
GJØVIK UNIVERSITY COLLEGE

DEPARTMENT OF COMPUTER SCIENCE
AND MEDIA TECHNOLOGY

BACHELOR THESIS

Snowman
A complete, effective and secure rule management system for Snort

Authors:
Thomas NYHEIM
Eirik SKOGSTAD
Eigil OBRESTAD

Supervisor:
Slobodan PETROVIC

May 19, 2014

Snowman

Participants

Thomas NYHEIM, thomas.nyheim@hig.no
Eirik SKOGSTAD, eirik.skogstad@hig.no
Eigil OBRESTAD, eigil.obrestad@hig.no

Supervisor

Slobodan PETROVIC, slobodan.petrovic@hig.no

Employer

CENTRE FOR PROTECTION OF CRITICAL INFRASTRUCTURE

Cyber Services and Operations
Norwegian Armed Forces Cyber Defence

AVDELING FOR BESKYTTELSE AV KRITISK INFRASTRUKTUR

Cyber Tjenester og Operasjoner
Cyberforsvaret

Employer Contact

Capt. Jarle KITTILSEN, jkittilsen@mil.no, +47 6110 3850

Keywords

Software Development, Intrusion Detection System, Software Performance Testing, Snort

80 Pages - 9 Appendices

AVDELING FOR

INFORMATIKK OG MEDIETEKNIKK

HØGSKOLEN I GJØVIK

POSTBOKS 191
2802 GJØVIK

DEPARTMENT OF COMPUTER SCIENCE

AND MEDIA TECHNOLOGY

GJØVIK UNIVERSITY COLLEGE

BOX 191
N-2802 GJØVIK

NORWAY

i

Snowman

English Abstract

In today’s technological world, the Internet has become an integral part of businesses
and organisations. However, the Internet brings a large amount of threats against com-
puter networks, as individuals and organisations seek to exploit them for monetary gain,
information superiority or political and social activism. In order to properly protect a
computer network, it is vital to be able to detect these threats, which is commonly done
by using an intrusion detection system (IDS). An IDS will normally operate by analysing
the network traffic by comparing it to threat-patterns defined in signatures, and raising
alerts when threats are detected. Given the number of possible threats to a computer
network, an IDS often has a large amount of signatures that must be properly managed
in order to maintain both a secure and usable network. Signature management therefore
involves enabling and disabling the signatures, as well as keeping them up to date. This
can be a challenging task for even small-sized organisations, as the IDS might operate on
multiple parts of the network simultaneously.

This thesis presents a software which facilitates signature management in environ-
ments with multiple instances of the IDS, called sensors, by using a central server which
automatically updates and distributes signatures to the sensors. Furthermore, the soft-
ware introduces a novel way of automatic management of signatures on each sensor.
The software is controlled with a simple and intuitive graphical user interface which
supports multiple users. This thesis also compares the functionality and efficiency of the
software with similar signature management systems through a theoretical analysis of
performance, complemented with practical tests. The testing has also demonstrated the
importance of conducting performance tests during software development, in order to
identify and improve inefficient code in the software.

ii

Snowman

Norwegian Abstract

Dagens samfunn er helt avhengig av internett for kommunikasjon og samhandling. Dette
gjelder ikke minst for bedrifter og organisasjoner, hvor internett blandt annet brukes til
å nå ut til, og kommunisere med, kunder og partnere. Et stort problem med bruken av
internett er at det gjør datamaskiner og interne datanettverk sårbare for eksterne an-
grep, da disse kan inneholde, eller gi tilgang til, sensitiv informasjon som kan utnyttes
av organisasjoner og enkeltpersoner med hensikter som for eksempel økonomisk vin-
ning. Oppdagelse av potensielle angrep er avgjørende for å best mulig kunne beskytte
datanettverk, noe som normalt gjøres ved hjelp av et såkalt intrusion detection system
(IDS). Et IDS opererer vanligvis ved å overvåke og analysere nettverkstrafikk, som sam-
menlignes med mønstre definert i signaturer og sender en advarsel når en trussel blir
gjenkjent. Mengden av potensielle angrep som kan utføres er enorm, noe som gjør at
et IDS inneholder en stor mengde signaturer som må vedlikeholdes daglig for å kunne
møte et trusselbilde i stadig endring. Vedlikeholdet av signaturer kan være krevende selv
for små bedrifter, da IDS-et vanligvis opererer flere steder på datanettverket samtidig.

Denne rapporten presenterer en programvare for enkel og effektiv håndtering av sig-
naturer for systemer med flere instanser, kalt sensorer, av et IDS. Dette gjøres ved å ha
en sentral tjener som håndterer automatisk oppdatering og distribuering av signaturer til
sensorene. Programvaren inneholder også et klient-program som kjører på hver sensor
og muliggjør en effektiv og automatisk håndtering av signaturer på hver enkelt sensor.
Programvaren styres av et enkelt og intuitivt grafisk brukergrensesnitt med støtte for flere
brukere. Rapporten inneholder også en studie av programmets ytelse sammenlignet med
lignende programvare, i form av en teoretisk og praktisk analyse. Den praktiske analysen
gir i tillegg et innblikk i hvor viktig ytelsestesting under programvareutvikling er for å
identifisere og forbedre ineffektiv kode i programvaren.

iii

Snowman

Preface

Acknowledgements

We would like to thank our supervisor from Gjøvik University College, prof. Slobodan
Petrovic, for his help and input during the project. We would also like to thank Avdeling
BKI for assigning us this project and the help with forming requirements and the software
testing, and especially Jarle Kittilsen who took on a role as a supplementary supervisor.

We would also like to acknowledge Gjøvik University College, that has been an arena
for expanding our knowledge over the past few years and the knowledge we’ve accrued
are the foundation of which this project is laid upon.

About this document

This document is written in LaTeX and is based on a template written by Ivar Farup,
Kjetil Orbekk and Simon McCallum for master theses at Gjøvik University College. The
bibliography is produced with BibTex and follows the Vancouver standard for citations.
The bibliography style definition is provided by Folkert van der Beek.

Legal

SNORT R© is a registered trademark of Sourcefire, Inc. SNORT R© is referred to as Snort
throughout this report.

Logo artwork commissioned by Kerrigan, http://rattlesire.deviantart.com/.

iv

http://rattlesire.deviantart.com/

Snowman

Glossary

This chapter contains an alphabetical list of technical terms used throughout the report
along with their definition.

AJAX Asynchronous JavaScript and XML.

API Application programming interface.

CLI Command-line interface.

CSS Cascading Style Sheets, a markup language for web pages.

Daemon A computer program that runs as a background process, usually without any
user interaction.

DOM Document object model.

HDD Hard disk drive.

HTML Hypertext markup language.

HTTP Hypertext transfer protocol.

I/O Input / Output, used to describe data flow to and from devices such as hard drives.

IDS Intrusion detection system.

MD5 A cryptographic hash function producing a 128-bit hash value.

MVC Model-view-controller.

Open Source Software Software where the source code is publicly available and is li-
censed in such a way that the copyright holder grants the rights to study, alter and
redistribute the software to anyone for any purpose [1].

ORM Object-relational mapping.

RAM Random access memory.

RPC Remote procedure call.

RPM Rounds per minute.

SCP Secure Copy. An encrypted file transfer protocol.

Sensor A computer system wherein Snort and/or other security software is recording
network traffic and produces alerts when malicious content is detected.

SSD Solid state drive.

SSL Secure sockets layer.

v

Snowman

TRIM Garbage collection routines for SSD.

URL Uniform resource locator.

WSGI Web Server Gateway Interface.

XML Extensible markup language.

vi

Snowman

Contents

English Abstract . ii
Norwegian Abstract . iii
Preface . iv
Glossary . v
Contents . vii
List of Figures . xi
List of Tables . xii
1 INTRODUCTION . 1

1.1 Project Background . 1
1.2 Previous Work . 1
1.3 Project Description . 2
1.4 Target Audence . 2
1.5 Project Objectives . 2

1.5.1 Result Objectives . 2
1.5.2 Effect Objectives . 3

1.6 Academic Background . 4
1.7 Framework . 4

1.7.1 Software Development Methodology 4
1.7.2 Schedule . 5
1.7.3 Project Organization . 5

1.8 Document Structure . 6
1.8.1 Special Styles Used . 6

2 EXISTING SOLUTIONS . 7
2.1 Bring Home The Bacon . 7
2.2 Snortmanager . 8
2.3 Other Notable Programs . 8
2.4 Research on Software Performance . 8
2.5 Functionality Comparison . 9

3 REQUIREMENTS SPECIFICATION . 12
3.1 Functional Requirements . 12

3.1.1 Program Workflow . 12
3.1.2 High-level Use Cases . 15
3.1.3 Detailed Use Cases . 19
3.1.4 Use Case Diagram . 21
3.1.5 Domain Model . 23

3.2 Supplemental Requirements . 23
3.2.1 Functionality . 23
3.2.2 Usability . 23
3.2.3 Reliability . 23
3.2.4 Performance . 23

vii

Snowman

3.2.5 Security . 23
3.2.6 Interoperability . 25
3.2.7 Licensing . 25

3.3 Constraints . 25
3.3.1 Platform . 25
3.3.2 Data Security . 25
3.3.3 Graphical User Interface . 25

3.4 Security Assessment . 25
4 CONCEPTS OF SNORT . 27

4.1 Rules . 27
4.2 Rulesets . 27
4.3 Generators . 27
4.4 References . 28
4.5 Event and Detection Filters . 28
4.6 Rule Suppression . 28

5 DESIGN . 29
5.1 General Design . 29

5.1.1 Centralized or Distributed Setup? 29
5.2 Server Design . 31

5.2.1 Architecture . 31
5.2.2 User Interface . 32
5.2.3 Database . 32

5.3 Client . 33
5.3.1 Architecture . 33
5.3.2 Database . 33

6 IMPLEMENTATION . 39
6.1 Programming Languages . 39

6.1.1 Standards and Guidelines . 40
6.2 Development Environments . 41

6.2.1 Environments . 41
6.2.2 Version Control . 41

6.3 Frameworks . 41
6.3.1 Django . 41
6.3.2 SQLAlchemy . 41
6.3.3 jQuery . 42
6.3.4 Bootstrap . 42

6.4 Core Module . 42
6.4.1 Rules and Rule Revisions . 43
6.4.2 Rulesets . 43
6.4.3 Sensors . 43
6.4.4 Comments . 43

6.5 Update Module . 44
6.5.1 Sources . 44
6.5.2 Files . 44
6.5.3 Running an Update . 45
6.5.4 Rule Parsing . 46

viii

Snowman

6.5.5 Classification, Generator and Reference Type Parsing 46
6.5.6 Saving . 47

6.6 Tuning Module . 48
6.7 Distribute . 48

6.7.1 Initiating the Distribution . 48
6.7.2 Synchronisation . 49
6.7.3 Generating Snort Configuration . 49

6.8 Graphical User Interface . 49
6.8.1 Structure . 50
6.8.2 Design . 50
6.8.3 Overview of Central GUI Features 50

6.9 Logging . 54
6.10 Configuration Files . 56

6.10.1 Server Configuration File . 56
6.10.2 Client Configuration File . 57

6.11 Deployment . 57
6.11.1 Snowman Server . 58
6.11.2 Snowman Client . 59

7 SOFTWARE TESTING . 60
7.1 Strategy . 60
7.2 Description of Problems . 60

7.2.1 Rule Insertion . 60
7.2.2 List Pagination . 61
7.2.3 The Ever Changing Number of Changes 61

8 PERFORMANCE ANALYSIS . 62
8.1 Theoretical Analysis . 62

8.1.1 Effectiveness of Update Processing 62
8.1.2 Effectiveness of Rule Distribution 62
8.1.3 GUI Latency . 63
8.1.4 Sublinearity in Performance . 63

8.2 Practical analysis . 63
8.2.1 Definitions . 63
8.2.2 Environment . 63
8.2.3 Test suites . 63
8.2.4 Update processing tests . 64
8.2.5 Rule distribution tests . 66
8.2.6 Interface loading tests . 66

9 RESULTS OF PERFORMANCE TESTING . 67
10 ANALYSIS OF PERFORMANCE TESTING RESULTS 70

10.1 Effectiveness of update processing . 70
10.2 Effectiveness of rule distribution . 71
10.3 GUI latency . 72
10.4 Sublinearity in performance . 73
10.5 Conclusions . 73

11 CONCLUSIONS . 74
11.1 Results . 74

ix

Snowman

11.2 Future Work . 74
11.2.1 Abandoned Performance Tests . 75

11.3 Conclusion . 75
12 Group Evaluation . 76

12.1 Introduction . 76
12.2 Organization . 76
12.3 Work distribution . 76
12.4 What could have been done differently . 77
12.5 Subjective views . 77

12.5.1 Thomas Nyheim . 77
12.5.2 Eigil Obrestad . 77
12.5.3 Eirik Skogstad . 77

Bibliography . 78
Appendices . 81
A PROJECT PLAN . 82
B CONTRACTS . 100
C MEETING RECORDS . 104

C.1 Meeting Minutes . 104
C.2 Sprint Planning Meetings . 117

D WORKLOG . 119
E ADDITIONAL USE CASES . 120

E.1 High-level use cases . 120
E.2 Detailed use cases . 123

F PERFORMANCE TEST SCRIPTS . 127
F.1 Lines Added to Snowman Code . 127
F.2 Bash Script for Snowman . 127
F.3 Lines Added to BHTB Code . 129
F.4 Bash Script for BHTB . 129

G UNIT TESTS . 131
G.1 Unit Tests for Update . 131
G.2 Unit Tests for Web Interface . 134

H TEST RESULTS . 136
I AVDELING BKI FEEDBACK . 143

x

Snowman

List of Figures

1 Agile development model [2] . 4
2 Program workflow . 13
3 Program modules . 14
4 Use case diagram . 22
5 Conceptual class diagram . 24
6 General architecture . 30
7 Server Architecture . 31
8 Core server-database . 34
9 Tuning server-database . 35
10 Update server-database . 36
11 Client Architecture . 37
12 Client Database . 38
13 Applying a filter to a rule on a sensor . 48
14 GUI Structure . 50
15 Rules page . 51
16 Rulesets page . 53
17 Update progressbar . 54
18 Update changes . 54
19 Form validation . 55

xi

Snowman

List of Tables

1 Functionality comparison chart. 11
11 Security Assessment . 26
12 Effects of different filter types. 28
13 Rule options used in this system. 45
14 Test systems. 64
15 Test cases in update processing. 65
16 Test results for interface performance. 67
17 Test results for update processing. 68
18 Test results for sensor synchronisation. 69
19 Average processing time per rule. 70
20 Comparison of processing time for many files vs one file. 71
21 Comparison of Snowman v 0.4 and v 0.5. 71
22 BHTB Syncronisation performance has a flat curve. 72
23 Empirical linear correlation coefficients for update processing. 73
24 Worklog . 119

xii

Snowman

1 INTRODUCTION

1.1 Project Background

The Norwegian Armed Forces Cyber Defense unit for Computer Network Defense (CND),
Centre for Protection of Critical Infrastructure (Avdeling BKI in Norwegian), is responsi-
ble for detecting and stopping cyber-attacks against the critical infrastructure and com-
mand and control systems utilized by the Norwegian military. One of the tools used to
carry out this task is the open source IDS Snort [3].

Snort is a leading [4] open source IDS that is used to detect potentially unwanted
or malicious network traffic based on predefined patterns described in signatures. There
are both free and commercial signatures available for Snort and as Snort has been highly
adopted by the security community, these signatures are continually updated and main-
tained. For large networks, an IDS will often operate in multiple parts of the network
simultaneously, where each separate instance of the IDS is known as a sensor.

The management of Snort signatures (henceforth referred to as rules) is cumbersome
in multi-sensor environments without a centralized service which can assure that all sen-
sors are synchronised with the latest rules. Avdeling BKI has therefore challenged a group
of students from Gjøvik University College (GUC) to design and develop a functional, ef-
fective and secure rule management system for Snort that can continue to live on beyond
this project.

1.2 Previous Work

Studies [5] have shown that a good rule management system for Snort will improve
the workflow and efficiency of the IDS significantly, and a prototype for such a system
was built in 2012 called Bring Home The Bacon [5] (henceforth referred to as BHTB).
This prototype has been in use at Avdeling BKI since 2012, but is suffering from lacks
of functionality and efficiency due to being a proof-of-concept prototype. BHTB has,
however, proven that there is a significant gain from having an intuitive Graphical User
Interface (GUI) for managing rules. A GUI better facilitates the work of the operator,
as work is shifted from complex operations in a CLI to automatic execution of common
routines triggered by buttons.

There was another similar project conducted at Gjøvik University College in 2012
called Snortmanager [6], which also deals with management of Snort rules. The Snort-
manager project files are available as open source software, but no usage instructions
are available. The source code has not been maintained since its initial release and is
designed for a specific company. Enabling, disabling and configuring rules is also cum-
bersome in this system as it is based on plaintext arguments in “policies” that users must
construct themselves [6]. The rule distribution is also done manually from the files gen-
erated. All this makes Snortmanager unsuitable for Avdeling BKI and their routines.

Several add-ons and other Snort-related software exist [7], and a few of these are built
to manage Snort rules, most notably Pulled_Pork [8] and Oinkmaster [9]. The key differ-
ences between all software mentioned in this section and Snowman are further explained

1

Snowman

in Chapter 2.

1.3 Project Description

The purpose of this project is to design a system that provides a simple and efficient way
of managing rules for the Snort IDS. The project is a successor to BHTB and expands on
the good ideas from BHTB, and adds functionality requested by Avdeling BKI to create
a more adoptable open source rule management system for Snort. The project can be
broken down into four main objectives:

1. Identify the challenges of rule management in an IDS such as Snort.

2. Describe how a good rule management system should operate.

3. Develop a good open source rule management system for Snort, at a high technol-
ogy readiness level (TRL) [10].

4. Measure the performance of the system and compare this to other similar systems.

The first two objectives were addressed early on in the project during the initial design
phase of the software. To develop a good rule management system, it is essential to
consider the tasks in the two first objectives, as they form the basis of how the system
in the third objective is designed. Challenges and best practices in rule management is
therefore presented throughout this report to support the design decisions made in the
final software solution.

As the project became very performance-oriented, the report also contains an initial
study of software performance and practical performance test of related software.

1.4 Target Audence

Snowman is targeted at users of the Snort IDS in a larger production environment with
many sensors and networks. More specifically, the target audience consists of security
experts with a high degree of knowledge of Snort and computers in general.

This report is targeted at those who are interested in discovering the complexity of the
rule structure of Snort, and academics that are interested in reading about IDS software
performance testing.

1.5 Project Objectives

1.5.1 Result Objectives

As stated in the project plan (Appendix A), this project has a goal of researching, design-
ing and developing a system that as a minimum:

• Is more efficient than BHTB.

• Is developed as an engine that responds to API-calls.

• Is modular in design and allows future changes and additions that will not affect
existing functionality.

• Is scalable enough to handle both small and large sets of IDS-sensors and rules in
a production environment.

2

Snowman

• Is able to download rules and rulesets from multiple customizable sources.

• Is able to distribute different rules to different IDS-sensors.

• Can download and distribute rules automatically at set intervals.

• Is capable of exporting rules.

• Has the capability to activate, deactivate, filter and suppress rules on a per sensor
basis, in a user friendly way.

• Supports multi-user interaction.

• Can efficiently and safely work with different installations of Snort and various
other third party tools, such as SNORBY [11].

• Is easy to install.

• Has an internal logging system.

• Is well-documented and can be easily adopted by anyone as open source software.

In addition, the project group will attempt to add the following functionality:

• A graphical user interface.

• The mentioned user interface must be user friendly and intuitive, and require only
limited knowledge of Snort rules from the user.

• The system can also distribute rules to Suricata [12], another Snort-like IDS, which
can operate with the exact same rules as Snort.

• Implement security features that ensure confidentiality of rules.

• The project will investigate and potentially implement multi-threading technology
or other optimization techniques to exploit modern hardware capacities.

• The system is capable of validating and checking rules for errors before they are
distributed to sensors.

• The system supports commenting of the rules.

• The system supports writing custom rules and editing existing rules.

Once the system is developed, it will be released as an Open Source Software to the
public in a well-documented format.

1.5.2 Effect Objectives

Forming baselines from the current prototype BHTB and from Snortmanager, the project
has a goal to further increase the efficiency of rule management by investigating and
implementing programming techniques such as multi-threading and caching to reduce
latency and delays in the system by as much as 50%. The software must also maintain
sublinearity in performance, i.e. 10 executions of the same job should take 10 times, or
less, the amount of time as a single execution.

The achievement of these goals is to be measured by conducting several performance
tests on the final software solution. Results will also be compared to the performance of
BHTB and Snortmanager.

3

Snowman

1.6 Academic Background

This project has benefited greatly from the fact that all three project members are all tak-
ing different computer science courses. Eirik is currently completing his undergraduate
engineering degree in computer science at Gjøvik University College, and has practical
experience in software development from a one-year technical work internship at CERN
in Switzerland. Eigil is completing his undergraduate degree in network and system ad-
ministration at Gjøvik University College, and has also spent one year at CERN working
on network monitoring and administration. Thomas has been studying information se-
curity at Gjøvik University College, and has worked for Avdeling BKI for the past seven
years prior to this project. He has been working with threat detection and network traffic
analysis, and has good knowledge of what Avdeling BKI needs, in addition to general ex-
perience from the information security field. Given the variety of knowledge from each
members background, the project group has enjoyed a unique opportunity to draw from
each other’s strengths, and approach the project from different perspectives.

1.7 Framework

1.7.1 Software Development Methodology

As this project has been very time restricted, the development needed to be as efficient
as possible. The project group therefore had to find a model that utilized the available
manpower in the best possible way. Considering the small size of the project group,
large and complex development models would add too much bureaucracy to coordinate
the project. A lightweight and efficient development model was preferred, so the group
chose to utilize an agile development model [13] (Figure 1) structured into development
cycles. This way, each group member could take an active part in the project and all
members could feel a sense of ownership.

Figure 1: Agile development model [2]

By developing iteratively and incrementally, the group combined the best of both
the agile development world and from the very well-defined waterfall approach [14].
Feedback from Avdeling BKI and the project supervisor has been very important in the
course of the project, in addition to having a structured and reasonable way of doing

4

Snowman

changes to the plan while the project was running. At the same time the group was able
to maintain the overall plan within cycles, so that it was possible to work individually,
while still being well-coordinated.

To be able to develop all the modules of the project within the time frame, each
development cycle consisted of multiple modules or functionality developed in parallel.
This allowed for good utilization of time and personnel. The start of each cycle consisted
of a meeting where the goals for the cycle were defined and individual tasks that we
needed to get done were identified. This process bears similarity to the start of a sprint
in the development model Scrum [15].

During the development part of the cycle, the group worked individually on the tasks
that were defined in the planning phase. Regular meetings and cooperative programming
within the group ensured that everyone pulled the project in the same direction. At the
end of each cycle a working set of software was ready, which ideally complied with all
the goals set at the start of each cycle. Meetings with Avdeling BKI were held between
each cycle to present the progress, and to let them influence the direction of the project.

When all the development cycles were completed, final assurances were made that ev-
erything worked as intended and that all modules coexisted in harmony. This part of the
development also consisted of some hands-on testing by Avdeling BKI and performance
testing.

1.7.2 Schedule

This project had a comprehensive initial phase for mapping and designing of the system.
The group spent the major part of the first two weeks planning how to implement the
system. After the two weeks and before the start of the development, a “project decision
meeting" was held with Avdeling BKI to receive feedback on the design and confirm that
the system was modelled correctly for their needs.

After this, the implementation phase commenced, which consisted of development
cycles as described above in Section 1.7.1. This phase was divided into five parts: four
development cycles and a final cleanup/testing cycle. All the development cycles lasted
two weeks, aside from the last development cycle and the cleanup/testing cycle, which
lasted one week each. During these cycles the group conducted meetings with both the
project mentor and Avdeling BKI every two weeks, timed so that these meetings took
place on alternating weeks. This ensured continual feedback and advice throughout the
development process.

After the development phase, focus was shifted from the software to the project re-
port, and the group spent the final 5-6 weeks working on the report. The group benefitted
from the work performed during the first weeks of the project which could go almost di-
rectly into the report.

1.7.3 Project Organization

Reflecting the fact that the project had multiple phases, the organisation of the project
changed throughout the project. During the first few weeks the group spent most of the
time together in a group room, cooperating in forming the design and discussing various
solutions. Once most of the details had been worked out and the implementation phase
began, there was more room and need to work individually to produce code. In this
period, the group gathered together a few times a week to coordinate the progress and
plan the next course of action. Throughout the project, most decisions have been made

5

Snowman

either by speaking with Avdeling BKI or achieving consensus within the group.

1.8 Document Structure

INTRODUCTION - Contains an overview and description of the project and its goals.

EXISTING SOLUTIONS - Describes similar software and information relevant to the
project.

REQUIREMENTS SPECIFICATION - Describes the requirements and scope of the soft-
ware development.

CONCEPTS OF SNORT - Explains the basic concepts of Snort.

DESIGN - Details the architecture and design of the system.

IMPLEMENTATION - Describes how the system has been implemented.

SOFTWARE TESTING - A short description of how the system has been tested and some
of the practical problems the project has encountered.

PERFORMANCE ANALYSIS - Describes what and how we have tested the system for
performance.

RESULTS OF PERFORMANCE TESTING - Lists the results of the performance testing.

ANALYSIS OF PERFORMANCE TESTING RESULTS - Contains an analysis and concludes
the findings of the performance tests.

CONCLUSIONS - Summarizes the findings in this report.

GROUP EVALUATION - The group evaluation of this project.

BIBLIOGRAPHY

APPENDICES - Some parts of the appendices are only available in Norwegian.

1.8.1 Special Styles Used

Software names are written in a different font throughout the report, like so: Snowman.
Source code is listed in an enclosed box with syntax highlighting (Listing 1.1). Source
code can also appear in the text with the same syntax highlighting as the listings, espe-
cially note names of modules and classes which will appear as so: module, Class.

1 from module import Class
2
3 class Hello:
4 def printHello():
5 # Print a message
6 print ’Hello World!’

Listing 1.1: Source code example.

6

Snowman

2 EXISTING SOLUTIONS

The following sections will quickly elaborate on the functionality of software similar to
Snowman to identify the differences, weak and strong sides of the different solutions.

2.1 Bring Home The Bacon

Bring Home The Bacon was a by-product prototype of the Master thesis written by
Henriksen in 2012 [5]. In the thesis, Henriksen seeks to prove that having a central,
graphically-oriented system to administer multiple Snort-sensors and their rules, results
in a signficant improvement in user workflow over the more traditional command-line
environment. Henriksens tests show that such a system can double the users’ work ef-
ficiency, if not more, as the command-line environment would scale very badly as the
number of sensors increases. Henriksen also outlines a rule management process, which
has been helpful during the initial phases of this project to map the program workflow
(Section 3.1.1).

Despite being a prototype, BHTB offers the essential functionality required for man-
aging rule sets on multiple sensors. It can display a list of rules which can also be turned
on and off on different sensors, as well as a list of rulesets that can also be turned on and
off, which will effect all rules in the ruleset. This is considered a drawback, as BHTB does
not offer a mechanism where rule sets can be disabled without affecting the state of the
rules within. This means that the original state of the rules in a ruleset is lost whenever
the state of the rule set is changed. Snowman improves this by keeping the state of the
rulesets separate from the state of the rules.

BHTB distributes rules to the sensors by generating all files centrally and sending
them one by one via SCP. It determines which rules to distribute by comparing the main
rule database table with a second table representing which rules the sensor should not
have. This way of distributing rules is considered ineffective, and has been solved dif-
ferently in Snowman (explained in Section 5.1). BHTB also supports manual creation of
rule filters and suppressions, but does not offer any input validation, which makes the
sensors vulnerable to crashes1 in the case of invalid input. This weakness is taken into
consideration in Snowman, which offers form validation.

BHTB is programmed with Python and uses the Tornado framework [16] as its web-
server, which works similar to Django [17], a framework used by Snowman, with its URL
API system (see Section 5.2.2). It also uses SQLite [18] as its database, which has limited
abilities when it comes to relations and more complex data structures.

According to Avdeling BKI, BHTB really begins to show its limitations once the system
is populated by a lot of rules2 and sensors, which makes it clear that it has a scalabil-
ity problem. Avdeling BKI has used BHTB in a production environment since 2012 and
experiences the software as slow and cumbersome.

1Snort will crash and not restart if something in the configuration files is malformed.
2In the five digit range.

7

Snowman

2.2 Snortmanager

Snortmanager was created for a Bachelor thesis written at Gjøvik University College in
2012 [6], where the main purpose of the software was to make rule management more
effective for the employing company. This was done by creating a central server with a
rule-database which automatically downloads and updates rules from external sources.
The user must then manually input which configurations are needed for a specified sen-
sor and the system then creates configuration files for the sensor. As Snortmanager has a
high focus on producing configuration files containing the necessary rules and settings
for each sensor, but does not automatically distribute the files to the sensors like Snow-
man does, the user is required to manually move the files to the sensor through some
unrelated process.

2.3 Other Notable Programs

There are two other pieces of software that should also be mentioned. Pulled_Pork and
Oinkmaster are both programs that can download rules and update Snort-sensors. These
programs contain some of the features found in Snowman and BHTB, and Pulled_Pork
even supports Shared Object rules [19], which is not part of this project due to complex-
ity. However, both of these programs suffer from the fact that they are command-line
oriented. They are both very good at what they do, but lack the usability and efficiency
offered by GUIs with buttons. These programs are a good choice for rule management
in a small environment with one or very few sensors, but once the environment grows
larger, with tens or even hundreds of sensors, they become ineffective.

2.4 Research on Software Performance

Since this project also investigates software performance, it is relevant to take a look at
what others in the field have written on the subject. This subject is missing from most
software development reports from Gjøvik University College, which can be explained by
the usual high focus on agile development. [20] mentions that agile programming is be-
coming mainstream and by its nature is a concern for the future of software performance
engineering, as the primary focus of an agile project is on functionality.

A proper performance testing methodology was not immediately available for this
project. However, the papers [21] and [22] gave a few pointers towards developing the
test cases described in Chapter 8. Both articles also stress the importance of performance
testing during the development rather than after it, as this allows for time to actually
implement optimizations and improvements. The performance testing in this report does
not strictly follow any of these methodologies, but it includes the most important ele-
ments of them, e.g. performance testing during development.

Early on in the project it became clear that Snowman is very I/O-bound, as it performs
a lot of database operations. The tests in this report show a noticable difference in per-
formance between traditional rotational hard drives and SSDs. Myers comments on this
in his master thesis [23] which shows that SSD has a significant advantage over HDDs
when it comes to random read performance but not when it comes to write performance.
Note that these tests were performed in 2008, a time when SSD technology was fairly
new and suffering from its different way of writing data3. As operating systems, drivers

3Features such as TRIM were introduced shortly after Myers thesis.

8

Snowman

and disk controllers have improved, SSDs are now superior to HDDs in most tasks.

2.5 Functionality Comparison

To easily visualize how various rule managers differ from each other, we have gathered
key functionality from the most important pieces of such software and created a list of
support for that functionality, which can be seen in table 1.

9

Snowman

Feature Snowman BHTB Snortmanager Pulled_Pork Oinkmaster

Rule download and storage X X X X X

Sensor administration X X X

Graphical user interface X X X

Automatic updates X X X X

Can synchronise rules to sensors X X X

Automatic synchronisation X X X

Enable/disable rules X X X

Supports multiple sensors X X X

Displays change history of up-
dates

X X X

Can store meta-data about rules X X

Can turn on or off rulesets X X

Can turn on or off rulesets on in-
dividual sensors

X X

Can add filters and suppressions
to rules

X X

Can add filters and suppressions
to rules on a per sensor basis

X X

Has an internal logging system X X

Can display list of rules in the
system

X X

Can display meta-data in the sys-
tem

X X

Normalized database X X N/A N/A

Does not require root to interact
with Snort

X

Turning rulesets on or off is non-
propagating

X N/A N/A N/A

Can import filters and suppres-
sion from rule files

X X X X

Has input validation X N/A N/A

Supports multiple database tech-
nologies

X N/A N/A

Handles multiline rules X X

Can skip certain files X X X

User can approve changes before
sensors are updated

X X

Is easy to install X

10

Snowman

Can import rules from arbitrary
sources

X

Can organize rulesets in a hier-
archy

X

Can create new custom rulesets X

Can organize sensors in a hierar-
chy

X

Can syncronize rules to multiple
sensors at a time

X

Has a user system X

Supports autonomous sensors X

Does not distribute everything
every time

X

Supports SO rules X X

Can create new rules

Number of objects in data struc-
ture

16 4 9 N/A N/A

Table 1: Functionality comparison chart.

11

Snowman

3 REQUIREMENTS SPECIFICATION

Many of the requirements for this system originates from functions that already exist
in BHTB which need to be reproduced or improved. This means that the requirements
for this project are closely tied to the way BHTB operates and its general workflow. This
section outlines the specifications gathered from BHTB and from conversations with BKI.

3.1 Functional Requirements

3.1.1 Program Workflow

To aid the development of the functional requirements, the program workflow was charted
in order to give a better understanding of what the system was expected to do. This was
accomplished by going through the functionality of BHTB with Avdeling BKI and detail-
ing the functions and various needs for improvement or additional functionality. From
this, a workflow chart (Figure 2) was drawn with the major parts of the system. In addi-
tion, Henriksen’s management process [5] was taken into consideration.

To explain the workflow chart in Figure 2: the blue boxes are the major system func-
tionalities, the green boxes are the major goals of the system and the arrows show the
direction of flow the system should have. As can be seen, all of the program flow ends
up with rules being synchronised to the sensors, making that a very central part of the
system. It is important to note that in the beginning of the development, we decided that
writing rules, automatically check for errors and adding user comments to them were
nice-to-have (but still important) features that we could implement if we had time to do
so. Hence, they are greyed out in the drawings, and left for future work.

From the workflow we could outline a rough modular design (figure 3) based on
the naturally separate functions of updating rules, tuning them, distributing them and
showing them. We also added a database module, since most of our program was going
to be centered around it.

Rule download module

This module will handle all functionality related to downloading rules, including com-
paring MD5 checksums.

Rule pre-storage processing module

This module will essentially take downloaded rules, and parse and process them into
objects that can be fed into the database.

DB Module

This module will handle all input and output to/from the database.

Rule pre-distribution processing module

This module will essentially take rules stored in the database and prepare them for dis-
tribution to sensors.

12

Snowman

Figure 2: Program workflow

13

Snowman

Figure 3: Program modules

14

Snowman

Rule distribution module

This module will be in charge of distributing rules out to the Snort sensors and handing
the rules over to Snort itself.

Tuning module

This module will handle all functionality related to turning rules on or off, filtering them
or suppressing them.

Rule view module

This module will contain all the functionality needed to display the system status and
system functions to the user. It will be the primary way the user interacts with the system,
and thus contain the GUI.

Daemon module

This module will run continuously on the system to ensure that the system is responsive
and to carry out any timed tasks, such as automatic updates or automatic distributions.

Commenting module

This module will allow users to attach comments to rules.

Rule writing module

This module will handle functionality for writing custom rules and editing existing rules.

Automatic rule checking module

This module will be responsible for verifying rules to ensure that there are no malformed
or misconfigured rules that may potentially break or cause a halt on a Snort sensor.

3.1.2 High-level Use Cases

Since the program workflow is heavily centered around the database module, and the
major parts of the system revolves around the importing of rules and then distributing
them, we began developing our use cases around those major movements. The most
central use cases for this system are listed below. Additional use cases are available in
Appendix E.

Use case Manual rule update

Primary actor User

Purpose Update the central rule database with the newest rules and
revisions.

Description The user commands the server to update the rules, either
from a local file or from external sources. When the latter
is the case, the server pulls rule files from all the sources
specified in the list of sources. In both cases rules are pro-
cessed and stored in the database.

15

Snowman

Preconditions Either a file or one or more sources must exist.

Postconditions The central rule database is up to date with the newest
rules and revisions.

Use case Automatic rule update

Primary actor Daemon

Purpose Update the central rule database with the newest rules and
revisions.

Description At configured time-intervals, the system daemon triggers
a rule database update. The server pulls rule files from all
the sources specified in the list of sources to be updated
at the given interval, processes the rules and then stores
them in the database.

Preconditions One or more sources must exist.

Postconditions The central rule database is up to date with the newest
rules and revisions

Use case Manual rule distribution

Primary actor User

Purpose Distribute rules to sensors as per the settings in the
database.

Description The user sends a command to distribute rules to either all
or specified sensors. The server then begins the distribute
routine, and eventually all sensors will be up to date with
the rules and rulesets they should have.

Preconditions Rules and sensors must exist

16

Snowman

Postconditions Specified sensors contain rules as per settings in the central
database.

Use case Automatic rule distribution

Primary actor Daemon

Purpose Distribute rules to sensors as per the settings in the
database.

Description Configured at intervals, the system triggers a command to
distribute rules to specified sensors. The server then begins
the distribute routine, and eventually all sensors will be up
to date with the rules and rulesets they should have.

Preconditions Rules and sensors must exist

Postconditions Specified sensors contain rules as per settings in the central
database.

Use case Enable/Disable a rule or ruleset

Primary actor User

Purpose Enable or disable one or more rule or ruleset on one or
more sensors.

Description The user either enables or disables a rule or a ruleset so
that the rule is either on or off on certain sensors. This
status is then shared with the sensor and the sensor syn-
cronizes as needed.

Preconditions Rules and/or rulesets must exist.

17

Snowman

Postconditions A rule or ruleset has been modified to be enabled or dis-
abled and the change is syncronized to affected sensors.

Use case Set rule threshold or suppression

Primary actor User

Purpose Set or remove a threshold or suppression for a rule on one
or more sensors.

Description User sends a command with either thresholding/suppres-
sion parameters or removal of a threshold or suppression
for a rule on one or more sensors. The system updates the
database and distributes the change to the sensor(s).

Preconditions Rules and sensor(s) must exist.

Postconditions Rule tuning is saved in the central database and distributed
to affected sensors.

Use case View rules

Primary actor User

Purpose Display rules to the user.

Description Rules are retrieved from the database, processed for GUI
format and then delivered to the GUI.

Preconditions Rules must exist.

Postconditions The user is informed of the current status of the central
database and the status of rules and rulesets enabled/dis-
abled on sensors.

18

Snowman

3.1.3 Detailed Use Cases

Use case Central rule-database update

Primary actor Server

Purpose Update the central rule database with the newest rules and
revisions.

Description An update can be triggered either by the user or the dae-
mon. The system retrieves the files in question, checks
what is new and what is not and then updates the database
accordingly.

Preconditions Depending on the request, this process requires a local file
or the server must be configured with external source(s).

Postconditions The central rule-database is up to date with the latest rules
and revisions.

Triggers Manual rule update, Automatic rule update, Write rule

Basic Flow:

1. Update is triggered.

2. Rule Downloading Module compares hash values from external sources with last
update.

3. Updated rule files are downloaded from sources. The files are validated and
passed to the Pre-Storage Processing Module.

4. The new files are parsed for rule SID and revision number.

5. A list of rule SID and revision numbers are gathered from the database and these
are compared to identify which rules are new or modified.

6. New or changed rules are then parsed into objects and these objects are passed
to the Database/Core Module.

7. The Database/Core Module stores the new or changed rule objects into the
database. The user is notified that the update is complete and given a list of
changes.

Extensions:

19

Snowman

1. (a) Update is triggered by user.

(b) Update is triggered by daemon.

2. (a) The hash-values from all sources are identical with previously stored values.
Database is up to date and the update process terminates. User is notified
that database is up to date.

(b) The hash value from one or more sources is newer than previously stored
values. Database must be updated, and the user is notified that the database
is not up to date and an update process has begun.

Error handling:

1. The source and database checksum is different but the source rules are older than
what is stored in the database: The program can still continue, because if the SIDs
already exist they will not be added again and if the revisions are older the rules will
also not be updated.

2. A ruleset has changed its name or one or more rules are moved to a different
ruleset: Based on a configuration file, the affected rules will either be a) automati-
cally moved to the new ruleset or b) stay put in their original ruleset. The user will
be notified and can choose to reverse or distribute the changes in either case.

Use case Distribute rules

Primary actor Server

Purpose Distribute rules from the central database to the sensors.

Description After a command to synchronise is sent either by the user
or the daemon, the server calculates and organizes the cen-
tral database data and synchronises this information with
the affected sensors.

Preconditions One or more rulesets or rules must be present in the central
database. One or more sensors must be registered.

Postconditions The rules on the sensor(s) are synchronized to reflect those
in the central database that are enabled/disabled for those
sensors.

20

Snowman

Triggers Manual rule distribution, Automatic rule distribution

Basic flow

1. Synchronise signal is sent.

2. The system calculates and organizes the data for each sensor affected by the
synchronisation.

3. The system initializes a synchronisation protocol with the affected sensor or sen-
sors, sending a list of what the sensor should have.

4. The sensor calculates diff between should have and has.

5. Compare diff.

6. Send update.

7. The sensor includes the new changes into its database and files and tells the
central system that it is now up to date.

8. The system carries out maintenance to reflect the synchronisation.

9. The user is notified that all sensors affected are now up to date.

Extensions

1. (a) User sends a command to synchronise one, more or all sensors

(b) The system reaches an interval for synchronising all sensors.

enumi4

2. (a) The sensor content is different from what it should have, asks central system
to send what it needs.

(b) The sensor content is not different from what it should have, no further
action is required. This status is sent to the central system.

3. (a) The system retrieves and sends what the sensor asks for.

(b) The system terminates the synchronisation protocol with the sensor in ques-
tion.

Error handling

1. The change may never be synced to the sensor due to errors: There must be an
error protocol that is followed in this scenario.

3.1.4 Use Case Diagram

The use case diagram is presented in Figure 4.

21

Snowman

Figure 4: Use case diagram

22

Snowman

3.1.5 Domain Model

After outlining all the concepts above, we created the conceptual class diagram in Figure
5, which shows the classes needed in the system. Even though a Snort rule is quite simple
by itself, there is a lot of meta-information surrounding it, such as rule revisions and rule
classifications. Therefore, the system needed at least 16 different classes in order to fullfil
the basics of the required functionality.

3.2 Supplemental Requirements

In addition to the features discovered in the use cases, we added some requirements we
felt were needed, that can be broken down into a RUP FURPS+ fashion [24].

3.2.1 Functionality

• The system should be able to restart a Snort sensor in the event that one crashes.

• The system should be able to detect if a Snort sensor is not responsive over the
network.

• The system must be portable to the majority of the popular Linux distributions.
Porting to other operating systems, such as Windows, should be possible through
changing the operating system-specific code.

3.2.2 Usability

• The graphical user interface must be simple and clean, but still contain all the
features any user might require to interact with the back-end system.

• The system interfaces, herein API and function calls, must be self-explanatory.

3.2.3 Reliability

• The system must not cause a Snort sensor to crash.

• The system must be responsive to API-calls at all times. In the event the system
capacity limit is reached, new requests should be queued.

3.2.4 Performance

• The system should handle administration of at least 200 sensors.

• The database should be able to maintain at least 100 000 individual rules.

• Any operation in the system in normal operations (i.e. after the first big rule up-
date) should take no longer than 1 second on average.

• The relationship between time and workload should be sublinear, meaning that if
a single operation takes 1ms, ten operations should take 10ms or less.

3.2.5 Security

• The link between the system server and the remote sensor must be secured in such
a way that a man in the middle cannot read the transmission in plaintext.

• The remote sensor and the system server must verify that they are trusted parties
in the system, through authentication.

23

Snowman

Figure 5: Conceptual class diagram

24

Snowman

• Certain important API-calls must be protected against misuse from a non-trusted
party.

• All processes and files related to the system must exhibit the principle of least
privilege [25].

3.2.6 Interoperability

The system must be able to work with Snort in such a way that it can import new files to
the Snort configuration files structure and must be able to reset Snort in such a way that
the new configurations are loaded.

3.2.7 Licensing

The system will be released to the public as Open Source under the GNU General Public
License v3 license[26].

3.3 Constraints

3.3.1 Platform

As mentioned in the project plan (Appendix A), Snort is primarily used in conjunction
with the Linux/UNIX operating systems. For that reason, the project was restricted to
only develop for that platform. More specifically, we limited ourselves to the Ubuntu and
Debian operating systems, which are the primary platforms Avdeling BKI uses as well.
We have, however, strived to make the software portable to most Linux distributions. A
port to Windows should also be possible through changing some of the operating system-
specific code.

3.3.2 Data Security

While the system itself will not handle any data that may contain personal data, it may
contain rules and rulesets that are considered classified or confidential. The system has
therefore been built with this in mind and ensures confidentiality within the boundaries
of the system. The system does not guarantee the confidentiality of the data outside these
boundaries. The boundaries are defined as the program and its processes and threads,
and the network link established between the system and remote sensors. The system
assumes that the users have already established database security.

3.3.3 Graphical User Interface

The project has had its main focus on the system functionality and efficiency, and devel-
oping a GUI has been considered a secondary task and was prioritized as such. None the
less, a GUI for demonstrational purposes has been included.

3.4 Security Assessment

During the inital phase of the project, we conducted a small security assessment in order
to be aware of and possibly fix any security issues the software might have. We created a
simple risk analysis table of the potential weaknesses we could find, listed in Table 11.

25

Snowman

Threat Component Conse-
quence

Prob-
ability

Risk Strategy

Unauthorized users
change data through the
API/web-interface

API/web 8 5 6,5 Authentication/authorization.
Django support for users
and authentication.

An unauthorized user
gains direct access to the
database and is able to
alter the data.

Central
database

10 1 5,5 Assume database security
is in place.

Continually sending re-
quests to the server, filling
it up with requests to the
point of causing a denial
of service.

RPC Server 7 4 5,5 Authenticate requester,
Rate-limiting on requests,
logging.

An attacker inherits es-
calated privileges through
exploiting the software if
it is run as root or other
high privilege user.

All processes 8 3 5,5 Follow least privilege
principle. Python also
protects against buffer
overflow

The SID/Rev of a mali-
cious rule is newer than
an existing rule, with
the purpose of overwrit-
ing the existing rule.

Update mod-
ule

7 2 4,5 Add possibility for the
user to see changes before
they are commited.

In a scenario where the
database is not on the
localhost, a man-in-the-
middle attack is possible.

Central
database

6 3 4,5 Assume database security
is in place, encrypt trans-
missions.

Continually sending re-
quests to the sensor client
to update itself, filling it
up with requests to the
point of causing a denial
of service.

RPC Client 5 4 4,5 Limit the allowed update
frequency, logging.

Some unauthorized ma-
chine poses as a legitimate
sensor and gains access to
rules through update re-
quests.

RPC Server 5 2 3,5 Authenticate the sensors.

During an update, one or
more rules contains errors
that causes Snort running
on a sensor to crash or
shut down.

Update mod-
ule

8 4 6 Verify the rules.

A rule file is specially
crafted to contain an SQL
injection.

Update mod-
ule

10 2 6 Use prepared statements
and never let input di-
rectly touch the database.

SQL injections, XSS og
CSRF (cross site request
forgery)

API/Web 5 5 5 Django has support for
protection against these
attacks. Validate input.

Table 11: Security Assessment
26

Snowman

4 CONCEPTS OF SNORT

This chapter gives a brief introduction to the basic concepts of Snort.

4.1 Rules

A Snort rule is made up of a header section followed by rule options. The header specifies
which network, protocols and ports the rule is valid for, and which action to take if the
rule matches traffic, while rule options provide metadata for the rule, such as its ID and
classification [19]. The rule options are specified as plain text in the rule string enclosed
in parentheses (Listing 4.1). Note that a badly formatted rule string given to Snort will
cause a crash.

a l e r t udp $EXTERNAL_NET any −> $HOME_NET 69 \
(msg : " PROTOCOL−TFTP Get " ; c l a s s t y p e : bad−unknown ; \
s id :1444; rev : 9 ;)

Listing 4.1: Example rule string.

There are several types of rule options, but only the general rule options are relevant
for this project. The general rule options provide information about the rule, such as
signature ID, revision number and classtype. Other types of options, such as payload
options, which are actively used in detection, are not relevant for the management of
rules and are thus not considered in this project. Some of the general options can only
be specified within the rule string, referred to as inline specification, while others can be
specified in separate files, referred to as external specification.

A rule can either be enabled or disabled in the detection system, meaning that the rule
will only have an effect on detection when it is enabled. Since this project is dealing with
multiple sensors connected to one central database, this functionality has been expanded
so that users can keep a rule enabled on one sensor and disabled on another. In addition,
the user can also set an enabled/disabled flag on rulesets.

4.2 Rulesets

The term ruleset, sometimes rule set, is not formally defined in the Snort Users Man-
ual, however it is used a few times to refer to the complete collection of official Snort
rules1 and to the complete set of rules applied on a Snort system. In practice, rules are
categorized by intrusion type (e.g. malware, trojan and worm) in order to keep the rules
structured. These groups of rules are often named by their intrusion type, and are also
referred to as rulesets. Snowman and this report use only the latter definition of rulesets.
The official Snort rules are split into files whose names denote the ruleset.

4.3 Generators

Generator is a term used for any subsystem of Snort which generates alerts from rules
[19]. Each generator is identified by a unique generator ID. The rules subsystem, which
has generator id 1, is the only relevant generator for this project.

1Also referred to as the Sourcefire VRT Certified Rules, see http://www.snort.org/snort-rules

27

Snowman

4.4 References

Snort contains a plugin which allows rules to contain references to external attack identi-
fication systems, which provide additional information about the alerts [19]. A reference
is basically a URL string pointing to a webpage containing this information.

4.5 Event and Detection Filters

Filtering can be applied to rules in order to control the amount and frequency of alerts.
Two types of filters can be applied to a rule: event filters and detection filters. A detection
filter can only appear inline, whereas an event filter can only be specified externally2. All
filters operate with a count and seconds variable, representing the number of events in a
time-interval and the duration of the time-interval, respectively. Event filters are further
divided into three types (table 12). Detection filters are filters limiting the number of
times a rule generates an event, while event filters limit how many events are producing
alarms.

4.6 Rule Suppression

Some rules might match traffic that is unwanted from most hosts, while some hosts
would be allowed to send traffic matching the same rules. In this case, Snort gives the
possibility to suppress alarms when the source or destination of the traffic matches the
configured parameters.

Filter type Alerts

Event filter

Limit One for every event when number of events ≤ C in interval S

Threshold One for every C events in interval S

Both One per interval S when number of events = C

Detection filter One for every event when count > C in interval S

Note: C and S represent the count and seconds values in the filter.

Table 12: Effects of different filter types.

2An event filter can currently be written inline (called a rule threshold), but according to the Snort Users
Manual this feature is deprecated and will not be supported in future releases.

28

Snowman

5 DESIGN

This chapter presents the design specification of Snowman.

5.1 General Design

This section is dedicated to the discussion of the general design of Snowman.

5.1.1 Centralized or Distributed Setup?

We decided early on to design Snowman to be a distributed system. The main considera-
tions behind this choice were the bandwidth usage needed by the rule updates, and the
load on the central server. Figure 6 shows the difference between a centralized and a dis-
tributed setup. The red dotted lines represent the communication in a centralized setup,
while the blue lines between the server and the clients represent the communication in
a distributed setup. The latter is the principle used in Snowman.

Bandwidth Requirements

The Snort sensors managed by Snowman might have varying network infrastructure con-
necting them with the central server. In a worst case scenario, the sensor might be located
at a military base in the field, on the other side of the planet, only connected to the cen-
tral server via a satellite connection with limited capabilities for transmitting data. As the
rulesets applied to sensors typically consist of tens of thousands of rules and the changes
between two versions of the sets typically only affect about a thousand of them, it seems
reasonable to only copy the changes when an update should be done. This is achieved
by using a distributed system.

Central Server Load

When a full update of all sensors is requested, new rulesets would have to be created
and distributed to the sensors. In a centralized environment, the server would need to
generate all the new rulesets and send them to the sensor. The server would not know
beforehand which rules currently exist on the sensor, so a full list of rules would need
to be sent, even if there were no changes to any of the rules. Also, if the sensor for
some reason is unavailable, or connected through an unreliable network connection, the
central server would waste a lot of extra effort to send the rules to the sensor, even if it
is not neccesary as no rules have changed.

In a distributed environment, we would be able to put some logic (a client) into the
machines hosting the sensors. This way, when an update is occurs, the client can get a list
of rules from the central server, and on its own accord be responsible for collecting the
new revision of the rules that have changed or are missing. This way, the central server
would only need to transmit the rules from its database if the rule is actually needed by
the sensor.

29

Snowman

Figure 6: General architecture

30

Snowman

5.2 Server Design

The server is the central component of Snowman and generally consists of:

• Central rule storage

• Web interface for user interaction

• Update module to get updates from rule sources

• RPC interface to communicate with the clients

The central storage of rules would be in a normal relational database. As we have de-
cided to use Django (described in Chapter 6) as our framework, we have a great flexibility
in selecting the database we actually use. The current version of Django (1.6) supports
MySQL, PostgreSQL, SQLite and Oracle. For the RPC interface, we have decided to use
XML-RPC. This is a very simple protocol using XML over HTTP to transfer requests and
data to and from the server. To be able to keep up with the aspect of privacy and security,
we encrypt the raw HTTP stream using SSL.

5.2.1 Architecture

We have designed the server by the layered approach of MVC (Figure 7). The web inter-
face uses pure Django-logic. The HTML visible in the web browser is generated by the
Django template-engine, which recieves its data from the views created by using ordinary
Python code. The XML-RPC server uses a handler which administers the connections to
and from the sensors, and exposes the relevant methods to allow the sensors to perform
synchronisation. The update module is used for unpacking and preparing the update
files for parsing. It then handles the files to the parser. This parser is then tasked with
translating the raw rule files into more managable data structures for the Updater, which
in turn saves them to the database. Finally, common for all the interfaces are the Django
Models. We use the database abstraction layer provided by Django to map the rows of a
relational database into Django objects. This is the part that lets us write code, which is
compatible with several different database engines.

Figure 7: Server Architecture

31

Snowman

5.2.2 User Interface

The main user interface for Snowman is the web interface. It is based on Django’s template
system, which generates the HTML that is displayed in the web browser on the user’s
computer.

URLs

The first step of serving a page to a user is an HTTP-request for a specific page. The
pages are uniquely identified by URLs, such as ’<server address>/web/rules/’. The URLs
are structured in a logical manner, where everything in the web interface is found un-
der /web/, everything regarding the administration of rules is found under /web/rules/
and so on. The URLs might contain dynamic data, such as page numbers (e.g. /we-
b/rules/rules/page/3/ which will give you the third page of the rule-list), so that dy-
namic content can be loaded when needed. Django uses the URLs to identify which view
the requested url corresponds to. When a view is identified the request is passed to the
corresponding view.

Views

The views constitute the part of the user interface that collect the required data from the
models-layer and then generate a response to the web client. The response can contain
a full web page, or just a small subset of one. The typical steps a view makes to generate
a response would be:

1. Collect the required data from the database(s) using the Django models.

2. Deliver the collected data, and a template, to the template-engine to generate the
HTML representing the webpage the user requests.

3. Send the created web page as a response to the user.

The view system decides what to show and then lets the template system decide how to
show it. The view system by itself does not create any HTML or similar; It solely creates
data structures. If the request was for raw data and not a webpage, step 2 in the list
above might be skipped, and instead return the data as some form of recognizable data
structure in step 3. If errors occur in the view system, appropriate exceptions can be
raised that tell Django to return an error code or an error page to the user instead of
what the user requested.

Templates

When the view system has prepared all the data, the template system takes over. The
task of the templates is to take the supplied data and inject it into pre-made skeletons of
HTML. This way, all the design/display parts of the web interface are contained into one
single and separate place, and that gives us a very clear line between data and design.

5.2.3 Database

As the database of the server is quite complex, this section contains one figure per mod-
ule.

Core

The most central part of our system is the representation of a Rule. A single Rule might
have several Revisions, as we might want to keep some history when they get updated.
Each Revision has its own set of References attached. A single Rule also has a lot of

32

Snowman

other properties which it might share with other Rules. A Generator, a Classification
and a Ruleset are examples of such. Finally, the Rules are assigned to a Sensor by
attaching Rulesets to the Sensor. The core database architecture used for storing the
rules is described in Figure 8.

Tuning

In addition to storing the raw rules, we would like to be able to store tuning parameters
on the rules. As sensors might have different tuning parameters, we cannot attach the
tuning directly to the rules. Separate tables (as described in Figure 9) are thus needed to
model the tuning parameters. Both types of filters and the suppressions are connected to
a Rule and a Sensor. This way, we let the user specify filters for the individual sensors.
If a sensor does not have a filter applied, but any parent sensor of that sensor has one,
the closest parent’s filter will be applied.

Update

When rules are inserted into the database, we would like to have some traceability to be
able to determine where and when a rule has entered our system. To be able to do this,
we have the update object (Figure 10). The structure of the update module allows us to
store the update sources, and adds a new Update object to each update executed from
a given source. These Update objects can in turn have relations to Rules, RuleSets and
RuleRevisions, so that we can track changes for each update.

5.3 Client

As the client is just going to take care of getting rules for a single sensor from the central
server and should just apply these to one sensor, the architecture of the client can be
much simpler than that of the server.

5.3.1 Architecture

The MVC architecture for the client can be seen in Figure 11. The update handler of the
client has both an XML-RPC Client and an XML-RPC Server. The XML-RPC Client is used
to connect to the central server to do a rule synchronisation. The XML-RPC Server is here
so that the central server can connect to the client and check to see if the client is active
or to order the client to perform rule syncronisation.

As the client should be as lightweight as possible and the only aspect we need from
any framework is a simple database connection and abstraction layer, we have decided
to not use Django for the client. Instead we use a database ORM [27] for Python called
SQLAlchemy [28], which is much more lightweight than Django for this purpose. The
client also contains a file creator which takes the rules objects in the database and gen-
erates the files Snort needs in the format Snort needs them in.

5.3.2 Database

The database on the client can be significantly simpler than the one on the server, as we
only care about the rules which should be present on a given sensor. The full database
schema is available in Figure 12. The central part of the data structure is the rule table.
This table contains all the parameters directly related to the rule. In addition, we have
separate tables for all the meta parameters surrounding the rule, such as rulesets or
filters.

33

Snowman

Figure 8: Core server-database

34

Snowman

Figure 9: Tuning server-database

35

Snowman

Figure 10: Update server-database

36

Snowman

Figure 11: Client Architecture

37

Snowman

Figure 12: Client Database

38

Snowman

6 IMPLEMENTATION

This chapter focuses on the technical implementation of Snowman. The first sections
cover programming languages, development tools and frameworks used in this project,
followed by a description of the most important modules of the server, including the GUI.
Application logging and deployment of the software is covered at the end of the chapter.
Some sections within this chapter require general knowledge of the key concepts of Snort
described in Chapter 4.

6.1 Programming Languages

Snowman is primarily written in Python 2.7 [29]. The project group landed on this deci-
sion after discussing the aptness of C, C++, Java and Python to this project, with regard
to development and processing efficiency. Due to the limited time-frame of this project, it
was vital to get right into the development without having to learn a new programming
language or unfamiliar programming concepts. It was also important to find a language
which produces high performing programs, since this project aims to be more effective
than similar software. The C and C++ languages were considered because these lan-
guages can produce programs with very high performance, however, these were aban-
doned as we concluded that they would induce more work because of their complexity,
and thereby be too time-consuming.

The final decision fell on Python mainly because it lets the programmer develop com-
plex programs in a short amount of time. Python has automatic memory management
and offers a wide range of built-in tools, which gives the developers time to focus more
on the code and functionality rather than overhead tasks like managing memory and in-
cluding external libraries. A concern was raised that Python, being a high-level language,
might not be efficient enough for this project. This turned out to not be a problem, as
Python can run modules written in C. A major reason for using Python was also Django
(see Section 6.3), which is a Python framework used in this project that greatly simplifies
database transactions and generation of web pages.

The most current version of Python available at the start of this project was version
3.3. The project group selected version 2.7, as a disparity in compatibility [30] between
2.X and 3.X versions of Python cause some problems. According to a recent survey [31]
Python 2.X still holds a dominant position among developers, five years after the release
of Python 3.0. According to [30], version 3.3 has slightly worse library support. The con-
tinuing popularity of 2.X versions implies that many packages are still being developed
and maintained for these versions, and these versions only. One example of this is the
aforementioned Django framework which is heavily used by Snowman. Development us-
ing Python 3.X with Django is possible with the use of a compatibility layer [32], but
the project group considered this as a bit cumbersome. Taking into account that the ma-
jority of the group was already comfortable with Python 2.X, this came out as the most
time-saving choice. The biggest drawback of this decision is that it does not make Snow-
man future-proof, and it will probably have to be ported to Python 3.X in a long-term
perspective.

39

Snowman

For Web-programming, this project has used HTML and CSS for the design and JavaScript
for client-side scripting.

6.1.1 Standards and Guidelines

Python imposes a strict indentation regime, as this is actively used in the syntax to delimit
blocks of code. The project group has followed standard Python guidelines for best prac-
tice programming, with principles such as DRY1 and EAFP2 (the latter actually caused
some unforeseen performance issues described in Section 6.5.6).

Documentation has been a high priority. The project group has aimed to make the
code self-documenting by utilizing sensible names on variables, functions and classes to
enhance the reader’s understanding. As a general rule, variable names are written in
camelcase3. With a high focus on development, the project group has taken advantage of
Python Docstrings [33] (documentation strings) which are incorporated into the code,
and can therefore be written at the time of coding without taking the focus away from
the programming. The Docstrings describe how the code is used, and form the basis of
Snowman’s documentation. Listing 6.1 demonstrates the EAFP-principle, also note the
use of a Docstring at the beginning of the method.

The Python manual encourages the use of exceptions, which is a useful way of send-
ing messages up the execution stack when an error or irregular behaviour is detected.
Customized exeptions are raised in Snowman for example when parsed data has a wrong
format (BadFormatError), when critical objects are missing from the database (Missin-
gObjectError) or when an unsupported rule is encountered (AbnormalRuleError).

Writing object-oriented code has not been a goal in this project, but concepts such as
encapsulation, polymorphism and inheritance have been applied when needed.

1 def getSecondMessage(messages):
2 """Returns the second message from messages or
3 empty string if second message does not exist."""
4
5 # Below code demonstrates the principle of
6 # EAFP (1) versus LBYL (2); The execution
7 # of block 1 is faster than block 2 when
8 # message[1] exists. Block 1 is therefore
9 # preferred whenever the try−block is

10 # expected to succeed without an exception.
11
12 # Block 1, EAFP:
13 try:
14 message = messages[1]
15 except IndexError:
16 message = ’’
17
18 # Block 2, LBYL (look before you leap):
19 if len(messages) >= 2:
20 message = messages[1]
21 else:
22 message = ’’

1“Don’t repeat yourself”. The principle that code should not be duplicated in a project.
2“Easier to ask for forgiveness than permission”.
3A style convention where multiple words are written as one, with the first letter of each word capitalized,

e.g. getAllRules.

40

Snowman

23
24 return message

Listing 6.1: The EAFP-principle.

6.2 Development Environments

This section describes the various development environments and tools used in this
project.

6.2.1 Environments

Snowman is developed on and for the Linux platform. Eclipse [34] was selected as the
default development environment, as this is freely available and contains the major fea-
tures required for effective development such as project management, a Python editor
and a debugger (available with the PyDev add-on). PyUnit has also been used for unit
testing. In addition, the TeXlipse and PDF4Eclipse add-ons for Eclipse have been used to
write and generate this report with Latex [35]. Since Python is an interpreted language,
the Python interpreter has been used throughout the project to test and debug code seg-
ments. The user interface has been mostly programmed for and tested in the Chrome
web browser as it has a very good built in debugging environment, but limited testing
has also been conducted on Firefox and Internet Explorer.

6.2.2 Version Control

This project has used Subversion (SVN) provided by the IT department at Gjøvik Uni-
versity College to keep version control on all project files. This includes all source files
and project documents such as design documents, meeting minutes and the report. The
SVN repository hosted by the IT department has also been used to ensure that data is not
lost.

6.3 Frameworks

To save the project time and effort programming generic tasks, we decided to utilize
several frameworks to accomplish our goals, as outined in this section.

6.3.1 Django

To facilitate database transactions and the creation of the Web interface, this project uses
the Django [17] framework. Django is an extensive web-framework, designed to make the
process of building web-based applications and their backends much more efficient and
simple. It takes care of the database ORM, which controls all the database-transactions,
and offers us a simple and clean abstraction layer. Django is also providing a template-
system for the web front end, which make a clear dividing line between the data and
design of the webpage.

6.3.2 SQLAlchemy

A database ORM would also be needed on the Snowman-client, but the rest of django is
not needed there. Because of that, SQLAlchemy is used on the client.

The SQLAlchemy framework creates an abstraction layer on top of the database just
like Django. It also lets us create the code without worry of database specific query code,
so that the user is free to pick and choose which database they want the system to operate
with.

41

Snowman

6.3.3 jQuery

When it comes to using JavaScript for client-side scripting, jQuery [36] is a good solution,
as it provides a framework for common JavaScript operations on the DOM4 and contains
abstractions for a lot of browser-spesific code, which gives programmers a nice and clean
interface. It also makes AJAX-calls5 a lot easier, requiring much less code compared to
regular JavaScript (example in Listing 6.2).

1 // AJAX call in jQuery:
2 \$.get(’/web/rules/’);
3
4 // AJAX call in JavaScript:
5 function loadXMLDoc() {
6 var xmlhttp;
7
8 if (window.XMLHttpRequest) {
9 // code for IE7+, Firefox, Chrome, Opera, Safari

10 xmlhttp = new XMLHttpRequest();
11 } else {
12 // code for IE6, IE5
13 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
14 }
15
16 xmlhttp.onreadystatechange = function() {
17 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
18 document.getElementById("myDiv").innerHTML = xmlhttp

.responseText;
19 }
20 }
21
22 xmlhttp.open("GET", "/web/rules/", true);
23 xmlhttp.send();
24 }

Listing 6.2: AJAX call in jQuery and JavaScript.

6.3.4 Bootstrap

To facilitate the design and appearance of the web interface, this project uses Bootstrap
[37], which is a front-end framework derived from Twitter. It provides a lot of ready
made CSS and design elements that make a web page responsive and typographically
readable. Consider the example job of creating a <table> element and spending hours
setting up and tweaking the CSS for the said table element. With Bootstrap, we can
just add <table class=‘table table−bordered‘> and get the table formatted nicely with
colors and fonts that are typographically matching.

6.4 Core Module

This section focuses on the classes and methods in the core module. This module con-
tains the most vital classes of the Snowman server including Rule and RuleRevision
which hold the data of each rule in the system. Simple classes in this module such as
Generator, RuleReference and RuleClass, which are connected to the Rule class are

4The webpage content or elements.
5AJAX is web development technique that allows you to send asynchronous requests to a web server.

42

Snowman

only briefly explained in this section. For an overview of all objects in this module, refer
to the class diagram in Section 5.2.3.

6.4.1 Rules and Rule Revisions

Rules in Snowman are split into two parts; the rule and the rule revision. As threats
change, or errors in the rules are discovered, a rule may become obsolete and a new
revision of the rule is released. The rule string, message and detection filter might change
from one revision to the other, and are stored in the rule revision object along with the
revision number. A revision is always connected to a rule object, which contains data
that is constant for all its revisions, such as signature ID and rule set. The reason behind
keeping rules and revisions in two separate objects is to avoid writing the same constant
rule data for all revisions. Users of Snowman have the possibility to control how many
revisions to store per rule, and whether incoming revisions should be active or inactive
by default. This feature allows users to control automatically downloaded rules before
they are put into the detection system. Users can also manually activate or deactivate
rule revisions, and Snowman will distribute only the newest active revision of a rule.

6.4.2 Rulesets

As stated in Chapter 4, the categorization of rules in rulesets is a de facto way of or-
ganizing rules. The community rules6 contain rules with a “ruleset” option within the
“metadata” option in the rule string, which specifies the ruleset. In other releases, rules
are organized into files where the file name denotes their ruleset. These two ways of
specifying the ruleset are both supported by Snowman.

6.4.3 Sensors

Every sensor in the system is represented in the database with its name, IP-address and
status. Sensors also contain a list of rulesets applied to them, and active rules within these
rulesets will be distributed to the sensors given that the rulesets are also active. A sensor
can be configured to be autonomous, meaning it will not communicate with the server.
Autonomous sensors can be used in environments where contact between the server and
sensor is unwanted or not possible. Rules can be manually exported for these sensors.A
sensor can also be the parent of other sensors, allowing users to create groups of sensors
with the same configuration. The database also contains an “All Sensors” object, which is
the parent of all sensors.

The sensors that are not autonomous are checked if they are active every minute, and
the last registered status is stored in the database. This is then used to show the status of
the sensor to the user. Each sensor also has a user assigned to it, and this user is used to
let the sensors authenticate with the Snowman server.

6.4.4 Comments

The core module contains a comment object, which can store comments from users who
wish to document their operations, e.g. the user can attach a comment when adding a
filter to a rule to describe why the filter was added and which effects it will have on
the system. Snowman can also generate comments for important events, such as turning
rules and rulesets on or off, editing and deleting sensors, etc.

6“The Community Ruleset is a GPLv2 VRT certified ruleset that is distributed free of charge without any VRT
License restrictions” - http://www.snort.org/snort-rules/

43

Snowman

6.5 Update Module

The purpose of the update module is to fetch and read rules and configuration files
from external sources, and populate the database with this information. Effectiveness in
updates is a key issue, and a number of deliberate optimizations for performing updates,
with the goal of saving time by omitting unnecessary operations, are explained in the
subsequent sections. To avoid confusion with the module, the term update-package is
specifically used to refer to update data coming from external sources.

6.5.1 Sources

A source is a provider of update-packages. Snowman lets users define sources, which
are either external (i.e. online) or local, meaning that the update-package will either
be downloaded from the web or read from the local system. All information about
each source is contained in the Source class. The sources determine where the update-
packages are located, and an update-package must always come from a specific source.

External sources contain a URL pointing to the location of the update-package, and
alternatively also a URL to the MD5-hash of the package. External sources can be config-
ured to pull updates at regular intervals, contrary to local sources, which must always be
updated manually.

A source can be configured to update at regular intervals, or the user can run an
update manually on a source. To make the update process more effective, update makes
use of an MD5 URL which points to a file containing the MD5 hash of the update-package.
This hash is stored for every source (if available) and is compared to any pre-existing
hash to verify if the system is up to date or not. update will only download and process
an update-package when it encounters a new hash.

6.5.2 Files

An update-package may contain various files depending on the source it comes from. This
section describes the files supported by Snowman. Note that file names and extensions
used in this report follows the de facto names used in the official Snort rules, but are
subject to change. The names and extensions can therefore be manually specified by
Snowman users in a configuration file (Section 6.10).

Rule files

A rule file is any file carrying the .rules file extension. These files contain raw rule strings
to be processed by Snort. A rule string is basically a semicolon-separated list of rule
options. Specific rule options used in Snowman are listed in Table 13.

Classification, Generator and Reference Configuration Files

The classification files are identified by their name classification.config and contain rule
classification strings that are used by Snort to categorize event data. A classification
file will normally appear once per update-package, and rarely changes between updates
[38]. Generator (gen-msg.map) and reference configuration (reference.config) files con-
tain strings that specify generator messages and rule reference types, respectively.

Signature Message Files

Alert messages for rules are normally written inline, but can also be specified in a file
called sid-msg.map, which may also contain rule references.

44

Snowman

Data field Description Presence

sid Unique identifier for a rule. required

rev Rule revision number. required

msg Notification text when rule triggers. required

classtype Connects the rule with a specific class of attacks. required

gid Generator ID to identify which subsystem generates
the event where this rule fires.

optional

ruleset The ruleset this rule belongs to. optional

priority Override default severity set by classtype. optional

reference Reference to external resource with information
about this attack.

optional

Note: The presence column indicates whether a field is required or not by the
parser in this system. Information is gathered from the Snort Users Manual
[19].

Table 13: Rule options used in this system.

Threshold Files

These files contain filter specifications for specific rules.

6.5.3 Running an Update

An update is either triggered by the user, or automatically at regular intervals, for a given
source. Regardless of how the update process is invoked, it follows the same procedure.
As mentioned above, sources will often provide an MD5-hash of the update. When this
is the case, the hash is stored in the database. Every new update will compare its own
hash to hashes stored in the database, and if an identical hash is found this means that
the update has been run before, and the update process is terminated. When the hash
does not pre-exist in the database, or for sources which does not use hashing, the update-
package is downloaded to a temporary directory.

Snowman accepts update-packages in the form of tar-archives7 containing rule and
configuration files, and also supports plain text files containing rules or known configu-
ration entities8. Tar-archives are extracted, and folders are traversed recursively to locate
files for parsing. In most cases the update-package will contain only minor changes in
relation to its predecessor, e.g. only one file is different in the latest package, and parsing
all files that has not changed would therefore be a waste. To address this issue and save
processing time, the name, path and MD5-hash of every file is stored in the database per
source. Every time the update module parses a file, it first creates a hash of the file and
compares this with the respective file’s hash in the database. If the file is present in the
database and the two hashes are identical, the file is considered not new and is skipped.
The following sections will elaborate on the parsing of files based on file type.

The update module contains one parsing method for each supported file type. Since
all information in an update is plain text, these methods use regular expressions to fetch

7Files that contain compressed files.
8Generators, filters, references etc.

45

Snowman

the content. For example, a generator configuration contains a comma-separeted list with
a name, description and priority: config classification: unknown,Unknown Traffic,3, which
are extracted from the string by using a regular expression and put into a RuleClass
object which is later stored in the database. Update also contains a method for parsing
files containing unspecified entities, where each line is first parsed to decide which entity
the data belongs to before it is sent to the correct parsing function for the respective
entity.

6.5.4 Rule Parsing

A rule file is read line by line, and each rulestring found is sent to the rule parsing
method. The rule string is then matched to a predefined pattern that will verify that the
rule is valid and extract the data fields (Table 13).

Rulesets

A rule always belongs to a ruleset, which can be specified in the raw rule string. If the
parser does not find this attribute in the rule string, the filename is considered to be the
ruleset name.

Filters

As mentioned in Chapter 4, rule filters may appear in rule strings (detection filters) or
in external files (event filters). In addition to these filters, Snowman supports a filter type
called threshold. A rule threshold defines a limit and/or threshold for the triggering of a
specific rule, just like an event filter, but can be specified both inline or externally. Rule
thresholds are deprecated, and support for this functionality will cease in a future version
of Snort [19]. To maintain compatibility with current rules, Snowman supports reading
inline and standalone threshold definitions.

All inline filters are removed from the rule strings and transformed into event filter
and detection filter objects. This is done to prevent Snort from adding filters to rules
when parsing the rule strings, as duplicate filters for the rules will cause Snort to crash.
Any filters extracted from rule strings are written as plain text (i.e. as they appear in the
original rule string) in the filters field of the RuleRevision object. This is to ensure that
all the original rule options are stored, meaning that no data is lost or discarded.

Suppression

Suppressions can be applied to any rules that might be giving off false positives or gener-
ating a lot of unneccessary alerts. There might also be cases where the traffic in question
is legal on certain networks or to/from certain IP-addresses. Only one suppression can be
applied to a rule on a sensor, but multiple IP-addresses or networks can be listed in the
suppression in a comma separated syntax, like [1.2.3.4,4.3.2.1/24]. Rule suppression is
always specified in external files.

Snowman features IP-address validation checking to make sure no invalid addresses
are entered, by running a regex-match on the address before it is committed. The match
will check for a valid IPv4 syntax in the range 0.0.0.0/0 - 255.255.255.255/32. There is
currently no support for IPv6, but this can easily be added in future work.

6.5.5 Classification, Generator and Reference Type Parsing

These files contain a sequence of their respective entities (Section 6.5.2), and are all
parsed in the same manner. If a given entity is not already present in the database, it is

46

Snowman

created and stored. If the database already contains the entity, the existing entry in the
database is overwritten.

6.5.6 Saving

Performance testing of update processing (see Chapter 9) showed that Snowman version
0.4 was very slow compared to other software. The reason for this was examined, and
found to be a large amount of database calls spread out in the code. Snowman 0.4 saved
every rule individually after a change was found and the objects were updated. This
principle is demonstrated in Listing 6.3, where the method tries to fetch, alter and save a
classification object, or create a new one if not found. This turned out to be a bottleneck,
as updates could take hours on low-end hardware. To solve this, we split the methods of
Update into two new classes: Parser and Updater, where the first would only parse the
incoming data and send this to the latter which gathered all objects and wrote these in
bulk when the parsing was complete. As can be seen in Chapter 9, this had a significant
impact on performance.

1 from core.models import RuleClass
2
3 def updateClassification(type, description , priority):
4 try:
5 # Update existing classification
6 ruleclass = RuleClass.objects.get(classtype=type)
7 ruleclass.description = description
8 ruleclass.priority = priority
9 ruleclass.save()

10 except RuleClass.DoesNotExist:
11 # Add new classification
12 ruleclass = RuleClass.objects.create(classtype=type, ...)

Listing 6.3: Updating a classification in Snowman 0.4

As some of the objects refer to other objects in the database through foreign-keys, it is
vital to store the objects depending on other objects after the objects they depend on are
stored. A safe order to save them has been identified and the objects are saved in the
following order:

1. Generators

2. Classifications

3. Reference-types

4. RuleSets

5. Rules

6. RuleReferences

7. Suppresses

8. Filters

For every item in the list above the procedure is approximately the same. First, the
objects received are attempted to be extracted from the database. The response from the

47

Snowman

Figure 13: Applying a filter to a rule on a sensor

database lets us identify which objects are new and which are changed. The changed
objects can be updated and saved individually before all the new objects are constructed
and everything finally gets inserted into the database in one bulk operation.

6.6 Tuning Module

The tuning module contains classes that hold information on rule filtering and suppes-
sion. Snort supports only one filter of each type per rule. In Snowman, this is translated to
one filter of each type per rule per sensor, which means that a filter is always connected
to both a sensor and a rule. If a filter occurs inline, this filter is regarded as a default
filter and will be active on every sensor where the rule operates. This is accomplished by
applying the filter to the rule and the all sensors sensor, which is the parent of all sensors.
When a rule is enabled on a sensor, Snowman will look for any filter set on the rule on
the respective sensor or on any of its parents. This means that a default filter can be
overridden by setting another filter directly on the sensor. The routine for applying filters
to a rule on a sensor is explained in Figure 13.

6.7 Distribute

To distribute the rules from the central database to the sensors in a format that Snort
can understand, three major events happen. Each of these are explained in the following
three subsections.

6.7.1 Initiating the Distribution

Before a synchronisation can start, the sensors need to know that they should synchro-
nise. There are mainly two events that can cause a synchronisation to occur:

1. Automatic synchronisation based on time

2. Manually invoked trough the web interface on the Snowman-server

In the first case, the client itself knows that it should start to synchronise and there-
fore starts the authentication/synchronisation procedure with the server. In the second
case, the client does not initially know that anything happened. The central server has to

48

Snowman

contact the client via the “snowmanclientd” daemon, telling it to initiate a synchronisa-
tion.

6.7.2 Synchronisation

When a synchronisation is initiated, the client connects to the “snowmand” daemon
on the sentral server and authenticates with it. If the authentication is successful, the
server knows that the sensor is who it claims to be and it also knows which rules the
sensor should have installed. After this, the synchronisation can start. The first action
is to retrieve all the RuleClass objects and update the local cache on the client to
correspond with the retrieved list from the server. Changed objects will be updated,
new objects inserted into the local database and obsolete objects will be deleted. Next,
lists of Generator, RuleReferenceType and RuleSet objects are retrieved and the local
database is updated in a similar manner as with the RuleClass objects.

For the synchronisation of the rules, which is the main bulk of the data needed to be
synchronised, a different approach is used. First, a list of the signature-IDs and revisions
of the rules that should be present on the sensor are retrieved from the server. If rules
in the local cache are not mentioned in this list, or this list indicates that a new version
of this rule is available, the rule is deleted from the local cache. Any tuning parameters
belonging to this rule are also removed. Next, the client starts to request the rules that it
currently is missing from the server. This happens in bulks of 250 rules per request so that
no single request becomes too large and time-consuming. For the rules requested, tuning
parameters like filters and suppressions are provided if the rules have rule tuning applied
on the given sensor. References are also passed along with the rule. All the received rules
are then saved to the local database and the synchronisation is complete. The final step
of generating Snort configuration files is then started.

6.7.3 Generating Snort Configuration

The generation of the Snort configuration files is a rather simple process. First, the old
configuration is cleared out and new files are generated based on the content of the
local database. The naming convention of the files is similar to the one SourceFire uses
with their rulesets and the format of the files is exactly the same. This is to simplify
the visual inspection of the rule files. It does not really matter to Snort which order the
configuration files are in, as long as the content can be recognized as Snort configuration.

In addition to the various files created by Snowman, one file is always guaranteed to be
generated. That is the “snowman-includes.cfg” file, which includes all the files generated.
If Snort includes that file again, all the files generated by Snowman will be included for
Snort. Finally, when the configuration has been generated, the snowman-client sends a
SIGHUP signal to the Snort process, which makes Snort reload its configuration and start
using its new rulesets.

6.8 Graphical User Interface

The Graphical User Interface (GUI) is a template- and AJAX-based web application which
uses Django’s template system to implement the View part of the MVC-principle [39].
Each webpage is a template populated through Python code before it is delivered to the
web server, and ultimately the requesting web browser. Additional data that needs to be
sent to a Web page, e.g. the user interacts with the GUI, is requested through JavaScript
and AJAX-calls and then gets added to the already loaded DOM in the web browser.

49

Snowman

6.8.1 Structure

The pages of the GUI are organised in the structure presented in Figure 14, which is very
similar to the way BHTB organised its front end.

Figure 14: GUI Structure

6.8.2 Design

The GUI is designed with simplicity and minimalism in mind, which is achieved partially
by using Bootstrap that has a lot of default no-nonsense design elements. But we also
opted for using a lot of primary colors and simple lines to make it aesthetically pleasing.

6.8.3 Overview of Central GUI Features
Content Prefetching

One of the main features of our GUI design is our use of prefetching to speed up loading.
Instead of loading absolutely everything into the web browser DOM, like our predecessor
BHTB did, we instead initially only load the first page or page elements. This is designed
to reduce loading times.

We then silently in the background load in any element the user might want to see
next, through AJAX-calls. When the user then interacts with the GUI, the next elements
are shown to the user. The next-next elements are also loaded through AJAX-calls so
that they are ready. This ensures that the user always has immediate response from any
interaction done with the GUI, while keeping loading times to a bare minimum.

Rules Page

This page (Figure 15) serves as the complete list of all rules currently residing in the
central database. Because the central database can contain hundreds of thousands of
rules, this list is paginated. Pages are loaded using AJAX calls to prefetch them as needed.
Each row in the list can be clicked on, which expands an area containing additional
information about the rule in question.

We anticipate that the main use of this page is going to be utilizing the search function
to find a specific rule or rules and then either retrieve information about them or other-
wise manipulate them. Rules can be tuned by checking the checkbox associated with the
rule in question and then pressing the button that represents the desired function in the
box to the left.

50

Snowman

Figure 15: Rules page

51

Snowman

Rulesets Page

The rulesets page (Figure 16) consists of a list of all the rulesets stored in the central
database. Each row contains meta information about the ruleset, such as the number of
rules in the ruleset and so on. A special feature of the ruleset page is that since Snowman
allows the user to structure rulesets in a hierarchical tree, the ruleset list will initially
only show the tree roots. If the ruleset has child rulesets associated with it, those will be
listed once the user click on the ruleset and opens up the additional information area.

The list controls also contain functionality for creating, editing, deleting and reorga-
nizing the rulesets, as well as the ability to turn them on or off either globally or on a
per sensor basis. We also have a very similar page for the sensor list, which also allows
the user to arrange sensors in a hierarchical tree. Because it is almost identical, it is not
detailed in the report.

Updates and Changes

One of the big requests from Avdeling BKI when it came to improvements of features of
BHTB was the need to get more feedback from the update process, as BHTB only told you
about the status after it was done, leaving the user without further information. To solve
this, we added a continuously updating progressbar which tells the user what the system
is currently doing and give a rough estimate of the percentage of completion (Figure 17).
Another requested feature was the ability to see what was changed during an update. We
provide a list for this, which contains each update and its various changes (Figure 18).

The list details any new rulesets, rules or rule revisions an update might have brought
with it, as well as a list of rules that have been moved from one ruleset to another. Once
the user has finished checking out the changes from one update, the user can remove the
update from the list. This makes the list a backlog tool, rather than a perpetually long
list or some sort of time limited list (updates in the last 7 days or similar). This gives the
user a good overview of what has changed since the last time the user checked the list.

Form Validation and Feedback

One challenge that web frontends always face are forms, as they are a means to alter
data in the database and thus become a security challenge. So when utilizing forms, it is
important to protect the database against both attackers and user errors. There are three
basic steps to implement protection against these security issues:

1. Validate the data provided by the form.

2. Make sure the user cannot input something he/she should not.

3. To never let any raw strings or values from the form be directly inserted into a
database query.

The third protection is the most important one as it prevents SQL injection attacks,
which are attacks where SQL code is input into the form, letting the attacker carry
out his/her own queries, leading to total database compromise. This problem is solved
through a technique called prepared statements, which make sure a query does not do
anything it is not supposed to before the query is actually executed on the database. This
protection is implemented in our system through Django’s internal protection mecha-
nisms.

52

Snowman

Figure 16: Rulesets page

53

Snowman

Figure 17: Update progressbar

Figure 18: Update changes

The first and second protection is something we have implemented ourselves in both
our frontend and our backend. We make sure that the user can never input invalid values
into any form by having JavaScript validate the input (Figure 19). So if a user inputs
characters where only numbers are allowed, the user will be notified immediately and
not allowed to submit the form until it is corrected. And this is done before anything is
ever sent from the browser to the server. But if the user has input all valid values, we still
validate all the data at the backend before we store anything in the database. This means
verifying that any referenced object ID actually exists and making sure the provided IP
address is actually valid (within the 0.0.0.0/0 - 255.255.255.255/32 range). If anything
is out of place, a message is sent back to the user about it.

6.9 Logging

Complex software needs to log what is happening, to simplify the understanding of what
happens when certain things go wrong. It is also needed to document what has been
done, in case someone would need to make sure that an update ran or other actions have
been taken by the system. As Snowman is a fairly large and complex piece of software,
we needed to think about logging of the internal events.

For the logging of internal events in both the Snowman-client, and the Snowman-server,
we decided to use the standard Python logging libraries. These libraries allow us to log

54

Snowman

Figure 19: Form validation

events of importance inside our code, depending on how important these events are. The
logger would then log information about things like; which modules the events occur in,
the time an event happened, and a message describing the event. The levels of logging
are Debug, Info, Warning, Error and Critical, sorted in an ascending order of importance.

Handlers can be assigned to the logger, which decides where to store the logged
events. Snowman uses one handler by default, which writes events to a file. The configu-
ration file for Snowman decides where this file is stored and which severities are stored.
Under normal operation, it is recommended not to log Debug messages, as they are gen-

55

Snowman

erally not needed and therefore only use up disk space and may slow down the overall
performance.

The Python logging facilities are configurable and flexible. If future needs would re-
quire some events to be stored in a database or send messages to users (via SMS for
example), the only thing that would be needed to be done is to add a new handler.

6.10 Configuration Files

Snowman’s configuration files exist to give users some flexibility by providing a set of
options that specify how Snowman operates. The configuration files originated from a
need to store database credentials, which of course would differ from system to system.
This was expanded to include some options that users might want to set differently
depending on their situation, for example if new rule revisions should automatically be
active in the production system or not. Snowman requires a configuration file for the
server and one for each client, detailed below.

6.10.1 Server Configuration File

The server configuration file contains file paths and other options used for logging and
client connections, along with the options described below:

Rule Revisions

Users can specify the number of revisions to store. Snowman will automatically delete
the oldest revision when the revision count for one rule exceeds this number. The default
value is 2, which is just enough to let users roll back to the previous working revision
after an update. Users can also specify whether incoming revisions should automatically
become active (i.e. go right into production) or remain inactive until manually activated.

Rulesets

There is a possibility that a rule will be moved from one ruleset to another by a source,
for example the Snort rules contain a “deleted” ruleset, which contains rules that were
previously part of other rulesets, but are now considered obsolete. Users can also choose
to re-arrange rules across rulesets, which may create conflict during updates. This means
that some users will prefer that rules automatically moves to the ruleset dictated by
the update, while others would like the rules to remain in their original ruleset. This
functionality is therefore customizable in the server configuration file.

Rule Filters

Another thing that might cause problems is rule filters. Since there can only be one
filter of each type per rule, users must decide whether they want new incoming filters
to automatically overwrite old filters or not. In the server configuration file, users can
specify that filters should be a) always overwritten; b) overwritten unless the previous
filter was set manually by the user; or c) not overwritten at all.

Alert Messages

Rule alert messages can appear both inline and in a separate file, and one of these sources
must take precedence if they contain different alert messages. This behaviour can be
configured to always use the inline or external specification, or which ever is encountered
first.

56

Snowman

Rule Caching

Users can specify whether all rules should be cached in memory during an update, even
if they are not changed. It might be useful to enable this if the updates contain a lot of
filters, as it will reduce database access when updating the filters.

Update Files

Since there is no documented standard for file names and file contents within an update-
package, users can specify both a whitelist and a blacklist over which files to parse dur-
ing an update. If present, the whitelist will take precedence over the blacklist. In the
whitelist, users specify a list of filenames together with their expected contents. If a
whitelist is specified, Snowman will look for, and parse only, the following files:

1. One file containing rule classifications.

2. One file containing generator messages.

3. One file containing alert messages.

4. One file containing rule filters.

5. An arbitrary number of files containing rulestrings.

The whitelist provides the most effective update parsing, as only the files specified are
parsed. If a blacklist is used, Snowman will parse every file in the update except files with
extensions specified in the blacklist (e.g. “.c” and “.so” files are skipped). This will slow
down the parsing, as Snowman has to check if each line in each parsed file matches a
known entity, such as a classification or a rulestring.

6.10.2 Client Configuration File

Every client in the system requires its own configuration file. In this file, the credentials
of the sensor on which the client operates are stored, along with database and logging
options and paths to required directories and files. Parametres which impacts the syn-
chronisation are also included in this file, most notably the request-size, which controls
the maximum amount of rules requested in each request. Depending on the resources
available on the server, large requests might take too much time to handle, which can
make the connection time out. On the other hand, too small requests would increase
the synchronisation-time because of I/O-waiting between every request. It is therefore
natural to let users define the request size in the configuration file.

6.11 Deployment

The deployment of Snowman is a two-stage procedure. First, the central server needs to
be installed and configured. After the server has been verified to be working as intended,
the Snowman-clients can be installed alongside of Snort on the sensor. Both the server
and the client are delivered packed in Debian-based installation files. These installation
files will install the Snowman software, in addition to making sure that the required
dependencies are also present on the machine. However, there is one exception to the
dependency solving. The server is delivered in both a Debian-flavour in addition to an
Ubuntu-flavour. The reason for this is that one of the Python libraries used are currently
not in the debian-stable repository, and for Debian it is required to install them via the

57

Snowman

Python package source (pip). After the installation, we therefore provide some utilities
as a double-check, to be able to verify that all the required tools are present.

As all of the Snowman software is delivered in packages, automation of the installation
can be achieved trough the use of standard tools like aptitude and configuration tools
such as puppet and cfengine.

6.11.1 Snowman Server

When deploying the Snowman-server, it is wise to do a couple of considerations first.
Snowman uses external software for its webserver and database and because Snowman is
quite flexible, it is possible to change which technology is used with a small configuration
change. The web interface is powered by a Python WSGI [40] gateway and is thus very
flexible in which server technology is serving it. The only requirement would be that the
web server supports WSGI. As default, the provided configurations use Apache 2 as their
web server.

For the database, as the Django database ORM is used, several technologies can easily
be utilized. SQLite, MySQL (and thus MariaDB), PostgresSQL and Oracle are all sup-
ported. SQLite might work for smaller installations, where simplicity is preferred over
performance. The only requirement for an Sqlite database would be access to write a
file in the filesystem. However, if performance is required, a dedicated RDMS (Relational
Database Management System) would be more suitable. A standard and free alternative
here is MySQL.

Installation

When the database technology has been selected and the web server is available, the
installation of the Snowman package can be done. The package is delivered in two ver-
sions; one for Debian and one for Ubuntu. Both would work on both systems, as the
only difference is the dependency list. In the Debian version, the dependency to python-
django is omitted, as debian-stable currently does not delivere this package in a new
enough version. Snowman requires Django version 1.6 or newer, which is available in
the ubuntu-repositories. For debian, python-pip is recommended to install Django, as the
pip repositories supplies version 1.6.

Configuration

After the installation of Snowman, it needs some configuration to be able to operate.
The main configuration file for Snowman is “/etc/snowman/snowman.conf”, and all the
parametres which are required to be configured are present in that file. The configuration
file is well documented within, and all parametres are explained. The parametres that
are required to be updated in the file is:

• Database settings: The settings determining which type of database to use, where
to find it and the authentication details.

• Host names: The names listed at this configuration option determines which host-
names the Snowman web interface would answer to. Any request to Snowman using
other hostnames than the ones listed would result in an error.

To configure the web server, an Apache 2 configuration file is provided in “/etc/apache2/sites-
available/snowman.conf”. For Apache 2 to work as the web server for Snowman, an
“apache2 wsgi-gateway” needs to be installed. This is also widely available in most Linux

58

Snowman

repositories under the name “libapache2-mod-wsgi”. A symlink to the configuration-file
should be created in “/etc/apache2/sites-enabled/”, after which Apache 2 needs to be
restarted to finalize the webserver setup.

When the configuration changes are complete, the command “snowman-initialize”
should be used to generate the database schema and initialise the database with some
initial data. The output of this command will also signal if the database settings are
correct, as it cannot create the initial data without access to the database.

Verification

When Snowman has been configured, it is time to verify that the configuration is valid.
There are five things that need to be verified:

• Database availability.

• Access to logging locations.

• Access to scratch-location on the filesystem.

• Availability of the web interface.

• Availability of the socket used by clients to download updates.

The command “snowman-test” is provided in order to have an automated way to test
all these parametres. If everything is OK, a message will state so and the program returns
0. If any of the above bullet points fails their corresponding test, a message is displayed
and the test returns 1.

6.11.2 Snowman Client

The deployment of the Snowman-client is a simple three-step approach:

1. Install the snowman-client package

2. Update “/etc/snowman/snowman-client.config” with database settings, address for
the central server, sensor name and sensor password.

3. Add the sensor to the Snowman-server, for example trough the web interface.

To be able to verify that everything is as it should be, a tool is provided to test that
the client is properly installed and configured. The command “snowmanclient-test” will
verify all these points:

• The required libraries are present.

• The configuration specifies a database that is accessible.

• The location for creating Snort rule and configuration files is writable.

• A contact to the central server can be established.

snowmanclientd

There is a daemon supplied with the Snowman-client, named “snowmanclientd”. It is
responsible for allowing the central server to make contact with the client. It is set up
to automatically start at bootup, but it is also possible to control via the ordinary linux
command “service”; “service snowmanclientd start|stop”.

59

Snowman

7 SOFTWARE TESTING

7.1 Strategy

The overall strategy of the project when it comes to testing has, first and foremost, been
to have regular meetings from Avdeling BKI where we conducted demonstrations of the
software. This has lead us to either confirm elements as feature complete or to create
a list of elements to either fix or improve. We have also not had any specific regimes
when it comes to bug fixing, we have mostly just handled them when they have been
discovered them. We could describe our software testing strategy as ad-hoc based, as it
is quite common in agile projects. Our main focus was on the performance testing.

Unit testing has not been used extensively in this project, except to test that data
from an update is correctly inserted into the database and for some of the functionality
in the web interface. Source code listings of all unit tests in this project can be found in
Appendix G.

7.2 Description of Problems

7.2.1 Rule Insertion

Snowman extracts various types of data from the rule string and inserts this into the
database in different tables. Since an update can contain thousands of rules, it proved
to be very difficult to effectively verify that all rules were correctly inserted into the
database. To address this, a test suite was set up executing a dummy update with an
example rule string containing all possible options. These tests were also very useful
during the refactoring of the update module, as the new code could be quickly verified.
Listing 7.1 demonstrates a test case for rule insertion.

1 def test_updateRule(self):
2 # Insert the rule
3 self.update.updateRule(self.rulestring , "example.rules")
4
5 try:
6 # Verify that all related objects exist
7 rule = Rule.objects.get(SID=1, active=True, priority=10)
8 generator = rule.generator
9 ...

10 except Rule.DoesNotExist:
11 self.fail("Rule does not exist")
12 except Generator.DoesNotExist:
13 self.fail("Generator does not exist")
14 except ...
15
16 self.assertTrue(rule.active==True)
17 self.assertTrue(int(rule.priority)==10)
18 self.assertTrue(generator.GID==1)

Listing 7.1: Example test case

60

Snowman

7.2.2 List Pagination

One problem that has plagued the software throughout the development has been the
pagination functionality in the GUI. Due to it using AJAX to fetch other pages in the
background, if we changed pages so fast that the system could not catch up, it would
just end up never loading anything due to AJAX’s asynchronous nature1. This has been
remedied by using some logic to check for outstanding AJAX calls but a better solution
would be to implement some other mechanism or framework for pagination. The remedy
has also put some extra latency on the rule list, as waiting for the AJAX calls might take
some time.

7.2.3 The Ever Changing Number of Changes

One smaller bug that popped up was on the Changes page where the number of new
rulesets, rules and rule revisions there has been in the latest updates are displayed. Ini-
tially, only the rule revision was tied to the Update object and we then traversed from the
revision object to the rule object and counted how many revisions that rule had, in order
to determine if the rule was new2. But using this method led to an undesired outcome
when a “new” rule gets a new revision in a later update. As the count for revisions is
done in real time, this rule will suddenly not be listed as new anymore in the old update.

This problem was solved by tying all relevant new objects to the Update object and
then just listing those relations. The downside of this is a lot more relations to store in
the database, but the Changes view was one of the more important features so it had to
be done this way.

1The code does not wait for AJAX to finish before moving on.
2A new rule will always only have one revision.

61

Snowman

8 PERFORMANCE ANALYSIS

8.1 Theoretical Analysis

The purpose of the theoretical performance analysis is to examine the most important
features of Snowman and similar software, and form opinions on the expected perfor-
mance of software compared with it. The theoretical analysis is used to create concrete
benchmarking tests presented in Section 8.2. The software analysed is BHTB, Snortman-
ager and two versions of Snowman, versions 0.4 and 0.5.

8.1.1 Effectiveness of Update Processing

As described in Chapter 6, Snowman extracts several rule options from the rule string
during parsing. These options will either create or update objects related with the rule,
such as ruleset, rule message and classtype. These logical relations add to the complexity
of the database transactions during the update process, as multiple database tables are
involved. BHTB and Snortmanager, on the other hand, write rule data to a single table. It
is therefore expected that BHTB and Snortmanager will generally exhibit a more effective
update processing.

Incremental updates

One of the expected strengths of Snowman lies in processing incremental updates, i.e.
updates containing only a small number of changes. It is important to measure perfor-
mance for incremenal updates, as most real-life updates usually contain between 10 and
100 changes. For example, ten updates from 20.03.2014 to 17.04.2014 contained on
average 36.8 new and 53.9 updated rules [41]. Snowman will effectively handle these
updates, as it stores the checksum of the files in the update. Storing the checksum for
every individual file1 is unique for Snowman. It allows Snowman to completely ignore files
without changes, which means that only the files with rule changes are parsed. This is
particularly useful as the current official Snort rules contain over 100 files2. It is there-
fore expected that Snowman will efficiently process updates that contain relatively few
changes.

8.1.2 Effectiveness of Rule Distribution

The rule distribution, or synchronisation, is a feature of Snowman and BHTB, where rules
are distributed from the server to the sensors. Since Snowman and BHTB use different
strategies for distribution (Snowman uses a local client database as described in chap-
ter 5.1.1 while BHTB pushes all files out to the sensor at each synchronisation), it is
previsioned that Snowman will perform better because of the fact that it only transfers
new changes rather than everything, every time. Also, since BHTB distributes everything,
every time, it is expected to have a flat performance curve, since the timing will be depen-
dent on the bandwidth rather than processing power. Snowman’s server-client connection
is also more complex than the one of BHTB. Because of this, a longer processing time
for setting up the connection is expected.

1Checksum is stored only for files that are parsed.
2As of May 2014.

62

Snowman

8.1.3 GUI Latency

A major complaint from Avdeling BKI was that they experienced a high latency in BHTB’s
web component, that they had to wait long periods for it to load data. We have attempted
to remedy this problem in Snowman by not loading absolutely everything into the GUI
every time, like BHTB does. It is expected that this will reduce the latency in the GUI, as
we would be processing and displaying only 100/28000 rules as opposed to all 28000
rules.

8.1.4 Sublinearity in Performance

We’re expecting all of the software to have a linear performance curve, or better (sub-
linearity), as an upwards pointing performance curve is a sure sign that something has
been programmed in a wrong way. If performing one task takes 1 second, performing 10
tasks should take 10 seconds or less.

8.2 Practical analysis

Since Snowman is similar to BHTB and Snortmanager, it was important to benchmark
their performance in various formal test cases in order to highlight the strengths and
weaknesses in each software solution. The purpose of the tests is to reach final conclu-
sions on key questions regarding the performance of Snowman, and to point out where
the difference between the three software packages lies.

To get a picture of how the software performs on different systems, it was tested on
three architectures (table 14). To minimize error, each test was run five times where the
mean value of the runs is considered a valid test result. All tests can be reproduced with
the test procedure documentation in Appendix F.

8.2.1 Definitions

The testing is split up into test suites, each containing a problem in the form of a question.
The problem forms a clear description of what is to be tested, and how results should
be evaluated. A test suite also contains one or more test cases, which exist to address
the problem. Test cases represent individual tests, and describe the input data and con-
straints. Test cases are carried out on the different systems, and results from each test
case are referred to as the test results.

8.2.2 Environment

All tests are carried out on three systems, named S1, S2 and S3 (Table 14). These systems
differ in processing power, available memory and storage technology, and the results will
indicate what impact these factors have on software performance. The performance test-
ing in this report is also prone to error, as tests might get disturbed by other background
processes etc. Testing on three systems gives results with a higher confidence, as results
are checked aginst each other for inconsistencies. When an inconsistency in results is
found, the test is run again to see if the inconsistency prevails.

8.2.3 Test suites

Even though Snowman, BHTB and Snortmanager share the same goal of being a rule
management system, it is not immediately obvious how they can be tested against each
other to compare their performance. The first step in the performance testing was to

63

Snowman

System Processor type Memory Storage

S1 Intel R© CoreTM 2 Solo, 1.4GHz 4GB RAM 5K RPM HDD

S2 Intel R© CoreTM i7, 6x3.2GHz 12GB RAM 10K RPM HDD

S3 Intel R© CoreTM i5, 4x3.2GHz 16GB RAM SSD

Table 14: Test systems.

identify the areas where the three software packages share, to a certain extent3, the same
functionality. In the test planning, considerations have been made to ensure that the tests
hold an acceptable degree of fairness (i.e. tests are designed so that none of the programs
enjoys any improper advantages or disatvantages), and that the tests are pertinent to the
daily operation of the software and the Snowman requirement specification.

Snowman, BHTB and Snortmanager all have the functionality to download and process
an update from an external source. The first group of test suites presents different test
cases to benchmark how each software performs in update processing.

8.2.4 Update processing tests

The purpose of the tests in this section is first and foremost to test how quickly the soft-
ware can process an update, and if the processing time is sublinear regarding the update
size. It is interesting to test for sublinearity as this may help point out programming er-
rors. To get a complete picture of the performance, the tests are set up with different
constraints such as update size, number of files and number of changes from one update
to the next. Tests numbered 1-1 through 1-4 use an artificially generated update package
where all rules contain the same data4, as seen in Listing 8.1.

a l e r t tcp $EXTERNAL_NET any −> $HOME_NET $HTTP_PORTS \
(msg : " INDICATOR−COMPROMISE c99she l l . php \
command reques t − s e c u r i t y " ; \
flow : to_server , e s t a b l i s h e d ; u r i l e n :<50; content : " ac t=s e c u r i t y " ; \
f a s t _ p a t t e r n : only ; h t t p _ u r i ; metadata : s e r v i c e ht tp ; \
c l a s s t y p e : po l i cy−v i o l a t i o n ; s i d :< int >; rev : 2 ;)

Listing 8.1: Test rule string.

Test 1-1
Problem: How fast can the software process an update?

The purpose of this question is to determine the average processing time per rule. Results
are ranked from short to long processing time, where shorter is better.

Test cases:

To address this problem, five test cases were introduced. The tests contained an artifi-
cially generated update with 1, 10, 100, 1000 and 10000 rules, respectively. Rules were
split into files each containing ten rules. Each test case represents one update, and the
names denote the number of rules in the following structure: SYN-number of rules. The
test was also carried out with a realistic update package, SF-28064.

3Snowman, BHTB and Snortmanager have been built to tackle many of the same challenges, however, the
actual implementations may differ severely. For an extended walk-through of differences in implementation,
refer to Chapter 2, and Chapter 10.

4Only signature IDs are different. The rules contain a message and a classtype.

64

Snowman

Test case In test Description

SYN-1 Test 1-1, 1-2 Blank database.

SYN-10

SYN-100

SYN-1000

SYN-10000

SYN-1000-B Test 1-3 All rules in one file.

SYN-1000-C Test 1-4 Pre-populated database. No changes in update.

SYN-1000-D Test 1-5 Pre-populated database. Revision change for all rules

SF-28064 Test 1-1 Blank database.

SF-28064-B Test 1-6 Pre-populated database. Update has one rule change.

Note: Rules are split into files with ten rules per file unless otherwise specified.

Table 15: Test cases in update processing.

Test 1-2
Problem: How strong is the linear correlation between processing time and the size of an
update?

This question rises from the requirements specification of Snowman (Chapter 3), where it
is stated that Snowman shall exhibit a sublinear increase in processing time in correlation
to the number of rules in the update (where the number of rules depicts the update size).
Results are ranked from strong correlation to no correlation, where stronger is better.

Test cases:

This test uses the same test cases as Test 1-1.

Test 1-3
Problem: Does raising the ratio between files and rules increase processing time?

Updates can come with the rules either gathered in one file, or distributed over several
files. This question is asked to examine the difference in processing time for these two
scenarios. Results are ranked from no difference to great difference, where less difference
is better.

Test cases:

This test compares the SYN-1000 test case from Test 1 with a test case with the same
number of rules in one file (SYN-1000-B).

Test 1-4
Problem: Is the processing time shorter when the update contains no new rules?

This is a test for update processing when the update is not new (i.e. it has been com-
pletely processed by the system before). To minimize system load, it is essential that
already processed updates are (in practice, they should be) neglected by the system.
Results are ranked from shortest to longest processing time, where shorter is better.

65

Snowman

Test cases:

This is a compound test where a test case is run two times in succession. The SYN-1000
test case from Test 1 is run first to populate the database, before it is run again (SYN-
1000-C).

Test 1-5
Problem: Are the processing times for two updates identical when only revision numbers are
changed between the updates?

This question measures how one small change in all rules affects procesing time. This test
runs the SYN-1000 update to populate the database, and then the SYN-1000-D, which
contains a revision number change for all rules. Processing time is expected to be faster
for the second update, since the database will already be populated with the majority
of the data. Results from this test will be ranked by the difference in processing time
between the first and the second updates, where greater difference is better.

Test 1-6
Problem: Are the processing times for two updates identical when only one rule has changed
between the updates?

This question seeks to determine how the software handles an update when there is only
one change from the previous update. This is an important factor to consider, since an
update usually contains only a small amount of changes from previous updates. Results
are ranked from short processing time for second update to no difference in processing
time, where shorter time is better.

Test cases:

This test suite contains two test cases with an update from a real source. The SF28061 is
run first to populate the database before SF28061-B is run, which contains one change
(one of the rules has an updated revision number).

8.2.5 Rule distribution tests

These tests use exactly the same test suites as update processing tests, the only difference
being that an update from a source is replaced by synchronisation to a client.

8.2.6 Interface loading tests

These tests will evaluate the speed of the user interface by listing rules and rule sets in
a web browser. Tests are timed by using the development tools of the Chrome browser,
which contains a simple timer. Both tests use the SYN-10000 package.

Test 3-1
Problem: How quickly does the user interface list rules?
Test cases:

This test uses one test case, called list rules, where 100 rules are listed in the user inter-
face.

Test 3-2
Problem: How quickly does the user interface list rule sets?
Test cases:

This test uses one test case, called list rule sets, where all rule sets are listed in the user
interface.

66

Snowman

9 RESULTS OF PERFORMANCE TESTING

This chapter presents the results from the performance testing. Results are mean times
calculated from five sequential test results, in microseconds. Test cases and systems are
listed in rows, with one column per software. See Appendix H for a complete listing
of results. Results for interface performance, update and synchronise are presented in
Tables 16, 17 and 18, respectively.

Test case System Snowman v 0.5 BHTB

List rules S1 2508 924.561

S3 1045.950 657.408

List rule sets S1 11306 39432

S3 4676 10524

Table 16: Test results for interface performance.

67

Snowman

Test case System Snowman v 0.4 Snowman v 0.5 Snortmanager BHTB

SYN-1 S1 1058.179 1415.484 228.617 125.236

S2 622.640 804.681 93.403 65.281

S3 151.946 196.160 36.960 18.175

SYN-10 S1 2289.518 1427.712 265.275 148.323

S2 1668.142 808.218 107.554 72.025

S3 327.655 195.159 37.569 19.711

SYN-100 S1 17519.385 1568.224 1251.275 185.970

S2 12197.192 865.496 139.005 84.913

S3 2356.610 343.033 159.113 25.024

SYN-1000 S1 167645.267 2568.235 9470.460 568.333

S2 114617.561 1098.159 460.394 158.351

S3 22830.358 1823.785 1360.276 60.313

SYN-10000 S1 1795175.128 14179.095 92428.555 3606.043

S2 1162468.835 5761.811 5105.158 910.172

S3 228038.066 16804.950 13523.887 440.334

SYN-1000-B S1 147170.285 2508.530 1836.396 445.476

S2 113901.478 1245.906 496.204 157.817

S3 20367.838 404.022 228.044 49.908

SYN-1000-C S1 296.272 309.576 1763.480 7.816

S2 186.215 169.476 829.230 4.543

S3 56.152 54.824 205.956 1.310

SYN-1000-D S1 1371.722 1431.436 64100.000 563.682

S2 9682.763 748.258 31999.710 85.289

S3 16998.276 2022.763 10716.689 83.275

SF-28064 S1 9175886.000 63961.545 43391.700 5638.424

S2 3817584.070 26875.246 21127.828 1715.521

S3 1267483.848 12522.786 8039.046 1017.561

SF-28064-B S1 28200.953 9239.670 239878.897 5606.518

S2 22673.225 5489.009 80009.077 2396.780

S3 5260.553 1707.588 63626.550 1004.424

Table 17: Test results for update processing.

68

Snowman

Test case System Snowman v 0.5 BHTB

SYN-1 S1 1645.639 1501.465

S2 1503.815 1467.612

S3 371.537 3.300

SYN-10 S1 1828.779 1489.364

S2 1752.954 1472.808

S3 453.362 3.462

SYN-100 S1 3975.408 1489.645

S2 4036.130 1473.355

S3 1094.713 4.492

SYN-1000 S1 24921.176 1771.004

S2 25374.218 1503.511

S3 7759.566 15.132

SYN-10000 S1 239641.965 1839.841

S2 251607.202 1593.889

S3 16862.160 121.677

SYN-1000-B S1 24916.964 1522.719

S2 25228.116 1481.411

S3 7252.062 4.156

SYN-1000-C S1 4265.931 1775.423

S2 4297.144 1515.184

S3 2278.760 1097.711

SYN-1000-D S1 6523.340 1775.664

S2 6544.584 1513.944

S3 11642.046 1064.944

SF-28064 S1 112509.497 1758.258

S2 105555.617 1584.972

S3 40004.218 1062.806

SF-28064-B S1 26362.894 1754.601

S2 23033.204 1584.696

S3 8839.964 1117.693

Table 18: Test results for sensor synchronisation.

69

Snowman

10 ANALYSIS OF PERFORMANCE TESTING RESULTS

10.1 Effectiveness of update processing

This section discusses the most important results from the update processing tests. Table
19 displays the average processing time per rule calculated from the synthetic update
containing 10000 rules and the realistic update containing 28064 rules. As it can be
seen, BHTB is significantly faster than the two other programs on all our test machines.
It came as a big surprise that BHTB performed so well in the update tests, as Avdeling
BKI had listed poor update performance as one of its major defects. The results are
probably best explained by the very simple nature of BHTB’s data structure. Also note
that these tests might not reflect the reality that Avdeling BKI faces, as they are run in
a minimalistic environment without any sensors or other database-objects that might
affect BHTB’s performance in a real environment. Snortmanager also performed well in
the tests, which is expected as it has a very similar data structure to BHTB in that it is
very simple.

Test System Snowman v 0.5 Snortmanager BHTB

SYN-10000 S1 1.4179 9.2429 0.3606

S2 0.5762 0.5105 0.0919

S3 1.6805 1.3524 0.0440

SF-28064 S1 6.3962 4.3392 0.5638

S2 2.6875 2.1128 0.1716

S3 1.2523 0.8039 0.1018

Note: All times in milliseconds.

Table 19: Average processing time per rule.

Snortmanager starts to struggle when more files are introduced into the tests. As it can
be seen in Table 20, there is a great difference between tests SYN-1000 and SYN-1000-B,
where we have the same number of rules, but spread over more files. This problem does
not seem to exist in either Snowman or BHTB. None the less, both Snortmanager and
BHTB was much better than Snowman v0.4 in these tests, which led us to completely
rework our update program workflow. Our problem was that for every rule, we were
writing its data to the database and then moving on to the next rule. This caused a lot of
busy-waiting for the database. We can see that the times accelerated a lot on the machine
with the lower-end hard drives, so the problem also manifests itself more when the hard
drives cannot keep up.

We proceeded to rewrite the code so that all the rules are parsed into memory first
and then is committed into the database in one big query. As we can see in table 21 we
improved Snowman’s performance in v 0.5 significantly.

70

Snowman

Test System Snowman v 0.5 Snortmanager BHTB

SYN-1000 S1 2568.235 9470.460 568.333

SYN-1000-B S1 2508.530 1836.396 445.476

SYN-1000 S2 1098.159 460.394 158.351

SYN-1000-B S2 1245.906 496.204 157.817

SYN-1000 S3 1823.785 1360.276 60.313

SYN-1000-B S3 404.022 228.044 49.908

Note: All times in milliseconds.

Table 20: Comparison of processing time for many files vs one file.

Test case System Snowman v 0.4 Snowman v 0.5

SYN-1 S1 1058.179 1415.484

S2 622.640 804.681

S3 151.946 196.160

SYN-10 S1 2289.518 1427.712

S2 1668.142 808.218

S3 327.655 195.159

SYN-100 S1 17519.385 1568.224

S2 12197.192 865.496

S3 2356.610 343.033

SYN-1000 S1 167645.267 2568.235

S2 114617.561 1098.159

S3 22830.358 1823.785

SYN-10000 S1 1795175.128 14179.095

S2 1162468.835 5761.811

S3 228038.066 16804.950

Note: All times in milliseconds.

Table 21: Comparison of Snowman v 0.4 and v 0.5.

While we still did not accomplish the performance goals set in Section 1.5.2, consid-
ering the difference in complexity and structure, we assess the difference as acceptable.
The results in these tests are a very good indicator that performance testing during de-
velopment is a very useful element in a development project.

10.2 Effectiveness of rule distribution

As we expected, BHTB had a very flat performance curve in this test, but not exactly flat.
There is a small increase in time spent when the number of rules goes up, as we can see

71

Snowman

in Table 22, meaning there is some degree of processing time influencing the results.

Test case System BHTB

SYN-1 S1 1501.465

S2 1467.612

S3 3.300

SYN-10 S1 1489.364

S2 1472.808

S3 3.462

SYN-100 S1 1489.645

S2 1473.355

S3 4.492

SYN-1000 S1 1771.004

S2 1503.511

S3 15.132

SYN-10000 S1 1839.841

S2 1593.889

S3 121.677

Note: All times in milliseconds.

Table 22: BHTB Syncronisation performance has a flat curve.

Still, considering the tests on S1 and S2 were carried out on the same network and
sensor, and S3 were carried out on a completely different network and sensor, it is appar-
ent that distribution from BHTB is mostly determined by how fast the data can be moved
from the server to the sensor. The same difference in testing environments is apparent
in the Snowman tests (Table 18). S1 and S2 have very similar results while S3 probably
benefits from its different hardware and network setup. This leads us to conclude that
the performance of distribution is dictated by the bandwidth and by the hardware of the
sensor, and not so much by the hardware of the central server. However, there are no
indications of a pure performance gain over BHTB as we expected by going for a dis-
tributed model with a change based distribution protocol. But we are seeing a significant
reduction in time spent distributing when there are only updates and not a massive batch
of rules. While BHTB uses roughly the same time on tests SF-28064-A and SF-28064-B,
we use about 80% less time on test B than on test A (Table 18). This gives merit to the
model we picked for our distribution architecture and with a little more performance
optimisations, the overall times are likely to improve further as well.

10.3 GUI latency

These tests show that we have not been able to produce an improvement over BHTB
when it comes to displaying rules, which comes clear when we compare the numbers
involved (Table 16). Snowman are only fetching and displaying a fraction of the number

72

Snowman

of rules that BHTB does1, yet we spend about twice as long on it. We strongly suspect
that the cause of this is a combination of our more complex data structure, coupled with
a complex template framework such as Django. A small optimization was attempted by
enabling a setting that lets Django prefetch related objects from the database and that
did improve the results to some extent, but not enough to be noticable.

10.4 Sublinearity in performance

Our tests show that all the systems were more or less exactly linear, which means that
none of the systems are suffering from bad programming that manifests itself exponen-
tially. Table 23 shows the linear correlation between the test results for the synthetic
updates with 1, 10, 100, 1000, and 10000 rules. The first dataset is the test results and
the second dataset is {1, 10, 100, 1000, 10000}. As can be seen, the performance is close to
linear for all software across all systems.

System Snowman v 0.5 Snortmanager BHTB

S1 0.999945 0.999999 0.999695

S2 0.993996 0.999627 0.999931

S3 0.999999 0.999999 0.999983

Correlation ρ = Cov(X,Y)
σxσy

Table 23: Empirical linear correlation coefficients for update processing.

10.5 Conclusions

Snowman did not outperform either BHTB or Snortmanager in any of the tests, but
through the test we managed to discover a big performance bottleneck in Snowman’s
Update module that we managed to fix in time. The fix resulted in a great improve-
ment in performance. The extra latency in Snowman is likely due to its more complex
data structure surrounding rules, which means more processing and data movement is
needed for many operations. The project has not exhausted all possible optimization
possibilities and techniques, so there is room for further improvements in future work.
These tests stand to point out that performance testing in software projects can reveal
performance problems early enough in the development to correct them.

1About 100 to 28000.

73

Snowman

11 CONCLUSIONS

11.1 Results

This project set out to develop, from the ground up, something that were to be better
than a prototype already in use. And we have produced something that does indeed
works and, in many cases, better than it’s predecessor. While not all the features we
outlined in our goals ended up in the latest version, they can be added in future works
with relative ease. Even though our performance tests show that we did not reach all
our goals when it came to making Snowman more efficient than BHTB, we still feel the
results are satisfactory. The added latencies in Snowman can be acredited to the more
complex data structure which results in more data needing to be processed and moved
to/from I/O devices.

The performance tests in chapters 8 to 10 also revealed that actually conducting these
tests in a software development project is a very good idea, as we discovered a bottleneck
in our Update module and managed to fix it and improve our performance significantly.
Some aspects of Snowman are still not within acceptable performance times, but the opti-
mization done on the Update module brought it into an acceptable range for that module.
If similar optimizations are implemented in other modules in future work, we are con-
fident that Snowman can perform well across the board. While we have not conducted
tests on the matter, we believe Snowman does not have the same scalability problems that
BHTB seems to have when adding more sensors to the system. This has to do with our
distributed model, removing the bottleneck of being dependent on a central system for
the distribution of rules and removing the bandwidth strain of distributing everything,
every time.

We also created a GUI that offers more functionality than what the GUI of BHTB
does. It is not perfect by any stretch of the imagination, but it features more essential
features such as form validation and user feedback. The project also reveals that using
frameworks such as Django to create an object abstraction on top of the database can
really let us create a lot of functionality in a shorter amount of time, than if we had to
work directly on the database.And perhaps the most important conclusion, the members
of the project group have learned a great deal when it comes to software development
projects, especially when it comes to working with larger enterprise frameworks such as
Django. We also learned a great deal when it comes to time management in larger project
such as this, and about IDS systems in general.

11.2 Future Work

At the start of the project we were ambitious with our project goals and Avdeling BKI
had a long list of functionality they wanted implemented. While most of the functionality
made it to our latest version, some where left for future development. These functions
include the ability to comment rules, the ability to write new custom rules and to have
some way to check for errors in the rules before they are distributed. There are, however,
no problems adding these features in future work, as we’ve strived to make the program

74

Snowman

modularized and accepting of additional modules.
To solve the functionality of checking for errors in rules, we discussed early on if

something like Dumbpig [42] could be used. It gives feedback on rule syntax as well, so
it could also be used to check rules that have been written by the user for mistakes or
errors. There is also more optimization work that could be done to speed the program
up, especially when it comes to fetching lists of rules. Rule distribution will also benefit
from a similar optimization as done with rule updating.

The GUI could probably also benefit from more work, as it has a few quirks and odd
bugs. It would probably be beneficial to find some other way of doing pagination, as
the implementation in the current iteration is not optimal. There are also some cosmetic
improvements to be done to tighten up the visual aspect, on some of the pages it can
become hard to differentiate items once we’ve navigated and opened too many elements
on the screen. We also compiled an improvements list from Avdeling BKI on some of the
improvements they would like to see in the future, which is available in appendix I.

11.2.1 Abandoned Performance Tests

Some performance tests were not conducted in this project. These tests include real-
world tests where the programs are tested in a real detection environment to give a
better understanding of software performance in production systems. It would also have
been interesting to run the distribution tests to multiple clients to verify that running
parallell synchronisations has an effect. This project has also not tested the resource
usage of the software, such as CPU and memory.

11.3 Conclusion

The project group has developed a system that works as intended and solves the majority
of the features requested of it. The final software solution is ready for deployment, and
should simplify the management of Snort signatures while being an effective and scalable
system. The group believes that the software can be made useful in the battle to keep the
internet safer, but only time will tell if it will be adopted by the security community. One
of the main points of this report is that achieveing high performance in software is very
difficult when the expectations of functionality is high. Performance and functionality is
well-balanced in the developed software, even though test results show that it can be
slower than similar software. This project has also highlighted that performance testing
during development is beneficial, as it reveals bottlenecks in the software. Because of this,
we were able to implement optimizations that drastically improved the performance of
one of our system modules.

75

Snowman

12 Group Evaluation

This chapter presents our subjective views of the project.

12.1 Introduction

In the course of the project, the group has worked well as both a team and as individuals,
drawing from each other strengths and expertise. We have created something that could
very well either live on in service of the information security community or inspire others
to further improve or recreate.

12.2 Organization

The group was given an interesting task of to look at an existing software prototype, and
build a completely new system with added functionality and better performance. In addi-
tion, Snortmanager, which is a very similar project, had already been conducted at Gjøvik
University College. It was therefore important not only to create a solid system, but to
develop a software that is clearly different than any existing solutions. This resulted in a
thourough design-phase that laid a solid foundation for the development.

While we had a designated group leader, we never really got in a situation where
we needed one. Most of our decisions or problems were solved as a group through dis-
cussion and a democratic approach and that worked well for our group. It seems like
we succeeded when it came to our project plan, which we have more or less followed
throughout the entire project. The development cycle lengths and intermittent meetings
have allowed us to be very flexible and agile in our development, as well as being more
or less according to schedule. Spending some time planning everything before we started
programming gave us a good head start and even saved us some time writing this report
as we had a lot of its components already made. When we completed the initial planning
phase, we held a “project decision meeting” with Avdeling BKI where we introduced the
system models we had made so that Avdeling BKI could decide what they wanted or not.
We felt this was a good idea, as we could then get some valuable feedback before we
started programming.

Our approach to the development cycles was mostly as described in section 1.7.1 we
conducted synchronisational meetings once or twice a week to chart out the course, and
keep up to date with what the others were doing. But for the most part, because we had
divided the software into modules, we worked individually. This worked out well, as the
group members had different schedules and needed the flexibility. For the thesis, we set
a good month and a half of our project time for it and we think it paid off, especially
as we expanded it to include the performance testing part. We also divided the writing
part into three draft cycles, so we could get valuable feedback from our supervisor and
Avdeling BKI.

12.3 Work distribution

For the most part our work distribution has been a “free for all”, meaning the group
members picked freely from what they wanted to work on during the development cycle,

76

Snowman

within the objectives we set for that cycle. This worked out fine for the most part, but
we feel we probably could have been slightly more aggressive with how many features
we finished within the cycles. This left us with a bigger workload towards the end of the
development as opposed to the beginning.

12.4 What could have been done differently

In hindsight, we probably could have conducted our performance testing earlier in the
project, so that we could have more time to implement optimizations. We should have
also had a more strict approach to what we were supposed to work on for the different
development cycles, planning that out earlier as well.

12.5 Subjective views

12.5.1 Thomas Nyheim

For me, this project has had a fair bit of personal interest in its success as I am the one
that is going to be using this while working for Avdeling BKI. That meant that the better
this project turned out, the better for me it would be afterwards.

I feel we have created something that works well enough that it can be taken further
and improved upon still. We’ve also conducted a small scientific test case which has been
a learning experience, as it is not something often done at Bachelor levels at Gjøvik
University College. There has also been a learning curve when it comes to Python and
Django, which I can take with me in the future and apply to other endevours.

12.5.2 Eigil Obrestad

For me personally, this has been a very interesting project. I do think that information
security is a very interesting field, and this project have been my first meeting with IDS-
systems. In addition to gaining some valuable experience with software development, I
have also learnt quite a bit about the IDS software Snort.

I do feel that Snowman have turned out to be a very useful tool. It is an improvement
of BHTB, which was one of the main goals of the project. We provide all the functionality
of BHTB in addition to several new features requested by Avdeling BKI. I personally think
that the project ended up in a successfull piece of software, and as far as i can understand,
I think it is going to be very helpful for the operators of the Snort-sensors at BKI.

12.5.3 Eirik Skogstad

Information security is a very interesting field, and I was very happy to be given the
opportunity to develop a software for the Norwegian Armed Forces Cyber Defense. I was
not much acquainted with intrusion detection prior to this project and it has taught me
alot in that respect. Furthermore, the project has enabled me to become familiar with
the Python programming language and the use of a web framework. In the course of the
project I have also built on my experiences in software engineering and academic writing
aqcuired theoretically at Gjøvik University College and practically at CERN.

77

Snowman

Bibliography

[1] St Laurent AM. Understanding Open Source and Free Software Licensing. Se-
bastopol: O’Reilly Media, Inc.; 2004.

[2] Agile Software Development Process [Webpage]. New Jersey (NJ): Rapidsoft Sys-
tems; [cited 2014 May 18]. Available from: http://www.rapidsoftsystems.com/
agile-development-process.html.

[3] Roesch M. SNORT - Lightweight Intrusion Detection for Networks. In: Parter DW,
editor. Proceedings of the 13th Conference on Systems Administration (LISA-99),
Seattle, WA, November 7-12, 1999. USENIX; 1999. p. 229–38.

[4] Snort Community Page [Webpage]. Sourcefire, Inc.; [cited 2014 May 18]. Available
from: http://www.snort.org/community.

[5] Henriksen DO. Managing signatures for IDS in a distributed environment - A study
of a signature management system [Master thesis]. Gjøvik University College.
Gjøvik; 2012.

[6] Vaskinn C, Wikestad K. Snortmanager [Bachelor thesis]. Gjøvik University College.
Gjøvik; 2012.

[7] Snort Additional Downloads Page [Webpage]. Sourcefire, Inc.; [cited 2014
May 18]. Available from: http://www.snort.org/snort-downloads/
additional-downloads.

[8] Pulled_Pork [Webpage]. Google Project Hosting; [cited 2014 May 18]. Available
from: https://code.google.com/p/pulledpork.

[9] Oinkmaster [Webpage]. SourceForge.net; [cited 2014 May 18]. Available from:
http://oinkmaster.sourceforge.net.

[10] Graettinger CP, Garcia-Miller S, Siviy J, Syckle PJV, Schenk RJ. Using the Tech-
nology Readiness Levels Scale to Support Technology Management in the DoD’s
ATD/STO Environments (A Findings and Recommendations Report Conducted for
Army CECOM). Pittsburg (PA): Carnegie Mellon University; 2002. CMU/SEI-2002-
SR-027. Sponsored by the U.S. Army Communications Electronics Command (CE-
COM).

[11] Snorby [Webpage]. Snorby Community; [cited 2014 May 18]. Available from:
http://snorby.org.

[12] Suricata [Webpage]. Indiana (IN): The Open Information Security Foundation.;
[cited 2014 May 18]. Available from: http://suricata-ids.org.

78

http://www.rapidsoftsystems.com/agile-development-process.html
http://www.rapidsoftsystems.com/agile-development-process.html
http://www.snort.org/community
http://www.snort.org/snort-downloads/additional-downloads
http://www.snort.org/snort-downloads/additional-downloads
https://code.google.com/p/pulledpork
http://oinkmaster.sourceforge.net
http://snorby.org
http://suricata-ids.org

Snowman

[13] Cohen D, Lindvall M, Costa P. A State of the Art Report: Agile Software Develop-
ment. Maryland (MD): Fraunhofer Center for Experimental Software Engineering
Maryland and The University of Maryland; 2003. DACS SOAR 11. Sponsored by
Defense Technical Information Center(DTIC)/AI.

[14] Waterfall model [Webpage]. California (CA): Wikimedia Foundation, Inc.; [cited
2014 May 18]. Available from: http://en.wikipedia.org/wiki/Waterfall_
model.

[15] Scrum development method [Webpage]. California (CA): Wikimedia Foundation,
Inc.; [cited 2014 May 18]. Available from: http://en.wikipedia.org/wiki/
Scrum_(software_development).

[16] Tornado [Webpage]; [cited 2014 May 18]. Available from: http://www.
tornadoweb.org.

[17] Django v1.6 [Webpage]. Django Software Foundation; [cited 2014 May 18]. Avail-
able from: http://www.djangoproject.com.

[18] SQLite homepage [Webpage]. SQLite community; [cited 2014 May 18]. Available
from: http://www.sqlite.org.

[19] Roesch M, et al. Snort Users Manual 2.9.3; 2012. Available online at
http://manual.snort.org.

[20] Woodside M, Franks G, Petriu DC. The Future of Software Performance Engineer-
ing. In: Future of Software Engineering, 2007. FOSE ’07. The Institute of Electrical
and Electronics Engineers, Inc.; 2007. p. 171–88.

[21] Vokolos FI, Weyuker EJ. Performance Testing of Software Systems. In: WOSP ’98:
Proceedings of the 1st International Workshop on Software and Performance. ACM;
1998. p. 80–7.

[22] Denaro G, Polini A, Emmerich W. Early Performance Testing of Distributed Software
Applications. In: WOSP ’04: Proceedings of the 4th international workshop on
Software and performance. ACM; 2004. p. 94–103.

[23] Myers D. On the Use of NAND Flash Memory in High-Performance Relational
Databases [Master thesis]. Massachusetts Institute of Technology. Massachusetts
(MA); 2008.

[24] Capturing Architectural Requirements [Webpage]. New York (NY): IBM Cor-
poration; [cited 2014 May 18]. Available from: http://www.ibm.com/
developerworks/rational/library/4706.html#N10073.

[25] Saltzer JH, Schroeder MD. The Protection of Information in Computer Systems.
Communications of the ACM 17, 7. 1974;.

[26] GNU General Public Lisence v3 [Webpage]. Massachusetts (MA): The Free Soft-
ware Foundation; [cited 2014 May 18]. Available from: http://www.gnu.org/
licenses/gpl.html.

79

http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Scrum_(software_development)
http://en.wikipedia.org/wiki/Scrum_(software_development)
http://www.tornadoweb.org
http://www.tornadoweb.org
http://www.djangoproject.com
http://www.sqlite.org
http://www.ibm.com/developerworks/rational/library/4706.html#N10073
http://www.ibm.com/developerworks/rational/library/4706.html#N10073
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

Snowman

[27] What is Object/Relational Mapping? [Webpage]. North Carolina (NC): Red
Hat, Inc.; [cited 2014 May 18]. Available from: http://hibernate.org/orm/
what-is-an-orm.

[28] SQL Alchemy homepage [Webpage]. SQLAlchemy authors and contributors; [cited
2014 May 18]. Available from: http://www.sqlalchemy.org/.

[29] Python v2.7.6 documentation [Webpage]. Oregon (OR): Python Software Founda-
tion; [cited 2014 May 18]. Available from: http://docs.python.org/2.

[30] Should I use Python 2 or Python 3 for my development activity? [Webpage]. Oregon
(OR): Python Software Foundation; [cited 2014 May 18]. Available from: http:
//wiki.python.org/moin/Python2orPython3.

[31] Python 2.x vs 3.x use [Webpage]. Oregon (OR): Python Software Foundation;
[cited 2014 May 18]. Available from: http://wiki.python.org/moin/2.x-vs-3.
x-survey.

[32] Django documentation [Webpage]. Django Software Foundation; [cited 2014
May 18]. Available from: http://media.readthedocs.org/pdf/django/1.6.x/
django.pdf.

[33] Goodger D, van Rossum G. PEP 257: Docstring Conventions; 2012. Available online
at http://legacy.python.org/dev/peps/pep-0257.

[34] The Eclipse Project [Webpage]. Eclipse Foundation; [cited 2014 May 18]. Available
from: http://www.eclipse.org.

[35] LaTeX Project [Webpage]. The LaTeX project team; [cited 2014 May 18]. Available
from: http://www.latex-project.org.

[36] jQuery [Webpage]. The jQuery Foundation; [cited 2014 May 18]. Available from:
http://jquery.com.

[37] Bootstrap [Webpage]. Bootstrap core team; [cited 2014 May 18]. Available from:
http://getbootstrap.com.

[38] Snort Configurations Page [Webpage]. Sourcefire, Inc.; [cited 2014 May 18]. Avail-
able from: https://www.snort.org/vrt/snort-conf-configurations/.

[39] Leff A, Rayfield JT. Web-Application Development Using the Model/View/Con-
troller Design Pattern. In: Titsworth FM, editor. Enterprise Distributed Object Com-
puting Conference, 2001. EDOC ’01. Proceedings. Fifth IEEE International. The
Institute of Electrical and Electronics Engineers, Inc.; 2001. p. 118–27.

[40] Eby PJ. PEP 333: Python Web Server Gateway Interface v1.0; 2003. Available
online at http://legacy.python.org/dev/peps/pep-0333.

[41] Snort Advisory Page [Webpage]. Sourcefire, Inc.; [cited 2014 May 18]. Available
from: http://www.snort.org/vrt/advisories.

[42] Dumbpig homepage [Webpage]. Leon Ward; [cited 2014 May 18]. Available from:
http://leonward.wordpress.com/dumbpig.

80

http://hibernate.org/orm/what-is-an-orm
http://hibernate.org/orm/what-is-an-orm
http://www.sqlalchemy.org/
http://docs.python.org/2
http://wiki.python.org/moin/Python2orPython3
http://wiki.python.org/moin/Python2orPython3
http://wiki.python.org/moin/2.x-vs-3.x-survey
http://wiki.python.org/moin/2.x-vs-3.x-survey
http://media.readthedocs.org/pdf/django/1.6.x/django.pdf
http://media.readthedocs.org/pdf/django/1.6.x/django.pdf
http://www.eclipse.org
http://www.latex-project.org
http://jquery.com
http://getbootstrap.com
https://www.snort.org/vrt/snort-conf-configurations/
http://www.snort.org/vrt/advisories
http://leonward.wordpress.com/dumbpig

Appendices

81

Snowman

A PROJECT PLAN

82

SNORT Rule Manager

A complete, effective and secure rule management system for SNORT®

Project Planning Document

Thomas Nyheim

Eirik Skogstad

Eigil Obrestad

Bachelor’s Thesis

Department of Computer Science and Media Technology

Gjøvik University College, Spring 2014

2

3

CONTENTS

CONTENTS ... 3

1. OBJECTIVES AND CONSTRAINS ... 4

2. SCOPE ... 8

3. PROJECT ORGANIZATION .. 11

4. DEVELOPMENT MODEL ... 13

5. QUALITY ASSURANCE ... 15

6. PROJECT TIMELINE ... 16

APPENDIX A - CITATIONS .. 17

4

1. OBJECTIVES AND CONSTRAINS

1.1. Background

The Norwegian Armed Forces Cyber Defense (CYFOR) unit for Computer Network Defense

(CND), Avdeling BKI, is responsible for detecting and stopping cyber-attacks against the

critical infrastructure and command and control systems utilized by the Norwegian military.

One of the tools used to carry out this task is the open source Intrusion Detection System

(IDS) SNORT® (1).

SNORT® is a leading open source IDS that is used to detect potentially unwanted or

malicious network traffic based on predefined patterns described in signatures. There are both

free and commercial signatures available for SNORT® and as SNORT® has been highly

adopted by the security community, these signatures are continually updated and maintained.

Using SNORT® has been plagued for years by the fact that it does not have a good system for

handling, updating or maintaining the signatures (henceforth called rules and rule sets) used

for detection, thus making it cumbersome to utilize SNORT® for security analysts.

Research has shown that a good rule management system for SNORT® will improve the

workflow and efficiency of the IDS significantly and a prototype for such a system was built

in 2012 called Bring Home The Bacon (BHTB) (2). This prototype has been in use at

Avdeling BKI since 2012, but is suffering from lacks in functionality and efficiency due to

being a proof-of-concept prototype. The prototype did, however, prove that there is a

significant gain from having an intuitive Graphical User Interface (GUI) by making the

operator workflow much more efficient, as you go from having to do complex operations in a

Command Line Interface (CLI) to just push buttons to make the system do things

automagically (2).

There was another similar project conducted at Gjøvik University College (GUC) in 2012

called Snortmanager (3) that also deals with managing SNORT® rules. However, that project

is not properly released as open source software, the project files are available but there is no

documentation or instructions publically available that describes usage and installation. The

project has also not been maintained since its initial release, is designed for a specific

company in mind and is heavily designed around the user interface. Enabling, disabling and

configuring rules is also cumbersome in this system as this is based on plaintext arguments in

“policies” that users must construct themselves. The rule distribution is also done manually

5

from the files generated. This makes Snortmanager not very usable for Avdeling BKI and

their routines.

Avdeling BKI has therefore tasked a group of students from GUC to design and develop a

more complete, effective and secure rule management system for SNORT® that can continue

to live on beyond this project.

1.2. Project Objectives

Results

Research, design and develop a system that as a minimum;

 Is programmatically more efficient than BHTB.

 Is developed as a standalone engine that responds to API calls from any arbitrary user

interface.

 Is modular in design and allows future changes and additions to not affect existing

functionality.

 Is scalable enough to handle both small and large sets of IDS sensors and rules in a

production environment.

 Is able to download rules and rule sets from multiple customizable sources.

 Is able to distribute different rules to different IDS sensors.

 Can download and distribute automatically at set intervals.

 Is capable of exporting rules for sharing.

 Has the capability to activate, deactivate, threshold and suppress rules on a per sensor

basis, in a way that is user friendly.

 Supports multi-user interaction.

 Can efficiently and safely work with different installations of SNORT® and various

other third party tools, such as SNORBY.

 Is easy to install.

 Has an internal logging system for all activity.

 Is well documented and can be easily adopted by anyone as open source software.

In addition, the project will attempt to add the following functionality;

 A separate graphical user interface.

6

 Said user interface must be user friendly and intuitive, and require only limited

knowledge of SNORT® rules from the user.

 The system can also distribute rules to Suricata, another SNORT®-like IDS, which

can operate with the exact same rules as SNORT®.

 Implement security features that ensure confidentiality of rules.

 The project will investigate and potentially implement multi-threading technology to

exploit modern hardware capacities.

 The system is capable of validating and checking rules for errors before they are

distributed to production sensors.

 The system allows commenting of the rules.

 The system supports writing custom rules and editing existing rules.

Once the system has been developed, it will be released as an Open Source Software to the

public in a well-documented format.

Effects

Forming baselines from the current prototype BHTB and from Snortmanager, the project has

a goal to further increase the efficiency of rule management by investigating and

implementing programming techniques such as multi-threading and a change-based system to

reduce latency and delays in the system by as much as 50% compared to the other projects.

The project will therefore be measuring for this effect.

Furthermore, the project will research and implement safeguards against unintentional failures

in SNORT® as a result of user error and malformed or misconfigured rules, thus reducing the

potential downtime of the IDS sensors, as a SNORT® sensor will simply not restart if a single

rule is malformed or misconfigured. Efficient ways of solving this problem will have to be

researched.

7

1.3. Constraints

Time

The project will commence on Febuary 3
rd

 2014 and will end on May 19
th

 2014, elapsing 15

weeks. It will comprise of an initial planning and design phase lasting 2 weeks, followed by a

development period of 8 weeks, and then ending with production of a report for the last 5

weeks. During the project, to ensure health and motivation, no work shall be conducted on

Sundays.

Personnel

The project group consists of three students. Additionally, the group disposes one mentor

from GUC and one mentor/representative from Avdeling BKI.

Technology

During development and testing, the project will utilize a virtualized server to host a testbed

of multiple sensors.

Economy

Economic constrains are established in the Project Agreement. There is no budget for this

project and any costs will be compensated as per the Project Agreement on an ad hoc basis.

Legal

The project group may during development see a need for testing the system and SNORT® in

a setting with live network traffic. This must be done in a controlled fashion and consider the

need for confidentiality in personal data.

The project will be influenced by the two previous projects surrounding the same type of

software and must be wary of copyright infringements. If anything is reused, credit must be

given where credit is due.

SNORT® is also a registered trademark of Sourcefire, Inc, and the project must treat it as

such. (4)

8

2. SCOPE

2.1. Subject

Software Engineering, Information Security.

2.2. Limitations

As SNORT® is primarily used in conjunction with the Linux operating system, this project

will limit its development of software to this operating system only. More specifically the

project will contain its development to the Ubuntu distribution as this is the platform utilized

by Avdeling BKI. The project will, however, strive to make the software portable.

The project will also have its main focus on the systems functionality and efficiency from a

programmatically standpoint and developing a graphical user interface (GUI) is considered a

secondary task and will prioritized as such. A GUI for demonstration purposes will be

included in the project and it will primarily take inspiration from BHTB.

While the system itself will not handle any data that may comprise of personal data, it may

contain rules and rule sets that are considered classified or confidential. The system must

therefore be built with this in mind and ensure confidentiality within the boundaries of the

system. The project will not guarantee the confidentiality of the system outside these

boundaries.

These boundaries include the program and its processes and threads, and the network link

established between the system and remote sensors. The project assumes that the system

owner has already established database security.

2.3. Project description

In broad strokes, this project is about designing a system that is a highly modular API-based

engine, which is independent of any GUI. The project will be the spiritual successor to

BHTB, but also take some inspiration from Snortmanager. Essentially taking good ideas from

both projects, add a few of our own, and create a more adoptable open source rule

management system for SNORT®.

We will utilize the latest stable version of Python as the main programming language for the

project. C++ was also considered, but due to the limited time at our disposal, we feel we can

9

create more functionality with Python, due to it requiring less memory management and

general “programmer friendly” ways of doing things.

The system will require a database to function efficiently and the project will utilize

MariaDB, as this is the de facto standard for the Linux platform. MariaDB is a separate

branch developed from MySQL by the original developer of MySQL, which is now owned

and maintained by Oracle.

Furthermore, the project will also consist of creating a GUI that is user friendly and

responsive. We will base this heavily on the GUI developed for BHTB in terms of displaying

rules in lists and with buttons and checkboxes to manipulate them. We may also borrow some

design ideas from Snorby (5), another SNORT® tool. The main technologies we will utilize

for the GUI will consist of standard web-oriented languages such as HTML, CSS, PHP and/or

Javascript.

Project modules

The rule “engine” can essentially be boiled down into 11 modules, which we will base our

development around. The blue modules must be in place to consider the system “functionally

complete”.

10

Rule Downloading Module

This module will handle all functionality related to downloading rules.

Rule Pre-Storage Processing Module

This module will essentially take downloaded rules and process them so that they are ready to

be fed into the database.

DB Module

This module will handle all input and output to/from the database.

Rule Pre-Distribution Processing Module

This module will essentially take rules stored in the database and prepare them for

distribution.

Rule Distribution Module

This module will be in charge of distributing rules out to the SNORT® sensors.

Tuning Module

This module will handle all functionality related to turning rules on or off, thresholding them

or suppressing them.

Rule View Module

This module will be similar to the Rule Pre-Distribution Processing Module, but instead of

preparing the rules for distribution to SNORT® sensors, it will prepare them for a human

readable format or GUI format.

Daemon Module

This module will run continually on the system to ensure that the API is responsive and to

carry out any interval based tasks, such as automatic updates or distributions.

Commenting Module

This module will allow users to attach comments to rules.

Rule Writing Module

This module will handle functionality for writing custom rules and editing existing rules.

Automatic Rule Checking Module

This module will be responsible for verifying rules to ensure that there are no malformed or

misconfigured rules that may potentially break a SNORT® sensor.

11

3. PROJECT ORGANIZATION

3.1. Roles

Project Manager

Thomas Nyheim

Development Team

Thomas Nyheim

Eirik Skogstad

Eigil Obrestad

Project Mentor

Slobodan Petrovic

Client Representative

Jarle Kittilsen

3.2. Regular meetings

The project will conduct regular status meetings every Friday. These meetings will be

alternating every other week between who is participating among the project mentor and the

client representative. Meaning the group will meet with the project mentor every two weeks

and the client representative every two weeks.

These meetings will be timed so that the meeting with the project mentor happens in the

middle of a development cycle and the meeting with the client representative will take place

at the end of a development cycle. This ensures that the project group can get feedback from

the mentor during the development and get feedback from the client on our progress and

direction.

12

3.3. Rules

The rules exist to ensure an effective execution of the project and to ease the handling and

resolution of potential conflict situations.

1. Group leader. The project group shall have one group leader who is elected for the entire

duration of the project. The group leader is responsible for hosting weekly group meetings

and keeping an overview of the project's work progress.

2. Work. Each group member is obliged to complete their work as best they can in

accordance to what is agreed upon in the work-planning meetings. It is expected that each

group member devotes a significant amount of time to the project and that the work load is, as

far as possible, equally divided between all group members. Lack of participation from a

group member will be discussed with the project mentor and repeated deliberate failures to

produce the expected amount of work might ultimately lead to an exclusion from the group.

Also, no group member is permitted to perform any work related to the project during

Sundays unless this is approved by all group members.

3. Conflicts. Any disagreement regarding a decision shall be resolved by voting by the

majority rule. Should the majority for some reason be unclear, the project leader will have the

final say. If the decision in question has an important consequence for the end-product of the

project, the project mentor or client representative should normally be consulted before

making a decision.

4. Expenses. Any expenses borne by a group member in direct relation to the project shall be

reimbursed fully or partially by the other group members if this is decided by the majority of

the project group. If the car of a group member is utilized for project-related transportation,

the fuel cost shall be equally split between participating group members.

5. Absence. Group members are obliged to report to the other members any previsioned

absence that directly interferes with the project work. Absence from the project lasting one

consecutive week or more, or multiple unauthorized absence periods, is not permitted as this

can severely endanger the work progress.

13

4. DEVELOPMENT MODEL

As this project is time-restricted, the development should be as efficient as possible. We

therefore need a model that utilizes the manpower we have present in the best possible way.

The size of the group is also quite small, so big and complex development models would add

too much bureaucracy to coordinate the project and is thus overkill.

As we want to have a lightweight development-model, some form of an agile development

model with well-defined development-cycles is preferred. This way, each group-member can

take an active part in the project and all members would feel a sense of ownership.

Developing iterative and incrementally, we are getting the best from both the unstructured

world, and from the very well defined waterfall approach. We are able to get feedback during

the project, and have a structured and reasonable way of actually doing changes in the plan

while the project is running. At the same time we would be able to maintain the overall plan

within cycles, so that it is possible to work individually, while still being well coordinated.

To be able to develop all the modules of the project within the timeframe, each development

cycle will consist of multiple modules developed in parallel. This allows us to maximize our

utilization of time and personnel.

14

The start of each cycle will consist of a meeting where we define the goals for that cycle, and

identification of the individual tasks that we need to get done. This is similar to the start of a

sprint in the development model Scrum.

In the development part of the cycle, we will individually work on the tasks that were defined

in the planning-part. Regular meetings and cooperative programming within the group would

ensure that we all pull the project in the same direction.

At the end of each cycle we should have a working set of software, which ideally should

comply with all the goals set in the start of each cycle. We are planning to have a meeting

with Avdeling BKI between each cycle to present the progress, and to let them influence the

direction of the project.

After all development cycles have been complete, we will then make final assurances that

everything works as intended and that all modules coexist in harmony. This part of the

development will also consist of hands-on testing by the client and various performance

testing.

15

5. QUALITY ASSURANCE

5.1. Documentation

The source code will be documented as per the standards for Python programming. The

project will also use a wiki-based documentation that will explain all functionality and API

calls in a user friendly way. This wiki will be used as the project website.

5.2. Configuration control

The project will utilize Subversion in a standard directory structure to ensure configuration

control. The software will be versioned from 0.1 to 1.0.

5.3. Risk analysis

Threat Likelihood Consequence Mitigation strategy

Project fails to complete in time 5 8

Ensure that proper planning is

conducted before project start

and to not graps over too much in

the allotted time.

Project files or data is lost 2 10

Operate with backups routines

and version control.

Sabotage of the project from an

external threat agent in the form of

either damage or planting of

malware/backdoors 1 9

Ensure configuration control and

internal project security at all

times.

Project fails to meet customer

expectations 3 8

Facilitate constant feedback and

discussions with client to assure

that the project is heading in the

right directions at every step.

Loss of, or lack of participation from,

project personell 3 8

Ensure availability and motivation

of project personell before project

start.

Illness among project personell 4 6

Maintain regulatory health and

safety standards. Ensure time for

breaks, food consumption and

health-inducing actitivies.

16

6. PROJECT TIMELINE

17

APPENDIX A - CITATIONS

1. SourceFire Inc. About SNORT. [Online]. Available from: http://www.snort.org/snort.

2. Henriksen DO. Managing signatures for IDS in a distributed environment - A study of a

signature management system. Gjøvik University College; 2012.

3. Vaskinn C, Wikestad K. Snortmanager. Gjøvik University College; 2012.

4. SourceFire Inc. Snort Trademark Guidelines. [Online]. [cited 2014 January. Available from:

http://www.snort.org/legal/snort-licensing/snort-trademark-guidelines.

5. threat stack, inc. Snorby Website. [Online]. Available from: https://snorby.org/.

Snowman

B CONTRACTS

100

PROSJEKTAVTALE

mellom Høgskolen i Gjøvik (HiG) (utdanningsinstitusjon),

 Avdeling for Beskyttelse av Kritisk Infrastruktur, Cyberforsvaret, Forsvaret (BKI) (Oppdragsgiver), og

 Thomas Nyheim (Student),

 Eirik Skogstad (Student) og

 Eigil Obrestad (Student)

Avtalen angir avtalepartenes plikter vedrørende gjennomføring av prosjektet og rettigheter til anvendelse av de

resultater som prosjektet frembringer:

1. Studenten(e) skal gjennomføre prosjektet i perioden fra 27. Januar 2014 til 19. Mai 2014 .

Studentene skal i denne perioden følge en oppsatt fremdriftsplan der HiG yter veiledning.

Oppdragsgiver yter avtalt prosjektbistand til fastsatte tider. Oppdragsgiver stiller til rådighet kunnskap og

materiale som er nødvendig for å få gjennomført prosjektet. Det forutsettes at de gitte problemstillinger det

arbeides med er aktuelle og på et nivå tilpasset studentenes faglige kunnskaper. Oppdragsgiver plikter på

forespørsel fra HiG å gi en vurdering av prosjektet vederlagsfritt.

2. Kostnadene ved gjennomføringen av prosjektet dekkes på følgende måte:

- Oppdragsgiver dekker selv gjennomføring av prosjektet når det gjelder f.eks. materiell, telefon/fax, reiser

og nødvendig overnatting på steder langt fra HiG. Studentene dekker utgifter for trykking og

ferdigstillelse av den skriftlige besvarelsen vedrørende prosjektet.

- Eiendomsretten til eventuell prototyp tilfaller den som har betalt komponenter og materiell mv. som er

brukt til prototypen. Dersom det er nødvendig med større og/eller spesielle investeringer for å få

gjennomført prosjektet, må det gjøres en egen avtale mellom partene om eventuell kostnadsfordeling og

eiendomsrett.

3. HiG står ikke som garantist for at det oppdragsgiver har bestilt fungerer etter hensikten, ei heller at prosjektet

blir fullført. Prosjektet må anses som en eksamensrelatert oppgave som blir bedømt av faglærer/veileder og

sensor. Likevel er det en forpliktelse for utøverne av prosjektet å fullføre dette til avtalte spesifikasjoner,

funksjonsnivå og tider.

4. Den totale besvarelsen med tegninger, modeller og apparatur så vel som programlisting, kildekode, disketter,

taper mv. som inngår som del av eller vedlegg til besvarelsen, gis det en kopi av til HiG, som vederlagsfritt

kan benyttes til undervisnings- og forskningsformål. Besvarelsen, eller vedlegg til den, må ikke nyttes av

HiG til andre formål, og ikke overlates til utenforstående uten etter avtale med de øvrige parter i denne

avtalen. Dette gjelder også firmaer hvor ansatte ved HiG og/eller studenter har interesser.

Besvarelser med karakter C eller bedre registreres og plasseres i skolens bibliotek. Det legges også ut en

elektronisk prosjektbesvarelse uten vedlegg på bibliotekets del av skolens internett-sider. Dette avhenger av

at studentene skriver under på en egen avtale hvor de gir biblioteket tillatelse til at deres hovedprosjekt blir

gjort tilgjengelig i papir og nettutgave (jfr. Lov om opphavsrett). Oppdragsgiver og veileder godtar slik

offentliggjøring når de signerer denne prosjektavtalen, og må evt. gi skriftlig melding til studenter og dekan

om de i løpet av prosjektet endrer syn på slik offentliggjøring.

5. Besvarelsens spesifikasjoner og resultat kan anvendes i oppdragsgivers egen virksomhet. Gjør studenten(e) i

sin besvarelse, eller under arbeidet med den, en patentbar oppfinnelse, gjelder i forholdet mellom

oppdragsgiver og student(er) bestemmelsene i Lov om retten til oppfinnelser av 17. april 1970, §§ 4-10.

6. Ut over den offentliggjøring som er nevnt i punkt 4 har studenten(e) ikke rett til å publisere sin besvarelse,

det være seg helt eller delvis eller som del i annet arbeide, uten samtykke fra oppdragsgiver. Tilsvarende

samtykke må foreligge i forholdet mellom student(er) og faglærer/veileder for det materialet som

faglærer/veileder stiller til disposisjon.

7. Studenten(e) leverer oppgavebesvarelsen med vedlegg (pdf) i Fronter. I tillegg leveres et eksemplar til

oppdragsgiver.

8. Denne avtalen utferdiges med et eksemplar til hver av partene. På vegne av HiG er det dekan/prodekan som

godkjenner avtalen.

9. I det enkelte tilfelle kan det inngås egen avtale mellom oppdragsgiver, student(er) og HiG som nærmere

regulerer forhold vedrørende bl.a. eiendomsrett, videre bruk, konfidensialitet, kostnadsdekning og økonomisk

utnyttelse av resultatene.

Dersom oppdragsgiver og student(er) ønsker en videre eller ny avtale, skjer dette uten HiG som partner.

Eiendomsrett for resultatet av dette prosjektet er beskrevet ved egen avtale (vedlagt).

10. Når HiG også opptrer som oppdragsgiver trer HiG inn i kontrakten både som utdanningsinstitusjon og som

oppdragsgiver.

11. Eventuell uenighet vedrørende forståelse av denne avtale løses ved forhandlinger avtalepartene i mellom.

Dersom det ikke oppnås enighet, er partene enige om at tvisten løses av voldgift, etter bestemmelsene i

tvistemålsloven av 13.8.1915 nr. 6, kapittel 32.

12. Deltakende personer ved prosjektgjennomføringen:

HiGs veileder (navn): Slobodan Petrovic

Oppdragsgivers

kontaktperson (navn): Jarle Kittilsen

Student(er) (signatur): dato

 dato

 dato

 dato

Oppdragsgiver (signatur): dato

IMT Dekan/prodekan (signatur): dato

Versjon Januar 2011hb

 AVTALE OM EIERSKAP AV ÅNDSVERK

mellom Høgskolen i Gjøvik (HiG) (utdanningsinstitusjon),

 Avdeling for Beskyttelse av Kritisk Infrastruktur, Cyberforsvaret, Forsvaret (BKI) (Oppdragsgiver), og

 Thomas Nyheim (Student),

 Eirik Skogstad (Student) og

 Eigil Obrestad (Student)

Avtalen angir avtalepartenes eierskapsforhold til åndsverk, kildekode og programvare produsert under

prosjekt med arbeidstittel «Snort Rule Manager» utført ved HiG av Nyheim, Skogstad og Obrestad for

BKI:

1. Ved prosjektets sluttførelse den 19. mai 2014 vil all kildekode, programvare og dokumentasjon bli publisert

som åpen kildekode i henhold til lisensen GNU General Public License
1
.

3. Oppdragsgiver stiller fritt til å benytte programvaren etter de retningslinjer som er angitt i lisensen beskrevet i

punkt. 1.

4. HiGs eierskap defineres i Prosjektavtale punkt 2 og 4, samt de retningslinjer som er angitt i lisensen beskrevet

i punkt 1.

5. Partenes signaturer:

HiGs veileder (navn): Slobodan Petrovic

Oppdragsgivers

kontaktperson (navn): Jarle Kittilsen

Student(er) (signatur): dato

 dato

 dato

 dato

Oppdragsgiver (signatur): dato

IMT Dekan/prodekan (signatur): dato

Versjon Januar 2011hb

1 GNU General Public License - http://www.gnu.org/licenses/gpl.html

Snowman

C MEETING RECORDS

C.1 Meeting Minutes

104

Referat Møte 12.01.2014
Deltagere: Nyheim, Obrestad, Skogstad

- Nyheim settes til rollen som prosjektleder.
- Oppgaven skrives på Engelsk som hovedspråk.
- Gruppen sikter mot karakteren A i dette prosjektet.
- Skogstad har forelesninger tirsdag, onsdag og torsdag, Nyheim har

forelesninger mandag, tirsdag og onsdag.
- Tentativ fast møtedag settes til fredag.
- Skogstad settes til å skissere et gruppereglement.
- Obrestad settes til å skissere en utviklingsmodell med utgangspunkt i en

agile/iterativ modell.
- Grunnet de andre medlemmenes arbeidsbelastning hos CERN kommer

Nyheim til å ta mye av arbeidet med forprosjektet, dette godtas av Nyheim
uten problemer.

- Gruppen tentativt foreslår at prosjektet benytter en wiki for dokumentering
av kode, må undersøke med IT-tjenesten om dette kan ordnes der.

- Gruppen avtaler at det bør settes av en dag til at alle medlemmene får
besøkt BKI så tidlig som mulig etter at Obrestad og Skogstad er ferdig hos
CERN ca 2. feb.

Referat Møte 15.01.2014
Deltagere: Nyheim, Obrestad, Skogstad, Petrovic

- Petrovic nevner at i tillegg til SNORT kan SNORT regler benyttes i et system
kalt Surikata og prosjektet bør ta høyde for dette.

- Petrovic trekker frem Snort Manager som et annet tidligere prosjekt som
også håndterer SNORT regler, selv om det prosjektet også trakk inn andre
elementer rundt konfigurasjon rundt SNORT sensorer. Det anbefales derfor
at prosjektet fokuserer noe på å gjøre det mer unikt fra tidligere oppgaver.

- Noen av punktene for målene bør inneholde mål som brukervennlighet,
hastighet og sikkerhet. Det bør også legges inn begrensninger på områder
prosjektet ikke kommer til å ta for seg.

- I en diskusjon utenfor dette møtet bestemmer gruppen seg for å benytte
Python som utviklingsspråk for prosjektet.

Referat Møte 06.02.2014
Deltagere: Nyheim, Obrestad, Skogstad, Petrovic

Rapport

- Petrovic: For å få best mulig resultat bør rapporten inneholde
tidsanalayser, statistikk, formler etc.

- Gruppen vil ta sikte på å lokalisere flaskehalser i BHTB, deretter forske på
og planlegge løsning.

- Rapporten skrives i LaTeX. Mal finnes på nett.

 Utvikling

- Petrovic: Utviklingen bør følge Løk-prinsippet med kjernen først, deretter
lag for lag.

- Petrovic mente også at vi burde forkaste løsningen med klient kjørende på
sensor, og heller implementere scp/ssh fra server. Vi konkluderte med at
utviklingen av begge løsninger ville kreve mye av det samme forarbeidet,
og førstnevnte kan brukes som en nødløsning.

- Gruppen vil ta i bruk Python og forskjellige rammeverk for å gjøre
utviklingen mer effektiv.

Referat Møte 14.02.2014
Deltagere: Nyheim, Obrestad, Skogstad, Kittelsen, Heen

Agenda

- Presentasjon av design (Project Decision Meeting.pptx, arkitektur,
usecaser, datamodell, m.m.)

- Innspill fra oppdragsgiver

- Drøfting av ulike filer i regeloppdateringene

Generelt

Før møtet ble det foreslått at prosjektnavnet skal være Snoman, med tilhørende
snømann-logo.

Både gruppen og oppdragsgiver er enige om at det skal først og fremst fokuseres
på det essensielle i utviklingen; den vitige kjernefunksjonaliteten skal være på
plass før eventuell ekstra funksjonalitet, som f.eks. regel-skriving, og
-kommentering samt Ole Brumm-løsninger.1

Innspill fra oppdragsgiver

Oppdragsgiver var generelt sett fornøyd med designet, og det ble bestemt at vi
fortsetter som planlagt.

Angåande klient-løsningen ble det påpekt at dette må fungere i et
langtidsperspektiv, spesielt med tanke på fremtidige systemoppdateringer.
Gruppen vil ha dette i tenkene og bruke mest mulig std biblioteker. I tillegg vil
programvaren pakkes for debian og eventuelt andre populære distribusjoner.

Det ble også reist spørsmål om vi kunne støtte autonome sensorer, dvs. sensorer
helt isolert fra, eller uten sterk tilknytning til, serveren. Dette er i utgangspunktet
utenfor oppgavens avgrensing, men gruppen satser på å lage et system der man
har mulighet til å la sensoren ligge registrert på serveren uten at man
kommuniserer direkte med den. Gruppen vil lage funksjonalitet for å eksportere
regler/regelsett slik at disse manuelt kan sendes til autonome sensorer.

 Filer i regeloppdateringene

classifications Vi parser filen, legger klassifiseringene
inn i databasen (core.RuleClass), og
genererer denne filen for sensorene. Vi
sletter aldri noe fra denne tabellen
automatisk.

gen-msg Som classifications, ingen sletting.

1 Ja takk, begge deler

sid-msg Parses, og legges inn i Rule.msg

unicode

reference

snort_conf Skal ikke statisk sendes til sensoren, da
denne inneholder all kjerneconfig. Kan
med fordel endres så lite som mulig av
programmet. Include egen fil der
regelsett er definert.

Preproc/so-rules

Preproc/so-rules er foreløpig ikke brukt av BKI, så de kan vi ignorere. Alternativt
legger vi til generators i databasen, og ett gid-felt for reglene.
Funksjonalitetsmessig mtp fremtiden er det lurt å legge det til i databasen, men
det vil øke tabellstørrelsene noe.

Referat Møte 21.02.2014
Deltagere: Nyheim, Obrestad, Skogstad, Petrovic

Neste møte: 07.03.2014 kl 11:00

Agenda

- Fremgang siden sist

- Rapporttips fra Petrovic

Fremgang siden sist

Gruppen har komt godt igang med utviklingen. I første utviklingssyklus har
gruppen fått på plass datamodellen, det meste av regelimportering er på plass
og det har blitt jobbet mye med GUI-et. I tillegg har gruppen fått på plass
grunnleggende synkronisering mellom tjener og klient.

Rapporttips fra Petrovic

Petrovic gjentar at rapporten må inneholde noe spesielt dersom den skal kunne
vurderes til toppkarakter. Med dette menes konkret forskning som presenteres
med målinger/matematiske modeller. Det ble foreslått at gruppen definerer noen
«metrics» for ytelse o.l. som man kan bruke for å sammenligne prosjektet med
tidligere prosjekter, herunder Snortmanager og spesielt BHTB.

For å starte dette arbeidet bør gruppen definere forskjellige kriterier om hva som
skiller et bra og et dårlig system, og deretter måle alle kjente tidligere prosjekter
opp mot dette og projisere en samlet ytelsesvurdering som vektorer i rommet
eller planet. Her ble det også nevnt bestemmelse av optimal og euklid distanse
for vektorene.

Gruppen har fastsatt noen formelle ytelseskrav i kravspesifikasjonen som kan
tjene som en basis for sammenligning med BHTB. Det bør også fokuseres på å
sammenligne prosjektet med Snortmanager så lang det lar seg gjøre, og
inkludere en drøfting om denne problemstillingen.

Gruppen har også fastsatt noen sikkerhetsutfordringer som bør utredes i
rapporten.

Referat Møte 28.02.2014
Deltagere: Nyheim, Kittelsen, Heen, Øvrig BKI personell

Agenda

- Presentasjon av fremdrift, hovedsakelig vise frem GUI.

Generelt

Det ble vist frem at man kan oppdatere regler gjennom GUI og det ble vist frem
Rules siden. Oppdragsgiver var i all hovedsak fornøyd, dette er stort sett det
samme som de har fra før.

Innspill fra oppdragsgiver

Det ble ytret ønske om å få inn en regels classification/severity i Rules listen.

Det ønskes også at bredden på GUI tilpasses bredere skjermer, på 1080p blir det
for smalt.

Det spørres også om det vil bli mulig å kopiere regelsett oppsett fra en sensor til
en annen på en enkel måte.

Referat Møte 14.03.2014
Deltagere: Nyheim, Kittelsen, Brein-Riise

Agenda

- Presentasjon av fremdrift, hovedsakelig vise frem GUI.

Generelt

Det ble vist frem de endringer som var fra sist. Hovedsakelig regel, regelsett og
regelklasse lister. I tillegg ble tuning vist frem. Oppdragsgiver var stort sett
fornøyd.

Innspill fra oppdragsgiver

Det ønskes «tooltips» når man holder over et felt slik at en enkelt kan forstå
dataene i listene.

Det er en bug i hovercolor i regellista.

Det ønskes at i input-feltene til thresholding og suppress skjemaene, står tekst
fra Snort manualen om datafeltet.

Det ønskes timestamping av alle aktiviteter.

Det ønskes at kilde for regler og regelsett står i listeraden.

Det ønskes at listene har en hiarkisk oppbygning, hovedsakelig i regelsett og
oppdateringslistene.

Det ønskes at den rå regelstrengen gjøres mer synlig i regellista.

Referat Møte 24.03.2014
Deltagere: Nyheim, Obrestad, Skogstad, Petrovic

Neste møte: 04.04.2014 kl 10:00

Merk: gruppen vil demonstrere systemet på neste møte.

Agenda

- Fremgang siden sist

- Hva skjer fremover

- Forskning i rapport

Fremgang siden sist

Mye av systemet er ferdig. Regler inn, manipulering av regler, og regler ut på
sensor forventes å være ferdig etter development cycle 3 (DC3).

Hva skjer fremover

DC4 vil hovedsaklig omfatte bugfixing og implementering av eventuell ekstra
funksjonalitet. Testing-fasen vil muligens komme før DC4, dersom gruppen anser
dette som fornuftig. Etter DC4 vil gruppen ha hovedfokus på rapporten.
Rapportarbeidet har allerede startet, og en mal for rapporten er klar.

Forskning i rapport

Gruppen presenterte planer for testing og sammenligning av programvaren.
Petrovic gjentok at det var viktig å definere klare kriterier og presentere målinger
som vektorer og måle distansen mellom disse. Gruppen ønsker også å få frem
forholdet mellom kompleksitet og ytelse etterhvert som kodebasen har
ekspandert.

Referat Møte 01.04.2014
Deltagere: Nyheim, Obrestad, Skogstad, Kittilsen

Agenda

- Demonstrasjon av Snowman

Demonstrasjon av Snowman

Gruppen demonstrerte all funksjonalitet i Web-grensesnittet. BKI forventer å
motta programvare for testing fredag 04/04/14. Det ble diskutert hva
«Dashboard» siden bør inneholde. JK foreslo følgende:

• Hvilke sensorer har vi kotakt med?

• Når skjedde siste oppdatering og synkronisering

• Oversikt over nøkkeltall (eks. antall regler)

Denne siden trenger heller ikke være komplett, da BKI vil kunne ønske å fylle den
med tilpasset informasjon. Det ble også vektlagt at systemet må dokumenteres
grundig. Gruppen har allerde mye dokumentasjon i raportens «Implementation»
kapittel som kan brukes som basis for dokumentasjonen.

Referat Møte 04.04.2014
Deltagere: Nyheim, Obrestad, Petrovic

Neste møte: 28.04.14

Agenda

- Demonstrasjon av Snowman

Demonstrasjon av Snowman

Gruppen demonstrerte all funksjonalitet i Web-grensesnittet. Til neste møte
ønsker Petrovic å lese rapport.

Referat Møte 28.04.2014
Deltagere: Petrovic, Nyheim, Obrestad, Skogstad

Agenda

- Rapport utkast 1

- Rapport endelig utkast

Neste møte: 16. Mai kl 10:00.

Rapport

Gruppen leverte første utkast av rapporten for gjennomlesning. Petrovic var
generelt fornøyd med oppsettet. Følgende kommentarer til innhold:

• Skriv Snort uten registrert R

• Test av update med 10 regler per fil: er 10 regler typisk? Hvorfor 10?

• Test case navn: rules per file overflødig

• Teoretisk analyse av forventet test resultat, eks. Utdyp hvorfor linær tid
forventes

• Performance testing bør omdøpes til Performance analysis og deles inn i
teoretisk analyse (pre-test) og praktisk analyse

• Resultattabell bør omstruktureres

• Få frem hva som er bedre med snowman ift bhtb/sm, ofres effektivitet for
funksjonalitet?

• Forskjeller nevnes i introduksjon

Endelig utkast leveres til Petrovic 13. Mai.

Snowman

C.2 Sprint Planning Meetings
Sprint Planning Notes 17/02/2014

kommentering logging syntax
Regler inn: (Automatisk innlasting av større sett)
- parse heile tar fil

- lese classifications.config først -> ruleClass objekt
- parse gen-msg.map -> Generator
- parse reference.conf -> ruleReferenceType
- parse rules -> Rule, RuleSet (50- parse sig-msg.map

- Update/files/..

GUI: Vise regler

Eirik koder regler inn, Thomas tar seg av GUI, Eigil begynner å se på RPC.
Kode klar til Fredag 21.02.14

Sprint Planning Notes 03/03/2014

Hva ble gjort forrige:
Regler inn:
Legge til og endre kilder.
Laste opp og parse manuelle filer.
Laste ned og parse fra kilder.
GUI:
Kan se uttømmende liste over regler.
Listen er søkbar.
Kan se detaljer for enkeltregler.
Kan legge til og endre kilder.
Kan laste opp og starte parsing av regler fra manuelle filer.
Kan starte nedlasting og parsing av regler fra kilder.
Hva henger igjen:
Tuning som allerede er i regler blir ikke parset pr nå.
Brukeren får ikke noen oversikt over endringer fra siste oppdatering i GUI, men det er
implementert i databasen.
Hva skal gjøres denne sprint:
Rapport:
Begynne å skrive implementerings-kapitler for de delene av systemet en har imple-
mentert.
Få med fancy designvalg.
Skal være "ferdig" til torsdag.
Tuning-modul:
Slå av og på regler og regelsett.
Legge til og endre threshold og suppress.
GUI:
Regel sett liste
Regel klasse liste

117

Snowman

Sensor administrasjon
Funksjonalitet for å støtte tuning.
Liste over endringer i siste regel-oppdatering.
Tilbakemeldinger til brukeren på jobbing i backend.
Tillegg:
Legge til threshold-parameter på Rule (Default-instillinger for regelen)
Legge til supress-parameter på Rule

Sprint Planning Notes 17/03/2014

(Eigil)
Lage klient
(Eirik)
Parse threshold og suppress riktig, update modul, configfil ta alltid threshold ut av stren-
gen.
Rename threshold. Må kunne parse threshold-filer og event filter filer! Rename thresold
i all kode! detection filter må i regel-objekt, vil overkjøre eventuelt event filter.
Fortsette med rapport, implementation
regler inn aktiv ikke aktiv? config!
Sette threshold og suppress per regel og per sensor
(Thomas)
Støtte nivåer med regelsett
Regelendringer siste per oppdatering med mulighet for regel av på, ferdig->delete liste
(ikke fordelt)
slette gamle revisjoner (config: number of revs to keep), rull tilbake til gammel rev.
edit event/detection filter, suppress og sensor
timestamp for når man gjør endringer i systemet med mulighet for kommentering.
Comment tabell: ID, user, time, comment, type, foreign ID
sortering i regelliste: SID, dato, navn, regelsett, klasse
kommentere, skrive, endre regler
sjekking av regler (config for hvilke kilder som skal sjekkes default)
Neste:
Filter: se kun regler som er på.
Sortering i UI.

Sprint Planning Notes 17/03/2014

sprint planning
Eigil: kode ett eller annet, Design
Eirik: rette ting fra slobodan, implementation, testing,
Thomas: introduksjon, kravspek: use case diagram, domenemodell
-tabell over features i existing solutions.

118

Snowman

D WORKLOG

Our worklog ended up being pretty long and detailed, so we counted it all up and present
the numbers in Table 24.

Nyheim Obrestad Skogstad

Prep, planning & meetings 108 80 95.5

Coding 163 238 105

Thesis 102 74 198

Total 391 392 398.5

Table 24: Worklog

119

Snowman

E ADDITIONAL USE CASES

E.1 High-level use cases

Use case Manage sensors

Primary actor User

Purpose Manage the Snort sensors that are attached to this system.

Description The user can either create, edit or delete sensors from the
system.

Preconditions None

Postconditions Sensors have been added, edited or removed from the
system.

Use case Manage sensor groups

Primary actor User

Purpose Create, edit or delete a sensor group.

Description A sensor group is an entity that can contain a number
of sensors. The user might wish to manipulate rules on
a group basis rather than for one sensor at a time. The
user can set up, edit or delete a sensor group and manage
which sensors are part of the group.

Preconditions None

Postconditions A sensor group is added, changed or removed from the
system

120

Snowman

Use case Manage ruleset groups

Primary actor User

Purpose Create, edit or delete a ruleset group.

Description A ruleset group is an entity that can contain a number
of ruleset. The user might wish to manipulate rulesets on
a group basis rather than for one ruleset at a time. The
user can set up, edit or delete a ruleset group and manage
which rulesets are part of the group.

Preconditions None

Postconditions A ruleset group is added, changed or removed from the
system

Use case Manage sources for rule updates

Primary actor User

Purpose Manage the sources for rule updates on the system.

Description The user can create, edit or delete sources for rule updates.

Preconditions None

Postconditions A source has been added, edited or removed from the
system

Use case Verify rules as valid and functional

121

Snowman

Primary actor Server

Description Before the rules are stored in the database, they are vali-
dated by doing a test run in a local SNORT-installation to
catch any errors.

Preconditions One or more rules are ready to be stored in the database.

Postconditions Valid rules are stored in the database, invalid rules are not
stored and will produce an error-message.

Triggers Central rule database update, Write rule

Use case Manage rule comments

Primary actor User

Purpose Create, edit or remove comments on a rule or ruleset.

Description User selects a rule or ruleset and either adds, edits or re-
moves its comment. The change is stored in the database.

Preconditions Rule must exist.

Postconditions Rule has new comment or comment is removed from rule.

Use case Globally enable/disable a rule or ruleset

Primary actor User

Purpose Turn a rule or ruleset on/off.

122

Snowman

Description User sends a command to enable/disable a specified rule
or ruleset, and the system updates the database to reflect
that the rule is enable/disabled.

Preconditions The rule or ruleset must exist in the database

Postconditions The rule or ruleset is deativated on all sensors except if
this setting is overridden in a sensor’s local RuleModifier.

E.2 Detailed use cases

Use case Write rule

Primary actor User

Purpose Create a custom rule

Description The user writes a rule via the web-interface. The rule is
processed and stored in the central rule database.

Preconditions None

Postconditions The central rule database contains a new custom rule.

Basic flow:

1. The user selects a ruleset for the new rule and writes the rule.

2. The rule is processed and stored in the central rule database.

Extensions:

1. The user can specify a new ruleset which will be automatically created.

Error handling:

2. If the rule is found to be invalid it will not be added to the database, and the user
can opt to make necessary changes and try again.

123

Snowman

Use case Enable/disable a rule or ruleset on one or more sensors

Primary actor User

Purpose Turn a rule or ruleset on/off on one or more sensors.

Description A user wants to either enable or disable a rule or ruleset on
one or more sensors. This is done by sending a command
that specifies which rule or ruleset is to be affected, how
it is affected and on which sensor or sensors are affected.
The central database is updated with this new status and
the change is pushed out to the affected sensor or sensors.

Preconditions One or more rulesets or rules must be present in the central
database. One or more sensor must be registered.

Postconditions The changes to the rule or ruleset must be reflected on the
affected sensor or sensors.

Triggers

Basic flow

1. The user enables/disables a rule on a given sensor.

2. The central database changes the status of the rule or ruleset by manipulating
the status flags.

3. The system notifies the sensor that a change has occurred.

4. The change is synced to the affected sensor.

Error handling:

4. The change may never be synced to the sensor due to errors: There must be an
error protocol that is followed in this scenario.

124

Snowman

Use case Rule tuning on sensor

Primary actor User

Purpose Manipulate threshold or suppress configurations for a spe-
cific rule on one or more sensors.

Description A user wants to either turn on or off a threshold or a sup-
pression modifier on a rule on one or more sensors. This
is done by sending a command that specifies which rule
the modification will apply to, the parameters of the mod-
ification and for which sensor(s) this will apply for. The
central database is then updated with this new status and
the change is pushed out to the affected sensor(s).

Preconditions The rule in question must be present in the central
database and the sensor(s) must be registered.

Postconditions The modifications are applied on the rule and sensor(s) in
question.

Triggers Set rule threshold, Set rule suppression

Basic flow

1. The central database creates a threshold/suppression for the specified rule and
sensor(s).

2. The system notifies the sensor(s) that a change has occurred.

3. The change is synchronised to the affected sensor(s).

Extensions

1. User turns off a threshold/suppression on a rule on one or more sensors.

Error handling

125

Snowman

2. The sensor(s) already contain(s) a threshold/suppress for said rule: User is asked
to overwrite or cancel operation.

3. The change may never be synced to the sensor due to errors: There must be an
error protocol that is followed in this scenario.

126

Snowman

F PERFORMANCE TEST SCRIPTS

F.1 Lines Added to Snowman Code

1 start = datetime.datetime.now()
2 <code that performs update>
3 end = datetime.datetime.now()
4 timefile = open("/tmp/srm−update−timing.txt", "a")
5 timefile.write("Time: %s\n" % str(end − start))
6 timefile.close()

Listing F.1: Code lines used for timing.

F.2 Bash Script for Snowman

1 #!/bin/bash
2 URL="http://192.168.1.100/testing/"
3 FILE=("testset.1−1.tar.gz" "testset.10−1.tar.gz"
4 "testset.100−10.tar.gz" "testset.1000−1.tar.gz"
5 "testset.1000−100.tar.gz")
6 FILEF="testset.10000−1000.tar.gz"
7 FILE2=("testset.rev2.1000−100.tar.gz"
8 "testset.rev3.1000−100.tar.gz")
9 FILE3=("s.1.tar.gz" "s.2.tar.gz")

10
11 function runTest {
12
13 echo "DROP DATABASE srm; CREATE DATABASE srm;" |
14 mysql −usrm −pbah5oofa6booyeeJa2Da
15 ../manage.py syncdb −−noinput
16 python createDemoData.py
17 python ../bin/snowmand &
18 PID=$!
19 echo "INSERT INTO update_source
20 (name, url, md5url, schedule, locked) VALUES
21 (’Testing’, ’URL1’, ’URL1.md5’,
22 ’No automatic updates’, 0);"
23 | mysql −usrm −pbah5oofa6booyeeJa2Da srm
24
25 python runTimedUpdate.py 3
26 python setRuleSetsToTestSensor.py
27 sleep 25
28 kill $PID
29
30 }
31
32 function runTest2 {
33
34 echo "DROP DATABASE srm; CREATE DATABASE srm;" |

127

Snowman

35 mysql −usrm −pbah5oofa6booyeeJa2Da
36 ../manage.py syncdb −−noinput
37 python createDemoData.py
38 python ../bin/snowmand &
39 PID=$!
40 echo "INSERT INTO update_source
41 (name, url, md5url, schedule, locked) VALUES
42 (’Testing’, ’URL1’, ’URL1.md5’,
43 ’No automatic updates’, 0);"
44 | mysql −usrm −pbah5oofa6booyeeJa2Da srm
45
46 python runTimedUpdate.py 3
47 python setRuleSetsToTestSensor.py
48 sleep 250
49 kill $PID
50
51 }
52
53 function runSpecialTest {
54
55 echo "DROP DATABASE srm; CREATE DATABASE srm;" |
56 mysql −usrm −pbah5oofa6booyeeJa2Da
57 ../manage.py syncdb −−noinput
58 python createDemoData.py
59 python ../bin/snowmand &
60 PID=$!
61 echo "INSERT INTO update_source
62 (name, url, md5url, schedule, locked) VALUES
63 (’Testing’, ’URL1’, ’URL1.md5’,
64 ’No automatic updates’, 0);"
65 | mysql −usrm −pbah5oofa6booyeeJa2Da srm
66
67 python runTimedUpdate.py 3
68 python setRuleSetsToTestSensor.py
69 sleep 250
70 python runTimedUpdate.py 3
71 python setRuleSetsToTestSensor.py
72 sleep 60
73
74 echo "UPDATE update_source SET url = ’URL2’,
75 md5url = ’URL2.md5’ WHERE id=3;"
76 | mysql −usrm −pbah5oofa6booyeeJa2Da srm
77
78 python runTimedUpdate.py 3
79 python setRuleSetsToTestSensor.py
80 sleep 60
81 kill $PID
82
83 }
84
85 for file in ${FILE[∗]}
86 do
87 echo −e "$file" >> /tmp/srm−update−timing.txt

128

Snowman

88 for i in {1..5}
89 do
90 runTest $file
91 done
92 echo −e "\n" >> /tmp/srm−update−timing.txt
93 done
94
95 echo −e "$FILEF" >> /tmp/srm−update−timing.txt
96 for i in {1..5}
97 do
98 runTest2 $FILEF
99 done

100 echo −e "\n" >> /tmp/srm−update−timing.txt
101
102
103 for i in {1..5}
104 do
105 runSpecialTest ${FILE2[0]} ${FILE2[1]}
106 done
107
108 for i in {1..5}
109 do
110 runSpecialTest ${FILE3[0]} ${FILE3[1]}
111 done

Listing F.2: Bash script used for testing.

F.3 Lines Added to BHTB Code

1 now = datetime.datetime.now()
2 <code that performs update>
3 stop = datetime.datetime.now()
4 time = stop − now
5 timefile = open(’/tmp/timefile’,’a’)
6 timefile.write("\nTime: "+str(time))
7 timefile.close()

Listing F.3: Code lines used for timing.

F.4 Bash Script for BHTB

1 rm −rf files_to_distribute/∗
2 rm −rf tmp/∗
3 rm −rf rules/∗
4 rm DB.db
5 cp config.py install
6 python install/install.py
7 python update.py
8 python test.py
9 cd web/

10 python web.py &
11 PID=$!
12 cd ..
13 for i in {1..5}

129

Snowman

14 do
15 python distribute.py
16 done
17 kill $PID

Listing F.4: Bash script used for testing.

130

Snowman

G UNIT TESTS

G.1 Unit Tests for Update

Note that some of the test cases make use of external files with sample rules etc.

1 import datetime
2 from django.test import TestCase
3
4 from core.models import Rule, RuleRevision , Generator , RuleClass

, RuleSet, Sensor, RuleReferenceType
5 from update.models import Source, Update
6 from tuning.models import DetectionFilter , EventFilter , Suppress
7
8 from update.tasks import UpdateTasks
9

10 class Test(TestCase):
11
12 def setUp(self):
13 # Create source and update objects
14 try:
15 source = Source.objects.get(name="Manual")
16 except Source.DoesNotExist:
17 source = Source.objects.create(name="Manual", schedule="

00:00", url="", lastMd5="")
18
19 self.update = Update.objects.create(time=datetime.datetime.

now(), source=source)
20
21 self.msg = "This is a sample message"
22 self.filters = ’detection_filter:track by_src, count 30,

seconds 60;threshold:type both, track by_dst, count 10,
seconds 60;’

23
24 self.rulestring = ’alert tcp any any −> any 21 (\
25 msg:"’+self.msg+’"; \
26 reference:arachnids ,IDS287; reference:bugtraq ,1387;

reference:cve,CAN−2000−1574; \
27 classtype: example−classtype; \
28 priority:10; \
29 ’+self.filters+’ \
30 metadata:foo bar, ruleset community , bar 1; \
31 gid:1; sid:2000000; rev:10)’
32
33 self.raw = " ".join(’alert tcp any any −> any 21 (\
34 msg:"This is a sample message"; \
35 reference:arachnids ,IDS287; reference:bugtraq ,1387;

reference:cve,CAN−2000−1574; \
36 classtype: example−classtype; \
37 priority:10; \

131

Snowman

38 metadata:foo bar, ruleset community , bar 1; \
39 gid:1; sid:2000000; rev:10)’.split())
40
41 self.allSensors = Sensor.objects.create(id=1, name="All

Sensors")
42
43 try:
44 rule = Rule.objects.get(SID=2000000)
45 rule.delete()
46 except Rule.DoesNotExist:
47 pass
48
49
50 def tearDown(self):
51 pass
52
53
54 def test_updateRule(self):
55 # Insert the rule
56 self.update.updateRule(self.rulestring , "example.rules")
57
58 try:
59 # Verify that all related objects exist
60 rule = Rule.objects.get(SID=2000000, active=True, priority

=10)
61 generator = rule.generator
62 ruleset = rule.ruleSet
63 ruleclass = rule.ruleClass
64 revision = rule.revisions.get(rev=10)
65 detectionFilter = rule.detectionFilters.get(sensor=self.

allSensors)
66 eventFilter = rule.eventFilters.get(sensor=self.allSensors

)
67 except Rule.DoesNotExist:
68 self.fail("Rule does not exist")
69 except Generator.DoesNotExist:
70 self.fail("Generator does not exist")
71 except RuleSet.DoesNotExist:
72 self.fail("RuleSet does not exist")
73 except RuleClass.DoesNotExist:
74 self.fail("RuleClass does not exist")
75 except RuleRevision.DoesNotExist:
76 self.fail("RuleRevision does not exist")
77 except DetectionFilter.DoesNotExist:
78 self.fail("DetectionFilter does not exist")
79 except EventFilter.DoesNotExist:
80 self.fail("EventFilter does not exist")
81
82 self.assertTrue(rule.active==True)
83 self.assertTrue(int(rule.priority)==10)
84
85 # Check revision object:
86 # 1: Check that filters are extracted

132

Snowman

87 self.assertTrue(revision.raw==self.raw)
88 self.assertTrue(revision.msg==self.msg)
89 self.assertTrue(revision.active==True)
90 self.assertTrue(revision.filters==self.filters)
91
92 self.assertTrue(generator.GID==1)
93 self.assertTrue(ruleset.name=="community")
94 self.assertTrue(ruleclass.classtype=="example−classtype", "

value was "+ruleclass.classtype)
95
96 self.assertTrue(detectionFilter.track==EventFilter.SOURCE)
97 self.assertTrue(detectionFilter.count==30)
98 self.assertTrue(detectionFilter.seconds==60)
99

100 self.assertTrue(eventFilter.eventFilterType==EventFilter.
BOTH)

101 self.assertTrue(eventFilter.track==EventFilter.DESTINATION)
102 self.assertTrue(eventFilter.count==10)
103 self.assertTrue(eventFilter.seconds==60)
104
105 def test_processFolder(self):
106 UpdateTasks.processFolder(path="update", update=self.update)
107
108 # Check generator
109 generator = Generator.objects.get(GID=1, alertID=1, message=

"snort general alert")
110 print repr(generator)
111
112 # Check reference type
113 RuleReferenceType.objects.get(name="bugtraq", urlPrefix="

http://www.securityfocus.com/bid/")
114
115 # Get reference types generated by rule
116 rtArachnids = RuleReferenceType.objects.get(name="arachnids"

)
117 rtUrl = RuleReferenceType.objects.get(name="url")
118
119 # Get rule and revision
120 rule = Rule.objects.get(SID=2000000)
121 ruleRevision = rule.revisions.get(rev=10, msg="DELETED

BACKDOOR subseven 22")
122
123 # Check rule references
124 ruleRevision.references.get(reference="485",referenceType=

rtArachnids)
125 ruleRevision.references.get(reference="www.hackfix.org/

subseven/",referenceType=rtUrl)
126
127 # Check filter
128 rule.eventFilters.get(sensor=self.allSensors ,

eventFilterType=EventFilter.LIMIT, track=EventFilter.
SOURCE, count=1, seconds=60)

129

133

Snowman

130 # Check suppress
131 suppress = rule.suppress.get(sensor=self.allSensors , track=

Suppress.DESTINATION)
132 for ip in suppress.getAddresses:
133 if ip not in ["192.168.0.1", "192.168.1.1/24"]:
134 self.fail("Suppress address not found or incorrect.")
135
136 def test_runUpdate(self):
137 UpdateTasks.runUpdate("update/test.rules")
138 Rule.objects.get(SID=2000000, active=True, priority=10)

G.2 Unit Tests for Web Interface

1 import json
2 from django.test import TestCase
3 from django.test import Client
4 from core.models import Sensor, Generator , RuleReferenceType ,

RuleSet, RuleClass , Rule
5 from update.models import Source
6 from django.contrib.auth.models import User
7 from tuning.models import EventFilter , DetectionFilter
8
9 class FilterTests(TestCase):

10 def setUp(self):
11 # Every test needs a client.
12 self.client = Client()
13
14 user = User.objects.create(username = "testuser", first_name

= "User", last_name = "Test")
15 self.sensor = Sensor.objects.create(name="testsensor", user=

user, active=True, ipAddress="")
16 self.sensor2 = Sensor.objects.create(name="testsensor2",

user=user, active=True, ipAddress="")
17 generator = Generator.objects.create(GID=1, alertID=1,

message="Generic SNORT rule")
18 ruleset = RuleSet.objects.create(name="testruleset",

description="desc",active=True)
19 ruleclass = RuleClass.objects.create(classtype="

testclasstype", description="desc", priority=1)
20 self.rule = Rule.objects.create(SID=2000, active=True,

generator=generator , ruleSet=ruleset, ruleClass=
ruleclass)

21 source = Source.objects.get_or_create(name = "Manual")
22
23 def test_AddEventFilter(self):
24 # Create an eventFilter
25 page = ’/web/tuning/setFilterOnRule/’
26 data = {’comment’:’no comment’,’force’:’False’,’sid’:’1:2000

’, ’sensors’:[self.sensor.id], ’filterType’:’eventFilter
’, ’count’:’5’, ’seconds’:’5’, ’type’:’1’, ’track’:’1’}

27 print "Sending request for new EventFilter"
28 self.sendRequest(page, data, "filterAdded")
29

134

Snowman

30 try:
31 f = EventFilter.objects.get(rule=self.rule, sensor=self.

sensor)
32 f.delete()
33 except EventFilter.DoesNotExist:
34 self.fail("EventFilter was NOT created.")
35
36 def test_AddDetectionFilter(self):
37 # Create an detectionFilter
38 page = ’/web/tuning/setFilterOnRule/’
39 data = {’comment’:’no comment’,’force’:’False’,’sid’:’1:2000

’, ’sensors’:[self.sensor.id], ’filterType’:’
detectionFilter’, ’count’:’5’, ’seconds’:’5’, ’type’:’1’
, ’track’:’1’}

40 print "Sending request for new DetectionFilter"
41 self.sendRequest(page, data, "filterAdded")
42
43 try:
44 f = DetectionFilter.objects.get(rule=self.rule, sensor=

self.sensor)
45 f.delete()
46 except DetectionFilter.DoesNotExist:
47 self.fail("DetectionFilter was NOT created.")
48
49 def sendRequest(self, page, data, reply):
50 response = self.client.post(page, data)
51 responseText = json.loads(response.content)[0]["response"]
52 print "Got response: "+responseText
53 self.assertTrue(responseText == reply)

135

Snowman

H TEST RESULTS

Test results are split into five columns representing the actual test results, SxT1 through
SxT5, followed by the mean value and standard deviation. S1, S2, and S3 represent the
test hardware.

136

Update_Results

Page 1

ID System S1T1 S1T2 S1T3 S1T4 S1T5 S1T S1T SD
SYN-1 Snortmanager 0,206792 0,233198 0,210922 0,256989 0,235184 0,228617 0,020362
SYN-10 Snortmanager 0,217664 0,238152 0,388388 0,246780 0,235390 0,265275 0,069632
SYN-100 Snortmanager 1,483021 1,181549 1,264857 1,126235 1,200714 1,251275 0,138694
SYN-1000 Snortmanager 9,424450 10,498779 8,694990 9,085834 9,648248 9,470460 0,678317
SYN-1000-B Snortmanager 1,797127 1,865735 1,850821 1,819779 1,848517 1,836396 0,027541
SYN-10000 Snortmanager 93,141342 93,759295 91,267864 92,260868 91,713406 92,428555 1,020502
SYN-1000-C Snortmanager 1,731733 1,744372 1,724406 1,840847 1,776041 1,763480 0,047548
SYN-1000-D Snortmanager 65,182876 64,240613 63,331489 62,854617 64,890406 64,100000 0,994827
SF-28064-A Snortmanager 44,187545 43,474986 43,054751 43,279595 42,961623 43,391700 0,487692
SF-28064-B Snortmanager 241,120667 247,782108 232,012255 241,237407 237,242046 239,878897 5,802700

SYN-1 BHTB 0,128643 0,129190 0,135711 0,104435 0,128201 0,125236 0,012025
SYN-10 BHTB 0,138525 0,150051 0,156831 0,155302 0,140905 0,148323 0,008293
SYN-100 BHTB 0,168435 0,171083 0,212938 0,172699 0,204697 0,185970 0,021114
SYN-1000 BHTB 0,559695 0,594925 0,543682 0,568407 0,574957 0,568333 0,018930
SYN-1000-B BHTB 0,428708 0,443431 0,449333 0,431507 0,474401 0,445476 0,018248
SYN-10000 BHTB 3,902603 3,492913 3,591116 3,368983 3,674602 3,606043 0,201163
SYN-1000-C BHTB 0,004394 0,004555 0,007230 0,011460 0,011442 0,007816 0,003504
SYN-1000-D BHTB 0,553685 0,607420 0,567166 0,560094 0,530044 0,563682 0,028149
SF-28064-A BHTB 6,018727 5,485870 5,564759 5,559401 5,563365 5,638424 0,215179
SF-28064-B BHTB 6,068790 5,810159 4,940879 5,345223 5,867540 5,606518 0,456795

SYN-1 Snowman 0.4 1,005548 1,059578 1,080994 1,088118 1,056659 1,058179 0,032370
SYN-10 Snowman 0.4 2,332549 2,343259 2,266561 2,306506 2,198717 2,289518 0,058737
SYN-100 Snowman 0.4 17,914653 17,948775 16,687145 18,105066 16,941285 17,519385 0,653922
SYN-1000 Snowman 0.4 165,782173 166,326524 165,626654 165,380375 175,110611 167,645267 4,187663
SYN-1000-B Snowman 0.4 146,741187 147,913234 148,554440 146,509770 146,132794 147,170285 1,020374
SYN-10000 Snowman 0.4 1898,370552 1769,044708 1768,219325 1767,793228 1772,447828 1795,175128 57,717000
SYN-1000-C Snowman 0.4 0,312047 0,256963 0,315896 0,317985 0,278471 0,296272 0,027237
SYN-1000-D Snowman 0.4 1,408959 1,357421 1,365136 1,387047 1,340046 1,371722 0,026799
SF-28064-A Snowman 0.4 9084,530000 9151,330000 9235,650000 9144,080000 9263,840000 9175,886000 72,918069
SF-28064-B Snowman 0.4 28,453345 29,113654 27,555421 28,432262 27,450084 28,200953 0,694756

SYN-1 Snowman 0.5 1.416252 1.422312 1.451006 1.377903 1.409945 7,077418 0,026230
SYN-10 Snowman 0.5 1.454169 1.472612 1.384907 1.469496 1.357374 7,138558 0,053013
SYN-100 Snowman 0.5 1.489865 1.620058 1.626211 1.556013 1.548973 7,841120 0,056367
SYN-1000 Snowman 0.5 2.538760 2.577367 2.571131 2.571857 2.582060 12,841175 0,017065
SYN-1000-B Snowman 0.5 2.361429 2.643134 2.646817 2.445625 2.445646 12,542651 0,129220
SYN-10000 Snowman 0.5 14.463401 14.060287 14.196808 14.156359 14.018620 70,895475 0,174304
SYN-1000-C Snowman 0.5 0.320461 0.310278 0.318357 0.280304 0.318478 1,547878 0,016824
SYN-1000-D Snowman 0.5 1.448637 1.438360 1.437713 1.437401 1.395071 7,157182 0,020864
SF-28064-A Snowman 0.5 60.418551 64.442370 64.315231 65.438771 65.192802 319,807725 2,037602
SF-28064-B Snowman 0.5 8.937439 9.270010 9.490084 9.346018 9.154797 46,198348 0,208257

ID System S2T1 S2T2 S2T3 S2T4 S2T5 S2T S2T SD
SYN-1 Snortmanager 0,098268 0,101233 0,089378 0,093957 0,084180 0,093403 0,006829
SYN-10 Snortmanager 0,097503 0,102940 0,120166 0,114301 0,102862 0,107554 0,009340
SYN-100 Snortmanager 0,129635 0,132515 0,168781 0,136476 0,127619 0,139005 0,016975
SYN-1000 Snortmanager 0,351296 0,402450 0,553614 0,684969 0,465230 0,491512 0,131876
SYN-1000-B Snortmanager 0,385234 0,530236 0,488488 0,598950 0,543306 0,509243 0,079777
SYN-10000 Snortmanager 4,855118 5,206928 5,060140 5,503203 4,900403 5,105158 0,262330
SYN-1000-C Snortmanager 0,818693 0,867879 0,852995 0,807754 0,798828 0,829230 0,029812
SYN-1000-D Snortmanager 18,138424 17,636141 15,887605 15,170345 15,754937 16,517490 1,291496
SF-28064-A Snortmanager 20,441905 20,345444 19,376373 21,248741 20,457761 20,374045 0,665747
SF-28064-B Snortmanager 80,024188 80,004083 80,072613 79,421550 80,522949 80,009077 0,391645

Update_Results

Page 2

SYN-1 BHTB 0,069105 0,061350 0,070685 0,065123 0,060140 0,065281 0,004630
SYN-10 BHTB 0,077151 0,069491 0,076584 0,068809 0,068088 0,072025 0,004453
SYN-100 BHTB 0,089563 0,084068 0,081976 0,082176 0,086781 0,084913 0,003238
SYN-1000 BHTB 0,147345 0,161374 0,144297 0,151398 0,148275 0,150538 0,006566
SYN-1000-B BHTB 0,170759 0,165450 0,149698 0,243768 0,149350 0,175805 0,039157
SYN-10000 BHTB 0,883050 0,886189 0,893544 1,010669 0,877408 0,910172 0,056481
SYN-1000-C BHTB 0,004482 0,004370 0,004460 0,004859 0,004544 0,004543 0,000187
SYN-1000-D BHTB 0,083898 0,087971 0,087722 0,078001 0,088855 0,085289 0,004497
SF-28064-A BHTB 1,667032 1,731853 1,727817 1,696671 1,754234 1,715521 0,033997
SF-28064-B BHTB 2,342256 2,363745 2,493566 2,446536 2,337797 2,396780 0,069617

SYN-1 Snowman 0.4 0,701108 0,636084 0,555317 0,611619 0,609072 0,622640 0,052858
SYN-10 Snowman 0.4 1,669105 1,664763 1,665243 1,654165 1,687434 1,668142 0,012127
SYN-100 Snowman 0.4 11,571188 12,498288 12,408186 12,344324 12,163973 12,197192 0,370746
SYN-1000 Snowman 0.4 114,968508 115,748754 114,048435 113,985480 114,336628 114,617561 0,742482
SYN-1000-B Snowman 0.4 114,456302 114,638746 113,148216 113,563002 113,701123 113,901478 0,627197
SYN-10000 Snowman 0.4 1161,359506 1162,043099 1161,683608 1164,914244 1162,343719 1162,468835 1,416344
SYN-1000-C Snowman 0.4 0,227747 0,159089 0,159433 0,225957 0,158850 0,186215 0,037102
SYN-1000-D Snowman 0.4 9,123599 10,065509 9,853473 9,976422 9,394814 9,682763 0,405417
SF-28064-A Snowman 0.4 3791,930059 3821,693653 3838,703577 3818,908736 3816,684324 3817,584070 16,760182
SF-28064-B Snowman 0.4 22,793565 21,801458 22,114177 21,775254 24,881671 22,673225 1,301017

SYN-1 Snowman 0.5 0,828667 0,809376 0,839335 0,742288 0,803740 0,804681 0,037723
SYN-10 Snowman 0.5 0,730362 0,876253 0,828412 0,778592 0,827469 0,808218 0,055557
SYN-100 Snowman 0.5 0,882882 0,773482 0,883142 0,949145 0,838829 0,865496 0,064785
SYN-1000 Snowman 0.5 1,170738 1,069663 1,024820 1,035318 1,190257 1,098159 0,077281
SYN-1000-B Snowman 0.5 1,124399 1,191150 1,298163 1,226452 1,389368 1,245906 0,101800
SYN-10000 Snowman 0.5 5,919835 6,226214 5,894973 5,363032 5,405001 5,761811 0,369023
SYN-1000-C Snowman 0.5 0,165332 0,161144 0,168788 0,173141 0,178974 0,169476 0,006905
SYN-1000-D Snowman 0.5 0,764924 0,741704 0,747993 0,736324 0,750344 0,748258 0,010811
SF-28064-A Snowman 0.5 27,017147 26,531894 26,488149 27,028858 27,310182 26,875246 0,353778
SF-28064-B Snowman 0.5 5,109430 5,475716 5,680058 5,550670 5,629171 5,489009 0,225945

ID System S2T6 S2T7 S2T8 S2T9 S2T10 S2T S2T SD
SYN-1000 Snortmanager 0,384479 0,457319 0,585513 0,490393 0,384264 0,460394 0,083850
SYN-1000-B Snortmanager 0,399573 0,518086 0,435683 0,662156 0,465522 0,496204 0,102421
SYN-1000-D Snortmanager 31,588423 32,522143 31,846631 31,785514 32,255841 31,999710 0,379806
SF-28064-A Snortmanager 21,588472 20,415596 21,451682 21,566694 20,616697 21,127828 0,565289

SYN-1000 BHTB 0,167639 0,162784 0,152462 0,154713 0,154155 0,158351 0,006547
SYN-1000-B BHTB 0,152755 0,164592 0,154168 0,154763 0,162806 0,157817 0,005456

ID System S3T1 S3T2 S3T3 S3T4 S3T5 S3T S3T SD
SYN-1 Snortmanager 0,033428 0,048519 0,031483 0,040018 0,031352 0,036960 0,007363
SYN-10 Snortmanager 0,040184 0,041227 0,036264 0,035786 0,034382 0,037569 0,002969
SYN-100 Snortmanager 0,149768 0,154191 0,161973 0,162140 0,167491 0,159113 0,007055
SYN-1000 Snortmanager 1,357576 1,369004 1,358835 1,351686 1,364279 1,360276 0,006621
SYN-1000-B Snortmanager 0,229040 0,225038 0,239134 0,219061 0,227949 0,228044 0,007310
SYN-10000 Snortmanager 13,516335 13,446996 13,514860 13,638274 13,502969 13,523887 0,069951
SYN-1000-C Snortmanager 0,208155 0,203170 0,205232 0,202749 0,210476 0,205956 0,003310
SYN-1000-D Snortmanager 10,703261 10,692305 10,747949 10,739760 10,700169 10,716689 0,025285
SF-28064-A Snortmanager 8,068972 8,023264 7,940072 8,083689 8,079231 8,039046 0,060308
SF-28064-B Snortmanager 65,141035 63,177657 64,769756 62,650342 62,393958 63,626550 1,252433

Update_Results

Page 3

SYN-1 BHTB 0,014454 0,022309 0,022516 0,015686 0,015910 0,018175 0,003908
SYN-10 BHTB 0,021625 0,014935 0,022947 0,017066 0,021982 0,019711 0,003504
SYN-100 BHTB 0,020909 0,025678 0,031950 0,026151 0,020433 0,025024 0,004682
SYN-1000 BHTB 0,064116 0,057157 0,057794 0,059321 0,063179 0,060313 0,003161
SYN-1000-B BHTB 0,046655 0,052058 0,052843 0,045831 0,052154 0,049908 0,003372
SYN-10000 BHTB 0,442512 0,428564 0,432250 0,447828 0,450516 0,440334 0,009598
SYN-1000-C BHTB 0,001282 0,001301 0,001313 0,001344 0,001309 0,001310 0,000023
SYN-1000-D BHTB 0,076648 0,088692 0,081179 0,083106 0,086751 0,083275 0,004737
SF-28064-A BHTB 1,019142 1,008337 1,008999 1,023319 1,028006 1,017561 0,008705
SF-28064-B BHTB 0,997865 0,996060 1,004496 1,007504 1,016197 1,004424 0,008079

SYN-1 Snowman 0.4 0,145925 0,162781 0,142633 0,142318 0,166075 0,151946 0,011540
SYN-10 Snowman 0.4 0,309486 0,328613 0,320812 0,345235 0,334128 0,327655 0,013498
SYN-100 Snowman 0.4 2,341000 2,396807 2,361303 2,326400 2,357539 2,356610 0,026434
SYN-1000 Snowman 0.4 22,487913 22,973747 23,148201 22,622529 22,919402 22,830358 0,269247
SYN-1000-B Snowman 0.4 20,403846 20,563843 20,159649 20,159649 20,552203 20,367838 0,200244
SYN-10000 Snowman 0.4 228,432106 228,438271 226,195244 228,036478 229,088230 228,038066 1,097072
SYN-1000-C Snowman 0.4 0,061277 0,059677 0,048918 0,055105 0,055781 0,056152 0,004802
SYN-1000-D Snowman 0.4 16,511663 17,230070 16,638370 17,244273 17,367003 16,998276 0,392596
SF-28064-A Snowman 0.4 1272,953816 1265,591761 1267,916730 1265,392845 1265,564088 1267,483848 3,230546
SF-28064-B Snowman 0.4 5,235618 5,236689 5,268861 5,250577 5,311020 5,260553 0,031252

SYN-1 Snowman 0.5 0,192482 0,193482 0,223332 0,194989 0,176516 0,196160 0,016928
SYN-10 Snowman 0.5 0,194755 0,197788 0,187074 0,209426 0,186751 0,195159 0,009310
SYN-100 Snowman 0.5 0,362321 0,328652 0,335591 0,354945 0,333655 0,343033 0,014698
SYN-1000 Snowman 0.5 1,706187 1,834414 1,805236 1,972884 1,800205 1,823785 0,096272
SYN-1000-B Snowman 0.5 0,368017 0,402124 0,487347 0,380095 0,382527 0,404022 0,048160
SYN-10000 Snowman 0.5 16,852623 16,773081 16,867794 16,782606 16,748645 16,804950 0,052219
SYN-1000-C Snowman 0.5 0,056816 0,051502 0,054920 0,047960 0,062924 0,054824 0,005651
SYN-1000-D Snowman 0.5 2,033637 2,039553 1,986151 2,046115 2,008360 2,022763 0,024967
SF-28064-A Snowman 0.5 12,450983 12,513210 12,546008 12,591141 12,512589 12,522786 0,051388
SF-28064-B Snowman 0.5 1,764425 1,681213 1,678459 1,723910 1,689931 1,707588 0,036581

Interface_Results

Page 1

ID System S1T1 S1T2 S1T3 S1T4 S1T5 S1T S1T SD
SYN-LIST-100 Snowman 0.5 2460,000 2420,000 2440,000 2690,000 2530,000 2508,000 109,864
SYN_LIST_SET Snowman 0.5 10420 13090 11180 11310 10530 11306,000 1070,715

SYN-LIST-100 BHTB 920,120 886,855 945,417 949,077 921,335 924,561 24,939
SYN_LIST_SET BHTB 42780,000 38570,000 39530,000 38410,000 37870,000 39432,000 1965,075

ID System S3T1 S3T2 S3T3 S3T4 S3T5 S3T S3T SD
SYN-LIST-100 Snowman 0.5 1090,000 769,752 1130,000 1120,000 1120,000 1045,950 155,127
SYN_LIST_SET Snowman 0.5 4690,000 4640,000 4760,000 4650,000 4640,000 4676,000 51,284

SYN-LIST-100 BHTB 639,147 683,821 643,079 674,523 646,470 657,408 20,304
SYN_LIST_SET BHTB 15630,000 9270,000 9210,000 9220,000 9290,000 10524,000 2854,537

Sync_Results

Page 2

ID System S1T1 S1T2 S1T3 S1T4 S1T5 S1T S1T SD
SYN-1 BHTB 1,601997 1,464528 1,501998 1,470546 1,468254 1,501465 0,058160
SYN-10 BHTB 1,548066 1,465181 1,506451 1,474272 1,452849 1,489364 0,038353
SYN-100 BHTB 1,539562 1,475369 1,481972 1,486051 1,465269 1,489645 0,028989
SYN-1000 BHTB 1,863378 1,733953 1,749688 1,794258 1,713741 1,771004 0,059540
SYN-1000-B BHTB 1,568222 1,509846 1,510405 1,513819 1,511305 1,522719 0,025482
SYN-10000 BHTB 1,834562 1,842366 1,836491 1,841225 1,844563 1,839841 0,004174
SYN-1000-C BHTB 1,758841 1,815413 1,736488 1,766125 1,800248 1,775423 0,031988
SYN-1000-D BHTB 1,733251 1,784421 1,816654 1,759442 1,784552 1,775664 0,031216
SF-28064-A BHTB 1,751222 1,742123 1,782281 1,744411 1,771252 1,758258 0,017660
SF-28064-A BHTB 2,513151 2,501121 2,496631 2,499329 2,511295 2,504305 0,007431
SF-28064-B BHTB 1,725441 1,736654 1,782144 1,775421 1,753346 1,754601 0,024321

SYN-1 Snowman 0.5 1,584408 1,671359 1,686522 1,655096 1,630811 1,645639 0,039973
SYN-10 Snowman 0.5 1,842637 1,804390 1,867744 1,859858 1,769264 1,828779 0,041271
SYN-100 Snowman 0.5 4,091391 3,928236 3,947004 4,020025 3,890382 3,975408 0,080163
SYN-1000 Snowman 0.5 25,011648 24,825197 25,008797 24,874929 24,885310 24,921176 0,084409
SYN-1000-B Snowman 0.5 24,842518 24,840451 25,033559 24,833728 25,034563 24,916964 0,106945
SYN-10000 Snowman 0.5 240,208419 239,224603 239,657150 240,000712 239,118943 239,641965 0,473694
SYN-1000-C Snowman 0.5 4,237017 4,393063 4,230834 4,234789 4,233953 4,265931 0,071103
SYN-1000-D Snowman 0.5 6,494697 6,712227 6,487460 6,538826 6,383489 6,523340 0,119984
SF-28064-A Snowman 0.5 113,041269 112,636746 112,033961 112,276049 112,559461 112,509497 0,381478
SF-28064-A Snowman 0.5 24,176332 24,093305 24,204543 24,276337 24,210317 24,192167 0,066317
SF-28064-B Snowman 0.5 26,182206 26,497129 26,241492 26,299322 26,594323 26,362894 0,175361

ID System S2T1 S2T2 S2T3 S2T4 S2T5 S2T S2T SD
SYN-1 BHTB 1,457105 1,459435 1,479865 1,468867 1,472788 1,467612 0,009431
SYN-10 BHTB 1,447054 1,466315 1,464936 1,534225 1,451509 1,472808 0,035331
SYN-100 BHTB 1.465433 1.475585 1.466679 1.477495 1.481584 1,473355 0,007021
SYN-1000 BHTB 1.515109 1.486776 1.533385 1.489662 1.492625 1,503511 0,020108
SYN-1000-B BHTB 1,468936 1,487726 1,480308 1,480513 1,489574 1,481411 0,008127
SYN-10000 BHTB 1,617591 1,609389 1,570813 1,585638 1,586016 1,593889 0,019135
SYN-1000-C BHTB 1,523412 1,515633 1,509423 1,516314 1,511136 1,515184 0,005449
SYN-1000-D BHTB 1,519234 1,521990 1,513501 1,520119 1,494876 1,513944 0,011120
SF-28064-A BHTB 1,572103 1,602751 1,587868 1,578691 1,583445 1,584972 0,011531
SF-28064-A BHTB 2,348232 2,450012 2,412287 2,384758 2,421534 2,403365 0,038638
SF-28064-B BHTB 1,587952 1,586874 1,603754 1,568568 1,576334 1,584696 0,013310

SYN-1 Snowman 0.5 1,500620 1,561754 1,485359 1,468405 1,502939 1,503815 0,035222
SYN-10 Snowman 0.5 1,803002 1,717718 1,694227 1,754551 1,795272 1,752954 0,047404
SYN-100 Snowman 0.5 4,080263 4,002436 4,052210 4,036057 4,009683 4,036130 0,031785
SYN-1000 Snowman 0.5 25.293685 26.148333 26.126963 24.002027 25.300082 25,374218 0,874753
SYN-1000-B Snowman 0.5 24,543550 25,322921 26,499748 25,183168 24,591195 25,228116 0,790942
SYN-10000 Snowman 0.5 253,368507 254,918622 250,352696 250,282503 249,113682 251,607202 2,429709
SYN-1000-C Snowman 0.5 4,393080 4,393063 4,230834 4,234789 4,233953 4,297144 0,087582
SYN-1000-D Snowman 0.5 6,600918 6,712227 6,487460 6,538826 6,383489 6,544584 0,123010
SF-28064-A Snowman 0.5 107,244311 108,897443 103,478098 103,113980 105,044251 105,555617 2,477835
SF-28064-A Snowman 0.5 16,759410 16,423130 16,440110 16,392249 16,480373 16,499054 0,148980
SF-28064-B Snowman 0.5 22,896957 23,318300 23,643247 22,009474 23,298042 23,033204 0,630507

Sync_Results

Page 3

ID System S3T1 S3T2 S3T3 S3T4 S3T5 S3T S3T SD
SYN-1 BHTB 0,003280 0,003456 0,003255 0,003281 0,003228 0,003300 0,000090
SYN-10 BHTB 0,003492 0,003257 0,003616 0,003359 0,003587 0,003462 0,000152
SYN-100 BHTB 0,004736 0,004383 0,004759 0,004255 0,004327 0,004492 0,000238
SYN-1000 BHTB 0,014926 0,015331 0,015118 0,015460 0,014827 0,015132 0,000266
SYN-1000-B BHTB 0,004063 0,004286 0,004142 0,004037 0,004253 0,004156 0,000111
SYN-10000 BHTB 0,120476 0,122886 0,121392 0,122107 0,121522 0,121677 0,000894
SYN-1000-C BHTB 1,105447 1,086171 1,121011 1,103712 1,072213 1,097711 0,018855
SYN-1000-D BHTB 1,100292 1,108830 1,028967 1,046725 1,039907 1,064944 0,036839
SF-28064-A BHTB 1,051726 1,058626 1,072986 1,069411 1,061279 1,062806 0,008512
SF-28064-A BHTB 1,145471 1,131565 1,119483 1,134853 1,155174 1,137309 0,013625
SF-28064-B BHTB 1,123244 1,102139 1,109704 1,151463 1,101915 1,117693 0,020772

SYN-1 Snowman 0.5 0,359170 0,368295 0,356992 0,386964 0,386265 0,371537 0,014404
SYN-10 Snowman 0.5 0,425734 0,455836 0,468959 0,471120 0,445163 0,453362 0,018677
SYN-100 Snowman 0.5 1,147232 1,093158 1,081029 1,060226 1,091920 1,094713 0,032191
SYN-1000 Snowman 0.5 7,696620 7,705567 7,817169 7,832752 7,745720 7,759566 0,062738
SYN-1000-B Snowman 0.5 7,319058 7,209191 7,298548 7,209002 7,224510 7,252062 0,052680
SYN-10000 Snowman 0.5 17,028875 16,950263 16,850382 16,945703 16,535579 16,862160 0,193216
SYN-1000-C Snowman 0.5 2,154336 2,429049 2,497035 2,163776 2,149603 2,278760 0,170011
SYN-1000-D Snowman 0.5 11,218336 11,941164 12,666270 11,209971 11,174488 11,642046 0,656379
SF-28064-A Snowman 0.5 40,120780 40,455339 40,273142 39,852550 39,319278 40,004218 0,442030
SF-28064-A Snowman 0.5 8,708399 8,945423 8,449702 8,699022 8,486952 8,657900 0,199675
SF-28064-B Snowman 0.5 8,732808 9,548194 8,749769 8,627621 8,541429 8,839964 0,404790

Snowman

I AVDELING BKI FEEDBACK

• Tooltip?

• Tungvindt med skrollbar på references (jeg la ikke merke til at den var der, så
trodde først at noen av reference ikke ble automatisk en link)

• Sortering på kolonner

• Mulighet til å se flere enn 20 regler per side

• Status ikoner, når D (?), så kommer de over på 2 linjer

• Mulighet for å se på kun egen tuning (filtrere bort regler som kommer med tuning
fra leverandør)

• Skriveleif på Emerging Threaths, skal være Emerging Threats

• Feiling av automatisk nedlastning av regler, hvordan får man med seg at dette skjer
(hvis dashboard ikke blir ferdig)

• Mulighet for å søke på strenger i regelsettet?

• Mulighet for å søke etter annet enn sid og name

• Comment fungerer ikke..

• Mulighet til å hoppe til f.eks. side 1000 av 2385

• Reorganize Rules?

• Mye scrolling når man ser på rules->by set->regler i set a.b.., mulighet for å få info
mer komprimert, mindre bokser

• Under update->manual update er det en knapp med norsk tekst (Velg fil)

143

	English Abstract
	Norwegian Abstract
	Preface
	Glossary
	Contents
	List of Figures
	List of Tables
	INTRODUCTION
	Project Background
	Previous Work
	Project Description
	Target Audence
	Project Objectives
	Result Objectives
	Effect Objectives

	Academic Background
	Framework
	Software Development Methodology
	Schedule
	Project Organization

	Document Structure
	Special Styles Used

	EXISTING SOLUTIONS
	Bring Home The Bacon
	Snortmanager
	Other Notable Programs
	Research on Software Performance
	Functionality Comparison

	REQUIREMENTS SPECIFICATION
	Functional Requirements
	Program Workflow
	High-level Use Cases
	Detailed Use Cases
	Use Case Diagram
	Domain Model

	Supplemental Requirements
	Functionality
	Usability
	Reliability
	Performance
	Security
	Interoperability
	Licensing

	Constraints
	Platform
	Data Security
	Graphical User Interface

	Security Assessment

	CONCEPTS OF SNORT
	Rules
	Rulesets
	Generators
	References
	Event and Detection Filters
	Rule Suppression

	DESIGN
	General Design
	Centralized or Distributed Setup?

	Server Design
	Architecture
	User Interface
	Database

	Client
	Architecture
	Database

	IMPLEMENTATION
	Programming Languages
	Standards and Guidelines

	Development Environments
	Environments
	Version Control

	Frameworks
	Django
	SQLAlchemy
	jQuery
	Bootstrap

	Core Module
	Rules and Rule Revisions
	Rulesets
	Sensors
	Comments

	Update Module
	Sources
	Files
	Running an Update
	Rule Parsing
	Classification, Generator and Reference Type Parsing
	Saving

	Tuning Module
	Distribute
	Initiating the Distribution
	Synchronisation
	Generating Snort Configuration

	Graphical User Interface
	Structure
	Design
	Overview of Central GUI Features

	Logging
	Configuration Files
	Server Configuration File
	Client Configuration File

	Deployment
	Snowman Server
	Snowman Client

	SOFTWARE TESTING
	Strategy
	Description of Problems
	Rule Insertion
	List Pagination
	The Ever Changing Number of Changes

	PERFORMANCE ANALYSIS
	Theoretical Analysis
	Effectiveness of Update Processing
	Effectiveness of Rule Distribution
	GUI Latency
	Sublinearity in Performance

	Practical analysis
	Definitions
	Environment
	Test suites
	Update processing tests
	Rule distribution tests
	Interface loading tests

	RESULTS OF PERFORMANCE TESTING
	ANALYSIS OF PERFORMANCE TESTING RESULTS
	Effectiveness of update processing
	Effectiveness of rule distribution
	GUI latency
	Sublinearity in performance
	Conclusions

	CONCLUSIONS
	Results
	Future Work
	Abandoned Performance Tests

	Conclusion

	Group Evaluation
	Introduction
	Organization
	Work distribution
	What could have been done differently
	Subjective views
	Thomas Nyheim
	Eigil Obrestad
	Eirik Skogstad

	Bibliography
	Appendices
	PROJECT PLAN
	CONTRACTS
	MEETING RECORDS
	Meeting Minutes
	Sprint Planning Meetings

	WORKLOG
	ADDITIONAL USE CASES
	High-level use cases
	Detailed use cases

	PERFORMANCE TEST SCRIPTS
	Lines Added to Snowman Code
	Bash Script for Snowman
	Lines Added to BHTB Code
	Bash Script for BHTB

	UNIT TESTS
	Unit Tests for Update
	Unit Tests for Web Interface

	TEST RESULTS
	AVDELING BKI FEEDBACK

