

Department of Chemical Engineering

TKP4900 - Master Thesis

Optimal Control of Energy Storage
Systems

Author:
Alireza Mirzaei

Supervisors:
Sigurd Skogestad — David Pérez Piñeiro

Septmber, 2021

I dedicate this work to my parents who have
always been supportive of my decisions and

challenges

i

Abstract

Fossil fuel consumption and global warming are among the most pressing problems in present time.
This, in turn, has necessitated the application of renewable sources of energy like as thermal energy
of earth. Development of advanced technologies to improve the thermal energy performance of the
buildings by using earth is an example of such technology and called thermal energy storage (TES).

Energy storage problems are highly stochastic in nature. Not only the generation of the renewable
energy is uncertain, but also the energy prices are not constant. Therefore implementation of
efficient control and optimization policies will decrease energy consumption and cost. In this thesis,
we studied the optimal control of borehole energy storage system. In order to minimize the annual
energy costs, we developed two methods of parameterization in Cost Function Aprroximation
(CFA) policy which itself integrated with a direct lookahead policy. These algorithms decide
about the daily energy flows and calculate the optimal values of tuning parameters. We applied
the forecast error technique to predict randomness in future and integrated it with MPC Control.
The results prove that these parameterized CFA-DLA policies are suitable to be used in reality.

ii

Acknowledgements

This thesis did not reached end with kind supports and help of many individual. I would like to
extend my thanks to all of them.

I highly appreciate chemical process system engineering group especially my supervisor, Professor
Sigurd Skogestad, to provided me with enough knowledge and relevant prerequisites needed to
complete this thesis.

After that, I would like to express my special gratitude to my co-supervisor David Pérez Piñeiro
who supported me till end of this thesis and spent a lot of time and endeavor for different part of
the project. Without his coordination, it was not possible to finish it on time.

I am highly indebted to Jose Otavio Assumpcao Matias for his advices and troubleshooting of the
Codes.

My thanks and appreciations also go to classmates who have willingly helped me out with their
knowledge.

iii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Importance of Renewable Energy and the Control of Energy Storage Systems . . . 1

1.2 Contributions of the Master Thesis . 2

1.3 Organization of the Report . 2

2 Literature Review of Stochastic Optimization and Energy Storage 4

3 Stochastic Optimization 7

3.1 Canonical Model in Stochastic Optimization . 7

3.1.1 State Variables . 7

3.1.2 Decision Variables . 8

3.1.3 Exogenous Information Variables . 8

3.1.4 Transition Function . 8

3.1.5 Objective Function . 9

3.2 Control Policies . 9

3.2.1 Policy Function Approximation (PFA) . 9

3.2.2 Cost Function Approximation (CFA) . 11

3.2.3 Value Function Approximation (VFA) . 12

3.2.4 Direct Lookahead Approximation (DLA) 12

4 Case study: A Borehole Energy Storage System 14

4.1 Basic Model . 14

4.1.1 Static Parameters . 16

4.1.2 State Variables . 16

4.1.3 Decision Variables . 17

4.1.4 Constraints . 17

4.1.5 Exogenous Information . 18

4.1.6 State Transition Function . 18

4.1.7 Objective Function . 19

4.2 Exogenous Information . 20

4.2.1 Price Model . 20

4.2.2 Demand Model . 20

iv

4.2.3 Underground Temperature Model . 21

5 Designing Policies, Hybrid CFA-DLA 23

5.1 Model Predictive Control . 23

5.2 Developing Forecast Error . 25

5.3 Policy Parameterization . 27

5.3.1 Parameterization on Transition Function . 27

5.3.2 Parameterization on Demand Forecast . 28

5.4 Policy Cost Index and Cost Reduction . 28

6 Evaluating Policies Performances 29

6.1 Benchmark Policy with Perfect Forecast . 29

6.2 Effect of Different Forecast Error on Cost . 30

6.3 Policy Performance of Parameterization on Transition Function 33

6.4 Policy Performance of Parameterization on Demand Forecast 36

6.5 Comparison of the Results . 38

7 Discussion 40

7.1 Performance of Parameterized CFA . 40

7.2 Simplifications and Challenges of the Model . 41

7.3 Suggestion for Further Studies . 41

8 Conclusion 42

Bibliography 43

Appendix 44

A Static Parameters and Initial Conditions . 44

B Generation of Exogenous Information . 45

B.1 Driver . 45

B.2 Exogenous Information Function . 46

C Optimal Cost . 47

D Code of Parameterized Cost Function Approximation: Single Scalar Parameteriza-
tion on Transition Function . 53

E Code of Parameterized Cost Function Approximation: Monthly-Based Parameter-
ization on Transition Function . 59

F Code of Parameterized Cost Function Approximation: Two Dimensional Search over
Parameterized Transition Function . 66

v

G Code of Parameterized Cost Function Approximation: Single Scalar Parameteriza-
tion on Demand Forecast . 72

H Code of parameterized cost function approximation: Monthly-Based Parameteriza-
tion on Demand forecast constraint . 78

vi

Abbreviations

ADP : Approximate Dynamic Programming

ADDP :Approximate Dual Dynamic Programming

ASHP : Air Source Heat Pump

BDP : Backward Dynamic Programing

CFA : Cost Function Approximation

COP : Coefficient of Performance

DLA : Direct Lookahead Approximation

GSHP : Ground Source Heat Pump

MDP : Markovian Decision Process

MPC : Model Predictive Control

SDDP : Stochastic Dual Dynamic Programming

TES : Thermal Energy Storage

PFA : Policy Function Approximation

VFA : Value Function Approximation

vii

Nomenclature

Gereral Symbols

C Stage cost -

E Average or expectation -

F̄π Approximation of total cost obtained by policy π -

Kt Input coefficient in Ricatti equation -

N Number of sample paths -

pt Price at time t -

p̄t Estimate of price at time t -

S0 Initial state -

St State at time t -

S̃t,t′ State approximation at time t’ being made at time t -

SM Transition function of states -

t discrete time -

t′ discrete time in prediction horizon -

T Control horizon -

Vt Value function at time t -

V̄t Approximation of value function at time t -

Wt Exogenous information at time t -

W̃t,t′ Approximation of the exogenous information at time t’ being made at time t -

X Set of possible actions -

xt Action at time t -

x̃t,t′ Action based on approximation of states and exogenous information at time t’ being made
at time t -

α A coefficient between 0 and 1 -

θ Parameter -

π Policy -

Π Set of all possible Policies -

ωt Sample realization of random variable -

Symbols Used in our Model

Asd Maximum value of heating demand MWh

Awd Maximum value of cooling demand MWh

Ainf Domain of change of underground temperature ◦K

Cp Water heat capacity MWh/Kg◦K

D Diameter of pipes in borehole Meter

Dt Demand at time t MWh

viii

D̂t change of demand between time t and t+1 MWh

Dt,t′ Approximation of demand at time t’ being made at time t MWh

Dw
std Standard deviation of randomness of demand in summer MWh

Ds
std Standard deviation of randomness of demand in winter MWh

FNorm Cost of unparameterized model NOK

FOpt Real optimal cost NOK

fDt,t′ Forecast of demand at time t’ being made at time t MWh

fP
c

t,t′ Forecast of cooling price at time t’ being made at time t NOK

fP
h

t,t′ Forecast of heating price at time t’ being made at time t NOK

fT
inf

t,t′ Forecast of underground temperature at time t’ being made at time t ◦K

L Length of the pipes in borehole Meter

m Water mass in borehole Kg

NOP Number of pipes −

P ct Cooling price at time t NOK

Pht Heating price at time t NOK

P̂ ct change of cooling price between time t and t+1 NOK

P̂ht change of heating price between time t and t+1 NOK

P̂ cavg Average cooling price NOK

P̂havg Average heating price NOK

P̂ cmin Minimum cooling price NOK

P̂hmin Minimum heating price NOK

P̂ cstd Standard deviation of randomness in cooling price NOK

P̂hstd Standard deviation of randomness in heating price NOK

Qbt Discrete energy flow between borehole and demand MWh

Qct Discrete energy flow of cooler MWh

Qht Discrete energy flow of heater MWh

Q̃bt,t′ Estimation of discrete energy flow between borehole and demand based on forecast of
exogenous information and states at time t’ being made at time t MWh

Q̃ct,t′ Estimation of discrete energy flow of cooler based on forecast of exogenous information and
states at time t’ being made at time t MWh

Q̃ht,t′ Estimation of discrete energy flow of heater based on forecast of exogenous information
and states at time t’ being made at time t MWh

Rmax Maximum allowable energy flow between demand and borehole MWh

T b Borehole temperature at time t ◦K

T̃ bt,t′ Estimation of borehole temperature based on forecast of exogenous information at time t’
being made at time t ◦K

ix

T inf
t Underground temperature at time t ◦K

T̂ inft Change of underground temperature between time t and t+1 ◦K

T infavg Average underground temperature ◦K

T̂ infstd Standard deviation of randomness in underground temperature ◦K

εDt,t′ Vector of forecast noise of demand at time t’ being made at time t MWh

εP
c

t,t′ Vector of forecast noise of cooler price at time t’ being made at time t NOK

εP
h

t,t′ Vector of forecast noise of heater price at time t’ being made at time t NOK

εT
inf

t,t′ Vector of forecast noise of underground temperature at time t’ being made at time t ◦K

λ Heat transfer coefficient between borehole and underground MWh/◦K

θ Single scalar parameter -

θmonth ith coordinate of parameter -

∆Fπ(θ) Policy cost index with rexpect to parameters -

CRπ(θ) Cost Reduction with respect to parameters -

Mathematical Symbols

∇θ Derivative with respect to −

∂ Partial Derivative −

x

List of Figures

1 Development of a deterministic lookahead policy 13

2 Heating and cooling supply in a building . 15

3 Basic model . 15

4 A sample path of exogenous information . 22

5 Model Predictive Control (MPC) Diagram . 24

6 Evolution of price forecasts over 30 days period with σE = 0.1. The red line is the
actual price . 26

7 Evolution of price forecasts over 30 days period with σE = 10. The red line is the
actual price . 27

8 Profile of energy flows with error forecast σE = 0, monthly-based parameterization
on transition function . 29

9 Average performance of lookup parameterization policy under perfect forecasts,
σE = 0 for all types of exogenous information, monthly-based parameterization
on transition . 30

10 Profile of energy flows with error forecast σE = 15 for demand, monthly-based
parameterization on transition function . 31

11 Average performance of lookup parameterization policy, σE = 15 for demand,
monthly-based parameterization on transition function 31

12 Profile of energy flows with error forecast σE = 15 for Heating Price, monthly-based
parameterization on transition function . 32

13 Average performance of lookup parameterization policy, σE = 15 for heating price,
monthly-based parameterization on transition function 32

14 Profile of energy flows with error forecast σE = 15 for cooling price, monthly-based
parameterization on transition function . 33

15 Average performance of lookup parameterization policy, σE = 15 for cooling price,
monthly-based parameterization on transition function 33

16 Profile of energy flows with error forecast σE = 15 for D, Ph,P c and σE = 1 for
T inf , single scalar parameterization on transition function, θ = 0.4. 34

17 Average performance of lookup parameterization policy , σE = 15 for D,Ph,P c and
σE = 1 for T inf , single scalar parameterization on transition function 34

18 Profile of energy flows with error forecast σE = 15 for D,Ph,P c and σE = 1 for
T inf , monthly-based parameterization on transition function 35

19 Average performance of lookup parameterization policy , σE = 15 for D,Ph,P c and
σE = 1 for T inf , monthly-based parameterization on transition function 35

20 Two dimensional search over performance of parametrized policy under noisy fore-
cast, σE = 15 for D,Ph,P c and σE = 1 for T inf , θAug and θSep ranges are 0 ∼ 10 . 36

21 Two dimensional search over performance of parameterized policy under noisy fore-
cast, σE = 15 for D,Ph,P c and σE = 1 for T inf , θAug and θSep ranges are 0 ∼ 1.4 . 36

22 Profile of energy flows with error forecast σE = 15 for D,Ph,P c and σE = 1 for
T inf , single scalar parameterization on demand forecast, θ = 80. 37

xi

23 Average performance of lookup parameterization policy , σE = 15 for D,Ph,P c and
σE = 1 for T inf , single scalar parameterization on demand forecast 37

24 Profile of energy flows with error forecast σE = 15 for D,Ph,P c and σE = 1 for
T inf , monthly based parameterization on demand forecast 38

25 Average performance of lookup parameterization policy , σE = 15 for D,Ph,P c and
σE = 1 for T inf , monthly-based parameterization on demand forecast 38

xii

List of Tables

1 Values of the static parameters . 16

2 Values of the initial states, S0 . 17

3 Values of average operating prices, minimum prices and standard deviation of ran-
domness in prices for both heater and cooler . 20

4 Summary of parameterization results . 39

xiii

1 Introduction

1.1 Importance of Renewable Energy and the Control of Energy Storage
Systems

Today the world needs more energy and the statistics show that energy demand is continuously
increasing in order to support economic and social growth of countries and build a better life
standards, but providing this huge amount of energy around the world should be taken with
responsibility and commitment to developing and using our resources more efficiently. These days
all of us have to be committed to protect both people and the environment and make positive
economic contributions.

The problem here is not only that the conventional energy resources such as fossil fuels are depleting
as fast as possible, but also there are increasing concerns about the adverse environmental effects of
hydrocarbons since they are almost used as the primary source of energy in all countries. It is said
that electricity production is the first source of greenhouse gases, more than sum of all driving and
flying travels. Electricity generation has been reported as the second leading cause of industrial air
pollution in the USA. Most of our electricity comes from coal, nuclear and gas cycle power plants.
Generating energy from these resources takes a severe toll on our environment and pollutes our
air, land, and water. Renewable and clean sources of energy is one of the most important measures
we can take to reduce these adverse impacts on our planet. Renewable energy is the energy
derived from natural resources that replenish themselves over a period of time without depleting.
Renewable sources of energy also have the benefit of being abundant, available in different capacities
nearly everywhere, and they cause little, if any, environmental damage. Energy from the sun,
wind, and thermal energy stored in the Earth’s crust are most well-known examples. These clean
sources of energy reduce harmful smog and toxic buildups in our air and water while they have
not negative impacts caused by coal mining and hydrocarbon exploration and development. Due
to increasing trend of population around the world and in consequence energy consumption in
residential buildings, many countries offer subsidy for applying renewable sources of energy. A
familiar example is installing solar cells in roof of the buildings. Also governments are showing
more interest in wind turbines for electricity generation and boreholes for district heating. These
resources have fewer environmental impacts e.g. producing less carbon dioxide (CO2), which is the
leading cause of global climate change.

Alongside with gradual technical improvement in manufacturing and installation of renewable
energy equipment, the public intention to replacing these sources with fossil fuels increased within
recent years. The strongest motivation for renewable sources is that renewable energy is nearly
free of charge compared to conventional one. In many cases such as solar cells it is even possible
to sell extra amount of generated electricity to the grid.

However, replacing fossil-fuel infrastructures and conventional electricity with renewable sources
will take time because renewable sources have always been associated with technical problems.
One of the most important issues with these kinds of energy is unreliability. This comes from the
fact that the most renewable resources are out of our control. In case of wind turbines or solar
cells, we are uncertain that how we have to manage to use the produced energy, because we do
not know how much energy we are able to produce over the next days. An effective approach for
solving this issue is using an energy storage device or battery. Without a battery if we can not
generate energy from renewables we have to supply energy from grid in the demand peak time
even if it is expensive. In addition if we succeed to produce more energy than what is really needed
in a specific time, extra amount is wasted. The battery enables us to store the energy and use it
in more appropriate time later. In other words, the role of battery here is to create a degree of
freedom for our decisions that let us choose that when we can charge the battery or discharge it to
supply the demand. In energy storage domain, the essence of some optimal control policies that
help us to reduce energy consumption cost is highly needed from economical point of view because
most of the time the prices are fluctuating. Moreover due to uncertain nature of renewable energy
availability in different times, such policies should ensure us that we can always provide required
energy from both conventional energy (grid) and these renewable resources. Efficiencies of these
policies depends on many factors such as uncertainty patterns, quality of prediction and model of

1

case study.

1.2 Contributions of the Master Thesis

In this thesis, we develop a stochastic optimization approach for a specific energy storage problem
and compare its efficiency with optimal point. The case study in this thesis is to provide the thermal
energy for a number of buildings. We demonstrate that how it is possible to feed the buildings
economically with required thermal energy by a borehole device in parallel with conventional fire
gas heaters and electricity based coolers while the demand is uncertain, energy prices experience
random variation and the storage device is subject to stochastic heat exchange with surrounding
underground.

We evaluate the performance of a parameterized version of hybrid Cost Function Approximation
and Direct Lookahead Approximation method which is tuned to give better results under un-
certainty. This method can be an effective way for handling uncertainty. In this approach the
computation is simpler than methods like as scenario tree Model Predictive Control and it has
been subject of interest recently by some articles and researchers. We do following tasks in this
thesis:

1. We create a mathematical model of borehole (storage device), heater and cooler and heat
exchange system between these components for control.

2. we create uncertainty models of the heating and cooling demand, heat exchange between
borehole and underground and the energy prices to estimate the expected cost of the designed
control policy.

3. We parametrize our model and implement a direct lookahead policy and tune the parameters
offline in above policy.

4. We check the performance of our control policy and compare it with the optimal cost when we
know everything about the future.

1.3 Organization of the Report

We start by defining the base model and then describe that how we can formulate the problem
by manipulating the underlying data. We then discuss the policy which is used to minimize
annual energy cost of our energy storage problem and compare it with the real optimum cost in
the situation that we have perfect forecast. This thesis includes 8 chapters. The content of rest
chapters are as following:

• Chapter 2. Literature Review of Stochastic Optimization and Energy Storage

We review other researches about energy storage systems, uncertainty modeling and different
policies to handle stochastic optimization.

• Chapter 3. Stochastic Optimization

We describe the main components in a stochastic optimization problem and go further in detail
to four groups of policies, that are generally applied to solve this problems, by presenting main
formulations.

• Chapter 4. Case study: A Borehole Energy Storage

In this chapter we present a base model of the energy storage problem and demonstrate different
variables and parameters of the system. Then we provide the formulation of the cost and show
how the stochastic variables could be simulated.

2

• Chapter 5. Designing Policies

The algorithms used in this thesis and the benchmark policy are explained in this chapter.

• Chapter 6. Evaluating Policies Performances

We implement the hybrid parameterized CFA-DLA policy in the context of our problem and
provide performance of this policy in terms of numerical results and profiles of energy flow in this
chapter.

• Chapter 7. Discussion

Our results are analyzed in this chapter. We also discuss about the development of our simplific-
ation and derive possible future research on this domain.

• Chapter 8. Conclusion

Final conclusion in connection with our findings are presented in this chapter.

3

2 Literature Review of Stochastic Optimization and Energy
Storage

Optimal control in energy storage domain under stochastic condition has been subject of interest
over recent years. Researchers have investigated on different energy storage models and developed
appropriate control policies in each case. However, according to our knowledge, few number of
researches have been carried out on optimal control of borehole systems. In this chapter we
provide with a short review of the classification of methods used to handle stochastic optimization
and afterwards we present previous works of academic communities on optimal control of energy
storage systems by above methods.

Control of energy storage systems under stochastic conditions is a kind of sequential decision mak-
ing problems. Every discrete time, the controller decides to make some decisions about the further
actions according to pre-defined policy while taking model characteristics and predictions into ac-
count and then system is updated. These actions are normally energy flows between components
of the system. W. B. Powell 2019 classified the strategies of the policy functions to four different
groups which are normally applied in sequential decision making problems:

a. Policy function approximations (PFA)

This approach is to work with analytical functions that map a state to an action and includes all
the information we need to know. These functions might be linear or nonlinear.

b. Cost function approximations (CFA)

This group of policies minimize or maximize some analytical and parameterized cost functions that
normally include analytical modified set of constraints. We recognize the CFA as the cost over
a single time period, but it is common to use hybrid methods and combine the concept of CFA
policy with a look-ahead policy.

c. Value function approximations (VFA)

This group includes the policies developing Bellman’s equation and are very popular in the lit-
erature on dynamic programming and reinforcement learning. These methods are known as the
cost-to-go function in control theory. In this approach, the quality of the policy is quantified by
the so-called value function. Computing an approximation of this value function is an important
subtopic of reinforcement learning.

d. Direct lookahead approximation (DLA)

In many problems it is not possible to compute sufficiently accurate VFAs. In such cases we
can replace the lookahead expectation with an approximate lookahead model as an alternative
option. The most well known approximation is to use a deterministic lookahead, often called
Model Predictive Control (MPC).

The two first approaches are policies based on policy search and the two last methods are policies
based on look ahead approximations. In policy search strategies an objective function is used to
search within a family of functions to find a function that works best. Lookahead approximations
are based on approximating the impact of a control action on the future. A wide range of energy
storage problems have been previously studied by researchers and policies from each of the four
classes or some hybrid policies have been investigated before.

PFA policies have been investigated in several articles in the energy storage domain. Warrington
et al. 2012 effectively controlled storage systems in one day horizon based on predefined functions
which maps state to action by wind forecast errors. Kim and W. Powell 2011 derived an optimal
policy for making advance commitments of energy from a renewable wind source in presence of
a storage device and a mean-reverting process for electricity prices. They configured the policy
in such a way that stored energy always used in next discrete time and assumed stationarity in
the wind and price processes.Han and E 2016 applied the neural network technique to conduct
energy flows from wind turbines, battery and the power grid to meet a time-varying demand.

4

Neural network approach makes control decisions based on the state of the system and therefore
is classified as a subset of PFA.

Parametrized CFA, however, have been overlooked by academic communities. Perkins and W.
Powell 2017 implemented a hybrid CFA/DLA policy by rolling forecasts to tune parameters of
an energy storage problem with stochastic energy from wind and demand. They analyzed the
performance of the different forms of parameterization on one of the constraints by changing
forecast error. They proved that quality of forecast can change the efficiency of one formulation
compared to other forms. Moreover, they demonstrated that in high level of uncertainty the
policies further underestimate the forecast to limit the risk of paying penalties for constraint
violation. Ghadimi et al. 2019 studied almost the same problem using rolling forecasts of varying
quality, but with different assumption in the model. He parameterized the model constraints and
examined the performance of lookup table parameterization policy under perfect forecast and noisy
one. He showed that modifying deterministic approximation by parameters can handle uncertainty
and at the same time capture the dynamic of full base model. By this way there is no need to
make approximation which is used in stochastic lookahead model. In same manner, Simão et al.
2017 implemented CFA in the form of deterministic look ahead associated with some parameters
to control an energy storage where energy of the battery was managed to handle the changes of
renewable energy.

VFA policies, usually referred to as dynamic programming, have been very popular in machine
learning domain. For example, Zhou et al. 2018 performed Backward Dynamic Programming
(BDP) to find an optimal policy for managing wind energy and storage system in presence of
price variation and wind unreliability. One of the main drawbacks of dynamic programming is
the cost of the computation especially in large state space systems. The complexity of dynamic
programming techniques increases linearly with the number of stages, but exponentially with the
number of state variables. This matter is called “curse of dimensionality”. The practical meaning
for energy storage domain is that the complexity linearly with the number of time samples, but
exponentially with the number of storage devices, and with the number of state variables describing
each device as well. Energy storage problems in reality have large state space and stochastic future
processes of such complex problems are infeasible to develop. Many authors studied on a so-called
Approximate Dynamic Programming (ADP) technique that applies an approximation of the base
model. Lohndorf and Minner 2010 implemented an ADP least-squares policy evaluation technique,
which worked based on temporal differences, to find the optimal infinite-horizon storage for an
energy storage system combined with renewables. They studied on a system with a renewable
source and a storage device and proposed the model bidding processes as continuous-state Markov
decision processes. The problem solved via stochastic dynamic programming. To avoid the curse
of dimensionality, the value function was approximated by a set of linearly independent functions
and the results were compared to the ones obtained by linear programming. They later presented
an approach named approximate stochastic dual dynamic programming (ADDP) which integrated
ideas from ADP with stochastic dual dynamic programming (SDDP), which approximated the
value of energy storage using multidimensional Bender’s cuts (Lohndorf, D.Wozabal et al. 2013).
Backward ADP was also tested and showed near-optimal solution in Durante et al. 2017 and Cheng
et al. 2018. Salas and W. Powell 2018 benchmarked a scalable ADP algorithm with piece-wise,
separable VFAs for stochastic control of Grid-Level Energy Storage and showed that this algorithm
is able to design storage policies that are within 0.08% of optimal on deterministic models, and
within 0.86% on stochastic models. They tested their model with 5 energy storage device at the
same time and proved that this method learn similar complex behavior for such system.

The most popular approximation strategy is to use a deterministic lookahead, often called model
predictive control or rolling/receding horizon procedure. This group of policies are usually the first
policy that comes into mind when we are going to solve a problem which needs a lookahead policy.
Deterministic prediction of random exogenous processes has been applied in the energy domain.
Wallace and Fleten 2003 implemented deterministic forecasts of wind, solar and electricity loads
to manage energy storage. Sioshansi et al. 2014 studied the benefits of integrating wind turbines
and storage devices by utilizing a deterministic lookahead which makes decision based on a mixed
integer program with prediction for two-weeks horizon. Deterministic lookahead policies are sub-
ject to argument by the research communities that they do not take uncertainty into account and
forecast error cannot be controlled in such models. Some researchers studied on stochastic DLA

5

policies in different domains. Jacobs et al. 1995 used stochastic lookahead model for hydroelec-
tric power planning with streamflow forecasting models and a database containing hydrological
information. In another article Takriti et al. 1996 developed a model and a solution technique for
generating of electricity power when demands are uncertain. His results indicate large saving in
terms of cost of power generating systems with stochastic model instead of the deterministic model.
In energy storage domain Arnold and Andersson 2011 implemented MPC to control a storage hub
with both battery and hot water storage devices to minimize the cost of satisfying loads of a bunch
of households in presence of uncertain renewable energy load as well as electricity and natural
gas prices. Rahmani 2017 showed the remarkable potential for minimizing the energy loss and
operation cost by optimal control of energy storage systems and application of stochastic MPC. In
this work, MPC increased the robustness of optimization procedure with respect to the prediction
errors. Kou et al. 2018 developed a new stochastic energy scheduling scheme for microgrids. In
his scheme the energy scheduling was formulated as a stochastic model predictive control problem
which incorporates the uncertainties in both sides of supply and demand. By machine learning
techniques, he converted his problem to a standard convex quadratic programming which solved
efficiently. This method worked well with both Gaussian and non-Gaussian uncertainties.

In lookahead approximation policies, it is very important to perform a good uncertainty modelling
to handle stochastic optimization. There are several articles that addressed uncertainty in their
energy storage case studies. Backward DP was tested to find near-optimal solution in Durante
et al. 2017. Zhou et al. 2018 also performed Backward Dynamic Programming (BDP) to find
an optimal policy for managing wind energy storage system in presence of price variation and
wind unreliability. However, exact Backward DP have not been widely used in the energy storage
domain due to its potential problems with large state space. Another challenge in direct lookahead
policies is model simplification which should be taken carefully. This is essential and have been
performed in most of the literature to allow the controller to solve the problem, but this have to
keep the simplified model near the reality. In most of the literature simplifications performed in
the modelling of the generation of renewable energy and price processes. For example Ridder et al.
2011 assumes simple model to describe the dynamics of the underground storage system to be able
to implement dynamic programming. He obtains a low root-mean-square value of the prediction
error showing that his model is sufficiently good in predicting the temperature in the complex
model and used by the controller. Price changes and production of renewables have also been
subject to some simplifications in other previous works. For example Jiang et al. (2014), Cheng
et al. 2018 and Mokrian et al. (2006) modeled it as a first order Markov chain in their works.

Almost all previous researches were about two specific energy source, one stochastic wind or solar
energy and one electricity grid, which are used to charge both storage device and supply the
demand. The models are simple and not characterize the real system in detail which is partly
inevitable due to complexity of computations. Borehole as an efficient system for recovery of
geothermal energy storage purposes have also been increasingly trended over recent years. But
according to our search, articles about the borehole system limited to modeling, structure, sizing
and pipe arrangement of these underground systems. As an research in control domain, Rink
has provided with some papers about heat pumps control extended with a battery subjecting to
variable energy prices, but his works does not cover long term energy storage (Rink et al. 1988 and
Rink 1994). we did not find any article about optimal control of borehole system under stochastic
condition.

In this thesis, we design different policies for optimal control of thermal energy storage in a typical
borehole system and evaluate their performance. We also benchmark these polices against real
optimal cost (perfect forecast). We describe our policy in chapter 4.

6

3 Stochastic Optimization

There is a wide spectrum of optimal control problems that need making decisions while they are
associated with uncertainty. The sequence of these problems is decisions, information, decisions,
information and so on. This kind of sequential decision making often referred to as decisions
under uncertainty or stochastic optimization. Such problems falls into limitless domains such as:
control engineering, economic and finance, stock market, games, energy storage, freight transport-
ation and logistics scheduling. Application of optimal control under uncertainty in energy domain
include unit commitment, energy storage, bidding energy resource, pricing electricity contracts
and investment planning. In such problems every time that we make a decision, new information
enters to our system in a variety of forms such as customer demands failures, stock price changes,
unforeseen delay in scheduling, control noise and so on. These information usually affect and up-
date our understanding of the system. This overall sequence forces us to make control decisions
before this new information has been known or, in other words, means that we have to optimize
the system under uncertainty. These problems have been developed and addressed in different
domains with different notation and mathematical styles in modeling conventions by various re-
search communities under the names such as dynamic programming, optimal control, stochastic
programming, and robust optimization. The limits of these names are not clear and solutions of
these communities might overlap or sometimes applicable to each other. According to literature
there is a wide variation in the types of stochastic optimization problems in terms of the nature of
the decisions, the uncertainties and the dynamics of the system. W. B. Powell 2019 refers to this
as jungle of stochastic optimization and proposed a canonical framework for modeling and solving
these problems. The main advantage of this approach is to completely separate the design of the
model from the design of policies used to solve these models. Here we provide with a discussion of
the system in Powell’s framework. Afterwards, we continue with the canonical model for sequential
stochastic optimization (control) problems and finally we sum up with design of policies in this
canonical framework.

3.1 Canonical Model in Stochastic Optimization

In this framework there are five key elements in any sequential, stochastic decision problem which
are needed for modeling of the system. These are states, actions, exogenous information, transition
function and objective function. In this section we review these five elements in more detail.
Afterwards, we explain the policies which are used to solve a sequential decision making problem
under stochastic condition.

3.1.1 State Variables

The state variables (St
n) capture all the information from the system available to us at time t or

at iteration n. States are necessary and sufficient information enable us to realize and model the
system from time t or iteration n onward. States are used to calculate the cost function, make
the decisions and compute next states by the transition function. According to Powell framework,
state variables are often placed into three different categories (for simplicity we overlook iteration):

1. Physical resources (Rt) which could be for example inventory, temperature, or number of a
specific items. We have physical realization of this subgroup variables.

2. Other information (It) such as prices, weather, the state of the economy or history of previous
decisions. These are information which simply are not a kind of the first group.

3. Probabilistic information about the quantities that we cannot realize directly (Kt), for example
probability of failure of an equipment.

In another classification, some states are controllable while other such as weather condition are
not. There are third group of states which are partly controllable. The state space St usually

7

consists of a number of dimensions which are written as:

St = (S1t, S2t, S3t, ..., Sendt) (1)

The set of initial state, denoted with S0, includes initial values of dynamic states and is determin-
istic. we normally put all other fixed parameters and initial beliefs about unknown parameters in
this set.

3.1.2 Decision Variables

Depending on the research community that study on sequential optimal control problem, decisions
might be represented as actions (a), low dimensional controls (u), or general vectors (x) that can
be anything like as binary, scalar, continuous or discrete vectors. In control domain, they are
continuous, but in sequential stochastic decision problems they are a vector of discrete variables
being made over specific time steps. Here, we denote them with x. We call X a set of possible
values of all decisions (xt) and denote policy with Xπ(St). The relation between actions and policy
is as following:

xt = Xπ(St) (2)

3.1.3 Exogenous Information Variables

Exogenous information is any kind of information that becomes known to us at each time t, i.e.
between t-1 and t and usually denoted by Wt. These could be any type of information such as
prices, energy loads, number of failures or amount of precipitation and the sequence is W1, W2,
W3,... Taking this information to the account, we can show that sequence of the states, decisions
and information evolve with below sequence:

(S0, x0,W1,S1, x1,W2,S2, x2,W3, ..., St, xt,Wt+1) (3)

A typical way of showing exogenous information is the notation withˆsign. For example when a
energy demand changes between two discrete times randomly, we can demonstrate this exogenous
change with below equation:

Dt = Dt−1 + D̂t (4)

The exogenous information might be scalar or a vector with innumerous dimensions. It might
depend on the states and sometimes even the actions, e.g large supply could lower the price, or
it is purely independent like as amount of wind generation. The notation in the first case is
Wt+1(St, xt). The exogenous information can enter to our model in the form of observational
uncertainty, forecasting, model uncertainty, and uncertainty in the implementation of decisions.
In some cases there should be a stochastic model of uncertainty such as probability distributions,
but it is rare in case.

3.1.4 Transition Function

Transition function is referred to as the system dynamics and show the evolution of the states from
one discrete time to next one. This function is normally shown with below equation:

St+1 = SM (St, xt,Wt+1) (5)

8

Above function demonstrates that SM (.) is depended to previous states, decisions and exogenous
information that become known at every discrete time. There are two types of transition function
which classified to model based and model free. The first type implies that transition is a system
of analytical equations or in other words there is a model for transition of states, while in case of
the latter type there is not. In this type we observe a state St and then we take an action xt, but
after that all we can do is observe the next state St+1 without any estimation or calculation tools.

3.1.5 Objective Function

Performance of a system could be investigated through many ways. It might be single or multiple
goals interested in terms of cost, performance, number of system failures and time. In stochastic
optimization we will set Ct(St, xt,Wt+1) to the cost contribution of being in state St, taking
action xt and transition to next state while taking exogenous information Wt+1 into account. The
objective is to find the policy that minimizes expected cost, which is written as:

minE
π∈Π

π
T∑
t=0

C(St, X
π
t (St)) (6)

considering transition function and the fact that the expectation is over all possible paths of
W1,W2, ...,WT . The π sign in superscript of expectation implies that the exogenous information
might depend on prior actions. As it is not practically possible to calculate the expectation in
above formula, we can take the average of cumulative cost over a series of simulations as following:

−
Fπ =

1

N

N∑
n=1

T∑
t=0

C(St(ω
n), Xπ

t (St(w
n))) (7)

Here, ω is a sample realization of the random variables (W) an n is the number of the simulation
paths of exogenous information.

3.2 Control Policies

3.2.1 Policy Function Approximation (PFA)

In this class of policies we normally have a good knowledge that how we have to make decisions. The
examples covers a wide range including stock trading, frequent charge and discharge of batteries
according to price and loading and unloading of an inventory. PFA’s are analytical functions
and map states to actions while do not use an embedded optimization. We can classify them as
following:

1. Lookup tables: The simplest and most sensible class is lookup tables meaning that if a condition
is true then controller will do something specific. As an example we can define that if temperature
is above 50 °C, then the controller turn on the cooler.

2. Parametric functions: The second class is parametric functions. As an example we might hold
a stock (xt = 0) or sell (xt = 1) it if the price at every discrete time (pt) goes down below a
smoothed estimate p̄t with below formula:

p̄t = (1− α)p̄t−1 + αpt (8)

The policy then could be written as:

XΠ(St|θ) =

{
1, if pt ≤ p̄t − θ
0, otherwise

(9)

9

The parameter θ in above is then manually tuned via grid search. We call this class of policies
monotone policies because actions change monotonically.

3. Statistical models: These are also parametric functions in the form of linear or nonlinear
equations. A linear form can be written as below equation:

Xπ(St|θ) = θ0 + θ1Φ1(St) + θ2Φ2(St) (10)

This is also know as affine policy or linear decision rule. The task is to is find the best vector of θ.
If the objective function is a type of quadratic form, we can show that the best policy in absence
of any constraint derived as:

X∗(St) = KtSt (11)

which is the famous Ricatti equation.

We may also use other types of PFA such as Boltzmann policies for discrete action, nonlinear
function such as an order-up-to inventory policy, a nonparametric/locally linear policies or a neural
network. The first one chooses a discrete action according to the probability distribution. Here
the actions with the largest so-called estimated value are given the highest probability of being
accepted. The third one is again a kind of affine policy with user defined region of the state space
in which the responses are locally linear. In neural networks the care should be taken while they
have very high dimensional architectures which means that they require large training data sets
and in addition they are very sensitive to noise; therefore they are suitable for systems with less
noise. Typically there is no guarantee that a PFA is in the optimal class of policies. Instead, we
search for the best performance in a class by searching for a specific parameters that maximize or
minimize cost function as following:

Fπ(θ) = E

{
T∑
t=0

C(St, Xt
π(St|θ))|S0

}
(12)

Which is subject to below transition function:

St+1 = SM (St, xt,Wt+1) (13)

As it mentioned before, we are not able to calculate expectation. We can take two strategies of
derivative-free and derivative -based method for minimizing Fπ(θ). In the first strategy the policy
simulator is seen as a black box. The second strategy can be implemented numerically by Batch
Learning or Adaptive Learning techniques. Both of these techniques use numerical methods for
computation of derivatives. The first technique uses the average of cumulative cost over a series of
simulations in the way described in section 3.1.5. The formula becomes as following:

F̄π(θ) =
1

N

N∑
n=1

T∑
t=0

C(St(ω
n), Xt

π(St(ω
n)|θ)) (14)

and the sequence of states generated by sample path ωn is:

St+1(ωn) = SM (St(ω
n), Xπ(St(ω

n)),Wt+1(ωn)) (15)

In the second numerical technique we use stochastic gradient of objective function for updating
parameters in every forward pass of simulation as following:

θn+1 = θn + αn∇θFπ(θn,Wn+1) (16)

10

Under the conditions that cost function, policy function and transition function are differentiable,
we obtain below equation by chain rule and considering the fact that contribution cost (C(St, xt))
is a function of both state (St) and action xt, the policy Xπ(St|θ) is a function of both state (St)
and parameters (θ), and the state (St) is a function of the previous state (St−1), the previous
control decision (xt−1) and the most recent exogenous information (Wt):

∇θFπ(θ, ω) =

(
∂C0(S0, x0)

∂x0

)(
∂X0

π(S0|θ)
∂θ

)
+

T∑
t′=1

[(
∂Ct′(St′ , Xt′

π(St′))

∂St′

∂St′

∂θ

)
+
∂Ct′(St′ , xt′)

∂xt′

(
∂Xt′

π(St′ |θ)
∂St′

∂St′

∂θ
+
∂Xt′

π(St′ |θ)
∂θ

)]
(17)

where:

∂St′

∂θ
=

∂St′

∂St′−1

∂St′−1

∂θ
+

∂St′

∂xt′−1

[
∂Xπ

t′−1(St′−1|θ)
∂St′−1

∂St′−1

∂θ
+
∂Xπ

t′−1(St′−1)

∂θ

]
(18)

The derivatives (∂St′
∂θ) are calculated by above equation starting at t′ = 0 and stepping forward in

time.

PFAs do not scale to larger and more complex problems such as scheduling an airline or managing
an international supply chain and is not able to handle an inventory problem with rolling forecasts.

3.2.2 Cost Function Approximation (CFA)

These policies minimize or maximize some analytical parametrized function subject to analytic-
ally modified constraints. In CFA’s, we require to solve an imbedded optimization problem and
usually there is one or more tunable parameters θ. CFA is suited for high dimensional stochastic
optimization problems that require the use of solvers for linear, integer or nonlinear programs such
as scheduling an airline. There are three steps in the implementation of parametric CFAs:

1. Designing the parameterization

Parameterization should be chosen to improve what can be achieved with the original deterministic
approximation. There is no universal rule that how the parametrization should be implemented.
Any parametrization form might be applicable to any problem due to circumstances.

2. Evaluating a parametric CFA

The form of CFA optimization equation is as following:

XCFA(St|θ) = arg max
x∈Xt(θ)

C̄t(St, x|θ) (19)

where C̄t(St, x|θ) is the cost function having one or more parameters and could be subject to
parametrized constraints.

3. Tuning the parameters

The most common search procedures is either derivative-based stochastic search using numerical
derivatives or derivative-free stochastic optimization.

Like as PFA’s, CFA methods do not provide optimal policies in a wide range of problems.

11

3.2.3 Value Function Approximation (VFA)

Here, the system to be controlled is usually modelled as a Markovian Decision Process (MDP). An
MDP includes a set of states which present configuration of the system, a set of actions which are
reason of change of the system’s states and a set of transition probabilities. These probabilities
change from one state to another under a specific action and just depend on the current state-action
pair. Usually a reward function associating a scalar to each transition and a discounting factor
is defined. The role of discounting factor is to decreases the influence of long-term rewards. The
quality of such policy is quantified by a so-called value function which associates to each state, the
expected cumulative discounted reward from starting in that state and then following the given
policy (expectation being done over all possible trajectories). An optimal policy is one of those
which maximize the associated value function for each state.

If a system is in state St and controller takes an action xt, the system goes to a new state St+1

considering Wt as exogenous information. If we have a value function Vt+1(St+1) that estimates
the value of being in state St+1 it captures the impact of decision xt.

The ideal VFA policy involves solving Bellman’s equation as following:

Vt(St) = maxE
xt

(C(St, xt) + {Vt+1(St+1)|St, xt}) (20)

where

Vt+1(St+1) = max
π

E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))|St+1

}
(21)

The optimal policy of above formulation for a stochastic optimization problem is as following:

X∗t (St) = arg max
xt∈Xt

(C(St, xt) + E{Vt+1(St+1)|St, xt}) (22)

Since it is not possible to compute Vt+1(St+1), we use machine learning methods to replace it with
approximation of value function (V̄t+1(St+1)). This is called Value Function Approximation and
the solution would be:

XV FA
t (St) = arg max

xt∈Xt

(C(St, xt) + E
{
V̄t+1(St+1|θ)|St, xt

}
) (23)

In order to remove the expectation, we can use post-decision state (Sxt). This is the state imme-
diately after a decision is made

XV FA
t (St) = arg max

xt∈Xt

(C(St, xt) + V̄t(S
x
t |θ)) (24)

This strategy works well especially for problems where xt is a vector and V xt (Sxt) is a convex
function of Sx.

3.2.4 Direct Lookahead Approximation (DLA)

These policies model the downstream trajectory of each decision making them now. We represent
the sequence of states, actions and exogenous information same as Eq. 3, but with below differences

12

in notation:

St → S̃t,t′

xt → x̃t,t′

Wt → W̃t,t′

(25)

Tilde sign in right hand side of above replacements shows the approximation of S, x and W in
future consecutive discrete times t′ when the system is in time t. The actions x̃t,t′ determined by

policy X̃ π̃(S̃t,t′). Therefore the Eq. 3 is written for a lookahead model as following:

(St, xt, W̃t,t+1, S̃t,t+1, x̃t,t+1, W̃t,t+2, ..., S̃t,t′ , x̃t,t′ , W̃t,t′+1, ...) (26)

We may introduce any approximation we think that it is suitable to our lookahead model and it
is the real challenge. An example is change the belief model or to simplify the different types of
uncertainty. We can then write the approximate lookahead policy as below:

XDLA
t (St) = arg max

xt

C(St, xt)+ Ẽ

max
π̃

Ẽ


T∑

t′=t+1

C(S̃t,t′ , X̃
π̃(S̃t,t′))|S̃t,t+1

 |St, xt


 (27)

Typically the approximate expectations (Ẽ) are computed using Monte Carlo sampling, although
we can use a deterministic forecast. This policy is also known as a rollout policy. A simple
solution could again be the parametrization of this policy and finding the best parameters. This
policy requires that stochastic optimization problem to be solved at each time period. Fig. 1 shows
the process of development of a direct deterministic lookahead policy, but the same process is used
with any direct lookahead policy.

Figure 1: Development of a deterministic lookahead policy

13

4 Case study: A Borehole Energy Storage System

In this chapter we provide the basic model of the energy storage problem by defining state variables,
decision variables, exogenous information, transition function and objective function. In our case
study, we analyze optimal control of a heating and cooling system integrated with a borehole, as
our energy storage device, to meet daily energy demand demand. Furthermore, we describe the
methods that we use to simulate the uncertainties which enter to the system.

4.1 Basic Model

In the most buildings around 40 percent of the energy is consumed to heat and cool the building. An
effective way to reduce the electricity energy consumption, operating cost, and consequently carbon
dioxide emission is to heat and cool buildings by an underground thermal energy storage system.
Briefly underground storage field consists a large underground volume. This borehole is loaded
continuously with cold or heat quantities from demand over a year and can hold thermal energy for
longer periods. Boreholes are the most well-known underground thermal energy storage systems.
They typically include several horizontal and vertical pipes, drilled on the nodes of a square grid
and are filled with water. This water is circulated between borehole and the building. A district
heating network is a system that produces heat from a central location and might use a combination
of gas, underground thermal energy or waste heat. Underground pipes then carry warm water to
the buildings in a closed loop. The water is returned to the plant and heated and this cycle is
repeated again and again. This borehole system looks like a big underground container. There are
two types of boreholes in terms of heat exchange with underground surrounding. In the first type,
the pipes are allowed to exchange the heat freely with the underground surrounding. Underground
temperature variation is much less than the air and this stability is the main advantage of ground
source heat pump (GSHP) when it is compared to a typical air source heat pump (ASHP). This
type usually needs a heat pump to works both in summer and winter. In summers the heat is
absorbed by cold circulating water through a heat pump and warm water returns to the borehole.
The mass of circulated water is remarkably less than volume of underground water storage and
temperature in borehole does not change largely. Therefore heat quantities are dumped out to the
underground environment continuously. In winters the underground and consequently circulating
water is slightly warmer than the air and the heat of water is conducted to the building through a
heat pump. Cold water returns to the borehole and absorb the energy from warmer underground
temperature and its temperature is somewhat recovered. In another type of borehole, the heat
exchange between borehole and underground is minimized as much as possible by insulation. The
idea here is to transfer the heat to the building by quite colder circulating water through a heat
pump. Water in the storage borehole gradually become colder while summer passes and this cold
water is stored and used directly to cool the building in the summer.

In our model we assumed a primary borehole network as our storage battery device in parallel
with a conventional heater and cooler which are used to provide thermal energy for a number of
buildings. Function of auxiliary heater and cooler is to supply the shortage of the energy when it
is not possible to take all the heat or cold from borehole. Heater and cooler are working with fuel
gas and electricity and their operating cost is subject to stochastic variations.

The variation in the underground temperature is lower than the air and this make underground
more reliable energy source than outside air, however these variations depends on many factors
such as geographical location, weather condition, depth of borehole and soil type and it is not
possible to predict it directly. Therefore we consider the underground temperature variation as a
stochastic energy loss in the storage system. We will use it further in the formulation of transition
function in 4.1.6. We assume that there is no other heat loss in our model.

14

Figure 2: Heating and cooling supply in a building

In order to reduce the energy consumption cost, we use direct cooling and shutdown the heat
pump in summers, therefore we decide to control the borehole temperature between 0 °C and 12
°C. Within this range a heat pump to be coupled with borehole storage system to provide the
heat over winter, nevertheless, no building can be heated with such low temperatures. If the
temperature goes below 0 °C, not only there is the risk of water freezing but also heat pump does
not work efficiently due to high temperature difference. According to literature (Ridder et al. 2011)
setting a maximum of 12 °C as higher bound helps us to use the cold water directly for cooling
purpose. Therefore there is no need to heat pump and we shut it down over summer. A typical
sketch of our model is presented in Fig. 2.

The objective is to control the daily energy flows between borehole, heater and cooler in such a
way that we obtain the minimized energy cost. There are four nodes, three decision variables and
five exogenous information in this model. In Fig. 3 We provide with a more conceptual sketch of
the model.

Figure 3: Basic model

In winters heat flows from borehole and heater to the demand. In summer, however, heat trans-
ferred from demand to borehole and the shortage of cooling will be supplied ‘with removing the
heat by the cooler. The borehole is continuously in heat exchange with underground and the
rate of heat exchange depends on temperature difference and heat transfer coefficient. Borehole
continuously receive heat from underground surrounding.

15

4.1.1 Static Parameters

In our model some parameters assumed to be constant for simplification, therefore we assigned
fixed quantities to these parameters. First, the geometry of the borehole is fixed, therefore the
number, diameter and length of pipes are constant. Second, we supposed that overall heat transfer
coefficient between the borehole and the surrounding underground is not affected by dynamic of
the system and is estimated to be constant. This makes sense due to nearly stagnant situation of
water in borehole and negligible variation of underground temperature especially in depth. Third,
due to physical limitation of the system, the maximum flow of the water from borehole to the
system is limited to a certain value meaning that rate of the heat flow to or from the borehole in
limited up to a fixed value. In addition, we suppose that our heat pump has a fixed COP. We sort
the list of the static parameters as following:

Rmax: Maximum allowable energy flow between the borehole and the demand in MWh.

n: The number of the pipes in the borehole system

D: Diameter of the pipes in meters

L: Length of the pipes in meters

m: Mass of the water in the borehole in Kg

COP: Coefficient of performance of the heat pump

λ: Heat transfer coefficient between borehole and surrounding in MWh/°C

Cp: Water heat capacity in MWh/Kg°C

For our case study, we consider the following numerical values for the above parameters in Table
1.

Parameter Value Unit

Rmax 5 MWh
NOP 180 -

D 3 meters
L 10 meters
m 13000000 Kg

COP 3

λ 0.2 MWh/°C

Cp 0.000001167 MWh/Kg°C

Table 1: Values of the static parameters

4.1.2 State Variables

The set of state variables includes all information that we need to characterize the model of our
case study over time. This set is also sufficient for optimizer to make decisions and calculate final
cost. We denote the initial values of states by S0. Our thermal energy storage case study has
five dynamic states (St), including the demand, prices, underground temperature and borehole
temperature. We define two prices as heater price and cooler price which enable us to analyze the
contribution of each of these energy sources. We also assume that that there is no need to pay for
the cooling and heating by borehole and it is free of charge. Therefore the states of the system is
given by:

St = (Dt, Tt
b, Tt

inf , Pt
h, Pt

c) (28)

16

Dt: Heat demand on day t in MWh.

Tt
b: Borehole temperature on day t in °C.

Tt
inf: Underground temperature on day t in °C.

Pt
h: Heating price by heater on day t in NOK/MWh

Pt
c: Cooling price by cooler on day t in NOK/MWh

We present the values of these initial states in Table 2:

Variable Value Unit

D0 7.5 MWh
T0

b 12 °C
T0

inf 18 °C
P0

h 70 NOK/MWh
P0

c 1200 NOK/MWh

Table 2: Values of the initial states, S0

we assume that control starts form November. We also suppose that each house needs a maximum
of 100 KWh/day and 33 KWh/day for heating and cooling purposes respectively and our demand
network includes 150 houses. Therefore the peak demand is 15 MWh/day for heating and 5
MWh/day for cooling. November is quite cold in Norway but we can assume that underground
temperature is in its peak in range of 14 to 18 °C. This range is typical for underground depth
of 12 ft and more. we set initial value of the demand around half of the peak in the coldest day
which is 7.5 MWh. Household electricity price in first quarter of 2021 is around 1200 NOK/MW
in Norway which could be a base for cooling price. For heating purpose, we use natural gas fire
boiler. We set natural gas price is around 20.9 NOK/MMBTU or around 70 NOK/MWh.

4.1.3 Decision Variables

The set of decision variables (Qt
b,h,c) includes all energy flow allocations which made everyday

by controller. Heating of the buildings can take place by the heater and borehole in our model.
Similarly cold could be supplied by borehole and cooler. Cold is normally the inverse of the heat.
Therefore cooling of the building by borehole is considered to be as flowing of the heat from
buildings to borehole. Taking above points to the account, set of decision variables is as following:

Xt = (Qt
b, Qt

h, Qt
c) (29)

Qt
b: The amount of heat and cold which is provided by borehole on day t in MWh/Day

Qt
h: The amount of heat which is provided by heater on day t in MWh/Day.

Qt
c: The amount of cold which is provided by cooler on day t in MWh/Day.

4.1.4 Constraints

In our model state variables and actions, which were specified in previous parts, are subject to
some constraints as following:

Due to maximum amount of water that can be circulated by pump and assuming 4 °C as approach
temperature of inlet and outlet flow of the water to the evaporator of the heat pump, maximum
flow of energy the borehole to buildings and inversely from buildings to the borehole is limited up

17

to a certain value. Due to this limitation there is a maximum value for the energy that can be
taken from or given to the borehole. Here we assumed that this maximum is 5 MWh. Therefore:

0 ≤ Qtb ≤ 5MWh (30)

As it was mentioned in basic model, we are interested in controlling the borehole temperature
between 0 and 12 °C. Therefore the second constraint is:

0◦C ≤ Ttb ≤ 12◦C (31)

In addition we cannot have the negative values for our energy flows, therefore next constraint is
that all energy flows have positive values:

Qt
b, Qt

h, Qt
c ≥ 0 (32)

Energy flows should be controlled in such a way that can meet the demand everyday. Here we
assumed that we do not heat and cool the building at same time. Therefore we can write this
constraint as following formula:

Dt = (
COP

COP − 1
Qt

b +Qt
h) ∗ 1 {Dt ≥ 0}+ (Qt

b +Qt
c) ∗ 1 {Dt ≺ 0} (33)

Which means that our daily heating demand shall be equal to sum of heating flows from both
borehole and heater and our daily cooling demand shall be equal to sum of the removing heat by
both borehole and cooler.

4.1.5 Exogenous Information

We let the ωt be the vector of our exogenous information. These are random variables or disturb-
ances that we do not know anything about them at each discrete time that we make a decision.
These information enter to our model later. We consider them as the exogenous change of states
and we use ”hat” sign to indicate these variables. In our model they are as following:

D̂t: The change of demand between t and t+1 i.e. two different days in MWh

T̂ t
inf: The change of underground temperature between t and t+1 i.e. two different days in °C.

P̂ t
h: The change of heating price by heater between t and t+1, i.e. two different days in

NOK/MWh.

P̂ t
c: The amount of cooling price change by cooler between t and t+1, i.e. two different days in

NOK/MWh.

It is very critical to estimate a good model for probability distribution of the exogenous vari-
ables. This helps us to stay near optimal point in Lookahead Approximations or Value Function
Approximation. We will discuss it in chapter 7.

4.1.6 State Transition Function

The transition function SM(St, Xt, ωt+1) specifies the transition of the states from t to t+1 and
represents the dynamic of the model. The set of transition functions of the states, which includes
exogenous information, is obtained by following equations in our model:

Dt+1 = Dt + D̂t (34)

18

Pht+1 = Pht + P̂ht (35)

P ct+1 = P ct + P̂ ct (36)

T inf
t+1 = Tt

inf + T̂ inf
t (37)

In order to obtain transition function of the borehole temperature, we have to write an energy
balance over the borehole:

mCp
dT b

dt
=λ(Tinf -Tb)±Qb (38)

Here m is the mass of water in the borehole and Cp is the heat capacity of water. The sign ±
before Qb shows the direction of the heat flow. It can be from borehole to demand in case of
heating or inverse in case of cooling. λ represents the overall heat transfer coefficient of borehole
with underground. Based on our model assumption, we need a borehole network with low λ to
minimize the loss, because we are interested that borehole can store the thermal energy inside.
After discretizing and rearranging above equation we have the following equation for transition of
the borehole temperature:

Tt+1
b = (1− λ

mCp
)Tt

b+
λ

mCp
Tinf
t ±

1

mCp
Qb (39)

4.1.7 Objective Function

Our cost function characterizes our system and helps us to know that how much we are far from
the optimal operation. We assume that the cost of using borehole for heating/cooling purpose can
be neglected while compared to heater and cooler. Therefore we have to pay every time that we
use heater or cooler due to their energy consumption.

Therefore our stage cost can be written as below equation:

C(St, Xt) = Qt
bPt

h +Qt
cPt

c (40)

And the total cost over a year is equal to:

TotalCos t =

365∑
t=1

C(St, Xt) (41)

We are interested to minimize the annual energy cost. Therefore our objective function is as
following formula:

min
π

E[

365∑
t=1

C(St, Xt)|S0] (42)

Our objective is to apply a policy π that minimizes this cost and we have to choose it from π ∈
Π. Π is the set of all possible policies that meet the constraints within entire control period.

19

4.2 Exogenous Information

In this section we present the models of the exogenous information processes. There are four
sources of randomness in our case study by design. The first is underground temperature (Tt

inf)
which can impact on our borehole temperature by heat exchange. The other exogenous information
are demand, heating price and cooling price. In this section we provide with the formulas used to
model the variations of underground temperature, demand and prices.

4.2.1 Price Model

Electricity prices are stochastic and might be updated daily, hourly and in some cases even every
5 minutes. In this work, we assume that heater and cooler prices follow first order Markov chain
model. we use following formula and represent the randomness by Guassian noise as:

Pt
h,c = max

{
Ph,cmin, P

h,c
avg + normrnd(0, Ph,cstd)

}
(43)

In the above model prices fluctuates around an average value (Ph,cavg) every day while they cannot

be lower than a minimum value (Ph,cmin) . The standard deviation of both prices is denoted by Ph,cstd .
These values are presented in Table 3.

Variable Value Unit

Pavg
h 70 NOK/MWh

Pavg
c 1200 NOK/MWh

Pstd
h 5 NOK/MWh

Pstd
c 300 NOK/MWh

Pmin
h 20 NOK/MWh

Pmin
c 500 NOK/MWh

Table 3: Values of average operating prices, minimum prices and standard deviation of randomness
in prices for both heater and cooler

Fig. 4 provides a typical profile of prices. It can be seen that how the profile of stochastic prices
over a year looks like.

4.2.2 Demand Model

We assume that control starts from first day of the November. we set half of the maximum as
initial demand at this time. Our demand continues to increase and peak at a maximum and
then it declines over the winter. Alternatively when summer starts the demand passes zero and
becomes negative which means that cooling is required by the demand. As the summer days go
ahead the negative demand increases, touches a minimum and then returns to its initial value. We
characterize this model with a sinusoidal function over the year. We also assumed that duration
of heating is around 9 months and we provide the cooling just for rest of the year, i.e. 3 months.
Moreover, we consider a higher absolute value for heating compared to cooling which quite complies
to Norway weather condition. In order to take randomness into account in daily demand, we add
a Gaussian noise to both winter and summer demand functions as following:

Dw
t = −Awd sin(

0.85πt

270
+

7π

6
) + normrnd(0, Dw

std) (44)

Ds
t = −Asd sin(

πt

95
) + normrnd(0, Ds

std) (45)

20

Here Dw
t and Ds

t represent daily demand in winter and summer, respectively. We set 15 MWh as
the maximum daily heating demand and 7 MWh for that of cooling. Therefore we set following
values to the parameters in the demand equations:

Asd: 15 MWh which is Maximum value of heating demand

Awd : 7 MWh which is Maximum value of cooling demand

Dw
std: 3 MWh which is standard deviation of heating demand, i.e. 20 percent of the maximum

heating

Ds
std: 1.4 MWh which is standard deviation of cooling demand, i.e. 20 percent of the maximum

cooling

Fig. 4 provides that how the stochastic price demand over a year looks like.

4.2.3 Underground Temperature Model

Underground temperature, and in consequence, heat exchange between borehole and underground
depends to different factors such as geographical location, weather variation, depth of installation
and type of the soil. A number of quantitative models from geothermal low activity areas (i.e.
on stable platforms outside tectonic and volcanically active areas) show that at shallow depths
down to a few hundred meters, mean annual surface temperature is the main factor that controls
subsurface temperature. But most of the resource agree that it fluctuates between 10 °C and 25
°C. In this model we assume that this temperature varies in a range between 14-18 °C and in first
days of the winter (first day of November in our case study) it is equal or very close to its maximum
value. When days go ahead through a year, it reaches a minimum and then returns again to the
maximum after 365 days. These variation is simulated by a sinusoidal function as following:

Tt
inf = Tavg

inf −Ainf sin(
2πt

365
− π

2
) + normrnd(0, Tstd

inf) (46)

We set following values to the parameters of above equation:

Tavg
inf: 289 °K (16 °C) which is the average underground temperature

Ainf: 2 °K (°C) which is the half of domain of underground temperature change

Tstd
inf: 0.3 °K (°C) which is the standard deviation of randomness in underground temperature

Fig. 4 shows that how the variation of underground temperature looks like over a year.

21

Figure 4: A sample path of exogenous information

We modeled our exogenous information as sinusoidal load, sinusoidal underground temperature
function and first order Markov chain prices in the previous sections. We will set the parameterized
CFA-DLA policy and optimize these parameters in our energy storage problem. In order to verify
the performance of our policy we need to benchmark it against perfect forecast. The difference in
total costs shows us how much we are from optimal cost under perfect forecast.

22

5 Designing Policies, Hybrid CFA-DLA

In this chapter we present the policies that are designed to allocate energy flows as decision variables
in our case study. As mentioned before, W. B. Powell 2019 classified four different approaches for
solving the stochastic optimization problem with sequential decision making as: policy function
approximations (PFA), cost function approximations (CFA), value function approximations (VFA)
and direct lookahead Approximation (DLA). Here we will take the parametrized version of Cost
Function Approximation policy which itself is a hybrid method of both CFA and DLA. We describe
that how we design this policy for our case study.

In order to test this policy and see how much the obtained cost via this policy is far from our
real optimal value, we have to benchmark it against the perfect forecast. In the perfect forecast
model, we assume that we know all stochastic changes of exogenous information which happen in
the future. Therefore the problem can be addressed as a deterministic model and obtained cost is
the real optimal cost of the optimization problem.

In order to have a solid understanding of our method, we start by presenting DLA metohd, then
continue with CFA and finally describe that how these methods are integrated in our method.
Based on the formulation provided in section 4, our goal is to optimize below analytical cost
function:

min
π

E[
365∑
t=1

Qt
hPt

h +Qt
cPt

c|S0] (47)

In order to remove the expectation sign, we take the technique mentioned in Eq. 14 and compute
the average of cumulative cost over different simulation paths of exogenous price, demand and
underground temperature. These exogenous information generated by the formulas presented in
sections 4.2.1, 4.2.2 and 4.2.3. Now, we have to define a lookahead policy to minimize the above
objective function.

5.1 Model Predictive Control

We use a deterministic lookahead policy for optimization of above cost function over a year, The
deterministic lookeahad policy called called Model Predictive Control (MPC) in some resources.
A deterministic lookahead model is a deterministic approximation of the base model. It is an
advanced tool in process control which is used to control a process while satisfying the set of
constraints each time the optimization repeated. It has been popular in the process industries
since the 1980s and in recent years it has also been applied in power system balancing models and
power electronics. MPC relies on dynamic models of the real process. It is based on iterative,
finite-horizon open loop optimization of a system model in consecutive time steps. The current
states of the system are measured every discrete time (t), and an optimal open loop control strategy
is computed by a numerical solver for specified prediction time horizon, i.e. from time t to H in the
future [t,t+H]. At the same time an online calculation is performed to explore state trajectories
that emanate from the current state. After the set of actions is calculated by solver, only the first
action is fed into the system and the set of states is updated. Then the states of the system are
measured again and the calculations are repeated starting from the new current state with a new
control and new predicted state path. Here the prediction horizon keeps being shifted forward.
This approach is not always optimal but in practice it has given very good results. Fig. 5 shows a
diagram of MPC control and demonstrates that how it works.

23

Figure 5: Model Predictive Control (MPC) Diagram

Our goal is to use above method to solve the optimization Eq. 47. At every discrete time we use
lingprog solver to compute all energy flows and trajectories in whole prediction horizon and the
first set of these energy flows update the set of states by transition functions. It is obvious that
the formulation in Eq. 47 cannot be solved with lookeahed method due to presence of uncertainty
in the form of future prices, demands and underground temperature which affect our system.
Therefore we need to find a way to make forecast for these variables and solve the problem. We
denote all of the forecast variables in the lookahead model with tildes and index them by both the
time t at which we are making our decision and time t

′
representing a time in future. Now the

variables become in the following forms:

• The set of decisions vector to be executed at time t
′

in the forecast horizon being made at

time t
(
x̃t,1, x̃t,2, x̃t,3, ..., x̃t,t′ , .., x̃t,t+H

)
• The set of states vector to be calculated at time t

′
in the forecast horizon being made at time

t
(
S̃t,1, S̃t,2, S̃t,3, ..., S̃t,t′ , .., S̃t,t+H

)
• The stage cost vector based on the above actions and states to be calculated at time t

′
in

the forecast horizon being made at time t (C̃t,t′)

Our deterministic lookahead policy XDLA
t (St) is defined by following linear formula:

XDLA
t (St) = arg min

xt,x̃t,t′where t′∈[t+1,t+H]

[
C(St, xt) +

t+H∑
t′=t+1

C
(
S̃t,t′ , x̃t,t′

)]
(48)

Where we have:

C(St, xt) = Qht P
h
t +QctP

c
t (49)

24

C(S̃t,t′ , x̃t,t′) = Q̃ht,t′f
Ph

t,t′ + Q̃ct,t′f
P c

t,t′ (50)

Now, we have to solve optimization problem under the constraint mentioned in Eq. 30 to 33 and
following constraint for t′ ∈ [t+ 1, t+H] forecast horizon:

0 ≤ Q̃bt,t′ ≤ 5 MWh (51)

0 ◦C ≤ T̃ bt,t′ ≤ 12 ◦C (52)

Q̃bt,t′ , Q̃
h
t,t′ , Q̃

c
t,t′ ≥ 0 (53)

D̃t,t′ = (
COP

COP − 1
Q̃bt,t′ + Q̃ht,t′) ∗ 1 {D̃t,t′ ≥ 0}+ (Q̃bt,t′ + Q̃ct,t′) ∗ 1 {D̃t,t′ ≺ 0} (54)

This linear program allows us to supply for our forecasts of demand. However, this strategy still
cause that the cheap energy is not being used if demands are higher than forecast or, from the
other side. On the other hand energy is wasted if our point forecasts are higher than demand.
Ghadimi et al. 2019 used a series of recursive equations to realistically model the evolution of
the amount of wind energy generated using rolling forecasts. The main attribute of this model
is that it helps us to manipulate forecast error and control the quality of the our forecast in the
optimization problem. In this thesis, we adopt this technique to simulate the rolling forecasts of
the exogenous information in our model and calculate that how altering forecast errors affects our
policy’s ability to make sequential decisions.

5.2 Developing Forecast Error

Here we use some recursive equations to build a realistic model of the stochastic process describing

the changes of both prices, demand and underground temperature. We define f
Ph

t,t′ , f
Pc

t,t′ , f
D

t,t′ and

fT
inf

t,t′ as the forecast of the heating price, cooling price, demand and underground temperature at
every discrete time respectively. We have:

fP
h

t+1,t′ = fP
h

t,t′ + εP
h

t+1,t′
t = 0, 1, ..., T − 1 t′ = t+ 1, ...,min (t+H,T) (55)

fP
c

t+1,t′ = fP
c

t,t′ + εP
c

t+1,t′
t = 0, 1, ..., T − 1 t′ = t+ 1, ...,min (t+H,T) (56)

fDt+1,t′ = fDt,t′ + εD
t+1,t′

t = 0, 1, ..., T − 1 t′ = t+ 1, ...,min (t+H,T) (57)

fT
inf

t+1,t′ = fT
inf

t,t′ + εT
inf

t+1,t′
t = 0, 1, ..., T − 1 t′ = t+ 1, ...,min (t+H,T) (58)

where any of the above ε
t+1,t′ represents the level of forecast noise and their distribution depends

on forecast. The vector of εt for each of exogenous information is defined by following:

εt,t′ =


εt,t+1

εt,t+2

.

.
εt,min(t+H,T)

 (59)

25

We build this noise by constructing a symmetric matrix
∑
∈ RH×H in a way that

∑
(i, j) =

σ2
Ee
−α|i−j|∀i, j and σE , α > 0 are constant real numbers. By this formulation we can adjust the

quality of the forecast by altering σE . The art here is that
∑

acts as a covariance matrix which
represents less correlation between the i-th and j-th elements when they are far from each other.
Therefore our prediction is less reliable for future discrete times which are farther from the current
time.

We compute normal noise vector as:

εt+1,t′ = LH×H . Z (60)

where LH×H is the top-left H x H block of the lower triangular Cholesky decomposition of
∑

and
Zt ∼ N (0, IH×H), i.e. as following:

Zt ∼ N

0, σE



√
ft,t+1 0 . . 0
0

√
ft,t+2 . . 0

. . .

. . .

. . .
0 . . .

√
ft,min(t+H,T)



 (61)

Each element of above noise vector has a normal distribution with zero mean and variance of σ2
E

with respect to the fact that
∑

= L.LT and
∑

(i, i) = 1. The speciality of this model is that it
allows us to manipulate σE , and thus control the quality of the forecast. In Fig. 6 and 7, we show
how the noise in our price forecast increases by raising σE . Red lines represent real values of price
and thin grey lines indicate the forecast.

Figure 6: Evolution of price forecasts over 30 days period with σE = 0.1. The red line is the actual
price

26

Figure 7: Evolution of price forecasts over 30 days period with σE = 10. The red line is the actual
price

5.3 Policy Parameterization

For benchmark policy we assume that all exogenous information are known to us over entire year.
We construct and run a deterministic MPC code including cost function in Eq. 47 and take the
average cumulative cost over 30 simulation paths of exogenous information. Larger number of
simulation paths is better, but our code becomes much more heavier due to long MPC horizon.
we use this benchmark policy to evaluate the degree to which the parameterized policy is able
to improve the cost in presence of uncertainty. We implement parameterization of the model to
compensate for uncertainties. As mentioned before, there are different ways of parameterizing
in lookahead models. Parameterization may be implemented in either constraints or transition
function. The most common form is constant forecast parameterization. Here a single scalar
parameter is used to modify the forecast amount of for example renewable energy for the entire
horizon. We formulate two different parameterization on both transition function and demand
constraint to see that which one works best.

5.3.1 Parameterization on Transition Function

In this section, we parameterize the heat transfer coefficient between borehole and underground
surrounding. The reason is that it is difficult to calculate the exact values of this parameter.
In addition λ represents the degree to which the borehole can charge with thermal energy by
underground. First we define single scalar parameter (θ) and multiply it by heat transfer coefficient.
The transition function in the prediction horizon will looks like as:

T̃ bt+1,t′ = (1− λ

mCp
)T̃ bt,t′+

λ.θ

mCp
T̃inf
t,t′ ±

Q̃bt,t′

mCp
(62)

After testing the performance of single scalar parameterization, we define 12 coordinates of θ based
on 12 months of the year with the parameters {θNov, θDec, θJan, ..., θOct} . This parameterization is
a lookup table representation because there is a different θ for each month in the lookahead policy.
We call this monthly-based parameterization hereinafter. Here, the transition function changes to:

T̃ bt+1,t′ = (1− λ

mCp
)T̃ bt,t′+

λ.θmonth
mCp

T̃inf
t,t′ ±

Q̃bt,t′

mCp
(63)

27

Low values of coordinates of θ shows that the policy is more conservative about taking heat energy
from borehole and decrease the risk of reaching to lower limits of borehole temperature. Inversely,
if the coordinates of θ are large, the policy then acts more risky about maintaining heat energy of
borehole.

5.3.2 Parameterization on Demand Forecast

In this set of experiments we parameterize the demand forecast and compare the cost with the one
obtained in paramterization policy in previous section. Here we implement parametrization in Eq.
54. Therefore we have below formulas for single scalar and monthly-based parameterization:

θ × D̃t,t′ = (
COP

COP − 1
Q̃bt,t′ + Q̃ht,t′) ∗ 1 {θ × D̃t,t′ ≥ 0}+ (Q̃bt,t′ + Q̃ct,t′) ∗ 1 {θ × D̃t,t′ ≺ 0} (64)

θmonthD̃t,t′ = (
COP

COP − 1
Q̃bt,t′ + Q̃ht,t′) ∗ 1 {θmonthD̃t,t′ ≥ 0}+ (Q̃bt,t′ + Q̃ct,t′) ∗ 1 {θmonthD̃t,t′ ≺ 0}

(65)

Again high values of different coordinates of parameters shows that the policy is more conservative
about taking heat energy from borehole and it decrease the risk of reaching to lower and upper
limits of borehole temperature. Inversely, if the parameters are small the policy then acts less
conservative about using borehole for heating and cooling purposes.

5.4 Policy Cost Index and Cost Reduction

In order to test the performance of this policy, we formulate the percentage of Policy Cost Index
(PCI) by below formula:

∆Fπ (θ) =
Fπ (θ)− FOpt

FOpt
× 100 (66)

Here Fπ (θ) is the minimum cost obtained by parameterization policy and FOpt is the optimal
cost when we assume that we have perfect knowledge of the future. The latter is sometimes
called the ”posterior optimal bound”. The Policy Cost Index indicates that how much we are
above the optimal cost. Lower values of Policy Cost Index shows that the performance of our
parameterization policy is higher.

We also define the percentage of Cost Reduction by below formula:

CRπ (θ) =
FDLA − Fπ (θ)

FDLA
× 100 (67)

where FDLA is the average cost generated by unparameterized deterministic lookahead policy.
This is the cost when we set a certain forecast error in our system and we set all parameters to
one. It shows us the maximum percentage we are able to reduce the cost by parameterization in
comparison with the case that we do not implement parameterization while we have some error
in prediction of the exogenous information. Both costs are obtained by taking average over an
examining data set of same sample paths.

28

6 Evaluating Policies Performances

For each parameterization policy described in section 5, average final cost is calculated over 30
sample paths of simulated demand, heater price, cooler price and underground temperature. Daily
energy flows are decided over a 365 days period starting from the first day of November and updated
every day. First, we obtain the expected average cost in case of benchmark policy. Second, we
present the impact of forecast error of different exogenous information on cost to see that which
one is more critical. Last, we consider a noisy forecast and see the impact of parameterization on
both transition function and demand forecast on cost. We present profiles of energy flows for each
policy and calculate the cost showing that how much we expect to pay as annual cost of the energy
consumption averaged over 30 tested trial. In the next section we will analyse and discuss these
results in detail.

6.1 Benchmark Policy with Perfect Forecast

Fig. 8 shows the energy flows of our energy system in a typical sample path of exogenous in-
formation. Here σE is set to zero meaning that we have perfect realization about the exogenous
information in upcoming discrete time. This case obviously shows perfect model and optimal
control. The average annual cost is around 705,695 NOK.

Figure 8: Profile of energy flows with error forecast σE = 0, monthly-based parameterization on
transition function

We test the performance of the parameterization policy with different coordinates of θ under
perfect forecasts. The results are presented in Fig. 9. Each coloured line represents the changes of
Policy Cost Index obtained by changing one coordinate of parameter while other coordinates kept
constant.

29

Figure 9: Average performance of lookup parameterization policy under perfect forecasts, σE = 0
for all types of exogenous information, monthly-based parameterization on transition

6.2 Effect of Different Forecast Error on Cost

In second set of experiments, we shift to noisy forecast. We set σE = 15 for each of D, Ph and
P c while it is zero for the others and do the same procedure as perfect forecast to see that which
kind of exogenous information is more critical and has more impact on cost. The energy flows in
a typical sample path and policy performance curves are presented in Fig. 10 to 15 respectively.

30

Figure 10: Profile of energy flows with error forecast σE = 15 for demand, monthly-based para-
meterization on transition function

Figure 11: Average performance of lookup parameterization policy, σE = 15 for demand, monthly-
based parameterization on transition function

31

Figure 12: Profile of energy flows with error forecast σE = 15 for Heating Price, monthly-based
parameterization on transition function

Figure 13: Average performance of lookup parameterization policy, σE = 15 for heating price,
monthly-based parameterization on transition function

32

Figure 14: Profile of energy flows with error forecast σE = 15 for cooling price, monthly-based
parameterization on transition function

Figure 15: Average performance of lookup parameterization policy, σE = 15 for cooling price,
monthly-based parameterization on transition function

6.3 Policy Performance of Parameterization on Transition Function

At this stage, we set σE = 15 for all D, Ph and P c and we consider maximum possible forecast
error on absolute value of underground temperature, i.e. σE = 1, and repeat the experiments. The
energy flows over a typical sample path and effects of scalar parameterization presented in Fig. 16

33

and 17. In this case the minimum obtained cost is 1,205,647 NOK and Policy Cost Index is 70.8
%. The Cost Reduction is calculated to be as 8.8% .

Figure 16: Profile of energy flows with error forecast σE = 15 for D, Ph,P c and σE = 1 for T inf ,
single scalar parameterization on transition function, θ = 0.4.

Figure 17: Average performance of lookup parameterization policy , σE = 15 for D,Ph,P c and
σE = 1 for T inf , single scalar parameterization on transition function

Moreover, Fig. 18 and 19 show the results of monthly-based parameterization. In this case, the
minimum obtained cost is 1,259,982 NOK and Policy Cost Index is 78.5 %. The Cost Reduction
is calculated to be 4.6%.

34

Figure 18: Profile of energy flows with error forecast σE = 15 for D,Ph,P c and σE = 1 for T inf ,
monthly-based parameterization on transition function

Figure 19: Average performance of lookup parameterization policy , σE = 15 for D,Ph,P c and
σE = 1 for T inf , monthly-based parameterization on transition function

In another set of experiments we do a two-dimensional search over two arbitrary different coordin-
ates of θmonth to check the change of cost. We select different pair of months. The lowest cost
is obtained while we manipulate the coordinates of parameters in August and September. We
presented just this result and ignore the others to avoid repetition. The Policy Cost Index can
be seen in different ranges of θAug and θSep in Fig. 20 and 21. The minimum obtained cost is
1,269,832 NOK and the Policy Cost Index is 79.9 % which is almost same as previous value.

35

Figure 20: Two dimensional search over performance of parametrized policy under noisy forecast,
σE = 15 for D,Ph,P c and σE = 1 for T inf , θAug and θSep ranges are 0 ∼ 10

Figure 21: Two dimensional search over performance of parameterized policy under noisy forecast,
σE = 15 for D,Ph,P c and σE = 1 for T inf , θAug and θSep ranges are 0 ∼ 1.4

6.4 Policy Performance of Parameterization on Demand Forecast

Now we shift to parameterization on forecast of the demand. Again we set σE = 15 for all D,
Ph and P c and σE = 1 for underground temperature while we use the formulation described in
section 5.3.2. If we use single scalar parameterization, the minimum cost of 1,065,213 NOK is

36

obtained at θ = 80. The Policy Cost Index is 51 % and the Cost Reduction is calculated to be
as 24%. Profiles and parameterization curve are presented in Fig. 22 and 23, respectively. The
results of monthly-based parameterization presented in Fig. 24 and 25, respectively. In this case,
the minimum obtained cost is 1,220,939 NOK and Policy Cost Index is 73 %. The Cost Reduction
is calculated to be as 7.6%.

Figure 22: Profile of energy flows with error forecast σE = 15 for D,Ph,P c and σE = 1 for T inf ,
single scalar parameterization on demand forecast, θ = 80.

Figure 23: Average performance of lookup parameterization policy , σE = 15 for D,Ph,P c and
σE = 1 for T inf , single scalar parameterization on demand forecast

37

Figure 24: Profile of energy flows with error forecast σE = 15 for D,Ph,P c and σE = 1 for T inf ,
monthly based parameterization on demand forecast

Figure 25: Average performance of lookup parameterization policy , σE = 15 for D,Ph,P c and
σE = 1 for T inf , monthly-based parameterization on demand forecast

6.5 Comparison of the Results

We provide a summary of the results showing the absolute minimum value of cost and Policy Cost
Index obtained in each type of the parameterized CFA Policy in Table 4.

38

Method Cost Policy Cost Index

Scalar Parameterization on Transition Function 1,205,647 NOK 70.8 %
Monthly-Based Parameterization on Transition Function 1,259,982 NOK 78.5 %

Scalar Parameterization on Demand Forecast 1,065,213 NOK 51 %
Monthly-Based Parameterization on Demand Forecast 1,220,939 NOK 73 %

Table 4: Summary of parameterization results

While the condition and sample paths of exogenous information were same for all above methods,
the lowest possible cost obtained while we chose scalar parameterization on demand forecast and
the highest one was parameterization of transition function while we set different coordinates of
parameter θ.

39

7 Discussion

This chapter includes discussion about results of the parameterized CFA-DLA policy. We explain
the difficulties with the model and some simplifications that we made and also the reality of this
model and suggest possible future extension works of this case study.

7.1 Performance of Parameterized CFA

If we check the curves presented in Fig. 9, we see that in case of perfect forecast the optimized
value for all coordinate of θ was equal to 1 as it is expected. When we set forecast error to zero
and parameters to one, this is simply indicates the optimal cost. In the next set of experiments,
we tested the importance of each type of exogenous information in value of the cost. In each
experiment, we set 15% error in forecast of one type of exogenous information and set the forecast
error of other exogenous information to zero and presented the results in section 6.2. we see that
the error in demand forecast is sensibly more critical and results in higher cost. The reason is
that we set the MPC horizon equal to control horizon in our problem. Therefore, forecast error
in demand will cause excessive heat exchange between borehole and demand and, in consequence,
more severe constraint violation.

When we used noisy forecast for all types of exogenous information in our model, the optimal
values for each coordinates of θ was different than 1. In case of monthly-based parameterization
on transition function, we obtained the minimum value of total cost while we set all coordinates of
θ to 1 except θMay which is 0. In this case, the total cost was equal to 1,259,982 NOK and percent-
age of Policy Cost Index was around 78.5%. The performance of parameterization in transition
function was not so much high. When we used single scalar and monthly-based parameterization
in transition function, we recorded just 8.8% and 4.6% lower cost compared to unparameterized
lookahead policy, respectively. The reason is the low heat transfer between borehole and under-
ground, because we were interested to keep the borehole temperature in a certain range. When
we compare results of single scalar and monthly-based parameterization, we see that the first
method yields higher performance. This is due to the fact that the control horizon is very long
and parameterization over a part of horizon is not as effective as enough. In case of monthly-based
parameterization, we generally see that the effect of this policy is very low when we parameterize
the first coordinates of θ and cost barely change with change of parameters. The range of change
of the cost increase when we implement parameterization in next coordinates of θ. The reason is
that our system is subject to receiving continuous heat from underground. When we parameterize
the first coordinates of θ, the optimizer can plan for protecting the system from violation of upper
bound of borehole temperature at the end of the control period and keep the cost low when we
change the parameters of lookahead model in first days of control; but when we shift to paramet-
erization of next coordinates of θ, the borehole temperature is more and more closer to its upper
limit. Therefore any change by parameters would affect constraint violation and consequently more
impact on final cost. In this parameterization method we performed a two dimensional grid search
over some arbitrary pairs of coordinates of θ but we did not obtain a lower cost than the one in
monthly-based parameterization in section 6.3. We presented the shape of the response surface by
performing the two-dimensional grid search for coordinate pair of θAug and θSep, while we kept
the other coordinates fixed at one. Our results in Fig. 21 shows almost the same minimum value
of cost similar to case of one dimensional search, but here coordinate’s values are different, i.e.
θAug =0.2 and θSep =0.6. Graphs can be drawn for any pair of coordinates of parameter and each
one have limits on which changing the coordinates does not improve the the result anymore. The
shape of the ridges can be quite different from one pair of coordinates to another one, while most
of them share some kind of unimodularity.

In case of parameterization of demand forecast, we obtained even better results. It was expected
due to sensitivity of the cost to the demand forecast which was mentioned earlier. We did not
perform two dimensional grid search in this policy as it was very time consuming according to 12
coordinates of θ and we could not obtain lower cost by two dimensional grid search. The single
scalar parameterization yielded lower cost which is justified due to long horizon again. We see
that by increasing value of the scalar parameter, the optimizer acts more conservative about using

40

borehole in order to avoid penalty of constraint violation. The rate of change is sharp and then
becomes moderate as it is seen in Fig. 23. After reaching a certain minimum, the cost rises again
but at a slower rate. This is due to dominating the cost of thermal energy supply by heater and
cooler in total cost.

Our results shows that the parameterization is better to be implemented on the uncertainty types
which are more critical in our system and the quality of the parameterization depends to the model.
Therefore, understanding the model characteristics and relationship between different subordinates
of the model increase the performance of parameterization. In thiscase study, we obtained 24 %
lower cost by single scalar parameterization of demand forecast compared to unparameterized
lookahead model.

7.2 Simplifications and Challenges of the Model

Generally stochastic control of all energy storage case studies need some assumption to simplify
the model as we did the same in this thesis. Nevertheless, it is very difficult and sometimes even
not possible to solve this kind of problems because an energy storage problem is a kind of large
state space problem and without simplifications the complexity of computations increase sharply.
Here we assumed constant COP, but it depends on heat flow of hot / cold sides in reality and
therefore it might undergo some variations based on the temperatures of both sides and flow rate
of circulating medium. If we take COP variation into account in our model, our linear problem will
convert to a nonlinear one. This matter not only make the optimization problem harder to solve,
but also increase the cost of computation. However, our assumption is not far from reality because
the mentioned variations are not huge. Parameterized CFA is an offline method and computation
is performed before control and then best value of parameters is searched thorough all possible
values. In our case study the speed of calculation in Matlab was low and time consuming and due
to long control horizon, it took a lot of time to obtain the cost for possible values of parameters
especially in case of monthly-based parameterizations. We recommend that it is better to adjust
shorter control horizons and more powerful programming tools.

In terms of modelling, We assumed perfect mixing and ignored modelling of the heat exchange
between returning water from heat pump and borehole. The recirculating water is a small faction
of whole borehole in reality and borehole acts like as a container. Thus, this water might not affect
the temperature of the borehole fast. However, perfect mixing is the worst case in our model and
borehole temperature is changing somewhat slower than the model which is in favor of our system.

7.3 Suggestion for Further Studies

In this thesis, we checked the performance of parameterized CFA policy integrated with MPC
method considering forecast error. We compared it with optimal policy and tested that how much
the different values of parameters affect the expected cost. However, some improvements still can
be made in terms of both modeling and policies in this case study. Some ideas are as below:

• The borehole can be modelled with more detail. Instead of heating / cooling values of energy,
we can extend the model to flow rate and temperature variations of both sides of heat pump.
However, we recommend lower control horizon in order to speed up the calculations.

• A good approach is to use machine learning methods to obtain the the best values of parameters
online. Improvement can be made on rate of convergence of parameters to optimal value.

• Different price and demand forecast patterns can be implemented in this case study to test the
performance of the policy in different situations.

41

8 Conclusion

We present the conclusion of our work in this chapter. We modeled an energy storage problem in
which the required energy by a demand is supplied by a borehole district heating system as energy
storage device in parallel to fire gas heater and electric cooler. We implemented some simplification
to our model and formulated the model with constant parameters, states, actions and transition
function. We also specified the objective function and constraints of the optimization problem in
chapter 4. We modelled exogenous information in terms of heater price, cooler price, underground
temperature and demand. We considered a noisy sinusoidal pattern for changes of demand and
underground temperature by Eq. 44, 45, 46. We also simulated prices with first order Markov
chain model via Eq. 43. In order to make prediction, we applied forecast error method within the
control horizon and updated it after every single step as described in 5.2.

We designed and tested hybrid CFA-DLA policy with two different methods of parameterization
of our model. This an offline method and computations are performed prior to control and best
parsameters are obtained through search within a valid range. The optimal parameters then adjust
when the control starts. In the first stage of experiments, we parameterized the transition function
and in the second set we shifted to parameterization of the demand forecast. We performed both
single scalar and monthly-based parameterization in both mentioned methods. Considering 15
% forecast error for demand and prices and setting this error to as maximum as possible for
underground temperature, the results of the optimization show that annual cost is the lowest
when we use single scalar parameter on demand forecast among our parameterization methods.
In this case, the optimum value of the parameter is 80 and it yields a cost which is 51 % higher
than optimal cost when we have perfect forecast. The cost is approximately 24 % lower than
unparameterized lookahead policy. According to importance of the demand forecast which we
tested earlier in section 6.2, it is justifiable that why this method indicates better performance.
The second lowest cost was obtained from single scalar parameterization of transition function. The
third and forth were monthly-based parameterization of demand forecast and transition function,
respectively. The results prove that the performance in monthly-based parameterization is not as
high as scalar parameterization.

42

Bibliography

Arnold, M. and G. Andersson (2011). ‘Model predictive control of energy storage including uncer-
tain forecasts’. In: Power Systems Computation Conference (PSCC) 23, pp. 24–29.

Cheng, B., T. samov and W. B. Powell (2018). ‘Low-Rank Value Function Approximation for
Co-Optimization of Battery Storage’. In: IEEE Transactions on Smart Grid 9.6, pp. 6590–
6598.

Durante, Joseph, Juliana Nascimento and Warren Powell (2017). ‘Backward Approximate Dynamic
Programming with Hidden Semi-Markov Stochastic Models in Energy Storage Optimization’.
In:

Ghadimi, Saeed, Raymond T. Perkins and Warren Powell (2019). ‘Reinforcement Learning via
Parametric Cost Function Approximation for Multistage Stochastic Programming’. In: pp. 1–
40.

Han, J. and W. E (2016). ‘Deep Learning Approximation for Stochastic Control Problems’. In:
CoRR.

Jacobs, J. et al. (1995). ‘SOCRATES: A system for scheduling hydroelectric generation under
uncertainty’. In: Operation Research 59, pp. 99–133.

Kim, J. H. and W. Powell (2011). ‘Optimal Energy Commitments with Storage and Intermittent
Supply’. In: Operations Research 59, pp. 1347–1360.

Kou, P., D. Liang and L. Gao (2018). ‘Stochastic Energy Scheduling in Microgrids Considering the
Uncertainties in Both Supply and Demand’. In: IEEE syst. 12, pp. 2589–2600.

Lohndorf, N., D.Wozabal and S.Minner (2013). ‘Optimizing trading decisions for hydro storage
systems using approximate dual dynamic programming optimizing trading decisions for hydro
storage systems using approximate dual dynamic programming’. In: Operation Research 61,
pp. 810–823.

Lohndorf, N. and S. Minner (2010). ‘Optimal day-ahead trading and storage of renewable energies
an approximate dynamic programming approach’. In: Energy Systems 1, pp. 1–17.

Perkins, R. T. and W. Powell (2017). ‘Stochastic Optimization with Parametric Cost Function
Approximations’. In: pp. 1–42.

Powell, Warren B. (2019). Stochastic Optimization and Learning. John Wiley and Sons, Inc, Pub-
lication.

Rahmani, Mehdi (2017). ‘Stochastic, adaptive, and dynamic control of energy storage systems
integrated with renewable energy sources for power loss minimization’. In: Renewable Energy
113, pp. 1462–1471.

Ridder, Fjo De et al. (2011). ‘An optimal control algorithm for borehole thermal energy storage
systems’. In: Energy and buildings 43, pp. 2918–2925.

Rink, R.E. (1994). ‘Optimal operation of solar heat-storage with off-peak energy price incentive’.
In: Journal of Optimization Theory and Applications 15, pp. 251–266.

Rink, R.E., V. Gourishankar and M. Zaheeruddin (1988). ‘Optimal-control of heat-pump heat-
storage systems with time-of-day energy price incentive’. In: Journal of Optimization Theory
and Applications 58, pp. 93–108.

Salas, D.F. and W. Powell (2018). ‘Benchmarking a Scalable Approximate Dynamic Program-
ming Algorithm for Stochastic Control of Grid-Level Energy Storage’. In: Informs Journal on
Computing 30, pp. 106–123.

Simão, H.P. et al. (2017). ‘The challenge of integrating offshore wind power in the U.S. electric grid.
Part II: Simulation of electricity market operations’. In: Renewable Energy 103, pp. 418–431.

Sioshansi, R., S. H. Madaeni and P. Denholm (2014). ‘A Dynamic Programming Approach to
Estimate the Capacity Value of Energy Storage’. In: IEEE Transactions on Power Systems
29.1, pp. 395–403.

Takriti, S., J. R. Birge and E. Long (1996). ‘A stochastic model for the unit commitment problem’.
In: Power Syst. 11, pp. 810–823.

Wallace, S. W. and S. E. Fleten (2003). ‘Stochastic Programming Models in Energy’. In: Handbooks
in Operations Research and Management Science 10.1, pp. 637–677.

Warrington, J. et al. (2012). ‘Robust reserve operation in power systems using affine policies.
Decision and Control (CDC)’. In: IEEE 51st Annual Conference on, pp. 1111–1117.

Zhou, Y. et al. (2018). ‘Managing wind-based electricity generation in the presence of storage and
transmission capacity’. In: Production and Operations Management 28, pp. 970–989.

43

Appendix

A Static Parameters and Initial Conditions

function S0 = S0()

% Model parameters

S0.Tbmax = 285; % Maximum allowable ground temp [Deg. K]

S0.Tbmin = 273; % Minimum allowable ground temp [Deg. K]

S0.Rmax = 5; % Maximum heating/cooling rate [MWh]

S0.m = 13000000; % Water mass in the bore based on:

% 180 pipes

% Dia. = 3 meters

% Length = 10 meters

S0.Cpw = 1.167*10^-6 % Water Heat Capacity [MWh/kG Deg. K]

S0.lambda= 0.2; % Based on OHTC X Area [MWh/Deg. K]

S0.COP = 3; %COP of heat pump

S0.Phmin = 20 % Minimum heating price

S0.Pcmin = 500 % Minimum cooling price

S0.P1std = 5 % Heating Price standard deviation [NOK/MWh]

S0.P2std = 300 % Cooling Price standard deviation [NOK/MWh]

% Initial states

S0.S.Tb = 285; % Borehole temp [Deg. K]

S0.S.Tinf= 291; % Ground temp [Deg. K]

S0.S.D = 7.5; % Demand energy [MWh]

S0.S.Ph = 70; % Gas Boiler heateing price [NOK/MWh]

S0.S.Pc = 1200; % Electricity-based cooling price[NOK/MWh]

S0.S.s_up = 5000; % Constraint upper limit violation

S0.S.s_down = 5000; % Constraint lower limit violation

end

44

B Generation of Exogenous Information

B.1 Driver

close all

clear all

clc

addpath('C:\Users\win\Desktop\Master')

plot_settings

S0 = S0()

%% Exogenouse information generation

T = 365; % Time horizon [Day]

scenario = 30; % Number of sample paths

%Exogenous information storage.

sample_path.D = [];

sample_path.Ph = [];

sample_path.Pc = [];

sample_path.Tinf= [];

for i = 1:scenario

W = exogenous_information(S0,T);

sample_path.D = [sample_path.D; W.D];

sample_path.Tinf = [sample_path.Tinf; W.Tinf];

sample_path.Ph = [sample_path.Ph; W.Ph];

sample_path.Pc = [sample_path.Pc; W.Pc];

end

%% Exogenous Information Plotting for a Sample Trial

Trial_plot=4;

subplot (4,1,1)

plot(sample_path.D(Trial_plot,:),'b')

xlabel('Time period, Day')

ylabel('Demand [MWh]')

subplot (4,1,2)

plot(sample_path.Tinf(Trial_plot,:)-273,'b')

xlabel('Time period, Day')

ylabel('$T_{underground}$, [Deg. C]')

subplot (4,1,3)

plot(sample_path.Ph(Trial_plot,:),'b')

xlabel('Time period, Day')

ylabel('Heating Price [NOK]')

subplot (4,1,4)

plot(sample_path.Pc(Trial_plot,:),'b')

xlabel('Time period, Day')

ylabel('Cooling Price [NOK]')

save('sample_path','sample_path');

45

B.2 Exogenous Information Function

function W = exoinfo(S0,T)

%% Ground Temp. Model

for N=1:T

muinf=289;

Ainf =2;

Tinf(N) =muinf-Ainf*sin ((2*pi*N/T)-(pi/2))+normrnd(0,0.3); % [Deg. C]

end

%% Demand Model

T1=270;

for day=1:T1

Ad1 = 15; % Domain of demand energy [MWh]

D1(day) = -Ad1*sin((0.85*pi*day/T1)+7*pi/6)+normrnd(0,3);

end

T2=95;

for day=1:T2

Ad2 = 7; % Domain of demand energy [MWh]

D2(day) = -Ad2*sin(pi*day/T2)+ normrnd(0,1.4);

end

%% Price Model

for N=1:T

Phn = normrnd(0,S0.P1std);

Ph(N) = S0.S.Ph + Phn;

Pcn = normrnd(0,S0.P2std);

Pc(N) = S0.S.Pc + Pcn;

end

Ph=max(S0.Phmin,Ph);

Pc=max(S0.Pcmin,Pc);

W.D = [S0.S.D]; % Resetting demand at first of each scenario

W.Ph = [S0.S.Ph]; % Resetting heating price at first of each scenario

W.Pc = [S0.S.Pc]; % Resetting cooling price at first of each scenario

W.Tinf= [S0.S.Tinf]; % Resetting underground temperature at first of each

scenario↪→

W.D = [W.D D1 D2];

W.Ph = [W.Ph Ph];

W.Pc = [W.Pc Pc];

W.Tinf= [W.Tinf Tinf];

end

46

C Optimal Cost

close all

clear all

clc

tic

addpath('C:\Users\win\Desktop\Master\Exogenous Information')

load('sample_path.mat')

%% Settings

S0 = S0();

S = S0.S;

plot_settings

scenario = size(sample_path.D,1); % Scenario number

N = size(sample_path.D,2)-1; % Total time horizon [Day]

%Extention of sample path

sample_path.D = [sample_path.D];

sample_path.Ph = [sample_path.Ph];

sample_path.Pc = [sample_path.Pc];

sample_path.Tinf= [sample_path.Tinf];

%% Simulation

Par_vec = [1]; % Vector of parameters multiplied by

lambda↪→

Days_number = [365]; % Vector of month's day

Days_number_cumulative =[0, cumsum(Days_number)];

lambda_vec_ref = [S0.lambda * ones(1,N)];

rng('default')

Parametrized_Cost=zeros(size(Days_number,2), size(Par_vec,2));

for month=1:length(Days_number)

for Parameter_sequence = 1:length(Par_vec)

PathsCost =[];

rng('default')

for w = 1:scenario

ss;

%Initial setup

S0 = S0();

S = S0.S;

%Plotting Arrays

xSim = [];

uSim = [];

timeSim = [];

%Setting parametrized demand at start of every simple path

lambda_vec = lambda_vec_ref;

lambda_vec(Days_number_cumulative(month)+1 :

Days_number_cumulative(month+1)) = ...↪→

Par_vec(Parameter_sequence) *

lambda_vec(Days_number_cumulative(month)+1 :

Days_number_cumulative(month+1));

↪→

↪→

Tinf_horizon = sample_path.Tinf(w,:);

Demand_horizon = sample_path.D(w,:);

Ph_horizon = sample_path.Ph(w,:);

Pc_horizon = sample_path.Pc(w,:);

for k = 1:N

nd = length(sample_path.D)-(k); % MPC control horizon

% Finding indexes of the negative demands

[~, col] = find(Demand_horizon<0);

47

% Creating "boolean" array

DProductArray = ones(nd,1);

% Indicating negative demands

DProductArray(col,:) = 0;

%% Equality constraint : Ax=b

% Demand constraint

Aeq_D = zeros(nd,7*nd);

%D_k = DPredictArray.*(3/2*U_k + Qheat_k) + (1 {

DpredictArray).*(-U_k - Qcool_k)↪→

for ii = 1:nd

Aeq_D(ii,1 + 7*(ii - 1)) =

(S0.COP/(S0.COP-1))*DProductArray(ii) + (-1*(1 -

DProductArray(ii))); % for borehole daily energy flow

(U_k)

↪→

↪→

↪→

Aeq_D(ii,2 + 7*(ii - 1)) = (1)*DProductArray(ii) + (0)*(1 -

DProductArray(ii)); % for heater daily

energy flow (Qheat_k)

↪→

↪→

Aeq_D(ii,3 + 7*(ii - 1)) = (0)*DProductArray(ii) + (-1)*(1 -

DProductArray(ii)); % for cooler daily

energy flow (Qcool_k)

↪→

↪→

end

Beq_D = Demand_horizon(1:end-1)';

%Transition function

Aeq_T = zeros(nd,7*nd);

a=1-(lambda_vec/(S0.m*S0.Cpw));

a_cum=cumprod(a);

b=1/(S0.m*S0.Cpw);

for iii=1:nd

Aeq_T(iii:end,1+7*(iii-1))= b*((+1)*DProductArray(iii) +

(-1)*(1 - DProductArray(iii)));↪→

Aeq_T(iii:end,5+7*(iii-1))= (a(iii)-1);

if (iii==nd)

break;

end

for jjj=iii+1:nd

Aeq_T(jjj,1+7*(iii-1))= a(jjj-1) *

Aeq_T(jjj-1,1+7*(iii-1));↪→

Aeq_T(jjj,5+7*(iii-1))= a(jjj-1) *

Aeq_T(jjj-1,5+7*(iii-1));↪→

end

end

Aeq_T=Aeq_T + kron(eye(nd),[0 0 0 1 0 0 0]);

Beq_T=zeros(nd,1);

for kkk=1:nd

Beq_T(kkk,1) = [a_cum(kkk)*S.Tb];

end

% Integration of equality constraints

Aeq = [Aeq_D;Aeq_T];

Beq = [Beq_D;Beq_T];

%% Inequality constraints : Ax<=b

%Constraint handling : Tb+s_down >=Tbmin

Amin = kron(eye(nd), [0 0 0 -1 0 0 -1]);

Bmin = -S0.Tbmin*ones(nd,1);

%Constraint handling : Tb-s_up <=Tbmax

Amax = kron(eye(nd), [0 0 0 1 0 -1 0]);

Bmax = S0.Tbmax*ones(nd,1);

% Integration of inequality constraints

48

A = [Amin;Amax];

B = [Bmin;Bmax];

%% Objective function

f = zeros(1,7*nd);

for kk=1:nd-1

f(1,2 + 7*(kk - 1)) = (Ph_horizon(kk));

f(1,3 + 7*(kk - 1)) = (Pc_horizon(kk));

f(1,6 + 7*(kk - 1)) = S0.S.s_up; % Penalizing

cost for violating upper constraint↪→

f(1,7 + 7*(kk - 1)) = S0.S.s_down; % Penalizing

cost for violating upper constraint↪→

end

%% Boundaries - lower and upper

lb = zeros(7*nd,1);

lb(4:7:7*nd,1) = -inf;

for i=1:nd-1

lb(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

ub = repmat([S0.Rmax inf inf inf 0 inf inf]',nd,1);

for i=1:nd-1

ub(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

%% Optimization

w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);

% Data store from openloop optimization

u.u = w_opt(1:7:7*nd);

u.qheat = w_opt(2:7 :7*nd);

u.qcool = w_opt(3:7:7*nd);

u.Tb = w_opt(4:7:7*nd);

u.Tinf = w_opt(5:7:7*nd);

u.s_up = w_opt(6:7:7*nd);

u.s_down = w_opt(7:7:7*nd);

%% Take an action

uk = [u.u(1); u.qheat(1); u.qcool(1); u.s_up(1); u.s_down(1)];

sample_path.uk(1+7*(w-1):3+7*(w-1),k)=uk(1:3,:); % For visual

check↪→

sample_path.uk(6+7*(w-1),k)=w_opt(6); % For visual

check↪→

sample_path.uk(7+7*(w-1),k)=w_opt(7); % For visual

check↪→

%% Transition during day

S.Tb = ((1-(S0.lambda/(S0.m*S0.Cpw))) * S.Tb) +

[((-1)*DProductArray(1) + (+1)*(1 - DProductArray(1)))*b 0

0]*uk(1:3,end) +

(S0.lambda/(S0.m*S0.Cpw))*sample_path.Tinf(w,k);

↪→

↪→

↪→

sample_path.uk(4+7*(w-1),k)=S.Tb-273; % For visual

check↪→

%% Realization

S.Ph = sample_path.Ph(w,k+1);

S.Pc = sample_path.Pc(w,k+1);

S.D = sample_path.D(w,k+1);

S.Tinf = sample_path.Tinf(w,k+1);

49

%% For plotting

xSim = [xSim, S.Tb];

uSim = [uSim, uk];

% Create sigma matrix

sigma_mat=zeros(length(Tinf_horizon));

alpha = 1;

for i = 1:size(sigma_mat,1)

for j = 1:size(sigma_mat,1)

sigma_mat(i,j) = exp(-alpha*abs(i-j));

end

end

% Cholesky decomposition

L = chol(sigma_mat,'lower');

% Multivariate normal distribution of Tinf

sigma_E_Tinf = 0;

mu = zeros(1,length(Tinf_horizon));

Sigma_Tinf = sigma_E_Tinf*diag(Tinf_horizon.^0.5);

Z_Tinf = mvnrnd(mu,Sigma_Tinf);

% Multivariate normal distribution of Demand

sigma_E_D = 0;

mu = zeros(1,length(Demand_horizon));

Demand_P=abs(Demand_horizon);

Sigma_Demand = sigma_E_D*diag(Demand_P.^0.5);

Z_Demand = mvnrnd(mu,Sigma_Demand);

% Multivariate normal distribution of Heating Price

sigma_E_Ph = 0;

mu = zeros(1,length(Ph_horizon));

Sigma_Ph = sigma_E_Ph*diag(Ph_horizon.^0.5);

Z_Ph = mvnrnd(mu,Sigma_Ph);

% Multivariate normal distribution of Cooling Price

sigma_E_Pc = 0;

mu = zeros(1,length(Pc_horizon));

Sigma_Pc = sigma_E_Pc*diag(Pc_horizon.^0.5);

Z_Pc = mvnrnd(mu,Sigma_Pc);

%% Exogenous information model

% Ground temp horizon update

Tinf_error = L*Z_Tinf';

Tinf_horizon = Tinf_horizon(2:end) + Tinf_error(2:end)';

% Demand update

Demand_error = L*Z_Demand';

Demand_forecast = Demand_horizon(3:end) + Demand_error(3:end)';

Demand_horizon = [sample_path.D(w,k+1),Demand_forecast];

% Heating Price update

Ph_error = L*Z_Ph';

Ph_horizon = Ph_horizon(2:end) + Ph_error(2:end)';

Ph_horizon = max(S0.Phmin,Ph_horizon);

% Coolimg Price update

50

Pc_error = L*Z_Pc';

Pc_horizon = Pc_horizon(2:end) + Pc_error(2:end)';

Pc_horizon=max(S0.Pcmin,Pc_horizon);

% Lambda Vector update

lambda_vec = lambda_vec(2:end);

end

% Finding indexes of the negative demands

[~, col] = find(sample_path.D(w,1:N)<0);

% Creating "boolean" array

%DemandProductArray = S0.COP/(S0.COP-1)*ones(N+1,1);

DemandProductArray = ones(N,1);

% Indicating negative demands

DemandProductArray(col,:) = 0;

% Finding indexes when demands are positive and calculated energy

flows↪→

% from borehole will not satisfy the demand, The shortage have to be

supplied by Heater↪→

[~, col] = find(sample_path.D(w,1:N)<0 | sample_path.D(w,1:N) -

((S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N))+0.001)<=0);↪→

% Creating "boolean" array

Remain_Qh_Array = ones(N,1);

% Indicating negative demands

Remain_Qh_Array(col,:) = 0;

% Finding indexes when demands are negative and calculated energy

flows↪→

% to borehole will not satisfy the demand, The shortage have to be

supplied by Cooler↪→

[~, col] = find(sample_path.D(w,1:N)>0 | abs(sample_path.D(w,1:N)) -

(uSim(1,1:N) + uSim(3,1:N)+0.001) <=0);↪→

% Creating "boolean" array

Remain_Qc_Array = ones(N,1);

% Indicating negative demands

Remain_Qc_Array(col,:) = 0;

% Penalty for constraint violation

Penalty_up = max(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmax *

ones (1,N)) , 0);↪→

Penalty_down= abs(min(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmin *

ones (1,N)) , 0));↪→

% Cost Over a sample path

PathCost_i = sum(sample_path.Ph(w,1:N) .* uSim(2,1:N) + ...

+ sample_path.Pc(w,1:N) .* uSim(3,1:N) + ...

+ S0.S.s_up * Penalty_up ...

+ S0.S.s_down * Penalty_down ...

+ Remain_Qh_Array(1:N)' .* (sample_path.D(w,1:N) -

(S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N)))

.* sample_path.Ph(w,1:N) + ...

↪→

↪→

+ Remain_Qc_Array(1:N)' .*

(abs(sample_path.D(w,1:N)) - (uSim(1,1:N) +

uSim(3,1:N))) .* sample_path.Pc(w,1:N));

↪→

↪→

% Making cost vector of different scenarios

PathsCost = [PathsCost; PathCost_i];

end

51

% Obtaining average cost

Parametrized_Cost(month,Parameter_sequence) = mean(PathsCost);

for i = 1:size(PathsCost,1)

Avg_cost_cum(i) = mean(PathsCost(1:i));

end

end

end

% Save real optimal cost

sample_path.OpCo = Parametrized_Cost(1,1)

save('sample_path','sample_path');

52

D Code of Parameterized Cost Function Approximation: Single Scalar
Parameterization on Transition Function

%%%%%%%%%%%%%%%%%%%%%%

%%%% NB: Before this code, you should run Optimal.m in

%%%% Address: C:\Users\win\Desktop\Master\Optimal Cost

%%%%%%%%%%%%%%%%%%%%%%

close all

clear all

clc

tic

addpath('C:\Users\win\Desktop\Master\Exogenous Information')

addpath('C:\Users\win\Desktop\Master\Optimal Cost')

load('sample_path.mat')

%% Settings

S0 = S0();

S = S0.S;

plot_settings

scenario = size(sample_path.D,1); % Scenario number

N = size(sample_path.D,2)-1; % Total time horizon [Day]

%Extention of sample path

sample_path.D = [sample_path.D];

sample_path.Ph = [sample_path.Ph];

sample_path.Pc = [sample_path.Pc];

sample_path.Tinf= [sample_path.Tinf];

%% Simulation

Par_vec = [0 0.3 0.6 0.9 1 1.2 1.5]; % Vector of parameter values

rng('default')

for Parameter_sequence = 1:length(Par_vec)

PathsCost =[];

rng('default')

for w = 1:scenario

ss;

%Initial setup

S0 = S0();

S = S0.S;

%Defining plotting arrays

xSim = [];

uSim = [];

timeSim = [];

%Setting exogenous information at start of every simple path

Tinf_horizon = sample_path.Tinf(w,:);

Demand_horizon = sample_path.D(w,:);

Ph_horizon = sample_path.Ph(w,:);

Pc_horizon = sample_path.Pc(w,:);

%MPC Control

for k = 1:N

nd = length(sample_path.D)-(k); % MPC control horizon

% Finding indexes of the negative demands

[~, col] = find(Demand_horizon<0);

% Creating "boolean" array

DProductArray = ones(nd,1);

% Indicating negative demands

DProductArray(col,:) = 0;

53

%% Equality constraint : Ax=b

% Demand constraint

Aeq_D = zeros(nd,7*nd);

%D_k = DPredictArray.*(3/2*U_k + Qheat_k) + (1 {

DpredictArray).*(-U_k - Qcool_k)↪→

for ii = 1:nd

Aeq_D(ii,1 + 7*(ii - 1)) =

(S0.COP/(S0.COP-1))*DProductArray(ii) + (-1*(1 -

DProductArray(ii))); % For borehole daily energy flow

(U_k)

↪→

↪→

↪→

Aeq_D(ii,2 + 7*(ii - 1)) = (1)*DProductArray(ii) + (0)*(1 -

DProductArray(ii)); % For heater daily

energy flow (Qheat_k)

↪→

↪→

Aeq_D(ii,3 + 7*(ii - 1)) = (0)*DProductArray(ii) + (-1)*(1 -

DProductArray(ii)); % For cooler daily

energy flow (Qcool_k)

↪→

↪→

end

Beq_D = Demand_horizon(1:end-1)';

%Transition function of states

Aeq_T = zeros(nd,7*nd);

a=1-(S0.lambda*Par_vec(Parameter_sequence)/(S0.m*S0.Cpw));

% Parameterization on heat exchange between borehole and

underground

↪→

↪→

b=1/(S0.m*S0.Cpw);

for iii=1:nd

Aeq_T(iii:end,1+7*(iii-1))= b*((+1)*DProductArray(iii) +

(-1)*(1 - DProductArray(iii)));↪→

Aeq_T(iii:end,5+7*(iii-1))= (a-1);

for jjj=iii:nd

Aeq_T(jjj,1+7*(iii-1))=a^(jjj-iii)*

Aeq_T(jjj,1+7*(iii-1));↪→

Aeq_T(jjj,5+7*(iii-1))=a^(jjj-iii)*

Aeq_T(jjj,5+7*(iii-1));↪→

end

end

Aeq_T=Aeq_T + kron(eye(nd),[0 0 0 1 0 0 0]);

Beq_T=zeros(nd,1);

for kkk=1:nd

Beq_T(kkk,1) = [a^(kkk)*S.Tb];

end

% Integration of equality constraints

Aeq = [Aeq_D;Aeq_T];

Beq = [Beq_D;Beq_T];

%% Inequality constraints : Ax<=b

%Constraint handling : Tb+s_down >=Tbmin

Amin = kron(eye(nd), [0 0 0 -1 0 0 -1]);

Bmin = -S0.Tbmin*ones(nd,1);

%Constraint handling : Tb-s_up <=Tbmax

Amax = kron(eye(nd), [0 0 0 1 0 -1 0]);

Bmax = S0.Tbmax*ones(nd,1);

%Integration of inequality constraints

A = [Amin;Amax];

B = [Bmin;Bmax];

%% Objective function

f = zeros(1,7*nd);

54

for kk=1:nd-1

f(1,2 + 7*(kk - 1)) = (Ph_horizon(kk));

f(1,3 + 7*(kk - 1)) = (Pc_horizon(kk));

f(1,6 + 7*(kk - 1)) = S0.S.s_up; % Penalizing cost for

violating upper constraint↪→

f(1,7 + 7*(kk - 1)) = S0.S.s_down; % Penalizing cost for

violating upper constraint↪→

end

%% Boundaries - lower and upper

lb = zeros(7*nd,1);

lb(4:7:7*nd,1) = -inf;

for i=1:nd-1

lb(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

ub = repmat([S0.Rmax inf inf inf 0 inf inf]',nd,1);

for i=1:nd-1

ub(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

%% Optimization

w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);

% Data store from openloop optimization

u.u = w_opt(1:7:7*nd);

u.qheat = w_opt(2:7:7*nd);

u.qcool = w_opt(3:7:7*nd);

u.Tb = w_opt(4:7:7*nd);

u.Tinf = w_opt(5:7:7*nd);

u.s_up = w_opt(6:7:7*nd);

u.s_down = w_opt(7:7:7*nd);

%% Take an action

uk = [u.u(1); u.qheat(1); u.qcool(1); u.s_up(1); u.s_down(1)];

sample_path.uk(1+7*(w-1):3+7*(w-1),k)=uk(1:3,:); % For visual

check↪→

sample_path.uk(6+7*(w-1),k)=w_opt(6); % For visual

check↪→

sample_path.uk(7+7*(w-1),k)=w_opt(7); % For visual

check↪→

%% Transition during day

S.Tb = ((1-(S0.lambda/(S0.m*S0.Cpw))) * S.Tb) +

[((-1)*DProductArray(1) + (+1)*(1 - DProductArray(1)))*b 0

0]*uk(1:3,end) +

(S0.lambda/(S0.m*S0.Cpw))*sample_path.Tinf(w,k);

↪→

↪→

↪→

sample_path.uk(4+7*(w-1),k)=S.Tb-273; % For visual

check↪→

%% Realization

S.Ph = sample_path.Ph(w,k+1);

S.Pc = sample_path.Pc(w,k+1);

S.D = sample_path.D(w,k+1);

S.Tinf = sample_path.Tinf(w,k+1);

%% For plotting

xSim = [xSim, S.Tb];

uSim = [uSim, uk];

55

%% Creating forecast error

% Create sigma matrix

sigma_mat=zeros(length(Tinf_horizon));

alpha = 1;

for i = 1:size(sigma_mat,1)

for j = 1:size(sigma_mat,1)

sigma_mat(i,j) = exp(-alpha*abs(i-j));

end

end

% Cholesky decomposition

L = chol(sigma_mat,'lower');

% Multivariate normal distribution of Tinf

sigma_E_Tinf = 1;

mu = zeros(1,length(Tinf_horizon));

Sigma_Tinf = sigma_E_Tinf*diag(Tinf_horizon.^0.5);

Z_Tinf = mvnrnd(mu,Sigma_Tinf);

% Multivariate normal distribution of Demand

sigma_E_D = 15;

mu = zeros(1,length(Demand_horizon));

Demand_P=abs(Demand_horizon);

Sigma_Demand = sigma_E_D*diag(Demand_P.^0.5);

Z_Demand = mvnrnd(mu,Sigma_Demand);

% Multivariate normal distribution of Heating Price

sigma_E_Ph = 15;

mu = zeros(1,length(Ph_horizon));

Sigma_Ph = sigma_E_Ph*diag(Ph_horizon.^0.5);

Z_Ph = mvnrnd(mu,Sigma_Ph);

% Multivariate normal distribution of Cooling Price

sigma_E_Pc = 15;

mu = zeros(1,length(Pc_horizon));

Sigma_Pc = sigma_E_Pc*diag(Pc_horizon.^0.5);

Z_Pc = mvnrnd(mu,Sigma_Pc);

%% Exogenous information developement

% Ground temp horizon update

Tinf_error = L*Z_Tinf';

Tinf_horizon = Tinf_horizon(2:end) + Tinf_error(2:end)';

% Demand update

Demand_error = L*Z_Demand';

Demand_forecast = Demand_horizon(3:end) + Demand_error(3:end)';

Demand_horizon = [sample_path.D(w,k+1),Demand_forecast];

% Heating Price update

Ph_error = L*Z_Ph';

Ph_horizon = Ph_horizon(2:end) + Ph_error(2:end)';

Ph_horizon = max(S0.Phmin,Ph_horizon);

% Coolimg Price update

Pc_error = L*Z_Pc';

Pc_horizon = Pc_horizon(2:end) + Pc_error(2:end)';

Pc_horizon=max(S0.Pcmin,Pc_horizon);

end

%% Cost calculation over sample path

% Finding indexes of the negative demands

[~, col] = find(sample_path.D(w,1:N)<0);

% Creating "boolean" array

56

DemandProductArray = ones(N,1);

% Indicating negative demands

DemandProductArray(col,:) = 0;

% Finding indexes when demands are positive and calculated energy

flows↪→

% from borehole will not satisfy the demand, The shortage have to be

supplied by Heater↪→

[~, col] = find(sample_path.D(w,1:N)<0 | sample_path.D(w,1:N) -

((S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N))+0.001)<=0);↪→

% Creating "boolean" array

Remain_Qh_Array = ones(N,1);

% Indicating negative demands

Remain_Qh_Array(col,:) = 0;

% Finding indexes when demands are negative and calculated energy

flows↪→

% to borehole will not satisfy the demand, The shortage have to be

supplied by Cooler↪→

[~, col] = find(sample_path.D(w,1:N)>0 | abs(sample_path.D(w,1:N)) -

(uSim(1,1:N) + uSim(3,1:N)+0.001) <=0);↪→

% Creating "boolean" array

Remain_Qc_Array = ones(N,1);

% Indicating negative demands

Remain_Qc_Array(col,:) = 0;

% Penalty for constraint violation

Penalty_up = max(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmax *

ones (1,N)) , 0);↪→

Penalty_down= abs(min(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmin *

ones (1,N)) , 0));↪→

% Cost Over a sample path

PathCost_i = sum(sample_path.Ph(w,1:N) .* uSim(2,1:N) + ...

+ sample_path.Pc(w,1:N) .* uSim(3,1:N) + ...

+ S0.S.s_up * Penalty_up ...

+ S0.S.s_down * Penalty_down ...

+ Remain_Qh_Array(1:N)' .* (sample_path.D(w,1:N) -

(S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N)))

.* sample_path.Ph(w,1:N) + ...

↪→

↪→

+ Remain_Qc_Array(1:N)' .*

(abs(sample_path.D(w,1:N)) - (uSim(1,1:N) +

uSim(3,1:N))) .* sample_path.Pc(w,1:N));

↪→

↪→

% Making cost vector of different scenarios

PathsCost = [PathsCost; PathCost_i];

end

% Obtaining average cost

Parametrized_Cost(Parameter_sequence) = mean(PathsCost);

for i = 1:size(PathsCost,1)

Avg_cost_cum(i) = mean(PathsCost(1:i));

end

end

%% Plotting Policy Cost Index against theta_{i}

hold on

plot(Par_vec, (Parametrized_Cost-sample_path.OpCo)/sample_path.OpCo)

grid('on');

box('on');

57

xlabel('θ')

ylabel('$ \Delta F^{\pi} (\theta) $')

% save

save = ('P02_MPC')

%% Plotting the states and inputs for a given scenario

trial = 1;

sample_path.ukplot(1:4,:) = sample_path.uk(1+7*(trial-1):4+7*(trial-1),:);

sample_path.ukplot(5,:)= sample_path.D(trial,1:N);

for ind= 1:N

if sample_path.ukplot(5,ind)>=0

sample_path.ukplot(1,ind)=(S0.COP/(S0.COP-1))*sample_path.ukplot(1,ind)

else

sample_path.ukplot(1,ind)=-1*sample_path.ukplot(1,ind)

sample_path.ukplot(3,ind)=-1*sample_path.ukplot(3,ind)

end

end

figure

subplot(5,1,1)

plot(sample_path.ukplot(4,:),'b-')

xlabel('Time, Day')

ylabel('T^{b} [Deg. C]')

subplot(5,1,2)

stairs(0:N,[sample_path.ukplot(1,:), nan],'b-')

xlabel('Time, Day')

ylabel('Q^{b} [MWh]')

subplot(5,1,3)

stairs(0:N,[sample_path.ukplot(2,:), nan],'b-')

xlabel('Time, Day')

ylabel('Q^{h} [MWh]')

subplot(5,1,4)

stairs(0:N,[sample_path.ukplot(3,:), nan],'b-')

xlabel('Time, Day')

ylabel('Q^{c} [MWh]')

subplot(5,1,5)

plot(sample_path.ukplot(5,:), 'b')

xlabel('Time, Day')

ylabel('Demand [MWh]')

58

E Code of Parameterized Cost Function Approximation: Monthly-Based
Parameterization on Transition Function

%%%%%%%%%%%%%%%%%%%%%%

%%%% NB: Before this code, you should run Optimal.m in

%%%% Address: C:\Users\win\Desktop\Master\Optimal Cost

%%%%%%%%%%%%%%%%%%%%%%

close all

clear all

clc

tic

addpath('C:\Users\win\Desktop\Master\Exogenous Information')

addpath('C:\Users\win\Desktop\Master\Optimal Cost')

load('sample_path.mat')

%% Settings

S0 = S0();

S = S0.S;

plot_settings

scenario = size(sample_path.D,1); % Scenario number

N = size(sample_path.D,2)-1; % Total time horizon [Day]

%Extention of sample path

sample_path.D = [sample_path.D];

sample_path.Ph = [sample_path.Ph];

sample_path.Pc = [sample_path.Pc];

sample_path.Tinf= [sample_path.Tinf];

%% Simulation

Par_vec = [0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2]; % Vector of

parameters will be multiplied by lambda↪→

Days_number = [30 31 31 28 31 30 31 30 31 31 30 31]; % Vector of days in every

month↪→

Days_number_cumulative =[0, cumsum(Days_number)];

lambda_vec_ref = [S0.lambda * ones(1,N)];

rng('default')

Parametrized_Cost=zeros(size(Days_number,2), size(Par_vec,2));

for month=1:length(Days_number)

for Parameter_sequence = 1:length(Par_vec)

PathsCost =[];

rng('default')

for w = 1:1

ss;

%Initial setup

S0 = S0();

S = S0.S;

%Defining plotting arrays

xSim = [];

uSim = [];

timeSim = [];

%Setting up lambda vecotor

lambda_vec = lambda_vec_ref;

lambda_vec(Days_number_cumulative(month)+1 :

Days_number_cumulative(month+1)) = ...↪→

Par_vec(Parameter_sequence) *

lambda_vec(Days_number_cumulative(month)+1 :

Days_number_cumulative(month+1));

↪→

↪→

59

%Setting exogenous information at start of every simple path

Tinf_horizon = sample_path.Tinf(w,:);

Demand_horizon = sample_path.D(w,:);

Ph_horizon = sample_path.Ph(w,:);

Pc_horizon = sample_path.Pc(w,:);

%MPC Control

for k = 1:N

nd = length(sample_path.D)-(k); % MPC control horizon

% Finding indexes of the negative demands

[~, col] = find(Demand_horizon<0);

% Creating "boolean" array

DProductArray = ones(nd,1);

% Indicating negative demands

DProductArray(col,:) = 0;

%% Equality constraint : Ax=b

% Demand constraint

Aeq_D = zeros(nd,7*nd);

%D_k = DPredictArray.*(3/2*U_k + Qheat_k) + (1 {

DpredictArray).*(-U_k - Qcool_k)↪→

for ii = 1:nd

Aeq_D(ii,1 + 7*(ii - 1)) =

(S0.COP/(S0.COP-1))*DProductArray(ii) + (-1*(1 -

DProductArray(ii))); % For borehole daily energy flow

energy (U_k)

↪→

↪→

↪→

Aeq_D(ii,2 + 7*(ii - 1)) = (1)*DProductArray(ii) + (0)*(1 -

DProductArray(ii)); % For heater daily

energy flow energy (Qheat_k)

↪→

↪→

Aeq_D(ii,3 + 7*(ii - 1)) = (0)*DProductArray(ii) + (-1)*(1 -

DProductArray(ii)); % For cooler daily

energy flow energy (Qcool_k)

↪→

↪→

end

Beq_D = Demand_horizon(1:end-1)';

%Transition function of states

Aeq_T = zeros(nd,7*nd);

a=1-(lambda_vec/(S0.m*S0.Cpw));

a_cum=cumprod(a);

b=1/(S0.m*S0.Cpw);

for iii=1:nd

Aeq_T(iii:end,1+7*(iii-1))= b*((+1)*DProductArray(iii) +

(-1)*(1 - DProductArray(iii)));↪→

Aeq_T(iii:end,5+7*(iii-1))= (a(iii)-1);

if (iii==nd)

break;

end

for jjj=iii+1:nd

Aeq_T(jjj,1+7*(iii-1))= a(jjj-1) *

Aeq_T(jjj-1,1+7*(iii-1));↪→

Aeq_T(jjj,5+7*(iii-1))= a(jjj-1) *

Aeq_T(jjj-1,5+7*(iii-1));↪→

end

end

Aeq_T=Aeq_T + kron(eye(nd),[0 0 0 1 0 0 0]);

Beq_T=zeros(nd,1);

for kkk=1:nd

Beq_T(kkk,1) = [a_cum(kkk)*S.Tb];

end

% Integration of equality constraints

60

Aeq = [Aeq_D;Aeq_T];

Beq = [Beq_D;Beq_T];

%% Inequality constraints : Ax<=b

%Constraint handling : Tb+s_down >= Tbmin

Amin = kron(eye(nd), [0 0 0 -1 0 0 -1]);

Bmin = -S0.Tbmin*ones(nd,1);

%Constraint handling : Tb-s_up <=Tbmax

Amax = kron(eye(nd), [0 0 0 1 0 -1 0]);

Bmax = S0.Tbmax*ones(nd,1);

%Integration of inequality constraints

A = [Amin;Amax];

B = [Bmin;Bmax];

%% Objective function

f = zeros(1,7*nd);

for kk=1:nd-1

f(1,2 + 7*(kk - 1)) = (Ph_horizon(kk));

f(1,3 + 7*(kk - 1)) = (Pc_horizon(kk));

f(1,6 + 7*(kk - 1)) = S0.S.s_up; % Penalizing cost for

violating upper constraint↪→

f(1,7 + 7*(kk - 1)) = S0.S.s_down; % Penalizing cost for

violating upper constraint↪→

end

%% Boundaries - lower and upper

lb = zeros(7*nd,1);

lb(4:7:7*nd,1) = -inf;

for i=1:nd-1

lb(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

ub = repmat([S0.Rmax inf inf inf 0 inf inf]',nd,1);

for i=1:nd-1

ub(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

%% Optimization

w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);

% Data store from openloop optimization

u.u = w_opt(1:7:7*nd);

u.qheat = w_opt(2:7:7*nd);

u.qcool = w_opt(3:7:7*nd);

u.Tb = w_opt(4:7:7*nd);

u.Tinf = w_opt(5:7:7*nd);

u.s_up = w_opt(6:7:7*nd);

u.s_down = w_opt(7:7:7*nd);

%% Take an action

uk = [u.u(1); u.qheat(1); u.qcool(1); u.s_up(1); u.s_down(1)];

sample_path.uk(1+7*(w-1):3+7*(w-1),k)=uk(1:3,:); % For visual

check↪→

sample_path.uk(6+7*(w-1),k)=w_opt(6); % For visual

check↪→

sample_path.uk(7+7*(w-1),k)=w_opt(7); % For visual

check↪→

%% Transition during day

61

S.Tb = ((1-(S0.lambda/(S0.m*S0.Cpw))) * S.Tb) +

[((-1)*DProductArray(1) + (+1)*(1 - DProductArray(1)))*b 0

0]*uk(1:3,end) +

(S0.lambda/(S0.m*S0.Cpw))*sample_path.Tinf(w,k);

↪→

↪→

↪→

sample_path.uk(4+7*(w-1),k)=S.Tb-273; % For visual

check↪→

%% Realization

S.Ph = sample_path.Ph(w,k+1);

S.Pc = sample_path.Pc(w,k+1);

S.D = sample_path.D(w,k+1);

S.Tinf = sample_path.Tinf(w,k+1);

%% For plotting

xSim = [xSim, S.Tb];

uSim = [uSim, uk];

%% Creating forecast error

% Create sigma matrix

sigma_mat=zeros(length(Tinf_horizon));

alpha = 1;

for i = 1:size(sigma_mat,1)

for j = 1:size(sigma_mat,1)

sigma_mat(i,j) = exp(-alpha*abs(i-j));

end

end

% Cholesky decomposition

L = chol(sigma_mat,'lower');

% Multivariate normal distribution of Tinf

sigma_E_Tinf = 0;

mu = zeros(1,length(Tinf_horizon));

Sigma_Tinf = sigma_E_Tinf*diag(Tinf_horizon.^0.5);

Z_Tinf = mvnrnd(mu,Sigma_Tinf);

% Multivariate normal distribution of Demand

sigma_E_D = 0;

mu = zeros(1,length(Demand_horizon));

Demand_P=abs(Demand_horizon);

Sigma_Demand = sigma_E_D*diag(Demand_P.^0.5);

Z_Demand = mvnrnd(mu,Sigma_Demand);

% Multivariate normal distribution of Heating Price

sigma_E_Ph = 0;

mu = zeros(1,length(Ph_horizon));

Sigma_Ph = sigma_E_Ph*diag(Ph_horizon.^0.5);

Z_Ph = mvnrnd(mu,Sigma_Ph);

% Multivariate normal distribution of Cooling Price

sigma_E_Pc = 15;

mu = zeros(1,length(Pc_horizon));

Sigma_Pc = sigma_E_Pc*diag(Pc_horizon.^0.5);

Z_Pc = mvnrnd(mu,Sigma_Pc);

%% Exogenous information developement

% Ground temp horizon update

Tinf_error = L*Z_Tinf';

Tinf_horizon = Tinf_horizon(2:end) + Tinf_error(2:end)';

% Demand update

Demand_error = L*Z_Demand';

Demand_forecast = Demand_horizon(3:end) + Demand_error(3:end)';

62

Demand_horizon = [sample_path.D(w,k+1),Demand_forecast];

% Heating Price update

Ph_error = L*Z_Ph';

Ph_horizon = Ph_horizon(2:end) + Ph_error(2:end)';

Ph_horizon = max(S0.Phmin,Ph_horizon);

% Coolimg Price update

Pc_error = L*Z_Pc';

Pc_horizon = Pc_horizon(2:end) + Pc_error(2:end)';

Pc_horizon=max(S0.Pcmin,Pc_horizon);

% Lambda Vector update

lambda_vec = lambda_vec(2:end);

end

%% Cost calculation over sample path

% Finding indexes of the negative demands

[~, col] = find(sample_path.D(w,1:N)<0);

% Creating "boolean" array

DemandProductArray = ones(N,1);

% Indicating negative demands

DemandProductArray(col,:) = 0;

% Finding indexes when demands are positive and calculated energy

flows↪→

% from borehole will not satisfy the demand, The shortage have to be

supplied by Heater↪→

[~, col] = find(sample_path.D(w,1:N)<0 | sample_path.D(w,1:N) -

((S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N))+0.001)<=0);↪→

% Creating "boolean" array

Remain_Qh_Array = ones(N,1);

% Indicating negative demands

Remain_Qh_Array(col,:) = 0;

% Finding indexes when demands are negative and calculated energy

flows↪→

% to borehole will not satisfy the demand, The shortage have to be

supplied by Cooler↪→

[~, col] = find(sample_path.D(w,1:N)>0 | abs(sample_path.D(w,1:N)) -

(uSim(1,1:N) + uSim(3,1:N)+0.001) <=0);↪→

% Creating "boolean" array

Remain_Qc_Array = ones(N,1);

% Indicating negative demands

Remain_Qc_Array(col,:) = 0;

% Penalty for constraint violation

Penalty_up = max(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmax *

ones (1,N)) , 0);↪→

Penalty_down= abs(min(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmin *

ones (1,N)) , 0));↪→

% Cost Over a sample path

PathCost_i = sum(sample_path.Ph(w,1:N) .* uSim(2,1:N) + ...

+ sample_path.Pc(w,1:N) .* uSim(3,1:N) + ...

+ S0.S.s_up * Penalty_up ...

+ S0.S.s_down * Penalty_down ...

63

+ Remain_Qh_Array(1:N)' .* (sample_path.D(w,1:N) -

(S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N)))

.* sample_path.Ph(w,1:N) + ...

↪→

↪→

+ Remain_Qc_Array(1:N)' .*

(abs(sample_path.D(w,1:N)) - (uSim(1,1:N) +

uSim(3,1:N))) .* sample_path.Pc(w,1:N));

↪→

↪→

% Making cost vector of different scenarios

PathsCost = [PathsCost; PathCost_i];

end

% Obtaining average cost

Parametrized_Cost(month,Parameter_sequence) = mean(PathsCost);

for i = 1:size(PathsCost,1)

Avg_cost_cum(i) = mean(PathsCost(1:i));

end

end

end

%% Plotting policy improvement against theta_{i}

hold on

plot(Par_vec, (Parametrized_Cost(1,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(2,:)-sample_path.OpCo)/sample_path.OpCo)↪→

plot(Par_vec, (Parametrized_Cost(3,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(4,:)-sample_path.OpCo)/sample_path.OpCo)↪→

plot(Par_vec, (Parametrized_Cost(5,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(6,:)-sample_path.OpCo)/sample_path.OpCo)↪→

plot(Par_vec, (Parametrized_Cost(7,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(8,:)-sample_path.OpCo)/sample_path.OpCo)↪→

plot(Par_vec, (Parametrized_Cost(9,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(10,:)-sample_path.OpCo)/sample_path.OpCo)↪→

plot(Par_vec, (Parametrized_Cost(11,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(12,:)-sample_path.OpCo)/sample_path.OpCo)↪→

legend('$\theta_{Nov.}$','$\theta_{Dec.}$','$\theta_{Jan.}$','$\theta_{Feb.}$','$\theta_{Mar.}$',...

'$\theta_{Apr.}$','$\theta_{May.}$','$\theta_{Jun.}$','$\theta_{Jul.}$','$\theta_{Aug.}$',...↪→

'$\theta_{Sep.}$','$\theta_{Oct.}$')

grid('on');

box('on');

xlabel('θ')

ylabel('$ \Delta F^{\pi} (\theta) $')

% save

save = ('P02_MPC')

%% Plotting the states and inputs for a given scenario

trial = 1;

sample_path.ukplot(1:4,:) = sample_path.uk(1+7*(trial-1):4+7*(trial-1),:);

sample_path.ukplot(5,:)= sample_path.D(trial,1:N);

for ind= 1:N

if sample_path.ukplot(5,ind)>=0

sample_path.ukplot(1,ind)=(S0.COP/(S0.COP-1))*sample_path.ukplot(1,ind)

else

sample_path.ukplot(1,ind)=-1*sample_path.ukplot(1,ind)

sample_path.ukplot(3,ind)=-1*sample_path.ukplot(3,ind)

end

end

figure

subplot(5,1,1)

64

plot(sample_path.ukplot(4,:),'b-')

xlabel('Time, Day')

ylabel('T^{b} [Deg. C]')

subplot(5,1,2)

stairs(0:N,[sample_path.ukplot(1,:), nan],'b-')

xlabel('Time, Day')

ylabel('Q^{b} [MWh]')

subplot(5,1,3)

stairs(0:N,[sample_path.ukplot(2,:), nan],'b-')

xlabel('Time, Day')

ylabel('Q^{h} [MWh]')

subplot(5,1,4)

stairs(0:N,[sample_path.ukplot(3,:), nan],'b-')

xlabel('Time, Day')

ylabel('Q^{c} [MWh]')

subplot(5,1,5)

plot(sample_path.ukplot(5,:), 'b')

xlabel('Time, Day')

ylabel('Demand [MWh]')

65

F Code of Parameterized Cost Function Approximation: Two Dimen-
sional Search over Parameterized Transition Function

%%%%%%%%%%%%%%%%%%%%%%

%%%% NB: Before this code, you should run Optimal.m in

%%%% Address: C:\Users\win\Desktop\Master\Optimal Cost

%%%%%%%%%%%%%%%%%%%%%%

close all

clear all

clc

tic

addpath('C:\Users\win\Desktop\Master\Exogenous Information')

addpath('C:\Users\win\Desktop\Master\Optimal Cost')

load('sample_path.mat')

%% Settings

S0 = S0();

S = S0.S;

plot_settings

scenario = size(sample_path.D,1); % Scenario number

N = size(sample_path.D,2)-1; % Total time horizon [Day]

%Extention of sample path

sample_path.D = [sample_path.D];

sample_path.Ph = [sample_path.Ph];

sample_path.Pc = [sample_path.Pc];

sample_path.Tinf= [sample_path.Tinf];

%% Simulation

Theta_Tinf = [1];

Par_vec = [0.2 0.4 0.6 0.8 1 1.2 1.4]; % Vector of parameters

will be multiplied by lambda↪→

Days_number = [30 31 31 28 31 30 31 30 31 31 30 31]; % Vector of days in every

month↪→

Days_number_cumulative =[0, cumsum(Days_number)];

lambda_vec_ref = [S0.lambda * ones(1,N)];

First_Month_Seq=10; % Index of first paramter

coordiantes (tetha_i) that we parametrized↪→

Second_Month_Seq=11; % Index of second paramter

coordiantes (tetha_j) that we parametrized↪→

rng('default')

Parametrized_Cost=zeros(size(Par_vec,1), size(Par_vec,2));

for Tetha_i=1:length(Par_vec)

% Setting tetha_i

lambda_vec_i = lambda_vec_ref;

lambda_vec_i(Days_number_cumulative(First_Month_Seq)+1 :

Days_number_cumulative(First_Month_Seq+1)) = ...↪→

Par_vec(Tetha_i) * lambda_vec_i(Days_number_cumulative(First_Month_Seq)+1 :

Days_number_cumulative(First_Month_Seq+1));↪→

for Tetha_j=1:length(Par_vec)

% Setting tetha_i

lambda_vec_ij = lambda_vec_i;

lambda_vec_ij(Days_number_cumulative(Second_Month_Seq)+1 :

Days_number_cumulative(Second_Month_Seq+1)) = ...↪→

Par_vec(Tetha_j) *

lambda_vec_i(Days_number_cumulative(Second_Month_Seq)+1 :

Days_number_cumulative(Second_Month_Seq+1));

↪→

↪→

66

PathsCost =[];

rng('default')

for w = 1:30

ss;

%Initial setup

S0 = S0();

S = S0.S;

% Defining Plotting Arrays

xSim = [];

uSim = [];

timeSim = [];

lambda_vec_ijk=lambda_vec_ij;

%Setting exogenous information at start of every simple path

Tinf_horizon = sample_path.Tinf(w,:);

Demand_horizon = sample_path.D(w,:);

Ph_horizon = sample_path.Ph(w,:);

Pc_horizon = sample_path.Pc(w,:);

%MPC Control

for k = 1:N

nd = length(sample_path.D)-(k); % MPC control horizon

% Finding indexes of the negative demands

[~, col] = find(Demand_horizon<0);

% Creating "boolean" array

DProductArray = ones(nd,1);

% Indicating negative demands

DProductArray(col,:) = 0;

%% Equality constraint : Ax=b

% Demand constraint

Aeq_D = zeros(nd,7*nd);

%D_k = DPredictArray.*(3/2*U_k + Qheat_k) + (1 {

DpredictArray).*(-U_k - Qcool_k)↪→

for ii = 1:nd

Aeq_D(ii,1 + 7*(ii - 1)) = (S0.COP/(S0.COP-1))*DProductArray(ii)

+ (-1*(1 - DProductArray(ii))); % For borehole daily energy

flow energy (U_k)

↪→

↪→

Aeq_D(ii,2 + 7*(ii - 1)) = (1)*DProductArray(ii) + (0)*(1 -

DProductArray(ii)); % For heater daily

energy flow energy (Qheat_k)

↪→

↪→

Aeq_D(ii,3 + 7*(ii - 1)) = (0)*DProductArray(ii) + (-1)*(1 -

DProductArray(ii)); % For cooler daily energy

flow energy (Qcool_k)

↪→

↪→

end

Beq_D = Demand_horizon(1:end-1)';

%Transition function of states

Aeq_T = zeros(nd,7*nd);

a=1-(lambda_vec_ijk/(S0.m*S0.Cpw));

a_cum=cumprod(a);

b=1/(S0.m*S0.Cpw);

for iii=1:nd

Aeq_T(iii:end,1+7*(iii-1))= b*((+1)*DProductArray(iii) + (-1)*(1

- DProductArray(iii)));↪→

Aeq_T(iii:end,5+7*(iii-1))= (a(iii)-1);

if (iii==nd)

break;

end

for jjj=iii+1:nd

67

Aeq_T(jjj,1+7*(iii-1))= a(jjj-1) * Aeq_T(jjj-1,1+7*(iii-1));

Aeq_T(jjj,5+7*(iii-1))= a(jjj-1) * Aeq_T(jjj-1,5+7*(iii-1));

end

end

Aeq_T=Aeq_T + kron(eye(nd),[0 0 0 1 0 0 0]);

Beq_T=zeros(nd,1);

for kkk=1:nd

Beq_T(kkk,1) = [a_cum(kkk)*S.Tb];

end

% Aeq & Beq integration

Aeq = [Aeq_D;Aeq_T];

Beq = [Beq_D;Beq_T];

%% Inequality constraints : Ax<=b

%Constraint handling : Tb+s_down >=Tbmin

Amin = kron(eye(nd), [0 0 0 -1 0 0 -1]);

Bmin = -S0.Tbmin*ones(nd,1);

%Constraint handling : Tb-s_up <=Tbmax

Amax = kron(eye(nd), [0 0 0 1 0 -1 0]);

Bmax = S0.Tbmax*ones(nd,1);

% Amin & Amax, Bmin & Bmax integration

A = [Amin;Amax];

B = [Bmin;Bmax];

%% Objective function

f = zeros(1,7*nd);

for kk=1:nd-1

f(1,2 + 7*(kk - 1)) = (Ph_horizon(kk));

f(1,3 + 7*(kk - 1)) = (Pc_horizon(kk));

f(1,6 + 7*(kk - 1)) = S0.S.s_up; % Penalizing cost for

violating upper constraint↪→

f(1,7 + 7*(kk - 1)) = S0.S.s_down; % Penalizing cost for

violating upper constraint↪→

end

%% Boundaries - lower and upper

lb = zeros(7*nd,1);

lb(4:7:7*nd,1) = -inf;

for i=1:nd-1

lb(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

ub = repmat([S0.Rmax inf inf inf 0 inf inf]',nd,1);

for i=1:nd-1

ub(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

%% Optimization

w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);

% Data store from openloop optimization

u.u = w_opt(1:7:7*nd);

u.qheat = w_opt(2:7 :7*nd);

u.qcool = w_opt(3:7:7*nd);

u.Tb = w_opt(4:7:7*nd);

u.Tinf = w_opt(5:7:7*nd);

u.s_up = w_opt(6:7:7*nd);

u.s_down = w_opt(7:7:7*nd);

%% Take an action

68

uk = [u.u(1); u.qheat(1); u.qcool(1); u.s_up(1); u.s_down(1)];

sample_path.uk(1+7*(w-1):3+7*(w-1),k)=uk(1:3,:); % For visual check

sample_path.uk(6+7*(w-1),k)=w_opt(6); % For visual check

sample_path.uk(7+7*(w-1),k)=w_opt(7); % For visual check

%% Transition during day

S.Tb = ((1-(S0.lambda/(S0.m*S0.Cpw))) * S.Tb) + [((-1)*DProductArray(1)

+ (+1)*(1 - DProductArray(1)))*b 0 0]*uk(1:3,end) +

(S0.lambda/(S0.m*S0.Cpw))*sample_path.Tinf(w,k);

↪→

↪→

sample_path.uk(4+7*(w-1),k)=S.Tb-273; % For visual check

%% Realization

S.Ph = sample_path.Ph(w,k+1);

S.Pc = sample_path.Pc(w,k+1);

S.D = sample_path.D(w,k+1);

S.Tinf = sample_path.Tinf(w,k+1);

%% For plotting

xSim = [xSim, S.Tb];

uSim = [uSim, uk];

%% Creating forecast error

% Create sigma matrix

sigma_mat=zeros(length(Tinf_horizon));

alpha = 1;

for i = 1:size(sigma_mat,1)

for j = 1:size(sigma_mat,1)

sigma_mat(i,j) = exp(-alpha*abs(i-j));

end

end

% Cholesky decomposition

L = chol(sigma_mat,'lower');

% Multivariate normal distribution of Tinf

sigma_E_Tinf = 1;

mu = zeros(1,length(Tinf_horizon));

Sigma_Tinf = sigma_E_Tinf*diag(Tinf_horizon.^0.5);

Z_Tinf = mvnrnd(mu,Sigma_Tinf);

% Multivariate normal distribution of Demand

sigma_E_D = 15;

mu = zeros(1,length(Demand_horizon));

Demand_P=abs(Demand_horizon);

Sigma_Demand = sigma_E_D*diag(Demand_P.^0.5);

Z_Demand = mvnrnd(mu,Sigma_Demand);

% Multivariate normal distribution of Heating Price

sigma_E_Ph = 15;

mu = zeros(1,length(Ph_horizon));

Sigma_Ph = sigma_E_Ph*diag(Ph_horizon.^0.5);

Z_Ph = mvnrnd(mu,Sigma_Ph);

% Multivariate normal distribution of Cooling Price

sigma_E_Pc = 15;

mu = zeros(1,length(Pc_horizon));

Sigma_Pc = sigma_E_Pc*diag(Pc_horizon.^0.5);

Z_Pc = mvnrnd(mu,Sigma_Pc);

%% Exogenous information model

% Ground temp horizon update

Tinf_error = L*Z_Tinf';

Tinf_horizon = Tinf_horizon(2:end) + Tinf_error(2:end)';

69

% Demand update

Demand_error = L*Z_Demand';

Demand_forecast = Demand_horizon(3:end) + Demand_error(3:end)';

Demand_horizon = [sample_path.D(w,k+1),Demand_forecast];

% Heating Price update

Ph_error = L*Z_Ph';

Ph_horizon = Ph_horizon(2:end) + Ph_error(2:end)';

Ph_horizon = max(S0.Phmin,Ph_horizon);

% Coolimg Price update

Pc_error = L*Z_Pc';

Pc_horizon = Pc_horizon(2:end) + Pc_error(2:end)';

Pc_horizon=max(S0.Pcmin,Pc_horizon);

% Lambda Vector update

lambda_vec_ijk = lambda_vec_ijk(2:end);

end

%% Cost calculation over sample path

% Finding indexes of the negative demands

[~, col] = find(sample_path.D(w,1:N)<0);

% Creating "boolean" array

DemandProductArray = ones(N,1);

% Indicating negative demands

DemandProductArray(col,:) = 0;

% Finding indexes when demands are positive and calculated energy flows

% from borehole will not satisfy the demand, The shortage have to be

supplied by Heater↪→

[~, col] = find(sample_path.D(w,1:N)<0 | sample_path.D(w,1:N) -

((S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N))+0.001)<=0);↪→

% Creating "boolean" array

Remain_Qh_Array = ones(N,1);

% Indicating negative demands

Remain_Qh_Array(col,:) = 0;

% Finding indexes when demands are negative and calculated energy flows

% to borehole will not satisfy the demand, The shortage have to be

supplied by Cooler↪→

[~, col] = find(sample_path.D(w,1:N)>0 | abs(sample_path.D(w,1:N)) -

(uSim(1,1:N) + uSim(3,1:N)+0.001) <=0);↪→

% Creating "boolean" array

Remain_Qc_Array = ones(N,1);

% Indicating negative demands

Remain_Qc_Array(col,:) = 0;

% Penalty for constraint violation

Penalty_up = max(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmax * ones

(1,N)) , 0);↪→

Penalty_down= abs(min(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmin *

ones (1,N)) , 0));↪→

% Cost Over a sample path

PathCost_i = sum(sample_path.Ph(w,1:N) .* uSim(2,1:N) + ...

+ sample_path.Pc(w,1:N) .* uSim(3,1:N) + ...

+ S0.S.s_up * Penalty_up ...

70

+ S0.S.s_down * Penalty_down ...

+ Remain_Qh_Array(1:N)' .* (sample_path.D(w,1:N) -

(S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N))) .*

sample_path.Ph(w,1:N) + ...

↪→

↪→

+ Remain_Qc_Array(1:N)' .* (abs(sample_path.D(w,1:N)) -

(uSim(1,1:N) + uSim(3,1:N))) .*

sample_path.Pc(w,1:N));

↪→

↪→

% Making cost vector of different scenarios

PathsCost = [PathsCost; PathCost_i];

end

% Obtaining average cost

Parametrized_Cost(Tetha_i,Tetha_j) = mean(PathsCost);

for i = 1:size(PathsCost,1)

Avg_cost_cum(i) = mean(PathsCost(1:i));

end

end

end

%Policy Cost Index against changing 2 different coordiantes of tetha

policy_Cost_Index=(Parametrized_Cost - sample_path.OpCo) ./ sample_path.OpCo

%% Plotting

pcolor(Par_vec,Par_vec,policy_Cost_Index')

title('$ \Delta F^{\pi} (\theta) $','fontsi',10,'interpreter','latex')

shading flat

FaceColor = 'interp';

colorbar

xlabel('$\theta_{Aug.}$')

ylabel('$\theta_{Sep.}$')

71

G Code of Parameterized Cost Function Approximation: Single Scalar
Parameterization on Demand Forecast

%%%%%%%%%%%%%%%%%%%%%%

%%%% NB: Before this code, you should run Optimal.m in

%%%% Address: C:\Users\win\Desktop\Master\Optimal Cost

%%%%%%%%%%%%%%%%%%%%%%

close all

clear all

clc

tic

addpath('C:\Users\win\Desktop\Master\Exogenous Information')

addpath('C:\Users\win\Desktop\Master\Optimal Cost')

load('sample_path.mat')

%% Settings

S0 = S0();

S = S0.S;

plot_settings

scenario = size(sample_path.D,1); % Scenario number

N = size(sample_path.D,2)-1; % Total time horizon [Day]

%Extention of sample path

sample_path.D = [sample_path.D];

sample_path.Ph = [sample_path.Ph];

sample_path.Pc = [sample_path.Pc];

sample_path.Tinf= [sample_path.Tinf];

%% Simulation

Par_vec = [0 1 20 40 60 80 100 120]; % Vector of parameter values

rng('default')

for Parameter_sequence = 1:length(Par_vec)

PathsCost =[];

rng('default')

for w = 1:scenario

ss;

%Initial setup

S0 = S0();

S = S0.S;

%Defining plotting arrays

xSim = [];

uSim = [];

timeSim = [];

%Setting exogenous information at start of every simple path

Tinf_horizon = sample_path.Tinf(w,:);

Demand_horizon = Par_vec(Parameter_sequence) * sample_path.D(w,:);

%Parameterization on Demand Forecast↪→

Ph_horizon = sample_path.Ph(w,:);

Pc_horizon = sample_path.Pc(w,:);

%MPC Control

for k = 1:N

nd = length(sample_path.D)-(k); % MPC control horizon

% Finding indexes of the negative demands

[~, col] = find(Demand_horizon<0);

% Creating "boolean" array

DProductArray = ones(nd,1);

% Indicating negative demands

72

DProductArray(col,:) = 0;

%% Equality constraint : Ax=b

% Demand constraint

Aeq_D = zeros(nd,7*nd);

%D_k = DPredictArray.*(3/2*U_k + Qheat_k) + (1 {

DpredictArray).*(-U_k - Qcool_k)↪→

for ii = 1:nd

Aeq_D(ii,1 + 7*(ii - 1)) =

(S0.COP/(S0.COP-1))*DProductArray(ii) + (-1*(1 -

DProductArray(ii))); % For borehole daily energy flow

(U_k)

↪→

↪→

↪→

Aeq_D(ii,2 + 7*(ii - 1)) = (1)*DProductArray(ii) + (0)*(1 -

DProductArray(ii)); % For heater daily

energy flow (Qheat_k)

↪→

↪→

Aeq_D(ii,3 + 7*(ii - 1)) = (0)*DProductArray(ii) + (-1)*(1 -

DProductArray(ii)); % For cooler daily

energy flow (Qcool_k)

↪→

↪→

end

Beq_D = Demand_horizon(1:end-1)';

%Transition function of states

Aeq_T = zeros(nd,7*nd);

a=1-(S0.lambda/(S0.m*S0.Cpw));

b=1/(S0.m*S0.Cpw);

for iii=1:nd

Aeq_T(iii:end,1+7*(iii-1))= b*((+1)*DProductArray(iii) +

(-1)*(1 - DProductArray(iii)));↪→

Aeq_T(iii:end,5+7*(iii-1))= (a-1);

for jjj=iii:nd

Aeq_T(jjj,1+7*(iii-1))=a^(jjj-iii)*

Aeq_T(jjj,1+7*(iii-1));↪→

Aeq_T(jjj,5+7*(iii-1))=a^(jjj-iii)*

Aeq_T(jjj,5+7*(iii-1));↪→

end

end

Aeq_T=Aeq_T + kron(eye(nd),[0 0 0 1 0 0 0]);

Beq_T=zeros(nd,1);

for kkk=1:nd

Beq_T(kkk,1) = [a^(kkk)*S.Tb];

end

% Integration of equality constraints

Aeq = [Aeq_D;Aeq_T];

Beq = [Beq_D;Beq_T];

%% Inequality constraints : Ax<=b

%Constraint handling : Tb+s_down >=Tbmin

Amin = kron(eye(nd), [0 0 0 -1 0 0 -1]);

Bmin = -S0.Tbmin*ones(nd,1);

%Constraint handling : Tb-s_up <=Tbmax

Amax = kron(eye(nd), [0 0 0 1 0 -1 0]);

Bmax = S0.Tbmax*ones(nd,1);

%Integration of inequality constraints

A = [Amin;Amax];

B = [Bmin;Bmax];

%% Objective function

f = zeros(1,7*nd);

for kk=1:nd-1

73

f(1,2 + 7*(kk - 1)) = (Ph_horizon(kk));

f(1,3 + 7*(kk - 1)) = (Pc_horizon(kk));

f(1,6 + 7*(kk - 1)) = S0.S.s_up; % Penalizing cost for

violating upper constraint↪→

f(1,7 + 7*(kk - 1)) = S0.S.s_down; % Penalizing cost for

violating lower constraint↪→

end

%% Boundaries - lower and upper

lb = zeros(7*nd,1);

lb(4:7:7*nd,1) = -inf;

for i=1:nd-1

lb(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

ub = repmat([S0.Rmax inf inf inf 0 inf inf]',nd,1);

for i=1:nd-1

ub(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

%% Optimization

w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);

% Data store from openloop optimization

u.u = w_opt(1:7:7*nd);

u.qheat = w_opt(2:7:7*nd);

u.qcool = w_opt(3:7:7*nd);

u.Tb = w_opt(4:7:7*nd);

u.Tinf = w_opt(5:7:7*nd);

u.s_up = w_opt(6:7:7*nd);

u.s_down = w_opt(7:7:7*nd);

%% Take an action

uk = [u.u(1); u.qheat(1); u.qcool(1); u.s_up(1); u.s_down(1)];

sample_path.uk(1+7*(w-1):3+7*(w-1),k)=uk(1:3,:); % For visual

check↪→

sample_path.uk(6+7*(w-1),k)=w_opt(6); % For visual

check↪→

sample_path.uk(7+7*(w-1),k)=w_opt(7); % For visual

check↪→

%% Transition during day

S.Tb = ((1-(S0.lambda/(S0.m*S0.Cpw))) * S.Tb) +

[((-1)*DProductArray(1) + (+1)*(1 - DProductArray(1)))*b 0

0]*uk(1:3,end) +

(S0.lambda/(S0.m*S0.Cpw))*sample_path.Tinf(w,k);

↪→

↪→

↪→

sample_path.uk(4+7*(w-1),k)=S.Tb-273; % For visual

check↪→

%% Realization

S.Ph = sample_path.Ph(w,k+1);

S.Pc = sample_path.Pc(w,k+1);

S.D = sample_path.D(w,k+1);

S.Tinf = sample_path.Tinf(w,k+1);

%% For plotting

xSim = [xSim, S.Tb];

uSim = [uSim, uk];

%% Creating forecast error

74

% Create sigma matrix

sigma_mat=zeros(length(Tinf_horizon));

alpha = 1;

for i = 1:size(sigma_mat,1)

for j = 1:size(sigma_mat,1)

sigma_mat(i,j) = exp(-alpha*abs(i-j));

end

end

% Cholesky decomposition

L = chol(sigma_mat,'lower');

% Multivariate normal distribution of Tinf

sigma_E_Tinf = 1;

mu = zeros(1,length(Tinf_horizon));

Sigma_Tinf = sigma_E_Tinf*diag(Tinf_horizon.^0.5);

Z_Tinf = mvnrnd(mu,Sigma_Tinf);

% Multivariate normal distribution of Demand

sigma_E_D = 15;

mu = zeros(1,length(Demand_horizon));

Demand_P=abs(Demand_horizon);

Sigma_Demand = sigma_E_D*diag(Demand_P.^0.5);

Z_Demand = mvnrnd(mu,Sigma_Demand);

% Multivariate normal distribution of Heating Price

sigma_E_Ph = 15;

mu = zeros(1,length(Ph_horizon));

Sigma_Ph = sigma_E_Ph*diag(Ph_horizon.^0.5);

Z_Ph = mvnrnd(mu,Sigma_Ph);

% Multivariate normal distribution of Cooling Price

sigma_E_Pc = 15;

mu = zeros(1,length(Pc_horizon));

Sigma_Pc = sigma_E_Pc*diag(Pc_horizon.^0.5);

Z_Pc = mvnrnd(mu,Sigma_Pc);

%% Exogenous information developement

% Ground temp horizon update

Tinf_error = L*Z_Tinf';

Tinf_horizon = Tinf_horizon(2:end) + Tinf_error(2:end)';

% Demand update

Demand_error = L*Z_Demand';

Demand_forecast = Demand_horizon(3:end) + Demand_error(3:end)';

Demand_horizon = [sample_path.D(w,k+1),Demand_forecast];

% Heating Price update

Ph_error = L*Z_Ph';

Ph_horizon = Ph_horizon(2:end) + Ph_error(2:end)';

Ph_horizon = max(S0.Phmin,Ph_horizon);

% Coolimg Price update

Pc_error = L*Z_Pc';

Pc_horizon = Pc_horizon(2:end) + Pc_error(2:end)';

Pc_horizon=max(S0.Pcmin,Pc_horizon);

end

%% Cost calculation over sample path

% Finding indexes of the negative demands

[~, col] = find(sample_path.D(w,1:N)<0);

% Creating "boolean" array

DemandProductArray = ones(N,1);

75

% Indicating negative demands

DemandProductArray(col,:) = 0;

% Finding indexes when demands are positive and calculated energy

flows↪→

% from borehole will not satisfy the demand, The shortage have to be

supplied by Heater↪→

[~, col] = find(sample_path.D(w,1:N)<0 | sample_path.D(w,1:N) -

((S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N))+0.001)<=0);↪→

% Creating "boolean" array

Remain_Qh_Array = ones(N,1);

% Indicating negative demands

Remain_Qh_Array(col,:) = 0;

% Finding indexes when demands are negative and calculated energy

flows↪→

% to borehole will not satisfy the demand, The shortage have to be

supplied by Cooler↪→

[~, col] = find(sample_path.D(w,1:N)>0 | abs(sample_path.D(w,1:N)) -

(uSim(1,1:N) + uSim(3,1:N)+0.001) <=0);↪→

% Creating "boolean" array

Remain_Qc_Array = ones(N,1);

% Indicating negative demands

Remain_Qc_Array(col,:) = 0;

% Penalty for constraint violation

Penalty_up = max(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmax *

ones (1,N)) , 0);↪→

Penalty_down= abs(min(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmin *

ones (1,N)) , 0));↪→

% Cost Over a sample path

PathCost_i = sum(sample_path.Ph(w,1:N) .* uSim(2,1:N) + ...

+ sample_path.Pc(w,1:N) .* uSim(3,1:N) + ...

+ S0.S.s_up * Penalty_up ...

+ S0.S.s_down * Penalty_down ...

+ Remain_Qh_Array(1:N)' .* (sample_path.D(w,1:N) -

(S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N)))

.* sample_path.Ph(w,1:N) + ...

↪→

↪→

+ Remain_Qc_Array(1:N)' .*

(abs(sample_path.D(w,1:N)) - (uSim(1,1:N) +

uSim(3,1:N))) .* sample_path.Pc(w,1:N));

↪→

↪→

% Making cost vector of different scenarios

PathsCost = [PathsCost; PathCost_i];

end

% Obtaining average cost

Parametrized_Cost(Parameter_sequence) = mean(PathsCost);

for i = 1:size(PathsCost,1)

Avg_cost_cum(i) = mean(PathsCost(1:i));

end

end

%% Plotting Policy Cost Index against theta_{i}

hold on

plot(Par_vec, (Parametrized_Cost-sample_path.OpCo)/sample_path.OpCo)

grid('on');

box('on');

xlabel('θ')

76

ylabel('$ \Delta F^{\pi} (\theta) $')

% save

save = ('P02_MPC')

%% Plotting the states and inputs for a given scenario

trial = 1;

sample_path.ukplot(1:4,:) = sample_path.uk(1+7*(trial-1):4+7*(trial-1),:);

sample_path.ukplot(5,:)= sample_path.D(trial,1:N);

for ind= 1:N

if sample_path.ukplot(5,ind)>=0

sample_path.ukplot(1,ind)=(S0.COP/(S0.COP-1))*sample_path.ukplot(1,ind)

else

sample_path.ukplot(1,ind)=-1*sample_path.ukplot(1,ind)

sample_path.ukplot(3,ind)=-1*sample_path.ukplot(3,ind)

end

end

figure

subplot(5,1,1)

plot(sample_path.ukplot(4,:),'b-')

xlabel('Time, Day')

ylabel('T^{b} [Deg. C]')

subplot(5,1,2)

stairs(0:N,[sample_path.ukplot(1,:), nan],'b-')

xlabel('Time, Day')

ylabel('Q^{b} [MWh]')

subplot(5,1,3)

stairs(0:N,[sample_path.ukplot(2,:), nan],'b-')

xlabel('Time, Day')

ylabel('Q^{h} [MWh]')

axis([1 400 0 20])

subplot(5,1,4)

stairs(0:N,[sample_path.ukplot(3,:), nan],'b-')

xlabel('Time, Day')

ylabel('Q^{c} [MWh]')

subplot(5,1,5)

plot(sample_path.ukplot(5,:), 'b')

xlabel('Time, Day')

ylabel('Demand [MWh]')

77

H Code of parameterized cost function approximation: Monthly-Based
Parameterization on Demand forecast constraint

%%%%%%%%%%%%%%%%%%%%%%

%%%% NB: Before this code, you should run Optimal.m in

%%%% Address: C:\Users\win\Desktop\Master\Optimal Cost

%%%%%%%%%%%%%%%%%%%%%%

close all

clear all

clc

tic

addpath('C:\Users\win\Desktop\Master\Exogenous Information')

addpath('C:\Users\win\Desktop\Master\Optimal Cost')

load('sample_path.mat')

%% Settings

S0 = S0();

S = S0.S;

plot_settings

scenario = size(sample_path.D,1); % Scenario number

N = size(sample_path.D,2)-1; % Total time horizon [Day]

%Extention of sample path

sample_path.D = [sample_path.D];

sample_path.Ph = [sample_path.Ph];

sample_path.Pc = [sample_path.Pc];

sample_path.Tinf= [sample_path.Tinf];

%% Simulation

Par_vec = [0 0.5 1 2 3 4 5 6 7 8 9 10]; % Vector of parameters

will be multiplied by demand↪→

Days_number = [30 31 31 28 31 30 31 30 31 31 30 31]; % Vector of days in every

month↪→

Days_number_cumulative =[0, cumsum(Days_number)];

rng('default')

Parametrized_Cost=zeros(size(Days_number,2), size(Par_vec,2));

for month=1:length(Days_number)

for Parameter_sequence = 1:length(Par_vec)

PathsCost =[];

rng('default')

for w = 1:scenario

ss;

%Initial setup

S0 = S0();

S = S0.S;

%Defining Plotting Arrays

xSim = [];

uSim = [];

timeSim = [];

%Setting parametrized demand at start of every simple path

Demand_horizon = sample_path.D(w,:);

Demand_horizon(Days_number_cumulative(month)+1 :

Days_number_cumulative(month+1)) = ...↪→

Par_vec(Parameter_sequence) *

Demand_horizon(Days_number_cumulative(month)+1 :

Days_number_cumulative(month+1));

↪→

↪→

78

%Setting other exogenous information at start of every simple path

Tinf_horizon = sample_path.Tinf(w,:);

Ph_horizon = sample_path.Ph(w,:);

Pc_horizon = sample_path.Pc(w,:);

%MPC Control

for k = 1:N

nd = length(sample_path.D)-(k); % MPC control horizon

% Finding indexes of the negative demands

[~, col] = find(Demand_horizon<0);

% Creating "boolean" array

DProductArray = ones(nd,1);

% Indicating negative demands

DProductArray(col,:) = 0;

%% Equality constraint : Ax=b

% Demand constraint

Aeq_D = zeros(nd,7*nd);

%D_k = DPredictArray.*(3/2*U_k + Qheat_k) + (1 {

DpredictArray).*(-U_k - Qcool_k)↪→

for ii = 1:nd

Aeq_D(ii,1 + 7*(ii - 1)) =

(S0.COP/(S0.COP-1))*DProductArray(ii) + (-1*(1 -

DProductArray(ii))); % for borehole daily energy flow

(U_k)

↪→

↪→

↪→

Aeq_D(ii,2 + 7*(ii - 1)) = (1)*DProductArray(ii) + (0)*(1 -

DProductArray(ii)); % for heater daily

energy flow (Qheat_k)

↪→

↪→

Aeq_D(ii,3 + 7*(ii - 1)) = (0)*DProductArray(ii) + (-1)*(1 -

DProductArray(ii)); % for cooler daily

energy flow (Qcool_k)

↪→

↪→

end

Beq_D = Demand_horizon(1:end-1)';

%Transition function

Aeq_T = zeros(nd,7*nd);

a=1-(S0.lambda/(S0.m*S0.Cpw));

b=1/(S0.m*S0.Cpw);

for iii=1:nd

Aeq_T(iii:end,1+7*(iii-1))= b*((+1)*DProductArray(iii) +

(-1)*(1 - DProductArray(iii)));↪→

Aeq_T(iii:end,5+7*(iii-1))= (a-1);

for jjj=iii:nd

Aeq_T(jjj,1+7*(iii-1))= a^(jjj-iii) *

Aeq_T(jjj,1+7*(iii-1));↪→

Aeq_T(jjj,5+7*(iii-1))= a^(jjj-iii) *

Aeq_T(jjj,5+7*(iii-1));↪→

end

end

Aeq_T=Aeq_T + kron(eye(nd),[0 0 0 1 0 0 0]);

Beq_T=zeros(nd,1);

for kkk=1:nd

Beq_T(kkk,1) = [a^kkk*S.Tb];

end

% Integration of equality constraints

Aeq = [Aeq_D;Aeq_T];

Beq = [Beq_D;Beq_T];

%% Inequality constraints : Ax<=b

%Constraint handling : Tb+s_down >=Tbmin

Amin = kron(eye(nd), [0 0 0 -1 0 0 -1]);

79

Bmin = -S0.Tbmin*ones(nd,1);

%Constraint handling : Tb-s_up <=Tbmax

Amax = kron(eye(nd), [0 0 0 1 0 -1 0]);

Bmax = S0.Tbmax*ones(nd,1);

%Integration of inequality constraints

A = [Amin;Amax];

B = [Bmin;Bmax];

%% Objective function

f = zeros(1,7*nd);

for kk=1:nd-1

f(1,2 + 7*(kk - 1)) = (Ph_horizon(kk));

f(1,3 + 7*(kk - 1)) = (Pc_horizon(kk));

f(1,6 + 7*(kk - 1)) = S0.S.s_up; % Penalizing cost

for violating upper constraint↪→

f(1,7 + 7*(kk - 1)) = S0.S.s_down; % Penalizing cost

for violating upper constraint↪→

end

%% Boundaries - lower and upper

lb = zeros(7*nd,1);

lb(4:7:7*nd,1) = -inf;

for i=1:nd-1

lb(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

ub = repmat([S0.Rmax inf inf inf 0 inf inf]',nd,1);

for i=1:nd-1

ub(5 + 7*(i - 1),1)=Tinf_horizon (i);

end

%% Optimization

w_opt = linprog(f,A,B,Aeq,Beq,lb,ub);

% Data store from openloop optimization

u.u = w_opt(1:7:7*nd);

u.qheat = w_opt(2:7:7*nd);

u.qcool = w_opt(3:7:7*nd);

u.Tb = w_opt(4:7:7*nd);

u.Tinf = w_opt(5:7:7*nd);

u.s_up = w_opt(6:7:7*nd);

u.s_down = w_opt(7:7:7*nd);

%% Take an action

uk = [u.u(1); u.qheat(1); u.qcool(1); u.s_up(1); u.s_down(1)];

sample_path.uk(1+7*(w-1):3+7*(w-1),k)=uk(1:3,:); % For visual

check↪→

sample_path.uk(6+7*(w-1),k)=w_opt(6); % For visual

check↪→

sample_path.uk(7+7*(w-1),k)=w_opt(7); % For visual

check↪→

%% Transition during day

S.Tb = ((1-(S0.lambda/(S0.m*S0.Cpw))) * S.Tb) +

[((-1)*DProductArray(1) + (+1)*(1 - DProductArray(1)))*b 0

0]*uk(1:3,end) +

(S0.lambda/(S0.m*S0.Cpw))*sample_path.Tinf(w,k);

↪→

↪→

↪→

sample_path.uk(4+7*(w-1),k)=S.Tb-273; % For visual

check↪→

80

%% Realization

S.Ph = sample_path.Ph(w,k+1);

S.Pc = sample_path.Pc(w,k+1);

S.D = sample_path.D(w,k+1);

S.Tinf = sample_path.Tinf(w,k+1);

%% For plotting

xSim = [xSim, S.Tb];

uSim = [uSim, uk];

%% Creating forecast error

% Create sigma matrix

sigma_mat=zeros(length(Tinf_horizon));

alpha = 1;

for i = 1:size(sigma_mat,1)

for j = 1:size(sigma_mat,1)

sigma_mat(i,j) = exp(-alpha*abs(i-j));

end

end

% Cholesky decomposition

L = chol(sigma_mat,'lower');

% Multivariate normal distribution of Tinf

sigma_E_Tinf = 1;

mu = zeros(1,length(Tinf_horizon));

Sigma_Tinf = sigma_E_Tinf*diag(Tinf_horizon.^0.5);

Z_Tinf = mvnrnd(mu,Sigma_Tinf);

% Multivariate normal distribution of Demand

sigma_E_D = 15;

mu = zeros(1,length(Demand_horizon));

Demand_P=abs(Demand_horizon);

Sigma_Demand = sigma_E_D*diag(Demand_P.^0.5);

Z_Demand = mvnrnd(mu,Sigma_Demand);

% Multivariate normal distribution of Heating Price

sigma_E_Ph = 15;

mu = zeros(1,length(Ph_horizon));

Sigma_Ph = sigma_E_Ph*diag(Ph_horizon.^0.5);

Z_Ph = mvnrnd(mu,Sigma_Ph);

% Multivariate normal distribution of Cooling Price

sigma_E_Pc = 15;

mu = zeros(1,length(Pc_horizon));

Sigma_Pc = sigma_E_Pc*diag(Pc_horizon.^0.5);

Z_Pc = mvnrnd(mu,Sigma_Pc);

%% Exogenous information developement

% Ground temp horizon update

Tinf_error = L*Z_Tinf';

Tinf_horizon = Tinf_horizon(2:end) + Tinf_error(2:end)';

% Demand update

Demand_error = L*Z_Demand';

Demand_forecast = Demand_horizon(3:end) + Demand_error(3:end)';

Demand_horizon = [sample_path.D(w,k+1),Demand_forecast];

% Heating Price update

Ph_error = L*Z_Ph';

Ph_horizon = Ph_horizon(2:end) + Ph_error(2:end)';

Ph_horizon = max(S0.Phmin,Ph_horizon);

% Coolimg Price update

81

Pc_error = L*Z_Pc';

Pc_horizon = Pc_horizon(2:end) + Pc_error(2:end)';

Pc_horizon=max(S0.Pcmin,Pc_horizon);

end

%% Cost calculation over sample path

% Finding indexes of the negative demands

[~, col] = find(sample_path.D(w,1:N)<0);

% Creating "boolean" array

%DemandProductArray = S0.COP/(S0.COP-1)*ones(N+1,1);

DemandProductArray = ones(N,1);

% Indicating negative demands

DemandProductArray(col,:) = 0;

% Finding indexes when demands are positive and calculated energy

flows↪→

% from borehole will not satisfy the demand, The shortage have to be

supplied by Heater↪→

[~, col] = find(sample_path.D(w,1:N)<0 | sample_path.D(w,1:N) -

((S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N))+0.001)<=0);↪→

% Creating "boolean" array

Remain_Qh_Array = ones(N,1);

% Indicating negative demands

Remain_Qh_Array(col,:) = 0;

% Finding indexes when demands are negative and calculated energy

flows↪→

% to borehole will not satisfy the demand, The shortage have to be

supplied by Cooler↪→

[~, col] = find(sample_path.D(w,1:N)>0 | abs(sample_path.D(w,1:N)) -

(uSim(1,1:N) + uSim(3,1:N)+0.001) <=0);↪→

% Creating "boolean" array

Remain_Qc_Array = ones(N,1);

% Indicating negative demands

Remain_Qc_Array(col,:) = 0;

% Penalty for constraint violation

Penalty_up = max(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmax *

ones (1,N)) , 0);↪→

Penalty_down= abs(min(sample_path.uk(4+7*(w-1),:) + 273 - (S0.Tbmin *

ones (1,N)) , 0));↪→

% Cost Over a sample path

PathCost_i = sum(sample_path.Ph(w,1:N) .* uSim(2,1:N) + ...

+ sample_path.Pc(w,1:N) .* uSim(3,1:N) + ...

+ S0.S.s_up * Penalty_up ...

+ S0.S.s_down * Penalty_down ...

+ Remain_Qh_Array(1:N)' .* (sample_path.D(w,1:N) -

(S0.COP/(S0.COP-1)*uSim(1,1:N) + uSim(2,1:N)))

.* sample_path.Ph(w,1:N) + ...

↪→

↪→

+ Remain_Qc_Array(1:N)' .*

(abs(sample_path.D(w,1:N)) - (uSim(1,1:N) +

uSim(3,1:N))) .* sample_path.Pc(w,1:N));

↪→

↪→

% Making cost vector of different scenarios

PathsCost = [PathsCost; PathCost_i];

end

% Obtaining average cost

Parametrized_Cost(month,Parameter_sequence) = mean(PathsCost);

82

for i = 1:size(PathsCost,1)

Avg_cost_cum(i) = mean(PathsCost(1:i));

end

end

end

%% Plotting policy improvement against theta_{i}

hold on

plot(Par_vec, (Parametrized_Cost(1,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(2,:)-sample_path.OpCo)/sample_path.OpCo)↪→

plot(Par_vec, (Parametrized_Cost(3,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(4,:)-sample_path.OpCo)/sample_path.OpCo)↪→

plot(Par_vec, (Parametrized_Cost(5,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(6,:)-sample_path.OpCo)/sample_path.OpCo)↪→

plot(Par_vec, (Parametrized_Cost(7,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(8,:)-sample_path.OpCo)/sample_path.OpCo)↪→

plot(Par_vec, (Parametrized_Cost(9,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(10,:)-sample_path.OpCo)/sample_path.OpCo)↪→

plot(Par_vec, (Parametrized_Cost(11,:)-sample_path.OpCo)/sample_path.OpCo,

Par_vec, (Parametrized_Cost(12,:)-sample_path.OpCo)/sample_path.OpCo)↪→

legend('$\theta_{Nov.}$','$\theta_{Dec.}$','$\theta_{Jan.}$','$\theta_{Feb.}$','$\theta_{Mar.}$',...

'$\theta_{Apr.}$','$\theta_{May.}$','$\theta_{Jun.}$','$\theta_{Jul.}$','$\theta_{Aug.}$',...↪→

'$\theta_{Sep.}$','$\theta_{Oct.}$')

grid('on');

box('on');

xlabel('θ')

ylabel('$ \Delta F^{\pi} (\theta) $')

% save

save = ('P02_MPC')

%% Plotting the states and inputs for a given scenario

trial = 1;

sample_path.ukplot(1:4,:) = sample_path.uk(1+7*(trial-1):4+7*(trial-1),:);

sample_path.ukplot(5,:)= sample_path.D(trial,1:N);

for ind= 1:N

if sample_path.ukplot(5,ind)>=0

sample_path.ukplot(1,ind)=(S0.COP/(S0.COP-1))*sample_path.ukplot(1,ind)

else

sample_path.ukplot(1,ind)=-1*sample_path.ukplot(1,ind)

sample_path.ukplot(3,ind)=-1*sample_path.ukplot(3,ind)

end

end

figure

subplot(5,1,1)

plot(sample_path.ukplot(4,:),'b-')

xlabel('Time, Day')

ylabel('T^{b} [Deg. C]')

subplot(5,1,2)

stairs(0:N,[sample_path.ukplot(1,:), nan],'b-')

xlabel('Time, Day')

ylabel('Q^{b} [MWh]')

subplot(5,1,3)

stairs(0:N,[sample_path.ukplot(2,:), nan],'b-')

xlabel('Time, Day')

83

ylabel('Q^{h} [MWh]')

subplot(5,1,4)

stairs(0:N,[sample_path.ukplot(3,:), nan],'b-')

xlabel('Time, Day')

ylabel('Q^{c} [MWh]')

subplot(5,1,5)

plot(sample_path.ukplot(5,:), 'b')

xlabel('Time, Day')

ylabel('Demand [MWh]')

84

	Front page
	Master_Thesis
	List of Figures
	List of Tables
	Introduction
	Importance of Renewable Energy and the Control of Energy Storage Systems
	Contributions of the Master Thesis
	Organization of the Report

	Literature Review of Stochastic Optimization and Energy Storage
	Stochastic Optimization
	Canonical Model in Stochastic Optimization
	State Variables
	Decision Variables
	Exogenous Information Variables
	Transition Function
	Objective Function

	Control Policies
	Policy Function Approximation (PFA)
	Cost Function Approximation (CFA)
	Value Function Approximation (VFA)
	Direct Lookahead Approximation (DLA)

	Case study: A Borehole Energy Storage System
	Basic Model
	Static Parameters
	State Variables
	Decision Variables
	Constraints
	Exogenous Information
	State Transition Function
	Objective Function

	Exogenous Information
	Price Model
	Demand Model
	Underground Temperature Model

	Designing Policies, Hybrid CFA-DLA
	Model Predictive Control
	Developing Forecast Error
	Policy Parameterization
	Parameterization on Transition Function
	Parameterization on Demand Forecast

	Policy Cost Index and Cost Reduction

	Evaluating Policies Performances
	Benchmark Policy with Perfect Forecast
	Effect of Different Forecast Error on Cost
	Policy Performance of Parameterization on Transition Function
	Policy Performance of Parameterization on Demand Forecast
	Comparison of the Results

	Discussion
	Performance of Parameterized CFA
	Simplifications and Challenges of the Model
	Suggestion for Further Studies

	Conclusion
	Bibliography
	Appendix
	Static Parameters and Initial Conditions
	Generation of Exogenous Information
	Driver
	Exogenous Information Function

	Optimal Cost
	Code of Parameterized Cost Function Approximation: Single Scalar Parameterization on Transition Function
	Code of Parameterized Cost Function Approximation: Monthly-Based Parameterization on Transition Function
	Code of Parameterized Cost Function Approximation: Two Dimensional Search over Parameterized Transition Function
	Code of Parameterized Cost Function Approximation: Single Scalar Parameterization on Demand Forecast
	Code of parameterized cost function approximation: Monthly-Based Parameterization on Demand forecast constraint

	End Page

