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Summary
The European Union (EU) aims to be climate neutral by 2050, which implies
a major transformation for existing energy systems to reduce greenhouse gas
(GHG) emissions. Driven both by climate targets and a dramatic drop in costs for
wind and solar technologies, electricity production from variable renewable energy
sources (VRES) is likely to dominate the European electricity market within the
next few decades. Understanding the impacts and consequences of large shares
of VRES is a common research topic of today spanning widely across academic
disciplines. Much of existing research focus on the supply side of electricity
markets, and there is an increasing need to also explore developments on the
demand side. Buildings in neighbourhoods account for about 40% of final energy
use in Europe and are traditionally consumers of electricity and heat. More
recently, neighbourhoods are increasingly able to produce their own electricity
and provide comfort and services ever more flexibly and energy efficiently. The
relationship between the future energy system and neighbourhoods in the future
building sector is increasingly important as the two sectors overlap, yet their
sectoral relationship is still not completely understood.

This thesis explores transition pathways towards a decarbonized European energy
system with a focus on distributed energy resources (DERs) in neighbourhoods.
The overarching research questions are: (1) how are DERs in neighbourhoods
impacted by the decarbonization pathways of the surrounding energy system?
and (2) how do DERs in neighbourhoods impact the decarbonization pathways
of the surrounding energy system?

The first part of this thesis takes a bottom-up perspective on the neighbourhood
level, which includes developing and using mathematical programming models
to explore how electricity billing structures for neighbourhood stakeholders can
incentivize efficient utilization of DERs as electricity loads are changing. The
second part of this thesis takes a top-down perspective on the European level,
which includes developing and using multi-horizon stochastic programming to
analyze investments in the European electricity and heat system while considering
variable and uncertain operations on a country aggregated level.

Findings imply that existing billing practices in neighbourhoods ought to be
revised such that local DERs are incentivized to efficiently utilize grid infrastruc-
ture when electricity loads are changing. This includes facilitating end-user price
signals to be more dynamic and less dependent on individual metering. Further
findings imply that the development of DERs in neighbourhoods significantly
impacts the capacity expansion pathway for the future energy system at national
and European level. Given fulfilment of EU decarbonization policy, neighbour-
hood energy systems compete with low-carbon sources in the surrounding energy
system, and a wide deployment of DERs are found to increase cost-efficiency on
the transition towards a decarbonized energy system.
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CCS Carbon Capture and Storage
DER Distributed Energy Resource
DSO Distribution System Operator
EMPIRE The European Model for Power (system) Investments

with (high shares of) Renewable Energy
ENTSO-E The European Network of Transmission System Opera-
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Chapter 1: Introduction

1 Introduction

In December 2015, the Paris Agreement was adopted by nearly all the world’s na-
tions to limit global warming to well below 2◦C [1]. Developing net-zero emission
energy systems are essential to meet the Paris Agreement [2, 3], and measures
include (a) increasing energy efficiency, (b) increasing the share of low-carbon
energy sources and (c) electrifying energy use [4]. In the European Union (EU),
nearly 80% of total greenhouse gas emissions (GHG) emissions are energy re-
lated [5]. Despite decreasing primary energy demand, electrification of society
will strongly increase electricity demand in Europe towards 2050 [6, 7].

Since 2005, the EU successfully set up its European-wide emission trading system
(ETS): a ‘cap-and-trade’ system where a quota is set on the maximum allowed
emissions within the scope of the system, and installations within the system are
required to have allowances to emit [8]. The EU ETS covers 40% of European
GHG emissions, including emissions from large-scale electricity and heat produc-
tion. To be in line with the Paris Agreement, the EU ETS cap towards 2030 and
beyond must decrease faster than currently planned [9].

As raised by Sovacool [10], an important question in the energy transition is how
long it will take. Climate policy in the EU, like the EU ETS, has been found to
clearly pursue emission reductions by sector with given deadlines, as well as more
renewable energy [11]. However, targets for the needed degree of restructuring the
organization of the power system are not clearly stated [12]. The challenge of mit-
igating climate change has triggered significant attention towards sustainability
transition in research: ‘a fundamental transformation towards more sustainable
modes of production and consumption’ [13], where the focus shifts from growth
of renewables to large-scale integration of these resources. Successful integra-
tion of renewables requires grid infrastructure and complementary technologies,
e.g., energy storage, flexible energy resources, sector coupling, and short-term
fuel switching [14, 15], as well as corresponding changes in market structure and
business models [16]. To facilitate a cost-effective development of the growing
electricity sector, roll-out of advanced metering infrastructure and more dynamic
pricing of electricity are being adopted [17, 18], including the design of cost re-
flective electricity network tariffs [19].

Sustainability in urban areas is a global trend [20], and it has developed from
primarily focusing on urban ecology and ‘eco-cities’ [21] towards increasingly in-
tegrating ‘smart city’ concepts [22], including local renewable energy sources [23]
and local flexibility markets [24]. Indicator frameworks for sustainable cities [25]
focus on aspects like economy, energy, waste, and GHG emissions. A popu-

3



Chapter 1: Introduction

lar indicator framework is based on the concept of nearly zero-energy buildings
(nZEB) [26, 27]. The Energy Performance of Buildings Directive 2018/844 [28]
defines nZEB as a building that requires a very low amount of energy that should
be covered by on-site or nearby renewable energy [29]. The ‘zero’ in the ‘zero
energy’-concept is reached when the net energy exchange between the building
and the surrounding energy system is cancelled out over a measuring period, typ-
ically one year [30]. The ‘zero energy’-concept has been extended to the neigh-
bourhood level [31] and adapted towards a ‘zero emission’-concept through the
Norwegian research centre on Zero Emission Buildings [32]. In a Zero Emission
Neighbourhood (ZEN), GHG emissions for a neighbourhood are compensated
by local renewable energy [33], and the compensation is assumed to avoid GHG
emissions based on GHG emission factors [34, 35]. Neighbourhood emissions are
mostly due to the buildings’ embodied and operational energy [36].

In 2014, 29% of electricity in the EU was consumed by households, and an ad-
ditional 30% was consumed by the service sector [37]. Together, the household
sector and the service sector mainly represent the building sector. Although
buildings still dominate electricity use [37], the building sector is rarely modeled
with detail when analyzing the electricity sector. The EU aims to transition
towards a climate neutral economy by 2050 requiring a 93 − 99% [11] emission
reduction of the electricity sector compared to 1990. It is still unclear how bridg-
ing the development of neighbourhoods and the electricity sector can support
European decarbonization.

This thesis is written in the PhD program ‘Industrial Economics and Technol-
ogy Management’ at the Norwegian University of Science and Technology as
part of the Research Centre on Zero Emission Neighbourhoods in Smart Cities
(FME ZEN)1. Through FME ZEN, the PhD project is part of interdisciplinary
research to better understand how neighbourhoods can contribute to net-zero
GHG emissions. This PhD project applies mathematical programming to study
how technical, political, and economic parameters affect decision making when
developing neighbourhoods as part of future energy systems in compliance with
the Paris Agreement. The geographical scope of the thesis is European, and
countries are represented on a national level with increased details for Norway.

Two system perspectives are explored and linked in this thesis: the European
perspective and the neighbourhood perspective. Papers I and II explore the
neighbourhood perspective, Paper III explore mainly the European perspective,
while Papers IV and V link the neighbourhood perspective and the European
perspective. Further, Paper I analyzes operational decisions, and Papers II–V
explore long-term investment decisions while considering short-term operations.

1‘The Research Centre on Zero Emission Neighbourhoods in Smart Cities’ is funded by the
Research Council of Norway as a ‘Centre for Environment-friendly Energy Research (FME)’,
along with funding from public and private partners.
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Chapter 1: Introduction

The remaining thesis is structured as follows: Chapter 2 presents related research
and the research questions explored in this thesis, and Chapter 3 presents, links,
and discusses the contributions of the five papers. Finally, Chapter 4 presents
concluding remarks, discusses limitations, and points towards further work. The
five papers supporting the thesis follow Chapter 4.
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Chapter 2: Background

2 Background

This chapter links the content of this thesis with existing literature. Section
2.1 introduces the overarching methodology used throughout the thesis, namely
mathematical programming. Section 2.2 presents relevant research on decar-
bonization of large-scale energy systems. Section 2.3 presents relevant research
exploring sustainable neighbourhoods and energy communities, and Section 2.4
presents relevant research on energy flexibility and market mechanisms in future
smart grids. Finally, Section 2.5 presents the research questions explored in this
thesis.

2.1 Mathematical programming

Mathematical programming, or mathematical optimization, is a quantitative de-
cision making approach that arose during World War II, and it deals with: ‘the
efficient use of limited resources to meet desired objectives’ [38]. Note that the
word ‘programming’ in this context refers less to the process of writing computer
programs and more to the process of decision making and scheduling. A math-
ematical program (MP) is a collection of equations and inequalities, as well as
an objective function, that represents a decision problem. The equations and
inequalities of the MP are constraints, and the objective function quantifies key
indicators, e.g., costs or social welfare, that are minimized or maximized sub-
ject to the constraints. An MP with only linear expressions is classified as a
linear program. The input data to an MP represents quantitative information
about the decision problem, e.g., decisions costs, resource limitations, minimum
requirements, quantitative relationships between decisions, etc.

The solution to an MP indicates optimal decisions towards a desired objective
under two main assumptions: (1) the mathematical formulation of the MP rep-
resents the ‘actual’ problem and (2) the input data to the MP represents ‘true’
information of the problem. When a complex decision problem is systematically
quantified, the two aforementioned assumptions are increasingly questionable.
Nevertheless, MPs are useful when studying complex decision problems, although
the link between the MP and the decision problem it represents is important to
clarify and discuss when applying mathematical programming.

With increasingly large and complex MPs, it is also increasingly hard to prove
that a feasible MP solution is optimal [39]. Thus, the fundamental challenge of
mathematical programming is to balance accuracy, i.e., how well the MP repre-

7



Chapter 2: Background

sents the problem, with solvability, i.e., how long it takes to find feasible solutions
and to prove optimality.

Many researchers use MPs to study decision making under uncertainty. One way
to consider uncertainty is to perform sensitivity analyzes of an MP by resolving it
with varying input data. This is referred to as deterministic programming when
all decisions are made given a single scenario with perfect information. An alter-
native approach is stochastic programming [40, 41], where the MP’s decisions are
categorized by consecutive points in time when uncertain information is revealed.
Decisions in the first stage represent here-and-now decisions made under uncer-
tainty, while decisions in the following stage(s) represent wait-and-see decisions:
reactive decisions after some uncertainty is revealed. In the scenario formulation
of a stochastic program, outcomes of the uncertain information are represented
in several discrete scenarios within one MP instance. First stage decisions must
be consistent across all scenarios within the instance, while decisions in following
stages are adapted to each specific scenario.

Linear programs are solvable in polynomial time [42] using commercial solvers.
Note that stochastic programs can be linear programs. Some decision problems
require non-linear expressions or discrete decisions in MPs, which could make
them (very) much harder to solve. Increased computational power supports the
computational challenge of complex MPs, but sufficient MP complexity could
make it practically impossible to solve with exact methods [39].

When considering long-term horizons subject to uncertainty, multi-stage stochas-
tic programming is useful [43]. However, solving scenario formulations of multi-
stage stochastic programs can be very computationally challenging. A more
recent development within stochastic programming presented by Kaut et al. [44]
is called multi-horizon stochastic programming, and it allows the representation
of uncertainty in long-term models with reduced computational challenge. The
main idea within multi-horizon stochastic programming is to decouple uncertainty
across multiple horizons within the same problem, for example decoupling long-
term and short-term uncertainty. Multi-horizon stochastic programming can be
used when the strategic long-term decisions do not depend on single operational
scenarios, but on the collection of operational scenarios.

In this thesis, two-stage stochastic programming [45] is used in all papers but
Paper II, while multi-horizon stochastic programming [44] is used in Papers III–
V. All papers apply MPs that are solvable with exact methods in reasonable time
(minutes to hours) given the indicated computational power.

8



Chapter 2: Background

2.2 Energy system decarbonization pathways

Mathematical programming is often used to study electricity markets as they
have become more competitive since the 1990s [46]. In particular, capacity ex-
pansion modelling [47] is used to support when and where different types of new
transmission, generation, and storage capacity should be developed in future sce-
narios, while respecting techno-economic constraints. Market equilibrium models
are used to study the impacts of imperfect competition in deregulated electric-
ity markets [48]. Murphy and Smeers [49] expand capacity expansion models to
consider imperfect competition in electricity markets.

Many studies explore how to mitigate climate change by analyzing the energy
system development in compliance with the Paris Agreement. For the EU, needed
emission reductions by sector in five-year periods towards 2050 are quantified by
the European Commission in [11] implying nearly zero carbon emissions from the
European power sector by 2040. Rogelj et al. [50] find that zero carbon electricity
is likely needed by mid-century in a 1.5◦C scenario, and they highlight the need
to decrease emissions from many sectors, including the building sector. Blesl
et al. [51] find that political considerations ultimately shape the future structure
of a decarbonized electricity system.

Mendelevitch et al. [52] present the development of the European electricity sys-
tem since World War II: From being dominated by coal and nuclear power until
the 1990s, to a growth in fossil gas and renewable energy sources driven by cli-
mate policy and competitive electricity markets through the 2000s. Recently,
European climate targets have been set to 55% reduction of GHG emissions by
2030 compared to 1990 [9]. In 2021, the International Energy Agency [53] pub-
lished a comprehensive study on how to transition towards a net zero energy
system by 2050, and they controversially found that no new exploration of fossil
fuels can be made to reach the target. There are limited—but multiple—existing
electricity generation alternatives that complies with current climate targets, and
the three main categories of technologies are: renewable energy, nuclear energy,
and carbon capture and storage (CCS) [52].

The fossil fuel sector is still a large part of the European energy market, and one
way to remain so while fulfilling climate targets is through CCS [54]. Although
technologically feasible, CCS remains to be commercialised: Mendelevitch et al.
[52] present an overview over failed CCS projects across Europe through the
2010s along with the only two large scale European CCS projects in operation.
Leung et al. [55] highlight that the main barrier for CCS deployment is lacking
investment incentives and business cases. In this thesis, CCS is not considered
an investment option in the capacity expansion modelling.

Most recent capacity expansion studies agree that cost-efficient decarbonization of

9



Chapter 2: Background

Input
Economic/policy parameters:

Discount factor [%]
Investment costs [€/MW]
Operational costs [€/MWh]
Emission factors [tCO2eq./MWh]
Emission cap [tCO2eq./yr]
Load shedding costs [€/MWh]

Technology parameters:

Existing capacity [MW]
Lifetime [yr]
Generator ramping factors [%]
Max capacity expansion [MW/country-yr]
Max capacity [MW/country]
Losses [%]
Hourly VRES availability [%]

Output
Economic/policy parameters:

Total system cost [€]
Total emissions [tCO2eq.]
Hourly marginal cost of electricity [€/MWh]
Emission allowance price [€/tCO2eq]

Technology parameters:

Capacity investments [MW/yr]
Hourly system operations [MWh/h]
Transmission exchange [MWh/h]

Minimize total
system costs

Constraints:
Hourly market clearing
VRES variability
Ramping constraints
Emission cap

Figure 2.1: Overview of EMPIRE and its inputs and outputs.

electricity systems means that renewable energy sources will dominate electricity
production by 2050, a large share of which will be variable renewable energy
sources (VRES), in particular solar photovoltaics (PV) and wind power [56, 57, 7].
Creutzig et al. [58] explore how solar PV have been consistently underestimated,
and they find that updated projections could mean that 30 to 50% of global
electricity by 2050 is provided by solar PV. Traber and Kemfert [59] raise the
paradox that wind power increases need for flexibility, but the market impact
of more wind power simultaneously decreases incentives to invest in flexibility.
Woo et al. [60] find that although wind power decreases the average spot price,
the spot price variance increases, which means risk management is of growing
importance. Aaslid et al. [61] find that electrical energy storage can decrease the
price variations in VRES dominated systems.

When modeling the transition towards a future energy system with high shares
of VRES, long-term models must represent sufficient short-term temporal details
for VRES operations [62, 63, 64, 65]. With high shares of VRES, it is not only
important to represent the short-term variability of VRES, but also the uncer-
tainty of the VRES variability. Seljom and Tomasgard [66] show how short-term
uncertainty is crucial to avoid capacity inadequacy in long-term planning.

Some capacity expansion models consider both investments and operations, but
only single or myopic investment periods, e.g., Balmorel [67]. Other models con-
sider multiple investment periods and short-term operations, e.g., Switch [68],
TIMES [69], PyPSA [70], and GENeSYS-MOD [7]. The E2M2 model [71] con-
siders uncertain VRES variability, but does not consider multiple investment
periods. Figure 2.1 presents an overview of the European Model for Power sys-
tem Investments with Renewable Energy (EMPIRE)1 [73]. EMPIRE consolidates
three key model characteristics: multiple long-term investment horizons, short-
term representative operational periods, and short-term uncertainty. Therefore,

1An open version of the EMPIRE model is available from [72].
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EMPIRE is a good tool to gain insights on the link between long-term strategic
decisions and short-term operational decisions subject to operational uncertainty
on the transition towards a decarbonized European power system. EMPIRE is
a multi-horizon stochastic programming model [44] developed through the 2010s
[74, 73, 75], and it is a capacity expansion model where long-term decisions are
dependent on multiple short-term scenarios with varying VRES availability and
load profiles. The benefit of the multi-horizon structure is reduced computational
challenge while still providing endogenous uncertainty through the assumption of
independence between long-term decisions and single short-term scenarios. EM-
PIRE preserves statistical correlations and properties for VRES and load data.

Chang et al. [65] highlight the need to consider cross-sectoral synergies when
modelling the energy transition. Hansen et al. [76] identify increasing atten-
tion towards 100% renewable energy systems, and they highlight a need to link
local and global levels. Bloess et al. [77] review modelling tools that analyze
power-to-heat solutions for VRES integration in electricity markets, and they
find mathematical programming to be a highly applied methodology in this con-
text. Mehigan et al. [78] do not find that there is a single modelling tool to deal
with all the complexity of distributed generation within the large-scale electricity
system, and they suggest soft-linking models to determine the balance between
centralized and decentralized resources. McCollum et al. [79] find that invest-
ments will increase towards demand-side energy efficiency, as well as storage,
transmission, and distribution of electricity. Gils [80] presents theoretical poten-
tial for demand response in Europe and finds that flexible loads are available in
all sectors, including the building sector.

2.3 Neighbourhoods in the energy transition

In November 2016, the European Commission published eight legislative mea-
sures entitled the ‘Winter Package’ [81], highlighting the need to facilitate active
demand-side participation in future European power markets. According to Ar-
ticle 17 in the European Electricity Directive [81], prosumers2 should be able
to participate in organized markets alongside conventional generators in a non-
discriminatory way, potentially through aggregators [82]. Parag and Sovacool [83]
identify emerging market designs to integrate prosumers into competitive elec-
tricity markets, including prosumer grid integration, peer-to-peer markets, and
prosumer community groups. Through decentralization and democratization of
energy systems, prosumers are increasingly empowered in renewable energy co-
operatives with distributed energy resources (DERs) [84]. The term DER is a
common name for any distributed energy asset that could adapt its interaction
with the energy system. Some examples of DERs in neighbourhoods include

2Prosumers are defined as consumers producing their own energy or providing energy flexi-
bility, e.g., demand response, energy storage, load shifting, peak shaving, etc.
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space heating devices, hot water tanks, and electric vehicles.

Capacity expansion models, like those mentioned in Section 2.2, are used to ana-
lyze energy system design at the building level. Milan et al. [85] develop an MP to
study least costly designs of 100% renewable residential energy systems, and they
find that PV and heat pumps are the best technology choices. Lindberg et al.
[34] develop an MP to study the least costly technology mix for different levels
of Zero Emission Buildings, and they find that operational carbon emissions are
most cost-effectively reduced by replacing heat pumps with bio boilers for heat-
ing. Cano et al. [86] develop a multi-stage stochastic program using conditional
value-at-risk [87] to analyze energy system design for a building under uncer-
tainty, and they find that modeling uncertainty and risk significantly impacts
total costs.

In northern European climates, energy use in buildings is dominated by space
heating and sanitary hot water [88]. Lund et al. [89] study the role of district
heating in future renewable energy systems for Denmark, and they find that a
mix of district heating and individual heat pumps is preferred. Patteeuw et al.
[90] study how flexible use of heat pumps can reduce costs and carbon emissions,
and they highlight the superior performance of direct load control to consistently
signal when flexibility should be dispatched.

The roll-out of electric vehicles creates opportunities and challenges in neighbour-
hoods [91]. Clement-Nyns et al. [92] show how uncoordinated charging of electric
vehicles can lead to increased power losses and voltage deviations, and they use
mathematical programming to show how coordinated charging and peak shaving
can decrease the problems. Sørensen et al. [93] analyze the potential for flexible
charging of electric vehicles in a large housing cooperative in Norway, and they
identify a high potential for flexibility when private parking spots have charging
infrastructure.

Buildings and neighourhoods are increasingly adopting medium-scale electricity
production and DERs in smart and sustainable energy communities [94, 95], and
these energy communities are analyzed and developed widely across Europe, e.g.,
in Switzerland [96], the Netherlands [97], Denmark [98], Spain [99], Austria [100],
Italy [101], and Norway [102, 103]. Inês et al. [104] find that legal frameworks
in the EU are increasingly providing opportunities for collective prosumers in
several European countries. Seljom et al. [105] study how an extensive imple-
mentation of Zero Energy Buildings with PV could impact the development of
the Scandinavian electricity and heat system, and they find that the Zero Energy
Buildings substitute some development of combined heat and power, non-flexible
hydropower, and wind power. Pinel et al. [106] study the cost optimal design of
a Zero Emission Neighbourhood (ZEN), and they highlight large investments in
solar PV. Zwickl-Bernhard and Auer [107] study how to best utilize local renew-
able energy sources in an urban neighbourhood, and they highlight a promising
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potential for geothermal sources.

2.4 Flexibility and the smart grid

One of the main challenges of electricity systems is the constant need for a short-
term supply-demand balance, which raises the need for flexible resources that can
adapt to the variable electricity demand. Storage of electricity has historically
been limited and expensive [108], so dispatchable electricity plants, along with
large-scale pumped hydroelectric storage [109], have traditionally been the dom-
inant providers of flexibility in electricity systems. More recently, batteries are
gaining relevance as storage technologies in electricity systems [110]. Over the
last 30 years, the development of lithium-ion batteries has caused extensive cost
reductions with its wide application, particularly in the fast growing electric ve-
hicle market, and lithium-ion battery costs are expected to drop further towards
2030 [111].

To decarbonize electricity system as presented in Section 2.2, there is a limited
opportunity for dispatchable electricity plants that produce GHG emissions to
continue as flexibility providers. Jafari et al. [112] find that decarbonization
of the power system is less expensive with battery storage, however, they also
identify a decreasing marginal value of adding more battery capacity. Denholm
and Mai [113] show how energy storage can avoid curtailment of surplus renewable
electricity in a system with 55% VRES. Lund and Kempton [114] show how
batteries in electric vehicles can allow more VRES with less curtailment.

At the distribution level, electricity systems are transforming from manual and
centralized operations towards responsive and decentralized coordination in the
‘smart grid’ [115]. Key enabling technologies of the smart grid is advanced me-
tering infrastructure [116] and the energy internet [117] that allows more insight
for efficient system operation and development.

Lüth et al. [118] show how battery flexibility provides benefits at the distribu-
tion level within a local electricity market. The flexibility service from batteries
can also be partly provided by other flexible DERs, e.g., electric vehicles [119]
and thermal mass in buildings [120]. There are many incentive measures and
market designs that directly or indirectly shape the scheduling and dispatch of
DERs [121]. Many researchers are studying the potential for energy flexibility
in buildings and neighbourhoods [122, 123]. Barbato and Capone [124] review
methods that optimize dispatch of flexible electricity assets in the residential sec-
tor, and they find that mathematical programming is commonly used to analyze
how end-users can minimize their electricity costs in response to different price
signals.
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A significant part of the electricity bills faced by buildings covers grid costs.
Brown et al. [125] explore how grid tariff design can ensure economic efficiency,
and they also highlight that fairness and gradualism are important when de-
signing grid tariffs. Bjørndal et al. [126] analyze different incentive structures
for efficient flexibility dispatch, and they find that a redesign of grid tariffs is
cheaper than direct payment to flexibility providers. With advanced metering
infrastructure, buildings are technologically able to respond to frequent price sig-
nals and become flexible energy users [127]. Schittekatte et al. [128] find that
grid tariffs ought to be revised when more and more consumers respond to price
signals. Kirkerud et al. [129] find that different grid tariff designs incentivizes
significantly different operation of electric boilers.

In 2017, the Norwegian energy regulator sent out a hearing [130] proposing a
capacity-based grid tariff for all electricity customers, including households. One
of the proposed tariff schemes is based on capacity subscription, which was in-
troduced by Doorman [131]. The idea is that customers subscribe to a certain
level of simultaneous electricity use and pay a volumetric penalty when using
more electricity than their subscription. Bjarghov and Doorman [132] analyze a
dynamic version of the subscribed capacity tariff and finds it to be an attractive
option when flexible DERs can be utilized. Sæle and Bremdal [133] find that a
capacity-based grid tariff increases the electricity bill for Norwegian customers
with PV panels unless they also become flexible electricity users.

The efficient utilization of DERs requires price signals faced by electricity users
to incentivize when and where flexible DERs should be dispatched. Traditionally,
retail prices faced by residential electricity users are volumetric and static over
large geographical areas and long time horizons. When households are faced with
time varying electricity prices, Thorsnes et al. [134] find some cost-reducing re-
sponses during winter season from an experiment in New Zealand. Further, local
electricity markets provide promising schemes to enable prosumers to contribute
with valuable services in future electricity systems [135]. So far, research has
demonstrated that the residential sector has an impact on the aggregated peak
load in the interconnected European power system [136] and that buildings are
able to facilitate more efficient operation of the power system by responding to
price signals [134, 137, 138, 123].

2.5 Research questions

This thesis explores the role of neighbourhoods within the decarbonizing heat and
electricity system in a European context. Its contribution is mainly empirical in
its development and application of mathematical programming frameworks to
analyze the role of DERs in neighbourhoods within the energy transition. The
thesis addresses the research gap raised by Allan et al. [139], who identify a lack

14



Chapter 2: Background

of research addressing how the increased use of DERs impact economics at larger
scales. Following the advise of Mehigan et al. [78], we soft-link different models
in Paper IV and V to better represent DERs in large-scale energy systems.

There are two main research questions (RQs) with specific sub-questions linked
to the literature above:

• RQ1: How does the energy transition impact DERs in neighbour-
hoods?

– How do neighbourhoods respond to grid tariff signals designed to in-
centivize efficient use of DERs so that flexible electricity loads are well
distributed? (Paper I)

– How does decarbonization of the European electricity system and na-
tional heat systems impact the cost-optimal design of ZENs across
Europe? (Paper IV)

– How is the dispatch of DERs in neighbourhoods impacted when they
are utilized towards a European objective versus a local objective?
(Paper V)

• RQ2: How do DERs in neighbourhoods impact the energy tran-
sition?

– How can local electricity trading, designed to support efficient use
of DERs in neighbourhoods, impact distribution grid investments?
(Paper II)

– How are investments on the European level impacted when long-term
planning of DERs in buildings is coordinated with long-term planning
of the European electricity system? (Paper III–V)

– How does a European-wide development of ZEN impact emission re-
ductions from the heat and electricity sectors? (Paper IV)

RQ1 is explored by analyzing how DERs in neighbourhoods can facilitate de-
carbonizing electricity systems in growth, while RQ2 is explored by analyzing
how the European electricity system are impacted with a large-scale roll-out of
DERs in neighbourhoods. In providing answers to both RQ1 and RQ2, this thesis
explores how the integration between the building sector and the energy sector
impacts the transition towards a low-carbon society.
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3 Contributions

In the following, Section 3.1 presents a summary of each paper and its contribu-
tion to the research community, and Section 3.2 discusses and links the results
from the five papers following Chapter 4 in light of the RQs presented in Section
2.5.

3.1 Papers

3.1.1 Paper I: Comparing individual and coordinated de-
mand response with dynamic and static power grid
tariffs

Authors: Stian Backe, Güray Kara, Asgeir Tomasgard

Published by Elsevier in Energy, vol 201 (2020): 117619.

With more electricity users becoming flexible, there is a growing opportunity to
respond to electricity price signals. In this paper, we develop a cost-minimizing
linear program to compare resulting price signals and electricity loads for two
neighbourhoods faced with four different grid tariff schemes.

The main contributions of Paper I are:

• The development of a two-stage stochastic program to analyze capacity-
based grid tariffs.

• Insights on the difference between implementing a static versus dynamic
grid tariff scheme.

• Insights on the difference between a grid tariff based on individual customer
loads versus the combined load of several customers.

Table 3.1 summarizes the attributes of the model1 developed and used in Paper
I. It is a linear program that models how flexible DERs are operated to minimize
electricity costs in response to different grid tariff designs. The purpose of the

1The model, including the MP implementation and all input data in Paper I, is open-source
and downloadable from [140].
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model is to compare resulting costs and cost-optimal DER responses under differ-
ent grid tariff designs. All grid tariff designs are versions of capacity subscription
tariffs [132]. The assumptions in the model are that end-users have perfect in-
formation, and that they act economically rationally towards minimizing their
electricity bills. We also assume that the end-users can reliably deliver flexibility
from all DERs over the entire modelling horizon. Flexibility dispatch is subject
to electricity losses and limited by installed capacity in the model.

Table 3.1: Key model attributes of the linear MP in Paper I.

Model Attribute Description
Name -
Paper I
Implementation Python/Pyomo [141]
Solver Gurobi
Spatial scope Neighbourhood, aggregated by customer.
Temporal scope Representative year, hourly resolution.
Objective Minimize the summed electricity bills of prosumers.
Input Hourly electricity prices, hourly electricity loads,

electric vehicle demand, tariff rates, operational
losses, installed DER capacity.

Output Subscribed grid capacity, resulting electricity loads,
operational schedule for DERs.

The model is solved for four versions of capacity subscription tariffs in instances
with otherwise equivalent input data. Two electricity customers are modelled for
each version. The versions represent whether the customers are billed together
or separately or whether their subscription is adjusted weekly or annually. All
versions are considered for one year with hourly resolution. Input data consists
of tariff rates as proposed by the Norwegian Regulator [130]. We use historical
electricity prices in the model from a Norwegian price zone with hourly resolution,
and electricity load profiles are measured load from a pilot in FME ZEN (Campus
Evenstad). We assume three flexible assets available at both customers: An
electric battery, flexible electric vehicle charging, and a curtailable load. We
assume no cost of providing flexibility other than diffusion losses.

Results show that 5–6% cost savings are achieved in response to grid tariffs ad-
justed weekly, while 3% cost savings are achieved for grid tariffs adjusted annually.
Further, only grid tariffs adjusted weekly cause the annual peak load to decrease.
When customers are billed together, their combined peak load is reduced by 15%,
while separate billing cause 3% reduction in combined peak load. To promote the
efficient development of electricity grids, grid tariffs should be adjusted within a
year and have a price signal dependent on potential bottlenecks in the grid.

My contributions to Paper I include: conceptualizing the problem, developing
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and formulating the model, collecting and processing data, implementing and
solving the model, and processing and visualizing the results. Together with my
co-authors, I have discussed the case study and the results. Finally, I have been
the main author of the manuscript when writing the original draft and when
reviewing and editing.

3.1.2 Paper II: Helping end-users help each other: Coor-
dinating development and operation of distributed
resources through local power markets and grid tar-
iffs

Authors: Magnus Askeland, Stian Backe, Sigurd Bjarghov, Magnus Korp̊as

Published by Elsevier in Energy Economics, vol 94 (2021): 105065.

There are several mechanisms that can be established to incentivize efficient
development of electricity systems. In this paper, we develop a game-theoretic
framework to study grid tariffs and local electricity markets to compare resulting
investments and operations in a neighbourhood in three instances.

The main contributions of Paper II are:

• The development of a game-theoretic framework for grid tariff design under
local market mechanisms.

• A case study demonstrating that a local market can reduce the need for
grid capacity.

• Insights into the long-term and short-term effects of establishing a local
electricity market.

Table 3.2 summarizes the attributes of the modelling framework developed and
used in Paper II. The modelling framework is a game-theoretic setup inspired by
Schittekatte et al. [128], and consists of several linear programs and their Karush-
Kuhn-Tucker (KKT) conditions [142]. The linear programs represent different
agents that all have cost-minimizing objectives, including several prosumers and
their distribution system operator (DSO). The modelling framework explores the
balance between prosumer trading and grid tariff rates, and its purpose is to
study the effect of prosumer trading on investments and operational decisions
by prosumers and the DSO. The grid tariffs faced by the prosumers consist of
an energy-based part to cover operational costs and a capacity-based part to
cover investment costs. The assumptions in the modelling framework are that
the prosumers pursue their own self-interest with imperfect information, while
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the DSO minimizes costs with perfect information. Like in Paper I, flexibility
can be reliably delivered with all flexible DERs subject to losses and capacity
constraints.

Table 3.2: Key model attributes of the bilevel MP in Paper II.

Model Attribute Description
Name -
Paper II
Implementation GAMS [143]
Solver CPLEX and PATH [143]
Spatial scope Neighbourhood, aggregated by

customer and distribution system.
Temporal scope Representative weeks, hourly resolution.
Objective Minimize investment and operational costs of

DSO and prosumers.
Input Hourly electricity prices, hourly electricity loads,

electric vehicle demand, investment options,
costs, operational losses, resource limits,
existing capacity.

Output Tariff rates, resulting electricity loads,
investments, local trading price,
schedule for trades and operations.

The modelling framework is solved in three different instances. The first instance
is solved as combined linear program of all agents. The second and third in-
stances are solved as bilevel optimization problems [144]: The upper level is the
linear program minimizing DSO costs, while the lower level is a mixed comple-
mentarity problem [145] minimizing costs for each prosumer given that they act
in their own self-interest. The difference between the second and third instance
is whether prosumers can trade with each other or not. All instances are solved
for representative weeks in four different seasons. We simulate electricity profiles
based on the total floor area of a neighbourhood using the method presented
by Lindberg et al. [146]. The neighbourhood in the case study is assumed to
represent a pilot in FME ZEN (Ydalir) with a school, kindergarten, and resi-
dential buildings. Endogenous technologies include solar PV, battery, electric
vehicle charging, and grid dimensioning. Costs are inspired by open data from
the Danish Energy Agency.

Results show that the needed grid capacity is 20% lower with a local market
compared to without a local market. This is because a local market can effec-
tively reduce the coincident peak load of a neighbourhood, even when the grid
tariff is based on individual load. Further, total investments in solar PV are 4
times higher with a local market than without, which is because solar surplus
from larger installations can be traded locally at better terms than externally.
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Although the study identifies multiple benefits of local electricity markets, its suc-
cess will depend on the actual responses by electricity users in the neighbourhood
and the DSO, which remains to be tested.

My contributions to Paper II include: conceptualizing the problem, discussing
the methodology, and developing the modelling framework. Together with my
co-authors, I have discussed the case study, the results, and their implications.
I have contributed to finalize the manuscript, in particular when reviewing and
editing.

3.1.3 Paper III: Heat and electric vehicle flexibility in the
European power system: A case study of Norwegian
energy communities

Authors: Stian Backe, Magnus Korp̊as, Asgeir Tomasgard

Published by Elsevier in International Journal of Electrical Power & Energy
Systems, vol 125 (2021): 106479.

The European electricity system is decarbonizing, while buildings in neighbour-
hoods still dominate electricity demand. In this paper, we develop the multi-
horizon stochastic programming model EMPIRE to analyze the impact of na-
tionally aggregated neighbourhoods on the European power system.

The main contributions of Paper III are:

• The development of a model consolidating stochastic and integrated power
system capacity expansion to explicitly represent neighbourhoods in a large-
scale electricity market.

• A case study demonstrating the benefits of a coordinated development of
Norwegian neighbourhoods and the European power system.

• Insights into the effects of linking development and operation of small-scale
and large-scale electricity and heat assets.

Table 3.3 summarizes the attributes of EMPIRE developed and used in Paper III.
The development of EMPIRE in this thesis consolidates multiple investment pe-
riods, uncertainty in short-term operations, and short-term interactions between
electricity and heat markets to represent neighbourhoods. The model represents
the European electricity system as a network of nodes and arcs, where nodes
represent national heat and electricity markets and arcs represent international
transmission exchange. The objective is to minimize total system costs subject to
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market clearing constraints with hourly resolution, short-term technical limita-
tions, assumed future economic conditions, and climate policy. The main purpose
of the model is to study least cost investment pathways in the European elec-
tricity and heat system (transmission, generation, storage) towards 2060 while
satisfying EU climate targets, and it is specifically developed and used in this
thesis to understand how neighbourhood energy systems impact the least cost
investment pathway. The assumption in the model is perfect competition within
the European electricity and heat market. All market decisions related to in-
vestments and operational dispatch are linear, which means that power flows
are simplified, and that we ignore lumpy investments. Thermal electricity and
heat generators are subject to inter-hourly up-ramping limitations, and VRES
are subject to uncertain short-term capacity factors with an hourly resolution.

Table 3.3: Key model attributes of the multi-horizon MP in Paper III, IV, and
V.

Model Attribute Description
Name EMPIRE
Paper III, IV, and V
Implementation Python/Pyomo [141]
Solver Gurobi and Xpress
Spatial scope Europe, aggregated by country.
Temporal scope Representative weeks, hourly resolution.
Objective Minimize investment and operational costs in the

European heat and electricity market in five-year
steps towards 2060.

Input Hourly electricity loads, hourly building heat
demand, electric vehicle demand, hourly
capacity factor for VRES, investment options,
costs, operational losses, resource limits, existing
capacity (transmission, generation, storage),
annual CO2 cap (alternatively CO2 price).

Output Capacity investments (transmission, generation
and storage), hourly cross-border transmission
operations, hourly heat and electricity asset
operations (generation and storage), hourly
heat and electricity price, annual CO2
emissions and price, electrification
of building heat.

In Paper III, the EMPIRE model is solved in two different instances to compare
European capacity expansion when neighbourhood energy systems in Norway is
developed with a European perspective or not. The first instance represents the
case where investment decisions for Norwegian neighbourhoods are not explicitly
represented, whereas the second instance represents the case where investment de-
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cisions in Norwegian neighbourhoods are made in coordination with the European
electricity system. Data input is open-source data from the European Network of
Transmission System Operators (ENTSO-E) for the electricity system, including
hourly electricity load profiles2 and initial net generation/storage capacities by
country. VRES data is from renewables.ninja [147, 148] and ENTSO-E. Costs are
from De Vita et al. [149] and the Danish Energy Agency. Climate policy follows
the emission reduction pathway laid out for the power sector by the European
Commission [11].

Results show that total system costs is reduced by 0.38% when investment deci-
sions for Norwegian neighbourhoods are endogenous. Note that the two instances
only differ by about 1% of European electricity demand being defined as heat-
ing demand in Norway. Further, heat pumps and combined heat and power
in Norway replace some investments in onshore and offshore wind power, and
Norwegian electricity exports increase by 8%. The increase in Norwegian elec-
tricity exports do not lead to more investments in transmission capacity; on the
contrary, 500 MW less transmission capacity is developed between Norway and
Sweden. Charging capacity expansion for electric vehicles in Norway are also re-
duced by 3% when investment decisions for heating in Norwegian neighbourhoods
are endogenous.

My contributions to Paper III include: conceptualizing the problem, develop-
ing new constraints and features in EMPIRE, collecting and processing new in-
put data for the modelling framework, re-implementing and solving EMPIRE in
Python, and processing and visualizing the results. Together with my co-authors,
I have discussed the case study and the results. I have been the main author of
the manuscript when writing the original draft and when reviewing and editing.

3.1.4 Paper IV: Emission reduction in the European power
system: exploring the link between the EU ETS and
net-zero emission neighbourhoods

Authors: Stian Backe, Dimitri Pinel, Magnus Askeland, Karen Byskov Lindberg,
Magnus Korp̊as, and Asgeir Tomasgard

Submitted to an international journal and is currently being peer-reviewed.

Climate policy is driving development at different scales within the electricity and
heat system, both at the European level and at the neighbourhood level. In this
paper, we link two capacity expansion models to analyze the interaction between
the European emission trading system (ETS) and Zero Emission Neighbourhoods
(ZEN).

2Electricity load profiles are scaled in line with [57] to represent future time periods.
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The main contributions of Paper IV are:

• The development of a modelling framework that links investments and poli-
cies at the European level with the neighbourhood level.

• Insights into how ZENs across Europe is impacted by the European elec-
tricity system decarbonizing.

• Insights into how the surrounding electricity and heat system is impacted
by ZENs across Europe.

Table 3.4 summarizes the attributes of the Zero Emission Neighborhood Invest-
ment Tool (ZENIT) which is linked with EMPIRE (Table 3.3) in Paper IV. The
ZENIT model is presented in Pinel et al. [35], and it is a mixed integer linear
program that models investment decisions, as well as hourly operational deci-
sions, to find the least costly neighbourhood electricity and heat system design
that meets the ZEN requirements. The purpose of the model is to compare how
different ZEN requirements and CO2 accounting methods impact ZEN design.
The assumptions in the model is that the neighbourhood, not individual building
owners, makes decisions given perfect information for the same representative
weeks as in EMPIRE. Losses and efficiencies are considered for different technol-
ogy options with hourly resolution.

In Paper IV, ZENIT is solved for 20 European countries, including five sub-
regions in Norway, and three future investment periods using EMPIRE results
regarding hourly electricity prices and CO2 intensities. Because both EMPIRE
and ZENIT use the same representative weeks to represent operations, the data
results from EMPIRE are directly used as input to ZENIT. The ZENIT results
are then used to produce an endogenous investment option in EMPIRE, and
EMPIRE is solved with the option to invest in ZEN in the respective countries and
future investment periods. Other data input to ZENIT is mostly from the Danish
Energy Agency, see also [150]. Climate policy follows the emission reduction
pathway laid out for the power sector by the European Commission [11], and the
EU ETS representation in EMPIRE does not include emissions from small-scale
gas boilers.

Results show that when the European electricity system decarbonizes, driven by
the EU ETS, developing ZEN generally requires more local electricity production.
However, the cost of developing ZEN is reduced by 20% on average between
2030 and 2050 mainly driven by technology development, in particular bio-based
solid-oxide fuel cells. As an endogenous investment option, ZENs are widely
developed across Europe around 2050, and produce on average 12% of European
electricity and 9% of European heat by 2060. The ZENs cause 17% less electricity
from nuclear and 2% less electricity from wind. After ZENs are developed, the
endogenous CO2 price is reduced, which means that ZENs reduce the cost of
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Table 3.4: Key model attributes of the MP linked with EMPIRE in Paper IV.

Model Attribute Description
Name ZENIT
Paper IV
Implementation Python/Pyomo [141]
Solver Gurobi
Spatial scope Neighbourhood.
Temporal scope Representative weeks, hourly resolution.
Objective Minimize investment and operational costs for

a neighbourhood to become a ZEN.
Input Hourly electricity loads, hourly building heat

demand, hourly capacity factor for VRES,
investment options, costs, operational
losses and efficiencies, resource limits,
CO2 intensity for fuels and electricity
from the grid, hourly electricity price.

Output Capacity investments (generation and
storage), hourly heat and electricity asset
operations (generation and storage),
annual CO2 emissions, electrification
of building heat.

achieving climate targets in line with the visions of the European Commission
[11].

My contributions to Paper IV include: conceptualizing the problem, developing
the modelling linking framework, collecting and processing data for the modelling
linking exercise, solving EMPIRE, and processing and visualizing the results. To-
gether with my co-authors, I have discussed the case study and the results. Fi-
nally, together with Dimitri Pinel, I have been the main author of the manuscript
when writing the original draft and when reviewing and editing.

3.1.5 Paper V: Impact of Energy Communities on the Eu-
ropean Electricity and Heat System Decarbonization
Pathway: Comparing local and global flexibility re-
sponses

Authors: Stian Backe, Sebastian Zwickl-Bernhard, Daniel Schwabeneder, Hans
Auer, Magnus Korp̊as, and Asgeir Tomasgard

Submitted to an international journal and is currently being peer-reviewed.

25



Chapter 3: Contributions

The growing development of energy communities across Europe will impact their
surrounding electricity and heat systems, and resources within the energy com-
munities can be utilized towards different objectives. In this paper, we use link
two capacity expansion models to analyze how the European electricity and heat
system is impacted by the exogenous development of energy communities, and
how flexible resources within the energy communities are used towards local ver-
sus European cost minimization.

The main contributions of Paper V are:

• The development of a modelling framework that links investments and op-
erations at the European level with different settlement patterns at the
neighbourhood level.

• Insights into how energy communities across Europe impact investments
and operations in the decarbonizing European electricity system.

• Insights into how distributed flexibility options can be aggregated in large-
scale models and its effect on results.

Table 3.5 summarizes the attributes of the enerGy commUnity SysTem mOdel-
ing (GUSTO)3 which is linked with EMPIRE in Paper V. The GUSTO model
is presented in Zwickl-Bernhard and Auer [107], and it is a mixed integer linear
program that models investments and operations in a neighbourhood energy sys-
tem similar to ZENIT. The main difference between GUSTO and ZENIT is that
GUSTO does not include a ZEN requirement or any CO2 accounting, except for
a CO2 price. The purpose of GUSTO is to study investments and operational
decisions for electricity, heat, and cooling systems in energy communities under
different economic conditions. The assumptions in the model include perfect in-
formation for an energy community for a single representative year. Like ZENIT,
losses and efficiencies are considered for different technologies on an hourly basis.

In Paper V, GUSTO is solved for six European countries, including five sub-
regions in Norway; four neighbourhood typologies (settlement patterns); and
three investment periods. In each solve, GUSTO uses mean electricity and CO2
prices for future investment periods from EMPIRE to create input. GUSTO
results regarding hourly electricity and heat operations are used to modify load
profiles in EMPIRE to reflect an exogenous development of energy communities.
Further data input to GUSTO can be found in [151], e.g., standard electricity
and heating demand profiles on the building level from [152, 153, 154]. Climate
policy follows the emission reduction pathway laid out for the power sector by
the European Commission [11].

Results show that the roll-out of energy communities in the selected European
countries decrease total system cost and centralized capacity expansion by less

3The GUSTO model is open-source and available from [151].
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Table 3.5: Key model attributes of the MP linked with EMPIRE in Paper V.

Model Attribute Description
Name GUSTO
Paper V
Implementation Python/Pyomo [141]
Solver Gurobi
Spatial scope Neighbourhood.
Temporal scope Representative year, hourly resolution.
Objective Minimize investment and operational costs for

an energy community.
Input Hourly electricity loads, hourly building heat

demand, hourly capacity factor for VRES,
investment options, costs, operational
losses and efficiencies, resource limits,
CO2 price, hourly electricity and heat
price.

Output Capacity investments (generation and
storage), hourly heat and electricity asset
operations (generation and storage),
electrification of building heat.

than 1%. The energy communities cause a lower heat demand and higher electric-
ity demand during winter seasons, as well as lower electricity and heat demand
during summer seasons. On the European level, this causes a shift of investments
from onshore to offshore wind. When distributed flexibility options within en-
ergy communities are available for dispatch at the European level, investments
in batteries at the European level are reduced by 2%. At the local level, energy
community flexibility is utilized mainly for absorption of solar PV, while at the
European level, flexibility is utilized more towards the absorption of wind.

My contributions to Paper V include: conceptualizing the problem, developing
the modelling linking framework, collecting and processing data for the modelling
linking exercise, solving EMPIRE, and processing and visualizing the results.
Together with my co-authors, I have discussed the case study and the results.
Finally, I have been the main author of the manuscript when writing the original
draft and when reviewing and editing.
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3.2 Results and discussion

3.2.1 RQ1: How does the energy transition impact DERs
in neighbourhoods?

As the electricity system that surrounds neighbourhoods meets more demand
with less CO2 intensity, there is a need for new resources/services within the elec-
tricity system. This thesis finds that neighbourhoods and cost-efficiently supply
some of these resources/services given advanced metering infrastructure and regu-
latory frameworks that allow neighbourhoods to actively participate in electricity
markets. Some of the resources/services in neighbourhoods that are studied in
this thesis include: solar PV, bio-based electricity/heat generation, heat pumps,
batteries, hot water storage, and flexible charging of electric vehicles.

In Paper I and II, we study the ability of capacity-based grid tariffs (Paper I
and II) and local electricity trading (Paper II) to incentivize lower coincident
electricity peak loads in neighbourhoods. Both Paper I and II find that, given
flexible DERs and some incentive to schedule them, the coincident peak loads in
the neighbourhood are successfully lowered. Both papers also find that price sig-
nal coordination among neighbourhood stakeholders is important: Paper I finds
that individual billing is less efficient than combined billing to lower coincident
peak loads in neighbourhoods, and Paper II finds that allowing electricity trad-
ing between stakeholders in the neighbourhood is more cost-efficient than not.
Further, Paper I finds that adjusting price signals (tariff rates) more frequently
than annually is needed to signal seasonal variations for the value of flexibility:
load reduction ought to be incentivized when it is needed, but not incentivized
when it is not needed.

Flexible DERs in neighbourhoods could be used for different purposes, and the
objective of lowering the coincident peak load could be in competition with the
objective of becoming a ZEN or balancing VRES load. In Paper IV, we study
how electricity and heat system design in ZEN changes as the surrounding elec-
tricity system decarbonizes, and we find that neighbourhoods must produce more
electricity to become ZEN as the energy transition progresses. In Paper V, we
study the difference between pursuing local cost minimization versus European
cost minimization in terms of how DERs are scheduled, and we find that coun-
tries with large shares of wind power would benefit from using flexible DERs to
partly balance wind load, which is sometimes in conflict with balancing local grid
or PV loads.

Given the benefits of DERs in neighbourhoods identified in this thesis, the en-
ergy transition should lead to revised regulatory frameworks regarding electricity
billing in neighbourhoods, as well as regulatory frameworks for aggregators as
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discussed by Burger et al. [155]. If so, neighbourhoods could decrease their elec-
tricity costs through smart scheduling of flexible DERs; however, electricity costs
for stakeholders without flexible DERs could simultaneously increase. Although
the models in this thesis focus on economic efficiency, fairness in electricity billing
is also important to consider when revising regulatory frameworks as laid out by
Brown et al. [125]. Further, given a conflict of interest between lowering peak
loads and balancing VRES within and around neighbourhoods, it will be impor-
tant that the price signals what to prioritize at different times. Nevertheless,
this thesis identifies a significant economic value of flexible DERs in neighbour-
hoods towards 2050 and beyond. If potential complexity and disutility related to
smart scheduling of flexible DERs does not outweigh its benefits, flexible DERs
in neighbourhoods are increasingly relevant assets within the energy transition.

3.2.2 RQ2: How do DERs in neighbourhoods impact the
energy transition?

As European neighbourhoods develop fully or partly autonomous electricity and
heat systems, DERs in neighbourhoods become wide-spread and significant on
a European level. This thesis finds that the development of DERs in neigh-
bourhoods have a significant impact on the transition pathway towards 2060 for
the surrounding European electricity and heat system, in particular large-scale
investments, CO2 prices, and emissions.

In Paper II, we study how electricity trading between prosumers in neighbour-
hoods could impact DSO grid investments, and we find that grid investments
are avoided when electricity trading is allowed. The main reason for avoided
grid investment is that the coincident peak load is reduced as trading between
neighbourhood stakeholders incentivizes reduction of the aggregate neighbour-
hood load rather than their individual peak load.

Investments on the European level are also impacted by more DERs in neigh-
bourhoods. In Paper III, we study the development of DERs in Norwegian neigh-
bourhoods in coordination with the European electricity system, and we find that
DER development in Norwegian neighbourhoods decrease investments in wind
power and increase the export of hydro power from Norway. In Paper IV, we
study the endogenous development of ZENs in several countries in the European
electricity and heat system, and we find that ZENs are cost-efficient investment
options from a European perspective around 2050. Paper IV further finds that
ZENs mostly replace large-scale investments in nuclear power. In Paper V, we
study the exogenous development of energy communities in several countries in
the European electricity and heat system, and we find that they shift large-scale
investment from onshore to offshore wind power. The shift towards offshore wind
is likely driven by the energy communities developing heat pumps that cause in-
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creased electricity loads during winter, and offshore wind has a higher average
capacity factor during winter than onshore wind. European cross-border trans-
mission investments are not affected by DERs in neighbourhoods in Paper IV
and V, which is likely because the neighbourhood DERs are developed after the
maximum allowed transmission investments are done in both papers.

In Paper IV, European CO2 prices, as well as unregulated European CO2 emis-
sions, are found to decrease in the long term when ZENs are developed. This is
mainly because fossil gas heating around Europe is less developed and used when
the more cost-competitive ZEN option is developed. Paper IV also finds that
CO2 prices could increase in the years before a zero emission investment option
like ZEN is anticipated to become cost-efficient. In Paper V, the exogenous de-
velopment of energy communities increases the CO2 prices, which is again likely
because energy communities increase electricity load in the winter. Note that
Paper IV and V only compare future scenarios where European climate targets
are met in line with the vision of the European Commission [11], also without
DERs in neighbourhoods.

Papers II–V all find that the development and scheduling of DERs in neighbour-
hoods contribute to cost savings in the surrounding electricity and heat systems.
We find that centralized investments in the European electricity system, espe-
cially wind and nuclear power, could be partly substituted by DERs in neigh-
bourhoods.
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4 Concluding remarks

Hamming [156] stated that: ‘The purpose of (scientific) computing is insight, not
numbers’, and Box [157] stated that: ‘Essentially, all models are wrong, but some
models are useful’. In this thesis, very complex energy systems are represented
in simplified mathematical frameworks. Thus, it is worth remembering the wise
men’s point: We are looking for useful insights on how techno-economic inter-
actions drive decision-making. It is the qualitative interpretations of modelling
output—in light of the models, what they represent, and their limitations—that
yield the useful insights towards practical implications of the studies.

This thesis studies the impact of neighbourhood electricity and heat systems on
European decarbonization pathways from the neighbourhood perspective (Paper
I and II), the European perspective (Paper III), and the link between them (Paper
IV and V). However, there are many scopes and layers between these perspectives
that are not considered, including electricity grid infrastructure on a country
level, infrastructure for district heating, and more sectors overlapping with the
electricity system. Further, when modelling energy systems several decades into
the future, all modelling input and assumptions are uncertain, and the modelling
results are practically impossible to verify. Thus, the thesis focuses on comparing
differences between several instances of the same modelling frameworks. The
results are not intended to forecast the future, but rather to outline the differences
between future pathways with and without DERs in neighbourhoods.

Energy systems in future neighbourhoods are studied in this thesis, however, it
does not explicitly consider directly improving final energy demand in neighbour-
hoods, e.g., renovation. Future work should address accelerating renovation in
Europe: 75% of today’s buildings is considered energy inefficient, 85–95% of to-
day’s buildings will still exist in 2050, and current renovation rates in the EU are
alarmingly low: around 1% per year [158]. Further, the step-wise emission re-
ductions for the European electricity and heat system towards 2050 needs more
investigation. By shifting allowed GHG emissions further into the future, the
CO2 price spikes in Paper IV might be avoided. However, a smoother transition
from fossil to renewable energy also implies that more fossil capacity can be cost-
efficiently developed and used further into the future, which could increase the
problem of stranded assets as discussed by Bos and Gupta [159]. More work is
needed to study the balance between strict decarbonization policy and economic
efficiency in line with climate targets, both on the European level and on the
neighbourhood level.
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Andreas Sumper, Stig Ødegaard Ottesen, Josep-Andreu Vidal-Clos, and
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a b s t r a c t

This paper investigates cost-optimal operation of flexible electricity assets with a capacity-based power
grid tariff involving power subscription. The purpose of this research is to identify the characteristics of a
subscribed capacity-based tariff that promotes efficient network development through demand
response. Using historical load data, we compare two consumers with flexible assets being billed by their
individual load versus their combined and coordinated loads in a two-stage stochastic program. The
frequency of adjusting the subscribed capacity level (weekly versus annually) influences the effective-
ness of the tariff in terms of reducing loads that dimension the grid. The results show that weekly
subscription on average provides 5� 6% cost savings, while annual subscription on average provides 3%
cost savings. A combined annual peak load reduction of 15% occurs when the combined subscription
level is adjusted weekly. We also find that when the subscription level is adjusted weekly, the load
reduction is cost efficient even when capacity is not scarce, which ought to be avoided. Depending on
where a bottleneck in the grid is located, the price signal should be based on the combined load of
several consumers rather than individual loads if combined peak load shaving is to be cost-optimal.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Successful mitigation of climate change will require decarbon-
ization of the energy sector, increased production from variable
renewable energy sources (RES), and electrification. Several of
these measures are likely to be decentralized and require cross-
sectoral thinking [1].

Flexibility in power systems relates to the ability to deal with
variability in supply and demand. Demand-side flexibility through
demand response has been proposed as being significant if assets
can be coordinated and aggregated [2e6]. We will refer to con-
sumers with demand-side flexibility as ‘prosumers’ because they
both consume and produce energy services. Prosumers are seen as
part of the solution to facilitate a large share of variable RES, making

the demand-side more flexible through self-generation, market
participation and active responses to price signals [7,8].

Several studies have been performed to analyze prosumer
response to different grid tariffs [9e15]. However, to the authors’
knowledge, no previous study compares dynamic intra-annual
adjustment of tariff parameters with annually fixed parameters
and simultaneously considers the difference between providing
short-term price signals based on individual loads versus the
combined load of several prosumers. To cover this gap, we propose
a two-stage stochastic program where uncertainty is related to net
load and spot prices with an hourly resolution for different pro-
sumers. The novelty of this paper is using the two-stage stochastic
programming framework to compare dynamically adjusting tariff
parameters within a year versus statically fixing tariff parameters
for a complete year. The paper also has the original contribution of
comparing individual versus coordinated asset planning to analyze
how effective different versions of a capacity-based grid tariff are in
reducing load peaks in the grid. Based on our results, we address
the implications for successful grid tariff design, i.e., a design that
will trigger efficient utilization of the local flexible assets and
reduce the highest loads.

The outline of the paper is as follows: Section 2 introduces the
background regarding flexibility in energy systems and the purpose

Abbreviations: C1, Campus 1; C2, Campus 2; CA, Combined annual subscription
scheme; CW, Combined weekly subscription scheme; DG, Distributed generation;
DSO, Distribution system operator; IA, Individual annual subscription scheme; IW,
Individual weekly subscription scheme; PV, Photovoltaic; RES, Renewable energy
source.
* Corresponding author. Department of Industrial Economics and Technology
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of grid tariffs. Section 3 presents the model developed to analyze
subscribed capacity-based grid tariff schemes and the assumptions
and input for our case study. Section 4 states our model results,
while Section 5 discusses the implications of these results. Finally,
Section 6 concludes our paper and suggests further research.

2. Background and literature

This section elaborates on the literature and previous studies
related to our paper. The first part (Sections 2.1-2.3) explains the
context of our study linking flexibility in power systems to grid
tariff design, while the last part (Section 2.4) presents the reasoning
behind the use of the two-stage stochastic program in this paper.

2.1. Flexibility services in power systems

Flexibility is a term used to characterize a service or property
that is part of tangible assets [16]. Flexibility can be characterized
along three dimensions based on the Nordic Balancing Concept:
time, location, and resource type. Properties of the time dimension
include activation (response) time, ramp-up or down rate, and the
duration of the service. The location dimension describes how the
service from an asset can be provided in geographical locations, e.g.
individual unit (building), neighborhood, country, and cross-
border. For example, services based on reactive and active power
have different geographical relevance. The type of resource dimen-
sion describes the type of asset in the following classes: supply-
side, demand-side, grid-side, and storage [17].

In our analysis, we focus on time horizons with hourly resolu-
tion, demand-side flexibility assets, the neighborhood level, and
assume that all flexibility assets provide a firm service (there is no
uncertainty related to delivery). We assume that the scheduling of
flexible assets is driven by the prosumers’ wish to minimize the
total cost of energy consumption, including net trades in the spot
market and the grid tariff paid. In addition, we investigate the effect
of prosumer coordination by investigating what happens when an
aggregator controls all the flexibility assets to minimize total costs.
We do not discuss how to share the benefits of this, e.g. in a flexi-
bility market [18], only the total effect.

2.2. Allocation of ancillary service costs and flexibility

In a power system, distribution of electricity by preserving po-
wer quality andmaintaining adequate assets in the low voltage grid
are the main tasks of a distribution system operator (DSO). The DSO
is commonly regulated as a natural monopoly which is challenged
by the development of a smart grid [19,20]. Full and timely recovery
of network costs is important for the DSO’s financial sustainability
[21]. A successful tariff design should increase network efficiency in
the short-term and signal efficient network capital development in
the long-term [22,23].

The tariff design normally includes up to three elements: a fixed
element, a volumetric (energy) element, and a capacity element.
Volumetric elements generally do not incentivize demand-side
flexibility services [24] as opposed to capacity elements that
partly charge consumers based on the power use over a measuring
period [23]. Due to an increase in distributed generation (DG),
especially solar photovoltaics (PV), power systems with net-
metering tariff designs are faced with the threat of a utility death
spiral [25]. The threat appears when DG behind the meter triggers
not just energy cost savings, but also tariff savings. Unless the DG
reduces the DSO’s costs, it creates a marginally higher cost for
consumers without DG, which is demonstrated in Ref. [26] where a
capacity element in the grid tariff increases the electricity costs up
to 10% for consumers with high power outtake in Norway. A

redesign of network tariffs is needed to avoid the allocation of grid
payments away from DG owners [27].

Most current grid tariff designs in Europe are static, i.e.,
dependent on a single element (commonly energy) without any
temporal rate variation [28]. In contrast, a dynamic tariff designwill
depend on several elements and/or be subject to temporal varia-
tion. Static tariff designs are practical, predictable, and good at
achieving a single long-term objective, e.g. increasing energy effi-
ciency. In theory, dynamic tariffs reflect the DSO’s costs better and
could create signals to trigger flexibility services by prosumers [29].
However, dynamic tariffs are harder to implement [21] and could
cause political challenges related to an ‘unfair’ change in network
costs for certain consumer groups [30].

The signal for flexibility need could be provided using market-
based approaches, as proposed in e.g. Ref. [31e33]. An example of
a market-based approach calling for flexibility can be found in
Ref. [34] which proposes distribution locational marginal pricing.
The idea of activating demand-side flexibility in bothmarket-based
solutions and through dynamic grid tariffs is to create price signals
to trigger efficient flexibility responses. We analyze how market-
based approaches could be similar to responding to a dynamic
grid tariff. In Ref. [35], they analyzed different ways of creating
incentives for prosumer flexibility, including tariff redesign and a
direct payment to flexibility providers. They find that a redesign of
network tariffs is up to 20% less costly than direct payment to
flexibility providers. However [35], does not consider how the
network tariffs should be redesigned.

2.3. Grid tariff design in Norway

Currently in Norway, grid tariffs for residential consumers have
a fixed element and a volumetric element. The volumetric element
is location dependent through a marginal loss factor, which reflects
how far electricity generation is from a consumer [28]. The current
Norwegian grid tariff design does not price high power outtakes for
households [26], and it is shown that dynamic tariffs provide in-
centives for better utilization of the grid [36].

In this paper, we analyze the ‘subscribed capacity’ grid tariff
scheme proposed by the Norwegian Regulator [37], where con-
sumers subscribe to a capacity level. If their hourly load exceeds the
subscribed level, a penalty is charged depending on the violation
(see Fig. 1). As consumers pay both for the subscribed level and the
penalty, they have incentives to subscribe to as low capacity as
possible providing they can stay below it most of the time. We
analyze four different versions of the subscribed capacity tariff
scheme. In the first version, consumers have individual sub-
scriptions that cannot be changed for a year (individual annual
subscription). The second version is individual subscriptions where
the consumers can adjust the subscription level on a weekly basis
(individual weekly subscription). The third version is a combined
capacity subscription on the total load of several consumers com-
bined, and the subscription is fixed for one year (combined annual
subscription). Finally, the fourth version is a combined subscription
for several consumers that can be changed on a weekly basis
(combined weekly subscription). By comparing these four versions
of the subscribed capacity grid tariff, our contribution is to elabo-
rate on the effect of providing inter-weekly rather than inter-
annual tariff adjustment and coordinated rather than individual
scheduling of flexibility assets. We study the effect on (1) the
resulting cost savings and cost-optimized responses by prosumers
minimizing their electricity bill and (2) the total peak load reduc-
tion for the grid. We assume the tariff rates are as presented in
Ref. [37] (see Table 1). These rates are suggested by the Norwegian
Regulator upon analyzing measured load data from 500 Norwegian
consumers, and the rates are determined subject to the criteria that
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the same annual income to the DSO is provided as with the current
Norwegian gird tariff scheme.

2.4. Two-stage stochastic programming approach

Stochastic programming supports decision making under un-
certainty [38]. In Ref. [39], a stochastic programming approach is
used to analyze trading between prosumers under uncertainty;
however, there are not multiple stages. Throughout different stages
in stochastic programming, a decision maker ought to make de-
cisions for short-term and long-term plans, where stages represent
realization of uncertain outcomes. In our case, the short-term plans
include operating flexible assets to minimize costs given a reali-
zation of prosumer load and day-ahead prices, and the long-term
plan involves tuning the tariff parameters. We use two-stage sto-
chastic programming to analyze the difference between long-term
and short-term adjustment of the tariff parameters, where short-
term adjustment of the tariff parameters is analyzed by solving
deterministic versions of our two-stage stochastic program. Other
examples of two-stage programming approaches for addressing
uncertainty in energy management are [40e42].

3. The mathematical model

In this section, we present the model for the prosumer’s cost-
minimization problem. The model is a two-stage stochastic linear
program [43] where the first-stage decisions include deciding the
subscribed capacity level and the second-stage decisions include
operating flexible assets. The complete nomenclature of the model

can be found in Appendix A.

3.1. Time structure

The model considers one temporal scale with all operational
time periods defined in the ordered set T ¼ f1;2;…;jT jg. In every
time step, decisions about how to operate a flexible asset is sup-
ported. Operational (second-stage) decisions can be different in all
stochastic scenarios u in the set of all scenarios U. Each stochastic
scenario represents one realization of prosumer load and electricity
spot prices for a time horizon. The flexible assets are located at
different prosumers p2P , and the scenario independent first-
stage decision is the subscribed capacity xIp.

The model includes flexible asset types f2F . If asset type f is
located at prosumer p, it belongs to the set F p4F . Any flexible
asset type f is modelled as a conceptual storage. Depending on the
asset type, it can be flexibly charged (prosumer demand can be
increased, e.g. electric vehicle [44]); it can be flexibly discharged
(prosumer demand can be decreased, e.g. curtailable loads [45]); or
it can be both flexibly charged and discharged (e.g. battery [46]).
Note that there is no resolving of uncertainty within a scenario as
time passes, hence the storages are operated with perfect foresight
within a scenario. For a static tariff where the subscribed capacity is
decided for a year, each scenario may consist of all hours in a week
with T ¼ f1;2;…;168g. Scenarios can be sampled from historical
data, and ideally, they represent seasonal variations over a year. If
the scenarios represent all weeks of a year, we would have U ¼
f1;2;…;52g. Note that each scenario is independent with no link or
dependency between operations or storage levels in two subse-
quent scenarios.

3.2. Objective function

The objective function for an individual prosumer, zI, minimizes
the electricity bill by scheduling flexible assets subject to energy
costs and a grid tariff:

Fig. 1. Illustration of the ‘subscribed capacity’ grid tariff scheme. The illustration shows an example of measured hourly load over 24 h for the combined load of Campus 1 (C1) and
Campus 2 (C2) and a combined subscription. The horizontal line represents the subscription level which causes a penalty charge for hours 11 and 12 (load exceeds subscribed level).

Table 1
Grid tariff rates provided as input in all our 52 instances. The rates are assumed to be
as proposed by the Norwegian regulators [37] (see Section 2.3).

csub [NOK/kW/year] cnorm [NOK/kWh] cpen[NOK/kWh]

Rates 689 0.0500 1.00
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minzI¼
X
p2P

 
csubxIp þ

X
u2U

pu

X
t2T

�
kIp;t;u þ crett;uy

load
p;t;u

�!
; (1)

where xIp are variables for the subscribed capacity level for pro-

sumer p, the pu are scenario probabilities, and kIp;t;u are variables
identifying the tariff cost depending on the prosumer’s grid inter-
action in different scenarios. Resulting load profiles (import from
the grid to the prosumer) are identified through the second-stage
variables yloadp;t;u and vary by scenario. The objective contains a time

varying load dependent retail cost (crett;u) and a fixed capacity

dependent subscription cost (csub) for the capacity subscription.
For prosumer p, the tariff cost is identified through a two-step

linear cost function depending on the subscribed capacity level xIp
and the prosumer load yloadp;t;u:

cnormyloadp;t;u � kIp;t;u; p2P ; t2T ;u2U; (2)

cpen
�
yloadp;t;u � xtariffp

�
þ cnormyloadp;t;u � kIp;t;u;p2P ; t2T ;u2U;

(3)

where cnorm and cpen are load dependent prices for loads below and
above the subscribed capacity, respectively. Constraints (2) make
sure that the tariff has a lower bound of load multiplied by the cost
below the subscribed capacity, whereas constraints (3) ensure that
the tariff cost is increased when load exceeds the subscribed ca-
pacity to the penalty cost multiplied by the load.

3.3. Constraints

The original load before scheduling of the flexible assets (ex-
pected net demand) for electricity at prosumer p at time t in sce-

nario u is denoted xloadp;t;u. The total import from the grid to
prosumers is identified in the following constraints:

yloadp;t;u ¼ xloadp;t;u þ
X

f2F p

�
wcharge

p;f ;t;u � ε
discharge
f wdischarge

p;f ;t;u

�
;

p2P ; t2T ;u2U;

(4)

where wcharge
p;f ;t;u is charging of flexible asset type f at prosumer p

while wdischarge
p;f ;t;u is discharging. Constraints (4) ensure that pro-

sumer p at time twill have a resulting load equal to the original load
plus the charged and discharged energy from all the flexible assets

at the prosumer. Note that losses ε
discharge
f are only considered for

discharged energy in (4).

In time period t, wstorage
p;f ;t;u is the available energy in flexible asset

type f at prosumer p. The balance of storage must be maintained in
between operational time steps:

kp;f h
storage
p;f ;1 þ ε

charge
f wcharge

p;f ;1;u�wdischarge
p;f ;1;u ¼wstorage

p;f ;1;u ;p2P ; f2F p;

u2U:

(5)

ε
diff
f wstorage

p;f ;t�1;uþε
charge
f wcharge

p;f ;t;u �wdischarge
p;f ;t;u ¼wstorage

p;f ;t;u ;p2P ;f2F p;

t2f2;…;jT jg;
u2U:

(6)

Constraints (5) make sure that a flexible asset type f at prosumer
p start the operational horizon (t¼ 1) in scenario u with an initial
energy level equal to a percentage of installed capacity (kp;f ) plus
charging (subject to losses) minus discharging. Constraints (6)
make sure that flexible asset type f at prosumer p has an energy
level equal to the energy level from the previous period (subject to
diffusion losses) plus charging in the current period (subject to
losses) minus discharging for all operational time steps and sce-
narios. Losses are type dependent factors for flexible asset type f

and they are considered for charging (εchargef ), discharging

(εdischargef ) and diffusion of stored energy content (εdifff ). Note that

no losses are considered for discharging in (5) or (6) since it is

accounted for in (4). The maximum energy content (hstoragep;f ),

charging (hchargep;f ) and discharging (hdischargep;f ) of flexible asset type f

at prosumer p are defined as upper bounds for all time periods and
scenarios.

Constraints (7) ensure that the energy level of flexible asset type
f at prosumer p is at least the required level greq

p;f ;t in period t for all

scenarios:

greqp;f ;t �wstorage
p;f ;t;u ;p2P ; f2F p; t2T ;u2U: (7)

The individual objective zI in (1) is combined with constraints
(2)e(7) to find the subscribed capacity level that minimize the
combined energy and tariff cost.

3.4. Coordinated scheduling of flexible assets

The individual prosumer model can be extended to a model
where an aggregator coordinates all flexible assets by changing the
objective. The combined objective function minimizes the elec-
tricity bill for all consumers with flexible assets where the billing of
the grid tariff is based on the combined load profile in the following
way:

minzC ¼ csubxC þ
X
u2U

pu

X
t2T

0
@kCt;u þ

0
@X

p2P

crett;uy
load
p;t;u

1
A
1
A; (8)

where xC is a decision variable for the combined subscription level
for all prosumers, and kCt;u are variables identifying the combined
tariff cost depending on the sum of imports from the grid to all
prosumers.

The total electricity load of all prosumers will determine the
combined tariff cost through a two-step linear function:

cnorm
X
p2P

yloadp;t;u � kCt;u; t2T ;u2U; (9)

cpen

0
@X

p2P

yloadp;t;u � xC

1
Aþ cnorm

X
p2P

yloadp;t;u � kCt;u; t2T ;u2U:

(10)

Similar to constraints (2) and (3), constraints (9) make sure that
the tariff has a lower bound of the combined load multiplied by the
cost below the subscribed capacity, whereas constraints (10) ensure
that the tariff cost is increased when combined load exceeds the
subscribed capacity to the penalty cost multiplied by the load,
respectively.

The combined objective zC in (8) along with constraints (4)e(7)
and (9)e(10) form a problem that cannot be decomposed per
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prosumer due to constraints (9)e(10) that make the tariff cost kCt;u
dependent on the load of all prosumers.

4. Case study for capacity-based grid tariff in Norway

In this section, the models presented in Section 3 are used to
analyze the scheduling of flexible assets reacting to both an hourly
retail price and a subscribed capacity-based grid tariff. We present
the input data and assumptions (Section 4.1) before the results
(Section 4.2). All input data, the implemented model, and output
data is available in Refs. [47] for the reproduction of this case study.

4.1. Input data and problem instances

We build four classes of problem instances:

1. Individual Annual (IA): Subscribed capacity tariff based on the
individual objective (1) under annual decisions on subscribed
capacity level,

2. Individual Weekly (IW): Subscribed capacity tariff based on the
individual objective (1) under weekly decisions on subscribed
capacity level,

3. Combined Annual (CA): Subscribed capacity tariff based on the
combined objective (8) under annual decisions on subscribed
capacity level,

4. CombinedWeekly (CW): Subscribed capacity tariff based on the
combined objective (8) under weekly decisions on subscribed
capacity level.

For IA and CA, we use stochastic models with sampled weeks
representing the scenarios. Each week is a scenario with 168 h. For
IWand CW, we optimize the subscribed capacity level weekly (only
one scenario). This resembles a dynamic subscribed capacity tariff.
As the model is solved under perfect foresight, it is overestimating
the ability to estimate exactly the optimal subscribed capacity for
the week.

The tariff rates used are as proposed by the Norwegian Regulator
in Ref. [37] (see Table 1). We sample historical hourly load profiles
from a rural Norwegian university campus, Campus Evenstad, from
50 weeks during 2016. We assume that two university campuses
exist in the same part of the distribution grid, ‘Campus 1’ (C1) and
‘Campus 2’ (C2). Odd weeks are sampled from Campus Evenstad to
create weekly load profiles with hourly resolution for C1 and even
weeks for C2. Here, the samples are made so that two consecutive
weeks from Campus Evenstad occur in parallel for C1 and C2
making up a total of 25 weeks for the study.

Three flexible asset types exist in the model at both prosumers:
electric battery, electric vehicle charging and curtailable loads (e.g.
fuel switching from electric to bio-based heating). Their assumed
operational characteristics are presented in Table 2. Losses are
assumed to be 1% for charging and discharging of all flexible assets.
Diffusion losses are only defined for the electric battery at 0.1% per
time step.

For vehicle charging, an annual demand of 14;000 km per

vehicle is chosen based on the average use of battery electric ve-
hicles in 2018 in the county of Campus Evenstad (Hedmark) [48].
Further, we assume one electric car needs 0.2 kWh per km,1 so one

car needs (on average) 14;000
52 ð0:2Þ ¼ 54 kWh/week. Then, a weekly

demand of 500 kWh covers nine to ten vehicles (see Table 2). Some
of the weekly demand must be met every 24 h, meaning daily
demands sum up to the total weekly demand (see Fig. 2). The
vehicle charging demand is essentially a lower bound for the en-
ergy level in the flexible asset f at prosumer p and time t imple-
mented through the variables greqp;f ;tand constraints (7).

C1 and C2 face hourly retail prices that are dependent on the
historical market data from price zone NO1 in Nord Pool in 2016.
Retail prices follow the Nord Pool day ahead spot price plus Nor-
wegian electricity charges and 25% VAT, and we sample hourly
prices from odd weeks in 2016.

The two deterministic classes (IW and CW) for the two pro-
sumers represent in total 50 instances for the 25 weeks, while the
two stochastic classes (IA and CA) represent in total two instances
for the 25 weeks. The model is implemented in the open-source
optimization modeling language Pyomo [49] through Python
version 2.7.8 and solved using Gurobi version 8.0.1. The optimiza-
tion was run on a computer with an Intel(R) Core(TM) i7-7500U
processor with CPU at 2.70 GHz and 16.0 GB installed memory
(RAM). The total run time for all instances (50 deterministic þ 2
stochastic) including reading, building, solving and printing results
is around 60 s.

4.2. Results

This section describes the results from analyzing the four ca-
pacity subscriptions (IW, CW, IA, and CA) presented in Section 4.
Recall that the modified load profile is a result of the model
responding to the different schemes by (a) finding the cost mini-
mizing subscribed capacity level and (b) operating the flexible as-
sets to minimize the total electricity bill including variable energy
costs and grid costs.

Table 3 presents the total electricity bill costs before and after
the flexibility responses are optimized for the four different
schemes. The cost ex-ante optimization is calculated by optimizing
the subscription level without any flexibility available and includes
constant charging to meet weekly vehicle charging demand of
500 kWh at each campus site. On average, the flexibility responses
contribute to 5e6% savings for the weekly subscriptions (IW and
CW), while 3% savings are achieved on average for the annual
subscriptions (IA and CA).

The top part of Table 3 shows the results from the most
expensive scenario (week 24), where costs avoided from
responding to the grid tariff scheme (‘Grid’ in Table 3) are the
dominant part of the savings as compared to the saved energy cost
(‘Energy’ in Table 3). The results of all weeks for the weekly sub-
scriptions (IW and CW) show that the grid savings are the domi-
nant part of the savings for 23 weeks, i.e., there are more savings
related to the grid tariff than hourly retail prices for the weekly
subscriptions. For the annual subscriptions, the grid savings only
dominate the savings for eight weeks for the IA scheme and six
weeks for the CA scheme, indicating that responding to retail prices
is more valuable than responding to the grid tariff for the annual
subscriptions (the opposite to the weekly subscriptions). The bot-
tom part of Table 3 lists the results from the scenario with the
highest savings (week 2). Here, the energy costs avoided from
responding to retail price variations are the dominant part of the

Table 2
Assumed operational characteristics of the flexible asset types available for demand-
side management at each of the two prosumers (Campus 1 (C1) and Campus 2 (C2)).
The parameters identify available capacity for charging, discharging and storage.

Flexible asset hcharge[kWh/h] hdischarge[kWh/h] hstorage [kWh]

Electric battery 100 100 200
Vehicle charging 50.0 0.00 500
Curtailable loads 0.00 50.0 200

1 https://pushevs.com/electric-car-range-efficiency-epa/accessed: April 15, 2020.
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savings for all schemes, which is linked to the average weekly spot
price being highest for week 2 (0.72 NOK/kWh). This indicates that
the load reduction in response to a grid tariff could be challenged
by high and variable retail prices if the two price signals are not
correlated.

Table 4 presents theweekly subscription level for C1 and C2. The
last two columns in Table 4 are the sum of subscription levels for C1
and C2 from the individual metering schemes. Note that for the
annual subscriptions (IA and CA), the subscription level is the same
for all weeks. The average of the weekly subscription levels for all
25 weeks is consistently less than the annual subscription levels
(see the bottom row in Table 4), which strengthens the need for the
two-stage stochastic programming approach. The highest weekly
combined subscription level is chosen in week 24 (591 kWh/h, see
the CW column in Table 4). The sum of the weekly individual
subscription levels for week 24 exceeds the combined subscription
level (246þ 374 ¼ 620 kWh/h, see the last two columns in Table 4),
which is also the case for 92% of the weeks (all weeks except weeks
4 and 23, see Table 4). This is an indication that rationing several
prosumers combined is less conservative than rationing them
individually.

Fig. 2. The lower bound for energy that must be charged by time t2T to battery electric vehicles. This offers flexible charging in every time-step with some constraints (daily
demands).

Table 3
Cost results summed for both prosumers in NOK ex-ante (before flexibility re-
sponses) and ex-post (after flexibility responses) for the individual weekly (IW),
combined weekly (CW), individual annual (IA), and combined annual (CA) schemes.
The table displays results for the most expensive scenario (week 24, top) and the
scenario with highest cost savings from flexible operation (week 2, bottom). The two
last columns show cost savings from responding to a variation in day-ahead spot
price (‘Energy’) and responding to the subscribed capacity scheme (‘Grid’).

Scheme Total cost, Total cost, Cost decrease

ex-ante ex-post Energy Grid

Week 24
IW 59,300 NOK 57,600 NOK (�3%) 468 NOK 1220 NOK
CW 58,900 NOK 57,100 NOK (�3%) 494 NOK 1230 NOK
IA 69,100 NOK 67,900 NOK (�2%) 475 NOK 716 NOK
CA 68,100 NOK 66,800 NOK (�2%) 448 NOK 825 NOK
Week 2
IW 48,200 NOK 43,300 NOK (�10%) 4170 NOK 676 NOK
CW 46,900 NOK 42,300 NOK (�10%) 3990 NOK 615 NOK
IA 48,700 NOK 44,100 NOK (�9%) 4110 NOK 401 NOK
CA 46,900 NOK 42,400 NOK (�10%) 4000 NOK 526 NOK

Table 4
Resulting cost-optimal subscription levels in kWh/h in all 25 weeks. The columns
represent the subscription levels for the individual weekly (IW), combined weekly
(CW), individual annual (IA), and combined annual (CA) schemes for Campus 1 (C1),
Campus 2 (C2), and combined. The last column shows the sum of individual sub-
scription levels (C1þC2) for comparison with the combined subscription level.

C1 C2 Combined C1þC2

Week IW IA IW IA CW CA IW IA
1 151 197 181 216 315 387 332 413
2 251 197 196 216 398 387 447 413
3 138 197 134 216 271 387 272 413
4 143 197 137 216 282 387 280 413
5 137 197 280 216 405 387 417 413
6 197 197 86 216 283 387 283 413
7 108 197 118 216 223 387 226 413
8 111 197 171 216 273 387 282 413
9 186 197 184 216 337 387 370 413
10 122 197 138 216 247 387 260 413
11 142 197 120 216 258 387 262 413
12 112 197 101 216 208 387 213 413
13 79 197 79 216 157 387 158 413
14 76 197 78 216 154 387 154 413
15 39 197 40 216 78 387 79 413
16 50 197 123 216 159 387 173 413
17 98 197 115 216 211 387 213 413
18 136 197 135 216 262 387 271 413
19 156 197 122 216 263 387 278 413
20 96 197 159 216 212 387 255 413
21 148 197 216 216 340 387 364 413
22 268 197 193 216 416 387 461 413
23 254 197 215 216 478 387 469 413
24 246 197 374 216 591 387 620 413
25 164 197 253 216 374 387 417 413
Average 144 197 158 216 288 387 302 413

Table 5
Annual original and resulting peak load in kWh/h for Campus 1 (C1), Campus 2 (C2)
and combined for the individual weekly (IW), combined weekly (CW), individual
annual (IA), and combined annual (CA) schemes. Note that the ‘original’ column
represents the annual peak load ex-ante flexibility responses. The bold font marks
the scheme triggering the lowest annual peak for C1, C2, and combined. The
numbers in parentheses identify the week in which the annual peak load occurs.

Prosumer Original IW CW IA CA

C1 413 (2) 322 (2) 365 (2) 413 (2) 410 (2)
C2 479 (5) 426 (24) 441 (24) 444 (24) 444 (24)
Combined 696 (24) 672 (24) 591 (24) 696 (24) 696 (24)
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Table 5 presents the results for the annual peak load at the in-
dividual prosumers (C1 and C2) and combined for both prosumers.
Weekly individual (IW) subscription triggers the largest individual
annual peak shaving, while weekly combined (CW) subscription
best achieves combined annual peak shaving. The CW scheme re-
duces the original annual combined peak by 105 kWh/h (�15%),
which is more than four times the annual combined peak shaving
triggered by the IW scheme (24 kWh/h, �3%) (see Table 5). Annual
subscriptions (IA and CA) trigger little or no annual peak load
reduction of individual or combined load profiles (see Original, IA,
and CA columns in Table 5).

Fig. 3 shows how the different schemes perform in reducing the
weekly peak loads. For weekly subscriptions (IW and CW), some
peak shaving is cost-optimal in all weeks, including weeks where
the original weekly combined peak load is small (see e.g. the blue
and orange bars in week 15 in Fig. 3). For annual subscriptions (IA
and CA), the weekly combined peak load generally increases in low
demand weeks and decreases in high demand weeks (see the
yellow and gray bars in Fig. 3). However, the highest weekly com-
bined peak load is unaffected for the annual subscriptions (see the
yellow and gray bars in week 24 in Fig. 3).

Fig. 4 presents the hourly load profiles in week 24 with the
highest annual combined load originally. The plot also shows the
hourly retail price linked to the hourly day-ahead wholesale price.
For all pricing schemes, flexible assets are operated to generally
increase the load in low retail price hours, and decrease the load in
high retail price hours: low loads occur in all pricing schemes when
the retail price (green dotted line) is peaking in Fig. 4. For the
weekly subscriptions (see Fig. 4a and b), load profile modifications
are similar; however, combined peak shaving is significantly larger
for the CW scheme compared to the IW scheme (see bottom row in
Table 5).

Fig. 5 presents the relationship between grid costs (grid price
multiplied by the load) and the combined load from C1 and C2 for
the different pricing schemes. The CA scheme (yellow in Fig. 5)
offers the highest cost (344 NOK/kWh) during the annual peak load
in week 24 because it is the highest combined load and it exceeds
the combined subscription level (387 kWh/h, see Table 4). Note that
(a) paying this high penalty is cost-optimal in the CA scheme

considering total cost over the whole year and (b) there is no
combined peak load shaving in week 24 as a consequence of the
high penalty (see the bottom row in Table 5 and the yellow bar in
week 24 in Fig. 3). Fig. 5 also shows that the IA scheme has many
penalty hours below the sum of the subscribed levels (413 kWh/h,
see Table 4) because the individual loads exceed the individual
subscription levels without causing a high combined load. This is a
shortcoming of the individual subscribed capacity tariff in terms of
signaling efficient grid utilization, as it often penalizes situations
where the total flow into C1 and C2 is lower than the joint sub-
scribed capacity (recall that the sum of the individual subscription
levels is higher than the combined subscription level in 92% of the
weeks, see Table 4). For the weekly subscriptions (IW and CW),
there are significantly less penalty hours than for the annual sub-
scriptions since the subscription can be adjusted for each week (see
yellow and gray dots compared to orange and blue dots in Fig. 5).
The CW scheme has the least amount of penalty hours after flexi-
bility responses (see orange dots in Fig. 5), and it is the scheme that
most successfully reduces the annual combined peak load (see
Table 5).

5. Discussion

Our case study has been performed assuming perfect foresight
on hourly load and retail prices for 25 weeks and no disutility
(costs) of operating flexible assets except energy losses (see con-
straints (4)e(3.3) in Section 3.3). This means our results represent
an upper bound to how much cost reduction prosumers can obtain
for the different pricing schemes. Note that the stochastic structure
of the problem in our case study is related to price and load vari-
ation between weeks, i.e., there is no uncertainty within a week.
Note also that because we consider energy losses from flexibility
responses, total energy consumption increases slightly after de-
mand response even though total costs decrease.

The CW scheme is better at decreasing the weekly combined
peak load than the IW scheme. This is a central feature as it is the
combined load that dimension the grid connecting C1 and C2 to the
rest of the system. However, three weeks show a higher combined
peak load for the CW scheme compared to the IW scheme (see

Fig. 3. Weekly combined maximum load after cost-optimal response to the individual weekly (IW) scheme (blue), combined weekly (CW) scheme (orange), individual annual (IA)
scheme (gray), and combined annual (CA) scheme (yellow). The original maximum loads in the different weeks are displayed in black. The highest combined load occurs in week 24
where the combined weekly (CW) scheme triggers most peak load shaving. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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Fig. 4. Resulting combined hourly load profile for 168 h for the individual weekly (IW) scheme (Fig. 4a), combined weekly (CW) scheme (Fig. 4b), individual annual (IA) scheme
(Fig. 4c), and combined annual (CA) scheme (Figure d) in week 24 when the original maximum combined load is occurring. The left axis shows hourly load in kWh/h (solid lines)
and the right axis shows hourly retail price in NOK/kWh (green dotted lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 5. Resulting hourly load dependent grid tariff costs, i.e., load dependent price multiplied by the load, in NOK/kWh plotted against the combined load of Campus 1 (C1) and
Campus 2 (C2) for the individual weekly (IW) scheme (blue), combined weekly (CW) scheme (orange), individual annual (IA) scheme (gray), and combined annual (CA) scheme
(yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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weeks 2, 4, and 21 in Fig. 3). This occurs due to three different (but
related) reasons that are worth noticing:

� For week 2, the opportunity to respond to retail prices is more
valuable than responding to the grid tariff scheme (see Table 3).
The two opportunities for cost saving could be conflicting.

� For week 4, the sum of the individual subscription levels is
slightly lower than the combined subscription level (see
Table 4), so the individual subscriptions are more ‘conservative’
than the combined subscription.

� For week 21, low subscription cost and high penalty loads in the
CW scheme are compensated by high subscription cost and low
penalty loads in the IW scheme, so peak shaving is not always
the cost-optimal response with the subscribed capacity scheme.

Twomain factors should be considered depending on the goal of
introducing a capacity-based grid tariff scheme: (1) The dynamics
of the grid tariff, i.e., the adjustment frequency of tariff rates and
subscription levels, and (2) the load signal that the grid tariff will
depend on.

The first factor, the grid tariff dynamics, will impact the
achievement of peak shaving through flexibility (see Fig. 3). For an
annual decision on the grid subscription level, the cost-optimal
strategy is to consider a full year of costs when finding the best
subscription level. This consideration means the subscription level
is too low for critical hours because costs are minimized for the
whole year. Annual subscriptions also lead to more penalty hours
than weekly subscriptions, i.e., annual subscriptions make it cost-
optimal for prosumers to exceed their subscription level. Howev-
er, weekly subscriptions trigger load reduction in weeks when grid
capacity is not scarce, which results in a potential loss of consumer
welfare by penalizing utilization of idle grid capacity. A lower
bound on the subscription level combined with dynamic sub-
scription rates can be introduced to avoid rationing of capacity
during non-critical hours.

The second factor, the load signal, will impact at which
connection point peak shaving is triggered (see Table 5). Under the
condition that prosumers have significantly different hourly load
profiles,2 shaving peaks based on individual metering does not
maximize the annual peak shaving of the combined load profile.
There is more variety in load profiles of buildings for various pur-
poses (e.g. households, shops, offices, etc.) [50], and the flexibility
potential will likely vary for the different buildings [51]. The
objective of reducing individual loads could be in competition with
reducing the combined load, i.e., the individual load could increase
and the combined load decrease within a measuring period (and
vice versa). If the goal of a capacity-based grid tariff scheme is to
trigger combined peak load shaving for a collection of prosumers,
price signals based on individual metering are likely to be sub-
optimal (see Table 5) and could compromise consumer welfare
when considering the disutility of offering flexibility. If the price
signal is based on the combined load at a bottleneck connection of
the grid, it is more likely to trigger combined peak load shaving.

In Norway, all grid-connected consumers are obliged to have
individual metering, and this requirement is not challenged by
introducing combined price signals. One could identify combined
loads through: (a) summing individually metered data, or (b)
combined metering at a potential bottleneck. This also points to
other alternatives for local coordination in the grid, for example
through flexibility markets. The efficiency of flexibility markets for

resource allocation, either as an alternative or supplement to dy-
namic capacity-based grid tariffs, is an interesting area of future
research.

6. Conclusion

This paper analyzes four different capacity-based grid tariff
subscriptions by using a two-stage stochastic programming model
in a case study of a Norwegian campus site with flexible assets. The
novelty of our analysis includes: (1) comparing long-term annual
tariff adjustment with short-term weekly tariff adjustment and (2)
comparing the combined and coordinated demand response of
several prosumers with the individual responses of single pro-
sumers. The results show that cost-optimal operation of the flexible
assets varies depending on the design of the grid tariff scheme. We
find that aweekly adjustment of the subscribed grid tariff triggers a
reduction in the maximum weekly load more efficiently than an
annual subscription in 92% of the simulated weeks, while the
combined subscription triggers combined load reduction more
efficiently than individual subscriptions in 88% of the simulated
weeks. According to our results, the capacity-based grid tariff
subscription scheme is likely to be successful in promoting efficient
grid development if: (1) the tariff parameters (subscription level)
can be adjusted more frequently than annually and (2) the price
signals for scarcity in the grid depend on the combined load of
several consumers rather than the individual loads. The analysis
also indicates that the tariff rates should be adjusted within a year
to account for annual load variability and avoid rationing when grid
capacity is not scarce. Depending on where a bottleneck in the grid
is located, the price signal from a capacity-based tariff should be
based on the combined load of several consumers behind this
bottleneck (rather than individual load profiles) given different
individual load profiles.

Further research should expand the stylized case study to see
the impact in a larger collection of different prosumers and con-
sumers. Also, the case study does not address remuneration to
flexibility providers, for example in a flexibility market as a sup-
plement or alternative to capacity-based grid tariffs. Combined
metering schemes call for some remuneration from all who benefit
from flexibility to those who provide flexibility. Further research
should compare the difference and substitution between flexibility
market designs and capacity-based grid tariff schemes.
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There is an ongoing transition in the power system towards an increasing amount of flexible resources and gen-
eration technologies at the distribution system level. An appealing alternative to facilitate efficient utilization of
such decentralized energy resources is to coordinate the power at the neighbourhood level. This paper proposes a
game-theoretic framework to analyze a local tradingmechanism and its feedback effect on grid tariffs under cost
recovery conditions for the distribution system operator. The novelty of the proposed framework is to consider
both long-term and short-term aspects to evaluate the socio-economic value of establishing a local tradingmech-
anism.Under our assumptions, themainfinding is that the establishment of local electricitymarkets can decrease
the total costs by facilitating coordination of resources and thus create higher socio-economic value than the un-
coordinated solution. Furthermore, a sensitivity analysis on the tariff levels reveals that there are two equilibrium
solutions, one where the grid costs are exactly balanced by tariff income and one where the neighbourhood de-
cides to disconnect from the larger power system. These results indicate that although a local tradingmechanism
can reduce the need for grid capacity, it may not be cost optimal for neighbourhoods to become completely self-
sufficient.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

One of the fundamental issues in power system economics is the po-
tential of market failure due to a lack of demand-side elasticity (Stoft,
2002). At the distribution grid level, inelastic demand means that real-
time control problems have traditionally been resolved at the grid infra-
structure planning stage so that capacity is robustly adequate to cover
the peak load (Strbac, 2008). However, there is an ongoing transition
within power systemdevelopment due to an increasing amount of flex-
ible resources at the distribution grid level (Eid et al., 2016).

The price-responsiveness from end-users increase because of two
fundamental drivers: (1) the information available to the end-users is

increasing due to deployment of smart metering technologies, and
(2) increased deployment of electricity as an energy carrier for poten-
tially flexible demand types. Smart meters are currently being deployed
throughout Europe, enabling hourly or sub-hourly billing of electricity
consumption (Zhou and Brown, 2017). Such price variations can induce
a change in consumption patterns if flexible energy resources such as
smart management of heating systems and electric vehicle (EV) charg-
ing are available (Faruqui et al., 2010; Salpakari et al., 2017; Knezović
et al., 2017).

An appealing alternative to facilitate efficient utilization of
decentralized energy resources (DERs) is to balance the power at the
neighbourhood level (Heinisch et al., 2019). However, as described in
Askeland et al. (2019), the current regulatory framework in Norway
and several other countries may not facilitate efficient decentralized
decision-making when multiple stakeholders are involved.

This paper uses a game-theoretic framework to investigate a local
tradingmechanism, and its feedback effect on grid tariffs under cost re-
covering conditions for the distribution system operator (DSO) in a
neighbourhood context. An equilibrium model comprising two levels
is developed to study the efficiency of current and prospective pricing
mechanisms. Also, a system optimization model serves as a
benchmarking tool.

Energy Economics 94 (2021) 105065
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The remainder of this paper is organized as follows. In section 2 we
provide a survey of related literature. The modeling framework is pre-
sented in section 3. The data used for a case study is presented in section
4. Section 5 presents results from the case study before conclusions are
drawn in section 6.

2. Literature review

An adaptation of electricity grid pricing mechanisms is increasingly
being addressed in the scientific literature. This paper is at the intersec-
tion between two related research topics, namely electricity grid tariff
design and local electricity markets.

Electricity grids are natural monopolies due to economies of scale.
Traditionally, the DSO is the sole owner of the electricity grid in a
given area and passes the costs on to the end-user as fixed and volumet-
ric grid tariffs (Eid et al., 2014). However, the current tariff structures
can create distorted incentives for end-users to invest excessively in
DERs (Eid et al., 2014; Pollitt, 2018). Capacity-based tariffs are being
proposed as a prospective solution since it will be a better representa-
tion of the upstream grid costs and create an incentive to reduce the
peak load (Simshauser, 2016). However, a reduction of individual
peaks may not always be effective at reducing aggregate peak load
(Backe et al., 2020), and several scholars suggest that the potential wel-
fare gains from capacity-based tariffs can be limited (Passey et al., 2017;
Brown and Sappington, 2018). In this context, we contribute to the lit-
erature by investigating how a combination of grid tariffs and localmar-
kets can provide incentives for efficient development and operation of
the distribution grid.

There exists a rather large body of literature related to investigating
the impact of various tariff schemes on specific end-user groups, see e.g.
Kirkerud et al. (2016); Parra and Patel (2016); Bergaentzlé et al. (2019);
Sandberg et al. (2019); Pinel et al. (2019); Backe et al. (2020). These
studies investigate how the business case and decisions of different
types of agents are affected by changes in the tariff structure. Our
paper differs from this line of research becausewe consider the electric-
ity grid tariffs as a modeling result in a bilevel approach rather than an
input to a single level optimization problem.

Our work considers the interaction between the distribution net-
work level and the end-users under cost recovery conditions for the
DSO. In this regard, the approach of this paper is related to the research
summarized in Table 1. However, some distinct differences can be
pointed out since our research also include the interaction between
agents at the local level through a local market mechanism. Besides,
we consider grid investments and operation as a function of the aggre-
gate neighbourhood load.

Interaction between agents at the local level can be achieved
through ‘peer-to-peer’ (P2P) trading or other forms of local market
mechanisms (Sousa et al., 2019). In Zhang et al. (2018) the authors an-
alyze P2P trading for matching inflexible local generation with flexible
demand in a microgrid, and they find that the trading triggers peak
load reduction. Almenning et al. (2019) also analyzes P2P trading in a
neighbourhood focusing on trading in response to a subscribed grid

tariff, and they also find that P2P trading triggers a reduction of high
loads. Lüth et al. (2018) focuses on the role of batteries in P2P trading,
and their results highlight economic viability from an end-user perspec-
tive. None of these studies (Zhang et al., 2018; Almenning et al., 2019;
Lüth et al., 2018) consider a reaction by the DSO (i.e., adjustment of
the grid capacity) as a consequence of trading in a neighbourhood.

The properties of the problem addressed in this paper are consistent
with non-cooperative Stackelberg-type games (Von Stackelberg, 2010),
which are characterized by a leader who moves first and one or more
followers acting optimally in response to the leader's decisions. Games
with a Stackelberg structure can be formulated as mathematical pro-
grams with equilibrium constraints (MPECs) (Luo et al., 1996). This is
the case for Zugno et al. (2013), Momber et al. (2016), Schittekatte
and Meeus (2020), and Askeland et al. (2020) who formulate MPECs
to investigate the effect of indirect load control. In this paper, we use
an iterative procedure to solve the set of non-linear equations similar
to Schittekatte et al. (2018), Hoarau and Perez (2019), Askeland and
Korpås (2019), and Abada et al. (2020). The reason for choosing this
procedure instead of an MPEC approach is that an iterative procedure
has computational advantages over an MPEC formulation, which
would severely impact our tractable problem size. Furthermore, there
is no need for an MPEC formulation since the grid tariff structure we
consider can effectively be handled by an iterative procedure based on
cost recovery rules for the DSO. We formulate the neighbourhood equi-
librium as a complementarity problem (Gabriel et al., 2012). A comple-
mentarity problem is the combination of the Karush-Kuhn-Tucker
(KKT) conditions (Kuhn and Tucker, 1951) of all agents, which are
being solved simultaneously to derive the equilibrium. Complementar-
ity modeling is particularly useful for power market modeling since the
introduction of dual variables in the model formulation allows for mar-
ket interactions between agents to be formulated directly. More details
on complementarity modeling for energy modeling purposes can be
found in Gabriel et al. (2012). The complementarity formulation for
the neighbourhood level allows for interaction between agents within
the neighbourhood level and enables an investigation of local electricity
markets without introducing the computational difficulties of an MPEC
formulation.

To summarize, this paper brings together two related bodies of liter-
ature by considering both grid tariff design and a local market mecha-
nism in a consistent modeling approach. Furthermore, the proposed
approach allows for local markets to be coupled to existing market
structures and allow consumers to choose which market to trade in.
No prior works that consider local markets and its feedback effect on
grid development and grid tariffs have been identified, and we aim to
contribute to closing this gap in the literature.

3. Method

This section presents the game-theoretic setup that has been devel-
oped. First, the optimization problems of the agents in the
neighbourhood and theDSO are presented. Thereafter, the solution pro-
cedure for coupling the two levels are described before the input data

Table 1
Related research on indirect load control.

Reference Tariff calculation Grid costs considered Interaction between agents

Zugno et al. (2013) MPEC No Retailer - consumer
Momber et al. (2016) MPEC No Aggregator - EV consumer
Schittekatte et al. (2018) Iterative procedure Sunk DSO - consumer
Hoarau and Perez (2019) Iterative procedure Sunk DSO - consumer
Askeland and Korpås (2019) Iterative procedure Prospective DSO - consumer
Abada et al. (2020) Iterative procedure Sunk DSO - community
Schittekatte and Meeus (2020) MPEC Prospective DSO - consumer
Askeland et al. (2020) MPEC Sunk DSO - consumer
This paper Iterative procedure Prospective DSO - consumer and between consumers
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for the case study is presented. In the presented model, the following
core assumptions are made:

• Grid charges only apply to electricity purchased from the wholesale
power market and not on locally traded electricity. Since locally
traded electricity is balanced locally at each time step, the local trade
does not contribute to the capacity-based charge.

• We assume that there is sufficient grid capacity within the local sys-
tem. Therefore, only the connection between the neighbourhood
and the larger power system is constrained.

• We assume that the DSO can not choose to curtail load or generation.
Hence, it is necessary to build sufficient capacity to cover the peaknet-
work usage. Although the economics concerning load or generation
curtailment is outside the scope of this paper, this is an aspect that
could be considered in further work.

3.1. Model overview

An outline of the model is presented in Fig. 1. The structure is a
bilevel model where some decisions are made on the DSO level while
others occur on the neighbourhood level. We consider the DSO as the
leader in the Stackelberg game since it sets the grid tariff rates while
the end-user agents responds to the tariff determined by the DSO. Deci-
sion variables at one level are perceived as parameters for the other
level. One example is the level of grid tariffs, which is determined
based on cost recovery criteria on theDSO level but perceived as param-
eters by the agents at the neighbourhood level. The benefit of this
bilevel structure in our modeling framework is the ability to analyze
the feedback effect between neighbourhood response, coordination,

DSO strategy, and regulatory framework. Appendix A provides an over-
view of mathematical symbols and describes how the parameters and
variables relates to each level in the overall model.

3.2. Neighbourhood level

In this section, the problem of the individual agent in the
neighbourhood is described as an optimization problem. The agents
can be of different types: customer with inflexible load, prosumer, EV
charging facility, owner of a power plant and grid storage, or a combina-
tion of these. Themodel formulation presented in this section allows for
all of these types of agents to be represented through different parame-
ter settings.

Since the optimization problems for the agents in the
neighbourhood are linear, their KKT conditions are both necessary and
sufficient for global optimality (Kuhn and Tucker, 1951). Hence, to
allow for the modeling of a local market mechanism, the optimization
problems for the agents in the neighbourhood are represented through
their KKT conditions, which are formulated as amixed complementarity
problem (MCP) in Appendix B. We indicate dual variables associated
with each of the constraints. These dual variables are used in the MCP
formulation of the problem.

3.2.1. Objective function of neighbourhood agents
The objective of the neighbourhood agents is tominimize their indi-

vidual costs according to (1a). Details of the cost components are de-
scribed in (1b) - (1f). These costs consist of investments in storage
and energy resources (CostcN), energy from the power market (CostcP),
energy from the local market (CostcL), electricity taxes (CostcT), and grid
charges (CostcG). The grid charges apply to energy purchased from the

Active prosumersPassive consumers

EV charging facility

Neighbourhood 
node / local 

market

Game theoretic formulation giving equilibria of best 
responses by cost-minimizing agents participating in 

local and centralized power markets

DSOs optimization to 
minimize costs and 

calculate tariffs under 
cost-recovery conditions

Grid tariffs

Aggregated network flow

Physical power flow
Market interaction

Neighbourhood level

DSO level

Neighbourhood DER

Network losses
Grid investment costs

Net metering coefficient

Consumer and EV load profiles 
Technology costs and characteristics

Resource limits and nominal RES output profiles
Taxes

Power 
market 
prices

Fig. 1. Outline of the model structure.
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powermarket, but not to locally traded energy. The actual grid costs are
not considered directly at the building level since these costs are im-
posed indirectly through the grid tariffs (vnt and cnt).

Min : Costc ¼ CostNc þ CostPc þ CostLc þ CostTc þ CostGc ð1aÞ

CostNc ¼ ISc∗c
S
c þ IEc ∗c

E
c ð1bÞ

CostPc ¼ ∑
H

h¼1
Wh∗ impPc,h− exp P

c,h

� �
∗λP

h ð1cÞ

CostLc ¼ ∑
H

h¼1
Wh∗ impLc,h− exp L

c,h

� �
∗λL

h ð1dÞ

CostTc ¼ ∑
H

h¼1
Wh � impPc,h þ impLc,h

� �
� T ð1eÞ

CostGc ¼ ∑
H

h¼1
Wh � impPc,h−NM � exp P

c,h

� �
� vnt þ cGc � cnt ð1fÞ

In these equations, Wh denotes the scaling factor to provide opera-
tional costs on an annual basis. To represent annual costs the scaling fac-
tor takes the valueWh ¼ 8760

H for hourly time-steps.

3.2.2. Energy balance
The energy balance of the agents is described by (2) and states that

energy imports subtracted exports must be equal to fixed and flexible
demand subtracted generation from PV at each agent.

Dc,h þ dΔþc,h − dΔ−c,h − gEc,h

¼ impPc,h − exp P
c,h þ impLc,h − exp L

c,h ∀c, h λEB
c,h

� � ð2Þ

The agents can trade both with the local and centralized electricity
markets to satisfy their energy balance.

3.2.3. Battery charge level
A batterymakes it possible to shift energy load temporally. This tem-

poral load shifting is represented in (3),whichdescribes how the charge
level depends on the charge level in the previous time step and on the
battery operation. Converter losses are imposed through the parameter
Lc, while self-discharge of the battery from one time-step to the next is
imposed through the parameter Rc.

sc,h ¼ sc,h�1 � ð1� RcÞ
þ dΔþc,h � ð1� LScÞ � dΔ�c,h � ð1þ LScÞ � DΔ�

c,h ∀c,h>1 ðλS1
c,hÞ

ð3Þ

The battery formulation allows for the representation of both a bidi-
rectional battery which can store electricity for later use and unidirec-
tional EV charging. In the case of EV charging, the parameter Dc, h

Δ−

represents the energy used for EV driving needs.
We specify boundary conditions for the battery charge level as de-

scribed in (4). This means that the charge level in the last time-step is
linked to the first time step. Thereby, we do not need to specify the ini-
tial charge level since the optimization model calculates it.

sc,1 ¼ sc,H � 1−Rcð Þ

þ dΔþc,1 � 1−LSc
� �

−dΔ−c,1 � 1þ LSc
� �

−DΔ−
c,1 ∀c λS1

c,1

� � ð4Þ

Potentially, this formulation can result in simultaneous charge and
discharge during the same time step. However, positive converter losses
and energy costs will prevent this from occurring due to the associated
costs.

3.2.4. Storage capacity
The agent decides the storage capacity to be installed, so the case

that the economic benefit of having an additional unit of storage ex-
ceeds the investment costs will trigger additional investments. How-
ever, a maximum limit on battery storage capacity can be imposed
according to (5). In order to represent agents without investment op-
tions, the maximum capacity limit can be set to zero.

cSc ≤ US
c ∀c μS2

c

� � ð5Þ

Furthermore, the amount of energy that can be stored and the
installed storage capacity limits the converter capacities according to
(6)–(8). In the case of unidirectional EV charging, the discharging
power factor (Pcdis) can be set to zero. Note that themodel is also capable
of handling vehicle-to-grid directly, but this is out of the scope of this
paper.

sc,h ≤ cSc ∀ c,h μS3
c,h

� �
ð6Þ

dΔþc,h ≤ cSc∗P
ch
c ∀ c,h μS4

c,h

� �
ð7Þ

dΔ−c,h ≤ cSc∗P
dis
c ∀ c,h μS5

c,h

� �
ð8Þ

3.2.5. Measured peak power
Measured peak power at each end-user is equal to the maximum

power injected to or withdrawn from the wholesale power market ac-
cording to (9). Although the maximum load usually occurs as a result
of an import situation, we also account for situations where the peak
power is defined by exports to the grid. This means that we assume a
grid tariff scheme where the agents have to pay a capacity-based grid
tariff for their measured peak power for the whole period considered.

impPc,h þ exp P
c,h ≤ cGc ∀ c,h μG

c,h

� �
ð9Þ

Note that electricity traded in the local market do not influence the
agent's peak power since any electricity sold locally also has to be con-
sumed by the other agents at the local level.

3.2.6. Energy resource capacity and generation
Similar to energy storage, the agent can invest in energy resources

such as rooftop PV. A limit, for example due to limited rooftop area,
can be imposed according to (10). This value can also be set to zero if
the agent cannot invest in energy resources due to factors outside the
modeling framework.

cEc ≤ UE
c ∀ c μE1

c

� � ð10Þ

Electricity generation, gc, hE , is described by (11) and has the option of
generation curtailment, by generating below the limit given by the re-
source availability. The maximum output is the nominal generation
each time-step multiplied with the installed capacity. Hence, the nomi-
nal generation is specified according to e.g., wind or solar conditions.

gEc,h ≤ cEc ∗G
E
c,h ∀ c,h μE2

c,h

� �
ð11Þ

3.2.7. Local energy market
The local exports must equal the local imports according to (12).We

assume that there are no grid constraints at the local level, making trad-
ing with the neighbours an alternative to purchasing energy from the
grid.
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∑
C

c¼1
impLc,h− exp L

c,h

� �
¼ 0 ∀ h λL

h

� �
ð12Þ

Note that this is the equilibrium condition in the neighbourhood.
The dual value of this constraint becomes the market price in the local
energy market. The local market price is the value of energy at the
local level, considering both short-term operation and long-term
investments.

3.3. DSO level

The DSO level describes the optimization problem of the DSO in a
regulatory context. In this problem, the decisions at the neighbourhood
level regarding investments, operation, and trading in the local and
wholesale markets are perceived as parameters outside the DSOs con-
trol. Based on the aggregate neighbourhood-level decisions, grid capac-
ity investments and tariff levels are optimized.

3.3.1. Objective function of the DSO
The objective of the DSO is to minimize the grid costs, as formulated

in (13a). With the DSO as a perfectly regulated leader, the DSOs goal
would be welfare maximization by reducing the combined costs of the
DSO and all the end-user agents. However, in our modeling framework
the DSO considers the end-user agent decisions as parameters and
therefore only the DSOs costs are considered by the DSO. This has a
close resemblence to how DSOs are currently regulated in Norway1

since the regulator defines a maximum income and the self-interest
pursuing DSO is incentivized to reduce costs in order to increase profits.
The costs faced by the DSO consist of investment costs and variable
costs. Potential sunk costs are assumed to be collected through a fixed
annual fee independent of this optimization problem. Since the DSO
has no decisions related to the sunk costs, these are not included in
the objective function.

Min : CostDSO ¼ CostNDSO þ CostVDSO ð13aÞ

CostDSO
N is the investment cost for additional grid capacity and con-

sists of the amount of capacity multiplied with annualized investment
costs as described in (13b). The DSOs variable costs, CostDSOV , consist of
linear network losses, according to (13c).

CostNDSO ¼ IGDSO∗c
G
DSO ð13bÞ

CostVDSO ¼ ∑
H

h¼1
Wh∗eGh∗L

G∗λP
h ð13cÞ

3.3.2. Neighbourhood load
Given that some neighbourhood agents might export to the power

marketwhile others import from it, these individual flows are aggregated
for each time step to calculate the total net electricity flow in to or out
from the neighbourhood. Therefore, the electricity flow to/from the
neighbourhood is the absolute value of the aggregate trading with the
power market. To maintain the linear properties of the problem, the net-
work imports are represented by (14) while exports are represented by
(15). Only one of these terms will have a nonzero value at each time
step and the total electricity transmission is calculated in (16). This for-
mulation is valid as long as power market prices are non-negative since
the transmission of electricity is penalized in the objective function due
to the associated losses.

eGIh ≥ ∑
C

c¼1
impPc,h− exp P

c,h

� �
∀h ð14Þ

eGEh ≥ ∑
C

c¼1
exp P

c,h−impPc,h
� �

∀h ð15Þ

eGh ¼ eGIh þ eGEh ∀h ð16Þ

Note that the electricity trade within the local market is not a part of
the DSOs consideration since the supply and demand remainwithin the
neighbourhood level.

3.3.3. Grid capacity
The DSO needs to ensure enough capacity for the transmission of

electricity, as described in (17). The network capacity consists of already
built infrastructure given exogenously, and investments in infrastruc-
ture. We assume that the DSO do not have the option of curtailment
as an alternative to building grid capacity.

CG
DSO þ cNDSO ≥ eGh ∀h ð17Þ

3.3.4. Grid tariff calculation
Based on the optimization, the DSO also calculates the resulting grid

tariffs according to (18) for the volumetric tariff EUR
kWh

� �
and (19) for the

capacity-based tariff EUR
kW

� �
. Here, it is assumed that the DSO will recover

the variable costs through the volumetric tariff and investment costs
through the capacity-based tariff. For simplicity, and since the aim is
to investigate the economic feasibility of substituting grid capacity
with local flexibility, we do not include sunk cost recovery. Sunk cost re-
covery is a topic that has been extensively considered in Schittekatte
et al. (2018) and Hoarau and Perez (2019).

vnt ¼ CostVDSO
∑C

c¼1∑
H
h¼1Wh∗ impPc,h−NM∗ exp P

c,h

� � ð18Þ

cnt ¼ CostNDSO
∑C

c¼1cGc
ð19Þ

Note that with this formulation, all the DSOs costs are recovered
through the tariff income from the neighbourhood agents. Cost recovery
at the DSO level means that cost differences in the resulting cases are
due to the effect of regulations on system costs and not because of
grid tariff avoidance. Therefore, this setup,with all theDSOs costs recov-
ered by the tariff income, enables a holistic investigation of tariff design
in combination with local energy markets.

3.4. Solution approaches

Even though the physical properties of the system are the same, the
different decision-making assumptions require different solution ap-
proaches. Both a centralized optimization and a game-theoretic equilib-
rium is computed to assess the efficiency of various pricing
mechanisms. The main difference between these approaches lies in
the decision-making assumptions. For the system optimization, it is as-
sumed that all investment and operational decisions on both the DSO
and the neighbourhood agent level are made by one entity. Such a sys-
tem optimal solution provide the theoretically best outcome in terms of
total costs, but the assumption that agent decisions (such as DER invest-
ments and operation) can be controlled centrally is not valid in amarket
context since such choices are up to the individual agents. Contrary to
system optimization, the game-theoretic equilibrium approach allows
for decentralized decision-making by the individual agents and the
DSO. Decentralized decision-making requires modeling of the pricing

1 https://www.nve.no/norwegian-energy-regulatory-authority/

economic-regulation/
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mechanism between the agents such as grid tariffs and local market
prices.

3.4.1. Centralized optimization
For the centralized optimization, all the direct costs on both the DSO

andneighbourhood agent levels are combined in oneobjective function,
as described in (20).

Min : CostDSO þ∑
C

c¼1
CostNc þ CostPc þ CostTc

� �
ð20Þ

Furthermore, we include the technical constraints for the
neighbourhood agents in (2)–(12) and for the DSO in (14)–(17). Note
that we include the local market balance since it taxes energy transfer
from one agent to another in the same way as the equilibrium. Further-
more, the grid tariff cost component is not included since theDSOs costs
are considered directly instead.

The centralized optimization forms a single linear programming
problem which is solved directly in GAMS with the CPLEX solver.

3.4.2. Decentralized decision-making
In the case of decentralized decision-making, we assume non-

cooperative behaviour for all the agents in the model. Therefore, each
agent optimizes their individual objective function and interact with
the other agents through pricing mechanisms. Decentralized decisions
require a game-theoretic equilibrium approach with two levels:
(1) The DSO level, and (2) The neighbourhood agent level. The DSO
level is solved by treating the variables of the neighbourhood agents
as parameters and solving the optimization problem in section 3.3.
The neighbourhood agent equilibrium requires a complementarity for-
mulation due to the interaction between the agents in the local market.
Therefore, the neighbourhood agent problem described in section 3.2 is
represented by its KKT conditions formulated as MCP conditions in
Appendix B.

Modeling of two levels requires a solution algorithm to iterate until
convergence is reached. The convergence criterion is that the cost

recovering grid tariffs do not change from one iteration to the next.
The iterative solution algorithm presented in Fig. 2 is inspired by the
procedure employed in Schittekatte et al. (2018) and can be described
as follows:

1. Initialize the algorithm with starting tariff values (e.g., zero).
2. For the given tariffs, calculate the equilibrium of the

neighbourhood level by solving the complementarity problem pre-
sented in Appendix B.

3. For the resulting grid transmission, solve the DSOs optimization
problem presented in section 3.3.

4. For the given set of cost recovery tariffs, compare to previous tar-
iffs and determine if change is lower than convergence tolerance.

5. If tariff convergence not reached: Update tariffs with decreasing
step size and go to step 2.

6. If tariff convergence is reached: Equilibrium solution with DSO
cost recovery found.

A decreasing step size is employed to ensure stable progress towards
the equilibriumpoint. Aswe change the tariffs, the neighbourhoodhas a
unique equilibrium for each set of grid tariffs since the KKT conditions
are necessary and sufficient for optimality. An increase in grid tariffs
gives the following effects:

• DSO income effect 1: A change in tariff levels will give a positive
change on the tariff income per unit of capacity and electricity con-
sumption.

• DSO income effect 2: A change in tariff levels will have a zero or neg-
ative effect on the contracted capacity and electricity consumption
since grid usage might be substituted by something else.

• DSO cost effect: A change in tariff levels will give a zero or negative
change in DSO costs since the grid usage will stay constant or be de-
creased when the cost of using grid capacity is increased.

Hence, because a change in tariff levelswork in different directions, a
change in tariff levels can give both a positive and negative change in
DSO profits. Therefore, the model can potentially have several equilib-
rium solutions that satisfy the DSO cost recovery constraint. We do a
tariff sensitivity analysis in section 5.4 that demonstrates the existence
of two equilibrium points for the case considered in this paper. How-
ever, it should be noted that the existence of two equilibrium point in
our analysis is not a general result since the DSO profit is a
nonmonotone function of the grid tariffs. More details regarding the
equilibrium tariffs and convergence of the model can be found in
section 5.4.

The decentralizedmodel is also implemented in GAMS and solved as
a linear program with the CPLEX solver for the DSO level. The
neighbourhood equilibrium is calculated by solving the complementar-
ity formulation in Appendix B using the PATH solver. These models are
solved iteratively until convergence is reached (see Fig. 2).

4. Case study

This section describes the input data used for the case study. The sys-
tem we model is inspired by the Zero Emission Neighbourhood (ZEN2)
pilot project called Ydalir.3 Investment costs are represented through
their annual payment costs with an interest rate of 5% and
technology-specific lifetimes.

4.1. Agents and load profiles

Since the focus of this paper is on the interaction between agents
with different characteristics under various regulatory frameworks,
agents are categorized by five agent groups: Combined school and kin-
dergarten (SK), residential buildings (RB), large scale energy resources

Fig. 2. Outline of equilibrium solution algorithm.

2 https://fmezen.no/
3 https://www.ydalirbydel.no/ydalir/
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(ER), EV charging facility (EV), and distribution system operator (DSO).
An overview of the characteristics of each group can be found in Table 2.

Electricity load profiles for agents SK and RB have been generated
based on the floor area according to the methodology presented in
Lindberg et al. (2019). We generate four representative weeks for a
year, one for each season. Regarding the demand for EV charging, a
yearly driving distance of 14,000 km per vehicle is assumed.4 Further,
one electric car needs 0.2 kWh per km (Sørensen et al., 2018), so one
car needs about 14, 000

365 ∗0:2 ¼ 8 kWh/day. For 200 EVs, we get a daily
charging need of about 1,600 kWh/day. Based on these assumptions, a
charging need of 70 kWh for each hour is specified for the EV agent.
The load profiles for the neighbourhood agents are presented in Fig. 3.

The energy resource agent (ER) does not have any load profile spec-
ified but can invest in batteries and PV capacity to trade electricity with

other neighbourhood agents or the powermarket. Lastly, the DSOs load
profile is the aggregate load of all the other neighbourhood agent
groups.

4.2. Technology costs and characteristics

In themodeled system, some of the agents can invest in technologies
such as grid capacity, PV systems, and batteries. Also, the EV agent has
inherent flexibility regarding when to charge the EVs.

The DSO is responsible for the grid capacity connecting the
neighbourhood to the transmission network. For the regional grid in
Norway, the transmission fee is approximately 50 €/kW of peak
power measured at the point of the TSOs grid.5 Furthermore, it is as-
sumed that the DSOs costs are approximately equal to the transmission

Table 2
Agents represented in the model.

Agent group Load profile Investment options Flexible resources

Combined school and kindergarten (SK) 3000 m2 kindergarten +7000 m2 school N/A N/A
Residential buildings (RB) 20,000 m2 Batteries and PV available Battery operation and PV curtailment
Large scale energy resources (ER) N/A Batteries and PV available at lower cost Battery operation and PV curtailment
EV charging facility (EV) Charging of 200 EVs per day N/A Charging of EVs
Distribution system owner (DSO) Aggregate load of neighbourhood agents Grid capacity N/A

4 SSB, Road traffic volumes 2005–2018, https://www.ssb.no/en/statbank/
table/12576/

Fig. 3. Load profiles for the neighbourhood agents.

5 https://www.statnett.no/en/for-stakeholders-in-the-power-

industry/tariffs/this-years-tariff. Accessed: 2020-10-07]
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system cost per unit of capacity. This gives an assumed total cost of 100
€/kW of grid capacity, which is used for the case study. In general, grid
costs are lumpy and vary depending on site-specific properties. How-
ever, since our interest is mainly regarding game-theoretic aspects of
pricing mechanisms, this simplification is appropriate for investigating
such fundamental pricing aspects. In our case study, all network capac-
ity needs to be built. In addition to the investments, network losses are
specified to 6%.

The Danish energy agency publish characteristics for a range of tech-
nologies including PV and batteries.6 The technology costs for the ER
agent is based on the general technology cost in 2020 where the
utility-scale PV systems cost is 0.42 M€/MWp. Note that this cost level
is very low in the context of neighbourhood-scale systems, but we use
it to illustrate a situation where it is cost optimal for end-users to invest
in PV systems. It can also be argued that this cost is realistic as a conse-
quence of investment subsidies.7 Using an interest rate of 5% and a life-
time of 20 years, this translates to an annual cost of 34 €/kWp for the ER
agent. Large scale lithium-ion battery costs are currently around 150 €/
kWh. Assuming a lifetime of 10 years for batteries and an interest rate of
5% gives an annual cost of 19 €/kWh for battery capacity.

It is assumed that because of economies of scale, small scale systems
costmore than large scale ones per unit of capacity. A premiumof 20% is
therefore assumed for smaller systems, which in this example applies to
the RB agent. Therefore, the annual PV cost is 40.8€/kWp, while annual
battery costs are 22.8 €/kWh for the RB agent.

Converter losses are assumed to be 5% for batteries in both direc-
tions. Furthermore, the power/energy for batteries is assumed to be
fixed at 0.5 kW/kWh. The self-discharge of batteries is assumed to be
0.1% per hour.

For the EV agent, we assume the flexibility associated with the
charging of EVs is 8 hours by specifying an EV storage capacity of
70 ∗ 8 = 560 kWh. In addition, the charging capacity factor is set to
0.5 to allow for a charging capacity of up to 280 kW. No discharge to
the grid is allowed by setting the discharging capacity factor to zero.
EV charging losses are equal to the bi-directional batteries at 5%.

The nominal PV generation data is obtained from PVGIS8 for the lo-
cation of the Ydalir project. After PV-system losses, the annual PV gener-
ation is 779 kWh/kWp of installed capacity. Nominal PV generation for
the four representative weeks is presented in Fig. 4.

4.3. Market price and regulatory assumptions

End-users can have different contracts ranging from spot price based
contracts varying each time step to fixed price contracts. For simplicity,
and in order to focus on the variability of load profiles and decentralized
generation, the wholesale energy price is set to 0.05€/kWh for all time
steps. For systems with large shares of energy communities, there
might be an effect on the wholesale price, but this aspect is out of the
scope of this work. This means that the time-varying input data is lim-
ited to the load profiles and PV generation.

Electricity consumption is usually subjected to taxes. In this paper, it
is assumed that such a tax applies to power imports from both the
wholesale power market and the local market and is specified to 1.6¢/
kWh according to the current taxes on electric power in Norway.9

The grid tariffs are endogenous to the model, but it is necessary to
specify the net metering coefficient exogenously. In this case study,
the net metering coefficient has been set to zero, which means that

only electricity imports are subject to the volumetric grid tariffs. This
is in line with current practice in several countries, including Norway.

4.4. Regulatory frameworks

The analyses are based on three different cases:
1. Case LM: Assumes decentralized decision-making where the

agents in the neighbourhood optimize their individual objective, but
can trade with each other. The neighbourhood agents can also trade
with the wholesale power market, and the DSO agent sets the grid tar-
iffs for such trades based on cost-recovery conditions.

2. Case NOLM: Similiar to case LM, but local trades are not allowed.
This situation is similar to current regulations in many countries.

3. Case SO: System optimization model used for benchmarking. All
decisions are assumed to be made centrally to minimize the total sys-
tem cost for the neighbourhood and the DSO as a whole. The system
cost incorporates the grid costs directly in addition to costs for all
neighbourhood agents. Grid costs are distributed evenly by dividing
the total grid costs by the number of agents in the neighbourhood.

5. Results and discussion

5.1. Total system costs and resource allocation

First, we focus on the system as a whole under different regulatory
frameworks. Fig. 5 provide information on total system costs and how
these costs are distributed among the neighbourhood agents. The DSO
is not represented explicitly as an agent in these figures since the grid
costs are imposed on the neighbourhood agents through the grid fees.
Since the grid costs are forwarded to the neighbourhood agents through
the grid tariffs, the net costs for the DSO are zero. Furthermore, Table 3
provides more detailed information regarding costs, tariffs, and
investments.

The total costs are lowest in the SO case, which provides a bench-
mark for the cases with decentralized decision-making. We use the SO
case as a benchmark since it provides the optimal solution for the sys-
tem as a whole when the aim is to minimize total costs. Hence, from
an efficiency point of view, policies should aim to achieve a solution
close to the SO solution under decentralized decision-making. Com-
pared to the SO solution, we observe a cost increase of 1.2% for the LM
case where local trading is allowed and 4.1% for the NOLM case where
no trading occurs within the neighbourhood. In addition to the total
cost decrease, the LM solution pareto-dominates the NOLM solution
since no agent is worse off and some are better off when the local mar-
ket is included. The grid capacity is the same for the LMand the SO cases,
while it is significantly higher in the NOLM case. The fact that the LM
case provides a system with the same grid capacity as in the SO case
indicates that the combination of decentralized trading and a rather
simple grid tariff scheme can impose the grid costs on end-users in a
cost-reflective way.

In general, the LM solution can not achieve lower total costs than the
SO solution since it is not technically possible to achieve lower costs
than the centralized optimization. Also, if we keep the tariff rates
fixed, the LM solution will never have higher total costs than the
NOLM solution since the neighbourhood agents can always choose to
not trade and achieve the NOLM outcome. Hence, if tariff rates does
not change, the LM solution will always be equal to or between the sys-
tem optimal solution and the NOLM solution. However, since the tariff
rates are designed as a response to the neighbourhood equilibrium,
some agents might be negatively affected by the introduction of such
a market. The composition of the neighbourhood agents will be impor-
tant for the benefits provided by the local market. The market has the
highest value when there are some inflexible and some flexible agents
since such a situation means that we need a mechanism to incentivize
the flexible agents to flatten the coincident peak for the neighbourhood
rather than their individual peak.

6 https://ens.dk/en/our-services/projections-and-models/

technology-data [Accessed: 2020-02-04]
7 https://www.enova.no/privat/alle-energitiltak/solenergi/el-

produksjon-/
8 https://ec.europa.eu/jrc/en/pvgis
9 https://www.skatteetaten.no/en/business-and-organisation/vat-

and-duties/excise-duties/about-the-excise-duties/electrical-power-

tax/ [Accessed: 2020-10-07.]
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Comparing the LM and the NOLM cases, it can be observed that a
local market can efficiently allocate the resources in the
neighbourhood since the solution is close to the SO case. In the

following, we will dig deeper into these findings to explain how
local market mechanisms can benefit both the DSO and other
neighbourhood agents.

Fig. 4. Nominal PV generation in the neighbourhood.
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market (NOLM) and centralized decision-making (SO).
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5.2. Business case for stakeholders and assets

Now, we focus on the difference between the LM and the NOLM
cases. The NOLM case is most representative of current regulatory
frameworks in Europe.

The ER agent has no load profile but can invest in energy resources if
this turns out to be profitable. Therefore, the ER agent can obtain zero
costs if no investments are made. This happens in the NOLM case,
where all electricity needs to be traded with the wholesale electricity
market. Since the available neighbourhood-scale plants cannot recover
the investment costs by participating in the wholesale market, no in-
vestments are made by the ER agent when there is no local market. In-
stead, despite higher unit costs, neighbourhood investments are
exclusively made by the RB agent, which invests in a PV system with
batteries to decrease the agents' individual costs through behind the
meter optimization.

Fig. 5 also reveal that the investments in a PV system become profit-
able for the ER agent when the local market is introduced. Furthermore,
Table 3 shows that the ER agent has zero costs also in the LM case since
it invests until the point that the income from the local market exactly
balances the investment costs.10

Investments made by the ER agent are exclusively in a PV system in
the LM case, and there are no investments in batteries for the
neighbourhood for neither the LM case nor the SO case (see Table 3).
Consequently, batteries are not able to reduce the total system costs
since no battery investments occur in the SO case. Despite the lack of bi-
directional batteries in the LM and the SO cases, the neighbourhood has
a significant flexibility resource through the EV agent since
neighbourhood load balancing can efficiently be performed by appro-
priate charging of the EVs within certain limits. Additional investments
in batteries are only profitable in the NOLM case for the RB agent (see
Table 3). The battery investments occur in the NOLM case because
each agent optimizes behind their ownmeter and, therefore, can benefit
from investing in resources that limit their interaction with the grid.
However, such individualistic behaviour produces higher total system
costs because the regulatory framework triggers sub-optimal invest-
ments. Sub-optimal investments also induce sub-optimal operations,
which we elaborate on next.

5.3. Pricing mechanisms and operational decisions

One key finding from the previous sections is that the local market
can reduce the required grid capacity to the neighbourhood (see

Table 3). This is feasible because the aggregate neighbourhood peak
load is reduced in the LM and the SO cases compared to the NOLM
case. Fig. 6 shows the aggregate load for the week with the highest
load (week 1) along with the local market price. Note that the price
can be very high and such price spikesmight be hard tomonitor in prac-
tice. Price spikes can also give the impression ofmarket power, although
such effects are outside the scope of this paper since we model the
neighbourhood agents as price-takers. The introduction of a local mar-
ket leads to better coordination of the flexible resources in the
neighbourhood, and the aggregate peak load is 20% lower in the LM
and SO cases compared to theNOLMcase.When themarket is not avail-
able, we see load spikes even though the agents are faced with a grid
tariff penalizing high loads. The lacking aggregate neighbourhood
peak load reduction in the NOLM case happens because the agents
with flexible resources are incentivized to reduce their individual peak
load rather than contributing to reducing the aggregate neighbourhood
peak load.

Fig. 7 highlights the importance of coordination within the
neighbourhood. The plot represents 24 h during the winter season
when the original aggregate neighbourhood peak load is the highest
(time steps 25–48), and we will refer to this time period as ‘the critical
winter day’. It is evident that during ‘the critical winter day’, the
neighbourhood agents all employ a flat trading profile seen from the
wholesale power market in the LM case compared to the NOLM case.
Constant power purchase from the centralized power market would
not be possible for the SK agent in particular without the local market
since the SK agent has no flexible resources, and its demand varies
over the day.

Since trading with the centralized power market is rather constant
during this day, we can extract some information from how the agents
interact with the local market, as depicted in Fig. 8. For example, the EV
agent buys more than 100 kWh/h during the first 5 h through the SK
and RB agents in the local power market, and the EVs are charged
while the SK and RB agents have unused capacity. Note that the local
trading happens even though the SK and RB agents do not produce en-
ergy, but are forwardingpower bought from the centralized powermar-
ket. The roles are switched during daytime when the EV and RB agents
sell power to the SK agent during the second half of the day.

Note that the EV sales are not due to discharging (vehicle-to-grid)
from the EVs; it is electricity purchased from the centralized power
market by the EV agent that is sold in the local market instead of
being used for EV charging. The forwarding of power from the central-
ized market via neighbourhood agents occurs because of the tariff
scheme in place, where the agents pay for their individual peak load.
When agents have unused capacity (low load), they choose to use this
capacity to buy more power than needed for their own consumption
and sell it to other neighbourhood agents that need it. Forwarding
power to a neighbouring agent is an illustration of how local markets
can facilitate coordination among different stakeholders by creating
appropriate incentives for coordination. The incentives are created be-
cause the grid capacity is free of charge for end-users that are not
close to their peak power while it is expensive for end-users that are
close to their peak power. Hence, since different agents value the
same resource differently, the business case for a localmarket is created.
Consequently, situations where the aggregate neighbourhood load is
high will be signalled to the end-users through high prices in the local
market when all the end-users are close to their peak load.

These findings highlight that with the local market framework,
agent EV charges the EVs during the first part of the day in order to bal-
ance the electricity consumption for the neighbourhood as a whole.
Without the local market, the rational choice for the EV agent is to
spread the EV charging evenly throughout the day to minimize the
agents individual peak load, regardless of the overall load situation
(see Fig. 9). Such individualistic incentives are consistent with the situ-
ation without a local market (NOLM) and result in a higher aggregate
neighbourhood peak load, as depicted in Fig. 6.

Table 3
Overview of key results for three cases: Decentralized decision-making with local market
(LM), decentralized decision-making without local market (NOLM) and centralized deci-
sion-making (SO). Cost data are for one year based on the four weeks condidered in the
analyses.

LM NOLM SO

Total costs [€] 171,148 176,089 169,174
Net costs ER agent [€] 0 0 16,637
Net costs EV agent [€] 48,853 50,834 47,967
Net costs RB agent [€] 64,256 65,119 56,936
Net costs SK agent [€] 58,039 60,136 47,634
Volumetric tariff [¢/kWh] 0.301 0.299 N/A
Capacity-based tariff [€/kW] 100 85.5 N/A
Grid capacity [kW] 271 337 271
Total PV [kW] 663 175 568
ER agent PV [kW] 495 0 395
RB agent PV [kW] 168 175 173
Total battery [kWh] 0 14 0
ER agent battery [kWh] 0 0 0
RB agent battery [kWh] 0 14 0

10 The ER agent does not turn a profit due to the price-taker assumption inherent in the
equilibrium conditions in the model.
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Fig. 7. Trading with the centralized power market during ‘the critical winter day’ when the local market is available (left) and without the local market (right).
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5.4. Equilibrium tariffs and DSO cost recovery

For completeness,we explorewhat happenswhen the tariffs deviate
from the equilibrium state for the LM case. Fig. 10 presents how the
DSOs profit, and the grid capacity changes when we vary the tariffs
from zero and upwards. The base tariffs, representing a 0% deviation,
are equivalent to case LM. We run analyses using the MCP model
starting from a tariff deviation of −100% and increase the tariffs in
10% intervals. Agent ER and RB invest in increasing amounts of PV and
batteries as the tariffs increase since interaction with the wholesale
market becomes increasingly expensive.

Fig. 10 shows that we have two equilibria that satisfy the DSO cost
recovery criterion of zero profits. The first equilibrium occurs at a tariff
deviation of 0%, which is the LM solution where the DSOs expenses
are exactly balanced by tariff income. The second equilibrium occurs
when the tariffs are increased by more than 42 times (+4,210%) from
the first equilibrium level. The second equilibrium occurs when the tar-
iffs becomes so high that the neighbourhood agents decide to be
completely self-sufficient, and the DSO has no investments and no in-
come. These results indicate that it can be costly to replace the grid en-
tirely with decentralized resources.

5.5. Impact of tax rate on the results

So far, we have included an electricity tax on imports from both the
wholesale power market and the local market. However, such a tax in-
herently promotes behind the meter optimization in the local market
and therefore we expect the tax rate to limit the trading in the local
market. To investigate the effect of the electricity tax rate on the results,
we compare the results for different tax rates in the LM case.

Table 4 reports the results for three different electricity tax rates:
1) zero taxes, 2) tax as before, 3) double tax rate. The total costs are al-
most equal to the SO case when we remove the electricity tax and the
LM solution becomes more expensive than the SO solution as the elec-
tricity tax is incresed. The reason for the deviation from the system op-
timal solution is mainly that the tax limits the trading in the local
market since the agents need to pay a premium on electricity imports
from the other agents in the local market.

The tax rate makes imports from both the wholesale and local mar-
kets more expensive. An increase in the tax rate mainly affects the PV
capacity in the local system. When there is no tax on electricity, all the
PV capacity is installed at the ER agent since it has the lowest invest-
ment costs. As the tax increases, the PV capacity shifts to the RB agent
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Fig. 9. EV charging and battery operation during ‘the critical winter day’ when the local market is available (left) and without the local market (right).
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as the cost reduction from self-consumption of energy dominates the
investment cost increase at the RB agent. The ER agent, however, de-
creases investments because it becomes less competitive in the local
market when its product is taxed. In total, the PV capacity increases
with a higher tax rate since the increase at the RB agent is higher than
the decrease at the ER agent.

6. Conclusion and policy implications

In this paper, we propose a game-theoretic framework to analyze a
local trading mechanism and its feedback effect on grid tariffs under
cost recovering conditions for the DSO. In this game-theoretic model,
we construct a case study which is inspired by regulatory issues that
have been identified in an ongoing pilot project in Norway. Our results
are based on calculations using representative data from four weeks,
where each week represents one season of the year.

Within our assumptions, our main finding is that the establishment
of a local electricity market in a neighbourhood pareto-dominates the
situationwithout a localmarket and could decrease the total costs by fa-
cilitating local coordination of resources and thus create socio-economic
value. The novelty of our analysis is to show how local market activity
does not just save costs for neighbourhood stakeholders, but in fact, im-
pacts the regulated tariff rates as the local market activity defer some of
the DSO costs. When we compare the establishment of a local market
with a regulatory frameworkwithout any localmarket,we observe a re-
duction in total costs including the need for grid capacity for the system
as a whole.

The local market creates value because it is able to coordinate the
flexible assets on the neighbourhood level rather than at the individual
end-user level. The presence of a capacity-based tariff in combination
with a local market mechanism is crucial for these findings since it cre-
ates the appropriate price signal to lower the aggregate peak load for the
neighbourhood. The peak load is reduced because the localmarket price
reflects the scarcity of capacity in the overall neighbourhood.

Two equilibrium solutions satisfy the DSO cost-recovery criterion:
(1) The DSOs costs are exactly balanced by tariff income and a signifi-
cant interaction between the neighbourhood and the larger power sys-
tem and (2) at very high tariffs the neighbourhood decides to
completely disconnect from the larger power system. In the second
equilibrium, the DSO has zero costs and income. These results indicate
that although a local trading mechanism can reduce the need for grid
capacity, it can be costly to disconnect from the system completely.

Local electricitymarkets are currently prohibited inmost parts of the
world. Although the establishment of a local electricity market shows
promising potential according to our results, there are several consider-
ations to be made upon evaluating the allowance of local electricity
trading. Firstly, the cost of establishing and administrating a local elec-
tricity market cannot exceed its net saving potential. With automation
and smart metering infrastructure, this countervailing cost is hopefully
small enough. Secondly, the saving potential identified in our analysis
is dependent on rational and reliable reactions by distributed market
participants to reduce peak neighbourhood load rather than increasing
the grid capacity. Thirdly, the highest value of establishing a local

market is likely to be related to deferring grid development, i.e., defer
upgrading grid capacity in an area where power outtake is increasing.

Whether a DSO iswilling to depend on the rational reactions bymar-
ket participants rather than relying on robust development and dimen-
sioning of grid infrastructure is worth considering. An underlying
assumption in this paper is that the agents are risk-neutral and, there-
fore, purely motivated by reducing their expected costs. However,
since different regulatory frameworks might fundamentally affect the
cost distribution for the involved stakeholders, further research could
go in the direction of including risk preferences in the modeling
framework.
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Appendix A Mathematical symbols

Nomenclature

Sets
c ∈ [1,…,C] Neighbourhood agents
h ∈ [1,…,H] Hours
Parameters
λh
P Power market price in hour h (€/kWh)

CG Existing transmission capacity (kW)
Dc, h Electricity demand in hour h (kWh/h)
Dc, h
Δ− EV demand in hour h (kWh/h)

Gc, h
E Energy resource availability at agent c in hour h (kW/kWp)

Ic
E, IcS Annualized investment costs at agent c (€/kW/year)
IG Annualized investment cost for grid capacity (€/kW/year)
LG Transmission losses (%)
Lc
S Energy storage converter losses at agent c (%)
NM Net-metering coefficient
Pc
ch Energy storage capacity ratio for charging at agent c (kW/kWh)

Pc
dis Energy storage capacity ratio for discharging at agent c (kW/kWh)

Rc Energy storage self-discharge at agent c (%/h)
T Excise tax (€/kWh)
Uc
E, Uc

S Resource limits at agent c (kW)
Wh Weight of hour h (h/h)
Upper-level variables
cDSO
G Investment in interconnection capacity (kW)
cnt Capacity-based network tariff (€/kW)
eh
GE Neighbourhood exports in hour h (kWh/h)
eh
G Neighbourhood load in hour h (kWh/h)
eh
GI Neighbourhood imports in hour h (kWh/h)
vnt Volumetric network tariff (€/kWh)
Lower-level variables
expc, h

P Energy exported to grid at agent c in hour h (kWh/h)
λh
L Market price in the local market in hour h (€/kWh)

cc
E Energy resource capacity at agent c (kW)
cc
G Measured peak load at agent c (kW)
cc
S Storage capacity at agent c (kWh)
dc, h
Δ+, dc, hΔ− Battery charge/discharge at agent c in hour h (kWh/h)

expc, h
L Energy exported to local market at agent c in hour h (kWh/h)

gc, h
E Energy generation at agent c in hour h (kWh/h)

impc, h
P Energy imported from grid at agent c in hour h (kWh/h)

impc, h
L Energy imported from local market at agent c in hour h (kWh/h)

sc, h Battery state of charge at agent c in hour h (kWh)

Appendix B MCP formulation of local energy system

We derive the KKT conditions of the neighbourhood level based on
the optimization problem described in section 3.2. Since our original
problem is linear and has a convex feasible area, the KKT conditions
are necessary and sufficient.

Table 4
Sensitivity to tax change for the LM case.

Tax = 0 Tax = 1.6 Tax = 3.2

Cost change from SO [%] +0.01 +1.17 +1.97
Volumetric tariff [¢/kWh] 0.300 0.301 0.301
Capacity-based tariff [€/kW] 100 100 100
Grid capacity [kW] 271 271 271
Total PV [kW] 610 663 769
ER agent PV [kW] 610 495 460
RB agent PV [kW] 0 168 309
Total Battery [kWh] 0 0 0
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A R T I C L E  I N F O   
Keywords: Multi-energy-system modeling Capacity expansion Stochastic programming Energy flexibility Sector coupling 

A B S T R A C T   
This paper investigates sector coupling between the central power system and local energy communities, in-cluding heat supply for buildings and charging of electric vehicles. We propose a stochastic linear programming framework to study long-term investments under uncertain short-term operations of nationally aggregated as-sets. We apply the model to a case study assuming European power sector decarbonization towards 2060 ac-cording to a 1.5 degree scenario, and we investigate the impact of coupling building heat systems and electric vehicle charging in Norway with the European power market. The case study focuses on the role of Norway in a European perspective because: (1) Norwegian electricity production is mainly based on flexible and renewable hydropower, (2) Norwegian building heating systems are currently mainly electric, and (3) Norway is already introducing electric vehicles at large. We focus on the European power market to test our hypothesis that it is more cost-efficient to decarbonize when the central power system is coordinated with building heat systems and electric vehicle charging. For Europe as a whole, results show that the average European electricity cost reduces by 3% and transmission expansion decreases by 0.4% when Norwegian heat systems are developed in co-ordination with the European power system. The average Norwegian electricity cost decreases by 19%. The strategy includes supplying up to 20% of Norwegian buildings with district heating fueled by waste and biomass, and the remaining electric heating supply is dominated by heat pumps.   

1. Introduction 
European energy policy pursue the growth of variable renewable energy sources (VRES), however, targets for the needed degree of re-structuring of the power system are not clearly stated [1]. Integration of VRES will require grid infrastructure, energy storage, flexibility, sector coupling, and short-term fuel switching [2,3], with corresponding changes in market structure and business models [4]. The interest in Zero Energy Buildings [5] is strengthened as buildings in Zero Emission Neighbourhoods [6] are developing towards networks of energy re-sponsive building envelopes [7]. The European Commission highlights the need to facilitate active demand-side participation in future Eur-opean power markets [8]. This paper studies how the short-term in-teraction between buildings, electric vehicles (EV), and the central power system affects the long-term energy decarbonization pathway. 

Research has demonstrated that the residential sector has an important impact on the aggregated peak load in the European power system [9], and buildings [10] and EVs [11] can facilitate more efficient operation of the power system. However, it is still unclear how the link between the building-, transport-, and power sector can impact European dec-arbonization. Several power system models study decarbonization [12] and sector coupling [13]; however, to the authors’ knowledge, existing models do not reconcile the following four aspects: (1) multiple long-term in-vestment periods, (2) chronological operational periods, (3) uncertain short-term operations, and (4) short-term sector coupling between the power system, building heat systems, and charging of electric vehicles (EVs). In this context, we propose an extension of The European Model for Power System Investment with (high shares of) Renewable Energy (EMPIRE) [14–16]. 
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We apply the extended EMPIRE model on a European case study focusing on how heat systems in buildings and charging of EVs are developed and operated when integrated with the European power system. In [17], an assessment of space heating flexibility has been performed, and they call for further work on how identified flexibility can be utilized in a larger context. In [18], they find that EV charging load could exceed available electricity capacity in some European countries and that flexible EV charging could limit some capacity in-adequacy. In this paper, we focus on how sector coupling affects the development of conventional flexibility assets, e.g. hydropower, and flexibility from heat systems in buildings and smart charging of EVs. Norway is in focus because its electricity supply is dominated by flex-ible hydropower, building heat systems are mainly electric, and EVs are phased in by favorable policies. Our hypothesis is that increasing the flexibility of building heat systems and EV charging in Norway will benefit the European power system as a whole because flexible Nor-wegian hydropower can be utilized as a ‘green battery’ in Europe  [19,20]. Essentially, we test whether adding more flexibility to an al-ready flexible region of the power system can benefit the whole system. The case study analyzes how sector coupling affects the development of: generation assets for building heat and electricity, power transmis-sion assets, and storage and flexibility assets, including hydropower, building heat, and EVs. The structure of the paper is as follows: Section 2 presents related research to identify the novelty of our modelling framework and our case study. Section 3 presents the modelling framework including the new sector coupling features of EMPIRE, and Section 4 presents the European case study. Finally, Section 5 presents and discusses the case study results, before the paper is concluded in Section 6. 
2. Background 

This section discusses several techno-economic energy system models that have been used for analyses of European decarbonization towards 2050. A comprehensive multi-scale analysis is presented in [21] in-vestigating transition pathways towards the EU low carbon economy  [22] without considering endogenous uncertainty within the modeling frameworks. In [23], short-term uncertainty in long-term energy system models is shown to be important when considering VRES like wind. The E2M2 model considers short-term uncertainty of VRES in [24], but storage and demand response technologies are not considered. Flex-ibility in a VRES dominated power system, including transmission, has been studied in The North Sea region using the PowerGIM model in  [25] without considering sector coupling. The Balmorel model has been used to analyze sector coupling between the heat and electricity sectors  [26–28], but does not consider short-term uncertainty of VRES. The German heat and electricity sector has been studied with the REMod-D model [29] and results show that 100% renewable supply is feasible [30]. The Nordic and Baltic region is analyzed with Balmorel in  [27] where they find that electricity-to-heat converters and hot water storage tanks (HWST) are important assets. Increased flexibility in electricity systems dominated by combined heat- and power (CHP) plants through HWST and electric boilers are shown to decrease wind curtailment in [31]. Integrated operation of electricity and district heating systems has been analyzed in [32] demonstrating reduced op-erational costs, and the theoretical maximum of flexibility from CHP systems coupled with HWST have been analyzed in [33]. Price effects on electricity based heating in Norway are analyzed with Balmorel in  [28] where they find that fuel switching in heat systems have growing importance with more VRES in the power system. Both heat and elec-tricity is considered in a stochastic version of TIMES in [34] studying the impact of net Zero Energy Buildings in the Scandinavian energy system. In [34], they find that such buildings will (1) partly replace 

investments in non-flexible hydropower, wind power and (CHP) and (2) trigger investments in more electricity based heating systems. Europe as a whole has been studied in [35] focusing on the utilization of excess production by VRES for building heating, and they find that heat pumps are a preferred technology to perform the sector coupling. In [36], the PyPSA [37] framework has been used to study sector coupling between the European power system, the heat sector, and the transport sector in 2050, and they find that transmission exchange combined with energy flexibility through sector coupling can reduce total system costs of decarbonization by 37%. The EMPIRE model has been used to analyze decarbonization of the European power system considering uncertainty [14]. An updated version of EMPIRE is presented in [15] explaining the multi-horizon stochastic programming structure [38], and a case study of the Eur-opean power system decarbonization shows large wind power expan-sion and major net transfer capacity (NTC) expansion between Eur-opean countries [15]. Demand response features have also been developed in EMPIRE [16] and tested in a European case study. EM-PIRE has been linked with the model ZENIT in [39] to analyze how energy resources in neighbourhoods integrate into the Nordic power system, but only considers contributions of electricity production from neighbourhoods. In summary, we identify two research gaps: (1) The lack of a modeling framework consolidating long-term energy system planning, short-term uncertainty, and sector coupling, and (2) the lack of a pre-vious study focusing on the Norwegian sector coupling with a European perspective. To cover these gaps, the continuation of this paper pro-poses a modeling framework (Section 3) and a case study (Section 4). 
3. Method 

This section presents the stochastic programming model EMPIRE  [14–16] which has been re-implemented in the open-source Python- based optimization suite Pyomo [40]. 
3.1. Model structure 

EMPIRE [14–16] is a techno-economic capacity expansion model  [41] applied to the European energy system represented by a network. An open version of EMPIRE can be downloaded from [42]. The nodes in the network represent auction zones for clearing energy supply and demand, and the arcs represent exchange of electricity between these zones. The model supports investment decisions in generation, storage, and transmission assets on a country/zonal level made subject to the need to meet energy demand on an hourly basis without exceeding a European-wide emission cap. Energy demand, as well as asset options, their related costs and operational characteristics, are input to the model. The output supports decisions regarding technology choices, investment volume and timing, as well as hourly operations assuming perfect competition. Investments and operations related to generation and storage capacity happen in the nodes, cross-border exports and imports are described by arcs, whereas investments in transmission are described by a pair of unidirectional arcs between the same two nodes. EMPIRE forms a linear two-stage stochastic program [43] where the first-stage decisions represent investments in period i, and the second- stage decisions represent operations in period i and scenario . The stochastic scenarios consider uncertainty in the availability of wind-, solar-, hydropower generation; electric specific and building heat load; coefficient of performance (COP) for heat pumps; and required energy for flexible demand, e.g. EV charging. EMPIRE uses a multi-horizon structure [38] illustrated in Fig. 1. Each scenario x y z, , represents time series, and scenario z represents one realization of season y in invest-ment period x. 
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3.2. Sector coupling features 
3.2.1. Building heat One of the contributions of this paper is the development of EMPIRE to include sector coupling of building heat systems with the central power system. This feature is developed by categorizing energy demand into electric specific demand and building heat demand as described in  [44]. Electric specific demand includes all electricity demand that must be met with electricity, while building heat demand includes space and hot water demand in buildings that can be met with either electricity or other heat producing technologies, e.g. district heating. The model supports investments in technologies that can generate and store heat and electricity, including CHP plants. In addition, the model supports investment in technologies converting electricity to heat, e.g. heat pumps. Through the electricity-to-heat converters, it is feasible to sa-tisfying building heat demand with 100% electricity. Fig. 2 represents the link between operations in a specific node, operational period, investment period, and stochastic scenario. Supply by generators is either electricity, heat, or both (CHP). Converters transform electricity to heat but not heat to electricity. Generators and converters must satisfy electric specific and building heat demand. More electricity and heat in one operational time step can be supplied or converted to be stored for later within the same season and stochastic scenario. If there is less supply than demand for electricity or heat, storage must be discharged or load must be shed. Heat, naturally, 

cannot be exchanged between countries. Fig. 2 also illustrates how the model considers flexibility from supply-, converter-, and storage assets. For every hour, the model has flexibility to cover electricity demand by producing electricity in that hour or discharging stored electricity. Similarly for heat, there is flex-ibility to produce or discharge stored heat to cover heat demand, and additionally an option of converting electricity to heat with either produced or stored electricity. Note that demand is not considered flexible. However, the model can consider demand flexibility if parts of the demand is considered as a storage. Charging the storage is equivalent to the net addition of demand in an hour, while discharging the storage is equivalent to net removal of demand in an hour. 
3.2.2. Electric vehicle charging To consider flexible EV charging, the demand response features of EMPIRE presented in [16] are used. More specifically, EV demand is considered to be a shiftable volume load [16], i.e. energy demand that must be met by a certain time period with any charging pattern given it meets the energy demand and satisfies some charging constraints. The input of EV demand affects the total EV charging flexibility, and it is the minimum cumulative charging to be made within a node and period, e.g. every 24 h. We consider uncertainty of EV flexibility by allowing EV demand to vary across different stochastic scenarios. The charging constraints also affect the EV charging flexibility for every node and investment period, and they include a maximum charging limit 

Fig. 1. Illustration of the stochastic structure of the EMPIRE model. The blue circles represent investment periods with first-stage decisions, and each period contains seasons and stochastic scenarios with second-stage decisions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Illustration of the sector coupling between the electricity and the building heat sector in the EMPIRE model. The sector coupling is on an hourly time resolution in the model. 
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dependent on the endogenous EV charging capacity expansion. We also consider vehicle-to-grid (V2G) through the possibility of discharging EVs. 
3.3. Mathematical formulation 

The following section presents in detail the mathematical formula-tion of EMPIRE used in this paper including the developments pre-sented in Section 3.2. It is best read assisted by the full nomenclature of EMPIRE found in Appendix A. 
3.3.1. Objective function The objective function in EMPIRE quantifies costs of investing and operating the respective energy system, and it is formulated in the following way: 
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The objective function (1) discounts all costs at an annual rate of r, and the investment periods are given as five-year blocks. The first three terms of (1) relates to investment costs in additional capacity of gen-eration, storage, and transmission. The last three terms relate to op-erational- and load shedding costs. The terms for operational costs are scaled with the scenario probability , the seasonal scaling factor sannualizing the seasonal costs, and the five-year scale factor 
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4 scaling and discounting the annual operational costs to the five-year investment periods. 

3.3.2. Investment constraints Installed capacity of assets in each period is defined in the following way: 
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Constraints (2) make sure installed capacity is defined as initial capacity plus capacity expansion up until the period of consideration for every generator, storage, and electricity-to-heat converter. Note that constraints (2) consider the asset lifetime. Equivalent constraints also apply for transmission lines and charging/discharging capacity of sto-rage. Capacity expansion of storage is separate for charging/discharging capacity and energy storage capacity. However, some storage tech-nology types b † cannot expand charging/discharging capacity without also expanding energy storage capacity. A fixed capacity ex-pansion ratio, b

stor, is defined for b †, and constraints (3) apply: 
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3.3.3. Operational constraints There are two main groups of equations in EMPIRE that ensure the operational balance between supply and demand of electric specific and building heat load: 
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Constraints (4) ensure the balance of electric specific load, which means that total supply from electric generators and storage units, as well as imports and electric load shedding, must be balanced with electric load, exports, and charging. Note that = 1g

CHP for all 
G Gg EL HT, that is all non-CHP electric generators. For CHP gen-erators ( G Gg EL HT), g

CHP represents how much electricity is being produced per unit of heat output. Similarly, constraints (5) make sure the building heat load is ba-lanced such that total supply from building heat generators and storage units, as well as conversions of electricity to heat and heat load shed-ding, must be balanced with heat load and charging. Note that con-version of electricity to heat links constraints (4) and (5) together, and that hourly scenario dependent converter efficiency is ensured in con-straints (5). Annual CO2eq. emissions from energy production for every invest-ment period are restricted with an emission cap: 
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Constraints (6) ensure that no operational scenario can produce more annual CO2eq. emissions than the cap allows. These constraints ensure that the optimal solution of EMPIRE represents an energy system with the needed emission reductions, while the objective (1) is focusing on minimizing total system costs. The alternative to including the carbon cap constraints (6) is to include carbon pricing as part of the operational costs of carbon emitting generators. However, future carbon prices are harder to forecast than future carbon caps, so we include constraints  (6). Note that the dual variables of constraints (6) represent the shadow prices of meeting the carbon cap which makes carbon prices an output of EMPIRE. Generators are subject to the following operational constraints: 
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Constraints (7) ensure that generator type g cannot produce more than what is installed in node n and period i and what is available in hour h and scenario . Thus, constraints (7) allow for the consideration of uncertain availability of e.g. VRES. Constraints (8) ensure that some generators are subject to up-ramping restrictions, i.e. increasing gen-erator output between two consecutive hours is limited by a share of installed capacity. Hydroelectric generators are subject to additional constraints: 
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Generation by regulated hydro plants is restricted by season and node through constraints (9), while expected annual production for all hydro plants in a node are constrained by (10) Storage assets are subject to the following operational constraints: 
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Storage assets start with an initial energy level available as a per-centage of installed capacity ensured by constraints (11), and their state of charge considering losses is ensured by constraints (12). Normal storage assets run a full cycle over each representative time period in each season through (13), while flexible demand, b FX, is re-presented as storage that needs to be filled by specified hours within representative periods through constraints (14). Flexibility in EMPIRE is related to an asset’s ability to adapt its operation to different operational scenarios, and it can be provided by all assets in EMPIRE, including generators, storage, transmission, and electricity-to-heat converters. The generators with more operational constraints, like generators subject to ramping constraints (8), have less flexibility than generators without ramping constraints, e.g. regulated hydropower. 

3.3.4. Other constraints In addition to the constraints presented in the previous section, all variables in EMPIRE are subject to non-negativity constraints. Capacity expansion is subject to upper bounds, and all asset operations are bounded by installed capacity. 
4. Case study 

This section describes our European case study and the input to the EMPIRE model. The main purpose of the case study is to study the impact of the sector coupling features presented in Section 3.2 with a European perspective. We consider eight five-year investment periods from 2020 to 2060, and we assume an annual discount rate of 5% following [14]. The in-stances contain 35 nodes1 and 85 bidirectional arcs representing ex-isting and potential European power exchanges. Norway is divided into five nodes representing the Norwegian Nord Pool price zones. No transmission expansion between the Norwegian zones is allowed. The CO2eq. cap is assumed to follow [45] from 1, 110 to 22 Mton CO2eq. per year from 2020 to 2060. Emission factors for stationary combustion are estimated according to [46], and we assume only operational emissions and no emissions related to VRES including biomass. Cost of 

load shedding is assumed to be €22, 000/MWh following [47]. We include 16 electricity generator types and two electricity storage types (see Appendix B), and we do not consider carbon capture and storage technologies. Additionally, we consider two electricity-to-heat converter types, two non-electric building heat generator types, two CHP generator types, and two heat storage types (see Table 1). Tech-nology costs for electricity generators come from [49], and fuel costs come from [50]. For building heat technologies, costs come from [48]. Costs for transmission expansion is according to [15]. Operational scenarios have an hourly resolution and consist of six seasons per investment period: four regular seasons and two peak seasons. The regular seasons have 168-h duration and the peak seasons have 24-h duration. We consider three stochastic scenarios for all sea-sons. The uncertain data input are: VRES availability, load, COP for heat pumps, and EV demand. Based on historical data, uncertainty related to VRES availability and load are produced by the scenario sampling routine described in  [15]. The sampling routine is initiated by defining four partitions of a year containing hourly data that represents four regular seasons. The data set we sample from consist of several years of data for VRES availability from renewables.ninja [51,52] and load from ENTSO-E Transparency Platform. The sampling routine consist of the following steps: (1) selecting a random year, (2) selecting randomly the same 168 consecutive hours for each stochastic process within a season, and (3) repeating the former step for all seasons. The sampling routine is per-formed for all scenarios, and it is repeated for any sampled scenario that deviates too much from the mean, variance, skewness, and kurtosis of the respective underlying full data set. To represent extreme situations, we also construct two peak seasons containing 24 consecutive hours of extreme load situations. The first peak day contains the highest load summed over all countries, and the second peak day contains the highest hourly load of a single country. For heat pumps, we sample temperatures in Norway for the same hours for the year 2016, and we perform a linear regression based on data for BOSCH BMS500-AAM018- 1CSXXA [53] to estimate a temperature dependent time series for the COP assuming an indoor temperature of 22 degrees. As we consider the stochastic processes of load and VRES avail-ability across Europe to be complex and mutually dependent, we sample from historical observations chronologically to preserve auto-correlation. Additionally, the same historic hours are sampled for the different European countries to preserve spatial cross-correlation. We also sample the same hours of a year for the different stochastic input to further preserve cross-correlation between the stochastic processes. 

Table 1 Heat technology capital costs gathered from [48]. All generators are assumed to supply a district heating grid. CHP  = Combined Heat and Power, HOP  = Heat Only Plant (no electricity generation).       
Capital cost [€/kW-heat] 

Technology ’20-’30 ’30-’45 ’45-’60  
Converter    
Convector 966.7 933.3 833.3 Heat Pump (air-to-air) 440.0 514.3 485.7 
Generator    
Waste-to-Energy (CHP) 1870.0 1780.0 1610.0 Waste-to-Energy (HOP) 1840.0 1750.0 1640.0 Bio Wood Chip (CHP) 1000.0 950.0 880.0 Bio Wood Chip (HOP) 790.0 750.0 680.0 
Storage    
Hot Water Storage Tank (small) 410.0 410.0 410.0 Hot Water Storage Tank (large) 150.0 150.0 150.0 

1 The model includes nodes for all countries in the EU-27 minus Cyprus and Montenegro plus Bosnia Hercegovina, Great Britain, North Macedonia, Serbia, Switzerland, and five Norwegian nodes representing Nord Pool bidding zones. 
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Regarding uncertainty related to EV demand, we consider annual EV demand in Norway as projected in [54], from 2 TWh/year in 2020 to 15 TWh/year by 2060. Note that EV demand includes not only cars, but also buses and ferries [55]. The annual EV demand is made into a constant 24-h demand with a ± 5% random variability across the three stochastic scenarios. We define two European instances in EMPIRE for comparison:  • BASE: All load in Europe is electric specific (see Fig. 3a) without defining building heat load. All load can only be met with electricity generation.  • HEAT: Part of Norwegian total load is defined as building heat load (see Fig. 3b). Heat load can be met with electricity-to-heat con-verters, including heat pumps and convectors, or non-electric heat generation and heat storage (see Table 1). 
We only consider building heat load in Norway because we hypothesize that flexible Norwegian hydropower is more valuable for other pur-poses in the coming decades than meeting building heat load. Norwegian building heat supply is currently largely electric, while Norwegian electricity generation is dominated by flexible hydropower. Statistics from [56,54] show that 60% of electricity demand in build-ings is for heating purposes and buildings make up about half of the total Norwegian electricity demand. Thus, the heat load in HEAT is estimated as 40% and 20% of the hourly electricity load from BASE for the Norwegian nodes for winter and summer seasons, respectively (see  Fig. 3b). To make a fair comparison, the sum of heat and electricity demand is equal for BASE and HEAT if building heat load is met with existing building heat systems. Note in Fig. 3 that the total hourly load is higher in HEAT compared to BASE as the building heat load is ad-justed by the COP of heat pumps. Defining building heat load as a share of historic electricity load can be used for Norway as heat supply to buildings is mainly electric [56], however, other approaches for pro-jecting building heat load should be used for countries where building heat is not mainly covered with electricity, see e.g. [29,44]. To project future load profiles, we shift historic load profiles ac-cording to energy demand forecasts. This is done by calculating two averages: (1) the average load in node n in the first investment period ( =i 1) based on the historic load profile for one stochastic scenario ( n,1,

load,avg) and (2) the average demand in one hour based on the annual demand estimate from the EU reference scenario [50] for investment period i ( n i,
dem,avg). The load n h i, , ,

load in hour h in node n, investment period i, and scenario is then calculated h : 
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Electricity load data are based on historic load from ENTSO-E and shifted according to the annual demand growth anticipated in the EU decarbonization scenario 2016 presented in [50] towards 2050 and a linear interpolation towards 2060. For Norway, we estimate the annual electricity demand towards 2040 according to [54] and a linear inter-polation for following investment periods in BASE. In HEAT, we cate-gorize the annual electricity demand into electric specific demand for all sectors and building heat demand according to [54,56] adjusted by the COP of heat pumps (see Fig. 4). We allocate the annual demand within Norway according to the historical share of the total annual electricity use of the five Nord Pool zones, and this allocation method is used for any data related to Norway unless otherwise stated. In both BASE and HEAT, investment costs for EV charging infra-structure are estimated according to Table 5.5 in [57]. We estimate initial charging capacity in Norway to be 300 MW assuming 15, 000charging stations with an average capacity of 20 kW based on [58]. We assume existing charging capacity is retired by 2030 and allocate the initial capacity according to the share of publicly available car charging stations in each Norwegian zone in 2018 presented in [59]. We assume no losses related to EV charging. We also allow 20% of EV charging capacity to be used for V2G without costs or losses. Initial electricity generation capacity per country is estimated ac-cording to [60]. We also assume only initial electricity-to-heat con-verters in buildings in Norway estimated as a share of peak heat load in each node as presented in [61]: 28% for heat pumps adjusted by the COP and 72% for convectors. We assume no fuel costs for Waste-to- Energy (WtE) generators. Because of waste treatment constraints, we also assume output from WtE generators must remain constant in each season with no intra-weekly up-ramping. The maximum installed ca-pacity of WtE in Norway is estimated to be 1, 140 MW2. Emissions from burning waste are assumed to be 37.0 kgCOeq/GJ according to [48]. For the bio-based heat generation, fuel costs are chosen according to [50]. For initial capacity of HWSTs in Norway, we assume a Norwegian po-pulation of 5.3 million according to [63] and 1 kWh energy and char-ging capacity of small HWST capacity per person3, and we assume no retirement of initial HWST capacity. The energy community flexibility in our case study is related to HWST and charging/discharging of EVs, and we do not consider 

Fig. 3. A winter week for NO1 in BASE (a) and HEAT (b). All load is defined as electric specific load based on historic load profiles in BASE, whereas 40% and 20% of this load is defined as building heat load in HEAT for Norwegian winter and summer seasons, respectively. 

2 According to [62], Norway produces 3.6 million tons of burnable waste annually, and an energy value of 2.78 MWh/ton [48] can at maximum produce 
10, 000 GWh/year, or 1, 140 MWh/h. 3 One tank has 3 kWh energy capacity on average [48], and we assume two persons per tank and that two thirds of the tank is available for flexibility 
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flexibility in the thermal mass of buildings or other controllable loads in the communities. 
5. Results and discussion 

This section presents the results from our case study described in Section 4. BASE is solved in 9, 000 seconds, while HEAT is solved in 
11, 000 seconds using interior point method (barrier algorithm) [64] without crossover with the FICO® Xpress Solver v8.8.1 [65] running on a computer cluster with CPU 2x 4 GHz Intel E5-2643v3 (6 core) and 512 Gb RAM. 
5.1. Total system costs and emissions 

The total discounted system costs for Europe from 2020 to 2060 for 

BASE is €2.47 trillion or an average undiscounted cost of European electricity of €100/MWh. In HEAT, 1% of total European electricity demand is identified as building heat demand in Norway. In BASE, all demand is assumed to be electric specific, so the main difference be-tween BASE and HEAT is that building heat demand can be met by non- electric heat supply or more efficient electricity-to-heat converters in HEAT. This opportunity reduces the total system cost for Europe by €7.14 billion ( 0.29%) in HEAT, which means discounted savings of €3.2/MWh of building heat demand. The average undiscounted cost of European electricity reduces to €96/MWh ( 4%) in HEAT. The total number of hours with electricity prices > €1, 000/MWh reduces by 19% and the number of hours with prices < €1/MWh reduces by 5% in HEAT compared to BASE. The undiscounted average cost of electricity in Norway is €86/MWh in BASE and reduces to €70/MWh ( 19%) in HEAT. 

Fig. 4. Assumed development of annual electric specific and heat demand in Norway in HEAT.  

Fig. 5. Expected annual electricity generation from all Norwegian zones (NO1-NO5) from 2020 to 2060.  
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Total expected European emissions are capped for all generators, including heat generators, according to [45] and binding for all in-vestment periods in BASE and HEAT. This is because of the emission cap constraints (6) in Section 3.3 which ensure that the scenarios with the highest emissions in all investment periods have the same emissions in BASE and HEAT. Note that both instances satisfy the emission targets in [45] for all investment periods. The undiscounted CO2eq. price ranges between €40/ton and €60/ton until 2040, and increases beyond €100/ton after 2040. The highest indicated CO2eq. price is €974/ton from 2055 to 2060 in BASE. 
5.2. Expected annual heat and electricity generation 

Hydropower dominates Norwegian electricity generation for both instances (see Fig. 5), while onshore- and offshore wind grows towards 2060 in both instances (see Fig. 5). Total electricity production in Norway, mainly from wind, is decreased in HEAT compared to BASE (see Table 2), while total expected hydropower output is the same. Decreased electricity production in HEAT compared to BASE is be-cause of two reasons: (1) building heat supply is met by CHP plants incinerating waste and biomass and (2) energy efficiency is increased through increased use of heat pumps. Up to 20% of building heat supply comes from CHP plants in HEAT, while the remaining building heat 

demand is met with electricity mainly used in heat pumps (see Fig. 6). The CHP plants are fueled solely by municipal waste until 2035, while emission constraints ensure an increasing amount of biomass is burned towards 2060. For the European power system as a whole, onshore- and offshore wind is decreased in HEAT compared to BASE compensated by energy from CHP plants and efficiency gains through heat pump use in Norway (see Fig. 7). 
5.3. Transmission 

Norwegian expected annual electricity imports decrease by 4% and exports increase by 8% in HEAT compared to BASE (see Fig. 8). The increased Norwegian electricity exports in HEAT compared to BASE does not lead to increased NTC expansion. On the contrary, there is 500 MW less NTC expansion between NO1 and Sweden in HEAT compared to BASE. This is because Sweden develops 8 GW less wind power, or an average decrease of 8 TWh/year, towards 2060 in HEAT compared to BASE, while wind power capacity in NO1 is the same. Consequently, electricity exports from Sweden are reduced in HEAT compared to BASE, and the required transmission capacity between Sweden and NO1 is reduced. Note that Norway as a whole develops 11 GW less wind in HEAT, or an average decrease of 13 TWh/year. 
5.4. Flexibility in local energy communities 
5.4.1. Heat converter and storage flexibility There is significant capacity expansion of HWST in Norway in HEAT, where most expansion happen between 2030 and 2050. The heat storage is mostly utilized to balance the electricity use of electricity-to- heat converters. HWST are generally charged when Norwegian exports are decreased because that means electricity is available for heat con-version. The vice versa is also the case: HWST are generally discharged when exports are high because less electricity is available for heat conversion. In such a way, the central power system and the building heat systems are operated more cost efficiently through the flexibility provided by regulated hydropower, electricity-to-heat converters, and HWST. There is only capacity expansion of the ‘large’ HWST as it is a cheaper investment alternative (see Table 1). The new HWST storage capacity reaches 106 GWh for Norway in total by 2060, which would 

Table 2 Total expected demand and generation in Norway for BASE and HEAT from year 2020 to 2060.     
Instance BASE HEAT  
Electric specific demand, Norway [TWh] 6,200 4,700 Building heat demand, Norway [TWh] – 2,200  
Expected electricity generation, Norway [TWh] 7,800 7,400 – of which hydro [TWh] 6,000 6,000 – of which wind [TWh] 1,800 1,200 – of which CHP [TWh] – 100  
Expected non-electric heat generation, Norway [TWh] – 400 Expected electric heat generation, Norway [TWh] – 1,900 – of which convector [TWh] – 300 – of which heat pump [TWh] – 1,600 

Fig. 6. Share of annual heat supply by technology in all Norwegian zones (NO1-NO5) from 2020 to 2060.  
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require a total area4 of 32, 000-133, 000 m2 [48]. 
5.4.2. Electric vehicle charging The total capacity expansion of EV charging capacity in Norway sums up to 4.3 GW in BASE, and there is 3% less capacity expansion in HEAT compared to BASE. After 2040, there is less EV charging capacity developed in NO1 and NO2 in HEAT compared to BASE indicating that building heat flexibility can partly substitute the need for EV charging infrastructure used for flexibility purposes. In other words, increased 

building heat flexibility increases the opportunity for peak shaving of EV charging profiles. Load shifting, or optimal timing, of EV charging is increasingly valuable towards 2060 in both BASE and HEAT. Fig. 9 shows an ex-ample of one scenario for net charging of EVs in NO2 in a fall week in 2040–2045, and there is less variability in the EV charging in HEAT as the flexibility need is also met through smart building heating. Fig. 9 also shows a net V2G for NO2 in BASE, however, there is no net V2G for all Norwegian nodes in BASE or HEAT. 
5.5. Discussion 

The EMPIRE model’s objective is to minimize total system costs subject 

Fig. 7. Difference in total energy output from 2020 to 2060 by technology for all European countries in HEAT compared to BASE.  

Fig. 8. Net hourly electricity export from Norway in the same fall week scenario for BASE and HEAT between 2030 and 2035. Negative values means net import to Norway. 

4 Assuming the space requirement for ‘large’ hot water tanks ranges from 0.3m2/MWh to 1.25 m2/MWh [48] 
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to an ambitious European emission cap towards 2060. The output thus represents a simulation of the most cost-efficient decarbonization pathway for Europe as a whole, and does not represent the pathway of minimized emissions nor maximized energy efficiency. As emissions are capped, the difference in expected emissions from HEAT compared to BASE is small for Europe as a whole. However, there is a small increase in Norwegian emis-sions from WtE plants in HEAT compared to BASE, and this is fully com-pensated by a decrease in emissions for the rest of Europe in the critical scenarios. Although the increase in Norwegian emissions is small, these results demonstrate an important insight from our analysis: European emissions can cost-efficiently decrease even if national emissions for single European countries increase. This is especially relevant for Norway since Norwegian hydropower is valuable for VRES integration [19,20]. The case study of this paper is conducted within the European power market as we only analyze the development of Norwegian heat systems that are electric today. This is done to compare Norwegian heat system development when it is assumed to be an inflexible load (BASE) and when it can develop freely as building heating assets (HEAT). However, the whole heating market, as well as the gas market, is re-levant to consider in multi-sector energy system analyses, especially when considering countries with less electric heating than Norway. Future work includes using the EMPIRE modeling framework to ac-commodate a larger share of the heating market and thus a larger op-portunity for sector coupling. The EMPIRE modeling framework assumes perfect coordination and resource aggregation within European countries and perfect competi-tion between European countries. Therefore, the EMPIRE model in-herently assumes that all energy resources within one node are co-ordinated, and that all flexibility assets in local energy communities can be provided on a national level within an hour, e.g. through an ag-gregator role [66]. This poses both technical, regulatory, and even so-cial challenges [67]. Large-scale resource coordination calls for so-phisticated metering and a close link between end-users and flexibility markets. Our modeling results indicate that if such coordination can be 

successful, the utilization of flexible resources at the end-user level could impact the central power system, including capacity expansion of transmission and generation [68]. 
6. Conclusion 

This paper extends the stochastic linear programming model EMPIRE to study sector coupling between the central power system, heat systems in buildings, and flexible charging of EVs under uncertainty of VRES availability, heat pump COP, load, and EV demand. We apply the updated model to a European case study where we analyze decarbonization under uncertainty with and without sector coupling between the central power system and Norwegian building heat systems. Results from our case study indicate that a growth in non-electric heat supply to buildings in Norway is attractive for Europe towards 2060, and that the greatest share of building heat demand should be met with electric building heat solutions dominated by heat pumps coupled with heat storage. The integrated development of the European power system and Norwegian building heat systems increase export of hydropower from Norway to neighbouring countries. More work is needed to realistically represent the uncertain availability and costs related to aggregated local resources like heat sys-tems and EVs. Future work also includes considering building heat and EVs for several European countries to study cost-efficient interactions between building heat systems, electric mobility systems, and the central power system while meeting decarbonization targets. 
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Appendix A. Nomenclature of EMPIRE 
A.1. Sets 
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n
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:Set of possible generator types,
:Set of possible storage types,
:Set of possible electricity-to-heat converter types,

{1, 2, , }:Set of investment periods,
{1, 2, , }:Set of operational periods,

:Set of seasons,
:Set of nodes,
:Set of unidirectional interconnectors,
:Set of bidirectional interconnectors,
:Set of scenarios,
:Set of possible electricity generator types,
:Set of possible building heat generator types,
:Set of possible generator types in node ,
:Set of generator types limited by ramping,
:Set of regulated hydro generator types,
:Set of all hydro generator types,
:Set of possible electricity storage types,
:Set of possible heat storage types,
:Set of flexible electricity demand,
:Set of possible storage types in node ,
:Set of storage types with fixed energy and charging ratio,
:Set of available electricity-to-heat converters in node ,

{ , , , } :Set of operational periods in season ,
:Set of arcs flowing into node ,
:Set of arcs flowing out from node .
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A.2. Input data 
A.2.1. Costs 

c i
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c n n i

q g i

q g i

q n i

q n i

Q i

:Investment cost of asset a in period ,
:Investment cost of charging of storage in period ,
:Investment cost of bidirectional interconnection ( , ) in period ,
:Operational cost of generator type in period ,

:CO2 emission factor of generator type in period ,

:Value of lost electric specific load in node in period ,

:Value of lost building heat load in node in period ,

:CO2 emission ceiling for all generators in period .
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A.2.2. Technology limitations 

B

=

i a
g

n n

b
b

b
b

g

g

b
b

n
x a n i

x b n i
x n n i
X a n i

X b n i
X n n i

V a n i
V b n i
V n n i

:Lifetime of investment in asset ,
:Ramping factor for generator type ,
:Efficiency factor for transmission losses along arc ( , ) , (0, 1),

:Efficiency factor for charge losses with storage type , (0, 1),
:Efficiency factor for discharge losses with storage type , (0, 1),
:Efficiency factor for bleed losses with storage , (0, 1),
:Capacity ratio between charge/discharge speed for storage type ,
:Share of electric output per heat output from CHP generator ,

: 1,

:Ratio between charging and energy capacity for storage type ,
:Share of installed energy capacity initially available in storage type
in each representative time period,
:Max expected annual output from total hydro in node ,

¯ :Initial capacity of nodal asset in node in period ,
¯ :Initial capacity of charging of storage in node and period ,
¯ :Initial capacity of bidirectional interconnection ( , ) in period ,
¯ :Max investments in nodal asset in node and period ,

¯ :Max investments in charging of storage in node and period ,
:Max investments in bidirectional interconnection ( , ) in period ,

¯ :Max installed capacity of asset in node and period ,
¯ :Max installed capacity of storage of charging in node and period ,

:Max installed capacity of bidirectional interconnection ( , ) in period .
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A.2.3. Scenario input 
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:Probability of scenario ,
:Availability of generator type in node in period ,
and scenario ,
:Electric specific load in node in period , and scenario ,

:Building heat load in node in period , and scenario ,

:Max output from regulated hydro in node , and ,

:Efficiency factor for electricity-to-heat converter in node
in period , and scenario ,
:Energy required by in by hour in and .

( is subtracted by the hourly average requirement for each season).
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A.3. Variables 
A.3.1. Investment decision variables 
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0 ¯ :Investments in asset in node in period ,
0 ¯ :Investments in charging of storage in node in period ,

0 ¯ :Investments in bidirectional interconnection ( , ) in period ,
0 ¯ :Capacity of asset in node in period ,

0 ¯ :Capacity of charging of storage in node in period ,
0 ¯ :Capacity of bidirectional interconnection ( , ) in period .
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A.3.2. Operational decision variables 
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0 :Charging of storage type in node in period , ,
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0 :Discharging of storage type in node in period , ,
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0 :Energy content of storage type in node in period ,
and scenario ,

0 :Electricity-to-heat conversion by converter type in node
in period , and scenario ,

0 :Electric specific load shed in node in period ,
and scenario ,

0 :Building heat load shed in node in period ,
and scenario .
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Appendix B. Technology input data 
Tables 3 and 4  

Table 3 Electricity generator investment options and their assumed capital costs (in €/kW) for future periods. Source: [49].      
Technology Capital cost [€/kW]  

’20-’30 ’35-’40 ’45-’60  
Lignite (conventional) 1800 1800 1800 Oil (conventional)a – – – Coal (conventional) 1600 1600 1600 Coal (10% bio co-fire) 1600 1600 1600 Combined Cycle Gas 720 690 660 Open Cycle Gas 400 400 400 Nuclear 6000 6000 6000 Bio (conventional) 2000 1800 1700 Geothermal 4970 4586 3749 Hydro (regulated) 3000 3000 3000 Hydro (run-of-river) 2450 2400 2350 Solar Photovoltaic 710 663 519 Waste (electricity-only) 2030 2013 2005 Wave 6100 3100 2025 Wind (offshore) 2778 2048 1929 Wind (onshore) 1295 1161 1010 
a ‘Oil (conventional)’ is not considered an investment option, only an existing power generator.  

Table 4 Electricity storage investment options and their assumed capital costs for future periods. Source:  [69,70].     
Technology Capital cost [€/kW]  

Charge Storage  
Hydro (pumped storage) 1000 100 Lithium-ion Battery 198 a 0 b 
a Capital charge cost is €246/kW for the first investment period (2020 to 2025). b Charge and storage capacity are developed together for lithium-ion batteries, hence no ca-pital storage costs.  
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