, the probability mass function can be expressed as a combination of Dirac functions
as

f (x ) =
n
∑

i=1

f (xi )δ (x −xi ) (3.3.12)

which follows the requirements of a PDF.
Discrete random variables are used in countable statistical experiments and continu-

ous random variables in measurable statistical experiments. For instance, a countable ex-
periment measures, if a specimen does or does not fail under a certain load level, whereas
the measurement of the load level at failure of the specimen is a measurable experiment.
The second case is of interest in the present work and thus only continuous random vari-
ables are considered in the following. However, the definitions and expressions for con-
tinuous random variables can be transformed into discrete random variables using Equa-
tion (3.3.12).

3.3.2 Statistical Independence

It is considered that a continuous sample space consists of two random variables X and Y .
Then, the PDF function is defined above the x−y plane, is called the joint density function
and is denoted as f

�

x , y
�

. The three conditions

f
�

x , y
�

≥ 0,ˆ +∞
−∞

ˆ +∞
−∞

f
�

x , y
�

d x d y = 1,

P [(a ≤ X ≤b ) , (c ≤ Y ≤ d )] =
ˆ d

c

ˆ b

a
f
�

x , y
�

d x d y (3.3.13)

have to be satisfied for any
�

x , y
�

∈ �. The CDF of the joint density function f
�

x , y
�

is
given by

F
�

x , y
�

= P
�

(X ≤ x ) ,
�

Y ≤ y
��

=
ˆ y

−∞

ˆ x

−∞
f
�

x , y
�

d x d y . (3.3.14)

The PDF g (x ) of X alone as well as the PDF h
�

y
�

of Y alone can be obtained from the
joint density function f

�

x , y
�

,

ˆ +∞
−∞

ˆ +∞
−∞

f
�

x , y
�

d y

︸ ︷︷ ︸

g (x )

d x =
ˆ +∞
−∞

ˆ +∞
−∞

f
�

x , y
�

d x

︸ ︷︷ ︸

h(y )

d y . (3.3.15)

The PDFs g (x ) and h
�

y
�

are called marginal distributions and are given by

g (x ) =
ˆ +∞
−∞

f
�

x , y
�

d y and h
�

y
�

=
ˆ +∞
−∞

f
�

x , y
�

d x . (3.3.16)

The CDFs of g (x ) and h
�

y
�

, respectively, are denoted as G (x ) and H
�

y
�

, respectively.
The conditional probability is defined in Equation (3.2.11). In case of continuous ran-

dom variables, the conditional probability that X lies in the interval between a and b and
Y is fixed by a value of y can be expressed as

P
�

a ≤ X ≤b | Y = y
�

=
ˆ b

a
f
�

x | y
�

d x (3.3.17)
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where f
�

x | y
�

denotes the conditional probability function of X given that Y = y and is
defined by

f
�

x | y
�

=
f
�

x , y
�

h
�

y
� (3.3.18)

where h
�

y
�

> 0 is provided. The conditional probability function of Y given that X = x is

f
�

y | x
�

=
f
�

x , y
�

g (x )
(3.3.19)

where g (x )> 0 is provided. This implies the relation

f
�

x , y
�

= h
�

y
�

f
�

x | y
�

= g (x ) f
�

y | x
�

. (3.3.20)

Now, the statistical independence of two random variables X and Y can be defined as
follows: The random variables X and Y are statistically independent if the joint dens-
ity function f
�

x , y
�

with marginal distributions g (x ) and h
�

y
�

can be expressed as the
product of the marginal distributions for any

�

x , y
�

∈�,

f
�

x , y
�

= g (x )h
�

y
�

. (3.3.21)

Here, the conditional probability functions become

f
�

x | y
�

= g (x ) and f
�

y | x
�

= h
�

y
�

. (3.3.22)

In this case, also the CDF of f
�

x , y
�

becomes a product of G (x ) and H
�

y
�

as shown in
Equation (3.2.14),

F
�

x , y
�

= P
�

(X ≤ x ) ,
�

Y ≤ y
��

=G (x )H
�

y
�

. (3.3.23)

In this context, the n random variables Xi are mutually statistical independent if the joint
density function f (x1,x2, . . . ,xn ) is the product of the n marginal distributions f i (xi ) such
as

f (x1,x2, . . . ,xn ) = f 1 (x1) f 2 (x2) . . . f n (xn ) =
n
∏

i=1

f i (xi ) . (3.3.24)

According to Equation (3.2.16), the corresponding CDF of n mutually statistically inde-
pendent variables Xi is given by

F (x1,x2, . . . ,xn ) = P [(X1 ≤ x1) , (X2 ≤ x2) , . . . , (Xn ≤ xn )]

= F (x1)F2 (x2) . . . Fn (xn )

=
n
∏

i=1

Fi (xi ) . (3.3.25)

3.3.3 Functions of Random Variables

It is assumed that a function u depends on a continuous random variable X with PDF f (x )
such as Y = u (X ). If the inverse function of Y = u (X ) exists and can be solved uniquely so
that X = u−1 (Y ), the probability distribution of Y becomes

g
�

y
�

= f
�

u−1 �y
�

�

| J | (3.3.26)

where J denotes the Jacobian of the transformation and is determined as

J
�

y
�

=
d
�

u−1
�

y
��

d y
. (3.3.27)
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In case of two continuous random variables X1 and X2 with joint probability distribu-
tion f (x1,x2) and two transformation functions Y1 = u 1 (X1, X2) and Y2 = u 2 (X1, X2) with
existing and uniquely solvable inverse functions X1 = u−1

1 (Y1, Y2) and X2 = u 2 (Y1, Y2), the
joint probability function of Y1 and Y2 is given by

g
�

y1, y2
�

= f
�

u−1
1

�

y1, y2
�

, u−1
1

�

y1, y2
�

�

det (J) (3.3.28)

where det (J) is the determinate of the Jacobi transformation matrix,

J=







∂ u−1
1

∂ y1

∂ u−1
1

∂ y2
∂ u−1

2

∂ y1

∂ u−1
2

∂ y2






. (3.3.29)

3.3.4 Mathematical Expectations

In probability theory, random variables and their underlying PDF are characterised by
mathematical expectations and statistical measurements. These measurements give in-
formation of central tendency and variability of a random variable. Furthermore, the cor-
relation between random variables can be quantified by these measurements. In the fol-
lowing, definitions and expressions are given for continuous random variables.

The expected value or mean of a random variable X with PDF f (x ) is the weighted av-
eraged of x and is denoted as µ. It gives information about the centre of the PDF f (x ) and
is defined as

µ= E [X ] =
ˆ +∞
−∞

x f (x )d x . (3.3.30)

Here, the function E [·] is also known as expected value operator. If a random variable Y
can be expressed as a function of X such as Y = g (X ), the expected value of Y becomes

µg (X ) = E
�

Y = g (X )
�

=
ˆ +∞
−∞

g (x ) f (x )d x . (3.3.31)

The expected value of the random variable g (X , Y ) is given by

µg (X ,Y ) = E
�

g (X , Y )
�

=
ˆ +∞
−∞

ˆ +∞
−∞

g
�

x , y
�

f
�

x , y
�

d x d y (3.3.32)

where X and Y are random variables with joint probability distribution f
�

x , y
�

. The ex-
pected values of X and Y alone becomes

µX = E [X ] =
ˆ +∞
−∞

x f
�

x , y
�

d x d y ,

µY = E [Y ] =
ˆ +∞
−∞

y f
�

x , y
�

d x d y . (3.3.33)

If n random variables Xi with joint probability distribution f (x1,x2, . . . ,xn ) are considered,
the expected value of the random variable g (X1, X2, . . . , Xn ) can be expressed as

µg (X1,X2,...,Xn ) = E
�

g (X1, X2, . . . , Xn )
�

=
ˆ +∞
−∞

. . .

ˆ +∞
−∞

ˆ +∞
−∞

g (x1,x2, . . . ,xn ) . . .

. . . f (x1,x2, . . . ,xn )d x1d x2 . . . d xn . (3.3.34)
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The dispersion or variability of a random variable X with PDF f (x ) and meanµ is meas-
ured by varianceσ2 and is given by

σ2 = E
�

�

X −µ
�2
�

=
ˆ +∞
−∞

�

x −µ
�2 f (x )d x

= E
�

X 2
�

−µ2. (3.3.35)

The positive square root of varianceσ2 is called standard deviationσ. The variation of the
random variable Y = g (X ) becomes

σ2 = E
�

�

Y −µY
�2
�

= E
�

�

g (X )−µg (X )
�2
�

(3.3.36)

=
ˆ +∞
−∞

�

g (x )−µg (X )
�2

f (x )d x . (3.3.37)

The ratio of standard deviation σ and mean µ is known as coefficient of variation cσ. It is
a normalised measurement of the dispersion of a PDF and is given by

cσ =
σ

µ
. (3.3.38)

The covariance of two random variables X and Y with joint probability distribution
f
�

x , y
�

is denoted asσX Y and is defined as

σX Y = E
��

X −µX
��

Y −µY
��

=
ˆ +∞
−∞

ˆ +∞
−∞

�

x −µX
��

y −µY
�

f
�

x , y
�

d x d y

= E [X Y ]−µXµY . (3.3.39)

The covariance σX Y gives information about the dependence of X and Y . It describes the
linear relationship between X and Y . A positive value ofσX Y indicates that large values of
X often result in large values of Y and small values of X often result in small values of Y .
A negative value of σX Y indicates the inverse behaviour, this means that large values of X
often result in small values of Y and vice versa. If X and Y are statistically independent, the
covariance is zero, σX Y = 0. However, if the covariance σX Y is zero it does not necessarily
indicate the independence of X and Y . If n random variables Xi with joint probability dis-
tribution f (x1,x2, . . . ,xn ) are considered the covarianceσXi X j of the two random variables
Xi and X j becomes

σXi X j = E
�

�

Xi −µXi

�

�

X j −µX j

��

=
ˆ +∞
−∞

. . .

ˆ +∞
−∞

ˆ +∞
−∞

�

xi −µXi

�

�

x j −µX j

�

. . .

f (x1,x2, . . . ,xn )d x1d x2 . . . d xn

= E
�

Xi X j

�

−µXiµX j . (3.3.40)

The covariance σX Y gives also information about the linear relationship of X and Y .
However, the magnitude of σX Y does not indicate anything regarding the strength of the
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relationship since it depends on the scale of X and Y . A scale-free coefficient is the correl-
ation coefficient ρX Y . The correlation coefficient can be expressed as

ρX Y =
E
��

X −µX
��

Y −µY
��

E
�

�

X −µX
�2
�

E
�

�

XY −µY
�2
� =

σX Y

σXσY
(3.3.41)

where σX > 0 and σY > 0 are provided. This expression is known as Pearson’s correlation
coefficient. This coefficient always satisfies the inequality −1 ≤ ρX Y ≤ 1. If X and Y have
an exact linear relationship, ρX Y becomes either 1 or −1. In case of statical independence
of X and Y , ρX Y is zero. Again, it does not necessarily indicate the converse conclusion. If
n random variables Xi with joint probability distribution f (x1,x2, . . . ,xn ) are considered,
the correlation coefficient ρXi X j of two random variables Xi and X j becomes

ρXi X j =
E
�

�

Xi −µXi

�

�

X j −µX j

��

E
�

�

Xi −µXi

�2
�

E
�

�

X j −µX j

�2
� =

σXi X j

σXiσX j

(3.3.42)

whereσXi > 0 andσX j > 0 are provided.
If n random variables Xi are statistically independent and each belongs to a PDF f i (xi )

with mean µi and varianceσ2
i , then the random variable Y defined as

Y =
n
∑

i=1

a i Xi (3.3.43)

has the mean

µY =
n
∑

i=1

a iµi (3.3.44)

and the variance

σ2
Y =

n
∑

i=1

a 2
iσ

2
i . (3.3.45)

Finally, the skewness of the PDF f (x ) of a random variable X can be described through
the mode and quantiles. The value that most often appears is defined as the mode, also
known as the most likely. Therefore, the mode is the maximum value of f (x ),

mode=max
�

f (x )
�

. (3.3.46)

It is seen that this equation cannot always be uniquely solved and thus the PDF f (x ) can
have more than one mode. Further, the range of the CDF F (x ) is divided into k regular
intervals 1

k
such as

max [F (x )]−min [F (x )] = 1=
k
∑

i=1

1

k
. (3.3.47)

Now, the value Qi can be defined as the i th quantile of k quantiles of the PDF f (x ) if Qi

satisfies the relation

F (Qi ) = P (X ≤Qi ) =
i

k
. (3.3.48)

The quantile Qi is defined so that i
k
·100% of the sample space lies in the interval between

−∞ and Qi . Therefore, the quantile is often denoted as Q i
k
·100%. In general, the inverse

function of the CDF F−1 is called the quantile function and can be expressed as

QP(x≤X ) = F−1 (P (x ≤ X )) . (3.3.49)
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Figure 3.3.2: Mathematical expectations and statistical measurements.

If k is equal 2, the sample space is divided into two sub-sets and the Q50% is known as the
median. If k is equal 4, the sample space is divided into four sub-sets and the quantiles,
Q25%, Q50% and Q75%, are called the quartiles.

A comparison of the measurements mean, standard deviation, mode and quartiles of
a continuous PDF is shown in Figure 3.3.2. Mean and standard deviation away from the
mean
�

µ±σ
�

are marked in Figure 3.3.2a. Mode and quartiles are marked in Figure 3.3.2b.

3.3.5 Some Continuous Probability Distribution Functions

The PDF f (x ) of a continuous random variable X is often expressed in parametric form.
Many formulations have been introduced in the history of stochastics. Here, the emphasis
is putted on uniform, normal and Weibull distribution. The normal distribution is an
essential PDF in probability theory. Numerical pseudo-random number generators are
usually based on the uniform distribution. The Weibull function is found in many engin-
eering applications. Other well-known and important parametric distribution functions
are binomial, gamma, exponential, chi-squared and lognormal distributions as well as t -
distribution and F -distribution, see Montgomery [88], Ross [101] and Walpole [111]. These
and other functions can be found in the standard literature.

One of the simplest is the uniform distribution which is characterised by a constant
PDF in an interval A and B and is given by

fU (x ; A, B ) =

�

1
B−A

A ≤ x ≤ B

0 elsewehere
(3.3.50)

and the CDF becomes

FU (x ; A, B ) =

�

1
B−A
(x −A) A ≤ x ≤ B

0 elsewehere
. (3.3.51)

Mean µ and varianceσ2 of the uniform distribution are

µ=
A + B

2
and σ2 =

(B −A)2

12
. (3.3.52)

The linear shape of the uniform PDF and corresponding CDF can be seen in Figure 3.3.3a
and Figure 3.3.3b.
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Figure 3.3.3: Examples of uniform PDFs and CDFs (A = 1; B = 2, 4, 6).

The most important PDF in the field of stochastic is the normal distribution, also known
as Gaussian distribution. The normal distribution is given in terms of its mean µ and
varianceσ2,

f N
�

x ;µ,σ
�

=
1

σ
�

2π
exp

�

−
�

x −µ
�2

2σ2

�

. (3.3.53)

The graph of f N
�

x ;µ,σ
�

is symmetrical to µ and looks like a bell. In the case µ = 0 and
σ2 = 1, the normal distribution is called standard normal distribution. If µ = 0 and σ2→
0, the normal distribution leads to the Dirac function f N

�

z ;µ= 0,σ= 0
�

= δ (x ) given in
Equation (3.3.10). The CDF of f N

�

x ;µ,σ
�

becomes

FN
�

x ;µ,σ
�

=
1

σ
�

2π

ˆ x

−∞
exp

�

−
�

x̂ −µ
�2

2σ2

�

d x̂ . (3.3.54)

Here, the integral cannot be expressed in terms of elementary functions. Therefore, the
standard normal distribution f N

�

z ;µ= 0,σ= 1
�

has been considered and approximate
solutions for discrete points

�

z i , FN (z i ;µ= 0,σ= 1)
�

were found and listed in tables, see
Walpole [111]. Today, numerical software tools are used to determine these points. It is
not necessary to find values for other possible normal distributions due to the standard-
ising of normal random variables. Here, it is considered that a random variable Z follows
the standard normal distribution and another random variable X an arbitrary normal dis-
tribution, the relation between both reads

Z =
X −µX

σX
. (3.3.55)

This equation is called standardising of X and it allows to map any normal CDF of X into
a standard normal CDF of Z , so that

FN
�

x ;µ,σ
�

= FN

�

z =
x −µX

σX
;µ= 0,σ= 1

�

. (3.3.56)

It also includes the probability that X assumes a value between x1 and x2 becomes

PN (x1 ≤ X ≤ x2) = PN

�

z 1 =
x1−µX

σX
≤Z ≤ z 2 =

x2−µX

σX

�

. (3.3.57)

The influence of σ on the normal PDF and CDF, respectively, can be seen in Figure 3.3.4a
and Figure 3.3.4b, respectively.
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.

It is considered that n random variables Xi are normally distributed with f N
�

xi ;µi ,σi
�

and stored in a random vector X. Consequently, the n means µi are given in a vector µ
and the covariancesσXi X j between the random variables Xi and X j in a (positive definite)
matrix Σ. Then, the joint density function of X can be expressed as

f (x) =
1

(2π)
n
2

�

det (Σ)
exp

�

−
1

2

�

x−µ
�T Σ−1 �x−µ
�

�

(3.3.58)

where det (Σ) denotes the determinant of Σ. It is called a multivariate normal distribution.
For instance, if X1 and X2 are random variables following standard normal distributions
�

µ1,2 = 0;σ1,2 = 1
�

, the bivariate normal distribution becomes

f (x1,x2) =
1

2π
�

1−σX1X2

exp

�

−
1

2

�

x 2
1 +x 2

2 +2σX1X2 x1x2

�

�

. (3.3.59)

Figure 3.3.5 shows this joint distribution for the case of σX1X2 = 0, σX1X2 = 0.8 and σX1X2 =
−0.8. The cases are given in 3D plots as well as in 2D colour maps.

The most flexible PDF is the Weibull function. It is especially used in engineering ap-
plications and analysis of reliability. The function is characterised by the shape parameters
m and λ and is defined as

f W (x ; m ,λ) =







�

m
λ

��

x
λ

�m−1
exp
�

−
�

x
λ

�m
�

x ≥ 0

0 x < 0
(3.3.60)

where m > 0 and λ> 0 are provided. The Weibull CDF becomes

FW (x ; m ,λ) =







1−exp
�

−
�

x
λ

�m
�

x ≥ 0

0 x < 0
. (3.3.61)

Mean µ and varianceσ2 of the Weibull distribution are

µ=λΓ
�

1+
1

m

�

and σ2 =λ2

�

Γ
�

1+
2

m

�

−Γ
�

1+
1

m

�2
�

(3.3.62)
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(b)σX1X2 = 0.8 (3D).
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(c)σX1X2 =−0.8 (3D).
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(d)σX1X2 = 0 (2D).
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(e)σX1X2 = 0.8 (2D).
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Figure 3.3.5: Bivariate normal distributions
�

σX1X2 = {0, 0.8,−0.8}
�

.

where Γ(·) denotes the gamma function which is defined by

Γ(α) =
ˆ ∞

0
xα−1 exp (−x )d x (3.3.63)

where α > 0 is provided. Compared to the normal distribution, the Weibull distribution
is not symmetric and is able to represent a skewness of a sample space. In Figure 3.3.6a
and Figure 3.3.6b, the influence of shape parameters m and λ on the Weibull distribution
are presented. In certain cases the Weibull distribution can be very similar to the normal
distribution, see Figure 3.3.7. Here, the uniform, the normal and the Weibull distribution
are plotted with identical mean µ= 3.6 and standard deviationσ= 1.0.

Furthermore, the Weibull CDF can be linearised by transforming Equation (3.3.61) ac-
cording to

1− FW = exp

�

−
�x

λ

�m
�

ln

�

1

1− FW

�

=
�x

λ

�m

ln

�

ln

�

1

1− FW

��

︸ ︷︷ ︸

y (x̃ )

= (m ln(x ))
︸ ︷︷ ︸

m x̃

+(−m ln(λ))
︸ ︷︷ ︸

c

. (3.3.64)

The linear plot of ln
�

ln
�

1
1−FW

��

versus ln(x ) is called Weibull probability plot. This plot is

often used to identify the Weibull distribution parameters.
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3.3.6 Limit Theorems

The strong law of large numbers is one of the most well-known results in probability the-
ory, see Walpole [111]. It states that a random variable X defined as the average of n inde-
pendent random variables Xi each with identical distribution f (xi ) converges to mean µ
of f (xi )with a probability of 1. In mathematical expressions, if X is defined as

X n =
1

n

n
∑

i=1

Xi with f (x1) = f (x2) = . . .= f (xn ) , (3.3.65)

then X converges to

lim
n→∞

X n = lim
n→∞

1

n

n
∑

i=1

Xi =µ with P
�

lim
n→∞

x n =µ
�

= 1. (3.3.66)

This implies that, if a statistical experiment is repeated indefinitely under the same condi-
tions, the average of the outcome x̄ converges to the mean of the underlying PDF.

Probably the most important result in probability theory is the central limit theorem
which is based on the law of large numbers, see Walpole [111]. Here, the averaged random
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variable X defined in Equation (3.3.65) is considered. According to Equation (3.3.44) and
Equation (3.3.45), the mean and standard deviation of X becomes

µX =
1

n

n
∑

i=1

µX =µX and σ2
X
=

1

n 2

n
∑

i=1

σ2
X =

1

n
σ2

X . (3.3.67)

Then, the random variable Zn can be expressed by the means of Equation (3.3.55) as

Zn =
X −µX

σX

=

�

1
n

∑n
i=1 Xi

�

−µX

σX/�n
. (3.3.68)

The central limit theorem states that Zn follows a standard normal distribution if n ap-
proaches infinity according to

lim
n→∞

F (z n ) = FN (z n ; 0, 1) (3.3.69)

Thus, it follows that X converges to a normal distribution given by

lim
n→∞

F (x̄n ) = FN
�

x̄n ;µX ,σX/�n
�

. (3.3.70)

It is noted that this theorem holds for any distribution of X as long as µX andσX exist and
both are finite. The central limit theorem can be interpreted as follows: The mean of a
statistical experiment is normally distributed independent of the underlying distribution
function. Thus, the central limit theorem demonstrates the importance of the normal
distribution.

Another essential theorem is Chebyshev’s inequality, see Walpole [111],

P
�

µ−kσ≤ X ≤µ−kσ
�

≥ 1−
1

k 2
(3.3.71)

where k > 0 is provided. It states that any random variable X with mean µ and stand-
ard deviationσ assumes a value within k standard deviations away from the mean with a
probability of at least 1− 1

k 2 . This inequality enables to characterise samples of any arbit-
rary distribution providedµ andσ are known. For instance, more than 75% of an arbitrary
sample lies within 2 standard deviationsσ away from mean µ.

3.3.7 Simulation of Random Variables

The numerical simulation of statistical experiments requires the generation of random
numbers. The complex task is to generate a sample of numbers drawn from a random
variable X with known PDF f (x ). This is done by a random number generators. These can
be classified in True Random Number Generators (TRNG) and Pseudo-Random Number
Generators (PRNG), see Behnia et al. [11]. A TRNG is based on physical processes. It
measures the variations of natural phenomena that are expected to be random such as
the atmospheric noise, see RANDOM.ORG [96]. A PRNG computes a sequence of num-
bers based on a recursive algorithm, see Jennings and Sumeet [64] and Ross [101]. This
sequence is used as a sample of X . Therefore, the random variable X becomes a pseudo-
random variable in numerical simulations when a PRNG is applied. Most algorithms use
an initial true random seed as a starting sequence. However, this approach produces al-
ways the same sequence while the same initial seed is used. It can be avoided when the
initial seed is modified by physical conditions of the computer hardware (temperature,
time, etc.). The advantage of a PRNG compared to a TRNG is the numerical efficiency.
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Figure 3.3.8: Inverse transformation technique.

Programming languages like Fortran, Java and C++ include PRNGs within subroutines.
Conventional mathematical programs like MATLAB [83], Mathematica [116] and Excel [85]
provide PRNGs as functions. In general, the implemented PRNG computes a sequence of
uniform pseudo-random decimal fractions within the interval between 0 and 1. However,
the design of random number generators is still today a challenge in computational and
mathematical science.

In the following, it is provided that a sample of random numbers drawn from the uni-
form distribution fU (x ; 0, 1) is correctly generated. The uniform distribution is often ap-
plied to simulate various continuous random variables with known PDF f (x ). A general
and simple technique is the inverse transformation method and it is based on the uniform
random variable U with PDF fU (x ; 0, 1) and an arbitrary continuous random variable X
with CDF F (x ). If X is a continuous random variable with CDF FX (x ), the random variable

Y = FX (X ) (3.3.72)

is uniformly distributed over the interval between 0 and 1, see Equation (3.3.26). The in-
verse relation becomes

X = F−1
X (Y ) = F−1

X (U ) . (3.3.73)

From a numerical point of view, it is convenient to define the unit interval without the
boarders 0 and 1. For example, the Weibull distribution is defined in the domain 0≤ x <∞
and a value of 1 in the uniform distribution leads to a value of∞ in the Weibull distribution
which is numerically not realisable. Therefore, most common uniform PRNGs produce
numbers in the domain 0 < x < 1. However, the inverse transformation method allows
to draw a sequence of X by drawing a sequence of U . It requires that the inverse function
F−1

X (u ) can be expressed in terms of elementary functions. For example, a Weibull random
variable XW can be simulated using the expression

XW = F−1
W (U ) =λ m
�

− ln (1−U ). (3.3.74)

Figure 3.3.8 demonstrates the inverse transformations technique. Here, a sequence of
twenty uniform numbers is transformed into a sequence of Weibull numbers. Other ap-
proaches are the rejection method or the hazard rate method, see Ross [101].

The simulation of a normally distributed random variable XN needs more specialised
techniques. A simple method is called the Box-Muller transformation. This method gen-
erates a pair of independent and standard normal random variables Z0 and Z1 given a pair
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of independent and uniform random variables U1 and U1 such as

Z0 =
�

−2 ln (U1)cos (2πU2)

Z1 =
�

−2 ln (U1)sin (2πU2) . (3.3.75)

Using Equation (3.3.55), Z0 and Z1 can be transformed into any normal distribution. An
extension of the Box-Muller method is known as the polar method, see Ross [101].

3.3.8 Stochastic Processes and Random Fields

A stochastic process is defined as a function of the vector t ∈�r whose values are random
variables such as X (t). This means that a random variable X (t) exists for any t ∈ �r . X (t)
is often called a random field. For example, X (t) can be defined in time (t∈�), in a spatial
field
�

t∈�3
�

or in a time dependent spatial field
�

t∈�4
�

. Also here a distinction is made
between discrete, continuous and combined fields. According to Equation (3.3.30) and
Equation (3.3.35), mean and variance of a random field X (t) become

µ (t) = E [X (t)] (3.3.76)

and
σ2 (t) = E
�

�

X (t)−µ (t)
�2
�

. (3.3.77)

Furthermore, two random variables in X (t) at location t = ti and location t = tj = ti + h
are denoted as Xi = X (ti ) and X j = X

�

tj = ti +h
�

. The vector h ∈ �r is called separation
vector. Corresponding to Equation (3.3.40), the covariance of Xi and X j becomes

σXi X j = E
�

�

X (ti )−µ (ti )
�

�

X
�

tj

�

−µ
�

tj

���

= E
��

X (ti )−µ (ti )
��

X (ti +h)−µ (ti +h)
��

. (3.3.78)

A random field is said to be isotropic if the covarianceσXi X j only depends on the absolute

value of h, |h |=
�

hTh. However, the determination of σXi X j requires the joint density
function of X (t).

In general, random fields are separated into three types of stationarity, see Corstanje et
al. [21] and Fyllingen [41]. These are denoted as strictly, weakly and intrinsic stationarity.
A random field X (t) is said to be strictly stationary, if the joint distribution of X (t) is the
same as the one of X (t+h) for any h ∈ �r . Consequently, mean and variance does not
change between t and t+h, which which means µ (t) = µ (t+h) and σ2 (t) = σ2 (t+h). In
case the mean of a strictly stationary field is constant, such as µ (t)≡µ, and its covariance
can be expressed as a pure function of h as

σXi X j =C (h) , (3.3.79)

the random field is defined as weakly stationary. The function C (h) is called covariance
function. The corresponding correlation coefficient can simply be expressed as

ρXi X j =
C (h)
C (0)

. (3.3.80)

The definition of a weakly stationary random field implies that the PDF of Xi alone is the
same as the one of X j alone and it leads to

E [Xi ] = E
�

X j

�

=µ, (3.3.81)
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E
�

�

Xi −µ
�2
�

= E
�

�

X j −µ
�2
�

=σ2. (3.3.82)

The random field is intrinsic stationary if the conditions

E [X (t+h)−X (t)] = 0 (3.3.83)

and
E
�

(X (t+h)−X (t))2
�

= 2γ (h) (3.3.84)

are fulfilled for any h∈�r . Here, 2γ (h) denotes the variogram and γ (h) the semivariogram.
The relation between semivariogram γ (h) and covariance C (h) becomes

γ (h) =C (0)−C (h) . (3.3.85)

In case of isotropy, covariance function C (h) and semivariogram function γ (h) only de-
pend on the scalar d = |h |. Here, several parametric expressions for C (d ) are available.
An isotropic and (weakly) stationary random field is called homogeneous. Popular homo-
genous covariance functions are exponential, Gaussian or the generalised Matérn func-
tion, see Abrahamsen [1]. The Gaussian covariance function is given by

C (d ; d 0) =σ2 exp

�

−
�

d

d 0

�2
�

(3.3.86)

where d 0 > 0 can be seen as correlation length. In Figure 3.3.9a, plots of the Gaussian
covariance function are shown for different values of correlation length d 0. If the random
field X (t) is mutually statistical independent, the Gaussian covariance function limits to

lim
d 0→0

C (d ; d 0) =

�

σ2 d = 0

0 d �= 0
(3.3.87)

which is known as (Gaussian) white noise. It can also be expressed by the Dirac function
as C (d ; d 0 = 0) = σ2δ (d ) given in Equation (3.3.10). The white noise describes a com-
plete chaotic phenomenon. The other extreme case is an everywhere constant Gaussian
covariance function such as

lim
d 0→∞

C (d ; d 0) =σ2. (3.3.88)

Here, the random field X (t) with a everywhere covariance can be determined by a single
random number x and a deterministic function g (t),

X (t) = x · g (t) . (3.3.89)

A Gaussian random field is characterised by a multivariate normal distribution of X (t)
as given in Equation (3.3.58). Homogenous Gaussian fields combined with the Gaus-
sian covariance function are often used due to their simplicity. The simulation of these
is the base for many numerical studies. However, before a sample of a homogenous Gaus-
sian random field can be simulated, the field has to be discretised into a grid of n nodes.
Here, each node is found by t = ti with i = 1, 2, . . . , n and represents the random variable
Xi (t= ti )with normal PDF f N

�

xi ;µ,σ
�

. Therefore, the Gaussian random field X (t) is rep-
resented by a finite number of n random variables and is given in a vector as

X= (X1 (t1) , X2 (t2) , . . . , Xn (tn ))T . (3.3.90)

Using the Gaussian covariance function, the n × n elements of the covariance matrix Σ
become

Σi j =C
�

d =| ti − tj |; d 0

�

=σ2 exp

�

−
� | ti − tj |

d 0

�2�

(3.3.91)
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Figure 3.3.9: Influence of Gaussian correlation length d 0 on samples of 1D Gaussian
random fields.

and the n identical means are given in a vector µ of length n as

µ=
�

µ,µ, . . . ,µ
�T . (3.3.92)

Using Σ and µ in Equation (3.3.58), a sample from the homogenous Gaussian Random
field X can be drawn. Here, the statistical toolbox available in MATLAB [84] can be ap-
plied. It includes the function mvnrnd

�

µ,Σ
�

which generates a sample (sequence) of X
with mean vector µ and covariance matrix Σ.

In the following, two examples of homogeneous Gaussian random fields are given. Both
fields use standard normal distributions f N (xi ; 0, 1) for the n random variables Xi . Fur-
thermore, the Gaussian covariance function is applied to determine the elements of Σ.
The first example is given in Figure 3.3.9b. It shows samples of 1D Gaussian random fields
along a line segment t= [0, 1]which is discretised with 1001 nodes. The samples are drawn
form fields with different correlation lengths d 0, see Figure 3.3.9a. In addition, the extreme
cases white noise (grey) and everywhere covariance (magenta) are plotted. It is clearly
seen that the oscillations decrease with increasing correlation length d 0.

The second example is illustrated in Figure 3.3.10 and it shows samples of 2D Gaussian
random fields on the plane segment t = ([0, 1] , [0, 1])T which is discretised with 51× 51
nodes. The correlation length is set to d 0 = 0.1 and d 0 = 0.2, respectively. Also here, it can
be seen that the oscillations decrease with increasing correlation length d 0. Furthermore,
the samples are drawn as 3D plots as well as 2D colour maps with interpolated values
between nodes. It is important to mention that a random field with a large number of
nodes is a numerical challenge due to the generation of a big amount of random numbers
and the matrix inversion of Σ.

3.3.9 Monte-Carlo Simulation

A vector X = (X1, X2, . . . , Xn )T containing n random variables Xi with joint density func-
tion f (x1,x2, . . . ,xn ) is considered and Y is defined as a function of X such as Y = g (X).
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Figure 3.3.10: Influence of Gaussian correlation length d 0 on samples of 2D Gaus-
sian random fields.

According to Equation (3.3.34), the mean of the function g (X) becomes

E [Y ] = E
�

g (X)
�

=
ˆ +∞
−∞

. . .

ˆ +∞
−∞

ˆ +∞
−∞

g (X) . . .

. . . f (x1,x2, . . . ,xn )d x1d x2 . . . d xn . (3.3.93)

In many applications, the multiple integral in E
�

g (X)
�

cannot be determined analytically.
Here, E
�

g (X)
�

can be estimated by a stochastic simulation. Therefore, a random num-
ber vector xk of X has to be generated. It is noted that xk has to satisfy the joint density
function f (x1,x2, . . . ,xn ). Then a random number yk of Y can be determined using the
function yk = g (xk ). This procedure is repeated m times and a sample of Y (with size m )
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is generated and the average of the sample becomes

ȳm =
1

m

m
∑

k=1

yk . (3.3.94)

By the strong law of large numbers, see Equation (3.3.66), ȳm converges to the expected
value E [Y ] and therefore to E

�

g (X)
�

, so that

lim
m→∞

ȳm = E [Y ] = E
�

g (X)
�

. (3.3.95)

This approach allows to use the average of ȳm to estimate E
�

g (X)
�

and is called a Monte-
Carlo simulation, see Ross [101]. The precision of the Monte-Carlo simulation can be ex-
pressed by

e =
1
�

m
σY (3.3.96)

where σY denotes standard deviation of Y and g (X), respectively. The necessary number
of runs m has to be chosen large enough so that e is exactable small. It is seen that the
convergency rate is 1/�m , see Siebertz et al. [103]. This means that the number of runs has
to increase four times to halve the error e . However, the difficulty is thatσY is unknown in
advance. It can be estimated by a prior Monte-Carlo simulation and be determined by

sY =

�

1

m −1

m
∑

k=1

�

yk − ȳm
�2. (3.3.97)

Besides the number of runs, the computing of the function values yk = g (xk )might be very
time consuming. The performance of a Monte-Carlo simulation is a straight forward pro-
cedure: Definition of a joint density function, generation of random numbers, assigning of
function values to the random numbers, statistical analysis of the output. Therefore, the
Monte-Carlo simulation is applied in many numerical studies of statistical experiments.

3.4 Experimental Sample and Sample Size

It is considered that n experiments are performed in an experimental study. Here, each
experiment represents a random variable Xi and each experimental result xi is a possible
outcome of Xi . If n experiments are performed under nearly equal conditions, it can be
assumed that n random variables Xi are statistical independent and identically distrib-
uted and it follows

f (x1) = f (x2) = . . .= f (xn ) = f (x ) (3.4.1)

and
f (x1,x2, . . . ,xn ) = f (x1) f (x2) . . . f (xn ) =

�

f (x )
�n (3.4.2)

and thus the n experimental results xi can be grouped together as a sample of X with
PDF f (x ). The experimental study represents the random variable X with n−1 degrees of
freedom.

The sample size n plays a crucial role in descriptive and interferential statistics. It is
clearly seen that a large sample size increases the quality of the statistical analysis and
allows a more precise characterisation of the underlying distribution (or PDF). Here, the
determination of n depends on many factors as seen in the Composite Materials Hand-
book Volume I [25]:
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– Statistical model which the sample is thought to represent

– Degree of reproducibility which is desired

– Statistical measurement which is estimated

– Variability of the experimental results

– Expenses of the experimental study

The challenge in most studies is that the underlying distribution (or PDF) is unknown a
priori and assumptions have to be made to determine n . Here, a sample size n ≥ 30 is
often recommended as a guideline for statistical studies, see Walpole [111] and Campbell
[17].

3.5 Descriptive Statistics

The descriptive statistic provides an overview of a given set of data which is taken from
a frequently repeated experiment. If the conditions during testing are constant or nearly
constant, the set of data can be detected as sample and a descriptive analysis can be per-
formed. Statistical measurements are used to quantify sample data. These give informa-
tion about central tendency and variability of the data. Both allow to describe the general
nature of the sampling distribution. Large sample sizes can be displayed clearly in graphs
using these measurements. Here, several techniques are provided to display data. In gen-
eral, the descriptive analysis allows to summarise a sample and to draw conclusions about
characteristics of the underlying distribution.

3.5.1 Statistical Measurements

A sample X of a quantity consists of n data values, each value denoted by xi . It is provided
that the sample is taken randomly from the underlying sample space. The sample mean x̄
is given by

x̄ =
1

n

n
∑

i=1

xi (3.5.1)

and the sample variance s 2 by

s 2 =
1

n −1

n
∑

i=1

(xi − x̄ )2 . (3.5.2)

The sample standard deviation becomes s =
�

s 2 and thus the sample coefficient of vari-
ation cs becomes

cs =
s

x̄
. (3.5.3)

If two quantities xi and yi are measured, the covariance sX Y between sample X and sample
Y is defined as

sX Y =
1

n −1

n
∑

i=1

(xi − x̄ )
�

yi − ȳ
�

(3.5.4)

where x̄ is the mean of X and ȳ the mean of the Y . Using the corresponding sample stand-
ard deviations sX and sY , the correlation between X and Y becomes

rX Y =
sX Y

sX sY
. (3.5.5)
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The sample range d is simply given by

d = xm a x −xm i n (3.5.6)

where xm a x is the largest value and xm i n the smallest in the sample. If the n sample values
xi are sorted by size and renumbered as well as divided in k subsets of size n/k , the subset
boundaries are known as the k sample quantiles Q j

k
·100%. The j th quantile of k quantiles

is given by

Q j
k
·100% =

�

xi with i = ceiling
�

n · j
k

�

if i /∈�
1
2
(xi +xi+1) with i = n · j

k
if i ∈�

(3.5.7)

where� denotes the set of integers and the operator ceiling [·] is the ceiling function which
maps a real number to the smallest following integer. The sample quartiles, Q25%, Q50%

and Q75%, are usually used in statical analyses. Here, the sample quartile Q50% is known as
sample median. The range between two sample quantiles becomes

RQ p
k
·100% =Q j+p

k
·100%−Q j

k
·100%. (3.5.8)

This implies that p
k
· 100% of the data lies in the range RQ p

k
·100%. For example, 50% of the

sample data lies in the interquartile range I RQ = RQ50% =Q75%−Q25%. Another measure-
ment is the mode defined in Equation (3.3.46) which is not measurable if the data values
are drawn from a continuous sample space.

The measurements described here are categorised in measurements of central tend-
ency (“Where is the data located?”) and of variability (“How does the data scatter?”).
Therefore, mean x̄ and median Q50% are measurements of central tendency of a sample.
Variation s 2, standard deviation s and coefficient of variation cs as well as range r , quart-
iles Q25% and Q75% and inter quartile range IQR are measurements of variability of the
sample.

3.5.2 Graphical Representation of Statistical Data

Graphs and histograms are common tools to analyse visually experimental studies and
their set of data. The objective is to display the data in a way that enables to extract inform-
ation about the sample properties. Furthermore, differences and connections between
samples can easily be demonstrated using graphical methods. The choice of presentation
depends on the type and amount of data as well as the requested information. A broad
overview of graphical representation methods are provided in the book by Matange and
Heath [82]. In the following just a few techniques are presented.

In order to explain some of the presentation methods, two samples X and Y of size
n = 30 are considered. The corresponding statistical measurements are listed in Table
3.5.1. The sample data is presented in Figure 3.5.1a and Figure 3.5.1b. Here, the sample
values are plotted in the order they are measured. In addition, sample mean x̄ as well as
sample standard deviation x̄ ± s are drawn as straight lines. It can be seen how many data
points lie within one standard deviation away from the mean. However, the whole sample
can be expressed clearly in a box-plot. The box-plot provides an overview of sample range
d and sample quartiles Q25%, Q50% and Q75%, see Figure 3.5.2. A box is drawn from Q25%

to Q75% and the median Q50% is marked in the box. The box includes 50% of the sample
data. Furthermore, so-called whiskers are plotted out of the box and their lengths range to
the most extreme data point within the maximum whisker lengths. The whisker ends are
usually defined as

Wu =min [Q75%+1.5 · IQR ,xm a x ] (3.5.9)
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Sample X Sample Y
n 30 30

xm i n 1.88 0.33
xm a x 5.12 4.24

d 3.24 3.91
Q25% 3.31 1.01
Q50% 3.80 1.49
Q75% 4.18 2.09
IQR 0.87 1.08

x̄ 3.74 1.69
s 0.71 0.99
cs 19% 59%

sX Y 0.02 0.02
rX Y 0.03 0.03

Table 3.5.1: Statistical measurements of sample X and sample Y .

for the upper whisker and

Wl =max [Q25%−1.5 · IQR ,xm i n ] (3.5.10)

for the lower whisker. The data values are marked as outliers when these are lager than Wu

or smaller than Wl . Variability and skewness of the data can be seen in a box-plot. Fur-
thermore, box-plots are used to compare data of different samples without making any
assumption of the underlying distribution. For instance, if sample mean x̄ and standard
deviation s are used for comparison, a normal distribution and thus a symmetric distribu-
tion is assumed. The samples X and Y are compared via box-plots in Figure 3.5.1c. Sample
X shows a homogeneous data distribution, whereas the large upper whisker WU of sample
Y suggests a slight skewness of the data. By comparing both, it is seen that the quartiles of
X are much larger than the quartiles of Y , but the interquartile range appears to be equal.

In general, two samples can easily be evaluated regarding any correlation in a scat-
ter plot. It requires that the samples are taken from the same experimental study where
sample points of X and Y are measured simultaneously. The scatter plot of the samples X
and Y is given in Figure 3.5.1d and no distinct correlation is found (rX Y = 0.03).

The histogram plot of a sample is probably the most widely used method to illustrate
the density of a sample. Here, sample range d is divided in N bins of length d/N , then the
density can be estimated using the definition

f̄ (x ) =
1

n

(Number of xi in same bin as x )
(d/N )

. (3.5.11)

It is seen that the histogram shape strongly depends on the sample size and consequently
on the number of bins. Therefore, histograms are only useful for large sample sizes. In
Figure 3.5.1e and Figure 3.5.1f, the histograms of the sample X and sample Y are demon-
strated. The red dots are the underlying data values. Also here, the slight skewness of
sample Y can be seen. Based on the graphs in Figure 3.5.1, it can be assumed that sample
X is taken from a symmetric population and sample Y from a left-side skewed popula-
tion (box-plots), both populations are differently located with different dispersions (histo-
grams) and further the populations are independent (scatter plot).

Now, it is considered that the n data values xi of a sample are sorted in an ascending
order. Then, each data value xi can be interpreted as a quantile with a specified fraction
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Figure 3.5.1: Graphical representation of sample X and sample Y .
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Figure 3.5.3: Distribution estimation of sample X and sample Y .

F i . This implies that F i ·100% of the data values is less than or equal xi . The n pairs
�

xi , F i

�

are an estimate of the CDF F (x ) of the underlying distribution and can be computed by

F i =
i −a

n +b
(3.5.12)

where a and b are constants, see Campbell [17]. Here, a common approach is to set para-
meter a = 0.5 and parameter b = 0. F i is also called the experimental probability.

A graph is called a probability-probability plot (P-P plot) when the n empirical fractions
F i are plotted versus the n theoretical F (xi ). A graph is called quantile-quantile plot (Q-
Q plot) when the n empirical quantiles xi are plotted versus the n theoretical quantiles
F−1
�

F i

�

. In both plots, a nearly straight relationship suggests that the n data values xi

are drawn from f (x ). However, in most cases the CDF F (x ) is unknown and an estimated
function �F (x ) has to be used. Therefore, P-P plots and Q-Q plots are helpful methods to
check the distribution estimates. Two special types of these plots are normal Q-Q plot and
Weibull plot.

The normal Q-Q plot shows the n values xi versus the n corresponding quantiles of
the standard normal distribution F−1

N

�

F i ; 0, 1
�

. A nearly linear relationship between these
data suggests a normal distribution of the considered sample. This plot is based on the
standardising of a normal distribution, see Equation (3.3.55). Consequently, an arbitrary
normal distribution with mean µ and standard deviation σ can be expressed in this plot
by the linear function

z (x ) =σ ·x +µ. (3.5.13)

This means that a linear curve fit on sample data given in a normal Q-Q plot produces
estimates of mean µ and standard deviation σ. Figure 3.5.3a shows the normal Q-Q plots
of the samples X and Y and the corresponding linear curve fits. Especially sample X shows
a strong linear relationship and suggests a normal distribution of the data.

The Weibull plot is based on the linear transformation of the Weibull CDF given in
Equation (3.3.64). Here, each data value xi is transformed according to

x̃ i = ln(xi ), (3.5.14)

and each empirical fraction F i is transformed according to

F̃i = ln

�

ln

�

1

1− F i

��

. (3.5.15)
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Normal Fit Weibull Fit
µ σ R2 m λ R2

Sample X 3.74 0.72 98% 5.91 4.04 98%
Sample Y 1.69 0.98 93% 1.92 1.88 97%

Table 3.5.2: Estimated distribution parameters of sample X and sample Y .

Based on these transformations, the n pairs
�

xi , F i

�

can be expressed in Weibull plot and
a nearly linear relationship between these data suggests a Weibull distribution of the con-
sidered sample. In a Weibull plot, an arbitrary Weibull distribution with shape parameters
m and λ can be expressed by the linear function

y (x̃ ) =m x̃ + c (3.5.16)

with
c =−m ln(λ). (3.5.17)

This means that a linear curve fit on sample data given in a Weibull plot produces es-
timates of the shape parameters m and λ. Figure 3.5.3b shows the Weibull plots of the
samples X and Y and the corresponding linear curve fits. Both samples show a distinct
linear relationship and a Weibull distribution can be assumed.

A common approach to fit a model function into a set of data is the method of least-
squares, see Walpole [111]. The set of data consists of n data pairs

�

xi ,yi
�

and it is assumed
that the relation between the independent variable x and the dependent variable y can be
expressed by a model function f (x ;α). The nα function parameters are given in a vector
α and the objective is to find the parameter values which fit best the data points. In the
least-square method, the best fit is reached when the sum of residuals

r (α) =
n
∑

i=1

�

yi − f (xi ;α)
�2 (3.5.18)

reaches a minimum and the fitted values for α are found. The problem min [r (α)] is usu-
ally solved numerically. It is obvious that nα has to be much smaller than n for a reliable
fit. The number n −nα is the number of degrees of freedom of the fit. A possible measure
of the quality of the fit is the coefficient of determination

R2 = 1−
∑n

i=1

�

yi − f (xi ;α)
�2

∑n
i=1

�

yi − ȳ
�2 (3.5.19)

where fitted values of α are applied. R2 = 1 denotes a perfect fit. However, R2 is not suit-
able to compare the fit results of different models, see Walpole [111]. The least-squares
method is applied for both fits above and the results are listed in Table 3.5.2. The high
values of R2 confirm good fit results for all cases. Here, the fits were performed using the
plotting program gnuplot [115]. The implemented fitting function solves the minimisation
problem min [r (α)] by using the well-known Marquardt-Levenberg algorithm.

3.6 Inferential Statistics

The goal of a statistical study is to characterise and to approximate the underlying pop-
ulation of a random sample based on estimates. For instance, sample mean x̄ is used as
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an estimate of population mean µ. Here, inferential statistics can be used for checking if
a sample belongs to a known population at a distinct level of uncertainty. Furthermore,
inferential statistics is applied to check if different random samples belong to the same
population. Here, it is distinguished between the classical method of estimating popula-
tion parameters and the Bayesian method. In the classical method, inferences are made
based on properties obtained from of a sample taken from the population. In the Bayesian
method, the prior subjective knowledge about the probability distribution of the unknown
parameters is utilised together with the properties obtained from the sample, see Walpole
[111]. Furthermore, the field of statistical inference can be divided into estimation of pop-
ulation parameters and hypothesis testing. In the present work, the focus is set on the
classical method for univariate problems.

3.6.1 Unbiased Estimators

A point estimate of a population parameter θ is a value θ̂ of the random variable or stat-
istic �Θ. The PDF of �Θ is called the sampling distribution. If the expected value of a statistic
µ
�Θ is equal to θ , the statistic �Θ is said to be an unbiased estimator, so that

µ
�Θ = E
�

�Θ
�

= θ . (3.6.1)

The variance of �Θ is called the mean squared error of �Θ and becomes

σ2
�Θ
= E
�

�

�Θ−µ
�Θ

�2
�

. (3.6.2)

Consequently, the standard deviation σ
�Θ is the standard error of �Θ. If more than one

unbiased estimator exists, the estimator with the smallest variance σ2
�Θ

should be chosen
which is called the most efficient estimator of θ .

For example, statistic �Θ is defined as

�Θ= X =
1

n

n
∑

i=1

Xi (3.6.3)

where Xi are n independent and identically distributed continuous random variables with
mean µX and standard deviationσX . A possible outcome of �Θ is computed as

θ̂ = x̄ =
1

n

n
∑

i=1

xi (3.6.4)

where xi is a random outcome of Xi . The expected value of �Θ becomes

µ
�Θ = E
�

�Θ
�

=
ˆ +∞
−∞

. . .

ˆ +∞
−∞

ˆ +∞
−∞
�Θ

n
∏

i=1

f i (x )d x1d x2 . . . d xn

=
1

n

n
∑

i=1

µX =µX . (3.6.5)

Therefore, statistic �Θ = X with outcome θ̂ = x̄ is called unbiased estimator of population
mean θ =µ. The mean squared error of it becomes

σ2
X
= E
�

�

X −µX

�2
�

=
σ2

X

n
. (3.6.6)
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It can be shown that the statistic of the sample variance,

�Θ=S2 =
1

n −1

n
∑

i=1















Xi −
1

n

n
∑

i=1

Xi

︸ ︷︷ ︸

X















2

, (3.6.7)

is an unbiased estimator of the population variance σ2 using same conditions. A brief
derivation is given by

E
�

S2
�

= E





1

n −1

n
∑

i=1

�

Xi −X
�2





=
1

n −1
E





n
∑
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�

�
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−
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X −µX

��2





=
1

n −1
E





n
∑

i=1

�

�

Xi −µX

2
�

−n
�

X −µX

�2





=
1

n −1

�

nσ2
X −nσ2

X

�

=
1

n −1

	

nσ2
X −n

σ2
X

n

�

=σ2
X . (3.6.8)

The mean squared error of the sample variance estimator is given by

σ2
S2 = E
�

�

S2−σ2
X

�2
�

=
2

n −1
σ4

X . (3.6.9)

It is noted that a point estimator is still an estimate of a population parameter and the
exact value cannot be estimated even for large sample sizes. However, it is possible to
determine an interval within the value of the population parameter is expected with a
known degree of uncertainty. The interval is expressed by

θ̂L ≤ θ ≤ θ̂U (3.6.10)

where the boundaries θ̂L and θ̂U depend on the estimated value θ̂ . Since different samples
yield to various values of θ̂ , the boundaries θ̂L and θ̂U are not constant which means θ̂L is
the outcome of the random variable �ΘL and the outcome θ̂U of the random variable �ΘU .
Further, �ΘL and �ΘU are functions of �Θ. This means that the interval becomes random and
is given by

�ΘL ≤ θ ≤ �ΘU . (3.6.11)

The random endpoints �ΘL and �ΘU can be determined so that

P
�

�ΘL ≤ θ ≤ �ΘU

�

= 1−α (3.6.12)

for 0<α< 1. Then, the probability of taking a random sample which produces an interval
containing θ becomes 1−α. This interval is called (1−α) · 100% confidence interval. An
example of a two-sided confidence interval is illustrated in Figure 3.6.1a.

The confidence interval of the example above is determined as follows. According to
the central limit theorem, the sampling distribution of the mean estimator �Θ = X , see
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Figure 3.6.1: Illustration of the (1−α) · 100% confidence interval and the t -
distribution.

Equation (3.6.3), can be expected to be normally distributed with mean µ and standard
deviation σ/�n. Using the standard normal transformation in Equation (3.3.55), the con-
fidence interval of θ =µ is found by solving

P

�

−z α/2 ≤
X −µ
σ/�n

≤ z α/2

�

= 1−α

P









X − z α/2σ/
�

n
︸ ︷︷ ︸

�ΘL

≤µ≤ X + z α/2σ/
�

n
︸ ︷︷ ︸

�ΘR









= 1−α (3.6.13)

where ±z α/2 are symmetric ordinates of the standard normal distribution where an array
of 2 · α/2 is found, see Figure 3.6.1a. Now the confidence interval of a given sample mean x̄
can be determined as

x̄ − z α/2σ/
�

n ≤µ≤ x̄ + z α/2σ/
�

n (3.6.14)

and the probability that the error does not exceed z α/2 ·σ/�n is 1−α. Furthermore, a sample
size of

n =
�z α/2σ

e

�2

(3.6.15)

guarantees with (1−α) · 100% confidence that the error does not exceed a specified error
e . In this example, it is provided that standard deviation σ of the underlying population
is known. The realistic case is that mean as well as standard deviation are unknown and
both have to be estimated from the sample. Therefore, a random variable is defined as

T =
X −µ
S/�n

with S2 =
1

n −1

n
∑

i=1

�

Xi −X
�2

(3.6.16)

where Xi are n independent and identically random variables with normal distribution.
Then, the random variable T follows the t -distribution with n − 1 degrees of freedom,
see Walpole [111]. The t -distribution is a symmetric PDF and converges with increasing
number of degrees of freedom to the standard normal distribution. In Figure 3.6.1b, both
distributions are compared. Provided that the sample is drawn from a population with



3.6 INFERENTIAL STATISTICS 47

normal distribution, the confidence interval is found by solving

P

�

−tα/2 ≤
X −µ
S/�n
≤ tα/2

�

= 1−α

P
�

X − tα/2S/�n ≤µ≤ X + tα/2S/�n
�

= 1−α (3.6.17)

where ±tα/2 are symmetric ordinates of the t -distribution with n − 1 degrees of freedom.
This enables to predict the confidence interval of population mean µ based on sample
mean x̄ and variance s ,

x̄ − tα/2s/�n ≤µ≤ x̄ + tα/2s/�n. (3.6.18)

The example shows that assumptions are necessary for making statistical inference when
the underlying distribution is unknown.

3.6.2 Tolerance Intervals

The tolerance interval covers a fixed proportion of the population with a stated confid-
ence. For example, Chebyshev’s inequality given in Equation (3.3.71) produces a tolerance
interval. In general, the tolerance limits are defined by

P
�

µ−kσ≤ X ≤µ+kσ
�

= 1−α. (3.6.19)

Here, the tolerance interval covers the middle (1−α) · 100% of the population in case of
a symmetric PDF. For instance, the tolerance limits µ± kσ can be used to detect outliers
in a sample. However, the population parameters as well as the PDF are usually unknown
and have to be estimated by the empirical data. Therefore, the tolerance limits µ± kσ

become random variables such as X ± k
�

S2 and thus the tolerance interval is a random
variable. As a result, a

�

1−γ
�

· 100% confidence interval is used. If a sample X is drawn

from a normal distribution, the tolerance limits are found by x̄ ±k
�

s 2 and k is computed
so that it can be guaranteed with

�

1−γ
�

· 100% confidence that the limits contain at least
the proportion (1−α) · 100% of the population. Provided that the sample is taken from
a normal distribution, values of k for selected combinations of γ and α can be found in
statistical tables, see Walpole [111].

3.6.3 Hypothesis Testing

A statistical hypothesis is a conjecture concerning one or more populations based on a
formal statement. An absolute acceptance or rejection of the statistical hypothesis is not
achievable unless the population is known. But the population and its properties are un-
known in most applications and therefore samples are taken from that population. Then,
the sample data is used to provide evidence that either supports or does not support the
statistical hypothesis. The statistical hypothesis is rejected when the sample evidence is
inconsistent with the statistical hypothesis. However, a probability exists that a rejection
of the statistical hypothesis is wrong.

A statistical hypothesis test consists of a null hypothesis and an alternative hypothesis.
The null hypothesis is denoted by H0 and refers to the conjuncture. The alternative or
opposite hypothesis is denoted by H1 and is applied when H0 is rejected. A hypothesis
test leads to either rejecting H0 or not rejecting H0, see Montgomery [88]. For example, if
two means µ and µ0 are tested for equality, H0 and H1 become

H0 : µ = µ0

H1 : µ �= µ0 (3.6.20)
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H0 is true. H0 is not true.
H0 is not rejected. Correct Decision Type II Error

H0 is rejected. Type I Error Correct Decision

Table 3.6.1: Possible situations in hypothesis testing.

where H1 is called a two-sided alternative hypothesis because it would be true if µ1 < µ2

or µ1 > µ2. A hypothesis test is characterised by two kind of errors. If H0 is rejected when
it is actually true, the error is called a type I error and its probability to occur is α,

α= P
�

H0 is rejected |H0 is true
�

. (3.6.21)

If H0 is not rejected when it is actually not true, the error is called a type II error and its
probability to occur is β ,

β = P
�

H0 is not rejected |H0 is not true
�

. (3.6.22)

In conclusion, any test of a statistical hypothesis leads to four possible situations as
presented in Table 3.6.1. The probability α of committing a type I error is called level of
significance and is assigned prior to testing by the user. The probability β of committing a
type II error is not predictable since the alternative hypothesis H1 is not clearly specified.
Both probabilities are related in a way that a decrease of one generally results in the in-
crease of the other. Further, both probabilities are reduced with increasing sample size
n . The probability 1−β is defined as power of the statistical hypothesis test and can be
interpreted as probability of rejecting H0 given that H1 is true.

In the following example, it is considered that a sample of size n is drawn from a normal
distribution with mean µ and standard deviation σ. Both are unknown and estimated by
sample mean x̄ and sample variance s . Now it is tested if the population mean µ equals a
certain mean µ0 at a significance level of α and the hypothesis and alternative hypothesis
are formulated as

H0 : µ = µ0

H1 : µ �= µ0. (3.6.23)

Provided that H0 is true, the probability that the random variable T with t -distribution
(with n −1 degrees of freedom) lies in the interval −tα/2 ≤ T ≤ tα/2 is given by

P











−tα/2 ≤
X −µ0

S/�n
︸ ︷︷ ︸

T

≤ tα/2











= 1−α. (3.6.24)

Due to the symmetry of the t -distribution this equation can be simply rewritten as

P
�

| T |> tα/2
�

= P
�

T > tα/2
�

+P
�

T <−tα/2
�

=α. (3.6.25)

Here, the inequality | T |> tα/2 is used to test the hypothesis. The value of T for the given
sample with the properties n , x̄ and s becomes

t =
x̄ −µ0

s/
�

n
. (3.6.26)
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If | t |< tα/2 is true, H0 is not rejected and it can be assumed that µ = µ0. If | t |< tα/2 is
not true, H0 is rejected at significance level α and H1 is adopted. This hypothesis test is
known as one-sample t -test and it is applied to check if the mean µ estimated by x̄ is
significantly different from a known mean µ0 provided that the sample is drawn from a
normal distribution. A common method is to use the inequality

P (| T |> t )>α. (3.6.27)

If P (| T |> t )>α is not true, H0 is rejected at significance levelα. Furthermore, the example
has shown that testing H0 : µ= µ0 against H1 : µ �= µ0 at significant level α is equivalent to
compute the (1−α) · 100% confidence interval of µ based on x̄ and rejecting H0 if µ0 lies
not within the confidence interval. However, in many studies it is of interest to verify if two
independent samples are drawn from the same normal distribution. This can be done by
testing the hypothesis H0 : µ1 = µ2 against the alternative hypothesis H1 : µ1 �= µ2. Here, a
modified one-sample t -test can be applied provided that σ1 =σ2 =σ. The first step is to
define a random variable D as the difference of two independent and identically normally
distributed random variables such as

D = X1−X2. (3.6.28)

The random variable D is normally distributed with mean µD = 0 and standard deviation
σD =

�
2σ , see Walpole [111]. Therefore, the random variable

TD =
D −µD

SD

�

1/n 1+ 1/n 2

(3.6.29)

where

D = X 1−X 2 and S2
D =
(n 1−1)S2

1+(n 2−1)S2
2

n 1+n 2−2
(3.6.30)

follows a t -distribution with n 1 +n 2 − 2 degrees of freedom, see Walpole [111]. Now, the
hypothesis and alternative hypothesis can be reformulated as

H0 : µ1 = µ2 or µD =µ1−µ2 = 0

H1 : µ1 �= µ2 or µD =µ1−µ2 �= 0. (3.6.31)

Using the results from two samples of size n 1 and n 2, respectively, the corresponding value
of TD becomes

td =
x̄1− x̄2

sd

�

1/n 1+ 1/n 2

(3.6.32)

where

s 2
d =
(n 1−1)s 2

1 +(n 2−1)s 2
2

n 1+n 2−2
. (3.6.33)

If P (| TD |> td )>α is true, H0 is not rejected and it can be assumed that both independent
samples are drawn from normal distributions with equal means but unknown variances.
If P (| TD |> td ) > α is not true, H0 is rejected at significance level α and it can be assumed
that the sample data are drawn from different normal distributions. This test is called two-
sample t -test. It is common to combine the two-sample t -test with the two-sample F -test,
see Walpole [111]. The two-sample F -test returns a test decision for the null hypothesis
that two samples are drawn from normal distributions with equal variances. The altern-
ative hypothesis is that the samples are drawn from normal distributions with different
variances.
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The example above has shown the general procedure of statistical hypothesis testing.
Besides the definition of null hypothesis H0 and alternative hypothesis H1, it is of major
importance to clarify the assumptions prior testing. The result of a hypothesis test be-
comes useless when any of the assumptions is not met. A statistical hypothesis test can be
structured as follows

1. Clarification of assumptions regarding populations characteristics

2. Definition of null hypothesis H0 and alternative hypothesis H1

3. Purpose of significance level α

4. Selection of an appropriate test statistic �Θ

5. Computing of the critical region based on α

6. Test of H0 hypothesis using the critical region

Furthermore, classical hypothesis tests are separated into parametric and non-parametric
tests. Most of the traditional tests are based on the assumption that the random samples
are drawn from normal distributions. Due to the parametric form of the normal distribu-
tion these test methods are called parametric. In modern statistics, alternative test meth-
ods were introduced where no assumption about the distribution of the underlying popu-
lation is made. These tests are referred as non-parametric or distribution-free methods. In
general, with an increasing number of assumptions the result of hypothesis test becomes
stronger. Detailed explanations and hypothesis tests of both methods can be found in the
standard literature of statistics by Walpole [111], Lehmann and Romano [73], Montgomery
[88] and Wilcox [114].

3.6.4 Simple Linear Regression

The distribution properties are estimated by a linear fit using the method of least-squares,
see Chapter 3.5.2. This procedure is called a simple linear regression approach, see Wal-
pole [111]. The statistical model of the simple linear regression is given by

Y (x ) =β0+β1x +ε (3.6.34)

where β0 is the intercept and β1 is the slope and ε is a random variable which is also called
the random error and is characterised by zero mean µε = 0 and error variance σ2

ε. There-
fore the expected value of Y becomes

E [Y (x )] =β0+β1x . (3.6.35)

The fitted regression line is given by

ŷ (x ) =b0+b1x (3.6.36)

where b0 and b1 are estimates of β0 and β1. Therefore, the fitted regression line ŷ (x ) is an
estimate of the true regression line Y (x ).

For a given set of n data points
�

xi , yi
�

with corresponding estimates ŷ (xi ) the n resid-
uals are

ei = yi − ŷ (xi ) . (3.6.37)
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As already mentioned, the least-squares method solves the function min
�
∑n

i=1 e 2
i

�

in terms
of b0 and b1. In case of linear regression combined with the least-squares method, the
coefficients b1 and b0 can directly be computed by the unbiased estimators

B1 =

∑n
i=1 (xi − x̄ )
�

Yi −Y
�

∑n
i=1 (xi − x̄ )2

(3.6.38)

and
B0 = Y − B1x̄ . (3.6.39)

It can be shown that B1 and B0 follow normal distributions, see Walpole [111]. The expec-
ted values and the mean squared errors of these estimators are

E [B1] =β1 and σ2
B1
=

σ2
ε
∑n

i=1 (xi − x̄ )
(3.6.40)

and

E [B0] =β0 and σ2
B0
=

∑n
i=1 x 2

i
∑n

i=1 (xi − x̄ )2
σ2
ε. (3.6.41)

It is seen that both estimators depend on the n data points xi of the independent vari-
able x . The parameterσ2

ε used in both estimators is the model error variance and reflects
random variation around the regression line. An unbiased estimator ofσ2

ε is

S2
ε =

1

n −2

n
∑

i=1

(Yi − E [Y ])2 (3.6.42)

which is also called mean squared error.
The t -test can be used to perform statistical hypothesis tests on the fitted regression

coefficients b0 and b1. For instance, a hypothesis test on the slope β1 can be expressed as

H0 : β1 = β ∗1
H1 : β1 �= β ∗1 . (3.6.43)

Considering that H0 is true, the test statistic becomes

TB1 =
B1−β ∗1
�

S2
ε/
∑n

i=1(xi−x̄ )2
(3.6.44)

for n values of x . Here, the random variable TB1 follows a t -distribution with n−2 degrees
of freedom. For a data set consisting of n observations

�

xi , yi
�

, the value of TB1 becomes

tb1 =
b1−β ∗1�

sb1

(3.6.45)

with

sb1 =
1

n −2

∑n
i=1

�

yi − ŷ (xi )
�2

∑n
i=1 (xi − x̄ )2

(3.6.46)

If P
�

| TB1 |> tb1

�

> α is not true, H0 is rejected at significance level α. If β ∗1 = 0, the hy-
pothesis test is called a significance of regression test and proves the linear correlation of
the n observations

�

xi , yi
�

. However, this test needs to be handled carefully. The non-
rejection of the null hypothesis does not indicate that the observations are totally uncor-
related. Here, a scatter plot is helpful to check for any non-linear correlation.
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3.6.5 Goodness of Fit Test

An important class of hypothesis tests are so-called distribution tests or Goodness of Fit
(GoF) tests, see D’Agostino and Stephens [22]. The method of least-squares can be used to
identify parameters of an arbitrary function, see Chapter 3.5.2. This method can be also
used to estimate distribution parameters. From a statistical point of view, it is important
to prove the assumption that the underlying population of a sample follows the selected
and fitted distribution function. Here, a formal procedure is to perform a hypothesis test
which is called GoF test. GoF tests play a significant role for the correct performance of
further hypothesis tests. For instance, the two-sample t -test requires two samples drawn
from normal distributions. GoF tests are essentially based on either the CDF or the PDF.
This means that null and alternative hypothesis are stated either as

H0 : F (x ) = F0 (x )

H1 : F (x ) �= F0 (x ) (3.6.47)

or as

H0 : f (x ) = f 0 (x )

H1 : f (x ) �= f 0 (x ) . (3.6.48)

A well known test for normality is the chi-square test and it is based on the assumed
normal PDF, see Romeu [100]. An alternative is the Kolmogorov-Smirnov test, see Romeu
[99]. It is a typical nonparametric test which proves the equality of two continuous CDF.
Therefore, it can also be applied as a GoF test. A modification of the Kolmogorov-Smirnov
GoF test is the Anderson-Darling GoF test, see Romeu [98]. Both tests belong to the class
of distance tests which means that the distances between the empirical F i (xi ), see Equa-
tion (3.5.12), and the estimated Fi (xi ) are the mandatory measurements. Especially, the
Anderson-Darling GoF test is perfectly suitable for small sample sizes and allows to prove
a normal fit as well as a Weibull fit and is presented in the following according to the Com-
posite Materials Handbook Volume I [25].

It is considered that n sample points xi are given in an ordered set and the specified
distribution parameters are estimated from this set. The n corresponding values of the
estimated CDF are denoted by Fi (xi ). The Anderson-Darling test statistic is given by

AD =−n +
n
∑

i=1

1−2i

n
(ln [Fi (xi )]+ ln [1− Fn+1−i (xi )]) (3.6.49)

and is adjusted to sample size n in form of

AD∗ =
�

1+
0.2
�

n

�

AD. (3.6.50)

The observed significance level is denoted by OSL and depends on the specified distri-
bution. OSL measures the probability of observing an Anderson-Darling test statistic at
least as extreme as the measured value of AD if the sample is actually drawn from the spe-
cified distribution. Then, the null hypothesis is rejected at a significance level of α = 0.05
when OSL < 0.05. Otherwise, the hypothesis that the sample data follows the specified
distribution is not rejected. The value of OSL can be written as

OSL =
�

1+exp
�

−0.10+1.24 ln
�

AD∗
�

+4.48AD∗
��−1 (3.6.51)
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Normal Fit Weibull Fit
µ σ OSL m λ OSL

Sample X 3.74 0.72 0.72> 0.05 5.91 4.04 0.64> 0.05
Sample Y 1.69 0.98 0.08> 0.05 1.92 1.88 0.74> 0.05

Table 3.6.2: Estimated distribution parameters of sample X and sample Y .

for normal distributions and

OSL =
�

1+exp
�

−0.48+0.78 ln
�

AD∗
�

+4.58AD∗
��−1 (3.6.52)

for Weibull distributions. The results of the Anderson-Darling test for the example in
Chapter 3.5.2 are presented in Table 3.6.2. It can be assumed that sample X follows either a
normal distribution or a Weibull distribution. Due to the similarity of both estimated dis-
tribution functions the test results are reasonable as demonstrated in Figure 3.6.2a. Fur-
ther, it can be assumed that sample X is drawn from a Weibull distribution. Here, the
estimated Weibull function is able to capture the skewness of the sample data as seen in
Figure 3.6.2b. Figure 3.6.2c and Figure 3.6.2d, respectively, show sample data, fitted nor-
mal CDF and fitted Weibull CDF of sample X and of sample Y , respectively. Especially, the
CDF of sample Y is better approximated by a Weibull than by a normal fit.
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Figure 3.6.2: Estimated normal distribution and Weibull distribution of sample X
and sample Y .
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3.6.6 Applied Hypothesis Tests and Testing Procedure

The main objective of a common statistical analysis of experimental data is to prove the
questions, first, “Does the data follow a hypothetical distribution function?” and, second,
“Which samples belong to the same population?”. For instance, two series of a component
are produced. Samples of both are taken and compared by means of load capacity. Here,
hypothesis tests can be used to prove if the difference between the series regarding load
capacity is significant. In the following, two general approaches are presented to compare
k = 2 and k > 2 samples.

The most commonly used hypothesis tests are already implemented in conventional
mathematical programs such as MATLAB [83], Mathematica [116] and Excel [85]. Further-
more, SPSS [61] and OriginLab [91] are specialised programs for statistical analysing and
visualising of experimental data. In the present work, the statistical toolbox available in
MATLAB [84] was applied. Most of the implemented statistical test functions return two
values. The first value is the result of the hypothesis test given by H= 0 or H= 1 which
means the null hypothesis H0 is not rejected or rejected at significance level α. The default
valueα is set to 0.05, but can be changed by the user. The second value is the p -value of the
applied statistic model given by 0< p< 1. The p -value is the lowest level of significance at
which the observed or empirical value of the test statistic is significant, see Walpole [111].
In other words, the p -value is the probability of obtaining a test statistic �Θ at least extreme
as the measured θ̂ assuming in fact H0 is true,

p = P
�

| �Θ |> θ̂
�

. (3.6.53)

If p < α is true, the null hypothesis H0 is rejected at significance level α. For instance, the
OSL value of the Anderson-Darling GoF test is the corresponding p -value.

Two samples X and Y can be compared through the F -test and t -test when it can be
assumed that both samples are drawn from normal distributions. If the null hypothesis of
the F -test as well as the null hypothesis of the t -test cannot be rejected, it can be assumed
that both samples X and Y are drawn from the same population with normal distribution.
If at least one is not normally distributed, the Kolmogorov-Smirnov test denoted as K S-test
can be performed to prove if these samples are dawn from the same unknown population.
An overview of k = 2 sample tests are given in Table 3.6.3.

If more than two samples Xi are analysed through a hypothesis test, a common proced-
ure is the one-way Analysis of Variance (ANOVA), see Walpole [111]. The one-way ANOVA
is a special form of a linear regression hypothesis test of the slope β1 against a slope of 0,
see Equation (3.6.43). Here, it is assumed that k populations are mutually independent
and normally distributed with means µ1, µ2, . . . , µk and a common variance σ2. Further-
more, the k corresponding samples have the same size n and given in a sample matrix X
of size n ×k . Then, the one-way ANOVA tests the hypothesis

H0 : µ1 =µ2 = . . .=µk

H1 : At least one µi is differnet. (3.6.54)

The Bartlett’s test can be used to prove the assumption of the equality of the k variances
by testing the hypothesis

H0 : σ2
1 =σ

2
2 = . . .=σ2

k

H1 : At least oneσi is differnet. (3.6.55)

In case, the k samples are not drawn from a normal distribution or the variances cannot be
assumed to be equal, the nonparametric Kruskal-Wallis test can be applied, see Walpole
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[111]. The Kruskal-Wallis test proves if the k samples are drawn form the same population.
Thus, the null hypothesis and the alternative hypothesis are stated as

H0 : The k samples are drawn from the same population.

H1 : The k samples are not drawn from the same population. (3.6.56)

In general, the testing procedure is based on the k sample medians. However, the object-
ive of these three tests is to find out if the k samples belong to the same population. Table
3.6.4 provides an overview of these tests.

Hypothesis Test H0 H1

F -Test
σ2

X =σ
2
Y σ2

X �=σ
2
Y

��

H,p
�

= vartest2 (X,Y)
�

t -Test
µX =µY µX �=µY��

H,p
�

= ttest2 (X,Y)
�

K S-Test
FX = FY FX �= FY��

H,p
�

= kstest2 (X,Y)
�

(a) Null hypothesis H0 and alternative hypo-
thesis H1.

Hypothesis Test Requirements

F -Test Normality and Independence of X and Y
t -Test Normality and Independence of X and Y ,σ2

X =σ
2
Y

K S-Test Independence of X and Y

(b) Requirements.

Table 3.6.3: Two-sample hypothesis tests using MATLAB [84].

Hypothesis Test H0 H1

Bartlett’s Test
σ2

1 =σ
2
2 = . . .=σ2

k At least oneσi is different.��

H,p
�

= vartestn (X)
�

One-Way ANOVA
µ1 =µ2 = . . .=µk At least one µi is different.��

H,p
�

= anova1 (X)
�

Kruskal-Wallis Test
F1 = F2 = . . .= Fk At least one Fi is different.��

H,p
�

= kruskalwallis (X)
�

(a) Null hypothesis H0 and alternative hypothesis H1.

Hypothesis Test Requirements

Bartlett’s Test Normality and Independence of X
One-Way ANOVA Normality and Independence of X, commonσ2

Kruskal-Wallis Test Independence of X

(b) Requirements.

Table 3.6.4: k -sample hypothesis tests using MATLAB [84].
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3.7 Concluding Remarks

The fundamental equations of probability theory were introduced in the current chapter.
These are necessary for the definition of probabilistic failure criteria. A failure criterion
is usually formulated in a deterministic sense. This implies that each involved quantity
needs to be exactly known. In a probabilistic failure criterion, each involved quantity is
considered as a random variable. These random variables might be statistical dependent
and their correlation is given by a joint density function. As a result, the handling of such
a full randomised failure criterion becomes almost possible. Hence, it is necessary to state
assumptions regarding the probabilistic failure criterion in the same way assumptions are
made in the definition of a failure criterion. Assumptions can be made about distribution
functions, statistical dependence and probability models. These assumptions can be ana-
lysed through experimental studies under statistical conditions. A data analysis using de-
scriptive and inferential statistics as described in the current chapter provide a statistical
characterisation of the experimental results. It is noted that the number of experiments
increases rapidly in a statistical study and useless data are easily produced. Experience
and knowledge are most important for keeping time, effort and cost of an experimental
study at a minimum.



Chapter 4

Failure Modelling

The concept of failure modelling in structural materials is the subject of the following
chapter. Only the topics out of the wide field of failure modelling are considered and
discussed which are relevant for the present work. The chapter contains the topics con-
tinuum mechanics, fracture characteristics and failure modelling. Furthermore, the finite
element method is briefly described and aspects of numerical failure modelling are dis-
cussed. A numerical-experimental example of a simple tensile test is presented that shows
the complexity of the calibration of failure models.

4.1 Basic Concepts in Continuum Mechanics

The aim of continuum mechanics is the mathematical formulation of the mechanical be-
haviour of solid materials. In the continuum mechanical framework, it is assumed that
the real material structure is idealised by a continuum structure where the material is dis-
tributed homogeneously and continuously. Here, a material point within a continuum
body is characterised by its stress and strain state. In the following, the concept of stresses
and strains is briefly introduced. Both quantities are necessary to describe material fail-
ure. Moreover, the mechanical balance laws as well as the first and second law of thermo-
dynamics are presented. The relation between stresses and strains is described by con-
stitutive equations. Here, two constitutive models are presented for demonstration of ma-
terial modelling. Finally, a brief description of the finite element method is given. For
further interest, detailed descriptions of the underlying definitions and relations as well as
the mathematical derivations are provided in the classical literature on continuum mech-
anics and finite elements. It is referred to the books by Belytschko et al. [13], Irgens [63],
Holzapfel [56], Lemaitre and Chaboche [74] and Lubliner [79]. It is noted that the equa-
tions in continuum mechanics are usually given in tensor or index notation. An easy to
read introduction into tensor algebra can be found by Parisch [93]. Further, all equations
in this chapter are formulated in tensor notation using a rectangular Cartesian coordinate
system x1,x2,x3 with unit base vectors e1, e2, e3.

4.1.1 Deformation and Strain

The configuration of a solid body at time t = 0 is defined as the undeformed or reference
configuration and the body is given by its occupied region Ω0. An arbitrary material point
P in Ω0 is defined by its (material) position vector X, see Figure 4.1.1. The solid body occu-
pies the region Ω in the current (deformed) configuration at time t and P is displaced to
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P
P'u

x
X

e1

Q

Q'

dX
dx

e2

Ω0

Ω

F

F-1

Figure 4.1.1: Deformation measurements of a solid body.

P ′. The position of P ′ in Ω is given by the spatial position vector x. The displacement from
P to P ′ is expressed by the displacement vector

u= x−X. (4.1.1)

Displacement vector u as well as current position vector x can be defined as functions of
the Lagrangian coordinates X as

u= u (X, t ) and x (t ) = x (X, t ) (4.1.2)

where X and t are the free variables. Alternatively, displacement vector u can be defined
as function of the Eulerian coordinates x as

u= u (x (X, t ) , t ) (4.1.3)

where x and t are the free variables. Lagrangian coordinates X refer to a material point in
its reference configuration and, thus, the Lagrangian coordinates are called material co-
ordinates. In continuum mechanics, the material deformation is described by Lagrangian
coordinates. Eulerian coordinates x refer to a spatial position where the material passes
through and, thus, Eulerian coordinates are called spatial coordinates. Eulerian coordin-
ates are usually used in fluid dynamics. In the following, only Lagrangian coordinates are
considered.

The velocity vector v is defined by the time derivative of u and is expressed by

v (X, t ) = u̇ (X, t ) =
∂ u (X, t )
∂ t

(4.1.4)

and the corresponding acceleration vector a becomes

a (X, t ) = ü (X, t ) =
∂ 2u (X, t )
∂ t 2

= v̇ (X, t ) . (4.1.5)

It is noted that dots above a function denote derivatives with respect to time.
The partial derivative of x in terms of X leads to the tensor

F (X, t ) =
∂ x

∂ X
=
∂ (X+u)
∂ X

(4.1.6)

where F is called the deformation gradient and represents the Jacobian matrix of the de-
formation. The determinant of F is called the Jacobian determinant J and is defined by

J = det (F)> 0 (4.1.7)



4.1 BASIC CONCEPTS IN CONTINUUM MECHANICS 59

which is required to transform integrals from the current to the reference configuration
such as ˆ

Ω
f (X, t )dΩ=

ˆ

Ω0

f (X, t ) J dΩ0 (4.1.8)

where f (X, t ) can be any function.
Now, an adjunct point Q of P is considered and its reference position is given by X+d X

as illustrated in Figure 4.1.1. Q is displaced to Q ′ and the displaced position of Q ′ is given
by x+d x. The relation between d X and d x can be expressed by deformation gradient F as

d x= Fd X. (4.1.9)

The square of the line segments d X and d x is determined by the scalar products

dS2 = d X ·d X,

d s 2 = d x ·d x. (4.1.10)

Using Equation (4.1.6), the change in the squares can be written as

d s 2−dS2 = d x ·d x−d X ·d X

= d X ·
�

FT ·F− I
�

·d X

= d X ·2E ·d X (4.1.11)

where I denotes the identity tensor and E denotes the Green-Lagrange strain tensor. The
definition of F in Equation (4.1.6) allows to express E in terms of material derivatives of u,
so that

E (X, t ) =
1

2

�

FT ·F− I
�

=
1

2

�

�

∂ u

∂ X

�

+
�

∂ u

∂ X

�T

+
�

∂ u

∂ X

�T �∂ u

∂ X

�

�

. (4.1.12)

The velocity gradient L is defined by the spatial derivative of v as

L (X, t ) =
∂ v

∂ x
=
∂ v

∂ x

∂ X

∂ x
= ḞF−1 (4.1.13)

and can be decomposed in an additive manner as

L (X, t ) =
1

2

�

�

∂ v

∂ x

�

+
�

∂ v

∂ x

�T
�

+
1

2

�

�

∂ v

∂ x

�

−
�

∂ v

∂ x

�T
�

= D (X, t )+W (X, t ) (4.1.14)

where D is the symmetric part of L and W is the skew symmetric part of L. The symmetric
tensor D is called the rate-of-deformation tensor and is characterised by

D=DT . (4.1.15)

The skew symmetric tensor W is called the spin tensor. The time derivative of E can be
expressed in terms of D and F as

Ė (X, t ) =
∂ E

∂ t
= FT ·D ·F. (4.1.16)
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A multiplication of D with a time increment d t yields the so-called natural strain incre-
ment

dε (X, t ) =D ·d t . (4.1.17)

If a displacement of a solid body does not result in any straining or deformation, the
displacement is called a rigid body motion which consists of a translation and a rotation
about the origin. Consequently, the current position vector can be expressed as

x (X, t ) = xT (t )+R (t ) ·X (4.1.18)

where xT is the translation vector and R is the orthogonal rotation tensor which is defined
by

R ·RT = I. (4.1.19)

4.1.2 Mechanical Balance Laws

The mechanical balance laws allow to specify the state of equilibrium of a solid body.
These laws are established in the current configuration and have to be satisfied at any ma-
terial point in Ω and at any time t . Therefore, the balance laws can be formulated either in
an integral form based onΩ or in a local form based on a differential volume element ofΩ.
In the following, the balance laws are presented in both formulations. It is noted that the
local formulation is stated directly. Details on the derivation from global formulations to
local formulations can be found by Lemaitre and Chaboche [74].

An essential law in physics postulates the conservation of mass in a closed system. This
means that the mass of a solid body is constant and independent of its configuration and
it follows ˆ

Ω0

ρ0dΩ0 =
ˆ

Ω
ρdΩ

ρ0 = Jρ (4.1.20)

where ρ0 = ρ0 (X, t0) is the local mass density in the reference configuration and ρ =
ρ (X, t ) is the local mass density in the current configuration.

According to Newton’s second law, the sum of all external forces subjected to a solid
body is equal to the rate of the linear momentum known as the inertia force. Here, a solid
body with boundary Γ is subjected to body forces b and surface tractions t. Vector b cor-
responds to a force per unit mass and vector t corresponds to a force per unit area as
illustrated in Figure 4.1.2a. The balance of linear momentum is given by

ˆ

Ω
ρbdΩ+

ˆ

Γ
tdΓ =

D

Dt

ˆ

Ω
ρvdΩ

∂ σ

∂ x
+ρb = ρ

∂ v

∂ t
=ρa (4.1.21)

whereσ =σ (X, t ) is the Cauchy stress tensor. The termρv on the right hand side is the lin-
ear momentum per unit volume and its time derivative is the inertia force per unit volume
and becomes ρa. The local form produces a system of partial differential equations and
their solution is the motivation to apply the finite element method in continuum mech-
anics. Further, the balance of angular momentum is obtained by the cross product of each
term in the linear momentum equation and position vector x, so that

ˆ

Ω
x×ρbdΩ+

ˆ

Γ
x× tdΓ =

D

Dt

ˆ

Ω
x×ρvdΩ

σ = σT . (4.1.22)
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Γ

(a) Solid body with boundaryΓ sub-
jected to external loads b and t.
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e2

t
n -n

-t

Cross-Section A Ω

(b) Stress vector t acting on cross-
section A with normal n.

Figure 4.1.2: Illustration of a solid body subjected to of external loads and the Cauchy
theorem.

Here, the local form that Cauchy stress tensorσ has to be a symmetric tensor. The balance
laws of linear and angular momentum are also known as the Euler’s equation of motion.

4.1.3 Stresses

Stresses can be interpreted as internally distributed forces in a solid body as a result of ex-
ternal loads. The Cauchy stress tensorσ introduced in Equation (4.1.21) is obtained from
the Cauchy theorem which is illustrated in Figure 4.1.2b. Here, a solid body is virtually cut
into two bodies and the cross-section A is defined by its unit normal vector n. According
to the third Newton’s law, the internal forces F acting on both surfaces are equal in mag-
nitude and opposite in direction. Hence, the stress vector t in a material point on a surface
with normal vector n is given by the limit

t= lim
�A→0

�F

�A
=

d F

d A
. (4.1.23)

The Cauchy theorem states that the relation between stress vector t and normal vector n
is given by the Cauchy stress tensorσ and reads

t=σ ·n. (4.1.24)

The components ofσ can be given in matrix form as

σ ≡







σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33






(4.1.25)

where the components σ11,σ22,σ33 are called normal stresses and the remaining com-
ponents are called shear stresses.

It is noted that stress tensor σ is unique in a material point, but the values of the com-
ponents depend on the orientation of the applied coordinate system. Here, a particular
coordinate system is the principal system where only normal stresses are present. The
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principal system requires that t and n have the same direction in cross-sections perpen-
dicular to the principal coordinate axes. Then, the three principal stresses are found by
solving the eigenvalue problem

(σ−σI) ·n= 0 (4.1.26)

where σ is an eigenvalue of σ. This equation system has a non-trivial solution for the
unknown n only if its determinant becomes zero,

det (σ−σI) = 0. (4.1.27)

This leads to the equation
σ3− Iσσ

2− I Iσσ− I I Iσ = 0 (4.1.28)

where the three (coordinate) independent scalars Iσ, I Iσ, I I Iσ are called the stress invari-
ants given by

Iσ = tr [σ] =σ : I, (4.1.29)

I Iσ =
1

2

�

tr [σ ·σ]− tr [σ]2
�

=
1

2

�

σ :σ− tr [σ]2
�

, (4.1.30)

I I Iσ = det (σ) . (4.1.31)

The three solutions of Equation (4.1.28) are called the principal stresses σI ,σI I ,σI I I and
the corresponding directions are the principal axes nI , nI I , nI I I . Due to the symmetry ofσ,
the solutions σI ,σI I ,σI I I are real. In mathematics, this is called an eigenvalue problem
and σI ,σI I ,σI I I are the eigenvalues of σ and nI , nI I , nI I I are the corresponding eigen-
vectors. In continuum mechanics, the principal stresses are ordered by σI ≥ σI I ≥ σI I I .
Accordingly, the maximum shear stress τm a x becomes

τm a x =
σI −σI I I

2
. (4.1.32)

Further, stress tensor σ can be decomposed into the hydrostatic stress tensor σh and
the deviatoric stress tensor s such as

σ =σh + s=
tr [σ]

3
I+ s (4.1.33)

where the hydrostatic stresses cause a volume change of Ω and the deviatoric stresses
cause a distortion of Ω. Consequently, s is determined by

s=σ−
tr [σ]

3
I. (4.1.34)

Since σ and σh are symmetric tensors, s is also a symmetric tensor and it follows s = sT .
The invariants of s are given by

Is = 0, (4.1.35)

I Is =
1

2
(s : s) , (4.1.36)

I I Is = det (s) . (4.1.37)

The invariants of s can be also expressed in termsσI ,σI I ,σI I I , so that

Is = 0, (4.1.38)

I Is =
1

6

�

(σI −σI I )2+(σI I −σI I I )2+(σI I I −σI )2
�

, (4.1.39)

I I Is = s11s22s33. (4.1.40)
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The deformation or mechanical power of a solid body can be defined in terms of Cauchy
stressσ and rate-of-deformation D as

Pd e f =
ˆ

Ω
σ : DdΩ. (4.1.41)

Using Equation (4.1.8) and Equation (4.1.16), the mechanical power can also be computed
referred to the reference configuration as

Pd e f =
ˆ

Ω
σ : DdΩ

=
ˆ

Ω0

Jσ :
�

F−T · Ė ·F−1
�

dΩ0

=
ˆ

Ω0

�

J F−1 ·σ ·F−T
�

: ĖdΩ0

=
ˆ

Ω0

S : ĖdΩ0 (4.1.42)

where S denotes the second Piola-Kirchhoff stress tensor which is defined as

S= J F−1 ·σ ·F−T . (4.1.43)

S is a symmetric tensor and it follows S = ST . It is said that Cauchy stress σ and rate-
of-deformation D are an energy conjugate pair referred to the current configuration. In
the same manner, second Piola-Kirchhoff stress S and Green-Lagrange strain rate Ė are an
energy conjugate pair referred to the reference configuration.

The material response is described by the relation between stresses and strains. The
principle of material objectivity states that the material response is independent of a su-
perimposed rigid body rotation on the current configuration. A tensor is called objective
when the tensor remains invariant during rotation of the coordinate system. Only object-
ive tensors satisfy the principal of material objectivity, see Belytschko et al. [13]. Stress
and strain tensors defined with respect to the reference configuration are expected to be
objective such as second Piola-Kirchhoff stress S and Green-Lagrange strain E. Also, the
stress- and strain-rate tensors which are defined with respect to the reference configura-
tion are expected to be objective such as second Piola-Kirchhoff stress rate _S and Green-
Lagrange strain rate Ė. In contrast, rates of tensors which are defined in the current config-
uration are not objective. For instance, Cauchy stressσ and rate-of-deformation tensor D
are objective, but the rate of Cauchy stress σ is not objective. An objective rate of Cauchy
stressσ is given by the Jaumann stress rateσ∇J which is expressed as

σ∇J =
∂ σ

∂ t
+W ·σ−σ ·W (4.1.44)

where spin tensor W is used. Alternative objective formulations are the Truesdell stress
rate and Green-Naghdi stress rate, see Belytschko et al. [13].

4.1.4 First and Second Law of Thermodynamics

The mechanical balance laws state the conservation of mass as well as the balance of linear
and angular momentum. The conservation of energy in a thermo-mechanical system is
stated by the first law of thermodynamics. It is considered that a solid body exists in a
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closed system and the only source of energy is mechanical work and heat. The rate of
change of the total energy of a solid body is given by

Pt ot = Pk i n +Pi nt (4.1.45)

where Pk i n denotes the rate of change of the kinetic energy and Pi nt the rate of change of
the internal energy. The kinetic power Pk i n is defined by

Pk i n =
D

Dt

ˆ

Ω

1

2
ρv ·vdΩ. (4.1.46)

The internal energy per unit mass is denoted as w i nt = w i nt (X, t ) and, thus, the internal
power Pi nt of a solid body can be expressed as

Pi nt =
D

Dt

ˆ

Ω
ρw i nt dΩ. (4.1.47)

The rate of work done by external forces becomes

Pe x t =
ˆ

Ω
v ·ρbdΩ+

ˆ

Γ
v · tdΓ (4.1.48)

and the power supplied by heat sources s = s (X, t ) and the heat flux vector q = q (X, t )
becomes

Phe a t =
ˆ

Ω
ρs dΩ−

ˆ

Γ
n ·qdΓ. (4.1.49)

The conservation of energy requires that the rate of change of the total energy Pt ot equals
the power of the external forces Pe x t and the heat power Phe a t . Hence, the first law of
thermodynamics reads

Pt ot = Pe x t +Phe a t

Pk i n +Pi nt = Pe x t +Phe a t . (4.1.50)

The local form of the first law is directly postulated by

ρẇ i nt =ρ
∂w i nt

∂ t
=σ : D+ρs −

∂ q

∂ x
(4.1.51)

and an integration over the domain Ω leads to the form

ˆ

Ω
ρw i nt dΩ =

ˆ

Ω
σ : DdΩ+

ˆ

Ω
ρs dΩ−

ˆ

Ω

∂ q

∂ x
dΩ

Pi nt = Pd e f +Phe a t . (4.1.52)

It shows that the inter-convertibility of heat and mechanical work in a thermo-mechanical
system. Here, the rate of the mechanical work Pd e f can be derived from the balance of
linear momentum in Equation (4.1.21), so that

Pd e f = Pk i n −Pe x t . (4.1.53)

A thermo-mechanical process is characterised by its irreversibility and the restriction
that heat only flows from a warm to a cold body. The first law of thermodynamics does
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not include this restriction. Here, the second law of thermodynamics postulates this im-
balance in the direction of energy transformations. A mathematical expression is given by
the Clausius-Duhem inequality, see Belytschko et al. [13]. It reads

D

Dt

ˆ

Ω
ρηdΩ≥

ˆ

Ω

1

θ
ρs dΩ−

ˆ

Γ
h ·ndΓ (4.1.54)

where η = η (X, t ) denotes the entropy per unit mass of a solid body and θ = θ (X, t ) the
thermodynamical temperature. The vector h = h (X, t ) is called the entropy flow vector
and is defined by

h=
q

θ
. (4.1.55)

The second law states that the internal production of entropy is never less than the entropy
provided by external sources. In case of a reversible process, the internal entropy produc-
tion equals the external entropy supply, whereas in case of an irreversible process, the
internal entropy production is always larger than the external entropy supply as described
in the work by Hassler [52]. The local form of the Clausius-Duhem inequality reads

ρθ η̇≥ρs −
∂ q

∂ x
+h ·

∂ θ

∂ x
. (4.1.56)

Substituting Equation (4.1.51) in the local form of the Clausius-Duhem inequality leads to
the expression

ρθ η̇ ≥ ρẇ i nt −σ : D+h ·
∂ θ

∂ x

0 ≤
�

σ : D−ρ
�

ẇ i nt −θ η̇
��

︸ ︷︷ ︸

≥0

+
�

−h ·
∂ θ

∂ x

�

︸ ︷︷ ︸

≥0

(4.1.57)

where the first square bracket represents the mechanical energy dissipation due to de-
formation and the second square bracket the thermal energy dissipation due to heat con-
duction. The energy available to do mechanical work at constant temperature is given by
the free energy functionψwhich is defined by

ψ=w i nt −θη. (4.1.58)

Using the time derivative ofψ given by

ψ̇= ẇ i nt − θ̇ η−θ η̇, (4.1.59)

the local mechanical energy dissipation leads to the inequality

0≤σ : D−ρψ̇−ρθ̇η (4.1.60)

in the current configuration and

0≤ S : Ė−ρ0ψ̇−ρ0θ̇ η (4.1.61)

in the reference configuration.
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4.1.5 Constitutive Equations

A constitutive equation defines the relation between two physical quantities connected to
a material. It approximates the response of the material when it is subjected to external
loads. These equations are necessary to solve primary equations governing physical laws.
Usually, reasonable assumptions are stated to express the constitutive equations by ele-
mentary functions which follow the laws of thermodynamics. In continuum mechanics,
the constitutive equations provide the relation between the stress state and the strain state
in a solid and deformable material point. The set of constitutive equations and the under-
lying assumptions defining the material behaviour are summarised in the material model.
Here, a distinction is made between reversible and irreversible material behaviour. In a re-
versible material, the deformation energy is stored in the material and is fully recoverable
after unloading, consequently deformations and strains are reversible and the deformed
body returns to its original shape after unloading. Here, the only source of energy dissip-
ation is heat conduction. The modelling of reversible material behaviour is subject of the
theory of elasticity. In contrast, the internal energy of an irreversible material is totally or
partially dissipated as heat and mechanical work. Here, the internal structure of the ma-
terial changes irreversibly under loading. These materials are defined as plastic materials.
The modelling of irreversible material behaviour is subject of the theory of plasticity.

In case of thermo-elasticity, the dissipation of mechanical energy is zero and it follows

ρψ̇ = σ : D−ρθ̇η (4.1.62)

ρ0ψ̇ = S : Ė−ρ0θ̇ η. (4.1.63)

The free energy functionψ only depends on the state (observable) variables Green-Lagrange
strain E and temperature θ , so that

ρ0ψ=ρ0ψ (E,θ ) . (4.1.64)

The corresponding time derivative becomes

ρ0ψ̇ (E,θ ) =ρ0
∂ ψ (E,θ )
∂ E

: Ė+ρ0
∂ ψ (E,θ )
∂ θ

θ̇ . (4.1.65)

Substituting Equation (4.1.65) in Equation (4.1.63) leads to

0=
�

S−ρ0
∂ ψ (E,θ )
∂ E

�

︸ ︷︷ ︸

=0

: Ė+ρ0

�

−η−
∂ ψ (E,θ )
∂ θ

�

︸ ︷︷ ︸

=0

θ̇ . (4.1.66)

In the absence of any internal constraints, this equation holds for any possible Green-
Lagrange strain rate Ė and, further, the temperature change θ̇ can be arbitrary. The van-
ishing of the coefficients leads to expressions for the associated variables second Piola-
Kirchhoff stress S and entropy density η,

S=ρ0
∂ ψ (E,θ )
∂ E

and η=−
∂ ψ (E,θ )
∂ θ

. (4.1.67)

These relations are called the constitutive equations of thermo-elasticity. It is noted that
energy can still be dissipated through heat conduction. Here, the challenge is to identify an
analytical expression of free energy functionψ. A commonly used simplification in struc-
tural engineering is to neglect the influence of temperature and to assume isothermal con-
ditions (θ̇ = 0). It follows that the temperature in the closed thermo-mechanical system is
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kept constant which requires a permanent heat energy exchange with the outer world. In
this case, the relation between second Piola-Kirchhoff stress S and Green-Lagrange strain
E becomes

S=ρ0
∂ ψ (E)
∂ E

. (4.1.68)

Assuming isotropic and elastic material properties, a widely used approach to express free
energy functionψ (E) is given by the linear St. Venant-Kirchhoff model. The model reads

ρ0ψ (E) =
1

2
λ (tr (E))2+µE : E (4.1.69)

where λ and µ are the Lamé coefficients which are defined as

λ=
νE

(1+ν ) (1−2ν )
and µ=

E

2 (1+ν )
(4.1.70)

where E denotes the Young’s modulus and ν the Poisson’s ratio. The derivative of this
approach enables to express second Piola-Kirchhoff stress S (dependent variable) in terms
of Green-Lagrange strain E (independent variable) as

S=λtr [E]I+2µE. (4.1.71)

This relation is called a material model and it describes the behaviour of a material point.
It assumes isotropic and linear-elastic properties and isothermal conditions are considered.
Due to the definition of λ, the model is not suitable for incompressible materials with
ν = 0.5 or nearly incompressible materials with ν ≈ 0.5. Further, the model is restricted
to small strains but large rigid body motions of a material point. This model is commonly
applied to describe the elastic behaviour of metals.

The above described procedure has shown the derivation of the constitutive equations
of thermo-elasticity. Assuming isothermal conditions and isotropic linear material beha-
viour, the relationship between the associated variable S and the observable variable E is
expressed by the St. Venant-Kirchhoff material model. The derivation of the constitutive
equations becomes much more complex if a mechanical energy dissipation exists. This
topic is left out here since this would go beyond the scope of the present work. It is re-
ferred to the books by Lemaitre and Chaboche [74] and Lubliner [79]. Here, the funda-
mentals of plasticity theory are well discussed and the mathematical derivations of the
constitutive equations starting from the free energy function ψ can be found. A material
model is generally formulated depending on its requirements regarding elasticity, plasti-
city, anisotropy, viscosity and temperature dependence.

These requirements are defined by the characteristics of the material as well as the field
of application (type of external loading). Furthermore, they go along with assumptions
which are necessary for an analytical expression of the material model. It is obvious that
the assumptions limit the applicability of the model. However, a wide range of different
plasticity models is presented in the referred literature. An example of a standard material
model to describe metal plasticity is presented in the following.

Before the model formulation is presented, its assumptions and limitations are stated.
The presented model is considered to describe isotropic hypoelastic-plastic material be-
haviour without any strain-rate dependence. In addition, isothermal conditions are ad-
opted and, thus, a temperature dependent behaviour is neglected. It is assumed that the
elastic deformations are infinitesimally small, whereas the plastic deformations may be
finite. The hypoelastic behaviour is given by a linear relation. Further, plasticity is given
by an isotropic yield criterion with nonlinear isotropic hardening and the associated flow
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rule. It is assumed that a hydrostatic stress state results in a purely elastic response of the
volumetric strains. This assumption includes plastic incompressibility. Since the model
is considered for large deformations including large rotations, the formulation adopts the
Jaumann stress rateσ∇J , Equation (4.1.44), to ensure material objectivity.

The rate-of-deformation tensor D is decomposed into an elastic part and a plastic part,

D=De +Dp (4.1.72)

where De is the elastic rate-of-deformation tensor and Dp is the plastic rate-of-deformation
tensor. From plastic incompressibility, it follows that tr [Dp ] = 0. Jaumann stress rate σ∇J

is related to the elastic rate-of-deformation tensor De by the linear hypoelastic relation

σ∇J =λe l tr [De ]I+2µe l De (4.1.73)

whereλe l andµe l are the Lamé coefficients given in Equation (4.1.70). An important point
in the formulation of a material model is the definition of a yield surface. When the stress
stateσ in a material point reaches a point on the yield surface, the material is said to yield
and the deformations become plastic. This point is defined by the continuous and convex
yield function. The yield function may be interpreted as a surface in the nine-dimensional
space of the stresses σi j where a stress state inside the surface is elastic. During plastic
loading, the stress state σ is restricted to stay on the yield surface. In case of isotropic
hardening, the yield surface generating function is given by the equation

f (σ, R) = σ̄ (σ)− (σ0+R) = 0 (4.1.74)

where σ̄ (σ) ≥ 0 is the equivalent stress, σ0 the yield stress and R the isotropic hardening
variable which induces to a self similar growth of the yield surface during plastic loading.
This equation is also called the yield criterion. The inequality

f (σ, R)≤ 0 (4.1.75)

defines the set of all possible stress states σ. Using the assumptions of isotropic material
behaviour and plastic incompressibility, yield criterion f (σ, R) = 0 and equivalent stress
σ̄ (σ) only depend on the deviatoric invariants I Is , Equation (4.1.39), and I I Is , Equation
(4.1.40), so that

f (σ, R) = f (I Is , I I Is , R) and σ̄ (σ) = σ̄ (I Is , I I Is ) (4.1.76)

The probably best know equivalent stress is the v. Mises stress given by

σ̄ (σ) =
�

3I Is . (4.1.77)

A generalised isotropic yield criterion is proposed by Hershey [54] and Hosford [59]. Here,
the equivalent stress is given in the high-exponent form

σ̄ (σ) =
�

1

2
(|σI −σI I |m + |σI I −σI I I |m + |σI I I −σI |m )

�
1

m

(4.1.78)

where exponent m is a positive integer. This definition includes the special cases of v. Mises
stress (m = 2 and m = 4) and Tresca stress (m = 1 and m →∞). If aluminium alloys are
considered, an exponent of m = 8 is recommended. The high-exponent yield criterion is
compared for exponents of m = 1, m = 2, m = 8 in Figure 4.1.3a (plane stress state). It is
seen that v. Misses stress and Tresca stress define the limits.
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Figure 4.1.3: High-exponent yield surface in plane stress and two-terms Voce rule.

In contrast to elastic deformations, plastic deformations are path dependent. This issue
is captured by the internal variable ε̄ known as the equivalent plastic strain. ε̄ is determ-
ined by

ε̄ =
ˆ t

0

˙̄εd t ≥ 0 (4.1.79)

where ˙̄ε denotes the equivalent plastic strain rate. Due to the dependency of hardening
variable R on internal variable ε̄, the isotropic hardening rule is defined as

σY (ε̄) =σ0+R (ε̄) . (4.1.80)

whereσY (ε̄) is a positive continuous and monotonic increasing function of ε̄. Several for-
mulations ofσY (ε̄) can be found in the technical literature. The physical based hardening
rule by Voce is often applied. A expression of the Voce rule using two terms is given by

σY =σ0+
2
∑

i=1

Qi
�

1−exp (−Ci ε̄)
�

. (4.1.81)

The influence of each part in the two terms Voce rule is demonstrated in Figure 4.1.3b. It
shows that the first term has a strong influence on the beginning of the hardening and the
second term dominates the long range hardening. The two internal variables Dp and ˙̄ε are
defined as the dissipative fluxes in plasticity theory. These are determined by the flow rule
which is derived from the so-called flow potential. If the yield criterion is used as the flow
potential, it is called associated flow rule and the dissipative fluxes Dp and ˙̄ε become

Dp = λ̇
∂ f (σ, R)
∂ σ

and ˙̄ε =−λ̇
∂ f (σ, R)
∂ R

(4.1.82)

where λ̇ ≥ 0 is the the plastic rate parameter which is zero for pure elastic deformations
and positive for plastic deformations. It is seen that plastic flow Dp is directly related to
the yield surface. From a geometrical point of view, associated flow means that plastic flow
Dp stays normal on the yield surface. Furthermore, associated flow adopts the principle of
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maximum plastic dissipation. Using the yield criterion in Equation (4.1.74), it follows that
the equivalent plastic strain rate ˙̄ε equals the the plastic rate parameter λ̇,

˙̄ε =−λ̇
∂ f (σ, R)
∂ R

= λ̇
∂ (σ0+R)
∂ R

= λ̇. (4.1.83)

The plastic deformation energy is defined asσ : Dp , so that

σ : Dp = ˙̄ε

�

σ :
∂ f (σ, R)
∂ σ

�

= ˙̄ε

�

σ :
∂ σ̄ (σ)
∂ σ

�

= σ̄ (σ) ˙̄ε. (4.1.84)

It is obvious that (σ, Dp ) and
�

σ̄, ˙̄ε
�

are energy conjugate pairs and ˙̄ε can be written as

˙̄ε =
σ : Dp

σ̄ (σ)
. (4.1.85)

The model is completed by the loading/unloading condition in Kuhn-Tucker form,

f ≤ 0, λ̇≥ 0, λ̇ f = 0. (4.1.86)

The material constants E , ν and m are usually taken from the technical literature or stand-
ard material tests. The hardening coefficients σ0, Q1, C1, Q2 and C2 can be estimated by
simple tensile tests. This isotropic hypoelastic-plastic material model is summarised in
Figure 4.1.4.

4.1.6 Finite Element Method and Explicit Time Integration

The Finite Element Method (FEM) is a numerical approach to solve partial differential
equations by discretising the domain of interest into a collection of subdomains. Simple
equations are defined on the subdomain which solves approximately the partial differen-
tial equations within the subdomain. These subdomains are called Finite Elements (FE).
The solution of the partial differential equations for the whole domain is approximated
by the connection of all results obtained from the FE equations. Here, the solution re-
quires the definition of boundary conditions. In general, mathematical problems which
can be solved by FEM are called boundary value problems. FEM is usually associated with
the numerical stress analysis of solid structures where the partial differential equations
obtained from the balance of linear momentum are solved approximately. Over the last
twenty years FEM became the most important tool in continuum mechanics and struc-
tural engineering.

In the following, the general procedure to generate a FE solution is briefly presented.
Further, an explicit time integration algorithm which solves the structural problem in time
is shown. The aim is to demonstrate the basic idea of FEM in continuum mechanics. A
large number of books about FEM can be found in the technical literature. In particular,
it is referred to the books by Bathe [10], Belytschko et al. [13], Braess [16], Hughes [60],
Knothe and Wessels [67] and Wriggers [117].

The local form of the balance of linear momentum leads to a system of partial differen-
tial equations, see Equation (4.1.21). This local form is also called the strong form and is
here repeated

∂ σ

∂ x
+ρb=ρa. (4.1.87)

The strong form has to be fulfilled in any material point of a solid body. Further, the solu-
tion of the strong form has to satisfy the boundary conditions which can be separated into
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2. Linear hypoelasticity:
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f (σ, ε̄) = σ̄ (σ)−σY (ε̄) = 0

with

σ̄ (σ) =
�

1

2
(|σI −σI I |m + |σI I −σI I I |m + |σI I I −σI |m )

�
1

m

4. Isotropic hardening rule (two-terms Voce rule):

σY (ε̄) =σ0+
2
∑

i=1

Qi
�

1−exp (−Ci ε̄)
�

with ε̄ =
ˆ t

0

˙̄εd t
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∂ σ
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f ≤ 0, λ̇≥ 0, λ̇ f = 0

7. Material constants:

�

E ν m σ0 Q1 Q2 C1 C2

�

Figure 4.1.4: Isotropic hypoelastic-plastic material model for metals assuming iso-
thermal conditions.
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displacement or Dirichlet conditions on ΓD and traction or Neumann conditions on ΓN as
seen in Figure 4.1.5a. Both boundary conditions are expressed as

v= v̄ on ΓD , (4.1.88)

σ ·n= t̄ on ΓN (4.1.89)

where v̄ is a predefined velocity on ΓD and t̄ is a predefined traction force on ΓN . An ana-
lytical solution of the strong form can only be found for simple geometries and boundary
conditions. However, before the FE approach can be applied the strong form needs to be
transformed into the so-called weak form of the balance of linear momentum. For this, the
strong form given in Equation (4.1.87) is multiplied by a virtual velocity δv and integrated
over domain Ω such as

ˆ

Ω
δv ·
�

∂ σ

∂ x
+ρb

�

dΩ=
ˆ

Ω
δv ·
�

ρa
�

dΩ. (4.1.90)

It is noted that virtual velocity δv has to vanish wherever velocity v is prescribed by Dirich-
let conditions defined in Equation (4.1.88). After some transformations, see Belytschko et
al. [13], the weak form can be expressed as
�ˆ

Ω
δv ·ρbdΩ+

ˆ

ΓN

δv · t̄dΓN

�

︸ ︷︷ ︸

δPe x t

−
ˆ

Ω

∂ δv

∂ x
:σdΩ

︸ ︷︷ ︸

δPi nt

=
ˆ

Ω
δv ·ρadΩ
︸ ︷︷ ︸

δPk i n

(4.1.91)

which is called the principal of virtual power consisting of virtual external power δPe x t ,
virtual internal power δPi nt and virtual kinetic power δPk i n . It is called a weak form since
the equilibrium needs to be satisfied only in integral form. However, the weak form allows
to develop the FE solution of the structural problem defined in Equation (4.1.87). Here,
domain Ω subdivided into n non-overlapping subdomains Ωe called finite elements as
demonstrated in Figure 4.1.5b. This process is called discretisation. Usually, Ω cannot
exactly be discretised and, thus, Ω is approximated by Ωh , so that

Ω≈Ωh =
n
⋃

e=1

Ωe . (4.1.92)

Now, an integral over Ω can be approximated by

ˆ

Ω
(. . .)dΩ≈

ˆ

Ωh

(. . .)dΩh =
n
⋃

e=1

ˆ

Ωe

dΩe (4.1.93)

where the operator
⋃

denotes the assembling process of the elements defined in Ωh . This
operator describes the transition conditions between elements and serves the boundary
conditions, see Knothe and Wessels [67] and Wriggers [117]. The elements are connected
through their nodes and element edges in common indicate continuity between neigh-
bouring elements. In summary, a solid body is approximated by Ωh and is discretised by a
FE mesh consisting of nodes and elements. The FE mesh moves and deforms with the ap-
proximated solid body. This implies that the constitutive equations are always evaluated
at the same material point in Ωh . Therefore, this kind of mesh is called a Lagrangian mesh
and is the common approach in structural mechanics.

The discretised weak form becomes
⋃n

e=1

�´
Ωe
δve ·ρe bdΩe +

´
ΓNe
δve · t̄dΓNe

�

−
⋃n

e=1

´
Ωe

∂ δve

∂ x :σe dΩe =
⋃n

e=1

´
Ωe
δve ·ρe ae dΩe . (4.1.94)
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Figure 4.1.5: FEM applied on a structural problem.

Accordingly, the weak form defined on the element level becomes

�´
Ωe
δve ·ρe bdΩe +

´
ΓNe
δve · t̄dΓNe

�

−
´
Ωe

∂ δve

∂ x :σe dΩe =
´
Ωe
δve ·ρe ae dΩe . (4.1.95)

An element is defined by its k nodes and each node is given by its current position xi . The
current position of an arbitrary material point in Ωe is found by the interpolation

xe (X, t ) =
k
∑

i=1

Ni (X)xi (t ) (4.1.96)

where the k functions Ni (X) are called shape functions which only depend on the material
position X. In the same way, the displacement field of an element is interpolated by

ue (X, t ) =
k
∑

i=1

Ni (X)ui (t ) (4.1.97)

where ui is the displacement of node i and the k functions Ni (X) are the same shape func-
tions as for the geometry interpolation. The motion of a four node element is illustrated
in Figure 4.1.6. The use of identical shape functions for geometry and displacement in-
terpolation is called isoparametric concept. Further, the interpolated velocity field can be
derived from ue and becomes

ve (X, t ) =
∂ ue (X, t )
∂ t

=
k
∑

i=1

Ni (X)
∂ ui (t )
∂ t

=
k
∑

i=1

Ni (X)vi (t ) (4.1.98)

and, accordingly, the interpolated acceleration field becomes

ae (X, t ) =
∂ 2ue (X, t )
∂ t 2

=
k
∑

i=1

Ni (X)
∂ 2ui (X)
∂ t 2

=
k
∑

i=1

Ni (X)ai (t ) . (4.1.99)
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Figure 4.1.6: Deformation of a four node element.

In the same manner, the virtual velocities are interpolated by shape functions Ni (X) as

δve (X) =
k
∑

i=1

Ni (X)δvi . (4.1.100)

The interpolated vectors ue , ve , ae are inserted into Equation (4.1.95) and it follows the
weak form evaluated on node j by

δvj ·
�ˆ

Ωe

Nj (X)ρe be dΩe +
ˆ

ΓNe

Nj (X) t̄e dΓNe

�

︸ ︷︷ ︸

fe x t
j

−

δvj ·
ˆ

Ωe

∂ Nj (X)
∂ x

·σe dΩe

︸ ︷︷ ︸

fi nt
j

=δvj ·
ˆ

Ωe

k
∑

i=1

Nj (X) ·Ni (X)ρdΩe ai

︸ ︷︷ ︸

fk i n
j

. (4.1.101)

Using external nodal force vector fe x t
j , internal nodal force vector fi nt

j and nodal inertia

force vector fk i n
j , the weak form evaluated on node j is rewritten as

δvj ·
�

fe x t
j − fi nt

j

�

=δvj · fk i n
j . (4.1.102)

As a result, the discretised weak form of an element with k nodes can be expressed in
matrix form as

δvT
e

�

fe x t
e − fi nt

e

�

=δvT
e Me ae (4.1.103)

where δve , fi nt
e , fe x t

e and ae are vectors of length k and defined as

δve =













δv1

δv2

...
δvk













fe x t
e =













fe x t
1

fe x t
2
...

fe x t
k













fi nt
e =













fi nt
1

fi nt
2
...

fi nt
k













ae =













a1

a2

...
ak













(4.1.104)
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and the k ×k matrix Me is called the consistent element mass matrix

Me =
ˆ

Ωe













N1N1 N1N2 · · · N1Nk

N2N1 N2N2 · · · N2Nk

...
...

...
...

Nk N1 Nk N2 · · · Nk Nk













ρe dΩe . (4.1.105)

The element formulation and, thus, the arithmetic operations on the element level de-
pend on the mechanical model, the number of nodes and the shape functions. The gen-
eral case of a mechanical model is given by the model of a volume element. This model can
be reduced by assuming shell theory or beam theory. Here, assumptions are made on the
geometrical dimensions. For instance, shell theory assumes that the element thickness is
much smaller than the element edges. Furthermore, the integrals are computed numer-
ically by introducing integration points and corresponding weight factors, for instance by
Gauss integration. Consequently, stresses are computed in these integration points using
the underlying constitutive equations. An overview of some widely used element formu-
lations can be found in the books by Bathe [10], Belytschko et al. [13] and Wriggers [117].

Equation (4.1.95) is inserted into Equation (4.1.94) and the discretised weak form of a
solid body becomes

n
⋃

e=1

δvT
e

�

fe x t
e − fi nt

e −Me ae

�

= 0. (4.1.106)

Assembling all elements leads to the matrix formulation

δvT
�

fe x t − fi nt −Ma
�

= 0 (4.1.107)

where δv, a, fe x t and fi nt are vectors of the unconstrained virtual nodal velocities, the
nodal accelerations and the external and internal nodal forces and M is the consistent
mass matrix. Due to the arbitrariness of the unconstrained virtual velocities, see Bathe
[10], the fundamental system of algebraic equations reads

fe x t − fi nt =Ma. (4.1.108)

These equations are also known as the semidiscrete momentum equations. It is called
semidiscrete since FEM solves the structural problem by spatial discretisation and the
time t is still kept continuous. Equation (4.1.108) is rewritten as

fe x t (u (t ))− fi nt (u (t )) =M
∂ v (t )
∂ t

(4.1.109)

where u and v are vectors of the unconstrained nodal displacements and the unconstrained
nodal velocities. It shows an ordinary differential equation with respect to time t . This is
mathematically called an initial value problem. The initial conditions of a solid body are
given in form of

u (t0) = u0 and v (t0) = v0 (4.1.110)

where u0 and v0 are vectors of predefined nodal displacements and predefined nodal ve-
locities. Often, the differential equation given in Equation (4.1.109) is solved by time in-
tegration algorithms where the time period 0 ≤ t ≤ t ∗ is discretised in time intervals �t
such as

tn+1 = tn +�tn+1. (4.1.111)
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Figure 4.1.7: Discretisation of time t .

As a result, the differential equation is solved at discrete points in time t and the solution
is interpolated between tn and tn+1 in so-called one-step algorithms. Time integration
algorithms can be categorised into explicit and implicit time integration algorithms, see
Belytschko et al. [13] and Hughes [60]. In the following, the focus is put on an explicit time
integration algorithm. Thus, Equation (4.1.108) is evaluated at time tn .

The most popular explicit time integration algorithm is the central difference approach
which is an one-step algorithm. This method is developed from the central difference for-
mulas for velocities and accelerations and is characterised by a varying time step�t . The
notation is defined as follows: The discrete accelerations, velocities and displacements
at time tn are denoted as an , vn and un and, accordingly, the quantities at time tn+1 are
denoted as an+1, vn+1 and un+1. Further, an intermediate time between tn and tn+1 is
denoted as tn+ 1

2
and is determined by the average

tn+ 1
2
=

1

2
(tn+1+ tn ) (4.1.112)

and the intermediate time step�tn+ 1
2

reads

�tn+ 1
2
= tn+ 1

2
− tn− 1

2
=

1

2

�

�tn+1+�tn
�

. (4.1.113)

This form of time discretisation is illustrated in Figure 4.1.7.
Now, velocities vn+ 1

2
are computed by the central difference formula

vn+ 1
2
=

un+1−un

t n+1− t n
=

un+1−un

�tn+1
(4.1.114)

and, consequently, displacements un+1 are given by

un+1 = un +�tn+1vn+ 1
2
. (4.1.115)

In the same manner, accelerations an are computed by the central difference formula

an =
vn+ 1

2
−vn− 1

2

t n+ 1
2 − t n− 1

2

=
vn+ 1

2
−vn− 1

2

�tn+ 1
2

(4.1.116)

and velocities vn+ 1
2

can be rewritten as

vn+ 1
2
= vn− 1

2
+�tn+ 1

2
an . (4.1.117)

By substituting Equation (4.1.114) at time tn− 1
2

and time tn+ 1
2

into Equation (4.1.116), ac-
celerations an can be expressed in terms of displacements by

an =
�tn (un+1−un )−�tn+1 (un −un−1)

�tn�tn+ 1
2
�tn+1

. (4.1.118)
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Considering equidistant time steps�tn =�tn+ 1
2
=�tn+1, accelerations an become

an =
un+1−2un +un−1
�

�tn
�2 . (4.1.119)

The central difference method can be applied to solve the FE equations given in Equa-
tion (4.1.108) at time tn . Here, accelerations an are computed by

an =M−1
�

fe x t (un , tn )− fi nt (un , tn )−Cvn− 1
2

�

(4.1.120)

where the additional nodal force Cvn− 1
2

is introduced. This force represents a rate de-
pendent damping force also known as Rayleigh damping and is determined by velocities
vn− 1

2
and damping matrix C which is given by a combination of stiffness and mass matrix.

Velocities vn− 1
2

are used for numerical efficiency since the velocities vn given by

vn = vn−1+�tn an− 1
2

(4.1.121)

would require the computation of the accelerations an− 1
2
. This modification is known as

Verlet algorithm, see Verlet [110]. The simplification by using vn− 1
2

instead of vn reduces
the order of accuracy of the time integration scheme. However, in case of undamped and
non-viscous problems, this simplification has no influence on accuracy. In the usual case
of slightly damped and viscous problems, this simplification has just a minor influence on
accuracy since the used time steps are usually very small. The conditional stability of this
method is defined by a critical time step �tc r i t , see Belytschko et al. [13]. If �t exceeds
�tc r i t , the solution of the time integration scheme becomes unstable. A stable time step
�t is usually determined by the Courant criterium which reads

�t =α�tc r i t with �tc r i t =
2

ωm a x
≤

2

max
�

ωe ,i
� =min

�

l e

ce

�

(4.1.122)

where ωm a x is the largest eigenfrequency of the underlying solid body which is approx-
imated by the largest element eigenfrequency ωe ,i found in the discretised solid body.
�tc r i t can be directly computed from the critical element by the relation of its charac-
teristic length l e and its wave speed ce . Essentially, l e is the shortest distance between
element nodes respectively the shortest distance between element nodes to appropriate
element edges. It is noted that�tc r i t is calculated in the current configuration and, thus,
the critical element may change with the deformation of the discretised solid body. The
scale factor α accounts for approximations concerning the estimation of ωm a x in prin-
ciple for destabilising effects and nonlinearities. To be on the safe side, α is usually set in
the range of 0.8 ≤ α ≤ 0.98. In some cases, it might be advantageous to use even lower
values. The general explicit time integration procedure is demonstrated in Figure 4.1.8.
By the law of mass conservation in Equation (4.1.20), the inverse mass matrix M−1 needs
to be computed only once. Further, it can be seen that the solution of un+1 does only de-
pend on known quantities from the previous time step. Therefore, it is called an explicit
time integration. In implicit time integration algorithms, the solution of un+1 depends on
known quantities from the previous time step as well as on unknown quantities from the
next time step. Then, a nonlinear equation system has to be solved in each time step.

Commercial FE programs like LS-DYNA (explicit and implicit) [77], Abaqus (explicit and
implicit) [24], ANSYS (implicit) [7] or PAM-CRASH (explicit) [37]make it possible to sim-
ulate and analyse the behaviour of complex structures with advanced material properties
under various loading conditions. These programs combine FEM with a time integration
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�

�

�

�

1. Time update:
tn = tn−1+�tn

2. Nodal forces using fi nt computed on element level:

fn = fe x t (un , tn )− fi nt (un , tn )

3. Time step update using�tc r i t computed on element level:

�tn+1 =α�tc r i t

4. Compute accelerations:

an =M−1
�

fn −Cvn− 1
2

�

5. Update velocities:

vn+ 1
2
= vn− 1

2
+

1

2

�

�tn +�tn−1
�

an

6. Update displacements:

un+1 = un +�tn+1vn+ 1
2

Figure 4.1.8: Flow chart of the explicit time integration algorithm using the central
differences method in the form proposed by Verlet [110].

algorithm. Furthermore, a wide range of material models are offered for different mater-
ials and fields of application. However, the FE program itself is only a numerical solver
and, thus, the generation of FE models (pre-processing) and the analysis and visualisation
of simulation results (post-processing) are performed with software tools with a graphical
user interface such as LS-PrePost [78]. Advanced pre-processors like ANSA [14] or Hyper-
Mesh [3] enable to discretise structures using available CAD data. A detailed visualisation
and animation of a simulation result can be performed using advanced post-processors
like META [15] or Animator4 [42]. In the present work, the FE simulations were performed
in LS-DYNA 971 (explicit) [51] and ANSA [14] and LS-PrePost [78]were applied for the pre-
and post-processing.

Finally, it is noted that the numerical results presented in the present work are based
on FE simulations using so-called underintegrated elements. As already mentioned, the
element integrals given in Equation (4.1.103) are computed numerically by introducing
integration points and corresponding weight factors, for instance by Gauss integration.
Here, a full integration order of an element solves the exact values of the integrals provided
that the considered element is not distorted, see Bathe [10]. In case of a distorted element,
a full integration order cannot deliver the exact values of the integrals. However, this error
is negligible when the element distortion is limited. For instance, a plane stress 4-node
element can be fully integrated by 2×2 Gauss integration, see Bathe [10]. This means that
four integration points are required to achieve sufficient accuracy. A fully integrated ele-
ment shows a too stiff behaviour known as locking, for instance in case of incompressible
(or nearly incompressible) materials or under pure shear loading. Locking can be avoided
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by increasing the integration order which implies that the number of element nodes needs
to be increased. Alternatively, a lower integration order than necessary can be applied.
This approach is called underintegration. In case of the plane stress 4-node element, only
one integration point is applied by underintegration. As a result of underintegration, an
element provides unphysical zero energy modes. An unphysical zero energy mode can
be defined as: Any motion which is not a rigid body motion and results in no straining of
the element is an unphysical zero energy mode, see Belytschko et al. [13]. An unphysical
zero energy mode is often called hourglass mode or hourglassing. Therefore, underinteg-
rated elements are not recommend for structural analyses without any further action such
as additional element stabilisation which prevent hourglass modes. Here, different hour-
glass stabilisation schemes can be applied. Most common hourglass stabilisation schemes
are based on additional forces which are applied on the element nodes when the element
shows hourglassing. These nodal forces stop the formation of hourglass modes and, thus,
stabilise the element. Since these additional nodal forces are artificial, it is important to
check the so-called hourglass energy produced by these nodal forces in a FE simulation. In
case the hourglass energy takes on a substantial part of the total energy in a FE simulation,
the numerical results become questionable and a modification of the underlying FE model
should be considered. Often, a good way to reduce the hourglass energy is to refine the FE
mesh and, thus, to avoid single mode locking or similar. More details on hourglass stabil-
isation schemes can be found in the book by Belytschko et al. [13] and in the LS-DYNA -
Theory Manual by Hallquist [50]. A widely used hourglass stabilisation scheme is based
on the elastic material properties and the geometry of the element. Such a hourglass sta-
bilisation scheme is said to be stiffness based. In the present work, Belytschko-Tsay shell
elements (which are underintegrated 4-node shell elements) and 8-node underintegrated
solid elements were applied in combination with a stiffness based hourglass control avail-
able in LS-DYNA 971 [51]. A FE simulation is usually considered as not critical regarding
hourglassing if the hourglass energy is less than 1% of the total energy.

4.2 Brittle and Ductile Fracture

In material science, fracture is defined as the separation of a material into two or more
pieces. Two major forms of fracture can occur: Brittle and ductile fracture. Therefore,
structural materials are categorised according to their fracture form into brittle and ductile
materials. In the following, both fracture types are briefly presented and an engineering
interpretation of them is given. The internal mechanisms which lead to brittle or ductile
fracture initiation are described in detail by Lemaitre and Chaboche [75].

4.2.1 Brittle Fracture

A material is defined brittle when it ruptures without any irreversible strains and no mech-
anical energy is dissipated prior to fracture. It is defined quasi-brittle when an energy dis-
sipation exists prior to fracture with no or small irreversible strains. Materials like ceram-
ics, glasses or concrete exhibit a typical brittle to quasi-brittle fracture behaviour, but also
in metals and polymers a quasi-brittle behaviour can be observed. In general, brittle and
quasi-brittle materials are characterised by a strong material matrix which acts sensitively
to internal imperfections. Therefore, an increase of the material strength results in quasi-
brittle fracture behaviour. For instance, high-strength steels tend to a quasi-brittle fracture
behaviour. Furthermore, brittle or quasi-brittle fracture can occur in every material under
cyclic loading, high strain rates or low temperatures. The graphs plotted in Figure 4.2.1
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Figure 4.2.1: Characteristic stress-strain curves for brittle, quasi-brittle and ductile
materials.

show characteristic stress-strain curves for brittle (red) and quasi-brittle (green) materials
subjected to tension loading.

Brittle fracture is characterised by a fast crack propagation induced mainly by atomic
decohesion. The fracture initiation is caused by microscopic defects of the material such
as cleavage planes, inclusions, porosities or any other kind of discontinuities. The defects
are defined as initial defects and they are assumed to be constant. This means that the
defects do not evolve during loading. A macroscopic fracture in brittle and quasi-brittle
materials occurs as the result of formation and growth of microcracks in the vicinity of
initial defects, see Figure 4.2.2a. These defects are size, shape and orientation depend-
ent as well as inhomogenous and pseudo-randomly distributed. Especially, the last two
characteristics lead to a material behaviour which is characterised by pseudo-random oc-
currence of fracture initiation. This means that time and location of fracture initiation
vary pseudo-randomly and cannot be predicted in a deterministic sense.

4.2.2 Ductile Fracture

A material is defined ductile when large irreversible strains take place prior to fracture. A
typical stress-strain curve for ductile materials subjected to tension loading is presented
by the blue graph in Figure 4.2.1. It shows that fracture takes place after the strains in the
material has been localised and a neck has developed. Most common metal alloys and a
large number of polymers exhibit a ductile material behaviour. In general, high purity as
well as high temperatures and low strain rates increase the material ductility.

In ductile metals, a crack develops as result of nucleation, growth and coalescence of
microscopic voids. The metallic microstructure consists of crystalline defects such as
second-phase particles or inclusions. When the bond between these defects and the metal
matrix is broken voids start to form. Due to further loading, voids nucleate, grow and
merge together until a macroscopic fracture develops as illustrated in Figure 4.2.2b. High
stresses and plastic deformations are necessary for void nucleation and growth. In par-
ticular, a positive hydrostatic stress state is required. Naturally, voids arise in the (diffuse)
necked region of a specimen where the strains localise and increase rapidly. From a mi-
croscopic point of view, the strains localise between voids and, consequently, a localised
neck develops. This means that ductile fracture occurs where strains localise. However, it
is clearly seen that fracture toughness is dominated by the strength of the interfacial bond.
The evolution of voids is also known as the damage evolution. A damaged material, but
not yet fractured, can show a change in the elastic-plastic behaviour. This phenomenon is
called material softening.
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(a) Brittle fracture.
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(b) Ductile fracture.

Figure 4.2.2: Schematic representation of the fracture mechanisms in brittle and
ductile materials.
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Figure 4.2.3: Stress distribution prior to fracture in a tensile test specimen.

4.2.3 Engineering Interpretation

A uniaxial tensile test is considered. Figure 4.2.3 shows the longitudinal stress distribution
(obtained from a FE simulation) in a tensile test specimen right before fracture initiation.
The quasi-brittle case is illustrated in Figure 4.2.3a. Here, the stress distribution is nearly
uniform before fracture occurs. It is noted that the stress distribution only changes in mag-
nitude during loading and is uniform until a neck develops. Since it is usually unknown
where the fracture relevant internal defect is located and which size (including shape and
orientation) the defect adopts, it is not possible to estimate where and when fracture oc-
curs. As already mentioned, the distribution of fracture relevant defects is commonly ex-
pected to be pseudo-random and, thus, the fracture initiation becomes pseudo-random
in space and time. The ductile case is given in Figure 4.2.3b. The stress distribution is
localised in the neck and fracture will occur in the vicinity of this plastic instability. There-
fore, the location of fracture initiation is known. The exact time depends on the material
ductility (or fracture toughness) which could be pseudo-random.

However, if fracture initiation is considered from a weakest-link approach, the speci-
men is said to fail at the weakest-link. In the brittle case, the weakest-link is the largest
fracture related defect found in the material structure. In the ductile-case, the weakest-
link is given by the strain localisation due to plastic deformations. The difference is that
the weakest-link is given by an initial defect in brittle materials and that the weakest-link
evolves during loading in a ductile material. However, strains usually localise in the vicin-
ity of a material imperfection. In a strict sense, the mandatory material imperfection can
be seen as the weakest-link.

4.3 Failure Modelling

The field of fracture mechanics can be separated into three specific groups: Linear-elastic,
elastic-plastic and phenomenological fracture mechanics. The first theory to explain frac-
ture from a continuum mechanical point of view was introduced by Griffith during World
War I, see Griffith [46]. He described the behaviour of a crack in a linear-elastic material.
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His criterion is based on the approach that crack growth requires the creation of two new
surfaces and, thus, an increase in the surface energy. During World War II, Irwin modi-
fied Griffith’s criterion to model fracture in ductile materials. Therefore, the plastic zone
around a crack tip is considered in his approach. Furthermore, Irwin introduced the well
known K -concept based on stress intensity factors, see Gross and Seelig [47]. In the 1960’s,
Cherepanov and Rice developed independently the theoretical concept of the J -integral,
see Cherepanov [18] and Rice [97]. The J -integral allows to determine the energy per unit
fracture surface area. It was a first approach in the field of elastic-plastic fracture mechan-
ics. The elastic-plastic and nonlinear fracture mechanics are more and more important in
modern material science. In summary, the objective of fracture mechanics is the predic-
tion of fracture initiation and crack propagation. For a detailed introduction into the field
of fracture modelling, also from an engineering point of view, it is referred to the books
by Lemaitre and Desmorat [75] and Gross and Seelig [47]. Several theories are presen-
ted and compared. In addition, the calibration and application of failure criteria are well
discussed.

In the analysis of fracture, it is necessary to define a criterion which states if fracture
initiates in the material under a certain load level. Such criteria are derived from first
principles, but most of them are of phenomenological nature. Phenomenological criteria
are derived from experimental observations. A variety of phenomenological criteria (de-
pending on the underlying material and the field of application) has been established in
the history of mechanics. Due to their simplicity, phenomenological criteria are applied
in many engineering applications. Moreover, crack propagation is often predicted numer-
ically by combining phenomenological criteria and FEM. However, the prediction of frac-
ture initiation is of major importance in order to guarantee structural reliability. Therefore,
fracture initiation is often defined as failure. It is noted that also the point of yielding could
be defined as failure which is the common case in civil engineering. In the present work,
failure means fracture initiation and the aim is to predict the fracture initiation based on
a phenomenological failure criterion. In the following, the concept of failure modelling
is introduced, some widely used failure criteria are presented and the calibration of fail-
ure criteria is briefly discussed. In addition, a short introduction into numerical failure
modelling is given.

4.3.1 Phenomenological Failure Criteria

Material properties and fields of application are essential topics in the definition of phe-
nomenological failure criteria. Here, a scalar function f representing the material loading
is used. When material loading f reaches a critical value f c r i t , fracture initiates and the
material fails. Consequently, the failure criterion can be defined in form of

f = f c r i t . (4.3.1)

Furthermore, all admissible loading states must satisfy the inequality

f < f c r i t . (4.3.2)

f may depend on stress state σ, equivalent plastic strain ε̄, equivalent plastic strain rate
˙̄ε and temperature θ . f c r i t is mostly assumed to be constant. However, f c r i t may also
depend onσ, ε̄, ˙̄ε and θ . As a result, the failure criterion can be written as

f
�

σ, ε̄, ˙̄ε,θ
�

= f c r i t

�

σ, ε̄, ˙̄ε,θ
�

. (4.3.3)
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The evolution of material damage D such as void growth is often expressed by evolution
of f , for instance

D =
1

f c r i t

ˆ t1

t0

∂ f

∂ t
d t with D ∈ [0, 1] (4.3.4)

where t0 and t1 covers the loading period. D grows within the loading period and when
D reaches unity the material fails. In a coupled approach, damage evolution affects the
elastic-plastic relationship and the stress-strain response, respectively. Hence, yield con-
dition, plastic flow as well as hardening can be affected by damage evolution. The Gurson
model for porous plasticity is probably the best-known model to describe material soften-
ing, see Gurson [49]. In general, a coupled approach allows to model material softening
in the fracture process zone, but the experimental identification of material parameters
becomes more involved and increasingly complex compared to uncoupled models. How-
ever, in many engineering applications the damage coupling can be neglected. For in-
stance, it is assumed that plastic deformations in metals are controlled by the deviatoric
part of the stress tensor, whereas fracture initiating voids mainly grow in metals under hy-
drostatic tension, see Dey [27]. Some representative failure criteria are presented in the
following. They are intended to show different approaches in phenomenological failure
modelling. Numerous other failure criteria can be found in the technical literature.

Brittle failure criteria usually depend on σ. In particular, these are given in terms of
principal stresses σI ,σI I ,σI I I , see Equation (4.1.28). For instance, the maximum prin-
ciple stress criterion is one of the oldest and it states that the material fails when the max-
imum stress in tensionσt or compressionσc is reached,

σI = σt

σI I I = σc . (4.3.5)

It is also common to express a stress depended failure criterion in terms of an equivalent
stress σe q in the same way as for a yield criterion. Here, it is assumed that the material
fractures whenσe q reaches a critical valueσ f r ,

σe q =σ f r . (4.3.6)

For instance,σe q can be expressed according to the v. Mises stress

σe q =

�

1

2

�

(σI −σI I )2+(σI I −σI I I )2+(σI I I −σI )2
�

(4.3.7)

or the Tresca stress

σe q =max
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�
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�

�
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�
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�

. (4.3.8)

If initial defects are considered, the equivalent stress criterion in Equation (4.3.6) could be
rewritten as

σe q = (1−D0)σ f r with D0 ∈ [0, 1] (4.3.9)

where D0 represents initial defects, see Lemaitre and Desmorat [75]. D0 takes values between
0 and 1, with 0 as the pure material and 1 as the pure defect or zero material. σ f r is the
failure stress of the pure material. For instance, D0 can represent the material porosity
defined by a pore volume Vp in a representative material volume V0,

D0 =
Vp

V0
. (4.3.10)
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Another well known stress dependent criterion is the Mohr-Coulomb criterion given by

1

2

��
�

1+ c 2
1 + c1

�

σI −
�
�

1+ c 2
1 − c1

�

σI I I

�

= c2. (4.3.11)

where c1 denotes the internal friction coefficient and c2 is the material cohesion. If c1 = 0,
the Mohr-Coulomb criterion reduces to the Tresca criterion.

In ductile materials such as metals, the strains to fracture are usually considered since
the strains increase much faster than the stresses within the plastic region. Here, the most
common approach is the usage of ε̄. In the simplest case, it is assumed that the material
fails when a critical value ε̄ f r is reached, so that

ε̄ = ε̄ f r . (4.3.12)

Since plastic deformations and hydrostatic tension are necessary for void growth, ε̄ f r is
often related to stress triaxialityσ∗, so that

ε̄ = ε̄ f r
�

σ∗
�

. (4.3.13)

σ∗ is a measure of the influence of the hydrostatic stress in an arbitrary stress state and it
is defined through the relation

σ∗ =
1

3

tr (σ)
σe q

(4.3.14)

where σe q is determined as the v. Mises stress. Some characteristic values of σ∗ are 2/3
for biaxial tension, 1/3 for axial tension, 0 for pure shear and −1/3 for axial compression.
The function ε̄ f r (σ∗) is technically called the fracture locus. This approach is the most
common way to model failure in metals. Here, a well known criterion is introduced by
Johnson and Cook [65]. It postulates that ε̄ f r can be expressed as a monotonic function of
σ∗ as

ε f r = d 1+d 2 exp
�

d 3σ
∗� (4.3.15)

where d 1, d 2 and d 3 are material constants. The original Johnson-Cook criterion com-
bines this equation in a multiplicative manner with a strain-rate dependent and temper-
ature dependent term and it reads

ε̄ f r =
�

d 1+d 2 exp
�

d 3σ
∗��
�

1+d 4 ln

�

˙̄ε
˙̄ε0

��

(1−d 5 (θH )) (4.3.16)

where d 4 and d 5 are further material constants. In the strain-rate term, ˙̄ε is related to a
reference strain-rate ˙̄ε0. In the thermal dependent term, the homologous temperature θH

is applied and it is defined as

θH=
θ −θR

θM −θR
(4.3.17)

where θ is the current temperature, θR the reference temperature and θM the material
melt temperature. In summary, the original Johnson-Cook failure model requires eight
material constants which need to be calibrated. In case damage evolution D is considered,
D is expressed in terms of ˙̄ε and ε̄ f r as

D =
ˆ t1

t0

˙̄ε

ε̄ f r
d t . (4.3.18)

In the work by Bao and Wierzbicki [8], the range ofσ∗ is separated into different ranges
and the fracture locus function is defined within each of them. It is distinguished between
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compression and tension branch. In the compression range with σ∗ < 0, ε̄ f r is given by
a hyperbolic failure strain function f 1 (σ∗). In the tension range with σ∗ ≥ 1

3
, the failure

strain function f 3 (σ∗) is given by the Johnson-Cook model, see Equation (4.3.15). In the
intermediate range with 0 < σ∗ < 1

3
, the failure strain function f 2 (σ∗) is given by a linear

interpolation. In summary, the Bao-Wierzbicki fracture locus reads

ε̄ f r =







f 1 (σ∗) = d 4

3σ∗+1
− 1

3
<σ∗ ≤ 0

f 2 (σ∗) = f 1 (0)+3
�

f 3

�

1
3

�

− f 1 (0)
�

σ∗ 0<σ∗ < 1
3

f 3 (σ∗) = d 1+d 2 exp (d 3σ∗) 1
3
≤σ∗

(4.3.19)

where d 1, d 2 and d 3 are the Johnson-Cook material coefficients and d 4 is an additional
material coefficient.

In the book by Lemaitre and Desmorat [75], a more advanced brittle fracture criterion
is presented. Here, the v. Mises equivalent stress is multiplied by the triaxiality function Rν
given by

Rν =
�

2

3
(1+ν )+3 (1−2ν )

�

σ∗
�2
�

(4.3.20)

and, thus, the brittle criterion becomes

σe q

�

Rν =σ f r . (4.3.21)

Another approach to describe ductile failure is introduced by Cockcroft and Latham
[20]. Here, the material loading is defined by the integral

W =
ˆ ε̄

0
max [0,σI ]d ε̄. (4.3.22)

It is seen that the integral W vanishes when the first principal stress is compressive. The
Cockcroft-Latham criterion states that fracture occurs when W reaches a critical value Wc ,
so that ˆ ε̄

0
max [0,σI ]d ε̄ =Wc . (4.3.23)

In contrast to the Johnson-Cook criterion and the other presented criteria, this criterion
depends on the combination of stress and strain and not on only one of those.

4.3.2 Calibration of Failure Criteria

The fracture behaviour of a material is characterised by mechanical material tests where
the test specimen is loaded until it fractures. The specimens are usually machined from
larger objects such as sheets, profiles or structural components. Different specimen geo-
metries are used to analyse the fracture behaviour under different load states (or stress tri-
axialities). Figure 4.3.1 shows typical specimen geometries to enforce fracture under uni-
axial tension, plane strain tension, shear and notched tension. If anisotropy is expected,
identical tests have to be performed using specimens with different extraction directions.
If the loading velocity is varied, strain-rate dependency can be analysed. Accordingly, the
influence of temperature can be analysed. It is seen that a full material characterisation
regarding failure leads to an enormous test program and the influence of any material
scatter is not yet included. Therefore, assumptions need to be made to reduce the exper-
imental effort. Usually, the failure behaviour of a material is characterised first, then a
suitable failure model is selected (or a new one is formulated based on the experimental
observations).
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(a) Uniaxial tension. (b) Plane strain tension.

(c) Shear. (d) Notched tension.

Figure 4.3.1: Typical specimen geometries for mechanical material tests.

The calibration of a failure model requires a certain number of different material tests.
This number is defined by the number of parameters used in the failure criterion. For in-
stance, the simple Johnson-Cook model, see Equation (4.3.15), requires at least three dif-
ferent types of material tests for calibration. In contrast, the Cockcroft-Latham criterion
expressed in Equation (4.3.23) only needs an uniaxial tensile test for calibration. However,
it is recommended to do more different material tests than necessary. This allows a mean-
ingful validation of the applied failure model. A technical overview of the calibration of
ductile failure criteria is presented in the work by Wierzbicki et al. [113]. Based on an ex-
perimental fracture characterisation of an aluminium alloy, the calibration procedure of
some commonly used failure criteria is demonstrated and discussed.

In modern material science, failure parameters are often identified in an experimental-
numerical approach, also known as reverse engineering approach. Here, the experimental
results are compared with FE simulations of the realised material tests. Considering the
deformation behaviour to be accurately reproduced, the failure parameter is taken from
the simulation just before fracture initiates in the material test. The best result is achieved
when the displacement field of the specimen surface is measured by the Digital Image
Correlation (DIC) during testing. Details on the DIC technique can be found in the book by
Sutton et al. [104]. This allows to find the best match between simulation and experiment.
For instance, equivalent plastic strain and stress triaxiality at fracture initiation can be
precisely identified using this method. A good example of a reverse engineering approach
for failure model calibration is shown in the work by Gruben et al. [48].
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Figure 4.3.2: Schematic representation of the homogenisation procedure.

4.3.3 Remark on Homogenisation

The objective of the continuum mechanical framework is to determine stresses and strains
in a material point. It is assumed that the solid material exists as a continuum. This im-
plies that the matter is continuously distributed throughout the space occupied by the
matter, see Irgens [63]. The space can be subdivided into Material Volume Elements (MVE)
of any smaller size with the same continuously distributed matter. Constitutive relations
and failure criteria are defined on a material point within a MVE. Here, material prop-
erties and model constants are represented as homogenised variables, see Lemaitre and
Desmorat [75]. This means that these are homogeneously and continuously distributed
within this material volume element. This also implies that any kind of discontinuities of
a smaller scale are assumed to be homogeneous and continuously distributed by means
of variables. The MVE which represents best the material behaviour of the current scale
is defined as the Representative Volume Element (RVE). The concept of a RVE is essential
for homogenisation, material modelling and parameter identification. The general idea of
homogenisation in continuum mechanics is illustrated in Figure 4.3.2.

In most applications, the scale of interest is the macroscopic structure. Therefore the
microscopic structure including porosity, initial defects and inclusions has to be homo-
genised. The quantification of the two scales is not clearly defined and depends on the
material and the field of application. In the following, the macrostructure is defined as
the current scale and the microstructure as the next smaller scale. There are two main ap-
proaches to detect the size of the RVE as stated in the work by Kouznetsova [68]. The
first approach states that the RVE corresponds to a statistical representative sample of
the microstructure. Especially in brittle and quasi-brittle materials, the material beha-
viour is characterised by a strong scatter. This indicates a strong heterogeneous and non-
repeatable microstructure. Here, a statistical representative RVE has to be used. Con-
sequently, material parameters are given in form of random variables which are related to
the statistical representative RVE. The second approach becomes more specific and com-
plex. The RVE is the smallest microstructural volume which adequately represents the
overall macroscopic properties of interest. Consequently, the RVE depends on the ma-
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terial behaviour under investigation. For instance, the RVE which is responsible for the
plastic behaviour might be different from the RVE being responsible for the failure beha-
viour. Further, periodicity of the microstructure is assumed in the second approach. If
the whole space consists of identical and repeated RVEs, it is called global periodicity and
fully homogeneously distributed material properties are expected. However, it is more
realistic to assume that the material properties are distributed heterogeneously on the
macroscopic scale and periodicity of identical RVEs is only found locally. This is called
local periodicity. Beyond the rather global view on homogenisation techniques and RVE
modelling are particularly important in the field of multi-scale modelling.

In the experimental identification of material properties, it is often assumed that the
measurements and the derived properties, respectively, are representative for a material
point. First of all, the results represent only the structural behaviour of the test speci-
men and belong to the considered gauge volume of the test specimen. Due to precise
measurement tools and extended evaluation techniques, the previous assumption is ac-
ceptable in many cases. An extension could be the identification of fracture properties in a
necked specimen where plastic instabilities are expected as seen in the numerical example
presented in Chapter 4.3.5.

4.3.4 Numerical Failure Modelling

The numerical analysis of failure in materials and engineering structures is usually done
by FEM. Based on the stress and strain computation, failure criteria can be used to predict
time and place of fracture initiation in a FE model. Usually, a failure criterion is evalu-
ated within in the material routine where the constitutive equations are solved and, con-
sequently, the criterion is evaluated at the element integration points. The most common
failure criteria are already implemented in commercial FE programs.

It is obvious that a reliable and precise prediction of failure directly depends on the
accuracy of the prediction of stresses and strains. Provided that geometry and bound-
ary conditions as well as material behaviour are sufficiently achieved, the accuracy goes
along with the FE mesh and its degree of discretisation. In particular, element size and
initial element distortion are key factors in the numerical computation of stresses and
strains. Therefore, a mesh convergence study is often performed by decreasing the ele-
ment size within a FE model. Mesh convergence is reached when a finer mesh nearly leads
to the same result as the previous one. Here, the definition of a convergence criterion is
mandatory. A convergence criterion can be the global structural response like the force-
displacement behaviour of a component, but could also be the equivalent plastic strain
in a defined point. If the strain field localises in this defined point, a mesh convergence
study becomes a challenging task. In numerical elasticity, the stresses grow indefinitely
with decreasing mesh size in a localisation and mesh convergence cannot be reached. In
contrast, in numerical plasticity, mesh convergence can be reached in a localisation using
small element sizes. However, the calibration of the used failure criterion may depend on
the applied mesh size. This issue is discussed in the following numerical example.

The FE simulation of crack propagation is a highly complex topic when linear-elastic or
elastic-plastic fracture mechanics are applied. Hence, crack propagation is often predicted
in FE simulations using phenomenological failure criteria. A very common approach is
called element deletion. Here, the element stresses are set to zero when the failure cri-
terion is met in an integration point. If the element contains of more than one integration
point, a defined number of failed integration points need to be reached before the ele-
ment is eroded. Due to simplicity and computational efficiency, this technique is often
used successfully. Another approach is called node splitting technique. Multiple nodes
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are generated for adjacent elements and the nodes are tied together. When the failure cri-
terion is met in a multiple node or in an element, the bond is released. This approach be-
comes numerical inefficient in large models respectively a crack zone needs to be defined
in advance.

However, the results of both approaches are strongly mesh dependent. In both cases,
mesh orientation influences strongly the course of the crack path. A scheme avoiding
mesh dependence in the numerical analysis of crack propagation is the extended FEM
known as XFEM, see Moës et al. [86] and Belytschko et al. [12]. The XFEM combines clas-
sical FEM with mesh-free methods to solve problems involving localisation of the stress
field and the strain field, respectively. This approach is so far only applied in science. Un-
fortunately, there is a number of problems for 3D continua and dynamics.

4.3.5 Numerical Example

The following example demonstrates an experimental-numerical calibration of a failure
criterion and the influence of element size on the calibration. The objective is the iden-
tification the critical value of the Cockcroft-Latham criterion, Equation (4.3.23). Here, a
ductile and a quasi-brittle aluminium HPDC alloy are investigated. The underlying exper-
imental results in form of force-elongation curves were obtained from standard uniaxial
tensile tests.

The force was measured by the testing machine and the elongation of the gauge sec-
tion was measured by an extensometer. All details about the applied test set-up can be
found in Chapter 8.1.1. A technical drawing of the specimen geometry can be found in
Figure 4.3.1a. The thickness of the ductile specimen was 2.51 mm and the thickness of
the quasi-brittle specimen was 2.29 mm. The force-elongation curves obtained from the
ductile specimen and the quasi-brittle specimen are given in Figure 4.3.3b. The ductile
specimen ruptured at an extensometer elongation of 4.25 mm and the quasi-brittle speci-
men ruptured at an extensometer elongation of 0.58 mm. Moreover, the critical value of
the Cockcroft-Latham criterion was computed directly from the force-elongation curve as
described in Chapter 8.1.2. From that, the experimentally measured value W e x p

c adopts
a value of 0.035 kN/mm2 for the ductile specimen and a value of 0.003 kN/mm2 for the quasi-
brittle specimen. It is noted that the force-elongation curve as well as all derived measure-
ments such as the critical value Wc are results of the gauge section and, thus, belong to the
gauge volume of the specimen.

The FE simulations were performed in LS-DYNA 971 [51]. The specimens were discret-
ised with 8-node underintegrated solid elements. A stiffness based hourglass control was
applied to avoid unphysical zero energy modes. Three uniform meshes were investigated
with element edge lengths (mesh sizes) of l e = 1.00 mm, l e = 0.50 mm and l e = 0.25 mm.
The pins were modelled as cylindrical rigid walls, while one was fixed and the other one
moved constantly in longitudinal direction. The hypoelastic-plastic model given in Figure
4.1.4 was used to describe the material deformation behaviour. Young’s modulus E was
set to 72.00kN/mm2 and Poisson’s ratio ν to 0.33. Exponent m in the yield criterion was set
to 8. The Voce hardening parameters were found from curve fitting and a reverse engin-
eering approach. The results are presented in Table 4.3.1. Furthermore, the value of the
Cockcroft-Latham integral W was computed according to Equation (4.3.22).

The cross-section force in longitudinal direction as well as the elongation of the gauge
section were taken from the FE simulations. Hence, it was guaranteed that numerical and
experimental measurements were performed in the same fashion. Figure 4.3.4a shows
the ductile results and Figure 4.3.4b shows the quasi-brittle results. It can be seen that
a satisfying result regarding force-elongation behaviour is already achieved with a mesh
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Figure 4.3.3: Uniaxial tensile test: Tensile test set-up and experimental force-
elongation curves obtained from the ductile and the quasi-brittle specimen.

Specimen σ0 [kN/mm2] Q1 [kN/mm2] C1 [−] Q2 [kN/mm2] C2 [−]
Ductile 0.12 0.10 91.03 0.11 0.03

Quasi-Brittle 0.14 0.09 125.76 2.05 1.05

Table 4.3.1: Voce hardening parameters found from curve fitting and a reverse en-
gineering approach.

size of l e = 1.00 mm for both specimens. No increase in accuracy can be observed using
smaller mesh sizes.

Figure 4.3.5a shows the numerically predicted W distribution for all three meshes of
the ductile specimen. Each W distribution is given at the moment when the elongation
of the gauge section reaches the experimental rupture elongation. As expected, the W
distribution localises in the middle of the specimen. Here, a slight neck develops and
the gradient of the W distribution becomes steeper with decreasing mesh size. In the
same manner, Figure 4.3.5b shows the numerically predicted W distribution for all three
meshes of the quasi-brittle specimen. Here, the W distributions is uniform within the
gauge section and no distinct changes can be observed between the three meshes.
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Figure 4.3.4: Numerical and experimental force-elongation curves: Comparison of
the three mesh sizes l e = 1.00 mm, l e = 0.50 mm and l e = 0.25 mm.
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Figure 4.3.5: W distributions at the moment when the elongation of the gauge sec-
tion reaches the experimental rupture elongation: Comparison of the three mesh
sizes l e = 1.00 mm, l e = 0.50 mm and l e = 0.25 mm.

The maximum value found in the W distribution at fracture initiation was taken as crit-
ical value Wc . In addition, an averaged critical value W c was computed from all values
of the W distribution within the gauge section at fracture initiation. The results obtained
from both specimens are presented in Figure 4.3.6. Each graph shows the computed val-
ues of Wc (red) and W c (blue) related to mesh size l e . The grey curve indicates a critical
value W e x p

c computed directly from the experimental force-elongation curve according to
Equation (8.1.13). The ductile results are plotted in Figure 4.3.6a. Due to the localisation
in the neck, the computed values of Wc increases with decreasing mesh size l e . However, it
is seen that the difference in the computed values of Wc is also decreasing. Therefore, it is
expected that mesh convergence in terms of computation of Wc can be reached by further
mesh refinements. In contrast, the computed values of average W c shows a mesh inde-
pendent behaviour and corresponds to the experimentally computed value W e x p

c . How-
ever, a large gap is found between the computed values of Wc and the computed values of
average W c . The quasi-brittle results are plotted in Figure 4.3.6b. Since fracture occurred
within a uniform W distribution, mesh size l e has only a minor influence on the compu-
tation of Wc . Consequently, the computation of average W c is unaffected by mesh size l e

and is identical to the experimentally computed value W e x p
c . Hence, the computed values

of Wc and the computed values of average W c are almost identical.
The results can be summarised as follows:

– Ductile specimen: The computation of Wc showed a strong mesh dependence and,
thus, a unique identification Wc became difficult. This means that the computed
value of Wc was directly related to the element size l e which was used for calib-
ration. This size effect needs to be considered in numerical modelling of ductile
failure. For instance, this mesh sensitivity can be reduced when the value of Wc is
given as function of element size l e . A more advanced approach, is known as non-
local regularisation. Here, a field describing a mechanical quantity is modified by
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Figure 4.3.6: Influence of mesh size l e on critical value Wc and averaged critical value
W c in an experimental-numerical approach.

a chosen weight function when the field starts to localise. This function influences
the field magnitude within a radius which surrounds the current element integra-
tion point. A detailed description can be found in the work by Pijaudier-Cabot and
Bažant [95].

– Quasi-brittle specimen: The Cockcroft-Latham criterion could easily be calibrated
for the quasi-brittle specimen. Since fracture occurred within a uniform W distribu-
tion, the computed values of Wc were nearly independent of mesh size l e . It can be
concluded that the value of Wc could be identified uniquely. Moreover, it was shown
that the value of Wc can be directly computed according to Equation (8.1.13). This
means that the experimentally computed value W e x p

c can be used as the value of
Wc .

– In general: The numerical study showed that the computation of average W c was al-
most independent of mesh size l e . Even the localisation in the ductile specimen did
not influenced the computation of average W c . It is noted that the value of average
W c was computed from all values of the W distribution within the gauge section.
This implies that the value of average W c is directly related to the gauge volume and
may vary if the gauge volume varies. From a mechanical point of view, the com-
putation of average W c is equivalent to a homogenisation of the W distribution at
fracture initiation. In other words, this corresponds to a uniform (homogenised)
W distribution at fracture initiation with magnitude W c . As a result, it can be said
“Failure occurs in the gauge section when a uniform distribution representing the
average of the W distribution reaches the critical value W c ”. Furthermore, the nu-
merical study showed that the computed values of average W c are nearly identical
to the experimentally computed value W e x p

c . This is reasonable since the compu-
tation of W e x p

c is based on measurements of the entire gauge section (cross-section
force and gauge section elongation). These measurements can be seen as averaged
measurements of the entire gauge section.

From a homogenisation point of view, the gauge volume as well as each element volume
are MVEs of different sizes, see Chapter 4.3.3. Based on this, a failure criterion could be
formulated as “Failure occurs in a MVE when the material loading reaches in average a
critical value”. According to Equation (3.3.30), the average of material loading given by the
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Cockcroft-Latham integral, Equation (4.3.22), is determined by

E [WM V E (x)] =
ˆ

VM V E

x ·WM V E (x)d VM V E (4.3.24)

where WM V E (x) denotes the W distribution within a MVE of volume VM V E and x is the
spatial position vector. Consequently, the failure criterion can expressed in terms of the
average of WM V E (x), so that

E [WM V E (x)] =Wc (VM V E ) (4.3.25)

where Wc (VM V E ) is the critical value related to volume VM V E . If the average of WM V E (x)
becomes nearly independent of volume VM V E below a certain volume limit, the RVE and
its volume is found and, thus, the critical value related to the RVE volume is found. This
reflection should demonstrate that a material parameter such as critical failure value Wc

depends on the volume under consideration and can be only applied for this volume.

4.4 Concluding Remarks

Failure models in form of failure criteria are formulated in a deterministic sense. There-
fore, the application of a failure model requires that all model quantities are exactly known.
For instance, the Cockcroft-Latham criterion given in Equation (4.3.23) requires that equi-
valent plastic strain ε̄ as well as maximum principal stressσI are computed precisely and
critical value Wc is exactly known. Quantities ε̄ and σI are determined by an appropri-
ate constitutive model which also demands exactly known material parameters. How-
ever, a material parameter such as critical value Wc is calibrated using results from an
experimental study. Considering that the experimental study is performed under nearly
identical conditions and the applied specimens are taken from the same material, the ex-
perimental study produces varying values of the measurements. By the nature of materi-
als, it is very unlikely that each specimen consists of the same identical material structure.
Consequently, each measurement obeys a pseudo-randomness, see Chapter 3.1, and is
characterised by its scatter. The scatter is negligible when only the failure behaviour of a
particular specimen is analysed. In engineering applications, however, a failure criterion
needs to be suitable in a general manner. Then, the reliability of a deterministic failure cri-
terion is directly related to the degree of scatter of the involved material parameters. When
the scatter cannot be neglected, a probabilistic approach in failure modelling as described
in the following chapter is necessary to guarantee a reliable design.



Chapter 5

Probabilistic Failure Modelling

In structural engineering, failure analyses are performed on structures and their elements
to guarantee a reliable design. The prediction of failure (fracture initiation) is based on fail-
ure criteria as presented in Chapter 4.3.1. These criteria are mathematically formulated in
a deterministic sense. It requires that all involved quantities are exactly known. This con-
dition can only be met in theoretical examples. Since material constants are identified by
experimental studies, a certain scatter in the measurements is a natural fact. As already
discussed in Chapter 3.1, this fact is called pseudo-randomness. In the standard engin-
eering approach, it is common to use averaged values for material quantities. In case of
small variations, this approach is acceptable and a deterministic analysis provides useful
results. However, if the variations cannot be neglected, the use of averaged values leads to
vague and uncertain results. An obvious alternative is the usage of lower limit values. This
approach might produce safe, but also too conservative results. Furthermore, these lower
limit values are also not known exactly. In such a case, it is not the applied value itself that
guarantees a reliable design, but the knowledge of the risk that failure occurs using this
applied value. Therefore, a probabilistic approach is required in failure modelling. In con-
trast to a deterministic approach, the probabilistic approach takes the pseudo-random
character of material quantities into account. Here, it is assumed that the quantities are
given in form of probability distributions. The probabilistic approach enables a stochastic
analysis of a failure criterion and a determination of the failure risk, also known as the
probability of failure.

The present chapter deals with the probabilistic approach in failure modelling. Here,
the focus is on the well known weakest-link approach. In the first part of the chapter, the
theoretical basis of this approach is shown by the concept of a mechanical chain. Then,
the results are transformed into the framework of continuum mechanics. Here, two ana-
lytical expressions are introduced to compute the probability of failure. The classical ex-
pression by Weibull [112] as well as a novel expression by Unosson et al. [108] are presen-
ted. Further, the calibration of probabilistic failure criteria as well as the influence of the
test specimen and its gauge volume are briefly discussed. In the second part of the chapter,
possibilities are shown for the application of the weakest-link approach in numerical FE
analyses. Here, it is distinguished between two modelling strategies. The first strategy en-
ables to compute directly the probability of failure of a FE simulation. The second strategy
is based on randomly distributed failure parameters within a FE model. Finally, conclu-
sions and recommendations for probabilistic failure modelling are given.
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5.1 The Weakest-Link Approach

The weakest-link approach forms the theoretical basis for the most common probabilistic
failure models in continuum mechanics. The fundamental assumptions and equations
are obtained from the concept of a mechanical chain subjected to a tensile force. It is
well-known that the chain fails at its weakest-link. Further, this approach includes that
total failure of the chain occurs when the weakest-link fails. If more than one weakest-link
is expected, total failure occurs when at least one of the weakest-links fails. The probability
of the event “At least one weakest-link fails” is called the probability of failure and is de-
termined by a geometric approach in probability theory. In the following, the weakest-link
approach and the underlying probability model are introduced using this chain model.
Afterwards, the obtained results are transformed into the framework of continuum mech-
anics. More details on probabilistic failure modelling can be found in the books by Gross
and Seelig [47] and Lemaitre and Desmorat [75].

5.1.1 The Chain Concept

A chain of length lΩ is considered and each link of the chain is considered as a continuous
point x along chain length lΩ. This model includes that size and shape of a link as well
as connection properties between links are taken into account in form of homogenised
parameters. Thus, the mechanical behaviour of the chain can be described by a simple
tension bar model. It is assumed that the chain contains n weakest-links Qi . Furthermore,
it is assumed that the probability to find a weakest link Qi is the same in every point x
along chain length lΩ. According to probability theory, this implies that a weakest-link Qi

is considered as a random variable which is uniformly distributed along chain length lΩ
and the distribution is given by the uniform PDF

gQi (xi ) =
1

lΩ
. (5.1.1)

It is assumed that the n weakest-links Qi are considered as independent and identically
distributed uniform random variables. This means that statistical independence of the n
weakest-links Qi is adopted. Hence, the joint density function of the n weakest-links Qi

becomes

g (x1,x2, . . . ,xn ) = gQ1 (x1)gQ2 (x2) . . . gQn (xn ) =
1

l n
Ω

, (5.1.2)

see Equation (3.3.24). Now, the chain is subjected to a tensile force F and, consequently,
the loading N of the chain is uniform along chain length lΩ and equals the tensile force F .

A segment Λ of length l is taken from the chain provided that l ≤ lΩ. The probability
that segment Λ contains a weakest-link Qi is denoted as P (Qi ∈Λ) and is computed by

P (Qi ∈Λ) =
l

lΩ
. (5.1.3)

The inverse probability that segment Λ does not contain a weakest-link Qi is denoted as
P (Qi �Λ) and is computed by

P (Qi �Λ) = 1−P (Qi ∈Λ) = 1−
l

lΩ
=

lΩ− l

lΩ
. (5.1.4)

Here, the probability calculations are based on simple geometrical considerations. Since
a weakest-link Qi is considered as a discrete point and is assumed to be uniformly distrib-
uted, the probability P (Qi ∈Λ) does not depend on the extraction position of segment Λ
and increases linearly with segment length l .
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According to Equation (3.2.12), the conditional probability that two weakest-links Qi

and Q j are found in segment Λ reads

P
�

(Qi ∈Λ)∩
�

Q j ∈Λ
��

= P (Qi ∈Λ) ·P
�

Q j ∈Λ |Qi ∈Λ
�

. (5.1.5)

Since the two weakest-links Qi and Q j are defined as statistically independent, the condi-
tional probability becomes

P
�

(Qi ∈Λ)∩
�

Q j ∈Λ
��

= P (Qi ∈Λ) ·P
�

Q j ∈Λ
�

=
�

l

lΩ

�2

. (5.1.6)

From that, the probability that n weakest-links Qi are found in segment Λ is determined
by the product

P

�

n
⋂

i=1

Qi ∈Λ

�

=
n
∏

i=1

P (Qi ∈Λ) =
�

l

lΩ

�n

. (5.1.7)

Hence, the probability that none of the n weakest-links Qi are found in segment Λ is given
by

PΛS = P

�

n
⋂

i=1

Qi �Λ

�

=
n
∏

i=1

P (Qi �Λ) =
�

1−
l

lΩ

�n

. (5.1.8)

It follows that the probability to find at least one weakest-linkQi in segmentΛ is computed
by the inverse of probability PΛS as

PΛF = 1−PΛS = 1−
�

1−
l

lΩ

�n

. (5.1.9)

Since a single weakest-link Qi causes total failure of segmentΛ, the probability PΛF is called
the failure probability of segment Λ and, accordingly, the probability PΛS is called the sur-
vival probability of segment Λ. This means that the failure probability PΛF is equivalent to
the probability that at least one weakest-link Qi becomes critical in segment Λ subjected
to uniform loading N .

The amount of weakest-links per unit length is given by the relation

c =
n

lΩ
(5.1.10)

which can be interpreted as weakest-link density. Using weakest-link density c , the sur-
vival probability in Equation (5.1.8) can be rewritten as

PΛS =
�

1−
l

lΩ

�c lΩ

. (5.1.11)

Since chain length lΩ is not finite, the survival probability is determined by the limit

PΛS = lim
lΩ→∞

�

1−
l

lΩ

�c lΩ

= e−c l (5.1.12)

using the limit theorem that

lim
x→∞

�

1−
1

x

�x

= e−1. (5.1.13)

Consequently, the failure probability in Equation (5.1.9) can be rewritten as

PΛF = 1− e−c l . (5.1.14)
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Figure 5.1.1: Failure probability PΛF = 1− e−c l plotted as function of segment length
l for varying weakest-link densities c .

In Figure 5.1.1, the failure probability PΛF given in Equation (5.1.14) is plotted as function
of segment length l for varying weakest-link densities c . It is seen that the failure probabil-
ity PΛF increases with increasing segment length l . It can be concluded that the probability
to find at least one weakest-link increases with the segment length under consideration.
This is the fundamental statement of the weakest-link approach. Furthermore, it is seen
that a higher weakest-link density c leads to a higher failure probability PΛF at same seg-
ment length l .

The weakest-link density c is a function which also depends on the uniform loading
N . It gives information about the amount of weakest-links Qi which become critical at
a certain uniform loading N . It is obvious that an increasing uniform loading N leads to
an increasing number n of critical weakest-links Qi and, consequently, to an increasing
weakest-link density c . Hence, the failure probability PF at a constant segment length l
increases with increasing weakest-link density c .

5.1.2 Continuum Mechanical Approach

The weakest-link approach based on the presented chain model can be applied within the
continuum mechanical framework. Here, a solid material subjected to uniform loading
f is considered. The volume occupied by the material is denoted as VΩ. It is assumed
that the material contains internal defects or material imperfections which influence the
material failure behaviour. These defects are expected to be invariant. This means that
the defects do not grow or change during loading. Furthermore, it is supposed that the
defects do not interact, so that these can be considered independently of each other. A
defect is denoted as Di and the total number of defects is n . The material failure behaviour
is described by the chain concept: Total failure of the material takes place when a single
defect Di becomes critical at uniform loading f . According to the continuum mechanical
approach, each internal defect Di is introduced as a homogenised and isotropic material
constant. This implies that size, shape and orientation as well as physical properties of
a defect Di are summarised in a scalar value which is applied in each material point in
material volume VΩ, see Chapter 4.3.3. It follows that each defect Di is characterised by its
critical value f c ,i . Therefore, failure occurs in material volume VΩ when uniform loading f
reaches the smallest critical value f c ,i found in material volume VΩ. Accordingly, the failure
criterion can be written as

f =min
�

f c ,i
�

. (5.1.15)

It implies that the defect Di with the smallest critical value f c ,i becomes the critical defect
in material volume VΩ which leads to failure. In case the uniform loading f reaches the
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highest critical value f c ,i , so that f = max
�

f c ,i
�

, all n defects Di in material volume VΩ
become critical. From that follows, the number of defects Di which become critical in
material volume VΩ subjected to uniform loading f is given by the condition

�

n c
�

f
�

| f c ,i ≤ f
�

. (5.1.16)

Here, the number n c
�

f
�

consists of the number of defects Di which already became crit-
ical at lower uniform loading f

�

f c ,i < f
�

and the number of defects Di which become
critical at uniform loading f

�

f c ,i = f
�

.
Now, it is assumed that all n defects Di are randomly distributed within material volume

VΩ. For simplicity, each defect Di is idealised as a random discrete point within material
volume VΩ. Moreover, it is assumed that each defect Di can be described by a uniformly
distributed random variable. As a result, the PDF of a defect Di is defined by material
volume VΩ and reads

g Di (X) =
1

VΩ
(5.1.17)

where X denotes the material position vector. Since the n defects Di are supposed to be in-
dependent of each other, the n defects Di can be considered as independent and identic-
ally distributed uniform random variables. It is concluded that each defect Di is mech-
anically characterised by its homogenised critical value f c ,i and statistically as a random
discrete point which is uniformly distributed within material volume VΩ.

A volume V is taken from material volume VΩ provided that V ≤VΩ. The probability that
failure occurs in volume V subjected to uniform loading f is equivalent to the probability
of finding at least one defect Di which becomes critical at uniform loading f in volume V .
According to Equation (5.1.9), the failure probability of volume V is determined by

PV
F = 1−
�

1−
V

VΩ

�n c ( f )
. (5.1.18)

The (specific) density function c
�

f
�

is defined as

c
�

f
�

=
n c
�

f
�

VΩ
. (5.1.19)

This function is defined as a positive and non-decreasing function which vanishes when
the material is unloaded, see Weibull [112]. Using this general expression of density func-
tion c
�

f
�

and the limit theorem in Equation (5.1.13), the failure probability of volume V
is found by the limit operation

PV
F = lim

VΩ→∞



1−
�

1−
V

VΩ

�c( f )VΩ


= 1− e−c( f )V . (5.1.20)

Accordingly, the survival probability of volume V becomes

PV
S = 1−PF = e−c( f )V . (5.1.21)

In summary, Equation (5.1.20) and Equation (5.1.21), respectively, provide the possibility
to determine the failure probability PV

F and the survival probability PV
S , respectively, of an

arbitrary volume V subjected to an arbitrary uniform loading f .
In Figure 5.1.2, the failure probability PV

F given in Equation (5.1.20) is plotted as func-
tion of volume V with a constant value of density function c

�

f
�

. It is seen that the failure
probability PV

F increases with increasing volume V . This effect is called the size effect and
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Figure 5.1.2: Failure probability PV
F = 1 − e−c( f )V plotted as function of material
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�

f
�

.

it means that the probability to find at least one critical defect increases with the volume
under consideration. The above presented equations form the basis for probabilistic fail-
ure models which follow the requirements of the weakest-link approach.

In general, a probabilistic failure model based on the weakest-link approach requires a
constant failure criterion and a definition of density function c

�

f
�

. Here, a constant cri-
terion means that the critical value is constant and does not depend on the loading con-
ditions. The equivalent stress criterion, Equation (4.3.6), the equivalent plastic strain cri-
terion, Equation (4.3.12), or the Cockcroft-Latham criterion, Equation (4.3.23), are typical
examples of such criteria. However, it is necessary to ensure that loading f is uniformly
distributed within volume V . Besides the failure criterion, the density function c

�

f
�

needs
to be defined. It gives information about the number of defects Di which become critical
at uniform loading f . The form of the density function c

�

f
�

depends on the applied ma-
terial and can be interpreted as a material property. It is almost impossible to estimate
the density function c

�

f
�

from experimental observations and, thus, it is often expressed
as a empirical function. If failure is described by a failure locus criterion where the crit-
ical value is not constant and depends on the loading conditions, the density function
c
�

f
�

has to be identified separately for each loading condition. For instance, when fail-
ure is described by the Johnson and Cook criterion given in Equation (4.3.15), the density
function c
�

f
�

changes with stress triaxialityσ∗. Since the weakest-link approach assumes
invariant material defects Di , only those failure criteria are suitable which describe brittle
or quasi-brittle fracture initiation, see Chapter 4.2.1. Furthermore, it is remarked that the
failure probability PV

F in Equation (5.1.20) predicts the probability that a first fracture initi-
ates in volume V subjected to uniform loading f . Probabilistic statements on the material
behaviour beyond fracture initiation, such as the crack propagation, are not considered
within the weakest-link approach.

A constant failure criterion in form of

f = f c (5.1.22)

is randomised by introducing the critical value f c as a continuous random variable Fc with
CDF G
�

f c
�

. Assuming the weakest-link approach, the CDF G
�

f c
�

is found by Equation
(5.1.20), so that

PV
F = P
�

Fc ≤ f c
�

=G
�

f c
�

= 1− e−c( f c )V . (5.1.23)

This means that the failure probability PV
F of volume V subjected to uniform loading f =

f c is equivalent to the probability that the random variable Fc is smaller than or equal
to a critical value f c found in volume V . Further, the risk of failure can be assigned to



5.1 THE WEAKEST-LINK APPROACH 101

the criterion when a certain critical value f c is applied. Based on Equation (3.3.9), the
corresponding PDF g

�

f c
�

is determined by the derivative

g
�

f c
�

=
∂G
�

f c
�

∂ f c
=
∂ c
�

f c
�

∂ f c
V e−c( f c )V with f c ≥ 0. (5.1.24)

It should be noted that the CDF is usually denoted by F and the PDF by f , respectively.
Here, G and g , respectively, are used for a clear presentation. However, the PDF g

�

f c
�

is
important when stochastic simulations are performed on the failure criterion f = f c . For
instance, a Monte-Carlo simulation, see Chapter 3.3.9, performed on the criterion requires
an expression for g

�

f c
�

.

5.1.3 Probability Calculations

Equation (5.1.20) as well as Equation (5.1.21) enable to determine the failure probabil-
ity PV

F as well as the survival probability PV
S of volume V subjected to uniform loading f .

These equations are based on the assumption that the defects are considered as independ-
ent and identically distributed uniform random variables. In the following it is shown in
which way the failure probability PV

F and the survival probability PV
S are determined when

loading f is not uniformly distributed.
Volume V is theoretically subdivided into k non-overlapping volume elements�Vi , so

that

V =
k
∑

i=1

�Vi . (5.1.25)

The assumption of statistical independence of the defects within volume V implies that
the defects are also independent and identically distributed in each volume element�Vi

as well as between the k volume elements �Vi . In other words, the k volume elements
�Vi are statistically independent. When the loading in each volume element �Vi equals
uniform loading f , the probability that no failure occurs in each volume element�Vi can

be expressed by the product of the k survival probabilities P�Vi

S as

P
∑k

i=1�Vi

S =
k
∏

i=1

P�Vi

S

=
k
∏

i=1

exp
�

−c
�

f
�

�Vi
�

= exp

�

−
k
∑

i=1

c
�

f
�

�Vi

�

. (5.1.26)

Consequently, the probability that at least one defect becomes critical in at least one volume
element�Vi can be written as

P
∑k

i=1�Vi

F = 1−P
∑k

i=1�Vi

S

= 1−exp

�

−
k
∑

i=1

c
�

f
�

�Vi

�

. (5.1.27)

Using Equation (5.1.25), it becomes clear that the survival probability and the failure prob-
ability, respectively, of the discretised volume V are identical to the survival probability
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and the failure probability, respectively, of the continuous volume V ,

P
∑k

i=1�Vi

S = exp

�

−
k
∑

i=1

c
�

f
�

�Vi

�

= exp
�

−c
�

f
�

V
�

= PV
S (5.1.28)

P
∑k

i=1�Vi

F = 1−exp

�

−
k
∑

i=1

c
�

f
�

�Vi

�

= 1−exp
�

−c
�

f
�

V
�

= PV
F . (5.1.29)

In summary, the survival probability PV
S of volume V subjected to uniform loading f can

be reproduced by the product of all survival probabilities obtained from any smaller volume
element�Vi of volume V within the weakest-link approach. This property of the weakest-
link approach is important when structural problems are numerically analysed in terms
of failure probabilities.

The objective is the prediction of the failure probability of an engineering structure sub-
jected to a non-uniform loading. For this purpose, volume V is subdivided into k volume
elements�Vi according to Equation (5.1.25) and it is assumed that loading f in volume V
can be expressed by k uniform loadings f i in each volume element�Vi . Hence, loading f
can be expressed as

f =



















f 1 in �V1

f 2 in �V2

...
...

f k in �Vk

. (5.1.30)

According to Equation (5.1.27), the failure probability of volume V becomes

PV
F = 1−exp

�

−
k
∑

i=1

c
�

f i
�

�Vi

�

. (5.1.31)

In case the k volume elements�Vi are of same size�V , the failure probability of volume
V becomes

PV
F = 1−exp

�

−
k
∑

i=1

c
�

f i
�

�V

�

. (5.1.32)

Performing a limit process on this equation yields to the expression

PV
F = 1−exp

�

−
ˆ

V
c
�

f (x)
�

d V

�

(5.1.33)

where the function f (x) denotes the loading distribution in volume V . This expression
enables to determine the failure probability PV

F of an arbitrary volume V subjected to an
arbitrary loading distribution f (x).

Furthermore, Equation (5.1.31) and Equation (5.1.33), respectively, can be applied to
determine the failure probability PV

F of a volume V which consists of m various materials.
Here, volume V is separated into m partial volumes V j , so that

V =
m
∑

j=1

V j . (5.1.34)
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Each partial volume V j is characterised by its density function c j
�

f
�

. Now, the failure
probability PV

F can be computed either in discrete form according to Equation (5.1.31) or
in integral form according to Equation (5.1.33). The failure probability reads in discrete
form

PV
F = 1−exp

�

−





k
∑

i=1

c 1 � f i
�

�V 1
i + . . .+

k
∑

i=1

c m � f i
�

�V m
i





�

(5.1.35)

or in integral form

PV
F = 1−exp

�

−
�ˆ

V 1

c 1 � f (x)
�

d V 1+ . . .+
ˆ

V m

c m � f (x)
�

d V m

��

. (5.1.36)

Both equations can be used to predict the failure probability of any engineering structure.
It is important to notice that the equations are based on the weakest-link approach. This
means that total structural failure only requires one material defect that becomes critical.
Furthermore, the assumption of statistical independence of the material defects within
the entire structure is very critical. It might be more reasonable to assume statistical inde-
pendence within a defined volume element, but the volume elements could be statistically
correlated.

5.1.4 The Weibull Approach

The best-known empirical expression for the density function c
�

f
�

given in Equation
(5.1.19) was introduced by W. Weibull in 1951 [112]. The Weibull density function is defined
as

c
�

f
�

= 1
V0

�

f
f 0

�m
with f ≥ 0 (5.1.37)

where V0 is the scaling volume, f 0 is a parameter that normalises the uniform loading f
with respect to scaling volume V0 and exponent m is called the Weibull modulus. In the
literature, the density function is often expressed as

c
�

f
�

= 1
V0

�

f − f u

f 0

�m
with f − f u ≥ 0 (5.1.38)

where f u is a threshold value of uniform loading f related to scaling volume V0. However,
the first definition is used in the following. Insertion of Equation (5.1.37) into Equation
(5.1.20) yields to the failure probability by Weibull,

PV
F = 1−exp
�

− V
V0

�

f
f 0

�m�

with f ≥ 0 . (5.1.39)

The failure probability by Weibull is plotted as a function of uniform loading f in Figure
5.1.3. The first graph shows failure probability functions for a constant volume relation V

V0

and varying values of Weibull modulus m , see Figure 5.1.3a. It is seen that the variability
decreases with increasing Weibull modulus m . Hence, Weibull modulus m is a measure-
ment of the scattering behaviour of the considered material. The second graph shows fail-
ure probability functions for a constant value of Weibull modulus m and varying volume
relations V

V0
, see Figure 5.1.3b. It is seen that the failure probability increases with increas-

ing volume relation V
V0

. The parameters V0, f 0 and m can be found from experimental
studies.

A modification of the failure probability by Weibull, Equation (5.1.39), is introduced by
Zhang et al. [119]. Here, the failure probability is given by

PV
F = 1−exp

�

−
�

V
V0

�λ� f
f 0

�m
�

with f ≥ 0 (5.1.40)
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Figure 5.1.3: Failure probability by Weibull plotted as function of uniform loading f
for either varying Weibull modulus m or varying volume relation V

V0
.

where exponent λ is defined between 0 and 1. This exponent controls the volume de-
pendency. A value of λ = 1 restores the original Weibull failure probability. A value of
λ = 0 neglects any volume dependency. If exponent λ takes a value between 0 and 1, the
volume dependency is lowered. In the work by Zhang et al. [119], exponent λ is described
as a parameter which takes geometrical variations into account. However, this parameter
is purely empirical and a physical meaning in terms of a probabilistic failure model is not
pointed out. Furthermore, the physical problem of this approach can easily be shown by
computing the failure probability of a discretised volume.

Equation (5.1.40) returns the failure probability PV
F of the continuous volume V subjec-

ted to uniform loading f . Now, the volume V is discretised in the manner V =
∑k

i=1�Vi

and, consequently, each volume element �Vi is subjected to uniform loading f . Accord-
ing to Equation (5.1.29), the failure probability of the discretised volume V is computed
by

P
∑k

i=1�Vi

F = 1−exp

�

−
k
∑

i=1

�

�Vi

V0

�λ� f

f 0

�m
�

. (5.1.41)

The use of exponent λwhich is defined between 0 and 1 leads to the inequality
�

k
∑

i=1

�Vi

�λ

≤
k
∑

i=1

�

�Vi
�λ . (5.1.42)

Based on this inequality, the comparison of the failure probability of the continuous volume
V with the failure probability of the discretised volume V yields to the inequality

PV
F ≤ P
∑k

i=1�Vi

F . (5.1.43)

This means that the failure probability of the discretised volume V is higher or equal to
the failure probability of the continuous volume V at same uniform loading f . Therefore,
the approach presented by Zhang et al. [119] is not valid in terms of the weakest-link
approach.

5.1.5 An Alternative Approach

The weakest-link approach says: The material defect which lowers the material strength
most within a considered volume becomes the critical defect that leads to failure. Usually,
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this material defect is the largest defect found within the considered volume. Based on
this assumption, a novel approach to express the density function c

�

f
�

given in Equation
(5.1.19) is presented in the work by Unosson et al. [108]. Here, a material defect density
per unit volume is introduced and is defined as

g (s ) = d n
d s

with a ≤ s ≤b (5.1.44)

where s is the defect magnitude and n is the average number of defects per unit volume.
The defect magnitude s ranges between the limits a and b . It follows that the total number
of defects per unit volume is given by

n t ot =
ˆ b

a
g (s )d s . (5.1.45)

From that, the integral

n =
´ b

s g (s )d s with a ≤ s ≤b (5.1.46)

provides the number of defects with a magnitude larger than an arbitrary magnitude s .
This enables to express the mandatory number of defects by

n (s ) =















∞ s ≤ 0´ b
a g (s )d s 0< s ≤ a´ b
s g (s )d s a < s ≤b

0 b < s

. (5.1.47)

Here, it is seen that the number of defects with a magnitude s equal or smaller than a
theoretical zero magnitude goes to infinity. This general expression is substituted into
Equation (5.1.20) and the probability to find at least one defect with a magnitude larger
than an arbitrary magnitude s in volume V subjected to uniform loading f becomes

PV
F =



















1 s ≤ 0

1−exp
�

−
´ b

a g (s )d s V
�

0< s ≤ a

1−exp
�

−
´ b

s g (s )d s V
�

a < s ≤b

0 b < s

. (5.1.48)

This expression forms the basis to determine the failure probability according to the ap-
proach by Unosson et al. [108].

Material failure is described in terms of damage evolution by Unosson et al. [108], so
that

Dm =Dm
0 +

f
f c 0

with 0≤Dm
0 ≤ 1 (5.1.49)

where Dm is the current material damage, Dm
0 is the constant initial damage and f c 0 is

a failure parameter which belongs to an undamaged material. The material fails when
damage Dm reaches unity. Consequently, failure occurs when

1−
f

f c 0
=Dm

0 . (5.1.50)

In the work by Unosson et al. [108], it is assumed that the maximum defect size s is in a
one-to-one correspondence with the initial material damage Dm

0 , so that

s ≡Dm
0 = 1−

f

f c 0
. (5.1.51)
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Using the integral transformation

ˆ b

a
g (s )d s =

1

f c 0

ˆ (1−a ) f c 0

(1−b ) f c 0

g

�

1−
f

f c 0

�

d f , (5.1.52)

the density function c
�

f
�

given in Equation (5.1.19) can be expressed as

c
�

f
�

=



















0 f < (1−b ) f c 0

1
f c 0

´ f
(1−b ) f c 0

g
�

1− f
f c 0

�

d f (1−b ) f c 0 ≤ f < (1−a ) f c 0

1
f c 0

´ (1−a ) f c 0

(1−b ) f c 0
g
�

1− f
f c 0

�

d f (1−a ) f c 0 ≤ f < f c 0

∞ f c 0 ≤ f

. (5.1.53)

Insertion of this density function c
�

f
�

into Equation (5.1.20) yields to the failure probab-
ility according to the approach by Unosson et al. [108],

PV
F =



















0 f < (1−b ) f c 0

1−exp
�

− V
f c 0

´ f
(1−b ) f c 0

g
�

1− f
f c 0

�

d f
�

(1−b ) f c 0 ≤ f < (1−a ) f c 0

1−exp
�

− V
f c 0

´ (1−a ) f c 0

(1−b ) f c 0
g
�

1− f
f c 0

�

d f
�

(1−a ) f c 0 ≤ f < f c 0

1 f c 0 ≤ f

. (5.1.54)

The model parameters a , b and f c 0 can be found from experimental studies. However,
an expression for the defect density function g (s ) needs to be defined first. A graphical
representation of the probability model by Unosson et al. [108] is presented in Figure
5.1.4. It clearly shows the functional distinction within the loading range.

The material defect density g (s ) can be formulated in many ways as long as it is guar-
anteed that the function is positive within the limits a and b . Usually, a material structure
contains many small defects and a only few large defects and, thus, a decreasing func-
tion is reasonable. In the work by Unosson et al. [109], a constant, linear and exponential
formulation are analysed. The best result is found by the exponential formulation

g (s ) = c0e−c1s with a ≤ s ≤b (5.1.55)

where c0 and c1 are shape parameters. The exponential coefficient c1 characterises the
distribution of small and large defects. Coefficient c0 marks the number of defects of zero
size. Usually, coefficient c0 adopts very high values which are much larger than the val-
ues found for coefficient c1, see Unosson et al. [108, 109]. This strong difference in the
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value dimensions may lead to numerical problems in the parameter identification. In
both works by Unosson et al. [108, 109], the model parameters are calibrated using results
from mechanical tests. An obvious alternative could be a calibration using mechanical test
results combined with results obtained from a microscopic analysis. A microscopic ana-
lysis of the material structure and its defects provides the possibility to estimate directly
the material defect density g (s ) and the limits a and b . The failure parameter f c 0 can be
found from the mechanical test results. In summary, Unosson et al. [108, 109] presen-
ted an approach which combines the weakest-link approach with considerations of the
microscopic structure.

5.1.6 Calibration and the Influence of the Gauge Volume

The statistical model given by the weakest-link approach is calibrated in the same way
as a statistical distribution function is estimated from a sample. In the weakest-link ap-
proach, a sample is drawn from a considered material in form of multiple repeated ma-
terial tests which provide measurements of the critical failure value f c . Here, it is required
that each material test is repeated under same or nearly same conditions. This implies
that each material test is performed using the same test set-up, the same measurement
technique and the same specimen geometry and the specimens are taken from material
of the same charge. It is assumed that only the material structure varies within a specimen
and between each specimen. Finally, a sample consists of the multiple measurements of
the critical failure value f c . According to the weakest-link approach, it is noted that this
sample is related not only to the test set-up, but also to the specimen and its gauge volume.

It is considered that a sample consists of the n data values f i
c which are sorted in an

ascending order. The n corresponding experimental probabilities F i are determined ac-
cording to Equation (3.5.12). From that, the n pairs

�

f i
c , F i

�

are an estimate of the CDF of
the weakest-link approach given in Equation (5.1.23). The weakest-link CDF reads

G
�

f c
�

= 1− e−c( f c )V . (5.1.56)

The weakest-link CDF and its density function c
�

f c
�

are found using the n pairs
�

f i
c , F i

�

.
Here, the volume V equals the gauge volume of the applied specimen geometry. In case
density function c

�

f c
�

is formulated according to the Weibull approach, see Equation
(5.1.37), the weakest-link CDF becomes

GW
�

f c
�

= 1−exp

�

−
V

V0

�

f c

f c 0

�m�

. (5.1.57)

Usually, scale volume V0 is set to the gauge volume of the applied specimen geometry.
Hence, only Weibull modulus m and scale failure value f c 0 needs to be identified. The
n pairs
�

f i
c , F i

�

can be expressed in a Weibull plot as described in Chapter 3.5.2. Then,
a linear curve fit provides estimates of shape parameters m and λ using the linear trans-
formation of the Weibull distribution, see Equation (3.3.64). The relation between shape
parameter λ and scale failure value f c 0 is given comparing Equation (3.3.61) and Equation
(5.1.57) and reads

λ= m

�

V0

V
f c 0. (5.1.58)

The shape parameters m andλ are found from a linear curve fit based on the least-squares
method, see Chapter 3.5.2. The quality of the linear fit can be measured by the coefficient
of determination given in Equation (3.5.19). From a statistical point of view, it is import-
ant to check statistically if the sample data are drawn from the calibrated weakest-link
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distribution. Here, statistical hypothesis tests in form of a GoF tests can be used, see 3.6.5.
In case a calibrated Weibull distribution is analysed through a GoF test, the Anderson-
Darling for Weibull distributions can be applied.

In the calibration procedure described above, it is considered that the sample is gen-
erated from a single specimen geometry. However, it is of interest to verify the size effect
mentioned in the weakest-link approach: The probability to find at least one critical defect
increases with the volume under consideration, see Chapter 5.1.2. Hence, it is recommen-
ded to generate further samples generated from specimens of different size and different
gauge volumes, respectively. It is noted that the specimens have to be equal in shape, but
different in size. This guarantees that the material in each specimen fails under the same
loading conditions provided that the same test set-up is applied. The comparison of the
different samples enables to verify the size effect. Here, a possibility is to analyse separ-
ately the samples according to the procedure described above and to compare the results
of the calibrated weakest-link distributions. In general, if the considered material com-
plies with the weakest-link approach, the CDF estimated from a sample generated from
a large gauge volume is larger than the CDF estimated from a sample generated from a
small gauge volume. In case Weibull distributions are calibrated using samples generated
from specimens of different gauge volumes, a comparison of the results can be as follows:

– If the samples are generated from the same material, the calibrated Weibull mod-
uli m are equal or nearly equal, but the estimated failure scale values f c 0 might be
different depending on the gauge volumes.

– If the samples are generated from the same material and the material complies with
the weakest-link approach, the failure scale value f c 0 of the small gauge volume is
larger than the failure scale value f c 0 of the large gauge volume.

These statements can easily be verified using a Weibull plot as seen in Figure 5.1.5. Here,
Weibull plots for three different cases are shown. Each case shows a red curve represent-
ing a Weibull curve obtained from a small gauge volume and a blue curve representing a
Weibull curve obtained from a large gauge volume. In the first case given in Figure 5.1.5a
both curves are equal in slope and the blue curve is to the left of the red one. Consequently,
it can be assumed that both curves are calibrated from samples of the same material which
complies the weakest-link approach. In the second case given in Figure 5.1.5b both curves
are equal in slope, but the blue curve is to right of the red one. This means that both curves
might be calibrated from samples of the same material, but the underlying material does
not comply the weakest-link approach. Alternatively, it can be assumed that the curves
are calibrated from samples of two different materials. In the third case given in Figure
5.1.5c the curves are clearly calibrated from samples of two different materials. It is noted
that the fitted parameters of different Weibull distribution can be also compared through
statistical tolerance intervals, see Chapter 3.6.2. For instance, this can be used to prove if
the Weibull modulus obtained from a large gauge volume lies within the tolerance inter-
val of the Weibull modulus obtained from a small gauge volume. Furthermore, samples
of different gauge volumes can be analysed for interferential statistics, see Chapter 3.6.
Here, statistical hypothesis tests are used to prove if these samples belong to the same
population. If the material complies with the weakest-link approach, the hypothesis tests
should lead to the assumption that these samples are drawn from different populations.
Alternatively, if the hypothesis leads to the result that the samples are drawn from the
same population, it can be assumed that the considered material does not comply with
the weakest-link approach.

In case the graphical comparison of samples generated from specimens of different
sizes shows that the underlying material complies with the weakest-link approach, the
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Figure 5.1.5: Weibull plots including a Weibull curve obtained from a small gauge
volume (red) and a Weibull curve obtained from a large gauge volume (blue).

weakest-link CDF and its density function c
�

f c
�

can be calibrated using all samples. For
simplicity, it is assumed that the CDF can be described by the Weibull CDF given in Equa-
tion (5.1.57). It is considered that k samples are generated from a material which com-
plies the weakest-link approach are generated. Each sample is defined by the n j pairs
�

f i ,j
c , F i ,j

�

and the gauge volume Vj . According to the least-square method, the sum of

residuals, see Equation (3.5.18), becomes

r
�

m , f c 0, V0
�

=
k
∑

j=1

n j
∑

i=1

�

F i ,j −

�

1−exp

�

−
Vj

V0

�

f i ,j
c

f c 0

�m���2

. (5.1.59)

The best fit of the parameters m , f c 0 and V0 is found when this function reaches a min-
imum. In the present work, the Nelder-Mead method implemented in MATLAB [83] was
used to find the minimum. It is noted that the function can be also expressed as

r (m ,κ) =
k
∑

j=1

n j
∑

i=1

�

F i ,j −
�

1−exp

�

−
Vj

κ

�

f i ,j
c

�m
���2

(5.1.60)
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with
κ=V0
�

f c 0
�m . (5.1.61)

Consequently only parameters m and κ need to be fitted. Failure scale value f c 0 is found
by the relation

f c 0 =
m

�

V0

κ
(5.1.62)

where scale volume V0 can be arbitrarily chosen. In case the weakest-link CDF given
by Equation (5.1.56) is successfully calibrated for a material (for one or various gauge
volumes), the CDF can be applied for any arbitrary volume V . In contrast, if the same ma-
terial is described by a volume independent CDF such as the normal CDF, the CDF needs
to be calibrated separately for each volume. This means that the volume independent
CDF is calibrated separately for each sample and the gauge volume of the applied speci-
men geometry. Furthermore, this means that the volume independent CDF is restricted to
the gauge volume used for calibration. This fact shows the advantage of the weakest-link
CDF.

A final comment is given on the statistical analysis of the material failure behaviour
under different loading conditions. The presented approach for the calibration of the
weakest-link approach is related to material tests which allow to analyse the material fail-
ure behaviour under a single loading condition. Usually, the material failure behaviour
is analysed under different loading conditions such as tension, compression, shear and
plane strain tension. Each loading condition is investigated through different test set-ups.
Consequently, samples need to be drawn for each test set-up. Now, the objective is the
identification of the relation between the different samples and the different material fail-
ure modes, respectively. In case the samples are drawn from a material which complies
with the weakest-link approach, it has to be guaranteed that each test set-up uses speci-
men geometries with equal or nearly equal gauge volume sizes, see Figure 5.1.6. If this re-
quirement is met, the probability to find a critical defect within the gauge volume is equal
for each test set-up. Then, a comparison of the different samples, for instance through
interferential statistics, see Chapter 3.6, provides reliable results and enables to draw con-
clusions of the material failure behaviour under different loading conditions. Moreover,
the requirement of equal gauge volumes is already stated by the homogenisation in con-
tinuum mechanics, see Chapter 4.3.3: The result obtained from a material test is related to
the volume which is occupied by the gauge volume of the applied specimen. This means
that a comparison of the results obtained from different material tests requires that all
material tests use the same gauge volumes. These considerations are important if a fail-
ure criterion just as the fracture locus, see Equation 4.3.13, is calibrated in a deterministic
sense as well as in probabilistic sense. However, standard specimens for different loading
conditions are of different shape and size, see Figure 4.3.1, and the requirement of equal
gauge volumes is not satisfied.

5.2 Numerical Application

In general, structural problems can be solved using the FEM which is a numerical method
based on a purely deterministic approach, see Chapter 4.1.6. It implies that failure within
a FE model is predicted by deterministic failure criteria and a possible scatter of the failure
parameter is not taken into account. However, it is possible to vary randomly the failure
parameter within a FE model and between several simulations of the FE model. Such FE
models are called stochastic models or randomised models. Here, it is required that the
underlying distribution function of the failure parameter is known. As already discussed,
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Figure 5.1.6: Gauge parts under different loading conditions with equal gauge
volumes (VT =VC =VS =VPT ).

the weakest-link approach provides the distribution as a function of loading and volume
and, thus, the weakest-link approach is perfectly suitable for the FEM.

Moreover, the weakest-link approach can be applied to compute the risk of failure of an
entire FE model or particular parts of it directly. In the following, two general techniques
in probabilistic failure modelling are presented based on the weakest-link approach. The
first one shows the generation of stochastic FE models and the second one shows the dir-
ect computation of failure probabilities within a FE model. Here, it is assumed that failure
can be described through the weakest-link approach. However, it is first repeated that
the FEM is based on the discretisation of the structure of volume V into non-overlapping
volume elements Ve . The constitutive equations are evaluated at integration points defined
in volume element Ve . According to the numerical approach, the results from an integra-
tion point represent the loading within a fraction of volume element Ve . Within this frac-
tion volume, the loading is assumed to be uniformly distributed. For simplicity, elements
with only one integration point are supposed in the following.

5.2.1 Requirements

The failure probability of a continuum body can be determined by probabilistic failure
models. In the following, the requirements on these models are discussed based on the
example of a continuum body and its discretisation.

The volume occupied by the body is denoted as V and the loading which leads to failure
is denoted as f (x). It is assumed that volume V can be discretised into k non-overlapping
volume elements�Vi , so that

V =
k
∑

i=1

�Vi . (5.2.1)

Consequently, the uniform loading within each volume element�Vi is given f i (x) accord-
ing to

f (x) =



















f 1 (x) in �V1

f 2 (x) in �V2

...
...

f k (x) in �Vk

. (5.2.2)



112 CHAPTER 5 PROBABILISTIC FAILURE MODELLING

It is assumed that the failure probability of the continuous volume V is known and is

denoted as PV
F . The failure probability of the discretised volume is denoted as P

∑k
i=1�Vi

F .
Since loading f (x) as well as volume V does not change by the discretisation, the failure
probability of the volume V is not affected by the discretisation and it follows

PV
F = P
∑k

i=1�Vi

F . (5.2.3)

This requirement must be satisfied if the failure probability of volume V is determined by
its discretisation. Moreover, this requirement is especially important if the failure probab-
ility is determined by a FE analysis.

In case, the k volume elements �Vi are statistical independent, the failure probability
of the discretised volume is determined by the product

P
∑k

i=1�Vi

F = 1−
k
∏

i=1

�

1−P�Vi

F

�

(5.2.4)

where P�Vi

F denotes the failure probability of volume element �Vi . Substituting this ex-
pression in Equation (5.2.3) leads to

1−PV
F =

k
∏

i=1

�

1−P�Vi

F

�

. (5.2.5)

Consequently, the failure probability P�Vi

F depends on loading f i (x) within volume ele-

ment�Vi as well as the size of volume element�Vi . It follows that P�Vi

F can be determined
a function ϕ which is defined as

P�Vi

F =ϕ
�

f i (x) ,�Vi
�

(5.2.6)

where function ϕ adopts values between 0 and 1. If the volume dependence is not con-

sidered, so that P�Vi

F =ϕ
�

f i (x)
�

, the previous substitution leads to the inequality

1−PV
F ≤

k
∏

i=1

�

1−P�Vi

F

�

. (5.2.7)

This relation implies that the failure probability of the discretised volume is larger or equal
than the failure probability of the continuous volume under same loading conditions. This
violates the first requirement given in Equation (5.2.3). Therefore, Equation (5.2.4) defines
the second requirement which must be satisfied by determination of failure probability

P�Vi

F provided that the k volume elements�Vi are statistical independent. The definition
of function ϕ is the key part in probabilistic failure modelling. Here, the weakest-link ap-
proach given in Equation (5.1.20) offers the possibility to express loading and volume de-
pendence analytically. As shown in Equation (5.1.31), the weakest-link approach satisfies
the first requirement in Equation (5.2.3). If the volume dependence cannot be expressed
analytically, the function ϕ needs to be identified for any possible volume element�Vi so
that the second requirement in Equation (5.2.4) is satisfied. This, for instance, is the case
when the failure probability is determined based on normal distributions, see Equation
(3.3.54).

In case, the k volume elements �Vi are statistically dependent, the failure probability
of the discretised volume has to be determined according to Equation (3.2.15). This re-
quires the knowledge of the particular conditional probabilities. For instance, volume V is
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discretised into two volume elements�V1 and�V2. Event A1 describes “No failure occurs
in volume element�V1” and, accordingly, event A2 describes “No failure occurs in volume
element�V2”. Then, the failure probability of the discretised volume reads

P�V1+�V2

F = 1−P (A1)P (A2 | A1) (5.2.8)

where P (A1) denotes the probability of event A1 and P (A2 | A1) denotes the conditional
probability of event A2 given that event A1 occurs. The identification of the conditional
probabilities becomes nearly impossible when volume V is discretised into many volume
elements �Vi . Here, a common approach is to perform a Monte-Carlo simulation, see
Chapter 3.3.9, on a random field, see Chapter 3.3.8. However, the first requirement, Equa-
tion (5.2.3), must be still satisfied if the failure probability of the discretised volume is de-
termined either by conditional probabilities or by a Monte-Carlo simulation.

5.2.2 Assumptions

The FEM in structural engineering is based on the discretisation of the structural geometry
into a mesh of elements, see Chapter 4.1.6. The material properties of an element are as-
signed according to the properties found at the element position within the structure. The
constitutive equations are solved in the integration points of each element. Furthermore,
the failure criterion is evaluated in the integration points. In the following, assumptions
and definitions are made to keep the mathematical effort within this chapter low.

The difference between the real structural volume and the approximated volume by
the FE discretisation is neglected. Further, it is assumed that the spatial distribution of
the material properties are captured by discrete parts of the structure. It follows that the
structural volume V can be expressed as

V =
n p
∑

j=1

n j
∑

i=1

Vj ,i (5.2.9)

where n p denotes the number of parts, n j denotes the number of elements within part j
and Vj ,i denotes the volume of element i in part j . Further, it is assumed that the same
material is used within part j . It is underlined that volume V corresponds to the initial
structural volume and, consequently, element volume Vj ,i corresponds to the initial ele-
ment volume of element i in part j .

The element equations are numerically solved using integration points and correspond-
ing weight factors. From that, an element volume fraction can be assigned to each integ-
ration point and the loading within this volume fraction can be assumed to be uniform.
For simplicity, elements with only one integration point are considered in the following.

It is assumed that the constitutive equations and loading f which leads to failure are
correctly solved in the integration point. Finally, it is assumed that failure is evaluated
in terms of a probabilistic failure model according to the weakest-link approach given in
Equation (5.1.20). It is noted that this approach is based on a constant failure criterion in
form of Equation (5.1.22).

5.2.3 Calculation of Failure Probabilities

The failure probability of an element is determined according to Equation (5.1.20) and
reads

P
Vj ,i

F = 1−exp
�

−Vj ,i c j

�

f j ,i

��

(5.2.10)
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where function c j

�

f j ,i

�

denotes the density function related to the material applied in
part j and f j ,i denotes the current loading in element i in part j . From that, the survival
probability of an element is simply given by

P
Vj ,i

S = 1−P
Vj ,i

F = exp
�

−Vj ,i c j

�

f j ,i

��

. (5.2.11)

Both probabilities are evaluated on the element integration point.
Since the weakest-link approach is assumed, all elements of the FE model are con-

sidered as statistically independent. Hence, the failure probability of the FE model as well
as the failure probabilities of the n p parts of the FE model are determined according to
Equation (5.2.4). The survival probability of part j is given by the product

P
Vj

S =
n j
∏

i=1

P
Vj ,i

S =
n j
∏

i=1

exp
�

−Vj ,i c j

�

f j ,i

��

(5.2.12)

and the failure probability is given by

P
Vj

F = 1−P
Vj

S = 1−
n j
∏

i=1

P
Vj ,i

S = 1−
n j
∏

i=1

exp
�

−Vj ,i c j

�

f j ,i

��

. (5.2.13)

Consequently, the survival probability of the FE model becomes

PV
S = 1−

n p
∏

i=1

P
Vj

S =
n p
∏

j=1

n j
∏

i=1

exp
�

−Vj ,i c j

�

f j ,i

��

(5.2.14)

and the failure probability of the FE model becomes

PV
F = 1−PV

S = 1−
n p
∏

j=1

n j
∏

i=1

exp
�

−Vj ,i c j

�

f j ,i

��

. (5.2.15)

It is noted that these probability calculations are in accordance with the requirements in
Equation (5.2.3) and Equation (5.2.4).

The failure probability of the FE model computes the probability of the event “At least
one element fails in the FE model at the current loading state”. The same holds for the fail-
ure probability of model part j . This implies that the behaviour beyond fracture initiation
is not considered in the presented procedure. Therefore, no element deletion algorithm is
required when the failure probabilities are determined according to this procedure. Here,
it is only required that loading f j ,i is precisely computed within each element. It is pointed
out that the probability calculations can be done within the post-processing of a FE ana-
lysis and the probabilities can be computed for each time step. That enables to express
the probabilities as a function of model results, for instance the failure probability as a
function of the movement of an impactor.

5.2.4 Randomly Distributed Failure Parameters

As already stated, an element is assumed to fail when loading f j ,i reaches a critical value
f c in the element integration point. Hence, element deletion is defined by the failure cri-
terion

f j ,i = f c . (5.2.16)

This criterion is randomised by introducing the critical value f c as a continuous random
variable Fc as shown in Chapter 5.1.2. The required PDF g

�

f c
�

of the random variable Fc
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is derived from the underlying probabilistic model. In case of the weakest-link approach,
the PDF g
�

f c
�

is given by Equation (5.1.24). Thus, the PDF of element i in part j is given
by

g j ,i
�

f c
�

=
∂ c j
�

f c
�

∂ f c
V j ,i e−c j ( f c )Vj ,i with f c ≥ 0. (5.2.17)

The critical value f c of element i in part j is found by drawing it from the PDF g j ,i
�

f c
�

.
This can be done by a simulation of the random variable Fc using the inverse transform-
ation method, see Chapter 3.3.7. Here, the substituting of Equation (5.1.23) in Equation
(3.3.73) leads to the expression

Fc =G−1
j ,i (U ) = c−1

j

�

−
ln (1−U )

Vj ,i

�

(5.2.18)

where c−1
j denotes the inverse of the density function, Equation (5.1.19), and U denotes

a uniform random variable. Here, the inverse transformation is applied to draw a sample
of Fc by drawing a sample of U . Since most common programming languages offer a uni-
form PRNG, the above mentioned expression enables to generate numerically a pseudo-
random number of the weakest-link distribution g j ,i

�

f c
�

. In summary, the critical failure
value f c of the element i in part j depends on its initial volume Vj ,i , its density function
c j
�

f c
�

and the random number drawn from a uniform distribution.
The procedure described above is performed in each element and in each integration

point, respectively. As a results, the critical failure value f c is randomly distributed within
a FE model according to the weakest-link approach. The numerical simulation of such a
randomised model can be used to analyse the behaviour beyond fracture initiation and
to predict possible crack paths. Here, an element is deleted when the failure criterion in
Equation (5.2.16) is met. From a statistical point of view, the simulation result represents
the result of a sample of the structural model defined by Equation (5.2.9). Therefore, a
single simulation does not lead to a reliable result and no conclusions can be made re-
garding the failure probability. Here, a multiple repetition of the randomised model each
drawn as a new sample allows to estimate the mean behaviour and the failure probabil-
ity (the probability of first fracture initiation). The mean behaviour can be estimated by
a Monte-Carlo simulation described in Chapter 3.3.9. The failure probability can be es-
timated using the empirical expression in Equation (3.5.12). Here, the data base is created
using simulation results at the time when the first element fails.

In Figure 5.2.1, the FE modelling of a structure with a randomly distributed critical fail-
ure value f c is graphically presented. For simplicity, a plane and square structure with only
one material part is applied in the following. First, the structure is discretised into a square
mesh. Then, f c is randomly distributed within the mesh according to the weakest-link ap-
proach. The figure shows three samples of the randomised model. Since a weakest-link
distribution can be generated by a uniform distribution, f c is scattered within the meshes
according to a uniform distribution.

This modelling approach depends directly on the mesh and the number of elements
defines the sample size. The initial volume of the elements specifies the applied weakest-
link distribution. In case all initial element volumes are equal, Vj ,i = Ve , and a Weibull
distribution is adopted, the Weibull quantile is determined according to Equation (3.3.49)
and becomes

f
PVe

F (x≤X )
c

f c 0
= m

√

√

√

√

− ln
�

1−PVe
F (x ≤ X )
�

�

Ve

V0

� . (5.2.19)
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Figure 5.2.1: Randomly distributed failure parameters: The failure parameters are
uniformly distributed within the FE mesh.

This quantile function can be used to determine the range of the middle 95% of a Weibull
distributed population,

R95%
f c
= f 97.5%

c − f 2.5%
c (5.2.20)

In Figure 5.2.2, the 97.5% quantile, f 97.5%
c (blue), and the 2.5% quantile, f 2.5%

c (magenta),

are plotted as function of volume fraction Ve

V0
. The ordinate shows the critical value fraction

f c

f c 0
. The range between the quantiles f 97.5%

c and f 2.5%
c shows the range R95%

f c
(grey area). It

is seen that the range R95%
f c

goes to infinity when fraction Ve

V0
approaches 0. This means

that a small initial element volume Ve leads to a high R95%
f c

. In other words, the probability
of drawing a critical failure value f c which exceeds a certain value increases when the
initial element volume Ve decreases. Especially, the sample range is influenced by this
fact. For instance, a sample of a finely discretised model is drawn from a wider range
than a sample of a coarsely discretised model. Hence, a mesh sensitivity analysis is not
possible using this modelling approach. From a continuum mechanical point of view,
this stochastic characteristic might be interpreted as follows: The material structure is
defined by the mesh and changes with each mesh refinement. This means that the FE
mesh and the mesh defining the Material Structure (MS mesh) are congruent. This leads
to an alternative modelling approach where FE mesh and MS mesh are decoupled.

The uncoupled modelling approach is presented in Figure 5.2.3. Here, the structure is
firstly discretised into a square mesh of MS elements. This mesh forms the basis to scatter
critical value f c according to the weakest-link approach. Hence, the initial volume of a MS
element enters in the weakest-link equations. Then, critical value f c is randomly distrib-
uted within the MS mesh according to a weakest-link distribution. Figure 5.2.3 contains
three samples of the randomised MS mesh. It is noted that critical value f c is scattered ac-
cording to a uniform distribution for the same reasons as described before. Finally, the MS
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Figure 5.2.2: Range of the middle 95% of a Weibull distributed population.

meshes are discretised into FE meshes as shown in Figure 5.2.3. Alternatively, it is possible
to map the distribution of critical value f c within the MS mesh on an arbitrary FE mesh
of the considered structure. The uncoupled modelling approach enables to perform a FE
mesh sensitivity analysis without changing the sample of the random material structure.
In general, it is recommended to use a FE mesh size which is equal or smaller than the MS
mesh size. In case the FE mesh size is larger than the MS mesh size, the initial volume of
an element of the FE mesh needs to be used to serve the weakest-link approach.

Both modelling approaches assume statistical independence between the elements of
the FE mesh as well as the elements of the MS mesh, respectively. Therefore, these are con-
sistent with the probability calculations described in the previous section. Consequently,
both approaches are in accordance with the requirements given in Equation (5.2.3) and
Equation (5.2.4).

From a statistical point of view, the FE mesh of the coupled modelling approach as
well as the MS mesh of the uncoupled modelling approach are discrete spatial random
fields. Since the elements of both approaches are considered as statistically independent,
the discrete random fields are mutually statistically independent and no correlation exists
between the elements. However, it is also possible to model the discrete random fields
with correlated elements. In the work by Yang et al. [118], a Gaussian random field is
transformed into a Weibull random field. Based on this work, an extended form of the
uncoupled modelling approach is presented in the following.

The basis of the random field forms a discrete and homogeneous Gaussian random
field, see Chapter 3.3.8. Here, each element of the MS mesh is first considered as a Gaus-
sian random variable with zero mean and a unit variance and the spatial position of an
element is given by its midpoint. Then, the Gaussian random field reads

X= (X1 (t1) , X2 (t2) , . . . , Xn (tn ))T (5.2.21)

where Xi (ti ) denotes a Gaussian random variable with PDF g N
�

xi ;µ= 0,σ= 1
�

repres-
enting the MS element i and vector ti denoted the midpoint position of the MS element i .
The n identical means µ are given in a vector µ of length n ,

µ=
�

µ,µ, . . . ,µ
�T . (5.2.22)

The n ×n elements of the Gaussian covariance matrix Σ become

Σi j =C
�

d =| ti − tj |; d 0

�

=σ2 exp

�

−
� | ti − tj |

d 0

�2�

(5.2.23)

where d 0 denotes the correlation length between the MS elements, see Equation (3.3.91).
According to Equation (3.3.72), the discrete and homogenous Gaussian random field X is
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Figure 5.2.3: Randomly distributed failure parameters: The failure parameters are
uniformly distributed within the MS mesh, then the MS mesh is discretised into a FE
mesh.

transformed into a discrete and homogenous uniform random field U, so that

U=GN
�

X;µ= 0,σ= 1
�

(5.2.24)

where GN denotes the CDF of the standard normal distribution, see Equation (3.3.54).
According to Equation (3.3.73), the discrete and homogenous uniform random field U is
transformed into a random field Fc which follows the weakest-link approach, so that

Fc = c−1
i

�

−
ln (1−U)

Vi

�

(5.2.25)

where the subscript i refers to the MS element i . This procedure implies that a sample
of Fc is generated by drawing a sample of X. For instance, the sample can be generated
using the MATLAB function mvnrnd

�

µ,Σ
�

[84]. In Figure 5.2.4, the uncoupled approach
is illustrated using a Gaussian random field which is transformed into a uniform random
field. Here, correlation length d 0 is set to four times of the edge length of a MS element.
Here, three samples of a uniform random field which is generated using the MS mesh are
shown. Afterwards, the three samples are discretised into a FE mesh. However, the most
complex task is to calibrate the random field and to take care that the first requirement
given in Equation (5.2.3) is satisfied. This topic is not further discussed in the present
work.

5.3 Concluding Remarks

The principles of probabilistic failure modelling were introduced in this chapter. Here,
the emphasis was on the weakest-link approach. Based on this approach, a method to

Structure MS Mesh

MS Mesh - Samples FE Mesh - Samples
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Figure 5.2.4: Randomly distributed failure parameters: The failure parameters are
distributed within the MS mesh according to a uniform random field, then the MS
mesh is discretised into a FE mesh.

compute the failure probability of a FE model was presented. Here, the probability gives
information about the risk that a first fracture initiates. Moreover, a second method was
presented based on randomly distributed failure properties. Here, the critical value of a
failure criterion was introduced as a random variable which follows a weakest-link dis-
tribution. This method enables to scatter the critical value in a FE model. Hence, the
behaviour beyond fracture initiation can be analysed from a stochastic point of view.

The weakest-link approach is based on strong statistical assumptions of the material
defects which lead to failure. These are summarised as follows:

1. The material defect is considered as a point defect.

2. The spatial probability distribution of the material defect is uniform.

3. All material defects are statistically independent.

These assumptions are made to simplify the stochastic operations. From a physical point
of view, these assumptions are critical as neither shape nor size of a defect are considered.
A uniform distribution of the defects in space are not reasonable. It is more appropriate
that the spatial probability distribution is influenced by parameters from the manufactur-
ing process and, thus, it is not uniform. Finally, the assumption of statistical independ-
ence implies that all material defects can be found at the same position in the material.
In case the character of a material defect and its spatial probability distribution are con-
sidered, the stochastic operations become increasingly complex. A statistical dependence
of the critical defects can be taken into account using a random field definition as already
shown. It is also important to mention that the weakest-link approach assumes invariant
defects. Hence, the approach is especially suitable for brittle and quasi-brittle materials.
It is important to realise these assumptions when the weakest-link approach is applied.

Structure MS Mesh

MS Mesh - Samples FE Mesh - Samples
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In this chapter, only the failure criterion was randomised. In general, every parameter
of a structural model can be introduced as a random variable. Geometrical parameters
such as thicknesses or imperfections, boundary conditions such as loading and mounting,
material parameters such as Young’s modulus or yield stress can vary randomly. If several
parameters are introduced as random variables and all distribution functions are known,
only a Monte-Carlo simulation enables to evaluate the structural reliability.



Chapter 6

Literature Review

The mechanical behaviour of aluminium and magnesium HPDC alloys has been studied
in detail within the past years. Several material models are introduced and analysed in
the technical literature. The main subject is especially the prediction of fracture initiation
in HPDC components using ductile failure criteria. As already described in Chapter 2.3,
the HPDC process causes a large variation in ductility due to casting defects in the material
microstructure. This variation can be separated into a global systematic variation depend-
ing on the casting system and a local pseudo-random variation depending on casting pro-
cess fluctuations. The consideration of both variations in failure modelling of HPDC alloys
became a major issue in recent material science. In the following, some of the most rep-
resentative material models for HPDC alloys are presented. Here, the topics constitutive
modelling, failure modelling, material parameter identification, numerical application,
consideration of the casting process and validation are discussed. The literature review
closes with concluding remarks.

6.1 Constitutive Modelling

The stress-strain relation of HPDC alloys is in general described through standard metal
plasticity for isotropic hypoelastic-plastic materials. The casting process causes a very
fine microstructure with pseudo-randomly distributed casting defects. Consequently, no
distinct direction dependence can be clearly identified through experiments and the as-
sumption of material isotropy is reasonable as seen in the PhD thesis by Dørum [30]. The
elastic material behaviour is commonly described by the isotropic linear-hypoelastic rela-
tion given in Equation (4.1.73). The plastic material behaviour is described by the isotropic
v. Mises plasticity model in combination with isotropic hardening as seen in the works by
Greve [45], Leppin et al. [76], Mae et al. [80] and Mohr and Treitler [87]. A similar plasticity
model is applied in the work by Dørum et al. [31]. Here, the high exponent yield criterion
proposed by Hershey [54] and Hosford [59] is used instead of the v. Mises yield criterion.
Moreover, the material behaviour of HPDC alloys is found to be strain-rate independent in
these works. Therefore, the applied plasticity models are strain-rate independent except
for the work by Greve [45]. The influence of damage evolution on the constitutive model
is neglected in these works. This means that the constitutive model and the failure model
are considered to be uncoupled.
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6.2 Failure Modelling

The material ductility of HPDC alloys is influenced by casting defects. These defects are
material discontinuities which lower the material ductility. As a consequence, the material
ductility of HPDC alloys is very low compared to alloys processed in another way. However,
the failure behaviour and the prediction of fracture initiation, respectively, are commonly
described by ductile failure criteria. Failure criteria in terms of fracture loci, see Equation
(4.3.13), are often suggested.

In the work by Greve [45], a novel damage-based failure criterion is presented. Here,
the material damage is given as function of stress triaxiality and failure occurs when the
material damage reaches a critical value. The criterion distinguishes between failure in the
tension branch and failure in the shear and compression branch. In the work by Leppin
et al. [76], the failure model presented by Hooputra et al. [57] is applied. This model
accounts for three different failure mechanisms in metals: Ductile failure, shear failure and
sheet instability, also know as localised necking. Each mechanism is evaluated separately.
Ductile and shear failure are evaluated by two different fracture loci and sheet instability
is evaluated by a forming limited diagram. The material fails when one of these criteria is
met. The Bao-Wierzbicki fracture locus given in Equation (4.3.19) is applied in the work
by Mae et al. [80]. The Bao-Wierzbicki fracture locus distinguishes between the tension
branch, the compression branch and an intermediate branch. In the work by Mohr and
Treitler [87], failure is described in terms of a fracture locus presented in the PhD thesis by
Henn [53]. Here, the maximum principal strain at failure is defined as function of stress
triaxiality. The same approach is used in the PhD thesis by Treitler [107]. It is noted that
these failure criteria include that the ductility decreases with increasing stress triaxiality
within the tension branch.

In contrast to the above presented works, a probabilistic approach in failure modelling
is applied in the work by Dørum et al. [31]. Here, the Cockcroft-Latham failure criterion,
see Equation (4.3.23), is used to describe failure. This criterion implies that failure cannot
occur when the maximum principal stress is compressive and neither stresses nor strains
alone are sufficient to cause failure. Furthermore, it includes that the ductility decreases
with increasing stress triaxiality as seen by Wierzbicki et al. [113] and Gruben et al. [48].
However, the critical failure value is assumed to follow a weakest-link Weibull distribu-
tion, see Equation (5.1.39). This means that the critical failure value is introduced as a
random Weibull distributed variable and the failure criterion is randomised as described
in Chapter 5.1.2.

In Table 6.2.1, the presented failure criteria for HPDC alloys are summarised. The table
contains the number of failure parameters and the number of different material tests
which are required to identify the failure parameters. It is noted that the seven parameters
of the failure model by Hooputra et al. [57] belong to the ductile and shear criterion, the
sheet instability criterion is not considered. Furthermore, it is noted that the Cockcroft-
Latham criterion can be calibrated by a single test but the identification of the Weibull
distribution of the critical failure parameter requires a multiple repetition of the calibra-
tion test, see Chapter 3.5.2.

6.3 Material Parameter Identification

Material parameters need to be identified for the constitutive model as well as for the fail-
ure criterion. As explained above, the elastic-plastic deformation behaviour of HPDC al-
loys is commonly described by the isotropic v. Mises plasticity model (or modifications of



6.3 MATERIAL PARAMETER IDENTIFICATION 123

Publication Failure Criterion Parameters Calibration Tests

Greve [45] Greve [45] 3 6
Leppin et al. [76] Hooputra et al. [57] 7 8

Mae et al. [80] Bao-Wierzbicki [8] 4 8
Mohr and Treitler [87] Henn [53] 2 4

Dørum et al. [31] Cockcroft-Latham [20] 1 1

Table 6.2.1: Failure criteria for HPDC alloys: Number of failure parameters and ap-
plied number of different material tests for calibration.

it) in combination with isotropic hardening. Hence, all material parameters of the con-
stitutive model can be found from a uniaxial tension test. In contrast, the parameter
identification of a failure model is more complex. When failure is described in terms of
a fracture locus, material tests for different stress triaxialities are required. Furthermore,
fracture initiation is dominated by casting defects which are non-uniformly distributed
within an HPDC component, see Chapter 2.3. The influence of the global systematic dis-
tribution can be captured using specimens extracted from different positions within an
HPDC component. The local pseudo-random distribution can be captured using spe-
cimens extracted from an identical position from several HPDC components. Based on
these two aspects, the parameter identification of the failure criteria given in Table 6.2.1 is
discussed in the following.

In the work by Greve [45], a magnesium HPDC alloy is analysed. The failure criterion
is calibrated using specimens for uniaxial tension, multiaxial tension, shear and compres-
sion loading. The specimens are extracted from thin and thick walled parts of a mag-
nesium clutch housing. The results show that the specimens extracted from thin walled
parts behave more ductile than specimens extracted from thick walled parts. It is men-
tioned that the ductility in thick walled parts is mainly dominated by shrinkage porosity.
Thus, the failure criterion is calibrated for thin and thick walled parts. Further, the experi-
mental results show that the ductility decreases with increasing stress triaxiality. The work
does not contain a study of the local variation in ductility. Greve [45] mentions that the
pseudo-random distribution of the casting defects and the specimen size have a strong
influence on the test result. Here, it is referred to the weakest-link approach: The probab-
ility to find a critical defect increases with the volume under consideration, see Chapter
5.1.6. Therefore, the equivalent plastic strains at failure obtained from specimen geomet-
ries with different gauge volumes are not directly comparable.

In the work by Leppin et al. [76], an aluminium HPDC alloy is analysed. The parameters
of the failure model by Hooputra et al. [57] are identified using specimens extracted from
a generic aluminium HPDC component. The ductile fracture locus is calibrated using five
different specimen geometries and the shear fracture locus is calibrated using three differ-
ent specimen geometries. All specimens are extracted from two positions with different
porosity levels (high and low porosity). Both extraction positions are found from a com-
puter tomography scan of the HPDC component. It is obvious that the test results from
the low porosity position are more ductile than the results from the high porosity position.
The test results from both porosity levels show clearly the local scatter in ductility. Never-
theless, the failure parameters are identified using averaged values for each porosity level
(including both failure criteria). It is noted that the averaged graph of the ductile fracture
locus show a decreasing ductility with increasing stress triaxiality for both porosity levels.

In the work by Mae et al. [80], an aluminium HPDC alloy is analysed. The failure para-
meters of the fracture locus by Bao-Wierzbicki [8] are identified from smooth and notched
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round bar specimens as well as from flat butterfly specimens. The specimens are extracted
from an HPDC component which is part of an automotive engine mounting system. Fur-
thermore, the specimens are extracted from identical positions of six components. Here,
the extraction position corresponds to the position of fracture initiation in the component
subjected to compression loading. Tensile tests are performed on the round bar speci-
mens and biaxial loading tests are performed on the flat butterfly specimens. The tensile
tests are repeated twice. The fractured tensile specimens show a flat fracture pattern
without a distinct necking deformation. Consequently, the force-displacement curves ob-
tained from the tensile tests show that fracture occurs prior to the point of diffuse neck-
ing. Furthermore, it is seen that the force-displacement curves are comparable but the
displacements at fracture initiation differs strongly from each other. Here, it is mentioned
that the spread is caused by pseudo-randomly distributed casting defects. Further, it is
clearly seen that the measured equivalent plastic strain at failure decreases with increas-
ing stress triaxiality. Hence, only the failure parameters of the tensile branch are identified.
In the work by Mae et al. [80], it is pointed out that it is necessary to describe the failure
parameters in a stochastic way for HPDC alloys.

In the work by Mohr and Treitler [87], an aluminium HPDC alloy in heat treated con-
dition (T7) is analysed. The failure criterion presented by Henn [53] is calibrated using
specimens extracted from an aluminium HPDC component. It is mentioned that the com-
ponent is heat treated to increase the ductility. Furthermore, the specimens are extracted
from positions close to the gating channels to ensure low porosity in the specimens. Six-
teen specimens are extracted from four HPDC components. A biaxial testing technique
is applied which allows material testing over a wide range of stress triaxialities using the
same flat specimen geometry. In total, four different loading combinations are tested and
each test is repeated four times. The experimental results of the four combinations show
that the force-displacement curves are comparable but the displacements at fracture initi-
ation differ strongly from each other. It is noted that a strong scatter in ductility exists, even
though the specimens are extracted from the gating part of a heat treated HPDC compon-
ent. Mohr and Treitler [87]mention that the strong scatter is caused by pseudo-randomly
distributed casting defects and it is pointed out that the local ductility of HPDC alloys ex-
hibits a considerable scatter which needs to be analysed in further research. Nevertheless,
the failure parameters are identified using averaged values. In the PhD work by Treitler
[107], the same failure criterion is calibrated using the same test procedure as in the work
by Mohr and Treitler [87]. Here, an aluminium HPDC alloy in casting condition (F) is ana-
lysed using flat specimens extracted from several identical HPDC components. The flat
specimens are extracted from two characteristic positions which are expected to be of a
low and a high porosity level. In total, 64 specimens are tested in the biaxial testing device.
The force-displacement curves differ strongly from each other in all loading combinations
for both porosity levels. Especially, the strains at fracture initiation exhibit strong scatter.
Nevertheless, the failure parameters are identified for both porosity levels using averaged
values. However, the graphical comparison of both calibrations shows that the ductility
decreases with increasing stress triaxiality and, obviously, the ductility is higher in speci-
mens extracted form low porosity positions than in specimens extracted from high poros-
ity positions.

In the work by Dørum et al. [31], a magnesium HPDC alloy is analysed. The critical
value of the Cockcroft-Latham criterion is identified using uniaxial tension tests. The
tensile specimens are extracted from the three sides of an U-shaped HPDC component.
Each side is considered to belong to parts with different casting conditions: The first part
is defined by the flange close to the gating channels, the second part is defined by the
flange close to the vacuum channels and the third part is defined by the intermediate web.
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In summary, six specimens per part are extracted from three components. This testing
procedure enables to analyse the global systematic variation as well as the local pseudo-
random variation in ductility. The experimental results of the three characteristic parts
show the same behaviour: The engineering stress-strain curves show a comparable stress-
strain relation, but the strain at fracture initiation exhibits significant scatter. Moreover,
the results show that failure occurs prior to the point of diffuse necking. The comparison
between the three characteristic parts shows a general tendency: The ductility obtained
from specimens of the gating part is larger than the ductility obtained from specimens
of the vacuum part. The largest ductility is obtained from specimens of the web part. The
critical value is computed for each result. From that, the Weibull distribution of the critical
value is identified for each characteristic part and, thus, the probabilistic failure criterion
is calibrated. In the work by Dørum et al. [31], it is pointed out that an accurate predic-
tion of fracture initiation in HPDC alloys requires that the global systematic distribution
as well as the local pseudo-random distribution of the casting defects are considered. In
a previous work by Dørum et al. [32], the same testing procedure is applied to character-
ise an aluminium HPDC alloy in heat treated condition (T1). Here, tensile specimens are
also extracted from the three sides of an U-shaped HPDC component. The experimental
results show also a significant scatter in ductility and the influence of the specimen ex-
traction position. Hence, the same probabilistic failure model is calibrated for the three
characteristic parts.

Finally, it is referred to the work by Teng et al. [105]. Here, a total of 32 round bar spe-
cimens are extracted from the same aluminium HPDC components which are used in the
work by Mae et al. [80]. The tensile test results show a strong scatter in tensile strength and
tensile failure strain. The fracture surfaces are also analysed. Teng et al. [105]mention that
shrinkage pores and oxide films are dominating the tensile failure behaviour. However, the
work by Teng et al. [105] focuses on the statistical analysis of the tensile test results in terms
of tensile strength and tensile failure strain. The probability distributions of both quant-
ities are analysed. The normal and the Weibull distribution are applied to describe the
probability distributions. The distribution parameters are identified from a linear regres-
sion on the test data which are presented in normal plots and Weibull plots, respectively.
The Anderson-Darling GoF test is applied to prove both distribution parameter identi-
fications, see Chapter 3.6. The GoF results on the tensile strength data confirm that the
Weibull distribution cannot be rejected. The GoF results on the tensile failure strain data
show that the Weibull distribution as well as the normal distribution cannot be rejected.
Teng et al. [105] recommend to use the Weibull distribution for both quantities since the
Weibull distribution is only defined for positive values. However, Teng et al. [105] conclude
that the test data should be classified according to the type of casting defect which causes
failure. This means that each type of casting defect represents a separated population of
defects which causes different forms of fracture initiation.

6.4 Numerical Application

In the works by Greve [45], Leppin et al. [76], Mae et al. [80], Mohr and Treitler [87],
the failure criteria are applied in a deterministic sense. Thus, unique values of the fail-
ure parameters are required and, consequently, the failure criteria are uniquely evaluated.
As described before, averaged values are used in these works, even though the experi-
mental results show a significant scatter. This (deterministic) approach leads to vague
and uncertain results as discussed in Chapter 5. Further, this (deterministic) approach
entails that the same values of the failure parameters are used in a FE model (neglecting



126 CHAPTER 6 LITERATURE REVIEW

the differentiation between the porosity levels). Consequently, the simulation of such a FE
model provides only one possible result. Moreover, the usage of averaged values of the fail-
ure parameters does not necessarily lead to a simulation result representing the averaged
structural behaviour. The simulation result corresponds essentially to only one possible
case. Finally, the occurrence of this scenario and the probability of failure, respectively,
are unknown.

In contrast to the above mentioned works, a probabilistic approach in failure modelling
is applied in the work by Dørum et al. [31]. Here, the critical value of the Cockcroft-Latham
criterion is considered as a random variable which follows a weakest-link Weibull distribu-
tion. Thus, the stochastic character of HPDC alloys and the influence of the size effect are
taken into account by this approach, see Chapter 5.1.4. Here, the critical value is randomly
distributed within a FE model (neglecting the differentiation between the three character-
istic parts) according to a Weibull distribution. Hence, a sample of the Weibull distribution
needs to be drawn when a simulation is preformed. Consequently, the simulation result
represents the result of this sample. Multiple repetitions of the simulation, each using a
new sample, provides an estimation of the failure probability. A detailed description of
FE models using randomly distributed failure parameters can be found in Chapter 5.2.4.
However, it is noted that the probabilistic failure model by Dørum et al. [31] is not strictly
applied in a stochastic sense. The critical value is limited by a maximum value which
cannot be exceeded. This means that a sample cannot exist of values larger than the max-
imum value, which violates the requirements on a distribution function of a continuous
random variable, see Equation (3.3.5). Further, a sample drawn from a Weibull distribu-
tion can include critical values which become very small. In case of small element sizes,
these small values lead to element failure at low element loading. In the work by Dørum et
al. [31], this fact is described as simulation of micro-cracks and, thus, the critical value is
defined as a non-local variable. This implies that the critical value of an element is taken
as the minimum of all critical values of the elements within a predefined radius emanating
from the centre of the actual element. This non-local regularisation is described in detail
in the work by Fagerholt et al. [39]. As a consequence, each sample of the Weibull dis-
tribution is spatially transformed according to the non-local regularisation. In summary,
Dørum et al. [31]modify the Weibull sample, first, by introducing a maximum value and,
second, by using a non-local regularisation. As a result, the sample cannot be considered
as a sample drawn from a Weibull distribution.

6.5 Consideration of the Casting Process

The local pseudo-random variation of casting defects can be considered by a probabil-
istic approach in failure modelling as presented in the work by Dørum et al. [31]. The
global systematic variation depends on the casting system. The casting system is defined
through the casting component geometry, die-halves, arrangements of gating and vacuum
channels and process parameters. The influence of the casting system can be taken into
account in a FE model using the result of a corresponding casting simulation. Hereby, the
casting simulation result is mapped onto the FE model and the material model paramet-
ers are linked to the casting simulation result. A casting simulation result can be described
by different quantities, such as flow length, air contact time and cooling rate at the end of
form filling.

A common approach is the identification of correlation functions. Here, a mechanical
quantity such as yield stress, tensile strength, tensile failure strain or any material model
parameter is given as a function of casting simulation quantities. Such a correlation func-
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tion needs to be identified for each parameter which is considered to be process depend-
ent. It is noted that these correlation functions are actually of empiric character. In the
work by Treitler [107], correlation functions are identified for yield stress and tensile fail-
ure strain based on the cooling rate. Here, the cooling rate is expected to provide a good
measurement of the solidification which causes shrinkage porosity and leads to poor ma-
terial properties. Tensile specimens are extracted from various position within a generic
HPDC component. From the experimental results, the spatial distribution of yield stress
and tensile failure strain is found. From the casting simulation, the spatial distribution of
the cooling rate is found. Then, the correlation functions are identified combining both
results. However, it is noted that also the tensile test results exhibit a strong scatter and
averaged values are used to identify the correlation functions. In the work by Hildebrand
[55], correlation functions for yield stress, tensile strength and tensile failure strain are
identified in the same way as presented by Treitler [107]. However, the correlation func-
tions are based on several casting simulation quantities. In the work by Greve [45], yield
stress and failure model parameters are given by correlation functions. Here, the cooling
rate is also considered as indicator for shrinkage porosity. The parameters are found by
comparison of mechanical test results and the results of a casting simulation. In general,
the identification of correlation functions is critical due to the strong scatter in the mater-
ial behaviour and the material parameters, respectively. Further, the correlation functions
are usually used to predict material parameters in a deterministic sense. The local vari-
ation of the material parameters might be predicted by a variation of the boundary condi-
tions of a casting simulation. However, this procedure is numerically very expensive and
the variation of the boundary conditions still needs to be known.

The usage of correlation functions leads to a continuous distribution of material model
parameters within a FE model. An alternative approach is applied in the works by Leppin
et al. [76], Treitler [107] and Dørum et al. [32]. Here, the set of material model parameters
is distributed discretely within a FE model. Hence, the material is classified into discrete
quality levels. Each quality level is given by a unique set of material model parameters.
The distribution of the quality levels within the FE model is found from a corresponding
casting simulation. Here, a casting simulation quantity needs to be identified as a quality
measurement. In the work by Leppin et al. [76], the material is classified into low and
high porosity material. Both porosity levels are given by different sets of failure model
parameters as described above. The distribution of the two porosity levels is predicted
from a casting simulation and the bivalent distribution is mapped onto the FE model. It is
noted that the prediction of porosity from a casting simulation is also based on a correla-
tion function of casting simulation quantities. In the work by Treitler [107], the material is
also classified into low and high porosity material and each is defined by a set of material
model parameters. The spatial distribution of the failure strain is found from correlation
functions as described above and the distribution is mapped on a FE model. A critical
value of the failure strain is defined. The low porosity material parameters are used in an
element when the mapped failure strain is larger than the critical value. Consequently,
the high porosity material parameters are used in an element when the mapped failure
strain is smaller than the critical value. In the work by Dørum et al. [32], the material is
classified into three different casting qualities according to the component parts: Gating
part (intermediate quality), web part (high quality) and vacuum part (low quality). Each
part is characterised by a unique hardening curve and a unique Weibull distribution of the
critical failure value. Here, the air contact time of the melt is used as quality measurement.
It is assumed that material with long air contact time tends to build oxide films. Hence,
the material quality decreases with increasing air contact time. The total range of the air
contact time is divided into three branches and each branch corresponds to one of the
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defined casting qualities. The trivalent distribution is mapped onto the FE model. From
that, a casting quality is assigned to each element. Further, the critical failure value of each
element is drawn from the mapped Weibull distribution. In summary, this mapping ap-
proach enables to consider the global systematic variation and the local pseudo-random
variation of the casting defects in a FE model of an HPDC component. In FE modelling,
each set of material parameters is defined in a so-called material card. Thus, this approach
leads practically to a mapping of material cards.

6.6 Validation

In some of the above presented works, the material model and the identification of its
parameters are validated through component testing. Here, numerical simulations of the
component tests are performed and compared with experimental results. As already de-
scribed, the pseudo-random character of the casting defects leads to a pseudo-random
failure behaviour of HPDC alloys. Consequently, the structural failure behaviour of HPDC
components is characterised by pseudo-randomness. The validation of the material mod-
els by Greve [45], Treitler [107] and Dørum et al. [32] are discussed in the following. The
validation of the material model by Leppin et al. [76] cannot be discussed since a detailed
description of the validation is not presented.

In the work by Greve [45], a segment is extracted from a HPDC clutch housing and is
subjected to three point bending loading. Here, quasi-static and dynamic loading condi-
tions are applied. It is noted that only one test result is presented for each loading condi-
tion and, thus, no information about experimental scatter is given. Two different types of
solid meshes are investigated. A fine cubical mesh is analysed through three variants of
spatially distributed material parameters. The first variant uses a mapped material para-
meter distribution based on a cast simulation result and correlation functions. The second
variant uses material parameters obtained from thin walled parts and the third variant
uses material parameters obtained from thick walled parts. In addition, a coarse tetrahed-
ron mesh is analysed. Here, only a mapped material parameter distribution is considered.
In the quasi-static load case, the comparison of experimental result and numerical results
obtained from the two meshes with a mapped material parameter distribution shows a
good agreement in terms of force-displacement behaviour. The numerical result obtained
from the mesh with thick walled material parameters underestimates the experimental
result. The one obtained from the mesh with thin walled material parameters overestim-
ates the experimental result. In the dynamic load case, the comparison of experimental
result and numerical results leads to the same conclusions as in the quasi-static load case.
Since the validation is performed using only one experimental result for each loading con-
dition, the validation result is critical in terms of the pseudo-random character of HPDC
alloys.

In the work by Treitler [107], a generic HPDC component is subjected to quasi-static
tension and compression loading. Each component test is repeated five times. The exper-
imental results obtained from both loading conditions show a similar force-displacement
behaviour: The comparison of the measured force-displacement curves shows a com-
parable deformation behaviour but a strong scatter in the displacements at fracture initi-
ation. In the work by Treitler [107], a shell mesh and a solid tetrahedron mesh are investig-
ated. The parameters of the applied failure model are spatially distributed according to a
cast simulation result. In addition, a shell mesh with failure parameters representing low
porosity is investigated for comparison. Here, all material model parameters are distrib-
uted uniformly. In the tension load case, the force-displacement behaviour is accurately
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predicted from all numerical variants. However, the displacement at fracture initiation is
differently predicted. The shell model using low porosity failure parameters overestim-
ates the experimental results, whereas the shell model using mapped failure parameters
predicts a displacement at fracture initiation which lies within the experimental scatter.
The solid model using mapped failure parameters underestimates the experimental res-
ults. In the compression load case, the force-displacement behaviour is accurately pre-
dicted from the solid mesh. In contrast, the force-displacement curves predicted form the
two shell meshes show a consistently lower force level than the experimental results bey-
ond the linear range. However, the ultimate force magnitude is correctly predicted form
all numerical variants. The shell mesh as well the solid mesh which use mapped failure
parameters predict a comparable displacement at fracture initiation which lies within the
experimental scatter. The shell model using low porosity failure parameters overestimates
the experimental results. The location of fracture initiation in the tension load case is well
predicted by the meshes using mapped failure parameters. In contrast, the location of
fracture initiation in the compression load case is not correctly predicted by the meshes
using mapped failure parameters. Here, it is reasonable that the location of fraction initi-
ation is dominated by structural instability. In summary, the work by Treitler [107] shows
clearly that the global systematic variation of the casting defects needs to be considered in
the numerical design of HPDC components.

In the work by Dørum et al. [32], the probabilistic failure criterion is validated through a
three-point bending test of a U-shaped aluminium HPDC component. The test is repeated
three times under quasi-static conditions. The three experimental force-displacement
curves show a comparable behaviour until first fracture initiation. The displacements
at first fracture initiation differ strongly from each other. When the displacement at first
fracture initiation is reached, the three force-displacement curves drop to a comparable
force level. The second drop in the force-displacement curves indicate a further fracture
initiation. Also, the displacement at second fracture initiation differs strongly from each
other. From the experiments, it is seen that first fracture occurs in the vacuum part and
second fracture in the gating part. The bending test is simulated by a shell mesh model. As
already described, the material parameters are calibrated separately for the three sides of
the U-shaped component. These three sets of material parameters are spatial distributed
according to a cast simulation result. Here, the above mentioned material card mapping
procedure is applied. Further, three samples of FE models are generated based on the
probabilistic failure criterion. The comparison of the experimental results with the nu-
merically predicted results shows a good correlation until first fracture initiation. Due to
the probabilistic failure model, the three samples predict different displacements at first
fracture initiation. However, the three numerically predicted force-displacement curves
do not show clearly the second force level as seen by the experiments. In a previous work
by Dørum et al. [33], a numerical simulation is performed on the same bending tests.
Here, the three sets of material parameters are distributed according to the three sides of
the U-shaped component. However, the critical failure value of each part is given as an
averaged value. The numerical force-displacement curve predicted by this model shows
qualitatively a very good correlation to the experimental force-displacement curves. This
means that the two drops at fracture initiation are clearly seen and the force level beyond
first fracture initiation is correctly predicted. In summary, the probabilistic failure model
enables to describe the experimentally observed scatter. However, the numerical model
using a material distribution according to the three component parts provides a qualitat-
ively better prediction of the force-displacement behaviour than the numerical model us-
ing a material distribution based on a casting simulation result. A reason for this could be
as follows: The material distribution based on the casting simulation result leads to a dis-
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tribution which is different from the one considered in the material parameter identifica-
tion. Finally, it is noted that the probabilistic failure model is not validated in a stochastic
sense in the work by Dørum et al. [32]. A multiple repetition of the component test is
required to generate a sample of the probability distribution of the component test. The
same needs to be done numerically as the probabilistic failure model can be considered
as validated when the numerically predicted failure probability correlates to the experi-
mentally estimated failure probability.

6.7 Concluding Remarks

The presented literature review on failure modelling in HPDC components leads to fol-
lowing conclusions:

– The material behaviour of HPDC alloys is dominated by casting defects. The ex-
perimental results show the influence of the global systematic variation as well as
the local pseudo-random variation of the casting defects on the material behaviour.
Hence, it is necessary to consider both variations in the mechanical characterisa-
tion of an HPDC alloy. Thus, specimens have to be extracted from various positions
in an HPDC component and, further, several specimens from the same extraction
position are required. In general, it is seen from the literature review that the ma-
terial behaviour needs to be analysed using specimens extracted from real casting
components and not from simple casting sheets. Besides the mechanical analysis of
the experimental results, a statistical analysis of the experimental results is of major
importance to characterise the influence of the local pseudo-random variation. Fi-
nally, it is important to take the size effect into account when results obtained from
different specimen geometries are compared.

– The elastic-plastic deformation behaviour is less influenced by casting defects. The
scatter in the stress-strain relation is negligible compared to the scatter in the failure
strain. Further, no distinct strain-rate dependence of HPDC alloys can be identified.
In engineering applications, the isotropic v. Mises plasticity model (or modifications
of it) in combination with isotropic hardening is sufficient to describe the elastic-
plastic deformation behaviour. The presented validations show that the structural
behaviour until first fracture initiation is well predicted by this constitutive model.

– As a result of the local pseudo-random variation of the casting defects, the failure
behaviour is expected to be pseudo-random. Consequently, the parameter identi-
fication of a failure model exhibits a significant scatter. Therefore, a probabilistic
approach in failure modelling is seen as the only reasonable approach to predict
fracture initiation in HPDC components. As already mentioned, failure paramet-
ers are defined as random variables in a probabilistic failure model. This approach
requires to identify the probability distribution of each failure parameter and the
statistical correlation between the different failure parameters. Therefore, it is more
practicable to use failure criteria with a minimum of parameters. A probabilistic
failure model enables to analyse the influence of randomly distributed failure para-
meters on the structural behaviour. However, a probabilistic failure model needs
to be validated in a stochastic sense which requires multiple repeated experimental
tests. Finally, it is noted that the usage of a non-local regularisation can be avoided
by decoupling the FE mesh and the MS mesh as described in Chapter 5.2.4.
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– The influence of the global systematic variation can be captured by a casting sim-
ulation and a mapping procedure. The approach which is based on material card
mapping is more robust compared to the approach which is based on correlation
functions. From the presented validations, it is seen that the results obtained from
heterogenous FE models are more precise than the results obtained from homogen-
eous FE models. However, it is not clearly seen that this is related to the applied
mapping procedure or to the fact that the material parameters are not homogen-
eously distributed. This means that it is not possible to identify the most reasonable
mapping procedure out of the presented ones. In summary, the combination of a
probabilistic failure model and a heterogeneous and reasonable distribution of ma-
terial cards enables to take both forms of variation of casting defects into account in
FE modelling of HPDC components.

– A material model for HPDC alloys is validated using tests performed on correspond-
ing HPDC components. Since the casting defects influence the structural behaviour,
a multiple repetition of the component test is required and the experimental results
are expected to scatter. In case a deterministic failure model is applied, the nu-
merical result should at least predict a result which lies within the experimentally
observed scatter. However, this approach cannot be treated as a correct validation
since the information of the failure probability is missing. In case a probabilistic
failure model is applied, the result of a stochastic study should predict the experi-
mental observed scatter. If the numerically predicted failure probability correlates
to the experimentally estimated failure probability, the probabilistic failure model
can be considered as validated.

– Finally, it is noted that the complex geometries of HPDC components are usually
discretised by volume elements which leads to long computation times. In case the
geometry allows the use of shell elements and, thus, thickness stress are of little
influence, the results are comparable to the results obtained from solid elements.





Chapter 7

Structural Behaviour

The structural behaviour of a generic aluminium HPDC component was analysed through
experimental component testing. Bending tests as well as axial compression tests were
carried out under quasi-static loading conditions. The experimental results are presented
and discussed in this chapter. The applied aluminium HPDC alloy as well as the generic
component are introduced and the test set-ups used for bending and compression tests
are shown. Based on the experimental results, conclusions are drawn on the structural
behaviour and consequences for material testing are pointed out.

7.1 Aluminium Die-Casting Alloy and Test Component

Generic HPDC components made of an AlSi9Mn alloy in casting condition (F) were in-
vestigated in the experimental work. The applied aluminium HPDC alloy was introduced
by Aluminium Rheinfelden GmbH in 2004 and is technically called Castasil-37. The major
chemical components and their weight percentages are given in Table 7.1.1 according to
a material data sheet by the producer [4]. In this material data sheet, it is noted that the
element strontium (Sr) is applied to refine the Al-Si eutectic and, consequently, to avoid
material porosity. Furthermore, it is noted that the alloy is characterised by excellent casta-
bility, very good weldabiltiy and high strength material properties in casting condition (F).
Castasil-37 is commonly used in engineering applications to cast thin-walled and large
structural components which do not need any heat treatment. For instance, the two lon-
gitudinal HPDC components in the rear end structure of the current Audi A8, see Figure
1.1.1, are made of Castasil-37. This example shows that Castasil-37 can be used for crash
relevant components which are subjected to extreme loadings. It is noted that the produc-
tion costs of HPDC components can be reduced if heat treatment can be omitted. Hence,
the automotive industry has a particular interest to use aluminium HPDC alloys such as
Castasil-37.

[%] Si Fe Cu Mn Mg Zn Ti Sr

min. 8.5 0.35 0.006
max. 10.5 0.15 0.05 0.60 0.06 0.07 0.15 0.025

Table 7.1.1: Chemical composition of the aluminium HPDC alloy Castasil-37
(AlSi9Mn) in weight-% according to a material data sheet by Aluminium Rheinfelden
GmbH [4].
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Images of the generic HPDC component investigated in the present work are presented
in Figure 7.1.1. The component is U-shaped with a typical casting structure inside, see Fig-
ure 7.1.1a. The casting structure is defined by a single longitudinal rib and several trans-
verse ribs as well as the characteristic ejector domes (thick cylinders) which are required to
remove the component from the casting tool. The relevant component dimensions can be
taken from Figure 7.1.1b and Figure 7.1.1c. The total width is approximately 200 mm, the
total height approximately 150 mm and the total length approximately 900 mm. The rib
height is approximately 50 mm. The wall thickness in thin parts is approximately 2.5 mm.
This component geometry was designed by Audi AG for research and development pur-
poses and is technically denoted as U900-1. The components which were analysed in the
present work were produced in a horizontal cold chamber HPDC machine including a va-
cuum system. A Müller Weingarten Vakural DGM machine with a locking force of 2000 t
was applied. As already mentioned, the components were not heat treated after casting.
This means that the material structure was given in casting condition (F). The applied cast-
ing system is presented in Figure 7.1.1d. Due to the symmetry in longitudinal direction,
only one half of the casting system is shown. According to the casting system, the U900-1
component is classified into three characteristic parts as illustrated in Figure 7.1.1e. The
characteristic parts are gating side (blue), vacuum side (red) and intermediate part (green).
The gating side is defined by the component side close to the gating channels, the vacuum
side is defined by the component side close to the vacuum channels and the intermediate
part is defined in between. The material ductility was expected to be higher on the gating
side than on the vacuum side, see Chapter 2.3.

7.2 Bending Tests

The structural behaviour of the HPDC component U900-1 was analysed in a bending de-
formation mode. Seven parallel component tests were carried out in a three-point bend-
ing test set-up. In the following, the applied test set-up and the experimental results are
presented and discussed.

7.2.1 Test Set-Up

The requirement on the design of the test set-up was to guarantee structural failure of the
U900-1 component under three-point bending. A technical drawing of the applied three-
point bending test set-up is given in Figure 7.2.1a. The load was applied in the middle
of a component and the supports were arranged symmetrically to the middle with equal
distance of 305 mm. Each component was placed on two cylindrical steel bars with equal
diameter of 40 mm and the load was introduced by a cylindrical steel punch with outer dia-
meter of 200 mm. The aim of the support construction was to avoid local cracking in the
vicinity of the bars. Hence, holes with equal diameter of 40 mm were drilled through each
component. Each hole was reinforced by an aluminium sheet of 2 mm thickness and the
sheets were fixed by welding. It was expected that the bars move almost without friction
in horizontal direction. Further, it was expected that a component rotates almost without
friction around the bars. A technical drawing of the left support construction is given in
Figure A.1.2 of Appendix A.1. The bars were placed on two steel walls of 10 mm thickness
and the walls were welded onto a steel plate. Each bar end was milled to the middle of the
cross-section. Consequently, the bars could slide along the walls during testing. Friction
was reduced using Teflon strips of 1 mm thickness. Friction between bars and compon-
ent was reduced using Polyacetal (POM) rings of 2 mm thickness. Suitable notches were
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Figure 7.1.1: Images of the aluminium HPDC component U900-1.
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milled around each bar to position the POM rings. A technical drawing of the punch con-
struction is given in Figure A.1.3 of Appendix A.1. The steel punch was attached with a bolt
to a steel plate which was mounted to the testing machine via a threaded joint. All parts
of the support construction and the punch construction were made of high strength steel
and assumed to behave rigidly. The supports were bolted onto two parallel high strength
steel H-beams which were joined through welding. The H-beams were not expected to
deform during testing. The complete three-point bending support was placed into the
testing machine as illustrated in Figure 7.2.1b.

Seven parallel bending tests were performed in an Instron servo-hydraulic 250 kN test-
ing machine. The load was applied by means of a predefined and constant punch velocity
of 3 mm

min
. It is assumed that each test was performed under quasi-static loading conditions.

Force and displacement were measured by the testing machine. In addition, the relative
displacements between H-beams and punch were measured using extensometers at gat-
ing side and at vacuum side as seen in Figure 7.2.1c. Two cameras were positioned with
focus on gating side and on vacuum side to detect which one failed first, see Figure 7.2.1d.

7.2.2 Experimental Results

The observations during testing showed a qualitatively comparable behaviour of all three-
point bending tests: The U900-1 component deformed only slightly during loading. When
the critical load was reached, a crack formed on the vacuum side. The component de-
formed further until a crack formed on the gating side. Afterwards, the intermediate part
carried the load by plate bending. Each test was stopped at this point. The analysis of
the camera images obtained from each bending test confirms this result as seen in Fig-
ure A.2.1 and Figure A.2.2 of Appendix A.2. Only test #6 showed another behaviour. Here,
the first crack formed on the gating side. Furthermore, the image analysis shows that the
cracks started to grow from the bottom. Here, the material expired nearly pure tension
and the material with the poorest ductility caused fracture initiation. This belongs to the
assumption that the poorest material ductility was expected on the vacuum side. In Figure
7.2.2, images from both sides of a deformed and fractured U900-1 component are shown.
It can be seen that the component exhibited only small permanent deformations. Further,
the location of fracture initiation on the gating side and on the vacuum side, respectively,
can be clearly identified. Equivalent images of the other components are given in Figure
A.2.3 of Appendix A.2 and lead to the same result. However, it is seen that the location of
fracture initiation was not reproducible within a component side.

The force-displacement curves obtained from the seven parallel bending tests are dis-
played in Figure 7.2.3a. The force-displacement curves were measured by the testing ma-
chine. The curves also show a qualitatively comparable behaviour: The force increases
non-linearly until an ultimate load is reached. Subsequently, the force decreases rapidly
and starts to increase slightly until a second maximum load is reached. Once more, the
force decreases rapidly and reaches an almost constant minimum. A quantitative com-
parison of the curves shows that the initial non-linear behaviour is reproducible, but the
force magnitude at ultimate load and the corresponding displacement vary significantly.
Further, the comparison shows that the force magnitude at second maximum load is com-
parable, but the corresponding displacement varies significantly. The mechanical inter-
pretation is as follows: The bending load was carried by the entire component until a crack
formed on the vacuum side (or on the gating side at test #6). Then, the bending load was
carried by the intermediate part and the undamaged side. When a crack formed on this
side, the bending load was carried by the intermediate part. The failure behaviour un-
der bending load indicates a significant difference in the material ductility between both
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(a) Fracture initiation on gating side.

(b) Fracture initiation on vacuum side.

Figure 7.2.2: Deformed and fractured U900-1 component subjected to three-point
bending.

component sides. Furthermore, the strong scatter in the displacement at first and second
fracture initiation suggests a strong scatter in the material ductility within each compon-
ent side. The repeatable force-displacement behaviour prior to first fracture initiation as
well as the comparable force magnitude prior to second fracture initiation suggest a re-
producible material deformation behaviour within both component sides.

Based on this observation, the measured force-displacement curves can be separated
into two load stages as demonstrated in Figure 7.2.3b. Each load stage is defined by max-
imum force Fi and corresponding displacement d i . Dissipated energy Ei within a load
stage can be computed by numerical integration. Table 7.2.1a contains these measure-
ments for all three-point bending tests. The relationship between both energies is given in
the last column. It is obvious that the relationship is not constant. A scatter plot of energy
E1 and energy E2 is given in Figure 7.2.3c. According to Equation (3.5.5), the correlation
coefficient of both energies becomes rE1 E2 =−0.15 which indicates no distinct linear cor-
relation as seen in the scatter plot. Therefore, it is considered that the results obtained
from first load stage and the results obtained from second load stage are not correlated.
This implies that a high ductility in the first load stage does not necessarily indicate a high
ductility in the second load stage. Furthermore, this means that failure on the gating side
and failure on the vacuum side can be considered as independent events.

The graph presented in Figure 7.2.4a shows the results obtained from the different dis-
placement measurements of a three-point bending test (test #7). The graph shows dis-
placement of the testing machine on the abscissa, force of the testing machine on the right
ordinate and displacement measurement on the left ordinate. The displacement meas-
ured by the extensometer at vacuum side is plotted in red (d 3 (d 1)) and the displacement
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Figure 7.2.3: Experimental results obtained from seven parallel three-point bending
tests (measured by the testing machine).

measured by the extensometer at gating side in blue (d 2 (d 1)). The displacement measured
by the testing machine is plotted in black (d 1 (d 1)). In addition, the force-displacement
curve measured by the testing machine is given in grey (F1 (d 1)). It is seen that the extens-
ometer measurements do not correspond to each other. The displacement measured at
the vacuum side is larger than the displacement measured at the gating side as well as the
displacement measured by the testing machine. The mean of both extensometer meas-
urements is given by the green curve

�

dµ23 (d 1)
�

. It is seen that the mean corresponds
exactly to the displacement measured by the testing machine. The gap between both ex-
tensometer measurements is given by the magenta curve (dδ23 (d 1)). It is seen that the gap
increases during loading. An offset in the gap curve is found when the vacuum side fails.
A reverse offset in the gap curve is found when the gating side fails. Afterwards, the gap
curve reaches an almost constant level. In the same way, results obtained from six of seven
parallel three-point bending tests are analysed, see Figure A.2.4 of Appendix A.4. The gap
curves obtained from these tests are compared in the graph of Figure 7.2.4b. The meas-
ured gaps show comparable behaviour with test #6 as an exception. Here, the gating side
failed first and, consequently, the graph shows the inverse behaviour.
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Figure 7.2.4: Experimental results obtained from six parallel three-point bending
tests: Force and displacement measured by testing machine and relative displace-
ments measured by extensometers on gating side and vacuum side.
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First Load Stage Second Load Stage
# F1 [kN] d 1 [mm] E1 [kNmm] F2 [kN] d 2 [mm] E2 [kNmm] E2/E1 [%]

2 68.48 7.52 310.19 43.00 10.92 142.44 45.92
3 77.75 9.78 465.59 33.05 10.66 32.04 6.88
4 102.23 16.47 1111.81 48.06 18.34 85.24 7.67
5 103.70 17.62 1226.91 45.12 23.09 252.29 20.56
6 93.85 12.54 709.51 50.24 17.25 226.50 31.92
7 88.44 10.65 567.78 50.66 23.56 609.99 107.43
8 103.15 16.22 1081.92 47.81 17.81 72.27 6.68

(a) Maximum force Fi , displacement at maximum force d i and energy Ei for each
load stage (measured by the testing machine).

First Load Stage Second Load Stage
# g 1 [mm] α1 [°] g 2 [mm] α2 [°]

3 1.42 0.33 3.37 0.78
4 1.52 0.35 2.91 0.67
5 1.54 0.36 4.10 0.95
7 2.18 0.50 6.05 1.40
8 2.81 0.65 5.23 1.21

x̄ 1.89 0.44 4.33 1.00

(b) Gap magnitudes g i and rotation
angles αi for each load stage (measured
by the extensometers).

Table 7.2.1: Quantities measured from the experimental results obtained from seven
parallel three-point bending tests.

Based on these measurements, it is suggested that the punch rotated slightly towards
the vacuum side during loading. The rotation mode is illustrated enlarged in Figure 7.2.5.
It seems reasonable that the rotation was due to the additional bending stiffness of the
long rib close to the gating side, see Figure 7.1.1c, and a non-rigid connection between
punch and testing machine. Further, each gap curve starts to increase from zero without
any initial gap. Hence, it is supposed that the punch rotations during testing were only of
elastic nature. Each gap curve can be separated according to the load stages and the off-
sets, respectively. The gap magnitudes g i were measured at the beginning of each offset.
Based on gap magnitudes g i , the equivalent angle αi of the punch rotation was estimated
according to

αi = arctan

�

g i

l p

�

(7.2.1)

where l p denotes the length of the punch which is approximately 248 mm. In Table 7.2.1b,
gap magnitudes g i and rotation angles αi measured from each three-point bending test
result are summarised. The gap between both extensometer measurements reached in
average a magnitude of approximately 1.89 mm within the first load stage and a magnitude
of approximately 4.33 mm within the second load stage. These averaged gaps correspond
to rotation angles of 0.44 ° and 1.00 °.
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Figure 7.2.5: Drawing of the punch rotation during three-point testing.

7.3 Axial Compression Tests

In addition to the bending test analysis, the structural behaviour of the HPDC component
U900-1 was analysed in an axial compression deformation mode. Four axial compression
tests were performed on the halves of U900-1 components. In the following, the applied
test set-up and the experimental results are presented and discussed.

7.3.1 Test Set-Up

Axial compression tests were performed on half U900-1 components to avoid column
buckling. Hence, two U900-1 components were cut into equal parts of 440 mm length
prior to testing. The applied cutting pattern is shown in Figure 7.3.1a. All cut surfaces
were machined parallel to ensure pure axial loading. A technical drawing of the axial com-
pression test set-up is illustrated in Figure 7.3.1. The modified U900-1 component was
placed between the test foundation and a circular loading plate with radius of 120 mm.
The loading plate was made of high strength steel and mounted to the testing machine
via a threaded joint. The axial compression loading was applied between test foundation
and loading plate which were assumed to be rigid. An image of the axial compression test
set-up is given in Figure 7.3.1c.

The four compression specimens were tested in an Instron servo-hydraulic 250 kN test-
ing machine. The loading plate was displaced at a predefined and constant velocity of
3 mm

min
. It is assumed that each test was performed under quasi-static loading conditions.

Force and displacement were measured by the testing machine. In addition, the relative
displacement between test foundation and loading plate was measured using an extenso-
meter. The extensometer position is shown in Figure 7.3.1b and Figure 7.3.1c.
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(a) Cutting pattern of the U900-1 component for axial compression tests.
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(b) Technical drawing of the axial compression
test set-up.

Extensometer

(c) Image of the test
set-up.

Figure 7.3.1: Axial compression test set-up: Cutting pattern, technical drawing and
image of the test set-up.

7.3.2 Experimental Results

The structural behaviour of the modified U900-1 components subjected to axial compres-
sion was dominated by local buckling. Local buckling started first in the upper third of the
gating side as well as the vacuum side. Subsequently, local buckling continued in the in-
termediate part. In Figure 7.3.2, images of the deformed and fractured compression speci-
mens are presented. Cracks formed first on the outer parts of gating side and vacuum side,
see Figure 7.3.2a. Afterwards, cracks formed in the most deformed area close to the edges
between both component sides and intermediate part, see Figure 7.3.2b. The axial com-
pression loading of each specimen was limited by buckling of gating side and vacuum side
as well as subsequent buckling of the intermediate part. It is well known that local buck-
ling is defined by geometry and material properties as well as their imperfection. Hence,
the buckling pattern differed somewhat between the four specimens.

The force-displacement curves obtained from the four parallel axial compression tests
are presented in Figure 7.3.3. The curves were measured by the testing machine. The test
results show a repeatable force-displacement behaviour with a negligible scatter com-
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(a) Fracture initiation on the outer parts of gating side and va-
cuum side.

(b) Fracture initiation in the edges between both component
sides (gating side and vacuum side) and intermediate part.

Figure 7.3.2: Deformed and fractured modified U900-1 component subjected to
axial compression.

pared to the bending test results. Test #11 exhibits a higher ultimate load. The distinct
steep drops in force level indicate fracture initiation and the corresponding measurements
can be found in Table 7.3.1a. However, these drops have only a minor influence on the
overall force-displacement behaviour.

The graph presented in Figure 7.3.4a shows the results obtained from the different dis-
placement measurements of an axial compression test (test #13). The graph shows dis-
placement of the testing machine on the abscissa, force of the testing machine on the
right ordinate and displacement measurement on the left ordinate. The displacement
measured by the extensometer is plotted in blue (d 2 (d 1)). The displacement measured
by the testing machine is plotted in black (d 1 (d 1)). In addition, the force-displacement
curve measured by the testing machine is given in grey (F1 (d 1)). The gap between the dis-
placement measurements is given by the magenta curve (dδ12 (d 1)). It is seen that the dis-
placement measured by the extensometer and the displacement measured by the testing
machine do not correspond to each other. When a certain load level is reached, the extens-
ometer measurement intersects the testing machine measurement and the gap between
them starts to grow. It is seen that the intersection separates the force-displacement curve
into its linear and non-linear part. However, it is seen that the gap curve is not influenced
by the fracture initiation. In the same way, the results obtained from four parallel axial
compression tests are analysed, see Figure A.4.2 of Appendix A.4. The gap curves obtained
from these tests are compared in the graph of Figure 7.3.4b. The measured gaps show
comparable behaviour except from test #11. Here, it is assumed that the extensometer
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Figure 7.3.3: Experimental force-displacement curves obtained from four parallel
axial compression tests (measured by the testing machine).

# F1 [kN] d 1 [mm]

11 132.25 8.77
12 132.06 6.93
13 128.91 7.08
14 133.01 4.84

(a) Force at fracture
initiation F1 and dis-
placement at fracture
initiation d 1 (meas-
ured by the testing
machine).

# g 1 [mm] α1 [°]

( 11 0.91 0.22 )
12 2.55 0.61
13 2.78 0.66
14 2.33 0.56

x̄ 2.55 0.61

(b) Gap magnitude
g 1 and rotation angle
α1 (measured by the
extensometer and the
testing machine).

Table 7.3.1: Quantities measured from the experimental results obtained from four
parallel axial compression tests.

was not accurately fixed and has slid during testing.
Based on these measurements, it is suggested that the loading plate rotated slightly dur-

ing loading towards the open side of the U900-1 component as illustrated enlarged in Fig-
ure 7.3.5. It is obvious that the rotation was caused by the non-symmetric cross-section,
see Figure 7.1.1b, and a non-rigid connection between loading plate and testing machine
as already seen in the bending tests. Moreover, each gap curve starts to increase from zero
without any initial gap. Hence, it is also supposed that the loading plate rotations during
testing were only of elastic nature as already observed in the bending tests. The ultimate
magnitude g 1 was measured from each gap curve. Based on magnitude g 1, the equivalent
angle α1 of the loading plate rotation was estimated according to

α1 = arctan

�

g 1

rp

�

(7.3.1)

where rp denotes the radius of the loading plate which is approximately 120 mm. In Table
7.3.1b, gap magnitude g 1 and rotation angle α1 measured from each axial compression
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Figure 7.3.5: Drawing of the loading plate rotation during axial compression testing.

test result are summarised. The gap between the two displacement measurements reaches
in average a magnitude of approximately 2.55 mm. This averaged gap corresponds to a ro-
tation angle of 0.61 °.

7.4 Concluding Remarks

The experimental results of the three-point bending tests showed that the structural be-
haviour of the U900-1 component made of the HPDC alloy Castasil-37 in casting condi-
tion (F) was dominated by the material ductility in gating side and vacuum side. A crack
formed usually first on the vacuum side. This observation confirmed the assumption that
the material ductility was not homogeneously distributed. It can be assumed that the
material ductility was essentially influenced by the casting system. Moreover, the scatter-
ing failure behaviour on both component sides caused a strong scatter in the structural
response. In particular, the material tensile ductility dominated fracture initiation. As a
result, it is assumed that the material ductility exhibited strong scatter caused by casting
defects. In contrast, the experimental results of the axial compression tests showed a re-
peatable structural behaviour of the U900-1 component in terms of force-displacement
measurements. Here, local buckling and geometrical imperfections had a major influence
on the structural response. The local displacement measurements by the extensometers
in the three-point bending tests as well as in the axial compression tests showed that the
connection between impactor and testing machine was not rigid.

In summary, it is concluded that the global systematic variation as well as the local
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pseudo-random variation of casting defects influenced strongly the material ductility in
the U900-1 components. Especially, the experimental results obtained from the three-
point bending tests confirmed this statement:

– Most components failed first on the vacuum side. This was caused by the global
systematic variation depending on the casting system.

– Fracture initiation on both component sides occurred at different force and dis-
placement levels: This was caused by the local pseudo-random variation depending
on casting process fluctuations.

Therefore, a detailed experimental characterisation of the material ductility of the HPDC
alloy Castasil-37 in casting condition (F) is required to achieve a deeper understanding
of the influence of casting defects. Tensile test specimens need to be machined from the
gating side, the vacuum side and the intermediate part of U900-1 components. Further-
more, Tensile test specimens need to be machined from duplicated positions within these
parts. This sampling approach enables an experimental analysis of the global systematic
variation and the local pseudo-random variation of casting defects and their influence on
the material tensile ductility.



Chapter 8

Material Characterisation

In the previous chapter, the structural behaviour of the U900-1 component made of the
HPDC alloy Castasil-37 in casting condition (F) was analysed under bending loading as
well as under axial compression loading. Especially, the bending test results showed a
strong variation in the structural response. It was concluded that the variation was caused
by the two characteristic variations of casting defects and their influence on the material
ductility. Therefore, it can be stated that the casting system causes a global systematic
variation in the material ductility and the fluctuations during the casting process causes a
local pseudo-random variation in the material ductility.

The objective of the material characterisation presented in the current chapter is the ex-
perimental analysis of this statement. This means that the material characterisation was
focused on measuring the global systematic variation as well as the local pseudo-random
variation in the material ductility of the HPDC alloy Castasil-37 in casting condition (F).
Hence, uniaxial tensile test specimens were machined from different extraction positions
of the U900-1 component. Further, tensile test specimens were machined from duplicated
extraction positions of multiple U900-1 components. Standard tensile tests were carried
out using these specimens and the material ductility was measured from the test results.
This sampling approach enabled an analysis of the global systematic variation as well as
the local pseudo-random variation in the material ductility. Two material characterisa-
tions were performed. The first one was used to get a basic understanding of the material
behaviour. The second one was focused on an extensive statistical analysis of the material
ductility and on the two types of variation. Moreover, the influence of the gauge volume on
the material ductility was investigated using tensile test result obtained from specimens
which were equal in shape but different in size. The results obtained from the first and
second material characterisation are presented, discussed and concluded in the current
chapter. But first, the applied test set-up, the analysis of a test result and an approach to
analyse statistically the samples generated in each material characterisation are presen-
ted.

8.1 Uniaxial Tensile Test

The uniaxial tensile test is probably the best known and most common mechanical ma-
terial test. A sample of a material in form of a tensile specimen is subjected to a controlled
tensile loading until it fractures. Here, the specimen shape ensures a uniaxial tensile stress
state in the gauge section until a neck develops. The applied force and the elongation
of the specimen are measured during testing. Based on these measurements, the force-
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displacement relation of the uniaxial tensile test is obtained. The analysis and interpreta-
tion of the force-displacement relation provide basic information on the strength and the
ductility of the considered material. Furthermore, the material behaviour in terms of dir-
ection, strain-rate and thermal dependence can be analysed by a combination of various
separate tensile tests. The uniaxial tensile test is a fundamental test in material science
and a standard test in engineering applications. The uniaxial tensile test set-up applied in
the present work is presented in the following. Further, the analysis of the measurements
obtained from this test set-up is shown. Moreover, an approach to analyse statistically a
database generated from multiple tensile tests is described.

8.1.1 Test-Set Up

In the present work, uniaxial tensile tests were performed on standard flat tensile speci-
mens. The flat tensile specimen geometry is characterised by two shoulders, a long gauge
section in between and a constant thickness as seen in Figure 8.1.1a. The uniaxial tensile
loading in the gauge section was applied through the shoulders. Since the gauge section
width is constant and smaller than the shoulder width, deformation and fracture initiation
were expected to occur within the gauge section. Each tensile specimen was mounted to
the testing machine by metal pins which were placed through the holes in the shoulders as
demonstrated in Figure 8.1.1a. The pins were assumed to be rigid compared to the tensile
specimens. The uniaxial tensile tests were performed in a universal Dartec M1000/RK
hydraulic testing machine at ambient temperature. The lower pin was fixed while the up-
per pin was displaced at a predefined and constant velocity of 1.8 mm

min
. It is assumed that

each tensile test was performed under quasi-static loading conditions. The applied force
was obtained from the testing machine, whereas the elongation of the gauge section was
measured by a MTS clip-on extensometer with a gauge length of 30 mm. This measuring
approach implies that any strain localisation due to necking within the gauge section was
measured in an averaged manner, see Chapter 4.3.5. However, the uniaxial tensile tests
were expected to show only small deformations and no distinct strain localisation prior
to fracture initiation. Hence, the applied measuring approach was considered to provide
sufficient results. The Instron 8800 controller including the software Console was used
for controlling the test procedure and recording data from the testing machine and the
extensometer. The initial width and thickness of the gauge section were measured by a
Limit micrometer prior to testing. An image of a mounted tensile specimen in the testing
machine including the attached extensometer is illustrated in Figure 8.1.1b.

The tensile specimens were machined from various positions within the U900-1 com-
ponent according to a predefined extraction plan. All details on the U900-1 component
and the applied HPDC alloy Castasil-37 can be found in Chapter 7.1. The extraction plan
was chosen according to the underlying casting system, see Figure 7.1.1d. A technical
drawing of the unfolded U900-1 component is presented in Figure 8.1.2. The component
is theoretically divided into the five parts Inlet Flange (IF), Inlet Web (IW), Big Flange (BF),
Outlet Web (OW) and Outlet Flange (OF). Part IF is the part where the gates are located and
part OF is the part where the vacuum channels are located. Here, the specimens were only
machined from thin-walled parts with an approximate thickness of 2.5 mm. Further, the
same extraction plan was applied to several U900-1 components. Through this sampling
approach, it was possible to analyse the influence of the extraction position as well as the
local scatter (within an extraction position) on the material tensile behaviour. Moreover,
specimen geometries with different gauge volumes were investigated in order to analyse
any size effects.
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(a) Technical drawing of a flat tensile specimen
and the applied uniaxial tensile test set-up.

(b) Image of a moun-
ted specimen with
clip-on extensometer.

Figure 8.1.1: Technical drawing and image of the applied uniaxial tensile test set-up.

8.1.2 Mechanical Analysis

The above described test set-up provides the force-elongation curve of a uniaxial tensile
test. The applied force F on the specimen is measured by the testing machine and the
elongation�l of the gauge section is measured by the extensometer. In Figure 8.1.3a, a
typical force-elongation curve of a metal is presented. Stress-strain curves can be con-
structed from the force-elongation curve and, as a result, basic information of strength
and ductility of the underlying material is provided. In the present work, the mechan-
ical analysis of a uniaxial tensile test is based on the one presented in the ASM Handbook
Volume 8 [69]. A brief description is presented in the following.

The engineering stress s is given by the relation of force F and initial cross-sectional
area A0 (of the gauge section),

s =
F

A0
. (8.1.1)

The engineering strain e is given by the relation of elongation�l and initial gauge length
l 0,

e =
�l

l 0
=

l − l 0

l 0
(8.1.2)

where l denotes the displaced gauge length. Figure 8.1.3b shows the engineering stress-
strain curve derived from the current force-elongation curve. Since engineering stress s
and engineering strain e are derived by dividing force F and elongation �l by constant
factors, the engineering stress-strain curve has the same shape as the force-elongation
curve.

The engineering stress-strain curve given in Figure 8.1.3b is representative for most
common metal alloys. The curve can be separated into an elastic region and a plastic
region. In the elastic region, stress s is linearly proportional to strain e . When stress s
exceeds the yield stress, the deformations become plastic and the material hardens. Con-
sequently, stress s increases with increasing strain e until the tensile strength at peak force
is reached. During material hardening, the cross-sectional area decreases uniformly due
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Figure 8.1.2: Definition of U900-1 component parts (unfolded geometry).
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Figure 8.1.3: Mechanical analysis of the result obtained from a uniaxial tensile test.

to the conservation of volume during plastic flow, also known as Poisson effect, and the
stress distribution is nearly uniform within the gauge section. In case of metals, small
elastic strains are assumed. When the tensile strength is reached, the material behaviour
becomes unstable due to diffuse necking. The stress distribution localises in the weakest
point of the gauge section and a neck develops. As a result, the cross-sectional area in the
neck decreases more quickly than in other parts of the gauge section. Consequently, stress
s decreases with increasing strain e until the specimen fractures.

According to metal plasticity, engineering strain e can be additively decomposed into
an elastic part e e l and a plastic part e p l ,

e = e e l + e p l (8.1.3)

where e e l � e p l is expected. The elastic strain e e l is given by Hooke’s law

e e l =
s

E
(8.1.4)

where E denotes Young’s modulus. Based on this, the engineering stress-strain curve is
characterised through the following quantities:

– Offset yield stress Rp 0.2: The stress which corresponds to a plastic strain e p l of 0.2 %
is defined as offset yield stress Rp 0.2.

– Tensile strength Rm and uniform strain A g : The stress at peak load is defined as
tensile strength Rm and the corresponding plastic strain is uniform strain A g .
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– Fracture strength R f and fracture strain A f : The stress at fracture initiation is defined
as fracture strength R f and the corresponding plastic strain is fracture strain A f .

In Figure 8.1.3b, these quantities are highlighted.
The engineering stress-strain curve is based on initial cross-sectional area A0 and initial

gauge length l 0. However, gauge length l and cross-sectional area A change continuously
during tensile loading. When the point of diffuse necking is reached, cross-sectional area
A decreases rapidly and the load required to continue deformation falls off. Consequently,
engineering stress s decreases beyond the point of diffuse necking. Actually, the flow stress
increases until fracture initiation due to strain hardening. This means that the true stressσ
required to continue deformation should also increase. Hence, the measurement of true
stress σ is based on the actual cross-sectional area A and increases continuously until
fracture initiation. The corresponding strain measurement is based on the actual gauge
length l and is called true strain or logarithmic strain ε.

True strain ε can be determined directly from engineering strain e according to

ε = ln

�

l

l 0

�

= ln (1+ e ) . (8.1.5)

True stressσ is given by the relation

σ=
F

A
. (8.1.6)

Due to nearly plastic incompressibility of metals, the volume is considered to remain con-
stant during loading, so that

A0l 0 = Al . (8.1.7)

Here, the elastic volume change is neglected due to the small elastic strains in metals. As
a result, true stress σ can be expressed in terms of engineering stress s and engineering
strain e ,

σ=
F

A0

l

l 0
= s (1+ e ) . (8.1.8)

It is noted that a uniform strain distribution along the gauge section is assumed in Equa-
tion (8.1.5) and Equation (8.1.8). As already mentioned, the strain distribution localises
within the gauge section when the point of diffuse necking is reached. The extensometer
measures the elongation of the entire gauge section. Hence, the elongation is measured in
an averaged manner. This is correct as long as the strain distribution is uniform within the
gauge section. Hence, Equation (8.1.5) and Equation (8.1.8), respectively, are only applic-
able until the point of diffuse necking. In Figure 8.1.3c, the engineering stress-strain curve
(red) and the corresponding true stress-strain curve (blue) are compared. It is seen that
the true stress-strain curve is always to the left. It is noted that the force is measured in
terms of a cross-section force. This means that the force equals the resultant force of the
stress distribution on the cross-section and the particular stress state in a material point
is unknown.

The hardening curve can be derived from the true stress-strain curve. According to
Equation (8.1.3) and Equation (8.1.4), the true plastic strain εp l can be expressed as

εp l = ε−
σ

E
. (8.1.9)

The graph of true stress σ versus true plastic strain εp l is called hardening curve. The
hardening curve derived from the current true stress-strain curve is given in Figure 8.1.3d.
The hardening curve is usually described by a mathematical expression, see Chapter 4.1.5,
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and the respective hardening coefficients are identified from curve fitting. In the present
work, the physically based two-terms Voce rule is applied,

σY

�

εp l
�

=σ0+
2
∑

i=1

Qi

�

1−exp
�

−Ci ε
p l
��

(8.1.10)

where the hardening coefficients σ0, Q1, C1, Q2 and C2 can be found from a least-squares
curve fit. In Figure 8.1.3d, an experimental hardening curve (blue) and a fitted two-terms
Voce rule (green) are compared. For further information on the mechanical analysis of
uniaxial tensile tests, it is referred to the book by Lemaitre and Chaboche [74] and the
ASM Handbook Volume 8 [69].

Based on a uniaxial tensile test, the material ductility can be measured by the true strain
at fracture initiation ε f r which can be estimated by

ε f r = ln

�

l f r

l 0

�

(8.1.11)

where l f r denotes the gauge length at fracture initiation. Consequently, the true plastic

strain at fracture initiation εp l
f r can be estimated using Equation (8.1.9) and Equation (8.1.10),

ε
p l
f r = ε f r −

σY

�

ε
p l
f r

�

E
. (8.1.12)

In the present work, the material ductility is measured according to the Cockcroft-Latham
criterion given in Equation (4.3.23). The critical value Wc can be found by integration of

Equation (8.1.10) and the evaluation of the integral between εp l = 0 and εp l = εp l
f r , so that

Wc =
ˆ εp l

f r

0
σY

�

εp l
�

d εp l . (8.1.13)

The mechanical analysis of a uniaxial tensile test is summarised in Figure 8.1.4. It is
noted that the hardening coefficients σ0, Q1, C1, Q2 and C2 were found from a least-

squares curve fit using gnuplot [115] and the values for εp l
f r and Wc were numerically com-

puted using MATLAB [83].
As already mentioned, the above presented measurements including the measurements

of the material ductility by Equation (8.1.11), Equation (8.1.12) and Equation (8.1.13) are
based on the force measured by the testing machine and the elongation measured by the
extensometer. Hence, these measurements are correct as long as the strain distribution is
uniform within the gauge section. When the point of diffuse necking is reached and the
strain distribution localises, these quantities are computed in an averaged manner (espe-
cially the measurements of the material ductility) and are no longer representative for a
material point. The numerical study discussed in Chapter 4.3.5 showed that critical value
Wc computed according to Equation (8.1.13) is equivalent to the average of all values of
the W distribution within the gauge section at fracture initiation. This means that critical
value Wc represents an averaged critical value which is directly related to the volume of
the gauge section. This implies that the material within the gauge section fails when the
averaged loading reaches a critical value. Consequently, the above presented measure-
ments are primary measurements related to the volume of the gauge section. Moreover,
the tensile specimens made of the HPDC alloy Castasil-37 in casting condition (F) were
expected to fail without distinct necking and, consequently, the above presented meas-
urements can be used without any concern.
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�

�

�

�

1. Force-displacement curve F
�

�l
�

:

(a) Force obtained from testing machine: F

(b) Elongation measured by extensometer: �l = l − l 0

2. Engineering stress-strain curve s (e ):

(a) Engineering strain: e = l−lo

l 0

(b) Engineering stress: s = F
A0

3. Mechanical quantities
�

Rp 0.2, Rm , R f , A g , A f

�

:

(a) Engineering plastic strain: e p l = e − s
E

(b) Offset yield stress: Rp 0.2 = s
�

e p l = 0.002
�

(c) Tensile strength and uniform strain: Rm (Am ) =max
�

s
�

e p l
��

(d) Fracture strength and fracture strain: R f

�

A f

�

= s
�

max
�

e p l
��

4. True stress-strain curveσ (ε):

(a) True strain: ε = ln (1+ e )

(b) True stress: σ= s (1+ e )

5. Hardening curveσ
�

εp l
�

and Voce ruleσY
�

εp l
�

:

(a) True plastic strain: εp l = ε− σ
E

(b) Voce rule (two-terms): σY
�

εp l
�

=σ0+
∑2

i=1Qi
�

1−exp
�

−Ci εp l
��

(c) Hardening parameters: σY
�

εp l
�

≡σ
�

εp l
�

→ [σ0, Qi , Ci ]

6. Cockcroft-Latham failure parameter Wc :

(a) True failure strain: ε f r = ln
�

l f r

l 0

�

(b) True plastic failure strain: εp l
f r = ε f r −

σY

�

ε
p l
f r

�

E

(c) Cockcroft-Latham parameter: Wc =
´ εp l

f r

0 σY
�

εp l
�

d εp l

Figure 8.1.4: Mechanical analysis of the result obtained from a uniaxial tensile test.
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8.1.3 Statistical Analysis

The sampling approach applied in the present work provided samples generated from
various extraction positions within the U900-1 component. A sample consists of all uni-
axial tensile specimens which were machined from the same position. This implies that
the number of samples equals the number of extraction positions and the size of a sample
equals the number of components which were used for testing. The tensile test results
obtained from specimens of the same sample as well as the measurements derived from
these enables to quantify the sample. As a result, a database is generated for an extensive
statistical analysis. The main objective of the statistical analysis is to study the influence
of casting process and casting defects on the material failure behaviour. It is expected
that the material failure behaviour is most affected by casting defects. Hence, the statist-
ical analysis is restricted to measurements of critical value Wc . This means that a sample
is given by the n critical values W i

c obtained from the n specimens which belong to this
sample. The statistical analysis applied in the present work is presented in the following.

The first objective of the statistical analysis is the identification of areas in the U900-1
component with comparable material failure behaviour. Here, samples generated from
different extraction positions are analysed through statistical hypothesis testing. In the
following, the applied approach of statistical hypothesis testing is presented. The basics
of statistical hypothesis testing were already introduced in Chapter 3.6.

Two samples are compared through F -test and t -test. The t -test is used to check if
two sample means are equal and requires that both samples follow normal distributions
with equal variances. The F -test is used to check if two sample variances are equal and
requires that both samples follow normal distributions. If the null hypothesis of F -test as
well as the null hypothesis of t -test are not rejected, it can be assumed that both samples
are drawn from the same population with normal distribution. If at least one sample does
not follow a normal distribution or the null hypothesis of F -test or the null hypothesis of
t -test are rejected, the nonparametric two sample K S-test is used. If the null hypothesis
of K S-test is not rejected, it can be assumed that both samples are drawn from the same
population, but the distribution of the population is different from a normal distribution.
If more than two samples are statistically analysed, Bartlett’s test and one-way ANOVA are
used. The one-way ANOVA is used to check if all sample means are equal and requires
that all samples follow normal distributions with equal variances. The Bartlett’s test is
used to check if all sample variances are equal and requires that all samples follow nor-
mal distributions. If the null hypothesis of Bartlett’s test as well as the null hypothesis of
one-way ANOVA are not rejected, it can be assumed that all samples are drawn from the
same population with normal distribution. If at least one sample does not follow a nor-
mal distribution or the null hypothesis of Bartlett’s test or the null hypothesis of one-way
ANOVA are rejected, the nonparametric Kruskal-Wallis test is used. If the null hypothesis
of Kruskal-Wallis test is not rejected, it can be assumed that all samples are drawn from
the same population, but the distribution of the population is different from a normal dis-
tribution. The Anderson-Darling test for normality is used to check if it can be assumed
that a sample follows a normal distribution. In the present work, the statistical toolbox im-
plemented in MATLAB [84] was applied, see Chapter 3.6.6, and all hypothesis tests were
performed with a significance level of 5%. However, Anderson-Darling test for normal dis-
tributions (ADN -test) and Anderson-Darling test for Weibull distributions (ADW -test) are
not implemented yet. Hence, these hypothesis tests were implemented as user-defined
functions according to the procedure presented in Chapter 3.6.5:

– Anderson-Darling tests for normal distributions (ADN -test) of sample X :
�

H,p
�

= adtestn (X)
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Statistical Hypothesis Testing of Two Samples X1 and X2

Case Samples ADN -Test A ADN -Test B F -Test t -Test K S-Test
# A B H0 p H0 p H0 p H0 p H0 p
1 X1 X2 0 0.71 0 0.53 0 0.62 0 0.80 0 0.88
2 X1 X2 0 0.71 0 0.62 0 0.04 0 0.71 1 0.02
3 X1 X2 0 0.71 1 0.02 0 0.17 0 0.53 0 0.44

Table 8.1.1: Statistical hypothesis testing of two samples X1 and X2: Results of ADN -
test, F -test, t -test and K S-test (significance level α= 0.05).

– Anderson-Darling tests for Weibull distributions (ADW -test) of sample X :
�

H,p
�

= adtestw (X)

The syntax of these functions follows the usual syntax of hypothesis tests in MATLAB [84].
The presented approach of statistical hypothesis testing is summarised in the flow chart

given in Figure 8.1.5. According to this flow chart, the outcome of a statistical analysis of
two samples X1 and X2 is shown in Table 8.1.1 for three different cases. If a hypothesis test
is rejected at a significance level ofα= 0.05, the result is highlighted in bold and the results
of the hypothesis tests which depend on this result are crossed out. The outcome of each
case can be concluded as follows:

– Case #1: The null hypothesis is not rejected for any test. It can be assumed that the
two samples X1 and X2 are drawn from the same population with normal distribu-
tion.

– Case #2: The null hypothesis of the F -test is rejected at a significance level of α =
0.05. Consequently, the t -test cannot be used. Further, the null hypothesis of the
K S-test is rejected at a significance level of α= 0.05. It can be assumed that the two
samples X1 and X2 are drawn from different populations, but these are normally
distributed.

– Case #3: The null hypothesis of the ADN -test of sample X2 is rejected at a signi-
ficance level of α = 0.05. Consequently, the F -test and the t -test cannot be used.
However, the null hypothesis of the K S-test is not rejected. It can be assumed that
the two samples X1 and X2 are drawn from the same population, but the distribution
of the population is different from a normal distribution.

In the current chapter, the outcome of a statistical analysis is presented according to this
kind of table. However, samples are firstly analysed through box-plots. The box-plot shows
if a statistical analysis between different samples is reasonable, see Chapter 3.5.2. In case
two or more samples (generated from the same specimen geometry) can be assumed to be
drawn from the same population, these are merged together into a new sample for further
analysis.

The second objective of the statistical analysis is the estimation of the underlying dis-
tribution of a sample consisting of measurements of critical value Wc . Therefore, the con-
sidered sample is modified so that the n data values W i

c are sorted in ascending order.
Further, the n corresponding experimental probabilities F i are computed according to
Equation (3.5.12) with parameters a = 0.5 and b = 0.5, so that

F i =
i −0.5

n
. (8.1.14)
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�

�

�

�

1. ADN -test for normality:

(a) Sample X1:
�

H,p
�

= adtestn (X1)
If H= 0
�

p≥ 0.05
�

go to 2(a). If H= 1
�

p< 0.05
�

go to 4(a).

(b) Sample X2:
�

H,p
�

= adtestn (X2)
If H= 0
�

p≥ 0.05
�

go to 2(a). If H= 1
�

p< 0.05
�

go to 4(a).

(c) . . .

(d) Sample Xk :
�

H,p
�

= adtestn (Xk)
If H= 0
�

p≥ 0.05
�

go to 2(a). If H= 1
�

p< 0.05
�

go to 4(a).

2. F -test in case k = 2 or Bartlett’s test in case k > 2 for equal variances:

(a) k = 2:
�

H,p
�

= vartest2 (X1,X2)
If H= 0
�

p≥ 0.05
�

go to 3(a). If H= 1
�

p< 0.05
�

go to 4(a).

(b) k > 2:
�

H,p
�

= vartestn ([X1,X2, . . . ,Xk])
If H= 0
�

p≥ 0.05
�

go to 3(b). If H= 1
�

p< 0.05
�

go to 4(b).

3. t -test in case k = 2 or one-way ANOVA in case k > 2 for equal means:

(a) k = 2:
�

H,p
�

= ttest2 (X1,X2)
If H= 0
�

p≥ 0.05
�

it can be assumed that the samples are drawn from
the same population with normal distribution. If H= 1

�

p< 0.05
�

go
to 4(a).

(b) k > 2:
�

H,p
�

= anova1 ([X1,X2, . . . ,Xk])
If H= 0
�

p≥ 0.05
�

it can be assumed that the samples are drawn from
the same population with normal distribution. If H= 1

�

p< 0.05
�

go
to 4(b).

4. Non-parametric K S-test in case k = 2 or non-parametric Kruskal-Wallis
test in case k > 2:

(a) k = 2:
�

H,p
�

= kstest2 (X1,X2)
If H= 0
�

p> 0.05
�

it can be assumed that the samples are drawn from
the same population. If H= 1

�

p< 0.05
�

it can be assumed that the
samples are drawn from different populations.

(b) k > 2:
�

H,p
�

= kruskalwallis ([X1,X2, . . . ,Xk])
If H= 0
�

p> 0.05
�

it can be assumed that the samples are drawn from
the same population. If H= 1

�

p< 0.05
�

it can be assumed that the
samples are drawn from different populations.

Figure 8.1.5: Approach of statistical hypothesis testing of k samples Xi at a signific-
ance level of α= 0.05 using MATLAB [84].
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The n pairs
�

W i
c , F i

�

provide an estimate of the CDF of the underlying distribution. It
is assumed that a sample follows a weakest-link Weibull distribution in form of the CDF
given in Equation (5.1.57), so that

FW (Wc ) = 1−exp

�

−
V

V0

�

Wc

Wc 0

�m�

(8.1.15)

where the Weibull parameters are scale volume V0, scale failure parameter Wc 0 and Weibull
modulus m . Scale volume V0 as well as considered volume V are set to the gauge volume of
the applied specimen geometry. As described in Chapter 5.1.6, scale failure parameter Wc 0

and Weibull modulus m can be identified from a linear curve fit on the n pairs
�

W i
c , F i

�

given in a Weibull plot. In the present work, the least-squares method implemented in
gnuplot [115]was applied to identify the Weibull parameters. The quality of the fit is meas-
ured by the coefficient of determination, see Equation (3.5.19). Moreover, the assumption
that a sample follows a Weibull distribution is checked through ADW -test. It is noted that
ADN -test and ADW -test can lead to the result that a sample follows a normal distribution
as well as a Weibull distribution. This is due to the fact that the shape of both distributions
can be similar as seen in Figure 3.3.7.

The third objective of the statistical analysis is to proof if the gauge volume influences
the material ductility according to the weakest-link approach, see Chapter 5.1.2. Here, two
samples generated from equivalent extraction positions but from specimens of different
gauge volumes are compared as described in Chapter 5.1.6. A graphical comparison of
the samples in a Weibull plot shows if the samples are generated from a material which
shows a volume dependence according to the weakest-link approach. Furthermore, the
two samples are compared through two sample hypothesis tests. If this analysis leads to
the assumption that the two samples are drawn from different populations, it is a further
indication that the considered material shows a volume dependence. Then, the paramet-
ers m , f c 0 and V0 can be found from a least-square fit on both samples according to the
approach presented in Chapter 5.1.6. The best fit of these parameters is found when the
sum of residuals, Equation (5.1.59), reaches a minimum. In the present work, the Nelder-
Mead method implemented in MATLAB [83]was applied to find the minimum.

8.2 Material Characterisation I

The investigation of the mechanical behaviour and the analysis of the influence of the
casting process on the material ductility are the objectives of the first material character-
isation. Uniaxial tensile specimens of the same geometry were machined from different
extraction positions within the U900-1 component. The applied specimen geometry is
denoted as UT80 and is illustrated in Figure 8.2.1. The extraction plan of the specimens
and the corresponding labelling system can be found in Figure B.1.2 and Figure B.1.3 of
Appendix B.1. It is seen that the specimens were machined from the five characteristic
parts IF, IW, BF, OW and OF on the locations Left (L), Middle (M) and Right (R). Further,
specimens were machined from a total of five components according to this extraction
plan. Each specimen can be clearly identified by its label consisting of

Component Number − Characteristic Part − Location
[1, 2, 3, 4, 5] − [IF, IW, BF, OW, OF] − [L, M, R]

.

In summary, samples of five specimens were generated from 15 extraction positions. Par-
allel tensile tests were carried out on these 75 specimens using the test set-up given in
Figure 8.1.1. Each test result was analysed according to the procedure presented in Figure



8.2 MATERIAL CHARACTERISATION I 161

7.5
7.5

253010 9 6

R6

155

80

[mm]

⌀6

Figure 8.2.1: Uniaxial tensile test specimen UT80 (t = 2.5 mm).

8.1.4. Furthermore, the measurements of critical value Wc were statistically analysed as
described in Chapter 8.1.3. The results of the two analyses are presented and discussed
in the following. In addition, the result of a microstructural study on the identification of
casting defects is shown. Finally, the conclusions obtained from the first material charac-
terisation are summarised.

8.2.1 Mechanical Analysis

The engineering stress-strain curves obtained from UT80 specimens machined from each
extraction position of a U900-1 component (component #1) are compared in Figure 8.2.2.
The curves are coloured according to the five parts: Curves obtained from specimens ma-
chined from part IF are plotted in red, curves obtained from specimens machined from
part IW in green, curves obtained from the specimens machined from part BF in blue,
curves obtained from specimens machined from part OW in magenta and curves obtained
from specimens machined from part OF in cyan. Since three specimens were machined
from each part (location L, location M and location R), three curves are shown for each
part. It is seen that the stress-strain behaviour is not reproducible within the same com-
ponent. Especially, the fracture strain shows a strong variation between the different ex-
traction positions. The fracture strain obtained from specimens machined from part OW
and part OF is generally smaller than the fracture strain obtained from specimens ma-
chined from part IF and part IW. Moreover, the fracture strain obtained from specimens
machined from the same part shows a strong variation, too. In contrast, the variation in
the strain hardening behaviour is much smaller than the variation in the fracture strain.
The results obtained from the remaining four components lead to the same conclusions,
see Figure B.2.1 of Appendix B.2.

In Figure 8.2.3, the engineering stress-strain curves obtained from the 75 specimens
machined from a total of five components are presented. The figure consists of five graphs,
each showing the curves obtained from specimens machined from the same part. Each
graph is structured identically: The curves obtained from specimens machined from loca-
tion L are plotted in green, the curves obtained from specimens machined from location M
in blue and the curves obtained from specimens machined from location R in magenta. It
becomes obvious that the fracture strain cannot be reproduced from specimens machined
from the same extraction position. Moreover, the fracture strain scatters independently
of the extraction position. However, the strain hardening behaviour obtained from spe-
cimens machined from the same part is comparable within each part. The specimens
showing the most ductile behaviour can be found in part IF, Figure 8.2.3a, part IW, Figure
8.2.3b, and part BF, Figure 8.2.3c, but these parts also contain specimens showing a poor
material ductility. The results obtained from part OW, Figure 8.2.3d and part OF, Figure
8.2.3e, are obtained only from specimens showing a poor material ductility. It can be ob-
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Figure 8.2.2: Engineering stress-strain curves obtained from UT80 specimens ma-
chined from an U900-1 component (component #1).

served that specimens showing a poor material ductility failed before the point of diffuse
necking was reached.

The mechanical quantities Rp 0.2, Rm , R f , A g and A f as well as critical value Wc were
measured from each tensile test result. The measurements of these quantities are sum-
marised in tables given in Appendix B.2. The experimental average and the experimental
Coefficient Of Variation (COV), see Equation (3.5.3), of the measured quantities were com-
puted separately for each part. In Figure 8.2.4a, the averages and the COVs of Rp 0.2 (grey),
Rm (blue) and R f (green) are compared using a double bar plot. The averages are given in
the upper bar plot and the corresponding COVs are given in the lower bar plot. Here, the
most interesting fact to notice is that the average of Rm is slightly larger than the average
of R f in part IF, part IW and part OW, whereas these averages are almost identical in part
OW and part OF. The comparison of the corresponding COVs shows a maximum value of
approximately 8% which is acceptable in terms of experimental testing. In contrast, the
comparison of the averages and the COVs of A g (blue) and A f (green) are more interesting,
see Figure 8.2.4b. It is seen that the averages of A g are comparable in part IF, part IW, and
part BF as well as in part OW and part OF. However, the averages of A f are much smaller in
part OW and part OF than in part IF, part IW and part BF. The average of A f is larger than
the average of A g in part IF, part IW and part BF. This indicates a ductile material beha-
viour in the specimens machined from these parts. The averages of A g and A f are nearly
identical in part OW and part OF. This indicates that most specimens machined from these
parts failed before the point of diffuse necking was reached. The comparison of the COVs
of A f shows a minimum value of approximately 20% in part BF and a maximum value of
more than 40% in part OW. Accordingly, the COVs of A g show same critical values. It is reas-
onable that the measurements of A f were dominated by casting defects, see Chapter 2.3.
The difference in the averages of A f in the inlet parts, part IF and part IW, and the outlet
parts, part OW and part OF, confirms the assumption that the casting systems has a ma-
jor influence on the distribution of casting defects (global systematic variation of casting
defects). Further, the high values of the COVs of A f in each part confirms the assump-
tion that casting defects are also pseudo-randomly distributed (pseudo-random variation
of casting defects). Moreover, these results explains the fact that the U900-1 components
subjected to bending loading failed first in the vacuum part, part OW and part OF, and
the strong scatter in bending test results becomes reasonable, see Chapter 7.2.2. More de-
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(b) Part IW.
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(c) Part BF.
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(d) Part OW.
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Figure 8.2.3: Engineering stress-strain curves obtained from UT80 specimens ma-
chined from five U900-1 components presented according to the extraction position.
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Figure 8.2.4: Averages and COVs of the measured mechanical quantities obtained
from UT80 specimens machined from five U900-1 components.

tailed bar plots with comparison of the locations L, M and R are given in Figure B.2.4 and
Figure B.4.2 of Appendix B.2.

In the following, the measurements of Rm and R f as well as A g and A f are used to
identify specimens which failed before the point of diffuse necking was reached. The en-
gineering stress-strain curve obtained from the most ductile specimen is given in Figure
8.2.5a. It is seen that the measurement of R f is smaller than the one of Rm and the meas-
urement of A g is smaller than the one of A f . The engineering stress-strain curve obtained
from the least ductile specimen is given in Figure 8.2.5b. Since the specimen failed be-
fore the point of diffuse necking was reached, the measurements of Rm and R f as well
as the measurements of A g and A f are identical. Based on these observations, a simple
and effective method to identify specimens showing diffuse necking is the comparison
of the measurements Rm and R f as follows: If the measured Rm is larger than 101% of
the measured R f , it can be concluded that the considered specimen failed beyond the
point of diffuse necking. In Figure 8.2.5c, the measurements of Rm and R f are presented
as red and blue data points in a scatter plot. If the measured Rm is larger than 101% of
the measured R f the considered data point is coloured in blue and, alternatively, the con-
sidered data point is coloured in red. In addition, a straight line through the origin with
unit slope is given in the scatter plot. It is seen that the red data points lie along this line
which implies that the measurements of Rm and R f are almost identical. Accordingly, the
measurements of A g and A f are presented as red and blue data points in a scatter plot
given in Figure 8.2.5d. A data point is coloured in blue when the corresponding measure-
ments of Rm and R f are different

�

Rm > 1.01 ·R f

�

. A data point is coloured in red when

the corresponding measurements of Rm and R f are almost identical
�

Rm ≤ 1.01 ·R f

�

. It
is seen that the red data points lie along a straight line through the origin with unit slope.
This indicates that the red data points are obtained from specimens which failed before
the point of diffuse necking was reached. Consequently, the blue data points are obtained
from specimens which failed beyond the point of diffuse necking was reached. Based on
this approach, it is concluded that 49 out of 75 specimens (65.33%) failed before the point
of diffuse necking was reached.

Representative images of fractured UT80 specimens machined from each extraction
position are presented in Figure 8.2.6. The corresponding measured fracture strain is given
in the subfigure title. It is seen that the fracture surfaces are characterised by a rough tex-
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(a) Engineering stress-strain curve
obtained from the most ductile
specimen (1-IW-M).
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(b) Engineering stress-strain curve
obtained from the least ductile spe-
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 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.22  0.24  0.26  0.28  0.3  0.32

F
ra

c
tu

re
 S

tr
e
n
g
th

 R
f 
[k

N
/m

m
2
]

Tensile Strength Rm [kN/mm
2
]

Specimens w/o Necking
Specimens w/ Necking

(c) Scatter plot: R f versus Rm .

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0  0.03  0.06  0.09  0.12  0.15

F
ra

c
tu

re
 S

tr
a
in

 A
f 
[-

]

Uniform Strain Ag [-]

Specimens w/o Necking
Specimens w/ Necking
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Figure 8.2.5: Engineering stress-strain curves obtained from the most ductile spe-
cimen and the least ductile specimen and scatter plots of the measured mechanical
quantities obtained from UT80 specimens machined from five U900-1 components.

ture with visible sharp irregularities. Furthermore, it is seen that the fractured specimens
do not show large plastic deformations or necking before fracture has initiated. Actually,
the fractured specimens with a measured fracture strain larger than 0.10 do not show any
distinct necking. Besides, the fractured specimens with a measured fracture strain smal-
ler than 0.10 are characterised by a fracture surface which is almost normal to the applied
tensile loading. This is characteristic for quasi-brittle materials.

8.2.2 Statistical Analysis

The objective of the statistical analysis is the identification of extraction positions with
comparable material behaviour. The tensile test results demonstrated that, especially, the
material ductility exhibits a strong variation. Therefore, the statistical analysis is based
on measurements of critical value Wc . Here, a sample consists of the measurements of
Wc obtained from specimens machined from the same extraction position. These fifteen
samples were analysed through hypothesis testing according to the flow chart given in
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(a) Specimen 2-IF-L
�

A f = 0.14
�

.
(b) Specimen 1-IF-M
�

A f = 0.08
�

.
(c) Specimen 3-IF-R
�

A f = 0.08
�

.

(d) Specimen 5-IW-L
�

A f = 0.13
�

.
(e) Specimen 2-IW-M
�

A f = 0.13
�

.
(f ) Specimen 1-IW-R
�

A f = 0.12
�

.

(g) Specimen 4-BF-L
�

A f = 0.10
�

.
(h) Specimen 1-BF-M
�

A f = 0.07
�

.
(i) Specimen 2-BF-R
�

A f = 0.12
�

.

(j) Specimen 1-OW-L
�

A f = 0.07
�

.
(k) Specimen 3-OW-M
�

A f = 0.02
�

.
(l) Specimen 5-OW-R
�

A f = 0.02
�

.

(m) Specimen 2-OF-L
�

A f = 0.06
�

.
(n) Specimen 4-OF-M
�

A f = 0.04
�

.
(o) Specimen 1-OF-R
�

A f = 0.05
�

.

Figure 8.2.6: Images of fractured UT80 specimens machined from the fifteen extrac-
tion positions of the U900-1 component.
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Uniaxial Tensile Test Specimen UT80 /Wc
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Samples ADN -Test A ADN -Test B F -Test t -Test K S-Test
A B H0 p H0 p H0 p H0 p H0 p

IF-L IF-R 0 0.43 0 0.36 0 0.66 0 0.50 0 0.70
IW-L IW-R 0 0.27 0 0.08 0 0.49 0 0.08 0 0.21
BF-L BF-R 0 0.10 1 0.05 0 0.88 0 0.62 0 0.21
OW-L OW-R 0 0.62 0 0.67 0 0.81 0 0.90 0 1.00
OF-L OF-R 0 0.42 0 0.42 0 0.64 0 0.82 0 0.70

Table 8.2.1: Statistical hypothesis testing of samples based on measurements of Wc

obtained from UT80 specimens machined from five U900-1 components: Results of
ADN -tests, F -test, t -test and K S-test (significance level α= 0.05).

Figure 8.1.5. In particular, it was analysed which samples can be assumed to be drawn
from the same population. The result of the statistical analysis is presented in Table 8.2.1.
Additionally, the table contains a box-plot of the fifteen samples. Here, the comparison of
the samples obtained from specimens machined from part IF shows that the samples ob-
tained from specimens machined from location L and location R are comparable, whereas
the sample obtained from specimens machined from location M is different. The same
can be observed for the samples obtained from specimens machined from part OW and
part OF, respectively. Hence, only the samples obtained from specimens machined from
location L and location R of the same part were analysed through hypothesis testing. The
null hypothesis cannot be rejected for any test in part IF, part IW, part OW and part OF. The
null hypothesis of ADN -test of sample BF-R is rejected. Consequently, the results obtained
from F -test and t -test of sample BF-L and sample BF-R are invalid. However, the null hy-
pothesis of K S-test of sample BF-L and sample BF-R cannot be rejected. In summary, it
can be assumed that samples obtained from location L and location R of the same part
are drawn from the same population. This means that it can be assumed that the material
failure behaviour is comparable in location L and location R in each part. This result is
reasonable since the underlying U900-1 components were produced in a symmetric cast-
ing system (symmetry in longitudinal direction) as seen in Figure 7.1.1d. However, it is
noted that the result of the statistical analysis is critical since each sample consists of only
five measurements of Wc .

Based on the result of the statistical analysis, the samples obtained from location L and
location R were merged together for each part and these five samples each consisting of
ten measurements of Wc are considered in the following. It is assumed that each sample
follows a Weibull distribution. The corresponding Weibull parameters were estimated ac-
cording to the procedure described in Chapter 8.1.3. Furthermore, the assumption that a
sample follows a Weibull distribution was checked through the ADW -test. In Table 8.2.2,
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Uniaxial Tensile Test Specimen UT80 /Wc
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ADW -Test Weibull Fit
Position H0 p m [−] Wc 0 [kN/mm2] V0

�

mm3
�

R2 [%]

IF-[L, R] 0 0.39 5.39 0.0321 375.00 92.60
IW-[L, R] 1 0.03 4.61 0.0313 375.00 87.19
BF-[L, R] 0 0.72 4.70 0.0298 375.00 97.60
OW-[L, R] 0 0.37 2.41 0.0180 375.00 95.26
OF-[L, R] 0 0.15 5.90 0.0161 375.00 87.53

Table 8.2.2: Weibull analysis of samples based on measurements of Wc obtained
from UT80 specimens machined from five U900-1 components: ADW -test result
(α= 0.05), estimated Weibull modulus m , estimated scaling parameter Wc 0, scaling
volume V0 and coefficient of determination R2.

the estimated Weibull parameters and the ADW -test results are presented. In addition,
the table contains a Weibull plot including the sample data and the estimated Weibull
distribution function (Weibull fit) of each sample. The sample data obtained from part
IF and the corresponding Weibull fit are plotted in red, the sample data obtained from
part IW and the corresponding Weibull fit in green, the sample data obtained from part
BF and the corresponding Weibull in blue, the sample data obtained from part OW and
the corresponding Weibull in magenta and the sample data obtained from part OF and
the corresponding Weibull in cyan. The graphical comparison of the Weibull fits shows
that the results obtained from part IF, part IW and part BF are comparable, whereas the
results obtained from part OW and part OF are significantly different. As seen from the
ADW -tests, it can be assumed that the samples obtained from part IF, part BF, part OW
and part OF follow Weibull distributions. However, the null hypothesis of the ADW -test
is rejected for the sample obtained from part IW. This implies that the sample cannot be
assumed to follow a Weibull distribution. It is noted that the coefficient of determination
R2 is above 80% for all Weibull fits which indicates a high fit quality, but the ADW -test is
still meaningful. The scale volume V0 for each sample was set to the gauge volume of the
UT80 specimen, see Figure 8.2.1. As already mentioned, these results are critical due to
the small sample sizes.
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CT Scan Area

(a) Definition of the CT scan area within a U900-1 component.
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(c) CT scan of U900-1
component #2 show-
ing porosity.
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(d) CT scan of U900-1
component #3 show-
ing porosity.

Figure 8.2.7: Identification of casting defects in form of porosity using CT scanning
of the middle section of three U900-1 components.

8.2.3 Identification of Casting Defects

The material ductility in aluminium HPDC components is dominated by casting defects,
see Chapter 2.3. Hence, a microstructural study on the identification of casting defects
was carried out using Computed Tomography (CT) scanning and Scanning Electron Mi-
croscopy (SEM). In the following, the results of the microstructural study are presented.

Three U900-1 components were investigated through CT scanning. The middle sec-
tion of each component was scanned. The scan area is highlighted in Figure 8.2.7a. It
is noted that CT scanning shows differences in density of the considered object. For in-
stance, porosity in a metallic structure can be detected by CT scanning. The results of the
three CT scans are presented in Figure 8.2.7b, Figure 8.2.7c and Figure 8.2.7d. Here, pores
with a volume larger than 1.0 mm3 are coloured. It is seen that most of these pores were
found in the ejector domes. Since these are very thick walled, it is suggested that these
pores are shrinkage and gas pores. However, the resolution of the CT scans do not show
any pore in thin walled parts.

Therefore, a selection of fractured UT80 specimens machined from thin walled parts
were analysed through SEM. Casting defects of different sizes were identified from the
fracture surfaces and captured in images of high resolution. The results are illustrated
in Figure 8.2.8 and the identified casting defects are highlighted in red. According to the
work by Teng et al. [105], casting defects were found in form of shrinkage pores and initial
cracks. Typical shrinkage pores are shown in Figure 8.2.8a and Figure 8.2.8b. Sharp initial
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cracks are shown in Figure 8.2.8c and Figure 8.2.8d. As seen in the work by Dai et al. [23], it
is suggested that these cracks were caused by oxide films. Besides shrinkage pores and ini-
tial cracks, other microstructural irregularities were found on the fracture surfaces. Theses
are shown in Figure 8.2.8e and Figure 8.2.8f. It is seen that castings defects were found in
fractured specimens obtained from different extraction positions. Here, a detailed micro-
scopic examination of all fractured specimens is required to identify a correlation between
casting defect and extraction position. However, it can be summarised that these casting
defects are the leading factor causing the global systematic variation and the local pseudo-
random variation in the material ductility.

8.2.4 Concluding Remarks

The results of the first material characterisation can be concluded as follows:

– The material ductility of the HPDC alloy Castasil-37 in casting condition (F) was
analysed using uniaxial tensile specimens machined from various extraction posi-
tions of the U900-1 component. The material ductility was measured from the test
results and showed a strong variation. The material ductility varied within the same
component as well as within duplicated extraction positions.

– The material ductility obtained from specimens machined from the vacuum part
of the U900-1 component (part OW and part OF) was much lower than the mater-
ial ductility obtained from specimens machined from the gating part of the U900-1
component (part IW and part IF). However, the material ductility varied pseudo-
randomly within all parts.

– The experimental results showed that the spatial variation in the material ductil-
ity is systematic. It can be assumed that this systematic variation was caused by
the applied casting system. In contrast, the observed local variation in the material
ductility can be described as pseudo-random. It is suggested that this local pseudo-
random variation was caused by fluctuations during the casting process. In sum-
mary, the results of the first material characterisation showed that the variation in
the material ductility can be separated into a global systematic variation depending
on the casting system and a local pseudo-random variation depending on fluctu-
ations during the casting process.

– The result of the statistical analysis confirmed that the symmetric casting system of
the U900-1 component caused symmetrically distributed material properties within
the U900-1 component. It was shown that the local distributions of the material
ductility measured by critical value Wc can be described by Weibull distributions.
However, it is important to notice that the database generated from the applied
sampling approach was too small for a reliable statistical analysis.

– The detailed analysis of the measured mechanical quantities led to the conclusion
that most specimens failed before the point of diffuse necking was reached. The
images of fractured specimens showed that most of the specimens failed without
any large plastic deformation and diffuse necking. Moreover, the microstructural
study confirmed that casting defects are the leading factor causing failure.
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(a) SEM image of a shrinkage pore
on the fracture surface of tensile
specimen 1-IF-M.

(b) SEM image of a shrinkage pore
on the fracture surface of tensile
specimen 2-BF-R.

(c) SEM image of an initial crack on
the fracture surface of tensile speci-
men 2-IW-M.

(d) SEM image of an initial crack on
the fracture surface of tensile speci-
men 1-OW-L.

(e) SEM image of a microstructural
irregularity on the fracture surface
of tensile specimen 5-OW-R.

(f ) SEM image of a microstructural
irregularity on the fracture surface
of tensile specimen 4-OF-M.

Figure 8.2.8: Identification of casting defects in form of shrinkage pores, initial
cracks and other microstructural irregularities using SEM of fractured UT80 speci-
mens machined from U900-1 components.
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8.3 Material Characterisation II

In the first material characterisation, the general material behaviour of the aluminium
HPDC alloy Castasil-37 was analysed. Here, uniaxial tensile specimens were machined
from different extraction positions of five U900-1 components. The results obtained from
these specimens showed that the material ductility depends on the extraction position
and, further, varies pseudo-randomly within duplicated extraction position. These con-
clusions were checked by statistical hypothesis testing. However, it was mentioned that
the underlying database was too small for a reliable statistical study. Hence, the second
material characterisation is focused on a detailed analysis of the local pseudo-random
variation of the material ductility. Furthermore, the influence of the gauge volume was
analysed. Two uniaxial tensile specimen geometries which are equal in shape but different
in size were investigated, see Figure 8.3.1. The geometry of the small specimen is denoted
as UT75 and the geometry of the large specimen is denoted as UT117. The gauge volume
of the UT117 specimen is approximately 2.38 times larger than the gauge volume of the
UT75 specimen. Both types of specimens were machined from part IW, part BF and part
OW of the U900-1 component. Based on the results of the first material characterisation,
symmetric conditions were expected in longitudinal direction of the U900-1. Therefore,
UT117 specimens were machined from six locations on the left side of the U900-1 com-
ponent and UT75 specimens from six locations on the right side of the U900-1 component.
The extraction plan and the corresponding labelling system can be found in Figure B.3.2
and Figure B.3.3 of Appendix B.3. It is seen that UT75 and UT117 specimens were ma-
chined symmetrically from each part and were machined from a total of six components
according to this extraction plan. Each specimen can be clearly identified by its technical
name, UT75 or UT117, and its label consisting of

Component Number − Characteristic Part − Location
[1, 2, 3, 4, 5, 6] − [IW, BF, OW] − [1, 2, 3, 4, 5, 6]

.

In summary, samples of six specimens were generated from 36 extraction positions within
the U900-1 component. Parallel tensile tests were carried out on these 216 specimens
using the test set-up given in Figure 8.1.1. Each test result was analysed according to the
procedure presented in Figure 8.1.4. Then, an extensive statistical study was performed
on the measurements of critical value Wc as described in Chapter 8.1.3. The results of
both analyses are presented and discussed in the following. Special attention is put on
the comparison of the result obtained from the two specimen geometries. Finally, the
conclusions obtained from the second material characterisation are summarised.

8.3.1 Mechanical Analysis

The engineering stress-strain curves obtained from the 216 specimens machined from a
total of six components are presented in Figure 8.3.2. The figure consists of three graphs
each showing the engineering stress-strain curves obtained from specimens machined
from the same part. Each graph compares the curves obtained from UT75 specimens
(red) and the curves obtained from UT117 specimens (blue). As already seen from the
first material characterisation, the fracture strain cannot be reproduced from specimens
machined from the same part and underlies a local pseudo-randomness. Further, the
measured material ductility is larger in part IW, Figure 8.3.2a, than in part OW, Figure
8.3.2c. A distinct influence of the gauge volume can be found in the curves obtained from
specimens machined from part BF, Figure 8.3.2b. Here, the curves obtained from UT75
specimens reach a larger fracture strain than the curves obtained from UT117 specimens.
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(a) Uniaxial tensile test specimen UT75 (t = 2.5 mm).
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(b) Uniaxial tensile test specimen UT177 (t = 2.5 mm).

Figure 8.3.1: Uniaxial tensile test specimen UT75 and uniaxial tensile test specimen
UT117.

The curves obtained from specimens machined from part IW and part OW do not show
such a clear difference. However, the strain hardening behaviour can be reproduced from
specimens machined from the same part and do not show any dependence on the ap-
plied specimen geometry. In general, these results confirm the results obtained from the
first material characterisation. More comparisons of these curves are given in Figure B.4.1,
Figure B.4.2 and Figure B.4.3 of Appendix B.4.

The mechanical quantities Rp 0.2, Rm , R f , A g and A f as well as the critical value Wc were
measured from each tensile test result. The measurements of these quantities are sum-
marised in tables given in Appendix B.4. The experimental average and the experimental
COV of the measured quantities were computed separately for the two specimen geomet-
ries and for each part. In Figure 8.3.3a, the averages and the COVs of Rp 0.2 (grey), Rm

(blue) and R f (green) are compared in a double bar plot. The averages of Rp 0.2, Rm and
R f obtained from UT75 specimens do not differ significantly from the ones obtained from
UT117 specimens machined from the same part. As already seen, the average of Rm is
slightly larger than the average of R f in part IW and part BF (independent of the speci-
men geometry), whereas the average of Rm and the average of R f are nearly identical in
part OW (independent of the specimen geometry). The comparison of the corresponding
COVs shows a maximum value of approximately 4% which is acceptable in terms of ex-
perimental testing. Furthermore, this slight variations in the measured quantitates Rp 0.2,
Rm and R f indicate a reproducible strain hardening behaviour. In Figure 8.3.3b, the aver-
ages and the COVs of A g (blue) and A f (green) are compared. The results obtained from
specimens machined from part IW are comparable. Here, the average of A f is larger than
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(a) Part IW.
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Figure 8.3.2: Engineering stress-strain curves obtained from UT75 and UT117 spe-
cimens machined from six U900-1 components presented according to extraction
positions.
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the average of A g and both averages are almost independent of the specimen geometry.
The comparison of the corresponding COVs reach values of about 10%. The results ob-
tained from specimens machined from part BF show a clear difference. The average of
A f obtained from UT117 specimens is much smaller than the one obtained from UT75
specimens. Further, the difference between the averages of A g and A f is smaller in the
results obtained from UT117 specimens than in the results obtained from UT75 speci-
mens. The comparison of the corresponding COVs show clearly that the measurements
of A f obtained from UT117 specimens scatter more than the ones obtained from UT75
specimens. The results obtained from specimens machined from part OW show also that
the average of A f obtained from UT117 is smaller than the one obtained from UT75 speci-
mens. Further, the averages of A g and A f reach almost same values within each specimens
geometry. The corresponding COVs reach values of more than 20%. An overall compar-
ison shows that the results obtained from UT75 and UT117 specimens machined from
part IW and from UT75 specimens machined from part BF are comparable in average and
in variation. Accordingly, the results obtained from UT117 specimens machined from part
BF and UT75 and UT117 specimens machined from part OW are comparable. Further, it
is seen that the first group shows more material ductility in average and less variation in
the material ductility than the second group. Finally, the results obtained from specimens
machined from part BF and part OW suggest a dependence on the applied specimen geo-
metry and the gauge volume, respectively. More detailed bar plots with comparison of
averages and COVs obtained from specimens machined from locations 1 to 6 are given in
Figure B.4.6 and Figure B.4.7 of Appendix B.4.

Specimens which failed before the point of diffuse necking are identified using the same
method as in the first material characterisation. The measurements of Rm and R f ob-
tained from UT75 specimens are presented in the scatter plot given in Figure 8.3.4a and
the ones obtained from UT117 specimens in the scatter plot given in Figure 8.3.4c. If the
measured Rm is larger than 101% of the measured R f the considered data point is coloured
in blue and, alternatively, the considered data point is coloured in red. The measurements
of A g and A f obtained from UT75 specimens are presented in the scatter plot given in
Figure 8.3.4b and the ones obtained from UT117 specimens in the scatter plot given in
Figure 8.3.4d. Here, a data point is coloured in blue when the corresponding measure-
ments of Rm and R f are different

�

Rm > 1.01 ·R f

�

. A data point is coloured in red when

the corresponding measurements of Rm and R f are almost identical
�

Rm ≤ 1.01 ·R f

�

. As
already described, it is suggested that red data points are obtained from specimens which
failed before the point of diffuse necking and the blue data points are obtained from speci-
mens which failed beyond the point of diffuse necking. Consequently, 38 out of 108 UT75
specimens (35.19%) and 64 out of 108 UT117 specimens (59.26%) failed before the point
of diffuse necking was reached. This indicates that the UT117 specimens with a gauge
volume larger than the gauge volume of the UT75 specimens tended rather to fail before
the point diffuse necking was reached.

The influence of the extraction positions in longitudinal direction on the measurements
of A f is analysed in the following. In Figure 8.3.5, three graphs, each showing the measure-
ments of A f obtained from specimens machined from the same part, are presented. Each
graph shows the extraction position of the UT117 specimens and the UT75 specimens on
the abscissa and the measured A f on the ordinate. It is noted that the abscissa shows the
location 6 to 1 of the UT117 specimens on the left side and the locations 1 to 6 of the UT75
specimens on the right side. Thus, the measurements of A f are plotted according to the
extraction positions in longitudinal direction of the U900-1 component, see Figure B.3.2
and Figure B.3.3 of Appendix B.3. The measurements of A f obtained from the specimens
machined from the same U900-1 component are uniformly coloured. The results obtained
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Figure 8.3.3: Average and COVs of the measured mechanical quantities obtained
from UT75 and UT117 specimens machined from six U900-1 components.

from specimens machined from part IW are given in Figure 8.3.5a. Here, any dependence
of the extraction position in longitudinal direction and the specimen geometry cannot be
found. The results obtained from specimens machined from part BF are given in Figure
8.3.5b. The influence of the specimen geometry is clearly seen, but any influence of the
extraction position cannot be found, too. The results obtained from specimens machined
from part OW are given in Figure 8.3.5c. Here, a slight increase of the measurements of A f

from location 6 to location 1 of both specimens geometries can be detected. However, an
influence of the specimen geometry cannot be detected. In summary, it can be concluded
that the part has a stronger influence on the measurements of A f than the position of the
extraction position in longitudinal direction.

The influence of the specimen geometry and the gauge volume, respectively, is analysed
using scatter plots of the measurements of A f as seen in Figure 8.3.6. Here, three scatter
plots are illustrated each showing the measurements of A f obtained from specimens ma-
chined from the same part. Each scatter plot shows the measured A f obtained from a
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Figure 8.3.4: Scatter plots of the measured mechanical quantities obtained from
UT75 and UT117 specimens machined from six U900-1 components.

UT75 specimen on the abscissa and the measured A f obtained from a UT117 specimen
on the ordinate. A data point within a scatter plot is given by the measured A f obtained
from a UT75 specimen and the measured A f obtained from a UT117 specimen machined
from the same extraction position at the same U900-1 component. For instance, a data
point is given by the two measurements A f (UT75: 2-OW-4) and A f (UT117: 2-OW-4). This
analysis is based on the conclusions obtained from the experimental results presented in
Figure 8.3.5. In addition, each scatter plot includes a straight line through the origin with
unit slope. Data points which are on the left side to this line are coloured in red and data
points lying on the right side to this line are coloured in blue. This implies that a data
point is coloured in red when the measured A f obtained from a UT75 specimen is smaller
than the measured A f obtained from a corresponding UT117 specimen and a data point
is coloured in blue when the measured A f obtained from a UT75 specimen is larger than
the measured A f obtained from a corresponding UT117 specimen. This means that a
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Figure 8.3.5: Measured fracture strain A f obtained from UT75 and UT117 specimens
machined from six U900-1 components plotted according to extraction positions in
longitudinal direction.
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Figure 8.3.6: Scatter plots of the measured fracture strain A f obtained from UT75
and UT117 specimens machined from six U900-1 components.
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Fracture in the vicinity
of the grinding marks

Figure 8.3.7: Three fractured UT117 specimens machined from part BF of U900-1
components.

blue data point represents a material which shows a dependence on the considered gauge
volume according to the weakest-link approach. The scatter plot of the measured A f ob-
tained from specimens machined from part IW is presented in Figure 8.3.6a. It is seen that
only 11 out of 36 data points (30.56%) are coloured in blue. In contrast, the scatter plot of
the measured A f obtained from specimens machined from part BF shows that 35 out of
36 data points (97.22%) are coloured in blue, see Figure 8.3.6b. Further, the scatter plot of
the measured A f obtained from specimens machined from part OW shows that 24 out of
36 data points (66.76%) are coloured in blue, see Figure 8.3.6c.

Based on the above presented analyses, the results obtained from specimens machined
from part BF are considered as critical. The measured A f obtained from UT117 specimens
is much more smaller than the measured A f obtained from UT75 specimens. In compar-
ison to the results obtained from specimens machined from part IW and part OW this
difference in the measured A f is extreme. This might be caused by the extraction position
and the machining of the UT117 specimens. As seen in the extraction plan, Figure B.3.2
of Appendix B.3, the extraction positions of the UT117 specimens are crossed by the long
rib within the U900-1 component. The rib was cut and the cut surface was ground before
a UT117 specimens was machined. Most of the UT117 specimens failed in the vicinity of
the rib as seen in Figure 8.3.7. It can be assumed that the irregularities due to the grinding
marks influenced the failure behaviour more than any casting defect within the gauge sec-
tion of the specimen. Therefore, it is concluded that the test results obtained from these
UT117 specimens are not relevant in the current study. In summary, a distinct volume
dependence cannot be observed in the experimental results. The results obtained from
specimens machined from part IW do not indicate a volume dependence and the results
obtained from specimens machined from part OW only suggest a volume dependence.

8.3.2 Statistical Analysis

The objective of the statistical analysis is the identification of extraction positions with
comparable material behaviour. As already described in the first material characterisa-
tion, the statistical analysis is based on measurements of critical value Wc . In summary,
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36 samples each consisting of six measurements of Wc were analysed through hypothesis
testing according to the flow chart given in Figure 8.1.5. First of all, it was analysed if

– the samples obtained from specimens machined from location 1 and location 2

– the samples obtained from specimens machined from location 3 and location 4

– the samples obtained from specimens machined from location 5 and location 6

can be assumed to be drawn from the same population. This analysis was performed sep-
arately for samples obtained from UT75 specimens and for samples obtained from UT117
specimens. The results of these 18 statistical comparisons can be found in Table B.4.7,
Table B.4.8 and Table B.4.9 of Appendix B.4. In summary, it is seen that the assumption
is confirmed in each part and for both specimen geometries. As a result, corresponding
samples were merged together into new samples for further analysis. These 18 samples
each consisting of 12 measurements of Wc are considered in the following.

The results of the statistical analysis of the samples obtained from UT75 specimens are
presented in Table 8.3.1. Bartlett’s test and one-way ANOVA cannot be applied for the
samples obtained from specimens machined from part IW since ADN -test of the sample
obtained from specimens machined from extraction position IW-[5-6] fails. However, the
result of Kruskal-Wallis test shows that it can be assumed that these three samples are
drawn from the same population. One-way ANOVA cannot be applied for the samples ob-
tained from specimens machined from part BF since the corresponding Bartlett’s test fails.
However, the result of Kruskal-Wallis test shows that it can be assumed that these three
samples are drawn from the same population. One-way ANOVA as well as Kruskal-Wallis
test of the samples obtained from specimens machined from part OW fail. This means
that it can be assumed that these three samples are drawn from different populations. In
addition, the two samples obtained from specimens machined from extraction positions
OW-[1-2] and OW-[3-4] were analysed using two-sample tests. The results of F -test and
the t -test show that it can be assumed that these two samples are drawn from the same
population.

The result of the statistical analysis of the samples obtained from UT117 specimens are
presented in Table 8.3.2. Bartlett’s test and one-way ANOVA cannot be applied for the
samples obtained from specimens machined from part IW since ADN -test of the sample
obtained from specimens machined from extraction position IW-[3-4] fails. However, the
result of Kruskal-Wallis test shows that it can be assumed that these three samples are
drawn from the same population. The results of the hypothesis tests of the samples ob-
tained from specimens machined from part BF show that it can be assumed that these
three samples are drawn from the same population. One-way ANOVA cannot be applied
for the samples obtained from specimens machined from part OW since ADN -test of the
sample obtained from specimens machined from extraction position OW-[3-4] fails. Since
Kruskal-Wallis test fails also, it can be assumed that the these three samples are drawn
from different populations. In addition, the two samples obtained from specimens ma-
chined from extraction positions OW-[1-2] and OW-[3-4]were analysed using two-sample
tests. Here, the result of the K S-test shows that it can be assumed that these two samples
are drawn from the same population.

Based on the results obtained from these statistical analysis, the following samples were
merged together for further analysis:

– The samples obtained from UT75 specimens machined from extraction positions
IW-[1-2], IW-[3-4] and IW-[5-6]were merged together.
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– The samples obtained from UT117 specimens machined from extraction positions
IW-[1-2], IW-[3-4] and IW-[5-6]were merged together.

– The samples obtained from UT75 specimens machined from extraction positions
BF-[1-2], BF-[3-4] and BF-[5-6]were merged together.

– The samples obtained from UT117 specimens machined from extraction positions
BF-[1-2], BF-[3-4] and BF-[5-6]were merged together.

– The samples obtained from UT75 specimens machined from extraction positions
OW-[1-2] and OW-[3-4]were merged together.

– The samples obtained from UT117 specimens machined from extraction positions
OW-[1-2] and OW-[3-4]were merged together.

It was investigated if the samples obtained from UT75 and UT117 specimens machined
from the same part can be assumed to be drawn from the same population. The three
sample pairs were analysed using two-sample tests and the result is presented in Table
8.3.3. It is seen that at least K S-test fails for each sample pair. This implies that it can be
assumed that the samples obtained from UT75 and UT117 specimens machined from the
same part are drawn from different populations. Furthermore, the box-plot of the samples
obtained from UT75 and UT117 specimens machined from part BF shows the extreme
difference in the material ductility between both specimens geometries. Consequently,
the failed t -test and the failed K S-test, respectively, confirms this difference. As already
mentioned, it is assumed that the poor ductility of the UT117 specimens machined from
part BF were mostly influenced by the machining of these specimens. However, K S-test
fails also for the sample pairs obtained from UT75 and UT117 specimens machined from
part IW and part OW, respectively. Based on this result, it can be assumed that the gauge
volume influenced the material ductility measured by the critical value Wc at least in part
IW and part OW.

Now, these six samples are considered. It is assumed that each sample follows a Weibull
distribution. The corresponding Weibull parameters were estimated according to the pro-
cedure described in Chapter 8.1.3. Furthermore, the assumption that a sample follows a
Weibull distribution is checked through ADW -test. The results of these six Weibull ana-
lyses are presented in the same way as described in the first material characterisation,
see Table 8.2.2. Here, scale volume V0 was set either to the gauge volume of the UT75
specimen, see Figure 8.3.1a, or to the gauge volume of the UT117 specimen, see Figure
8.3.1b. The results of the Weibull analysis of the samples obtained from UT75 and UT117
specimens machined from part IW are presented in Table 8.3.4. As seen from the ADW -
test results, it can be assumed that the sample obtained from UT75 specimens follows a
Weibull distribution, whereas the sample obtained from UT117 specimens does not fol-
low a Weibull distribution. However, the Weibull plot of the two corresponding Weibull
fits shows that the estimated Weibull modulus m is comparable for both distributions.
However, it is important to notice that the Weibull fit of the sample obtained from UT117
specimens (blue) is to the right of the Weibull fit of the sample obtained from U75 speci-
mens (red). This implies that the material in part IW does not show a volume dependence
according to the weakest-link approach. As a conclusion, it can be assumed that both
samples are drawn from Weibull distributions with a comparable Weibull modulus m . The
results of the Weibull analyses of the samples obtained from UT75 and UT117 specimens
machined from part BF are presented in Table 8.3.5. Based on the ADW -test results res-
ults, it can be assumed that the two samples follow Weibull distributions. As expected,
the Weibull plot shows a clear difference in the two Weibull fits. Again, the influence of
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Uniaxial Tensile Test Specimens UT75 and UT117 /Wc (Part IW)
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R2 [%]

UT75: IW-[1-6] 0 0.11 8.0072 0.0334 506.25 94.87
UT117: IW-[1-6] 1 0.03 9.9252 0.0360 1206.25 92.41

Table 8.3.4: Weibull analysis of samples based on measurements of Wc obtained
from UT75 and UT117 specimens machined from part IW of six U900-1 compon-
ents: ADW -test result (α= 0.05), estimated Weibull modulus m , estimated scaling
parameter Wc 0, scaling volume V0 and coefficient of determination R2.

the machining of the UT117 specimens on the ductility is assumed to be the main reason.
As a result, the Weibull parameters estimated from the sample obtained from UT75 spe-
cimens are assumed to be the reliable ones for the underlying material. The results of
the Weibull analyses of the samples obtained from UT75 and UT117 specimens machined
from part OW are presented in Table 8.3.5. As seen from the ADW -test results, it can be
assumed that the sample obtained from UT75 specimens follows a Weibull distribution,
whereas the sample obtained from UT117 specimens does not follow a Weibull distribu-
tion. Apart from that, the comparison of the two Weibull fits shows that the estimated
Weibull modulus m is comparable for both distributions. Further, the comparison shows
that the Weibull fit of the sample obtained from UT117 specimens (blue) is to the left of
the Weibull fit of the sample obtained from UT75 specimens (red). This implies that the
material in part OW shows a volume dependence according to the weakest-link approach.
Hence, it can be assumed that the two samples are drawn from Weibull distributions with
a comparable Weibull modulus m and a volume dependence according to the weakest-
link approach.

Based on the result of the Weibull analysis of the samples obtained from UT75 and
UT117 specimens machined from part OW, an extend Weibull fit was performed. Here,
the Weibull parameters were estimated using both samples and the approach presented
in Chapter 5.1.6. The best fit of the Weibull parameters m and Wc 0 was found when the
function given in Equation (5.1.59) reached a minimum. Here, scale volume V0 was set to
1000 mm3. The result of the extended Weibull fit is presented in Figure 8.3.8. It is noted
that the result of the extended fit provides a unique Weibull distribution which should fit
both samples. The sample data obtained from UT75 specimens are plotted as red points
and the sample data obtained from UT117 specimens are plotted as blue data points. The
fitted Weibull CDF using a considered volume of V = VUT75 is plotted as red line and the
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Uniaxial Tensile Test Specimens UT75 and UT117 /Wc (Part BF)
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R2 [%]

UT75: BF-[1-6] 0 0.05 10.5923 0.0341 506.25 93.21
UT117: BF-[1-6] 0 0.25 4.5075 0.0196 1206.25 95.87

Table 8.3.5: Weibull analysis of samples based on measurements of Wc obtained
from UT75 and UT117 specimens machined from part BF of six U900-1 compon-
ents: ADW -test result (α= 0.05), estimated Weibull modulus m , estimated scaling
parameter Wc 0, scaling volume V0 and coefficient of determination R2.

Uniaxial Tensile Test Specimens UT75 and UT117 /Wc (Part OW)
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R2 [%]

UT75: OW-[1-4] 0 0.43 4.7526 0.0228 506.25 94.91
UT117: OW-[1-4] 1 0.01 4.9797 0.0196 1206.25 92.95

Table 8.3.6: Weibull analysis of samples based on measurements of Wc obtained
from UT75 and UT117 specimens machined from part OW of six U900-1 compon-
ents: ADW -test result (α= 0.05), estimated Weibull modulus m , estimated scaling
parameter Wc 0, scaling volume V0 and coefficient of determination R2.
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Figure 8.3.8: Probability plot of the samples based on measurements of Wc obtained
from UT75 and UT117 specimens machined from part OW of six U900-1 components
and extendedly fitted Weibull probability function using a considered volume of V =
VUT75 and V =VUT117

�

m = 5.4829, Wc 0 = 0.0206kN/mm2, V0 = 1000.0mm3
�

.

same fitted Weibull CDF using a considered volume of V =VUT117 is plotted as blue line. It
is seen that the Weibull distribution based on the extended fit correlates very well to both
samples. Hence, it can be assumed that each sample is drawn from a common Weibull
distribution which is modified by the considered gauge volume.

8.3.3 Concluding Remarks

The results of the second material characterisation can be concluded as follows:

– The results obtained from the first material characterisation were confirmed: The
material ductility exhibits a global systematic variation and a local pseudo-random
variation. In contrast to the first material characterisation, the strain hardening be-
haviour was better reproduced from specimens machined from the same part.

– The results of the mechanical analysis showed that the material ductility in part IW
was less influenced by the applied gauge volumes, whereas the material ductility in
part BF and part OW were strongly influenced by the applied gauge volumes. How-
ever, the analysis of the fractured UT117 specimens machined from part BF showed
that the machining of specimens had a stronger influence on the material ductil-
ity than any casting defect. Hence, it was considered that the results obtained from
UT117 specimens machined from part BF are not representative. Furthermore, it
was observed that the symmetric casting system caused almost homogeneously dis-
tributed material properties in longitudinal direction. Finally, it was seen that the
strain hardening behaviour was not influenced by the applied gauge volume in each
part.

– The results of the statistical analyses showed that samples obtained from UT75 spe-
cimens machined from the same part belonged to the same population as well as
samples obtained from UT117 specimens machined from the same part belonged to
the same population. Based on this, all samples obtained from the same specimen
geometry machined from the same part were merged together for further analysis.
The statistical analyses of the merged samples showed that the samples obtained



8.4 CONCLUDING REMARKS 189

from UT75 and UT117 specimens machined from the same part were drawn from
different populations.

– A Weibull analysis was performed separately on each merged sample. The result
of the Weibull analysis of the samples obtained from UT75 and UT117 specimens
machined from part IW showed that Weibull modulus m estimated from samples
obtained from UT75 and UT117 specimens was comparable, but a volume depend-
ence according to the weakest-link approach could not be observed. As already
mentioned, only the Weibull analysis of samples obtained from UT75 specimens
machined from part BF provided a reliable result. The result of the Weibull ana-
lysis of samples obtained from UT75 and UT117 specimens machined from part
OW was the only result which confirmed the weakest-link approach. Here, the es-
timated Weibull modulus m was comparable and the comparison of the two estim-
ated Weibull distributions indicated a volume dependence. This result led to the
conclusion that these samples were drawn from Weibull distributions with a com-
parable Weibull modulus m and a volume dependence according to the weakest-
link approach. Based on this, an extended Weibull analysis was performed using
the samples obtained from UT75 and UT117 specimens machined from part OW.
The result of the extended Weibull analysis confirmed the assumption that each
sample is drawn from a common Weibull distribution which is modified by the con-
sidered gauge volume. This result implies that a volume dependence according to
the weakest-link approach could be only found in the material in part OW.

– Weibull modulus m is a material specific parameter, see Chapter 5.1.4. Theoretic-
ally, the same Weibull modulus m can be identified from samples obtained from
specimens with different gauge volumes provided that all samples are drawn from
the same material. Weibull modulus m estimated from the samples obtained from
UT75 and UT117 specimens machined from part IW and from part OW, respectively,
was comparable. This means that the Weibull modulus m could be reproduced us-
ing samples obtained from UT75 and UT117 specimens machined from part IW and
from part OW, respectively. Hence, it can be concluded that Weibull modulus m
of the material in part IW and part OW, respectively, could be correctly estimated.
However, a volume dependence according to the weakest-link approach could be
only identified by the samples obtained from UT75 and UT117 specimens machined
from part OW. This means that only the less ductile material in part OW exhibited a
typical weakest-link characteristic.

– In summary, the result of the Weibull analysis showed that at least the three samples
obtained from UT75 specimens can be assumed to be drawn from different weakest-
link Weibull distributions. This means that the local pseudo-random variation of
the material ductility in part IW, part BF and part OW can be described by these
estimated weakest-link Weibull distributions.

8.4 Concluding Remarks

The material behaviour of the HPDC alloy Castasil-37 in casting condition (F) was invest-
igated using two material characterisations. Uniaxial tensile tests were carried out on spe-
cimens which were machined from U900-1 components and the results were analysed in
detail. From that, the material behaviour of an HPDC alloy can be described as follows.

The casting system and the fluctuations during the casting process have a strong influ-
ence on the distribution of the casting defects within an HPDC component. The distribu-
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tion of the casting defects is characterised by a global systematic variation caused by the
casting system and by a local pseudo-random variation caused by casting process fluctu-
ations. Since the casting defects lower mostly the material ductility, the material ductility
is heterogeneously distributed within an HPDC component. The material ductility ex-
hibits a global systematic variation and a local pseudo-random variation. Both variations
can be estimated by measuring the material ductility as demonstrated in the two mater-
ial characterisations. The two material characterisations showed that the U900-1 com-
ponent can be separated in characteristic parts with comparable material ductility and,
further, the local pseudo-random variation of the material ductility can be described by
a weakest-link Weibull distribution. Based on these conclusions, it is recommend for the
design of an HPDC component to use a probabilistic failure criterion to capture the local
pseudo-randomness. Further, the global systematic variation might be captured by parti-
tioning the HPDC component in characteristic parts and each part uses unique material
parameters and unique Weibull distribution parameters.



Chapter 9

Numerical Material Modelling

In the material characterisation presented in the previous chapter, it was demonstrated
that the casting defects causes a variation of the material ductility of HPDC alloy Castasil-
37 in casting condition (F). An extensive statistical analysis was performed and it was
shown that the variation of the material ductility can be separated into a global systematic
variation and local pseudo-random variation. Consequently, a probabilistic approach in
failure modelling is required to capture the local pseudo-random variation in the mater-
ial ductility. In the present work, the weakest-link approach, see Chapter 5, is considered
for the formulation of a probabilistic failure criterion. Inspired by the work by Dørum
et al. [31], a material model consisting of an isotropic hypoelastic-plastic constitutive
model and a probabilistic failure criterion based on the Cockcroft-Latham criterion and
the Weibull distribution is introduced. As discussed in Chapter 5.2, a probabilistic failure
criterion can be applied in different ways. Accordingly, the probabilistic failure criterion is
applied in the following variants:

– Material routine MR#1: The first variant enables to compute directly failure prob-
abilities in a FE model. The failure probabilities give information about the risk of
first fracture initiation in the FE model, its different parts and in each element, see
Chapter 5.2.3. Here, the probability calculations are based on the assumption that
the elements are statistically independent. Since the risk of first fracture initiation is
computed, this variant does not consider element deletion.

– Material routine MR#2: The second variant provides the possibility to analyse frac-
ture initiation and the behaviour beyond fracture initiation using element deletion.
Here, the critical failure value is distributed pseudo-randomly within the FE mesh,
see Chapter 5.2.4. This variant considers statistical independence of the elements of
the FE mesh. It is noted that this variant is applied in the work by Dørum et al. [31].

– Material routine MR#3: The third variant is based on the second variant, but the
critical failure value is distributed pseudo-randomly in the FE model according to
the uncoupled modelling approach, see Chapter 5.2.4. This means that FE mesh and
MS mesh are uncoupled and the failure parameter is distributed pseudo-randomly
within the MS mesh. This variant considers only statistical independence of the
elements of the MS mesh.

– Material routine MR#4: The forth variant is almost equivalent to the third variant.
However, the random distribution of the critical failure value is given as an initial
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condition by the user. This approach enables to consider statistical dependence of
the elements of the MS mesh.

Each variant was implemented as user-defined material routine in the explicit FE solver
LS-DYNA 971 [51] can be applied for shell elements and for solid elements. However,
the material routines are restricted to underintegrated elements with a single integration
point for solid elements and with a single in-plane integration point for shell elements.
Further, it is noted that the material routines were coded in the programming language
Fortran 95. The formulation and the numerical implementation of these four material
routines variants are presented in the following.

9.1 Basis of Material Routines MR#x

A material model is implemented in an explicit FE solver in form of a subroutine known
as material routine. Here, it is referred to Chapter 4.1.6 which describes the FEM and the
explicit time integration algorithm. In each time step, the material routine is called by the
element routine in each integration point. According to the applied element formulation,
the strains in each integration point are computed by the element routine based on the
nodal displacements at the current time. According to the applied constitutive model, the
stress tensor and the internal variables are computed by the material routine based on
the strains at the current time. Then, the element routine computes the nodal forces at
the current time based on the stress tensors obtained from the integration points. Based
on the nodal forces at the current time, the explicit time integration algorithm computes
the nodal displacements of the next time. In addition, a failure criterion can be evaluated
within the material routine and the result can be used for element deletion which is im-
portant for the prediction of crack propagation. As already mentioned, the material model
introduced in the current work is applied in four variants and these four variants are given
by material routines MR#1, MR#2, MR#3 and MR#4. These material routines are based on
the same constitutive model and the same failure criterion. In the following, formulation
and implementation of constitutive model and failure criterion are described.

9.1.1 Constitutive Model and and Stress Update Algorithm

The literature review given in Chapter 6.1 showed that HPDC alloys can be well described
by isotropic hypoelastic-plastic constitutive models. According to the work by Dørum et
al. [31], an isotropic hypoelastic-plastic constitutive model including a linear hypoelastic
relation, a high-exponent isotropic yield criterion, a nonlinear isotropic hardening rule
and associated flow rule is applied in material routines MR#1, MR#2, MR#3 and MR#4. It is
assumed that the elastic strains are infinitesimal, whereas the plastic strains and rotations
may be finite. Further, the Jaumann stress rate is adopted to ensure material objectivity.
It is noted that this constitutive model does not include strain-rate dependence and the
influence of damage evolution on the deformation behaviour is neglected. More details
on the formulation of this constitutive model can be found in Chapter 4.1.5.

The numerical algorithm for integrating the constitutive equations is called stress up-
date algorithm. The objective of the stress update algorithm is the computation of stress
tensor and internal variables at the current time based on the result of the previous time.
In case of plasticity, the stress update algorithm ensures that the update of stress tensor
and internal variables are consistent with yield condition, flow rule and hardening rule.
The most common stress update algorithms for plasticity are based on the backward Euler
return mapping scheme. The backward Euler return mapping scheme consists of two
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steps. The first step is called elastic-predictor step. The stress tensor is updated assuming
that the response is purely elastic. The second step is called plastic-corrector step. If the
updated stress tensor is outside the yield surface, the updated stress tensor is projected
on the closest point of the yield surface. In case the yield surface expands during plastic
flow, the updated stress tensor is projected on the updated yield surface. Finally, stress
tensor and internal variables are updated. A detailed description of various stress update
algorithms can be found in the book by Belytschko et al. [13]. In the present work, the
backward Euler return mapping scheme is applied to update stress tensor σ and equival-
ent plastic strain ε̄ according to the constitutive equations summarised in Figure 4.1.4. Its
implementation in a material routine is described in the following. It is noted that the im-
plementation is restricted for explicit time integration. In case of implicit time integration,
the material tangent stiffness needs to be determined.

Stress tensor σn and equivalent plastic strain ε̄n are known at time tn in the material
routine. Further, rate-of-deformation tensor Dn+ 1

2
at time tn+ 1

2
is known from the element

solution. The change of strain tensor ε between time tn+1 and time tn is computed by the
strain increment

�εn+1 =Dn+ 1
2
(tn+1− tn ) . (9.1.1)

Based on stress tensor σn , equivalent plastic strain ε̄n and strain increment�εn+1, stress
tensorσn+1 and equivalent plastic strain ε̄n+1 at time tn+1 are computed by the backward
Euler return mapping scheme in the material routine.

The elastic-predictor is determined according to Equation (4.1.73) and reads

σt r
n+1 =σn +λe l tr

�

�εn+1
�

I+2µe l�εn+1 (9.1.2)

where σt r
n+1 denotes the trial stress tensor at time tn+1. Trial stress tensor σt r

n+1 is inserted
in the high-exponent isotropic yield criterion given by
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−2 (σY (ε̄n ))2p = 0 (9.1.3)

where
�

σI ,I I ,I I I
�t r

n+1 denotes the trial principal stresses which are computed according to
Equation (4.1.28). Here, the high-exponent yield surface is restricted to a continuously
differentiable yield surface and, thus, the exponent is set to 2p where p is a positive integer.
The current yield stress σY (ε̄n ) is given by the two-terms Voce rule, see Equation (4.1.3b),
and reads

σY (ε̄n ) =σ0+
2
∑

i=1

Qi
�

1−exp (−Ci ε̄n )
�

. (9.1.4)

From that, the yield criterion is evaluated and the result leads to the conclusions

f
�

σt r
n+1, ε̄n

�

≤ 0 : Elastic Response.

f
�

σt r
n+1, ε̄n

�

> 0 : Plastic Response.
(9.1.5)

If the response is elastic, updated stress tensor σn+1 equals trial stress tensor σt r
n+1 and

updated equivalent plastic strain ε̄n+1 remains unchanged and equals the previous one
ε̄n . However, if the response is plastic, updated stress tensor σn+1 and updated equival-
ent plastic strain ε̄n+1 needs to be calculated so that the yield condition is satisfied. The
plastic-corrector is written in form of

σn+1 =σt r
n+1−
�

λe l tr
�

�ε̄n+1nn+1
�

I+2µe l�ε̄n+1nn+1
�

(9.1.6)
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where�ε̄n+1 denotes the increment of equivalent plastic strain and nn+1 is the plastic flow
direction. Updated equivalent plastic strain ε̄n+1 becomes

ε̄n+1 = ε̄n +�ε̄n+1 (9.1.7)

Plastic direction nn+1 is determined according to associated flow rule, see Equation (4.1.83),
so that

nn+1 =
∂ f
�

σt r
n+1, ε̄n+1

�

∂ σt r
n+1

. (9.1.8)

Consequently, the plastic corrector is rewritten as

σn+1 =σt r
n+1−
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 I+2µe l�ε̄n+1
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σt r
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 . (9.1.9)

The yield condition still has to be satisfied at time tn+1 and reads

f (σn+1, ε̄n+1) = f n+1 = σ̄ (σn+1)−σY (ε̄n+1) = 0 (9.1.10)

where equivalent plastic strain increment�ε̄n+1 is the remaining unknown quantity. The
corresponding derivative f ′n+1 with respect to the equivalent plastic strain increment�ε̄n+1

is given by

f ′ (σn+1, ε̄n+1) = f ′n+1 =
∂ f (σn+1, ε̄n+1)
∂�ε̄n+1

. (9.1.11)

The unknown quantity�ε̄n+1 is found numerically using Newton’s iteration method in
form of

�ε̄(k+1)
n+1 =�ε̄

(k )
n+1−

f (k )n+1

f ′(k )n+1

(9.1.12)

where integer k denotes the iteration step. A solution of�ε̄n+1 is found when the Newton’s
method converges, so that

f (k+1)
n+1 = 0. (9.1.13)

Using the solution of strain increment �ε̄n+1, stress tensor σn+1 is updated according
to Equation (9.1.6) and equivalent plastic strain ε̄n+1 is updated according to Equation
(9.1.7). It is noted that Newton’s iteration method might not be exactly solved. Therefore,
it is common to stop the iteration when an abort criterion is met. For instance, the abort
criterion can be defined as

�

�

�

�

�

�

f (k+1)
n+1

σY

�

ε̄(k+1)
n+1

�

�

�

�

�

�

�

< t ol (9.1.14)

where t ol denotes a tolerance level which has to be defined in advance. This abort cri-
terion is applied in the current work and the tolerance level is set to t ol = 1.0 · 10−8. The
implementation of the applied stress update algorithm is summarised in Figure C.1.1 of
Appendix C.1.

9.1.2 Failure Criterion and Element Deletion

As seen in the work by Dørum et al. [31], the failure behaviour of a HPDC alloy can be
well described by the Cockcroft-Latham criterion. The criterion states that fracture oc-
curs when Cockcroft-Latham integral W , Equation (4.3.22), reaches critical value Wc as
expressed in Equation (4.3.22). This failure criterion forms the basis for element deletion
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in material routines MR#2, MR#3 and MR#4 and its implementation is described in the
following.

When the stress update algorithm is converged, Cockcroft-Latham integral Wn+1 at time
tn+1 is computed numerically according to

Wn+1 =Wn +max
�

0, max
�

�

σI ,I I ,I I I
�

n+1

�

�ε̄n+1

�

(9.1.15)

where Wn denotes the Cockcroft-Latham integral at time tn and
�

σI ,I I ,I I I
�

n+1 denote the
principal stresses of updated stress tensor σn+1. The principal stresses are computed ac-
cording to Equation (4.1.28). When the updated integral Wn+1 is equal or larger than crit-
ical value Wc , the element deletion flag is set true. When updated Cockcroft-Latham integ-
ral Wn+1 is smaller than critical value Wc , the element deletion flag is set false. This means
that the element deletion flag is set true when a single integration point fails.

The element deletion flag is a logical variable used in the element routine. In each
time step, the material routine is called by the element routine in each integration point.
When the element deletion flag was set false in the previous time step, the stress update
algorithm is performed and the failure criterion is evaluated in each integration point.
When the element deletion was set true in the previous time step, the components of the
stress tensor are set to zero in each integration point. Furthermore, the element deletion
flag remains unchanged for all remaining time steps. This approach implies that an ele-
ment with an element deletion flag set true deforms without any resistance. Moreover, the
element deletion flag is important for the post-processing. An element with an element
deletion flag set true is deleted from the animation of a FE simulation. The implementa-
tion of the applied element deletion algorithm is summarised in Figure C.1.2 of Appendix
C.1.

9.2 Material Routine MR#1

The Cockcroft-Latham criterion given in Equation (4.3.22) and the Weibull failure probab-
ility given in Equation (5.1.39) are used to determine the failure probability PF of material
volume V according to

PF = 1−exp
�

− V
V0

�

W
Wc 0

�m�

with W ≥ 0 (9.2.1)

where W denotes the value of the Cockcroft-Latham integral and V0, Wc 0 and m denote
the Weibull distribution parameters. This expression forms the basis of material routine
MR#1. The approach described in Chapter 5.2.3 is used to compute the failure probab-
ility of an integration point, an element, the FE model as well as of the different model
parts. The same requirements as defined in Chapter 5.2.1 are provided and the same as-
sumptions as defined in Chapter 5.2.2 are made. This implies that all elements and their
integration points are considered as statistically independent. The objective of material
routine MR#1 is to compute failure probabilities. As already mentioned, a failure probab-
ility gives information about the risk of first fracture initiation and, consequently, element
deletion is not considered in material routine MR#1.

The following element properties are required in material routines MR#1, MR#2, MR#3
and MR#4:

– The number of integration points is denoted as n .

– The current integration point is denoted as i .
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– The initial element volume is denoted as Vi ni .

– The proportional initial volume of an integration point is given by Vi ni

n
.

– The part which belongs to the current element is denoted as j .

– The number of element nodes is denoted as n nod .

– The nodal coordinates are denoted as xk , yk and z k .

Cockcroft-Latham integral W i
n+1 at time tn+1 is computed in integration point i according

to Equation (9.1.15). Based on integral W i
n+1, the survival probability

�

Pi ,j
S

�

n+1
of integra-

tion point i at time tn+1 is computed by

�

Pi ,j
S

�

n+1
= exp

�

−
Vi ni

n

V0

�

Wn+1

Wc 0

�m
�

(9.2.2)

Consequently, the failure probability
�

Pi ,j
F

�

n+1
of integration point i at time tn+1 is com-

puted by
�

Pi ,j
F

�

n+1
= 1−
�

Pi ,j
S

�

n+1
. (9.2.3)

It is known that the element routine calls the material routine in each integration and
the integration points are processed in an ascending order. This fact allows to compute

the survival probability
�

Pe l e m ,j
S

�

n+1
and the failure probability

�

Pe l e m ,j
F

�

n+1
of the actual

element at time tn+1 within material routine MR#1 as follows

if i = 1 : → X e l e m =
�

P1,j
S

�

n+1
(9.2.4)

if i > 1 : → X e l e m = X e l e m ·
�

Pi ,j
S

�

n+1
(9.2.5)

if i = n : →
�

Pe l e m ,j
S

�

n+1
= X e l e m (9.2.6)

�

Pe l e m ,j
F

�

n+1
= 1−X e l e m (9.2.7)

where X e l e m is a variable which is stored in a common block used in the element routine.
When material routine MR#1 is called at the first integration point, variable X e l e m is ini-

tialised by probability
�

P1,j
S

�

n+1
. Then, variable X e l e m is updated by probability

�

Pi ,j
S

�

n+1
each time material routine MR#1 is called until the last integration point is reached. This

implementation approach implies that the element probabilities
�

Pe l e m ,j
S

�

n+1
and
�

Pe l e m ,j
F

�

n+1
are available only on the last integration point.

The survival probability
�

Pmod e l
S

�

n+1
and the failure probability

�

Pmod e l
F

�

n+1
of the FE

model at time tn+1 are also computed within material routine MR#1 as follows

�

Pmod e l
S

�

n+1
=
�

X mod e l
�

n
(9.2.8)

�

Pmod e l
F

�

n+1
= 1−
�

Pmod e l
S

�

n+1
(9.2.9)

�

X mod e l
�

n+1
=
�

X mod e l
�

n+1
·
�

Pi ,j
S

�

n+1
(9.2.10)

where X mod e l is a variable which is stored in a common block used in the FE solver.
Variable
�

X mod e l
�

n+1 is updated by probability
�

Pi ,j
S

�

n+1
each time material routine MR#1
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is called in the FE model at time tn+1. If variable
�

X mod e l
�

n+1 is used to compute the

model probabilities
�

Pmod e l
S

�

n+1
and
�

Pmod e l
F

�

n+1
, then the model probabilities are only

correctly computed in the integration point which is called last at time tn+1. Hence, the
model probabilities are computed using the result of variable

�

X mod e l
�

n at time tn . Con-
sequently, the model probabilities are available in each integration point of the FE model
at time tn+1. This simplification has only a minor influence on the accuracy due the very
small time steps used in the explicit time integration.

The survival probability
�

P j
S

�

n+1
and the failure probability

�

P j
F

�

n+1
of part j at time

tn+1 are computed in the same manner, so that
�

P j
S

�

n+1
=
�

X
�

j
��

n (9.2.11)
�

P j
F

�

n+1
= 1−
�

P j
S

�

n+1
(9.2.12)

�

X
�

j
��

n+1 =
�

X
�

j
��

n+1 ·
�

Pi ,j
S

�

n+1
(9.2.13)

where X is a vector which is stored in a common block used in the FE solver. The size of
vector X equals the number of the different model parts. This implementation approach

guarantees that the probabilities
�

P j
S

�

n+1
and
�

P j
F

�

n+1
of part j at time tn+1 are computed

only by the elements which belong to part j . It is important to consider that the differ-
ent parts need to be defined in a continuous ascending order. The procedure in material
routine MR#1 is summarised in Figure C.2.1 of Appendix C.2.

9.3 Material Routine MR#2

Material routine MR#2 is based on the element deletion algorithm presented in Figure
C.1.2. However, critical value Wc is introduced as a pseudo-random variable which follows
a Weibull distribution in form of the CDF

F (Wc ) = 1−exp
�

− V
V0

�

Wc

Wc 0

�m�

with Wc ≥ 0 . (9.3.1)

A detailed description of this approach can be found in Chapter 5.2.4. Therefore, the
same requirements as defined in Chapter 5.2.1 are provided and the same assumptions
as defined in Chapter 5.2.2 are made. It is noted that a uniform critical value Wc is applied
in an element when material routine MR#2 is applied. Consequently, critical value Wc is
randomly distributed according to a Weibull distribution between the elements of a FE
model, but each element uses a uniform critical value Wc . The usage of material routine
MR#2 implies that all elements are considered as statistically independent.

In material routine MR#2, critical value Wc is computed by the inverse transforma-
tion of the Weibull distribution and a uniform PRNG, see Chapter 3.3.7. The program-
ming language Fortran 95 includes a PRNG available by the function rand_number [·] [43]
which returns a single pseudo-random number or an array of pseudo-random numbers
from the uniform distribution. The PRNG used by function rand_number [·] is reset to
a default state each time a Fortran 95 program is executed. This means that function
rand_number [·] returns uniform pseudo-random numbers from the same sequence each
time a Fortran 95 program is executed. This can be avoided using the function rand_seed [·]
[44] which enables to initialise the PRNG used by function rand_number [·] to a default
state or to a varying state. Function rand_seed [·] is necessary to ensure that function
rand_number [·] does not return uniform pseudo-random numbers from the same se-
quence each time a Fortran 95 program is executed. In the present work, the PRNG used by
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subroutine init_random_seed(t)
implicit none
integer :: i, n, t
integer, dimension(:), allocatable :: seed
call random_seed(size = n)
allocate(seed(n))
seed = clock + 37 * (/ (i - 1, i = 1, n) /)
call random_seed(PUT = seed)
deallocate(seed)
end subroutine init_random_seed

Figure 9.3.1: Fortran 95 code of subroutine init_random_seed (t ) taken from the
course “FORTRAN Programming for Engineers” by D. Hogan [94].

function rand_number [·] is initialised using subroutine init_random_seed (c l oc k ) which
includes function rand_seed [·]. The code is taken from the course “FORTRAN Program-
ming for Engineers” by D. Hogan [94] and is shown in Figure 9.3.1. Here, the PRNG used by
function rand_number [·] is initialised to a varying state based on the integer c l oc k . This
subroutine enables to control the initialisation of the PRNG used by function rand_number [·].

Material routine MR#2 calls subroutine init_random_seed (c l oc k ) during a FE simu-
lation only once at time t = 0. This implies that this subroutine is only called when
material routine MR#2 is called the first time in a FE simulation. Afterwards, a flag is
set so that this subroutine is skipped each time material routine MR#2 is called. In case
function rand_number [·] should return uniform pseudo-random numbers from the same
sequence each time a FE simulation is performed, integer c l oc k needs to be set con-
stant (c l oc k = 8888). In case function rand_number [·] should return uniform pseudo-
random numbers from varying sequences each time a FE simulation is performed, integer
c l oc k needs to be set to the actual computer time t i ni

c p u at initialisation of the FE model
�

c l oc k = t i ni
c p u

�

.

As already mentioned, the same critical value Wc is used in an element and, thus, the
same uniform pseudo-random number needs to be used in an element. Hence, function
rand_number (·) is only called in the first integration point and returns a uniform pseudo-
random number u . Then, the variable x e l e m which is stored in a common block used in
the element routine is set to number u , so that

if i = 1 : → rand_number [u ] (9.3.2)

x e l e m = u (9.3.3)

Based on variable x e l e m , the Weibull CDF given in Equation (9.3.1) and the inverse trans-
formation given in Equation (3.3.73), critical value Wc is computed in each integration
point by

Wc =Wc 0
m

�

�

−
V0

Vi ni

�

ln
�

1−x e l e m
�

(9.3.4)

It is noted that critical value Wc needs to be computed in each element only at time t = 0.
The procedure in material routine MR#2 is summarised in Figure C.3.1 of Appendix C.3.

9.4 Material Routine MR#3

The usage of material routine MR#2 leads to a pseudo-random distribution of critical
value Wc in a FE model. The underlying modelling approach was defined as a coupled
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Figure 9.4.1: Creation of the MS mesh based on the dimensions of the FE mesh and
mapping of the MS mesh onto the FE mesh.

modelling approach in Chapter 5.2.4. This means that FE mesh and MS mesh are coupled
(congruent). However, an uncoupled modelling approach in probabilistic failure model-
ling was introduced in Chapter 5.2.4. Here, FE mesh and MS mesh are uncoupled and the
critical failure parameter is pseudo-randomly distributed in the MS mesh and the pseudo-
random distribution is mapped onto the FE mesh. The uncoupled modelling approach is
adopted in the material routine MR#3. Critical value Wc is pseudo-randomly distributed
in the MS mesh based on the Weibull CDF given in Equation (9.3.1). Apart from this, ma-
terial routine MR#3 corresponds to material routine MR#2. In contrast to material routine
MR#2, material routine MR#3 allows to perform mesh convergence studis, see Figure 5.2.3.
It is noted that the implementation of material routine MR#3 is based on the same require-
ments as defined in Chapter 5.2.1 and the same assumptions as defined in Chapter 5.2.2.
Further, the usage of material routine MR#3 implies that all elements of the MS mesh are
considered as statistically independent.

The MS mesh using elements of equal edge lengths is created based on the minimum
and maximum dimensions of the considered FE mesh. The MS mesh uses the same co-
ordinate system as the FE mesh. The edge length of an element of the MS mesh is denoted
as l c r i t . The approach of creating the MS mesh based on the dimensions of a FE mesh and
the mapping of the MS mesh onto the FE mesh is illustrated in Figure 9.4.1. For simpli-
city, a plane problem is considered. Figure 9.4.1b shows the underlying FE mesh in grey
and the MS mesh in blue. It is seen that the MS mesh is created based on the minimum
and maximum dimensions of the FE mesh and a MS mesh size of l c r i t . The MS mesh is
mapped onto the FE mesh as shown in Figure 9.4.1b. Here, the centre of an element of the
FE mesh is used to identify the corresponding element of the MS mesh.

The creation of the MS mesh and the mapping of the MS mesh onto the FE mesh is per-
formed within material routine MR#3 according to the following approach. The number
of elements of the MS mesh in x , y and z direction is computed in the first integration as
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follows

if i = 1 : → n m a x
x = ceiling

�

xm a x −xm i n

l c r i t

�

(9.4.1)

n m a x
y = ceiling

�

ym a x − ym i n

l c r i t

�

(9.4.2)

n m a x
z = ceiling

�

z m a x − z m i n

l c r i t

�

(9.4.3)

where n m a x
x , n m a x

y and n m a x
z denote the number of elements of the MS mesh in x , y and

z direction and xm a x and xm i n denote the minimum and maximum dimensions in x dir-
ection, ym a x and ym i n the minimum and maximum dimensions in y direction and z m a x

and z m i n the minimum and maximum dimensions in z direction. Since n m a x
x , n m a x

y and
n m a x

z are integers, the function ceiling [·] is applied. This function maps a real number to
the smallest following integer. It is noted that the minimum and maximum dimensions of
the FE mesh as well as the edge length l c r i t need to be specified by the user in advance.

The centre of the current element of the FE mesh is computed in the first integration
point using its nodal coordinates and the number of nodes, so that

if i = 1 : → xm =
1

n nod

n nod
∑

k=1

xk (9.4.4)

ym =
1

n nod

n nod
∑

k=1

yk (9.4.5)

z m =
1

n nod

n nod
∑

k=1

xk (9.4.6)

where xm , ym and z m are the coordinates of the centre. Based on these coordinates and
the minimum and maximum dimensions of the FE mesh, the corresponding element of
the MS mesh is found by

if i = 1 : → nx = ceiling

�

xm −xm i n

l c r i t

�

(9.4.7)

n y = ceiling

�

ym − ym i n

l c r i t

�

(9.4.8)

n z = ceiling

�

z m − z m i n

l c r i t

�

(9.4.9)

where nx , n y and n z denote the required number of elements of the MS mesh in x , y and
z direction to identify the corresponding element of the MS mesh. Then, the number of
the corresponding element of the MS mesh is computed according to

if i = 1 : → n = (n z −1)n m a x
y n m a x

z +
�

n y −1
�

n m a x
x +nx (9.4.10)

where n denoted the number of the corresponding element of the MS mesh.
The uniform pseudo-random number of the element n of the MS mesh is computed in

the first integration according to

if i = 1 : → init_random_seed [c l oc k ] (9.4.11)

rand_number









u









1
...

n

















(9.4.12)

x e l e m = u (n ) (9.4.13)
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where x e l e m is a variable which is stored in a common block used in the element routine.
The PRNG used by function rand_number [·] is initialised using function rand_number [c l oc k ].
Then, the function rand_number [·] is called n times which is expressed by the vector u and
the variable x e l e m is set to the last outcome. This procedure guarantees that the same uni-
form pseudo-random number is used in each element which belongs to element n of the
MS mesh. However, this procedure requires that the same value of integer c l oc k is used
each time material routine MR#3 is called. Hence, the value of integer c l oc k is defined
when material routine MR#3 is called the first time in a FE simulation and is stored in an
common block used by the FE solver.

Based on variable x e l e m , the Weibull CDF given in Equation (9.3.1) and the inverse
transformation given in Equation (3.3.73), critical value Wc is computed in each integ-
ration point by

Wc =Wc 0
m

�

−
V0

min [Vi ni , Vc r i t ]
ln
�

1−x e l e m
�

(9.4.14)

where Vc r i t denotes the element volume of in the MS mesh and is computed by

Vc r i t =

�

l c r i t · l c r i t · ti ni for shell elements with inital thickness ti ni

l c r i t · l c r i t · l c r i t for solid elements
. (9.4.15)

As discussed in Chapter 5.2.4, it is recommended to use a FE mesh size which is equal or
smaller than the MS mesh size. In case the initial volume Vi ni of an element of the FE mesh
is larger than the volume Vc r i t of an element of the MS mesh, the initial volume Vi ni needs
to be used to serve the weakest-link approach. It is noted that critical value Wc needs to
be computed in each element only at time t = 0. The procedure in material routine MR#3
is summarised in Figure C.4.1 and Figure C.4.2 of Appendix C.4.

9.5 Material Routine MR#4

Material routine MR#4 is almost equivalent to material routine MR#3. However, in con-
trast to material routine MR#3, the creation of the MS mesh, the mapping of the MS
mesh onto the FE mesh and the distribution of the uniform pseudo-random numbers are
not performed in material routine MR#4. Here, the distribution of the uniform pseudo-
random numbers is given as user-input of the FE model such as an initial condition. This
means that a uniform pseudo-random number is defined for each integration point of an
element in the FE model. For instance, the MS mesh can be created in MATLAB [83] in
the same way as in material routine MR#3. Based on the MS mesh, the distribution of the
uniform pseudo random numbers can be also computed in the same way as in material
routine MR#3. However, the MS mesh can be also modelled as a uniform pseudo-random
field as described in Chapter 5.2.4. This implies that the elements of the MS mesh are
considered as statistically dependent. A sample drawn from this uniform pseudo-random
field defines the distribution of the uniform pseudo-random numbers. This distribution
is mapped onto the underlying FE mesh in the same way as in material routine MR#3 and
the result provides the input of the underlying FE model. Here, the statistical toolbox im-
plemented in MATLAB [84] can be used to draw a sample of the uniform pseudo-random
field. An example of this approach is illustrated in Figure 5.2.3.

The uniform pseudo-random number which is defined for the current integration point
is denoted as u i ni and is read by material routine MR#4. Based on this, material routine
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MR#4 computes critical value Wc according to material routine MR#3, so that

Wc =Wc 0
m

�

−
V0

min [Vi ni , Vc r i t ]
ln (1−u i ni ). (9.5.1)

The procedure in material routine MR#4 is summarised in Figure C.5.1 of Appendix C.5.

9.6 Concluding Remarks

The material routines presented in the current chapter allow to consider the local pseudo-
random variation in the material ductility of HPDC alloys in FE simulations. Each material
routine needs a set of material parameters to solve the constitutive model and the prob-
abilistic failure criterion:

– Constitutive model: Young’s modulus E , Poisson’s ratio ν , exponent p of the yield
criterion and hardening coefficientsσ0, Q1, Q2, C1 and C2.

– Probabilistic failure criterion: Weibull modulus m , scale volume V0 and scale failure
parameter Wc 0

However, the global systematic variation in the material ductility is not considered in the
material routines. In the present work, the global systematic variation is captured in a FE
model of an HPDC component using different sets of material parameters as discussed in
Chapter 6.5. A set of material parameters can be representative for a characteristic part
of the underlying HPDC component or for a specified casting quality. As a result, the FE
model of an HPDC component is partitioned into different parts each using a unique set of
material parameters. The partition can be found by the underlying casting system or by a
casting simulation which is the most advanced approach. Since, each set of material para-
meters is defined in a so-called material card, this approach leads practically to a spatial
distribution of material cards. In summary, the material routines presented in the current
chapter and a reasonable distribution of material cards enable to analyse numerically the
deformation and failure behaviour of HPDC components.



Chapter 10

Numerical Studies

The four material routines MR#1, MR#2, MR#3 and MR#4 presented in the previous chapter
are investigated and analysed in three experimental-numerical studies:

– Numerical study #1: Uniaxial tensile test

– Numerical study #2: Bending test

– Numerical study #3: Validation

The objective of the first and second numerical study is to demonstrate the difference
between the four material routines. These studies show the difference in the computa-
tion of the failure probability based on material routine MR#1 and material routine MR#2.
Further, the advantage of the uncoupled modelling approach implemented in material
routine MR#3 and MR#4 is demonstrated by mesh convergence studies. Here, the first
study is based on a uniaxial tensile test and the second study is based on a U-shaped com-
ponent subjected to three-point bending. The objective of the third numerical study is
the validation of the probabilistic failure model implemented in material routine MR#1
and material routine MR#2, respectively. The validation is based on the numerical predic-
tion of the failure probability of the U900-1 component subjected to three-point bending
as well as subjected to axial compression. The results of the three numerical studies are
presented and discussed in the current chapter. It is noted that all simulations were per-
formed in the explicit FE solver LS-DYNA 971 [51].

10.1 Uniaxial Tensile Test

The first numerical study is based on FE simulations of the uniaxial tensile tests investig-
ated in the first material characterisation, see Chapter 8.2. Parallel uniaxial tensile tests
were carried out on UT80 specimens machined from different extraction positions of five
U900-1 components made of the alloy Castasil-37 in casting condition (F). The analysis of
the experimental data showed that the variation in the material ductility can be separated
into a global systematic variation and a local pseudo-random variation. Therefore, the
objective of the first numerical study is to analyse if the local pseudo-random variation in
the material ductility can be numerically reproduced using material routines MR#1 and
MR#2. Here, the experimental results obtained from UT80 specimens machined from
location L and location R of part OW are considered. It is noted that the experimental
results obtained from UT80 specimens machined from the other parts could have been
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Figure 10.1.1: FE model of the uniaxial tensile test using a UT80 specimen.

considered also, but the conclusions would not change. In addition, the prediction of frac-
ture initiation is investigated in a mesh convergence study using material routines MR#2,
MR#3 and MR#4. It is shown how these material routines influence the numerical result.

10.1.1 Numerical Model

The FE model of the uniaxial tensile test set-up is illustrated in Figure 10.1.1. The UT80
specimen was discretised with Belytschko-Tsay shell elements with one integration point
through thickness since a plane stress problem could be assumed. Due to the reduced
in-plane integration, a stiffness based hourglass control was applied. Average element
edge lengths (mesh sizes) of l e = 1.00 mm, l e = 0.50 mm, l e = 0.25 mm and l e = 0.125 mm
were used. The element thickness was set to the average thickness of 2.362 mm measured
by the UT80 specimens machined from part OW, see Figure B.5.1 of Appendix B.5. Ac-
cording to the experimental test set-up, see Chapter 8.1.1, the two pins were modelled as
cylindrical rigid walls, while one was fixed and the other one moved constantly in longit-
udinal direction. A constant loading velocity of 4.0 mm

msec
was adopted. This loading velocity

is much faster than the experimental loading velocity of 1.8 mm
min

which was assumed to
be quasi-static. It was checked that kinetic energy and hourglass energy are less than 1%
of total energy in each simulation. Hence, quasi-static loading conditions and minimal
hourglassing were ensured. A friction coefficient of 0.2 was assumed for between rigid
walls and FE mesh. According to the the experimental measurements, the cross-section
force in longitudinal direction as well as the elongation of the gauge section were taken
from the FE simulations.

As already mentioned, material routines MR#1, MR#2, MR#3 and MR#4 were applied to
describe the material behaviour. Young’s modulus E was set to 72.00kN/mm2, Poisson’s ratio
ν to 0.33 and the exponent p applied in the yield criterion to 4. Based on the hardening
curves obtained from UT80 specimens machined from location L and location R of part
OW, the five parameters of the two-terms Voce rule were found from a least-squares curve
fit using gnuplot [115]. In Figure 10.1.2, the experimental hardening curves (blue) and the
fitted two-terms Voce rule (green) are shown. The Weibull parameters were taken from the
corresponding results of the Weibull analysis provided in Table 8.2.2. The material model
parameters are summarised in Table 10.1.1.
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Figure 10.1.2: Fitted two-terms Voce rule based on experimental hardening curves
obtained from UT80 specimens machined from part OW.

Material Model Parameters (UT80)

Part ρ [kg/mm3] E [kN/mm2] ν [−] p [−]
OW 2.75 ·10−6 72.00 0.33 4

Part σ0 [kN/mm2] Q1 [kN/mm2] C1 [−] Q2 [kN/mm2] C2 [−]
OW 0.14 0.11 76.47 0.13 13.07

Part m [−] Wc 0 [kN/mm2] V0
�

mm3
�

OW 2.41 0.0180 375.00

Table 10.1.1: Material model parameters obtained from UT80 specimens machined
from part OW.

10.1.2 Prediction of Failure Probability

The result obtained from a single simulation using material routine MR#1 and a mesh
size of l e = 1.00 mm are compared with the experimental results in Figure 10.1.3a. The
graph shows engineering strain on the abscissa, engineering stress on the left ordinate
and failure probability on the right ordinate. The experimental engineering stress-strain
curves are plotted in grey and the predicted engineering stress-strain curve is plotted in
red. Since material routine MR#1 does not include element deletion, the predicted en-
gineering stress-strain curve does not show failure and the drop beyond peak load indic-
ates necking. However, it is seen that the predicted engineering stress-strain curve is in
good agreement with the experimental engineering stress-strain curves neglecting failure.
Based on Equation (8.1.14), the experimental failure probability was estimated from the
measurements of engineering fracture strain and is plotted as a row of blue triangles. The
failure probability predicted by the simulation using material routine MR#1 is plotted in
blue. It is seen that the predicted failure probability and the experimental failure probab-
ility are well correlated. Accordingly, the result obtained from a simulation using a mesh
size of l e = 0.50 mm and a mesh size of l e = 0.25 mm, respectively, are compared with the
experimental results in Figure, 10.1.3b, and Figure 10.1.3c, respectively. It is seen that the
well correlation between experimental results and numerical results is not influenced by
the mesh size.

Furthermore, it is seen that the usage of material routine MR#1 enables to compute dir-
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Figure 10.1.3: Comparison of predicted engineering stress-strain curve using ma-
terial routine MR#1 (red) and experimental engineering stress-strain curves (grey)
as well as comparison of predicted failure probability using material routine MR#1
(blue) and experimental failure probability (blue triangles).
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ectly the failure probability of the uniaxial tensile test. Alternatively, the failure probability
can be numerically estimated using material routine MR#2 (which includes element dele-
tion) and a Monte-Carlo simulation. Here, parallel FE simulations need to be performed
on a FE model using material routine MR#2 and each simulation has to use a new pseudo-
random distribution of critical value Wc . According to this approach, 36 parallel simula-
tions were performed on each mesh size of the FE model of the uniaxial tensile test. It is
noted that each time a simulation was performed, the PRNG applied in material routine
MR#2 was initialised to a varying state based on the actual computer time at the beginning
of the simulation, see Chapter 9.3. Hence, it was guaranteed that each simulation uses a
new pseudo-random distribution of critical value Wc . The results obtained from 36 paral-
lel simulations using material routine MR#2 and a mesh size of l e = 1.00 mm are compared
with the result obtained from a single simulation using material routine MR#1 in Figure
10.1.4a. The graph is structured identically to the one above. The 36 predicted engineer-
ing stress-strain curves are plotted in red. From each simulation, the engineering fracture
strain is found when the first element was deleted. This implies that fracture initiation
is defined by the first deletion of an element. Accordingly, each predicted engineering
stress-strain curve is cut when the first element was deleted. It is seen that the predicted
engineering fracture strain varies pseudo-randomly as observed in the tensile test results.
Figure 10.1.5 shows five representative deformed and fractured UT80 specimens obtained
from the 36 simulations. The corresponding pseudo-random distribution of critical value
Wc is given as contour plot for each sample. As expected, the pseudo-random distribution
varies and, consequently, the predicted location of fracture initiation varies. Based on the
36 measurements of the predicted engineering fracture strain, the failure probability is es-
timated accordingly to the experimental failure probability, see Equation (8.1.14), and is
plotted as a row of blue triangles. The failure probability predicted by the numerical sim-
ulation using material routine MR#1 is plotted in blue. It is seen that the predicted failure
probability using material routine MR#1 and the predicted failure probability using ma-
terial routine MR#2 are well correlated. In the same way, the results obtained from a mesh
size of l e = 0.50 mm and a mesh size of l e = 0.25 mm, respectively, are compared in Fig-
ure 10.1.4b and Figure 10.1.4c, respectively. It is seen that both predictions of the failure
probability are well correlated independently of the applied mesh size.

The first analysis demonstrated that the predicted failure probability using material
routine MR#1 and the experimental failure probability are well correlated. The same prob-
abilistic failure criterion is applied in material routines MR#1 and MR#2, but the probab-
ilistic failure criterion is applied differently. The second analysis demonstrated the con-
sistency of these two material routines: The predicted failure probability using mater-
ial routine MR#1 can be reproduced by a Monte-Carlo simulation using material routine
MR#2. This implies that the varying results obtained from parallel simulations using ma-
terial routine MR#2 reproduce the varying experimental results. Moreover, it was shown
that the predicted failure probability does not show any mesh size dependence as long
as the deformation behaviour until fracture initiation is well captured by the constitutive
model such as the one implemented in material routines MR#1, MR#2, MR#3 and MR#4.

10.1.3 Prediction of Fracture Initiation

Material routine MR#2 was applied in the previous analysis to predict fracture initiation.
Here, each time a simulation was performed, the PRNG applied in material routine MR#2
was initialised to a varying state. Consequently, each simulation used a new pseudo-
random distribution of critical value Wc . The same FE model of the uniaxial tensile test
was investigated in a mesh convergence study using mesh sizes of l e = 1.00 mm, l e =
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Figure 10.1.4: Predicted engineering stress-strain curves using material routine
MR#2 (red) and comparison of predicted failure probability using material routine
MR#1 (blue) and predicted failure probability using material routine MR#2 (blue tri-
angles).
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Figure 10.1.5: Five deformed and fractured UT80 specimens obtained from FE sim-
ulations using material routine MR#2 including the pseudo-random distributions of
critical value Wc (l e = 1.00 mm).

0.50 mm, l e = 0.25 mm and l e = 0.125 mm. In contrast to the previous analysis, the PRNG
was initialised to the same state in each simulation. The result obtained from the mesh
convergence study is shown in Figure 10.1.6a. The graph shows the engineering stress-
stain curves predicted by the four mesh sizes: The result obtained from a mesh size of
l e = 1.00 mm is plotted in grey, the result obtained from a mesh size of l e = 0.50 mm in
green, the result obtained from a mesh size of l e = 0.25 mm in blue and the result obtained
from a mesh size of l e = 0.125 mm in magenta. The steep drop in each curve indicates frac-
ture initiation (first element deletion). It is seen that the results are identical until fracture
initiation. However, mesh convergence cannot be reached in terms of fracture initiation.
Moreover, the engineering fracture strain varies independently of the mesh size. Figure
10.1.6b shows the deformed and fractured UT80 specimens obtained from the mesh con-
vergence study. The corresponding pseudo-random distribution of critical value Wc is
given as contour plot for each mesh size. It is seen that the predicted location of fracture
initiation varies between the different mesh sizes, even though the PRNG was initialised to
the same state in each simulation. Since the number of elements increases with decreas-
ing mesh size, the sample drawn from the underlying Weibull distribution increases with
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decreasing mesh size. Hence, the pseudo-random distribution of critical value Wc varies
between the different mesh sizes. Consequently, mesh convergence cannot be reached
using material routine MR#2 even though the PRNG is initialised to the same state each
time a simulation is performed. Obviously, the element with the lowest critical value Wc

within the gauge section failed first and caused fracture initiation. However, the fractured
specimens using mesh sizes of l e < 1.00 mm shows non-failed elements along the pre-
dicted crack paths. These elements show a very high critical value Wc . This is caused by
the weakest-link approach: The probability of drawing a critical value Wc which exceeds
a certain value increases with decreasing initial element volume as mentioned in Chapter
5.2.4. In the work by Dørum et al. [31], this phenomenon is avoided using a non-local reg-
ularisation of critical value Wc . As already discussed in Chapter 6.4, the pseudo-random
distribution of critical value Wc is modified by the non-local regularisation and this is not
correct in terms of probabilistic failure modelling.

In Chapter 5.2.4, it was mentioned that mesh convergence cannot be reached when FE
mesh and MS mesh are coupled. The usage of material routine MR#2 implies the coupled
approach, see Chapter 9.3. The uncoupled approach is implemented in material routine
MR#3, see Chapter 9.4. The application of material routine MR#3 on the FE model of the
UT80 specimen is demonstrated in Figure 10.1.7a and can described as follows:

– Step 1: Generation of the FE mesh of the UT80 specimen with mesh size l e

– Step 2: Definition of critical edge length of l c r i t and generation of the uniform MS
mesh

– Step 3: Distribution of uniform pseudo-random numbers within the MS mesh

– Step 4: Mapping of the uniform pseudo-random distribution onto the FE mesh and
transformation into a pseudo-random Weibull distribution of critical value Wc

In the demonstration example, a FE mesh size of l e = 0.50 mm and a critical edge length
of l c r i t = 1.00 mm was used. As a result, all elements of the FE mesh which belong to
the same element of the MS mesh have the same critical value Wc . It is noted that the
uncoupled modelling approach implemented in material routine MR#3 implies statistical
independence between the elements of the MS mesh. Further, material routine MR#4 is
also based on the uncoupled modelling approach, see Chapter 9.5. However, in contrast to
material routine MR#3 the uniform pseudo-random number distribution is given as input
of the FE model. This enables to consider statistical dependence of the elements of the
MS mesh. The application of material routine MR#3 combined with a Gaussian pseudo-
random field on the FE model of the UT80 specimen is demonstrated in Figure 10.1.7b
and can described as follows:

– Step 1: Generation of the FE mesh of the UT80 specimen with mesh size l e

– Step 2: Definition of critical edge length of l c r i t and generation of the uniform MS
mesh

– Step 3: Distribution of pseudo-random numbers within the MS mesh according to
a sample of a discrete and homogeneous Gaussian pseudo-random field

– Step 4: Mapping of the pseudo-random distribution onto the FE mesh and trans-
formation into a pseudo-random Weibull distribution of critical value Wc

In the demonstration example, the FE mesh of the UT80 specimen with a mesh size of
l e = 0.50 mm was read in MATLAB [83] and the uniform MS mesh with a critical edge



10.1 UNIAXIAL TENSILE TEST 211

 0

 0.1

 0.2

 0.3

 0.4

 0  0.05  0.1  0.15  0.2

E
n
g
in

e
e
ri
n
g
 S

tr
e
s
s
 [
k
N

/m
m

2
]

Engineering Strain [-]

le=1.00 mm

le=0.50 mm

le=0.25 mm

le=0.13 mm

(a) Comparison of predicted engineering stress-
strain curves using material routine MR#2.

Wc [kN/mm²]
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.000mm

0.500mm

0.250mm

0.125mm

(b) Comparison of deformed and fractured UT80 specimens obtained from
FE simulations using material routine MR#2 including the distributions of
critical value Wc .

Figure 10.1.6: Mesh convergence study of the FE model of the uniaxial tensile test
using material routine MR#2 (l e = {1.00 mm, 0.50 mm, 0.25 mm, 0.125 mm}).



212 CHAPTER 10 NUMERICAL STUDIES

1. FE Mesh:

2. MS Mesh:

3. MS Mesh - U Distribution:

4. FE Mesh - Wc Distribution:

(a) Uncoupled modelling approach
using material routine MR#3.

1. FE Mesh:

2. MS Mesh:

3. MS Mesh - U Distribution:

4. FE Mesh - Wc Distribution:

(b) Uncoupled modelling approach
using material routine MR#4.

Figure 10.1.7: Uncoupled modelling approach applied on the FE model of the UT80
specimen using material routine MR#3 and material routine MR#4.

length of l c r i t = 0.50 mm was generated. Here, a sample of a discrete and homogen-
eous Gaussian pseudo-random field with a correlation length of d 0 = 1.00 mm was gener-
ated using the MS mesh and the statistical toolbox implemented in MATLAB [84]. This
sample of the Gaussian pseudo-random field was transformed into a sample of a uni-
form pseudo-random field and mapped onto the FE mesh. Finally, the distribution of the
pseudo-random numbers was used as input for material routine MR#4 and, consequently,
a sample of a Weibull pseudo-random field of critical value Wc was generated. Since the
elements of the MS mesh were considered as statistical independent, the distribution of
critical value Wc is characterised by smooth transitions.

The mesh convergence study of the FE model of the uniaxial tensile test was repeated
using material routine MR#3 and a critical edge length of l e = 1.00 mm was chosen. It
is noted that the PRNG was initialised to the same state each time a simulation was per-
formed. The predicted engineering stress-strain curves are presented in Figure 10.1.8a
and it is clearly seen that mesh convergence is reached. In Figure 10.1.8b, the deformed
and fractured UT80 specimens obtained from the mesh convergence study using mater-
ial routine MR#3 are illustrated. It is seen that the predicted location of fracture initiation
does not vary and the predicted crack paths are free of non-failed elements. The pseudo-
random distribution of critical value Wc is given as contour plot for each mesh size. Since
the same size of the MS mesh was applied in each simulation and the PRNG was initialised
to the same state in each simulation, the same distribution of critical value Wc was applied
in each simulation and causes mesh convergence.

Again, the mesh convergence study of the FE model of the uniaxial tensile test was
repeated using material routine MR#4 and a critical edge length of l c r i t = 0.50 mm was
chosen. As described above, the uniform pseudo-random number distribution was cre-
ated in MATLAB [83] and was given as input for each mesh size. The correlation length
of the underlying Gaussian pseudo-random field was set to d 0 = 1.00 mm. It is noted that
the PRNG implemented in MATLAB [83] was set to the default state each time a sample
of the Gaussian pseudo-random field was generated. The predicted engineering stress-
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Figure 10.1.8: Mesh convergence study of the FE model of the uniaxial tensile test
using material routine MR#3 (l e = {1.00 mm, 0.50 mm, 0.25 mm, 0.125 mm}).
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Figure 10.1.9: Mesh convergence study of the FE model of the uniaxial tensile test
using material routine MR#4 (l e = {1.00 mm, 0.50 mm, 0.25 mm, 0.125 mm}).



10.2 BENDING TEST 215

strain curves are presented in Figure 10.1.9a and it is clearly seen that mesh convergence
is reached. However, the predicted engineering stress-strain obtained from the simula-
tion using a FE mesh size of l e = 1.00 mm differs strongly from the other ones. This is
caused by the fact that the FE mesh size of l e = 1.00 mm is larger than the MS mesh size
of l c r i t = 0.50 mm. In Figure 10.1.8b, the deformed and fractured UT80 specimens ob-
tained from the mesh convergence study using material routine MR#4 are illustrated. The
pseudo-random distribution of critical value Wc is given as contour plot for each mesh
size. It is clearly seen that the distribution of the mesh size of l e = 1.00 mm is different to
the distributions of the smaller mesh sizes. As already mentioned, this is caused by the
fact the FE mesh size of l e = 1.00 mm is larger than the MS mesh size of l c r i t = 0.50 mm.
However, the distribution of the smaller mesh sizes are identical and, consequently, the
predicted location of fracture initiation does not vary. All simulation results are free of
non-failed elements along the predicted crack-paths. Mesh convergence is reached for
the same reason as described in the previous one.

The three mesh convergence studies demonstrated that the results converge only when
the uncoupled modelling approach is used (provided that the applied PRNG is set to the
same state each time a simulation is performed). In each study, the critical edge length
of the MS mesh was chosen freely without stating any scientific justification. The correct
critical edge length is equivalent to a material property and needs to be analysed more in
detail. Moreover, the Gaussian pseudo-random field used in the mesh convergence study
was also generated without stating any scientific justification. Here, a detailed material
characterisation would be necessary to identify the correct parameters. As already dis-
cussed in Chapter 5.2.4, material routine MR#3 is consistent to material routines MR#1
and MR#2, whereas material routine MR#4 combined with a Gaussian pseudo-random
field is not consistent to these material routines. However, it is seen that the uncoupled
approach combined with a Gaussian pseudo-random field is a statistical alternative to the
non-local regularisation.

10.2 Bending Test

In the previous chapter, a uniaxial tensile test was numerically analysed using material
routines MR#1, MR#2, MR#3 and MR#4. It was demonstrated that the experimentally
observed scatter can be numerically reproduced either in terms of the prediction of the
failure probability using material routine MR#1 or in terms of pseudo-randomly varying
results using material routine MR#2. However, these results could be expected since the
material model parameters were identified from the underlying tensile test results. This
implies that the parameters applied in material routines MR#1 and MR#2 were calibrated
correctly. Moreover, it was shown that mesh convergence can be reached using material
routines MR#3 and MR#4.

The second numerical study is based on FE simulations of a U-shaped HPDC com-
ponent (U-profile) subjected to three-point bending. The U-profile was made of an alu-
minium HPDC alloy in heat treated condition (T1). Test set-up, experimental results and
FE model were obtained from the work by Dørum et al. [33]. In Figure 10.2.1a, an im-
age of the experimental bending test set-up is presented. It is seen that the U-profile is
placed on two cylindrical steel supports and the load is applied through a cylindrical steel
punch. In addition, U-shaped supports are fixed at the edges of the U-profile. The force-
displacement curves obtained from three parallel bending tests are presented in Figure
10.2.1b. The results show the typical scatter as expected from an HPDC component. Fur-
ther, the first drop in a force-displacement curve indicates failure in the U-profile part
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(a) Image of the three-point bending test set-up.
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Figure 10.2.1: Image of the three-point bending test set-up and experimental results.

which is close to the vacuum channels and the second drop indicates failure in the U-
profile part which is close to the gating channels. More information on the test set-up and
a detailed discussion of the experimental results can be found in the work by Dørum et al.
[33].

The objective of the current study is to demonstrate that the failure probability pre-
dicted by a single simulation using material routine MR#1 can be reproduced by parallel
simulations using material routine MR#2 based on a component test. In addition, the res-
ult of a mesh convergence study using material routine MR#3 is presented and discussed.
Finally, a potential through-process mapping approach is presented. It is shown how the
result of casting process simulation can be used to redefine the parts of a FE model.

10.2.1 Numerical Model

The FE model of the U-profile subjected to three point bending is illustrated in Figure
10.2.2a. It is noted that this FE model was generated according to the one presented in
the work by Dørum et al. [33]. The considered U-profile was 300 mm long, 92 mm wide
and 40 mm high and the wall thickness was approximately 2.5 mm. The U-profile was dis-
cretised with Belytschko-Tsay shell elements with five integration points through thick-
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ness and a stiffness based hourglass control was applied. Average element edge lengths of
l e = 3.00 mm, l e = 1.50 mm, l e = 0.75 mm and l e = 0.38 mm were investigated. The sup-
ports were modelled as cylindrical rigid bodies with diameter equal to 50 mm and were
fixed in space. The punch was also modelled as a cylindrical rigid body with diameter
equal to 100 mm and was only allowed to move normal to the U-profile. A constant loading
velocity of 1.3 · 104 mm

min
was adopted. This loading velocity is much faster than the exper-

imental loading velocity of 20 mm
min

which was assumed to be quasi-static. It was checked
that kinetic energy and hourglass energy are less than 1% of total energy in each simula-
tion. Hence, quasi-static loading conditions and minimal hourglassing were ensured. A
friction coefficient of 0.2 was assumed for the global contact modelling. According to the
experimental measurements, reaction force and displacement were taken from the rigid
body output of the punch.

U-Profile
(Shell Elements)

Supports
(Rigid Bodies)

Punch
(Rigid Body)

(a) Modelling of the three-point bending test set-up.

Gating Side

Vacuum Side

Intermediate
Part

(b) Part definition of the U-profile according to the applied casting system:
Gating side (blue), intermediate part (red) and vacuum side (green).

Figure 10.2.2: FE model of the U-profile subjected to three-point bending.
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Material Model Parameters (U-Profile)

Part ρ [kg/mm3] E [kN/mm2] ν [−] p [−]
Gating Side 2.75 ·10−6 72.00 0.33 4

Intermediate Part 2.75 ·10−6 72.00 0.33 4
Vacuum Side 2.75 ·10−6 72.00 0.33 4

Part σ0 [kN/mm2] Q1 [kN/mm2] C1 [−] Q2 [kN/mm2] C2 [−]
Gating Side 0.108 0.052 172.5 0.158 27.8

Intermediate Part 0.105 0.040 373.2 0.181 33.2
Vacuum Side 0.105 0.026 481.4 0.186 44.3

Part m [−] Wc 0 [kN/mm2] V0
�

mm3
�

Gating Side 7.13 0.0289 825.6
Intermediate Part 3.06 0.0160 800.0

Vacuum Side 3.41 0.0123 755.2

Table 10.2.1: Material model parameters obtained from the work by Dørum et al.
[33] and the work by Dørum et al. [32] .

As seen in the work by Dørum et al. [33], three parts within the U-profile were defined
according the applied casting system, see Figure 10.2.2b. The flange close to the gating
channels was defined as the gating side (blue), the flange close to the vacuum channels as
the vacuum side (green) and the web between the flanges as the intermediate part (red).
Material routines MR#1, MR#2 and MR#3 were used to describe the material behaviour.
Different material model parameters were applied in each part. Table 10.2.1 contains the
three sets of material model parameters which were found in the work by Dørum et al. [33]
and the work by Dørum et al. [32].

10.2.2 Prediction of Failure Probabilities

The result obtained from a single simulation using material routine MR#1 and a mesh
size of l e = 3.00 mm is compared to the experimental results in Figure 10.2.3a. The graph
shows the displacement of the punch on the abscissa, the reaction force of the punch on
the left ordinate and the failure probability on the right ordinate. The three experimental
force-displacement curves are plotted in grey and the predicted force-displacement curve
is plotted in red. As already mentioned, material routine MR#1 does not include element
deletion and, thus, the predicted force-displacement curve does not show failure. How-
ever, it is seen that the predicted force-displacement curve is in fairly good agreement with
the experimental force-displacement curves until first fracture initiation. In addition, the
predicted failure probability obtained from the entire FE model is plotted in blue. Since
only three experimental results were available, the experimental failure probability cannot
be estimated and, thus, the predicted failure probability cannot be verified. The predicted
failure probabilities of the three parts of the FE model are given in Figure 10.2.3b. The
graph shows the displacement of the punch on the abscissa and the failure probability on
the left ordinate. The predicted failure probability obtained from the gating side is plotted
in blue, the one obtained from the intermediate part in red and the one obtained from the
vacuum side in green. Here, it is clearly seen that the predicted failure probability obtained
from the vacuum side dominates the predicted failure probability of the entire FE model.
The comparison of the three predicted failure probabilities shows that the one obtained
from the gating side starts to rise when the one obtained from the vacuum side reaches
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nearly 100%. Further, the comparison shows that the predicted failure probability of the
intermediated part has only a minor contribution to the predicted failure of the entire FE
model. Based on the numerical results, it can be concluded that failure on the gating side
occurs beyond failure on the vacuum side in most cases and the intermediate part is not
critical regarding failure. Even though it is known in advance that the vacuum side is usu-
ally the most critical one, this numerical example demonstrates how the failure behaviour
of a structure can be evaluated in terms of failure probabilities.
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Figure 10.2.3: Numerical results obtained from a single simulation of the U-profile
subjected to three-point bending using material routine MR#1 (l e = 3.00 mm).

In Figure 10.2.4, the result obtained from a simulation using material routine MR#2
and a mesh size of l e = 3.00 mm is shown. The graph given in Figure 10.2.4a shows the
predicted force-displacement curve (red) and the experimental force displacement curves
(grey). The simulation is based on a pseudo-randomly distributed critical value Wc . There-
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fore, the predicted force-displacement curve and the experimental force-displacement
curves can only be compared qualitatively in terms of fracture initiation on vacuum side
(first drop) and gating side (second drop). However, the predicted force-displacement
curve reaches nearly the same force level as the experimental force-displacement curves
beyond fracture initiation on the vacuum side, see Figure 10.2.4b. When fracture initiates
on the gating side, see Figure 10.2.4c, the numerical force level falls off to nearly zero as
seen by the experimental force-displacement curves. As a result, it can be concluded that
the deformation behaviour can be well described by the constitutive model implemented
in the four material routines MR#1, MR#2, MR#3 and MR#4.

Additionally, a Monte-Carlo simulation was carried out on the FE model of the U-profile
subjected to three-point bending. Here, 36 parallel FE simulations were performed using
material routine MR#2 and a mesh size of l e = 3.00 mm. Each time a simulation was per-
formed the PRNG applied in material routine MR#2 was initialised to a varying state based
on the actual computer time at the beginning of the simulation. Hence, it was guaranteed
that each simulation uses a new pseudo-random distribution of critical value Wc . The
results are given in the graph of Figure 10.2.5a. The graph shows the displacement of the
punch on the abscissa, the force of the punch on the left ordinate and the failure probab-
ility on the right ordinate. The 36 predicted force-displacement curves are plotted in red.
Each curve is cut when the first element was deleted. As expected, the punch displacement
at fracture initiation varies pseudo-randomly due to the usage of material routine MR#2.
Based on the 36 measurements of the punch displacement at first element deletion, the
failure probability of the FE model can be estimated according to Equation (8.1.14) and
is plotted as a row of blue triangles. This failure probability is compared with the failure
probability obtained from the simulation using material routine MR#1 plotted in blue. It
is clearly seen that these are well correlated and the usage of both material routines lead to
the same failure probability. Moreover, this comparison shows that the failure probability
of a structural component can be predicted by a single simulation using material routine
MR#1 instead of parallel simulations using material routine MR#2.

The same comparison as described above is done for the gating side and the vacuum
side of the U-profile and is presented in Figure 10.2.5b. The graph shows the displace-
ment of the punch on the abscissa and the failure probability on the left ordinate. The
failure probability obtained from the gating side using material routine MR#1 is plotted
in blue. The corresponding failure probability estimated from the 36 parallel simulations
using material routine MR#2 is plotted as a row of blue triangles. Here, the estimation is
based on the measurements of the punch displacement when the first element was de-
leted on the gating side. The failure probability obtained from the vacuum side using ma-
terial routine MR#1 is plotted in green. The corresponding failure probability estimated
from the 36 parallel simulations using material routine MR#2 is plotted as a row of green
triangles. Here, the estimation is based on the measurements of the punch displacement
when the first element was deleted on the vacuum side. It is seen that the results obtained
from the usage of material routines MR#1 and MR#2 are also well correlated for the two
parts. This means that the failure probability of a structural part can be predicted by a
single simulation using material routine MR#1 instead of parallel simulations using ma-
terial routine MR#2.

Finally, it is noted that these results are related to the prediction of the probability of
first fracture initiation in an entire FE model or in its parts. The prediction of the prob-
ability of further fracture initiations in the entire FE model or in same parts remains un-
known using material routine MR#1. This implies that any information on subsequent
fracture initiation and crack propagation is still unknown. Here, the application of mater-
ial routine MR#2 (respectively material routines MR#3 and MR#4) is required to analyse
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Figure 10.2.4: Numerical results obtained from a single simulation of the U-profile
subjected to three-point bending using material routine MR#2 (l e = 3.00 mm).
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Figure 10.2.5: Comparison of the numerical results obtained from simulations of the
U-profile subjected to three-point bending using material routines MR#1 and MR#2
(l e = 3.00 mm).
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the influence of fracture initiation and crack propagation with a pseudo-randomly distrib-
uted critical value. As already shown in the first numerical study, see Chapter 10.1.2, the
same failure probability can be predicted by a single FE simulation using material routine
MR#1 and a Monte-Carlo simulation based on multiple repeated FE simulations using
material routine MR#2. Hence, the consistency of material routines MR#1 and MR#2 was
confirmed by a component test and, further, the numerical efficiency of material routine
MR#1 was clearly demonstrated.

10.2.3 Prediction of Fracture Initiation

In addition to the failure probability analysis, a mesh convergence study was performed
on the FE model of the U-profile subjected to three-point bending. Here, the focus was put
on a pure numerical analysis of fracture initiation. The mesh convergence studies of the
uniaxial tensile test showed that material routine MR#3 and material routine MR#4 need
to be used to reach mesh convergence, see Chapter 10.1.3. Therefore, material routine
MR#3 was applied and a critical edge length of l c r i t = 3.00 mm was chosen for the uni-
form MS mesh. Further, the PRNG applied in material routine MR#3 was initialised to the
same state each time a simulation was performed. Four mesh sizes were investigated and
the result of mesh convergence study is presented in Figure 10.2.6. The graph shows the
force-displacement curves obtained from the four mesh sizes: Mesh size of l e = 3.00 mm
in grey, mesh size of l e = 1.50 mm in green, mesh size of l e = 0.75 mm in blue and mesh
size of l e = 0.38 mm in magenta. Mesh convergence is reached in terms of the force-
displacement behaviour. Moreover, the prediction of fracture initiation on the vacuum
side (first drop) as well as the prediction of fracture initiation on the gating side (second
drop) converge. However, it is seen that the force-displacement curve obtained from a
mesh size of l e = 0.38 mm ends earlier than the other ones. This is caused by the fact that
the required simulation time was larger than the maximum available computational time
on the applied computer cluster.

The pseudo-random distribution of critical value Wc on the vacuum side is given as con-
tour plot for each mesh size in Figure 10.2.7a. It is seen that the same distribution was used
for each mesh size due to the uncoupled modelling approach implemented in material
routine MR#3 and the initialising of the PRNG. As a result, the predicted location of frac-
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ture initiation does not vary as seen in Figure 10.2.7b. This figure shows location of fracture
initiation and propagation of a crack on the vacuum side for each mesh size at a punch dis-
placement of approximately 11.1 mm. Additionally, the distribution of failure integral W is
given as a contour plot. The location of fracture initiation does not vary between the four
mesh sizes and the crack path converges with decreasing mesh size. It can be concluded
that material routine MR#3 including the uncoupled modelling approach can be applied
for numerical analyses of stochastic crack propagation on component level.
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Figure 10.2.7: Mesh convergence study of the FE model of the U-profile subjected to
three-point bending using material routine MR#3: Prediction of fracture initiation in
the vacuum side (l e = {3.00 mm, 1.50 mm, 0.75 mm, 0.38 mm}).

10.2.4 Through-Process Modelling Approach

The two previous numerical analyses of the U-profile subjected to three-point bending
were based on a part definition according to the underlying casting system as illustrated
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in Figure 10.2.8a. The flange close to the gating channels was defined as gating side (blue),
the flange close to the vacuum channels as vacuum side (green) and the web between both
flanges as intermediate part (red). In the work by Dørum et al. [32], the result of a cast-
ing simulation of the U-profile is presented and a through-process modelling approach is
introduced. The through-process modelling approach can be described as follows:

– The casting simulation result provides a quantitative measurement for the spatial
distribution of discrete casting qualities.

– Each casting quality is defined as a unique set of material model parameters and
corresponds to a unique casting quality.

– The casting simulation result is mapped onto a corresponding FE mesh.

– The parts of the FE mesh are defined according to the spatial distribution of the
discrete casting qualities.

In the work by Dørum et al. [32], the Air Contact Time (ACT) distribution predicted by the
casting simulation is used as casting quality measurement and the three casting qualities
are defined by the material model parameters found on gating side, intermediate part and
vacuum side. In the present work, the same approach was considered. The predicted ACT
distribution given in Figure 10.2.8b was mapped onto the FE mesh of the U-profile (mesh
size of l e = 3.00 mm) and the part definition of the FE mesh was defined based on the
predicted ACT distribution according to the mapping rule:

– 0.0 msec≤ ACT< 0.1 msec: High casting quality - Usage of material model paramet-
ers found in gating side (blue)

– 0.1 msec ≤ ACT < 0.6 msec: Intermediate casting quality - Usage of material model
parameters found in intermediate part (red)

– 0.6 msec≤ ACT: Low casting quality - Usage of material model parameters found in
vacuum side (green)

The redefined part definition of the FE model of the U-profile is presented in Figure 10.2.8c.
It is seen that the new part definition becomes more heterogeneous compared to the initial
part definition. Since each part was linked to a set of unique material model parameters,
this through-process modelling approach can be also defined as material card mapping
as already described in Chapter 6.5.

Based on the through-process modelling approach, a simulation of the U-profile sub-
jected to three-point bending was performed using material routine MR#1. The numerical
results obtained from the simulation are compared with the results obtained from the sim-
ulation without a through-process modelling approach in Figure 10.2.9. The graph given
in Figure 10.2.9a shows the displacement of the punch on the abscissa, the applied force
of the punch on the left ordinate and the failure probability on the right ordinate. The
force-displacement obtained from the simulation without mapping is plotted as blue line
and the one obtained from the simulation with mapping is plotted as red line. The pre-
dicted force-displacement behaviour is almost unaffected by the through-process map-
ping approach. The failure probability of the entire FE model obtained from the simula-
tion without mapping is plotted as blue dashed line and the one obtained from the simu-
lation with mapping is plotted as red dashed line. Here, a minor difference between both
predicted failure probabilities can be identified. The failure probability obtained from the
simulation with mapping is slightly smaller than the one obtained from the simulation
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Figure 10.2.8: Through-process modelling approach applied on the FE model of the
U-profile (l e = 3.00 mm).
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routine MR#1) of the U-profile subjected to three-point bending without mapping
and with mapping (l e = 3.00 mm).
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without mapping at same punch displacement. The graph given in Figure 10.2.9b shows
the displacement of the punch on the abscissa and the failure probability on the left or-
dinate. Here, the failure probabilities obtained from the three parts of the FE model are
compared. The failure probabilities of gating side, intermediate part and vacuum side ob-
tained from a simulation without mapping are plotted as blue line, red line and green line.
The failure probabilities of gating side (high casting quality), intermediate part (intermedi-
ate casting quality) and vacuum side (low casting quality) obtained from a simulation with
mapping are plotted as blue dashed line, red dashed line and green dashed line. Since the
part definition of gating side is comparable in both FE models, the corresponding failure
probabilities are comparable. However, the part definitions of intermediate part as well as
vacuum side are strongly different in the two FE models and, obviously, the corresponding
failure probabilities are strongly different from each other.

The numerical results could not be compared with a sufficient large experimental data-
base and, thus, could not be validated. Moreover, it is noted that the applied mapping
rule was chosen without any experimental correlation. However, the objective of this ana-
lysis was to demonstrate how the result obtained from a casting simulation can be used in
FE modelling of HPDC components. The presented through-process modelling approach
shows a possibility to consider the global systematic variation in the ductility of casting
materials in a FE model depending on discrete casting qualities.

10.3 Validation

The objective of the last numerical study is the validation of the probabilistic approach
in failure modelling using the U900-1 component made of the aluminium HPDC alloy
Castasil-37 in casting condition (F). Parallel three-point bending tests and parallel axial
compression tests were carried out on U900-1 components and the results were presented
in Chapter 7. These test results form the basis for the validation. Both types of component
tests were numerically analysed using material routine MR#1. It is checked if the numer-
ically predicted failure probability correlates to the failure probability estimated from the
experimental results. It is noted that a successful validation of material routine MR#1 im-
plies a successful validation of material routines MR#2 as demonstrated in the previous
numerical studies. Moreover, the influence of the discretisation on the numerical beha-
viour of the U900-1 component is analysed. Here, three different types of FE meshes were
investigated. In the following, the discretisation and the creation of these three FE meshes
are described. The results of the validation study are presented and discussed separately
for the three-point bending test and the axial compression test.

10.3.1 Numerical Model

The U900-1 component is U-shaped with a typical casting structure inside as seen in Fig-
ure 7.1.1a. The discretisation of such a structure is very difficult due to the strong variation
in the thicknesses as seen in Figure 10.3.1a. The image shows a cross-section machined
from the U900-1 component and it can be seen that the thickness of an ejector dome is
much larger than the wall thickness of the ribs and the U-shaped part. Such a geometry
can be best discretised by solid elements as shown in Figure 10.3.1b (8-node underinteg-
rated solid elements, mesh size of l e ≤ 1.0 mm). However, the usage of solid elements
leads to high computational cost and, thus, is not applicable for industrial applications
such as for full scale car crash simulations. Figure 10.3.1c shows a typical shell mesh which
is applied in industrial applications (Belytschko-Tsay shell elements with five integration
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Figure 10.3.1: Discretisation of the cross-section of the U900-1 component using a
solid mesh (l e ≤ 1.0 mm), a shell mesh (l e ≤ 8.0 mm) and a hybrid mesh (l e ≤ 5.0 mm).

points through thickness, mesh size of l e ≤ 8.0 mm). Here, the shell thickness distribution
is given as contour plot and it is seen that the wall thicknesses by the local shell element
thickness. The thickness of the ejector domes are also captured by the local shell ele-
ment thickness and, thus, it can be expected that the stiffness of the ejector domes is not
well captured. An alternative discretisation approach is the usage of hybrid meshes which
consist of shell elements and solid elements. Here, the thin walled parts are modelled with
shell elements and the thick parts such as the ejector domes are modelled with solid ele-
ments as demonstrated in Figure 10.3.1d (Belytschko-Tsay shell elements with five integ-
ration points through thickness and 8-node underintegrated solid elements, mesh size of
l e ≤ 5.0 mm). The solid elements are modelled on top of the shell elements. This implies
that congruent nodes of shell and solid elements are merged. Consequently, a bending
resistant connection of shell and solid elements can be guaranteed.

These three modelling approaches are compared in an eigenfrequency analysis of the
small ejector dome which is placed in the intersections of ribs. The computation of ei-
genfrequencies enables to draw conclusions of the structural stiffness of the considered
FE model. The eigenfrequency analysis was performed in the implicit FE solver LS-DYNA
971 [51]. Here, a linear-elastic material behaviour was adopted and Young’s modulus E
was set to 72.00kN/mm2, Poisson’s ratio ν to 0.33 and density ρ to 2.75 ·10−6kg/mm3. Figure
10.3.2a shows the FE model of the small ejector dome using the solid element mesh. It is
seen that all nodes at the bottom were fixed. The FE model using the shell mesh and the
FE model using the hybrid mesh were created accordingly.

The first bending eigenfrequencyωB1, see Figure 10.3.2b, and the first torsional eigen-
frequencyωT 1, see Figure 10.3.2c, of each FE model were computed. These eigenfrequen-
cies are used to characterise numerically the bending and the torsional stiffness of the
small ejector dome depending on the modelling approach. The computed eigenfrequen-
cies are compared in Table 10.3.1. The eigenfrequencies obtained from the solid mesh
form the basis for the comparison. The bending eigenfrequencies obtained from the shell
mesh and the hybrid mesh are comparable, but these are more than 10% smaller than the
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Fixed Nodes
(a) FE model. (b)ωB1. (c)ωT 1.

Figure 10.3.2: FE model of the small ejector dome applied for eigenfrequency ana-
lysis and numerical results of the first bending eigenfrequencyωB1 and the first tor-
sional eigenfrequencyωT 1 (solid mesh).

Eigenfrequency Analysis of the Small Ejector Dome

Modelling Approach ωB1 [1/msec] ωT 1 [1/msec]
Solid Mesh 45.74 (100%) 58.80 (100%)
Shell Mesh 37.95 (−17%) 27.47 (−53%)

Hybrid Mesh 39.20 (−14%) 41.08 (−30%)

Table 10.3.1: Comparison of the first bending eigenfrequency ωB1 and the first tor-
sional eigenfrequency ωT 1of the small ejector dome obtained from a solid mesh, a
shell mesh and a hybrid mesh.

bending eigenfrequency obtained from the solid mesh. However, the comparison of tor-
sional eigenfrequencies shows a clear difference between the shell mesh and hybrid mesh.
The torsional eigenfrequency obtained from the shell mesh is more than 50% smaller than
the torsional eigenfrequency obtained from the solid mesh. In contrast, the torsional ei-
genfrequency obtained from the hybrid mesh is only 30% smaller than the torsional eigen-
frequency obtained from the solid mesh. These results show clearly that the shell mesh
cannot reproduce the stiffness of the solid mesh, whereas the hybrid mesh provides an
appropriate alternative to the solid mesh.

The solid mesh, the shell mesh and the hybrid mesh shown in Figure 10.3.1 were in-
vestigated in the validation study. In the material characterisation presented in Chapter
8, it was shown by hypothesis testing that the U900-1 component can be classified into
three characteristic parts with comparable material ductility. These were defined as part
IW (gating side), part BF (intermediate part) and part OW (vacuum side), see Figure 8.1.2.
Accordingly, the FE meshes of the U900-1 component were partitioned into the three char-
acteristic parts gating side (blue), intermediate part (red) and vacuum side (green), see
Figure 7.1.1d.

As already mentioned, material routine MR#1 was used to describe the material be-
haviour and to compute failure probabilities. The material characterisation presented in
Chapter 8 was based on uniaxial tensile test specimens machined from the characteristic
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Figure 10.3.3: Part definition of the U900-1 component: Gating side (blue), interme-
diate part (red) and vacuum side (green).
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(a) Gating side (IW).
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(b) Intermediate part
(BF).
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(c) Vacuum side (OW).

Figure 10.3.4: Fitted two-terms Voce rules based on experimental hardening curves
obtained from UT75 specimens machined from gating side (IW), intermediate part
(BF) and vacuum side (OW).

parts gating side (IW), intermediate part (BF) and vacuum side (OW). Three different spe-
cimen geometries (UT80, UT75 and UT117) were investigated. Here, the results obtained
from the UT75 specimens showed the best reproducible strain hardening behaviour in
each of these parts, see Chapter 8.3.1. Furthermore, it was shown that the pseudo-random
distribution of critical value Wc in each part can be described by a unique Weibull distri-
bution, see Chapter 8.3.2. Hence, the experimental results obtained from UT75 specimens
were considered as the most reliable ones for the identification of the material model para-
meters. In each part, Young’s modulus E was set to 72.00kN/mm2, Poisson’s ratio ν to 0.33
and the exponent p applied in the yield criterion to 4. The five parameters of the two-terms
Voce rule were found separately for each part from a least-squares curve fit using gnuplot
[115]. The results are presented in Figure 10.3.4a for gating side (IW), in Figure 10.3.4b for
intermediate part (BF) and in Figure 10.3.4c for vacuum part (OW). Each figure shows the
experimental hardening curves obtained from UT75 specimens machined from the same
part (blue) and the fitted two-terms Voce rule (green). The Weibull parameters were taken
from the corresponding results of the Weibull analysis provided in Table 8.3.4, Table 8.3.5
and Table 8.3.6. The material model parameters are summarised in Table 10.3.2.

10.3.2 Bending Test

The numerical model of the three-point bending test set-up was created according to the
experimental test set-up described in Chapter 7.2.1 and is illustrated in Figure 10.3.5. The
supports in form of steel bars were modelled as cylindrical rigid bodies, see Figure 10.3.5a.
According to the applied support construction given in Figure A.1.2, the supports were
fixed in space except of the horizontal direction and, consequently, the supports were
allowed to move in the horizontal direction. The three FE meshes of the U900-1 com-
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Material Model Parameters (U900-1 Component)

Part ρ [kg/mm3] E [kN/mm2] ν [−] p [−]
Gating Side (IW) 2.75 ·10−6 72.00 0.33 4

Intermediate Part (BF) 2.75 ·10−6 72.00 0.33 4
Vacuum Side (OW) 2.75 ·10−6 72.00 0.33 4

Part σ0 [kN/mm2] Q1 [kN/mm2] C1 [−] Q2 [kN/mm2] C2 [−]
Gating Side (IW) 0.128 0.091 93.0 0.123 19.7

Intermediate Part (BF) 0.132 0.086 91.3 0.122 20.7
Vacuum Side (OW) 0.141 0.069 102.6 0.136 28.8

Part m [−] Wc 0 [kN/mm2] V0
�

mm3
�

Gating Side (IW) 8.00 0.033 506.25
Intermediate Part (BF) 10.59 0.034 506.25

Vacuum Side (OW) 4.75 0.023 506.25

Table 10.3.2: Material model parameters obtained from UT75 specimens machined
from gating side (IW), intermediate part (BF) and vacuum side (OW).

ponent were modified so that supports could be placed through holes in it, see Figure
10.3.5a. The aluminium sheets which were used to reinforce the holes were discretised
with Belytschko-Tsay shell elements with five integration points through thickness and a
mesh size of l e = 8.0 mm, see Figure 10.3.5b. The sheet material behaviour was described
by a linear-elastic material model with Young’s modulus E of 72.00kN/mm2, Poisson’s ratio ν
of 0.33 and densityρ of 2.75 ·10−6kg/mm3. The aluminium sheets were attached to the three
FE meshes of the U900-1 component using a tied contact definition. The steel punch was
modelled as a cylindrical rigid body and was only allowed to move perpendicular to the
U900-1 component. It was observed that the punch rotates slightly about 1.00 ° during
testing, see Figure 7.2.5. Consequently, the punch was initially rotated about 1.00 ° in each
FE model as seen in Figure 10.3.5a. A constant loading velocity of 4.5·104 mm

min
was adopted.

This loading velocity is much faster than the experimental loading velocity of 3 mm
min

which
was assumed to be quasi-static. Due to the usage of underintegrated elements, a stiffness
based hourglass control was applied. It is noted that mass scaling was applied for the solid
mesh to reduce the computational time. The applied mass scaling algorithm adds mass
to only those elements whose time step is less than a minimum time step. Here, the min-
imum time step was set to 2.8 ·10−4 msec. It was checked that kinetic energy and hourglass
energy are less than 1% of total energy in each simulation. Hence, quasi-static loading
conditions and minimal hourglassing were ensured. A friction coefficient of 0.2 was as-
sumed for the global contact modelling. According to the experimental measurements,
reaction force and displacement were taken from the rigid body output of the punch.

The numerical force-displacement curves obtained from the solid mesh (blue), the shell
mesh (green) and the hybrid mesh (magenta) are compared with the experimental force-
displacement curves (grey) in Figure 10.3.6a. The experimental force-displacement beha-
viour until fracture initiation is perfectly captured by the solid mesh as well as the hybrid
mesh. Further, the results obtained from the solid mesh and the hybrid mesh show that
the force increases constantly during deformation. In contrast, the result obtained from
the shell mesh shows that the force increases during deformation until a maximum force
level is reached and, then, the force decreases further during deformation. The deforma-
tion of the cross-section directly under the punch was monitored in each simulation and
the results at four deformation states are provided in Figure 10.3.7. It can be observed that
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(a) Modelling of supports and punch as rigid bodies (top view).
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(t=2mm) 

Initial Rotation
of the Punch

1.00°

(b) Modelling of reinforcement sheets and initial rotation of the punch (side
view).

Figure 10.3.5: Numerical model of the three-point bending test set-up.

the cross-section of the solid mesh shows only minor bending of gating side and vacuum
side during deformation. The cross-section of the hybrid mesh shows a similar behaviour.
In contrast, the cross-section of the shell mesh shows a kind of buckling of gating side and
of vacuum side. As expected, the discretisation of the ejector domes using shell elements
cannot capture the stiffness of the cross-section. The buckling phenomenon of the cross-
section causes the maximum force level and the subsequent decrease of the force level.
It can be concluded that the structural behaviour of the U900-1 component subjected to
three-point bending is captured best by the solid mesh and the hybrid mesh. Moreover,
these results imply that the structural behaviour can be well described by the applied con-
stitutive model and the calibrated model parameters.

Figure 10.3.6b shows the force-displacement curves (grey) obtained from the seven par-
allel tests and the point of fracture initiation in each curve is marked by red squares. The
underlying data are provided in Table 7.2.1a. Based on these measurements, the failure
probability of the U900-1 component subjected to three-point bending was estimated ac-
cording to Equation (8.1.14). The experimental failure probability and the numerical fail-
ure probabilities obtained from the three FE meshes are compared in the graph given in
Figure 10.3.6c. The graph shows the failure probability on the ordinate and the punch
displacement on the abscissa. The experimental failure probability is plotted as a row of
red triangles. The numerical failure probability obtained from the solid mesh is plotted
in blue, the numerical failure probability obtained from the shell mesh in green and the
numerical failure probability obtained from the hybrid mesh in magenta. A very good cor-
relation is achieved between the experimental failure probability and the numerical fail-
ure probability obtained from the solid mesh. The numerical failure probability obtained
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Figure 10.3.7: Numerical prediction of the cross-section deformation of the U900-1
component subjected to three-point bending using solid modelling, shell modelling
and hybrid modelling.

from the shell mesh underestimates strongly the experimental failure probability. Here,
the buckling of the cross-section is the main reason for this poor result. The numerical
failure probability obtained from the hybrid mesh underestimates also the experimental
failure probability, but the underestimation is less than the one obtained from the shell
mesh. Nevertheless the solid mesh as well as the hybrid mesh capture the experimental
force-displacement behaviour, the solid mesh captures the local stress distribution (and
W distribution) better than the hybrid mesh. This might be caused by the smaller mesh
size of the solid mesh. Hence, a mesh refinement was performed on the hybrid mesh
(mesh size of l e ≤ 2.5 mm). A comparison of the experimental failure probability (red tri-
angles) and the numerical failure probabilities obtained from the solid mesh (blue), the
hybrid mesh (magenta) and the refined hybrid mesh (cyan) is provided in Figure 10.3.6d.
Here, the numerical failure probability obtained from the refined hybrid mesh is in a very
good agreement with the experimental failure probability above 60%, whereas the numer-
ical failure probability obtained from the solid mesh is in a very good agreement with the
experimental failure probability below 60%. It is noted that the experimental failure prob-
ability is estimated based on only seven parallel test results and more test results provide
a more reliable estimation. Consequently, the comparison between experimental failure
probability and numerical failure probability becomes more reliable. However, these res-
ults demonstrate that the solid mesh and the hybrid mesh as well as the applied probab-
ilistic failure criterion based on the Cockcroft-Latham criterion and the weakest-link ap-
proach by Weibull provide a very good predication of the failure probability of the U900-1
component subjected to three point bending. It is important to note that the computation
of the failure probability using material routine MR#1 only requires a single simulation of
the considered FE model.

Finally, the computational costs of the applied FE meshes are compared in Table 10.3.3.
As expected, the shell mesh is the cheapest one and the solid mesh is the most expens-
ive one. In the hybrid mesh, the discretisation of the ejector domes by solid elements
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Computational Cost - U900-1 Subjected to Three-Point Bending

Modelling Computational Time Number of CPU’s Mass Scaling
Solid Mesh 26504 sec (+1765%) 64 Yes
Shell Mesh 1421 sec (100%) 8 No

Hybrid Mesh 4271 sec (+201%) 8 No
Refined Hybrid Mesh 23419 sec (+1548%) 16 No

Table 10.3.3: Comparison of computational cost of the different modelling ap-
proaches of the U900-1 component subjected to three-point bending.

increases the computational cost. Here, the computational costs of the hybrid mesh can
easily be reduced using mass scaling and, thus, the computational cost of the shell mesh
can be reached. The same holds for the refined hybrid mesh.

10.3.3 Axial Compression Test

The numerical model of the axial compression test set-up was created according to the
experimental test set-up described in Chapter 7.3.1 and is illustrated in Figure 10.3.8. Ac-
cordingly, the three FE meshes of the U900-1 component were cut in half and the cut sur-
faces were modelled parallel and each mesh was placed between two plates which were
modelled as rigid bodies, see Figure 10.3.8a and Figure 10.3.8b. The bottom plate was
fixed in space and the loading plate was allowed to move in the longitudinal direction of
the U900-1 component. It was observed that the loading plate rotates slightly about 0.61 °
during testing, see Figure 7.3.5. Consequently, the punch was initially rotated about 0.61 °
in each FE model as seen in Figure 10.3.5a. A constant loading velocity of 4.5 · 104 mm

min
was adopted. This loading velocity is much faster than the experimental loading velocity
of 3 mm

min
which was assumed to be quasi-static. Due to the usage of underintegrated ele-

ments, a stiffness based hourglass control was applied. It is noted that mass scaling was
applied for the solid mesh to reduce the computational time. The applied mass scaling
algorithm adds mass to only those elements whose time step is less than a minimum time
step. Here, the minimum time step was set to 2.8 · 10−4 msec. It was checked that kinetic
energy and hourglass energy are less than 1% of total energy in each simulation. Hence,
quasi-static loading conditions and minimal hourglassing were ensured. A friction coeffi-
cient of 0.2 was assumed for the global contact modelling. According to the experimental
measurements, reaction force and displacement were taken from the rigid body output of
the loading plate.

The numerical force-displacement curves obtained from the solid mesh (blue), the shell
mesh (green) and the hybrid mesh (magenta) are compared with the experimental force-
displacement curves (grey) in Figure 10.3.9a. It is seen that the initial stiffness of the U900-
1 component until peak load is well captured by the solid mesh, the shell mesh as well
as the hybrid mesh. The peak load is overestimated by the solid mesh as well as by the
hybrid mesh, whereas the peak load obtained from the shell mesh is closer to the ex-
perimental results. The force level beyond peak load shown by the experimental results
cannot be captured by the three different meshes. Here, the solid mesh provides a closer
result. However, it is important to take into account that the simulations were performed
using material routine MR#1. This implies that element deletion was not considered. Con-
sequently, the numerical and experimental results can only be compared until first frac-
ture initiation. Figure 10.3.9b shows the force-displacement curves (grey) obtained from
the four parallel tests and the point of fracture initiation in each curve is marked by red
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Figure 10.3.8: Numerical modelling of the axial compression test set-up.

squares. The underlying data are provided in Table 7.3.1a. Now, experimental results and
numerical results are compared in terms of dissipated energy at fracture initiation. Here,
the dissipated energy is defined as the integral of the force-displacement curve until the
displacement at fracture initiation is reached. Table 10.3.4 compares the dissipated energy
obtained from the experimental results with the dissipated energy obtained from the nu-
merical results for each test separately and in average. It is seen that the dissipated energy
until first fracture initiation is numerically well captured in average by all mesh variants.
Figure 10.3.10 shows the deformation of the solid mesh, the shell mesh and the hybrid
mesh at a loading plate displacement of 7.5 mm. Here, the resultant displacement is given
as a contour plot for each mesh type. The deformation of the solid mesh as well as the de-
formation of the shell mesh show a buckling mode which leads to an opening of the U900-
1 component. However, the deformation of the shell mesh shows a more extreme opening
which is caused by the discretisation of the ejector domes using shell elements. As already
seen, the correct stiffness of the cross-section cannot be captured by the shell mesh. The
deformation of the hybrid mesh shows a buckling mode which leads to a closing of the
U900-1 component. The experimental results show only an opening of the tested U900-1
components, see Figure 7.3.2. It is noted that slight modifications in the mesh size of the
hybrid mesh can also lead to an opening of the U900-1 component due to the sensitivity
of the buckling instability. In summary, it can be concluded that the structural behaviour
of the U900-1 component subjected to axial compression is better captured by the solid
mesh as well as the hybrid mesh. The nearly perfect correlation between experimental
and numerical results for the bending load case cannot be achieved for the compression
load case which is common for cases showing some kind of buckling behaviour.

Figure 10.3.9b shows the force-displacement curves (grey) obtained from the four par-
allel tests and the point of fracture initiation in each curve is marked by red squares. The
underlying data are provided in Table 7.3.1a. Based on these measurements, the failure
probability of the U900-1 component subjected to axial compression was estimated ac-
cording to Equation (8.1.14). The experimental failure probability and the numerical fail-
ure probabilities are compared in graph given in Figure 10.3.9c. The graph shows the fail-
ure probability on the ordinate and the displacement of the loading plate on the abscissa.
The experimental failure probability is plotted as a row of red triangles. The numerical
failure probability obtained from the solid mesh is plotted in blue, the numerical failure
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Figure 10.3.9: Comparison of experimental results and numerical results obtained
from solid mesh, shell mesh and hybrid mesh (U900-1 component subjected to axial
compression).
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Dissipated Energy - U900-1 Subjected to Axial Compression

Experimental Results Solid Mesh Shell Mesh Hybrid Mesh
Test d e x p

f E e x p
f E nu m

f E nu m
f E nu m

f

AC11 7.77 948.59 (100%) 928.33 (−2%) 827.19 (−13%) 923.68 (−3%)
AC12 5.93 617.69 (100%) 674.60 (+9%) 629.09 (+2%) 717.72 (+16%)
AC13 6.68 748.27 (100%) 782.65 (+5%) 710.70 (−5%) 804.06 (+7%)
AC14 4.44 427.01 (100%) 461.03 (+8%) 453.20 (+6%) 520.91 (+22%)

Average 6.21 685.39 (100%) 711.65 (+4%) 655.05 (−4%) 741.59 (+8%)

Table 10.3.4: Comparison of experimental dissipated energy and numerical
dissipated energy obtained from solid mesh, shell mesh and hybrid mesh
�
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Figure 10.3.10: Numerical prediction of the deformation of the half U900-1 compon-
ent subjected to axial compression using solid modelling, shell modelling and hybrid
modelling at a loading plate displacement of 7.5 mm.

probability obtained from the shell mesh in green and the numerical failure probability
obtained from the hybrid mesh in magenta. A very good correlation is achieved between
the experimental failure probability and the numerical failure probability obtained from
the solid mesh as well as the hybrid mesh. The numerical failure probability obtained
from the shell mesh underestimates strongly the experimental failure probability. It can
be assumed that the the local stress distribution (and W distribution) is not well captured
by the soft shell mesh. However, these results show that the solid mesh and the hybrid
mesh as well as the applied probabilistic failure criterion based on the Cockcroft-Latham
criterion and the weakest-link approach by Weibull provide a very good prediction of the
failure probability of the U900-1 component subjected to axial compression. It is import-
ant to mention that the experimental failure probability was estimated based on only four
parallel test results. Here, more test results provide a more reliable estimation and, thus,
enable a more reliable comparison between experimental and numerical results.

Finally, the computational costs of the applied FE meshes are compared in Table 10.3.5.
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Computational Cost - U900-1 Subjected to Axial Compression

Modelling Computational Time Number of CPU’s Mass Scaling
Solid Mesh 13985 sec (+3828%) 64 Yes
Shell Mesh 356 sec (100%) 8 No

Hybrid Mesh 1837 sec (+416%) 8 No

Table 10.3.5: Comparison of the computational cost of the different modelling ap-
proaches of the U900-1 component subjected to axial compression.

As expected, the shell mesh is the cheapest one and the solid mesh is the most expens-
ive one. In the hybrid mesh, the discretisation of the ejector domes by solid elements
increases the computational cost. Here, the computational cost of the hybrid mesh can
easily be reduced using mass scaling and, thus, the computational cost of the shell mesh
can be reached.

10.4 Concluding Remarks

The first numerical study was based on the simulation of a uniaxial tensile test and the
prediction of its failure probability. It was shown that the failure probability estimated
from the experimental results can be reproduced by a single simulation using material
routine MR#1 as well as a Monte-Carlo simulation using material routine MR#2. Moreover,
it was shown that the predicted failure probability is mesh size independent provided
that the applied mesh size predicts the correct deformation behaviour until fracture ini-
tiation. Hence, the consistency of material routine MR#1 and material routine MR#2
was demonstrated. This implies that the varying numerical results obtained from the
usage of material routine MR#2 can reproduce the true experimentally observed scat-
ter provided that the correct distribution function is estimated. This conclusion is very
important since any application of a pseudo-randomly distributed failure parameter pro-
duces a scatter, but it is not known if the numerical predicted scatter reproduces the exper-
imentally observed scatter. The benefit of the uncoupled modelling approach implemen-
ted in material routine MR#3 and MR#4 was shown by mesh convergence studies. Here,
the subject of each mesh convergence study was the numerical prediction of fracture ini-
tiation in the uniaxial tensile test. As a result, mesh convergence could not be reached
using material routine MR#2, but it was reached using material routines MR#3 and MR#4.
Moreover, it was demonstrated that the uncoupled modelling approach implemented in
material routine MR#4 combined with a Gaussian random field provides a possibility to
consider smooth transitions in the distribution of a critical failure parameter. However,
it is important to note that the MS mesh size applied in the uncoupled approach as well
as the parameters of the applied Gaussian random field were freely chosen. Here, further
experimental-numerical investigations are necessary.

The second numerical study was based on the simulation of a U-shaped component
subjected to three-point bending. The consistency of material routine MR#1 and material
routine MR#2 was confirmed. The usage of material routine MR#1 and the usage of mater-
ial routine MR#2 combined with a Monte-Carlo simulation provided the same prediction
of the failure probability of the entire FE model. Moreover, the failure probabilities of the
three model parts could be identically predicted by both approaches. Besides this, it was
shown that a simulation using material routine MR#2 can reproduce in general structural
behaviour of the U-shaped component subjected to three-point bending. In addition,
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a mesh convergence study was performed based on material routine MR#3 and it was
shown that mesh convergence is reached through the uncoupled modelling approach. Fi-
nally, the through-process modelling approach presented in the work by Dørum et al. [32]
was numerically investigated. It was shown that this approach results in a distribution of
material cards according to the distribution of discrete casting qualities. The distribution
of discrete casting qualities were found by the result of casting simulation and a mapping
rule. The through-process modelling approach could not be validated due to the small ex-
perimental database. However, it was demonstrated that the global systematic variation
in the material ductility can be captured by the through-process modelling approach and
the local pseudo-random variation can be captured by the probabilistic failure model as
presented.

The third numerical study was based on the simulation of the U900-1 component tests.
The main objective was the numerical prediction of the failure probability of the U900-
1 component subjected to three-point bending as well as to axial compression. Hence,
only material routine MR#1 was considered and the required material model parameters
were found from the material characterisation. Three different types of discretisation were
applied. The U900-1 component was discretised using a solid mesh, a shell mesh and a
hybrid mesh. An eigenfrequency analysis of the small ejector dome showed that the stiff-
ness of the solid mesh can be estimated by the stiffness of the hybrid mesh but not by the
stiffness of the shell mesh. As a result, the comparison of the experimental failure prob-
ability and the predicted failure probability obtained from the solid mesh showed a very
good correlation in both load cases. The comparison of the experimental failure probab-
ility and the predicted failure probability obtained from the hybrid mesh showed a good
correlation in both load cases, but the computational costs of the hybrid mesh were much
smaller than the computational costs of the hybrid mesh. As expected, the numerical res-
ults obtained from the shell meshes were not acceptable. Since the stiffness of the U900-1
cross-section was poorly captured by the shell mesh, the predicted failure probability un-
derestimated strongly the experimental failure probability in both load cases. In summary,
it was demonstrated that the experimental failure probability can be predicted by the us-
age of material routine MR#1 provided that the correct material model parameters are
identified and the structural stiffness is sufficiently captured. It can be concluded that the
probabilistic approach implemented in material routine MR#1 was validated. This implies
that also the probabilistic approach implemented in material routine MR#2 was validated
due to the consistency of material routines MR#1 and MR#2. As already mentioned, the
validation of material routines MR#3 and MR#4 requires further investigations on the MS
mesh size applied in the uncoupled approach and on the parameter identification of a
Gaussian random field.





Chapter 11

Conclusions /Outlook

The global systematic variation and the local pseudo-random variation in the material
ductility of HPDC alloys were experimentally and numerically analysed in the present
work. Both types of variation were confirmed by an extensive experimental analysis of
a standard aluminium HPDC alloy. As a result, a probabilistic approach in failure model-
ling was introduced and implemented in an explicit FE solver. Various numerical studies
were performed and the probabilistic approach could be validated. In the following, a
conclusion of the present work and outlook for further investigations are given separately
for the experimental work and the numerical work.

11.1 Experimental Work

The main objective of the experimental work was the investigation of the global system-
atic variation and the local pseudo-random variation in the material ductility of an alu-
minium HPDC alloy. Usually, the material ductility is measured by specimens machined
from a plate. Since casting components are characterised by complex geometries and tur-
bulent form filling, this sampling approach would provide artificial results which are not
reproducible in a casting component. Therefore, the experimental work was based on the
generic HPDC component U900-1 made of the aluminium alloy Castasil-37 in casting con-
dition (F). The material was investigated, first, using component tests and, second, using
material tests.

Parallel bending tests were carried out on U900-1 components. The results showed a
strong variation in the structural response. It was observed that first fracture initiation oc-
curs in the part close to the vacuum channels and second fracture initiation occurs in the
part close to gating channels. Further, it was observed that time and location of fracture
initiation in both parts vary pseudo-randomly. Consequently, the force-displacement be-
haviour exhibited strong scatter. Based on these results, the global systematic variation
and the local pseudo-random variation in the material ductility could be suggested. In
addition, parallel axial compression tests were performed. Here, the results showed less
variation than the bending test results since the structural behaviour was mainly domin-
ated by local buckling and less by material ductility.

Based on the results obtained from the bending tests, an extensive material character-
isation was performed using uniaxial tensile tests. The specimens were machined from
different extraction positions of the U900-1 component and from duplicated extraction
positions of various U900-1 components. Through this sampling approach, it was possible
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to analyse the systematic variation as well as the local pseudo-random variation in the ma-
terial ductility. The mechanical analysis of the tensile test results showed a reproducible
strain hardening behaviour in duplicated extraction positions, but the failure strain varied
between different extraction positions and within duplicated positions. The critical value
of the Cockcroft-Latham failure criterion was chosen to measure the material ductility.
Since most specimens failed before diffuse necking, the critical value was directly meas-
ured from the tensile test result. As a result, the samples obtained from each extraction
position were quantified by the measurements of the critical value. A detailed statistical
analysis was performed on these samples. Hypothesis tests were applied to identify ex-
traction positions with comparable material ductility. Based on the results obtained from
the hypothesis tests, it was concluded that the U900-1 component can be separated into
three characteristic parts: A part close to the gating channels, a part close to the vacuum
channels and an intermediate part. This means that it was statistically confirmed that
the casting system influences the spatial variation of the material ductility in the U900-1
component. As a result, the material can be characterised as follows “The material found
in the part close to the gating channels and the intermediate part can be described as
ductile, whereas the material in the part close to the vacuum channels can be described as
almost quasi-brittle. However, the material ductility exhibits strong scatter in each part.”
It was shown that the local pseudo-random variation of the material ductility can be de-
scribed by a weakest-link Weibull distribution. Furthermore, the volume dependence in-
cluded in the weakest-link approach was investigated using specimens of different size
and machined from extraction positions with comparable material failure behaviour. A
clear volume dependence was only found in the results obtained from specimens ma-
chined from the part close to the vacuum channels. Finally, the fracture surfaces of selec-
ted specimens were examined by a SEM analysis and, as expected, casting defects were
found on each fracture surface and identified as the dominating factor for fracture.

For the first time, the global systematic variation and the local pseudo-random vari-
ation in the material ductility of an HPDC alloy were experimentally analysed at the same
time. Both types of variation were confirmed and it was demonstrated that these need to
be considered in failure modelling of HPDC alloys. The experimental approach as presen-
ted and the usage of realistic components are recommended for further investigations of
casting materials and other materials which are strongly influenced by the manufacturing
process. The sample sizes should be generated as large as possible to increase the statist-
ical reliability. The tensile test results were not compared with the result obtained from a
casting simulation and, thus, a correlation between measurements of the casting process
and the material ductility could not be identified. Therefore, a combined analysis of exper-
imental testing and casting simulation is required to establish a mapping procedure. Fur-
ther, the influence of the specimen volume on the material ductility was investigated, but
it could only be identified in one part. Here, a more detailed analysis with different speci-
men sizes and larger samples sizes would provide a deeper understanding of the volume
dependence.

11.2 Numerical Work

As a consequence of the experimental work, a probabilistic approach in failure modelling
was considered to capture the local pseudo-random variation in the material ductility.
In the present work, the probabilistic failure model was based on the phenomenological
Cockcroft-Latham failure criterion and the weakest-link model by Weibull. The required
quantities stress state and equivalent plastic strain were given by an isotropic hypoelastic-
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plastic constitutive model. The main objective of the numerical work was the prediction
of the failure probability of a FE model. Usually, the failure probability of a FE model is
numerically estimated by a Monte-Carlo simulation. Here, various simulations are per-
formed on a FE model using a pseudo-randomly distributed critical value. Since the per-
formance of a Monte-Carlo simulation can be very time consuming, a novel approach was
presented to predict the failure probability of a FE model by a single simulation. Both ap-
proaches were implemented as user-defined material routines in an explicit FE solver. The
first material routine (MR#1) includes a stress-update algorithm and computes directly
the failure probability based on multiplication of probabilities. Here, the failure probab-
ility gives information about the risk of first fracture initiation in the FE model and, thus,
element deletion is not considered. The second material routine (MR#2) is equivalent
to material routine MR#1, but element deletion is applied in a stochastic sense. Here,
the critical value is given as a pseudo-random variable. As a result, the critical value is
pseudo-randomly distributed in a FE model and the failure probability of the FE model
can be only computed by a Monte-Carlo simulation. Both material routines are based on
the assumption that the elements in the FE mesh are statistical independent.

Material routine MR#1 and material routine MR#2 were analysed and compared by sim-
ulation of a uniaxial tensile test. It was shown that the experimentally estimated failure
probability and the numerically predicted failure probability using material routine MR#1
are very well correlated. A Monte-Carlo simulation based on material routine MR#2 was
performed and the failure probability was estimated from the results. The comparison
of the directly computed failure probability and the failure probability estimated from a
Monte-Carlo simulation showed that the usage of both material routines lead to the same
result. Hence, it was demonstrated that material routine MR#1 and material routine MR#2
are consistent. This consistency was validated by simulation of a component test. It was
demonstrated that the usage of material routine MR#1 and material routine MR#2 lead
to the same prediction of the failure probability of the component test. Moreover, it was
shown that also the failure probability of a particular component part can be predicted by
the usage of both material routines. The consistency of material routines MR#1 and MR#2
is very important for probabilistic failure modelling. First, it shows that the failure prob-
ability can be predicted by a single simulation using material routine MR#1. Second, the
numerical scatter produced by material routine MR#2 can reproduce the experimentally
observed scatter. However, it is required that the statistical distribution function is ac-
curately known. This can be checked by comparing the experimentally estimated failure
probability and the numerically predicted failure probability as presented.

The pseudo-random distribution produced by material routine MR#2 hinges directly
on the FE mesh size. Consequently, mesh convergence studies cannot be performed on
FE models using material routine MR#2. Hence, the uncoupled modelling approach was
introduced. Here, the considered structure is discretised into a uniform MS mesh and
the critical failure value is pseudo-randomly distributed within the MS mesh. This distri-
bution is mapped onto the FE mesh and used in simulations. The uncoupled modelling
approach was applied in two variants. Statistical independence of the elements of the MS
mesh is assumed in the first variant (MR#3) and statistical dependence of the elements
of the MS mesh is assumed in the second variant (MR#4). Both variants were additionally
implemented in the explicit FE solver. Based on simulations of the uniaxial tensile test and
the component test, it was shown that mesh convergence is reached by the application of
material routine MR#3 and material routine MR#4. Here, the statistical dependence re-
quired in material routine MR#4 was modelled as Gaussian pseudo-random field.

Finally, simulations were performed on the U900-1 component subjected to three-point
bending as well as to axial compression. The simulations were focused on the prediction
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of the failure probability and, thus, only material routine MR#1 was considered. The U900-
1 component was discretised as solid model, shell model and hybrid model. Each model
was partitioned into the three characteristic parts identified from the material character-
isation and the material model parameters were found from the corresponding test res-
ults. The numerically predicted failure probability using the solid model showed a very
good correlation to the experimentally estimated failure probability in both load cases.
Due to the low stiffness of the shell model, the experimentally estimated failure probab-
ility was strongly underestimated using the shell model in both load cases. The numeric-
ally predicted failure probability using the hybrid model showed a good correlation to the
experimentally estimated failure probability in both load cases. It was shown that the ap-
plied probabilistic failure model provides a reliable prediction of the failure probability of
the U900-1 component subjected to three-point bending as well as to axial compression as
long as the structural stiffness is correctly captured. Further, it was shown that the hybrid
model provides a numerical cheap alternative to the solid model. Hence, it was concluded
that material routine MR#1 including the identified parameters are successfully validated.
However, the global systematic variation in the material ductility was captured by a part
definition which was obtained from experimental results. This approach is useless in the
design of HPDC components and, thus, an approach based on material card mapping
was presented. Material cards representing different discrete casting qualities were dis-
tributed according to a casting simulation. As a result, the global systematic variation in
the material ductility was captured by the distribution of different material cards and the
local pseudo-random variation in the material ductility was captured by Weibull distribu-
tion parameters given in the material card. However, this approach was only numerically
investigated without any validation.

Based on the present work, the following recommendations for the numerical design of
HPDC components are given: The local pseudo-random variation in the material ductil-
ity can be considered using a probabilistic failure criterion. The application of material
routine MR#1 enables to compute the failure probability of an HPDC component by a
single simulation. This implies that numerical results are given in terms of failure probab-
ilities. Consequently, an acceptable failure probability needs to be defined in the design
process. Further, the material card mapping approach as presented is considered as the
most reasonable one to capture the global systematic variation in the material ductil-
ity. However, further investigations are necessary to identify a validated mapping rule.
Moreover, the stiffness of typical casting structures is best captured by a solid model, but a
solid model can only be applied for detailed investigations. Here, a hybrid model provides
an alternative which can be applied in full scale crash simulations without causing high
computational cost.

The knowledge established in the present work can be applied on all materials which
exhibit a pseudo-random variation in ductility. A wide study on probabilistic failure mod-
elling was given. Especially, the uncoupled modelling approach showed very interesting
results and is recommend for further investigations on the pseudo-random distribution
of a critical value. Especially, the critical element length of the MS mesh needs to be ana-
lysed since a physical meaning was not identified in the present work. Also, the applica-
tion of a Gaussian random field needs to be analysed more in detail. Here, the parameter
identification and the application in large FE models are of special interest. Furthermore,
the presented probabilistic failure model was especially investigated in tensile dominated
load cases. An experimental-numerical investigation of other load cases such as shear,
compression or plane strain would provide a deeper understanding and more validation.
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Structural Behaviour

A.1 Three-Point Bending Test - Technical Drawings
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Figure A.1.1: Technical drawing of the three-point bending test set-up for the U900-1
component.
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Figure A.1.2: Technical drawing of the three-point bending test set-up for the U900-1
component: Detail support.
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Figure A.1.3: Technical drawing of the three-point bending test set-up for the U900-1
component: Detail Punch.
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A.2 Three-Point Bending Test - Experimental Results

(a) Test #3: Gating side. (b) Test #3: Vacuum side.

(c) Test #4: Gating side. (d) Test #4: Vacuum side.

(e) Test #5: Gating side. (f ) Test #5: Vacuum side.

Figure A.2.1: Camera images at first fracture initiation obtained from six parallel
three-point bending tests on U900-1 components with focus on gating side and va-
cuum side: Tests #3 - #5.
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(a) Test #6: Gating side. (b) Test #6: Vacuum side.

(c) Test #7: Gating side. (d) Test #7: Vacuum side.

(e) Test #8: Gating side. (f ) Test #8: Vacuum side.

Figure A.2.2: Camera images at first fracture initiation obtained from six parallel
three-point bending tests on U900-1 components with focus on gating side and va-
cuum side: Tests #6 - #8.
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(a) Test #3: Gating side. (b) Test #3: Vacuum side.

(c) Test #4: Gating side. (d) Test #4: Vacuum side.

(e) Test #5: Gating side. (f ) Test #5: Vacuum side.

(g) Test #6: Gating side. (h) Test #6: Vacuum side.

(i) Test #7: Gating side. (j) Test #7: Vacuum side.

(k) Test #8: Gating side. (l) Test #8: Vacuum side.

Figure A.2.3: Images of six deformed and fractured U900-1 components subjected to
three-point bending.



260 APPENDIX A STRUCTURAL BEHAVIOUR

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30
 0

 25

 50

 75

 100

 125

 150

D
is

p
la

c
e

m
e

n
t 

M
e

a
s
u

re
m

e
n

t 
[m

m
]

F
o

rc
e

 T
e

s
ti
n

g
 M

a
c
h

in
e

 [
k
N

]

Displacement Testing Machine [mm]

F1(d1)

d1(d1)

d2(d1)

d3(d1)

d
µ23(d1)

d
δ23(d1)

(a) Test #3.
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(b) Test #4.

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30
 0

 25

 50

 75

 100

 125

 150

D
is

p
la

c
e

m
e

n
t 

M
e

a
s
u

re
m

e
n

t 
[m

m
]

F
o

rc
e

 T
e

s
ti
n

g
 M

a
c
h

in
e

 [
k
N

]

Displacement Testing Machine [mm]

F1(d1)

d1(d1)

d2(d1)

d3(d1)

d
µ23(d1)

d
δ23(d1)

(c) Test #5.
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(d) Test #6.
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Figure A.2.4: Experimental measurements obtained from six parallel three-point
bending tests on U900-1 components: Force F1 (d 1) measured by the testing ma-
chine (grey), displacement d 1 (d 1) measured by the testing machine (black), dis-
placement d 2 (d 1)measured by the extensometer at gating side (blue), displacement
d 3 (d 1)measured by the extensometer at vacuum side (red), mean dµ23 (d 1) of both
extensometer measurements (green) and gap dδ23 (d 1) between both extensometer
measurements (magenta).
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A.3 Axial Compression Test - Technical Drawings

U900-1

U900-1 Axial Compression Test [mm]

440
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Figure A.3.1: Technical drawing of the axial compression test set-up for the U900-1
component.
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A.4 Axial Compression Test - Experimental Results

(a) Test #11-1. (b) Test #11-2. (c) Test #12-1. (d) Test #12-2.

(e) Test #13-1. (f ) Test #13-2. (g) Test #14-1. (h) Test #14-2.

Figure A.4.1: Images of four deformed and fractured U900-1 components subjected
to axial compression.
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(b) Test #12.
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Figure A.4.2: Experimental measurements obtained from four parallel axial com-
pression tests on U900-1 components: Force F1 (d 1) measured by the testing ma-
chine (grey), displacement d 1 (d 1) measured by the testing machine (black), dis-
placement d 2 (d 1) measured by the extensometer (blue) and gap dδ12 (d 1) between
both displacement measurements (magenta).
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B.1 Material Characterisation I - Technical Drawings
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Figure B.1.1: Uniaxial tensile test specimen UT80 (t = 2.5 mm).
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Figure B.1.2: Extraction plan of UT80 specimens machined from U900-1 compon-
ents.
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B.2 Material Characterisation I - Experimental Results
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(b) Component #2.
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(c) Component #3.
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(d) Component #4.
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Figure B.2.1: Engineering stress-strain curves obtained from UT80 specimens ma-
chined from five U900-1 components presented according to used components.



B.2 MATERIAL CHARACTERISATION I - EXPERIMENTAL RESULTS 269

 0

 0.1

 0.2

 0.3

 0.4

 0  0.05  0.1  0.15  0.2

E
n

g
in

e
e

ri
n

g
 S

tr
e

s
s
 [

k
N

/m
m

2
]

Engineering Strain [-]

IF-L
IF-M
IF-R

(a) Part IF.

 0

 0.1

 0.2

 0.3

 0.4

 0  0.05  0.1  0.15  0.2
E

n
g

in
e

e
ri
n

g
 S

tr
e

s
s
 [

k
N

/m
m

2
]

Engineering Strain [-]

IW-L
IW-M
IW-R

(b) Part IW.

 0

 0.1

 0.2

 0.3

 0.4

 0  0.05  0.1  0.15  0.2

E
n

g
in

e
e

ri
n

g
 S

tr
e

s
s
 [

k
N

/m
m

2
]

Engineering Strain [-]

BF-L
BF-M
BF-R

(c) Part BF.

 0

 0.1

 0.2

 0.3

 0.4

 0  0.05  0.1  0.15  0.2

E
n

g
in

e
e

ri
n

g
 S

tr
e

s
s
 [

k
N

/m
m

2
]

Engineering Strain [-]

OW-L
OW-M
OW-R

(d) Part OW.

 0

 0.1

 0.2

 0.3

 0.4

 0  0.05  0.1  0.15  0.2

E
n

g
in

e
e

ri
n

g
 S

tr
e

s
s
 [

k
N

/m
m

2
]

Engineering Strain [-]

OF-L
OF-M
OF-R

(e) Part OF.

Figure B.2.2: Engineering stress-strain curves obtained from UT80 specimens ma-
chined from five U900-1 components presented according to extraction positions.
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Uniaxial Tensile Test Specimen UT80 / Part IF and Part IW of the U900-1 Component

Specimen Rp 0.2 Rm R f A g A f Wc t

1-IF-L 0.138521 0.287654 0.279953 0.114002 0.144113 0.037926 2.55

2-IF-L 0.134325 0.289632 0.284554 0.116080 0.144987 0.038273 2.51

3-IF-L 0.129622 0.274983 0.271637 0.103837 0.117493 0.029000 2.64

4-IF-L 0.131904 0.265797 0.265364 0.077806 0.079341 0.018364 2.75

5-IF-L 0.134216 0.282313 0.275325 0.101315 0.124873 0.031847 2.51

1-IF-M 0.125678 0.260082 0.259655 0.079561 0.081233 0.018348 2.78

2-IF-M 0.122360 0.246985 0.246811 0.052465 0.053380 0.011035 2.70

3-IF-M 0.128519 0.254180 0.254007 0.068892 0.069828 0.015244 2.75

4-IF-M 0.126922 0.260718 0.260047 0.081787 0.085035 0.019359 2.82

5-IF-M 0.125171 0.264599 0.264414 0.064260 0.064809 0.014488 2.58

1-IF-R 0.135687 0.284009 0.280530 0.107990 0.126006 0.032385 2.62

2-IF-R 0.131731 0.276525 0.267786 0.106454 0.133070 0.033458 2.60

3-IF-R 0.128459 0.260090 0.259833 0.074649 0.076706 0.017332 2.78

4-IF-R 0.137837 0.288564 0.288380 0.106249 0.113433 0.029282 2.60

5-IF-R 0.135343 0.275566 0.266837 0.089567 0.108190 0.026735 2.55

1-IW-L 0.145034 0.296004 0.285569 0.108156 0.140355 0.038022 2.51

2-IW-L 0.146144 0.290176 0.285183 0.107225 0.132667 0.035164 2.49

3-IW-L 0.143799 0.293085 0.291353 0.083336 0.090838 0.023527 2.49

4-IW-L 0.141133 0.289997 0.282738 0.105969 0.131642 0.034748 2.53

5-IW-L 0.137776 0.280300 0.273938 0.108806 0.127226 0.032309 2.51

1-IW-M 0.135423 0.278688 0.266159 0.102805 0.135688 0.034542 2.51

2-IW-M 0.119237 0.273235 0.267902 0.109979 0.131337 0.032470 2.50

3-IW-M 0.129162 0.272623 0.272433 0.068044 0.068616 0.016005 2.54

4-IW-M 0.129510 0.280929 0.276565 0.097942 0.114578 0.028956 2.56

5-IW-M 0.116270 0.274337 0.273862 0.099827 0.101770 0.024559 2.52

1-IW-R 0.143079 0.294314 0.291148 0.108627 0.123850 0.033046 2.50

2-IW-R 0.129491 0.264137 0.263526 0.080208 0.081562 0.018786 2.73

3-IW-R 0.138972 0.290178 0.286642 0.108448 0.123912 0.032517 2.51

4-IW-R 0.135919 0.270676 0.270408 0.077137 0.079056 0.018720 2.67

5-IW-R 0.130903 0.261002 0.260555 0.072677 0.075145 0.017040 2.67

Units [kN/mm2] [−] [kN/mm2] [mm]

Table B.2.1: Measurements of the mechanical quantities obtained from UT80 speci-
mens machined from part IF and part IW of five U900-1 components.
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Uniaxial Tensile Test Specimen UT80 / Part BF and Part OW of the U900-1 Component

Specimen Rp 0.2 Rm R f A g A f Wc t

1-BF-L 0.144923 0.274219 0.273870 0.079048 0.080944 0.019534 2.74

2-BF-L 0.149666 0.294265 0.286289 0.113149 0.143851 0.038881 2.55

3-BF-L 0.146944 0.279276 0.272803 0.079835 0.094896 0.023791 2.59

4-BF-L 0.146447 0.287386 0.283621 0.084902 0.096905 0.024820 2.62

5-BF-L 0.146527 0.281231 0.275739 0.077684 0.092238 0.023152 2.58

1-BF-M 0.139571 0.267726 0.267064 0.069272 0.072272 0.016908 2.88

2-BF-M 0.141219 0.286665 0.280369 0.086350 0.102846 0.026429 2.67

3-BF-M 0.145898 0.292784 0.289464 0.087251 0.099580 0.026110 2.67

4-BF-M 0.144298 0.292088 0.291302 0.089538 0.096936 0.025217 2.73

5-BF-M 0.138909 0.281307 0.269857 0.096983 0.120343 0.030654 2.65

1-BF-R 0.149066 0.290481 0.287051 0.106322 0.119586 0.031486 2.72

2-BF-R 0.142749 0.286652 0.280087 0.101770 0.122920 0.031986 2.70

3-BF-R 0.143003 0.289066 0.288436 0.104562 0.112961 0.029297 2.67

4-BF-R 0.145468 0.284229 0.275780 0.103238 0.127083 0.032920 2.76

5-BF-R 0.140344 0.264683 0.264430 0.069350 0.071018 0.016343 2.83

1-OW-L 0.155885 0.300512 0.300207 0.067498 0.068460 0.017733 2.36

2-OW-L 0.159018 0.292230 0.292230 0.042440 0.042599 0.010392 2.35

3-OW-L 0.152298 0.296806 0.296107 0.087214 0.090711 0.023872 2.40

4-OW-L 0.159391 0.304357 0.304054 0.076177 0.077504 0.020655 2.38

5-OW-L 0.157249 0.260921 0.260921 0.025597 0.025757 0.005565 2.35

1-OW-M 0.157804 0.296940 0.296631 0.052721 0.053090 0.013447 2.33

2-OW-M 0.157437 0.293529 0.293529 0.046931 0.047113 0.011699 2.31

3-OW-M 0.157315 0.239383 0.239383 0.016565 0.016565 0.003296 2.29

4-OW-M 0.147548 0.263725 0.263725 0.032261 0.032261 0.007051 2.36

5-OW-M 0.152770 0.296133 0.296133 0.061604 0.062493 0.015945 2.32

1-OW-R 0.154887 0.307215 0.306601 0.089279 0.093962 0.025629 2.35

2-OW-R 0.146956 0.277991 0.277144 0.064431 0.066519 0.016053 2.53

3-OW-R 0.159154 0.293195 0.293195 0.051549 0.051731 0.012874 2.36

4-OW-R 0.163366 0.308926 0.308524 0.081996 0.083917 0.022892 2.38

5-OW-R 0.147315 0.242685 0.242685 0.020354 0.020514 0.004068 2.34

Units [kN/mm2] [−] [kN/mm2] [mm]

Table B.2.2: Measurements of the mechanical quantities obtained from UT80 speci-
mens machined from part BF and part OW of five U900-1 components.
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Uniaxial Tensile Test Specimen UT80 / Part OF of the U900-1 Component

Specimen Rp 0.2 Rm R f A g A f Wc t

1-OF-L 0.150762 0.276734 0.276650 0.054745 0.055407 0.013056 2.83

2-OF-L 0.143274 0.275749 0.275579 0.058888 0.059825 0.014053 2.81

3-OF-L 0.153575 0.295365 0.295276 0.067402 0.068680 0.017470 2.71

4-OF-L 0.154675 0.280245 0.280159 0.047637 0.048004 0.011310 2.77

5-OF-L 0.143772 0.278260 0.278176 0.071578 0.072514 0.017449 2.85

1-OF-M 0.150944 0.273496 0.273157 0.040626 0.041360 0.009400 2.83

2-OF-M 0.140093 0.262684 0.262603 0.047538 0.047722 0.010475 2.96

3-OF-M 0.132167 0.225867 0.225867 0.028758 0.028758 0.005353 2.91

4-OF-M 0.138119 0.244191 0.244191 0.036866 0.036866 0.007480 2.98

5-OF-M 0.148161 0.273572 0.273331 0.055979 0.056735 0.013230 2.97

1-OF-R 0.141594 0.265772 0.265772 0.050742 0.050924 0.011390 3.04

2-OF-R 0.149119 0.291172 0.290515 0.075246 0.076554 0.019292 2.91

3-OF-R 0.148993 0.279899 0.279651 0.052646 0.053356 0.012632 2.90

4-OF-R 0.140610 0.268508 0.267965 0.059820 0.061012 0.013980 3.07

5-OF-R 0.147434 0.284337 0.284254 0.072770 0.074435 0.018323 2.89

Units [kN/mm2] [−] [kN/mm2] [mm]

Table B.2.3: Measurements of the mechanical quantities obtained from UT80 speci-
mens machined from part OF of five U900-1 components.
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Figure B.2.3: Correlation matrix of the measured mechanical quantities obtained
from UT80 specimens machined from five U900-1 components.
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Figure B.2.4: Averages and COVs of the measured mechanical quantities obtained
from UT80 specimens machined from five U900-1 components (Part IF, Part IW and
Part BF).
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Figure B.2.5: Average and COVs of the measured mechanical quantities obtained
from UT80 specimens machined from five U900-1 components (Part OW and Part
OF).
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B.3 Material Characterisation II - Technical Drawings
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B.4 Material Characterisation II - Experimental Results
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Figure B.4.1: Engineering stress-strain curves obtained from UT75 and UT117 spe-
cimens machined from six U900-1 components presented according to used com-
ponents (component #1 - #3).
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(c) UT75: Component #5.
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Figure B.4.2: Engineering stress-strain curves obtained from UT75 and UT117 spe-
cimens machined from six U900-1 components presented according to used com-
ponents (component #4 - #6).
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Figure B.4.3: Engineering stress-strain curves obtained from UT75 and UT117 spe-
cimens machined from six U900-1 components presented according to extraction
positions.
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Uniaxial Tensile Test Specimen UT75 / Part IW of the U900-1 Component

Specimen Rp 0.2 Rm R f A g A f Wc t

1-IW-1 0.131460 0.277323 0.267583 0.098472 0.120756 0.030276 2.58

2-IW-1 0.145240 0.292991 0.285394 0.099854 0.119003 0.031587 2.55

3-IW-1 0.141435 0.286845 0.285517 0.083061 0.086412 0.021770 2.57

4-IW-1 0.147230 0.294621 0.288532 0.102787 0.123136 0.033005 2.53

5-IW-1 0.144387 0.291159 0.284026 0.102923 0.119880 0.031628 2.53

6-IW-1 0.138871 0.286216 0.277208 0.073654 0.085223 0.021516 2.51

1-IW-2 0.133996 0.280742 0.269097 0.090588 0.105723 0.026566 2.56

2-IW-2 0.144943 0.292662 0.287286 0.094259 0.111952 0.029533 2.55

3-IW-2 0.140436 0.292582 0.285911 0.108530 0.125967 0.033377 2.56

4-IW-2 0.147254 0.297701 0.290649 0.108960 0.141870 0.038792 2.52

5-IW-2 0.145306 0.291954 0.285169 0.107093 0.130252 0.034685 2.50

6-IW-2 0.143541 0.294353 0.285247 0.085433 0.104669 0.027670 2.49

1-IW-3 0.138738 0.288088 0.283009 0.088148 0.100135 0.025771 2.55

2-IW-3 0.146715 0.294995 0.285401 0.101752 0.121369 0.032470 2.53

3-IW-3 0.142997 0.291897 0.279485 0.115134 0.142045 0.037958 2.53

4-IW-3 0.148047 0.295927 0.291888 0.104548 0.119936 0.032148 2.52

5-IW-3 0.149554 0.297124 0.287717 0.113762 0.138219 0.037751 2.49

6-IW-3 0.148083 0.296381 0.286606 0.100482 0.124554 0.033603 2.47

1-IW-4 0.137531 0.287128 0.285904 0.075723 0.076783 0.019118 2.54

2-IW-4 0.144855 0.289980 0.284929 0.102507 0.116668 0.030585 2.54

3-IW-4 0.136779 0.285504 0.283927 0.110330 0.115600 0.029642 2.55

4-IW-4 0.145640 0.295230 0.287753 0.117040 0.142692 0.038657 2.52

5-IW-4 0.158155 0.293421 0.289270 0.089055 0.108359 0.028855 2.50

6-IW-4 0.144640 0.291995 0.287681 0.109540 0.122361 0.032458 2.48

1-IW-5 0.139795 0.289212 0.284397 0.103405 0.120259 0.031517 2.49

2-IW-5 0.143146 0.294454 0.286837 0.103797 0.121257 0.032398 2.49

3-IW-5 0.140023 0.289621 0.281018 0.108863 0.130817 0.034426 2.51

4-IW-5 0.146580 0.294985 0.289767 0.104139 0.122101 0.032672 2.49

5-IW-5 0.148890 0.295249 0.284963 0.109291 0.134961 0.036506 2.48

6-IW-5 0.143012 0.294766 0.287327 0.106556 0.121758 0.032476 2.44

1-IW-6 0.141878 0.286730 0.285827 0.070461 0.070746 0.017532 2.46

2-IW-6 0.149640 0.294892 0.284004 0.096767 0.122406 0.032858 2.46

3-IW-6 0.148885 0.291740 0.284147 0.111995 0.134564 0.035991 2.47

4-IW-6 0.151584 0.298840 0.289477 0.101286 0.130927 0.035793 2.46

5-IW-6 0.167943 0.295704 0.288977 0.096941 0.117973 0.031973 2.45

6-IW-6 0.145623 0.292357 0.281930 0.111630 0.137212 0.036767 2.44

Units [kN/mm2] [−] [kN/mm2] [mm]

Table B.4.1: Measurements of the mechanical quantities obtained from UT75 speci-
mens machined from part IW of six U900-1 components.
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Uniaxial Tensile Test Specimen UT75 / Part BF of the U900-1 Component

Specimen Rp 0.2 Rm R f A g A f Wc t

1-BF-1 0.142157 0.287643 0.282140 0.103053 0.115966 0.030084 2.78

2-BF-1 0.148859 0.294947 0.287525 0.105637 0.126334 0.033981 2.79

3-BF-1 0.150511 0.288749 0.284319 0.095440 0.109188 0.028536 2.89

4-BF-1 0.158469 0.296492 0.290751 0.108230 0.124469 0.033805 2.80

5-BF-1 0.148720 0.292823 0.288953 0.097863 0.114710 0.030482 2.78

6-BF-1 0.145630 0.289144 0.282096 0.102504 0.124823 0.032891 2.85

1-BF-2 0.148614 0.293171 0.288723 0.097977 0.111400 0.029522 2.75

2-BF-2 0.148706 0.297807 0.290418 0.103737 0.122502 0.033172 2.78

3-BF-2 0.147869 0.295360 0.288132 0.095430 0.118473 0.031742 2.86

4-BF-2 0.152104 0.297650 0.294073 0.101414 0.112053 0.030240 2.79

5-BF-2 0.151135 0.298805 0.295080 0.099632 0.118231 0.032109 2.76

6-BF-2 0.147739 0.294071 0.285056 0.097101 0.113101 0.030064 2.82

1-BF-3 0.145490 0.288350 0.276677 0.097901 0.121114 0.031820 2.76

2-BF-3 0.150573 0.295523 0.287891 0.105337 0.129463 0.034933 2.76

3-BF-3 0.145313 0.291128 0.286499 0.110285 0.130200 0.034524 2.83

4-BF-3 0.155186 0.296483 0.289768 0.109868 0.131937 0.035806 2.76

5-BF-3 0.147644 0.293221 0.282814 0.109972 0.133874 0.035901 2.75

6-BF-3 0.143954 0.291558 0.282898 0.101831 0.121594 0.032173 2.80

1-BF-4 0.139775 0.291548 0.286920 0.107129 0.122001 0.032175 2.72

2-BF-4 0.152777 0.296817 0.291511 0.097783 0.114868 0.030884 2.77

3-BF-4 0.144275 0.289475 0.283023 0.106047 0.126906 0.033418 2.87

4-BF-4 0.155553 0.297267 0.292130 0.102516 0.118154 0.031903 2.77

5-BF-4 0.152319 0.295611 0.292339 0.104946 0.118677 0.031844 2.76

6-BF-4 0.143981 0.291603 0.286894 0.106905 0.123078 0.032551 2.83

1-BF-5 0.142699 0.293795 0.291055 0.086628 0.090668 0.023437 2.66

2-BF-5 0.150551 0.294498 0.285380 0.107263 0.132594 0.035672 2.75

3-BF-5 0.143137 0.291567 0.280572 0.106663 0.129561 0.034366 2.83

4-BF-5 0.154206 0.298731 0.289491 0.105751 0.129798 0.035477 2.74

5-BF-5 0.151085 0.295467 0.288158 0.114872 0.144853 0.039411 2.73

6-BF-5 0.144241 0.290334 0.281566 0.119853 0.148902 0.039775 2.80

1-BF-6 0.147201 0.291447 0.290006 0.083262 0.084372 0.021620 2.66

2-BF-6 0.152674 0.294149 0.281456 0.102176 0.135406 0.036551 2.74

3-BF-6 0.145690 0.290423 0.272091 0.104991 0.141525 0.037686 2.83

4-BF-6 0.154520 0.295126 0.289917 0.101191 0.121094 0.032584 2.76

5-BF-6 0.152105 0.293622 0.282431 0.094525 0.119861 0.032089 2.73

6-BF-6 0.144319 0.292215 0.286035 0.100311 0.117794 0.031123 2.79

Units [kN/mm2] [−] [kN/mm2] [mm]

Table B.4.2: Measurements of the mechanical quantities obtained from UT75 speci-
mens machined from part BF of six U900-1 components.
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Uniaxial Tensile Test Specimen UT75 / Part OW of the U900-1 Component

Specimen Rp 0.2 Rm R f A g A f Wc t

1-OW-1 0.153710 0.310949 0.307580 0.083765 0.093801 0.025949 2.45

2-OW-1 0.161495 0.308987 0.306520 0.083601 0.085715 0.023416 2.43

3-OW-1 0.152662 0.304565 0.303051 0.082804 0.085264 0.022808 2.42

4-OW-1 0.155590 0.303385 0.301458 0.070021 0.071255 0.018768 2.46

5-OW-1 0.158368 0.306887 0.300662 0.089215 0.102978 0.028410 2.41

6-OW-1 0.152813 0.306153 0.301053 0.092646 0.106851 0.029444 2.42

1-OW-2 0.156321 0.309780 0.307448 0.076998 0.079737 0.022302 2.43

2-OW-2 0.161623 0.308221 0.305858 0.076090 0.078174 0.021180 2.42

3-OW-2 0.152725 0.271949 0.270960 0.031134 0.031572 0.007073 2.45

4-OW-2 0.157666 0.308608 0.307568 0.081434 0.083307 0.022601 2.44

5-OW-2 0.155359 0.304526 0.303541 0.064776 0.065426 0.017101 2.40

6-OW-2 0.155852 0.295481 0.294258 0.053577 0.054810 0.013752 2.42

1-OW-3 0.152135 0.304188 0.303152 0.082123 0.083138 0.022203 2.43

2-OW-3 0.159573 0.310031 0.308550 0.085233 0.086892 0.023817 2.44

3-OW-3 0.152967 0.299750 0.299191 0.061245 0.061698 0.015796 2.45

4-OW-3 0.163517 0.293970 0.293523 0.042770 0.043046 0.010674 2.44

5-OW-3 0.158665 0.308829 0.307605 0.083847 0.084652 0.022994 2.42

6-OW-3 0.156417 0.306641 0.304460 0.090745 0.092811 0.025258 2.41

1-OW-4 0.153435 0.302479 0.301188 0.071330 0.072383 0.019015 2.43

2-OW-4 0.154392 0.301957 0.301350 0.069677 0.070138 0.018348 2.47

3-OW-4 0.155401 0.307277 0.303454 0.095307 0.102486 0.028196 2.47

4-OW-4 0.170403 0.303444 0.301772 0.065748 0.066503 0.017618 2.47

5-OW-4 0.157312 0.303332 0.301432 0.076994 0.079284 0.021151 2.45

6-OW-4 0.152929 0.301502 0.299397 0.082907 0.084909 0.022578 2.45

1-OW-5 0.169377 0.307906 0.307506 0.063373 0.064137 0.017176 2.41

2-OW-5 0.158768 0.294931 0.293981 0.044251 0.044919 0.011133 2.45

3-OW-5 0.153555 0.305600 0.304340 0.064104 0.066118 0.017343 2.43

4-OW-5 0.157600 0.303679 0.302921 0.062277 0.062482 0.016362 2.45

5-OW-5 0.158673 0.306877 0.305473 0.069894 0.071249 0.019002 2.44

6-OW-5 0.156194 0.309114 0.307501 0.073529 0.075209 0.020252 2.42

1-OW-6 0.158568 0.299002 0.297000 0.051927 0.053044 0.013497 2.40

2-OW-6 0.158671 0.280244 0.278186 0.030634 0.031584 0.007335 2.44

3-OW-6 0.159169 0.305873 0.304872 0.063067 0.064899 0.017147 2.44

4-OW-6 0.161619 0.298248 0.296238 0.045553 0.046832 0.011825 2.44

5-OW-6 0.157884 0.261224 0.259699 0.021942 0.022551 0.004838 2.43

6-OW-6 0.157530 0.286272 0.285900 0.036358 0.036451 0.008634 2.40

Units [kN/mm2] [−] [kN/mm2] [mm]

Table B.4.3: Measurements of the mechanical quantities obtained from UT75 speci-
mens machined from part OW of six U900-1 components.
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Uniaxial Tensile Test Specimen UT117 / Part IW of the U900-1 Component

Specimen Rp 0.2 Rm R f A g A f Wc t

1-IW-1 0.130889 0.286114 0.282871 0.073959 0.075861 0.018744 2.51

2-IW-1 0.148641 0.295514 0.289912 0.105560 0.129391 0.034939 2.50

3-IW-1 0.137613 0.295385 0.286024 0.108954 0.144828 0.039161 2.51

4-IW-1 0.144189 0.297244 0.294666 0.113872 0.128154 0.034669 2.51

5-IW-1 0.135585 0.293455 0.291904 0.099669 0.101491 0.026463 2.49

6-IW-1 0.140351 0.288336 0.278759 0.111396 0.136947 0.036134 2.50

1-IW-2 0.143839 0.290514 0.284621 0.098440 0.109139 0.028577 2.51

2-IW-2 0.149919 0.296339 0.290017 0.105064 0.133111 0.036228 2.50

3-IW-2 0.135418 0.292740 0.287280 0.102503 0.121481 0.032154 2.53

4-IW-2 0.148451 0.296812 0.290385 0.108254 0.141202 0.038595 2.51

5-IW-2 0.149389 0.293066 0.286890 0.114259 0.149340 0.040509 2.50

6-IW-2 0.138772 0.289715 0.284205 0.104965 0.127742 0.033653 2.50

1-IW-3 0.135289 0.289804 0.288553 0.084851 0.086273 0.021809 2.48

2-IW-3 0.147282 0.296411 0.292397 0.108245 0.133125 0.036064 2.49

3-IW-3 0.139778 0.296666 0.292494 0.117070 0.143478 0.039001 2.51

4-IW-3 0.146283 0.298598 0.296347 0.110314 0.131285 0.035880 2.51

5-IW-3 0.147829 0.293432 0.283334 0.111813 0.147372 0.039897 2.51

6-IW-3 0.144350 0.295420 0.290494 0.111286 0.130457 0.035177 2.48

1-IW-4 0.135178 0.292486 0.287084 0.108695 0.125580 0.033340 2.47

2-IW-4 0.136402 0.293735 0.289268 0.107729 0.128527 0.034301 2.49

3-IW-4 0.139663 0.293750 0.286048 0.106310 0.140542 0.037898 2.50

4-IW-4 0.148548 0.297557 0.293170 0.108779 0.132398 0.036064 2.49

5-IW-4 0.146517 0.296575 0.291621 0.105824 0.131285 0.035710 2.47

6-IW-4 0.163086 0.293882 0.287516 0.110364 0.128963 0.034932 2.47

1-IW-5 0.141457 0.294146 0.290880 0.106086 0.112288 0.029774 2.44

2-IW-5 0.142212 0.298062 0.288977 0.096152 0.126418 0.034308 2.47

3-IW-5 0.147847 0.293073 0.281313 0.100729 0.135688 0.036517 2.50

4-IW-5 0.148018 0.296997 0.286442 0.106795 0.140217 0.038304 2.49

5-IW-5 0.147915 0.296040 0.288657 0.109582 0.133926 0.036367 2.48

6-IW-5 0.137652 0.292462 0.284586 0.109134 0.138778 0.037093 2.47

1-IW-6 0.142728 0.288259 0.287112 0.090313 0.092078 0.023421 2.45

2-IW-6 0.150321 0.297738 0.297222 0.110507 0.114826 0.030877 2.43

3-IW-6 0.143555 0.292992 0.289108 0.111728 0.126522 0.033772 2.46

4-IW-6 0.150063 0.299422 0.290954 0.103053 0.140906 0.038891 2.44

5-IW-6 0.139675 0.289561 0.279398 0.107938 0.142363 0.037844 2.48

6-IW-6 0.139553 0.290931 0.288611 0.111031 0.120472 0.031728 2.44

Units [kN/mm2] [−] [kN/mm2] [mm]

Table B.4.4: Measurements of the mechanical quantities obtained from UT117 spe-
cimens machined from part IW of six U900-1 components.



286 APPENDIX B MATERIAL CHARACTERISATION

Uniaxial Tensile Test Specimen UT117 / Part BF of the U900-1 Component

Specimen Rp 0.2 Rm R f A g A f Wc t

1-BF-1 0.143919 0.267194 0.266812 0.039856 0.040120 0.008909 2.80

2-BF-1 0.151111 0.291887 0.287969 0.069457 0.072268 0.018372 2.68

3-BF-1 0.148346 0.288102 0.286828 0.065719 0.066987 0.016682 2.74

4-BF-1 0.153378 0.296839 0.292317 0.084043 0.088111 0.023164 2.70

5-BF-1 0.149146 0.291189 0.289106 0.075695 0.080329 0.020533 2.67

6-BF-1 0.152262 0.291976 0.287285 0.079841 0.084184 0.021791 2.71

1-BF-2 0.138700 0.274868 0.274237 0.044758 0.044883 0.010238 2.78

2-BF-2 0.155515 0.262187 0.261749 0.029019 0.029233 0.006358 2.65

3-BF-2 0.151605 0.287549 0.285217 0.060639 0.062061 0.015326 2.71

4-BF-2 0.160839 0.292672 0.289168 0.062298 0.064115 0.016267 2.66

5-BF-2 0.156489 0.291514 0.288604 0.069738 0.072297 0.018458 2.63

6-BF-2 0.153989 0.290370 0.286101 0.070037 0.073185 0.018577 2.68

1-BF-3 0.143673 0.282132 0.280575 0.064617 0.065942 0.016012 2.77

2-BF-3 0.152931 0.292204 0.290345 0.074184 0.076332 0.019550 2.62

3-BF-3 0.148414 0.284749 0.284173 0.063279 0.063931 0.015626 2.70

4-BF-3 0.158300 0.295412 0.291384 0.091168 0.103482 0.027671 2.64

5-BF-3 0.147127 0.289894 0.285985 0.074126 0.076793 0.019445 2.62

6-BF-3 0.153492 0.290754 0.284416 0.083839 0.089050 0.023008 2.65

1-BF-4 0.141647 0.290319 0.288356 0.074257 0.075197 0.018889 2.75

2-BF-4 0.155191 0.294394 0.291535 0.075627 0.078722 0.020332 2.60

3-BF-4 0.149346 0.286307 0.283949 0.061968 0.063392 0.015601 2.67

4-BF-4 0.159795 0.274429 0.273774 0.037271 0.037405 0.008606 2.62

5-BF-4 0.153254 0.292337 0.288277 0.073331 0.075446 0.019334 2.60

6-BF-4 0.153028 0.278565 0.278146 0.046070 0.046277 0.010895 2.64

1-BF-5 0.143326 0.282161 0.280704 0.060709 0.061323 0.014771 2.74

2-BF-5 0.147322 0.298454 0.296219 0.085690 0.088849 0.023396 2.56

3-BF-5 0.143540 0.288523 0.282674 0.068231 0.071170 0.017764 2.64

4-BF-5 0.155879 0.294512 0.294351 0.077661 0.079446 0.020596 2.59

5-BF-5 0.156775 0.292256 0.290670 0.067134 0.068132 0.017272 2.55

6-BF-5 0.142424 0.291102 0.287923 0.075030 0.078975 0.020027 2.61

1-BF-6 0.144328 0.288408 0.285479 0.088533 0.092987 0.023836 2.78

2-BF-6 0.149639 0.298175 0.296604 0.087257 0.090476 0.023810 2.53

3-BF-6 0.147473 0.288529 0.284745 0.062733 0.064576 0.015997 2.62

4-BF-6 0.159962 0.297029 0.290288 0.082350 0.088592 0.023484 2.57

5-BF-6 0.145201 0.290700 0.289464 0.071122 0.072256 0.018140 2.53

6-BF-6 0.147342 0.287260 0.286483 0.061891 0.062706 0.015418 2.57

Units [kN/mm2] [−] [kN/mm2] [mm]

Table B.4.5: Measurements of the mechanical quantities obtained from UT117 spe-
cimens machined from part BF of six U900-1 components.
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Uniaxial Tensile Test Specimen UT117 / Part OW of the U900-1 Component

Specimen Rp 0.2 Rm R f A g A f Wc t

1-OW-1 0.169990 0.294265 0.293277 0.036900 0.037236 0.009218 2.36

2-OW-1 0.153536 0.302670 0.301247 0.057014 0.057348 0.014726 2.38

3-OW-1 0.155823 0.310531 0.309233 0.085847 0.088307 0.024212 2.37

4-OW-1 0.158455 0.310604 0.309949 0.079392 0.079944 0.021747 2.40

5-OW-1 0.155534 0.310288 0.309502 0.073594 0.074497 0.020099 2.37

6-OW-1 0.155007 0.305765 0.304684 0.061865 0.062585 0.016345 2.34

1-OW-2 0.149791 0.288215 0.287949 0.034011 0.034067 0.007977 2.38

2-OW-2 0.160238 0.308463 0.307904 0.063284 0.063915 0.016964 2.39

3-OW-2 0.156670 0.294202 0.294060 0.041985 0.042036 0.010306 2.38

4-OW-2 0.159193 0.308781 0.307729 0.067039 0.068763 0.018425 2.40

5-OW-2 0.155709 0.303645 0.302256 0.054843 0.055340 0.014297 2.39

6-OW-2 0.151918 0.309549 0.308652 0.079117 0.081270 0.021966 2.37

1-OW-3 0.146638 0.305717 0.304624 0.077335 0.079256 0.021119 2.37

2-OW-3 0.156635 0.314750 0.314176 0.080257 0.080828 0.022262 2.39

3-OW-3 0.156501 0.310670 0.309955 0.072977 0.074738 0.020197 2.39

4-OW-3 0.163345 0.316509 0.315993 0.073409 0.074412 0.020535 2.39

5-OW-3 0.159173 0.315214 0.314005 0.080363 0.083003 0.023033 2.37

6-OW-3 0.159914 0.311697 0.309899 0.073857 0.076469 0.020948 2.35

1-OW-4 0.165724 0.314794 0.312934 0.075776 0.078244 0.021726 2.36

2-OW-4 0.156103 0.306734 0.306340 0.061196 0.061697 0.016195 2.39

3-OW-4 0.153498 0.309992 0.309412 0.073208 0.074456 0.020091 2.39

4-OW-4 0.161458 0.295625 0.295275 0.039589 0.039767 0.009792 2.40

5-OW-4 0.155288 0.305968 0.305021 0.063249 0.063586 0.016692 2.40

6-OW-4 0.164136 0.311957 0.310221 0.072819 0.073363 0.020027 2.36

1-OW-5 0.167653 0.314305 0.312864 0.065745 0.067077 0.018409 2.39

2-OW-5 0.161500 0.278164 0.277959 0.026129 0.026414 0.006020 2.38

3-OW-5 0.156432 0.309899 0.308597 0.062713 0.064087 0.017072 2.37

4-OW-5 0.166108 0.278710 0.278472 0.026835 0.026883 0.006195 2.39

5-OW-5 0.160316 0.297639 0.297125 0.043549 0.043919 0.010930 2.38

6-OW-5 0.164524 0.304554 0.303444 0.050814 0.051547 0.013411 2.36

1-OW-6 0.160596 0.307319 0.306568 0.057095 0.057807 0.015162 2.39

2-OW-6 0.157961 0.302406 0.301745 0.044476 0.044867 0.011367 2.38

3-OW-6 0.163904 0.281766 0.281625 0.029483 0.029562 0.006889 2.37

4-OW-6 0.160286 0.299762 0.298939 0.041924 0.042714 0.010722 2.39

5-OW-6 0.151898 0.303431 0.302840 0.047186 0.047663 0.012072 2.37

6-OW-6 0.166516 0.305750 0.305221 0.053932 0.054560 0.014289 2.35

Units [kN/mm2] [−] [kN/mm2] [mm]

Table B.4.6: Measurements of the mechanical quantities obtained from UT117 spe-
cimens machined from part OW of six U900-1 components.
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Rp0.2

0.54 Rm

0.62 0.93 Rf

-0.52 -0.00 -0.25 Ag

-0.52 -0.09 -0.36 0.98 Af

-0.48 -0.04 -0.32 0.98 1.00 Wc

Figure B.4.4: Correlation matrix of the measured mechanical quantities obtained
from UT75 specimens machined from six U900-1 components.
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Rp0.2

0.38 Rm

0.47 0.97 Rf

-0.55 0.18 -0.01 Ag

-0.54 0.12 -0.09 0.98 Af

-0.51 0.17 -0.05 0.97 1.00 Wc

Figure B.4.5: Correlation matrix of the measured mechanical quantities obtained
from UT117 specimens machined from six U900-1 components.
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Figure B.4.6: Average and COVs of the measured mechanical quantities obtained
from UT75 specimens machined from six U900-1 components.
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Figure B.4.7: Average and COVs of the measured mechanical quantities obtained
from UT117 specimens machined from six U900-1 components.
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Uniaxial Tensile Test Specimen UT75 /Wc
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Inlet Web Inlet Web Inlet Web

Samples ADN -Test A ADN -Test B F -Test t -Test K S-Test
A B H0 p H0 p H0 p H0 p H0 p

IW-1 IW-2 0 0.06 0 0.62 0 0.81 0 0.25 0 0.32
IW-3 IW-4 0 0.39 0 0.37 0 0.46 0 0.31 0 0.32
IW-5 IW-6 0 0.21 1 0.03 1 0.01 0 0.63 0 0.81

(a) UT75: Part IW.

Uniaxial Tensile Test Specimen UT117 /Wc
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Inlet Web Inlet Web Inlet Web

Samples ADN -Test A ADN -Test B F -Test t -Test K S-Test
A B H0 p H0 p H0 p H0 p H0 p

IW-1 IW-2 0 0.22 0 0.78 0 0.25 0 0.38 0 0.81
IW-3 IW-4 1 0.04 0 0.73 1 0.01 0 0.79 0 0.81
IW-5 IW-6 0 0.19 0 0.55 0 0.21 0 0.33 0 0.32

(b) UT117: Part IW.

Table B.4.7: Statistical hypothesis testing of samples based on measurements of Wc

obtained from UT75 and UT117 specimens machined from part IW of six U900-1
components: Results of ADN -tests, F -test, t -test and K S-test (significance level α=
0.05).
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Uniaxial Tensile Test Specimen UT75 /Wc
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BF-1 BF-2 0 0.41 0 0.51 0 0.34 0 0.66 0 0.81
BF-3 BF-4 0 0.25 0 0.63 0 0.12 1 0.03 0 0.08
BF-5 BF-6 0 0.11 0 0.27 0 0.93 0 0.43 0 0.32

(a) UT75: Part BF.

Uniaxial Tensile Test Specimen UT117 /Wc
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Samples ADN -Test A ADN -Test B F -Test t -Test K S-Test
A B H0 p H0 p H0 p H0 p H0 p

BF-1 BF-2 0 0.34 0 0.31 0 0.92 0 0.19 0 0.32
BF-3 BF-4 0 0.47 0 0.33 0 0.88 0 0.12 0 0.32
BF-5 BF-6 0 0.73 0 0.12 0 0.53 0 0.59 0 0.32

(b) UT117: Part BF.

Table B.4.8: Statistical hypothesis testing of samples based on measurements of Wc

obtained from UT75 and UT117 specimens machined from part BF of six U900-1
components: Results of ADN -tests, F -test, t -test and K S-test (significance level α=
0.05).
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Uniaxial Tensile Test Specimen UT75 /Wc
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OW-1 OW-2 0 0.67 0 0.34 0 0.37 1 0.03 1 0.01
OW-3 OW-4 0 0.19 0 0.31 0 0.44 0 0.72 0 0.81
OW-5 OW-6 0 0.29 0 0.75 0 0.46 1 0.02 0 0.08

(a) UT75: Part OW.

Uniaxial Tensile Test Specimen UT117 /Wc
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Outlet Web Outlet Web Outlet Web

Samples ADN -Test A ADN -Test B F -Test t -Test K S-Test
A B H0 p H0 p H0 p H0 p H0 p

OW-1 OW-2 0 0.71 0 0.74 0 0.93 0 0.39 0 0.81
OW-3 OW-4 0 0.46 0 0.32 1 0.01 0 0.06 1 0.01
OW-5 OW-6 0 0.51 0 0.59 0 0.22 0 0.92 0 0.81

(b) UT117: Part OW.

Table B.4.9: Statistical hypothesis testing of samples based on measurements of Wc

obtained from UT75 and UT117 specimens machined from part OW of six U900-
1 components: Results of ADN -tests, F -test, t -test and K S-test (significance level
α= 0.05).
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B.5 Material Characterisation I + II - Thickness Measure-
ments
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Figure B.5.1: Average and COVs of the measured thickness obtained from UT80 spe-
cimens machined from five U900-1 components.
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(a) UT75 specimen.
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(b) UT117 specimen.

Figure B.5.2: Average and COVs of the measured thickness obtained from UT75 and
UT117 specimens machined from six U900-1 components.





Appendix C

Numerical Material Modelling



298 APPENDIX C NUMERICAL MATERIAL MODELLING

C.1 Stress-Update Algorithm and Element Deletion Algorithm

�

�

�

�

1. Elastic predictor (t ≥ 0):

σt r
n+1 =σn +λe l tr

�

�εn+1
�

I+2µe l�εn+1

2. Yield condition (t ≥ 0):

f
�

σt r
n+1, ε̄n

�

≤ 0 : go to 5 with�ε̄n+1 = 0

f
�

σt r
n+1, ε̄n

�

> 0 : go to 3

3. Plastic corrector and Newton iteration (t ≥ 0):

ε̄(k )n+1 = ε̄n +�ε̄(k )n+1

σn+1 =σt r
n+1−
�

λe l tr

�

�ε̄(k )n+1

∂ f
�

σt r
n+1,ε̄(k )n+1

�

∂ σt r
n+1

�

I+2µe l�ε̄(k )n+1

∂ f
�

σt r
n+1,ε̄(k )n+1

�

∂ σt r
n+1

�

f (k )n+1 = σ̄ (σn+1)−σY

�

ε̄(k )n+1

�

f ′(k )n+1 =
∂ f (k )n+1

∂�ε̄(k )n+1

�ε̄(k+1)
n+1 =�ε̄

(k )
n+1−

f (k )n+1

f ′(k )n+1

4. Abort criterion (t ≥ 0):
�

�

�

�

�

�

f (k+1)
n+1

σY

�

ε̄(k+1)
n+1

�

�

�

�

�

�

�

< t ol : go to 5 with �ε̄n+1 =�ε̄(k+1)
n+1

�

�

�

�

�

�

f (k+1)
n+1

σY

�

ε̄(k+1)
n+1

�

�

�

�

�

�

�

≥ t ol : go to 3 with k ← k +1

5. Update equivalent plastic strain and stress tensor (t ≥ 0):

ε̄n+1 = ε̄n +�ε̄n+1

σn+1 =σt r
n+1−
�

λe l tr
�

�ε̄n+1
∂ f (σt r

n+1,ε̄n+1)
∂ σt r

n+1

�

I+2µe l�ε̄n+1
∂ f (σt r

n+1,ε̄n+1)
∂ σt r

n+1

�

Figure C.1.1: Stress update algorithm.
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�

�

�

�

1. Element deletion flag = false (t ≥ 0):

Stress update algorithm (Figure C.1.1)

2. Element deletion flag = true (t ≥ 0):

σn+1 = 0

3. Cockcroft-Latham integral (t ≥ 0):

Wn+1 =Wn +max
�

0, max
�

�

σI ,I I ,I I I
�

n+1

�

�ε̄n+1

�

4. Cockcroft-Latham failure criterion (t ≥ 0):

Wn+1 <Wc : Element deletion flag =false

Wn+1 ≥Wc : Element deletion flag = true

Figure C.1.2: Element deletion algorithm.
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C.2 Material Routine MR#1

�

�

�

�

1. Stress update algorithm (t ≥ 0):

Stress update algorithm, see Figure C.1.1

2. Cockcroft-Latham integral (t ≥ 0):

Wn+1 =Wn +max
�

0, max
�

�

σI ,I I ,I I I
�

n+1

�

�ε̄n+1

�

3. Survival and failure probability (integration point) (t ≥ 0):

�

Pi ,j
S

�

n+1
= exp

�

−
V
n

V0

�

Wn+1

Wc 0

�m
�

�

Pi ,j
F

�

n+1
= 1−
�

Pi ,j
S

�

n+1

4. Survival and failure probability (element) (t ≥ 0):

if i = 1 : → X e l e m =
�

P1,j
S

�

n+1

if i > 1 : → X e l e m = X e l e m ·
�

Pi ,j
S

�

n+1

if i = n : →
�

Pe l e m ,j
S

�

n+1
= X e l e m

�

Pe l e m ,j
F

�

n+1
= 1−X e l e m

5. Survival and failure probability (FE model) (t ≥ 0):
�

Pmod e l
S

�

n+1
=
�

X mod e l
�

n
�

Pmod e l
F

�

n+1
= 1−
�

Pmod e l
S

�

n+1
�

X mod e l
�

n+1
=
�

X mod e l
�

n+1
·
�

Pi ,j
S

�

n+1

6. Survival and failure probability (FE model part j ) (t ≥ 0):
�

P j
S

�

n+1
=
�

X
�

j
��

n
�

P j
F

�

n+1
= 1−
�

P j
S

�

n+1
�

X
�

j
��

n+1 =
�

X
�

j
��

n+1 ·
�

Pi ,j
S

�

n+1

Figure C.2.1: Material routine MR#1.
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C.3 Material Routine MR#2

�

�

�

�

1. Uniform pseudo-random number (t = 0):

if i = 1 : → rand_number [u ]

x e l e m = u

2. Critical value of the Cockcroft-Latham failure criterion (t = 0):

Wc =Wc 0
m

�

�

−
V0

Vi ni

�

ln
�

1−x e l e m
�

3. Element deletion flag = false (t ≥ 0):

Stress update algorithm, see Figure C.1.1

4. Element deletion flag = true (t ≥ 0):

σn+1 = 0

5. Cockcroft-Latham integral (t ≥ 0):

Wn+1 =Wn +max
�

0, max
�

�

σI ,I I ,I I I
�

n+1

�

�ε̄n+1

�

6. Cockcroft-Latham failure criterion (t ≥ 0):

Wn+1 <Wc : Element deletion flag =false

Wn+1 ≥Wc : Element deletion flag = true

Figure C.3.1: Material routine MR#2.
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C.4 Material Routine MR#3

�

�

�

�

1. Element centre (t = 0):

if i = 1 : → xm =
1

n nod

n nod
∑

k=1

xk

ym =
1

n nod

n nod
∑

k=1

yk

z m =
1

n nod

n nod
∑

k=1

xk

2. Creation of the MS mesh (t = 0):

if i = 1 : → n m a x
x = ceiling

�

xm a x −xm i n

l c r i t

�

n m a x
y = ceiling

�

ym a x − ym i n

l c r i t

�

n m a x
z = ceiling

�

z m a x − z m i n

l c r i t

�

3. Mapping of the MS mesh onto the FE mesh (t = 0):

if i = 1 : → nx = ceiling

�

xm −xm i n

l c r i t

�

n y = ceiling

�

ym − ym i n

l c r i t

�

n z = ceiling

�

z m − z m i n

l c r i t

�

n = (n z −1)n m a x
y n m a x

z +
�

n y −1
�

n m a x
x +nx

4. Uniform pseudo-random number (t = 0):

if i = 1 : → init_random_seed [c l oc k ] (C.4.1)

rand_number









u









1
...

n

















(C.4.2)

x e l e m = u (n ) (C.4.3)

Figure C.4.1: Material routine MR#3 (first part).
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�

�

�

�

5. Volume of an element of the MS mesh (t = 0):

Vc r i t =

�

l c i r t · l c r i t · ti ni for shell elements with inital thickness ti ni

l c r i t · l c r i t · l c r i t for solid elements
(C.4.4)

6. Critical value of the Cockcroft-Latham failure criterion (t = 0):

Wc =Wc 0
m

�

−
V0

min [Vi ni , Vc r i t ]
ln
�

1−x e l e m
�

(C.4.5)

7. Element deletion flag = false (t ≥ 0):

Stress update algorithm, see Figure C.1.1

8. Element deletion flag = true (t ≥ 0):

σn+1 = 0

9. Cockcroft-Latham integral (t ≥ 0):

Wn+1 =Wn +max
�

0, max
�

�

σI ,I I ,I I I
�

n+1

�

�ε̄n+1

�

10. Cockcroft-Latham failure criterion (t ≥ 0):

Wn+1 <Wc : Element deletion flag =false

Wn+1 ≥Wc : Element deletion flag = true

Figure C.4.2: Material routine MR#3 (second part).
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C.5 Material Routine MR#4

�

�

�

�

1. Read uniform pseudo-random number u i ni from user-input (u i ni is
defined for each integration point of an element in the current FE model).

2. Volume of an element of the MS mesh (t = 0):

Vc r i t =

�

l c i r t · l c r i t · ti ni for shell elements with inital thickness ti ni

l c r i t · l c r i t · l c r i t for solid elements

3. Critical value of the Cockcroft-Latham failure criterion (t = 0):

Wc =Wc 0
m

�

−
V0

min [Vi ni , Vc r i t ]
ln (1−u i ni )

4. Element deletion flag = false (t ≥ 0):

Stress update algorithm, see Figure C.1.1

5. Element deletion flag = true (t ≥ 0):

σn+1 = 0

6. Cockcroft-Latham integral (t ≥ 0):

Wn+1 =Wn +max
�

0, max
�

�

σI ,I I ,I I I
�

n+1

�

�ε̄n+1

�

7. Cockcroft-Latham failure criterion (t ≥ 0):

Wn+1 <Wc : Element deletion flag =false

Wn+1 ≥Wc : Element deletion flag = true

Figure C.5.1: Material routine MR#4.
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