
Approximating a deep reinforcement learning docking agent using
linear model trees

Vilde B. Gjærum1 and Ella-Lovise H. Rørvik2 and Anastasios M. Lekkas1

Abstract— Deep reinforcement learning has led to numerous
notable results in robotics. However, deep neural networks
(DNNs) are unintuitive, which makes it difficult to understand
their predictions and strongly limits their potential for real-
world applications due to economic, safety, and assurance
reasons. To remedy this problem, a number of explainable AI
methods have been presented, such as SHAP and LIME, but
these can be either be too costly to be used in real-time robotic
applications or provide only local explanations. In this paper,
the main contribution is the use of a linear model tree (LMT)
to approximate a DNN policy, originally trained via proximal
policy optimization(PPO), for an autonomous surface vehicle
with five control inputs performing a docking operation. The
two main benefits of the proposed approach are: a) LMTs are
transparent which makes it possible to associate directly the
outputs (control actions, in our case) with specific values of the
input features, b) LMTs are computationally efficient and can
provide information in real-time. In our simulations, the opaque
DNN policy controls the vehicle and the LMT runs in parallel
to provide explanations in the form of feature attributions. Our
results indicate that LMTs can be a useful component within
digital assurance frameworks for autonomous ships.

Index Terms— Deep Reinforcement Learning , Explainable
Artificial Intelligence, Linear Model Trees, Docking, Berthing,
Autonomous Surface Vessel

I. INTRODUCTION

Deep reinforcement learning (DRL) is a powerful tool with
many application areas within robotics, such as perception
and control. One of DRL’s attributes is that it enables end-to-
end learning, which refers to mapping sensory input directly
to control actions. This mapping allows for optimizing the
overall system performance, instead of having several, locally
optimized systems in cascade, which often is the case for
model-based systems. In [1], the learned policy was able to
perform various manipulation tasks with a dexterous, robotic
hand. In [2], a real-world Minitaur robot learned to walk on
a flat surface and was able to handle somewhat challenging
surfaces and obstacles without having seen these obstacles
during training. In [3], one of DRL’s greatest strengths
is demonstrated, namely discovering strategies through the
exploration of the state- and action space in the multi-
agent environment of playing hide and seek. The agents
adapted and came up with new strategies to combat the
opponents’ latest strategy, even going as far as using parts

This work was supported by the Research Council of Norway through the
EXAIGON project, project number 304843. An additional thanks to Nicolas
B. Carbone for his contribution through several valuable discussions.

1Department of Engineering Cybernetics, Norwegian University of Sci-
ence and Technology, Trondheim, Norway. Email: vilde.gjarum, anasta-
sios.lekkas}@ntnu.no

2Department of Artificial Intelligence, TrønderEnergi, Trondheim, Nor-
way. Email:elh.rorvik@gmail.com

of the environment in ways not originally intended. The
applicability of DRL has also been demonstrated in motion
control tasks for autonomous surface vessels (ASVs), which
often operate in complex and uncertain environments that
are challenging to model. In [4], DRL was used to perform
curved-path following on a surface vessel and performed well
compared to line-of-sight guidance in simulations. In [5], a
DRL-agent was trained to perform both path-following and
collision avoidance. In [6], a DRL agent is trained to perform
the approach and berthing phases of docking of an ASV.

Even though DRL is a promising tool for advancing the
level of autonomy in many fields, its potential applications
in real life are strongly limited by the lack of transparency
of the deep neural networks (DNNs) involved. This is
crucial in all cost- and safety- critical applications. To be
able to understand the agent’s actions, a global explainer
is needed, or as a bare minimum, local explanations for
each prediction. There has been done a lot of work on
addressing this problem in the field of eXplainable Artificial
Intelligence (XAI) in the recent years. The goal of XAI is to
uncover the inner workings of black-box models. One of the
most prominent explainers is the Local Interpretable Model-
agnostic Explainer (LIME) [7], which trains an interpretable,
surrogate model around the instance it is explaining based
on neighboring instances. LIME is a post-hoc (it explains
previously trained methods), model-agnostic (it can explain
any type of model) XAI method. The neighboring datapoints
are weighted based on how far away from the instance to be
explained they are. One weakness of LIME is that it does
not perform as well when explaining instances it has not
seen before. This problem is addressed in [8] by the same
authors, where the interpretable surrogate model is replaced
by a set of IF-THEN rules called anchors. Another prominent
XAI method is Shapley Additive exPlanations (SHAP) from
[9]. The SHAP method explains a prediction by assigning
importance to the input features for that prediction. The
importance of the features is calculated by utilizing Shapley
values from game theory, in combination with the coeffi-
cients of a local linear regression. SHAP is a model-agnostic,
post-hoc method. The assigned contributions of the input
features should add up to the original prediction, thus SHAP
is an additive feature attribution method. Also, although
SHAP is mainly a local explanation method, it can give
indications of how the black-box model works as a whole
through calculating the Shapley values for every instance and
analyzing the resulting matrix of Shapley values. It should
be noted that SHAP is a very computationally demanding
method. Both LIME and SHAP form their explanations by

perturbating the inputs and computing how these perturba-
tions affect the output of model to be explained. In [10], it
was shown that XAI methods relying on input perturbations
are vulnerable to adversarial attacks aiming to hide their
classification bias from the XAI method. One of the reasons
such methods are vulnerable to adversarial attacks is that the
data sampled from input pertubation often are irrelevant, and
the model is forced to explain input samples it has never
seen before [11]. Even if the model to be explained does
not intend to fool the explainer, if the samples created by
perturbating the inputs are unrealistic, the explanations will
be based upon predictions not fairly representing the model.
Additionally, in [11] it is pointed out that SHAP assumes
complete independence between the input features, which is
often not the case for robotic systems. In [12], the method
called Integrated Gradients was presented. As the name
implies, the gradients are integrated along a straight-line path
between the instance to be explained and an information-less
baseline instance to extract the explanations directly from the
neural network. Integrated Gradients is a post-hoc, model-
specific (it can only explain one type of model). In this paper,
the focus is on linear model trees, a type of decision tree
(DT). The rule-based nature of DTs make them inherently
transparent and interpretable, since it is trivial to follow the
path from the leaf node (output) to the root node (input)
of the tree. The most basic form of a decision tree for
continuous data - a simple regression tree - has univariate
splits and each leaf node predicts a constant value. Model
trees are regression trees with a different type of prediction
model at the leaf nodes. In linear model trees (LMTs), linear
regression is used in the leaf nodes in stead, which makes it
easy to extract explanations of the predictions in the form of
feature attributions, in addition to being transparent. Linear
model trees, as presented in this paper, are fast enough to
be used in real-time, are model-agnostic, and can be used to
understand both individual predictions and the system as a
whole. To the authors’ best knowledge, there is no existing
literature where LMTs are used to approximate DNN policies
controlling robotic systems. The main contributions of this
paper are:

• We use an LMT to approximate a DRL policy, pre-
viously trained in [6] via proximal policy optimiza-
tion(PPO), to perform autonomous docking in a sim-
ulated environment.

• Compared to the standard way of building LMTs, we
have added randomization to the search for thresholds
and the process of choosing which node to split next.
Moreover, to ensure a sufficient dataset from the areas
of interest, an iterative approach to the training and data
collection was used.

• We run the LMT in parallel with the policy in order
to provide real-time correlation between input features
and the selected control inputs computed by the policy.

II. DOCKING AS A DEEP REINFORCEMENT LEARNING
PROBLEM

In this section, the docking problem and the reinforcement
learning docking agent are briefly introduced. For further
details about the implementation and training, the reader is
referred to [6].

A. The docking problem

Docking pertains to reaching a fixed location along a
quay, where the vessel can moor, and can be split in three
stages: 1) Moving from open seas to confined waters (the
approach phase), 2) parking the vessel (the berthing phase),
and 3) fastening the vessel to the dock (the mooring phase).
Docking is a complex motion control scenario and requires a
lot of intricate maneuvering, since the vessel operates close to
the harbor infrastructure with little to no space for deviations,
and under the influence of external disturbances that gain in-
creased importance at lower speeds. Such circumstances are
challenging for most traditional control systems since they
often depend on accurate mathematical models in contrast to
RL-methods that can learn the model guided by the reward
function. In [6], a PPO policy was trained in a simulated
environment based on the Trondheim harbor environment.

B. The docking agent

Deep RL is a subfield of machine learning where learning
occurs by selecting actions via an exploration/exploitation
scheme and receiving reinforcement signals for these actions.
The reinforcement signals, called rewards, are given by the
reward function, which is user-defined. The agent is tasked to
find the state-action mapping (i.e. the policy) that optimizes
the return, which represents the expected cumulative reward
during an episode. Thus the reward function is crucial for
the agent’s learning process and its resulting behavior. The
policy used in this work, was trained extensively in [6] with
the PPO method from [13]. It performs the approach and
berthing phases of the docking process from up to 400 meters
distance from the quay. The PPO method uses a trust region
to prevent the agent from overreacting to a training batch and
thus risking getting stuck in a local minimum. A trust region
is defined as the region where the policy approximation used
for gradient descent is adequately accurate. Instead of having
the trust-region as a hard constraint, PPO includes it in the
objective as a penalty for leaving the trust region, which
makes the training less rigorous. The policy is trained to
perform the approach- and berthing phase of the docking.
The training algorithm has no prior knowledge of the inner
dynamics of the vessel and it utilizes the feedback from the
reward function as the agent takes action and the outcomes
of these actions are evaluated. Selecting the input features
vector is crucial for the reward function and the agents
learning, and thorough work was done in [6] to develop an
effective reward function for the task in hand. The fully-
actuated vessel to be controlled has two azimuth thrusters
and one tunnel thruster, hence giving the following control
states:

A = [f1, f2, f3, α1, α2], (1)

where f1,f2 (from -70 to 100 kN) and α1,α2 (from -
90 to 90 degrees) are the forces and rotation angles of the
two azimuth thrusters, whereas the tunnel thruster can exert
only a lateral force f3 (from -50 to 50 kN). The thrusters’
placement on the vessel can be seen in Figure 1. The state
vector, which is also the input feature is composed of 9 states:

x = [x̃, ỹ, ψ̃, u, v, r, l, do, ψ̃o], (2)

where x̃ and ỹ represent the distance to the berthing point
in the body frame, while ψ̃ represents the difference in
the heading compared to the desired heading. The vessel
velocities are given by the variables u, v, and r. The binary
variable l indicates whether or not the vessel has made
contact (crashed) with an obstacle. The relative position to
the closest obstacle in body frame is given by do and ψ̃o.

The PPO-trained policy network involves two hidden
layers, consisting of 400 neurons each. The ReLU activation
function was used for the hidden layers, and the hyperbolic
tangent was used as the activation function for the output
layer, ensuring actions in the range [-1,1]. The PPO-trained
policy converged after approximately 6 million interactions
with the environment. The DRL agent was trained in [6] to
perform both the approach and berthing phase of docking,
but without consideration for any speed regulations within
the harbor.

Fig. 1: The features, or states, representing the vessels
position relative to the closest obstacle and the positioning
of the vessels three thrusters.

III. APPROXIMATION VIA LINEAR MODEL TREES

A decision tree is a rule-based prediction method, which
splits the input space into smaller regions and makes a
prediction for each region [14]. A tree consists of branch
nodes, where the splitting happens, and leaf nodes, where
the prediction happens. LMTs perform linear regression in
all the regions separately instead of attempting to fit the

function for the entire feature space at once. To preserve the
transparency of the tree in this work, the splits are univariate.
Increasing the complexity of the prediction- or splitting
model significantly increases the computational time required
to build a tree, in addition to limiting their transparency.
More generally, given any black-box model f: x → y, LMTs
make out a piece-wise linear approximation function f ’: x
→ y’, where y ' y′. LMTs are useful because they are easy
to implement and can give explanations in real-time, which
is crucial for most robotic applications. The implementation
of the LMTs in this paper is based on [15] which again is
based on Classification and Regression Trees (CART) from
[16]. The following modifications have been made to [15]’s
implementation:

• We added randomization in the process of searching for
thresholds and choosing the next node to split.

• We replaced the maximum depth of the tree with
maximum number of leaf nodes.

The tree building process as implemented in this paper is
shown in Algorithm 1.

Algorithm 1: Building LMTs
Require:
training data D
Maximum number of leaf nodes N
Minimum number of data samples for leaf nodes M
while number of leaf nodes is less than N do

if there exist a node that fulfills all splitting
criteria then

Choose node to split
Perform splitting
Calculate best potential split for the newly

created nodes
else

return root node
end

end

For a node to be split, and two new nodes to be created,
there must exist at least one node which fulfills the splitting
criteria. That is, a node where a split will result in two
nodes with at least M data samples each, and gives an
improvement in the model’s loss. When a splitting has
occurred, the best potential split for the newly created nodes
are calculated. It is this loss improvement value that is used
when choosing the next node to be split. When searching
for these split conditions, it is not possible to check for all
possible thresholds, so instead a grid search is done. There is
no guarantee that the optimal threshold will be found in this
grid search, so some randomness is introduced. Not having
the process be deterministic is beneficial because the process
will generate a different tree every time it is run, which
allows us to explore different outcomes. Equations 3-5 show
how the split variables for a node are calculated.

f, tn = argmin
f,n

(loss(DL) + loss(DR)) (3)

DL = (x ∈ D : xf ≤ tn)
DR = (x ∈ D : xf > tn)

(4)

tn = min(Df) + (n+ r)
(max(Df)−min(Df))

N
(5)

where f is the feature the split should be performed on,
tn is the threshold number n in the grid search, where
n ∈ [0, 1, 2, ..., N], N is the size of the grid search, and
r is a random number between ±2%. The variable Df

denotes the values of feature f in the set D, thus min(Df)
and max(Df) denotes the minimum and maximum values of
feature f in dataset D. It is important to note that the LMT
training process makes local, greedy choices, which gives no
guarantee of global optimality. For example, if an extremely
good split comes after an apparently bad split, it may never
be found. This is a common problem for heuristic decision
tree training methods. We alleviate this issue by adding some
randomness to the process of choosing the next node to be
split, as shown in the following equation:

ns = argmax
n

((1 + r)(loss(Dn
L) + loss(Dn

R))) (6)

where ns is the node to be split next, r is a random number
between ±2%, and Dn

L and Dn
R are as defined in Equation

4 given the best split conditions f and t for node n.
The tree has no maximum depth condition, instead it has

a maximum number of leaf nodes it is allowed to have. This
lets us directly state how many regions the tree is allowed
to divide the input feature space into. Additionally, the tree
is allowed to grow more asymmetrically, which again allows
the tree to grow deeper in the area that covers the most
complex regions of the feature space, while keeping the parts
of the tree that covers simpler regions shallower.

The aspect that proved to be most important, and most
challenging, was getting a balanced data set. The number
of data points a certain area in the feature space requires
in order to be represented adequately, depends on how far
away from linearity the problem is in that area. To account
for this, iterative tree-building was used. First, an initial data
set is created through randomly sampling the feature space.
Then, an initial tree is created based on that data set. The
data set is then improved by letting the tree run through
the environment and further samples from episodes that did
not end successfully. To form the local explanations, the
linear functions in the leaf nodes are utilized. The linear
functions take the form of Equation 7 where af is feature
f ’s coefficient and xf is the sample x’s value for feature f,
and C is a constant. The importance If for each input feature
concerning each output feature can be calculated as shown
in Equation 8, similarly to LIME and SHAP.

y =
∑
f

afxf + C (7)

If =
afxf∑

j∈∀f |ajxj |
(8)

Transparency can be divided into three categories, namely
simulatable-, decomposable-, and algorithmic transparency.
In [17], simulatable transparency is defined as the model
not being more complex than what a human can easily
comprehend. Therefore, given that the input features are
understandable by humans (or at least domain experts)
and the tree is not too deep, a linear model tree can be
simulatable transparent. Decomposable transparency means
that every part of the model must be understandable by a
human without any additional tools. Since the linear model
trees have univariate splits and linear function in the leaf
nodes and the input and output features are understandable
they are decomposable transparent, even if they grow big.
Algorithmic transparency takes into account if it is possible
to analyze the model with help of mathematical tools, which
it is. Thus, linear models with univariate splits can be
simulatable transparent but are always decomposable- and
algorithmic transparent. The explanations given by the LMTs
are local, feature relevant explanations, which means that,
for each prediction, an explanation in the form of showing
how much a feature pulled in a certain direction is given.

(a) Tree path for actions. Left arrow means that the condition
in branch node above was true, right arrow means it was
false.

(b) Relative importance for input features for the actions

Fig. 2: Explanations and path from root node to leaf node
predicting the actions in last step of Figure 4b.

IV. SIMULATION RESULTS

For this application, there are five control inputs to be
predicted. This can either be solved by fitting one tree to each
output feature or combining their losses when evaluating
splits. The LMT made for this work used the latter and had
681 leaf nodes, where the shallowest leaf nodes were at depth
5, and the deepest leaf nodes were at depth 15. Thus, for
all practical means, the resulting tree is only decomposable
transparent, and not simulatable transparent. In Figure 2a,
the path along the tree from the root node to leaf node is
highlighted, and in Figure 2b the explanations given in form
of relative feature contribution is shown. Figure 2 is from
the last time instance shown in Figure 4b. Like the PPO-
agent, the LMT can act as a controller on its own. Thus,
how well the LMT approximated the PPO-trained policy
network can be evaluated through the difference between
their outputs when they are given the same input. Table I
shows the analysis of the LMT’s error through its deviation
from the target output by the PPO-agent from 1000 episodes
with random starting points. In most episodes, the vessel has
arrived at the berthing point at step 800. After this it enters a
cycle of repeating states. To prevent these states to skew the
evaluation since the LMT approximates the PPO-agent quite
well in the region close to the berthing point, the episodes
are stopped at step 800. The highest errors usually occurs in
the beginning of the episode, when the vessel still is far from
the harbour, where the LMT’s actions follows the curvature
of the PPO-agent’s actions but are somewhat noisy, causing
an increase in the average error. Overall, the magnitude of
the average error and standard deviation is moderate.

Output feature Mean absolute error Error standard deviation
f1(kN) 15.84(9.3%) 25.6(15.05%)
f2(kN) 14.23(8.3%) 21.7(12.76%)
α1(deg) 16.61(9.2%) 23.49(13.05%)
α2(deg) 13.75(7.63%) 20.62(11.45%)
f3(kN) 9.08(9.08%) 15.9(15.9%)

TABLE I: Output error analysis

An alternative way to evaluate the LMT’s approximation
of the PPO-trained DRL agent is to look at their paths when
starting from the same initial point and aiming for the same
berthing point. A successful run is here defined as the vessel
reaching the berthing point without making contact with any
obstacle, while a failed run is defined as the vessel making
contact with an obstacle (crashing). This criterion is not
meant to evaluate the PPO-agent’s behavior, because berthing
can be successful even if it makes contact with the harbor
if it happens slowly enough (i.e a small bump is usually
tolerated), but rather as a way of evaluating how well the
LMT managed to approximate the PPO-trained policy. Of
note, neither of the agents have any episodes that does not
end by either successfully berthing the vessel or by making
contact with an obstacle. An example of a successful run
by both the LMT and the PPO-agent is shown in Figure
4a. It is clear that for this starting point, the LMT has
approximated the PPO-trained policy very well. The LMT

fails approximately 3% more often than the PPO-agent, but
when looking closer at the situations where the LMT fails
and the PPO-agent succeeds, it is apparent that such episodes
typically unfolds similar to the episode shown in Figure
5. Even though their outcome is different, they act very
similarly, so the explanations are still useful. However, the
biggest difference between the two agents is most apparent
when the PPO-agent fails, as can be seen in Figure 6. This
could either be due to the LMT not having seen enough data
from this area, that this is a more complex area so the LMT
needs to grow deeper, or that the PPO-agent has not found a
proper strategy for this area (which in turn can be due to the
starting position being extremely hard or even impossible, for
example, if the boat has an initial speed towards the harbor
that is too high. However, if this deviation is detected, it
might be used to raise an alarm of some sort, to alert an
overseer. The explanations for the episode shown in Figure
4b are shown in Figure 3. Since the LMT only uses the linear
functions in the leaf nodes as a basis for its explanations it
does not take the splits along the path from the root node
to the respective leaf node into consideration, even though it
intuitively is relevant. This can for example be seen in the
two flat areas in the first 500 steps of the episode for output
f1. The PPO-agent reaches the berthing point at around step
number 750, and both the output of the PPO-agent and the
explanations from the LMT goes into a rather repetitive
cycle. LMT assigns most importance to ψ̃o and do for all
actions. When looking closer at what features are changing
in this part of the episode, it is clear that it is in fact ψ̃o, r,
and do that are changing the most, while x̃ and ỹ are virtually
constant. Since feed-forward neural networks are one-to-one,
the changing parameters are causing the change in outputs
and are therefore the correct explanations. In the first ∼ 250
steps it seems like the PPO-agent cares most about the three
input features regarding the vessel’s position relative to the
berthing point (x̃, ỹ and ψ̃). The part where the explanations
are the least decisive is from approximately step number
250 to 750. LMTs explanations changes fast, which reflects
that it is only piece-wise smooth. LMTs are somewhat time-
demanding to build, but when it is built they can easily give
real-time explanations. The LMTs only give explanations for
one output feature at a time. The problem with this is that the
5 outputs are controlling the same vessel and thus dependent
on each other. Additionally, f1 and α1, and f2 and α2 are
controlling the same motor. Explaining dependent factors
independently will not give the whole picture. Even though
relative feature contributions cannot serve as a full-fledged
explanation in itself, it can be an important component of
technical assurance [18].

Fig. 3: Relative feature contributions given by the LMT for the episode shown in Figure 4b.

(a) Successful run by the LMT.

(b) Successful run by the PPO-agent.

Fig. 4: Paths of PPO-agent and LMT from same starting
point.

(a) Failed run by the LMT.

(b) Successful run by the PPO-agent.

Fig. 5: Paths of PPO-agent and LMT from same starting
point.

V. CONCLUSIONS AND FUTURE WORK

Linear model trees (LMTs) can contribute to tracing the
outputs of a deep reinforcement learning (DRL) policy by
directly linking them to the input features. In this paper,
this potential was demonstrated by approximating a DRL
policy controlling an autonomous surface vessel with five
control inputs in a complex motion control scenario, namely
docking. Although LMTs do not approximate the deep neural

(a) Failed run by the LMT.

(b) Failed run by the PPO-agent.

Fig. 6: Paths of PPO-agent and LMT from same starting
point.

network in an optimal way, our results indicate that their
performance is close enough to that of the original policy. In
addition, the fact that LMTs are fast enough to be applicable
in real-time applications, make them good candidates as
components a digital assurance framework explaining the
actions of black box models during operation. Future work
includes improving the accuracy of the trees, and utilizing
domain knowledge in both the process of building the trees
and the process of extracting information about the system
from the trees to make them truly understandable to several
categories of end users.

REFERENCES

[1] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine, “End-to-end
robotic reinforcement learning without reward engineering,” Robotics:
Science and Systems, 2019.

[2] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” Robotics: Science
and Systems (RSS), 2019.

[3] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch, “Emergent tool use from multi-agent autocurricula,”
in International Conference on Learning Representations, 2020.

[4] A. B. Martinsen and A. M. Lekkas, “Curved path following with deep
reinforcement learning: Results from three vessel models,” in OCEANS
2018 MTS/IEEE Charleston, pp. 1–8, 2018.

[5] E. Meyer, A. Heiberg, A. Rasheed, and O. San, “COLREG-compliant
collision avoidance for unmanned surface vehicle using deep reinforce-
ment learning,” IEEE Access, vol. 8, pp. 165344–165364, 2020.

[6] E.-L. H. Rørvik, “Automatic docking of an autonomous surface
vessel : Developed using deep reinforcement learning and analysed
with Explainable AI,” MA thesis. Trondheim, Norway: Norwegian
University of Science and Technology(NTNU), 2020.

[7] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust
you?”: Explaining the predictions of any classifier,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, (New York, NY, USA),
p. 1135–1144, Association for Computing Machinery, 2016.

[8] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision
model-agnostic explanations,” in AAAI Conference on Artificial Intel-
ligence (AAAI), 2018.

[9] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing
Systems 30, 2017.

[10] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling
LIME and SHAP: Adversarial attacks on post hoc explanation meth-
ods,” AIES ’20, pp. 180–186, ACM, 2020.

[11] I. E. Kumar, S. Venkatasubramanian, C. Scheidegger, and S. Friedler,
“Problems with shapley-value-based explanations as feature impor-
tance measures,” Proceedings of the International Conference on
Machine Learning”, pp 8083-8092, 2020.

[12] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” vol. 70 of Proceedings of Machine Learning Research,
(International Convention Centre, Sydney, Australia), pp. 3319–3328,
PMLR, 06–11 Aug 2017.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, 2017.

[14] K. P. Murphy, Machine learning : a probabilistic perspective. Adaptive
computation and machine learning, Cambridge: MIT Press, 2012.

[15] A. Wong, “Building model trees.”
https://github.com/ankonzoid/LearningX/tree/master/advanced ML/
model tree, 2020.

[16] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[17] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot,
S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Ben-
jamins, R. Chatila, and F. Herrera, “Explainable artificial intelligence
(xai): Concepts, taxonomies, opportunities and challenges toward
responsible ai,” Information fusion, vol. 58, pp. 82–115, 2020.

[18] J. Glomsrud, A. Ødegårdstuen, A. Clair, and O. Smogeli, “Trustworthy
versus explainable AI in autonomous vessels,” ISSAV - International
Seminar on Safety and Security of Autonomous Vessels, 2019.

