
1

Prepare: Power-Aware Approximate Real-time Task
Scheduling for Energy-Adaptive QoS Maximization

SHOUNAK CHAKRABORTY∗, Department of Computer Science,
Norwegian University of Science and Technology (NTNU), Norway
SANGEET SAHA∗, Embedded and Intelligent Systems Laboratory, University of Essex, UK
MAGNUS SJÄLANDER, Department of Computer Science,
Norwegian University of Science and Technology (NTNU), Norway
KLAUS MCDONALD-MAIER, Embedded and Intelligent Systems Laboratory, University of Essex, UK

Achieving high result-accuracy in approximate computing (AC) based real-time applications without violating
power constraints of the underlying hardware is a challenging problem. Execution of such AC real-time tasks
can be divided into the execution of the mandatory part to obtain a result of acceptable quality, followed by a
partial/complete execution of the optional part to improve accuracy of the initially obtained result within the
given time-limit. However, enhancing result-accuracy at the cost of increased execution length might lead to
deadline violations with higher energy usage.

We propose Prepare, a novel hybrid offline-online approximate real-time task-scheduling approach, that first
schedules AC-based tasks and determines operational processing speeds for each individual task constrained
by system-wide power limit, deadline, and task-dependency. At runtime, by employing fine-grained DVFS,
the energy-adaptive processing speed governing mechanism of Prepare reduces processing speed during each
last level cache miss induced stall and scales up the processing speed once the stall finishes to a higher value
than the predetermined one. To ensure on-chip thermal safety, this higher processing speed is maintained
only for a short time-span after each stall, however, this reduces execution times of the individual task and
generates slacks. Prepare exploits the slacks either to enhance result-accuracy of the tasks, or to improve
thermal and energy efficiency of the underlying hardware, or both. With a 70 − 80% workload, Prepare offers
75% result-accuracy with its constrained scheduling, which is enhanced by 5.3% for our benchmark based
evaluation of the online energy-adaptive mechanism on a 4-core based homogeneous chip multi-processor,
while meeting the deadline constraint. Overall, while maintaining runtime thermal safety, Prepare reduces
peak temperature by up to 8.6 °C for our baseline system. Our empirical evaluation shows that constrained
scheduling of Prepare outperforms a state-of-the-art scheduling policy, whereas our runtime energy-adaptive
mechanism surpasses two current DVFS based thermal management techniques.

∗Both authors contributed equally to this research.

Authors’ addresses: Shounak Chakraborty, shounak.chakraborty@ntnu.no, Department of Computer Science,
Norwegian University of Science and Technology (NTNU), Sem Sælandsvei 9, Gløshaugen, Trondheim, Norway, 7491;
Sangeet Saha, sangeet.saha@essex.ac.uk, Embedded and Intelligent Systems Laboratory, University of Essex, Colchester,
UK; Magnus Själander, magnus.sjalander@ntnu.no, Department of Computer Science,
Norwegian University of Science and Technology (NTNU), Sem Sælandsvei 9, Gløshaugen, Trondheim, Norway, 7491; Klaus
McDonald-Maier, kdm@essex.ac.uk, Embedded and Intelligent Systems Laboratory, University of Essex, Colchester, UK,
CO4 3SQ.

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2021.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1539-9087/2021/1-ART1 $15.00
https://doi.org/10.1145/3476993

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3476993

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; Real-
time systems; Architectures; • Hardware→ Power and energy.

1 INTRODUCTION
Contemporary real-time systems are constrained by deadlines and strict power limits of the
underlying hardware. For such systems, approximated results obtained within the given deadline,
while respecting power constraint are preferable to accurate results obtained after the deadline [31].
Such approximated results can be generated by real-time computing approaches that are inspired
by approximate computing (AC), where each task is decomposed into a mandatory part, which
generates results with minimum acceptable accuracy, followed by an optional part [8]. The result-
accuracy increases with the number of execution cycles spent on the optional part. Specifically, to
achieve a noticeable amount of increase in result-accuracy, a certain number of additional cycles
need to be executed from the optional part. However, in order to maximize the result-accuracy, while
meeting the power and deadline constraints, proper scheduling approaches have to explore both
the architectural characteristics of the system and the approximation tolerance of the applications.

Scheduling approximated real-time tasks with the objective to maximize result-accuracy without
violating the power limits of the hardware has become an active research topic in the recent past.
Stavrinides and Karatza were among the first to propose real-time scheduling of approximated
tasks [43]. In recent theoretical analyses [32, 33], approximated real-time task-scheduling techniques
with energy and deadline constraints have been proposed. Mo et al. [33], in their theoretical analysis,
improved system level result-accuracy through task to processor allocation, and task adjustment
constrained by a preset energy budget.However, restriction on energy usage does in itself not guarantee
the maintenance of a safe peak temperature of the chip. This can be addressed by incorporating power
constraint together with a runtime power management technique based on several architectural
parameters. However, comprehensive studies that combine the theoretical aspects of energy-efficient
real-time scheduling of approximated tasks along with runtime architectural characteristics have not
previously been conducted.
We devise an integer linear programming (ILP) based technique to schedule approximated

real-time tasks on a chip multi-processor (CMP) platform, where scheduling is constrained by
system-wide power consumption, task-dependency, and deadlines. Each of these approximated
real-time tasks is equipped with multiple versions having a diverse set of result-accuracy based
on the respective amount of the optional part that is executed. With an objective to maximize the
result-accuracy while respecting the given constraints, our ILP based scheduling scheme provides
the following information for task-execution: which versions of the individual task (Version ID)
will be executed on which core (Processor ID) along with the task starting times (Start-Time Instant)
and the processing speed (voltage/frequency (V/F) setting).
At runtime, our energy-adaptive power-performance management mechanism will employ

fine-grained DVFS (FG-DVFS) to reduce the V/F settings at the individual cores during last level
cache (LLC) miss induced stall cycles. Once the stall finishes, the V/F setting is scaled up to the next
possible higher level over the assigned one (by the constrained scheduling) for a short time-span, so
that the thermal safety is guaranteed. Actually, the gained energy savings by maintaining a lower
V/F setting during memory stalls is traded against improved performance by applying a higher
V/F setting, after the stall in an energy-adaptive manner. This energy-adaptive strategy ensures
that accelerating processing speed for a short time-span should not violate the amount of energy
saved by lowering the V/F during LLC-miss induced stall. Thus, it decides the length of the short
time-span. However, as contemporary applications [2, 5, 40], that include approximations spend a
significant amount of time accessing memory, increasing the frequency for a short time-span on
the completion of each stall will reduce the total execution-time of the tasks and will generate

2

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

slacks. Prepare attempts to exploit these slacks to enhance the result-accuracy by executing a better
optional version of the task (based on its availability), or by power gating the core to enhance
thermal and energy efficiency of the CMP, or both, were possible. The stall-aware energy-adaptive
V/F management technique enhances result-accuracy while maintaining thermal safety, without
impacting the predetermined schedule and slack-cognizant core-gating significantly reduces the
temperature of the cores. The working mechanism of Prepare is summarized in Figure 1.

The contributions of our proposed technique can be summarized as follows:
• We schedule a set of dependent approximated real-time tasks on a power constrained chip
multi-processor with an objective to maximize the result-accuracy (i.e., Quality of Service
(QoS)) by employing an ILP based strategy (see Sec. 3.1).

• We apply an energy-adaptive strategy that prudentially reduces execution times of the indi-
vidual task by exploiting LLC-miss induced stall cycles and generating slacks by accelerating
the processing speed for a stipulated short time-span, while guaranteeing the thermal safety
(see Sec. 3.2), which we have empirically validated and reported in Figure 13 and Figure 14.

• We further exploit the slacks in either or both of the following ways:
(1) to enhance the result-accuracy by executing higher version from the optional part of the

tasks (based on availability),
(2) to improve thermal and energy efficiency of the CMP by power gating the cores.

We argue and empirically validate the significance of task-scheduling approach of Prepare in
combination with the energy-adaptive runtime mechanisms (see Sec. 4). We achieve 75% result-
accuracy (QoS) with our ILP based constrained scheduling for a set of tasks, for which a recent
prior policy [33] achieves a QoS of 60%. Our evaluation (on our baseline homogeneous chip multi-
processor with four cores) reveals that the runtime energy-adaptive mechanism of Prepare further
enhances the achieved QoS by 5.3%, while meeting the deadlines. Prepare applies power gating
during slacks, which reduces the peak temperature compared to our baseline system by up to 8.6 °C,
without compromising the performance and also outperforms two state-of-the-art DVFS based
techniques, GDP [1] and Integrate [13]. Both of these prior policies can reduce peak temperature
by 8 °C, however GDP looses 8% in performance and hence, may not be an apt choice for real-time
paradigms. With an objective to maximize the slacks, Integrate schedules the tasks offline, which
is maintained during the execution, hence, does not offer runtime performance benefits. To the
best of our knowledge, Prepare is the first scheduling mechanism that considers runtime architectural
phenomena (LLC-miss induced stalls) to conduct energy-adaptive FG-DVFS for enhancing the result-
accuracy of dependent approximated real-time task-sets without violating deadline constraints while
maintaining thermal safety.

T
1

T
2

T
3

T
n

Dependency, Deadline & Power Constraints

Constrained
Scheduling

C
M

P

For each T
i

(i) Version ID
(ii) Processor ID

(iii) Start-Time Instant
(iv) V/F setting

– Energy-adaptive
 power-performance
 managementO

n
li

n
e

O
ff

lin
e

(i) FG-DVFS to reduce core’s V/F during memory stalls
(ii) trade off saved energy-
→ (a) to enhance the system level result-accuracy
→ (b) to reduce peak temperature of the CMP

Fig. 1. Overview of Prepare.

T
1

T
2

T
3

T
4

T
5

T
6

k
2
 X 1

T1

2
T2

2
Tk

2

Available Versions

Selected
Version

2

V
1
/F

1
V

2
/F

2
V

L
/F

L

Available V/F Levels

Selected
V/F Level

L X 1

Tasks Mi Oi Powi

T1 4 2 10

T2 10 5, 8, 10 20

T3 10 5, 7, 10 10

T4 20 7, 12 15

T5 15 2, 6, 14 20

T6 10 2, 4 10

D
PTG

= 85

Parameters with values
for our example task-set

Fig. 2. Precedence task graph (PTG).

3

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

2 SYSTEMMODEL AND ASSUMPTIONS
We consider a CMP consisting of𝑚 homogeneous cores, denoted as 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝑚}. Each of these
cores can support 𝐿 distinct V/F settings denoted as𝑉 = {𝑉1,𝑉2, ...,𝑉𝐿} and 𝐹 = {𝐹1, 𝐹2, ..., 𝐹𝐿}, where
𝑉𝑖 < 𝑉𝑖+1 and 𝐹𝑖 < 𝐹𝑖+1. The considered task-model is represented as a task graph (see Figure 2),
𝐺 = (𝑇, 𝐸), where 𝑇 is a set of tasks (𝑇 = {𝑇𝑖 | 1 ≤ 𝑖 ≤ 𝑛}) and 𝐸 is a set of directed edges
(𝐸 = {⟨𝑇𝑖 ,𝑇𝑗 ⟩ | 1 ≤ 𝑖, 𝑗 ≤ 𝑛; 𝑖 ≠ 𝑗}), representing the precedence relations between distinct pair of
tasks. An edge ⟨𝑇𝑖 ,𝑇𝑗 ⟩ refers to a precedence, that a task 𝑇𝑗 can begin its execution only after the
completion of 𝑇𝑖 . The source and sink tasks have no predecessors and no successors, respectively.
Being a real-time application, 𝐺 must be executed within the given deadline, 𝐷𝑃𝑇𝐺 , by executing
all of its associated task (𝑇𝑖). We assume that our task graph has a single source node and a single
sink node.
For each task 𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑛), the worst case execution length, 𝑙𝑒𝑛𝑖 , is logically decomposed into

𝑀𝑖 cycles for the mandatory part, and𝑂𝑖 maximum cycles for the optional part. We further assume
that a task 𝑇𝑖 may have 𝑘𝑖 different versions, that is, 𝑇𝑖 = {𝑇 1

𝑖 ,𝑇
2
𝑖 , . . . ,𝑇

𝑘𝑖
𝑖
}, which are distinct by

their given execution lengths in cycles (𝑂𝑖), denoted as 𝑂1
𝑖 , 𝑂2

𝑖 , ..., 𝑂
𝑘𝑖
𝑖
, where 𝑂𝑝

𝑖
achieves higher

result-accuracy than𝑂𝑞
𝑖
, if 𝑝 > 𝑞. For each𝑂 𝑗

𝑖
(where 1 ≤ 𝑗 ≤ 𝑘𝑖), there exists a separate executable

entity, which is executed after complete execution of the mandatory portion (𝑀𝑖) of the respective
task (𝑇𝑖). The length (𝑙𝑒𝑛 𝑗

𝑖
) of the 𝑗𝑡ℎ version of task𝑇𝑖 (i.e.,𝑇 𝑗𝑖 where 1 ≤ 𝑗 ≤ 𝑘𝑖) can now be defined

as:
𝑙𝑒𝑛

𝑗

𝑖
= 𝑀𝑖 +𝑂 𝑗

𝑖
(1)

Note that, length of𝑇 𝑗
𝑖
(i.e., 𝑙𝑒𝑛 𝑗

𝑖
) includes the memory cycles required for accessing LLC, which has

been obtained by executing individual task for a specific configuration (see Figure 4). The result-
accuracy 𝐴𝑐𝑐 𝑗

𝑖
of the 𝑇 𝑗

𝑖
is defined by the executed optional part of the task, 𝑂 𝑗

𝑖
(i.e., 𝐴𝑐𝑐 𝑗

𝑖
= 𝑂

𝑗

𝑖
).

Thus, the overall system level result-accuracy (𝑄𝑜𝑆) is defined as the sum of the executed cycles of
𝑂
𝑗

𝑖
for all the tasks [8] and can be represented as:

𝑄𝑜𝑆 =

𝑛∑
𝑖=1

𝑂
𝑗

𝑖
| 𝑇𝑖 = 𝑇 𝑗𝑖 (2)

The temperature of [-th core (\[) is a function of its power consumption over time and can be
expressed as:

∀[: 1 ≤ [≤ 𝑚 | \[= 𝑓 𝑢𝑛𝑐 (𝑃𝑜𝑤, 𝑡𝑖𝑚𝑒) (3)
and, the peak temperature (\𝑝) of the system can be written as: \𝑝 =𝑚𝑎𝑥 (\[). If a task 𝑇𝑖 executes
at frequency 𝐹𝑖 , then its execution time 𝐸𝑇𝑖 can be denoted as 𝑙𝑒𝑛𝑖

𝐹𝑖
, and if 𝐹𝑎 > 𝐹𝑏 , then 𝑙𝑒𝑛𝑖

𝐹𝑎
<

𝑙𝑒𝑛𝑖
𝐹𝑏

.
However, it has to be noted that increased frequency might significantly increase the effective
temperature due to raised power consumption. The dynamic power consumption of a processor-
core while executing a task, is a function of its V/F setting, while the static power is a function of
supply voltage (𝑉) and temperature (\). The total power consumed by the task 𝑇𝑖 , while executing
at 𝐹𝑎 , is denoted as 𝑃𝑜𝑤𝑖,𝑎 . We further assume an overall system-wide power limit (𝑃𝑜𝑤𝐵𝐺𝑇), which
includes both dynamic and static power, where the estimation for the static power in our theoretical
model has been performed by considering a fixed temperature.

3 PREPARE
In this section, the working mechanism of Prepare is discussed. After discussing the constrained
scheduling in Sec. 3.1, we illustrate the runtime power-thermal management of Prepare in Sec. 3.2.
At the end of the constrained scheduling, the following information will be generated: (i) task
to core mapping, (ii) start-times of individual task, (iii) assigned frequency, and (iv) respective

4

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

tasks’ versions. The generated scheduling information is stored in a dispatch table, that is used to
execute the tasks. All individual tasks in the dispatch table are ordered according to their execution
start-time, as obtained from the offline schedule. At runtime, Prepare-online traverses the dispatch
table and eventually selects the tasks to run as per their start time along with the dynamic power-
thermal management. Moreover, information regarding the individual task versions are also stored
in this table.
To validate Prepare empirically, first we employ the tool CPLEX [7] for verification of the

constrained scheduling, with an example task-set represented as a DAG, where tasks are created
by PARSEC applications [5] (see Sec. 4). Next, the generated information for this task-set is used
(through the dispatch table) in our online simulation framework consisting of gem5 [6] (a full
system simulator for performance traces), McPAT [29] (power simulator) and HotSpot 6.0 [45] (for
simulating on-chip thermal status). The evaluation of online mechanism considers a 4 out-of-order
(OoO) core based tiled CMP architecture, which will be discussed further in Sec. 4 in addition with
the detailed simulation setup. To enable FG-DVFS at the cores, Prepare incorporates on-chip voltage
regulators (VRs) (per-core), power usage and thermal footprint of which are also accounted in our
evaluation, whereas the V/F transition mechanisms used in FG-DVFS are discussed in Sec. 3.2.

3.1 Constrained Scheduling
Before presenting our ILP based scheduling strategy, first we define a binary decision variable
𝑍𝑖𝑘𝑙𝑡[, where 𝑖 = 1, 2, ..., 𝑛; 𝑘 = 1, 2, ..., 𝑘𝑖 ; 𝑙 = 1, 2, ..., 𝐿; 𝑡 = 0, 1, ..., 𝐷𝑃𝑇𝐺 , and [= 1, 2, ...𝑚. Here,
indices 𝑖 , 𝑘 , 𝑙 , 𝑡 and [, denote task ID, corresponding version ID, a particular V/F level, timestamp,
and processor ID, respectively. The variable 𝑍𝑖𝑘𝑙𝑡[will be 1, if the ILP solver finds a solution that
𝑘𝑡ℎ version of 𝑇𝑖 (𝑇𝑘𝑖) can start its execution at 𝑡𝑡ℎ timestamp on processor [by selecting 𝑙𝑡ℎ V/F
level. This will eventually enforce that 𝑍𝑖𝑘𝑙𝑡[for 𝑇𝑖 will be zero, for all other possible combination,
i.e. it cannot start on any other processors with other versions at any time stamp.
For each task 𝑇𝑖 , its completion time should be no later than the given deadline (𝐷𝑃𝑇𝐺). Now,

the latest start time 𝑇𝑒𝑙𝑖 of 𝑇𝑖 will be assigned by considering the version of 𝑇𝑖 having minimum
execution time (𝑚𝑖𝑛(𝑙𝑒𝑛𝑘𝑖)). Hence, the upper bound of a task start time can be restricted by the
following equation: 𝑇𝑒𝑙𝑎𝑖 = 𝐷𝑃𝑇𝐺 −𝑚𝑖𝑛(𝑙𝑒𝑛𝑘𝑖 /𝐹𝑙)

1≤𝑘≤𝑘𝑖 ,1≤𝑙≤𝐿
Let us assume the start time of the task 𝑇𝑗 is denoted by 𝑠𝑡 𝑗 and it can be defined as:

𝑠𝑡 𝑗 =

𝑚∑
[=1

𝑘 𝑗∑
𝑘=1

𝑇𝑒𝑙𝑎
𝑖∑

𝑡=0

𝐿∑
𝑙=1

𝑡 · 𝑍 𝑗𝑘𝑙𝑡[(4)

The execution length of 𝑇𝑖 (say, 𝑒𝑙𝑖) can be calculated as:

𝑒𝑙𝑖 =

𝑚∑
[=1

𝑘𝑖∑
𝑘=1

𝑇𝑒𝑙𝑎
𝑖∑

𝑡=0

𝐿∑
𝑙=1

⌊
𝑙𝑒𝑛𝑘𝑖

𝐹𝑙
⌋ · 𝑍𝑖𝑘𝑙𝑡[(5)

The end time of task 𝑇𝑖 can be denoted as 𝑒𝑡𝑖 and it can be calculated by adding the execution
length from its start time, i.e.

𝑒𝑡𝑖 = 𝑠𝑡𝑖 + 𝑒𝑙𝑖 (6)

The required constraints on the decision variable to model our scheduling strategy are stated as
follows.

5

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

(1) Unique Execution Start Time Constraint: Each taskmust start its execution with a specific
V/F level on a particular processor, at a unique time stamp. That is,

∀𝑖 : 1 ≤ 𝑖 ≤ 𝑛 |
𝑘𝑖∑
𝑘=1

𝑇𝑒𝑙𝑎
𝑖∑

𝑡=0

𝐿∑
𝑙=1

𝑚∑
[=1

𝑍𝑖𝑙𝑘𝑡[= 1 (7)

The above constraint enforces the following:
• For each task 𝑇𝑖 , exactly one version will be selected for execution using a particular V/F
level.

• 𝑇𝑖 will start its execution on a processor at a unique time stamp within [0, 𝐷𝑃𝑇𝐺].
(2) Resource Constraint: Resource bounds for processors must be satisfied at each time stamp.

Any processor can execute at most one task at a given time without any preemption. In this
regard, the following phenomenon needs to be hold true:
Lemma 1: If a task𝑇𝑘𝑖 has still not finished execution at the 𝑡𝑡ℎ time stamp, it must have started

at most within (𝑡 − ⌊ 𝑙𝑒𝑛
𝑘
𝑖

𝐹𝑙
⌋ +1) previous time stamps. Hence, for this duration the proposed binary

variable (𝑍𝑖𝑙𝑘𝑡[) should exhibit 1:
∑𝑡
𝑡 ′=𝜓 𝑍𝑖𝑘𝑙𝑡 ′[= 1, where,𝜓 =𝑚𝑎𝑥 (0, 𝑡 − ⌊ 𝑙𝑒𝑛

𝑘
𝑖

𝐹𝑙
⌋ + 1).

Hence, for all tasks and for all processors, the resource constraint can be defined as:

∀𝑡 : 0 ≤ 𝑡 ≤ 𝐷𝑃𝑇𝐺 & ∀[: 1 ≤ [≤ 𝑚 |
𝑛∑
𝑖=1

𝑘𝑖∑
𝑘=1

𝐿∑
𝑙=1

𝑡∑
𝑡 ′=𝜓

𝑍𝑖𝑘𝑙𝑡 ′[≤ 1 (8)

Equation 8 ensures that at any time stamp 𝑡 , a processor is busy due to ongoing execution of
at most one task.

(3) Execution Dependency Constraint: Corresponding to each directed edge (⟨𝑇𝑖 ,𝑇𝑗 ⟩ ∈ 𝐸) in
the PTG, the execution of task𝑇𝑗 must commence only after the completion of its predecessor,
𝑇𝑖 . Hence, by using Equation 4 and 6, the dependency constraint between task 𝑇𝑖 and 𝑇𝑗 is
symbolically represented as:

∀⟨𝑇𝑖 ,𝑇𝑗 ⟩ ∈ 𝐸 |𝑠𝑡 𝑗 ≥ 𝑒𝑡𝑖 (9)
(4) Deadline Constraint: In order to ensure that the task graph𝐺 meets its end-to-end absolute

deadline 𝐷𝑃𝑇𝐺 , the sink node 𝑇𝑛 must complete execution by 𝐷𝑃𝑇𝐺 . By using Equation 4 and
5, this constraint can be represented as:

𝑠𝑡𝑛 + 𝑒𝑙𝑛 ≤ 𝐷𝑃𝑇𝐺 (10)
(5) Power Constraint: Our system-wide power constraint is imposed through the following

equation:

∀𝑡 : 0 ≤ 𝑡 ≤ 𝐷𝑃𝑇𝐺 |
𝑛∑
𝑖=1

𝑘𝑖∑
𝑘=1

𝐿∑
𝑙=1

𝑚∑
[=1

𝑍𝑖𝑙𝑘𝑡[· 𝑃𝑜𝑤𝑘𝑖,𝑙 ≤ 𝑃𝑜𝑤𝐵𝐺𝑇 (11)

Objective. The objective remains to maximize the overall QoS, and is stated as:
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑄𝑜𝑆 (12)

subject to the constraints presented in Equation 7 to 11, where QoS can be expressed as,

𝑄𝑜𝑆 =

𝑛∑
𝑖=1

𝑚∑
[=1

𝑘𝑖∑
𝑘=1

𝐿∑
𝑙=1

𝑇𝑒𝑙𝑎
𝑖∑

𝑡=0
𝑂𝑘𝑖 · 𝑍𝑖𝑘𝑙𝑡[(13)

Complexity analysis: The complexity analysis for our ILP is presented in Table 1. The third
column of the table illustrates the upper bound of the number of constraints for each equation. For

6

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

example, in Equation 7, the unique start time should be determined for all 𝑛 tasks, hence, for a given
PTG, overall𝑂 (𝑛) constraints will be required. Similarly, the number of variables for this constraint
can be represented as 𝑂 (𝐾 · 𝐿 ·𝑚 · 𝐷𝑃𝑇𝐺) , where 𝐾 denotes the maximum number of possible
versions of a task. However, as the number of processors (𝑚), and the number of frequency levels (𝐿)
are typically constants for a given system, thus the complexity may be considered as 𝑂 (𝐾 · 𝐷𝑃𝑇𝐺).
Similarly, for deadline constraint (see Equation 10), this condition should be checked for a single
sink node, and thus, only 𝑂 (1) constraints will be required. In this way, the total complexity of
ILP (in terms of the number of constraints) can be represented as 𝑂 (𝑛 + 𝐷𝑃𝑇𝐺). Therefore, the
amortized complexity becomes 𝑂 (𝑛)

𝑂 (𝐷𝑃𝑇𝐺) .

Constraint Type Equation # Constraints # Variables Per Constraints

Unique Execution Start Time Equation 7 𝑂 (𝑛) 𝑂 (𝐾 · 𝐷𝑃𝑇𝐺)
Resource Equation 8 𝑂 (𝐷𝑃𝑇𝐺) 𝑂 (𝑛 · 𝐾 · 𝐷𝑃𝑇𝐺)
Execution Dependency Equation 9 𝑂 (𝑛) 𝑂 (𝐾 · 𝐷𝑃𝑇𝐺)
Deadline Equation 10 𝑂 (1) 𝑂 (𝐾 · 𝐷𝑃𝑇𝐺)
Power Equation 11 𝑂 (𝐷𝑃𝑇𝐺) 𝑂 (𝐾 · 𝑛)

Table 1. Complexity of ILP

Example: For ease of understanding of our scheduling strategy, let us consider a representative
example with the task-set given in Table 2, which is pictorially represented in Figure 2. These
tasks need to be scheduled on two processors (𝑚 = 2), with a common deadline 𝐷𝑃𝑇𝐺 = 100
time units. Our assumed power budget for both processors is set as 𝑃𝑜𝑤𝐵𝐺𝑇 = 25. Each of these
tasks can be executed in two V/F levels, where the frequencies are normalized as 1 and 0.5. The
power consumption, as well as the execution lengths for each task (𝑃𝑜𝑤𝑖) are based on the higher
frequency. Note that, the power consumption at the higher frequency is assumed as double that
of the lower frequency, whereas the respective execution times (𝐸𝑇𝑖 ’s) of the tasks (𝑇𝑖 ’s) in higher
frequency are half of the execution length in the lower. As per the proposed ILP formulation,
CPLEX [7] generates the schedule illustrated in diagram 1 in Figure 3 and in Table 3. Here, 𝑇2
and 𝑇5 are executed in lower V/F setting to satisfy the power constraint. Out of all tasks, 𝑇4 was
able to execute its reduced precision version in higher V/F setting. The total obtained QoS value is
38 (see Equation 2). Note that, we have slacks at both processors (𝑃1 and 𝑃2). At 𝑃1, we have slack
at the end of 𝑇4, and at 𝑃2, slacks have been generated both at the beginning and at the end.

3.2 Dynamic Energy-Adaptive Mechanism
The entire concept of our online energy-adaptive mechanism is illustrated in Figure 3. As per
the generated schedule (see diagram 1 in Figure 3), each task should be executed at a certain
processing speed (V/F setting) on the assigned core. To improve energy and thermal efficiency,
this assigned V/F setting can be adapted dynamically, but that may lead to deadline failure, if not
managed carefully. Prepare employs a fine-grained DVFS (FG-DVFS) based strategy to reduce the
temperature and power consumption of the core, by lowering the V/F setting during LLC-miss
induced memory stalls (see diagram 2 in Figure 3). On completion of the LLC-miss, the V/F
setting of the core will be increased to a higher value than previously assigned, which will execute
instructions for a stipulated time-span. Basically, we introduce an energy-adaptive mechanism
that trades off the power/thermal benefits achieved by applying FG-DVFS in association with LLC
stalls and determines the stipulated time-span for which the higher V/F will be maintained (see
diagram 3 in Figure 3) to ensure thermal safety. Note that, execution of the tasks at higher V/F

7

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

Task 𝑀𝑖 𝑂𝑖 𝑃𝑜𝑤𝑖 Task 𝑀𝑖 𝑂𝑖 𝑃𝑜𝑤𝑖
(#cycles) (#cycles) (#cycles) (#cycles)

𝑇 1
1 4 2 10 𝑇 1

4 15 7 15
𝑇 1
2 20 5 𝑇 2

4 15 12

𝑇 2
2 20 7 20 𝑇 1

5 15 2
𝑇 3
2 20 10 𝑇 2

5 15 6 20

𝑇 1
3 20 5 𝑇 3

5 15 14

𝑇 2
3 20 8 10 𝑇 1

6 10 2 10
𝑇 3
3 20 10 𝑇 2

6 10 8

Table 2. Parameters with values for example task set

Tasks
Mapped Selected Execute

𝑂𝑖
Assigned

Processor Version Start Time V/F Level

𝑇1 𝑃1 1 0 2 1
𝑇2 𝑃1 1 6 5 0.5
𝑇3 𝑃2 3 6 10 1
𝑇4 𝑃1 1 56 7 1
𝑇5 𝑃2 2 36 6 0.5
𝑇6 𝑃2 2 78 8 1

Achieved QoS 38

Table 3. Outputs of the constrained scheduling

T3 T5
T6

P1

P2

FG-DVFS

Exploit the online slacks either
by executing more from Oi or gate
the core

Accuracy enhancement
by executing higher
version of Oi

4

T1

T2
T4

T3 T5
T6P2

Slack
Task with
highest version

Task with
lower version

Optimal Schedule by ILP

 T2

T3 T5
T6

P1

P2

FG-DVFS

Online slack generated due to
frequency upscaling to next
possible higher value just
after the FG-DVFS

1

3

Higher frequency Turbo frequency Online Slack

Higher version can’t be
fitted; core will be power
gated (PCPG)

T4

T3 T5
T6

P1

P2

LLC miss induced core-stalls

FG-DVFS

Applying FG-DVFS while executing
tasks with our optimal schedule2

0

6

6 36

56 78

9678 Time

V/F

T4 T4

Time Time

Time

V/F

V/FV/F

DPTG = 100

0 0

0
DPTG = 100

DPTG = 100 DPTG = 100

T1

T3

T1 T2

T1 T2

P1

 T2

 T2 P1

P1

5 Magnifying the result-accuracy enhancement by T2
by exploiting online slack

Time

Scheduled
End-time
(Mi + Oi)

Scheduled
version of Oi

Higher version of
Oi after online
slack exploitation

Time

Scheduled
End-time
of Mi

End-time of Mi
after applying
FG-DVFS

Fig. 3. Prepare: working mechanism (not to scale).

for a stipulated short time-span is only shown for𝑇2,𝑇4 and𝑇5 in diagram 3 for better readability,
however, similar frequency switching is also be applicable for the remaining tasks.
As modern applications spend a significant amount of their total execution time accessing

memory [2, 5, 40], such increases in V/F for short time-spans just after each LLC-miss induced
stalls will reduce execution time noticeably and will generate computational slacks. Prepare exploits
slack intervals either to enhance overall result-accuracy by executing higher version of the optional

8

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

part of the respective tasks, or to power gate the cores to improve power/thermal efficiency (see
diagram 4 in Figure 3), or both. Additionally, any slacks generated by the constrained scheduling
will also be exploited to enhance thermal and energy efficiency of the system by power gating
the cores. The voltage switching and power gating overheads of the processors [3] are tackled by
judicious verification of the available slack intervals and the underlying processor model.
In the following portions of this section, we will first discuss the background for applying FG-

DVFS during memory stalls (see Sec. 3.2.1, and Figure 4) that motivated us to apply FG-DVFS during
LLC-miss induced stalls to enhance energy/thermal efficiency. Subsequently, we will elaborate the
viability of FG-DVFS (see Sec. 3.2.2) and plot an initial analysis (in Figure 6) regarding reduction
in dynamic energy, offered by FG-DVFS. Finally, we will focus on how the gained benefits can
be traded off further in an energy-adaptive manner (see Sec. 3.2.3) before discussing our online
algorithm (see Sec. 3.2.4).

3.2.1 Analyzing Memory Accesses. Existing literature reveals that a significant portion of the
execution time of modern applications is expended on accessing memory (both data and instruction
blocks) [2, 5, 40], and each of such memory accesses is costly in terms of access-time. In the case
of an instruction miss in an OoO core, the dispatch of the instructions will be stalled, once the
front-end is depleted by instructions. On the other hand, when a load miss (i.e. miss for a data block)
takes place, due to memory-level parallelism (MLP), only the very first miss, or an isolated miss, of
potentially multiple in-flight memory accesses to the same memory location (i.e. cache block), will
observe the full time of the memory access. To take advantage of FG-DVFS at the core, we need to
identify which loads cause isolated misses. Such isolated load misses can be identified by looking
at the miss status holding register (MSHR) of the respective requester cores. If a load (LLC-)miss
does not have an allocated MSHR, and its requester core has no pending memory access at present,
then, the miss can be declared as isolated miss. We executed eight PARSEC applications in gem5 [6]
for 80𝑀 cycles (in Region of Interest (RoI)) on a single core OoO Alpha 21364 processor, equipped
with two levels of caches (64KB 4W L1 (D/I) and 1MB L2) and observed the amount of time (in
percentage) the stalls take place, while accessing memory. We segregated the isolated misses and
instruction misses for individual benchmark applications and illustrate the results in Figure 4. The
result shows that, two memory intensive applications, Ded and Stream, spend up to 60% of their
total execution time in the memory stalls. For all the applications, on an average 25% of the total
execution time a core is stalled accessing memory. This is noticeably high and, can therefore be
utilized for reducing the power and temperature of the core without impacting its performance.

Fig. 4. Amount of total execution time spent on off-
chip accesses. A background analysis.

v1

v2

f2

f1

Time

tp tf2

tv2

tswtsw

LLC

Dispatch stalls
LLC miss
detected

Fig. 5. Timing diagram for FG-DVFS.

3.2.2 Individual stall-span vs. FG-DVFS. Now, we will discuss the scenarios for an instruction miss
and an isolated miss for which FG-DVFS can be applied at the requester core. Let us assume that
each core dispatches 𝐷 instructions per cycle. Once an LLC-miss occurs due to the absence of
an instruction block, it will require 𝐿 cycles before the dispatch stops, where 𝐿 is the front-end

9

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

pipeline depth of the core. Meanwhile, the off-chip memory is being accessed, and on completion
instruction fetching will be resumed. However, the dispatching of instructions will be resumed only
𝐿 cycles later. Hence, in case of an instruction miss, the stall-span for applying FG-DVFS is equal
to the off-chip memory access latency. The FG-DVFS in our energy-adaptive mechanism scales
down the V/F on detection of an (instruction) LLC-miss and scales the V/F up on completion of the
memory access. The V/F scaling effectively changes the frequency abruptly during the process,
which consequently elongates the depletion of the front-end pipeline. But this temporal overhead
will not impact the performance as it will be hidden by the off-chip access.

An isolated (load) miss can be identified by exploiting the MSHR of its requester core, however,
scaling down V/F on detection of an isolated miss might result into performance degradation.
Basically, the dispatch stalls during a load miss, if one of the following situations takes place: (A) the
Re-Order Buffer (ROB) is filled up, (B) the physical registers get exhausted, or (C) the issue queue is
filled up with all instructions that depend on the currently missed block. As our considered system
handles time-critical applications, we wait until the dispatch stalls. On detection of dispatch stall,
the V/F will be scaled down, and once the data arrive from the memory, the dispatch resumes after
scaling up the V/F. In fact, waiting up to dispatch stalls on occurrence of an LLC-miss, before scaling
down V/F, can also tackle the overlapping misses of independent blocks. Waiting for dispatch stalls
might reduce the benefits gained by FG-DVFS, but can safeguard our time-critical applications from
deadline violation. Diagram 2 in Figure 3 shows when FG-DVFS will be applied during the stall
cycles. For better readability, in this figure we have indicated (using arrows) that FG-DVFS is applied
only at 𝑃2 during 𝑇3 and 𝑇5, however this is applicable for all tasks and for all the processor cores.
Upon detecting an isolated or instruction miss, the FG-DVFS controller will scale down the V/F
setting of the core (on dispatch stalls for the data misses) and will maintain this lower V/F during
the stall-span. Once the stall finishes, the controller will increase the V/F to the (predetermined)
assigned level.
Each of the individual stall-span depends upon several timing overheads, that can result into

variation in the stall-span for individual LLC-misses. In this paper, we assume uniform memory
access time, which is a simplification, as studying variation in off-chip memory access latency
prediction is another topic of research [34], out of the scope of this paper. In Prepare, we assume a
fixed DRAM access latency of 70ns [10], however our FG-DVFS mechanism can also be extended
to tackle variable memory delay, without incurring significant changes.
Figure 5 illustrates the (individual) timing diagram, while applying FG-DVFS (see diagram 2

in Figure 3). Conventional systems usually incur a time-gap between an LLC-miss detection and
dispatch stalls at the requester core, which is denoted as 𝑡𝑝 , in this figure. Next, the FG-DVFS
controller will reduce the frequency without any delay to a lower level and will concurrently start
regulating the voltage (from v1 to v2). Note that, the controller will start scaling up the voltage for
a stipulated time-span before completion of the stall, so that, instructions can be executed at the
assigned V/F once the stall finishes. Once the voltage is scaled up, the frequency will be set to its
respective higher level that incurs no delay.

In our work, we considered the OoO core having a higher V/F setting of 1.12V/3.0GHz and a lower
V/F setting of 0.76V/1.2GHz. The considered on-chip VR has a switching speed of 20mV/ns and
consumes 0.106W and 0.168W, for 0.76V and 1.12V outputs, respectively [14]. During a stall-span
of 70ns, the core (OoO 𝐴𝑙𝑝ℎ𝑎21364 architecture) can consume 337nJ of energy at the V/F setting
of 1.12V/3.0GHz, which is our baseline. Depending upon the LLC-miss (i.e. load or instruction
miss), the energy usage by a core can be in between 107.1 to 115.4nJ which includes the power
consumption of the core and the VR during switching1. Thus, the overall energy usage is minimized

1The energy usage is calculated at the nano-second precision level by discretizing.

10

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

Fig. 6. Reduction in dynamic energy of the
core by FG-DVFS. A background analysis.

fL

fA

f+

vL

vA

v+

tsw

tL

t+

ts+

time

time

frequency

voltage

vL/fL = lower level V/F setting

vA/fA = assigned V/F setting by ILP

v+/f+ = next possible higher V/F setting

 over the assigned values

Notations used in text for Energy

EL = energy consumption during tL

E+ = energy consumption during t+

Es+ = energy consumption during 2 x ts+

Esw = energy consumption during 2 x tsw

Fig. 7. Enhancing performance by exploiting gains of FG-
DVFS. An extension of Figure 5.

by up to 68%, which is significant. Note that, we analyzed the configuration of our considered
core (see Sec. 4.2.1) and derived the maximum time taken before the dispatch stalls from the
detection of an apt LLC-miss to be around 8ns (i.e. 𝑡𝑝 in Figure 5). We further illustrate the overall
reduction in dynamic energy of the core gained by FG-DVFS in Figure 6 by executing eight PARSEC
applications for 80𝑀 cycles (in RoI) in gem5. The figure reports an average reduction of 40% (up to
54%) in dynamic energy of the core, which is significant. In case of the core, dynamic energy shares
a significant amount of the total energy consumption [26], hence, this noticeable reduction in
dynamic energy potentially motivates us to employ FG-DVFS towards maintaining a safe thermal
status. We derived all of these values by simulating the architecture in our simulation setup, with
the configuration details discussed in Sec. 4.2 (see Table 5).

3.2.3 Trading off Gains by FG-DVFS. Employing FG-DVFS leads to significant reduction in en-
ergy, which helps the core to execute below the assumed power budget, without impacting the
performance. Hence, we further planned to trade this energy savings to improve result-accuracy
and/or thermal/energy efficiency, while remaining in the power budget. Once the stall finishes,
FG-DVFS scales up the V/F to the assigned level (see diagram 2 in Figure 3). We will extend
this V/F scaling up process, by setting V/F to the next available higher level and the core will
execute the instructions at this higher level for a particular time-span. However, execution at
this higher V/F than the assigned one will be allowed for a stipulated time-span, which is set by
considering the amount of energy saved during the memory stall. The saved energy will be traded
off at the higher V/F level, so that the system will not violate its power budget. The stipulated
time-span for this higher V/F will be sufficiently small (< 70𝑛𝑠), to reduce the chance of thermal
overshoot [26]. However, such short time-spans for which tasks are executed at a higher speed
after each stall will altogether result into early completion of the individual task, with respect to
the assigned schedule generated by the constrained scheduling. Thus, a portion of spare time, i.e.
slack, will be generated at the end of each task as shown in diagram 3 in Figure 3. Now, this slack
interval can be exploited further to enhance result-accuracy or to improve thermal/energy benefits
depicted in diagram 4 in Figure 3. We illustrate the change in result-accuracy of𝑇2 in diagram 5
of Figure 3. By applying proposed V/F scaling mechanism,𝑀𝑖 will finish early creating more room
for enhancing result-accuracy, by executing higher version of𝑂𝑖 , based on its availability. However,
as V/F scaling will be applied in the same fashion during execution of 𝑂𝑖 as well, it might leave a
slack before its scheduled end-time (as shown in Figure 3).
Now, we will illustrate the whole idea of exploitation of the gains of running the core at lower

V/F during stalls with an example shown in Figure 7 (an extended version of Figure 5 towards
exploitation of energy saved by FG-DVFS). Basically, Figure 7 represents the timing diagram during
an individual miss and the frequency switching on miss-revolve (diagram 3 in Figure 3). We have

11

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

assumed our baseline V/F setting as, 𝑣𝐴/𝑓𝐴 which has been assigned by our constrained scheduling.
During a stall induced by LLC-miss, the V/F setting of the core will be stepped down to 𝑣𝐿/𝑓𝐿 .
While scaling up the V/F on completion of a stall interval, the V/F will be set to 𝑣+/𝑓+ (higher than
𝑣𝐴/𝑓𝐴). The respective energy consumption while staying at 𝐴, 𝐿 and + levels are 𝐸𝐴, 𝐸𝐿 and 𝐸+
(see Figure 7). Note that, 𝐸𝐴 represents the energy consumption without any changes to the V/F,
hence, is considered as baseline energy consumption for the duration of 2 · 𝑡𝑠𝑤 + 𝑡𝐿 time unit. The
energy usages by the switching processes are 𝐸𝑠𝑤 and 𝐸𝑠+ during switching between 𝐴 and 𝐿 levels
and 𝐴 and + levels, respectively (see Figure 7). As violating power budgets might result in severe
thermal issues, the energy saved by FG-DVFS over the baseline (i.e., 𝐸𝑠𝑎𝑣𝑒𝑑 = 𝐸𝐴 − (2 · 𝐸𝑠𝑤 + 𝐸𝐿))
during 2 ·𝑡𝑠𝑤+𝑡𝐿 should be the upper limit, while running the core at the + level. Now, to be in power
budget or to maintain on-chip thermal safety, 𝐸𝑠𝑎𝑣𝑒𝑑 ≥ 𝐸+ + 2 · 𝐸𝑠+. As the power consumption
at 𝑣+/𝑓+ level is known, the time-span (𝑡+) at which the core will be operating at this higher
frequency (𝑓+) can be determined on-the-fly. We will now use the values for the parameters for
energy computation and will summarize the same in Table 4, to show the efficacy of our policy.
According to the values mentioned in the table, FG-DVFS saves 68.2% during stall interval (i.e.
2 · 𝑡𝑠𝑤 + 𝑡𝐿). After reaching 𝐴 from 𝐿, our system will now scale up its V/F to + level. By considering
the switching energy (𝐸𝑠+) together with the core energy usage, we derived that, for each such
stall interval, the maximum improvement in performance will be as high as 17.3%. The overall
performance improvement and generation of slacks along with its exploitation towards improving
result-accuracy or power/thermal efficiency will be discussed in details in Sec. 4.

Parameters Values Parameters Values Parameters Values Parameters Values

v𝐴/𝑓𝐴 1.12𝑣/3.0𝐺𝐻𝑧 𝑡𝐿 34ns 𝑡+ 32ns 𝐸𝑠𝑤 53.8nJ
v𝐿/𝑓𝐿 0.76𝑣/1.2𝐺𝐻𝑧 𝑡𝑠𝑤 18ns 𝐸𝐿 30.2nJ 𝐸𝑠+ 31.3nJ
v+/𝑓+ 1.17𝑣/3.6𝐺𝐻𝑧 𝑡𝑠+ 3ns 𝐸+ 200nJ 𝐸𝐴 337nJ

Table 4. Values used and obtained in our example.

3.2.4 Online Management. Figure 3 (diagram 3 and 4) illustrates the entire online process for
applying FG-DVFS at the LLC-miss induced stall cycles. The figure also depicts how the online
algorithm attempts to stimulate either the result-accuracy/thermal/energy efficiency based on the
available scope. On the availability of a higher version optional portion of the current task that
can be executed without violating the real-time constraints, the algorithm will execute this higher
version of 𝑂𝑖 to improve the result-accuracy. On the other hand, while exploiting online slacks
for enhancing thermal or energy efficiency, our algorithm power gates the cores during the slack.
To meet the timing constraint, our algorithm further initiates the turning on process of the core
sufficiently earlier (by considering the turn-on overhead of the core), so that it can start executing
the task on its scheduled arrival.

We present the process of online energy adaptive result-accuracy and energy efficiency enhance-
ment at the individual cores in Algorithm 1 and 2. Our online mechanism considers the assigned
frequency of each task derived from our constrained scheduling and converts all the timing pa-
rameters in cycles, that enables us to keep track of the time by increasing a counter, 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑦𝑐𝑙𝑒𝑠 .
𝑃𝑜𝑤𝑒𝑟_𝑔𝑎𝑡𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 , 𝑀𝑖𝑛_𝑆𝑙𝑎𝑐𝑘 and 𝐵𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 are the inputs to the Algorithm 1, that rep-
resent the time taken for the core to be turned on from its gated status, a minimum threshold
value for the slack-span (also known as processor break-even time [17])2, and number of cycles
a core might be blocked at the beginning due to completion of the execution of the source task
(for instance, a slack at the beginning at 𝑃2 in Diagram 1 in Figure 3), respectively. The length

2the value of which is based on the architecture of the underlying core

12

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

Algorithm 1: Per core run-time power/thermal management within a 𝐹𝑅𝐴𝑀𝐸
Input: 𝑃𝑜𝑤𝑒𝑟_𝑔𝑎𝑡𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 ,𝑀𝑖𝑛_𝑆𝑙𝑎𝑐𝑘 , 𝐵𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 , 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ_𝑡𝑎𝑏𝑙𝑒 , 𝑆𝑙𝑎𝑐𝑘_𝐸𝑛𝑑_𝐶𝑦𝑐𝑙𝑒𝑠

1 # Check the 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ_𝑡𝑎𝑏𝑙𝑒 if 𝐵𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 exists for the current core at the beginning of the 𝐹𝑅𝐴𝑀𝐸
2 # (due to execution of the source task at some other core)
3 if 𝐵𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 ≥ (𝑀𝑖𝑛_𝑆𝑙𝑎𝑐𝑘 + 𝑃𝑜𝑤𝑒𝑟_𝑔𝑎𝑡𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑) then
4 # Power gate the core for 𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠
5 𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠 = 𝐵𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 − 𝑃𝑜𝑤𝑒𝑟_𝑔𝑎𝑡𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑
6 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑦𝑐𝑙𝑒𝑠 + = Power-Gate(𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠)
7 else
8 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑦𝑐𝑙𝑒𝑠 = 0
9 # Apply energy-adaptive results-accuracy enhancements for each task

10 for each task (𝑇𝑖) assigned to this core do
11 Fetch𝑇𝑖 and set its predetermined V/F setting
12 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑦𝑐𝑙𝑒𝑠 + = Call Algorithm 2
13 # Check if slack exists by looking at the 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ_𝑡𝑎𝑏𝑙𝑒 , and get the end cycles of the slack
14 if (𝑆𝑙𝑎𝑐𝑘_𝐸𝑛𝑑_𝐶𝑦𝑐𝑙𝑒𝑠 – 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑦𝑐𝑙𝑒𝑠) ≥ (𝑀𝑖𝑛_𝑆𝑙𝑎𝑐𝑘 + 𝑃𝑜𝑤𝑒𝑟_𝑔𝑎𝑡𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑)) then
15 # Power gate the core during the slack
16 𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑆𝑙𝑎𝑐𝑘_𝐸𝑛𝑑_𝐶𝑦𝑐𝑙𝑒𝑠 − 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑦𝑐𝑙𝑒𝑠 − 𝑃𝑜𝑤𝑒𝑟_𝑔𝑎𝑡𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑
17 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑦𝑐𝑙𝑒𝑠 + = Power-Gate(𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠)
18 Function Power-Gate(𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠):
19 𝑢𝑝𝑑𝑎𝑡𝑒_𝑐𝑦𝑐𝑙𝑒 = 𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠 + 𝑃𝑜𝑤𝑒𝑟_𝑔𝑎𝑡𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑
20 Apply power gating at the core
21 while 𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠 > 0 do
22 𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠--
23 Turn on the core
24 return 𝑢𝑝𝑑𝑎𝑡𝑒_𝑐𝑦𝑐𝑙𝑒

of the time-span between 0 to 𝐷𝑃𝑇𝐺 is now defined as 𝐹𝑅𝐴𝑀𝐸 in our online mechanism and is
represented in cycles. For ease of understanding, the 100 time-units of Figure 3 can be assumed as
100 cycles. For the current core, our online algorithm also considers the scheduled start cycles for
the individual tasks (𝑇𝑖) through the dispatch table [28], an input to the algorithm (𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ_𝑡𝑎𝑏𝑙𝑒),
in which the tasks are ordered according to their execution start cycle instant, as obtained from
the outputs of our constrained scheduling. The 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ_𝑡𝑎𝑏𝑙𝑒 also contains the timing details (in
cycles) of the slacks. For each slack entry in the 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ_𝑡𝑎𝑏𝑙𝑒 , our algorithm accesses the end
time of the slack as input, denoted by 𝑆𝑙𝑎𝑐𝑘_𝐸𝑛𝑑_𝐶𝑦𝑐𝑙𝑒𝑠 .

While within a 𝐹𝑅𝐴𝑀𝐸, the algorithm checks if any 𝐵𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 for the current core exists and
has a value larger than the sum of𝑀𝑖𝑛_𝑆𝑙𝑎𝑐𝑘 and 𝑃𝑜𝑤𝑒𝑟_𝑔𝑎𝑡𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (see line 3). On detection
of a such sufficiently large 𝐵𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 , the core will be power-gated for a stipulated number of
cycles by calling Power-Gate(𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠) function (see line 4 to 6). However, the span of this gated
mode is determined by considering the 𝑃𝑜𝑤𝑒𝑟_𝑔𝑎𝑡𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 of the individual cores (see line 5).
This implies that, the turn-on process within Power-Gate(𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠) function (see line 6) for the
core will be initiated 𝑃𝑜𝑤𝑒𝑟_𝑔𝑎𝑡𝑒_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 cycles before the end of the slack or the 𝐵𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 ,
so that timing constraint can be met. Based upon the presence of 𝐵𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 , our cycle counter
𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑦𝑐𝑙𝑒𝑠 will be updated accordingly (line 6 or 8).

At runtime, Prepare:online traverses the dispatch table and subsequently fetches each of the
tasks to execute as per their start time (in cycle) (see line 10 to 12). On a task start cycle instant, the
algorithm will set the predetermined V/F setting for the task and will start the execution. Once the
task execution has been started, the algorithm seeks for the stalls induced by long latency LLC-
misses, so that FG-DVFS can be applied. To apply FG-DVFS, Algorithm 2 will be called (see line 12),
which will attempt to improve result-accuracy by the energy-adaptive mechanism, which will be
detailed hereafter. However, with the availability of a sufficiently large slack, our online algorithm
also enables power gating at the cores (see line 14 to 17). If the core is not gated, Power-Gate()
function (see line 18 to 24) will power gate the respective core and will keep it gated for a stipulated

13

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

Algorithm 2: Energy-adaptive result-accuracy enhancement for a single task
Input: 𝐷𝑉𝐹𝑆_𝑃𝐸𝑅𝐼𝑂𝐷 ,𝑇𝑈𝑅𝐵𝑂 , 𝐷𝑉𝐹𝑆_𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝑎𝑡_𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 , 𝐿𝑜𝑤𝑒𝑟𝑉 𝐹 ,𝑇𝑢𝑟𝑏𝑜𝑉 𝐹 ,𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑉 𝐹 ,𝑇𝑎𝑠𝑘_𝐶𝑦𝑐𝑙𝑒𝑠
Output: 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠

1 𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑜𝑤𝑛 = 0, 𝑠𝑐𝑎𝑙𝑒𝑑_𝑢𝑝 = 0, 𝐷𝑉𝐹𝑆_𝑐𝑜𝑢𝑛𝑡 = 0, 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 = 0
2 while𝑇𝑖 is being executed do
3 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 + +
4 if (𝑑𝑣𝑓 𝑠_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 = 0) and (LLC-miss is detected for Address) then
5 if (dispatch stalls on a data miss) or (an instruction miss is detected) then
6 Apply_DVFS(𝐿𝑜𝑤𝑒𝑟𝑉 𝐹) and stop increasing 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠
7 𝑠𝑐𝑎𝑙𝑒_𝑑𝑜𝑤𝑛 = 1
8 𝑑𝑣𝑓 𝑠_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 = 1
9 # Set counter to the duration of the reduced V/F setting (i.e. 𝐿𝑜𝑤𝑒𝑟𝑉 𝐹)

10 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝐷𝑉𝐹𝑆_𝑃𝐸𝑅𝐼𝑂𝐷
11 else
12 # Block is already being handled by an earlier request, so, execute as normal
13 if (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 0) and (𝑠𝑐𝑎𝑙𝑒_𝑑𝑜𝑤𝑛 == 1) then
14 Apply_DVFS(𝑇𝑢𝑟𝑏𝑜𝑉 𝐹) and stop increasing 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠
15 𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑜𝑤𝑛 = 0
16 𝑠𝑐𝑎𝑙𝑒𝑑_𝑢𝑝 = 1
17 # Set counter to the duration of the increased V/F setting (i.e.𝑇𝑢𝑟𝑏𝑜𝑉 𝐹)
18 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =𝑇𝑈𝑅𝐵𝑂
19 if (counter == 0) and (scaled_up == 1) then
20 Apply_DVFS(𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑉 𝐹)
21 𝑑𝑣𝑓 𝑠_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 = 0
22 𝑠𝑐𝑎𝑙𝑒𝑑_𝑢𝑝 = 0
23 # Since DVFS (scaled down and up) is applied for predetermined lengths,
24 # a fixed number of cycles can be added to 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 that accounts for the frequency difference
25 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 + = 𝐷𝑉𝐹𝑆_𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝑎𝑡_𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑
26 # 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is an unsigned saturating decrementer
27 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 --
28 # Upon finishing the mandatory part, check if sufficient number of cycles exist
29 # such that a higher precision can be calculated
30 if execution of mandatory part (𝑀𝑖) of𝑇𝑖 is finished and execution of optional part (𝑂𝑖) is not yet started then
31 # Calculate the remaining cycles allocated for the task
32 𝑐𝑦𝑐𝑙𝑒𝑠_𝑙𝑒 𝑓 𝑡 =𝑇𝑎𝑠𝑘_𝐶𝑦𝑐𝑙𝑒𝑠 - 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠
33 # Call function that returns optional part with highest possible precision that can run within the provided cycles
34 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙_𝑝𝑎𝑟𝑡 = 𝑔𝑒𝑡_𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙_𝑝𝑎𝑟𝑡 (𝑇𝑖 , 𝑐𝑦𝑐𝑙𝑒𝑠_𝑙𝑒 𝑓 𝑡)
35 if 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙_𝑝𝑎𝑟𝑡 then
36 Fetch the optional part of𝑇𝑖
37 return 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠

period (𝑔𝑎𝑡𝑒𝑑_𝑐𝑦𝑐𝑙𝑒𝑠), that depends on the available slacks at the end of the executions of the
individual tasks (see line 17). Note that, the core will be turned on and will be ready at the starting
time instant (in cycle) of the next task. Basically, this function monitors power gating and turn
on processes by considering the respective temporal parameters. After completion of the turn-on
process, the value of the 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑦𝑐𝑙𝑒𝑠 is updated.
Algorithm 2 keeps track of the cycles (see line 3) while the tasks are executed and returns

the cycle count as output (𝑔_𝑐𝑦𝑐𝑙𝑒𝑠). This counter is increased at every clock cycle during task
execution and keeps track of the total number of cycles within a 𝐹𝑅𝐴𝑀𝐸. However, dynamically
scaling the frequency changes the cycle-span and that might violate the overall schedule. To
address this issue, we introduced the following inputs to Algorithm 2: 𝐷𝑉𝐹𝑆_𝑃𝐸𝑅𝐼𝑂𝐷 , 𝑇𝑈𝑅𝐵𝑂 ,
and 𝐷𝑉𝐹𝑆_𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝑎𝑡_𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 . The first two inputs are the respective number of cycles the core
will execute during DVFS with Lower and Turbo V/F settings, respectively. The last one is a derived
value, which is a sum of the number of cycles that can be completed at the assigned frequency
during the same time-span of 𝐷𝑉𝐹𝑆_𝑃𝐸𝑅𝐼𝑂𝐷 and the actual cycles executed during 𝑇𝑈𝑅𝐵𝑂 at
the Turbo V/F setting3. Note that, for every task, we will have the following three levels of V/F
3Due to our assumption of a fixed memory delay, 𝐷𝑉𝐹𝑆_𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝑎𝑡_𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 is constant and can be computed offline.

14

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

settings which are also inputs to Algorithm 2: 𝐿𝑜𝑤𝑒𝑟𝑉 𝐹 , 𝑇𝑢𝑟𝑏𝑜𝑉 𝐹 , and 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑉 𝐹 . 𝑇𝑎𝑠𝑘_𝑐𝑦𝑐𝑙𝑒𝑠
(for each 𝑇𝑖) is another input to the algorithm, which is the starting time-stamp (in cycles) of the
next event, which can either: (i) be the starting of the execution of the next task, or (ii) be the end of
the 𝐹𝑅𝐴𝑀𝐸. This value is derived for the individual tasks by looking at the dispatch table entries.
On detection of an LLC-miss, the core will wait until dispatch stalls in case of a data miss4,

whereas an instruction LLC-miss is sufficient for applying FG-DVFS (see line 4 to 10). Once an apt
miss is detected or the dispatch stalls, the 𝐴𝑝𝑝𝑙𝑦_𝐷𝑉𝐹𝑆 () function5 will be called with 𝐿𝑜𝑤𝑒𝑟𝑉 𝐹
(line 6), else the execution proceeds as normal (see line 12). A stipulated duration for which core
will maintain 𝐿𝑜𝑤𝑒𝑟𝑉 𝐹 is managed with a 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 by initialized it to 𝐷𝑉𝐹𝑆_𝑃𝐸𝑅𝐼𝑂𝐷 (see line 10).
Once this 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 reaches zero for a DVFS enabled core (see line 15), it scales up the V/F setting
(see line 14) to serve the outstanding instructions at the 𝑇𝑢𝑟𝑏𝑜𝑉 𝐹 by calling 𝐴𝑝𝑝𝑙𝑦_𝐷𝑉𝐹𝑆 () for
the current task on completion of the off-chip memory access. The time-limit for maintaining
𝑇𝑢𝑟𝑏𝑜𝑉 𝐹 is determined by initializing 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to 𝑇𝑈𝑅𝐵𝑂 (see line 18). Note that, our algorithm
stops increasing the cycle counter (𝑔_𝑐𝑦𝑐𝑙𝑒𝑠) if the core is not being operated at the 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑉 𝐹
(see line 6 and 14), and on completion of each such V/F scaling operations (including both 𝐿𝑜𝑤𝑒𝑟𝑉 𝐹
and 𝑇𝑢𝑟𝑏𝑜𝑉 𝐹) 𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 will be updated with 𝐷𝑉𝐹𝑆_𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝑎𝑡_𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 (see line 25).
Algorithm 2 also monitors if the execution of𝑀𝑖 is over and the execution of 𝑂𝑖 has not been

started (see line 30). Due to online energy-adaptive mechanism,𝑀𝑖 will be completed early, which
can now be exploited for enhancing the result-accuracy. At this point, Algorithm 2 computes
the cycles left (𝑐𝑦𝑐𝑙𝑒𝑠_𝑙𝑒 𝑓 𝑡) for a task 𝑇𝑖 (see line 32). Next, to update the optional portion with
higher precision, the algorithm will call 𝑔𝑒𝑡_𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙_𝑝𝑎𝑟𝑡 () with the following inputs: 𝑇𝑖 , and
𝑐𝑦𝑐𝑙𝑒𝑠_𝑙𝑒 𝑓 𝑡 (see line 34). Based upon the already scheduled𝑂𝑖 , this function starts searching for the
highest possible precision version of 𝑂𝑖 which can be executed within 𝑐𝑦𝑐𝑙𝑒𝑠_𝑙𝑒 𝑓 𝑡 . At the end of
the searching process, the optional part is updated with the best possible version, and Algorithm 2
fetches the 𝑂𝑖 for execution (see line 35 to 36).

3.2.5 Hardware Mechanism. Our energy-adaptive online strategy employs FG-DVFS of the cores
during long memory stalls. Through selective detection of an instruction miss or an isolated load
miss by inspecting MSHR entries, our FG-DVFS mechanism scales down the V/F settings of the
individual cores at the commencement of the stall-span. Additionally, cores are power gated on
detection of a sufficiently large slack. Towards implementation, the counters (used in the algorithms)
have to be implemented to keep track of the time-spans, so that a core can start operating at its
predetermined processing speed at the proper time, which guarantees that the real-time constraints
are met. The monitoring logic for FG-DVFS has to be implemented at the respective cores, that
will govern the associated VR to scale V/F setting of the core on LLC-miss induced stalls. As
modern CMPs are usually equipped with such VRs and implementation of the above-mentioned
counters are straightforward in practice, the online mechanism of Prepare incurs limited hardware
implementation cost [14]. The presence of such VR on-chip might incur their own power and
thermal overheads, which can be addressed by employing techniques like ThermoGater [25].
Additionally, overheads related to overclocking which is incorporated during 𝑇𝑢𝑟𝑏𝑜 V/F can be
tackled by adopting recently proposed mechanisms [23, 42], however, a detailed discussion of
overclocking is out of scope of this paper.

4Determination of such misses will be complicated in case of multi-cores where cores have shared LLC blocks, which is out
of scope of this paper. Prepare assumes all threads of a particular task/application are running on the same core.
5𝐴𝑝𝑝𝑙𝑦_𝐷𝑉𝐹𝑆 () is a system’s function that handles the V/F scaling process at the individual cores.

15

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

4 EVALUATION
In this section, first we show the efficacy of our constrained scheduling approach (see Sec. 4.1)
followed by the evaluation of runtime energy-adaptive strategy (see Sec. 4.2).

4.1 Prepare: Constrained Scheduling
For evaluation, we define Normalized Achieved QoS (NAQ), as the ratio between the actually
achieved QoS (see Equation 2) for the PTG, and the maximum achievable QoS by executing the
highest version of each task. Mathematically, NAQ can be formulated as:

𝑁𝐴𝑄 =

∑𝑛
𝑖=1𝐴𝑐𝑐

𝑗

𝑖∑𝑛
𝑖=1𝐴𝑐𝑐

𝑘𝑖
𝑖

, (14)

where 𝑘𝑖 denotes the highest version of task𝑇𝑖 . Now, we model a multi-core system and our task-set:
• Processor System: For the purpose of our experiment, a homogeneous multi-core platform
equipped with 4 Alpha 21364 cores (i.e.,𝑚 = 4) has been considered. The per core 𝑃𝑜𝑤𝐵𝐺𝑇
(i.e. maximum) is set at 4.0W [29], which is obtained through power-profiling for individual
task in McPAT [29].

• Task Characteristic: Each PTG consists of a set of subtasks (aka nodes) under precedence
constraints and has a deadline 𝐷𝑃𝑇𝐺 . Each subtask (𝑇𝑖) is a multi-threaded task (see Table 6),
where all threads of a task are executed on the same core (in a quasi-parallel manner),
characterized by execution times, 𝐸𝑇𝑖 . We assumed that a subtask can consume between
4 × 107 and 6 × 108 clock cycles [33] and they can have a maximum of 5 versions, i.e. 𝑘 = 5.
The assumptions regarding execution lengths also include memory cycles for our individual
task consisting of PARSEC benchmark applications [5] (see Figure 4). The total execution
requirement of a PTG (𝐶𝑃𝑇𝐺) is defined as the sum of the execution times of its subtasks,
𝐶𝑃𝑇𝐺 =

∑𝑛
𝑖=1 𝐸𝑇𝑖 . Thus, utilization𝑈𝑖 of a PTG can be denoted as 𝐶𝑃𝑇𝐺

𝐷𝑃𝑇𝐺
. The average utilization

of a PTG has been taken from a normal distribution, by considering normalized frequency
0.6. Given the PTG’s utilization, we can obtain the total utilization of the system (𝑆𝑦𝑠𝑢𝑡𝑖) by
summing up the utilization of all the PTGs. Given the system utilization, the total system
workload (𝑆𝑦𝑠𝑊𝐿) / system pressure can be derived by: 𝑆𝑦𝑠𝑊𝐿 =

𝑆𝑦𝑠𝑢𝑡𝑖
𝑚

× 100%. For a given
system utilization, all the PTGs have been generated by following the method proposed by
Qamhieh and Midonnet [37]. Given a 𝑆𝑦𝑠𝑊𝐿 , we have created a set of DAGs. The number of
DAGs (𝜌) within a set can be measured as:

𝜌 =
𝑚 × 𝑆𝑦𝑠𝑊𝐿

𝑈𝑖
(15)

In the generated PTGs, the minimum number of tasks (nodes) is equal to 5 and maximum
number of nodes is set to 20. For each PTG in the set, the number of nodes have been randomly
generated within the given limit. It may be noted that as the individual utilization (𝑈𝑖) of a
DAG is lower than the given system workload (𝑆𝑦𝑠𝑊𝐿), the number of DAGs (𝜌) within the
set will always be higher than𝑚. All experiments are carried out using the CPLEX optimizer
version 12.10.0, with a timeout of 5 hours.

• Task Temporal Parameters: For each task𝑇𝑖 , based on which portion of the 𝑙𝑒𝑛𝑖 is considered as
its mandatory portion (𝑀𝑖), we consider the following cases: (i)𝑚𝑎𝑛_𝑙𝑜𝑤 :𝑀𝑖 ∼𝑈 (0.2, 0.4) ×
𝑙𝑒𝑛𝑖 (low portion of a task 𝑇𝑖 ’s length (𝑙𝑒𝑛𝑖) is for the mandatory portion). (ii)𝑚𝑎𝑛_𝑚𝑒𝑑 :𝑀𝑖

∼𝑈 (0.4, 0.6) × 𝑙𝑒𝑛𝑖 (medium portion of a task𝑇𝑖 ’s length (𝑙𝑒𝑛𝑖) is for the mandatory portion).
(iii) 𝑚𝑎𝑛_ℎ𝑖𝑔ℎ : 𝑀𝑖 ∼ 𝑈 (0.6, 0.8) × 𝑙𝑒𝑛𝑖 (high portion of a task 𝑇𝑖 ’s length (𝑙𝑒𝑛𝑖) is for the
mandatory portion).

16

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

• Frequency Level: We have chosen two distinct normalized frequency levels as: 𝑓𝑛𝑜𝑟𝑚 = 0.6
and 1 for task execution; the least possible normalized frequency is 0.3. The respective actual
V/F settings for our considered core are given in Table 5.

Fig. 8. Analysis of running time of ILP-formulation.

Scalability analysis of ILP. Figure 8 shows the average solving time per number of tasks
(nodes) in each graph. It can be observed that, when the number of tasks in each graph is within 10,
the average solving time remains comparable. However, when the number of tasks grows beyond
that value, the average solving time also rises. This trend can be supported by the complexity
analysis provided in Table 1. As discussed, the number of constraints mainly depends on 𝑛, i.e. the
number of tasks. With 𝑛 = 20, the ILP generates on average 5000 constraints and the solving time
reaches up to 150 minutes.

Fig. 9. Change in NAQ for various system work-
loads.

Fig. 10. Comparing NAQ: Prepare vs.
𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦.

Effects of SystemWorkload. Figure 9 depicts the 𝑁𝐴𝑄 achieved by Prepare for various values
of 𝑆𝑦𝑠𝑊𝐿 . The 𝑁𝐴𝑄 is derived by running each DAG that belongs to the set. Then, we have taken
the average over these obtained individual 𝑁𝐴𝑄 values. It can be observed that Prepare is able
to achieve 90% QoS, when the system workload is low. However, the QoS is reduced by 15% on
average, when the workload increases by 40%. Other two insightful observations can be derived
from this figure. Firstly, as the system workload increases in order to maintain the number of
DAGs (𝜌) in the system, the individual utilization (𝑈𝑖) also increases and this eventually contributes
to low NAQ values. This happens due to the fact that increasing 𝑈𝑖 results in higher execution
length of individual task (nodes) and thus the possibility of obtaining sufficient free slots in the
scheduling period reduces within the deadline. Insufficient free slots in turn reduces the probability
of obtaining feasible schedules by selecting higher versions of the tasks.
Secondly, in case of 𝑚𝑎𝑛ℎ𝑖𝑔ℎ , it imposes a less adverse effect on the achieved NAQ with the

increasing value of 𝑆𝑦𝑠𝑊𝐿 . This can be attributed to the fact that, when the mandatory portions of
an individual task are high, the length of the optional portions will be low. As a result, the variance

17

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

among the different versions of a task become less. However, due to fewer variations among
the optional portions of a task, there will be less impact on the achieved accuracy. On the other
hand, in case of𝑚𝑎𝑛𝑙𝑜𝑤 , we can observe the alternative trend, and𝑚𝑎𝑛𝑚𝑒𝑑 offers a performance
between𝑚𝑎𝑛ℎ𝑖𝑔ℎ and𝑚𝑎𝑛𝑙𝑜𝑤 . However, the NAQ sharply decreases while 𝑆𝑦𝑠𝑊𝐿 increases. We
have also compared our strategy with a prior strategy (𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦) [33] and the results are
shown in Figure 10. Towards a fair comparison with 𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦, first we computed the overall
energy limit based on the considered power budget (𝑃𝑜𝑤𝐵𝐺𝑇) of the experimental framework of
Prepare. We used this as energy limit, while experimenting with 𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦. Next, we consider
our comparison in a case where𝑀𝑖 of tasks is chosen uniformly from 20% to 80% of 𝑙𝑒𝑛𝑖 . It can be
observed, as the execution demand of individual task nodes increases (due to increase in 𝑆𝑦𝑠𝑊𝐿),
Prepare maintains improved QoS by achieving higher NAQ than 𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦. Prepare is able to
maintain 75% QoS at 70% workload where 𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦 achieves 60% QoS. This is because the
considered overall energy limit in 𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦 would increase with the higher 𝑆𝑦𝑠𝑊𝐿 . Moreover,
𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦 also allows unlimited tasks migration, which incurs additional overhead.

4.2 Prepare: Runtime Energy-Adaptive Mechanism
After showing the efficacy of our constrained scheduling, we will now discuss the online energy-
adaptive result-accuracy enhancement and power saving technique. We will first discuss our
simulation framework, followed by the benchmark applications used in our simulation. The em-
pirical results will show the changes in execution time by applying energy-adaptive FG-DVFS
that resembles diagram 3 in Figure 3. Next, we will show the impacts of slack-exploitation to-
wards enhancing result-accuracy, and thermal and energy efficiency (diagram 4 in Figure 3). We
further studied the effects on peak temperature for an individual task during execution, as tasks
are also executed with a V/F setting higher than the originally assigned. Finally, we will compare
energy-adaptive strategy of Prepare with prior techniques.

4.2.1 Simulation Framework. We simulated a homogeneous tiled CMP having 4 tiles in the gem5
full system simulator [6]. Each tile contains an Alpha 21364 OoO core along with its private L1 data
and instruction caches. The L2 cache is logically shared, yet physically distributed among the tiles,
where each tile contains an L2-bank of the same size. We further use McPAT [29] and HotSpot [45]
to generate power consumption and temperature from the performance traces generated by gem5
in the following manner. We collect periodic performance traces from gem5 and send them to
McPAT to generate the power traces. Basically, the dynamic power consumption is derived for
individual on-chip components by executing McPAT. As, the leakage power estimation in McPAT
assumes uniform on-chip temperature, which is impractical, we compute component-wise leakage
power by considering the temperatures of individual on-chip components at the end of the last
period [20–22]. Finally, we derive total power consumption from dynamic and leakage power
estimations, which are sent to HotSpot 6.0 towards generating temperature traces. Based on prior
analysis [9, 10], the span of this periodic interval is set to 0.33 `s, during which the temperature
across the CMP is assumed stable. The HotFloorPlan module of HotSpot 6.0 generates floorplan of
the CMP once at the beginning by considering the component-wise area estimation from McPAT.
We consider 32nm technology nodes to estimate power consumption and area details. The detailed
system parameters used in our simulation are listed in Table 5.
Each core operates in two basic 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 frequency levels (𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1 and 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_2, where

𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1 > 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_2), and can also execute tasks in𝑇𝑢𝑟𝑏𝑜 mode. The respective values for V/F
settings are given in Table 5. While reducing V/F for improving power efficiency during the LLC
miss induced stalls, the core will always operate at 𝐿𝑜𝑤𝑒𝑟 V/F setting. If the assigned frequency

18

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

Parameter Value Parameter Value

ISA Alpha 21364 L1-I 64KB, 4Way, 3CC
Execution Units 2 int/br., 1 mul, 1 fp, 1 ld/st L1-D 64KB, 4Way, 3CC
Max. V/F (𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1) 1.12V, 3.0GHz L2 1MB, 16Way, 12CC
Med. V/F (𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_2) 1.02V, 1.8GHz MSHRs 8
Min. V/F (𝐿𝑜𝑤𝑒𝑟) 0.76V, 1.2GHz Cache LRU, 64B blocks
Turbo V/F (𝑇𝑢𝑟𝑏𝑜) 1.17V, 3.6GHz #Cache-Levels 2
VR-Speed 20 mV/ns Cache model SNUCA
Power_gate_overhead 60 ns DRAM latency 70 ns
ROB Size 200 Technology 32 nm
Dispatch/Issue width 8 Ambient Temp. 47 °C

Table 5. System parameters [CC: clock cycle]

of a task is 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1 (𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_2), it will be executing tasks at 𝑇𝑢𝑟𝑏𝑜 (𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1) speed for a
while immediately after the stall-span, for which FG-DVFS (for 𝐿𝑜𝑤𝑒𝑟) was viable.

4.2.2 Descriptions of the Task-set. Our tasks are generated by using PARSEC benchmark suite [5],
which can be fitted in an AC based paradigm [2, 41]. In their work, Sidiroglou et al. have shown
how PARSEC benchmark can be fitted in the approximation paradigm through the loop perforation
technique [41]. Based on these prior studies, we framed our task set by defining each task with a
couple of PARSEC applications, where the former one is executed as𝑀𝑖 of the respective task and
the latter is representing 𝑂𝑖 . For creating multiple versions of 𝑂𝑖 , the latter application will have
different executable files, with different execution lengths. Note that, for each𝑀𝑖 and𝑂𝑖 , we have 2
copies of a particular PARSEC application, that run in parallel on 2 different cores of the CMP6.
The details about the task-set is given in Table 6, where the execution lengths (Exec_Length) are
given in million cycles in the RoI for the respective𝑀𝑖 ’s and 𝑂𝑖 ’s. For example, while running 𝑇2
with its first version of𝑂𝑖 (having a length of 100M cycles), 2 copies of 𝑆𝑡𝑟𝑒𝑎𝑚 will be executed for
400M cycles concurrently on 2 cores to complete𝑀𝑖 , and after that, to complete𝑂𝑖 , 2 copies of𝐶𝑎𝑛
will be executed concurrently on the same set of cores. The table also details the V/F settings that
have been assigned for the individual task, by the constrained scheduling along with the assigned
versions [Exec_Lengths] of 𝑂𝑖 ’s. To keep implementation of the isolated miss detection simple
in Algorithm 2, we assumed that, all threads of a single PARSEC application will be executed on the
same core, i.e. the cores do not have any shared cache blocks. Note that, execution length of each
task in Table 6 is set by scaling the task lengths given in Table 2 and the outputs of the constrained
scheduling (see Table 3) are also set accordingly.

Tasks Benchmarks (𝑀𝑖 ,𝑂𝑖) Exec_Length ([𝑀𝑖], [𝑂𝑖]) V/F Setting Version(𝑂𝑖) [Exec_Length]

𝑇1 Black (2 copies), Body (2 copies) [80], [40] 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1 1[40]

𝑇2 Stream (2 copies), Can (2 copies) [400], [100, 140, 200] 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_2 1[100]

𝑇3 Ded (2 copies), Fluid (2 copies) [400], [100, 160, 200] 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1 3[200]

𝑇4 Fluid (2 copies), Freq (2 copies) [300], [140, 240] 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1 1[140]

𝑇5 Body (2 copies), X264 (2 copies) [300], [40, 120, 280] 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_2 2[120]

𝑇6 X264 (2 copies), Ded (2 copies) [200], [40, 160] 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1 2[160]

Table 6. Tasks formation with PARSEC. (Acronyms: Blackscholes (Black), Bodytrack (Body), Canneal (Can),
Dedup (Ded), Fluidanimate (Fluid), Freqmine (Freq), Streamcluster (Stream), and X264 (X264)). (The execution
lengths are in million cycles.)

6Effectively, 2 cores of the CMP represent a single core, i.e., a 𝑃𝑖 in Figure 3.

19

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

Fig. 11. Reduction in execution time for PARSEC. Fig. 12. Reduction in execution time for the tasks.

4.2.3 Effects on Execution Time. We experimented with individual PARSEC applications at first to
see the effects on execution time, while applying Algorithm 1. The memory intensive applications,
like 𝐷𝑒𝑑 and 𝑆𝑡𝑟𝑒𝑎𝑚, offer more scope to apply FG-DVFS, due to comparatively higher number
of LLC-misses. On the other hand, mixed applications, like 𝐶𝑎𝑛, 𝐹𝑙𝑢𝑖𝑑 , etc., experience a lesser
number of LLC-misses leading to comparatively lesser chances for applying FG-DVFS. The spike
in V/F just after the LLC-miss induced stalls enhances the performance for almost all benchmark
applications, reducing execution length by 2.5% to 10% with an average of 3.8%. The respective
reduction in execution lengths for eight PARSEC applications are shown in Figure 11, generated
by running applications for 200M cycles continuously within RoI. The respective reductions in
tasks’ execution-lengths are shown in Figure 12, where all the benchmarks of the individual task
continuously executed in RoI for the specified number of cycles as per Table 6. The presence of
memory intensive applications in case of𝑇2,𝑇3 and𝑇6 results in more reduction in execution lengths,
and we were further able to execute higher version of𝑇2 towards improving result-accuracy (NAQ).
By applying Algorithm 1 on the schedule generated by our constrained scheduling, we achieved
5.3% overall improvement in NAQ, whereas a significant amount of scheduled execution lengths
(up to 7.0%) can be used as slacks at the end of each individual task. The details regarding scheduled
and dynamically updated task versions for 𝑇1 to 𝑇6 are reported in Table 7, in addition with the
respective slack details and overall improvement in achieved NAQ.

Tasks Mapped Scheduled Updated Amount of
Core (V/F) Version (ILP) Version (Online) Slack

𝑇1 𝑃1 (𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1) 1 1 2.5%

𝑇2 𝑃2 (𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_2) 1 2 1.3%

𝑇3 𝑃2 (𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1) 3 3 7.0%

𝑇4 𝑃1 (𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1) 1 1 3.7%

𝑇5 𝑃2 (𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_2) 2 2 2.6%

𝑇6 𝑃2 (𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1) 2 2 5.3%

Improvement in Achieved NAQ 5.3%

Table 7. Outputs of the constrained scheduling and online updates

4.2.4 Runtime Peak Temperature. The spike in V/F setting (while applying Algorithm 1) at the
individual cores might result into temperature overshoot. To observe the effects on runtime core
temperature, we simulated the entire mechanism in our simulation setup and report the runtime
peak temperature in Figure 13 for our task-set. 𝑇3 and 𝑇5 experience lesser peak temperature for
executing in 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_2 V/F, while the remainder are executed at 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑_1. However, changes
in peak temperature is hardly noticed in Figure 13 for all tasks, while applying Algorithm 1. As the

20

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

spike in V/F setting is taken place for a significantly smaller time-duration and just after running
the core in a lower V/F for a stipulated duration of a stall period, the change in peak temperature is
not noticeable. Thus, Prepare:online claims thermal safety as stated in our contribution (see Sec. 1).
However, the reduction in peak temperature is significant in case of Prepare while considering the
thermal gains during slacks, shown next while comparing it with prior mechanisms.

4.2.5 Comparison with prior work. Our Algorithm 1 gates the cores during the slacks, which
significantly reduces peak temperature. To show the efficacy of Prepare, we further implemented
two prior DVFS based techniques, GDP [1] and Integrate [13], for our task-set, where in case of
GDP a different threshold peak temperature is assumed for individual task towards applying DVFS.
For 𝑇1 and 𝑇2, the threshold is set as 95 °C, which is 90 °C for 𝑇4 and 𝑇6. We set the threshold as
80 °C for 𝑇3 and 𝑇5. Note that, we allow GDP to execute tasks at the lowest possible frequency
(Min. V/F in Table 5) and the respective task-wise viable frequency level is set by our scheduling
mechanism. Integrate [13], on the other hand, decides to run individual task at different frequencies
through constrained scheduling, however, the frequency will not be changed during execution of a
particular task, and frequency can only be changed to run a new task, if needed. The constrained
scheduling of Integrate does not consider any power constraint, and its power model does not
include switching power of the VR unlike Prepare. Integrate further power gates the cores during
the slacks to reduce temperature of the underlying CMP.

For all of our tasks, Prepare, GDP and Integrate show significant and almost identical reduction
in peak temperature, which is caused due to slacks in case of Prepare and Integrate, and the
respective thresholds in case of GDP. As Integrate targets to maximize slack, in some cases Integrate
offers slightly better thermal gains. However, the reductions in peak temperatures for all tasks
are significantly higher, with a range between 6 to 8.6 °C, shown in Figure 14. But, executing
instructions in lower V/F during violation of the temperature threshold in case of GDP leads to
noticeable aggravation in performance, which is shown in Figure 15. As Integrate maintains the
assigned frequency during execution of a particular task, no noticeable changes in instructions
per second (IPS) is observed. On an average, GDP degrades performance (IPS) by 8%, that leads
to deadline failure for the considered task-set, whereas reduction in execution length in case of
Prepare will assist in improving result-accuracy along with a scope for power gating during the
generated slacks. Thus, while offering almost similar thermal gains, Prepare outperforms both
GDP [1] and Integrate [13] in terms of performance in our considered time-critical environment
that executes AC based task-set.

4.2.6 Discussion. Our constrained scheduling first generates the schedule for its task-set (repre-
sented by PTG), which is able to achieve a high NAQ of around 75%, while maintaining the power
and deadline constraints with 70 − 80% of system workload. During execution, Algorithm 1 shows

Fig. 13. Runtime peak temperature.

21

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

Fig. 14. Overall gain in peak temperature. Fig. 15. Change in performance.

an improvement of 5.3% in result-accuracy for our test case discussed above. Basically, applying FG-
DVFS to reduce the core V/F settings during LLC-miss induced stalls does not impact the execution
time, but makes room for energy-adaptive scaling of V/F. Hence, by executing tasks at some higher
V/F than the predetermined one for a short time-span just after the memory stall, significantly
reduces the execution time. However, such spike in V/F might incur temperature overshoot during
execution, which is controlled by our energy-adaptive mechanism that does not allow a core to stay
at the higher V/F for a long time-span, thanks to energy-adaptive mechanism (see Sec. 3.2.3). By
employing energy-adaptive V/F scaling, we observed higher reduction in execution times for the
tasks that generates online slacks. These online slacks are further exploited by Prepare to enhance
the result-accuracy as well as thermal efficiency of the underlying system, while maintaining the
timing constraint.

5 PRIORWORK
Energy minimization in recent CMP based real-time systems has become a topic of paramount
importance [35, 36]. Energy efficient scheduling for the time-critical dependent tasks on CMP
platform, imposes enormous research challenges [19]. In recent past, a few research attempts [4, 18,
24] were undertaken to devise energy-aware real-time scheduling for a set of real-time task-sets.

Recently, Cao et al. introduced the concept of AC towards meeting the energy budget of a large
scale real-time system for the tasks without precedent constraints [8]. Other prior efforts further
explored AC tasks scheduling for embedded real-time systems with energy minimization [8, 30, 46],
for the set of independent tasks. Yu et al. first proposed the concept of a “Imprecise Computation
(IC)” [44], where tasks can be decomposed into mandatory and optional parts. Authors further
proposed a “dynamic-slack-reclamation” technique, that improves the system-wide QoS for more
energy savings, but task-dependencies were not considered. To the best of our knowledge, the
very first attempt to schedule IC/AC dependent tasks is found in [43], where authors compared
the performance of conventional real-time scheduling approaches like Highest Level First (HLF)
and Least Space Time First (LSTF) between a couple of task-sets, where one set has the AC tasks,
but energy efficiency was not accounted. The energy cognizant scheduling of dependent AC tasks
were further considered in [32, 33] that employed DVFS at the cores for energy savings.

The majority of the prior energy/thermal management policies [12, 26] control the dynamic
power of the cores in CMPs either by employing DVFS [38, 39] or through task migration [11, 15, 16].
Recently, Roeder et al. [39] studied the effectiveness of DVFS, planned offline, for heterogeneous
real-time systems with multi-version task-model. However, energy efficiency of such systems
can be improved further by dynamic adjustment of the offline generated schedule based on the
runtime tasks’ as well as system’s characteristics. Donald and Martonosi [12] classified the thermal
management techniques into several groups based on their distinct implementation strategies. This
paper has shown the efficacy of several DVFS in combination with task migration based policies
towards controlling temperature, where distributed DVFS in addition with the task migration

22

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

are claimed to be the best. But, underlying migration overheads at the cache hierarchy were
not considered, which might raise scalability issues in large sized CMPs. Hanumaiah et al. [22]
proposes a thermal efficient thread migration policy, that was integrated with DVFS to reduce
temperature of the homogeneous CMPs [21]. Recently, Esmaili et al. has also integrated DPM,
DVFS and task migration in their constrained scheduling, where the power budget of the system
was not considered [13]. However, combining DVFS and DPM can boost up system throughput
and thermal efficiency of the large CMPs [27].

Most of these prior techniques tackled power/thermal issues by employing DVFS that is operated
by the off-chip voltage regulators, and hence, DVFS is applied in a coarse grained manner [26],
except for the strategy proposed in [14]. In Prepare, we have studied the potential of FG-DVFS in
improving thermal efficiency of a multi-core system. Next, Prepare further proposed a novel energy-
adaptive technique (see Sec. 3.2) that dynamically enhances the gained result-accuracy in offline
(see Sec. 3.1) for a set of approximated real-time tasks. We also empirically validate the claims with
our simulation setup and illustrated that our energy-adaptive online mechanism assures thermal
safety (see Sec. 4.2.4 and 4.2.5). Our results also shows that, both offline and online mechanisms of
Prepare outperform state-of-the-art techniques. To the best of our knowledge, Prepare is the first
technique that considers LLC-miss induced stalls during execution of a scheduled task-set to conduct
energy-adaptive fine-grained V/F scaling that enhances result-accuracy during execution of the AC
real-time precedence constrained task-set without violating deadline constraint, while maintaining
on-chip thermal safety.

6 CONCLUSION
This paper has proposed Prepare, a novel approximate real-time tasks scheduling approach that
schedules a set of dependent approximate tasks on a CMP, with an objective to enhance result-
accuracy. Our ILP based scheduling mechanism is constrained by system-wide power and deadline.
Prepare also includes a runtime energy-adaptive V/F management strategy that assists in enhancing
results-accuracy of the task-set, as well as thermal efficiency of the underlying hardware. Basically,
FG-DVFS reduces the core power consumption during LLC induced stalls and scales up V/F to
a higher value than the predetermined ones just after the stall period. To maintain the peak
temperature, this higher V/F is maintained (in an energy-adaptive manner) for a smaller time-
span, which further reduces execution length of the individual task, and is exploited to enhance
result-accuracy as well as thermal/energy efficiency.
With 70 − 80% workload, Prepare achieved 75% QoS with its constrained scheduling, which is

enhanced by 5.3% for our benchmark based evaluation of the online energy-adaptive mechanism,
while meeting the deadline constraints. Overall, Prepare achieves up to 8.6 °C reduction in peak
temperature by applying power gating during the online slacks. Our empirical evaluation shows,
Prepare outperforms a state-of-the-art prior scheduling policy and a couple of recently proposed
DVFS based thermal management techniques.

ACKNOWLEDGEMENT
This work was funded by Marie Curie Individual Fellowship (MSCA-IF), EU (Grant Number: 898296)
and Engineering and Physical Sciences Research Council (EPSRC), UK (Grant Numbers: EP/R02572X/1,
EP/P017487/1 and EP/V000462/1).We are thankful to the anonymous reviewers for their constructive
feedback and suggestions that helped us in improving the quality of the manuscript.

REFERENCES
[1] S. Dey A. Mirtar and A. Raghunathan. 2015. Joint Work and Voltage/Frequency Scaling for Quality-Optimized Dynamic

Thermal Management. IEEE TVLSI (2015).

23

Woodstock ’18, June 3–5, 2018, Woodstock, NY Chakraborty S. et al.

[2] S. Achour and M. C. Rinard. 2015. Approximate Computation with Outlier Detection in Topaz. SIGPLAN Not. (2015).
[3] K. Bhatti, C. Belleudy, and M. Auguin. 2010. Power Management in Real Time Embedded Systems through Online and

Adaptive Interplay of DPM and DVFS Policies. In EUC.
[4] A. Bhuiyan, Z. Guo, A. Saifullah, N. Guan, and H. Xiong. 2018. Energy-efficient real-time scheduling of DAG tasks.

ACM TECS (2018).
[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC Benchmark Suite: Characterization and Architectural

Implications. In PACT.
[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,

R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. 2011. The Gem5 Simulator. SIGARCH CAN (2011).
[7] C. Bliek, P. Bonami, and A. Lodi. 2014. Solving mixed-integer quadratic programming problems with IBM-CPLEX: a

progress report. In RAMP.
[8] K. Cao, G. Xu, J. Zhou, T. Wei, M. Chen, and S. Hu. 2018. QoS-adaptive approximate real-time computation for

mobility-aware IoT lifetime optimization. IEEE TCAD (2018).
[9] S. Chakraborty and H. K. Kapoor. 2018. Analysing the Role of Last Level Caches in Controlling Chip Temperature.

IEEE TSUSC (2018).
[10] S. Chakraborty and H. K. Kapoor. 2019. Exploring the Role of Large Centralised Caches in Thermal Efficient Chip

Design. ACM TODAES (2019).
[11] T. Chantem, R. P. Dick, and X. S. Hu. 2008. Temperature-Aware Scheduling and Assignment for Hard Real-Time

Applications on MPSoCs. In DATE.
[12] J. Donald and M. Martonosi. 2006. Techniques for Multicore Thermal Management: Classification and New Exploration.

In ISCA.
[13] A. Esmaili, M. Nazemi, and M. Pedram. 2019. Modeling Processor Idle Times in MPSoC Platforms to Enable Integrated

DPM, DVFS, and Task Scheduling Subject to a Hard Deadline. In ASPDAC.
[14] S. Eyerman and L. Eeckhout. 2011. Fine-grained DVFS Using On-chip Regulators. ACM TACO (2011).
[15] Y. Ge, P. Malani, and Q. Qiu. 2010. Distributed task migration for thermal management in many-core systems. In DAC.
[16] Y. Ge, Q. Qiu, and Q. Wu. 2012. A Multi-Agent Framework for Thermal Aware Task Migration in Many-Core Systems.

IEEE TVLSI (2012).
[17] M. E. T. Gerards and J. Kuper. 2013. Optimal DPM and DVFS for Frame-Based Real-Time Systems. ACM TACO (2013).
[18] Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, and N. Guan. 2019. Energy-Efficient Real-Time Scheduling of DAGs

on Clustered Multi-Core Platforms. In RTAS.
[19] Z. Guo, A. Bhuiyan, A. Saifullah, N. Guan, and H. Xiong. 2017. Energy-Efficient Multi-Core Scheduling for Real-Time

DAG Tasks. In ECRTS.
[20] V. Hanumaiah and S. Vrudhula. 2014. Energy-Efficient Operation of Multicore Processors by DVFS, Task Migration,

and Active Cooling. IEEE TC (2014).
[21] V. Hanumaiah, S. Vrudhula, and K. S. Chatha. 2009. Maximizing performance of thermally constrained multi-core

processors by dynamic voltage and frequency control. In ICCAD.
[22] V. Hanumaiah, S. Vrudhula, and K. S. Chatha. 2011. Performance Optimal Online DVFS and Task Migration Techniques

for Thermally Constrained Multi-Core Processors. IEEE TCAD (2011).
[23] H. B. Jang, J. Lee, J. Kong, T. Suh, and S. W. Chung. 2014. Leveraging Process Variation for Performance and Energy: In

the Perspective of Overclocking. IEEE Trans. on Comp. (2014).
[24] K. Kanoun, N. Mastronarde, D. Atienza, and M. Van der Schaar. 2014. Online energy-efficient task-graph scheduling

for multicore platforms. IEEE TCAD (2014).
[25] S. K. Khatamifard, L. Wang, W. Yu, S. Köse, and U. R. Karpuzcu. 2017. ThermoGater: Thermally-aware on-chip voltage

regulation. In ISCA.
[26] J. Kong, S. W. Chung, and K. Skadron. 2012. Recent Thermal Management Techniques for Microprocessors. ACM

CSUR (2012).
[27] J. Lee and N. S. Kim. 2012. Analyzing Potential Throughput Improvement of Power- and Thermal-Constrained

Multicore Processors by Exploiting DVFS and PCPG. IEEE TVLSI (2012).
[28] Kyung-Jung Lee, Jae-Woo Kim, Hyuk-Jun Chang, and Hyun-Sik Ahn. 2018. Mixed harmonic runnable scheduling for

Automotive Software on Multi-core processors. International Journal of Automotive Technology 19, 2 (2018), 323–330.
[29] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. 2009. McPAT: An integrated power, area,

and timing modeling framework for multicore and manycore architectures. In MICRO.
[30] I. Méndez-Díaz, J. Orozco, R. Santos, and P. Zabala. 2017. Energy-aware scheduling mandatory/optional tasks in

multicore real-time systems. International Transactions in Operational Research (2017).
[31] S. Mittal. 2016. A survey of techniques for approximate computing. ACM CSUR (2016).
[32] L. Mo, A. Kritikakou, and O. Sentieys. 2018. Energy-quality-time optimized task mapping on DVFS-enabled multicores.

IEEE TCAD (2018).

24

Prepare: Power-Aware Approximate Real-time Task Scheduling Woodstock ’18, June 3–5, 2018, Woodstock, NY

[33] L. Mo, A. Kritikakou, and O. Sentieys. 2019. Approximation-aware Task Deployment on Asymmetric Multicore
Processors. In DATE.

[34] O. Mutlu and T. Moscibroda. 2007. Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors. In MICRO.
[35] S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R. V. Prasad. 2016. Exploring Energy Saving forMixed-Criticality

Systems on Multi-Cores. In RTAS.
[36] S. Pagani, J. Chen, and J. Henkel. 2015. Energy and peak power efficiency analysis for the single voltage approximation

(SVA) scheme. IEEE TCAD (2015).
[37] M. Qamhieh and S. Midonnet. 2015. Simulation-based evaluations of DAG scheduling in hard real-time multiprocessor

systems. ACM SIGAPP Appl. Comput. Rev. (2015).
[38] R. Rao, S. Vrudhula, C. Chakrabarti, and N. Chang. 2006. An Optimal Analytical Solution for Processor Speed Control

with Thermal Constraints. In ISLPED.
[39] J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck. 2021. Energy-Aware Scheduling of Multi-Version Tasks on Heterogeneous

Real-Time Systems.
[40] J. Shun and G. E. Blelloch. 2013. Ligra: A Lightweight Graph Processing Framework for Shared Memory. In PPoPP.
[41] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, andM. Rinard. 2011. Managing Performance vs. Accuracy Trade-Offs

with Loop Perforation. In ACM SIGSOFT.
[42] G. P. Srinivasa, D. Werner, M. Hempstead, and G. Challen. 2021. Thermal-Aware Overclocking for Smartphones. In

ISPASS.
[43] G. L. Stavrinides and H. D. Karatza. 2010. Scheduling multiple task graphs with end-to-end deadlines in distributed

real-time systems utilizing imprecise computations. JSS (2010).
[44] H. Yu, B. Veeravalli, and Y. Ha. 2008. Dynamic scheduling of imprecise-computation tasks in maximizing QoS under

energy constraints for embedded systems. In ASPDAC.
[45] R. Zhang, M. R. Stan, and K. Skadron. 2015. HotSpot 6.0: Validation, Acceleration and Extension. Technical Report

CS-2015-04. University of Virginia.
[46] J. Zhou, J. Yan, T. Wei, M. Chen, and X. S. Hu. 2017. Energy-adaptive scheduling of imprecise computation tasks for

QoS optimization in real-time MPSoC systems. In DATE.

25

	Abstract
	1 Introduction
	2 System Model and Assumptions
	3 Prepare
	3.1 Constrained Scheduling
	3.2 Dynamic Energy-Adaptive Mechanism

	4 Evaluation
	4.1 Prepare: Constrained Scheduling
	4.2 Prepare: Runtime Energy-Adaptive Mechanism

	5 Prior Work
	6 Conclusion
	References

