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Abstract

Propelling a boat forward by converting wave energy into propulsive thrust was
first proposed in 1858 and first successfully done in practice in the 1890s – to the
author’s knowledge. Several experimenters have since demonstrated the feasibility
of wave-powered boats, both in model and full scale. The most common type of
wave-powered boat, and also the type studied in this thesis, is a boat with foils
that convert the vertical motion in waves into propulsive thrust. In addition to
saving fuel, another benefit of these foils, called wavefoils in this thesis, is that
they significantly reduce the most violent vessel motions.

Previous theoretical models of wavefoils have neglected the effect of stall, which
is reasonable only for small wave height and/or if the ship speed is high. To
be able to simulate all wave conditions in real-time or faster, a slightly modified
version of the Leishman-Beddoes dynamic stall model for the wavefoil forces was
implemented in the time-domain ship simulator VeSim from MARINTEK. This
model was compared with experiments and was found to give good estimates of
the average foil thrust, although the experimental force histories were not always
well reproduced by the model.

The drawback of a spring-loaded wavefoil, which is commonly used to reduce
the maximum angle of attack below the stall limit, is that the spring stiffness needs
to be tuned for the instantaneous wave condition. In this thesis, two experiments
where the foil was pitched automatically by a motor – so-called active pitch control
– are presented. A model of a platform supply vessel was outfitted with a wavefoil
with pressure sensors on and near the leading edge. The purpose of the pressure
sensors was to relate the leading-edge pressure to the angle of attack. The actively
pitch-controlled foil resulted in less ship resistance in waves than the fixed foil in
some cases but could potentially have performed better with a stiffer pitch actuation
mechanism. Another method of pitch control, where freely-rotating vanes near the
foil detected the angle of attack, was also tested, with an improved pitch actuation
mechanism. This method of pitch control relies on the value of a parameter in the
control algorithm to result in reduced ship resistance, and this was also observed
in the experiments.

A spring-loaded foil was tested without the ship model and produced higher
thrust than the actively pitch-controlled foil with angle of attack vanes. The added
mass force is believed to have caused a more beneficial pitch motion for the spring-
loaded foil than for the vane-based pitch-controlled foil.

The experiments were compared with simulations in VeSim. Foil thrust and
ship motions agreed fairly well in simulations and experiments, but there was less
agreement for the ship resistance. At moderate speed, pitching the foil, either
actively with a motor or passively with a spring, was shown to only be important
for the wave periods producing the most violent ship motions. Simulated fuel
savings for the vessel operating in irregular waves, with one wave height and three
wave periods commonly found in the North Sea, were well above 30% when sailing
at 8 knots for several wave directions but decreased with increasing speed.

A ship entirely powered by renewable energy was proposed and simulated. The
ship was propelled by wind and wave energy using wingsails and wavefoils, while
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solar panels provided the necessary electricity for onboard use. Sailing between
the Azores and Madeira, round-trip, the expected ship speed was 5-6 knots with a
standard deviation of approximately 4 knots, for all four seasons.

Experiments were performed with a small radio-controlled ship model, outfitted
with a spring-loaded wavefoil underneath the bulb. The influence of the spring-
stiffness on the ship speed was small in the experiments, and this was also found
in simulations. Although the wavefoil was only beneficial for two of the three wave
periods tested in the experiments, and only in head seas, simulations showed that
the wavefoil is much more beneficial in full scale.
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Nomenclature

Abbreviations

2D Two-dimensional

3D Three-dimensional

AP Aft perpendicular

BL Baseline

CDF Cumulative distribution function

CFD Computational fluid dynamics

L-B Leishman-Beddoes

RAO Response Amplitude Operator

Greek Letters

α Angle of attack

α0 Zero-lift angle of attack

αA Angle of attack amplitude

αE Effective angle of attack

αf Equivalent angle of attack, defined in Eq. 3.43

αv Angle of attack where leading-edge vortex shedding begins

αA,c Complex angle of attack amplitude

αmax Maximum angle of attack for a pitch-controlled foil, maximum quasi-
steady angle of attack in Sections 4.7 and 5.7

αopt Optimal angle of attack

β Apparent wind angle

v
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δ Foil pitch, Dirac delta function in Section 3.2.2, parameter determining
wave short-crestedness in Section 6.4

δA Foil pitch amplitude

δA,c Complex foil pitch amplitude

δopt Optimal foil pitch

δws Wingsail angle

η Efficiency

ηC Leading-edge suction recovery factor

γb Bound vorticity

γw Wake vorticity

Λ Aspect ratio

λ Wave length, scale factor

ω Angular wave frequency, angular frequency for an oscillating foil

ωe Angular frequency of encounter

ωe,r Reduced frequency in Section 5.6

Φ Variable in MARINTEK’s expression for the form factor

φ Inflow angle

φ(s) Wagner function

φE Effective inflow angle

ρ Water density

σ Dummy time variable of integration, standard deviation

σCT Standard deviation of the mean value of the thrust coefficient

σCT Standard deviation of the thrust coefficient

τ Leading-edge vortex travel parameter

θ Primary direction of wave propagation

ζA Wave amplitude

Mathematical Symbols

η Vector with ship positions and Euler angles in n-frame

ν Vector with ship velocities in b-frame
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νr Vector with ship velocities in b-frame including ocean currents

τFK+d Vector containing Froude-Krylov and diffraction forces

ξ Vector with ship motions in s-frame

z̈ Water acceleration perpendicular to foil

∆S Nondimensional time step

∆t Time step

δu Wave-induced vessel velocities in xb-direction

δw Wave-induced vessel velocities in zb-direction

= Imaginary part

A Added mass matrix

Btotal Damping matrix, including both potential and viscous damping

C∗RB Coriolis matrix

e1 Unit vector in xb-direction

G Restoring force matrix

K(t) Matrix of retardation functions

MRB Rigid body mass matrix

L Laplace transform

L−1 Inverse Laplace transform

CH Mean horizontal force coefficient

FH Average foil thrust during a cycle

< Real part

ξA Vector containing complex motion amplitudes

FA Vector containing complex amplitudes of the wave excitation forces and
moments

FfA Foil wave excitation force amplitude vector

Ffoil Vector containing complex amplitudes of the foil forces

Af Foil added mass matrix

A Added mass matrix
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Bf Foil damping mass matrix

B Damping matrix

Cf Foil restoring matrix

C Restoring matrix

M Mass matrix

Latin Letters

A Wake width in definition of Strouhal number

a Pitch axis location relative to the mid-chord measured in semi-chords
in Section 3.2, distance from where Nf attacks to the quarter-chord in
Section 5.3

A1 Constant in Wagner function curve fit, Eq. 3.10

A2 Constant in Wagner function curve fit, Eq. 3.10

B Breadth of ship hull

b Semi-chord length

b1 Constant in Wagner function curve fit, Eq. 3.10

b2 Constant in Wagner function curve fit, Eq. 3.10

c Chord length

C(k) Theodorsen function

CB Block coefficient

CC Chordwise force coefficent

CstaticC Static chordwise force coefficient

CD Drag coefficient

CF Frictional resistance coefficient

CL Lift coefficient

CCL Circulatory part of the lift coefficient

CN Normal force coefficient

C ′N Normal force coefficient after pressure delay

CCN Circulatory normal force coefficient
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CfN Normal force coefficient incorporating both pressure and viscous lags

CIN Noncirculatory normal force coefficient

CpN Sum of circulatory and noncirculatory force coefficients

CVN Vortex-induced normal force coefficient

CP Power coefficient

CR Residual resistance coefficient

CT Thrust coefficient, total resistance coefficient of ship

CV Increment in vortex-induced normal force coefficient due to a leading-
edge vortex

CD,i Induced drag coefficient

CD,v Viscous drag coefficient

CD0 Viscous drag coefficient at zero lift

CLα Lift coefficient slope

cmax Maximum chord length

CNα Normal force coefficient slope

CstaticN Static normal force coefficient

Cstrip Stripwise chordwise foil force

CPV Nondimensional center of pressure due to leading-edge vortex

D Foil drag, deficiency function in Appendix A

d Distance from spring clamp to foil pivot point

D(θ) Wave spreading function

Df Deficiency function for the degree of attachment

Dp Attached flow deficiency function

Di,strip Induced drag contribution from a foil strip

Dstrip Stripwise foil drag

ds Foil strip width

E[U ] Expected value of ship speed

f Degree of attachment in Section 3.3, example function in Appendix A

f ′ Degree of attachment calculated from αf
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f ′′ Delayed f ′ due to boundary layer delay

f ′′C Delayed f ′C due to boundary layer delay

f ′C Degree of attachment defined in Eq. 3.58

F (u) Cumulative distribution function for vessel speed

FV Vertical foil force

flag Delayed f in Appendix A

g Acceleration of gravity

H Wave height

h Foil heave motion

hA Foil heave amplitude

Hs Significant wave height

hA,c Complex foil heave amplitude

Hs,sw Hs due to swell-dominated sea

Hs,w Hs due to wind-dominated sea

I Moment of inertia, integral in the calculation of deficiency functions

i Imaginary unit

k Reduced frequency, wave number in Section 5.6, variable in MARIN-
TEK’s expression for the form factor

ks Spring constant

L Foil lift

LPP Length between perpendiculars

Lstrip Stripwise foil lift

LWL Waterline length

M Foil pitching moment (about quarter-chord if not otherwise specified)

Mspring Moment about a spring-loaded foil’s pivot point produced by the spring

N Normal foil force, number of repeated tests in Appendix B

Nf Normal force associated with CfN

NV Normal force associated with CVN

NAM Noncirculatory normal foil force
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Nstrip Stripwise normal foil force

ob Origin in b-frame

on Origin in n-frame

os Origin in s-frame

P Average input power to the foil during a cycle in Chapter 4, total engine
power in Section 5.5

pk Pressure at pressure sensor k

PM Power consumed by the electric motor in Chapter 7

PT Propeller power

PCT Precision limit for the mean value of the thrust coefficient

PCT Precision limit for the thrust coefficient

R Ship resistance

Re Reynolds number

S Leading-edge suction force in Section 3.2.5, projected area of the foil

s Number of semi-chords traveled at time t

St Strouhal number with the double heave amplitude as the wake width

StTE Strouhal number with the trailing edge motion as the wake width

T Motion period, wave period, foil thrust, ship draft, nondimensional time
constant in Appendix A

t Time, t-value in the Student’s t-distribution in Appendix B

t′C Parameter defined in Eq. 3.57

t′N Parameter defined in Eq. 3.45

Tf Nondimensional time constant for boundary layer delay

Tp Nondimensional time constant for pressure delay, peak wave period

Tv Nondimensional time constant for vortex delay

Tm02 Mean zero-crossing period

Tp,sw Peak period due to swell-dominated sea

Tp,w Peak period due to wind-dominated sea

U Ship speed or horizontal foil speed
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V Inflow speed to the foil

VW Wind speed

w Vertical wave particle velocity

wpc Pitch-control parameter

X Deficiency function, defined in Eq. 3.20

xbybzb Body-fixed reference frame (b-frame)

xf Horizontal foil location relative to coordinate system in Figure 5.26

xnynzn North-East-Down reference frame (n-frame)

xp Distance from leading edge to pivot point of foil

xsyszs Seakeeping reference frame (s-frame)

xcp Distance from leading edge to center of pressure of foil

Y Deficiency function, defined in Eq. 3.21

zf Vertical foil location relative to coordinate system in Figure 5.26
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Chapter 1

Introduction

1.1 Motivation

Propelling a boat using wave energy sounds almost too good to be true. Yet, as
outlined in Section 1.2.1, wave-powered boats have been around since the 1890s
and were proposed as early as in 1858. Knowing this, one might wonder why the
concept has yet to be put to use on larger ships.

During the oil crisis in the late 1970s, interest in wind-augmented ship propul-
sion skyrocketed as a result of the sudden rise in oil price. Two conferences on
wind-assisted ship propulsion were arranged in the UK: The Symposium on Wind
Propulsion of Commercial Ships held by The Royal Institution of Naval Archi-
tects (RINA) in 1980 and the International Symposium on Windship Technology
(Windtech ’85) in 1985. As the oil price declined through the 1980s, however,
interest in wind-augmented ship propulsion faded and remained low through the
cheap-oil era of the 1990s.

Although less research was done on wave propulsion of ships, the same trend
was seen: interest depended heavily on the oil price. In recent years, oil has been
relatively expensive, except for a brief downturn after the financial crisis hit in
2008. Today, the economic motivation for using less fossil fuel for ship propulsion
is accompanied by a general concern over the environment, and over global warming
in particular. Consequently, there is currently renewed interest in renewable energy
for supplementary propulsion of ships.

In 2012, the 31 m long vessel MS Tûranor PlanetSolar became the first vessel
to circumnavigate the world using only solar power for propulsion. It is also the
world’s largest solar-powered boat (PlanetSolar, 2013). A ship entirely powered
by solar power will need a large area covered with solar panels and a hull with
extremely low resistance, as in Tûranor PlanetSolar ’s case. For a more conventional
ship, however, solar energy can only provide a fraction of the necessary power for
propulsion, as exemplified by the 160 kW (215 hp) generated by the solar panel-
covered deck of the 200 m long car carrier Emerald Ace (Mitsui O.S.K. Lines,
2012). Wind and wave energy, on the other hand, can provide a significant part of
the required propulsive power (Smulders, 1985; Veritec, 1985, 1986; Angvik, 2009;
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Borgen, 2010).
One advantage of wave energy over wind energy for ship propulsion is that it is

generally less variable, as waves spread out across the oceans after being generated
by distant storms. The simplest and most common type of wave-powered boat uses
foils, called wavefoils in this thesis, which convert the relative motion between the
foil and the water into propulsive thrust. While this concept has been analyzed by
others, see Section 1.2.2, the effect of wavefoil stall has not been properly accounted
for. Spring-loaded wavefoils have been employed by earlier experimenters (e.g.,
Jakobsen (1981) and Terao and Isshiki (1991)). These foils are free to pitch, but
their pitch angle is limited by a spring. Active pitch control of the foil has been
suggested in order to increase the foil thrust (Naito and Isshiki, 2005; Angvik,
2009; Borgen, 2010; Politis and Politis, 2014; Belibassakis and Politis, 2012, 2013),
but the author found only one previous experiment in the literature suggesting a
practical way of achieving this (Naito and Isshiki, 2005).

The starting point for the work presented in this thesis was the idea that actively
controlled foil pitch could improve the performance of wavefoils. The objective of
the thesis was therefore to develop solutions for using actively pitch-controlled foils
to significantly reduce the fuel consumption of ships traveling in waves. To reach
this objective, it was found necessary to predict the performance of ships with foil
systems in an efficient and reliable manner.

The performance of an actively pitch-controlled foil must be compared with the
performance of a fixed foil, which may stall. Therefore, implementing a method
for simulating dynamic stall with acceptable accuracy was desired. It was also of
interest to compare fixed and actively pitch-controlled foils with a spring-loaded
foil. The overall motivation behind this was to investigate the fuel saving poten-
tial of ships employing wavefoils for auxiliary propulsion, as well as studying the
performance of a ship harnessing all of its propulsive power from renewable energy.
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1.2 Previous work on partly and fully wave-powered
boats

1.2.1 Full-scale vessels and notable model boats

The content of this section, in its current form and in previous versions, has been
published at www. wavepropulsion. com – a website written by the author to inform
the general public about wave-powered boats.

Using waves to propel a boat forward is far from a new idea. It is known that
whalers throughout history cut off the flukes of the whales they had killed, as it
was observed that a dead whale propelled itself forward at a speed of about 1 knot
due to the action of the sea (Bose and Lien, 1990). It is not unthinkable that this
could have sparked the idea of using the same principle to propel a boat against
the waves.

The earliest known document describing a wave-powered boat is a US patent
by Daniel Vrooman (Vrooman, 1858) of Hudson, Ohio, from 1858. In his patent,
see Figure 1.1 he describes “[...] a new and useful improvement in ships and other
vessels for enabling their up and down motion from the rolling of the sea and other
causes and the corresponding movement of the water to aid in propelling them on
their course [...]”. Vrooman explains how this can be achieved by attaching elastic
fins or wings to the ship. It appears, however, that Vrooman did not build his wave-
powered boat, as his patent reads: “To enable others skilled in the art to make and
use my invention, I will proceed to describe its construction and operation.” It is
not known whether or not anyone actually built Vrooman’s boat.

Figure 1.1: Drawings from Vrooman’s patent specification (Vrooman, 1858). Side
view of the hull to the left, stern view of the hull to the right.

Hermann Linden of the Zoological Station in Naples, Italy, filed a British patent
(Linden, 1895) for a wave-powered boat in 1895, see Figure 1.2. Linden built a 13
ft long boat named Autonaut (Burnett, 1979), see Figure 1.3, which moved against
the waves at three to four miles per hour, powered purely by the energy of the
waves. The boat obtained its thrust from two underwater steel plates – one at the
bow and one at the stern. The plates were fixed at one end and feathered like fish
fins as the boat moved up and down due to the waves. Linden proceeded to build a
24 ft long boat being able to tow two 10 ft boats, each containing two passengers,
at nearly four miles per hour.
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Figure 1.2: Drawings from Linden’s patent specification (Linden, 1895)

Figure 1.3: Drawing of the Autonaut from Pearson’s Magazine, December 1898
(Burnett, 1979)

Wave propulsion methods other than using fins directly were also conceived
more than 100 years ago. Otto Schulze of Brooklyn, New York, thought of using
the wave-induced vertical motion of buoys along the hull of the boat to drive
an ordinary propeller at the stern (Schulze, 1911), see Figure 1.4. Schulze also
considered using the wave energy to generate electricity for later use, either for
driving the propeller, or for other purposes. Again, it is not known whether or not
the boat was built.

Although it received praise in the contemporary newspapers from New York
(The New York Times, 1898) to New Zealand (Ashburton Guardian, 1897), Lin-
den’s boat must have been forgotten by the scientific community. In 1935, Popular
Science claims that “it remained for a Long Beach, Calif., inventor to design a
wave-operated mechanism to propel a boat” (Popular Science, 1935), see Figure
1.5. The inventor’s name is not mentioned, though. Two fins in the bow and one
fin in the stern attached to flexible joints provided the propulsion. The 18-inch
model built by the inventor, see Figure 1.6, could reportedly attain a pace of five
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Figure 1.4: Drawing from Schulze’s patent specification (Schulze, 1911)

miles per hour, which seems unrealistically fast compared to other experiments
described in this section.

Figure 1.5: The unnamed inventor of Long Beach with his wave-powered model
boat in 1935 (Popular Science, 1935)

In the latter half of the 20th century, more stories about people that had built
wave-powered boats appeared. These people include John S. McCubbin of Victoria,
Australia (Popular Science, 1950), see Figure 1.7, and Joseph A. Gause of Burling-
ton, Ontario, Canada (Mechanix Illustrated, 1972). Gause filed his first patent for
a wave-powered boat in 1966 (Gause, 1966). Gause’s 34 ft boat, Gausefin I, see
Figure 1.8, attained a top speed of 5 mph on Lake Ontario, using wave energy
only, witnessed by five Canadian Government officials who were cruising alongside.
Gausefin I had three pairs of fixed fins rigidly attached to the hull. The fins were
thickest at the root and gradually tapered outward toward a thin trailing edge al-
lowing for the fins to flex when hit by a wave. According to the Mechanix Ilustrated
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Figure 1.6: Close-up view of the wave-powered model boat of 1935 (Popular Sci-
ence, 1935)

article (Mechanix Illustrated, 1972), “[...] the size, angle, thickness and flexibility
of the fins were arrived at through guesstimating.” Gause, a sculptor and painter,
certainly knew the historical background of wave-powered boats, as he cites both
Vrooman and the Popular Science article of 1950 in one of his four patents (Gause,
1967).

Figure 1.7: John S. McCubbin’s boat of 1950 (Popular Science, 1950)

Einar Jakobsen started his experiments on wave-powered boats in Norway in
1978. In 1981, he presented results (Jakobsen, 1981) from experiments performed at
the Norwegian Hydrodynamics Laboratories (today MARINTEK) in Trondheim,
Norway. Jakobsen’s model boat of length 1.025 m moved at a speed of 0.824 m/s in
regular head sea waves with height 0.05 m and period 1.2 s, according to the report
on the experiments (Kjærland, 1980), but figures in the same report indicate that
the speed in this condition was in fact about 0.55 m/s. The model had a spring-
loaded foil on an extension out from the bow, and another spring-loaded foil on an
extension aft of the stern. Einar Jakobsen termed the device a “foilpropeller”.
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Figure 1.8: The Gausefin I (Mechanix Illustrated, 1972)

Jakobsen and his Wave Control Company used combinations of two and four
foils, each measuring 0.5 m2 on a 7.5 m long sailboat hull (Anon., 1983), see Figure
1.9. A maximum speed of six knots was recorded on one occasion. The Norwegian
government sponsored NOK 450,000 to fit the fishing research vessel Kystfangst
(20 m long and 180 tonnes), owned by the Institute of Fishery Technology Research,
with a bulbous bow and two foils with a total area of 3 m2 (Anon., 1983; Berg,
1985), see Figure 1.10. In a seastate of about 3 m significant wave height, the
foils produced a propulsive force corresponding to 16-22% of the vessel’s estimated
resistance (Berg, 1985), or 8-16% when accounting for the strut resistance. The
vessel speed was 4-8 knots. Reduced pitching motion of the vessel in head seas and
reduced rolling motion in following seas were observed.

The wave periods of 7-7.5 seconds that Kystfangst was tested in give wave-
lengths of about 80 m, or 4 times the length of Kystfangst. Model tests (Kjærland,
1979; Nagata et al., 2010) have shown that the largest speeds of wave-powered
ships occur when the wave length is about 1.1-1.2 times the ship length in beam
and following seas, and 1.5-2.2 times the ship length in head seas. Lai et al. (1993)
studied a model of a racing yacht equipped with a flexible-armed rigid foil for wave
propulsion in head seas and also found that maximum foil thrust was obtained in
waves 1.5 to 2.0 times longer than the vessel. In other words, Kystfangst would
have benefited more from the foils had she been longer.

Simultaneously with Jakobsen’s work, Hiroshi Isshiki of the Technical Research
Institute, Hitachi Shipbuilding & Engineering Co., Ltd. in Osaka, Japan began
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Figure 1.9: The bow of the 7.5 m hull used in tests on Wave Control Company’s
“foilpropeller” (Anon., 1983)

Figure 1.10: Kystfangst (Dybdahl, 1988)

a thorough theoretical and experimental study of wave-powered boats (Isshiki,
1982a,b; Isshiki and Murakami, 1983, 1984). Isshiki used the term “wave devouring
propulsion”, allegedly proposed by Prof. T. Y. Wu of the California Institute of
Technology in 1980. Yutaka Terao of Tokai University in Japan was also working on
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“wave devouring propulsion” at the time (Terao, 1982). In 1991, Isshiki and Terao
presented results from full scale tests on a 15.7 m long fishing vessel (Terao and
Isshiki, 1991), see Figure 1.11. The projected hydrofoil area was 7.4% of the ship’s
waterline area. Using the bow foil resulted in reduced pitching motion, reduced
bow slamming, and increased speed in waves.

Figure 1.11: The 20-ton fishing vessel equipped with a bow foil tested in 1988/89
(Terao and Isshiki, 1991)

In 2008, Japanese sailor and environmentalist Kenichi Horie sailed the wave-
powered catamaran Suntory Mermaid II from Honolulu, Hawaii, to the Kii Chan-
nel, Japan (Geoghegan, 2008b), see Figure 1.12. The boat’s propulsion system, see
Figure 1.13 was designed by Yutaka Terao. The journey took 110 days, which was
longer than planned, due to unusually good weather and calm seas. The journey is
to date the longest known voyage by a manned wave-powered boat. The Suntory
Mermaid II was widely, yet wrongly, described on the Internet as “the world’s first
wave-powered boat”.

Nagata et al. (2010) performed model tests of a 2 m long model of an 80 m
long container ship. The ship was equipped with a wavefoil in the bow, of span
2.34 times the ship beam. In head sea waves of wavelength 3.12 times the ship
length (between perpendiculars, LPP ), and height 0.10 m, the ship cruised at
about 0.7 m/s, powered only by the waves. Almost the same speed was achieved
in following seas with the same wave height, but with a wave length of 0.96LPP .
Froude-scaled to full scale, this is equivalent to an 80 m ship sailing at 8.6 knots in
waves of 4 m height.

1.2.2 Theoretical studies of wave propulsion

Wu (1972) and Wu and Chwang (1975) studied the thrust generation of an oscil-
lating hydrofoil advancing in waves, but neglected the effect of the free surface and
the solid bottom. As Wu (1972) notes, this is a reasonable simplification when the
hydrofoil is farther than two chord lengths away from each of these boundaries.
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Figure 1.12: Kenichi Horie on board the Suntory Mermaid II, which sailed from
Hawaii to Japan in 2008. Photo: Reuters/Shigeo Yamada/Handout (Fabre, 2008).

Figure 1.13: Propulsion mechanism of the Suntory Mermaid II. Illustration: Kevin
Hand (Geoghegan, 2008a).

In four reports, Isshiki (1982a,b) and Isshiki and Murakami (1983, 1984) theo-
retically and experimentally explored thrust generation of a hydrofoil advancing in
waves. In his first report, Isshiki (1982a) improved Wu’s theory by including an ap-
proximation of the free-surface effect and studied the thrust from a non-oscillating
hydrofoil advancing in waves. In his second report, Isshiki (1982b) explored opti-
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mized foil motions in heave and pitch given that the power required to heave and
pitch the foil was zero. In the third and fourth reports (Isshiki and Murakami,
1983, 1984), thrust generation through absorption of wave energy by an advancing
hydrofoil, heaving and pitching passively through a set of springs, was verified ex-
perimentally and compared with theory. The effects of foil draft, heave and pitch
springs, and an auxiliary float were studied theoretically in the fourth report (Is-
shiki and Murakami, 1984). When the foil was attached to the float in a suitable
position, larger thrust was obtained than without the float. More experimental
results are given in Isshiki et al. (1984).

Veritec, a former subsidiary of Det Norske Veritas (today DNV GL Group),
analyzed the propulsive effect of wavefoils near the bow of vessels 20 m, 40 m, and
70 m long (Veritec, 1985, 1986) operating in the North Sea. Foil areas of 2%, 4%,
and 6% of the vessel water plane area were studied. The fuel saving percentage
increased with increasing foil area for all three ships. For the 70 m vessel with a
foil of 6% of the vessel water plane area, the fuel saving was 43% at 10.6 knots
and 10% at 15.9 knots. The vessel motions were calculated using a strip theory
program, but the heave and pitch damping due to the foils was not accounted for.
Foil drag and dynamic effects on the foil lift were not accounted for.

Grue et al. (1988) examined the propulsion of a foil moving through water close
to a free surface in 2D. They applied a vortex distribution along the centerline
of the foil and the wake and solved for the local vortex strength. All equations
were linearized. The ability of the foil to propel a ship in waves was studied, and
they found that a 40 m long ship in 1 m high regular waves would travel at a
speed of 8 knots. They assumed that the foil moved downward when the wave
field velocity was upward, and that the heave motion of the ship was of the same
order of magnitude as the amplitude of the incoming waves. Finally, the theory
was compared with experiments from Isshiki et al. (1984), with mixed degrees of
success.

If ships can potentially save large amounts of fuel in waves, whales and dolphins
should be able to minimize their energy consumption in waves too. This was studied
by Bose and Lien (1990) who showed that in seas corresponding to a windspeed
of 20 knots, a 14.5 long fin whale could save about 25% propulsive power in head
seas and 33% in following seas, when swimming at a depth of 2.0 m and a forward
speed of 2.5 m/s. The power savings dropped with increasing submergence depth.

An actively controlled pitching bow-mounted foil, or bow wing, for auxiliary
ship propulsion in waves was studied by Naito and Isshiki (2005). They performed
experiments where a ship model was equipped with bow wings that rotated har-
monically in pitch, with varying phase relative to the incoming regular head sea
waves. Furthermore, they measured the pressure on the bottom surface of the
wings, and plotted the amplitude of the bottom pressure against the amplitude
of the angle of attack of the bow wings. The result was a nearly linear graph for
angles of attack below 20 degrees. Finally, they proposed and simulated a con-
trol system, which receives the pressure on the bottom surface of the bow wings
as input and returns the optimal bow wing angle as output. Their approach as-
sumes that the horizontal foil force is neglected when calculating the ship motions
and that the vertical foil force oscillates with the encounter frequency, so that a
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frequency-domain approach can be used. The frequency-domain solution for the
optimal foil angle is then Fourier transformed into a time-domain solution in order
to study the response in irregular waves.

In two master’s theses from the Norwegian University of Science and Technology
(Angvik, 2009; Borgen, 2010), the MARINTEK program ShipX Vessel Responses
(VERES) was used to calculate heave and pitch response amplitude operators
(RAOs) for ships with a fixed foil on each side of the bow. Based on the ship
motions, the thrust of actively pitch-controlled foils was calculated, accounting
for foil drag and finite span effects on the lift and drag but not dynamic effects.
The added resistance in waves was accounted for. Angvik (2009) studied only an
offshore supply vessel, whereas Borgen (2010) studied an offshore supply vessel, a
coastal tanker, and a purse seiner. The reported fuel savings were very promising.

Politis and Politis (2014) and Belibassakis and Politis (2012, 2013) also stud-
ied an actively controlled pitching foil. They used a boundary element method to
accurately model the forces on an oscillating foil, assuming attached flow. Further-
more, they set the foil pitch to be linearly proportional to the inflow angle. The
drawbacks of this pitch control strategy is discussed in Section 4.6.2. Politis and
Politis (2014) showed that the power necessary for active pitch control is only a
small percentage of the propulsive power from the actively controlled foil.

Numerical methods have also been applied to study wave energy extraction for
marine propulsion. De Silva and Yamaguchi (2012) used the commercially available
code FLUENT to study a two-dimensional hydrofoil oscillating harmonically in
heave and pitch under the influence of free surface waves. Simulation results were
found to be in good agreement with experimental results in Isshiki and Murakami
(1984). It was also shown numerically that the thrust and efficiency were highest
when the foil oscillation frequency was the same as the wave encounter frequency.
When the wave amplitude to foil chord length ratio was less than 1/7, more than
70% of the wave energy could be recovered as useful propulsion energy. The wave
energy recovery percentage decreased with increasing wave amplitude, though.

Filippas and Belibassakis (2013, 2014a,b) used a boundary element method and
focused on the free-surface effects, by studying a two-dimensional hydrofoil under-
going heaving and pitching oscillations underneath the free surface, with constant
forward speed. There was good agreement with results in De Silva and Yamaguchi
(2012).

The literature on oscillating foils in general – i.e., not limited to the purpose of
wave propulsion of ships – is extensive. A short literature review of unsteady foil
theory is given in Section 3.1, and further references to previous work on oscillating
foils are given in Chapter 4.

Except for the two studies by Veritec (1985, 1986), and the Master’s theses of
Angvik (2009), and Borgen (2010), few of the previous theoretical studies of wave
propulsion have calculated fuel savings for a given ship in realistic ocean wave
conditions. In the present work, practical solutions and actual fuel savings have
been in focus.
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1.3 Outline of the thesis

Chapter 2 begins with a discussion of frequency-domain vs. time domain analyses
and describes the assumptions that must be made to simulate a ship with foils in
the frequency domain. Then, a short summary of the seakeeping and maneuvering
theory implemented in the ship simulator used in the present work, VeSim, is
given. For a detailed exposition of this theory, the reader is advised to consult
Fossen (2011).

In Chapter 3, the most important findings of classical unsteady thin-airfoil
theory are explained. Then, a slightly modified Leishman-Beddoes dynamic stall
model, building on classical unsteady thin-airfoil theory, is presented, along with a
correction for finite-span effects.

Chapter 4 describes experiments done with an oscillating foil. This foil was
built to be put on a 1:16 scale model of a 90 m long platform supply vessel. It was
tested without the ship to validate the dynamic stall model in Chapter 3 and to
study the effect of actively controlled and spring-loaded foil pitch on the foil thrust.

Chapter 5 studies the effect of the wavefoil tested in Chapter 4 on the afore-
mentioned platform supply vessel. Two methods of pitch control are studied: one
using pressure sensors on and near the leading edge of the foil, and another using
angle of attack vanes. The dynamic stall model presented in Chapter 3 was imple-
mented in VeSim to calculate the foil forces. VeSim simulations are compared with
experiments for a fixed foil, and the effects of pitch-controlled and spring-loaded
foils on the ship are studied numerically. A simplified frequency-domain analysis
of a ship with wavefoils in head seas is presented, and the foil thrust from the
simplified analysis is compared with the foil thrust from VeSim simulations.

Chapter 6 is devoted to a ship powered purely by renewable energy, exploiting
the wind energy with wingsails and the wave energy with wavefoils. Wingsails were
implemented in VeSim using the same dynamic stall model as for the wavefoils. The
expected speeds of this ship on a given route throughout the year are calculated,
along with the corresponding standard deviations.

The experiments presented in Chapter 5 were only done in head seas, and more
experiments were needed to validate the numerical results in following seas. Hence,
in Chapter 7, experiments with a small radio-controlled ship model employing
a spring-loaded bow foil are presented. This model was run in both head and
following seas, and the effects of wave period, ship speed, spring stiffness, and
regular vs. irregular waves are studied. The experimental results are compared
with VeSim simulations and results for the ship in full scale are also presented.

Finally, Chapter 8 summarizes the key findings of the thesis and provides sug-
gestions for future work.

1.4 Main contributions

The main contributions of the present work are:

1. Experiments with an oscillating foil were performed, showing that the phase
angle between heave and pitch is crucial for the thrust generation at low for-
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ward speed, and that a beneficial phase angle is accomplished with a spring-
loaded foil. The experiments also showed that a spring-loaded foil with well-
tuned spring stiffness is preferable over a fixed foil and over a pitch-controlled
foil where the pitch control is based on vanes for detecting the angle of attack.

2. Experiments with a ship model with a fixed and an actively pitch-controlled
wavefoil, using two different pitch-control methods, were performed. The
experiments showed that both pitch control using pressure sensors and pitch
control using angle of attack vanes can result in lower ship resistance than
with a fixed foil.

3. A dynamic stall model for wavefoil and wingsail forces was implemented in
the time-domain ship simulator VeSim. This allows for fast and relatively ac-
curate calculations of wavefoil and wingsail forces in a wide range of operating
conditions.

4. A ship with fixed, actively pitch-controlled, and spring-loaded wavefoils was
simulated in VeSim, and the results for a fixed foil were compared with ex-
periments. These simulations showed that at moderate ship speeds pitching
the foil is only necessary for a narrow range of wave periods where the most
violent ship motions are found.

5. A ship powered purely by renewable energy was simulated, and a novel
method to calculate the wind speed based on wave statistics was presented.
The ship was found to have quite low expected ship speeds, with fairly large
standard deviations, on a given route throughout the year.

6. Experiments with a free-running ship model with wavefoils for auxiliary
propulsion in regular and irregular waves were performed, showing gener-
ally positive fuel savings in head seas, but negative fuel savings in following
seas. Scaling of these results was discussed, and the wavefoil was found to be
significantly more beneficial in full scale.

1.5 Publications

The following publications are directly connected with the work presented in this
thesis:

• Bøckmann, E. and Steen, S. (2013). The effect of a fixed foil on ship propul-
sion and motions. In Third International Symposium on Marine Propulsors,
pages 553-561.

• Bøckmann, E., Steen, S., and Myrhaug, D. (2014). Performance of a ship
powered purely by renewable energy. In ASME 2014 33rd International Con-
ference on Ocean, Offshore and Arctic Engineering, Volume 8A: Ocean En-
gineering.

• Bøckmann, E. and Steen, S. (2014). Experiments with actively pitch-controlled
and spring-loaded oscillating foils. Applied Ocean Research, 48:227–235.
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Bøckmann and Steen (2013) originates from Section 5.1, Bøckmann et al. (2014)
is an earlier version of Chapter 6, and Bøckmann and Steen (2014) includes most
of Chapter 4 in this thesis.

The observant reader may notice some differences between the content in these
papers and this thesis. The wave heights and periods used in Bøckmann and Steen
(2013) were based on measurements with a wave probe on the moving carriage.
These measurements were, however, quite different from the measurements of wave
height and period from the carriage when stationary. In this thesis, the wave
measurements from the stationary carriage are used, as they are believed to be
more accurate than the measurements from the moving carriage.

The draft of the ship in Chapter 6 is larger than the draft of the ship in
Bøckmann et al. (2014). The draft was changed to be able to use ship resistance
data from experiments with the hull studied.

Most importantly, a bug in VeSim was fixed in February 2014 after Bøckmann
et al. (2014) was submitted. This bug impacted the ship motions with forward
speed, particularly in heave. Hence, the results in both Bøckmann and Steen (2013)
and Bøckmann et al. (2014) are affected by this bug. The results in this thesis
were generated after the bug fix, however, and are therefore more thrustworthy.
Comparing the heave RAO for the simulated ship without foil in Bøckmann and
Steen (2013) with the corresponding heave RAO in Chapter 5, we see that the
heave RAO in Chapter 5 approaches 1 for long waves, as it should, whereas the
heave RAO in Bøckmann and Steen (2013) does not. Comparing the ship speed
plots in Bøckmann et al. (2014) with the ship speed plots in Chapter 6, we see that
there are large differences and that the plots in Chapter 6 looks more reasonable.
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Chapter 2

Seakeeping theory

2.1 Frequency-domain vs. time-domain analyses

Seakeeping, in hydrodynamic terminology, is the study of a floating object’s re-
sponse in waves. This can be done in two ways:

1. Studying the object’s motions as a function of wave frequency (frequency-
domain analysis)

2. Studying the object’s motions as a function of time (time-domain analysis)

In a frequency-domain analysis, the ship motion amplitudes and phases are
found for a certain encounter frequency, by solving a system of linear equations.
This approach assumes that all forces oscillate with the same frequency and are
directly proportional, with a possible phase difference, to the wave elevation. By
solving the system of equations for all encounter frequencies, the ship motion ampli-
tudes and phases are found in the frequency domain. In an irregular sea consisting
of superimposed regular waves, the ship motions can be found by superimposing
the responses to the regular waves. In up to moderately high waves and speeds,
frequency-domain analyses of a bare hull, i.e., a hull without appendices such as
foils, have proven to quite accurately predict the ship motions (McTaggart, 2010).

In a time-domain analysis, a system of differential equations must be formulated
and solved numerically, in order to determine the ship motions. Frequency-domain
coefficients are often required as input in the system of differential equations, so
the frequency-domain problem has to be solved before the time-domain solution
can be found. The advantage with this approach is that ship motions can be found
even if the ship is subjected to forces varying arbitrarily with time.

At an early stage of the work with this thesis, the author looked into different
approaches for simulating the motions of a ship with foils in waves. First, including
the foil forces in the equations of motions and solving the linear equations of motions
in the frequency domain was considered. Since all forces are assumed to oscillate
with the same frequency and be directly proportional to the wave elevation, one
must therefore make the following assumptions:

17
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• The foil lift is directly proportional to the angle of attack.

• The angle of attack is directly proportional to the wave elevation.

• The foil lift points along an axis which is vertical relative to the mean position
of the ship.

• The foil drag is neglected because it oscillates with twice the frequency of the
foil lift.

These assumptions imply that simulating a ship with foils undergoing stall is im-
possible, as is simulating a ship with foils that non-harmonically adjust their angle
of attack to avoid stall. One of the main intentions of the present work, see Section
1.1, was to study both of these features, so time-domain analyses were necessary.
Consequently, a model for the foil forces was implemented in the MARINTEK
Vessel Simulator (VeSim), which is a time-domain simulation tool. VeSim has
been under continuous development since 2004. It is structured so that different
subsystems of the vessel, called “federates”, connect to the simulation, and share
parameters at every time step with the other “federates”. In this way, the vessel
motion and the foil force, for instance, depend mutually on each other.

2.2 Summary of the unified seakeeping and ma-
neuvering theory implemented in VeSim

In this section, a nonlinear unified seakeeping and maneuvering theory (Fossen,
2005), which VeSim is based on, is summarized. Although not resulting from the
work behind this thesis, the theory is briefly presented in order for the reader to
understand the fundamentals of how VeSim works.

2.2.1 Reference frames

Before we study how the six degrees of freedom motions of a ship can be calculated,
let us first look at the coordinate systems, or reference frames, involved. The
following definitions are taken from Fossen (2011).

The North-East-Down reference frame xnynzn with origin on is defined relative
to the Earth’s reference ellipsoid (NIMA, 1997), and is considered inertial. The
xnyn-plane is usually defined as the tangent plane on the surface of the Earth
moving with the craft. The x-axis points true north, the y-axis points toward east,
and the z-axis points downward normal to the surface of the Earth. The n-frame
positions and Euler angles are given by the vector η.

The body-fixed reference frame xbybzb with origin ob is a moving reference frame
that is fixed to the vessel, and is considered non-inertial. The xb-axis is positive
toward the bow, the yb-axis is positive toward starboard, and the zb-axis is positive
downward, see Figure 2.1. The origin ob is located midships at the waterline, with
the zb-axis passing through the center of gravity of the vessel. The b-frame linear
velocities and angular velocities are given by the vector ν.
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Figure 2.1: Body-fixed reference frame in VeSim

The seakeeping reference frame xsyszs is a reference frame which is fixed to the
equilibrium state of the vessel, and is considered inertial. This means that it is non-
accelerating, is fixed in orientation with respect to the n-frame, and moves along
the path of the vessel with the mean forward speed, U , of the vessel. Consequently,
the orientation and U cannot vary, or they must vary very slowly. The xs-axis is
positive forward, the ys-axis is positive toward starboard, and the zs-axis is positive
downward. In absence of wave excitation, the s-frame origin, os, coincides with
the b-frame origin, ob. The s-frame perturbation vector is ξ. Like η and ν, ξ have
six components, and they are perturbations in surge, sway, heave, roll, pitch, and
yaw, respectively.

Positions, velocities, and accelerations can be transformed from one reference
frame to another using rotation matrices. In Fossen (2005), the rotation matrix
used in the transformation from the b-frame to the s-frame assumes that the angles
of the b-frame with respect to the s-frame are small. This assumption is not made
in VeSim, however, as it is not applicable for small boats in large waves.

2.2.2 Equations of motion

The time-domain seakeeping equations of motion in the s-frame for a vessel with no
forward speed can be written, thanks to the works of Cummins (1962) and Ogilvie
(1964), as (Fossen, 2011)

[MRB + A(∞)] ξ̈ + Btotal(∞)ξ̇ +

∫ t

0

K(t− τ)ξ̇(τ)dτ + Gξ = τFK+d, (2.1)

where the matrix of retardation functions, K(t), is given as

K(t) =
2

π

∫ ∞
0

[Btotal(ω)−Btotal(∞)] cos(ωt)dω. (2.2)

MRB is the rigid body mass matrix, A(∞) is the added mass matrix for infinite fre-
quency, Btotal is a damping matrix including both potential and viscous damping,
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G is the restoring force matrix, and τFK+d is a vector containing Froude-Krylov
and diffraction forces. A dot over the symbol denotes time differentiation, and two
dots imply that time differentiation is done twice.

VeSim needs all external forces to be given in the b-frame. Therefore, the
equations of motion, Eq. 2.1, should be transformed from the s-frame to the b-
frame. When transforming the equations of motion to the rotating b-frame, Coriolis
forces between the s-frame and the b-frame appear when the ship has forward speed.
The reason for this is that the velocities and accelerations in the s-frame can be
expressed using velocities and accelerations in the b-frame, in Eq. 2.1. This is
illustrated in Figure 2.2, where δu and δw are the wave-induced vessel velocities
in xb- and zb-direction, respectively. If ξ5 is small and ob = os (assumed in this
example, for simplicity),

ξ3 ≈ δw − Uξ5, (2.3)

where we have assumed that U � δu.

(Ucosx5+du)sinx5

dwcosx5
dw

x5

x5 Ucosx5

U

du

xs

zs zb

xb

Figure 2.2: Body-fixed vs. seakeeping reference frames

The equations of motion in the b-frame then become (Fossen, 2011)

[MRB + AU (∞, U)] ν̇ + C∗RBν + Btot,U (∞, U)νr (2.4)

+

∫ t

0

KU (t− τ, U)[ν(τ)− Ue1]dτ + Gη = τFK+d,

where C∗RBν are Coriolis forces and moments due to the rotation of the b-frame
about the s-frame, as derived in a linearized version in Fossen (2005), and e1 is the
unit vector in xb-direction. Subscript U denotes speed-dependence. νr includes
ocean currents. Other forces that are not necessarily harmonically varying can
be added to the right side of Eq. 2.4, when solving Eq. 2.4 in the time domain.
The speed-dependent added mass and damping coefficients are calculated using
the strip theory by Salvesen et al. (1970) and transformed to the b-frame. This
transformation removes speed-dependent terms with the encounter frequency, ωe,
in the denominator, which is undefined when ωe = 0. The retardation function is
now calculated using the speed-dependent damping matrices, as

KU (t, U) =
2

π

∫ ∞
0

[Btotal,U (ω,U)−Btotal,U (∞, U)] cos(ωt)dω. (2.5)
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VeSim first solves Eq. 2.4 for the vessel accelerations in the b-frame. Then,
the accelerations are integrated to obtain the vessel velocities in the b-frame. The
vessel velocities are then transformed into the n-frame and integrated once again
to obtain the vessel positions in the n-frame (Fathi, 2013).
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Chapter 3

Unsteady foil theory

3.1 Background

Fuelled by the need to understand the problem of wing flutter, the foundation of
unsteady foil theory was laid in the 1920s and 1930s by pioneers such as Wagner
(1925), Theodorsen (1935), Küssner (1935), Garrick (1936), and von Kármán and
Sears (1938). They all assumed incompressible and inviscid flow, that the effect of
airfoil thickness is negligible, and that the shed vortices in the wake remain on a
straight line behind the foil, thereby assuming small transverse motions. Despite
its simplifying assumptions, this classical unsteady thin-airfoil theory is often used
when studying oscillating foils, primarily because of the mathematically elegant
analytical solutions. The resulting expression for the unsteady lift in the highly
mathematical paper of Theodorsen (1935) can easily be implemented in a computer
program like MATLAB, and one can very quickly obtain reasonably accurate values
for the unsteady lift, even for transverse oscillation amplitudes of practical size.

There is no need to look to aircraft to find oscillating foils, however. Fish swim
by oscillating their tails from side to side, and cetaceans by oscillating their tails up
and down. Birds and insects stay aloft and move forward by flapping their wings.
Lighthill was a pioneer in studying fish swimming from a hydrodynamic perspec-
tive, with his theory for the swimming of slender fish (Lighthill, 1960). Wu (1961)
analyzed fish swimming by studying the two-dimensional potential flow over a wav-
ing flat plate of finite chord, building on results from classical unsteady thin-airfoil
theory. Lighthill (1970) also applied unsteady foil theory to analyze thunniform
swimming, i.e., fish locomotion where virtually all lateral motion occurs in the
caudal fin and the region connecting the caudal fin to the main body. Lighthill’s
(1970) theory is extended in Chopra (1974) to account for a finite aspect ratio and
in Chopra (1976) to account for large amplitude motion, but still with a low tail
angle of attack. As noted by Scherer (1968) and Chopra (1976), large oscillation
amplitudes relative to the chord are needed to achieve practical levels of thrust.

The term “dynamic stall” refers to a foil with a continuously changing angle
of attack, which at some point passes the static stall angle. Dynamic stall is
characterized by lift, drag, and moment curves not following their static equivalents,
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but rather some form of loops, if the angle of attack variations are cyclic. Physically,
the phenomenon is characterized by (Leishman, 2002) the build-up of a vortex
at the leading edge, which detaches and is convected downstream in the wake,
see Figure 3.1. When the vortex passes the trailing edge, the flow on the upper
surface becomes fully separated, and when the angle of attack becomes low enough
again, the flow reattaches back to front. The vortex building up at the leading
edge is associated with an increase in lift, as long as the vortex stays over the
upper surface, and an increase in nose-down pitching moment, due to the center
of pressure moving aft as the vortex is convected downstream. The lift, drag, and
nose-down pitch moment become significantly higher than their static values, and
they all peak when the vortex passes into the wake – although usually not exactly
simultaneously (McCroskey, 1981) – before dropping dramatically.
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Stage 1: Airfoil exceeds static stall angle, 

flow reversals take place in boundary layer.

Stage 2: Flow separation at the leading edge,

formation of a ”spilled” vortex. Moment stall.

Stage 2-3: Vortex convects over chord, induces 

extra lift and aft center of pressure movement.

Stage 3-4: Lift stall. After vortex reaches trailing 

edge, flow progresses to a state of full separation.

Stage 5: When angle of attack becomes low 
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Figure 3.1: Flow features and unsteady airloads during the course of a dynamic
stall cycle. Adapted (typed scanned text) from Leishman (2002).

McCroskey et al. (1976) performed dynamic stall experiments on a NACA 0012



3.2. Classical unsteady thin-airfoil theory 25

airfoil with various leading-edge geometries, and found that although different types
of stall occurred, all types were characterized by leading-edge vortex shedding.
McCroskey (1981) performed a comprehensive experimental study of dynamic stall,
discussing the effects of airfoil geometry, reduced frequency, amplitude, mean angle,
Mach number, types of motion, and three-dimensional effects. He also discusses
the different calculation methods available at the time. A good review of early
dynamic stall research is given by Carr (1988).

Although CFD in principle now can be used to calculate the forces and moments
on a foil during dynamic stall, agreement with experiments is still poor in the
deep stall regime (Wang et al., 2010; Ol et al., 2010), and the calculations are
time-consuming. Several semi-empirical models have been developed (Tarzanin,
1972; Tran and Petot, 1981; Leishman and Beddoes, 1989; Øye, 1991; Hansen
et al., 2004; Larsen et al., 2007) that can provide fast results, which for many
engineering applications are sufficiently accurate. Such semi-empirical models rely
on a varying number of empirical coefficients as input. The well-validated (Pierce,
1996; Gupta and Leishman, 2006; Pereira et al., 2013) Leishman-Beddoes (L-B)
dynamic stall model (Leishman and Beddoes, 1989) combines classical unsteady
thin-airfoil theory for attached flow with an analytical expression for the separation
point on a flat plate (Thwaites, 1960), and it includes dynamic effects through semi-
empirical expressions.

In Section 3.2, the assumptions and most important results of classical unsteady
thin-airfoil are explained, and an algorithm (Leishman, 2002) for calculating the
unsteady lift resulting from arbitrary changes in angle of attack is presented. Then,
in Section 3.3, the dynamic stall model used in the present work is presented. This
dynamic stall model is a slightly modified version of the L-B dynamic stall model.
The author found that some modifications of the L-B model were necessary for
low inflow velocities and applied some other useful modifications of the L-B model
proposed by Moriarty and Hansen (2005), which are explained in Section 3.3. An
extension of the two-dimensional dynamic stall model to account for finite-span
effects, proposed by the author, is presented in Section 3.3.5. The final dynamic
stall model is compared with experiments in Chapter 4.

3.2 Classical unsteady thin-airfoil theory

3.2.1 The Theodorsen function

In his seminal paper, Theodorsen (1935) provides an analytical expression for the
unsteady lift on a harmonically oscillating two-dimensional flat plate. The flow
is assumed to be inviscid (i.e., not separating from the plate) and incompressible,
and the transverse motion of the plate is assumed to be small so that the vortices
shed in the wake remain on a straight line behind the foil, see Figure 3.2. The
plate undergoes harmonic heave and pitch oscillations with the frequency ω, and
the forward speed is U . The chord length of the plate is c = 2b.

As Kelvin’s theorem states, the circulation around a closed curve moving with
the fluid in an inviscid, barotropic flow with conservative body forces remains
constant with time. Hence, if there is an increase in the circulation around the
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Figure 3.2: Assumptions in Theodorsen’s model of unsteady airfoil forces. Modified
from Leishman (2002). Although the airfoil is only pitching in this figure, it may
undergo heave oscillation of small amplitude as well.

plate, there must be a corresponding decrease in the circulation in the wake. When
representing the circulation around the plate by a vortex distribution, as in Figure
3.2, this implies that a change in angle of attack (and hence circulation around
the plate) is accompanied by a vortex shed in the wake, with opposite sign of the
change in circulation. In Figure 3.2, the vortex distribution on the plate, called
the bound vorticity, is denoted γb, whereas the wake vorticity is denoted γw. The
wake vortex sheet extends downstream to infinity. The Kutta condition says that
there must be a stagnation point at the sharp trailing edge, or in other words, that
the flow at the trailing edge must be tangential to the flat plate. This implies that
γb = 0 at the trailing edge.

The important result of Theodorsen’s analysis is that the unsteady lift can be
written as the sum of two terms: a noncirculatory term due to flow acceleration,
called added mass (also known as apparent mass or virtual mass), and a quasi-
steady term, due to circulation about the plate, multiplied by the Theodorsen
function, C(k). The argument in this function, k, is called the reduced frequency
and is the angular frequency of oscillation, ω, nondimensionalized by c/2 and U :

k =
ωc

2U
. (3.1)

For a plate oscillating harmonically in heave and pitch, the unsteady lift, L, be-
comes (Leishman, 2002)

L =πρb2
[
ḧ+ Uδ̇ − baδ̈

]
+ 2πρU2b

[
δ +

ḣ

U
+
bδ̇

U

(
1

2
− a
)]

C(k), (3.2)
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where ρ is the mass density of the fluid, a is the pitch axis location relative to
the mid-chord measured in semi-chords, h is the heave motion, and δ is the pitch
motion. The heave and pitch motions must be written as

h(t) = hA,ce
iωt, (3.3)

δ(t) = δA,ce
iωt, (3.4)

where hA,c and δA,c are complex heave and pitch amplitudes, respectively. The
time-varying quasi-steady angle of attack term in Eq. 3.2 (due to pitch angle,
heave velocity and pitch velocity) multiplied by the Theodorsen function, C(k), is
known as the effective angle of attack. The lift is given as the real value of Eq. 3.2.
The corresponding moment about the mid-chord, M1/2, is (Leishman, 2002)

M1/2 =− πρb2
[(

1

2
− a
)
Ubδ̇ + b2

(
1

8
+ a2

)
δ̈ − abḧ

]
+ 2πρU2b2

(
a+

1

2

)[
δ +

ḣ

U
+
bδ̇

U

(
1

2
− a
)]

C(k). (3.5)

The Theodorsen function, C(k), is given as

C(k) = F (k) + iG(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

, (3.6)

where F and G are the real and imaginary parts of C(k). H
(2)
n are Hankel functions

(Abramowitz et al., 1972) given as

H(2)
n = Jn − iYn, (3.7)

where Jn and Yn are Bessel functions of the first and second kind, respectively. The
real and imaginary parts of the Theodorsen function are plotted in Figure 3.3. As
seen from the top plot in Figure 3.3, the amplitude of the unsteady lift approaches
half the amplitude of the quasi-steady lift as k increases toward infinity.

3.2.2 The Wagner function

Wagner (1925) studied a flat plate that is given a step change in angle of attack
while moving at speed U in inviscid and incompressible flow. The lift is instantly
affected by the change in angle of attack, but it takes some time for the lift to
reach a new steady value. Physically, this can be explained by the influence on
the plate from the vortex that is shed at the step change in angle of attack. After
some time this vortex is so far downstream of the plate that its effect on the plate
is negligible. The lift of a plate with c = 2b that instantly has a change in attack
from zero to α at t = 0, is given as

L(s) = πρb2Uδ(s) + 2πρU2bαφ(s), (3.8)
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Figure 3.3: Real and imaginary parts of the Theodorsen function

where δ(s) here is the Dirac delta function, φ(s) is the Wagner function, and s is
the number of semi-chords traveled by the plate at time t, that is,

s =
2Ut

c
. (3.9)

The first term in Eq. 3.8 is an added mass term and is responsible for infinitely
high lift at s = 0. The second term in Eq. 3.8 is the circulatory lift.

Since the Wagner function is not in a convenient analytic form, it is typically re-
placed by an exponential or algebraic approximation. Jones (1938, 1940) proposed
an approximation of the Wagner function:

φ(s) = 1−A1e
−b1s −A2e

−b2s, (3.10)

where A1 = 0.165, A2 = 0.335, b1 = 0.0455, and b2 = 0.3, which agrees with the
exact solution to within 1% accuracy. Eq. 3.10 is plotted in Figure 3.4. Jones
(1940) also proposed Wagner-like functions for finite aspect ratio wings but pro-
vided convenient curve fit expressions only for aspect ratios 3 and 6.

The circulatory part of the lift coefficient due to arbitrary changes in angle of
attack, CCL (t), can be calculated by using the Wagner function, φ(s), and superpo-
sition of step responses in Duhamel’s integral:

CCL (s) = CLα

[
α(0)φ(s) +

∫ s

0

dα

ds
(σ)φ(s− σ)dσ

]
= CLααE(s), (3.11)

where CLα is the lift coefficient slope (CLα = 2π for a flat plate), σ is a dummy
time variable of integration, and αE is the effective angle of attack.

The following derivation of an algorithm to calculate the unsteady lift due to a
time-varying angle of attack is based on Leishman (2002). This algorithm is used in
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Figure 3.4: The Wagner function based on the approximation of Jones (1938, 1940),
Eq. 3.10

the dynamic stall model in Section 3.3. Using the Duhamel integral in Eq. 3.11 to
calculate αE(t), with the Wagner function in the form of Eq. 3.10, αE(s) becomes

αE(s) = α(0)φ(s) +

∫ s

0

dα

ds
(σ)φ(s− σ)dσ

= α(0)
(
1−A1e

−b1s −A2e
−b2s

)
+

∫ s

0

dα

ds
(σ)
(

1−A1e
−b1(s−σ) −A2e

−b2(s−σ)
)
dσ

= α(0)−A1α(0)e−b1s −A2α(0)e−b2s +

∫ s

0

dα(s)

−A1

∫ s

0

dα

ds
(σ)e−b1(s−σ)dσ −A2

∫ s

0

dα

ds
(σ)e−b2(s−σ)dσ. (3.12)

A1α(0)e−b1s and A2α(0)e−b2s are short-term transients and can be neglected, al-
lowing us to write

αE(s) = α(s)−X(s)− Y (s), (3.13)

where

X(s) = A1

∫ s

0

dα

ds
(σ)e−b1(s−σ)dσ, (3.14)

and

Y (s) = A2

∫ s

0

dα

ds
(σ)e−b2(s−σ)dσ. (3.15)

Assuming a continuously sampled system with time step ∆S, we have at the
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next time step:

X(s+ ∆S) = A1

∫ s+∆S

0

dα

ds
(σ)e−b1(s+∆S−σ)dσ

= e−b1∆S

X(s)︷ ︸︸ ︷
A1

∫ s

0

dα

ds
(σ)e−b1(s−σ)dσ

+

I︷ ︸︸ ︷
A1

∫ s+∆S

s

dα

ds
(σ)e−b1(s+∆S−σ)dσ . (3.16)

The integral, I, can be written as

I = A1e
−b1(s+∆S)

∫ s+∆S

s

dα

ds
(σ)eb1σdσ. (3.17)

Using a simple backward-difference approximation for dα/ds at time s+ ∆S, and
the midpoint rule for integration, we get

I = A1e
−b1(s+∆S)α(s+ ∆S)− α(s)

∆S
eb1(s+

∆S
2 )∆S

= A1 [α(s+ ∆S)− α(s)] e−b1
∆S
2 . (3.18)

This gives

X(s+ ∆S) = X(s)e−b1∆S +A1 [α(s+ ∆S)− α(s)] e−b1
∆S
2 (3.19)

or
X(s) = X(s−∆S)e−b1∆S +A1 [α(s)− α(s−∆S)] e−b1

∆S
2 . (3.20)

By following the same analogy,

Y (s) = Y (s−∆S)e−b2∆S +A2 [α(s)− α(s−∆S)] e−b2
∆S
2 . (3.21)

3.2.3 Other fundamental functions

In addition to the Theodorsen and Wagner functions, there are several other funda-
mental functions in unsteady thin-airfoil theory. “Fundamental” here refers to the
fact that these functions solve mathematically idealized problems, but that does
not mean that they are not useful in practice.

Sears (1938) studied a flat plate traveling with constant forward speed U and
no vertical motion into a sinusoidal vertical gust. Analogous to the use of the
Theodorsen function, the Sears function – see for instance Leishman (2002) for more
details – is multiplied with the quasi-steady angle of attack to obtain the unsteady
frequency-dependent lift of the plate traveling through the sinusoidal vertical gust.
One may wonder what the aerodynamic difference is between two equal plates
traveling at the same forward speed, where one plate undergoes sinusoidal vertical
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motion and the other plate experiences a sinusoidal vertical gust. The difference is
the vertical flow field seen by the two plates, and this is easiest to understand if one
considers vertical motion/gust of a short wavelength relative to the plate. The Sears
function and the Theodorsen function convergence as k approaches zero, implying
that the two problems are mathematically equal for low-frequent oscillations.

The Küssner function – once again, Leishman (2002) is a good source for an
introduction to this function – is a time-domain function like the Wagner function,
used when calculating the lift on a flat plate traveling at steady forward speed,
entering a sharped-edged vertical gust. Unlike the Wagner function, the Küssner
function takes a value of 0 for s = 0. Similarly to Eq. 3.11, the lift in an arbitrarily
varying upwash field can be calculated using the Küssner function in the Duhamel
superposition integral.

3.2.4 Relation between the Theodorsen function and the
Wagner function

Garrick (1938) showed that the Theodorsen function in the frequency domain and
the Wagner function in the time domain are related by a Laplace transform pair,
through the following derivation:

Eq. 3.11 can be rewritten as

CCL (s) = CLα

[
α(0)φ(s) +

∫ s

0

dα

ds
(s− σ)φ(s)dσ

]
. (3.22)

Now, let α be harmonically varying as

α(s) = αA,ce
iks, (3.23)

where αA,c is the complex angle of attack amplitude, so that

dα

ds
(s− σ) = αA,cike

ik(s−σ). (3.24)

Eq. 3.22 then becomes

CCL (s) = CLα

[
αA,cφ(s) + αA,cike

iks

∫ s

0

φ(s)e−ikσdσ

]
= CLααA,cφ(s) + CLααA,cike

iks

∫ ∞
0

φ(s)e−ikσdσ

−CLααA,cikeiks
∫ ∞
s

φ(s)e−ikσdσ. (3.25)

For the steady-state part only,

CCL (s) = CLααA,cike
iks

∫ ∞
0

φ(s)e−iksds. (3.26)

This must be equal to Theodorsen’s result,

CCL (s) = CLααA,cC(k)eiks, (3.27)
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which implies that

C(k) = ik

∫ ∞
0

φ(s)e−iksds. (3.28)

Using the definition of the Laplace transform, we can then write

C(k) = ikL{φ(s)}. (3.29)

The Wagner function can be obtained from the Theodorsen function by using the
inverse Laplace transform:

φ(s) = L−1

{
C(k)

k

}
. (3.30)

Figure 3.5 shows the original Theodorsen function compared with the Theodorsen
function obtained using Eq. 3.29 with Jones’s (1938; 1940) approximation of the
Wagner function, Eq. 3.10.
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Figure 3.5: Numerically obtained Theodorsen function, based on Jones’s approxi-
mation of the Wagner function, plotted against the original Theodorsen function

Using Eq. 3.10, Eq. 3.28 can be evaluated by hand to get a simple approximated
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expression for the Theodorsen function:

C(k) = ik

∫ ∞
0

(
1−A1e

−b1s −A2e
−b2s

)
e−iksds

= ik

[
− 1

ik
e−iks +

A1

b1 + ik
e−s(b1+ik) +

A2

b2 + ik
e−s(b2+ik)

]∞
0

= 1− ikA1

b1 + ik
− ikA2

b2 + ik
. (3.31)

3.2.5 Leading-edge suction force

A flat plate oscillating harmonically in heave and pitch in an inviscid and incom-
pressible fluid produces forward thrust through two forces: the leading-edge suction
force and the horizontal component of the pressure force normal to the plate. The
latter can be both a thrust and a drag force, whereas the leading-edge suction force
is always a thrust force. Physically, the leading-edge suction force, S, on a thin
plate at an inclination to the inflow arises because the flow must accelerate around
the leading edge of the plate – given that the the flow is attached – thereby creating
a low pressure and a thrust force at the leading edge.

The normal force, N , on an inclined flat plate in steady, inviscid, incompressible
flow can be decomposed into a lift force, L, acting perpendicular to the inflow,
and a drag force, D, acting parallel to the inflow. This is illustrated in Figure
3.6. Mathematically, it can be shown (see for instance Johnston (2004)) that the
component of S acting in the opposite direction of the free-stream velocity, U , is
equal in magnitude to D, resulting in zero force in the free-stream direction.

U

N

S

L

D

Figure 3.6: Forces on a flat plate in steady flow

3.3 Dynamic stall model

The dynamic stall model implemented in the present work is explained here. Un-
less otherwise specified, this model is identical to the L-B model (Leishman and
Beddoes, 1989). The modifications to the L-B model were found necessary in order
to make the model work properly. The noncirculatory normal force is calculated
differently and the separation point location are expressed slightly differently in the
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present model than in the L-B model. Further details are given where the modifi-
cations are described. The dynamic stall model is valid for a two-dimensional foil,
but the author has proposed corrections for a finite-span foil in Section 3.3.5.

3.3.1 Attached flow

If there is a small change in angle of attack for fully attached flow, it will take
some time before the separation point is reestablished at the trailing edge. The
circulatory normal force coefficient due to an accumulating series of step changes
in angle of attack can be expressed as

CCN,n = CNα(αn − α0 −Xn − Yn) (3.32)

= CNα(αE,n − α0), (3.33)

where CNα is the normal force coefficient curve slope at the zero-lift angle of attack,
α0 is the zero-lift angle of attack, and subscript n denotes time step n. αE,n is then
the effective angle of attack at time step n. X and Y are the deficiency functions
given in Eqs. 3.20 and 3.21, that is,

Xn = Xn−1e
−b1∆S +A1(αn − αn−1)e−b1

∆S
2 , (3.34)

Yn = Yn−1e
−b2∆S +A2(αn − αn−1)e−b2

∆S
2 , (3.35)

where A1, A2, b1 and b2 are profile dependent variables describing the time delay,
and ∆S is the distance traveled by the foil in semi-chords during a time interval
∆t = tn− tn−1. For a flat plate, A1 = 0.165, A2 = 0.335, b1 = 0.0455 and b2 = 0.3
(Jones, 1938, 1940).

The noncirculatory normal force, also known as the added mass force, is given
for each chordwise strip of a flat plate as

NAM =
ρπc2

4
ds

(
−ḧ cos δ + U

d

dt
(sin δ) +

( c
2
− xp

)
δ̈

)
, (3.36)

where ds is the foil strip width, xp is the distance from the leading edge to the

pivot point, and δ̇ and δ̈ denote the first and second derivatives of δ, respectively.
Finding the noncirculatory normal force coefficient without the use of a deficiency
function, as done here and in Hansen et al. (2004), is a simplification relative to the
original L-B model, which uses a deficiency function to account for time-history
effects. For very low Mach numbers, which is the case for the applications in the
present work, time-history effects on the noncirculatory normal force are negligible.

In Bøckmann and Steen (2013), the noncirculatory normal force was nondimen-
sionalized by

CIN =
NAM
1
2ρV

2c
, (3.37)

where V is the inflow speed to the foil, which is different from U if the foil is
moving vertically in addition to horizontally. The total normal force coefficient
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during attached flow conditions, CpN , is found by summing the circulatory and
noncirculatory coefficients:

CpN,n = CCN,n + CIN,n. (3.38)

An obvious problem with nondimensionalizing the noncirculatory normal force
coefficient as in Eq. 3.37 is the case when V approaches zero. The same prob-
lem occurs for the original expression for CIN in Leishman and Beddoes (1989).
Therefore, in the implementation of the L-B model in the ship simulator VeSim
(see Chapter 5), CpN,n = CCN,n in Eq. 3.38. This does not imply that the added
mass force was neglected in the VeSim simulations, since the added mass force was
added at a later stage (see Section 3.3.5). In the plots in Section 4.3, V is not close
to zero, and Eq. 3.38 was therefore applied, where CIN was calculated using Eq.
3.37.

3.3.2 Trailing edge separation

The basic assumption of the L-B model is that the normal force coefficient, CN ,
for separated flow can be found from

CN = CNα

(
1 +
√
f

2

)2

(α− α0), (3.39)

which is an approximation to the normal force coefficient on a flat plate in a
potential Kirchhoff flow (Thwaites, 1960). The degree of attachment, f , is defined
as the distance along the chord from the leading edge to the separation point,
divided by the chord length, see Figure 3.7. For fully attached flow, f = 1, and
CN = CNα(α− α0).

x/c = f

separation point

Figure 3.7: The degree of attachment, f , defined in a Kirchhoff flow past a flat
plate. Modified from Thwaites (1960) and Hansen et al. (2004).

f is found from Eq. 3.39 by replacing the predicted CN with the static normal
force coefficient, CstaticN , found from tables of static lift and drag coefficients, so
that

f =

(
2

√
CstaticN (αn)

CNα(αn − α0)
− 1

)2

. (3.40)



36 Unsteady foil theory

For unsteady conditions, there is a lag in the leading-edge pressure response
with respect to CpN , expressed as

C ′N,n = CpN,n −Dp,n, (3.41)

where Dp is the attached flow deficiency function,

Dp,n = Dp,n−1e
−∆S
Tp + (CpN,n − C

p
N,n−1)e

− ∆S
2Tp . (3.42)

Tp is a nondimensional time constant for the pressure delay of attached flow. An
explanation of how a time lag can be expressed as in Eqs. 3.41 and 3.42 is given
in Appendix A. An equivalent angle of attack, αf , is defined as

αf,n =
C ′N,n
CNα

+ α0, (3.43)

and the corresponding degree of attachment is calculated using Eq. 3.40 as

f ′n =

(
2

√
CstaticN (αf,n)

CNα(αf,n − α0)
− 1

)2

. (3.44)

The static degree of attachment, f , calculated from Eq. 3.40, was found to
reproduce the static normal force coefficient for the NACA 0015 profile only for
|α| < 62◦. The following correction (Moriarty and Hansen, 2005) reproduced the
static normal force coefficient for all angles of attack with high accuracy, and was
therefore applied:

t′N,n = 2

√
CstaticN (αf,n)

CNα(αf,n − α0)
− 1, (3.45)

f ′n = t′2N,nsign(t′N,n). (3.46)

In addition to the pressure lag, there is a viscous lag due to the unsteady
boundary layer response, represented by a first-order lag in the value of f ′ as

f ′′n = f ′n −Df,n, (3.47)

where Df is the deficiency function for the degree of attachment,

Df,n = Df,n−1e
−∆S
Tf + (f ′n − f ′n−1)e

− ∆S
2Tf . (3.48)

Tf is a nondimensional time constant for the lag in the boundary layer.
In Bøckmann and Steen (2013), the normal force coefficient incorporating both

the pressure lag and the viscous lag was computed using Eq. 3.39 as

CfN,n = CNα

(
1 +

√
f ′′n

2

)2

(αE,n − α0). (3.49)
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When using the modification by Moriarty and Hansen (2005), however, CfN,n is
given as

CfN,n = CNα

(
1 +

√
|f ′′n |sign(f ′′n )

2

)2

(αE,n − α0), (3.50)

which is implemented in the present work.

3.3.3 Leading-edge separation

As the absolute value of the angle of attack increases from zero, a vortex builds
up at the leading edge. The forces and moments can be represented by ignoring
the developing vortex until it detaches and is transported downstream (Leishman
and Beddoes, 1989). For a symmetric foil, the leading-edge vortex is assumed to
detach when the absolute value of the angle of attack is larger than a certain value,
denoted αv. The vortex then travels downstream at 1/3 of the inflow speed to
the foil, V (Green et al., 1992; Beddoes, 1978). αv can be found from the static
moment coefficient curve, where there is a break in the pitching moment (Pereira,
2010). A nondimensional variable τ is introduced to keep track of the position of
the traveling vortex. When τ = 0, the vortex is at leading edge, and when τ = 1,
the vortex has reached the trailing edge (Larsen et al., 2007). The L-B model says
that the vortex has reached the trailing edge when τ is equal to a nondimensional
period Tvl, which is determined empirically, but in the present work, the vortex
travel speed was assumed to be 1/3V , like in Larsen et al. (2007). τ = 0 unless
|αn| > αv, when τ increases as

τn = τn−1 +
Vn
3c

∆t. (3.51)

The increment in the vortex-induced normal force coefficient due to a vortex at
the leading edge, CV , is determined by the difference between the instantaneous
linearized value of the unsteady circulatory normal force coefficient and the cor-
responding unsteady nonlinear normal force coefficient as given by the Kirchhoff
approximation:

CV,n = CCN,n − C
f
N,n. (3.52)

The total accumulated vortex-induced normal force coefficient, CVN , is allowed to
decay exponentially with time, but may also be updated by a new increment:

CVN,n = CVN,n−1e
−∆S
Tv + (CV,n − CV,n−1) e−

∆S
2Tv , (3.53)

if the vortex is growing in strength and located on the foil surface. Tv is a nondi-
mensional time constant for vortex delay. If the vortex is no longer on the foil
surface or it is on the foil surface but decreasing in strength without detaching, Eq.
3.53 reduces to

CVN,n = CVN,n−1e
−∆S
Tv . (3.54)

Figure 3.8 illustrates this procedure.
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Figure 3.8: Leading-edge separation in the dynamic stall model. The inflow is from
right to left.

Finally, the total normal force coefficient becomes

CN,n = CfN,n + CVN,n + CIN,n. (3.55)

3.3.4 Chordwise force

The chordwise force (i.e., the force in S-direction in Figure 3.6) coefficient is cal-
culated in Leishman and Beddoes (1989) and Bøckmann and Steen (2013) as

CC,n = ηCCNα(αE,n − α0)αE,n
√
f ′′n − CD0, (3.56)

where ηC is called the leading-edge suction recovery factor, which accounts for the
fact that the foil does not produce 100 percent of the chordwise force attained in
potential flow. ηC = 0.95 is typically used. The first term on the right hand side
of Eq. 3.56 represents the leading-edge suction force, as explained in Sec. 3.2.5.√
f comes from the Kirchhoff flow model (Thwaites, 1960), and f ′′ is used instead

of f to account for the effects of both pressure and viscous lag. Viscous effects are
included through the term CD0, which is the viscous drag coefficient at zero lift.
This simplification is assumed to be reasonable, since the pressure drag is already
included through the normal force coefficient.

Static CC values for the NACA 0015 profile were not reproduced by using the
static degree of attachment, f , calculated from Eq. 3.40, in Eq. 3.56, except for low
angles of attack. The following correction (Moriarty and Hansen, 2005) reproduced
the static chordwise force coefficient for all angles of attack with high accuracy, and
was therefore applied: A separate degree of attachment, f

′′

C , based on Eq. 3.56,
was found as

t′C,n =
CstaticC (αf,n) + CD0

ηCCNα(αf,n − α0)αf,n
, (3.57)
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f ′C,n =
(
t′C,n

)2
sign(t′C,n), (3.58)

f ′′C,n = f ′C,n −Df,n, (3.59)

where CstaticC is the static chordwise force coefficient, found from tables of static
lift and drag coefficients. f ′C,n is set to be 1 if |αf,n| < 5◦ to avoid the possible
singularity when αf,n approaches zero. The chordwise force coefficient was finally
obtained as (Moriarty and Hansen, 2005)

CC,n = ηCCNα(αE,n − α0)αE,n

√
|f ′′C,n|sign (f ′′C)− CD0. (3.60)

3.3.5 Correcting for finite-span effects

In order to account for the effect of finite span on the foil lift and drag, the following
procedure was applied at each time step:

1. The foil was divided into chordwise strips in the spanwise direction. The nor-
mal and chordwise forces on each foil strip, Nstrip and Cstrip, were calculated
using the dynamic stall model described in Sections 3.3.1-3.3.4:

Nstrip =
(
CfN + CVN

) 1

2
ρV 2cds, (3.61)

Cstrip = CC
1

2
ρV 2cds. (3.62)

The added mass force was added at a later stage (step 6).

2. The lift and drag of each foil strip, Lstrip and Dstrip, were calculated using
αf at each strip:

Lstrip = Nstrip cosαf + Cstrip sinαf , (3.63)

Dstrip = Nstrip sinαf − Cstrip cosαf , (3.64)

3. When the dynamic stall model was used for foils on a ship, the effect of a
finite foil span on the lift was accounted for by multiplying Lstrip by the
factor 1/

(
1 + 2

Λ

)
when the wave directions relative to the ship heading were

0◦ and 180◦. Λ is the foil’s aspect ratio. This expression for the lift is valid for
an elliptical circulation distribution for a large aspect ratio foil below stall.
However, the circulation distribution will be far from elliptical if the ship has
significant rolling motion. Therefore, the lift correction factor was taken to
be 1 when the wave directions relative to the ship heading were ±90◦, and
linearly interpolated between 1 and 1/

(
1 + 2

Λ

)
for other angles.

4. The induced drag coefficient of an elliptical flat foil of large aspect ratio, at
angles of attack below stall, is

CD,i =
4πα2

fΛ

(Λ + 2)
2 . (3.65)
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Although the induced drag is a quantity related to the foil as a whole, each
strip’s contribution to the total induced drag was calculated as Di,strip =
CD,i

1
2ρV

2cds, since αf in Eq. 3.65 in principle can vary from strip to strip.
The induced drag was added to the profile drag of each strip. The induced
drag was multiplied by a factor which is 1 in head and following seas, 0 in
beam seas, and linearly interpolated between 1 and 0 for other wave directions
relative to the ship heading.

5. The lift and drag of all strips at this point accounted for the effect of a finite
span and were converted back to normal and chordwise forces by

Nstrip = Lstrip cosαf +Dstrip sinαf , (3.66)

Cstrip = Lstrip sinαf −Dstrip cosαf . (3.67)

6. Finally, the normal added mass force on the strip, NAM , was added to Nstrip,
and the stripwise forces were summed.

Although these expressions for lift and drag are strictly only valid for an ellip-
tical foil of large aspect ratio, they are quite fair to apply also for a moderately
tapered foil (McCormick, 1995) of aspect ratio larger than four (Faltinsen, 2005).
The use of these expressions for the lift and induced drag when the foil is stalling
is more questionable, but was chosen nevertheless, lacking alternatives.



Chapter 4

Experiments with an
oscillating foil

4.1 Experiment setup

A foil of span 1.81 m and max chord length 0.1875 m was tested in a 40 m long,
6.45 m wide, and 1.5 m deep towing tank, see Appendix C.1. The foil sectional form
was the NACA 0015 profile. Figure 4.1 is a CAD drawing showing the planform
and thickness profile of the foil, with dimensions in mm. The foil was designed with
the intention of being mounted on a ship model, see Chapter 5. It was thought to
have a telescopic design in full scale, where the outermost parts could be retracted
into the center part of the foil. This resulted in the unconventional planform, but
no telescope mechanism was built in model scale.

The foil and supporting rig, shown in Figure 4.2, were mounted to the towing
tank carriage. The foil was attached to two aluminum struts. On top of the struts
was a motor, pitching the foil via two thin rods. As shown in Figure 4.3, the rods
rotated a wheel 57 mm above the chord line of the foil, 0.25c from the leading edge,
thereby pitching the foil about this point. The idea was that, when mounted to the
ship, the foil could be swung back and stored in a small compartment of the hull,
so that the foil bottom was flush with the hull bottom. For this reason, the foil
was designed to pitch about a point above itself, in addition to the fact that it was
easier to build such a pitching mechanism. The telescope mechanism was assumed
so that the foil could have a span larger than the hull width, without the foil tips
sticking out from the ship hull when the foil was stored in the hull bottom.

Above the motor were three vertical force transducers and one horizontal force
transducer. The three vertical force transducers were arranged in a triangular pat-
tern, with two force transducers partly in front of the motor, and the third behind
the motor. The uppermost item of the foil rig, the horizontal force transducer, was
attached to a steel beam connecting the foil rig to two electric actuators on the
towing tank carriage. These two electric actuators actuated the entire foil rig in
heave. When not heaving, the foil would be approximately 0.75 m from the free
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Figure 4.1: The planform and thickness profile of the foil used in the experiments,
with dimensions in mm

surface and the solid tank bottom. When heaving, the foil was always at a distance
more than three chords away from each of these boundaries, so it is fair to assume
that the influence of the free surface and the solid tank bottom on the foil force
was negligible (Wu, 1972).

120 mm above the foil’s chord line were two vanes, one on each strut, detecting
the inflow angle to the foil. Figure 4.3 is a 2D CAD drawing showing the size
and location of the vanes, with dimensions in mm, whereas Figure 4.4 shows a
close-up view of the vane on the starboard strut. The idea behind these vane
locations was that the average of the two vane angles would be little influenced
by the upwash and downwash from the foil, yet at the same time capture wave-
induced fluid particle motion at the depth of the foil. The vanes were connected to
waterproof potentiometers, with the wire from the potentiometers going up to the
signal amplifier on the towing tank carriage. Before the basin was filled with water,
the signals from the potentiometers were calibrated against the vane angles. To
simplify the experiments, it was assumed that oscillating the foil in heave without
surface waves would expose the foil to oscillating fluid motion similar to what one
would get with surface waves, which supposedly is a good approximation for waves
much longer than the foil chord.

4.2 Static angle of attack

Static lift and drag coefficients for the foil are shown in Figure 4.5. The steady
forward speed, U , was 1.286 m/s, giving a Reynolds number of Re = 2.0 × 105.
U = 1.286 m/s was chosen because when mounting the same foil to a ship model,
see Chapter 5, U = 1.286 m/s corresponded to 10 knots forward speed for the
full-scale ship. Lift and drag coefficients calculated using a vortex lattice code
(Pedersen, 2008) and the two-dimensional lift and drag coefficients for the appro-
priate Reynolds number from Sheldahl and Klimas (1981) (actually taken from
Lazauskas (2004), who corrected anomalies in the original data1) are also shown
in Figure 4.5, for comparison. We see that the vortex lattice code captured the lift

1All the references to Sheldahl and Klimas (1981) in this thesis actually refers to the data
taken from Lazauskas (2004)
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Figure 4.2: Experiment setup for the actively pitch-controlled foil, before the basin
was filled with water
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Figure 4.3: 2D CAD drawing of the foil and the vanes, with dimensions in mm. The
upstream and downstream vanes were mounted to the starboard and port struts,
respectively.

Figure 4.4: Close-up view of the vane on the starboard strut. The vanes would
hang down if not supported.
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coefficient curve fairly well below stall, whereas the drag coefficient was underesti-
mated by the vortex lattice code, since it did not account for viscous drag. All the
foil force coefficient plots in this chapter were corrected for the inertia force on the
foil and for hydrodynamic forces on the struts, found from towing the struts with-
out the foil. The hydrodynamic interaction between the foil and the two struts is
believed to be the reason why the lift coefficient is not perfectly symmetrical about
zero angle of attack. We see that the foil stalled at an angle of attack of about
±12◦, causing a reduction in absolute value of the lift coefficient and a significant
increase of the drag coefficient.
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Figure 4.5: Lift and drag coefficients. U = 1.286 m/s, Re = 2.0× 105.

4.3 Dynamic stall model validation

4.3.1 Pure heave motion with steady forward speed

Simulation results of the dynamic stall model described in Section 3.3 were com-
pared with experimental results. The empirical parameters in the numerical model
were tuned based on the experimental results, giving the following parameters:
Tp = 1.5, Tf = 7, αv = 11o, Tv = 15 and ηC = 0.95. For simplicity, the chord
lengths along the entire span were assumed to be the same as at the foil center,
when calculating the Reynolds number, αE and τ .

The foil traveled at a constant horizontal speed of U = 1.286 m/s, and under-
went harmonic heave motion with period T = 2.375 s and amplitude hA = 0.04 m.
This gives a reduced frequency of k = 0.193. α is calculated as, see Figure 4.6,

α = arctan

(
− ḣ
U

)
+ δ, (4.1)

where ḣ is the heave velocity. Figures 4.7a and 4.7b show CN and CC vs. α for the
foil in pure heave motion with constant pitch, δ = 0.5◦. The reason for a nonzero
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A

A

Ah

Figure 4.6: A heaving and pitching foil with steady forward speed. hA is the heave
amplitude, δA is the pitch amplitude, and αA is the angle of attack amplitude.
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Figure 4.7: CN vs. α and CC vs. α for a purely heaving foil with hA = 0.04 m and
k = 0.193

δ is that, after the experiments were done, the author discovered that what he
thought was δ = 0◦ was actually δ = 0.5◦.

The experimental data signal was filtered using a low-pass filter with cutoff
frequency 10 s−1. This filtering was applied for all the experimental results in
Section 4.3. The numerical results captures CN and CC fairly well, although the
CN values from the experiment are slightly lower than the theoretical values. Note
that the experimentally obtained CC curve is somewhat chaotic, due to the low
signal/noise ratio.

4.3.2 Pure pitch motion with steady forward speed

In the following simulations, pure pitch motion about the quarter-chord was as-
sumed and the experiment pitch motion is also referred to as “pure pitch motion”.
In the experiment, however, the foil pitched about a point located above the chord,
as shown in Figure 4.3, so it moved like a pendulum when pitching.

Figure 4.8 shows CN and CC vs. α for a purely pitching foil with a constant
horizontal speed of U = 1.286 m/s and pitch period T = 1.5 s. This gives a reduced
frequency of k = 0.305. In Figure 4.8, δ = 3.5o + 3o cosωt. α in this case is given
as α = δ.

Figures 4.9 and 4.10 show CN and CC vs. α for δ = 9.5o + 5o cosωt and
δ = 13.5o + 5o cosωt, respectively. Also in Figures 4.9 and 4.10, U = 1.286 m/s
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Figure 4.8: CN vs. α and CC vs. α for a purely pitching foil with δ = 3.5o+3o cosωt
and k = 0.305
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Figure 4.9: CN vs. α and CC vs. α for a purely pitching foil with δ = 9.5o+5o cosωt
and k = 0.305

and T = 1.5 s. The agreement between numerical and experimental results is worse
for pure pitch motion than for pure heave motion, especially in Figure 4.10. The
effect of the pendulum motion on the hydrodynamic foil forces in the pure pitch
runs could be the reason for this, although the author attempted to account for
this effect by taking the surge motion of the foil into account when calculating the
inflow velocity, angle of attack, and added mass force. These considerations had
negligible influence on the numerically obtained force, however, and were therefore
omitted when generating Figures 4.8-4.10.
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Figure 4.10: CN vs. α and CC vs. α for a purely pitching foil with δ = 13.5o +
5o cosωt and k = 0.305

4.3.3 Combined heave and pitch motion with steady forward
speed

Finally, the dynamic stall model was compared with experiments for combined
heave and pitch motion at constant horizontal speed, see Figure 4.6. The horizontal
speed was U = 0.9 m/s, which was chosen because the runs with combined heave
and pitch motion were primarily done to study the effect of dynamic stall on the
thrust, see Section 4.4.2, and a lower speed was needed for the foil to stall. The
heave amplitude was 0.12 m, and the pitch amplitude was varied in the different
runs: δA = 2◦ in Figure 4.11, δA = 6◦ in Figure 4.12, and δA = 10◦ in Figure 4.13.
The heave and pitch period, T , was 1.5 s, corresponding to a reduced frequency of
k = 0.436. The pitch motion was 90 degrees out of phase with the heave motion,
so that the foil had zero pitch angle at the bottom and top positions, pitched
nose down on its way down and vice versa, as shown in Figure 4.6. We see from
Figures 4.11, 4.12, and 4.13 that the agreement between theory and experiment
for combined heave and pitch motion is quite good for CC , and also quite good
for CN in Figure 4.13. The agreement between the theoretical and experimental
CN loops for combined heave and pitch motion appears to improve with increasing
pitch amplitudes.

The horizontal force, or thrust, was converted into a force coefficient by dividing
the force by 1

2ρV
2S, where S is the projected area of the foil. Table 4.1 shows that

the mean horizontal force coefficient, CH , peaked for δA = 6◦ when comparing
these three runs, according to experiments, whereas CH was highest for δA = 10◦

according to the theory. This shows that it is possible to maximize the thrust
by adjusting the pitch angle of the foil. The differences between the experimental
and theoretical mean horizontal force coefficients are less than 7%. Also shown
in Table 4.1 is the mean horizontal force coefficient when two-dimensional quasi-
steady theory was used, with no finite-span corrections. In this case, the normal
added mass force was ignored. We see that this theory is completely unable to
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Figure 4.11: CN vs. α and CC vs. α for a combined heaving and pitching foil with
δ = 0.5o + 2o cosωt, hA = 0.12 m, and k = 0.436
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Figure 4.12: CN vs. α and CC vs. α for a combined heaving and pitching foil with
δ = 0.5o + 6o cosωt, hA = 0.12 m, and k = 0.436
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Figure 4.13: CN vs. α and CC vs. α for a combined heaving and pitching foil with
δ = 0.5o + 10o cosωt, hA = 0.12 m, and k = 0.436

reproduce the experimental results, primarily due to the calculated drag force.
Applying finite-span corrections will make the mean horizontal force coefficient
even smaller.

CH, experi-
ment

CH, theory
CH, 2D quasi-
steady theory

δA = 2◦ 0.1620 0.1548 -0.0196
δA = 6◦ 0.1865 0.1746 -0.0071
δA = 10◦ 0.1791 0.1784 0.0113

Table 4.1: Mean horizontal force coefficients, CH , for combined harmonic heave
and pitch motion

4.4 Forced harmonic heave and pitch oscillations

The foil was made to oscillate harmonically in heave and pitch while traveling at
steady forward speeds of 0.7 m/s, 0.9 m/s, and 1.286 m/s. The two lower speeds
were chosen so that pitching the foil would have a significant effect on the foil
thrust. The heave amplitude was 0.12 m (limited by the experiment setup) and
the heave period was 1.5 s. Again, the pitch motion was leading the heave motion
with a 90-degree phase angle, so that the foil pitched nose-down when heaving
downward and nose-up when heaving upward.

The Strouhal number, St, is a key parameter in oscillating foil propulsion due to
its importance for the thrust-producing jet behind the foil, as noted by Triantafyllou
et al. (1991, 1993). For oscillating foils, it is defined as

St =
ωA

πU
, (4.2)
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where A is the width of the wake. In oscillating foil propulsion, the distance traveled
by the trailing edge is commonly used for the width of the wake. The Strouhal
number is denoted St if the double heave amplitude is used as the width of the
wake and StTE if the trailing edge motion is used. Triantafyllou et al. (1991, 1993)
performed experiments on a foil oscillating in a combined heave and pitch motion,
with the pitch motion 90 degrees out of phase with the heave motion, and found
the efficiency to peak at a Strouhal number of 0.25. They also noted that fish and
cetaceans varying in size from shark and dolphins to goldfish oscillate their tails at
Strouhal numbers that lie almost invariably in the 0.25-0.35 range. Triantafyllou
et al. (2000) notes, however, that while “the optimum range of Strouhal number –
between 0.25 and 0.35 – is found for certain specific profiles used in Triantafyllou
et al. (1993); in other cases, different values may be obtained.” With hA = 0.12 m
and T = 1.5 s, we get St values of 0.23, 0.18, and 0.12, for the three speeds used
in the present experiments, in increasing order.

4.4.1 Inflow angle measurements

A measured effective inflow angle, φE,measured, was found by taking the average
of the two vane angles. In Figure 4.14, φE,measured is shown for forced harmonic
heave and pitch motion with δA = 8◦. Also shown in Figure 4.14 is the quasi-steady
inflow angle, φ, obtained as

φ = arctan

(
− ḣ
U

)
, (4.3)

where ḣ was defined to be positive when the foil was heaving upward.
A theoretical effective inflow angle, φE,theory, is also shown in Figure 4.14 for

comparison. φE,theory is calculated in a similar manner as the effective angle of
attack, αE , is calculated in Eqs. 3.32 and 3.33, i.e.,

φE,theory,n = φn −Xn − Yn, (4.4)

where subscript n denotes time step n. X and Y are deficiency functions given,
similarly to Eqs. 3.34 and 3.35, by

Xn = Xn−1e
−b1∆S +A1(φn − φn−1)e−b1

∆S
2 , (4.5)

Yn = Yn−1e
−b2∆S +A2(φn − φn−1)e−b2

∆S
2 . (4.6)

We see that the measured and theoretical φE graphs are fairly similar, although
the φE,measured amplitudes exceeds the φE,theory amplitudes somewhat. Note that
the theoretical approach is strictly only valid for attached flow. Especially for
U = 0.7 m/s, separation is very likely to occur. The theoretical approach also
assumes that the vortex wake is flat, which is not the case in reality. It appears
that the agreement between φE,measured and φE,theory is best for low δA values for
all three speeds. The reason for this may be that the wake is flatter for low δA
values.
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Figure 4.14: Comparison of measured and theoretical inflow angle for forced har-
monic heave and pitch motion, δA = 8◦, hA = 0.12 m, and T = 1.5 s.



4.4. Forced harmonic heave and pitch oscillations 53

4.4.2 The effect of pitch amplitude

Figure 4.15 shows the thrust coefficients for varying pitch amplitudes, for the three
forward speeds. Larger pitch amplitude means lower angle of attack. We see that
there was a pitch amplitude which maximized the thrust, for all the three speeds.
For U = 1.286 m/s, the thrust coefficient for a non-pitching foil was just slightly
lower than the thrust coefficient for a foil with optimal harmonic pitch amplitude.
We see that there was not a sudden loss in thrust at a certain pitch amplitude,
which one might expect from the shape of the lift and drag coefficient curves, but
rather a quite smooth thrust peak.

The measured effective angle of attack, αE,measured, was calculated as

αE,measured = φE,measured + δ. (4.7)

The amplitude of αE,measured is denoted αE,measured,A. The theoretical effective
angle of attack, αE,theory, with amplitude αE,theory,A, was calculated using Eqs.
3.32-3.35. Both αE,measured,A and αE,theory,A are given in Figure 4.15 for the pitch
amplitudes that gave the highest thrust coefficient values at each forward speed. We
see that there are some deviations between αE,measured,A and αE,theory,A, especially
for U = 0.7 m/s, which one might expect since the theory assumes small angle of
attack amplitudes.

Table 4.2 gives the thrust coefficient, CT , power coefficient, CP , and efficiency,
η, of the foil for the pitch amplitudes that gave the highest thrust coefficient values
at each forward speed. The reason StTE and St differ by one digit, for U = 0.7 m/s
and U = 1.286 m/s, is slightly inaccurate heave and pitch actuation and rounding of
the values. When calculating CT , CP , and η, the force on the struts was subtracted
from the total force, leaving only the force on the foil alone. The thrust coefficient,
CT , is defined as

CT =
FH

1
2ρSU

2
, (4.8)

where FH is the average thrust during a cycle. The power coefficient is defined as

CP =
P

1
2ρSU

3
. (4.9)

P is the average input power during a cycle, given as

P =
1

T

(∣∣∣∣∣
∫ T

0

FV ḣdt

∣∣∣∣∣+

∫ T

0

Mδ̇dt

)
, (4.10)

where FV is the vertical force, M is the moment required to pitch the foil, and δ̇ is
the pitch velocity. Unfortunately, M was not recorded in the experiments. Hence,
the input power is computed without the last term in the parenthesis in Eq. 4.10.
The absolute value sign in Eq. 4.10 is needed to get a positive CP , because the
heave velocity is defined to be positive when the foil is heaving upward, which is
when the vertical force points downward and is negative by the present definition.
Note that Eq. 4.10 allows for not only an input power to the system, but also
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Figure 4.15: Thrust coefficients for forced harmonic pitch motion. hA = 0.12 m and
T = 1.5 s. Arrows indicate approximate amplitudes (average between trough and
crest) of theoretical effective angle of attack amplitude, αE,theory,A, and measured
effective angle of attack amplitude, αE,measured,A.

an output power from the system. This was not possible with the experiment
setup, meaning that the calculated efficiency values might be lower in reality. The
efficiency of the foil is found from

η =
CT
CP

. (4.11)

U [m/s] St StTE δA [◦] CT CP η
0.7 0.23 0.24 10 0.32 0.70 0.46
0.9 0.18 0.18 6 0.22 0.48 0.46

1.286 0.12 0.13 2 0.13 0.28 0.47

Table 4.2: Thrust coefficient, power coefficient, and efficiency for the most thrust-
producing runs at each forward speed with forced harmonic pitch motion

The error bars in Figures 4.15, 4.16, 4.18, and 4.21 give a 95% confidence interval
of the precision error. The thrust coefficients in these figures are calculated based
on the mean thrust during five oscillations, except for the spring-loaded foil with
U = 1.286 m/s, where the thrust is the mean thrust during four oscillations, due
to short time series.
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4.4.3 The effect of phase between heave and pitch

The phase angle between pitch and heave motions was varied for the two cases
U = 1.286 m/s, δA = 4◦ and U = 0.9 m/s, δA = 8◦, and the corresponding thrust
coefficients are shown in Figure 4.16. We see that for U = 1.286 m/s, the foil
thrust was relatively independent of the phase angle. For U = 0.9 m/s, however,
the foil thrust increased significantly with increasing phase angle, until pitch was
leading heave with about 134 degrees. The reason for this is that the normal
added mass force becomes increasingly important relative to the circulatory lift
force as the forward speed decreases, and when the foil is pitching nose-down at
its top position and nose-up at its bottom position the normal added mass force
contributes positively to the forward thrust.

40 60 80 100 120 140 160
0.1

0.12

0.14

0.16

0.18

0.2

0.22

Phase angle between pitch and heave (pitch leading heave) [deg]

C
T

 

 

U = 1.286 m/s, δA = 4◦

U = 0.9 m/s, δA = 8◦

Figure 4.16: The effect of varying phase between pitch and heave. hA = 0.12 m
and T = 1.5 s.

4.5 Actively pitch-controlled foil

4.5.1 Controlling the foil pitch

The relevant forces and angles of an oscillating foil are shown in Figure 4.17. The
normal added mass force is assumed to act at half the chord length from the leading
edge. In steady conditions, the lift and drag are assumed to act at the center of
pressure, which is xcp from the leading edge. From Figure 4.17 we see that

α = φ+ δ. (4.12)
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Figure 4.17: Foil forces and angles

As in Politis and Politis (2014) and Belibassakis and Politis (2013), the pitch-
controlled angle of attack is taken as a constant times φ. This constant is denoted
the pitch-control parameter, wpc. The effective inflow angle to the foil, as measured
by the small water vanes, is φE , where φE is calculated as the average of the two
vane angles. A stall criterion can be set so that the angle of attack never exceeds
a certain value, αmax. The pitch-control algorithm then becomes

δopt =


−αmax − φE , wpcφE < −αmax
φE(wpc − 1), −αmax ≤ wpcφE ≤ αmax
αmax − φE , wpcφE > αmax.

(4.13)

Results for the pitch-controlled foil with different values of wpc and αmax are given
in Figure 4.18. A different method of pitch control, using the quasi-steady lift
and drag curves to predict the optimal angle of attack and measuring the angle
of attack with pressure sensors on the leading edge, is described in Section 5.2.2.
This method of pitch control was tested with the foil mounted to the ship model
only, and the author have therefore chosen to describe it in Chapter 5, which deals
with the ship model tests.

4.5.2 Results

The pitch-controlled foil was also made to oscillate harmonically in heave while
traveling at the same steady forward speeds as with forced harmonic pitch motion.
The heave amplitude and period were also the same. For the case of active pitch
control, the vanes were used to control the foil pitch. It was found that in order
to obtain symmetrical pitch about zero, it was necessary to calculate φE as the
average vane angle plus a certain bias. One reason for this is that the weight
of the vanes, although low, caused the vanes to hang down when not supported.
This would cause the measured angle of attack of the oscillating foil to be slightly
asymmetrical.
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Figure 4.18 shows the thrust coefficients for varying wpc values for the three
different speeds. In order to avoid stall, the maximum angle of attack, αmax, was
set to be αmax = 13◦ for U = 1.286 m/s and U = 0.9 m/s, but it was found that
αmax = 14◦ gave higher thrust than αmax = 13◦ for U = 0.7 m/s. αmax = 50◦ was
chosen so that the measured angle of attack would never exceed αmax. Note that
αmax in this context refers to αE,measured.
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Figure 4.18: Thrust coefficients for controlled pitch motion. Arrows indicate ap-
proximate pitch amplitudes for the αmax = 50◦ runs. hA = 0.12 m and T = 1.5 s.

We see from Figure 4.18 that the thrust coefficient depended little on the pitch-
control parameter, wpc, for the wpc values tested here, when αmax was 13◦ or
14◦. For αmax = 50◦, the thrust coefficient was somewhat dependent on wpc for
the two lowest speeds. It appears, however, that simply setting αmax to 13◦ or
14◦ and wpc = 1 is a wise choice compared to experimenting with different wpc
values, regardless of speed. For lower wpc values than tested here, the foil would
have pitched so much that the maximum angle of attack would never have been
reached, and the thrust would have decreased.

The maximum thrust coefficient of the pitch-controlled foil was close to the
maximum thrust coefficient of the harmonically pitching foil at U = 1.286 m/s.
As the forward speed decreased, however, the maximum thrust coefficient of the
harmonically pitching foil became increasingly higher than the maximum thrust
coefficient of the pitch-controlled foil. The reason for this is that the foil’s pitch
motion was leading the heave motion with down to 49◦ for the pitch-controlled
foil with U = 0.7 m/s and αmax = 50◦, and we can see the importance of the
phase angle between pitch and heave in Figure 4.16. The phase lag, relative to
pitch leading heave with 90 degrees, was mostly due to the effective angle of attack
lagging behind the quasi-steady angle of attack, and this effect was detected by the



58 Experiments with an oscillating foil

angle of attack vanes. A small part of this lag was also due to delay in the control
system.

4.6 Spring-loaded foil

4.6.1 Experiment setup

The foil rig was modified for the purpose of supporting a spring-loaded foil, see
Figure 4.19. The spring-loaded foil was pivoting about a point 26 mm, i.e. 0.14c,
from the leading edge, at the chord line. The spring consisted of a 3 mm diameter
piano wire attached to the foil at the pivot point like a cantilever beam. The
piano wire was clamped to an aluminum plate on the strut, shown in Figure 4.19,
by a magnet connection and a spherical joint so that it could slide and rotate
freely. When the foil was pitched, the piano wire would bend, producing a spring
moment, Mspring, trying to pitch the foil back into its equilibrium position, see
Figure 4.20. By changing the position of the magnet clamp, the length of the
piano wire cantilever beam would change – in other words, the spring stiffness
would change. A waterproof potentiometer at the pivot point measured the foil
pitch directly.

Table 4.3 lists the distance from the spring clamp to the pivot point of the
foil, marked as d in Figure 4.20. The theoretical spring stiffness, i.e., the required
moment in Nm to pitch the foil one degree, is also given. This theoretical spring
stiffness was calculated using classical beam theory, assuming zero friction in the
system. The spring stiffness was also measured (linear regression through four data
points of applied moment and measured foil pitch) when the spring clamp was in
position 3 and 4 from the foil. These two measured spring stiffness values are also
given in Table 4.3, and they are more than twice the theoretical value, probably due
to friction at the pivot point and at the spherical joint at the clamp. Because the
spring stiffness was only measured at two spring clamp positions, the theoretical
spring stiffness is used as the x-axis in Figure 4.21.

4.6.2 Results

Also for the spring-loaded foil, the foil was made to oscillate harmonically in heave
with the same heave amplitude and period as with forced harmonic pitch, while
traveling at steady forward speed. The thrust coefficients of the spring-loaded foil
for the same three forward speeds as previously tested are shown in Figure 4.21.
With the softest spring, the pitch crests were higher than the troughs were deep –
see Figure 4.22, which illustrates the clearest case – but with a stiffer spring, the
pitch time history was more symmetrical about zero. As with the results for the
pitch-controlled foil, the horizontal force on the struts alone was subtracted from
the measured force on the foil rig. A higher spring clamp position number gave a
softer spring and larger pitch amplitudes. We see that, as was the case with forced
harmonic pitch motion, the optimal pitch amplitude increased as the forward speed
decreased. The maximum thrust coefficient measured for the spring-loaded foil for
U = 1.286 m/s was smaller than the maximum thrust coefficient measured for the
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Figure 4.19: Experiment setup for the spring-loaded foil, with the basin half full
of water

Mspring Mspring

d d

Figure 4.20: Principle drawing of the spring mechanism
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Spring
clamp
position
(counted
from the
foil)

Distance
from
spring
clamp
to foil
pivot
point
(d) [m]

Theoretical
spring
stiffness
[Nm/deg]

Measured
spring
stiffness
[Nm/deg]

1 0.06 0.69 -
2 0.07 0.59 -
3 0.10 0.42 0.88
4 0.13 0.32 0.82
5 0.16 0.26 -
6 0.19 0.22 -
7 0.22 0.19 -

Table 4.3: Spring stiffness, i.e., required moment in Nm to pitch the foil one degree

same speed with forced harmonic pitch motion and with actively controlled pitch
motion. For both U = 0.9 m/s and U = 0.7 m/s, however, the maximum measured
thrust coefficient was higher for the spring-loaded foil than with forced harmonic
pitch motion where pitch was leading heave with 90 degrees, and much higher than
for the pitch-controlled foil. Also shown in Figure 4.21 are αE,theory,A values for
the spring clamp positions that gave the highest thrust coefficient values. The
spring-loaded foil rig had no vanes measuring the inflow angle, which is the reason
why there are no αE,measured,A values given in Figure 4.21.

The reason why the spring-loaded foil performed better than the foil with forced
harmonic pitch motion and with actively controlled pitch motion for low forward
speeds appears to be the phase between heave and pitch, as explained in Section
4.4.3. Figure 4.23 shows the foil pitch and the foil forces, after subtracting the strut
force, for the spring-loaded foil, with the spring clamp in position 7, and the pitch-
controlled foil, with wpc = 0.7 and αmax = 50◦, for U = 0.7 m/s. The resultant
foil force is drawn at the quarter-chord for simplicity, although it may attack at
other positions in reality. The pitch-controlled foil was tilting nose-up at the top
position and nose-down at the bottom position, causing the normal added mass
force to act against the direction of travel. The spring-loaded foil, however, was
tilting slightly nose-down at the top position and slightly nose-up and the bottom
position, causing the normal added mass force to act slightly in the direction of
travel at these positions. Such a pitch motion resulted in much larger forward
thrust than the angle-of-attack-based controlled pitch motion, probably due to the
more advantageous direction of the normal added mass force through the whole
oscillation cycle. According to Lighthill (1970), aquatic animals are well aware
of this effect: “... the ‘good hydromechanical shapes’ seem to be precisely those
which are able to improve greatly their propulsive efficiency η by utilizing this
virtual-mass effect.”
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Figure 4.21: Thrust coefficients for the spring-loaded foil. Arrows indicate ap-
proximate pitch amplitudes (average between trough and crest) and approximate
amplitudes of theoretical effective angle of attack, αE,theory,A. hA = 0.12 m and
T = 1.5 s.
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Figure 4.22: Time history of the foil pitch, δA, for U = 1.286 m/s, with the softest
spring (spring clamp in position 7 from the foil). hA = 0.12 m and T = 1.5 s.
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In Figure 4.23, pitch was leading heave with 97 degrees for the spring-loaded foil,
and 56 degrees for the pitch-controlled foil, although neither of the pitch motions
were perfectly sinusoidal. The pitch-controlled foil was little influenced by the
normal added mass force, since the vanes pitched about a point located far forward
of their leading edges. As the ratio between circulatory lift and normal added mass
force increased with increasing forward speed, the pitch-controlled foil performed
better relative to the spring-loaded foil.

As for the runs with forced harmonic pitch motion, the thrust coefficient, power
coefficient, and efficiency were calculated for the spring-loaded foil runs with the
highest thrust coefficient values at each forward speed, in Table 4.4. In Tables
4.2 and 4.4, the η values given may differ by one digit from the values obtained
using the given CT and CP values due to rounding. We see that for U = 0.9 m/s
and U = 1.286 m/s, the efficiencies were clearly higher for the spring-loaded foil
than for the foil with forced harmonic pitch motion, due to lower input power. For
U = 0.7 m/s, both CT and CP were higher for the spring-loaded foil, resulting
in approximately equal η. If it had been possible to measure M in Eq. 4.10, the
efficiencies with forced harmonic pitch motion would have been even lower.

U
[m/s]

St StTE

Spring
clamp
position
(counted
from the
foil)

CT CP η

0.7 0.23 0.24 7 0.35 0.73 0.47
0.9 0.18 0.18 4 0.23 0.44 0.53
1.286 0.12 0.13 2 0.12 0.21 0.58

Table 4.4: Thrust coefficient, power coefficient, and efficiency for the most thrust-
producing runs at each forward speed with spring-loaded pitch motion

4.7 Discussion

For both forced harmonic pitch motion and spring-loaded pitch motion, the effec-
tive angle of attack – and therefore also the quasi-steady angle of attack – that
gave the highest thrust coefficient increased with decreasing forward speed. This
implies that the foil could sustain stall for higher angles of attack when the reduced
frequency was increased, which is as expected.

The efficiencies calculated for the foil with forced harmonic pitch motion leading
the harmonic heave motion with a phase angle of 90 degrees were virtually inde-
pendent of the Strouhal number. For the spring-loaded foil, however, the efficiency
increased with decreasing Strouhal number. As shown by Anderson et al. (1998),
the shape of η vs. St curves are very dependent on the foil’s pitch amplitude and
phase relative to the heave motion.



4.7. Discussion 63

x

z

x

z

Spring-loaded foil

Pitch-controlled foil
= 100 N

Figure 4.23: Comparison of foil pitch and forces for the spring-loaded foil, with the
spring clamp in position 7 from the foil, and the pitch-controlled foil, with wpc = 0.7
and αmax = 50◦, for U = 0.7 m/s. hA = 0.12 m and T = 1.5 s. The spring-loaded
foil pitched about a point located at the chord line, whereas the pitch-controlled
foil pitched above a point located above the chord line, as shown in the figure by
the red line from the foil to the sine curve.
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For a harmonically heaving foil, the quasi-steady angle of attack can be ex-
pressed as

α(t) = − arctan(πSt cos(ωt)) + δ, (4.14)

through Eq. 4.1 and expressing the heave amplitude with the Strouhal number,
using the double heave amplitude as the width of the wake in Eq. 4.2. Because the
angle of attack is expressed by an arctan function with St in the argument, the time
history of the angle of attack will be further from harmonic, for harmonic heave
and pitch, as St increases (Hover et al., 2004). This is also clear from Figure 4.24,
which shows the angle of attack time histories for the most thrust-producing runs
at each forward speed, with forced harmonic pitch leading heave with a 90-degree
phase angle. Also shown in Figure 4.24 are equivalent harmonic angle of attack
time histories. We see that even for the highest Strouhal number, St = 0.23, the
angle of attack time history is fairly close to being harmonic.
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U = 0.7 m/s, δA = 10◦, St = 0.23
α = −25.6813 cos(ωt)
U = 0.9 m/s, δA = 6◦, St = 0.18
α = −23.1836 cos(ωt)
U = 1.286 m/s, δA = 2◦, St = 0.12
α = −19.3489 cos(ωt)

Figure 4.24: Angle of attack vs. time graphs for the most thrust-producing runs
at each forward speed, with forced harmonic pitch leading heave with a 90-degree
phase angle, compared with their harmonic equivalents

Hover et al. (2004) specified the maximum quasi-steady angle of attack, αmax,
and adjusted the heave motion to produce four different angle of attack shapes. For
harmonic heave and pitch, with the pitch motion leading the heave motion with a
90-degree phase angle, Figures 4.25 and 4.26 show the highest CT value from the
present work and the corresponding η compared with the results in Hover et al.
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Figure 4.25: The highest CT with forced harmonic pitch in the present experiments
marked with a cross in Figure 5a from Hover et al. (2004). The graphs are for αmax
values from 10◦ to 35◦ in steps of 5◦.

(2004). We see that the maximum CT and the corresponding η in the present work
are higher for the same St and αmax than the results in Hover et al. (2004). This is
probably due to the Reynolds number being approximately 200,000 in the present
experiment and 30,000 in Hover et al. (2004).

The thrust coefficient of the pitch-controlled foil depended surprisingly little
on the pitch-control parameter, wpc, but there was an optimal wpc value which
maximized the thrust coefficient for all forward speeds tested. Setting a limit on
the maximum angle of attack had only a significant effect when wpc was very large,
i.e., when the foil was close to not pitching except when the maximum angle of
attack was exceeded.

Although only three different spring clamp positions were tested, it appears
that the pitch amplitudes giving the highest thrust coefficients for the spring-
loaded pitch motion are close to the pitch amplitudes giving the highest thrust
coefficients for the forced harmonic pitch motion. A good hydrodynamic model of
the foil forces should be able to calculate the spring-stiffness which would give the
desired pitch amplitude. On the other hand, if one had such a model available, one
could have used the model directly to find the spring stiffness giving the highest
thrust coefficient. Another approach is to find the optimal effective angle of attack
amplitude from Figure 4.15 and tune the spring stiffness to obtain this for a spring-
loaded foil, using vanes for measuring the inflow angle. For a ship employing the
foil for propulsion, it is also possible to optimize the spring stiffness by measuring
the foil thrust directly, or simply the speed of the ship.
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Figure 4.26: η for the highest CT case with forced harmonic pitch in the present
experiments marked with a cross in Figure 6a from Hover et al. (2004). The
numbers next to the graphs indicate αmax values.



Chapter 5

The effect of a wavefoil on a
platform supply vessel

In this chapter, the effect of a wavefoil on a platform supply vessel of the Rolls-
Royce UT 751 E design, see Figure 5.1, is examined through simulations and model
tests. Two rounds of model tests were done with a 1:16 scale model of the vessel:
the first in March 2012 and the second in September 2013, both in the towing tank
at the Marine Technology Center in Trondheim, Norway. For more information on
the towing tank, see Appendix C.2. The purpose of both rounds of testing was
to test the effect of a fixed and an actively controlled wavefoil on the ship model.
The location of the foil relative to the ship was the same in the March 2012 and
the September 2013 tests, but the foil actuation and pitch-control mechanism were
different.

In both the March 2012 and the September 2013 tests, the foil pitched about
a wheel located above the the foil, see Figure 4.3. In the March 2012 test, this
wheel was actuated via a wire running from the wheel to a motor located above
the struts, see Figure 5.2. Although the wire was tightened as much as possible,
there was an inherent elasticity in the system. When the motor was supposed to
keep the foil fixed, the foil could quite easily be pitched a few degrees by applying
hand force on it. Therefore, the wire was replaced with much more rigid rods
before the tests that are described in Chapter 4 were done, which improved the foil
actuation tremendously.

In the March 2012 test, the leading edge of the foil was equipped with five
pressure sensors, see Figure 5.9. These pressure sensors were used to estimate
the foil’s angle of attack, as explained in Section 5.2.2. Due to a dysfunctional
pressure sensor in a test of the foil alone in February 2013 and a desire to measure
the angle of attack more directly, the pressure sensor approach to pitch control was
abandoned. In the September 2013 test, two vanes were used to measure the inflow
angle and thereby estimate the angle of attack, as explained in Chapter 4.

When designing a wavefoil for the Rolls-Royce UT 751 E design, several aspects
were taken into consideration. Naito and Isshiki (2005) showed that the wavefoil
thrust was highest, of the three wavelengths they studied, when the wavefoil was

67
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located slightly in front of the bow. The foil should be retractable to reduce the
calm water resistance. It may also be desirable to retract the foil to protect it
in extremely high waves. The intention behind the wavefoil arrangement chosen,
shown in Figure 5.2, was to place the foil at a longitudinal position where it would
provide large thrust while at the same time allowing for easy retraction by means
of the swing-arm mechanism described in Section 4.1.

In its deployed position in full scale, the foil was located 8.761 m below the
baseline of the ship, with the quarter-chord located 79.005 m ahead of the aft
perpendicular. Placing the foil this far below the hull also greatly reduces the risk
of foil slamming. The main particulars of the ship and foil in full and model scales
are given in Tables 5.1 and 5.2.

Figure 5.1: The ship used to study the effect of wavefoils: Far Searcher, a platform
supply vessel of the UT 751 E design. Photo: https://www.farstad.com/fleet/psv-
vessels/psv-fleet-list/far-searcher.

Main particulars Full scale Model scale
Waterline length (LWL) 90.144 m 5.634 m

Length between perpendiculars (LPP ) 80.800 m 5.050 m
Beam 21.000 m 1.313 m

Draft used in model tests 4.300 m 0.269 m
Wetted surface area 1865 m2 7.284 m2

Displaced volume 4917 m3 1.201 m3

Table 5.1: Main particulars of the Rolls-Royce UT 751 E design, in full and model
(1:16) scales
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Figure 5.2: The ship model with the foil rig used in the March 2012 test

Main particulars Full scale Model scale
Profile NACA 0015 NACA 0015
Span 28.96 m 1.81 m

Maximum chord 3 m 0.1875 m
Projected area 82 m2 0.320 m2

Aspect ratio 10.24 10.24

Table 5.2: Main particulars of the foil used in the simulations and model tests

5.1 Fixed foil

5.1.1 VeSim implementation

The effect of fixed horizontal foils mounted to a ship was implemented in the time-
domain MARINTEK Vessel Simulator (VeSim). The user inputs the longitudinal
position of the quarter-chord relative to the aft perpendicular (AP), the vertical
position of the foil relative to the baseline of the ship, the transverse position of the
root and tip of the foil relative to the centerline of the ship, and the chord lengths
at the root and tip of the foil. A trapezoidal planform of the foil was assumed.
The foil was divided into 10 sections (or strips) of equal width, from the root to
the tip. A single foil was composed of two foils, i.e., a starboard foil and a port
foil, with adjacent roots.

Fluid velocities parallel and perpendicular to the foil at the 3/4-chord location,
and accelerations perpendicular to the foil at the midchord, were obtained at the
spanwise center of each section, through linear interpolation between the values at
the foil root and tip. The quasi-steady angles of attack for all sections were calcu-
lated from these velocities. The effect of the ship hull on the inflow (caused by the
wave and ship motions) to the foil was not included in the wavefoil implementation
in VeSim. Not including this effect is non-conservative, since the hull generally
will reduce the inflow angles to the foil and therefore decrease the foil thrust. The
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influence of the free surface on the wavefoil forces was also not included in VeSim.
As already mentioned, if the foil is located deeper than two chord lengths from
the free surface, the influence of the free surface on the wavefoil is negligible (Wu,
1972).

Dynamic foil forces were calculated using the dynamic stall model described in
Section 3.3. Simulating many different wave conditions in real-time or faster was
desired, and using a dynamic stall model to calculate the foil forces seemed like
a good compromise between speed and accuracy. If, for instance, a panel method
had been used to calculate the foil forces, stall could not have been studied, and the
simulations would have been more time consuming. Using normal and chordwise
forces, instead of lift and drag, is very convenient in the case of fixed foils since
VeSim requires the forces acting on the ship to be given in the ship-fixed reference
frame.

5.1.2 Model test setup

The same force transducer setup as described in Chapter 4 was used in both the
March 2012 and the September 2013 tests. As shown in Figure 5.2, the struts
supporting the foil went through a moonpool in the ship model, which was partly
filled with divinycell to reduce the moonpool area to a minimum. The foil rig was
connected to the ship hull via the red steel cross visible in Figures 5.2 and 5.3.
The ship model was towed from wires attached to an aluminum beam, which was
mounted perpendicular to the hull, as shown in Figure 5.3. This enabled the ship
to move freely in heave and pitch, while constrained in yaw. The surge motion of
the model was limited by springs connecting the towing wires to the towing tank
carriage.

Originally, the model was supposed to be exposed to head sea regular waves
with full-scale wave height 3 m, and full-scale wave periods ranging from 6.5 s
to 11.5 s. The actual waves generated were, however, somewhat different, and
are given in Table 5.3. To compare model tests and simulations, the same wave
conditions were used in the simulations. The ship model was also tested in the
same conditions without the foil in order to separate out the effect of the foil.

T [s] H [m]
11.499 2.958
10.513 3.027
9.505 2.911
8.505 3.002
7.504 3.518
6.508 2.973

Table 5.3: Wave periods (T) and heights (H) used in the model tests and simula-
tions, found from surface elevation measurements
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Figure 5.3: The setup in the March 2012 towing tank test

5.1.3 Comparison of simulation and experiment

Comparisons of the simulated and experimentally determined ship resistance, foil
thrust, and vessel RAOs in heave and pitch are shown in Figure 5.4, for the full
scale ship sailing at 12 knots. It is clear that the foil reduced the ship resistance and
motions significantly. The agreement between simulated and experimental results
is reasonably good for the foil thrust, heave RAO, and pitch RAO, but not so good
for the ship resistance. We see that for a wave period of 7.5 s, which is the wave
period where the ship motions were most violent, there is a considerable difference
in the simulated and experimentally determined ship resistance and heave RAO for
a ship without foil. For this wave period, the ship without foil moved so violently
(see Figure 5.15) that assuming non-breaking waves, which is done in VeSim, is not
recommended and likely to cause deviation between simulated and experimental
results.

To compare the simulations, which were done in full scale, with the model tests,
the experimentally determined ship resistance and foil thrust were directly Froude-
scaled to full scale. A model scale force, FM , is Froude-scaled to its full scale value,
FS , by

FS =
ρS
ρM

λ3, (5.1)

where ρS and ρM are the mass densities of sea water and fresh water, respectively,
and λ is the scale factor – in this case, 16.

Because lift and drag coefficients of a foil section depend strongly on the Reynolds
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Figure 5.4: Simulation vs. experiment results for regular head sea waves and a
forward speed of 12 knots

number, Re, model scale Re was used in the simulations. VeSim needs the calm
water resistance graph as input. The experimentally determined calm water resis-
tance graph, directly Froude-scaled to full scale, was used as VeSim input, to obtain
the same ratio between horizontal and vertical forces in model and full scale, which
is important when comparing the ship motions. Since the frictional resistance coef-
ficient is less in full scale than in model scale, Froude-scaling the resistance directly
implies that the resistance is overpredicted in full scale. Therefore, in reality, the
foil thrust would be larger compared to the ship resistance in full scale, than what
is indicated by Figure 5.4. If only an estimate of the full-scale calm water resis-
tance was desired, the model-scale calm water resistance would have been scaled
according to standard procedures (i.e., scaling viscous resistance and wave resis-
tance differently – see for instance Faltinsen (2005)). Furthermore, the simulated
ship was towed by a simulated spring system, similar to the one used in the model
tests, with the model scale spring stiffness Froude-scaled to full scale.

The forces on the struts were not modeled in VeSim, so the struts’ influence
on the simulated ship motions was neglected. To compare the simulated and ex-
perimentally determined ship resistance and foil thrust, the strut resistance in the
September 2013 test were Froude-scaled to full scale and added to the simulated
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ship resistance and subtracted from the simulated foil thrust. This was necessary
because the force sensor measuring the foil thrust in the experiment was located
above the struts – as shown in Figure 5.2 – and therefore measuring also the force
on the struts.

Both results from the March 2012 and the September 2013 tests with a fixed
foil are shown in Figure 5.4. In September 2013, the calm water resistance was
measured with the foil fixed but not without the foil, whereas in March 2012, the
calm water resistance was measured only without the foil. At a speed of 12 knots,
the calm water resistance without foil was 197 kN, Froude-scaled to full scale, and
254 kN with foil (in the September 2013 test). From testing the foil alone it was
found that the strut resistance was 2.3 times higher in the September 2013 test
than in the March 2012 test, at 10 knots. Calm water resistance graphs without
foil (March 2012) and with fixed foil (September 2013) are shown in Figure 5.5.
The reason for the difference in calm water resistance is that the rods pitching the
foil in the September 2013 test ran along and outside the port strut (this can be
seen in Figure 4.4), whereas the wire pitching the foil in the March 2012 test ran
inside the port strut. In addition, the vanes used for pitch control in the September
2013 test contributed with some resistance. The extra strut resistance is clear from
both Figures 5.4 and 5.5.
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Figure 5.5: Calm water resistance without foil (March 2012) and with fixed foil
(September 2013)

Replacing the wire pitching the foil with much more rigid rods, not only im-
proved the foil actuation, as mentioned, but also kept the foil more fixed when it
was supposed to be fixed. This is another reason for the difference between the
March 2012 and September 2013 results in Figure 5.4.

When performing a VeSim simulation, the added resistance in waves is cal-
culated with the MARINTEK software ShipX Vessel Responses (VERES) (Fathi,
2012). In VERES, dynamic lift on the wavefoil is calculated using the Theodorsen
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function and summing up the foil section forces, but no dynamic stall effects are
included. Further details on the wavefoil model in VERES is given in Section 5.6.1.

There are two available methods for calculating the added resistance in VERES:
“Gerritsma & Beukelman” and “Pressure integration”. “Gerritsma & Beukelman”
is the extension of the method by Gerritsma and Beukelman (1972) to oblique
waves (Loukakis and Sclavounos, 1978), whereas “Pressure integration” is the pres-
sure integration method of Faltinsen et al. (1980). The “Gerritsma & Beukelman”
method was applied in the head seas simulations in Sections 5.1.3 and 5.4, whereas
the “Pressure integration” method was found to be more robust in following seas
and was therefore applied in the simulations in Section 5.5, Chapter 6, and Chapter
7. Both methods are combined with the wave reflection formula of Faltinsen et al.
(1980) for short waves (Fathi and Hoff, 2014). When using the “Pressure integra-
tion” method, the option “Apply surge, sway and yaw motion limits in following
seas (at low encounter freq.)” was ticked off. Selecting this option avoids unphysi-
cally large motions in surge, sway and yaw close to zero frequency of encounter in
following seas (Fathi and Hoff, 2014).

Figures 5.6 and 5.7 compare experimental and simulated results for 10 knots
and 8 knots forward speed, respectively. The agreement between simulations and
experiments is at the same level as for a speed of 12 knots, except for the resistance
with fixed foil, where the agreement appears to be worse with decreasing speed.

5.2 Actively pitch-controlled foil

5.2.1 VeSim implementation

The simple pitch-control algorithm in Eq. 4.13 was implemented in VeSim, to sim-
ulate actively pitch-controlled wavefoils. In the implementation of pitch-controlled
foils in VeSim, δopt was calculated based on φE at the spanwise center of the foil.
φE was calculated in the same manner as in Eq. 4.4. We assumed perfect actua-
tion, i.e., that the foil immediately took on the calculated δopt. At every time step,
the following procedure was performed:

1. αn was calculated at the spanwise foil center based on δ from the previous
time step.

2. Xn and Yn were calculated at the spanwise foil center using Eqs. 3.34 and
3.35.

3. φE,n was calculated at the spanwise foil center using Eq. 4.4.

4. δopt was calculated at the spanwise foil center using a modified version of Eq.
4.13, which includes the vessel pitch (see Figure 5.8):

δopt =


−αmax − φE − ξ5, wpcφE < −αmax
φE(wpc − 1)− ξ5, −αmax ≤ wpcφE ≤ αmax
αmax − φE − ξ5, wpcφE > αmax.

(5.2)
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Figure 5.6: Simulation vs. experiment results for regular head sea waves and a
forward speed of 10 knots

5. αn was calculated at the spanwise foil center using the newly found δopt.

6. Steps 2-5 were repeated until αn had converged.

After δ was determined by setting δ = δopt, new values of αn, Xn, Yn and
αE were calculated for all spanwise foil sections. Dynamic foil forces were then
calculated using the dynamic stall model described in Section 3.3.

5.2.2 Model test, March 2012

The model test with actively pitch-controlled in March 2012 was partly successful:
successful since pitch control was slightly beneficial in several runs and clearly
beneficial in two runs (T = 9.5 s, 8 knots forward speed and T = 6.5 s, 10 knots
forward speed), and partly because of the inherent elasticity in the wire connecting
the motor and the foil, see Figure 5.2, which probably is part of the reason why
not better results were obtained with the pitch-controlled foil.

In January 2012, the foil alone was tested for the first time in the same basin
as described in Section 4.1, see Appendix C.1. The foil was equipped with five
pressure sensors located on and near the leading edge, see Figure 5.9. In Figure
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Figure 5.7: Simulation vs. experiment results for regular head sea waves and a
forward speed of 8 knots
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Figure 5.8: Foil forces and angles, including vessel pitch

5.9, pk denotes the pressure at pressure sensor k. Based on pressure recordings at
a range of static angles of attack, Figure 5.10 was generated. When knowing the
pressure at sensors 1, 3, and 5, one can interpolate in Figure 5.10 to estimate the
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angle of attack. In the March 2012 model test with actively pitch-controlled foil, the
four nearest data points in Figure 5.10 to the measured pressure point was found at
each time step, and fourth degree polynomial interpolation was applied to estimate
the angle of attack. Since each data point corresponds to a forward speed of the
foil, U , this method enables us to estimate the angle of attack without knowing
the inflow speed to the foil. In Figure 5.10, the different U values corresponds to
full scale forward speeds of 6, 8, 10, 12, and 14 knots.

Figure 5.9: The five pressure sensors on and near the leading edge used in the
March 2012 test, marked with red circles and numbered

In the March 2012 test with pitch-controlled foil, the optimal foil pitch was
determined in a different manner than using Eq. 4.13. Instead of pitching the foil
a constant times the angle of attack, up to a maximum angle of attack, as in Eq.
4.13, the static lift and drag curves were used directly to find the optimal angle of
atttack at all times. This should in theory eliminate the tuning of a pitch-control
parameter, as in Eq. 4.13.

From a quasi-steady point of view, the foil thrust is given by (see Figure 4.17)

T = L sinφ−D cosφ. (5.3)

The optimal angle of attack is considered to be the angle of attack that maximizes
the propulsive thrust, at a given time instant. This angle of attack can be found
by differentiating the expression for the thrust with respect to the angle of attack,
and setting this expression equal to zero:

∂T

∂α
=
∂L

∂α
sinφ− ∂D

∂α
cosφ = 0, (5.4)

which gives

φ = arctan

(
∂D
∂α
∂L
∂α

)
. (5.5)
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Figure 5.10: Pressure plot used to estimate the angle of attack in the March 2012
model test. Numbers at the data points indicate angle of attack in degrees. For
all velocities, the order of the angle of attack relative to the pressure point is the
same as the one shown.

The resulting φ will be a function of α, which is actually the most thrust-producing
angle of attack, denoted αopt. Thus, we also know αopt as a function of φ. Figure
5.11 shows the αopt vs. φ graph used in the March 2012 test, obtained using Eq.
5.5 and curve-fitted polynomials to experimentally obtained static lift and drag
coefficient curves. Finally, the optimal foil pitch is given by

δopt = αopt − φ− ξ5. (5.6)

The ship resistance, foil thrust, vessel heave RAO, and vessel pitch RAO for
the ship without foil, with fixed foil, and with pitch-controlled foil are shown in
Figures 5.12, 5.13 and 5.14 for forward speeds of 12, 10, and 8 knots, respectively.
Again, the model scale forces are directly Froude-scaled to full scale. Due to time
limitations, not all wave periods were tested for forward speeds of 12 and 8 knots.

At 12 knots, the ship with pitch-controlled foil had slightly lower resistance in
waves than the ship with fixed foil, at a wave period of 8.5 s. This is reflected by
the foil thrust graph, which shows that the thrust for the pitch-controlled foil was
higher than the thrust for the fixed foil at this wave period. For the other wave
periods, the resistance and foil thrust values with pitch-controlled foil and with
fixed foil are quite similar. The heave and pitch RAOs with fixed foil and with
pitch-controlled foil are very similar.

At 10 knots, the ship resistance values with fixed and pitch-controlled foil are
very similar, except for a wave period of 6.5 s, where pitch control was clearly
beneficial. This is again reflected by the foil thrust graph, but in this case the
pitch-controlled foil thrust was significantly higher also for wave periods 8.5 s and
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Figure 5.11: αopt vs. φ graph used in the March 2012 test
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Figure 5.12: Experiment results for the March 2012 test. Regular head sea waves
and a forward speed of 12 knots.

9.5 s, and this is not reflected by the ship resistance graph. The reason for this
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Figure 5.13: Experiment results for the March 2012 test. Regular head sea waves
and a forward speed of 10 knots.

is probably that the ship motions with pitch-controlled foil, at these two wave
periods, were slightly larger than with fixed foil, causing larger added resistance in
waves.

At 8 knots, only three wave periods were tested. The effect of pitch control is
clear from the foil thrust graph for all three wave periods, but can only clearly be
seen on the resistance graph for a wave period of 9.5 s. Again, the reason for this is
probably that the ship motions with pitch-controlled foil were slightly larger than
with fixed foil for wave periods 7.5 s and 8.5 s, although the ship motions with
fixed foil and with pitch-controlled foil for a wave period of 7.5 s are very similar.

Adding the foil to the ship, whether it was fixed or pitch-controlled, significantly
reduced the ship resistance and motions. It is likely that even lower resistance for
the pitch-controlled foil, for all three speeds, could have been achieved with a
more precise foil actuation mechanism. Tables 5.4, 5.5, and 5.6 give the reduction
in ship resistance and motions with fixed foil and with pitch-controlled foil for
forward speeds of 12, 10, and 8 knots, respectively. “NaN” means that there
was no experimental data to calculate the value. We see that the foil caused a
slight increase in heave motion for a few cases in long waves, but that the motion
reduction generally was large. Maximum reduction in ship resistance was 67% at
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Figure 5.14: Experiment results for the March 2012 test. Regular head sea waves
and a forward speed of 8 knots.

a wave period of 9.5 s and a speed of 8 knots for the pitch-controlled foil. The
heave motion was reduced by over 60% in several cases, and the pitch motion was
reduced by over 50% in several cases.

The motion reduction effect is evident in Figure 5.15, which shows snapshots
from videos of the ship model, without foil and with pitch-controlled foil, at the
same instant in the wave cycle. The wave height in Figure 5.15 was 3.5 m, the
wave period 7.5 s, and the forward speed 12 knots. In fact, the splashing from the
ship model without foil was so large that we were a bit worried for the electronic
equipment on the towing carriage. Such slamming incidents do occur in real life
with this particular ship, as Figure 5.16 shows.

5.2.3 Model test, September 2013

In September 2013, the actively pitch-controlled foil described in Chapter 4 was
employed on the same ship model as was tested in March 2012. Due to delays at
MARINTEK, five workdays of testing were reduced to two days. Successful runs
in calm water and with fixed foil in the same waves as in the March 2012 test
were done, and these results are given in Section 5.1.3. Due to time limitations,
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Reduction in
ship resistance
[%]

Reduction in
heave motion
[%]

Reduction in
pitch motion
[%]

T [s]
Fixed
foil

Pitch-
controlled
foil

Fixed
foil

Pitch-
controlled
foil

Fixed
foil

Pitch-
controlled
foil

11.5 3 NaN 0 NaN 24 NaN
10.5 17 22 4 6 31 28
9.5 33 36 18 21 38 40
8.5 53 58 42 41 46 44
7.5 57 55 64 65 50 53
6.5 19 20 29 16 49 41

Table 5.4: Reduction in ship resistance and motions at 12 knots, from the March
2012 test

Reduction in
ship resistance
[%]

Reduction in
heave motion
[%]

Reduction in
pitch motion
[%]

T [s]
Fixed
foil

Pitch-
controlled
foil

Fixed
foil

Pitch-
controlled
foil

Fixed
foil

Pitch-
controlled
foil

11.5 10 9 -2 -2 20 16
10.5 21 24 0 2 25 23
9.5 39 48 8 -1 33 27
8.5 54 55 33 24 43 38
7.5 58 58 61 59 51 49
6.5 23 48 37 24 51 33

Table 5.5: Reduction in ship resistance and motions at 10 knots, from the March
2012 test

only a limited number of cases were tested. Only wave periods 7.504 s and 8.505 s
were tested, with the corresponding wave heights from Table 5.3, i.e., 3.518 m and
3.002 m, respectively. Ship speeds of 8, 10, and 12 knots were tested. However,
due to various mechanical issues during several of the tests, only two cases are
presented here: wave height 3.002 m and wave period 8.505 s for the ship speeds
8 and 10 knots. The foil was controlled using Eq. 5.2, but with setting ξ5 = 0
in this equation for simplicity. Simulations showed that setting ξ5 = 0 in Eq. 5.2
decreased the foil thrust only marginally.

The ship resistance and foil thrust are plotted against wpc for a forward speed
of 10 knots in Figure 5.17 and a forward speed of 8 knots in Figure 5.18 together
with values for a fixed foil. We see that the benefit of pitch control was larger
at 8 knots than at 10 knots and that the pitch-controlled foil resulted in lower
ship resistance than a fixed foils only for a few choices of pitch-control parameter.
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Reduction in
ship resistance
[%]

Reduction in
heave motion
[%]

Reduction in
pitch motion
[%]

T [s]
Fixed
foil

Pitch-
controlled
foil

Fixed
foil

Pitch-
controlled
foil

Fixed
foil

Pitch-
controlled
foil

11.5 23 NaN -2 NaN 15 NaN
10.5 36 NaN -6 NaN 28 NaN
9.5 49 67 -1 -8 34 27
8.5 45 50 13 7 34 27
7.5 62 60 56 55 48 46
6.5 43 NaN 49 NaN 55 NaN

Table 5.6: Reduction in ship resistance and motions at 8 knots, from the March
2012 test

Figure 5.15: Comparison of ship motions, without foil (left) and with controlled
foil (right) for 12 knots forward speed, H = 3.5 m, and T = 7.5 s. The photos were
taken at the same instant in the motion cycle.

The foil thrust was significantly higher with pitch control at 8 knots for wpc values
from 0.7 to 0.9, but only slightly higher for these wpc values at 10 knots. It is
interesting to note that the ship resistance can decrease without a corresponding
increase in foil thrust. This can be explained by studying the heave and pitch
RAOs, which are plotted in Figures 5.19 and 5.20. Larger wpc implies larger angle
of attack, which in turn may give larger damping of the ship motions (and hence
less resistance), but less thrust if stall is reached. Indeed, we see that the reduction
in ship resistance was accompanied by reduced ship motions, particularly in heave.
We also see that when wpc was significantly less than 1, meaning that the angle of
attack is significantly reduced compared to a fixed foil, the heave and pitch motions
were larger than with a fixed foil, due to reduced foil lift.

Unfortunately, near the end of the last test day, the metal piece connecting
the foil to the port strut was torn apart by the hydrodynamic loads on the foil,
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Figure 5.16: Bow slamming on Far Seeker (Leikarnes, 2011) – a platform supply
vessel of the same UT 751 E design as studied in this chapter
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Figure 5.17: Results for pitch-controlled foil, 10 knots, September 2013. H =
3.002 m, T = 8.505 s.
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Figure 5.18: Results for pitch-controlled foil, 8 knots, September 2013. H =
3.002 m, T = 8.505 s.
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Figure 5.19: RAOs for pitch-controlled foil, 10 knots, September 2013. H =
3.002 m, T = 8.505 s.

see Figure 5.21, and the testing naturally came to an end. From these tests, and
the tests with the same pitch-control mechanism in Section 4.5, controlling the foil
pitch using vanes for detecting the inflow does not appear to be the optimal method
of pitch control. As discussed in Section 4.6.2, the vanes pitched about a point far
forward of their leading edges, implying that the vane angle, and hence the foil
pitch, was little influenced by the added mass force on the vanes. This resulted in
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Figure 5.20: RAOs for pitch-controlled foil, 8 knots, September 2013. H = 3.002 m,
T = 8.505 s.

a phase lag of the foil pitch, and lower thrust, relative to the spring-loaded foil in
Section 4.6, as shown in Figures 4.16 and 4.23.

Figure 5.21: Close-up view of the broken connection between the foil and the port
strut in the September 2013 test, shortly after the incident
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When using pressure sensors for pitch control, the pressure distribution due to
fluid accelerations relative to the foil will be captured by the pressure sensors, in
addition to the pressure distribution due to circulatory lift. This could lead to a
pitch motion of the foil closer to the that of the spring-loaded foil. As already
mentioned, the inaccurate foil actuation in the March 2012 tests is likely to have
decreased the performance of the pitch-controlled foil using pressure sensors. The
inaccurate foil actuation makes it difficult to study the actual foil pitch in the
March 2012 tests, since there was no potentiometer at the foil itself measuring the
foil pitch directly.

5.3 Spring-loaded foil

For the case of a spring-loaded foil, experiments were done with a foil without the
ship, as described in Section 4.6, and spring-loaded wavefoils were implemented in
VeSim. There was not available time in the towing tank to test the spring-loaded
foil from Section 4.6 on the model of the UT 751 E platform supply vessel. When
testing the foil alone in the smaller MC Lab, see Appendix C.1, the author had
to wear a drysuit and adjust the position of the magnet clamp determining the
stiffness of the spring for the spring-loaded foil, see Figure 4.19, under water. This
would have been very difficult to do in the towing tank, which is far too deep to
stand on the tank bottom while working on the foil under water. In other words, a
different mechanism for adjusting the spring stiffness of a spring-loaded foil must
be designed before eventual future tests with a spring-loaded foil in the towing
tank.

In the VeSim implementation of spring-loaded foils, we assumed that there is
a linear rotation spring which works in both directions, see Figure 5.22. Newton’s
second law for the spring-loaded foil becomes∫

f

{
Nf

(
a+

c

4
− xp

)
+NAM

( c
2
− xp

)
+NV

(
CPV c+

c

4
− xp

)}
ds

−ksδ = Iδ̈, (5.7)

where Nf is the normal force associated with CfN , a is the distance from where Nf
attacks to the quarter-chord (positive when Nf attacks behind the quarter-chord),
xp is the distance from the leading edge to the pivot point of the spring-loaded foil,
NV is the normal force associated with CVN , CPV is the nondimensional center of
pressure due to the vortex producing CVN , ks is the spring constant, and I is the
moment of inertia for the foil.

∫
f

means integrating over the foil span.

a is given as

a =
M

Nf
, (5.8)

where M is the pitching moment about the quarter-chord, defined to be positive
when it acts to pitch the foil in the nose-up direction. The pitching moment
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was found by entering a lookup table of moment coefficients vs. angle of attack
(Sheldahl and Klimas, 1981) with αf .

CPV is given as (Leishman and Beddoes, 1989)

CPV = 0.20 (1− cos(πτ)) , (5.9)

where τ is the vortex travel parameter explained in Sec. 3.3.3. Leishman and
Beddoes (1989) use τv

Tvl
instead of τ in Eq. 5.9, where τv is a nondimensional

vortex time, and Tvl is a nondimensional vortex passage time constant.
Inserting Eq. 3.36 for NAM in Eq. 5.7 and rewriting, we get

δ̈ =

∫
f

{
Nf
(
a+ c

4 − xp
)

+ ρπc2

4 ds
(
−ḧ cos δ + U d

dt (sin δ)
) (

c
2 − xp

)}
ds

+
∫
f

NV
(
CPV c+ c

4 − xp
)
ds− ksδ

I −
∫
f

ρπc2

4 ds
(
c
2 − xp

)2
ds

.

(5.10)
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Figure 5.22: Moment balance for a spring-loaded foil

In the Vesim implementation of Eq. 5.10, δn−1 was used when calculating δ̈n.
Nf was calculated using the dynamic stall model described in Section 3.3, using

δn−1 when calculating αn. After δ̈n was found, δ̇n and δn were obtained using the
backward Euler method for time integration,

δ̇n = δ̇n−1 + ∆tδ̈n, (5.11)

δn = δn−1 + ∆tδ̇n, (5.12)

because this method proved to be stable for sufficiently small time steps and con-
venient to implement.
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5.4 Simulations with pitch-controlled and spring-
loaded foils

Simulation results for the ship with a fixed, pitch-controlled, and spring-loaded
foil are shown in Figures 5.23 and 5.24 for forward speeds of 12 and 8 knots,
respectively, in the same regular head sea waves as in Figures 5.4, 5.6, and 5.7. In
Figures 5.23 and 5.24, strut drag was accounted for in the same manner as described
in Section 5.1.3. The empirical constants in the dynamic stall model used in the
simulations were the same as in Section 4.3: Tp = 1.5, Tf = 7, αv = 11o, Tv = 15
and ηC = 0.95. For consistency with the simulations in Section 5.1.3, model scale
Re was used when calculating the wavefoil forces.

For both pitch-controlled and spring-loaded foils, the added resistance was cal-
culated assuming that the foil was fixed, since neither foils that are controlled to
maximize the forward thrust nor spring-loaded foils are currently implemented in
VERES. The same assumption is made in the VeSim simulation with spring-loaded
wavefoils in Chapters 6 and 7.

For the pitch-controlled foil, αmax = 12◦ was used, with wpc = 0.55 for 12
knots and wpc = 0.60 for 8 knots forward speed. For the spring-loaded foil, ks =
3, 000, 000 Nm/rad was used for each foil half at 12 knots forward speed, and
ks = 1, 000, 000 Nm/rad was used for each foil half at 8 knots forward speed.
These values were chosen because they resulted in the lowest sum of ship resistance
values for all wave periods, with the belief that setting αmax = 12◦ was reasonable
based on the static lift and drag coefficient curves in Figure 4.5. The moment of
inertia, I, of the semi-span of the foil (assuming that the foil halves could pitch
independently of each other) was estimated to be 11,000 kgm2 in full scale. I is
needed when using Eq. 5.10 for the spring-loaded foil.

From Figures 5.23 and 5.24 we see that the effect of pitching the foil was only
significant for wave periods 7.5 s and 8.5 s. These wave periods were seen from
the model test to be the wave periods that gave the most violent ship motions,
and hence they also produced the largest foil thrust, as the foil thrust plots show.
According to these simulations, the optimized pitch-controlled and spring-loaded
foils performed very similarly.

5.5 Fuel savings with fixed foil in irregular waves

Simulations with the same ship and foil were done in short-crested irregular waves
to calculate how much fuel the wavefoil would save the ship in realistic ocean
wave conditions. A significant wave height (Hs) of 2.5 m is typical in the North
Sea and the North Atlantic and was therefore applied in the simulations, with a
Pierson-Moskowitz wave spectrum. The wave direction was varied between 0 (head
seas) and 180 (following seas) degrees, in steps of 45 degrees, and the peak periods
(Tp) were 7.5, 9, and 10.5 seconds. The calm water resistance polynomial used as
input in these simulations was based on correctly scaling the calm water resistance
from model tests, using the standard procedure where viscous resistance and wave
resistance are scaled differently – see for instance Faltinsen (2005).
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Figure 5.23: Simulation results for fixed, pitch-controlled, and spring-loaded foils
in regular head sea waves, with a forward speed of 12 knots

The simplest wavefoil is fixed relative to the ship, so a fixed foil was used in
the irregular waves simulations to provide a measure of minimum wavefoil perfor-
mance. When the ship has rolling motion, which it will have in the wave directions
simulated, the strut forces may dampen the ship motions and provide thrust, just
like the horizontal wavefoil. Hence, the strut forces were modeled using the same
dynamic stall model as described in Sec. 3.3, but without corrections for finite-span
effects, since the strut is attached to the ship at its upper end and the foil at its
lower end.

The ship was propelled using two azimuthing pod propulsors with a propeller
diameter of 3.2 m. The maximum continuous rating (MCR) of each pod was
increased from 200 to 1200 kW, in steps of 250 kW, and the corresponding ship
speeds were found based on the mean speed of 5 min simulations at each engine
setting, after the speed had stabilized. For wave directions 135◦ and 180◦, an
additional run with MCR 100 kW for each pod was done, to make sure that the
lowest MCR gave a ship speed well below 8 knots. The power needed to obtain
various ship speeds was found from fitting a curve on the form P = aU b + c to the
power vs. speed plot, where P is total engine power, U is speed, and a, b, and c
are curve fit coefficients, and interpolating. An example of such curve fits for head
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Figure 5.24: Simulation results for fixed, pitch-controlled, and spring-loaded foils
in regular head sea waves, with a forward speed of 8 knots

sea waves and Tp = 7.5 s is shown in Figure 5.25. The complete set of power vs.
speed graphs is given in Appendix D.

Assuming that the fuel consumption is linearly proportional to the engine power,
Table 5.7 gives the fuel savings for the different combinations of sea states and wave
directions, for ship speeds of 8, 10, and 12 knots. At 8 knots, the fuel savings are in
the range 23-39%, except in following seas, where the fuel savings are 9-14%. For
all combinations of wave direction and Tp, except from 10 to 12 knots in following
seas for Tp = 7.5 s, the fuel savings decrease with increasing speed. At 12 knots,
the fuel savings are in the range 2-15%. In following seas, the ship moved little
relative to the waves, resulting in low benefit of the wavefoil.

5.6 Frequency-domain analysis in head seas

5.6.1 Ship motions

Although VeSim can be used to study ships with wavefoils, a simpler frequency-
domain analysis is a good alternative to get a decent estimate on the effect of the
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Figure 5.25: Total engine power vs. ship speed, head sea waves, Hs = 2.5 m,
Tp = 7.5 s

Wave
direction
[◦]

Tp [s]
Fuel sav-
ing at 8
knots [%]

Fuel sav-
ing at 10
knots [%]

Fuel sav-
ing at 12
knots [%]

0 7.5 24 14 8
0 9 35 24 13
0 10.5 31 20 10
45 7.5 33 19 10
45 9 39 27 15
45 10.5 33 20 11
90 7.5 37 23 14
90 9 35 21 12
90 10.5 30 17 9
135 7.5 23 14 8
135 9 30 16 5
135 10.5 27 15 5
180 7.5 9 5 7
180 9 14 10 7
180 10.5 12 6 2

Average 27 17 9

Table 5.7: Fuel savings with a fixed wavefoil in short-crested irregular waves, with
Hs = 2.5 m

wavefoils (see for instance Belibassakis and Politis (2013)). A frequency-domain
analysis is particularly useful if one wants to optimize the wavefoil by varying lo-
cation, span, chord length, etc. In the following frequency-domain analysis, we
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assume head seas for simplicity, but the procedure outlined can be expanded to
cover all wave directions. Such a wavefoil model in the frequency-domain is imple-
mented in the frequency-domain program VERES (Fathi, 2012) and was used by
Angvik (2009) and Borgen (2010). For consistency with VERES, the coordinate
system for the ship motions that is used in VERES is adopted here, see Figure 5.26.
In the following analysis, a fixed wavefoil is assumed. In VERES, it is possible to
select a control system for the foils that aims to minimize the ship motions, but it
is currently not possible to control the foil pitch for maximum thrust.

23

3 OUTLINE OF THEORY

This chapter describes briefly the equations of motion and how the effects of passive roll

damping tanks are included in the motion calculations. To be as complete as possible, the

theory concerning the equations of motion is briefly repeated here. This section can also

be found (including further details) in the VERES User’s Manual [7]. The modification of

the equations of motion due to the roll damping tanks is given at the end of the chapter,

while details concerning free surface roll damping tanks are given in Chapter 4. For further

reference on the ship motion theory and the VERES program, please refer to the VERES

User’s Manual [7].

3.1 Definitions

The coordinate system used in this chapter, is referred to as the global coordinate system in

the VERES User’s Manual [7]. This is a right-handed Cartesian coordinate system (�� �� �),

with the �-axis pointing backwards, the �-axis pointing upwards through the center of grav-

ity, and the �-� plane on the mean position of the free surface.

The wave heading angle is defined as the angle between the positive �-axis and the wave

propagation direction. Hence, a wave heading angle of �Æ corresponds to head seas, 	�Æ cor-

responds to beam seas, and �
�Æ corresponds to following seas.

Figure 3.1: Sign conventions for translatory and rotational displacements

The translatory displacements in the �, � and � directions with respect to the global coordi-

nate system are denoted ��, �� and ��, where �� is the surge, �� is the sway and �� is the heave

displacement. Furthermore, the angular displacements of the rotational motion about the �,

� and � axes are denoted ��, �� and �	, for the roll, pitch and yaw angle, respectively. The

RAPPORT-RAPPORT-

Figure 5.26: Coordinate system in VERES (Fathi, 2012)

Assuming that the ship motions and the wave excitation forces vary harmoni-
cally, the equations of motions can be written as (Faltinsen, 1993)[

(M +A)(−ω2
e) +Biωe + C

]
ξA = FA, (5.13)

where M is the mass matrix, A is the added mass matrix, B is the damping matrix,

C is the restoring matrix, ξA is a vector containing complex motion amplitudes,

and FA is a vector containing complex amplitudes of the wave excitation forces
and moments. Adding harmonically varying foil forces to Eq. 5.13, we get[

(M +A)(−ω2
e) +Biωe + C

]
ξA = FA + Ffoil, (5.14)

where Ffoil is a vector containing complex amplitudes of the foil forces. In linear
theory, as explained in Section 2.1, the foil force is assumed to be vertical, so the
only nonzero elements in Ffoil are Ffoil,3 and Ffoil,5, where Ffoil,5 = −Ffoil,3xf .

The vertical foil force is found by summing up the forces on spanwise sections
of width ds:

Ffoil,3 ≈
∫
f

CLααC(ωe,r)
1

2
ρU2cds+

∫
f

NAMds, (5.15)
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where C is the Theodorsen function with the reduced frequency of encounter, ωe,r,
as argument. ωe,r is used for reduced frequency here instead of k, as in Section
3.2.1, because k in this section is the wave number. In Eq. 5.15 it is assumed
that the vertical foil velocity is much smaller than the horizontal, and that the
horizontal foil motion is unaffected by the waves, so that V ≈ U . The angle of
attack, α, is given as

α ≈ w − (ξ̇3 − xf ξ̇5)

U
+ ξ5, (5.16)

where w is the vertical wave particle vertical velocity. For regular waves with
amplitude ζA in infinitely deep water,

w = iωζAe
k(zf−ixf )eiωet. (5.17)

Assuming that the foil is a flat plate, NAM is given as

NAM = ρπ
( c

2

)2

z̈, (5.18)

where z̈ is the acceleration perpendicular to the plate, which in head seas is

z̈ ≈ ẇ − ξ̈3 + xf ξ̈5 + Uξ̇5. (5.19)

xf and zf are horizontal and vertical locations of the foil, respectively, with respect
to the center of gravity of the ship.

To solve Eq. 5.14, we must move the foil force terms depending on the ship
motions to the left side of the equation, so that Eq. 5.14 can be written as[

(M +A+Af )(−ω2
e) + (B +Bf )iωe + (C + Cf )

]
ξA = FA + FfA, (5.20)

where subscript f implies that the quantities are related to the foil, so that Af , Bf ,

Cf , and FfA are added mass matrix, damping matrix, restoring matrix and wave

excitation force amplitude vector, respectively, for the foil. Using Eqs. 5.15-5.19,
we get

Af,33 =

∫
f

ρπ
( c

2

)2

ds, (5.21)

Af,35 = −
∫
f

ρπ
( c

2

)2

xfds, (5.22)

Bf,33 =

∫
f

CLα<(C(ωe,r))
ρ

2
Ucds, (5.23)

Bf,35 = −
∫
f

CLα<(C(ωe,r))
ρ

2
Ucxfds (5.24)

−
∫
f

CLα=(C(ωe,r))
ρ

2ωe
U2cds−

∫
f

ρπ
( c

2

)2

Uds,
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Cf,33 = −
∫
f

CLα=(C(ωe,r))
ρ

2
Ucωeds, (5.25)

Cf,35 =

∫
f

CLα=(C(ωe,r))
ρ

2
Ucxfωeds−

∫
f

CLα<(C(ωe,r))
ρ

2
U2cds, (5.26)

FfA,3 =

∫
f

CLαC(ωe,r)
ρ

2
UciωζAe

k(zf−ixf )ds (5.27)

−
∫
f

ρπ
( c

2

)2

ωωeζAe
k(zf−ixf )ds. (5.28)

Since Ffoil,5 = -Ffoil,3xf , we get

Af,53 = −Af,33xf , (5.29)

Af,55 = −Af,35xf , (5.30)

Bf,53 = −Bf,33xf , (5.31)

Bf,55 = −Bf,35xf , (5.32)

Cf,53 = −Cf,33xf , (5.33)

Cf,55 = −Cf,35xf , (5.34)

FfA,5 = −Ff,3xf . (5.35)

5.6.2 Foil thrust

After the ship motions are found in the frequency domain, the foil thrust at each
section can be calculated, see Figure 5.8, as

T = L(αE)ds sin (αE − δ − ξ5)−D(αE)ds cos (αE − δ − ξ5) (5.36)

+<(NAM )ds sin (−δ − ξ5) ,

where
αE = <(αC(ωe,r)), (5.37)

L ≈ CLααE
1

2
ρU2c, (5.38)

and

D ≈ (CD,v(αE) + CD,i(αE))
1

2
ρU2c. (5.39)

For a fixed foil, δ = 0, in Eq. 5.36. In Eq. 5.39, CD,v is the viscous drag coefficient
and CD,i is the induced drag coefficient. For an elliptical flat wing, which is the foil
planform generating the least induced drag, with maximum chord length denoted
cmax,

CLα =
2π

1 + 2
Λ

(5.40)
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and

CD,i =
4πα2

EΛ

(Λ + 2)2
, (5.41)

where the aspect ratio, Λ, is

Λ =
4s

πcmax
. (5.42)

For a comparison of the foil thrust obtained with the frequency-domain method
and the foil thrust obtained with VeSim, see Figure 5.31.

5.7 The effect of foil location and size

A naval architect considering installing wavefoils on a ship would need to know how
large the wavefoils must be, and where the wavefoils must be placed, to achieve
a desired foil thrust. This can be answered by simulating varying wavefoil sizes
and locations in VeSim, but a simpler method is proposed in the following, based
on the frequency-domain analysis in Section 5.6. Knowing the frequency-domain
properties of the ship with forward speed, the procedure described here can be
implemented in, e.g., MATLAB, to obtain the optimal wavefoil location and size.
The frequency-domain analysis is compared here with VeSim simulations for a ship
speed of 12 knots and a wave height of 2 m. This ship speed and wave height was
used in all the following plots. For simplicity and computational speed (a lookup
table for CDv as a function of α and Re is computationally slow), CDv = 0.01 was
used in the calculations.

In Figure 5.27, the foil thrust, nondimensionalized by ρgζ2
ALPP , is plotted

against the longitudinal distance from AP to the foil divided by LPP and the
wave-length-to-LPP ratio, λ/LPP . The foil was assumed to have the same vertical
location, span, and maximum chord length as the foil studied in this chapter, but
an elliptical planform was assumed for simplicity. The λ/LPP resulting in the high-
est foil thrust is about 1.5, giving a wave period of approximately 9 s. Of course,
it is difficult to place the foil far ahead of the bow or far aft of the stern in reality.
Interestingly, the foil does not need to be placed as far ahead of the bow as aft of
the stern to produce the same foil thrust, and the thrust peak ahead of the bow is
also higher than the thrust peak aft of the stern.

For a wave period of 9 s, the nondimensional foil thrust is plotted against
both longitudinal and vertical foil position nondimensionalized by LPP in Figure
5.28. We see that the vertical position of the foil is secondary, compared to the
longitudinal foil position. Figure 5.28 should be used with care since neither the
foil’s interaction with the free surface nor the hull is included in the simulation
model. As Wu (1972) notes, neglecting free-surface interaction is a reasonable
simplification when the foil is farther than two chord lengths below the free surface,
or zf/LPP = 0.021 in this case.

Figure 5.29 shows the same as Figure 5.27, but with the wave length, λ, replaced
by the foil span, s, for a wave period of 9 s. Note that for a nondimensional longi-
tudinal foil position between -0.3 and 1, the effect of increasing the nondimensional
foil span above 0.3 is small.
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Figure 5.27: Nondimensional foil thrust vs. nondimensional longitudinal foil posi-
tion and wave-length-to-LPP ratio
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Figure 5.28: Nondimensional foil thrust vs. nondimensional longitudinal and ver-
tical foil positions for a wave period of 9 s

For the foil location and span of the foil used in the experiments in this chapter
and in Chapter 4, the aspect ratio (assuming elliptical planform) was varied in
Figure 5.30, by varying the maximum chord length only. We see that the highest
foil thrust does not change much when the aspect ratio is larger than about 13.
Note that Figure 5.30 is based on lifting line theory which, for a steady foil, is 20%
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Figure 5.29: Nondimensional foil thrust vs. longitudinal foil position and span-to-
LPP ratio for a wave period of 9 s

inaccurate for an aspect ratio of two (Faltinsen, 2005).

Aspect ratio

λ
/
L

P
P

 

 

5 10 15 20 25 30
0

1

2

3

4

5

T
ρ
g
ζ
2 A
L
P
P

−0.1

−0.05

0

0.05

0.1

Figure 5.30: Nondimensional foil thrust vs. aspect ratio and wave-length-to-LPP
ratio

In Figure 5.31, the wavefoil model in VeSim is compared to the simpler frequency-
domain model. The same foil at the same vertical location as in the experiments
in this chapter was used, and the longitudinal foil position was varied for λ/LPP
values 0.6, 1.2 and 2.0. In other words, the frequency-domain graphs are horizon-
tal cuts in Figure 5.27. The frequency-domain model predicts the peaks in foil
thrust at the same longitudinal foil locations as the VeSim model, but overpredicts
the magnitude of the foil thrust peaks relative to the VeSim model. Figure 5.31
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bears striking resemblance to Figure 9 in Naito et al. (1986), which is reproduced
as Figure 13 in Naito and Isshiki (2005), except the thrust peak magnitude for
λ/LPP = 2.0 is closer to that of λ/LPP = 1.2 in Figure 5.31 than in Naito and
Isshiki (2005). Based on Figure 5.31, the simpler frequency-domain model appears
to be safe to use for fast calculations of the effect of fixed wavefoils on the ship in
the given conditions.
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Figure 5.31: Comparison of foil thrust from VeSim and from the simpler frequency-
domain analysis

To provide an indication of when the simplified model for wavefoil forces can be
used to calculate the wavefoil force with reasonable accuracy, this model was used
to simulate a single harmonically heaving foil, with δ = 0. The foil was assumed to
have elliptical span, with the same maximum chord length, span, and foil profile
as the foil tested in Chapter 4 and in this chapter. Instead of setting CD,v in
Eq. 5.39 to a constant, CD,v was in this case found by interpolating in a table
of CD,v vs. angle of attack and Reynolds number (Sheldahl and Klimas, 1981).
Figure 5.32 shows CT , CP , η, and maximum quasi-steady angle of attack, αmax,
calculated using the simplified model, against the Strouhal number. The Strouhal
number was varied by keeping the heave amplitude fixed at 0.12 m and varying the
forward speed. In Figure 5.32, the αmax graph is linear for the simplified model,
because the expression for angle of attack, Eq. 5.16, is based on linear theory.
When calculating CP , the vertical force was calculated as

FV =

∫
f

[L cos(αE) +D sin(αE) +NAM ] ds. (5.43)

Also shown in Figure 5.32 are CT , CP , η, and αmax vs. Strouhal number, for
the same foil, calculated using the dynamic stall model from Section 3.3. Since the
forward speed for the highest St is quite low, in this implementation, CpN,n = CCN,n
was used in Eq. 3.38 (see discussion in Section 3.3.1). We see that the difference
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Figure 5.32: Theoretical CT , CP , η, and αmax for a non-pitching foil

between the two models increases for increasing Strouhal numbers, which is as
expected, since the simplified model does not account for stall. The CT and CP
curves for the simplified model start deviating from the curves for the dynamic
stall model already at St = 0.075. Note that the relative deviation between the
two CP curves does not increase with increasing St.



Chapter 6

Performance of a ship
powered purely by renewable
energy

6.1 Motivation

Whereas Chapter 5 studied a particular ship’s benefits of employing a wavefoil for
auxiliary propulsion and motion reduction in waves, the present chapter is devoted
to studying the performance a ship harnessing all its propulsive power from renew-
able energy. As concerns over global warming grow, the shipping community must
take its share of responsibility to reduce greenhouse gas emissions. Shipping is cur-
rently responsible for 3.3% of the global CO2 emissions. If the global temperature
is to be stabilized at no more than 2◦C warmer than pre-industrial levels by the
year 2100, however, and emissions from shipping continue as projected, shipping
would constitute between 12% and 18% of the global total CO2 emissions in 2050
that would be required to achieve stabilization (by 2100) with a 50% probability
of success (International Maritime Organization, 2009).

It is clear that radical measures are required if we are serious about cutting
greenhouse gas emissions. A natural solution is going back to sail ships. Before the
industrial revolution, square rigs ruled the world’s oceans. At optimal wind condi-
tions, these ships did not sail much slower than today’s slow steaming cargo ships,
which typically sail at 18 knots. Cutty Sark, for instance, logged a maximum speed
of 17.5 knots and her 24-hour average speed record was 15 knots (Lubbock, 1924).
With modern advances in sail technology, specifically with the advent of wingsails,
it seems obvious that modern wind-powered cargo ships could have outraced Cutty
Sark.

This chapter studies the performance of a ship exploiting the wind energy with
wingsails, wave energy with wavefoils, and solar energy with solar panels. The
route chosen is Ponta Delgada, Azores - Funchal, Madeira, round-trip, see Figure
6.1. The main reason for choosing this route is that free wind and wave statistics

101
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were available for the route from www.globalwavestatisticsonline.com. Fur-
thermore, the route has good wind, wave and sun conditions, making it ideal for
a ship powered purely by renewable energy. For simplicity, the ship is assumed
to travel in a straight line, perfectly southeast from Ponta Delgada to Funchal –
although the route in reality curves along the Madeiran coast the very last part.
Vice versa, the ship is assumed to travel perfectly northwest from Funchal to Ponta
Delgada.

Figure 6.1: The route from Ponta Delgada to Funchal

6.2 The ship

6.2.1 Design specifications

A commonly studied container/cargo ship hull, the Series 60 CB = 0.6 (Todd,
1963), was selected for the ship. Its length was chosen with wave propulsion in
mind, i.e. LPP being somewhat shorter than typical ocean waves, as was found
preferable in Section 5.7. Main particulars of the ship are given in Table 6.1.

The ship was equipped with five wingsails and two wavefoils: one slightly ahead
of the bow, and the other astern of the stern. An illustration of the ship, showing
the locations of the wingsails and wavefoils, is given in Figure 6.2.

The residual resistance coefficient (due to wave generation), CR, of the hull was
calculated from

CR = CT − (1 + k)CF , (6.1)

where the total resistance coefficient, CT , was taken from model tests with the
Series 60 hull (Longo and Stern, 2002), and the frictional resistance, CF , was
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Length overall 80.000 m
Length on waterline 79.999 m

Length between perpendiculars 78.999 m
Breadth at waterline 11.434 m

Draught 4.278 m
Volume displacement 2330 m3

Wetted surface area 1127 m2

Block coefficient (CB) 0.5955
Prismatic coefficient 0.6097

Table 6.1: Main particulars of the ship.

Figure 6.2: Illustration of the ship, showing the locations of the wingsails and the
wavefoils

calculated from

CF =
0.075

(logRe− 2)2
. (6.2)

The form factor, k, was calculated to be 0.0741 by using MARINTEK’s expression
for the form factor (Steen and Minsaas, 2012):

k = 0.6Φ + 75Φ3, (6.3)

where

Φ =
CB
LWL

√
2BT. (6.4)

In Eq. 6.4, B is the breadth, and T is the draft. The total resistance coefficient
for the ship in the scale used in this chapter was then obtained from Eq. 6.1:

CT = CR + (1 + k)CF , (6.5)

where CF is different in the scale used in this chapter than in Longo and Stern
(2002).

The polynomial

R = 485.93U3 − 1957.7U2 + 10124U, (6.6)

where R is the resistance in Newton and U is the ship speed in m/s, was a good fit
to the calculated resistance curve and used as calm water input in the simulations,
since a resistance polynomial is needed as input in VeSim.
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6.2.2 Wingsails

Five wingsails having the NACA 0015 profile were mounted on the ship’s deck,
with their quarter chords 9.42 m, 25.26 m, 41.10 m, 56.94 m, and 72.78 m ahead
of the aft perpendicular, as shown in Figure 6.2. The root chord length was 6 m
and the tip chord length was 4 m. The aft four wingsails roots were 8.66 m above
the baseline, whereas the front wingsail root was 13.73 m above the baseline. All
wingsails tips were 33.41 m above the baseline. Since the gaps between the wingsails
and the ship deck were less than 0.06 of the wingsail height, it is fair to assume
that the induced drag is that of a wing with the same planform and half-span equal
to the wingsail height (Hoerner and Borst, 1975).

The wingsails were divided into 10 spanwise strips. The chordwise and nor-
mal forces on each wingsail strip were calculated using the dynamic stall model
described in Section 3.3. Aerodynamic interaction between the wingsails was ne-
glected in this analysis. The interaction effect is dependent on the apparent wind
angle, β. Miyasaka et al. (2013) showed that the average thrust per wingsail in
a group of three wingsails can exceed the thrust of one wingsail in close reach
(β = 60◦) and broad reach (β = 120◦) conditions. In wind abeam (β = 90◦)
condition, however, Miyasaka et al. (2013) found that the average thrust per wing-
sail was slightly lower than the thrust of one wingsail. Therefore, it appears that
neglecting aerodynamic wingsail interaction is a reasonable simplification.

The angle of attack (α), the apparent wind angle (β), and the wingsail angle
(δws) are related through

α = β − δws. (6.7)

Based on varying δws for all β values to optimize the forward thrust for a wind
speed of 10 m/s and a ship speed of 12 knots, yet avoiding rapid changes in wingsail
angle, δws was set to be

δws =


0, 0◦ ≤ β ≤ 14◦.

β − 14◦, 14◦ < β < 104◦.

90◦, β ≥ 104◦.

(6.8)

This procedure is illustrated in Figure 6.3. In following wind and waves, it was
possible in a few sea states that the ship was propelled by the wavefoils at a speed
fast enough for the apparent wind speed to be close to zero, or even head wind.
To avoid very rapid wingsail motion, the wingsail angle was forced to remain at
90◦ in these cases. Since the ship is rolling and pitching, β will vary along the
wingsail. β at the wingsails’ lower tip was used when calculating the optimal
wingsail angle in the simulations. Although only wind directions between 0◦ and
180◦ were simulated, the apparent wind angle could be negative for short amounts
of time due to the ship motion. To avoid rapid changes in wingsail angle in these
cases, the wingsail angle was programmed to remain unchanged in these cases, i.e.,
remain at 0◦ or 90◦. δ̇ and δ̈ in Eq. 3.36 were calculated by subtracting the value
at the previous time step from the value at the current time step and dividing by
the time step, since values at even earlier time steps were not easily available in
VeSim. This led to unphysical wingsail forces when the wingsail angle changed
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Figure 6.3: Wingsail angle and corresponding angle of attack applied in the simu-
lations

abruptly. To overcome this, the terms in Eq. 3.36 proportional to δ̇ and δ̈ were
simply ignored when calculating the wingsail forces.

6.2.3 Wavefoils

Two spring-loaded wavefoils, also having the NACA 0015 profile, provided propul-
sive thrust for the ship in waves. Each wavefoil consisted of two halves, with
trapezoidal planform, which could rotate in pitch independently of each other.
The inner tip chord length of each half was 3 m, the outer tip chord length was
2 m, and the semi-span of each wavefoil was 12 m. The front wavefoil’s quarter
chord was located 2.21 m ahead of the fore perpendicular, whereas the aft wave-
foil’s quarter-chord was located 5.65 m aft of the aft perpendicular. The wavefoils
were located 3 m below the baseline. The moment of inertia, I, of the semi-span
of the foil (assuming that the foil halves could pitch independently of each other)
was estimated to be 6,300 kgm2.

The wavefoils were supported by struts, also assumed to be of the NACA 0015
profile, with longitudinal orientations shown in Figure 6.2. The struts had a chord
length of 1.96 m. The roots of the front struts were 0.465 m from the centerline
of the ship, and the roots of the aft struts were 0.407 m from the centerline of the
ship. These distances were determined by the hull shape of the vessel. All strut
tips were 4 m from the centerline of the ship.

It was found that when reducing the spring stiffness so that the angle of at-
tack approached zero, the wavefoil thrust decreased but the thrust from the struts
that supported the wavefoils increased, due to increased ship motions. When
the significant wave height, Hs, was below 3 m, the spring stiffness was set to
500,000 Nm/rad, when Hs was between 3 and 5 m the spring stiffness was set
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to 1,000,000 Nm/rad, and when Hs was above 5 m the spring stiffness was set to
2,000,000 Nm/rad. For head sea waves with Hs = 0.5 m, it was found that a spring
stiffness of 500,000 Nm/rad gave unphysical foil behavior, with very rapid foil pitch
oscillations. Setting the spring stiffness to 200,000 Nm/rad for these runs solved
this problem.

6.2.4 Solar power

The ship was assumed to use solar power only to provide the necessary electricity
needed on board. It was assumed that the ship has 400 m2 of the deck area covered
by solar panels which are completely exposed to the sun. This is, of course, a
simplification, as the wingsails will shade the solar panels, but can be compensated
by a larger solar panel area.

6.3 Weather assumptions

6.3.1 Calculating wind speed from sea state

To limit the number of simulations, the wind and waves were assumed to come from
the same direction. From available scatter diagrams of Hs and spectral peak period,
Tp, a corresponding wind speed was calculated. In order to do so, the simplified
form of the two-peaked Torsethaugen wave spectrum (Det Norske Veritas, 2010)
was used, which gives two Hs and Tp pairs – one due to wind-dominated sea, Hs,w

and Tp,w, and the other due to swell-dominated sea, Hs,sw and Tp,sw. Assuming
that Hs,w and Tp,w were due to fully developed wind-generated sea with unlimited
fetch, the following relation (Tucker and Pitt, 2001) was used,

Hs,w = 0.025V 2
W , (6.9)

which is based on the JONSWAP spectrum, to calculate the wind speed at 10 m
elevation above the sea surface, VW , corresponding to a given Hs,w. Furthermore,
Tp was calculated from the mean zero-up-crossing period, Tm02, through

Tp
Tm02

= 1.41, (6.10)

which is valid for a Pierson-Moskowitz spectrum. When using the Torsethaugen
spectrum, Eq. 6.10 will be an approximation, as Tp/Tm02 strictly depends on
the spectral shape. Figure 6.4 shows the resulting VW as a function of Hs and
Tm02. We see that the wind speed increases with the wave height in the wind-
dominated sea region. In the swell-dominated sea region, however, both Hs and
Tm02 must increase for the wind speed to increase. At the intersection between
wind-dominated sea and swell-dominated sea, there is a marked ”trench” with zero
wind, which has no physical justification. The Harris wind gust spectrum was used
in the simulations, based on VW as the 10-minute mean wind speed.

Wave scatter tables for the ocean region between the Azores and Madeira
were available at www.globalwavestatisticsonline.com for all wave directions
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Figure 6.4: Wind speed (VW ) as a function of significant wave height (Hs) and
mean zero-crossing period (Tm02)

in 45-degree intervals and all four seasons, and also a table covering all direc-
tions and all year. Using the all-directions-all-year wave scatter table and Fig-
ure 6.4, a cumulative distribution function (CDF) for the wind speed was gen-
erated and compared with a CDF based on observed wind speeds from www.

globalwavestatisticsonline.com in Figure 6.5. Note that the approach de-
scribed here gives a CDF that is relatively consistent with observed data, despite
the unphysical zero wind “trench”.

6.3.2 Solar intensity

An average yearly solar intensity of 190 W/m2 (International Renewable Energy
Agency, 2013) and a photovoltaic panel efficiency of 18.8% (PlanetSolar, 2013)
were assumed, giving the ship solar power of 35.72 W/m2. With 400 m2 of com-
pletely exposed solar panels, 14.3 kW of power was generated on average for use
on board the ship. This should be sufficient for the moderate-sized ship, espe-
cially considering that with a battery, energy can be stored when little power is
consumed.

6.4 Ship speed calculations

In order to calculate the expected ship speed and corresponding standard deviation
for all seasons and both legs, the ship speed was first calculated for all sea states
and all wave directions relative to the ship heading. The wind direction was,
as mentioned earlier, the same as the wave direction. To limit the number of
simulations, the ship was exposed to waves and wind from head to following seas
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Figure 6.5: Cumulative distribution function (CDF) for wind speed from www.

globalwavestatisticsonline.com (Observed data) compared with the CDF for
the wind speed calculated from the wave scatter table (Calculated data)

in steps of 45◦. Since the ship is symmetrical about the centerline, it was sufficient
to simulate waves and wind from starboard side only. The available wave scatter
diagrams were given for Hs in the range 0-14 m in steps of 1 m, and > 14 m, and
Tm02 in the range <4 s, 4-14 s in steps of 1 s, and >14 s. It is not likely that the
ship would sail if Hs > 7 m, so only Hs values from 0.5 m to 6.5 m in steps of
1 m and Tm02 values from 3.5 s to 14.5 s in steps of 1 s were simulated. Figures
6.6-6.10 show the mean ship speed as a function of sea state for all wind and wave
directions. We see that the highest ship speeds occur in beam wind and waves,
and the “trench” with zero wind can be recognized in the ship speed plots. Figures
6.6-6.10 were generated based on 1500 s simulations, where the ship speed was
calculated based on the distance covered the last 800 s. If another wave seed had
been used, or the simulation time had been different, the mean ship speeds would
have changed somewhat.

VeSim generates realistic short-crested waves by multiplying the wave spectrum
by a spreading function, D(θ), where θ is the primary direction of wave propagation.
The spreading function used in VeSim has the form (Fathi, 2013)

D(θ) =

{
d cos2

(
θπ
2δ

)
, −δ ≤ θ ≤ δ.

0, θ < −δ or θ > δ.
(6.11)

where

d = 1/

(∫ δ

−δ
cos2

(
θπ

2δ

)
dθ

)
. (6.12)

δ can take any value between 0 (long-crested waves) and π/2 (most short-crested
waves). δ = π/2 was used in the simulations. The effect of short-crestedness and
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Figure 6.7: Ship speed plot, wind and wave direction 45 degrees (head quartering
seas)

irregular waves was also studied, and is worth noting: For head sea waves and
wind with Hs = 3.5 m, Tm02 = 6.5 s, VW = 11.7 m/s, the ship speed was 3.77 m/s
for short-crested irregular waves, 2.57 m/s for almost long-crested irregular waves(
δ = 10

180π
)
, and as fast as 7.15 m/s for long-crested regular waves.

For all seasons and both legs, the wind direction relative to the ship heading was
calculated. Since the wind directions with available statistics were north, northeast,
east, etc., and the ship was assumed to sail directly southeast when sailing toward
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Figure 6.8: Ship speed plot, wind and wave direction 90 degrees (beam seas)
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Figure 6.9: Ship speed plot, wind and wave direction 135 degrees (following quar-
tering seas)

Funchal and directly northwest when sailing toward Ponta Delgada, the calculated
wind directions relative to the ship heading conveniently turned up to be covered
by the range the ship speed was calculated for.

The probability of a combination of a certain sea state and wind direction was
calculated by multiplying the probability of the sea state given the wind direction
by the probability of that wind direction occurring. For a given season and leg, the
CDF value for a certain U value was calculated by summing up the probabilities of
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Figure 6.10: Ship speed plot, wind and wave direction 180 degrees (following seas)

the sea state and direction combinations giving lower values of U . The CDF of U
for the ship traveling toward Ponta Delgada in the winter is shown in Figure 6.11.
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Figure 6.11: CDF for the ship speed when traveling toward Ponta Delgada in the
winter

Knowing the CDF for the vessel speed, F (u), the expected value, E[U ], was
calculated from

E[U ] =

∫ ∞
0

(1− F (u)) du. (6.13)
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The variance, σ2, was calculated from

σ2 = 2

∫ ∞
0

u (1− F (u)) du− (E[U ])
2
, (6.14)

where σ is the standard deviation.
The resulting expected values and standard deviations of the ship speed, for

both legs and all four seasons, are shown in Table 6.2. Since sea states with
Hs > 6.5 m were not simulated, the CDFs were modified so that the cumula-
tive probability of all combinations of wave directions and sea states with Hs ≤
6.5 m was 1. In the table of wind direction probabilities for the area from www.

globalwavestatisticsonline.com, the sum of the probabilities of all the wind
directions is not entirely 1, however, resulting in the cumulative probability of all
combinations of wave directions and sea states with Hs ≤ 6.5 m being marginally
less than 1. The probability of Hs > 6.5 m occurring is small: 4.41%.

Expected value of ship
speed [m/s]

Standard deviation of ship
speed [m/s]

Season
Toward Funchal / Toward
Ponta Delgada

Toward Funchal / Toward
Ponta Delgada

Spring 2.90 / 2.90 2.06 / 2.11
Summer 2.47 / 2.50 2.19 / 2.22
Fall 2.78 / 2.79 2.14 / 2.17
Winter 3.16 / 3.16 2.04 / 2.07

Table 6.2: Ship speed statistics for all four seasons

To illustrate the distribution of propulsive force between the wingsails and the
wavefoils, let us consider the sea state Hs = 3.5 m, Tm02 = 8.5 s, VW = 7.2 m/s.
In this sea state, the wavefoils contributed to 100%, 58%, 56%, 67%, and 52% of
the propulsive force, for wind and wave directions 0, 45, 90, 135, and 180 degrees,
respectively. The rest of the propulsive force came from the wingsails. For the sea
state Hs = 1.5 m, Tm02 = 11.5 s, VW = 6.8 m/s, the contribution from the wavefoils
were 100%, 37%, 17%, 29%, and 7% for the same wind and wave directions.

6.5 Discussion

A ship whose speed is utterly dependent on the local weather conditions will not
surprisingly see huge variations in the ship speed. The expected speeds of the ship
described in this chapter are 5-6 knots, when sailing the route from Ponta Delgada
to Funchal and back in all four seasons. The standard deviations of the ship speed
are large: about 4 knots. The ship sailed over 14 knots in favorable wind and wave
conditions, but such conditions are rare. The seasonal variations are quite small:
The maximum seasonal difference in expected ship speed is the summer/winter
difference of 1.3 knots when sailing toward Funchal.

If the ship is to keep a minimum speed of 5 knots, regardless of weather con-
ditions, a propeller running on an auxiliary power source must be used when the
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waves are small and the wind speed is low. When sailing toward Ponta Delgada in
the winter, for instance, this means 43% of the time. A fair part of this required
energy can probably be harvested by employing water turbines when the ship speed
is higher than 5 knots and stored for later use with batteries.
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Chapter 7

Experiments with a
free-running ship model

7.1 Motivation

Although the model tests and simulations described in Chapter 5 showed the benefit
of the wavefoil on ship resistance, more model tests were needed, for the following
reasons:

• The model tests described in Chapter 5 were only done in head seas. The low
fuel savings in following seas, found in Section 5.5, seemed worthy of further
investigation.

• The model tests described in Chapter 5 were only done in regular waves.
Based on the experiences with the simulations in Chapter 6, using regular
waves would produce overly optimistic results compared to using irregular
waves.

• A ship with a spring-loaded wavefoil had not been tested so far in the present
work.

• A ship powered by a propeller, with the wavefoil providing auxiliary propul-
sion, had not been tested so far in the present work. Previous model tests
of ships with wavefoils in the literature have mainly studied a ship entirely
powered by the waves (e.g., Kjærland (1979); Kjærland (1980); Nagata et al.
(2010)). In the model tests described in the following, however, the more
commercially interesting case of a ship using wavefoils as auxiliary propul-
sion would be tested.

In addition, a new round of model tests with a smaller ship model would be a good
opportunity to apply the optimization method described in Section 5.7 and build
a physical model with – presumably – an optimal wavefoil.

For these reasons, a small radio-controlled ship model, powered by a propeller,
seemed desirable to test. A ship model with a length of about 1 m would be suitable

115
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to test in the frequently available basin described in Appendix C.1. Such a model
can easily be taken in and out of water to remove the foil or to modify the spring
stiffness, and the wavefoil would be small enough to be produced relatively cheap
by a 3D-printer.

7.2 The ship

The ship selected for the experiments was a roll-on/roll-off (RORO) ship, with
main particulars given in Table 7.1. It was chosen for this study because a work-
ing remote-controlled model in a suitable scale (1:101) for free-running tests was
available to the author, and because it has a fairly general cargo ship shape. Lines
plans of the ship are shown in Figure 7.1.

Main particulars Full scale Model scale
Design length 90.431 m 0.895 m

Length over all 98.079 m 0.971 m
Design beam 17.049 m 0.169 m
Beam over all 17.271 m 0.171 m
Design draft 3.830 m 0.038 m

Wetted surface area 1614 m2 0.1582 m2

Displaced volume 3601 m3 3.4946E-3 m3

Table 7.1: Main particulars of the RORO ship

Figure 7.1: Linesplan of the RORO ship

7.3 Optimal foil size and location, design stage

When finding the optimal foil size and location, the procedure outlined in Section
5.6 was used to try multiple foil combinations and see which combination gave the
highest foil thrust. CDv = 0.01 was used in the calculations. There are many
parameters that be can be varied but to limit the scope of the analysis the foil
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configuration that gave the highest thrust for a ship speed of 12 knots and a wave
height of 2 m was sought. First, the ship was assumed to have two fixed wavefoils,
one near the bow and the other near the stern, where both foils were of equal
elliptical planform, chord, and span, and both foils were located at the same zf -
coordinate. To reduce the risk of foil slamming, the foils’ vertical position was
chosen to be 5 m below the baseline of the ship, i.e., zf = -8.83 m. The spanwise
center of both foils were located at the ship’s centerline.

The front foil was located at xf = -50 m, and the stern foil was located xf
= 50 m, with the foil’s maximum chord length and span being 4 m and 15 m,
respectively. The corresponding total foil thrust as a function of wave period is
shown in Figure 7.2.
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Figure 7.2: Total foil thrust vs. wave period with bow foil located at xf = -50 m
and stern foil located at xf = 50 m

Next, the wave period that gave the highest total foil thrust was chosen, i.e.,
T = 8.5 s, the same foil chord and span was kept, and the corresponding total
foil thrust as a function of the longitudinal location of both foils was plotted, see
Figure 7.3. xf = -61 m for the bow foil, and xf = 53 m for the stern foil was
selected as a compromise between high total foil thrust and the foils not located
too far forward or aft of the ship. For this foil location combination, the foil thrust
is plotted against the foil span in Figure 7.4. For the same foil dimensions and
foil locations, a similar plot as Figure 7.2 now showed that the maximum total foil
thrust was found for a wave period of 9 s. Using this wave period, the foil span
was varied again, and the optimal foil span was now found to be 26 m, see Figure
7.4.

Using the same maximum chord length and foil positions, with T = 9 s and a
foil span of 26 m, zf was varied to study the effect of vertical foil location on the
foil thrust, see Figure 7.5. We see that the foil thrust increases with decreasing foil
depth because of higher water velocity relative to the foil. This is also the case with
bow foil only, whereas with stern foil only, the foil thrust increases with increasing
foil depth.

It is interesting to note that for the maximum total foil thrust in Figure 7.4,
the bow foil thrust was 103 kN while the stern foil thrust was only 4 kN. When
the bow foil was removed, the stern foil thrust increased to 25 kN, whereas when
the stern foil was removed, the bow foil thrust increased to 111 kN. Considering
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Figure 7.3: Total foil thrust vs. longitudinal location of foils for T = 8.5 s

0 10 20 30 40
2

4

6

8

10

12
x 10

4

Foil span [m]

T
ot

al
 fo

il 
th

ru
st

 [N
]

 

 

T = 8.5 s
T = 9 s

Figure 7.4: Total foil thrust vs. foil span. xf = -61 m for the bow foil and xf =
53 m for the stern foil.

the foil thrust, there appears to be no need for a stern foil if a bow foil is already
installed, according to the frequency-domain model. The span maximizing the foil
thrust was found to be 27 m for both the case of bow foil only and the case of stern
foil only. The final foil design therefore ended up having a span of 27 cm.

Figure 7.6 shows the total foil thrust when the spans of the bow foil and the
stern foil are different. The foil locations were the same as in Figures 7.4 and 7.5,
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Figure 7.5: Total foil thrust vs. vertical location of foils. T = 9 s, xf = -61 m for
the bow foil, xf = 53 m for the stern foil, and the foil span was 26 m.

and the wave period was T = 9 s. We see that when the bow foil span is larger than
approximately 5 m, there is no need to employ a stern foil in order to maximize
the foil thrust.
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Figure 7.6: Total foil thrust vs. bow and stern foil span. T = 9 s, xf = -61 m for
the bow foil, and xf = 53 m for the stern foil.
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7.4 Foils and struts

The foils and struts, see Figure 7.7 for a 3D-rendering, were designed by the author
and 3D-printed by the 3D-printing company Shapeways. A picture of the foils
and struts is given in Figure 7.8. A piano wire inside the foil acted as a torsion
spring between the foil and the strut. Due to the strength of the material and the
3D-printing accuracy, a certain thickness of the foil was required. The required
thickness was obtained with a maximum chord length of 4 cm and the foil profile
being NACA 0017.

Figure 7.7: 3D-rendering of the foils, struts, and supporting parts

When outfitting the model for wave propulsion, the author wanted to have the
possibility of mounting the wavefoils at different longitudinal positions. Therefore,
the ship was equipped with a rail extending forward from the bow, and another rail
extending astern of the stern, which a strut supporting the foil could be mounted on,
see Figure 7.9. The shortest strut in Figures 7.7 and 7.8 was mounted underneath
the bulb (see Figure 7.10), which was considered to be the most realistic position
for a full-scale vessel yet at the same time hydrodynamically advantageous. During
the tests, only the strut that could be mounted underneath the bulb was used. The
rails extending forward and aft were still present during the tests, however, to give
the ship a more realistic radius of gyration in pitch, since the mass of the model
was mostly located near the longitudinal center of the model. The idea behind the
dividing wall between the two foil halves was to reduce induced drag from the foil
roots, since the two foil halves could pitch independently of each other.
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Figure 7.8: Picture of the foils and the struts. Only the short strut, to be mounted
underneath the bulb, was used in the experiments.

Figure 7.9: The free-running ship model on land, showing the front and back rail
which the longer strut could be mounted on and the grey motion tracking balls.
The front rail is bent up to avoid hitting the water.

7.5 Calm water performance

7.5.1 Experiment setup

The ship model was powered by a 3000 mAh battery, powering both the rudder
servo and the motor to the propeller. Also powered by the same battery was an
Arduino Uno R3 microcontroller. Connected to the motor and the Arduino was a
voltage and current sensor (AttoPilot Voltage and Current Sense Breakout - 45A)
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Figure 7.10: Underwater image (taken through glass) of the free-running ship model
showing the foils on the small strut attached to the bulb

which measured the voltage and the current going to the motor and sent the signals
to the Arduino. The current and voltage information was then transmitted from
the Arduino, via a Bluetooth receiver/transmitter called Bluetooth Mate Silver, to
a computer logging the motor power, see Figures 7.11 and 7.16. All the electronics
on the ship model were covered by a plastic cover, visible in Figure 7.9.

To avoid unnecessary fluctuations in the motor power when trying to keep
the remote control’s throttle stable manually, the throttle signal was routed to a
Variref external power source, see Figure 7.12. This setup made it possible to set
the exact throttle voltage and keep it constant. Although the throttle voltage was
constant, the motor power would fluctuate due to varying propeller loading and
battery conditions, so measuring the motor power was still necessary.

Figure 7.13 shows the bare hull being towed in calm water. Since the motion
tracking balls were not in use during towing, the front ball was replaced by a
rod, which the model was towed from. The rod was connected to a force sensor
via perforated strip, which allowed the model to move freely in yaw, heave, and
pitch, while keeping the model fixed in surge, sway, and roll. The force sensor was
mounted to a wooden beam which was attached to the carriage in the small towing
tank, as shown in Figure 7.13. For more information on the small towing tank, see
Appendix C.3.
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Figure 7.11: The electronics inside the free-running ship model

7.5.2 Calm water resistance

Figure 7.14 shows the model scale calm water resistance without foil and with the
foil on a small strut mounted underneath the bulb, as shown in Figure 7.10. The
strut and foil increased the resistance with 59% at a speed of 0.31 m/s, but only
with 33% at 0.92 m/s. The reason for this decrease in strut resistance relative
to the total resistance with increasing speed is that the ship generated waves at
higher speeds, causing additional wave resistance, whereas the strut did not pierce
the free surface and hence generated minimal wave resistance at the same speeds.

7.5.3 Propulsion characteristics

To determine the propulsion characteristics of the ship model, it was towed in the
small towing tank at speeds from 0.20 to 0.82 m/s – corresponding to 4-16 knots
in full scale – with varying motor power. The propeller thrust was determined by
subtracting the ship resistance with a running propeller from the ship resistance
in calm water without foil. Denoting the propeller power, which is the propeller
thrust multiplied with the ship speed, PT , and the power consumed by the electric
motor, PM , Figure 7.15 shows PT vs. PM for the ship speeds that were tested. We
see that linear regression describes the relation between PT and PM fairly well, at
all speeds. The slope of the PT vs. PM curve is the total propulsive efficiency of
the propulsion system, and we see that it is very low – about 0.09 for the highest
speed. It is likely that the vast majority of the propulsion losses are due to friction
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Figure 7.12: The remote control of the free-running ship model, with the throttle
controlled by an external power source

in the propeller shaft and losses in the electric system.

7.6 Performance in waves

7.6.1 Experiment setup

The model’s motions were tracked using Qualisys Oqus motion tracking cameras
and Qualisys software. Five motion tracking balls were used for the Qualisys Oqus
cameras to see the model when it was free-running in waves, visible in Figure 7.9.
Figure 7.16 shows the model sailing in head sea regular waves, and this view is
close to the view from one of the Oqus cameras. The water surface elevation was
measured using an electrical resistance-based wave sensor mounted on a wooden
beam to get some clearance from the tank wall, see Figure 7.16.

First, the performance of the ship model was tested in regular waves with height
3.0 cm and periods 0.70 s, 0.90 s, and 1.09 s, corresponding to a full-scale wave
height of 3 m and to full-scale periods of 7 s, 9 s, and 11 s. Then, the model was
tested in irregular waves of the Pierson-Moskowitz spectrum with Hs = 3.0 cm
and Tp = 0.70 s, 0.90 s, and 1.09 s. The model was manually steered via the
remote control up and down the basin. The ship was seen by the Oqus cameras for
a distance of approximately 12 m. When post-processing, the average speed and
power consumption were found for a slightly shorter distance.
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Figure 7.13: Towing the free-running ship model from the carriage in the small
towing tank, see Appendix C.3
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Figure 7.14: Calm water resistance for the free-running ship model, with and with-
out foil, in model scale
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Figure 7.15: Propulsion characteristics in calm water for the free-running ship
model. The solid lines are linear regression lines corresponding to the data points
of the same color.

Figure 7.16: Experiment setup of the free-running ship model in waves, showing
the computer logging the motor power via a Bluetooth connection on the chair to
the left, the wave sensor mounted to the wooden beam, and the ship model sailing
in head sea regular waves
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In regular waves, only one run in head and following seas were done, for five
different throttle settings. In irregular waves, four runs in head seas and four runs
in following seas were done, to get reasonably large time series. In full scale, this
corresponds to measuring data for a distance slightly shorter shorter than 4.85 km
at each throttle setting and heading, in a particular sea state.

Two different springs were used in the foil, both in regular and in irregular
waves: one with diameter 0.5 mm and the other with diameter 0.7 mm. A close-up
view of the free-running ship model is shown in Figure 7.17.

Figure 7.17: Close-up view of the free-running ship model propelling itself in fol-
lowing seas

7.6.2 Regular waves

The average speed and PT in regular waves for the three wave periods, two headings,
and five different throttle settings are shown in Figures 7.18, 7.19, and 7.20. PT
was found from measurement of PM during the tests, and using linear interpolation
in Figure 7.15 to relate PM to PT . This method was used because the experiment
propeller was so small that it was not possible to measure the propeller thrust
directly when the model was self-propelled in waves. We see that when employing
the wavefoil, the ship required less PT to sail at a particular speed only for the two
lowest wave periods in head seas than when not employing the wavefoil. In Section
5.5, it was found through full-scale simulations – although with a different ship –
that the benefit of the wavefoil in following seas was low. The present model test
results are even more discouraging, showing negative effect of the foil at all wave
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periods. As we shall see in Section 7.7, however, scale effects are important, and
the results in full scale are much more uplifting.

The influence of the spring stiffness on the ship speed was small, although it
appears from Figures 7.18, 7.19, and 7.20 that the softest spring (diameter 0.5 mm)
was beneficial in regular waves, particularly in following seas.
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Figure 7.18: Results for the free-running ship model in regular waves, T = 0.70 s,
head and following seas. H = 3.0 cm.

Regular waves, T = 0.90 s
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Figure 7.19: Results for the free-running ship model in regular waves, T = 0.90 s,
head and following seas. H = 3.0 cm.
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Regular waves, T = 1.09 s
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Figure 7.20: Results for the free-running ship model in regular waves, T = 1.09 s,
head and following seas. H = 3.0 cm.

7.6.3 Irregular waves

Figures 7.21, 7.22, and 7.23 show the average speeds and PT in irregular waves. In
these figures, the speed and motor power were averaged over one run up or down
the basin, and the average values for four runs up and down the basin values were
then averaged.

As Figures 7.21, 7.22, and 7.23 show, the ship with wavefoil generally required
less PT to sail at a given speed in head seas than the ship without wavefoil. As was
the case for regular waves, when employing the wavefoil, the ship required higher
PT to sail at a given speed in following seas. The influence of the spring stiffness
on the ship speed was small also for irregular waves, but based on Figures 7.21,
7.22, and 7.23, the stiffest spring (diameter 0.7 mm) appears to have been weakly
preferable. The opposite was concluded for regular waves, which one may expect,
since the ship motions – and hence inflow angles to the foil – were generally larger
in regular waves.

7.7 Comparison with simulations and scaling

Simulations were done in VeSim in both model and full scales. The model scale
resistance curve for the bare hull was used as input in the model scale VeSim
simulations, and model scale Reynolds number was used when calculating the foil
forces. The strut resistance found from experiments was used in the simulations.

Figures 7.24, 7.25, and 7.26 show the experimental and simulated results com-
pared, in regular waves. It is clear that there is not a good agreement between
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Figure 7.21: Results for the free-running ship model in irregular waves, Tp = 0.70 s,
head and following seas. Hs = 3.0 cm.
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Figure 7.22: Results for the free-running ship model in irregular waves, Tp = 0.90 s,
head and following seas. Hs = 3.0 cm.

experimental and simulated results, although two conclusions drawn from the ex-
periments apply to the simulations as well: the influence of the spring stiffness on
the ship speed was small, and the wavefoil was more beneficial in head than in
following seas.

One reason for the discrepancies between the experimental and simulated re-
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Figure 7.23: Results for the free-running ship model in irregular waves, Tp = 1.09 s,
head and following seas. Hs = 3.0 cm.
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Figure 7.24: Comparison of simulations and experiments for the free-running ship
model. Regular waves, T = 0.70 s, H = 3.0 cm.

sults is that the assumption that the propeller power in the experiments was a
speed-dependent constant times the motor power (Figure 7.15) might be question-
able. In other words, the propeller thrust, and hence PT , in the experiments is
uncertain. It was not possible to measure the propeller thrust directly using a
conventional propeller dynamometer due to the size of the propeller, however, so
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Regular waves, T = 0.90 s
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Figure 7.25: Comparison of simulations and experiments for the free-running ship
model. Regular waves, T = 0.90 s, H = 3.0 cm.

Regular waves, T = 1.09 s
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Figure 7.26: Comparison of simulations and experiments for the free-running ship
model. Regular waves, T = 1.09 s, H = 3.0 cm.

this assumption had to be made in order to estimate the propeller thrust when
the ship model was self-propelled in waves. Considering that there is a significant
difference between experimental and simulated results without foil, the uncertainty
in the actual propeller thrust in the experiments appears to be large.

Another reason for the discrepancies is that the foils in VeSim are a little differ-
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ent from the actual foils used in the experiment. In VeSim, the wavefoil is assumed
to be of the NACA 0015 profile and tapered, whereas the experiment foil was of
the NACA 0017 profile and elliptical. It was convenient to assume the same foil
profile in the present simulations as in the simulations in Chaper 5 since data tables
of lift and drag coefficients were available for the NACA 0015 profile in Sheldahl
and Klimas (1981), but not for NACA 0017. The difference in lift and drag coef-
ficients between the two foil profiles were assumed to be small, since the foil was
spring-loaded and therefore should avoid stall. In VeSim, the spring-loaded foils
pitched about a point located 0.15c from the leading edge at the foil root. The
experiment foil also pitched about a point located 0.15c from the leading edge at
the foil root, but the elliptical and swept planform of the experiment foil implies
that the hydrodynamic moment about the pivot point in the experiments was not
directly comparable to that of the simulations.

To study if the discouraging low benefit of the wavefoil in the experiment was
due to scale effects, let us assume that the foil forces are independent of Reynolds
number. If the angle of attack is well below stall, this is almost correct for the foil
lift. Froude’s hypothesis says that the residual resistance coefficient is the same in
model and full scale. The frictional resistance coefficient, however, decreases with
Reynolds number, as is shown by Eq. 6.2. The total resistance coefficient will
therefore be smaller in full scale than in model scale, and the wavefoil thrust will
be larger relative to the resistance in full scale than in model scale.

Simulations were also done with full-scale calm water resistance as input, and
using full-scale Reynolds number when calculating the foil forces. The full-scale
resistance was obtained using the built-in method (based on the method by Holtrop
(1984)) in the MARINTEK software ShipX HullVisc, and can be described by the
polynomial

R = 65.854U4 − 439.33U3 + 6012U2 + 3216U. (7.1)

The strut was assumed to consist of two NACA 0015 foils of the same chord lengths
as the two streamlined parts forming the experiment strut. Simulation results in
full scale with regular waves are shown in Figures 7.27, 7.28, and 7.29. Simulation
results in irregular waves are shown in Figures 7.30, 7.31, and 7.32. In the irregular
waves simulations, the Pierson-Moskowitz spectrum was used with a wave spreading
angle of 90◦, i.e., maximum short-crestedness.

We see from Figures 7.30, 7.31, and 7.32 that the wavefoil was indeed much
more beneficial in full scale than in model scale. The effect of spring stiffness was
generally small, particularly in irregular waves. In regular head sea waves with
period 9 s, the benefit of the wavefoil was enormous, with fuel savings over 80% at
10 knots. The reason for this is that the added resistance in head sea waves peaked
at about 8-9 s, depending on the speed, and the wavefoil significantly reduced the
added resistance. Of course, regular waves will never occur in reality in full scale.

Fuel savings for the full-scale ship – assuming that the fuel consumption is
a constant times the propeller power – were calculated based on interpolating in
Figures 7.27-7.32, and are presented in Tables 7.2, 7.3, and 7.4. “NaN” implies that
linear interpolation was not possible from the data points in Figures 7.27-7.32. The
fuel savings in irregular waves are somewhat lower than in regular waves, except
in following seas for Tp = 11 s, where the fuel savings are negative for a ship speed
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Regular waves, T = 7 s
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Figure 7.27: Simulations of the free-running ship model in full scale. Regular waves,
T = 7 s, H = 3 m.

Regular waves, T = 9 s
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Figure 7.28: Simulations of the free-running ship model in full scale. Regular waves,
T = 9 s, H = 3 m.

of 13 knots in regular waves. Interestingly, there are no negative fuel savings –
of the speeds there are fuel saving values for – in irregular following waves. The
calculated fuel savings decrease with increasing ship speed as expected, but for a
ship speed of 13 knots, they are still fairly large, varying from 22-43% in irregular
head seas and 4-12% in irregular following seas.
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Regular waves, T = 11 s
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Figure 7.29: Simulations of the free-running ship model in full scale. Regular waves,
T = 11 s, H = 3 m.
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Figure 7.30: Simulations of the free-running ship model in full scale. Irregular
waves, Tp = 7 s, Hs = 3 m.
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Irregular waves, T
p
 = 9 s
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Figure 7.31: Simulations of the free-running ship model in full scale. Irregular
waves, Tp = 9 s, Hs = 3 m.
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Figure 7.32: Simulations of the free-running ship model in full scale. Irregular
waves, Tp = 11 s, Hs = 3 m.
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Chapter 8

Conclusions and suggestions
for future work

8.1 Conclusions

This thesis examined the benefits of employing fixed, pitch-controlled, and spring-
loaded foils, so-called wavefoils, on a ship for propulsion and motion reduction in
waves. The approach was both theoretical and experimental, and experiments and
theory were compared when possible. Below, the main conclusions of the present
work and some suggestions for future research and commercial development are
given.

Experiments with a foil traveling at a constant horizontal speed with harmonic
heave motion were performed to study how the foil thrust depended on the foil
pitch. The motivation for doing these experiments was to study the effect of pitch-
ing wavefoils on a ship in a controlled environment, that is, a basin with an os-
cillating foil alone. A slightly modified version of the Leishman-Beddoes dynamic
stall model was implemented, and results from this model were compared with ex-
perimental results. There was fairly good agreement between the theoretical and
experimental results for pure harmonic heave motion with no pitch motion and for
combined harmonic heave and pitch motion with a large pitch amplitude. For pure
pitch motion with no heave motion, the model did not perform well compared with
experiments. The fact that the foil was pitching about a point located about 1/3
chord length above the chord line might be the reason for this, although correcting
the inflow velocity, angle of attack, and added mass force for this pendulum motion
had negligible effect on the agreement between theory and experiments.

In the experiments with an oscillating foil, both active pitch control using vanes
for detecting the inflow angle, and spring-loaded pitch were tested. It was found
that spring-loaded pitch resulted in a more thrust-producing pitch motion than
setting the foil pitch to be linearly proportional to the inflow angle detected by the
vanes. This was explained by the direction of the added mass force through the
oscillation cycle.

139



140 Conclusions and suggestions for future work

Wavefoils were implemented in the time-domain ship simulator VeSim from
MARINTEK. Wavefoil forces were calculated by using the aforementioned dynamic
stall model. The idea behind this was to develop an efficient and reliable tool
for predicting the performance of ships with wavefoils where dynamic stall could
occur. Short computational time was essential for simulating long time series in
irregular waves, and the dynamic stall model fulfilled this requirement. Model
tests with a 1:16 scale model of a 90 m long platform supply vessel were performed
and compared with experiments for the case of fixed foils. It was found that the
simulation tool can be used to give reasonably accurate predictions of the effect
of the wavefoil, although there is still room for improvement, particularly in the
calculation of ship resistance in waves. Pitch control using pressure sensors on and
near the leading edge, to relate the pressure on the foil to the angle of attack,
was also tried, when the foil was mounted to the platform supply vessel model.
Significantly reduced ship resistance with pitch control was only achieved for two
different wave periods at different speeds. Unfortunately, the foil pitch actuation
in these experiments was not sufficiently stiff to provide precise foil pitch.

When studying multiple wavefoil locations or sizes, time-domain studies are
impractical. For this purpose, a frequency-domain approach is much more efficient
to get a decent estimate of the wavefoil effect if the assumptions of linear theory are
satisfied. Based on frequency-domain analyses of the foil thrust, it does not appear
that a stern foil is worth installing if a bow foil has already been installed. Both
frequency-domain and time-domain analyses show the importance of installing the
wavefoil far forward on the ship – ideally slightly in front of the bow.

A ship harnessing all of its propulsive power from the wind with wingsails and
from the waves with wavefoils was proposed. Such a ship will have quite low
expected values of the ship speed, with fairly large standard deviations, even on a
route where wind and waves are abundant.

Simulations showed that fuel savings for the platform supply vessel, with the
fixed foil tested, were in the range 2-15% (depending on the wave direction) in
typical North Sea waves, when sailing at a speed of 12 knots. For slightly larger
waves and foil span, compared to the ship beam, simulations predicted fuel savings
in the range 29-50% in head seas and 9-17% in following seas, for a similarly
sized RORO ship with a spring-loaded foil. The simulation model did not account
for flow interaction between the ship hull and the foil. Accounting for this will
reduce the predicted fuel savings, because the hull will generally reduce the inflow
angles to the foil. The spring stiffness was found, both through model tests with a
small model of the RORO ship and through simulations, to be of surprisingly little
importance to the wavefoil performance.

For the waves producing the most violent ship motions, simulations showed
that pitching foils can reduce the ship resistance significantly relative to a fixed
foil, particularly if the forward speed is not too high. Until an actively pitch-
controlled wavefoil producing a pitch motion similar to that of the spring-loaded
foil has been designed, however, the author recommends a spring-loaded wavefoil
with variable spring stiffness.
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8.2 Suggestions for future work

8.2.1 Suggestions for future research

Future research could try to find a pitch-control method that gives a more beneficial
phase of the pitch motion at low forward speeds. One alternative is to let the inflow
angle vanes pivot about a point closer to their leading edges in order to be more
influenced by the normal added mass force, like the spring-loaded foil. The pressure
distribution around the foil will certainly be influenced by the added mass effect,
so using pressure sensors like Naito and Isshiki (2005), or as described in Section
5.2.2, may be another way of obtaining a more beneficial phase of the pitch motion
after all.

The experiments with pressure sensors for active pitch control in this thesis
suffered from an imprecise pitch actuation mechanism, which likely means that the
foil thrust can be further increased relative to the fixed foil. The problem with the
pressure sensors used in this thesis was that they were not built to sustain water
submersion for several weeks, so a robust set of pressure sensors is recommended.
If using pressure sensors to control the foil, one should try to include the effect of
the added mass force on the foil thrust when determining the optimal foil pitch.

Further studies of the effect of phase angle on the thrust of an harmonically
heaving and pitching foil could be carried out and related to the optimal spring
stiffness of a spring-loaded foil. For the case of a spring-loaded foil, a control
algorithm which adjusts the spring stiffness to maximize the ship speed over a
certain time interval may be worth studying. For the case of an actively pitch-
controlled foil, a control mechanism which maximizes the foil thrust at all times,
based on direct measurement of the foil thrust, may also be worth looking into.

The effect of the hull on the inflow to the foil should be studied, since neglecting
this effect is non-conservative. It would be interesting to investigate if the hull
shape can be optimized for either wave propulsion alone or combined wind and
wave propulsion. For combined wind and wave propulsion, wingsail interaction
should be studied.

Other suggested topics for future work are interaction effects of multiple wave-
foils in various arrangements and hydroelasticity effects due to flexibility of the
foils.

Finally, this thesis has only looked into hydrodynamic aspects of a ship with
wavefoils. Before building full-scale wavefoils for a ship, a structural analysis of the
foils subjected to worst-case-scenario loads needs to be done. An economic analysis
investigating the return on investment for a ship owner deciding to outfit a vessel
with wavefoils is also necessary before commercial development.

8.2.2 Suggestions regarding commercial development of wave-
foils

As concluded above, a spring-loaded wavefoil with variable spring stiffness appears
– to the author – to be the best solution for a full-scale ship, until further progress
has been made on active pitch control. The spring stiffness could be adjusted based
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on measurements of the ship speed. One could also mount a vane detecting the
foil’s angle of attack and use the measured angle of attack to ensure that the foil
does not stall, when selecting the spring stiffness.

Regarding retracting a foil into the hull, there are a number of possibilities.
Perhaps the easiest is to use the same mechanism as on retractable roll stabilizer
fins, where the horizontally aligned foils swing 90 degrees into cavities in the hull.
Another option related to existing solutions is lowering two foils down from a cavity
in the hull bottom, like a retractable thruster, and then folding one foil to starboard
side and the other foil to port side. If struts are used, they should be designed as
streamlined and thin as structural limitations allow, because of the extra resistance
they introduce. The author found that a strut in the bow made the free-running
ship model in Chapter 7 more difficult to maneuver, and the ship designer should
have this in mind if considering a strut-mounted wavefoil.
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Appendix A

Time lags in the dynamic
stall model

A central idea in the Leishman-Beddoes dynamic stall model is giving a time lag
to a quantity by using a deficiency function. Denoting the quantity f and the
deficiency function D (these names are just for illustration purposes), the time-
lagged value at time s, flag(s), can be written as

flag(s) = f(s)−D(s), (A.1)

where D(s) is given as

D(s) =

∫ s

0

df

ds
(σ)e−

s−σ
T dσ. (A.2)

In Eq. A.2, T is a nondimensional time constant determining the time lag of f .

Figure A.1 shows f and flag for different values of T , using numerical integration
of Eq. A.2, where

f(s) =

{
0 if s < 0

1 if s ≥ 10.
(A.3)

We see that it takes longer time for flag to approach f when T increases. If f is
periodically oscillating, flag would get both an amplitude reduction and a phase
lag.

Analogous to the derivation in Eqs. 3.16-3.20, we can express D(s) using the
values of f and D at the previous time step, i.e., f(s−∆s) and D(s−∆s). This
is done several times in the Leishman-Beddoes dynamic stall model. Evaluating D
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Figure A.1: The effect of varying the nondimensional time constant on the time
lag of a step function

at the next time step, s+ ∆S, we get

D(s+ ∆s) =

∫ s+∆s

0

df

ds
(σ)e−

s+∆s−σ
T dσ

= e−
∆s
T

D(s)︷ ︸︸ ︷∫ s

0

df

ds
(σ)e−

s−σ
T dσ

+

I︷ ︸︸ ︷∫ s+∆s

s

df

ds
(σ)e−

s+∆s−σ
T dσ . (A.4)

The integral, I, can be written as

I = e−
s+∆s
T

∫ s+∆s

s

df

ds
(σ)e

σ
T dσ. (A.5)

Using a simple backward-difference approximation for df/ds at time s + ∆s, and
the midpoint rule for integration, we get

I = e−
s+∆s
T

f(s+ ∆s)− f(s)

∆s
e
s+ ∆s

2
T ∆s

= [f(s+ ∆s)− f(s)] e−
∆s
2T . (A.6)

This gives

D(s+ ∆s) = D(s)e−
∆s
T + [f(s+ ∆s)− f(s)] e−

∆s
2T (A.7)

or
D(s) = D(s−∆s)e−

∆s
T + [f(s)− f(s−∆s)] e−

∆s
2T . (A.8)



Appendix B

Uncertainty in the
experiments

The error bars in the figures in Chapter 4 were obtained by repeating one condition
and calculating the precision limit for the thrust coefficient, PCT , as

PCT = tσCT , (B.1)

where t is the t-value in the Student’s t-distribution, and σCT is the standard de-
viation of the thrust coefficient for the repeated condition. The standard deviation
of the mean value for the repeated condition is calculated as

σCT =
σCT√
N
, (B.2)

where N is the number of repeated tests. The precision limit for the mean is then

PCT = tσCT . (B.3)

This gives a smaller error bar for the test condition that was repeated.
The biggest uncertainty of the bias error is the calibration of the force transduc-

ers. The force transducers at the top of the foil rig, measuring the horizontal and
vertical foil forces, were calibrated using a rope, a pulley, and weights, as shown in
Figure B.1. Weights were added in three load steps and the corresponding voltage
was recorded. Linear regression was used to establish the relation between force
and voltage. The foil was loaded horizontally and vertically, in both positive and
negative directions. The calibration factor would typically vary a few percent when
done some months apart.

Also, calibration of the foil pitch is an important uncertainty factor. Calibration
of the foil pitch consisted of holding the foil at a steady angle by hand, reading off
the foil pitch from a digital protractor (see Figure B.2), and recording the voltage
to the motor in the experiments where the motor was used to pitch the foil and
the voltage to the potentiometer measuring the foil pitch for the spring-loaded foil.
It was quite difficult to keep the foil steady when reading off the foil pitch and
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Figure B.1: Calibrating the force transducers using a rope, a pulley, and weights

recording the motor voltage or potentiometer voltage. The foil pitch angles used in
the calibration are assumed to be within ±0.15◦ accuracy with a 95% confidence
interval.

Figure B.2: Calibrating the foil pitch using a digital protractor. The digital pro-
tractor was placed on top of a removable part, fitting perfectly to the foil shape.
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Another uncertainty factor is the post-processing procedure. The mean value
of a periodic force would vary with the number of periods used to calculate the
mean. Figure B.3 shows the mean foil thrust for the spring-loaded foil for U =
0.9 m/s, ξ3A = 0.12 m, T = 1.5 s, with the spring clamp at position four from the
foil. There is no clear convergence of the mean foil thrust with increasing number
of oscillation periods, but the variation in mean foil thrust using four oscillation
periods and using one oscillation period is only 0.4%.
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Figure B.3: The effect of varying number of oscillation periods when calculating
the mean foil thrust
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Appendix C

Laboratory facilities

C.1 The Marine Cybernetics Laboratory (MC Lab)

The Marine Cybernetics Laboratory, or MC Lab, as it is commonly called, is a quite
small wave basin at the Marine Technology Center in Trondheim, Norway. It is 40
m long, 6.45 m wide, and 1.5 m deep, making it suitable for ship models up to 3 m
long. The basin is equipped with a carriage, which can actuate models in 5 degrees
of freedom: surge, sway, heave, yaw and pitch. Maximum surge velocity is 2 m/s.
The wave maker can generate regular waves up to 0.25 m high and irregular waves
up to 0.15 m high, with periods in the range 0.3-3 s, and 0.6-1.5 s, respectively.
In the end of the tank, opposite the wave maker, is a beach to dampen the waves.
The MC Lab is mainly used by students and PhD students. A panorama photo of
the MC Lab, with the carriage visible at the right side of the picture, is given in
Figure C.1.

Figure C.1: Panorama view of the MC Lab

C.2 The towing tank

The towing tank at the Marine Technology Center is a 260 m long and 10.5 m wide
basin. The depth of the basin is 5.6 m for the first 175 m, and 10 m for the last
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85 m. The maximum carriage speed is 12 m/s, and the wave maker can generate
waves up to 0.9 m high and wave periods in the range 0.8-5 s. A picture taken down
the length of the towing tank is given in Figure C.2. There is a beach in the end
of the towing tank opposite to the wave maker, and there are also wave dampers
along the side of the towing tank, visible in Figure C.2, which can be elevated up
and down when needed.

Figure C.2: The towing tank

C.3 The small towing tank

The small towing tank at the Marine Technology Center, see Figure C.3, is a 25 m
long, 2.8 m wide, and 1.0 m deep towing tank, mainly used by students and PhD
students. It is equipped with a towing carriage, capable of speeds in the range
0.05 m/s to 1.75 m/s. There is a beach in one tank end and a wave maker in the
other end, capable of generating waves with a height up to 0.3 m and periods in
the range 0.25-3 s.
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Figure C.3: The small towing tank
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Appendix D

Power vs. speed, irregular
waves simulations

The following figures are power vs. speed graphs from simulations with the platform
supply vessel in irregular waves, as described in Section 5.5. Hs = 2.5 m in all plots.
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Figure D.1: Total engine power vs. ship speed, wave direction 0◦, Tp = 7.5 s
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Figure D.2: Total engine power vs. ship speed, wave direction 0◦, Tp = 9 s
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Figure D.3: Total engine power vs. ship speed, wave direction 0◦, Tp = 10.5 s
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Figure D.4: Total engine power vs. ship speed, wave direction 45◦, Tp = 7.5 s
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Figure D.5: Total engine power vs. ship speed, wave direction 45◦, Tp = 9 s
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Figure D.6: Total engine power vs. ship speed, wave direction 45◦, Tp = 10.5 s
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Figure D.7: Total engine power vs. ship speed, wave direction 90◦, Tp = 7.5 s
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Figure D.8: Total engine power vs. ship speed, wave direction 90◦, Tp = 9 s
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Figure D.9: Total engine power vs. ship speed, wave direction 90◦, Tp = 10.5 s
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Figure D.10: Total engine power vs. ship speed, wave direction 135◦, Tp = 7.5 s
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Figure D.11: Total engine power vs. ship speed, wave direction 135◦, Tp = 9 s
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Figure D.12: Total engine power vs. ship speed, wave direction 135◦, Tp = 10.5 s
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Figure D.13: Total engine power vs. ship speed, wave direction 180◦, Tp = 7.5 s
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Figure D.14: Total engine power vs. ship speed, wave direction 180◦, Tp = 9 s
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Figure D.15: Total engine power vs. ship speed, wave direction 180◦, Tp = 10.5 s
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IMT-

2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 

simulations and control applications 

IMT-

2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. (PhD 

Thesis, CeSOS) 

IMT- Aronsen, Kristoffer Høye An experimental investigation of in-line and 
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2007-26 combined inline and cross flow vortex induced 

vibrations. (Dr. avhandling, IMT) 

IMT-

2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 

with Emphasis on Frequency-domain Analysis of 

Fatigue due to Wide-band Response Processes (PhD 
Thesis, CeSOS) 

IMT-

2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 

Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-

2008-29 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 

(PhD-Thesis, IMT) 

IMT-

2008-30 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-

stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-31 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-

2008-32 

Thomassen, Paul Methods for Dynamic Response Analysis and 

Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-

2008-33 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of Two-

dimensional Nonlinear Sloshing in Rectangular 
Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-

2007-34 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 

Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-

2008-35 

Drummen, Ingo Experimental and Numerical Investigation of 

Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 

thesis, CeSOS) 

IMT-

2008-36 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 

of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-37 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 

Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-38 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-

thesis, IMT) 

IMT-
2008-39 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading and 
Load Effects in Membrane LNG Tanks Subjected to 

Random Excitation. (PhD-thesis, CeSOS) 

IMT-
2008-40 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-

thesis, CeSOS) 

IMT-
2008-41 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

IMT-

2008-42 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 

Life of Aggregated Systems. PhD thesis, IMT 
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IMT-

2008-43 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 

 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-

2009-43 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 

Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-

2009-44 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 

PhD Thesis, IMT 

IMT-

2009-45 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 

Studies of Piston-Mode Resonance. PhD-Thesis, 

CeSOS 

IMT-

2009-46 

Ong, Muk Chen Applications of a Standard High Reynolds Number   

Model and a Stochastic Scour Prediction Model for 

Marine Structures. PhD-thesis, IMT 

IMT-

2009-47 

Hong, Lin Simplified Analysis and Design of Ships subjected 

to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-48 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-

2009-49 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and Scheduling. 

PhD-thesis, IMT 

IMT-

2009-50 

Lee, Jihoon Experimental Investigation and Numerical in 

Analyzing the Ocean Current Displacement of 

Longlines. Ph.d.-Thesis, IMT. 

IMT-

2009-51 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 

Two-Dimensional Constrained Interpolation Profile 

Method, Ph.d.thesis, CeSOS. 

IMT-

2009-52 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 

Power Plants. Ph.d.-thesis, IMT 

IMT 

2009-53 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 

Three-Dimensional Channel Flow, Ph.d.-thesis, 

IMT. 

IMT 

2009-54 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating Ship-

shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 

2009-55 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam Sea 

Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 

2010-56 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 

Plants, Ph.d.-thesis, CeSOS. 

IMT 

2010-57 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 

Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 
2010-58 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 
Converters. Ph.d.thesis, CeSOS. 

 

IMT 
2010- 59 

Shu, Zhi Uncertainty Assessment of Wave Loads and 
Ultimate Strength of Tankers and Bulk Carriers in a 
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Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 
2010-60 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 

Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 
2010-61 

Califano, Andrea Dynamic Loads on Marine Propellers due to 
Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 

2010-62 

El Khoury, George Numerical Simulations of Massively Separated 

Turbulent Flows, Ph.d.-thesis, IMT 

IMT 

2010-63 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 

on the Faroe Bank Channel Overflow. Ph.d.thesis, 

IMT 

IMT 

2010-64 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 

a Collission Risk Analysis Perspective. Ph.d.thesis 

CeSoS. 

IMT 

2010-65 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 

Large Floating Structures (VLFS). Ph.D.-thesis, 

CeSOS. 

IMT 

2010-66 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 

Pocket. Ph.d.thesis, CeSOS. 

IMT 
2011-67 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut Mooring 

Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-68 

Erlend Meland Condition Monitoring of Safety Critical Valves. 
Ph.d.-thesis, IMT. 

IMT – 

2011-69 

Yang, Limin Stochastic Dynamic System Analysis of Wave 

Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 

Analysis, Ph.d. Thesis, CeSOS. 

IMT – 

2011-70 

Visscher, Jan Application of Particla Image Velocimetry on 

Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 
2011-71 

Su, Biao Numerical Predictions of Global and Local Ice 
Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 

2011-72 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 

Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 

2011-73 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 

Observation and Numerical Simulation. Ph.d.Thesis, 

IMT. 

Imt – 

2011-74 

Wu, Jie Hydrodynamic Force Identification from Stochastic 

Vortex Induced Vibration Experiments with Slender 

Beams. Ph.d.Thesis, IMT. 

Imt – 

2011-75 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 

Ph.d.Thesis, IMT. 

 

 

IMT – 

2011-76 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 

Monitoring of Bottom Damage Conditions During 
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Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-77 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 
Grounding, Ph.d.thesis, IMT. 

IMT- 

2011-78 

Guo, Bingjie Numerical and Experimental Investigation of Added 

Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 

2011-79 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, considering 

HAZ Effects, IMT 

IMT- 

2012-80 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 

Random Seas, CeSOS. 

IMT- 

2012-81 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 

with Heave Compensating System, IMT. 

IMT- 

2012-82 

Berle, Øyvind Risk and resilience in global maritime supply 

chains, IMT. 

IMT- 

2012-83 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 

Structural Reliability, CeSOS. 

IMT- 
2012-84 

You, Jikun Numerical studies on wave forces and moored ship 
motions in intermediate and shallow water, CeSOS. 

IMT- 

2012-85 

Xiang ,Xu Maneuvering of two interacting ships in waves, 

CeSOS 

IMT- 

2012-86 

Dong, Wenbin Time-domain fatigue response and reliability 

analysis of offshore wind turbines with emphasis on 

welded tubular joints and gear components, CeSOS 

IMT- 

2012-87 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 

Effects in Open Ships considering Hull Girder 

Vibrations in Bending and Torsion, CeSOS 

IMT- 

2012-88 

Zhou, Li Numerical and Experimental Investigation of 

Station-keeping in Level Ice, CeSOS 

IMT- 
2012-90 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 

alternative marine fuels, IMT 

IMT- 

2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 

In-line and Cross-flow Vortex Induced Vibrations, 

CeSOS 

IMT- 

2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 

energy converters, CeSOS 

IMT- 
2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 
diesel engines, IMT 

IMT-

2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical investigation 

of the effect of screens on sloshing, CeSOS 

IMT- 

2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 

Vessel Including Applications to Calm Water 

Broaching, CeSOS 
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IMT- 

2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 

spar-type wind turbine, CeSOS 

IMT-7-

2013 

Balland, Océane Optimization models for reducing air emissions 

from ships, IMT 

IMT-8-
2013 

Yang, Dan Transitional wake flow behind an inclined flat plate-
----Computation and analysis,  IMT 

IMT-9-

2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 

for a Ship Hull due to Ice Action, IMT 

IMT-10-

2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 

systems- 

Concepts and methods applied to oil and gas 
facilities, IMT 

IMT-11-

2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 

Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-

2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 

under Atmospheric Icing and Controller System 

Faults with Emphasis on Spar Type Floating Wind 
Turbines, IMT 

IMT-13-

2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 

emissons, IMT 

IMT-14-

2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-

2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 

Investigation of a SPM Cage Concept for Offshore 
Mariculture, IMT 

IMT-16-

2013 

Gansel, Lars Flow past porous cylinders and effects of biofouling 

and fish behavior on the flow in and around Atlantic 
salmon net cages, IMT 

IMT-17-
2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual Ship 
Design, IMT 

IMT-18-

2013 

Thys, Maxime Theoretical and Experimental Investigation of a 

Free Running Fishing Vessel at Small Frequency of 
Encounter, CeSOS 

IMT-19-

2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 

IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 

submerged perforated plate, CeSOS 

IMT-2-
2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 
Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-

2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 

offshore wind farms ,IMT 

IMT-4-

2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 

Platform Wind Turbines, CeSOS 

IMT-5-
2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 
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and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 

during accidental collisions, IMT 

IMT-7-
2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 
icebreaking in leverl ice, CeSOS 

IMT-8-

2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 

and Wind Power Facilities, with Emphasis on 
Extreme Load Effects of the Mooring System, 

CeSOS 

IMT-9-
2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 
an emphasis on fault and shutdown conditions, IMT 

IMT-10-

2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-
2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 
heave compensation of deep water drilling risers, 

IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 
of a semisubmersible wind turbine, CeSOS 

IMT-13-

2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-
2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 
Account Effects of Residual Stress, IMT 

IMT-1-

2015 

Bøckmann, Eirik Wave Propulsion of Ships, IMT 

                         
 

           

             
        




