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Abstract

The subject of this dissertation are thermoacoustic instabilities in combus-
tion chambers with discrete rotational and reflective symmetries. Design-
ing thermoacoustically stable combustors is one of the principal challenges
in the engineering of modern gas turbines operating with low NOx emis-
sions. This thesis contributes to the research in the field from three per-
spectives: numerical, theoretical and experimental.

Combustion experiments are costly and hence the design phase needs ac-
curate computational models to cut development costs. Frequency-domain
models in the form of network models, or as finite-element discretizations
of the thermoacoustic Helmholtz equation, have proven highly success-
ful in predicting thermoacoustic stability. From a mathematical point of
view, the models lead to nonlinear eigenvalue problems which need to be
solved numerically. The first achievement of this thesis is to provide fast
and reliable solution algorithms that are tailored to thermoacoustic prob-
lems. The methods have the capability to compute all relevant solutions –
a crucial property to determine stability of a combustor. One of the meth-
ods based on contour integration proved essential in computing intrinsic
thermoacoustic modes in annular geometries for the first time and it is ex-
plained why these modes appear in clusters. These modes cannot be com-
puted with methods that were the de-facto standard in the thermoacoustic
field at the beginning of this PhD, which is subsequently proven in work
that is part of this thesis. Part of this thesis is also a strategy with which
the high dimension of the discrete problems can be drastically reduced –
permitting parameter studies of large-scale problems.

Combustion chambers in modern industrial applications mainly come in
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two types: annular or can-annular layouts. Both designs exhibit discrete
spatial symmetries, i.e. certain reflections and rotations leave the combus-
tors invariant. The presence of the discrete symmetries has implications
for the type of oscillations that occur. Most prominently, standing and
spinning azimuthal modes originate from a degenerate mode pair. The
second achievement of this work is to interpret the thermoacoustic non-
linear eigenvalue problem from the formal viewpoint of symmetry group
theory for the first time. With this powerful framework it can be pre-
dicted which physical objects show degenerate modes and how these de-
generacies split as the symmetries are lowered by perturbations. This has
important implications for industrial combustors, which exhibit high sym-
metries and consequently a large number of degenerate modes. Moreover,
a number of thermoacoustic configurations are discussed, which exhibit
non-trivial symmetries with surprising degeneracies. In thermoacoustics,
Bloch waves have been used successfully to reduce computational cost of
solving the nonlinear eigenvalue problem. Bloch waves exploit exclusively
the rotational symmetry. A major result of this work is that even when an
additional mirror symmetry is present, a further reduction is only possible
for simple eigenvalues. Related to this work on eigenvalue multiplicity is
a result on so-called exceptional points in thermoacoustic spectra. For the
first time it is shown that for certain parameter combinations two eigenval-
ues can coalesce and form a defective point.

Can-annular combustors have received little experimental attention in aca-
demia. Unlike the annular design, the can-annular design exhibits so-
called clustered modes, i.e. multiple modes within narrow frequency bands
due to the presence of a weak coupling. From an engineering perspective
there are many advantages to this design. However, the closely spaced
modes lead to thermoacoustic effects that differ starkly from those ob-
served in annular combustion chambers – which have been well-researched
in the past two decades. The third achievement of this thesis is to estab-
lish a new can-annular model combustor to explore the complex dynamics
of can-annular combustors in well-defined and accessible lab experiment.
The design permits to adjust the can-to-can coupling and study its effect on
clustered modes. Several tightly packed clusters are observed, which con-
tain modes of different azimuthal mode orders. In addition, the frequen-
cies and amplitudes of the observed limit cycle oscillations show a strong
sensitivity to changes in the cross talk size. Thus, the results confirm recent
theoretical work in the literature. The observed transient dynamics show
that interactions between multiple unstable modes in a cluster are complex
and it is difficult to predict which mode will form the limit cycle oscillation.
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This thesis is submitted to the Norwegian University of Science and Tech-
nology (NTNU) for partial fulfilment of the requirements for the degree of
philosophiae doctor. The doctoral work has been carried out in the Thermo
Fluids Group at the Department of Energy and Process Engineering (EPT),
from November 2017 until November 2021. The research work has been
supervised by Associate Professor Jonas P. Moeck and Associate Professor
Nicholas Worth. This thesis consists of six chapters and nine scientific pa-
pers, which are summarized in Chap. 5 and included in full text at the end
of the thesis. Of the nine papers seven have been published or presented at
scientific conferences, while two are in a draft state. Listed in chronological
order of publication, the articles are:

Article 1
Exceptional points in the thermoacoustic spectrum
Georg A. Mensah, Luca Magri, Camilo F. Silva, Philip E. Buschmann and
Jonas P. Moeck
Journal of Sound and Vibration, Volume 433, Pages 124-128, 2018

Author contributions: PEB, GAM and JPM formulated the problem and its
solution. CFS and LM contributed to the analysis. GM wrote an early draft
of the letter, which was subsequently extended and polished by all authors.

iii



iv

Article 2
Solution of Thermoacoustic Eigenvalue Problems with a Noniterative
Method
Philip E. Buschmann, Georg A. Mensah, Franck Nicoud and Jonas P. Moeck
Journal of Engineering for Gas Turbines and Power, 142(3): 031022 (11 pages),
2020

Author contributions: PEB conducted analysis and numerical computations.
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Iterative Solvers for the Thermoacoustic Nonlinear Eigenvalue Problem
and Their Convergence Properties
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Presented at SOTIC-2021 conference and invited for publication to the Interna-
tional Journal of Spray and Combustion Dynamics; authors intend to submit it.
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veloped the theory. GAM and AO performed numerical computations.
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per at the SOTIC-2021 conference in Munich, Germany.
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Article 5
Experimental study of thermoacoustic modes in a can-annular model
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Philip E. Buschmann, Nicholas Worth and Jonas P. Moeck
Presented at SOTIC-2021 conference and invited for publication to the Interna-
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Author contributions: JPM conceived the idea. PEB designed and performed
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experimental design and the data acquisition setup. JPM supervised the
post-processing of the experimental data. PEB performed all numerical
computations and wrote the manuscript. NW and JPM proofread the final
draft. PEB presented the paper at the SOTIC-2021 conference in Munich,
Germany.

Article 6
Reduced-order modelling of thermoacoustic instabilities in can-annular
combustors
Alessandro Orchini, Tiemo Pedergnana, Philip E. Buschmann,
Jonas P. Moeck and Nicolas Noiray
Presented at SOTIC-2021 conference. An extended version of the paper is cur-
rently under review with the Journal of Sound and Vibration.

Author contributions: AO formulated the theoretical model and performed
all numerical computations. TM contributed with experimental data to
the theoretical model. PEB contributed with experimental data to the nu-
merical model for validation purposes. AO wrote the paper, which was
proofread by JPM and NN. AO presented the paper at the SOTIC-2021
conference in Munich, Germany.
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genvalue problems
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As of Monday 10th January, 2022 accepted for publication in the Journal of Sound
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Draft Article 8
Symmetry groups in thermoacoustics
Philip E. Buschmann and Jonas P. Moeck
This article is in draft state with planned submission in late 2021 to a suitable
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Author contributions: PEB developed the theory, implemented all numerical
models and wrote the manuscript. JPM supervised the work and helped
in shaping the research. Both authors proofread the final draft of the ma-
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Chapter 1

Introduction

1.1 Motivation
The topic of this thesis are thermoacoustic instabilities in annular and can-
annular combustors from an experimental, theoretical and numerical angle.
Thermoacoustic instabilities are self-excited pressure oscillations that can
occur in combustion chambers of rocket engines (Culick and Yang, 1995)
and gas turbines (McManus et al., 1993; Dowling and Stow, 2003; Lieuwen
and Yang, 2005a). Modern stationary gas turbines for power generation
are particularly susceptible to these unwanted pressure oscillations and a
considerable amount of engineering and research has been expended to
understand, predict and tame them.

Combustion of fossil fuels and biofuels produces greenhouse gases that
are dangerous to the climate. The most recent report from the Intergovern-
mental Penal on Climate Change (Masson-Delmotte et al., 2021) strongly
underlines the need to reduce greenhouse gas emissions. Stationary gas
turbines for power generation certainly contribute to climate change. How-
ever, until energy can be reliably obtained from sustainable or renewable
sources exclusively, gas turbines are a promising bridging technology. Gas
turbines have quick response times and can employ a mix of different
fuels. Gas turbine technology is well-matured owing to a century of de-
velopments since the Norwegian Ægidius Elling build the first gas turbine
that produced excess power in 1903 (Leksikon, 2021). These features make
them ideally suited to fill supply gaps of renewable energies. Therefore,
current combustion research aims at reducing emissions to the necessary
minimum that is physically possible.

1
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Reducing emissions in the form of nitrogen oxides, or short NOx, is one of
the main challenges for cleaner gas turbines. Nitrogen is a natural com-
ponent of atmospheric air and under high temperatures it forms NOx.
As an unwanted byproduct it reduces the thermodynamic efficiency of
the gas turbine, but more importantly NOx causes acid rain, damages the
ozone layer, harms the human respiratory system and damages the soil
(Boningari and Smirniotis, 2016). Hence, the reduction is a focus of the EU
Commission, see Directive (EU) 2015/2193 (EU Commission, 2015) which
imposes stringent limits for the gas turbine industry. In a push to reduce
NOx emissions, gas turbine manufacturers switched from diffusion to pre-
mixed flames, which reduces the occurrence of local hot spots in the com-
bustion zone. Since NOx-formation has an exponential dependence on
temperature, this measure proved highly effective in decreasing NOx emis-
sions.

The switch to premixed flames came with a price: thermoacoustic instabil-
ities. Premixed flames that are kinematically stabilized are especially prone
to this type of instability. Hereby an unstable feedback loop between flames
and pressure waves causes a growth in amplitude until levels dangerous
to the structure and the operation are reached: a thermoacoustic instabil-
ity manifests itself and the engine needs to be shutoff to prevent structural
damage.

Recently, the German government (Bundesministerium für Wirtschaft und
Energie, 2020) and a joint initiative from the private and public sector un-
der the auspices of the EU Commission (The Fuel Cells and Hydrogen Joint
Undertaking, 2019) have announced their plans to make hydrogen the key
of the future energy economy. Hydrogen can be burned in gas turbine en-
gines but its addition exasperates the susceptibility to instabilities due to
the high burning velocity which increases sensitivity to fluctuations (In-
dlekofer et al., 2021a).

Consequently, there is an urgent need to understand thermoacoustic in-
stabilities and develop methods to predict them such that stable combus-
tors can be designed that contribute to a cleaner energy economy. This
thesis contributes to this goal in a threefold manner: i) algorithms and
methods are developed to solve the linear stability problem of thermoacous-
tics – a so-called nonlinear eigenvalue problem – fast and effectively; ii) the-
oretical properties of annular and can-annular combustors related to mode
degeneracy are derived by analysing the thermoacoustic stability problem
from the perspective of the mathematical language of symmetry groups;
iii) a can-annular model combustor experiment is established to explore
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the role of closely-spaced eigenvalues in a well-defined and accessible lab
environment.

1.2 Basic concepts of thermoacoustic instabilities
Flames need to be placed into confined domains to extract work from com-
bustion in the Brayton cycle. The combustion process is unsteady and in-
volves the interaction of acoustic, hydrodynamic and chemical processes.
In its simplest form, the velocity-coupled thermoacoustic feedback loop is
depicted in Fig. 1.1(a): a flame emits pressure waves that travel upstream
and downstream. As they are reflected at the walls and propagate through
the combustion chamber, they excite hydrodynamic structures upstream of
the flame. These structures propagate to the flame and trigger a response
and, thus, close the loop. If the feedback is positive, an acoustic pressure
wave grows in amplitude and a thermoacoustic instability (TAI) manifests
itself in the system. Such an instability can be observed in the experimental
data recorded in Fig. 1.2(a): after an initially stable state, characterized
by a low amplitude, the amplitude grows and the self-excited oscillation
reaches a stable limit cycle (LC) (Strogatz, 2018).

The amplitude of a TAI can reach dangerously high levels. Figure 1.1(b)
shows the structural damage to a combustion chamber after a TAI has oc-
curred. On one hand the large amplitude pressure waves can damage the
encasing of the combustion chamber but on the other hand they can lead to
flow-reversal. This is extremely dangerous for combustors operating with
premixed flames or technically premixed flames: as the combustible mix-
ture at the injectors is slowed down due to an incoming pressure wave,
the flame can propagate upstream to components that are not sufficiently
protected against thermal stresses. As a consequence, flashback can occur
that melts components. Due to their damaging effect, industrial designs
try to avoid thermoacoustic instabilities as much as possible. Data from
real engines is scarce, but industrial manufacturers are willing to accept
certain small amplitude limit cycle oscillations during operation (Bothien
et al., 2019b).

The feedback loop depicted in Fig. 1.1(a) is only valid for propagation-
stabilized flames, i.e. flames that are stabilized in a region of low velo-
city created with bluff-bodies and/or swirlers or by other suitable flame
holders. Lieuwen (2012) scrutinizes the interaction mechanism in more
detail in Chap. 12 of his book. Lieuwen gives a detailed account of the in-
teractions between flame structures, hydrodynamical modes and pressure
waves. For the fully premixed flames considered in this thesis, the loop of
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(a) (b)

Figure 1.1: a) Schematic depiction of the velocity-coupled thermoacoustic feed-
back loop, adapted from Lieuwen (2012). b) The left and right images depict a
combustor after and before operation, respectively. During the operation a ther-
moacoustic instability occurred which caused significant structural damage. Im-
age is taken from the book of Lieuwen and Yang (2005b).

Fig. 1.1(a) is sufficient.

1.2.1 Rayleigh’s criterion

For the confined domain of a combustion chamber one can formulate an
energy balance (Poinsot and Veynante, 2005; Lieuwen, 2012) for the energy
of the acoustic fluctuation, and it will be derived in Sec. 2.1.7. The only
source term Ψ in the balance, after integration over the combustion cham-
ber volume and averaging over one acoustic period, reads

Ψ =

∫
+C

∫ )ac

0
@1?1 dC dG . (1.1)

The source term contains the unsteady volumetric heat-release rate fluc-
tuation @1 and the pressure fluctuation ?1. Here, )ac is the acoustic period
of oscillation and +C the control volume – the combustion chamber. In the
following, fluctuations are denoted as (·)1 quantities. The source term is
positive depending on the phase relationship between ?1 and @1. If both ?1
and @1 oscillate harmonically, the product in the kernel of Eq. (1.1) is pos-
itive if the quantities are in phase, i.e. 0 <

��\?1@1

�� < c/2. If it holds that the
contribution from the source term Ψ is larger than losses occurring at the
boundaries

Ψ > acoustic losses over boundaries , (1.2)

acoustic energy is added to the system. Hence, Equation (1.2) is a stability
criterion, which is prominently known as Rayleigh criterion. Lord Rayleigh
(Rayleigh, 1878) was the first to explain the stability of a thermoacoustic
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Figure 1.2: a) Pressure signal recorded during an experimental run that is part
of Article 5. A limit cycle oscillation (C > 48.5 s) manifests itself and persists un-
til the end of the measurement. Parameters are kept constant and the instability
is triggered by turbulent background noise. The entire recorded measurement is
depicted in Fig. 1.3(a). b) Normalized pressure ?1 and heat-release fluctuation @1
recorded during an experiment. Both signals show an oscillation at 770 Hz. The
heat-release signal @1 is extracted from OH∗ camera data. The data was recorded
during experiments presented in Article 5 but does not belong to the data presen-
ted in a).

systems via phase relation between ?1 and @1 in 1878. Figure 1.2(b) shows
?1 and @1 during a thermoacoustic instability and the phase difference is
\?6 = 0.158 rad or 9◦.

The criterion is derived from a first-order expansion of the conservation
equations and neglects interactions between acoustics and hydrodynam-
ics. Under these assumptions, acoustic losses only occur at boundaries. As
the criterion (1.2) states, the integral over the combustor volume needs to
result in a net positive value. Since losses outside the flame zone only occur
at boundaries, conditions often favor instabilities, as formulated by Culick
and Yang (1995) (p. 3, 1st paragraph) for rocket engines

Indeed, because of the high density of energy release in a volume hav-
ing relatively low losses, conditions normally favor excitation and
sustenance of oscillations in any combustion chamber intended for
a propulsion system.

For some gas turbines – in particular for aero engines – the situation is
not quite as severe as for rocket engines, since the walls contain plenty of
cooling holes (Zhao et al., 2019) that can contribute to the acoustic losses.
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Figure 1.3: a) The full pressure signal recording of which the final bit is depicted in
Fig. 1.2(a). The interval marked with vertical lines is shown in b). The full signal
shows that there are two bursts where the combustor turns unstable temporarily,
but these do not reach a steady state. b) The amplitude of the pressure oscillation
grows steadily, until it reaches a steady state at approximately 500 Pa.

Polifke (2004) (p. 5) and Lieuwen (2012) (p. 36) give a very intuitive inter-
pretation of Rayleigh’s criterion: for a gas under constant pressure a heat
addition results in an expansion. Hence, work is performed on the sur-
roundings akin to “? d+ ”. Therefore, an in-phase oscillation of @1 and ?1
adds work to the fluctuation, like combustion does in the compressed stage
in a piston engine. The reader might notice that this is a perfect metaphor
to give a first-year PhD student as advice: when the pressure is high, you
have to turn up the ‘heat’ to maximize the productive output but don’t
exhaust yourself, when it is not.

1.2.2 Transition to instability and thermoacoustic modes

Figure 1.2(b) shows that in an experiment, an instability grows in amp-
litude until it reaches a steady state – a limit cycle with an associated amp-
litude and frequency. A competition between driving and damping forces
occurs, see the schematic depiction in Fig. 1.4(a): in an unstable linear state,
the amplifying forces are larger than the damping forces. Consequently,
the oscillation grows in amplitude until the two forces reach an equilib-
rium. The equilibrium state is defined by a limit cycle amplitude �LC and
an associated frequency, which is given in Fig. 1.4(b) for the considered ex-
perimental data. The growth of the mode is fed from energy due to the
Rayleigh criterion (1.2). In an experiment, damping does not only occur
due to losses at the boundaries, as suggested by Eq. (1.2), but also via the
interaction between hydrodynamic and acoustic fluctuations (Hofmeister
et al., 2019).
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A thermoacoustic oscillation is, in essence, an acoustic oscillation that is fed
with energy from the heat-release. Thus, it has an associated frequency,
amplitude and mode shape. In the present example, Fig. 1.4(a), the un-
stable linear state is an unstable thermoacoustic mode. Prediction of the
linear stability by using numerical methods is conducted by determining
if all modes are damped, i.e. have a negative growth rate. Section 1.3.1 re-
views different modelling strategies in the literature to do so. In this thesis,
stability is assessed by means of the thermoacoustic Helmholtz equation.
The equation is derived from first principles in Chap. 2.

Importantly, linear stability only determines the initial exponential growth
or decay of a mode at a given frequency. As the mode grows in amplitude,
the growth rate will change. A growth in amplitude is usually limited by
reaching a certain saturation level in the heat-release response, i.e. there
is a limit to how much acoustic energy the heat-release can supply. Other
nonlinear factors can be the competition or synchronization between mul-
tiple unstable modes. The growth is usually also accompanied by a shift
in frequency, see the numerical study by Noiray et al. (2008) and Orchini
et al. (2019) that agrees well with experiments. The sign of the growth rate
is of special importance, but the value itself is highly useful to determine if
certain modes are on the border of instability and which modes are amp-
lified the strongest. The transient growth of an unstable mode, interaction
between multiple unstable modes (Moeck and Paschereit, 2012) and the
final state in a limit cycle cannot be determined from a linear stability ana-
lysis. It is commonly assumed, that the linearly most unstable mode will
result in a limit cycle oscillation and, hence, needs to be damped. This is
not necessarily true, as counter-examples exist (Bourgouin et al., 2015a).
The primary engineering objective is that all modes are linearly stable to
ensure a smooth operation.

In the opening of this section it was explained that a flame emits acoustic
waves, which are reflected at the boundaries of the combustor and return
to an upstream location of the flame where they excite a hydrodynamic re-
sponse that subsequently triggers a response in the flame. Modes of this
feedback mechanism are of acoustic origin, since they belong to acoustic
resonance frequencies of the combustor. Due to the presence of a flame,
the frequencies are slightly shifted with respect to the purely acoustic fre-
quencies. The so-called intrinsic mechanism is based exclusively on up-
stream propagating waves. Hoeijmakers (2014) showed with a network
model that a combustor with anechoic terminations – which dampen all
resonance frequencies – can become unstable. The mechanism was ex-
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Figure 1.4: a) Schematic depiction of the growth of an unstable oscillation until
it reaches a stable limit cycle. The figure is an adjusted and annotated version
of the one in Lieuwen and Yang (2005b)(p. 38). b) Spectral content of the last 16 s
(depicted in Fig. 1.2(a)) computed with Welch’s method. The limit cycle oscillation
shows one dominant peak. The second peak is of the first harmonic of the LC
oscillation.

plained by Bomberg et al. (2015) and Emmert et al. (2015). In a combus-
tor with non-anechoic boundaries, an intrinsic instability is usually dis-
tinguished from an acoustic one by not occurring at any purely acoustic
resonance frequencies. The intrinsic mechanism is a fairly recent discovery
of the previous decade and has received ample attention in recent years,
see Hoeijmakers et al. (2014); Bomberg et al. (2015); Emmert et al. (2015);
Mukherjee and Shrira (2017); Ghani et al. (2019). Courtine et al. (2015) con-
ducted a direct numerical simulation that shows the intrinsic mechanism.
The aforementioned work considered the intrinsic mechanism mainly in
isolation, i.e. with anechoic terminations. Work by Silva and co-authors
(Silva et al., 2015, 2019; Orchini et al., 2020) gives a detailed discussion of
intrinsic modes for models with non-anechoic boundary conditions.

Figure 1.3 a) shows that the final limit cycle oscillation is preceded by two
smaller bursts, where the combustor turns temporarily unstable. Such
a phenomenon is triggered due to the presence of turbulent background
noise that can turn a combustor unstable or stable if the combustor is mar-
ginally stable, i.e. one or more thermoacoustic modes are very close to hav-
ing positive growth rates. Bonciolini and co-authors (Bonciolini et al., 2016,
2017, 2018; Bonciolini and Noiray, 2019) have combined thermoacoustic
models with stochastic terms to model these effects.
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1.3 Thermoacoustic subjects considered in this thesis
In this section three specific topics in thermoacoustics are motivated. Each
section concludes with a concrete objective to which this thesis contributes
to.

1.3.1 Predicting thermoacoustics instabilities

Thermoacoustic instabilities need to be reliably predicted to build stable
gas turbines. Different modelling strategies have been proposed to achieve
this goal. These strategies differ in the trade-offs they make between nu-
merical cost and physical simplifications. The most detailed – but also
most expensive – analysis can be conducted for industrial configurations
with reactive large eddy simulations (LES) (Wolf et al., 2012, 2009; Schulz
et al., 2019). Direct numerical simulation (DNS) of combustion instabilities
– with next to no simplifications – is computationally too expensive and
can only be conducted for laminar flames, see Courtine et al. (2015) for a
simulation of an intrinsic instability.

DNS and LES are both time-domain methods and costly. A simulation
needs to be integrated forward in time and then observed if an instability
grows. It is more efficient to formulate a linearized problem of the govern-
ing equations in frequency space. In the following, Fourier-transformed
quantities are denoted by ˆ(·). Solving these linearized problems yields, at a
minimum, a set of tuples (l, ?̂) – the thermoacoustic modes – described by a
frequency of oscillation 5 = Real (l) /2c , growth rate1 lI = −Imag (l) and
acoustic mode shape ?̂. If all thermoacoustic modes are damped (negat-
ive growth rate), a combustor will be linearly stable. In addition, the mode
shape ?̂ is necessary to determine where to place acoustic damping ele-
ments in a combustion chamber (Bellucci et al., 2005; Zhao and Morgans,
2009; Mensah and Moeck, 2017a).

Linearized formulations have been proposed in the form of the linearized
Navier–Stokes equations (LNSE) (Gikadi et al., 2012; Avdonin et al., 2019;
Meindl et al., 2021), linearized Euler equations (LEE)(Hofmeister et al.,
2020) or the thermoacoustic Helmholtz equation (Nicoud et al., 2007). The
former two require input in the form of a mean field solution for all prim-
itive variables (the number of which depends on the chosen formulation).
Mean fields can be obtained from measurement data but are usually ob-
tained from solving the Reynolds-averaged Navier–Stokes equations.
LNSE and LEE retain the interaction between acoustic and hydrodynamic

1The Fourier transformation that dictates this sign will be defined later in Sec. 2.2
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effects, unlike the thermoacoustic Helmholtz equation where the pressure
fluctuation ?1 and velocity u1 are algebraically related due to a linearized
momentum balance, see Chap. 2 for details.

The main equation utilized in this thesis is the thermoacoustic Helmholtz
equation. It is derived in the next chapter (Chap. 2), where all assumptions
and simplifications are detailed. The equation is written as

∇ ·
(
22∇?̂

)
+ l2?̂ = − (W − 1) @̂ (l) ∇?̂ref · nref , (1.3)

where 2 is the speed of sound and W the heat capacity ratio. The right hand
side of Eq. (1.3) contains the heat-release effect @̂, which is related to the
upstream gradient ∇?̂ref at a reference location and in a reference direction
nref. For this section it is assumed that @̂ is expressed as a known function
ofl such that the equation is closed. The dependence on ?̂ is linear and the
dependence onl potentially nonlinear. The equation is an inhomogeneous
wave equation; hence, it lends itself to a network based solution approach
(Dowling and Stow, 2003). This and related approaches are not the subject
of this thesis and instead finite-element discretizations (FEM) of Eq. (1.3),
as first proposed by Pankiewitz (2004) and later by Nicoud et al. (2007),
are.

Equation (1.3) neglects any mean flow effects. This is not always a good
approximation, since the mean flow has an effect on the thermoacoustic
frequencies and mode shapes. Bauerheim et al. (2015) show this in annular
combustion chambers with a mean swirl, which is a flow in tangential dir-
ection. Two co- and counter-rotating modes with the same azimuthal order
are affected differently by this mean field. Compared to the case without
any mean field, the co-rotating wave is shifted to a higher frequency and
the counter-rotating one to a lower frequency.

Figure 1.5 shows a computational result of Eq. (1.3) for the can-annular
combustor investigated in this thesis with an experimental result over-
layed. As the figure depicts, there is good agreement between numerical
and experimental frequencies. However, the numerics predict that two en-
tirely different modes would be unstable2. If there are several unstable
modes a linear analysis alone cannot predict, which mode(s) will be ob-
served experimentally. Nonetheless, equation (1.3) has proven to be a suc-
cessful tool for industrial applications, see the study by Wolf et al. (2012)
on an industrial chamber where the result compares favorably to an LES

2See Article 5 where the result is taken from for a discussion on the limits of the numer-
ical model with respect to this experiment.
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Figure 1.5: Result of a linear stability analysis of solving the thermoacoustic Helm-
holtz equation for the can-annular model combustor. The result is taken from Art-
icle 5. The circles are eigenvalues in the complex plane and the solid line is an
experimentally obtained spectrum. The eigenvalue marked in gold agrees well
with the experimentally observed limit cycle oscillation.

computation. One of its key advantages is that boundary conditions and
the effect of the flame @̂ can be measured experimentally. Equation (1.3)
can be abbreviated in operator notation as

L (l) ?̂ = 0 , (1.4)

and after discretization with the finite-element or finite-volume method as

L (l) p = 0 , L ∈ ℂ3×3 . (1.5)

Equations (1.4) and (1.5) both constitute a nonlinear eigenvalue problem
(NLEVP). L is the discrete one with solutions in the form of eigenpairs(
l,p

)
, where 3 ≈ 103 − 106 is the dimension of the chosen discretization.

Only nontrivial solutions p ≠ 0 (or ?̂ ≠ 0) are of interest. Importantly,
the nonlinearity is restricted to the eigenvalue l – the dependence on the
eigenvector p is linear. This is also the case for the continuous problem.
Solution of discrete NLEVPs is inherently more difficult than their linear
counterparts. Linear eigenvalue problems have at most as many distinct
eigenvalues as their system dimension (Saad, 2011). This is not the case
for NLEVPs and they can have a countable infinite number of eigenval-
ues. Most importantly, all of the unstable eigenvalues in Fig. 1.5 need to be
computed to assess stability of a combustor.

Recently, advancements have been made to employ adjoint perturbation
methods (Silva et al., 2017a; Juniper, 2018; Magri, 2019; Mensah et al., 2020;
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Orchini et al., 2021) to thermoacoustic NLEVPs. The adjoint formulation
permits a numerically cheap computation of derivatives of the eigenpairs(
l,p

)
with respect to physical parameters of the model. These adjoint

methods together with optimization strategies permit to alter geometries
and physical parameters of combustors such that a stable design can be
computed automatically (Aguilar and Juniper, 2020). Such strategies re-
quire not just precise but also fast NLEVP solvers.

It is possible to remove nonlinear dependencies in Eq. (1.3), for instance
by expanding the (generally) nonlinear function @ (l) in terms of rational
functions. The re-cast problem is then linear in l and can be solved us-
ing established linear methods. In the thermoacoustic community this
approach (and variants thereof) are called state space methods and they
have been successfully used in applications, see work by Schuermans et al.
(2003) or Meindl et al. (2016, 2020) and references therein. However, this
approach necessarily introduces an approximation error in the form of
spurious modes. These are modes which are solutions to the approximated
problem, but not of the original NLEVP. A technical discussion for general
NLEVPs can be found in Sec. 6 of Güttel and Tisseur (2017). The work in
this thesis does not consider this approach and retains the nonlinearity in
l to preclude any possible approximation error.

NLEVPs have received plenty of attention in the mathematical community.
A review article by Güttel and Tisseur (2017) covers their properties and
the many solution methods that have been proposed. However, these ad-
vances had never entered the codes employed in the thermoacoustics com-
munity. At the start of this thesis, only fixed-point methods as proposed by
Nicoud et al. (2007), were employed in the field of thermoacoustics to com-
pute eigenvalues and mode shapes for large-scale NLEVPs. In his thesis
Miguel-Brebion (2017) proposed a method that is able to compute all ei-
genvalues and eigenvectors of small NLEVPs (3 < 102). Miguel-Brebion’s
method cannot be applied to the large problems considered in this thesis,
since it computes the determinant of the operator L (l). Due to numerical
rounding errors this is not feasible for large problems. A so-called Nyquist
criterion (Sattelmayer and Polifke, 2003) can be evaluated to determine if a
system is linearly stable or not, but it does not yield the mode shape. Fixed-
point methods suffer from many drawbacks, including slow convergence
and not being able to guarantee finding all eigenvalues – which is crucial
in determining stability of a combustor. In his thesis, Mensah (2019) recog-
nized this shortcoming and made a step forward by focusing on faster iter-
ative strategies. The work in this thesis builds on Mensah’s work. Devel-
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opment of fast and reliable solution strategies for thermoacoustic NLEVPs
constitutes Objective 1 of this thesis. This objective benefits thermoacoustic
NLEVPs in general, but also NLEVPs of can-annular combustors in partic-
ular, since these exhibit closely neighbouring eigenvalues that are hard to
compute. The origin of these tightly packed eigenvalues will be detailed
below.

1.3.2 The relationship between symmetry groups and eigenvalue
degeneracy in combustion chambers

Annular and can-annular combustors are often invariant with respect to
discrete symmetry operations. In Figure 1.6(a) the top view of a simplified
can-annular combustor is depicted. A rotation by any multiple of 2c/8
leaves the combustor invariant as well as reflection along certain planes of
which two are depicted as fE and f3 . All geometric operations that leave a
combustor invariant form a group G (a group that is denoted by the name
C8E for the example in Fig. 1.6(a)) and it is assumed that the mathematical
operator that describes linear stability of the system

L (l) ?̂ = 0 , ?̂ ≠ 0 , (1.6)

is also invariant with respect to the same geometric operations. In the fol-
lowing, a few properties of symmetry groups are motivated briefly to give
an idea of the importance for thermoacoustic problems. A more compre-
hensive introduction is given in Draft Article 8. The first five pages of Inui
et al. (2012) are also a gentle introduction to this formal subject.

A group is a set of elements for which a group multiplication “∗” is defined
and which fulfills four group axioms: (G1) closure under multiplication,
(G2) associativity, (G3) existence of identity element and (G4) existence of
inverse element. One of the simplest groups possible is the one of a com-
bustor with reflection symmetry, depicted in Fig. 1.7(b) and 1.7(c), which
contains two elements only

CS = {�, fE} , (1.7)

where � is the identity element and fE a reflection operation. One could
represent the elements of CS by matrices. Then, the group multiplication
“∗” can be defined as matrix multiplication. This leads to the theory of
group representations (Inui et al., 2012). Even without choosing a concrete
representation and simply by using a geometric understanding, it is clear
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Figure 1.6: a) – c) Schematic top view of a can-annular combustion chamber. The
circles are the cans and the squares are blocking elements that are inserted to vary
the acoustic communication between adjacent cans, see Sec. 1.3.3. The color of
each square signifies a blocking element with a certain diameter. The combustor
in a) has the same blocking element inserted in all eight gaps. This is changed for
the configurations b) and c) in a way to reduce the symmetry of the configuration.
The combustor in a) is left invariant by eight rotations (multiples of 2c/8) and
reflection along eight reflection planes of which two are depicted as fE and f3 .
For the combustor in b) there are only four rotations (as multiples of 2c/4) and
four reflection operations. No symmetry exists for c). The formal name of every
associated symmetry group is given in the center, e.g. C8E .

that

� ∗ �−1 = � , (1.8)
� ∗ fE = fE , (1.9)
fE ∗ � = fE , (1.10)

fE ∗ f−1
E = � , (1.11)

where f−1 refers to the inverse element of fE , which is the element itself
in this case. Hence, the group axioms G1–G4 are fulfilled. The letter “S”
in the group name CS and the convention of using sigma f as the symbol
for reflection stems from the German word “Spiegelung” for the reflection
operation, as noted in Inui et al. (2012) on p. 2.

Once the symmetry group G of a system is known, a number of conclusions
can be drawn on the eigenvalues l and eigenvectors ?̂ without conduct-
ing any computations or experiments. Importantly, an annular and a can-
annular combustion chamber can have the same symmetry group. Hence,
both cases can be considered identical from a group-theoretical perspect-
ive: if G is the group for both, then statements derived from knowing G
hold for both. First and foremost, all practical groups have been tabulated
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(a) (b) (c)

Figure 1.7: a) Annular combustion chamber with 16 identical combustors. b) One
of the sixteen combustors, a so-called unit cell. c) Top view of the single cell with
the reflection plane highlighted. The reflection operation (not the plane itself) is
denoted by fE .

by means of their character tables (Inui et al., 2012, App. A) – in a sense
a barcode of the group, which can be consulted to gather properties of the
group.

In a character table the irreducible representations or short “irreps.” of the
group are given. For the example in Eq. (1.7) it was mentioned that the
operations could be represented by three-dimensional matrices. If fE is a
reflection operation along the GI plane, then the matrix would be written
as

fE �
©«
1 0 0
0 −1 0
0 0 1

ª®¬ , (1.12)

while � is simply represented by the identity matrix. The symbol “�” de-
notes “represented by”. However, such a representation would be “too
big”. Instead, one could represent the elements of CS simply by numbers,
i.e.

Γ2 :
� � 1
fE � −1 . (1.13)

Then the relations Eqs. (1.9)–(1.11) would still hold, when “∗” is chosen as
ordinary multiplication. This representation cannot be further reduced – it
is irreducible – and it has dimension one. One could also choose

Γ1 :
� � 1
fE � 1 . (1.14)
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Figure 1.8: Thermoacoustic eigenvalues of a single cell combustor below 2300 Hz
with reflection symmetry. The eigenfunctions belonging to the depicted eigenval-
ues are either symmetric or anti-symmetric with respect to the mirroring plane.
There are no frequencies outside the depicted range below 2600 Hz. The result is
from Draft Article 8.

which is the trivial irrep. and Eq. (1.9)–(1.11) would also hold. The repres-
entations Γ1 (1.14) and Γ2 (1.14) are the only two for CS. By convention the
trivial one is always listed as the first one. Both of the representations are
one-dimensional. Bloch numbers, as used by Mensah and Moeck (2015)
are also labels for irreps., but for a group called C# with elements that are
only discrete rotations.

The central importance of symmetry group theory to eigenvalue problems
Eq. (1.6) is that every eigenpair (l, ?̂) must belong to one irrep. Accord-
ingly, the irreps. can be used to label modes. In the above example of CS
modes are either ‘symmetric’ (belong to the first irreducible representation
Γ1) or ‘anti-symmetric’ (belong to the second irreducible representation Γ2).
This, means that if the thermoacoustic NLEVP (1.6) is solved on the unit
cell (Fig. 1.7(b)) all computed eigenfunction ?̂ are either symmetric or anti-
symmetric with respect to the reflection plane. Figure 1.8 show the result
of a linear stability analysis for a combustor with group CS.

The dimension of an irrep. determines the geometric multiplicity of an ei-
genvalue. Together with the algebraic multiplicity it can then be determ-
ined if a combustor exhibits simple or degenerate eigenvalues. Any com-
bustor with a symmetry group that has at least one two-dimensional irrep.
must exhibit a degenerate eigenvalue. For CS both irreps. Γ1 and Γ2 are
one-dimensional. Then degenerate eigenvalues can only occur for reasons
unrelated to symmetry – so-called accidental degeneracies. Draft Article
8 goes deeper into detail and explains the theorems that govern irreps.,
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mode degeneracy and under which conditions symmetry group theory can
be applied to thermoacoustic problems.

As a quick reminder, eigenvalues have a geometric and an algebraic mul-
tiplicity. For the familiar case of a linear matrix eigenvalue problem

Ap = lp , A ∈ ℂ3×3 , 3 < ∞ , p ∈ ℂ3 ≠ 0 , (1.15)

the algebraic multiplicity is the order of the root of the characteristic poly-
nomial at the eigenvalue

det (A − lI) = 0 , (1.16)

and the geometric multiplicity is the dimension of the space spanned by
the associated eigenvectors p. An eigenvalue is said to be degenerate if
the algebraic multiplicity is larger than one. Chapter 3 gives definitions of
algebraic and geometric multiplicity for the infinite-dimensional problem
(1.6) that are generalizations of the definitions for ordinary matrices.

Degenerate eigenvalues in thermoacoustics are encountered in the form of
azimuthal modes in annular and can-annular combustion chambers (Krebs
et al., 1999; Stow and Dowling, 2001; Moeck et al., 2010). Figure 1.9 shows
a degenerate mode pair of azimuthal order< = 1 belonging to the same ei-
genvalue in an annular combustion chamber. Due to the presence of the de-
generate pair azimuthal modes can assume spinning, standing and mixed
(intermediate state between the two pure cases of spinning and stand-
ing) states. Considerable research has been invested in previous years to
characterise the states in annular combustion chambers, see the selected
works by Evesque et al. (2003); Ghirardo and Juniper (2013); Worth and
Dawson (2013); Bothien et al. (2015); Bourgouin et al. (2015b); Bauerheim
et al. (2016b); Prieur et al. (2017); Mazur et al. (2021); Faure-Beaulieu et al.
(2021), among a vast number of publications in the thermoacoustic field.

Symmetry can be lowered by perturbing the original system. Any sym-
metry group of the perturbed system must be a subgroup of the original
group G. The loss of all symmetry leads to the trivial identity group E.
Importantly, some perturbations conserve degenerate modes, while others
cause degenerate modes to split. Figures 1.6(b) and (c) depict configura-
tions that exhibit a lower symmetry than the case in Fig. 1.6(a). For in-
stance, the combustor in Fig. 1.6(b) (with group C4E) is not invariant with
respect to a rotation by 2c/8 but instead only by 2c/4. The combustor in
Fig. 1.6(c) does not exhibit any symmetries; hence the symmetry group is
E – the identity group.
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(a) (b)

Figure 1.9: Two modes in a degenerate pair belonging to an azimuthal mode order
of < = 1. The normalized real part is depicted, where red areas correspond to a
high value and areas in blue to a low value. The modes are orthogonal to each
other. The result is from a computation in Draft Article 8.

No real combustor is perfectly symmetric. But it is the proximity to this
idealized symmetric configuration that is responsible for the observed dy-
namics. Importantly, combustors with # cans (or burners in an annular
combustor) that have C#E symmetry must exhibit degenerate modes. But
the implication only goes this way. A combustor can also exhibit degener-
ate modes without C#E . However, even if the lower symmetry C# – which
by itself does not have degenerate modes – is present, the combustor can be
close enough to C#E to show near-degenerate modes. It depends on how
strong the symmetry breaking effect is that reduces the symmetry from
C#E to C# .

In thermoacoustics it has long been known that underlying symmetries im-
ply degenerate modes. Ghirardo et al. (2016) identify the symmetry group
C#E and discuss degenerate azimuthal modes. Mensah and Moeck (2015)
successfully employed the so-called Bloch theory – a subject from sym-
metry group theory – to reduce computational costs in solving the eigen-
value problem Eq. (1.5). Bauerheim et al. in two papers (Bauerheim et al.,
2014, 2016a) discuss the splitting of degenerate eigenvalues from a quant-
itative perspective using a network model of an annular combustor.

There remain a few open questions on the properties of thermoacoustic
modes that can be answered by analyzing the problem from the perspect-
ive of symmetry groups. Most importantly, symmetry group theory natur-
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ally permits to predict how and if degenerate modes split as the symmetry
is lowered by perturbations. In addition, Bloch theory as employed by
Mensah and Moeck (2015) exploits the C# symmetry to reduce computa-
tional cost. It is shown that if the higher symmetry C#E is present, a further
reduction is possible – but only for simple eigenvalues. Objective 2 con-
sists in analyzing the thermoacoustic eigenvalue problem in the language
of symmetry groups and applying its machinery to a number of problems.

1.3.3 Thermoacoustic instabilities in can-annular combustors

A can-annular arrangement of combustion chambers is one of two types of
designs found in modern industrial gas turbines, see the portfolio of sev-
eral major manufacturers (General Electric Power, 2021; Ansaldo Energia,
2021; Mitsubishi Power, 2021). The second type is an annular design. In
an industrial can-annular design, compressed air is fed to individual, isol-
ated combustion chambers that are arranged around a circumference, see
Fig. 1.10(a). In the cans, combustion takes place. The hot products exit
the combustion chamber at its downstream end, where the circular cross-
section of the can is merged to an annular gap – the inlet of the turbine
(Pennell et al., 2017). This small gap, depicted in Fig. 1.10(b), is the so-
called acoustic cross-talk (XT). It permits acoustic waves to travel between
neighbouring cans. Since the gap is small, the coupling is generally un-
derstood to be weak (Ghirardo et al., 2019, 2020). This has consequences
for the modes of thermoacoustic instabilities that are unique to this type of
combustor.

Industrial combustors for stationary power generation employ an even
number # of cans. This is a manufacturing necessity, since the combus-
tor casing consists of two halves and only with an even # is the flange not
located inside a burner, according to Ghirardo et al. (2019). For industrial-
scale engines the number of cans is in the range of eight to sixteen.

The major advantage of a can-design is that a significant amount of engin-
eering can be conducted on a single can. A number of important features,
such as air-fuel mixing, flame location, flashback and blow-off sensitivity
can be simulated and experimented on a single can – which reduces de-
velopment time and costs compared to an annular combustion chamber,
where either a full rig or an annular segment are necessary. Disadvantages
come in the form of an increased weight, larger size, more surface area that
requires cooling, and thermoacoustic instabilities strongly affected by the
cross-talk.
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Figure 1.11 depicts, in a schematic way, the basic building blocks of the can-
annular model combustor that is later presented in detail in Chap. 4. The
design shares key ideas of its industrial counterparts, while a number of
constraints necessitate differences. The model combustor is fed from a joint
plenum with perfectly premixed reacting mixture, from where it enters in-
dividual injectors. At the downstream end of the injectors, bluff bodies are
positioned, which provide a recirculation zone inside the can combustors
where the flames are stabilized. Far downstream of the flame zone, a cross-
talk element is mounted, which permits acoustic communication between
adjacent cans. Due to the downstream location of the cross-talk element,
there is no flame-to-flame interaction.

The reason why can-annular combustors exhibit a unique type of instabil-
ities is the presence of so-called mode clusters. These are groups of modes
within a narrow frequency band that have different azimuthal mode or-
ders. Figure 1.12 depicts a computational result where two such clusters
can be observed with modes of orders < = 0, 1, 2, 3, 4. Figure 1.5 also de-
picts clustered modes in the group between 700 Hz and 900 Hz, but the
frequency band over which the clusters extend is much wider.

The clustering is due to the weak coupling via the cross-talk areas. In the
idealized case that the strength of the communication is reduced to zero,
all of the clustered modes in Fig. 1.12 would merge into an eightfold de-
generate eigenvalue. This corresponds to a state where every can would
oscillate in a standalone fashion with no synchronization. All eight eigen-
values exhibit the same axial order.

Due to the non-vanishing cross-talk the eightfold degenerate eigenvalue
splits into the orders observed here. After the split the clustered modes still
have the same axial order. This feature can then be used to group modes
into clusters, say when they are obtained from a linear stability analysis.
After the split, the degeneracy is conserved: < = 0, 4 are simple while< =

1, 2, 3 are twofold degenerate. In principle, mode orders that differ from the
ones given here can be realized, and that is the case for clusters at higher
frequencies. For the low frequencies usually observed in experiments, this
is not the case. Then, the heuristic that a combustor with # (even) cans has
modes of orders

< ∈
{
0, 1, . . . ,

#

2
− 1,

#

2

}
, (1.17)

in a cluster can be used. Modes of orders < = 0 and < = # /2 are simple
while the remainder is degenerate. In the literature (Ghirardo et al., 2019)
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(a) (b)

Figure 1.10: a) Can-annular combustor in an industrial application. The cans
merge at their respective downstream ends onto an annular cross-section. The
figure is taken from Moon et al. (2020a) who added the annotations to a figure
originally due to Luque et al. (2015). b) Sketch of a single can. In gray the cross-
talk area is visible via which acoustic communication between adjacent cans takes
place. The figure is taken from Ghirardo et al. (2019).

Figure 1.11: A rendering, a simplified cut-through and a picture during operation
of the can-annular test rig that is described in detail in Chap. 4. Perfectly premixed
mixture enters a plenum from where the individual cans are fed. Towards the out-
let, a coupling ring is mounted, which permits acoustic waves to travel between
adjacent cans. By inserting blocking elements, the surface area of the cross-talk
cavity, and hence the strength of the cross-talk, can be adjusted.
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Figure 1.12: Eigenvalues for the can-annular model combustor of Article 5, when
a sintered plate is mounted to decouple the upstream plenum. Two clusters of
eigenvalues can be identified in which modes of different azimuthal mode or-
ders are present. At the bottom of the figure the width of the bands Δ5 of the
clusters are given. The computed eigenvalues only agree qualitatively with the
experimentally observed modes, because the numerical setup cannot replicate all
of the features of the actual experiments. For example, the installed sintered plate
is modelled as an impedance boundary condition that stops all communication
via the plenum. However, Article 5 shows that some communication through the
plate is still possible. The numerical model cannot account for this.

the mode < = 0 is usually referred to as a push-push mode, while the < =

# /2 mode is called a push-pull mode.

Since the coupling via the XT is weak, the post-split modes remain in a
narrow frequency band. This introduces interesting dynamics if the single
isolated “progenitor” mode is unstable. The cluster that originates from
this unstable mode can contain several unstable modes. This is the case for
the modes in Fig. 1.12, which are all unstable. Two important questions
are: Which cluster dominates the system? Or is it a combination of or syn-
chronization between modes? Moreover, multiple modes can be unstable.

An additional effect called mode localization (Hodges, 1982) can take place
as well. Hereby, a significantly increased oscillation amplitude is observed
in only a few cans, while the remainder remain silent. This phenomenon
is caused by the fact the closely neighbouring eigenvalues – as they are
occurring in a cluster – cause a significant sensitivity of the associated ei-
genvectors to perturbations (Pierre, 1988). Thus, small asymmetries in the
system have large effects on the eigenfunctions which results into shapes
with a strong localization. From the engineering perspective this is a severe
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problem, since pressure transducers need to be mounted in every single
can to assess stability – unlike in annular combustion chambers where an
instability is active in the entire chamber.

Existing theoretical and experimental work

There has been significant research on instabilities in annular combustion
chambers, see the many references in the review articles of Bauerheim et al.
(2016b) and Poinsot (2017). In comparison, the research on thermoacous-
tic instabilities in can-annular combustors has not reached the same depth.
Kaufmann et al. (2008) computed modes with alternating and pairwise al-
ternating patterns for a Siemens SGT5-8000H gas turbine. In two papers
Farisco et al. (2015, 2017) investigated the acoustic communication via a
cross-talk between two adjacent cans and found it to play a major import-
ance for synchronization of modes.

Ghirardo et al. (2019, 2020) revealed the existence of clustered modes. von
Saldern et al. (2020) predicted the splitting of # -fold degenerate modes as
the XT size is increased from zero. Both show that the< = 0 mode before
and after the split stays in place and that higher order modes are further
offset from< = 0. Unlike in these models, in experiments a XT has a finite
volume and thus the mode < = 0 experiences a minor shift from the un-
coupled can if the XT size is varied. Furthermore, in the aforementioned
studies it is also show that clustered modes are ordered by increasing fre-
quency according to their mode order and that modes of higher order are
more sensitive to the coupling strength, i.e. more offset from< = 0.

Experimentally, Moon et al. (2020a,b, 2021) give a first proof of these prop-
erties and report a variety of oscillation patterns in a model can-annular
combustor. The model combustor they employed with # = 4 cans has two
predecessors: single can (Kim, 2016, 2017) and a twin can setup (Jegal et al.,
2019; Moon et al., 2019). The same weak coupling in the twin setup is em-
ployed in the can-annular layout. Throughout the publications, the size
of the XT is kept constant. In the can-annular combustor of Moon and co-
authors an equivalence ratio can be prescribed for every burner individu-
ally. Hence, the work explores how asymmetries affect the thermoacoustic
stability states.

In Moon et al. (2020a) the authors vary the length of a single combustor
to determine for which lengths instabilities are observed. Equipped with
this knowledge, the four-can combustor is operated with different lengths,
and symmetric and asymmetric equivalence ratios. Opposite cans have the
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same equivalence ratio whenever an asymmetry is realized. The observed
modes are of orders< = 0, 1, 2. For a number of cases the combustor shows
a stochastic nature with respect to the attained limit cycles: under the same
operating conditions different modes reach a stable limit cycle. For one
specific case all three modes of orders < = 0, 1, 2 are attained and it can
be observed that these are arranged by increasing frequency – confirming
theoretical results. For the< = 1 mode only one location of the nodal line is
observed, that is inside cans. A purely acoustic analysis confirms the mode
clusters.

In Moon et al. (2020b) the same equivalence ratio is employed in neigh-
bouring cans, unlike in the preceeding paper (Moon et al., 2020a) which
uses opposite cans, to realize an asymmetry. The result is a richer variety
in instability states: the < = 1 mode shows different nodal line locations
and a spinning state. It is also observed how two very closely neighbour-
ing modes (which form a degenerate pair in the symmetric case) are active
as standing modes simultaneously at slightly different frequencies (260 Hz
vs. 258 Hz). Plus, first concrete evidence for mode localization is given in
the form of a high amplitude oscillation in one can with the remainder si-
lent.

In the two papers (Moon et al., 2020a,b) pure CH4–air mixture is employed.
For the third paper (Moon et al., 2021) four novel hydrogen combustors
are employed. Each combustor uses a large number (97 nozzles) of very
small (nozzle diameter is 3 mm) hydrogen flames. The design is similar to
the one employed by Lee and Kim (2020), but employs more and smaller
individual nozzles. The combustor is operated with pure H2–air mixture
but there are no changes in geometry: the same combustor lengths and
cross-talks are employed. The hydrogen flames have a decidedly differ-
ent response and excite instabilities at higher frequencies that the CH4–air
mixtures. Mode types are similar to the ones observed in the previous
two paper (Moon et al., 2020a,b), but more types of mode localization are
observed: a) push-push localization involving three and two cans and b)
push-pull localization involving two and three cans.

Transient phenomena have been studied by von Saldern et al. (2020) using
a reduced order model with a nonlinear flame response. The results show
that competition between multiple unstable modes of a cluster occurs. The
mode with the linearly largest growth rate,< = 2, grows strongest in amp-
litude, but does not dominate the limit cycle. After a transient the mode
dies down and the push-pull mode dominates. The result highlights how
difficult it is to predict the mode order and frequency of limit cycle oscilla-
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tions in can-annular combustors.

On notational differences concerning azimuthal modes

There is a certain notational difference concerning the naming of modes
between this work and the work by Moon et al. (Moon et al., 2020a,b, 2021).
In this work, modes of lowest order (< = 0) are referred to as push-push,
while those of highest (< = 4 here, < = 2 in Moon et al.) are push-pull
modes. The mode orders in-between are degenerate and can be of stand-
ing, spinning or mixed type. Moreover, for standing modes the location of
the nodal is understood to be variable. For instance, for standing modes
< = 1, 2, the nodal lines can be located inside opposite cans or between
cans, i.e. in the XTs. This notation differs from the one in Moon et al. who
refer to an< = 1 mode as ‘push-pull (pairwise)’ or ‘push-pull (2-cans)’, de-
pending on the location of the nodal line. Table 1.1 compares the notations.

For one case Moon et al. label a mode as degenerate, which this work
would argue is incorrect. “Case D” in Moon et al. (2021) exhibits an un-
stable push-pull mode at 559 Hz. An FEM analysis confirms the 559 Hz
but also reveals an < = 2 mode at 557 Hz, which is only active in the XT
segment. The experimentally observed mode shapes agree with the FEM
partially, i.e. the mode shape of the numerical mode at 559 Hz agrees with
the experiments in the cans but not in the XT – vice versa for the 557 Hz
mode. Moon et al. argue that these two modes, since they have the same
azimuthal order and are in close vicinity, belong to a degenerate pair. From
the standpoint of the work in this thesis, these modes correspond to simple
eigenvalues, respectively. A push-pull mode is necessarily simple. The
proximity of the two is just coincidence due to the geometrical dimensions.
Hence, they do not form a degenerate pair.

The need for more experimental results

At the time of writing of this thesis, the can-annular combustor employed
by Kihun Moon and coauthors (Moon et al., 2020a,b, 2021) is the only
other can-annular experiment in academia besides the one presented in
this thesis at NTNU. A new experiment has the prospect to confirm exist-
ing studies but also to give new insights on thermoacoustics of can-annular
combustors. Therefore, Objective 3 constitutes the design and operation of
a new can-annular model combustor that permits a detailed study of the
effect of cross-talk strength on the thermoacoustic modes. The design pur-
sued in this thesis has several key differences to the design by Kihun Moon
and co-authors, namely
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Table 1.1: Comparison of the notation in Moon et al. (2020a) and Moon et al.
(2020a) with the notation employed in this thesis for azimuthal modes in can-
annular combustors.

Moon et al. Azi. order< This thesis

push-push 0 push-push or< = 0

push-pull (4 cans)
4 push-pull or< = 4

push-pull (alternating)

push-pull (2 cans)
1 < = 1, nodal lines in cans

push-pull (2 cans only)

push-pull pairwise 1 < = 1, nodal lines in XTs

azimuthal (spinning) 1 < = 1, spinning

• The number of cans is higher, with # = 8 compared to # = 4. Thus,
clusters consist of more modes with the orders < = 0, 1, 2, 3, 4. The
higher number is also more representative of the number encountered
in real engines.

• A major conceptual difference is that the cross-talk strength is not
varied in Moon’s combustor, but the overall length of the combus-
tor is. Changing the length of the combustor directly alters the ther-
moacoustic frequencies and makes it difficult to isolate the effect of
the cross-talk communication.

• Both combustors can be operated with nominally symmetric operat-
ing conditions. However, the mixture injection for every combustor
is controlled individually in Moon’s combustor. In the combustor in
this thesis, all cans can only be fed with the same mixture from the
shared plenum.

• Moon’s combustor does not have a plenum – as is realistic for actual
gas turbines. Hence, there is no acoustic coupling between cans via
the plenum. Moreover, the outlet boundary condition is decidedly
different: a water-cooled piston realizes a sound hard boundary. Due
to the opening to the atmosphere, the combustor in this thesis has a
pressure node there.
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1.4 Summary of objectives of this thesis
The objectives have been motivated in the previous sections. Here, they
are summarized and a road map is given that details where the object-
ives are achieved by giving references to chapters in this thesis and pa-
pers that are part of this thesis. In Chaps. 2 and 3 two fundamental topics
from the thermoacoustic literature are reviewed, since they are relevant
to the content of this thesis. Chapter 2 derives the thermoacoustic Helm-
holtz equation as the governing PDE for linear stability analysis from the
Navier–Stokes equations and formulates the continuous and discrete non-
linear eigenvalue problem. Chapter 3 discusses nonlinear eigenvalue prob-
lems and eigenvalue degeneracy, while Chap. 4 described the experimental
setup in detail. The thesis concludes with the summary of the scientific
contributions in Chap. 5 and the conclusions in Chap. 6. Starting from p.
99 the nine papers that form the thesis are collected. Appendix A contains
the technical drawings.

Objective I.

Develop fast solvers for the nonlinear thermoacoustic eigenvalue prob-
lem that return all relevant eigenvalues.

Chapter 3 reviews aspects of nonlinear eigenvalue problems as they are rel-
evant to thermoacoustic problems. Article 4 shows that fixed-point meth-
ods – the first and most popular methods used in thermoacoustics – are
inadequate to compute intrinsic thermoacoustic modes. Numerical exper-
iments by the author had shown this at the beginning of the PhD work,
a proof using Banach’s fixed-point theorem was obtained later. Article 2
presents a global solution strategy that guarantees to find all eigenvalues
inside a specified contour in the complex plane, and the work is based
on a method due to Beyn (2012). This global method was instrumental in
finding intrinsic thermoacoustic modes in an annular combustion chamber,
and the results are published in Article 3. The aforementioned article Art-
icle 4 also contains work on fast iterative solution strategies for NLEVPs.
Article 7 presents a subspace-projection strategy that significantly reduces
the dimensions of FEM-discretized NLEVPs and permits to use the previ-
ously developed solvers.
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Objective II.

Analyze the thermoacoustic eigenvalue problem from the perspective of
symmetry groups and use the machinery to solve open questions in ther-
moacoustics.

The relation between symmetry and degeneracy is the central subject of
this thesis. This relation is explored in Draft Article 8. Symmetry group
theory can only be employed to determine geometric multiplicity (for con-
tinuous and discrete problems); hence Chap. 3 contains a brief discussion
of algebraic multiplicity both for the discrete and continuous case to com-
plete the picture. Article 1 explores a case in a thermoacoustic system
where the algebraic multiplicity is higher than the geometric multiplicity
of an eigenvalue, a so-called exceptional point.

Objective III.

Establish an atmospheric can-annular model combustor to study the ef-
fect of cross-talk variation.

The can-annular model combustor is described in Chap. 4. Article 5 con-
tains the first set of experiments performed on the combustor. In addition,
linear stability analysis is performed on the combustor using the numerical
tools developed in Objective 1. Article 6 contains a network model, where
the geometry and parameters of the can-annular combustor are employed
to propose an acoustic model for the coupling via the cross-talk gap.

Objective IV.

Analyze eigenvalue degeneracy of the can-annular model combustor
from the perspective of symmetry groups.

This objective applies the theoretical results from Objective 2 to the experi-
mental combustor in Objective 3, which has symmetry group C8E . A Draft
Article 9 that will soon be submitted contains these results.



Chapter 2

Fundamentals I – Linear
stability analysis with the
thermoacoustic Helmholtz
equation

In this chapter the thermoacoustic Helmholtz equation is derived from the
Navier–Stokes equations. In a first step, the conservation equations are
simplified using physical arguments to derive a wave equation for ln (?).
In a second step, the ln (?) wave equation is linearized to obtain the ther-
moacoustic Helmholtz equation. This strategy is originally due to Phillips
(1960) and found in Poinsot and Veynante (2005). In a third step, the equa-
tion is transformed into frequency domain and a suitable closure of the
heat-release rate @̂ is formulated in terms of flame transfer functions. In
a fourth step, the variational problem associated with the numerical solu-
tion of the equation is defined – a so-called nonlinear eigenvalue problem,
which is discussed in Chap. 3.

2.1 Acoustic wave equation derived from the Navier–
Stokes equations

The compressible and reactive Navier–Stokes equations are given by the
continuity, momentum, species and energy balances (Law, 2010, p. 163).
In this section, physical arguments from Law (2010), Poinsot and Veynante
(2005) and Lieuwen (2012) are employed to simplify the balance equations.

29
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In the following, vector and tensor-valued quantities are denoted in bold,
e.g. u and 3 . An equation placed inside a box signifies that all necessary
simplifications for that section have been applied and that the equation
will be employed at a later point in the derivation.

2.1.1 Mass conservation

The continuity equation, or mass balance, is written as

md

mC
+ ∇ · (du) = 0 , (2.1)

(2.2)

with the density d and velocity u. With the material derivative for an ar-
bitrary quantity q defined as

Dq
DC

=
mq

mC
+ u · ∇q , (2.3)

the continuity equation can be re-written into

Dd
DC

= −d∇ · u (2.4)

2.1.2 Species mass conservation

Conservation of " different species is governed by

md.8

mC
+ ∇ · [d.8 (u + V8)] = ¤F8 , 8 = 1, . . . , " , (2.5)

where .8 is the mass fraction of species 8, V8 is the diffusive velocity and
¤F8 is the rate of production/consumption of a chemical species. Since the
total mass is constant, the mass fractions are governed by

"∑
8=1

.8 = 1 . (2.6)

The diffusive velocities are defined as

V8 = u8 − u , (2.7)

and it holds

du =

"∑
8=1

d8u8 . (2.8)



2.1. Acoustic wave equation derived from the Navier–Stokes equations 31

Multiplying Eq. (2.7) by .8 and summing over all indices yields

"∑
8=1

.8V8 =

"∑
8=1

.8u8 −
"∑
8=1

.8u , (2.9)

Together with Eq. (2.8) one obtains

"∑
8=1

.8V8 = 0 (2.10)

Formally, for the diffusive velocities a constitutive relation (Law, 2010)
needs to be specified. However, this is omitted since the term where the
constitutive relations appears later in the energy balance equation will be
eliminated by assuming equal heat capacities 2?,8 = 2? .

2.1.3 Momentum balance

The momentum balance is formulated as

mu
mC
+ u · ∇u = −∇?

d
+ ∇ · 3

d
+

"∑
8=1

.8f8 , (2.11)

where 3 is the stress tensor and f8 a vector of external body forces acting on
the species. The constitutive relation for the stress tensor is given as

3 =

[
? +

(
2
3
` − ^

)
(∇ · u)

]
I − `

[
(∇u) + (∇u))

]
, (2.12)

which assumes that the medium behaves as a Newtonian fluid. Besides
the pressure ?, the stress tensor depends on the velocity u, and contains
the two viscosities ` and ^ as parameters. Similar to the diffusive velocities
in the species mass balance Eq. (2.5), the stress tensor 3 will be neglected at
a later stage.

For thermoacoustic applications, body forces f8 are negligible. Hence, in
the momentum balance (2.11) the contribution of the individual species
.8 can be discarded. Since the left hand side of Eq. (2.11) constitutes the
material derivative, one obtains the simpler form

Du
DC

= −1
d
∇? + 1

d
∇ · 3 . (2.13)

As a constitutive relation for the pressure ?, the ideal gas law is employed

? = d'̄) . (2.14)
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Here, '̄ is the mass-specific gas constant and ) the temperature. The ideal
gas model is justified since the gases considered in this thesis are at low
pressures and at high temperatures. The combustion chambers that are
modelled in this thesis are exclusively operated with CH4–H2–air mixtures
under atmospheric conditions. These gases can be considered ideal for
pressures below 100 bars and temperatures above 300 K. However, even
for industrial gas turbines with pressures of up to 50 bars the ideal gas
model would still be valid for CH4–H2–air mixtures.

For an ideal gas the speed of sound 2 is defined as

22 = W'̄) , (2.15)

and Eq. (2.13) can then be formulated as

Du
DC
+ 2

2

W

1
?
∇? =

1
d
∇ · 3 . (2.16)

An application of the chain rule of differentiation gives

Du
DC
+ 2

2

W
∇ ln (?) = 1

d
∇ · 3 . (2.17)

By taking the divergence of Eq. (2.17) an equation is obtained

∇ · Du
DC
+ ∇ ·

[
22

W
∇ ln (?)

]
= ∇ ·

(
1
d
∇ · 3

)
(2.18)

which is later combined with a suitable formulation of the energy equation
to obtain the wave equation in ln (?).

2.1.4 Energy balance

The balance equation for the internal energy 4 (chemical and sensible) is
given as

md4

mC
+ ∇ · (du 4) = −∇ · q − 3 : ∇u + d

"∑
9=1

.8f8 · u , (2.19)

where the colon operator denotes tensor contraction and the heat flux vec-
tor q takes the form

q = −_∇) + d
"∑
8=1

ℎ8.8V8 , (2.20)



2.1. Acoustic wave equation derived from the Navier–Stokes equations 33

where _ is the thermal conductivity and ℎ the enthalpy. The term “−_∇)”
is Fourier’s law for heat conduction. This simplified form already assumes
that the Dufour effect (transfer of heat due to concentration gradients) and
radiation are neglected. The Dufour effect is very small (Palle et al., 2005)
and since the flames considered in this thesis are low in soot, the radiative
losses can be neglected as well.

Again, body forces are neglected f8 = 0 and the contribution of the stress
tensor simplifies to

3 : ∇u = ?I : ∇D = ?∇ · u , (2.21)

for low-speed subsonic flows, where viscous heating is far lower than heat-
ing due to other sources (Law, 2010, p. 170). Thus, Equation (2.19) simpli-
fies to

md4

mC
+ ∇ · (du 4) = −∇ · q − ?∇ · u . (2.22)

Substituting 4 = ℎ − ?

d
yields

m (dℎ − ?)
mC

+ ∇ · (duℎ − u?) = −∇ · (−_∇) )

−∇ ·
(
d

"∑
8=1

ℎ8.8V8

)
− ?∇ · u .

(2.23)

The equation can be re-arranged into

m (dℎ)
mC
+ ∇ ·

[
duℎ − _∇) + d

"∑
8=1

ℎ8.8V8

]
=
m?

mC
+ ∇ · (u?) − ?∇ · u . (2.24)

The chain rule of differentiation gives for the right hand side

m?

mC
+ ?∇ · u + u · ∇? − ?∇ · u =

m?

mC
+ u · ∇? =

D?
DC

. (2.25)

Thus, Eq. (2.24) simplifies to

m (dℎ)
mC
+ ∇ ·

[
duℎ − _∇) + d

"∑
8=1

ℎ8.8V8

]
=

D?
DC

. (2.26)

The enthalpy is governed by ℎ =
∑"
8=1 .8ℎ8 , and hence

m

mC

(
d

"∑
8=1

.8ℎ8

)
+ ∇ ·

[
d

"∑
8=1

.8ℎ8 (u + V8) − _∇)
]
=

D?
DC

. (2.27)
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The enthalpy ℎ8 can be written as the sum of the enthalpy of formation ℎ◦8
and the sensible enthalpy ℎB8 as

ℎ8 = ℎ
◦
8 + ℎB8 (2.28)

and this will be used to re-write Eq. (2.27). Multiplying the species balance
(2.5) by ℎ◦8 and summing over all indices gives

m

mC
d

"∑
8=1

.8ℎ
◦
8 + ∇ · d

"∑
8=1

ℎ◦8 .8 (u + V8) =
"∑
8=1

ℎ◦8 ¤F8 . (2.29)

Subtracting Eq. (2.29) from Eq. (2.27) yields

m

mC

(
d

"∑
8=1

.8ℎ
B
8

)
+ ∇ ·

[
d

"∑
8=1

.8ℎ
B
8 (u + V8) − _∇)

]
=

D?
DC
−

"∑
8=1

ℎ◦8 ¤F8 , (2.30)

where the sum of the enthalpies (2.28) is used. The sums can be simplified
further into

m

mC
(dℎB) + ∇ ·

(
duℎB + d

"∑
8=1

.8ℎ
B
8V8 − _∇)

)
=

D?
DC
−

"∑
8=1

ℎ◦8 ¤F8 . (2.31)

Assuming equal heat capacities 2?,8 = 2? for all species gives ℎB8 ≡ ℎB , since
for an ideal gas it holds dℎ = 2?d) . Then, Equation (2.10) allows to elimin-
ate the term with the diffusive velocities

m

mC
(dℎB) + ∇ · (duℎB − _∇) ) = D?

DC
−

"∑
8=1

ℎ◦8 ¤F8 . (2.32)

Assuming equal heat capacities is justified here, by noting that air is used
as oxidizer, hence N2 dominates as a species. The volumetric heat-release
rate due to combustion is defined as

@ = −
"∑
8=1

ℎ◦8 ¤F8 . (2.33)

and contains only the chemical contribution of the enthalpy. In the ther-
moacoustic literature, the term is often denoted by ¤@ but in this thesis the
convention of Law (2010) is followed. By eliminating the continuity equa-
tion (2.1) from Eq. (2.32), one obtains

d
DℎB

DC
− ∇ · (_∇) ) = D?

DC
+ @ . (2.34)

By writing dℎB = 2?d) the material derivative can be re-written into

d2?
D)
DC
− ∇ · (_∇) ) = D?

DC
+ @ (2.35)
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2.1.5 A wave equation for ln (?)
The equation will be re-cast into a formulation for ln ? following Poin-
sot and Veynante (2005)(p. 425). In a first step, division by d2?) and re-
arrangement yields

1
)

D)
DC
− 1
d2?)

D?
DC

=
1

d2?)
[∇ · (_∇) ) + @] . (2.36)

The material derivative for ) can be written as

D)
DC

=

(
m)

m?

)
d,'̄

D?
DC
+

(
m)

md

)
'̄,?

D?
DC
+

(
m)

m'̄

)
?,d

D'̄
DC

(2.37)

and with the ideal gas law (2.14) the total derivative is written as

D)
DC

=
1
d'̄

D?
DC
− ?'̄(

d'̄
)2

Dd
DC
− ?d(

d'̄
)2

D'̄
DC

. (2.38)

The ideal gas law (2.14) applied again gives

D)
DC

=
1
d'̄

D?
DC
− )
d

Dd
DC
− )
'̄

D'̄
DC

. (2.39)

For the left hand side of Eq. (2.36) one obtains

1
)

D)
DC
− 1
d2?)

D?
DC

=
1
?

D?
DC
− 1
d2?)

D?
DC
− 1
d

Dd
DC
− 1
'̄

D'̄
DC

. (2.40)

and re-arrangement yields

1
)

D)
DC
− 1
d2?)

D?
DC

=
D?
DC

[
1
?
− 1
d2?)

]
− 1
d

Dd
DC
− 1
'̄

D'̄
DC

. (2.41)

The coefficients of the first term on the right hand side can be re-written as

1
?
− 1
d2?)

=
d2?) − ?
d2?)?

=
d2?) − d'̄)
d2?)?

=
1
?

2? − '̄
2?

=
1
W?

, (2.42)

where the isentropic exponent W = 2?/2E and 2? = 2E + '̄ is used. Thus,
Equation (2.36) is written as

1
W?

D?
DC
− 1
d

Dd
DC
− 1
'̄

D'̄
DC

=
1

d2?)
[∇ · (_∇) ) + @] . (2.43)
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Following Kotake (1975) and using Eq. (2.4) the equation is formulated as

1
W

D ln (?)
DC

+ ∇ · u −
D ln

(
'̄
)

DC
=

1
d2?)

[∇ · (_∇) ) + @] . (2.44)

Taking the material derivative of the previous equation gives the final for-
mulation of the energy equation that is necessary to derive the wave equa-
tion

D
DC

[
1
W

D ln (?)
DC

]
+ D

DC
[∇ · u] − D

DC

[
D ln

(
'̄
)

DC

]
=

D
DC

[
1

d2?)
[∇ · (_∇) ) + @]

]
.

(2.45)

Subtracting Eq. (2.45) from Eq. (2.18)

∇ ·
[
22

W
∇ ln (?)

]
− D

DC

[
1
W

D ln (?)
DC

]
= ∇ ·

[
1
d
∇ · 3

]
− D

DC

[
D ln

(
'̄
)

DC

]
− D

DC

[
1

d2?)
[∇ · (_∇) ) + @]

]
− ∇u : ∇u .

(2.46)

Equation (2.18) contains a term ∇·Du/DC and Eq. (2.45) a term D (∇ · u) /DC .
These two terms are not equal and instead a computation shows

∇ · Du
DC
− D (∇ · u)

DC
= ∇ · (u · ∇u) − u · ∇ (∇ · u) = ∇u : ∇u . (2.47)

According to Kotake (1975), the terms on the right hand side of Eq. (2.46)
related to viscosity 3 , '̄ and temperature ) are of smaller order than the
terms related to combustion @ and velocity ∇u. In this work, the velocity
term is neglected as well and Eq. (2.46) simplifies to

∇ ·
[
22

W
∇ ln (?)

]
− D

DC

[
1
W

D ln (?)
DC

]
= − D

DC

[
1

d2?)
@

]
. (2.48)

If constant W is assumed, the wave equation in ln (?) is then written as

∇ ·
[
22∇ ln (?)

]
− D

DC

[
D ln (?)

DC

]
= −W D

DC

[
1

d2?)
@

]
(2.49)
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2.1.6 Linearization and formulation of wave equation in ?

Before performing a linearization, it is assumed that the flow has zero
Mach number Ma = 0 , which implies u0 = 0. A discussion by Nicoud
et al. (2007)(App. A) suggests that this assumption is valid if the spatial
extension of the flame is small compared to the acoustic wavelength – also
referred to as an acoustically compact flame in the thermoacoustic literature.
In physical terms, this implies that a resulting equation is only valid for
low frequencies and flames with short flame brushes. However, a study
by Nicoud and Wieczorek (2009) suggests that the assumption could be
problematic for Mach numbers as low as Ma = 0.05.

For all primitive variables an ansatz in terms of mean quantities (·)0 and
fluctuations (·)1 is formulated

? = ?0 + Y?1 , (2.50)
d = d0 + Yd1 , (2.51)
u = Yu1 , (2.52)
@ = @0 + Y@1 , (2.53)

where fluctuations of heat capacities are ignored ('̄ = '̄0) and Y � 1. Fur-
thermore, it is assumed that all mean quantities only depend on space. As a
consequence of these assumptions, the material derivative for a fluctuation
q1 simplifies to

Dq1

DC
≈ mq1

mC
+ Yu1 · ∇q1 , (2.54)

and the material derivative for an arbitrary quantity q

Dq
DC

=
mq0

mC︸︷︷︸
=0

+Y
[
mq1

mC
+ u1 · ∇q0

]
+ O

(
Y2

)
. (2.55)

To prepare, it is demonstrated that @0 = 0 (which is consistent with u0 = 0),
by setting the elliptic temperature term in Eq. (2.35) zero (as done in the
previous section) and inserting ansatz (2.50)–(2.53) plus Eq. (2.55)

(d0 + Yd1) 2? Y
[
m)1

mC
+ u1 · ∇)0

]
= Y

[
m?1

mC
+ u1 · ∇?0

]
+ @0 + Y@1 + O

(
Y2

)
,

(2.56)
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since )0 and ?0 do not vary in time. Clearly, the only term to zeroth order
is

Y0 : 0 = @0 . (2.57)

For the present purposes this is acceptable, since a formulation for the fluc-
tuation quantities is of interest – it does stipulate the absence of any com-
bustion, though (Nicoud et al., 2007, p. 8). To obtain the term of order Y1 of
the ln (?) equation (2.49) directly, the Gateaux derivative (Ciarlet, 2013) is
computed. For the left hand side of Eq. (2.49) this amounts to

d
dY
∇ ·

[
22∇ ln (?0 + Y?1)

]
− d

dY
D
DC

[
D ln (?0 + Y?1)

DC

]
=

∇ ·
[
22∇

(
?1

?0 + Y?1

)]
− D2

DC2

[
?1

?0 + Y?1

]
,

(2.58)

and setting Y = 0 yields

∇ ·
[
22∇

(
?1

?0

)]
− D2

DC2

[
?1

?0

]
. (2.59)

Likewise, one obtains for the right hand side of equation (2.49)

−W D
DC

[
'̄

2%

(
@1

?0
− @0

?2
0

?1

)]
. (2.60)

The second term is zero, since @0 = 0 and thus the formulation is

∇ ·
[
22∇

(
?1

?0

)]
− D2

DC2

[
?1

?0

]
= −W D

DC

[
'̄

2%
@1

]
(2.61)

Technically speaking, in this equation only the ln (?) terms have been lin-
earized – not yet the material derivatives. Hence, it is an incomplete linear-
ization but tedious algebra can be avoided by first formulating another ne-
cessary assumption: For deflagration flames the isobaric assumption (Law,
2010; Poinsot and Veynante, 2005) is valid. By this assumption, the spatial
dependence of ?0 is neglected. Inserting Eq. (2.54) into Eq. (2.61) and keep-
ing only zeroth order terms1 yields

∇ ·
(
22∇?1

)
− m

2?1

mC2 = − m
mC

[
W'̄

2%
@1

]
, (2.62)

1Due to the incomplete linearization from before, zeroth order terms where the material
derivative has been re-written correspond to first order terms globally.
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where the entire equation has been multiplied by the constant ?0. The res-
ult can be re-written with the identity

W'̄

2?
=
'̄

2E
=
2? − 2E
2E

= W − 1 (2.63)

into

m2?1

mC2 − ∇ ·
(
22∇?1

)
= − (W − 1) m@1

mC
(2.64)

the time domain formulation of the thermoacoustic Helmholtz equation,
as commonly encountered in the literature. To summarize, all assumptions
that have been employed are:

• Linear dependence of stress tensor 3 on ? and u (p. 31)

• External body forces are neglected f8 = 0 (p. 31)

• Ideal gas law ? = d'̄) (p. 31)

• Fourier’s law for heat conduction (p. 32)

• No heating due to radiation (p. 32)

• Dufour effect neglected (p. 32)

• Low speed subsonic flow, where viscous heating can be neglected (p.
33)

• Equal heat capacities 2?,8 = 2? for all species (p. 34)

• Neglection of viscosity 3 , '̄ and ) terms following an order of mag-
nitude analysis due to Kotake (1975) (p. 36)

• Neglection of the velocity term ∇u : ∇u (p. 36)

• Constant heat capacity ratio W (p. 36)

• Zero Mach number flow Ma = 0 (p. 37)

• Acoustic perturbations are small (p. 37)

• Fluctuations in heat capacities are neglected (p. 37)

• Mean quantities only depend on space (p. 37)

• Isobaric assumption for deflagration flames (p. 38)
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2.1.7 Acoustic energy balance equations and Rayleigh’s criterion

The simplified balance equations from the previous sections can be used
to formulate a balance equation for a fluctuation energy, where the source
term appears in the Rayleigh criterion Eq. (1.1). In a first step, the invis-
cid (3 = 0 ) momentum balance (2.13) is linearized under the zero Mach
number assumption of Sec. 2.1.6 to give

(d0 + Yd1)
Du1

DC
= −∇ (?0 + Y?1) , (2.65)

and employing Eq. (2.54) gives

(d0 + Yd1) Y
mu1

mC
= −∇ (?0 + Y?1) + O

(
Y2

)
. (2.66)

Sorting by powers of Y and neglecting terms Y2 or higher yields

Y0 : 0 = −∇?0 , (2.67)

Y1 : d0
mu1

mC
= −∇?1 . (2.68)

Taking the scalar product of Eq. (2.68) with u1 gives

m

mC

[
1
2
d0u2

1

]
= −∇?1 · u1 . (2.69)

In a second step, Equation (2.44) is simplified by neglecting variations in
heat capacities '̄ = '̄0 and the elliptic temperature term “∇ · (_∇) )” – as
before – to give

1
W

D ln (?)
DC

+ ∇ · u =
1

d2?)
@ . (2.70)

As before, the Gateaux derivative to linearize the ln (?) term gives

1
W?0

D?
DC
+ ∇ · u1 =

'̄

2?
@1 , (2.71)

whereby constant ?0 is assumed. Keeping only terms of lowest order in Y
in the material derivatives results in

1
W?0

m?1

mC
+ ∇ · u1 =

(W − 1)
W?0

@1 . (2.72)
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After multiplication with ?1 and using W?0 = d02
2
0 one obtains the second

necessary component

m

mC

[
1
2
d02

2
0?

2
1

]
+ ∇ · u1?1 =

(W − 1)
W?0

@1?1 . (2.73)

Adding Eq. (2.69) and Eq. (2.73) gives a balance equation for an acoustic
fluctuation energy 41

m

mC
(41) + ∇ · (u1?1) =

(W − 1)
W?0

@1?1 (2.74)

with the definition

41 =
1
2
?2

1

d02
2
0

+ 1
2
d0u1

2 . (2.75)

The source term on the right hand side of Eq. (2.74) appears in the Rayleigh
criterion, which was introduced in Chap. 1.2.1. Chu (1965) and Nicoud and
Poinsot (2005) derived a more general formulation for a fluctuation energy.

2.2 Formulation in frequency space and closure of the
equation

If the fluctuations are assumed to oscillate harmonically in time

?1 = ?̂ 4 ilC , (2.76)

@1 = @̂ 4 ilC , (2.77)

the frequency-domain formulation for Eq. (2.64) is

∇ ·
(
22∇?̂

)
+ l2?̂ = − (W − 1) @̂ (2.78)

Equation (2.78) is the basis of the stability analysis conducted in this thesis.
Solutions are given in the form of the eigenvalues l and eigenfunctions ?̂.
Together, these form eigenpairs (l, ?̂). The choice of the fluctuation quant-
ities Eq. (2.76)–(2.77) corresponds to the definition of the Fourier transform-
ation as

5̂ (l) ≡ F {5 } = 1
√

2c

∫ +∞

−∞
5 (C) 4−ilC dC . (2.79)
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The eigenvalue is a complex number l ∈ ℂ and hence,

4−ilC = 4 ilRC 4−lIC , (2.80)

where lR and lI are the real and imaginary parts of l , respectively. The
real part of l corresponds to the angular frequency of oscillation with unit
1/B. The oscillation frequency is defined as 5 = Real (l) /2c with unit Hz.
Equation (2.80) states that growth of a mode (l, ?̂) in time is given for

Imag (l) < 0 . (2.81)

Conversely, damping is given if Imag (l) > 0. Suitable boundary condi-
tions and expressions for the heat-release term in the form @̂ = @̂ (l, ?̂) to
close the equation are discussed next.

2.2.1 Closure of the heat-release rate @̂

The heat-release response @̂ can be linked to an upstream velocity fluctu-
ation at a reference location û |ref in a reference direction n|ref via a flame
transfer function (FTF) F (l)

@̂ =
&0

D0+F
F (l) û |ref · n|ref . (2.82)

Here, &0 is the mean global heat-release, D0 the mean flow at the reference
position and +F the volume of the heat-release zone. FTFs can be obtained
via measurements (Durox et al., 2009), large-eddy simulations (Giauque
et al., 2005) or from analytic considerations (Ducruix et al., 2000; Schuller
et al., 2003). A very simple time-delay model was suggested by Crocco and
Cheng (1956)

F (l) = =4−ilg , (2.83)

where = is the so-called interaction index describing the gain of the flame
response, and g is a time delay – hence the name: =–g model. Crocco’s
model is simple but frequently employed as a generic flame model in ther-
moacoustic studies (McManus et al., 1993; Dowling and Morgans, 2005;
Huang and Yang, 2009; Hield et al., 2009; Courtine et al., 2014).

Expression (2.82) contains implicitly two assumptions: i) @̂ depends on an
upstream velocity fluctuation and ii) that the dependence is linear. Kin-
ematically stabilized flames, as considered in this work, are sensitive to
upstream velocity fluctuations. This is in contrast to flames stabilized by
autoignition, which are predominantly sensitive to upstream temperature
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fluctuations (Bothien et al., 2019a). The review article by Schuller et al.
(2020) collects the current state of scientific knowledge on kinematically
stabilized flames. If finite amplitude effects are to be considered, the linear
dependence on û is replaced with a dependence on the amplitude |û|, see
Stow and Dowling (2004); Noiray et al. (2008). However, such a formula-
tion introduces a nonlinear dependence on the eigenvector. The work in
this thesis does not consider this type of problem.

In order to close the problem, the velocity fluctuation û |ref in Eq. (2.82) can
be expressed via the linearized momentum balance (2.68) as

−il û =
1
d0
∇?̂ . (2.84)

By closing Eq. (2.78) with Eqs. (2.82) and (2.84) the eigenvalue problem is
expressed only in the unknown eigenpairs (l, ?̂)

∇ ·
(
22 ∇?̂

)
+ l2?̂ = (W − 1) &0

d0D0+F
F (l) ∇?̂ |ref · n|ref (2.85)

Equation (2.85) is a nonlinear eigenvalue problem. The problem has a non-
linear dependence on the eigenvalue l and a linear dependence on the
eigenvector ?̂. Then the problem is commonly abbreviated into operator
form as

L (l) ?̂ = 0 (2.86)

The operator L contains the equation and its boundary conditions.

2.2.2 Boundary conditions

Boundary conditions for the acoustic problem can be expressed by means
of the specific impedance / (Rienstra and Hirschberg, 2004), which is the
ratio of acoustic and velocity fluctuations at a boundary

/ =
?̂

d2 û · nBC
, (2.87)

here nBC specifies the unit normal vector pointing outward at the boundary
surface. The specific impedance is either a complex scalar or a function of
the eigenvalue / : ℂ→ ℂ. Using the linearized momentum balance (2.84),
the impedance (2.87) can be expressed as a Robin-type boundary condition

/ 2 ∇?̂ · nBC − il?̂ = 0 . (2.88)
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Table 2.1: Acoustic boundary conditions for the thermoacoustic Helmholtz equa-
tion.

Description Impedance Physics
Anechoic / = 1 -

Pressure release / = 0 ?̂ = 0
Rigid wall / = ∞ ∇?̂ · nBC = 0

Table 2.1 collects three important cases for thermoacoustics. A detailed
discussion for thermoacoustics can be found in Silva et al. (2014). A rigid
wall boundary condition is also referred to as sound hard and it constitutes
a homogeneous Neumann boundary condition. This is the most common
boundary condition since it is prescribed on all combustion chamber walls
and it will enter the variational formulation as a natural boundary condi-
tion. Non-pressurized combustion chambers in academia are usually open
to the atmosphere at the outlet. Hence, a pressure release or pressure node
?̂ = 0 is prescribed there. In addition, academic model combustors are
commonly fed with reactant mixtures from small diameter pipes. Hence,
there are chocked or close to chocked conditions and sound hard boundary
conditions are prescribed there as well.

Anechoic boundary conditions / = 1 have played a major role in a re-
cent series of experiments and theoretical analysis related to intrinsic ther-
moacoustic modes. An ideal anechoic termination eliminates all acous-
tic resonance frequencies of a geometry – prohibiting any thermoacoustic
instabilities related to these resonance frequencies. However, a series of
authors (Hoeijmakers, 2014; Hoeijmakers et al., 2014; Emmert et al., 2015;
Courtine et al., 2015; Silva et al., 2015, 2017b; Ghani et al., 2019) showed
that a combustor with anechoic terminations can still exhibit thermoacous-
tic instabilities. The research revealed that an instability can be triggered by
a purely upstream travelling pressure wave emitted from a flame. Such an
instability is independent of the acoustic properties of the combustor and
hence intrinsic to the flame. Article 3 focuses on these modes extensively
in an annular combustion chamber.

In industrial applications, or when using materials or components that are
known to exhibit complex scattering behaviour, impedances are measured
or modelled to accurately describe the properties of the considered com-
ponents. Then the impedance is a function of l and an additional source
of nonlinearity for the NLEVP in Eq. (2.85).
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2.3 Variational formulation
The variational formulation for Eq. (2.78) is derived in this section. The
closure (2.82) is inserted later for reasons of readability. In a first step, the
function spaces are defined, then the variational formulation is derived
and finally a finite-element ansatz formulated to obtain the discrete non-
linear eigenvalue problem. The discretization goes back to Nicoud et al.
(2007).

2.3.1 Preparation

The computation domain Ω, i.e. the combustor without the boundaries, is
an open subset of ℝ# with piecewise smooth boundary. The !2 (Ω) scalar
product is defined as

(?̂, E)!2
:=

∫
Ω
?̂ (G) E (G)∗ dG , (2.89)

which consists of all functions ?̂ and E that are square-integrable in Ω. Here,
the asterix (·)∗ denotes the complex-conjugate. Equipped with its natural
norm

| |?̂ | |!2 :=
√
(?̂, ?̂)!2

, (2.90)

the space !2 (Ω) becomes a Banach space, when the norm is finite | |?̂ | |!2 <

∞. For the thermoacoustic Helmholtz equation, only the Sobolev-space
, 1,2 is relevant to derive the weak formulation and this space is construc-
ted using the !2 spaces. The space, 1,2, is equipped with the scalar product

(E, ?̂)1 = (E, ?̂) + (∇E,∇?̂) =
∫
Ω

(
E?̂∗ +

#∑
:=1

mE

mG:

m?̂∗

mG:

)
dG , (2.91)

and norm

| |?̂ | |2
, 1,2 = | |?̂ | |22 + ||∇?̂ | |

2
2 . (2.92)

With the norm (2.92) , 1,2 becomes a Hilbert space denoted by � 1. The
norm requires that ?̂2 and |∇?̂ |2 have finite integrals over Ω (Logg et al.,
2012). Using the finite-element method a finite-dimensional vector space
+ℎ will be constructed s.t. +ℎ ⊂ + = � 1, where � 1 is the vector space of the
weak formulation.
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2.3.2 Weak formulation

A variational formulation for Eq. (2.78) is derived by multiplying the equa-
tions with a test function E from the right and integrating over the compu-
tational domain Ω to obtain∫

Ω
∇ ·

(
22∇?̂

)
E∗ dG +

∫
Ω
l2?̂E∗ dG = −8l (W − 1)

∫
Ω
@̂ E∗ dG . (2.93)

Setting w = 22∇?̂ the elliptic term in Eq. (2.93) can be recast with the iden-
tity

∇ · (qw) = q (∇ ·w) + (∇q) ·w , (2.94)

which can be re-arranged into

q (∇ ·w) = ∇ · (qw) − (∇q) ·w . (2.95)

Replacing the elliptic term leads to∫
Ω
∇ ·

(
E∗ 22∇?̂

)
dG −

∫
Ω
∇E∗ · 22∇?̂ dG + l2

∫
Ω
?̂ E∗ dG =

−8l (W − 1)
∫
Ω
@̂ E∗ dG ,

(2.96)

and applying the divergence theorem to the left hand side∫
mΩ
E∗ 22∇?̂ · n dB −

∫
Ω
∇E∗ · 22∇?̂ dG + l2

∫
Ω
?̂ E∗ dG =

−8l (W − 1)
∫
Ω
@̂ E∗ dG ,

(2.97)

gives a formulation with lowered regularity requirements on the functions.
The variational problem then reads

Find l ∈ ℂ and ?̂ ∈ + such that (2.98)

∫
mΩ
22∇?̂ · n E∗ dG −

∫
Ω
22∇?̂ · ∇E∗ dG + l2

∫
Ω
?̂ E∗ dG = − il (W − 1)

∫
Ω
@̂ E∗ dG

holds for all E∗ ∈ +̂ ,

where + = +̂ and

+ =
{
F ∈ � 1 (Ω) : F = 0 on Γ0

}
. (2.99)
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The boundaries Γ0 are all the boundaries where pressure nodes ?̂ = 0 are
prescribed. If the closure (2.82) for @̂ is employed, the right hand side of
Eq. (2.98) reads

− il (W − 1)
∫
Ω
@̂ E∗ dG = (W − 1) &0

d0D0+F

∫
Ω
F (l) ∇?̂ |ref · n|ref E

∗ dG . (2.100)

Boundary conditions enter the variational problem (2.98) via the surface
integral term, where impedances can be prescribed. The surface integral is
split into the different segments and individual, potentially l-dependent
impedance, are prescribed.

2.3.3 Discretization of variational formulation

The weak formulation can be discretized using the finite element method.
A discrete space +ℎ ⊂ + is chosen in which a solution is sought.

Find lℎ ∈ ℂ and ?̂ℎ ∈ +ℎ such that (2.101)

∫
mΩ
22∇?̂ℎ · n E∗ℎ dG −

∫
Ω
22∇?̂ℎ · ∇E∗ℎ dG + l2

∫
Ω
?̂ E∗

ℎ
dG = (2.102)

− il (W − 1)
∫
Ω
@̂ℎE
∗
ℎ

dG

holds for all E∗
ℎ
∈ +̂ℎ,

The function ?̂ℎ is the finite dimensional approximation of ?̂ – likewise for
@̂ℎ and lℎ. After this section the subscript “ℎ” is dropped for brevity. For+ℎ
and +̂ℎ the space of all piecewise linear functions on a mesh of tetrahedra
is chosen. For the function ?̂ℎ a finite dimensional expansion is chosen

?̂ℎ =

3∑
9=1

% 9k 9 , (2.103)

where the shape functions k 9 have local support and 3 is the dimension of
the space, which is identical to the degrees of freedom (DOF). The % 9 are
expansion coefficients which are to be computed. The resulting problem is
written for the left hand side of Eq. (2.101) as

−
∑
T∈T

∫
T
22∇k8 · ∇k ∗9 % 9 dG +

∑
S∈S

∫
S
22k ∗8 ∇k 9 · n % 9 dG

+l2
∑
T∈T

∫
T
k ∗8 k 9 % 9 dG ,

(2.104)
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and the right hand side as

(W − 1) &0

d0D0+F

∑
T∈T

∫
T

1
d0
F (l)k ∗8 ∇k 9 |xlocal · nref % 9dG , (2.105)

where Ω and its surface mΩ have been segmented into tetrahedra T and
triangles S, respectively. Care is taken that the segmentation conserves un-
derlying symmetries. The actual numerical discretization is performed in
the package developed by Mensah and Orchini (2021) and its predecessor
(Mensah et al., 2018). The latter of which this author was a co-developer.
A detailed description of the solver-specific implementation can be found
in the thesis of Mensah (2019).

With p as the vector of the expansion coefficients % 9 , then the discretized
problem reads in a general form[

K + l
∑
8

58 (l) C8 + l2M +
∑
8

F8 (l)Q8

]
p = 0 , (2.106)

which is the discrete nonlinear eigenvalue problem. Matrix K is the stiff-
ness matrix, C8 are matrices corresponding to boundary conditions with
prescribed impedances 58 (l), M is the mass matrix and Q is the matrix cor-
responding a heat-release effect F8 (l) – multiple flames are possible. All
constant coefficients have been absorbed into the discretization matrices.
In abbreviated form, the problem is written as

L (l) p = 0 , L ∈ ℂ3×3 (2.107)



Chapter 3

Fundamentals II – Nonlinear
Eigenvalue Problems

In the previous chapter the thermoacoustic Helmholtz equation was de-
rived and subsequently formulated as a nonlinear eigenvalue problem, or
short NLEVP, which reads

L (l) ?̂ = 0 , ?̂ ≠ 0 (3.1)

The problem always has homogeneous boundary conditions. These can be
prescribed either in the form of a velocity node (∇?̂ · n = 0), pressure node
(?̂ = 0) or as an impedance.

Outside of thermoacoustics, nonlinear eigenvalue problems arise in a vari-
ety of disciplines, including: stability analysis of vibrational systems (Voss,
2002), engineering of electromagnetic waveguides (Jorkowski and Schuh-
mann, 2020) and stability analysis of delay differential equations (Meerber-
gen et al., 2013). For more examples see Chap. 2 in Effenberger (2013). A
review by Mehrmann and Voss (2004) focuses on NLEVPs from the per-
spective of industrial applications and solution algorithms. A collection of
example problems to test solution algorithms is published in Betcke et al.
(2013).

The purpose of this chapter is to review and collect a select few math-
ematical properties of NLEVPs that have implications for practical ther-
moacoustic problems. A comprehensive review on NLEVPs can be found
in Güttel and Tisseur (2017). The problem is defined in Sec. 3.1 and basic
properties are reviewed in Sec. 3.2. Section 3.3 elaborates on eigenvalue de-
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generacy and the overlapping concept of a derogatory eigenvalue. In Sec.
3.4 a solution strategy employed in Article 2 is presented from a so-called
filtering perspective.

3.1 Definitions, basic assumptions and selected prop-
erties

Equation (3.1) expresses that the linear operator L maps the eigenpairs
(l, ?̂) into the null space. Here, L : ℂ × + → + , where + is a suitable
Sobolev space. The set of all eigenvalues forms the spectrum f ∈ Ω ⊂ ℂ.
The complementary set is the resolvent set d = Ω \f . Importantly, for an
arbitrary I ≠ l the operator L (I) is invertible. The argument I in L (I)
denotes that the operator is parameter-dependent. Thus, the only solution
to the problem

L (I) ℎ̂ = 0 , I ≠ l , (3.2)

is ℎ̂ = 0. Only at eigenvalues l the inverse L−1 does not exist. Linear
eigenvalue problems

A?̂ = l?̂ , ?̂ ≠ 0 , (3.3)

are a special case of Eq. (3.1) if they are re-cast into the form

(A − lI) ?̂ = 0 , (3.4)

where I is the identity operator from the same space as the linear operator
A. If the differential operator L is discretized, the problem is denoted as

L (l) p = 0 , L ∈ ℂ3×3 , p ∈ ℂ3 . (3.5)

where 3 are the degrees of freedom in the chosen discretization method.
Most of the theory in this chapter focuses on discrete NLEVPs (3.5), but the
theory of symmetry groups in the Draft Article 8 is valid for discrete and
continuous formulations.

Throughout this chapter and this thesis, L is assumed to be a Fredholm
operator of index 0. The discrete equivalent of this condition is that L is
non-singular, i.e. det L (I) ≠ 0 for all I ∈ ℂ. For a singular operator the
resolvent set is empty.

L is also assumed to have an analytic dependence on I in a simply connec-
ted domain surrounding any eigenvalue l . In this thesis this condition is
necessary since contour integration in Article 2, and also featured in Sec.
3.4, is applied. Contour integration due to Beyn (2012) employs Cauchy’s
theorem which requires such an analytic dependence.
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3.2 Basic properties of NLEVPs and implications for
solution algorithms

The entries of NLEVPs can be rational, polynomial or any other arbitrary
functions. Thus, a problem such as

L (l) p =

(
sin (l) 0

0 cos (l)

)
p = 0 , (3.6)

has countably infinitely many eigenvalues

l0
:
= c: , and l1

:
= c: − c

2
: ∈ ℤ , (3.7)

and an eigenvector for all l0
:

eigenvalues is

p: =

(
1
0

)
. (3.8)

Hence, all eigenvectors to l0
:

are identical. These two features are both in
stark contrast to linear eigenvalue problems, where at most 3 = dim L dis-
tinct eigenvalues are possible and all eigenvectors are linearly independ-
ent. These properties alone make the numerical solution difficult. Linear
problems have a wealth of methods (Saad, 2011) that can exploit the finite-
ness of the number of eigenvalues and the orthogonality of eigenvectors.
One example is the implicitly restarted Arnoldi method (Lehoucq et al.,
1998), which is used in the linear eigenvalue solver of SCIPY (Virtanen et al.,
2020).

The thermoacoustic eigenvalue problem has a general structure, as formu-
lated in Eq. (2.106), as[

K + l
∑
8

58 (l) C8 + l2M +
∑
8

F8 (l)Q8

]
p = 0 , (3.9)

The three sources of nonlinearities are the boundary conditions, expressed
by the coefficient functions 58 (l), the quadratic nonlinearity l2 due to the
time derivative of the original wave equation, and the flame terms F8 (l).
The quadratic nonlinearity can simply be removed via doubling of the sys-
tem size by introducing a vector

p̂ =

(
p
lp

)
, (3.10)
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to re-write the problem as[
0 −I

K +∑
8 F8 (l)Q8

∑
8 58 (l) C8

] [
p
lp

]
= −l

[
I 0
0 M

] [
p
lp

]
, (3.11)

which has the form of generalized linear eigenvalue problem if the values
for l in 58 (l) and F8 (l) are fixed. This strategy was used by Nicoud et al.
(2007) to formulate a fixed-point algorithm to solve the problem iteratively.
In Article 4 shortcomings of this fixed-point method are detailed and better
solution algorithms, so-called Householder iterations, are proposed.

The nonlinearities in 58 (l) and F8 (l) are more difficult, since these can
involve data from measurements. It is possible to expand these nonlinear-
ities in the form of rational functions, see the discussion in Sec. 6 of Güttel
and Tisseur (2017). However, such an expansion can incur spurious modes,
which are defined as eigenvalues of an approximation L̃ (l) ≈ L (l), which
are not eigenvalues of the original problem L (l) (Güttel and Tisseur, 2017).

3.3 Classification of eigenvalues
Eigenvaluesl of operators L and L can be classified by their multiplicities.
In the finite dimensional case the definitions are standard and addressed
first. In addition, the terms derogatory and non-derogatory are put into con-
text. In the continuous case, the geometric multiplicity is implied by prop-
erties of the governing symmetry groups as detailed in Draft Article 8. For
completeness, an algebraic multiplicity for operators is defined as well.

3.3.1 Algebraic and geometric multiplicity in finite dimensions

The algebraic multiplicity of an eigenvalue is defined as the highest integer
m0 for which it holds

mm0−1

mlm0−1
det L (l) = 0 and

mm0

mlm0
det L (l) ≠ 0 , (3.12)

i.e. the order of the pole of det L (l) at an eigenvalue l . The geometric
multiplicity is defined as the dimension of the null space of the eigenvalue

m6 = dim [null L (l)] . (3.13)

The algebraic multiplicity bounds the geometric multiplicity from above

m0 ≥ m6 , (3.14)

which is well-known for the linear case and proven by Szyld and Xue
(2014) for the nonlinear case.
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3.3.2 Algebraic multiplicity for continuous operators

For linear operators L the geometric multiplicity m6 is also defined as the
dimension of the null space as in Eq. (3.13) as

m6 = dim [nullL (l))] , (3.15)

and it is a major subject of Draft Article 8 to relate m6 to the properties
of the symmetry group of L. For general continuous operators m6 is not
necessarily finite, but for the Fredholm operators in this thesis it is. In con-
trast, an algebraic multiplicity cannot rely on the determinant operation as
required in Eq. (3.12). The book by López-Gómez and Mora-Corral (2007)
considers algebraic multiplicities for linear operators in depth.

To give an idea, consider the operator L as a function of its complex vari-
able. For every value I a new operator is obtained, hence the expression
operator family. Consider only those values of I, the eigenvalues l , where
the operator family is not invertible. The algebraic multiplicity m0 is then a
unique map m0 [L, l0] that returns a number in the real interval [0,∞] for
L at l . This map is based on two axioms: for the product of two operators
L andM with the same eigenvalue l

m0 [LM, l] = m0 [L, l] +m0 [M, l] , (3.16)

the algebraic multiplicity must be the sum of the individual multiplicities.
In addition, there exists a unique rank one projection %0 (from the same
space of operators as L) such that

m0

[
L̃, l

]
= 1 , (3.17)

for a newly defined operator

L̃ (I) = (I − l) P0 + I+ − P0 , (3.18)

where �+ is the identity operator in the given space. An example for such a
map m0 [L, l] that is valid in the discrete and continuous case is given in
López-Gómez and Mora-Corral (2007)(Chap. 9) as

m0 [L, l] = tr
1

2c i

∫
W

L ′ (I) L−1 (I) dI , (3.19)

where W is a positively oriented contour in the complex plane that contains
one l and the trace operator needs to be defined carefully for operators.
L ′ is the derivative of L with respect to the argument. Equation (3.19) has
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been employed by Maeda et al. (2011) to estimate the number of eigenval-
ues inside a contour for discrete problems.

In the finite-dimensional case + = ℂ<, the function

m0 [L, l] = ordl det L , (3.20)

defined in Eq. (3.12) has these properties. As can be shown following the
computation in Chap. 6.5 of López-Gómez and Mora-Corral (2007)

m0 [LM, l] = ordl det (LM) = ordl [detL · detM] , (3.21)
= ordl detL + ordl detM , (3.22)
= m0 [L, l] +m0 [M, l] . (3.23)

Notice that Eq. (3.16) does not mean that the product of two matrices that
have the same eigenvalue yields a matrix with a twofold eigenvalue. It
clearly holds that, (

1 0
0 2

) (
1 0
0 1

)
=

(
1 0
0 2

)
, (3.24)

and m0 [·, l = 1] = 1 ≠ 3. Instead, the operator families have to be con-
sidered[(

1 0
0 2

)
− I I2

] [(
1 0
0 1

)
− I I2

]
=

(
(1 − I)2 0

0 (1 − I) (2 − I)

)
, (3.25)

and m0 [·, l = 1] = 3 becomes evident. Now, what is the purpose of Eq.
(3.18)? This is a normalization property, since Eq. (3.16) alone only ensures
that m0 is defined up to a multiplicative constant. In the current example
Eq. (3.18) would take the form

L̃ (I) = (I − l)
(
1 0
0 0

)
+ I2 −

(
1 0
0 0

)
=

(
I − l 0

0 1

)
, (3.26)

and m0

[
L̃, l

]
= 1. In a sense, L̃ is one of the simplest operators in the

space where L is from. Hence, for this one the value of m0 is fixed to one.

3.3.3 Simple, degenerate and defective eigenvalues

An eigenvalue with m0 = 1 is called simple and m0 > 1 degenerate. Addi-
tionally, any eigenvalue with m0 > m6 is called defective, while those with
m0 = m6 > 1 are semi-simple. Table 3.1 contains this classification. In a pre-
vious section it was stated that operators L (and L) must have Fredholm
index 0. Being a Fredholm operator guarantees that the dimension of the
kernel, and thus m6, is finite.
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Table 3.1: Classification of eigenvalues by their multiplicities.

Multiplicities classification sub-classification
m0 = 1 simple –
m0 > 1 degenerate –
m0 = m6 > 1 degenerate semi-simple
m0 > m6 ≥ 1 degenerate defective

3.3.4 Defective eigenvalues in thermoacoustics: Exceptional Points

Article 1 explores the occurrence of a defective point in a thermoacoustic
system. Hereby the eigenvalue problem is considered a function of a vector
of parameters 9

L (l, 9) p = 0 , (3.27)

and consequently, the eigenvalues (and eigenfunctions) are functions of the
parameters l = l (9). Those values of the parameters for which m0 > m6

are called an exceptional point (EP), see p. 66 in Kato (1980) and the review
by Heiss (2012). For a complex-valued problem L, an EP requires at least
two parameters, i.e. 9 = (Y1, Y2).

To visualize an exceptional point in a linear algebra setting and demon-
strate the implications for thermoacoustics, Tosio Kato’s example (Kato,
1980)(p. 64) is reproduced, which considers a simple model problem

T (Y) p =

(
1 Y

Y −1

)
p = lp , (3.28)

which is written in operator notation as

L (l, Y) = T (Y) − lI =
(
1 − l Y

Y −1 − l

)
. (3.29)

The characteristic polynomial is l2 −
(
1 + Y2) = 0 with two distinct eigen-

values that are dependent on Y

l1,2 = ±
√

1 + Y2 . (3.30)

These eigenvalues merge for YEP = ±i to lEP = 0, forming two separate ex-
ceptional points. Notice that det T (YEP) = 0 and thus the matrix is perman-
ently degenerate. A quick computation gives the eigenvectors as functions
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of Y

p1 =

(
− Y

1−
√

1+Y2

1

)
and p2 =

(
− Y

1+
√

1+Y2

1

)
, (3.31)

which are identical at either EP

p±EP =

(
∓8
1

)
, (3.32)

thus, giving the necessary geometric multiplicity of one. The sensitivity
of the eigenvalue to a change in the perturbation parameter Y at an EP is
computed as

ml1,2

mY
= ± Y
√

1 + Y2
, (3.33)

which shows that the infinite sensitivity of an eigenvalue to Y at the excep-
tional point is due to the square root in the numerator.

The implications for thermoacoustics are that in the vicinity of an EP, the
eigenvalues are strongly sensitive to changes in parameters. If the para-
meters of the =–g model are the parameters 9 = (=, g), then a minor vari-
ation in either can result in large changes in the oscillation frequency 5 =

Real (l) /2c and/or growth rates.

3.3.5 Derogatory and non-derogatory eigenvalues

The notion of a derogatory eigenvalue overlaps with the classification in
terms of simple/degenerate/defective. The distinction is mainly import-
ant for perturbation studies of eigenvalues, see work in Mensah et al. (2020);
Orchini et al. (2021); Kirillov (2010); Seyranian and Mailybaev (2003); Kir-
illov (2013). Following Definition 5.4. on p. 322 of Bernstein (2009), an ei-
genvalue is derogatory if

m6 > 1 , (3.34)

and non-derogatory otherwise. Degenerate and derogatory both imply
m0 > 1, see Tab. 3.2. However, these are independent properties, see the
note in Gregory (1960) for examples.

What’s the difference? Consider the examples in Tab. 3.3. Defectiveness
always implies that the geometric multiplicity is smaller than the algebraic
multiplicity, which is not the case for a derogatory matrix, see Example
3. However, this is the case if the matrix is simultaneously defective, see
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Table 3.2: Classification employed in Seyranian and Mailybaev (2003) in the ana-
lysis of eigenvalue perturbations.

Multiplicities classification
m0 ≥ m6 > 1 derogatory
m0 ≥ m6 = 1 non-derogatory

Example 1. The exceptional point of Article 1 has m0 = 2 and m6 = 1 and
is, hence, defective and non-derogatory.

Example 1 describes a derogatory exceptional point. Moeck et al. (2018)
showed that this case exists in thermoacoustics. In an annular combus-
tion chamber a semi-simple eigenvalue of an acoustic origin merges with
a semi-simple eigenvalue of intrinsic origin to form an exceptional point
with m0 = 4 and m6 = 2. Consequently, the eigenvalue is derogatory and
defective.

Table 3.3: Examples of multiplicities of an eigenvalue and its respective classific-
ation.

Example m0 m6 Classification
1. 3 2 defective derogatory
2. 3 1 defective non-derogatory
3. 2 2 semi-simple derogatory

3.4 Contour integration from the filtering perspective
In Article 2 Beyn’s contour integral method (Beyn, 2012) is employed to
solve thermoacoustic NLEVPs. The power in the method lies in the fact
that it returns all eigenvalues and eigenvectors inside a user-specified con-
tour Γ in the complex plane. Beyn’s method is based on a theorem due to
Keldysh (1971) that the inverse of a discrete L can be expanded into

L (I)−1 =

0∑
:=1

p: w†
:

1
(I − l: )

+ R (I) . (3.35)

In the equation 0 is an unknown number of eigenvalues, w a right eigen-
vector and R an analytic, matrix-valued function. Article 2 contains a com-
plete description of Beyn’s method. To summarize, Eq. (3.35) is integrated
along a closed contour Γ in the complex plane∮

Γ
L (I)−1 dI =

∮
Γ

B∑
:=1

p: w†
:

1
(I − l: )

dI +
∮
Γ

R (I) dI . (3.36)
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The number B < 0 corresponds to the number of eigenvalues inside of Γ.
Since R is analytic in all of ℂ, the term last term in the equation is zero.
In addition, the sum over all eigenvalues l: is split into those inside the
contour and those outside∮

Γ
L (I)−1 dI =

∮
Γ

B∑
: :l: ∈f (Γ)

p:w†
:

1
(I − l: )

dI

+
∮
Γ

∑
: :l:∉f (Γ)

p:w†
:

1
(I − l: )

dI .
(3.37)

Again, the second sum is analytic since its poles lie outside Γ. Cauchy’s
theorem from analytic function theory permits to lift all zeros of the first
sum ∮

Γ
L (I)−1 dI = 2c i

B∑
:=1

p: w†
:
. (3.38)

Numerical mathematics enter the algorithm now as the continuous integral
is discretized. In essence, two so-called moment matrices

A? =
1

2c i

∮
Γ
I?L (I)−1 Ṽ dI , (3.39)

≈
#I−1∑
9=0

U 9I
?

9
L

(
I 9

)−1 Ṽ, ? ∈ {0, 1} . (3.40)

have to be computed and in Beyn (2012) and Article 2 it is demonstrated
how the eigenvalues can be recovered from the moment matrices A? . While
the algebra is straightforward, it is worthwhile to consider a different per-
spective: filtering. Beyn’s method performs a filtering of a part of the spec-
trum in the complex plane. Hereby, the numerical integral approximates
an ideal filter. This perspective is useful to understand shortcomings of
the method. Barel and Kravanja (2016) consider the filtering perspective in
detail.

To obtain a formulation that contains a so-called filter function, Keldysh’s
theorem Eq. (3.35) is evaluated at a concrete I 9 and multiplied with +̂ from
the right to yield

L
(
I 9

)−1
+̂ =

B∑
:=0

p: w†
:

1(
I 9 − l:

) +̂ + R
(
I 9

)
V̂ . (3.41)
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With this expression, the term L
(
I 9

)−1 Ṽ in Eq. (3.40) can be replaced

Ā? =

B∑
:=0

p:w†
:
V̂
#I−1∑
9=0

U 9I
?

9(
I 9 − l:

) + #I−1∑
9=0

U 9I
?

9
R

(
I 9

)
V̂ , ? = 0, 1. (3.42)

Following Barel and Kravanja (2016), the filter function is defined as the
term

10 (I) =
#I−1∑
9=0

U 9I
?

9(
I 9 − I

) . (3.43)

The term ‘filter function’ stems from its purpose to approximate an ideal
filter, which would be

1? (I) =
{

1 , I is inside Γ

0 , I is outside Γ
. (3.44)

Ideally, it holds 1? (l: ) = 0 for eigenvalues l: not inside a contour Γ and
thus the contribution would vanish in the computation of the moment
matrices

Ā? =

B∑
:=0

p:w†
:
V̂ 1? (l: ) +

#I−1∑
9=0

U 9I
?

9
R

(
I 9

)
V̂ , ? = 0, 1 . (3.45)

However, 1? only approximates this ideal filter due to the numerical dis-
cretization of the contour integral. If Γ is a unit circle and trapezoid integra-
tion is performed, the discrete sampling points on the contour are written
as

I 9 = 4
2c i 9

# , (3.46)

with integration weights

U 9 =
I 9

#I
. (3.47)

Then, the filtering function Eq. (3.43) simplifies to

1? (I) =
1
#I

#I−1∑
9=0

I
?+1
9

I 9 − I
=

I?

1 − I#I
, (3.48)

and it can be seen how an increase in the number of sampling points #I
results in an increasingly better filter, see the depiction in Fig. 3.1.
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Figure 3.1: The filter function 10 (I) of Eq. (3.48) depicted on the real axis. For
higher values of #I the function approximates the ideal filter increasingly better.
However, an eigenvalue potentially located inside the side tails is not entirely
removed and thus ‘pollutes’ the solution, which is discussed in Article 2.

Beyn’s method is one of many algorithms for NLEVPs that integrate a suit-
able variation of L along a contour Γ to find all eigenvalues inside. Güttel
and Tisseur (2017) review these different strategies including work by a Ja-
panese Group (Asakura et al., 2009; Yokota and Sakurai, 2013; Sakurai and
Sugiura, 2003) that also focused on contour integration.



Chapter 4

Experimental Setup and
Methods

This chapter gives details on the experimental setup that is featured in Art-
icle 5 and Draft Article 9. It goes more into detail than the description in
the papers.

4.1 Technical design documentation
The baseline configuration of the combustor is depicted in Fig. 4.1 and Fig.
4.2 shows the rig during operation. The combustor consists of eight cans
that are fed with perfectly premixed mixture from a shared plenum. Com-
bustion takes place in isolated cans. Towards the outlet a coupling segment
is mounted that permits acoustic waves to travel between adjacent cans.
The outlets are open to the atmosphere. In this section, the components are
detailed.

Up until the end of the injector section, the combustor is identical to the
atmospheric annular combustor employed by Worth and Dawson (2013);
Mazur et al. (2019) and Indlekofer et al. (2021b). In the cited works, twelve
or more injectors were employed and such a high number is not possible
for the can-annular combustor due to geometric constraints, since the indi-
vidual cans are made similar in diameter to the quartz tubes employed in
the single sector experiments of Æsøy et al. (2020). By keeping the diamet-
ers comparable, FTFs can be measured on the same single sector setup as
Æsøy et al. and then used for modelling of linear stability.

A design was sought that gives a lot of flexibility to adjust the geometries,
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Figure 4.1: a) Rendering of the can-annular rig. From the plenum, injectors feed
mixture into individual cans. Pressure transducers are mounted in the injectors.
Each can consists of a lower and an upper part, with the two-part XT-ring sand-
wiched in between. b) Axial cut through the rig. Dimensions upstream of the base
of the cans and of the bluff bodies can be found in Indlekofer et al. (2021b). Pres-
sure transducers are mounted in the lower ports (blue), while the upper ones (red)
are blocked. Steel wool is inserted into the conical section at the inlet and closed
with a mesh to suppress any large-scale asymmetries in the inflow. c) Lower half
of the XT with the blocking elements mounted. An identical plate is mounted
from above. The revolving groove is 10 mm deep (in each plate) and has outer
and inner diameters 189.6 mm and 149.6 mm, respectively.

especially with respect to the length of the cans and varying the strength
of the acoustic communication between adjacent cans. The objective was
to build a cost effective setup that re-uses as much as possible from the ex-
isting setups in the combustion laboratory at NTNU in order to minimize
the number of new components that had to be manufactured. Concretely,
this means that the plenum and injectors of the annular combustor are em-
ployed. Only three major components had to be manufactured: a base
plate to hold the eight injectors, and two plates that constitute the cross-
talk. The technical drawings are listed in A.1.

4.1.1 Steel cans and quartz tubes for the combustion chambers

For the cans, steel pipes available from stock with inner diameter 3can =

41.9 mm are used. With respect to diameter this stock pipe is closest to
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(a) (b)

Figure 4.2: Photos of the can-annular model combustor during operation with
individual blue flames visible in the cans.

the quartz tubes employed by Æsøy et al. (2020) with inner diameter of
44 mm. Each can consists of a lower and upper piece of steel pipe. Different
lengths have been cut to experiment with different axial positions of the
cross-talk segment, and to vary the total length. Most of the experiments
are conducted with lengths 150 mm and 40 mm for the lower and upper
segment, respectively.

Figures 4.3, 4.4(b) and 4.8 also depict a setup where quartz tubes are inser-
ted to give optical access to the flames in the cans. Due to manufacturing
tolerances, the quartz tubes have a slightly different dimension than the
steel pipes, with inner diameter 3can = 45 mm. Figure 4.3(b) shows pos-
sible ways to mount a quartz tube using transition pieces and short pipe
segments. The technical descriptions of the raw material (as ordered) of
the steel pipes and the quartz tubes are given in Tab. A.2.

4.1.2 Cross-talk segment to realize weak coupling between adja-
cent cans

Figure 4.4(b) shows a photo of the lower plate of the XT segment. In the
upper and lower XT segment, a groove runs circumferentially. In-between
cans there are slots in the groove which point towards the center. In these
slots blocking elements of cuboidal shape with a central bore can be inser-
ted to vary the strength of the acoustic coupling, see Fig. 4.1(c). In Figure
4.4(a) the blocking elements can be seen as they are sitting in the mounted
rig.
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(a) (b)

Figure 4.3: a) Photo of the can-annular combustor during operation. The flames
are located inside the quartz tubes and stabilized at a bluff body. Ceramic wool
(in white) is used as a sealing. b) A can combustion chamber and two possible
setups to mount a quartz tube.

Apart from inserting no element at all, blocking elements with five differ-
ent bore sizes are available, see Tab. 4.1. An example of such a blocking ele-
ment is depicted in Fig. 4.6(b). If no element is inserted, the cross-section is
square, otherwise it is circular. For comparison, the can-annular combustor
of Moon et al. (2020a,b, 2021) has a ratio �XT/�can = 0.24, while the two-
can combustor of Venkatesan et al. (2019) has a ratio of �XT/�can = 0.29.
However, both combustors have a chocked outlet unlike the combustor in
this thesis. Thus, a direct comparison with respect to interaction strength
is difficult.

Table 4.1: Dimensions of the blocking elements. For ‘Open’ the edge length of the
square cross-section is given. A range was chosen that is comparable to the ratios
employed in Moon et al. (2020a,b, 2021).

Name Tiny Small Medium Large Huge Open
3XT in mm 9.4 13.2 16.2 18.7 20.0 20.0
�XT/�can 0.05 0.10 0.15 0.20 0.23 0.29

4.1.3 Acoustic decoupling at the inlet and the outlet

In order to inhibit acoustic communication via the outlets, loose sheet metal
plates are put on top of the combustor to decouple acoustic communication
via the outlets, Fig. 4.6(a). An end correction (Levine and Schwinger, 1948)
gives 0.613can/2 = 12.78 mm for the location of the pressure node down-
stream of each outlet. The length of the pipe segment is 45 mm to yield
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(a) (b)

(c) (d)

Figure 4.4: Pictures of the setup during re-configuration. a) The upper steel tubes
are removed and a view into the coupling segment is possible where blocking ele-
ments are installed – see the detailed view in c). b) The upper half of the coupling
segment is removed and the circumferential groove with slots for the blocking ele-
ments is visible. The threaded rods are used to compress the entire rig and ensure
minimal leakage. For the configuration with quartz tubes, the coupling segments
rests on nuts on the threaded rods. This measure is taken to avoid that the quartz
tubes are compressed and potentially break under thermal stresses. c) Detailed
view into the cross-talk area of a). d) Rendering of a cut view through the com-
bustor. The lower and upper can are visible with the opening for the cross-talk
in-between.
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(a) (b)

Figure 4.5: a) Photo of the sintered plate mounted on the base plate, just upstream
of the injectors. b) Detailed cut view of the plenum in Fig. 4.1 with the sintered
plate (yellow) mounted upstream of the injectors.

a total of 57.78 mm, which is significantly shorter then the sheet metal of
height 150 mm.

For some experiments, a sintered plate is installed upstream of the injectors
to decouple the plenum and confine acoustic communication to the cross-
talk segment. The mounted plate is schematically depicted in Fig. 4.5. The
sintered plate is of type SIKA-B200 with a porosity of 51% and pore size
124 `m. The plate has a high pressure drop and is highly acoustically re-
flective. Figure 4.7 shows that the communication between adjacent cans
is minimal and that a strong decoupling is achieved.

4.1.4 Operation of the combustor

Perfectly premixed mixtures of CH4–H2–air are employed. The baseline
configuration is unstable for a pure CH4–air mixture at power % = 4 kW per
burner and for equivalence ratios q = 0.75, . . . , 1.0. For the same conditions
the configuration with a sintered plate is stable. Hence, hydrogen is added
to the mixture to achieve an unstable state. A H2 content of 8% by power
(20.09% by volume) was set and the overall power was increased to 8.3 kW
per burner. With the sintered plate, the combustor is usually stable for
q = 0.75 and unstable for higher values of q .

Measurements are usually taken for a duration of 60 s. To monitor whether
all flames are stabilised as intended on the bluff body flame holders rather
than lifted, an overhead Photron SA1.1 CMOS camera is employed. To-
gether with a LaVision Intensified Relay Optics unit and a Cerco 2178 UV
lens equipped with a D20-VG0035942 filter (centre wavelength 310 nm, full
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(a) (b)

Figure 4.6: a) Schematic top view of the combustor with sheet metals placed
loosely on top to suppress acoustic communication via the outlets. b) Rendering
of a blocking element with a central bore.

width half maximum 10 nm) the camera images the OH∗ chemilumines-
cence in the heat release zone. The concentration of OH∗ radicals scales
linearly with the actual heat release (Higgins et al., 2001). A setup with
mirrors overhead of the combustion rig is used to take images from the
top. The setup was devised by Håkon Nygaard for the atmospheric annu-
lar rig and is depicted on p. 37 of his thesis (Nygård, 2021). Apart from
monitoring, the camera data is not used for data analysis. If the bluff body
is not visible on the OH∗ images, then the flame has not stabilized properly.
Hydrogen content is then increased to trigger an upstream propagation of
the flame. Otherwise the ignition procedure is repeated.

An Optris CTlaser 3MHCF4 pyrometer is aimed at the inside wall of the
outlet of one can to record the temperature. A new experimental run is
commenced once the outlet temperature has dropped to 350 ◦C. This ap-
proach is taken to improve repeatability of the experiments.

4.2 Experimental diagnostics and post-processing

4.2.1 Data acquisition

In every injector tube one Kulite (XCS-093-05D) pressure transducer is moun-
ted, see Fig. 4.1. The pressure transducers are located in the lower of the
two ports with the upper one blocked. A 24-bit DAQ system (NI model
9174) is used for the signal recording. Ideally, two pressure transducers
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Figure 4.7: For the baseline case (without a sintered plate) and the case with a
sintered plate, the XTs are closed and the cans are forced via the outlets with a
loudspeaker in the range of 100 Hz to 2000 Hz. This yields seven transfer functions
with respect to the microphones in the other cans. This is done for all eight cans
and the average taken. Finally, transfer functions of cans at angles +45◦ and −45◦

are averaged (likewise for the other angles). The addition of the sintered plate
significantly reduces communication via the plenum.

would be placed in every injector to permit a reconstruction of the fluctu-
ation inside the can with a two-microphone method. However, during the
experiments only eight pressure transducers were available. Pressure sig-
nals are recorded at 5s = 51.2 kHz and amplified with a FE-579-TA Bridge
Amplifier from FYLDE set to a gain of 300 and using a built-in low-pass
filter with cut-off at 20 kHz.

If quartz tubes are employed, the heat-release data is recorded using eight
Hamamatsu H11901-113 photomultipliers (PMTs) and amplified with two
Hamamatsu C7169 amplifiers set to a gain of 0.4 V. An optical bandpass fil-
ter of type “310nm CWL, 25mm Dia., Hard Coated OD 4.0 10nm” from Ed-
mund optics is mounted in front of every PMT to reduce the optical spec-
trum to the range of OH∗ radicals. The arrangement in Fig. 4.8 shows how
the PMTs are arranged around the cans. A small laser, model PL202 from
Thorlabs, is used to align every PMT with the center of every can. Two
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Figure 4.8: Picture of the experimental setup with quartz tubes installed. The
mounted photomultipliers and pressure transducers are visible.

1 inch length tubes are mounted on every PMT. It is ensured that the open-
ing of every PMT (with attached lens tubes) has a distance of 10.5 cm from
the outer wall of the can it is aimed at. The main reason is to avoid damage
to the PMTs from the heat of the combustor. For the chosen distances, a
minor computation shows that the aperture for every PMT is approxim-
ately 40 mm – the inner diameter of every quartz tube can. Signals from
the photomultipliers are recorded with the same frequency as the pressure
signals.

4.2.2 Signal processing and data analysis

Short time Fourier transform is employed to identify dominant frequencies
over time for a transient analysis. Hereby, the data is binned into segments
of 400 ms with an overlap of 75%. Each segment is extended via zero pad-
ding to twice its length. If the transient analysis leads to the identification
of a relevant window in time domain, the frequency content is computed
with Welch’s method. If necessary, an ideal band-pass filter is applied dur-
ing the post-processing. Filter limits are chosen narrowly on a case-by-case
basis to account for drifts in frequencies and mode switching. All given
pressure amplitudes are taken as the root mean square value of the signals.
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4.2.3 Projection onto modal bases and spin ratio

Information on the modal order< of an instability can be obtained from a
projection onto a suitable modal basis. In the following, it is assumed that
all eight pressure signals have been narrowly band-pass filtered around a
frequency of interest. The signals are cast into a matrix p ∈ ℝ#×; , where
# = 8 is the number of pressure transducers and ; is the number of samples
– usually ; = 5s · 60 s. In order to determine azimuthal mode orders< of a
limit cycle oscillation, the signals are projected onto a set of circumferential
basis functions, following Moeck (2010).

A standing wave basis is constructed in the form of a transformation matrix
B# ∈ ℝ#×# with columns

b= =

©«
F01

F1 cosq=
F1 sinq=

. . .

F# /2 cos# /2q=

ª®®®®®¬
, (4.1)

where the azimuthal coordinate takes discrete value

q8 = 0, . . . , 2c (# − 1) /# , (4.2)

and weights are chosen as F0 = F# /2 = 1/
√
# and F1, . . . ,F# /2−1 = 1/

√
# /2

to make B unitary. The matrix of modal coefficients p< ∈ ℝ#×; is obtained
via projection

p< = B#p . (4.3)

Columns of p< contain the modal coefficients, which are termed 0B< and 02<
for sine and cosine basis, respectively. To represent the physical oscillation
amplitudes, the modal coefficients need to be normalized by

√
# /2 for< =

1, . . . , # − 1 and
√
# otherwise. Notice that for the < = # //2 mode (here

< = 4) it cannot be determined whether the mode is of spinning or standing
type due to aliasing.

From a standing basis, the modal coefficients of a spinning basis can be ob-
tained. First, the analytic B< of 0< is computed and then following Moeck
(2010) (

0+<
0−<

)
=
F<

2
√
#

(
1 i
1 −i

) (
B2<
BB<

)
. (4.4)
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the modal coefficients of the spinning basis 0+<, 0−< are obtained. The amp-
litudes of either are computed as the root mean square.

A spin ratio is defined following Bourgouin et al. (2013) as

Δsp =

��0+< �� − ��0−< ��
|0+< | + |0−< |

∈ [−1, +1] , (4.5)

where 0+< and 0−< are spinning mode coefficients derived from the standing
basis. Values +1 and −1 denote a spinning state in clockwise and coun-
terclockwise directions, respectively. A spin ratio of zero corresponds to a
standing mode.
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Chapter 5

Summary of research articles

This thesis consists of nine research articles that have contributed to the
objectives formulated in Sec. 1.4. In this chapter the articles are listed in
chronological order of publishing and the scientific contributions are sum-
marized in technical detail.

Article 1

Exceptional points in the thermoacoustic spectrum
Georg A. Mensah, Luca Magri, Camilo F. Silva, Philip E. Buschmann and
Jonas P. Moeck
Journal of Sound and Vibration, Volume 433, 7 October 2018, Pages 124-128

Article 1 has the form of a rapid communication and shows that excep-
tional points occur in thermoacoustic systems by studying a generic Rijke
tube model. The EP is computed by varying two parameters, the interac-
tion index = and time delay g , such that an acoustic and an intrinsic eigen-
value coalesce. By using the self-orthogonality of eigenvectors at an EP, a
set of equations for the dispersion relation is derived to compute the EP ex-
plicitly. Furthermore, it is demonstrated how the high sensitivity of eigen-
values in the vicinity of an EP has grave implications for thermoacoustic
stability: small changes in parameters can lead to large changes in growth
rates and oscillation frequencies. Thus, a minor shift in operating condi-
tions, that alters values akin to = or g , can render a combustor unstable and
potentially shift the frequency.
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Article 2

Solution of Thermoacoustic Eigenvalue Problems with a noniterative
Method
Philip E. Buschmann, Georg A. Mensah, Franck Nicoud and Jonas P. Moeck
Journal of Engineering for Gas Turbines and Power, Volume 142, Issue 3, March
2020

Article 2 applies a global solution method to NLEVPs in thermoacoustic
applications. The presented contour integration method, originally due to
Beyn (2012), returns all eigenvalues inside a specified contour in the com-
plex plane. The method is applied to a network model of a Rijke tube
and to the FEM-discretized MICCA combustor. The former employs an
=–g model for the flame response, while the latter uses an FTF extracted
from experimental data. Eigenvalues computed with contour integration
are confirmed with fixed-point methods. The global strategy is found to
be advantageous to local, iterative solvers. Guidelines for choosing para-
meters for contour integration are given and it is recommended to confirm
eigenpairs computed with contour integration with an iterative method.
For the annular combustion chamber a large number of clustered modes
are observed for the first time.

Article 3

Intrinsic thermoacoustic modes in an annular combustion chamber
Philip E. Buschmann, Georg A. Mensah and Jonas P. Moeck
Combustion and Flame, Volume 241, April 2020, Pages 251-262

Article 3 follows up on the clustered modes observed in an annular com-
bustion chamber in Article 2. A computation with an =–g model for an
annular combustion chamber reveals tightly clustered modes of increasing
azimuthal mode orders. The higher the azimuthal mode order, the stronger
damped the modes – forming a near-vertical pattern in the complex plane.
Clusters are separated by Δ5 = 1/g on the real line and higher clusters de-
viate more from this vertical alignment. It is explained and proven, that
the clustered modes are formed by intrinsic modes. These modes origin-
ate from the same intrinsic mechanism that is well-explored in 1D prob-
lems where the =–g model is employed. For low frequencies, the intrinsic
modes are cut-off and experience an environment similar to an anechoic
termination, hence they are almost identical to intrinsic modes in an an-
echoic environment. However, for higher frequencies the modes become
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cut-on and experience the outlet boundary condition, which yields strong
shifts in frequency. Hence, cut-off modes are near identical in frequency
and stack vertically, while cut-on or almost cut-on modes are positioned
away from their respective clusters.

Article 4

Iterative Solvers for the Thermoacoustic Nonlinear Eigenvalue Problem
and Their Convergence Properties
Georg A. Mensah, Philip E. Buschmann and Jonas P. Moeck
Presented at SOTIC-2021 conference and invited for publication to the Interna-
tional Journal of Spray and Combustion Dynamics; authors intend to submit it.

Article 4 presents several key advancements related to iterative, local solv-
ers for thermoacoustic NLEVPs. First off, it is demonstrated with a numer-
ical experiment that fixed-point methods are unable to compute intrinsic
thermoacoustic modes for FEM-discretized problems. This is subsequently
proven using Banach’s fixed-point theorem by constructing an explicit cri-
terion for the contraction properties of any iterative schemes based on
adjoints. Evaluation of the criterion at eigenvalues shows that intrinsic
modes are repellers for fixed-point methods. Consequently, generalized
Newton methods of arbitrary order, so-called Householder iterations, are
formulated using adjoints. For these methods all eigenvalues are attract-
ors and they are shown to have advantageous convergence properties for
thermoacoustic NLEVPs.

Article 5

Experimental study of thermoacoustic modes in a can-annular model
combustor
Philip E. Buschmann, Nicholas Worth and Jonas P. Moeck
Presented at SOTIC-2021 conference and invited for publication to the Interna-
tional Journal of Spray and Combustion Dynamics (SCD); authors do not intend
to submit it but extend the paper and submit it to a suitable journal.

Article 5 presents the first experimental results on the newly developed
can-annular model combustor, where the strength of the acoustic cross-talk
between adjacent cans is varied. The design of the combustor is presented
and it is detailed how the cross-talk is realized. Results for two different
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configurations are presented: a baseline configuration with an attached
plenum and a setup with an installed sintered plate that decouples the
plenum acoustically. The decoupling is shown by comparing measured
transfer functions for both cases, which show a strong decoupling effect.
The baseline configuration shows clustered modes in a band of approxim-
ately 150 Hz. Clusters are formed by modes of different azimuthal mode
orders,< = 0, 1, 2, 3, 4 for the combustor with # = 8 cans. A gradual reduc-
tion in cross-talk strength is found to shift the frequencies to lower values,
which is consistent with theoretical work in the literature. A linear stabil-
ity analysis matches well with the experiments but also reveals that only
one cluster exists, since at higher frequencies modes belonging to differ-
ent clusters overlap. Decoupling of the plenum has a major effect on the
thermoacoustic frequencies: two clusters within narrow bands of approx-
imately 50 Hz are observed. These modes are highly sensitive to reduc-
tion in cross-talk size – again, confirming theoretical results. In addition,
the azimuthal orders of the instabilities are described and certain transient
phenomena, with mode switching and simultaneously active modes, are
reported.

Article 6

Reduced-order modelling of thermoacoustic instabilities in can-annular
combustors
Alessandro Orchini, Tiemo Pedergnana, Philip E. Buschmann,
Jonas P. Moeck and Nicolas Noiray
Presented at SOTIC-2021 conference. An extended version of the paper is cur-
rently under review with the Journal of Sound and Vibration.

Article 6 formulates a reduced-order model for a can-annular combustor
and employs geometries of the combustor presented in Article 5. The main
focus of the work is the combination of a semi-empirical model for the
acoustic communication via the cross-talk with a thermoacoustic network
model. The reduced-order model is used to study eigenvalue clusters and
their dependence on parameters and explores sensitivities with respect to
the origin of individual modes. In addition, the role of outlet boundary
conditions are studied. This is crucial for the comparison of experimental
results in academia, where a pressure node ? = 0 at the outlet is often
found, to industrial configurations where a velocity node is encountered.
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Article 7

A subspace-accelerated method for solving nonlinear thermoacoustic ei-
genvalue problems
Georg Mensah, Alessandro Orchini, Philip E. Buschmann and Luka Gru-
bišić
Accepted for publication in the Journal of Sound and Vibration.

Article 7 has the form of a rapid communication and presents a projection
strategy to massively reduce the size of NLEVPs in thermoacoustics ori-
ginating from FEM-discretizations from O

(
104) to O

(
101) . The strategy

relies on random sampling in a domain of interest in the complex plane
to assemble a suitable subspace. The subspace is automatically enlarged
if a residual criterion is violated. The strategy shows a strong reduction
in computational time for the so-called BRS combustor. A key advantage
lies in the fact that the original problem is reduced to a smaller one, where
the original parameter and eigenvalue-dependence are retained. Thus, the
reduction strategy is independent from the solution step and any desired
algorithm can be employed.

Draft Article 8

Symmetry groups in thermoacoustics

Philip E. Buschmann and Jonas P. Moeck
This article is in draft state with planned submission in late 2021 or early 2022 to
a suitable journal.

Draft Article 8 analyses the thermoacoustic stability problem from the per-
spective of symmetry groups. An introductory example of a single com-
bustor with reflection symmetry is motivated to explain basic group the-
ory terminology and introduce the two major applications of symmetry
group theory: reduction in computational cost of (nonlinear) eigenvalue
problems with underlying symmetries and the prediction of eigenvalue
degeneracies from the knowledge of the character table of a symmetry
group alone. Two sections focus on the two most common groups in ther-
moacoustics of annular and can-annular combustors: the rotational group
C# and the rotation-reflection group C#E . For the group C# it is elaborated
why this group generally does not exhibit degenerate modes – unless un-
der certain circumstances which introduce an additional symmetry in the
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form of time symmetry. The character table of C#E is derived from scratch
and the eigenvalue labels are discussed with respect to Bloch wave num-
bers – a label that is technically only correct for eigenvalues of group C#

– and azimuthal wave numbers. Finally, it is shown that a reduction in
computational cost, akin to Bloch-wave theory, is possible for eigenmodes
of a combustor with C#E symmetry but only for simple eigenvalues. The
article concludes with a discussion of eigenvalue splitting as predicted by
symmetry group theory for certain cases in the thermoacoustic literature.

Draft Article 9

Symmetry perturbations in a can-annular model combustor

Philip E. Buschmann, Nicholas Worth and Jonas P. Moeck
This article is in draft state with planned submission to the 39th International
Symposium of Combustion.

Draft Article 9 focuses on the role of symmetry breaking in a can-annular
model combustor. The combustor of Article 5 is operated with sets of
asymmetric blocking elements for the XTs. Thus, a reduction in symmetry
is achieved and the effect on mode localization is studied. Here, ‘localiz-
ation’ refers to a phenomena where a minority of cans exhibit large amp-
litude pulsations, while the remainder remain silent. This effect is known
for systems of weakly coupled oscillators. The reduction in symmetry is
conducted in line with the results from Draft Article 8 and takes into ac-
count all possible symmetry groups with lower symmetry until full asym-
metry is reached. Preliminary results indicate that strong localization in a
minority of cans might have occurred.



Chapter 6

Conclusions and Outlook

Linear stability analysis is an essential design tool for engineers in the gas
turbine industry. This thesis contributes to making this analysis more re-
liable by improving the numerical solution methods in a series of three
papers consisting of Article 2, Article 4 and Article 7. The two papers Art-
icle 1 and Article 3 are closely related to this work. The former shows that
eigenvalue trajectories can merge at special points in the parameter space.
At these points an infinite sensitivity of the eigenvalues to perturbations in
the parameters exists. The latter discusses eigenmodes that could – at that
time1 – only be attained computationally thanks to the methods developed
in this thesis.

Can-annular and annular combustors are the principle designs employed
in gas turbines for aircrafts or stationary power generation. These designs
exhibit discrete symmetries. The importance of these symmetries has long
been known in the thermoacoustic community. Draft Article 8 unravels
the precise implications between the symmetries and properties of ther-
moacoustic eigenpairs in the language of group theory. The machinery of
symmetry groups is established as a powerful mechanism to analyse ther-
moacoustic systems and in particular to predict eigenvalue splitting. Draft
Article 9 uses the symmetry group formalism for a can-annular combustor
experiment where the symmetry is lowered.

1For the state space framework (Emmert et al., 2016) it has since been demonstrated that
it also yields these intrinsic eigenvalues Meindl et al. (2020). In the state space framework
the original NLEVP is approximated by a linear surrogate problem, which can introduce
an error.
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The groundwork for Draft Article 9 is laid in Article 5, which contains the
first set of experimental results on this combustor and confirms a number
of theoretical predictions on eigenvalue clusters in can-annular combus-
tors. As part of characterising the combustor a linear stability analysis
is performed using methods developed in this work. The methods de-
veloped in this thesis were especially useful to compute the closely neigh-
bouring modes in the clusters. Article 6 contains a first step in formulating
a low-order model of the can-annular combustor in Article 5.

Brief outlook into nonlinear eigenvector problems

A closure of @̂ with a finite amplitude response in the form of a flame
describing function D (Noiray et al., 2008) introduces a dependency on
the amplitude – a nonlinearity in the eigenvector – to the thermoacoustic
Helmholtz equation (2.78) to yield

N (l, ?̂) = ∇ ·
(
22∇?̂

)
+ l2?̂ + D (l, |∇?̂ |) = 0 . (6.1)

As in the linear case, a solution corresponds to those pairs (l, ?̂) where the
inverse N−1 does not exist.

Finding an algorithm that returns a satisfactory closed-form solution to
Eq. (6.1) is still an open problem in thermoacoustics. Contour integration
and Householder iterations, as presented in Article 2 and Article 4, per-
mit a rapid solution of thermoacoustic NLEVPs. Can a similar success can
be achieved for problems that are nonlinear in the eigenvector? Ideally,
such an algorithm would enable the direct computation of the frequency
and amplitude of every unstable mode oscillating at a limit cycle. Sev-
eral authors have been able to compute solutions to Eq. (6.1), including
Noiray et al. (2008); Han et al. (2015); Laera et al. (2017); Mensah and Moeck
(2017b); Yang and Morgans (2018); Orchini et al. (2019). However, these
solution strategies rely on fixing the amplitude � at a reference location
and iteratively solving an NLEVP for an eigenpair. The iterative strategy
is launched from the eigenvalues of the linear stability analysis. Then, the
amplitude is increased until a traced eigenvalue crosses the real line. The
eigenvalue with Im (l) = 0 is then the oscillation frequency of the limit
cycle. Clearly, the eigenvalue is then a function of the amplitude and fol-
lows a trajectory through the complex plane. In (can)-annular combustion
chambers solutions to standing or spinning limit cycles both originate from
the same linearly unstable eigenvalue. The aforementioned authors com-
pute spinning modes by prescribing the same amplitudes at all reference
locations, and standing modes using delicate constraints.
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Since the formulation of Eq. (6.1), without any constraints on the amp-
litude, contains standing and spinning trajectories as solutions, it might be
possible to devise a strategy to compute these trajectories directly. In par-
ticular, it raises questions if the trajectories are unique, stable modes exhibit
trajectories as well and how mixed modes fit into the picture. Moreover, it
is questionable if a finite amplitude closure, as in Eq. (6.1) is justified from
a physical perspective or if a finite amplitude equation, like the equation
for ln (?) in Eq. (2.49), is required.

Open research questions with the can-annular model combustor

The employed setup has a pressure node ?̂ = 0 located at the downstream
end. Gas turbine combustors are chocked at the outlet, which is reasonably
well modelled with a pressure anti-node ∇?̂ · n = 0. Therefore, it could be
beneficial to mount a converging diverging nozzle2 to achieve this outlet
boundary condition and repeat the experiments. Care would need to be
taken not to increase the mean pressure too severely – the existing rig is
neither designed nor certified for elevated pressures.

In the experiments only one pressure transducer was mounted per injector
to record the pressure fluctuations. This choice was dictated by the avail-
able equipment. Ideally, at lest two pressure transducers would be moun-
ted in every injector tube to permit a reconstruction of the velocity fluctu-
ation inside the can or at the bluff body. Plus, one or more additional pres-
sure transducers in the plenum could be beneficial to estimate the acoustic
communication via the plenum during an instability.

Currently, there is no access to mount a pressure transducer into any of
the cross-talk segments and an entirely new coupling segment would be
required. However, with such a setup the exact level of communication –
even during the transient of an instability – could be recorded. This data
could be beneficial for analytic models for the acoustic can-to-can coupling.

A setup with # = 9 cans, while not relevant for industrial cases, could
be designed and operated fairly straightforwardly based on the existing
setup. Such a design would permit to confirm the existence and mode
orders of eigenvalue clusters with an odd number of cans.

The sintered plate that is mounted upstream to decouple the plenum acous-
tically originally belongs to a different experimental setup. Hence, the can-
annular combustor was not designed to employ it. Unfortunately, it is cur-

2Credit goes to Prof. Thomas Sattelmayer (TU Munich) for this suggestion during a
private conversation.
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rently not possible to measure the impedance of the employed plate. This
is because the transfer matrix setup that is used for impedance measure-
ments at NTNU, as conducted by Indlekofer et al. (2021a), requires a small
sample and that sample was ordered not for the specific sintered plate that
is employed in this thesis. In order to improve numerical models where
the impedance is used as an inlet boundary condition, it is suggested to
order such a sample.

During the ignition of the combustor it was observed that occasionally in
one or more cans the flame did not stabilize at the bluff bodies, but instead
approximately 15 cm downstream. The then lifted flame has a very long
flame brush. The combustor is usually thermoacoustically stable with the
lifted flame. Experience gained during the experiments suggests that the
combustor turns unstable if the flame switches to the upstream location
at the bluff-body. This switching happens stochastically but can also be
triggered by increasing the H2 content to raise the burning velocity. Hence,
it could be worthwhile to investigate this effect in detail by devising a way
to reliably control the location of the stabilization of the flame, without
changing the operating conditions. The results could be compared with
a linear stability analysis where FTFs for up- and downstream stabilized
flames are employed.
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Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors (2020).
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272.

von Saldern, J. G., Moeck, J. P., and Orchini, A. (2020). Nonlinear inter-
action between clustered unstable thermoacoustic modes in can-annular
combustors. Proceedings of the Combustion Institute, 38(4):6145–6153.

Voss, H. (2002). A rational spectral problem in fluid-solid vibration. Pre-
prints des Institutes für Mathematik.

Wolf, P., Staffelbach, G., Gicquel, L., Müller, D., and Poinsot, T. (2012).
Acoustic and large eddy simulation studies of azimuthal modes in an-
nular combustion chambers. Combust. Flame, 159:3398–3413.



98 BIBLIOGRAPHY

Wolf, P., Staffelbach, G., Roux, A., Gicquel, L., Poinsot, T., and Moureau, V.
(2009). Massively parallel les of azimuthal thermo-acoustic instabilities
in annular gas turbines. Comptes Rendus Mecanique, 337(6-7):385–394.

Worth, N. A. and Dawson, J. R. (2013). Modal dynamics of self-excited
azimuthal instabilities in an annular combustion chamber. Combustion
and Flame, 160(11):2476–2489.

Yang, D. and Morgans, A. S. (2018). Low-order network modeling for an-
nular combustors exhibiting longitudinal and circumferential modes. In
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposi-
tion. American Society of Mechanical Engineers Digital Collection.

Yokota, S. and Sakurai, T. (2013). A projection method for nonlinear eigen-
value problems using contour integrals. JSIAM Letters, 5:41–44.

Zhao, D., Gutmark, E., and Reinecke, A. (2019). Mitigating self-excited
flame pulsating and thermoacoustic oscillations using perforated liners.
Science Bulletin, 64(13):941–952.

Zhao, D. and Morgans, A. S. (2009). Tuned passive control of combustion
instabilities using multiple helmholtz resonators. Journal of sound and
vibration, 320(4-5):744–757.



Publications in full text

99



100



Exceptional points in the
thermoacoustic spectrum

101



102



Journal of Sound and Vibration 433 (2018) 124–128

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage : www.elsev ier . com/ locate / jsv i

Exceptional points in the thermoacoustic spectrum

Georg A. Mensah a, Luca Magri b,*, Camilo F. Silva c, Philip E. Buschmann d,
Jonas P. Moeck d,a

a Institut für Strömungsmechanik und Technische Akustik, Technische Universität Berlin, Berlin, Germany
b Engineering Department, University of Cambridge, Cambridge, UK
c Professur für Thermofluiddynamik, Technische Universität München, Munich, Germany
d Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway

a r t i c l e i n f o

Article history:

Received 17 April 2018

Revised 27 June 2018

Accepted 30 June 2018

Available online 20 July 2018

Handling Editor: A.V. Metrikine

Keywords:

Thermoacoustics

Defective eigenvalue

Eigenvalue sensitivity

Intrinsic thermoacoustic modes

a b s t r a c t

Exceptional points are found in the spectrum of a prototypical thermoacoustic system as the

parameters of the flame transfer function are varied. At these points, two eigenvalues and

the associated eigenfunctions coalesce. The system’s sensitivity to changes in the parameters

becomes infinite. Two eigenvalue branches collide at the exceptional point as the interaction

index is increased. One branch originates from a purely acoustic mode, whereas the other

branch originates from an intrinsic thermoacoustic mode. The existence of exceptional points

in thermoacoustic systems has implications for physical understanding, computing, modeling

and control.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

At exceptional points (EPs), at least two eigenvalues and the associated eigenfunctions coalesce, and the eigenvalue sensitiv-

ity with respect to changes in the parameters becomes infinite [1,2]. Interesting physical phenomena associated with EPs appear

across various disciplines from quantum mechanics through optics and acoustics [2–4]. To the best of the authors’ knowledge,

the role of exceptional points has not yet been explored in thermoacoustic systems, although points in the parameter space with

infinite sensitivity were discussed in a recent review article [5]. In this letter, we show that these points in the thermoacoustic

spectrum are exceptional, and that they can be found in a generic thermoacoustic system when two real parameters are varied.

1.1. Thermoacoustic instabilities

Thermoacoustic instabilities are a major challenge for the reliable operation of many technical combustion systems, as

reviewed by Ref. [5] and references therein. For most practical applications with low-Mach number combustion, thermoacoustic

phenomena can be modelled by an inhomogeneous Helmholtz equation, which reads

∇ ·
(

c2∇p̂
)
+𝜔2p̂ = −i𝜔(𝛾 − 1)̂̇q, (1)
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where 𝜔 is the complex frequency, c is the mean speed of sound, i2 = − 1, and 𝛾 is the heat-capacity ratio. p̂ and ̂̇q are the

Fourier-transformed fluctuations1 of acoustic pressure and heat release rate, respectively. Quantities are non-dimensionalized

with a characteristic length, speed of sound, and density. The heat release rate fluctuation is commonly related to a velocity fluc-

tuation at a reference position by a time-delay model [5], i.e. −i𝜔(𝛾 − 1)̂̇q = n exp(−i𝜔𝜏)∇p̂ ∣xref
, where the parameters n and

𝜏 are the interaction index and the time delay, respectively. The thermoacoustic stability problem is generally non-Hermitian

because of the flame response term and dissipative boundary conditions. On numerical discretization or travelling-wave decom-

position [5], thermoacoustic stability is governed by a nonlinear eigenvalue problem [6,7]

𝐋(𝜔;𝜺)p̂ = 0, (2)

where the vector 𝜺 ∈ ℝM contains M parameters related to, for example, the mean speed of sound, the geometry, the flame

response, and the boundary conditions. 𝐋 ∈ ℂN×N is an analytic function of 𝜺 and 𝜔 in some subdomain of ℝM × ℂ, where N is

the number of degrees of freedom of the discretized equations. For a given 𝜺, the stability of the linear system is characterized by

the eigenvalues 𝜔 = 𝜔r + i𝜔i , where 𝜔r ∈ ℝ is the angular frequency and −𝜔i ∈ ℝ is the growth rate of the linear oscillation.

With this convention, the system is linearly stable if 𝜔i > 0. The associated thermoacoustic mode shapes are provided by the

eigenvectors p̂ ∈ ℂN .

1.2. Eigenvalue classification

Eigenvalues can be classified according to their algebraic and geometric multiplicities, a and g. The algebraic multiplicity

is the eigenvalue’s multiplicity as a root of the dispersion relation, whereas the geometric multiplicity is the dimension of

the associated eigenspace, i.e. the number of linearly independent eigenvectors. An eigenvalue of (2) can be either semi-simple,

when a = g; or defective, when a > g. For the special case a = g = 1 an eigenvalue is called simple. Semi-simple eigenvalues

with g > 1 and defective eigenvalues are referred to as degenerate eigenvalues. Defective eigenvalues that are branch-point

singularities in the parameter space are called exceptional points (EPs). Eigenvalues of single-flame longitudinal thermoacoustic

systems are typically simple [5,8]. Systems with discrete rotational symmetry, such as annular and can-annular combustors,

feature semi-simple degenerate eigenvalues [6,9], with fewer simple eigenvalues.

1.3. Sensitivity at an exceptional point

Mathematically, in the neighborhood of an EP, the eigenvalue has a perturbation expansion in fractional powers of the param-

eter (Section II-2.2 in Ref. [1]), also known as Puiseux series. At an EP with a = 2 (hence g = 1), which is assumed in the

remainder of this letter, the change of the eigenvalue due to a perturbation to the i-th parameter, 𝜀i , reads

𝜔 = 𝜔EP +𝜔1

√
𝜀i − 𝜀i,EP + O

(
𝜀i − 𝜀i,EP

)
, 𝜀i → 𝜀i,EP, (3)

where 𝜔1 is a constant. Thus, the first-order sensitivity 𝜕𝜔∕𝜕𝜀i∣𝜔EP ,𝜺EP
with respect to any parameter, 𝜀i, is infinite2 [2] because

(𝜔 − 𝜔EP)∕(𝜀i − 𝜀i,EP) → ∞ as 𝜀i → 𝜀i,EP. An equivalent expansion holds for the eigenfunction at the EP.

1.4. Calculation of exceptional points in thermoacoustics

We consider a thermoacoustic system with an n−𝜏 flame model and calculate EPs as n and 𝜏 are varied. The eigenvalues are

the roots of the dispersion relation

D(𝜔;n, 𝜏) = 0, (4)

where D(𝜔;n, 𝜏) ≡ det [𝐋(𝜔;n, 𝜏)] is the characteristic function, which is transcendental and analytic in 𝜔 in some subdomain

of the complex plane. For an eigenvalue to have a = 2, (4) must be satisfied with the two following conditions

𝜕D

𝜕𝜔 (𝜔;n, 𝜏) = 0, (5)

𝜕2D

𝜕𝜔2
(𝜔;n, 𝜏) ≠ 0. (6)

The solution of the two complex-valued equations (4) and (5) is the set of parameters (nEP, 𝜏EP) and the defective eigenvalue

𝜔EP. Equations (4) and (5) would also be satisfied for degenerate semi-simple eigenvalues, such as those found in systems with

rotational symmetry. However, in systems without symmetry, which we consider here, degenerate eigenvalues are generically

defective [10]. The defective eigenvalue has algebraic multiplicity two, but there is only one associated eigenvector p̂EP.

1 e.g., a fluctuation evolves as (̂·)exp (i𝜔t).
2 This is in contrast to the semi-simple case, in which the first-order sensitivity is finite (Theorem II-2.3 in Ref. [1]).
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Table 1

Acoustic eigenvalue (in grey) and some close-by exceptional points. The parameters n

and 𝜏 are given to ten decimal places. With this precision, two eigenvalues are found to

be identical up to four decimal places.

2. A prototypical time-delayed thermoacoustic system

We consider a prototypical thermoacoustic system, which contains the essential physical mechanisms of many thermoa-

coustic systems [5]. We assume that (i) the frequency of the oscillation is smaller than the cut-off frequency of the duct, i.e. only

plane acoustic waves propagate; (ii) the duct has a sound hard end at the upstream boundary (zero acoustic pressure gradient)

and an open end at the downstream boundary (acoustic pressure node); (iii) the flame is compact, i.e. it imposes a discontinuity

in the mean temperature and acts as a point source for the acoustic field. The flame is located at the non-dimensional location

xflm = 0.6; the non-dimensional reference position, at which the acoustic velocity drives the flame, is xref = 0.5; the ratio of

the speeds of sound between the hot and cold side is 2. The reference quantities for non-dimensionalization are the length of

the duct and the speed of sound/density of the cold side. The characteristic function for this classical thermoacoustic problem

reads

D(𝜔;n, 𝜏) = n exp(−i𝜔𝜏) sin(𝜔xref) sin
(
(xflm − 1)𝜔

2

)
+ sin(xflm𝜔) sin

(
(xflm − 1)𝜔

2

)
+ 2 cos(xflm𝜔) cos

(
(xflm − 1)𝜔

2

)
.
(7)

Table 1 lists the acoustic mode (n = 0) and the EPs found in the vicinity of it by solving Eqs. (4) and (5). The EPs approach the

acoustic eigenvalue as 𝜏 increases, while the magnitude of the associated interaction index n decreases. Section 3 discusses the

eigenvalue and eigenvector sensitivity in the vicinity of the EP #1.a. The results for the other EPs in Table 1 are qualitatively

similar and not discussed in this letter.

3. Exceptional points in the thermoacoustic spectrum

Because the algebraic multiplicity of the EPs considered here is a = 2, two eigenvalues will be found in the vicinity of the

defective eigenvalue as the parameters depart from the exceptional point. In combination with the extreme sensitivity close to

the EP, the numerical computation of EPs is therefore challenging for algorithms based on fixed-point iteration, such as those

commonly used in thermoacoustic analyses. In the present work, a global contour-integral-based method proposed by Beyn

[7] is used. This method provides all the eigenvalues within a given circle in the complex plane, even if they are defective. The

integration circle has been centered at the defective eigenvalue #1.a with unit radius. This circle encloses the acoustic eigenvalue

𝜔ac ≈ 2.2273 + 0i (mode #1). Figure 1 (left panel) shows the eigenvalue trajectories in the vicinity of EP #1.a, which are

parametrized by the interaction index n for different levels of 𝜏 . When 𝜏 = 𝜏EP, while the interaction index n is varied from

zero to 3nEP, two eigenvalue trajectories (black lines) approach each other, coalesce at n = nEP and diverge eventually. This

is a manifestation of the branch-point singularity, which implies infinite parameter sensitivity. The acoustic eigenvalue 𝜔ac is

the starting point of the trajectory labeled ‘acoustic’. It is neutrally stable because the system without flame is conservative.

The trajectory coming from the opposite direction starts far away from the circle with a large positive imaginary part, which,

in contrast to the acoustic mode, corresponds to a highly damped mode. As observed in Ref. [8] (and references therein), the

physical origin of this trajectory is an intrinsic thermoacoustic (ITA) mode, which, for n ≪ 1, is highly damped and independent

of the geometry. Almost all the trajectories in the vicinity of the EP, thus, originate from either an acoustic mode or an intrinsic

mode. The exceptions to this rule are the branches I and II, which are of mixed type; thus, they cannot be unambiguously traced

back further than the EP. The investigation of these branches is left for future work. The large parameter sensitivity becomes

apparent when considering eigenvalue trajectories that do not pass across the EP. The curvature and spread of these lines show

that the parameter sensitivity becomes larger as n and 𝜏 approach the EP. Figure 1 (right panel) shows the absolute value

of the eigenvectors for different points along the exceptional branch (𝜏 = 𝜏EP). Because the exceptional point is a defective

eigenvalue, the two mode shapes collapse at n = nEP, i.e. g = 1 (black line). A small perturbation to n significantly changes the

mode shape around the EP.
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Fig. 1. Left: eigenvalue trajectories when n is varied from 0 to 3 times its exceptional value (mode #1.a in Table 1). Blue lines are for 𝜏 < 𝜏EP while orange lines are

for 𝜏 > 𝜏EP. 𝜏 varies equidistantly between 𝜏EP ± 0.2
2𝜋

real(𝜔EP )
. The darker the shading, the closer the values are to the exceptional point. The black lines represent the

trajectories for 𝜏 = 𝜏EP; their intersection corresponds to the EP. The colored arrows indicate the direction of increasing n. The thin grey lines highlight solutions for

constant n. The markers on the black line depict values of n ranging equidistantly from 0 to 2nEP. Only solutions inside the circle are shown. Right: the eigenvectors

corresponding to the markers on the exceptional trajectories. Acoustic branch in green, intrinsic thermoacoustic branch in yellow, exceptional branch I in red, exceptional

branch II in purple, EP in black. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

4. Discussion

Exceptional points in the spectrum of a prototypical thermoacoustic system are found and investigated for the first time, to

the best of the authors’ knowledge. In contrast to semi-simple degenerate eigenvalues, which are found in the thermoacoustic

analysis of annular combustors and have finite sensitivity, EPs do not stem from a geometric symmetry of the system. These

points are branch-point singularities in the parameter space. They have fundamental and practical implications for thermoa-

coustic stability.

• Physics: Exceptional points occur when two eigenvalue trajectories with different physical nature collide. One trajectory

originates from an acoustic mode, and the other trajectory originates from an intrinsic thermoacoustic mode.

• Numerical methods: Iterative methods based on fixed point algorithms, which are commonly used in thermoacoustic sta-

bility analysis, do not seem to be robust in the vicinity of exceptional points. A contour-integration-based approach [7]

facilitates robust computations of the thermoacoustic spectrum.

• Modeling and control: The large sensitivity at an EP may help design new control schemes to mitigate thermoacoustic insta-

bilities with small changes in the design variables. The appropriate expansion at the EP, which can be used to calculate sen-

sitivities to the system’s parameters for passive control, is in fractional powers of the parameters. Robust control schemes

will be necessary around exceptional points because small uncertainties in the parameters are exceedingly amplified.

Future research will be aimed at establishing the universality of EPs in thermoacoustic systems, investigate the role of EPs in

systems with discrete rotational symmetry, and exploit the properties of EPs, e.g. the large sensitivity to parameters, for control

of instabilities.

Acknowledgements

L.M. gratefully acknowledges support from the Royal Academy of Engineering Research fellowship.

References

[1] T. Kato, Perturbation Theory for Linear Operators, second ed., Springer Berlin/Heidelberg, New York, 1980.
[2] W.D. Heiss, The physics of exceptional points, J. Phys. A Math. Theor. 45 (44) (2012) 444016, http://stacks.iop.org/1751-8121/45/i=44/a=444016.

[3] K. Ding, G. Ma, M. Xiao, Z.Q. Zhang, C.T. Chan, Emergence, coalescence, and topological properties of multiple exceptional points and their experimental
realization, Phys. Rev. X 6 (2016) 021007https://doi.org/10.1103/PhysRevX.6.021007.

[4] V. Achilleos, G. Teocharis, O. Richoux, V. Pagneux, Non-Hermitian acoustic metamaterials: role of exceptional points in sound absorption, Phys. Rev. B 95
(2017) 144303https://doi.org/10.1103/PhysRevB.95.144303.

[5] M.P. Juniper, R. Sujith, Sensitivity and nonlinearity of thermoacoustic oscillations, Annu. Rev. Fluid Mech. 50 (1) (2018) 661–689, https://doi.org/10.1146/

annurev-fluid-122316-045125.
[6] L. Magri, M. Bauerheim, M.P. Juniper, Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part I. Sensitivity, J. Comput.

Phys. 325 (2016) 395–410, https://doi.org/10.1016/j.jcp.2016.07.032, http://www.sciencedirect.com/science/article/pii/S0021999116303278.



G.A. Mensah et al. / Journal of Sound and Vibration 433 (2018) 124–128128

[7] S. Güttel, F. Tisseur, The nonlinear eigenvalue problem, Acta Numer. 26 (2017) 1–94, https://doi.org/10.1017/S0962492917000034.

[8] C.F. Silva, K.J. Yong, L. Magri, Thermoacoustic modes of quasi-1D combustors in the region of marginal stability, in: Proceedings of the ASME 2018 Turbo-
machinery Technical Conference & Exposition, GT2018-76921, 2018, pp. 1–12.

[9] G. Mensah, G. Campa, J. Moeck, Efficient computation of thermoacoustic modes in industrial annular combustion chambers based on Bloch-wave theory,

J. Eng. Gas Turbines Power 138 (2016) 081502 (7 pages).
[10] A.P. Seyranian, O.N. Kirillov, A.A. Mailybaev, Coupling of eigenvalues of complex matrices at diabolic and exceptional points, J. Phys. A Math. Gen. 38 (2005)

1723–1740.



108



Solution of Thermoacoustic
Eigenvalue Problems with a
Noniterative Method

109

Not included due to copyright restrictions. Available at http://dx.doi.org/10.1115/1.4045076



122



Intrinsic thermoacoustic modes
in an annular combustion
chamber

123



124



Combustion and Flame 214 (2020) 251–262 

Contents lists available at ScienceDirect 

Combustion and Flame 

journal homepage: www.elsevier.com/locate/combustflame 

Intrinsic thermoacoustic modes in an annular combustion chamber 

Philip E. Buschmann 

a , ∗, Georg A. Mensah 

b , Jonas P. Moeck 

a 

a Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway 
b CAPS Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland 

a r t i c l e i n f o 

Article history: 

Received 16 July 2019 

Revised 7 November 2019 

Accepted 7 November 2019 

Available online 13 January 2020 

Keywords: 

Thermoacoustic instabilities 

Combustion dynamics 

Annular combustor 

Intrinsic thermoacoustic modes 

a b s t r a c t 

Thermoacoustic instabilities originate from the interaction of unsteady heat release rate associated with 

flames and the acoustic modes of a combustor. A feedback loop not involving the natural acoustic modes 

has been observed in single-flame configurations with anechoic terminations: an acoustic wave emit- 

ted by the flame travels upstream, and the associated velocity fluctuation again excites the flame. This 

feedback cycle gives rise to thermoacoustic modes intrinsic to the flame. An analytical model for an an- 

nular thermoacoustic system is formulated, and the existence of intrinsic modes of various azimuthal 

orders is demonstrated. The spectrum of an annular combustor is computed with a three-dimensional 

thermoacoustic Helmholtz solver. The configuration resembles those commonly found in gas turbines. In 

addition to the observations in previous studies, numerous intrinsic modes are found, with frequencies 

close to the lowest acoustic modes. All of the intrinsic modes can be grouped into clusters, at frequen- 

cies corresponding to multiples of the inverse flame response time delay. It is demonstrated that the 

newly observed intrinsic modes belong to the same mechanism that has recently been studied in single- 

sector/flame configurations. An analysis of the evanescent character of cut-off azimuthal modes explains 

the pattern in the spectrum. The underlying physical mechanism is generically present in any annular 

combustion chamber and a possible source of instability. 

© 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Modern combustion systems with high power densities, such 

as rocket engines and gas turbines, are prone to an unstable cou- 

pling between acoustic waves and the fluctuating heat release rate 

generated by one or multiple flames. In particular, annular com- 

bustion chambers enable high power densities in a compact fash- 

ion [1] . This combination is especially advantageous in aerospace 

applications where weight reduction is essential, but it is also fa- 

vored in many stationary applications since the small surfaces in 

the combustor require minimal cooling. A positive feedback loop 

between the fluctuating heat release rate and the acoustic waves 

causes a growth in amplitude of the pressure oscillation: a ther- 

moacoustic instability (TAI) manifests in the system. Combustion 

instabilities resulting from thermoacoustic interaction cause signif- 

icant mechanical wear and potentially result in catastrophic failure 

of the combustion system [2] . Avoiding this undesirable unsteady 

phenomenon is, thus, crucial for gas turbine operation. 

Numerical modeling tools are essential in identifying designs 

that are susceptible to TAIs at an early stage. Modeling of 

∗ Corresponding author. 

E-mail address: philip.e.buschmann@ntnu.no (P.E. Buschmann). 

TAIs can be conducted based on large-eddy simulations (LES) 

[3,4] , linearized Navier–Stokes/Euler equations [5,6] , thermoacous- 

tic Helmholtz models [7] or low-order acoustic networks [8–10] . 

Solving the three-dimensional thermoacoustic Helmholtz equa- 

tion has been successful in predicting TAIs in realistic configura- 

tions [11–13] , with significantly smaller numerical cost than LES, 

but having fewer modeling assumptions than network-based ap- 

proaches. Linear stability analysis of the thermoacoustic system 

solves for the thermoacoustic modes, the complex eigenfrequen- 

cies ω with associated mode shape (or eigenfunction) ˆ p , and de- 

termines whether these are amplified or attenuated in time. In the 

present work, we refer to a pair 
(
ω, ˆ p 

)
as a mode . The design of 

the system is geared towards achieving thermoacoustic stability by 

ensuring that all modes are damped. Evidently, this requires com- 

puting all ω ∈ C in a relevant frequency range. 

1.1. Thermoacoustic feedback mechanisms 

Fluctuations in the heat release rate of the flame in a com- 

bustor generate pressure waves. These are reflected at the bound- 

aries and travel back to cause a new perturbation of the flame 

[14] . This feedback loop is usually related to the natural acous- 

tic resonance frequencies of the combustion system. From a mod- 

eling perspective, the Helmholtz equation describing the purely 

https://doi.org/10.1016/j.combustflame.2019.11.006 

0010-2180/© 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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acoustic system is extended with a feedback term accounting for 

the active flame effect. This feedback term is commonly expressed 

in terms of the flame transfer function and, thus, depends nonlin- 

early on the eigenfrequency, but linearly on the mode shape. The 

flame feedback causes a shift in frequency and amplification or at- 

tenuation of the resonant modes. If the flame feedback is consid- 

ered as a perturbation of the purely acoustic system, the thermoa- 

coustic modes of acoustic origin are expected to be in the vicinity 

of the purely acoustic resonance frequencies. 

In recent experiments, Hoejimakers [15] introduced anechoic 

terminations to a single-flame setup and observed the manifes- 

tation of a TAI. These experimental results are surprising in the 

sense that an increased damping at the boundaries, due to the ane- 

choic terminations, renders the system unstable – a situation that 

appears paradoxical. As Hoejimakers [15] interrupted any acoustic 

feedback via the boundaries, an independent mechanism must be 

responsible for the onset of the TAI. Analysis of network models 

by Hoeijmakers et al. [16] , Bomberg et al. [17] , and Emmert et al. 

[18] showed that another feedback loop exists that does not re- 

quire acoustic wave reflection at the boundaries. Instead, this so- 

called intrinsic feedback loop rests on the velocity fluctuation as- 

sociated with the flame-emitted acoustic wave traveling upstream. 

Thus, the mechanism does not require acoustic reflection at the 

boundaries, as demonstrated by [19] based on an explicit solution 

and is solely a property of the flame response to acoustic pertur- 

bations. Consequently, the thermoacoustic modes associated with 

this mechanism are termed intrinsic (to the flame). Courtine et al. 

[20] gave a physical explanation for the intrinsic thermoacoustic 

mechanism based on a DNS study. Courtine et al.’s study in time- 

domain clearly shows how the intrinsic feedback loop is confined 

locally to the domain of the burner mouth. 

Previous work [15,16,18,19] showed that in a one-dimensional 

Rijke tube with anechoic terminations, thermoacoustic modes, 

which must be intrinsic for this kind of system, have the analyt- 

ical solution 

1 

ω = 

π( 2 j + 1 ) 

τ
− i 

τ
ln 

(
n̄ 

1 + ξ

)
, j ∈ N 

+ , (1) 

with ξ = 

ρcold c cold 
ρhot c hot 

. τ is the time delay associated with the flame 

response to acoustic perturbations; n̄ is the interaction index de- 

scribing the gain of the response; ρ and c are mean density and 

mean speed of sound, respectively. The analytical solution exhibits 

two properties. First, high attenuation for a weakly interacting 

flame: 

Im ω → ∞ , as n → 0 , (2) 

and, second, an equidistant frequency spacing �f on the real line 

between adjacent modes (of orders j + 1 and j ), proportional to the 

inverse of the flame time delay: 

� f = Re 
(
ω 

j+1 − ω 

j 
)
/ 2 π = 1 /τ . (3) 

Recently, Mukherjee et al. [19] revisited McManus et al.’s model 

of the Rijke tube with reflective boundary conditions [21] . In the 

limit of a vanishing interaction index ( n → 0) Mukherjee et al. 

showed that strongly damped intrinsic modes have solution Eq. 

(1) , in spite of the fact that the model does not feature anechoic 

terminations. 

It will be demonstrated in Section 3 and Section 5 that intrin- 

sic modes of azimuthal type exist in annular combustion chambers 

with reflective boundary conditions. These modes interact with 

their respective cut-off frequencies. Strongly cut-off modes show 

an equidistant frequency spacing on the real line ( Eq. (3) ) even 

1 We use a Fourier transform such that a time derivative ∂ t p ′ is mapped to +i ω ̂ p 

in frequency domain, see Section 2 . 

for non-vanishing n . This is a peculiarity of annular combustors 

since in the single-flame setup with reflective boundary conditions, 

Eq. (1) only holds for intrinsic modes if n → 0, as shown by 

Mukherjee et al. [19] . Moreover, the acoustic resonance frequencies 

serve as no indicator for the intrinsic modes, and cut-on intrinsic 

modes are observed in close proximity to modes of acoustic ori- 

gin. Orchini et al. [22] and Buschmann et al. [47] report intrinsic 

modes in annular chambers but do not explain their occurrence. 

To the best of the authors’ knowledge, the connection of the in- 

trinsic mechanism with azimuthal cut-off frequencies has not yet 

been investigated in annular combustion chambers. 

Recent studies focused on the intrinsic mechanism in single- 

flame configurations, where it was established that intrinsic modes 

can be the cause of TAIs and need to be taken into account by 

numerical tools [23–25] . Our findings imply an equal importance 

for the computation of intrinsic modes in annular combustors. 

1.2. Numerical solution of nonlinear eigenvalue problem using 

contour integration 

Previous studies in similar settings of annular combustors 

[11,26–30] exclusively identified modes as belonging to the acous- 

tic feedback mechanism. It is possible, though, that intrinsic modes 

were computed but not identified as such. In a recent review 

article [13] on thermoacoustic instabilities in annular combus- 

tion chambers, intrinsic modes were not mentioned as potential 

sources of instabilities; however, the general relevance of intrinsic 

modes to annular chambers is pointed out in the review article [1] . 

The eigenfrequencies ω are obtained as solutions to a nonlin- 

ear eigenvalue problem (NLEVP). In general, NLEVPs cannot be cast 

into a form that permits an explicit solution. In thermoacoustics, 

NLEVPs are usually solved by employing a locally convergent fixed- 

point strategy, initially proposed by [7] for Helmholtz solvers. This 

approach requires adequate initial values, such as acoustic reso- 

nance frequencies for the modes associated with the conventional 

feedback mechanism; however, suitable initial guesses for intrinsic 

modes are more difficult to provide. In the present work, a nu- 

merical solution strategy for the NLEVP was chosen that is fun- 

damentally different from the commonly employed iterative tech- 

niques. This alternative method is based on contour integration 

and was suggested by Beyn [31] . It is a global strategy and deter- 

mines all eigenfrequencies in a specified domain in the complex 

plane, inside a defined contour. In related work [47] , the fixed- 

point method [7] and Beyn’s method based on contour integra- 

tion [31] are compared in detail with respect to their application to 

NLEVPs arising in thermoacoustics. A combination of Beyn’s global 

solution algorithm and subsequent iterative local refinements 2 is 

used to solve all NLEVPs considered in this article. We emphasize 

that this strategy was essential in finding the intrinsic modes that 

are the main topic of the present work. Incidentally, it was the in- 

terest in Beyn’s global algorithm for the solution of NLEVPs that 

led the present authors to the discovery of the patterns of intrinsic 

modes discussed in the remainder of this article. 

1.3. Outline of this work 

The thermoacoustic Helmholtz equation, which is the basis for 

an analytical study and the FEM formulation, is introduced in 

Section 2 . In Section 3 an analytical model of an annular cavity 

with a flame is formulated. This elementary model exhibits intrin- 

sic modes of various azimuthal mode orders, which form a dis- 

tinct pattern. A model of the MICCA combustor is formulated in 

2 For network models, this iterative local refinement is based on numerical so- 

lutions of the characteristic equation; for the FEM models, traditional fixed-point 

iteration is used for this purpose. 
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Section 4 . A qualitatively similar pattern of intrinsic modes is ob- 

served in the numerical study of the MICCA combustor, Section 5 . 

It is explained how the intrinsic modes in the MICCA combustor 

originate from the intrinsic mechanism observed in axial systems. 

In Section 6 , implications of intrinsic modes for stability analysis 

in annular combustion chambers are discussed. 

2. Thermoacoustic model 

The transport equations for mass, momentum and entropy can 

be linearized and then recombined into a wave equation for the 

pressure fluctuation p ′ , see [7] . Transforming the wave equation for 

the pressure fluctuations into frequency domain (with the conven- 

tion ∂ t p ′ �→ +i ω ̂  p for the Fourier transform) yields the thermoa- 

coustic Helmholtz equation [7] : 

∇ ·
(
c 2 ∇ ̂  p 

)
+ ω 

2 ˆ p = −i ω ( γ − 1 ) ̂  q , (4) 

where c is the field of the speed of sound and γ the ratio of spe- 

cific heats (which is assumed to be constant). The Fourier trans- 

forms of the pressure and the heat release rate fluctuations are de- 

noted by ˆ p and ˆ q , respectively. Stability of the thermoacoustic sys- 

tem is determined by the eigenfrequencies ω ∈ C , where the real 

part of ω corresponds to the angular oscillation frequency and the 

negative imaginary part to the growth rate of the mode. A mode is, 

hence, linearly stable if Im( ω) > 0, and the perturbation associated 

with this mode experiences exponential decay in the long-time 

limit. Overall thermoacoustic stability requires all modes to be 

damped. Since modes corresponding to higher oscillation frequen- 

cies typically experience stronger damping due to visco-thermal ef- 

fects, practical stability analysis is usually restricted to modes be- 

low a threshold frequency. A reasonable choice for a threshold is 

highly problem-specific and its selection remains at the engineer’s 

discretion. 

Equation (4) is closed by relating ˆ q linearly to a velocity fluctu- 

ation 

ˆ u at an upstream reference position x ref via a flame transfer 

function (FTF) F ( ω ) : 

ˆ q = 

Q̄ 

u b V f 

F ( ω ) ̂  u ref · n ref . (5) 

Here, Q̄ denotes the mean global heat release rate and u b the bulk 

velocity. In Section 3 the fraction Q̄ /u b is expressed in terms of 

a volumetric flow rate and the flame-induced temperature jump, 

while in Section 4 values from a measurement of Laera et al. 

[29] are employed. In the discrete model, a domain of volume V F 

is specified which represents the flame and where the FTF acts as 

a volume source. The linearized momentum balance permits to ex- 

press ˆ u in terms of ˆ p : 

−i ω ̂

 u = 

1 

ρ0 

∇ ̂  p , (6) 

and, thus, Eq. (4) can be expressed in ˆ p alone, if F ( ω ) is known 

(e.g. from measurements, large-eddy simulations or an analytical 

model). 

In the present study, the n –τ model, initially proposed by [32] , 

is employed: 

F ( ω ) = ne −i ωτ , (7) 

where the interaction index n and time delay τ have to be speci- 

fied. With suitable acoustic boundary conditions, Eqs. (4) –(7) form 

a closed problem that can be solved numerically; this is the sub- 

ject of Section 4 . 

3. Theoretical analysis of an elementary model problem 

In this section, we show that intrinsic modes of different az- 

imuthal mode orders exist in an analytical model of an annular 

Fig. 1. Schematic depiction of the annular model. A flame zone at x F = L/ 2 spans 

the entire circumference and splits the domain into a cold and a hot zone: with c 1 
and c 2 . The reference position for the n –τ model is assumed to be in the cold zone 

x ref < x F . 

combustion chamber and, strikingly, exhibit a pattern which is en- 

countered in the 3D model of Section 5 . This elementary model in- 

dicates that intrinsic modes generally exist in annular combustion 

chambers. 

A model for an annulus is formulated with a pressure node 

at the outlet and a pressure anti-node at the inlet, see Fig. 1 . 

Network models for annular combustion chambers were studied 

by [8,33,34] ; however, the present model is considerably simpler. 

An active flame that is distributed homogeneously around the cir- 

cumference is placed at some axial position. For an azimuthal 

wavenumber m = 0 , by setting x ref = L/ 2 and by neglecting the ef- 

fect of heat release on mean flow quantities, this model reduces 

to the well-known one-dimensional thermoacoustic resonator, the 

Rijke tube, studied in [19,21] . 

3.1. Analytical model for a thin annulus with circumferential flame 

zone 

Consider an annulus of radius R and length L with a centrally 

positioned flame zone over the entire circumference that sepa- 

rates the annulus into a cold and a hot zone, see Fig. 1 . The 

ideal gas law for the speed of sound c = 

√ 

γ R̄ T with γ = 1 . 4 and 

R̄ = 288 . 68 J kg 
−1 

K 

−1 is used in the hot and cold zones. The radial 

dimension is neglected, and the flame response is modelled by the 

n –τ model with the location of the reference position x ref in the 

cold zone left arbitrary. 

In both zones, the problem is governed by the purely acoustic 

Helmholtz equation: 

∇ 

2 ˆ p + 

(
ω 

c 

)
2 ˆ p = 0 , (8) 

which motivates a separation ansatz in each zone: 

ˆ p 1 ( x, θ ) = X 1 ( x ) �( θ ) , x ≤ L/ 2 (9) 

ˆ p 2 ( x, θ ) = X 2 ( x ) �( θ ) , L/ 2 < x ≤ L . (10) 

The azimuthal coordinate spans the right-open interval θ ∈ [0, 

2 πR ). It is assumed that the flame induces a jump in the axial 

acoustic velocity component alone and, thus, the azimuthal func- 

tion �( θ ) is identical in ˆ p 1 and ˆ p 2 . The matching conditions at 

the flame location x F are the jump (denoted by square brackets) in 

acoustic velocity: [
c 2 

d ̂  p 

d x 

]∣∣∣∣L/ 2+ 

L/ 2 −
= Q ( ω ) , (11) 
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Fig. 2. Intrinsic modes in the stable half-plane for x ref = L/ 2 − 0 . 05 m and n = 0 . 05 ( ̄n = 3 n ). The intrinsic modes of different azimuthal mode orders fan out. For every 

azimuthal mode order, there exist also thermoacoustic modes of acoustic origin close to the real axis (not depicted here). The clusters are separated by a distance of 

�f ≈ 1/ τ , when the modes of highest azimuthal mode order are compared. Cluster 1 is 5 Hz off from the value f = 1 / 2 τ of Eq. (1) for j = 0 . Cut-off frequencies in plenum 

(PL) and combustion chamber (CC) are computed according to the analytic expression in [14] and drawn as vertical gray dash-dotted lines. 

with the response given by the n –τ model: 

Q ( ω ) = 

γ p 0 
ρ0 

(
T 2 
T 1 

− 1 

)
︸ ︷︷ ︸ 

ˆ Q 

ne −i ωτ d ̂  p 

d x 

∣∣∣∣
x ref 

, (12) 

and continuity in ˆ p : 

ˆ p 1 | L 
2 

= ˆ p 2 | L 
2 
. (13) 

Note that the interaction index here is defined differently com- 

pared to McManus et al. [21] : 

n̄ = 

(
T 2 
T 1 

− 1 

)
n , (14) 

where n̄ corresponds to the interaction index “n ” in McManus et al. 

[21] , which has also been noted by [19] . The formulation in Eq. 

(12) is consistent with the definition in Eq. (7) , which is employed 

in the FEM model later on. 

Inserting Eq. (9) and Eq. (10) into Eq. (8) allows a separation of 

variables. The axial wavenumbers k j and the azimuthal wavenum- 

ber k θ are introduced to formulate the solvability condition as: (
ω 

c j 

)2 

= k 2 j + k 2 θ , j = 1 , 2 . (15) 

The ansatz Eq. (9) and (10) for every half j = 1 , 2 takes the form: 

ˆ p j = 

(
A j e 

i k j x + B j e 
−i k j x 

)(
Ee i k θ θ + F e −i k θ θ

)
. (16) 

The constants A 1 , B 1 , A 2 , B 2 and an expression for the azimuthal 

wavenumber k θ are determined by evaluating the boundary and 

matching conditions. The constants E and F in the ansatz for the 

azimuthal component cannot be determined for eigenfrequencies 

of azimuthal type due to their degeneracy. The solution has to be 

2 πR periodic, hence: 

k θ = 

m 

R 

, m ∈ Z , (17) 

where m is the azimuthal wavenumber, which has to be specified. 

Equation (15) needs to be rearranged to obtain expressions for k j 
as functions of ω and the parameter m . One of the two branches 

of the square root needs to be selected. The negative choice 

k j = −i PV 

√ (
m 

R 

)
2 −

(
ω 

c j 

)
2 , j = 1 , 2 , (18) 

guarantees that evanescent waves have Im( k j ) ≤ 0 and decay ex- 

ponentially, which is the physical choice. The principle value (PV) 

of the complex square root is employed since the argument is 

complex-valued and therefore gives two solutions. The present 

choice yields the solution with positive real part, i.e. in the right 

half plane. For further details see [35] . 

With the chosen boundary conditions and the matching con- 

ditions, the homogeneous linear system of equations is defined 

through the matrix ⎛ 

⎝ 

0 e −i k 2 L e i k 2 L 

e −i k 1 
L 
2 + e i k 1 

L 
2 −e −i k 2 

L 
2 −e i k 2 

L 
2 

L 31 ( ω, m ) −c 2 2 ( i k 2 ) e 
−i k 2 

L 
2 c 2 2 ( i k 2 ) e 

i k 2 
L 
2 

⎞ 

⎠ 

︸ ︷︷ ︸ 
L ( ω,m ) 

. (19) 

The element 

L 31 ( ω, m ) = −c 2 1 

[ 
( −i k 1 ) e 

−i k 1 
L 
2 + ( i k 1 ) e 

i k 1 
L 
2 

] 
− ˆ Q ne −i ωτ

[
( −i k 1 ) e 

−i k 1 x ref + ( i k 1 ) e 
i k 1 x ref 

] (20) 

contains the active flame effect. The linear system of equations for 

the coefficients B 1 , A 2 , and B 2 thus reads 

L ( ω, m ) 

( 

B 1 

B 2 

A 2 

) 

= 0 . (21) 

with A 1 = B 1 due to the pressure anti-node at the inlet. It is in- 

teresting to note that the matrix in Eq. (21) is identical to the 1D 

case [19] . The only difference is the relation between the eigenfre- 

quency ω and the axial wavenumbers k 1 and k 2 , which now in- 

volves the azimuthal wavenumber m . The 1D formulation is recov- 

ered for m = 0 . For fixed m , Eq. (21) exhibits non-trivial solutions 

only for certain values of ω, the eigenvalues, which are computed 

numerically in the next section. 

3.2. Numerical solution of the analytical model 

Eigenvalues ω of the annular model are computed by solving 

the dispersion relation det L ( ω, m ) = 0 . The physical parameters 

are chosen similar to the numerical study of the MICCA combustor 

in Section 4 , viz. τ = 1 . 54 ms , T 1 = 300 K , T 2 = 1200 K ; see Fig. 1 for 

the geometrical dimensions. The analytic model is not meant to 

represent the MICCA quantitatively. 

Figure 2 shows eigenvalues of Eq. (21) for different azimuthal 

mode orders m in the complex plane. The mode order m can be 

selected arbitrarily high, but for the sake of presentation, only 

modes up to azimuthal order m = 10 are shown. The interaction 

index is set to n = 0 . 05 ( ̄n = 3 n ), to remain close to the limit of 
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Fig. 3. Eigenvalues of cluster 1 depicted in Fig. 2 (triangles) and of a longer model 

(squares) of twice the length with the flame zone at 1/8 of the total length (instead 

of half). All other parameters are identical. The location of the flame zone and the 

length of the acoustic resonator have no effect on the intrinsic modes of higher 

azimuthal orders. 

a weakly interacting flame. Only the part of the complex plane 

with high damping rates is depicted to focus on strongly damped 

modes. Later on it is demonstrated that these modes are of intrin- 

sic origin and will, hence, be termed intrinsic even though non- 

anechoic boundary conditions are employed throughout this work. 

Any mode of a model with an active flame ( n > 0) is gener- 

ally referred to as thermoacoustic . This work classifies thermoa- 

coustic modes by their behavior as n → 0 into either acoustic 

(Im( ω) → 0) or intrinsic ( Im ( ω ) → + ∞ ). This definition will be 

further explained in the next section. A precise definition of the 

terms intrinsic, acoustic and thermoacoustic modes , and the degree 

to which these overlap is outside the scope of this work (but see 

[36] and [22] for a more detailed discussion of these terms). Eigen- 

values of acoustic origin are located close to the real axis due to 

the small interaction index. 

A clear pattern is visible: modes of increasing azimuthal or- 

der line-up at certain real frequencies, forming clusters . These clus- 

ters are separated by approximately � f = 1 /τ, consistent with 

Eq. (3) . The exact value between clusters 1 and 2 (2 and 3) is 

τ12 = 1 . 510 ms ( τ23 = 1 . 508 ms ), measured between modes of high- 

est azimuthal order shown. The first cluster is at 329.70 Hz, which 

is close to the value of the first intrinsic mode 1 / 2 τ = 324 . 68 Hz 

according to Eq. (1) . In addition, the lower the azimuthal mode or- 

der, the further away a mode is from the rests of its respective 

cluster. 

Figure 3 shows a peculiarity between models with different ge- 

ometries: modes of lower order differ between configurations, but 

modes of higher order are essentially identical. Thus, for an intrin- 

sic mode the azimuthal order plays a role in the independence on 

the acoustic properties of the system. The discussion of the pecu- 

liarities of the eigenvalue pattern observed here are postponed un- 

til Section 5 , where they are observed in the 3D MICCA combustor. 

4. Numerical calculation of intrinsic modes in the MICCA 

annular combustor 

The MICCA configuration, an annular model combustor at Lab- 

oratoire EM2C (CentraleSupélec), consists of 16 burners. It is now 

analyzed numerically for the presence of intrinsic modes. 

4.1. Model of the MICCA combustor 

The geometry and experimental data of Laera et al. [29] are 

used for the numerical model. Following Laera et al. [28] , two ge- 

ometric changes are made to the discrete model as compared to 

the actual experiment: an end-correction is added to the combus- 

Fig. 4. Cut view of a single burner in the MICCA combustor, including all geometric 

dimensions. The dashed line is the symmetry axis. All boundaries are set as rigid 

walls, except for the outlet where a pressure node is prescribed. The subscripts re- 

fer to: combustion chamber (CC), end correction (corr), flame (F), perforated plate 

(pp), burner (b) and plenum (PL). Temperatures are set as constant in combustion 

chamber and plenum. 

Table 1 

The first three azimuthal cut-off frequencies f c m in the combustion chamber ac- 

cording to the analytic expression in [14, p. 138] for an annular geometry. In addi- 

tion, the acoustic resonance frequencies of the MICCA combustor below 1700 Hz are 

given. The azimuthal mode orders m are given, and it is specified in which cavity 

the modes are dominant. The plenum-dominant modes are of Helmholtz type (ap- 

proximately constant in axial direction), while the CC-dominant modes exhibit an 

axial quarter-wave structure. The ninth mode (not shown) exhibits a minor radial 

variation but is still of radial order zero. 

Index f in Hz m Dominant in 

P1 332.09 0 Plenum 

P2 471.35 1 Plenum 

P3 730.70 2 Plenum 

P4 816.64 0 CC 

P5 1018.72 3 Plenum 

P6 1028.00 1 CC 

P7 1316.86 4 Plenum 

P8 1499.78 2 CC 

P9 1618.79 5 Plenum 

f c m =1 633.60 1 CC 

f c m =2 1266.78 2 CC 

f c m =3 1899.04 3 CC 

tor outlet, and the burner is modeled in a simplified manner, as a 

stack of two cylinders. Figure 4 shows the geometry and indicates 

the speeds of sound, which are set as constant in their respective 

cavities. Table 1 lists cut-off frequencies for the azimuthal modes 

of first, second and third order in the combustion chamber. 

A pressure node ˆ p = 0 is prescribed at the outlet; all other 

boundaries are set as rigid walls. The active flame parameters n 

and τ are taken from the experimental flame-describing function 

of [27] . From data for the lowest forcing amplitude ( u ′ /u 0 = 0 . 1 ), 

the average gain is approximately n = 0 . 9 . Linear regression of the 

phase gives τ = 1 . 54 ms . The reference points for the n –τ model 

are positioned just at the inlet to the lower cylinder in the central 

axis of each respective burner. The flames are modeled as a flat 

zone spanning the floor of their individual segment with height 

l F = 4 mm . An average heat release rate of Q̄ = 1 . 44 kW per flame 

and a mean bulk flow velocity u b = 0 . 49 m/s are set according to 

[28] . To ensure that the discrete model inherits the discrete rota- 

tional symmetry of the actual combustor, the mesh of a half cell 

of a single combustor is first mirrored and then copied around the 

circumference. The mesh of the full discrete model has 38.7 k de- 

grees of freedom. 
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Fig. 5. Intrinsic and acoustic modes in the spectrum of the MICCA combustor below 1700 Hz. There are three types of acoustic modes: axial (white squares), azimuthal 

plenum-dominant (circles) and azimuthal CC-dominant (diamonds). Three clusters of intrinsic CC-dominant modes are observed: 1, 2 and 3 ( � , � and � ). The color of the 

modes corresponds to the respective azimuthal mode order, starting with m = 0 (white, axial mode) then m = 1 (yellow) and up to m = 8 (darkest purple). The dash-dotted 

boxes mark the windows in the complex plane which are shown enlarged as insets. The paths of the intrinsic modes as functions of n are not depicted here but in Fig. 6 . 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

4.2. Nonlinear eigenvalue problem 

The terms in Eq. (4) , closed with Eq. (7) are discretized using 

linear finite elements in the solver PyHoltz [37] , to yield a matrix- 

valued equation: 

Kp + ωCp + ω 

2 Mp + ne −iωτ Qp = 0 , (22) 

K , C , M , Q ∈ C 

d×d , p ∈ C 

d×1 . 

Matrices K and M are the stiffness and mass matrices, respec- 

tively, while C is related to the boundary impedance Z (here Z = 0 

for the pressure node at the outlet; rigid walls enter the FEM 

formulation as natural boundary conditions) and Q is associated 

with the acoustically active flame. The complex-valued matrices 

have dimension d , the number of nodes in the mesh. Equation 

(22) contains the parameters, boundary conditions and flame re- 

sponse, which were listed in the previous section for the MICCA 

combustor. 

The purely acoustic modes (or passive modes) are computed as 

solutions to Eq. (22) when n = 0 , but there is still an increase in 

the mean temperature across the location of the flame. For the 

MICCA combustor, these modes are listed in Table 1 . Solutions with 

n > 0 are referred to as active modes. 

Equation (22) constitutes a nonlinear eigenvalue problem 

(NLEVP), which is commonly written as: 

L ( ω ) p = 0 . (23) 

The solutions are the eigenpairs ( ω, p ); at the eigenvalues ω , L ( ω ) 

is not invertible. The set of all eigenvalues of L is referred to as the 

spectrum. Properties of and solution strategies for general NLEVPs 

arising in disciplines outside of thermoacoustics are reviewed in 

[38] and [39] . 

In the following, L ( ω) is also considered as a function of the 

parameter n , hence written as L ( ω; n ) p = 0 . Since L ( ω; n ) depends 

continuously on n , see Eq. (22) , the eigenvalues are also contin- 

uous functions of n , see [40] . This property facilitates a nearest- 

neighbour continuation of the eigenvalues as functions of n and a 

definition of the origin of a mode as acoustic or intrinsic, depend- 

ing on whether the mode trajectory parameterized in n tends to 

an acoustic or and intrinsic mode when n → 0. 

5. Results and discussion 

The MICCA combustor exhibits 9 distinct acoustic resonance 

frequencies below 1700 Hz, see Table 1 . Since the boundary condi- 

tions are ideal (fully reflective) and no damping is included, for 

n = 0 L ( ω) is self-adjoint, and all passive modes are purely real- 

valued. The ninth mode exhibits a minor radial variation (not 

shown) but is still of radial order zero. In addition, the first three 

azimuthal cut-off frequencies f c m 

in the combustion chamber are 

given according to the analytic expression in [14] for an annular 

geometry. 

5.1. The complete spectrum below 1700 Hz 

Figure 5 shows the spectrum below 1700 Hz, and Table 2 con- 

tains the full list of active modes. The active flame effect ( n > 0) 

induces a shift in frequency and causes amplification/attenuation 

of the passive modes. Consequently, the eigenvalues depart from 

the real axis and enter the complex plane as active modes. This 

behavior is tracked by gradually increasing n ∈ [0, 0.9] with a 

nearest-neighbour (NN) continuation and shows which modes are 

of acoustic origin for the final value n = 0 . 9 . The stable and unsta- 

ble half-planes are considered in the range Im (ω/ 2 π) = ±240 s −1 . 

No modes immediately outside this range of growth/attenuation 

rates were observed. The numerical methods and employed pa- 

rameters are detailed in Appendix A . 

In total, 34 distinct modes (not counting multiplicity) are com- 

puted – a significantly higher mode density than previously re- 

ported in similar studies. Via NN-continuation, modes of acoustic 

origin are identified. In addition, a complementary set of intrin- 

sic modes is observed. Azimuthal mode orders are counted from 

m = 0 to m = 8 in order to group the intrinsic modes into three 

clusters. As an additional criterion for grouping the modes, the in- 

teraction index n is decreased towards zero, and it is determined 

whether all modes originate from the same region in the stable 
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Fig. 6. Intrinsic modes of cluster 2 are tracked by decreasing n from 0.9 towards 

zero. Intrinsic modes are colored by their value of the interaction index n , while 

acoustic modes are colored by their azimuthal mode order as in Fig. 5 . The solid 

gray lines represent the eigenvalue loci as functions of n . The dash-dotted box 

marks the window which is shown in the enlarged inset. The modes move to 

Im f → + ∞ for n → 0. For decreasing n , the eigenvalues corresponding to differ- 

ent azimuthal mode orders move closer; in fact, as n tends to zero, all eigenvalues 

in a cluster merge. This is explained in Section 5.3 . For comparison, the frequency 

for j = 1 in Table 3 is included as a small vertical red line. Cut-on intrinsic modes 

exhibit complex paths; for example, m = 0 , 1 of cluster 2 span a wide range of os- 

cillation frequencies as a function of n , while cut-off intrinsic modes only move 

to higher damping rates. The acoustic (yellow diamond) and intrinsic (left pointing 

white triangle labelled with m = 2 ) modes do not intersect for a certain n . Both 

modes pass the same point but for a different n . (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 

half-plane (not depicted here); for details, see Fig. 6 . The latter cri- 

terion also serves as a test to exclude the possibility that a mode 

originates from an acoustic resonance frequency outside the con- 

sidered frequency window. 

At the chosen operating conditions, experiments by Durox et al. 

[41] showed that the MICCA combustor exhibits an unstable spin- 

ning mode at 457 Hz. The FEM result is consistent with this by pre- 

dicting an unstable azimuthal mode at 449 Hz, see Fig. 5 . For dif- 

ferent operating conditions, a superposition of two unstable modes 

was observed by Bourgouin et al. [42] in the form of a slanted 

mode. The slanted mode originates from an interaction between 

the unstable azimuthal mode and the neighboring unstable axial 

mode [43] . The computation predicts additional unstable acous- 

tic modes at higher frequencies, with slightly larger growth rates. 

These growth rates are likely overestimated since the model does 

not account for damping effects, which typically increase with fre- 

quency. A further potential source of discrepancy is the fitting of 

the original FDF of [27] to an n –τ model. Unstable intrinsic modes 

are predicted but these have comparatively low growth rates. The 

experimentally observed instability reported in [41] is, thus, due to 

the acoustic feedback mechanism. 

The three clusters are separated by a real spacing of � f = 1 /τ
(within almost 1 Hz for the modes of highest azimuthal order). 

This is precisely the real spacing predicted in Eq. (3) , which is 

also observed in the model problem of Section 3 . The surprisingly 

ordered pattern initially sparked the investigation into the origin 

of these modes. Modes of the first cluster line up in an orderly 

fashion. For the second cluster, this is only the case for the upper 

half of the modes, and for the third cluster, only the two modes 

of highest azimuthal order do so. If a mode is separated from its 

cluster, it also no longer adheres to the spacing � f = 1 /τ and con- 

sequently neither to the 1D result of Eq. (3) . Next, it is explained 

how azimuthal cut-off frequencies affect the separation of intrinsic 

modes from their respective clusters. 

5.2. Azimuthal intrinsic modes of evanescent type 

In acoustic waveguides, such as ducts of circular or annular 

cross section, plane waves, whose amplitude is constant over the 

duct cross section, always propagate. However, transverse waves 

propagate along the duct only at frequencies above their respec- 

tive cut-off frequency; otherwise, these waves experience exponen- 

tial decay in the axial direction – they are evanescent. The cut-off

frequency for a given transverse mode is a function of the cross- 

sectional geometry and the speed of sound [35] . For the combus- 

tion chamber in the MICCA configuration, the cut-off frequencies 

for the first and second azimuthal mode are given in Table 1 and 

plotted in Fig. 5 as vertical dash-dotted lines. Below 1700 Hz, only 

the two modes of lowest azimuthal mode order are cut-on in the 

combustion chamber. However, intrinsic modes of much higher 

mode orders are observed. 

The modes of the first cluster depicted in Fig. 5 are all below 

their respective cut-off frequencies. These modes are confined to 

the immediate vicinity of the flame, as illustrated on the basis of 

the modes of azimuthal orders 3 and 8 in Fig. 7 . A subsequent cut 

through the modes reveals their evanescent character, which in- 

creases with mode order, see Fig. 8 . 

The axial decay of an evanescent wave in the CC starts just 

downstream of the flame zone ( l F ). Based on Eq. (18) and with the 

eigenvalues ω from Table 2 , the axial amplitude distribution of an 

evanescent wave downstream of the flame takes the form 

ˆ p ( z ) ∼ e −i k ( z−l F ) , (24) 

where k is given by Eq. (18) . Figure 8 shows that the modes of 

high azimuthal order agree well with the evanescent result of 

Eq. (24) . At a given clustering frequency, the higher the azimuthal 

order of a mode, the further away it is from its associated cut-off

frequency and the stronger is the axial attenuation. This is visible 

in the mode shape as a strong exponential decay in longitudinal 

direction. If the longitudinal decay is sufficiently strong, the mode 

is unaffected by the outlet boundary condition, see the modes of 

high azimuthal order in Fig. 8 . This is an environment somewhat 

similar to anechoic boundary conditions, which were shown to fa- 

cilitate ‘pure’ intrinsic modes [16,18,19,44] . 

Table 3 lists the observed frequencies and the values pre- 

dicted by Eq. (1) . A strong similarity is evident, even though the 

cut-off modes experience very different boundary conditions. The 

stronger cut-off a mode is, the closer its frequency is to the one- 

dimensional result for anechoic terminations of Eq. (1) . The dif- 

ference in boundary conditions does not appear to affect the fre- 

quencies. However, amplification/attenuation rates do not agree: 
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Fig. 7. Real part of the azimuthal modes m = 3 , 8 of cluster 1, see Fig. 5 and Table 2 . Mode #4 is degenerate, but only one mode of the degenerate pair is depicted. The 

modes are dominant at the inlet to the combustion chamber. Mode #4, with lower azimuthal order, extends further into the CC than #9, which is of higher azimuthal order. 

This trend is confirmed for the remaining modes of cluster 1 ( m = 2 , 4 , 5 , 6 , 7 ). 

Fig. 8. Cluster 1: normalized absolute value of the pressure p over the axial coordinate along a burner axis for azimuthal modes. The colors correspond to those in Fig. 5 . 

Left: All modes are cut-off and a higher mode order corresponds to a stronger cut-off. The mode with m = 1 is just barely cut-off. Right: FEM results (solid line) and ansatz 

for evanescent waves Eq. (24) (dots). The ansatz matches well for strongly cut-off modes. Modes of lower azimuthal order are weakly cut-off and experience the pressure 

node boundary condition at the outlet: the mode shapes deviate from the purely evanescent character as Eq. (24) does not account for reflective boundary conditions. 

Table 2 

List of active modes depicted in Fig. 5 , sorted by increasing oscillation frequency. Only azimuthal mode orders m are 

listed. Except for the m = 8 modes, all azimuthal modes ( m > 0) are degenerate, with multiplicity two. Plenum modes 

are labeled with (PL), and all other modes are dominant in the CC. The two azimuthal CC modes of acoustic origin 

are highlighted in boldface . Intrinsic modes belong to one of the three clusters (symbols � , � and � in Fig. 5 .). The 

azimuthal modes m = 1 , 2 of cluster 3 are not in the considered frequency range. Between modes #9 and #21 (modes 

#21 and #32) a real spacing of � f = 650 . 37 Hz (650.12 Hz) is observed, which is approximately 1 /τ = 649 . 35 Hz . 

No. f in Hz Im 

(
ω 

2 π

)
in s −1 m cluster No. f in Hz Im 

(
ω 

2 π

)
in s −1 m cluster 

1 138.15 +82 . 79 0 1 18 974.97 +127 . 47 5 2 

2 266.07 +83 . 11 1 1 19 975.47 +142 . 86 6 2 

3 321.80 +65 . 91 2 1 20 975.57 +152 . 81 7 2 

4 324.62 +87 . 27 3 1 21 975.58 +156 . 23 8 2 

5 325.08 +111 . 46 4 1 22 1039.63 −33 . 67 3 (PL) acoustic 

6 325.19 +131 . 94 5 1 23 1250.93 +69 . 63 0 2 

7 325.21 +157 . 21 7 1 24 1298.73 −0 . 04 1 2 

8 325.21 +147 . 46 6 1 25 1301.47 +0 . 29 4 (PL) acoustic 

9 325.21 +160 . 55 8 1 26 1490.70 −114 . 07 2 a coustic 

10 384.05 −125 . 01 0 (PL) Acoustic 27 1590.47 +109 . 23 5 3 

11 449.32 −80 . 62 1 (PL) Acoustic 28 1622.36 +136 . 42 6 3 

12 686.37 +8 . 49 2 (PL) Acoustic 29 1622.91 −3 . 59 3 3 

13 830.47 −148 . 97 0 Acoustic 30 1623.78 +55 . 92 4 3 

14 910.64 −129 . 42 1 Acoustic 31 1625.35 +144 . 46 7 3 

15 924.93 +93 . 36 3 2 32 1625.70 +147 . 69 8 3 

16 971.71 +110 . 15 4 2 33 1638.85 −4 . 72 5 (PL) acoustic 

17 974.11 −34 . 66 2 2 34 1668.24 +97 . 61 0 3 

Eq. (1) gives Im ( ω/ 2 π) = +10 . 89 s −1 while all clustered intrinsic 

modes in the MICCA combustor are damped much stronger. 

Figure 5 shows that the mode of azimuthal order m = 1 is vis- 

ibly separated from the first cluster of intrinsic modes. In the sec- 

ond cluster, modes m = 1 , 2 , 3 are separated and mode m = 2 is 

even cut-on. The relation between the degree of the cut-off and 

separation from a cluster can be explained by considering the cut 

through the mode shapes in Fig. 9 . Modes m = 2 , 3 are cut-off

but the exponential decay is not strong enough: the modes still 

have to fulfill the outlet boundary condition. Modes of higher or- 

der than m = 3 have essentially decayed to zero upstream of the 

outlet. Even though a mode is cut-off, if its mode shape is affected 
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Table 3 

Frequencies according to Eq. (1) for a 1D Rijke tube 

with anechoic terminations and the frequencies of the 

intrinsic modes in the MICCA combustor with the 

most strongly evanescent character (highest azimuthal 

mode order in their respective cluster) from Table 2 . 

j = 0 j = 1 j = 2 

π( 2 j+1 ) 
τ 324.68 Hz 974.03 Hz 1623.38 Hz 

cluster 1 cluster 2 cluster 3 

m = 8 325.21 Hz 975.58 Hz 1625.70 Hz 

Fig. 9. Cluster 2: normalized absolute value of the pressure p over the axial coor- 

dinate along a burner axis for intrinsic modes of different azimuthal orders. Mode 

m = 1 is cut-on and exhibits a quarter-wave shape. Modes m = 2 , 3 are cut-off but 

the exponential decay is not sufficiently strong so that they are affected by the pres- 

sure node at the outlet. Both modes deviate from the purely evanescent character 

and are, consequently, separated from their cluster, see the spectrum in Fig. 5 and 

for more detail Fig. 6 . 

by the boundary condition, then so is its frequency. A shift in the 

frequency away from the cluster then occurs, and the eigenvalue 

expression from the one-dimensional case, Eq. (1) , does no longer 

hold. The modes experience acoustic reflection at the outlet and 

are, thus, not purely intrinsic anymore. Most clearly, the cut-on 

mode m = 1 of cluster 2 shows a distinct quarter-wave structure, 

very different from the evanescent modes of higher azimuthal or- 

der in its cluster. For the third cluster, more modes exhibit this 

behavior since even more modes are close, or even above, their re- 

spective cut-off frequencies. 

The spectrum also contains three intrinsic modes of axial type. 

These are always cut-on and, hence, separated from their respec- 

tive cluster. 

The pattern in Fig. 6 for n = 0 . 05 is qualitatively similar to the 

pattern observed in the results from the analytical model ( Fig. 2 ). 

In the latter case, less separation of individual modes from their 

respective cluster is observed and grouping is straightforward. 

5.3. The limiting case of an acoustically weak flame 

As discussed in Section 1.1 on the basis of Eq. (1) , the frequency 

spacing between two intrinsic modes in a Rijke tube with ane- 

choic boundaries is � f = 1 /τ . One can furthermore deduce from 

Eq. (1) that Im ω → + ∞ , as n → 0. Figure 6 shows that all modes 

of non-acoustic origin exhibit increasingly higher damping rates as 

the interaction index tends to zero, consistent with the theoretical 

prediction. Consequently, every mode not originating from a pas- 

sive acoustic mode is considered of intrinsic origin. Figure 6 also 

shows that intrinsic modes close to or above their respective cut- 

off frequency ( m = 0 , 1 , 2 in the figure) exhibit non-trivial trajecto- 

ries as functions of n . Cut-off intrinsic modes remain close to one 

frequency for all values of n and only show a change in their imag- 

inary part. 

In each intrinsic cluster, only modes up to azimuthal order 

m = 8 are observed. In contrast, in the analytical model, modes 

of arbitrarily high azimuthal order can be found. Modes of acous- 

tic origin (or purely acoustic modes in systems without flame re- 

sponse) in an annular combustor can have much higher azimuthal 

orders than half the number of burners; in fact, the azimuthal or- 

der can be arbitrarily high. Bloch-wave theory ascertains that all 

modes can be represented with Bloch wave numbers up to ± 8. 

But the equivalence between Bloch wave number and azimuthal 

mode order holds only for small azimuthal mode orders (see Men- 

sah et al. [12] ). Modes of any azimuthal order can still be repre- 

sented with Bloch wave numbers up to ± 8 because waves can 

form on the sub-unit-cell scale. For example, a mode of azimuthal 

order 9 can be represented as a Bloch wave with Bloch wave num- 

ber 7; the part of the solution that is periodic on the unit cell then 

hosts one wave length on the cell. 

The observed maximum mode order is explained by consider- 

ing the limit n → 0 for the intrinsic modes in one cluster. As 

we know from previous studies on intrinsic modes, and as also 

our results in the present work show, the growth rates of intrin- 

sic modes tend to negative infinity as n → 0, see Fig. 6 . In this 

limit, the modes are infinitely confined to the immediate vicinity 

of the flame, as they are infinitely damped ( Im ω → ∞ ). But then 

the flames do not affect each other and become effectively un- 

coupled. This situation is conceptually similar to 16 identical but 

isolated combustors. Such a configuration must exhibit a 16-fold 

degeneracy because each combustor has the same eigenvalues (as 

they are identical and uncoupled). This degeneracy is semi-simple, 

i.e. it has a full eigenspace with finite eigenvalue sensitivity. It is 

easy to see that these eigenvalues are not defective; in fact, an 

obvious basis for the degenerate eigenspace is the set of the 16 

individual flame modes. An alternative basis is given by a set of 

16 Bloch waves that recombine the 16 individual flame modes by 

modulating them according to the 16 sixteen-point discrete Fourier 

modes. It is the latter basis into which the degenerate eigenspace 

unfolds when n is perturbed from zero. As soon as n > 0, the 

intrinsic modes exhibit only finite damping ( Im ω < ∞ ) and the 

flames start communicating so that the system becomes fully cou- 

pled. The only degeneracy that remains is that generally associated 

with 16-fold discrete rotational symmetry, i.e. modes of azimuthal 

order 0 and multiples of 8 being simple and all others being two- 

fold degenerate. However, the sum of all algebraic multiplicities of 

all eigenvalues in one cluster must be conserved (i.e. it remains 16 

for all values of n ) because the eigenvalues are continuous func- 

tions of the parameter (here, the interaction index n ), see [40] . As- 

suming that the lower-order azimuthal modes are populated first, 

the total algebraic multiplicity of 16, originating from the n → 0 

limit, is only sufficient to go up to azimuthal order m = 8 (because 

modes with m = 1 , . . . , 7 are two-fold degenerate). 

5.4. Closeness of intrinsic modes to acoustic modes 

Figure 5 shows that intrinsic modes are located close to modes 

of acoustic origin. The two insets to the right in Fig. 5 depict the 

two cases with the modes being closest. Evidently, modes of in- 

trinsic origin can appear not only at non-acoustic resonance fre- 

quencies, but also very close to the passive acoustic modes. As a 

consequence, the nature of a mode cannot be established solely by 

its frequency but requires analysis of the mode shape or its locus 

in the complex plane as a function of the interaction index n (or 

another suitable parameter). 

5.5. Unstable intrinsic modes 

Three intrinsic modes are unstable for n = 0 . 9 , see Table 2 . 

Figure 10 shows the values of n for which all intrinsic modes de- 

picted in Fig. 5 become unstable. Nearest-neighbor continuation is 

utilized to obtain the unstable n values, but the computation is not 

continued for modes that remain stable for n < 10. The majority 

of modes of intrinsic origin become unstable for sufficiently high 
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Fig. 10. The values of the interaction index, for which the intrinsic modes enter 

the unstable half-plane. Markers and colors chosen according to Fig. 5 . The red line 

corresponds to the value n = 0 . 9 . Modes #1 ( � , m = 1 ), #14 ( � , m = 3 ) and #26 

( � , m = 5 ) did not become unstable for n < 10 and are, thus, not depicted. For 

these modes the computation was not continued further. Note that the modes of 

cluster 3 with m = 1 , 2 are outside of the considered frequency range and not in- 

vestigated here. The axial intrinsic modes (not depicted here) become unstable for 

n = 2 . 613 (mode #23) and n = 3 . 140 (mode #34); mode #1 did not become unsta- 

ble for n < 10. 

n . In addition, it can be observed that modes with higher frequen- 

cies, closer to or below their respective cut-off frequencies, become 

unstable for lower values of the interaction index than modes with 

lower frequencies. 

Two unstable intrinsic modes of special interest can be seen in 

Fig. 6 for n = 0 . 9 . Both modes originate from the same cluster. One 

mode ( m = 1 ) is cut-on and marginally unstable, while the other 

one ( m = 2 ) is unstable despite being cut-off. Somewhat unexpect- 

edly, the mode of higher azimuthal mode order is encountered at 

a lower frequency and exhibits a larger growth rate. 

6. Conclusion 

The intrinsic feedback mechanism in annular thermoacoustic 

systems is illustrated on the basis of an annular laboratory model 

combustor. Modes originating from the intrinsic mechanism form 

clusters, with frequencies that correspond to those of intrinsic 

modes in a simple single-flame Rijke tube. 

The clustering of the eigenvalues is related to the acoustic cut- 

off mechanism for non-planar modes. In fact, the evanescent char- 

acter of cut-off azimuthal modes provides an environment simi- 

lar to non-reflective boundary conditions, hence the concurrence 

with intrinsic modes in an anechoic single-flame setup. This en- 

vironment allows intrinsic modes of different azimuthal orders to 

exist at very similar frequencies and, thus, to form clusters. How- 

ever, not all intrinsic modes are clustered. Those that are too close 

to or even above their cut-off frequency are affected by the outlet 

boundary condition. This manifests as a marked separation from 

the intrinsic eigenvalue cluster. 

The intrinsic mechanism scrutinized in this work is not new per 

se. It is of the same origin as in single-flame systems, where it has 

been studied in detail over the last 5 years. In the present work, 

it has been shown how the very same mechanism manifests itself 

in an annular geometry in the form of intrinsic azimuthal modes, 

and the crucial role of the cut-off mechanism has been highlighted. 

In the present configuration, the modes with the largest growth 

rates are not intrinsic and would not be observed in experiments. 

An increase of acoustic losses at the boundaries could dampen the 

acoustic modes to a point at which an intrinsic mode is the most 

unstable one; this would potentially facilitate observing a thermoa- 

coustic mode of intrinsic origin experimentally. 

For the first time, a systematic and complete description of the 

thermoacoustic spectrum of an annular combustor has been given. 

Previously, this has only been available for single-flame configura- 

tions. The intrinsic mechanism explored in this paper can be ex- 

pected to be generically present in all annular acoustic configu- 

rations with flame response. We conjecture that earlier numeri- 

cal studies of thermoacoustic modes in annular combustion cham- 

bers did not observe intrinsic mode clusters because they are chal- 

lenging to find numerically with iterative methods. In the present 

work, the non-iterative method of Beyn [31] has been utilized for 

the solution of the nonlinear eigenvalue problem associated with 

the thermoacoustic Helmholtz equation. This was essential in or- 

der to determine all eigenvalues of acoustic and intrinsic origin. 
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Appendix A. Numerical solution of the nonlinear eigenvalue 

problem 

The problem size of L ( ω) in Eq. (23) prohibits the application 

of root-finding algorithms to the determinant det L ( ω ) . Two ap- 

plicable solution strategies are briefly described in this appendix: 

a non-iterative strategy based on contour integration due to Beyn 

[31] and a Newton-based iterative algorithm. 

Both methods are part of the NLEVP-solution routines of Py- 

Holtz [37] . The parameters employed in both methods to obtain 

the results of Section 5.1 are listed in Table A.4 . 

A.1. Beyn’s method based on contour integration 

The original work of Beyn [31] extensively covers the techni- 

cal details of his method. A concise and less technical descrip- 

tion of the theoretical background and guidelines for the appli- 

cation to thermoacoustic problems are given in [47] . We refer to 

both papers for details and only summarize the main ideas of the 

technique here. Beyn’s method returns all eigenvalues and corre- 

sponding eigenvectors inside a user-specified contour in the com- 

plex plane. 

In short, two variants of the inverse L ( z ) −1 of Eq. (23) are 

numerically integrated along a closed contour � in the complex 

plane, specified by the user: ∮ 
�

z p L ( z ) −1 ˆ V d z ≈
N−1 ∑ 

j=0 

α j z 
p 
j 
L 
(
z j 

)−1 ˆ V (A.1) 

= A p , p ∈ { 0 , 1 } . 
Gauss–Legendre integration with N sampling points z j and corre- 

sponding weights αj is used for computing the moment matri- 

ces A 0 and A 1 . The contour � is the domain of interest, spanning 

the oscillation frequencies and amplification/attenuation rates to 

be considered. The algorithm avoids complete inversion of L ( z j ) to 

Table A.4 

Parameters employed in Beyn’s method (see [31] and [47] for details) and Newton 

iterations. Beyn’s method is performed with a series of overlapping circles of radius 

160 Hz to obtain the results in Fig. 5 . All eigenvalues presented in this paper have 

been converged in the Newton method using the listed parameters, with the values 

obtained by Beyn’s method as initial guesses. 

l N tol σ

32 72 1 . 0 × 10 −10 

tol �ω tol residual Relaxation 

1 . 0 × 10 −4 1 . 0 × 10 −4 0.5 
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reduce numerical cost by solving the linear system L 
(
z j 

)−1 ˆ V at ev- 

ery sampling point. The random matrix ˆ V ∈ C 

d×l is chosen s.t. the 

number of columns l is smaller than the expected sum of the ge- 

ometric multiplicities of all eigenvalues inside �. The parameter l 

needs to be chosen with care to limit computational cost. A discus- 

sion of an adequate choice for thermoacoustic applications can be 

found in [47] . From the A p matrices all eigenpairs inside the con- 

tour � are obtained following an advantageous decomposition, see 

[31] . 

Simple, semi-simple and even defective eigenvalues can be 

computed. This technique is, thus, suitable for systems with spatial 

symmetries and for the recently discussed exceptional points [45] . 

Beyn’s method can be employed as a black box solver for arbitrary 

NLEVPs, but requires L ( ω) to depend analytically on ω, which is 

the case in the present formulation due to the n –τ model and the 

chosen boundary conditions. 

A.2. Iterative method 

In Beyn’s method the matrices A p have to be computed with 

an increase in the number of sampling points N (or l ) to establish 

convergence, which is a costly step. Instead, it is less costly and 

quicker to perform Beyn’s method once and use the result in a lo- 

cally convergent iterative method. A Newton-type method that is 

known as generalized Rayleigh quotient iteration [46] is employed 

for this purpose. The method reformulates the problem as a linear 

eigenvalue problem 

L (ω) p = λMp (A.2) 

in the auxiliary eigenvalue λ. The goal is to find an ω such that 

λ = 0 is an eigenvalue of the linear eigenvalue problem. First-order 

perturbation theory is used to compute the derivative d λ
d ω 

and, 

thus, to facilitate a Newton iteration to solve the problem. With 

good initial values, the Newton method converges in a few itera- 

tions. 

To establish convergence, two criteria are checked: a tolerance 

on the residual following [31] (with p normalized in || · || 2 ), and 

the relative change in the eigenvalue: 

|| L ( ω ) p || 2 < tol residual , (A.3) 

| ω i +1 − ω i | 
| ω i | < tol �ω . (A.4) 

Iterative algorithms require good initial values. The acoustic res- 

onance frequencies are a suitable choice to compute the modes 

of acoustic origin. The results in this paper demonstrate that the 

intrinsic modes can appear seemingly anywhere in the complex 

plane. Therefore, a suitable initial value is hard to come up with for 

intrinsic modes. Here, Beyn’s method is the ideal tool to compute 

these. As a check, eigenvalues from Beyn’s method are entered into 

the Newton method because Beyn’s method can return numerically 

spurious eigenvalues, see [47] for details and a discussion. 
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Abstract
The spectrum of the thermoacoustic operator is governed by a nonlinear eigenvalue problem. A few different strategies
have been proposed by the thermoacoustic community to tackle it and identify the frequencies and growth rates of
thermoacoustic eigenmodes. These strategies typically require the use of iterative algorithms, which need an initial
guess and are not necessarily guaranteed to converge to an eigenvalue. A quantitative comparison between the
convergence properties of these methods has however never been addressed. By using adjoint-based sensitivity, in
this study we derive an explicit formula that can be used to quantify the behaviour of an iterative method in the vicinity
of an eigenvalue. In particular, we employ Banach’s fixed-point theorem to demonstrate that there exist thermoacoustic
eigenvalues that cannot be identified by some of the iterative methods proposed in the literature, in particular fixed-point
iterations, regardless of the accuracy of the initial guess provided. We then introduce a family of iterative methods known
as Householder’s methods, of which Newton’s method is a special case. The coefficients needed to use these methods
are explicitly derived by means of high-order adjoint-based perturbation theory. We demonstrate how these methods
are always guaranteed to converge to the closest eigenvalue, provided that the initial guess is accurate enough. We also
show numerically how the basin of attraction of the eigenvalues varies with the order of the employed Householder’s
method.

Keywords
Thermoacoustics, Nonlinear eigenvalue problem, ITA, Basin of attraction

Introduction
Thermoacoustic instabilities can be assessed by solving the
inhomogeneous Helmholtz equation

∇ ·
(
c2∇p̂

)
+ ω2p̂ = (c22 − c21)n(x)e−iωτ ∇p̂|xref

(1)

on a prescribed geometry with appropriate boundary
conditions (Dowling and Stow 2003). In Eq. (1) p̂ indicates
the complex-valued amplitude of the Fourier transform
of the pressure fluctuations (the eigenfunction) and c the
speed of sound, with the subscripts 1 and 2 indicating the
regions upstream and downstream the flame, respectively.
The interaction index n, which is non-zero only over an
acoustically compact volume, and the time delay τ model
the flame response (Crocco 1951; Nicoud et al. 2007).

Equation (1) defines a nonlinear eigenvalue problem
(NLEVP) in the complex frequency ω. Once discretized, e.g.
by means of finite elements, the NLEVP can be expressed in
compact form as

L(ω)p = 0, (2)

where L is an N ×N large, sparse matrix depending
nonlinearly on ω. Although there exist efficient algorithms
to solve generalized linear eigenvalue problems, for
which L(ω) = (X− ωY), solving an eigenvalue problem
that is nonlinear in the eigenvalue ω is intrinsically
harder (Mehrmann and Voss 2004; Effenberger 2013; Güttel
and Tisseur 2017). A typical approach is to transform the
NLEVP into a (series of) associated eigenvalue problems
linear in the eigenvalue. For example:

• NLEVPs that are polynomial in ω with order K can
be recast into linear eigenvalue problems of dimension
KN (Nicoud et al. 2007);
• Solutions of NLEVPs can be found by iteratively

solving linear eigenvalue problems resulting from the
expansion of L(ω) (to any desired ordered) in the
eigenvalue (Güttel and Tisseur 2017);
• Contour integration methods reduce the NLEVP to

a linear eigenvalue problem possessing only the
eigenvalues of L inside a given contour in the complex
plane (Beyn 2012; Buschmann et al. 2020b).

These approaches exploit the fact that efficient and robust
methods (e.g. Arnoldi) exist for large scale linear eigenvalue
problems (Lehoucq et al. 1998; Saad 2011). A common
feature of iterative methods is that they all require an initial
guess ω1 for the eigenvalue1, which is updated at every
iteration. Eigenvalues of the thermoacoustic operator are
fixed points of the mapping defined by the chosen iterative
algorithm.

01Institute of Fluid Dynamics and Technical Acoustics, TU Berlin, DE
2Department of Energy and Process Engineering, NTNU Trondheim, NO
0
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1Some methods require also an initial guess for the eigenvector. Contour
methods instead do not require guesses for the eigenvalues, but a contour
within which eigenvalues are sought.
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According to Banach’s fixed-point theorem (Ciarlet 2013,
p. 152), for an iterative algorithm to be able to identify an
eigenvalue, the mapping defined by the algorithm needs to
be contracting in the vicinity of the eigenvalue. This means
that, provided that the initial guess is sufficiently close to
an eigenvalue, at each iteration the algorithm will move the
guess closer to the eigenvalue, until a prescribed tolerance is
reached. On the other hand, if the mapping is repelling in the
vicinity of an eigenvalue, it will not be possible to identify
this eigenvalue with the chosen algorithm, since a sufficiently
close guess will be pushed further away from the solution.
An overlooked eigenvalue can have serious consequences in
thermoacoustics, as the reliable and accurate determination
of all relevant2 eigenvalues is of paramount importance to
ensure the safe operability of an engine.

The fixed-point iteration method described in Nicoud
et al. (2007) is a commonly used algorithm for identifying
eigenvalues of the thermoacoustic Helmholtz operator – it is
used in Sensiau et al. (2008), Sensiau et al. (2009), Wolf et al.
(2012), Silva et al. (2013), Campa and Camporeale (2014),
and Mensah et al. (2016) to name a few. However, with the
exception of a short discussion in Sensiau et al. (2008), there
is no reference in the literature investigating the convergence
properties of this method in relation to the spectrum of the
thermoacoustic operator. The aim of this work is to quantify
the convergence properties of fixed-point iteration methods
that are commonly used in thermoacoustics. It will be shown
that some thermoacoustic eigenvalues cannot be found using
a fixed-point algorithm, regardless of the chosen initial guess.
We will then introduce an alternative adjoint-based iterative
method that has more robust convergence properties and is
thus better suited to tackle the thermoacoustic problem.

This study is organized as follows. First the thermoacous-
tic problem and the fixed-point iteration presented in Nicoud
et al. (2007) are introduced. An explicit formula that quan-
tifies the convergence properties of the fixed-point mapping
is derived. The same procedure is conducted for a so-called
Picard iteration, which is another form of fixed-point itera-
tion. Both methods are applied to a generic thermoacoustic
test case to demonstrate that some eigenvalues are repellors
with respect to these mappings. We will then introduce a
class of adjoint-based solution methods known as House-
holder, of which Newton’s method is a special case. It will be
discussed how all eigenvalues of the thermoacoustic operator
are attractors with respect to these solution methods, and how
the basins of attraction of each eigenvalue vary depending on
the order of the Householder’s method used.

The thermoacoustic nonlinear eigenvalue
problem
The weak formulation and discretization of the thermoa-
coustic Helmholtz equation (1) results in an N -dimensional
NLEVP that reads

L(ω)p =
(
K + ωC + ω2M + Q(ω)

)
p = 0. (3)

The matrices in (3) arise from discretizing the operators in
equation (1), viz. the stiffness operator ∇ ·

(
c2∇(·)

)
7→ K,

the mass operator ω2(·) 7→ ω2M, and the flame operator
−(c22 − c21)n(x)e−iωτ ∇|xref

(·) 7→ Q(ω). The matrix C
results from the discretization of the boundary conditions

needed to close the problem. They can be expressed in terms
of the acoustic impedance Z on all boundaries

iωp̂+
1

ρ
Z(ω)∇p̂ · n̂ = 0, (4)

where n̂ is a unit vector normal to the boundary.
Equation (3) represents a nonlinear eigenvalue problem.

The challenge is to find all its eigenvalues ω – and their
corresponding eigenvectors p – in a prescribed portion of the
complex plane.

Rijke tube test-case
Throughout this study we will employ the classic Rijke tube
configuration (McManus et al. 1993) to demonstrate our
results. It consists of a straight duct in which a flame is
located. Across the flame the temperature, and hence the
speed of sound, rise abruptly. The axial flame location xf is
chosen to be in the middle of the tube. The parameters that
determine the acoustic response of the system are chosen to
be identical to those used in Nicoud et al. (2007). By non-
dimensionalizing all quantities using the tube length L as a
characteristic length and the speed of sound c1 in the cold
section of the duct as a characteristic velocity, the chosen
Rijke tube’s parameter are xf = 0.5, c(x) = 1 for x ≤ xf

and c(x) = 2 otherwise. The boundary conditions are chosen
to be acoustically closed (∇p̂ = 0) and opened (p̂ = 0) at
the inlet (x = 0) and outlet (x = 1), respectively. The flame
model parameters are chosen to be n = 1/3 and τ = 2.

For the range of frequencies that we will consider all
transverse modes are cut-off. The problem can therefore
be considered as one-dimensional, and the flame to be
a point source in the Helmholtz equation (1), n(x) =
nδ(x− xf). The eigenvalues of this problem can be
calculated semi-analytically by using an acoustic network
approach (McManus et al. 1993). By assuming one-
dimensional acoustics, equation (1) can be expressed in
terms of the Riemann invariants f and g. With suitable
matching conditions at the flame zone and for the parameters
introduced above, the acoustic-network eigenvalue problem
reads (Orchini et al. 2015)

L1D

[
g1

f2

]
=

(
Lac − Lfl

)[
g1

f2

]
=

[
0
0

]
, (5)

where Lac is the acoustic response in the absence of an active
flame

Lac ≡
[
e−iω + 1 e−iω/2 − 1
1− e−iω 2e−iω/2 + 2

]
, (6)

and Lfl provides the feedback between heat release rate
fluctuations and the acoustics

Lfl ≡
[

0 0
e−2iω

(
e−iω − 1

)
0

]
. (7)

2NLEVPs can have infinitely many eigenvalues. In thermoacoustics those
with frequencies below a threshold – within which the heat release zone
is acoustically compact – are of interest, since these are often observed
in experiments and for these the thermoacoustic Helmholtz equation (1) is
valid.
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Table 1. Eigenvalues of the Rijke tube network model (5) in the
considered portion of the complex plane together with the
associated acoustic (no flame) and intrinsic (anechoic boundary
conditions) eigenvalues from which they stem.

# ω ωac ωITA

1 2.396-0.262i 2.462+0i –
2 4.692 +0.304i – 4.712+0i
3 6.283+0i 6.283+0i –
4 7.874+0.304i – 7.854+0i

By imposing det(L1D) = 0 the eigenvalues of the Rijke
tube can be obtained by using standard root-finder methods.
We shall focus our analysis on the properties of the four
thermoacoustic eigenvalues found in the region S of the
complex plane delimited by

S = {ω | <(ω) ∈ [0, 10] ∧ =(ω) ∈ [−1, 1] }, (8)

which are reported in Table 1. Two of these eigenvalues can
be linked to acoustic modes – whose eigenvalues ωac can be
calculated by setting n = 0, which implies Lfl = 0 – while
the other two can be linked to intrinsic thermoacoustic (ITA)
modes – whose frequencies are given by (Emmert et al. 2015;
Orchini et al. 2020)

ωITA =
2k + 1

τ
π − i

1

τ
log

[(
c2
c1
− 1

)
n

]
. (9)

In the following, we will discretize by finite elements the
thermoacoustic eigenproblem (3) and use various iterative
solution techniques to identify its eigenvalues. The semi-
analytical wave-based solutions presented in Table 1 will
serve as benchmarks. The dimensions of the resulting matrix
operator L do not allow for the use of determinant-based
methods, and alternative iterative strategies are needed.

State-of-the-art iterative solution method
A fixed-point iteration to solve the NLEVP (3) was proposed
in Nicoud et al. (2007). This algorithm exploits the fact that
the problem is quadratic in ω, except for the heat release
term3. The flame operator can therefore be thought of as
a perturbation of the underlying purely acoustic problem,
which is obtained with Q = 0. This motivates the use of an
iterative strategy, starting from the (known) purely acoustic
solutions.

The key idea is to recast the problem into a linear
eigenvalue problem of doubled dimension, and then to
iteratively identify a thermoacoustic eigenvalue starting from
an initial guess. We shall indicate this linear eigenvalue
problem as LFP(ωn;ω)p̃ = 0. It reads

[
0 −I

K + Q(ωn) C

]

︸ ︷︷ ︸
XFP

[
p
pI

]
= −ω

[
I 0
0 M

]

︸ ︷︷ ︸
YFP

[
p
pI

]
. (10)

On the the left hand side, the nonlinear dependency of the
problem on the eigenvalue has been removed by freezing the
evaluation of the flame operator Q, i.e, by evaluating at ωn,
the eigenvalue guess. This guess is updated by iteratively
replacing ωn with the closest eigenvalue ω of (10), which
can be found by means of, e.g., the Arnoldi iteration method.

The eigenvector in (10) has been extended into

p̃ = [p, ωp] . (11)

This can be seen from the first matrix equation defined
by (10), which reads pI = ωp. By using this relation, the
second matrix equation of (10) reduces to (3) when ωn =
ω. The algorithm terminates successfully if the difference
between the results of two successive iterations is less than
a prescribed tolerance tolω , or is aborted if a predefined
maximum number of iterations is reached.

Algorithm 1 Nicoud’s algorithm

1: function ITERATE(ω1,p1, tolω,maxiter,K,C,M,Q)
2: ω0 ←∞
3: n← 1

4: p̃1 ←
[

p1

ω1p1

]

5: YFP ←
[
I 0
0 M

]

6: while |ωn − ωn−1| > tolω and n < maxiter do

7: XFP ←
[

0 −I
K + Q(ωn) C

]

8: ωn+1, p̃n+1 ← EIGS(−XFP,YFP, ωn, p̃n)
9: n← n+ 1

10: end while
11: pn ← p̃n[1 : N ]
12: return ωn,pn, n
13: end function

The pseudocode for the fixed-point iterative scheme is
outlined in Alg. 1. We have denoted with EIGS(X,Y, ω1,p1)
the Arnoldi method that identifies the eigenpair ω,p of
the linear eigenvalue problem Xp = ωYp closest to ω1.
An initial guess for the eigenvector p1, if known, may
also be provided to the algorithm, in order to improve
the convergence of the Arnoldi method. Also note that the
matrix M is always positive-definite – as it defines a mass
matrix – and hence is YFP. Thus, the eigenvalue problem
(XFP(ωn)− ωYFP) p̃ = 0 appearing at each iteration, can
be solved efficiently.

Fixed-point iteration schemes in
thermoacoustics
A single iteration of the procedure described in Alg. 1 defines
a mapping ωn+1 = f(ωn) for which fixed-points ω are
sought. This fixed-point map f can be explicitly expressed
by rewriting the eigenvalue problem (10) as

LFP(f ;ωn)p̃ = (XFP(ωn) + fYFP) p̃ = 0. (12)

A condition for the convergence of the mapping to an
eigenvalue of the thermoacoustic operator is provided by
Banach’s fixed-point theorem, which we briefly recall.
Consider a bounded domain Γ ⊂ C that contains the fixed-
point ω. Banach’s fixed-point theorem guarantees that f has

3There might also be ω dependent boundary conditions, as discussed
in Nicoud et al. (2007). This would not alter the following discussion on
the convergence properties of the method.
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one (unique) fixed-point in Γ as long as f is a contraction
everywhere in Γ.

For our purposes, we are only interested at the behaviour
of the iterative map at the fixed-point. In particular, to know
if an eigenvalue ω is an attractor of a given iterative method
f it is sufficient to verify that

|f ′(ω)| < 1. (13)

This in fact implies that the mapping f represents a
contraction in the vicinity of ω. Provided that Eq. (13) is
satisfied, the eigenvalue ω can be found if the initial guess
lies sufficiently close to it.

Nicoud et al. (2007) recognized the importance of the
contraction properties of f , but stated that “[ . . . ] obtaining
general results about the contracting properties of the
operator f from physical arguments is out of reach of the
current understanding of the thermoacoustic instabilities.”
Significant progress has been made in this direction by the
thermoacoustic community in recent years, and tools are now
available to quantify the behaviour of the mapping f from
the thermoacoustic equations. In particular, the contraction
properties of the mapping f can be quantified by exploiting
adjoint-based sensitivity (Magri et al. 2016; Orchini and
Juniper 2016). In the following, we use adjoint methods to
derive an analytical expression that allows us to compute
|f ′ (ω)| and thus make explicit use of Banach’s theorem.

Contraction properties of the fixed-point
iteration
The adjoint equation associated with the mapping (12) reads:

L†FP(f ;ω)p̃† =
([

0 KH + QH(ω)

−I CH

]
+ f∗

[
I 0
0 MH

])[
p†I
p†

]
= 0,

(14)

where f∗ denotes the complex conjugate of f . Its fixed-
points are found when f∗ = ω∗. The second matrix equation
defined by (14) shows that p†I =

(
CH + ω∗MH

)
p†, so that

the extended adjoint eigenvector p̃† satisfies

p̃† =
[(

CH + ω∗MH
)
p†,p†

]T
. (15)

The first matrix equation in (14) defines the adjoint
eigenvalue problem L†(ω)p† = 0.

From adjoint-based sensitivity analysis, the following
formula is known for evaluating the derivative of f with
respect to ω (Magri et al. 2016; Orchini and Juniper 2016):

f ′ =
df

dω
= −

〈
p̃†

∣∣∣∣∣
∂LFP

∂ω
p̃

〉

〈
p̃†

∣∣∣∣∣
∂LFP

∂f
p̃

〉 (16)

By combining the known information on the direct and
adjoint eigenvectors – Eqs. (11) and (15), respectively – as
well as on the functional shape of LFP – Eqs. (12) and (10)

– we have
〈
p̃†
∣∣∣∣
∂LFP

∂ω
p̃

〉
=
〈
p̃†
∣∣X′FPp̃

〉
= p†

H
Q′(ω)p (17a)

〈
p̃†
∣∣∣∣
∂LFP

∂f
p̃

〉
=
〈
p̃†
∣∣YFPp̃

〉
= p†

H
(C + 2ωM)p (17b)

This yields a closed-form expression for the sensitivity of the
mapping f as required to apply Banach’s theorem:

|f ′FP(ω)| =
∣∣∣∣∣

p†
H
Q′(ω)p

p†H (C + 2ωM)p

∣∣∣∣∣ . (18)

The mapping sensitivity (18) is generally expected to be non-
zero. This implies that, if the fixed-point iteration converges,
|f ′| < 1, then it possesses a linear convergence rate – see
Eq. (21).

An alternative fixed-point iteration scheme
The choice of a fixed-point iteration method is not unique.
One of the disadvantages of the solution method proposed
in Nicoud et al. (2007) is that it casts the original problem
in an eigenvalue problem having doubled dimensions, which
is computationally more expensive to solve. Alternatively,
one can perform an iteration in the ω2 term of Eq. (3),
while the remaining occurrences of the eigenvalues are fixed
to ωn. The square root of the eigenvalues of the resulting
(linear) eigenvalue problem are then an approximation of
the sought eigenvalues. This choice is convenient since
the matrix M that appears on the r.h.s. of the resulting
generalised eigenvalue problem is positive definite, allowing
for the use of robust linear eigenvalue solvers. We shall
refer to this solution scheme, described in Alg. 2, as Picard
iteration (Ciarlet 2013, p. 154) .

Algorithm 2 Picard iteration

1: function ITERATE(ω1,p1, tolω,maxiter,K,C,M,Q)
2: ω0 ←∞
3: n← 1
4: while |ωn − ωn−1| > tolω and n < maxiter do
5: X← K + ωnC + Q(ωn)
6: ωn+1,pn+1 ← EIGS(−X,M, ωn,pn)
7: ωn+1 ← √ωn+1

8: n← n+ 1
9: end while

10: return ωn,pn, n
11: end function

The Picard iteration defines the mapping f given by

LPC(f ;ωn)p =


K + ωnC + Q(ωn)︸ ︷︷ ︸

XPC(ωn)

+f2M


p = 0.

(19)

By invoking the associated adjoint eigenvalue problem, and
by using the adjoint sensitivity Eq. (16), one can show that
the sensitivity of the Picard iteration reads

|f ′PC(ω)| =
∣∣∣∣∣
p†

H
(Q′(ω) + C)p

p†H2ωMp

∣∣∣∣∣ . (20)
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Table 2. Eigenvalues identified by means of finite elements and
values of the contracting operator |f ′|. Only the eigenvalues for
which |f ′| < 1 can be identified, provided that an accurate initial
guess is known.

# ω |f ′FP| |f ′PC|
1 2.396-0.260i 0.519 0.519
2 4.696+0.297i 17.025 17.025
3 6.300-0.000i 0.022 0.022
4 7.880+0.316i 12.204 12.204

Notably, the only difference with respect to the sensitivity of
the fixed-point iteration proposed by Nicoud et al. (2007),
Eq. (17), is that the matrix C is moved to the numerator.
However, for the simple boundary conditions considered in
this study, one finds that the matrix C has non-zero elements
only at the open-end boundary, where both p and p† vanish,
so that the contribution of the term p†

H
Cp vanishes.

This is a general result. When considering non-trivial
boundary conditions, the convergence properties of the two
proposed fixed-point solution methods are going to differ,
and one cannot draw general conclusions on which method
will be able to identify more eigenvalues a priori. On
the other hand, for trivial (open and/or closed) boundary
conditions one can show that p†

H
Cp = 0. Therefore,

when considering geometries with simple open or closed
boundary conditions, the Picard iteration method should be
preferred as a fixed-point iteration scheme since (i) it is
computationally cheaper and (ii) has the same contraction
properties at the eigenvalues.

Convergence properties of fixed-point iterative
methods
Table 2 highlights the contraction properties of the discussed
fixed-point algorithm for the the four eigenvalues of interest
that the problem has when discretized using an equidistant
linear finite elements mesh with 127 degrees of freedom.
These eigenvalues have been calculated using a higher-
order iterative method, described in the next section. This
is because, as we will now show, fixed-point methods fail
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Figure 1. Modeshapes of the four eigenvalues in the
considered portion of the complex plane. The colors orange,
purple, blue and green indicate, respectively, the
thermoacoustic modes number 1, 2, 3 and 4, as listed in
Table 2. Modes 1 and 3 are of acoustic origin, 2 and 4 of ITA
origin (see Table 1).

in identifying some eigenvalues. The modeshapes associated
with the four eigenvalues are shown in Figure 1.

The sensitivity that the mapping f takes at these solutions
in Table 2 are then evaluated according to Eq. (18). By
comparison with Table 1 one finds that |f ′| is less than
one for thermoacoustic modes of acoustic origin, whereas it
is greater than one for modes of ITA origin. This implies
that modes of ITA origin cannot be identified with this
iterative scheme. Indeed, even if a good initial estimate is
known for those, since |f ′| > 1 the iterative algorithm will
repel the initial guess from the actual solution. This fact
might be partly responsible for the late discovery of modes
of ITA origin in thermoacoustics, in particular for annular
combustion chambers (Buschmann et al. 2020a; Orchini
et al. 2020), for which larger nonlinear eigenvalue problems
need to be solved.

Although a formal proof is not available, the difficulties
that the fixed-point iterations have in converging towards
ITA modes can be intuitively explained by the following
argument. The matrix in the numerator of (18) is proportional
to the flame delay, exp(−iωτ). Modes of ITA origin tend to
have largely negative growth rates, =[ω]� 0, implying that
| exp(−iωτ)| � 1. Additionally, the eigenvectors of modes
of ITA origin (and their adjoint) have a strong magnitude at
the flame – see Figure 1 – exactly the zone in which the flame
response Q is large, due to a strong gradient in the pressure
modeshapes at the reference position. In combination, these
two effects yield a large value of the term p†

H
Q′(ω)p,

appearing in the numerator of (18). Thus, |f ′| � 1 can be
expected for ITA modes.

To demonstrate that the fixed-point iterations cannot
identify modes for which |f ′| > 1, we perform a large
number of brute-force calculations in the complex plane. We
initialize the fixed-point algorithm with initial guesses ω1 in
the region S defined in (8) sampled on a uniform 1001× 201
grid. The eigenvectors for the Krylov-subspace methods
were initialized with the p1 = [1, 1, . . . , 1]

T. We stop the
algorithm when a tolerance tolω ≡ |ωn − ωn−1| < 10−10 is
reached – an eigenvalue has converged – or when a maximum
number of 16 iterations is exceeded – the algorithm does not
converge with this initial condition to the desired tolerance.
The results are shown in Fig. 2. The axis indicate the value
taken by the initial guess, and the color scheme indicates to
which eigenvalue the initial guess has converged and how
many steps it took. The actual solutions are highlighted with
white markers.

Brute-force numerical calculations confirm that the modes
of ITA origin, #2 and #4 in Table 1, cannot be found
by using fixed-point iterative methods, even for guesses
that start very close to the actual solutions. The modes
of acoustic origin, instead, can be identified. The portions
of the complex plane that, when used as an initial guess,
converge to modes #1 and #3, are highlighted in orange
and blue, respectively. Notably, convergence of mode #1
always requires a number of iterations much larger than
those needed for mode #3 to converge. This is in line
with the fact that the sensitivity of mode #1, although
less than 1, is an order of magnitude larger than that
of mode #3. More quantitatively, when 0 < |f ′| < 1, in
the vicinity of a solution the number of steps Ns needed
to improve the accuracy by an order of magnitude can
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Figure 2. Convergence and basins of attractions for (top) the fixed-point iteration described in Nicoud et al. (2007) , Alg. 1, and
(bottom) the Picard iteration described in this study, Alg. 2. The areas in orange and blue indicate, respectively, the basins of
attraction of the thermoacoustic modes #1 and #3, as listed in Table 2. The basin of attraction of mode #1 is hatched with black
because, although the algorithm is slowly converging, the convergence rate is very low, and it takes more than 16 iterations to
identify the eigenvalue to the prescribed accuracy of 10−10. Both methods are unable to identify modes number 2 and 4, of ITA
origin. The lighter the color, the less steps are needed for convergence. Gray-black hatched surfaces indicate (slow) convergence
towards an eigenvalue outside of the considered domain. Yellow indicates convergence to a (spurious) eigenvalue with ω = 0.

be estimated by Ns = d1/ log10(1/|f ′|)e. From the values
reported in Table 2, this yields Ns = 4 for mode #1 and
Ns = 1 for mode #3, i.e., the former requires approximately
4 times more iterations than the latter to converge to a
predefined tolerance. Within the required 16 iterations limit,
the eigenvalue #1 can be identified with a tolerance of
10−6. A larger number of iterations is needed to converge
to the prescribed tolerance tolω = 10−10, emphasized by
the presence of black stripes in Figure 2. Lastly, in yellow
we have highlighted the portion of the complex plane that
converges to the ω = 0 eigenvalue. This is always a solution
of the thermoacoustic weak form (3), but it represents
a spurious solution that does not satisfy the boundary
conditions, except when all boundaries are acoustically
closed. This spurious solution arises from manipulation of
the impedance boundary condition equations when deriving
the weak form (3). The fixed-point algorithm proposed
by Nicoud et al. (2007) and summarised in Alg. 1 strongly
promotes convergence towards this spurious eigenvalue
because it separates the action of the boundary matrix, C,
from that of the stiffness and flame matrices, K and Q, as
can be seen in Eq. (10).

Together with the higher dimensions of the linearized
eigenvalue problem, the promotion of the convergence
towards a spurious eigenvalue is another disadvantage of the
method of Nicoud et al. (2007) in contrast to the Picard
iteration (19). Nonetheless, the slow convergence of some
modes and the non-convergence of other modes for both
fixed-point iterations are inherently linked to their linear
convergence rate. To overcome this limitations, we will now
consider methods with a super-linear convergence rate.

Newton-like iteration methods
A sequence generated from an iterative algorithm is said to
have a rate of convergence m if there exists a bound G > 0
such that

|ωn+1 − ω| ≤ G|ωn − ω|m. (21)

When the contraction condition (13) is satisfied, the iterative
fixed-point algorithms described so far converge towards
the closest eigenvalue at a linear rate, m = 1. However,
when one has |f ′(ω)| = 0, the rate of convergence becomes
super-linear, with m > 1. Importantly, |f ′(ω)| = 0 always
satisfies Banach’s condition (13), implying that super-
linear converging algorithms are guaranteed to converge to
all eigenvalues. Super-linear convergence is a feature of
Newton’s method, which is therefore more robust than fixed-
point methods (0th order), since it uses gradient information
(1st order). Gradient information may be included also
in a fixed-point iteration by introducing a relaxation
parameter (Ni 2017, Appenidx C.4). This procedure is
however based on finite difference approximations and
requires solving two eigenvalue problems at each iteration.
A direct application of Newton’s method is preferable.

Since the eigenvalues of (3) are found when the
determinant of L vanishes, a direct application of Newton’s
method to det[L(ω)] = 0 leads to

ωn+1 = ωn −
det [L(ω)]

d(det [L(ω)])/dω

∣∣∣∣
ω=ωn

. (22)

Evaluating the determinant is however a demanding and
error-prone operation. A determinant-free Newton scheme
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was suggested in Juniper (2018), which exploits Jacobi’s
formula

det [L(ω)]

d(det [L(ω)])/dω
=

1

tr
[
L−1(ω)dL(ω)/dω

] . (23)

Although this scheme is more robust than a direct evaluation
of the determinant, the evaluation of the inverse of the matrix
operator L becomes prohibitively expensive when L has
hundreds of thousand of degrees of freedom, as is typical
in real-world thermoacoustic calculations.

To bypass these issues, in the following section we will
discuss how adjoint-based methods allow us to use Newton’s
method directly on the NLEVP equations. This will not
require the evaluation of determinants nor matrix inverses,
and provides more accurate information on the mapping
sensitivity than finite difference approximations.

Adjoint-based Newton iteration
By introducing an auxiliary variable λ, the NLEVP (2) can
be written as

L(ω)p = λYp. (24)

Equation (24) can be thought of as a generalized eigenvalue
problem with eigenvalue λ depending on a parameter ω.
From this viewpoint λ is an implicitly defined function of
ω, i.e. λ = λ (ω). If the parameter ω is chosen such that the
eigenvalue problem (24) has an eigenvalue λ = 0, then ω
(and the corresponding eigenvector p) is a solution of the
NLEVP (2). Since the implicitly restarted Arnoldi algorithm
is used to solve the sparse eigenvalue problem (24), linear
in λ, choosing the matrix Y to be semi-positive definite
has significant advantages. Possible choices are Y = I,
the identity matrix, or Y = M, the mass matrix. In our
analysis the latter will be used, since it naturally arises
when discretizing the continuous thermoacoustic operator by
means of finite elements. The following discussion on the
convergence of the method is however independent from the
specific form chosen for Y.

To find values of ω for which (24) has a zero eigenvalue
in λ, we seek the roots of the implicit relation λ = λ(ω).
Newton’s iteration on this relation reads

ωn+1 = ωn − λ(ωn)/λ′(ωn) = f(ωn), (25)

which requires the sensitivity of the eigenvalue with respect
to the parameter, λ′ = dλ/dω. This sensitivity can be
obtained by means of adjoint methods. Starting from Eq. (24)
it can be shown that the sensitivity of a linear eigenvalue
problem is (Magri et al. 2016; Orchini and Juniper 2016)

λ′(ωn) =
p†

H
L′(ωn)p

p†HYp
. (26)

By using this expression, one can iteratively update the
parameter ω in (25) until an eigenvalue λ = 0 is found.

The algorithm for the adjoint-based Newton iteration
is given in Alg. 3. Note that this method requires
solving both the direct and the adjoint problem, which
requires a numerical implementation of the adjoint matrix
L†. This may cause difficulties in codes which are

Algorithm 3 Newton adjoint-based method

1: function ITERATE(ω1,p1,p
†
1,L, tolω,maxiter)

2: ω0 ←∞
3: n← 1
4: while |ωn − ωn−1| > tolω and n < maxiter do
5: λn,pn+1 ← EIGS(L(ωn),M, 0,pn)

6: λn
∗,p†n+1 ← EIGS(LH(ωn),M, 0,p†n)

7: λ′n ← −
p†
n+1

H
L′(ωn)pn+1

p†
n+1

H
Mpn+1

8: ωn+1 ← ωn − λn

λ′
n

9: n← n+ 1
10: end while
11: λn ← EIGS(L(ωn),M, 0,pn) . This line basically

computes the residual for possible later use
12: return ωn,p†n,pn, λnn
13: end function

implemented in a matrix-free fashion, or in which
the direct and adjoint discrete equations are derived
independently from the continuous equations, and have
different discretizations (Magri and Juniper 2013). In our
implementation4, the elements of the sparse matrix L are
explicitly stored. Furthermore, since we employ a Bubnov-
Galerkin finite elements discretization, the discretization of
the continuous adjoint equation is equivalent to the adjoint
of the discretized direct equation, and one can show that
L† = LH (Mensah 2018).

As always for mappings obtained from Newton’s method,
the mapping defined by (25) has super-linear convergence,
i.e. f ′ = 0. This guarantees that all thermoacosutic
eigenvalues are attractors for this iteration method, and,
provided sufficiently good guesses are provided, they can
always be identified. This is formally shown in the Appendix.

Householder’s methods
Newton’s method can be generalized by considering higher-
order expansions of the relation λ = λ(ω). The resulting
class of iterative root-finding methods are known as
Householder’s methods (Householder 1970). At an arbitrary
order m > 0 the iterative Householder step reads

ωn+1 = ωn +m
(1/λ)

{m−1}
(ωn)

(1/λ)
{m}

(ωn)
. (27)

At first order (m = 1), Eq. (27) corresponds to the Newton
iteration (25). At second order (m = 2) one obtains

ωn+1 = ωn −
2λ(ωn)λ′(ωn)

2 (λ′(ωn))
2 − λ(ωn)λ′′(ωn)

, (28)

which is also known as Halley’s method (Halley 1694).
In order to apply higher-order Householder’s methods,

the evaluation of high-order eigenvalue sensitivities λ{m} is
required. Once again, adjoint-based theory can be exploited
in this regard. By using perturbation theory, explicit formulas

4The code is open-source and is implemented in the Julia package
WavesAndEigenvalues (https://github.com/JulHoltzDevelopers/WavesAnd-
Eigenvalues.jl).

Prepared using sagej.cls



8 Symposium on Thermoacoustics in Combustion: Industry meets Academia (SoTiC 2021) XX(X)

for the calculation of arbitrarily high-order sensitivity have
been derived in Mensah et al. (2020), to which we refer
the interested reader. For the purpose of this study, we
shall assume that a function PERT that computes arbitrarily
high-order sensitivities is available. With this at hand, the
pseudocode for the Householder iterative method is given
in Alg. 4, in which the function HOUSE computes the
Householder update to ωn at the desired order, according to
Eq. (27).

Algorithm 4 Householder’s method

1: function ITERATE(ω1,L,p1,p
†
1, tolω,maxiter, order)

2: ω0 ←∞
3: n← 1
4: while |ωn − ωn−1| > tolω and n < maxiter do
5: λn,pn+1 ← EIGS(L(ωn),M, 0,pn)

6: λ∗n,p
†
n+1 ← EIGS(LH(ωn),M, 0,p†n)

7: λderivs,n ← PERT(L(ωn)− λnM, order)
8: ωn+1 ← ωn + HOUSE(λderivs,n, order)
9: n← n+ 1

10: end while
11: λn ← EIG(L(ωn),M, 0,pn)
12: return ωn,p†,p, λn, n
13: end function

Convergence properties of Householder’s methods By
construction, all Houselder’s methods have f ′ = 0 at the
fixed points, implying that all eigenvalues are attractors and
have a non-empty basin of attraction. When considering
simple roots, the mth order Householder’s method has a
convergence rate of m+ 1, meaning that a lower number
of iterations in generally required to identify a solution.
Yet, these methods are generally not applied to scalar
equations because the increase in function evaluations per
iteration outweighs the improved convergence rate when
the order is increased. This limitation however does not
straightforwardly apply to large eigenvalue problems. This is
because one needs to weight the computational effort needed
for the solution of a linear eigenvalue problem at each step
– ruled by the dimension of the problem only – against
the one needed to perform all the matrix-vector products
needed – which depends on the problem size, but also
significantly increases at each perturbation order (Mensah
et al. 2020). Thus, for adjoint-based perturbation theory
applied on large matrices, computational optimality is ruled
by a non-trivial trade-off between the number of iterations
needed to converge and the cost of the perturbation method at
the chosen order. Numerical experiments have shown (details
not reported here) that the Householder’s method of order
3 has, on average, optimal performances (minimum time
and memory used) for eigenvalue problems that have a few
thousands degrees of freedom.

Degenerate eigenvalues Special care needs to be taken
if the eigenvalue searched for is a multiple root of
the characteristic function of L, i.e., if the eigenvalue
is degenerate. For degenerate semi-simple eigenvalues
perturbation theory can still be used to compute the necessary
derivatives (Lancaster et al. 2003; Orchini et al. 2021). To
retain the high convergence rate of Householder’s methods,

the scheme must be applied to the ath root of λ, where that a
is the algebraic multiplicity of the eigenvalue. The mth order
expansion reads

ωn+1 = ωn +m

(
1/λ

1
a

){m−1}
(ωn)

(
1/λ

1
a

){m}
(ωn)

. (29)

This however requires a priori knowledge on the multi-
plicity of an eigenvalue. In thermoacoustic applications,
degeneracies with multiplicity 2 are typically induced by
symmetries of the system (Moeck 2010) and can be often
predicted with intuition and/or the use of symmetry breaking
criteria (Mensah et al. 2019). In most cases, multiplicities
can be removed from the problem by a proper symmetry
reduction scheme, such as reduction to Bloch-periodic unit
cells (Mensah et al. 2016).

Lastly, in case of defective eigenvalues, the adjoint-based
schemes presented here cannot be applied, because defective
eigenvalues are not analytic in their parameters. However,
defective eigenvalues can only appear as isolated points in
the parametrized spectrum of L (Kato 1980) and are, thus,
not considered generic.

Convergence examples
Figure 3 shows the eigenvalue convergence maps when
using Householder’s methods from first order (top) to fifth
order (bottom). The tolerance for convergence is set to
tolω = 10−10 for all cases. The convergence properties have
significantly improved compared to those of the fixed-point
methods shown in Figure 2. Indeed, for all considered
orders of the Houselder’s method, all the four thermoacoustic
eigenvalues in the considered portion of the complex plane
can be found. In fact, as predicted by Banach’s theorem for
this mapping each mode possesses a non-empty basin of
attraction in its vicinity – recall that f ′ = 0. Furthermore,
the higher the order of the considered Householder iteration,
the fewer iteration steps are generally needed to converge
to the desired accuracy, as can be seen from the fact that
the higher is the perturbation order, the brighter is its figure.
This does not necessarily mean a faster convergence time, but
it demonstrates the increase in convergence rate, Eq. (21),
with an increase in the order of the method m. Another
notable feature of the Householder’s methods is that the size
of the basins of attraction of the ITA modes (purple and
green) grows when the order of the method is increased. This
implies that, when using a (say) fourth order Householder
scheme (fourth row in Figure 3), a coarse grid of initial
guesses is sufficient to identify all the eigenvalues of interest.
On the other hand for the Newton method (top row in
Figure 3), although the basins of attraction of modes of ITA
origin are non-empty, they have a small size. A finer mesh
of initial guesses is therefore required if the eigenvalues
are randomly searched. Higher-order Householder’s scheme
suffer, however, from the existence of larger portions of the
complex plane within which the method does not converge to
any eigenvalues (in black). All these considerations suggest
that a third order Householder scheme is on average the
optimal choice, as it provides both faster computational times
and possess good convergence properties.
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Figure 3. Convergence and basins of attractions for the Householder’s methods from first order (top, also known as Newton’s
method) to fifth order (bottom). The areas in orange, purple, blue and green indicate, respectively, convergence to the
thermoacoustic modes number 1, 2, 3 and 4, as listed in Table 2. Modes 1 and 3 are of acoustic origin, 2 and 4 of ITA origin. The
lighter the color, the less steps are needed for convergence. Gray indicates convergence to an eigenvalue outside of the considered
domain. Black indicates that the algorithm does not converge with these initial conditions.
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To conclude, we remark that the convergence maps
show fractal patterns at the boundaries between different
basins of attraction. The fractal nature of the boundaries of
attraction (sometimes referred to as Julia sets) is a known
feature of Newton-like iteration maps already when applied
to scalar equations (Devaney et al. 1994). However, we
note how some of the boundaries in Figure 3 are non-
fractal. This can be attributed to the fact that we apply
Newton/Householder’s methods to eigenvalue problems.
Our adjoint-based algorithms require the identification of
the smallest eigenvalue of a linear eigenvalues problem
to the initial guess (see Alg. 3 and 4). This choice
becomes ambiguous when the closest eigenvalue of the linear
eigenvalue problem (24) becomes degenerate. This is what
happens at non-fractal boundaries, and the clear-cut between
convergence to two different eigenvalues when using very
close guesses is explained by the fact that our solution
method suddenly tracks a different eigenvalue branch of the
linear eigenvalue problem.

Conclusions
In this study, we have investigated the convergence properties
of the most common methods used to identify eigenvalues in
thermoacoustic systems by means of iterative methods. By
exploiting adjoint-based sensitivity, we have derived explicit
equations that can be used to assess the contraction properties
of various algorithms in the vicinity of eigenvalues.
Thanks to Banach’s fixed-point theorem, this information
is sufficient to know if a given algorithm can or cannot
converge to an eigenvalue.

For fixed-point iterations, which are commonly employed
in thermoacoustics, we found that not all eigenvalues are
attractors. In particular, numerical calculations on a Rijke
tube system showed that thermoacoustic modes of ITA origin
are repellors. This implies that these eigenvalues can never
be identified by fixed-point algorithms, regardless on the
accuracy of the initial guess. This may be linked to the late
discovery of ITA modes by the thermoacoustic community.

We then discussed how Newton-like iterative methods
should always be preferred to fixed-point iterations. This
is because they are always guaranteed to converge to all
eigenvalues, provided that sufficiently good initial guesses
are provided. The most straightforward use of Newton’s
method to eigenvalue problems, however, is inefficient, as
it requires the evaluation of matrix determinants or inverses,
which becomes prohibitively expensive for large matrices.
To overcome this issue, we have introduced a set of adjoint-
based methods, known as Householder’s methods, which
make use of high-order perturbation expansions. We have
discussed both the computational efficiency of the algorithms
and the dimensions of the basins of attractions of the
eigenvalues for these methods up to 5th order. By combining
formal results and numerical evidence, we conclude that a
third order Householder’s method is, among the methods
discussed in this study, the optimal choice for identifying
eigenvalues of thermoacoustic systems.

Our results highlight the importance on the choice of the
solution methods for thermoacoustic eigenvalue problems. In
particular, fixed-point iterations should be always avoided
since they do not guarantee the identification of all the

eigenvalues, and failure in identifying potentially unstable
thermoacoustic modes at the design stage can have very
expensive side-effects.

Acknowledgement
The authors would like to thank Jonas P. Moeck
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Appendix: Super-linear convergence of
Newton method
By evaluating the sensitivity of the mapping f defined in
Eq. (25) we can quantify the convergence properties of this
method. We have

df

dω
= 1− (λ′)2 − λ′′λ

(λ′)2
= 1− (λ′)2

(λ′)2
= 0, (30)

where in the second step we have used the fact that, for
any thermoacoustic solution, λ = 0. This proves that the
Banach condition (13) is satisfied for all thermoacoustic
eigenvalues. Thus, provided a sufficiently good guess, this
method converges towards the closest eigenvalue at a super-
linear rate, and is able to identify all eigenvalues in the
spectrum of the thermoacoustic operator.
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Abstract
Can-annular combustors are an important type of design for gas turbines employed in stationary power generation.
Such a combustor consists of a large number of nominally identical cans arranged around a circumference. A
substantial amount of engineering can be conducted on a single can, which cuts development cost and time. However,
all cans need to be merged at their downstream end into an annulus towards the turbine stage. This results in a small
gap between adjacent cans. Engines in operation and subsequent theoretical studies have shown that the acoustic
coupling via this so-called cross-talk affects thermoacoustic stability of the system. Unwanted pressure oscillations
may then originate from a coupling between unsteady heat-release rate and pressure waves. Due to the weak coupling
via the cross-talk area, can-annular combustors can exhibit multiple linearly unstable modes of different azimuthal
mode orders within a narrow frequency band. The interaction between these unstable modes needs to be understood
to design thermoacoustically stable combustors. The work in this paper presents the first results of a set of experiments
on a new laboratory can-annular combustor with eight cans. The combustor permits an adjustment of the cross-talk
strength and, in this way, facilitates detailed investigations on the resulting effect on mode selection. Besides varying
the cross-talk strength, two configurations with and without plenum coupling are investigated. The absence of the
plenum coupling results in modes clustered within narrow frequency bands. Moreover, the experiments confirm several
predictions from theoretical studies and show interesting features in the form of multiple unstable modes.

Keywords
Can-annular combustion chamber, Thermoacoustic instabilities, Azimuthal modes, Mode switching

Introduction

Can-annular combustors are employed in many industrial
gas turbines for stationary power generation. It is
the predominant concept in the portfolios of major
industrial manufactures. Air from the compressor stage
is split into a number of nominally identical cans,
arranged circumferentially, in which combustion takes place.
Downstream of the flame, the circular cross section of
every can smoothly transitions into an annular segment to
match the annular inlet of the turbine. By the nature of this
geometrical transition, a small gap between adjacent cans –
the cross-talk (XT) area – remains. Properties associated only
with the combustion process, such as the flame shape, static
stability limits, pollutant emissions and thermal loads, can be
characterised by considering a single can. This significantly
reduces the costs and complexity of the development process
but does not take into account the acoustic coupling between
adjacent cans in the full can-annular arrangement.

In effect, the cans are nearly identical and therefore
exhibit almost the same acoustic resonances, if considered
individually. Since the cross-talk area is small, the
thermoacoustic dynamics in these systems are similar to
those associated with a set of weakly coupled identical
oscillators. Clusters of eigenfrequencies are the result: within
a narrow frequency band modes of different azimuthal mode
orders m occur. Such a cluster in a can-annular combustor
was first observed by Bethke et al. (2002) in computations
with a thermoacoustic finite-element model.

Ghirardo et al. (2019) studied thermoacoustic modes in
a generic can-annular combustor with a network model. By
increasing the coupling strength between adjacent cans, it is
shown how the modes of various azimuthal orders in a cluster
originate from one axial mode of the isolated can. Therefore,
in this paper a cluster of modes is defined as a group of
modes with different azimuthal mode orders having the same
axial order. The study also found that modes in a cluster are
ordered by increasing frequency according to their azimuthal
mode order m.

Ghirardo et al. (2019) also predict mode localization.
This is a well known phenomenon in weakly coupled
identical oscillators as the nominal symmetry of the entire
system is slightly perturbed. In can-annular combustors this
manifests as an instability where all cans oscillate at the same
frequency but the amplitude shows a large variation over the
circumference. Data from full-scale engines indicates that
only a small number of cans oscillates at amplitudes far
higher than the remaining ones.
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Several modes in a cluster can be linearly unstable and
this gives rise to two possible outcomes: Either a self-
sustained oscillation with several modes manifests itself
or competition between the modes suppresses all but one.
In thermoacoustics, the former is rarely observed with
the notable exception of a slanted mode as reported by
Bourgouin et al. (2015), which is a superposition of an axial
and an azimuthal mode. Instead, the latter case is the norm:
after an initial transient one frequency dominates the system,
see work on the annular MICCA (Laera et al. 2016) and
Cambridge/NTNU (Worth and Dawson 2013) combustors.
For can-annular combustors by using a time domain model,
von Saldern et al. (2020) shed light onto the transient growth
of multiple unstable modes and inter-modal competition: In
a short transient multiple modes grow in amplitude but only
the mode of highest azimuthal order reaches a steady limit
cycle.

There is little experimental data published on can-annular
combustors. So far only Moon et al. (2020a,b) report
results on a laboratory-scale can-annular combustor. The
model combustor they employed with N = 4 cans has two
predecessors: A single N = 1 can (Kim 2016, 2017) and a
twin N = 2 can setup (Jegal et al. 2019; Moon et al. 2019).
The same weak coupling in the twin setup is employed in the
can-annular layout. The authors report clustered modes of
different azimuthal mode orders and localisation phenomena.

In the present paper, the first results of experiments on
a can-annular combustor with N = 8 cans are presented.
The combustor operates under atmospheric conditions with
perfectly premixed flames. Major differences to the work of
Moon et al. (2020a,b) are: eight cans, reactants are fed from
a shared plenum, adjustable XT-strength and an outlet that is
open to the atmosphere.

This work is organised as follows. First azimuthal mode
orders of clustered modes in can-annular combustors are
explained. Then the experimental setup, data analysis and
numerical setup for a linear stability analysis are described.
Afterwards, the results section follows, which is split into
two parts since two major configurations are studied in both
of which the XT strength is varied: one configuration with a
connected plenum and one where the plenum is decoupled
acoustically.

Azimuthal mode orders in can-annular
combustors
To visualize the mode topology in a can-annular combustor,
it is convenient to picture a set of N isolated, identical
combustors arranged in a circular fashion. Each combustor
exhibits modes of increasing axial orders. Any such mode
exists N times for the entire system, since every can
oscillates in a standalone fashion. Here, N is also the
algebraic and geometric multiplicity of every mode. As the
cans are taken out of isolation via coupling, every N -fold
mode splits into distinct modes of varying azimuthal orders.
Since the coupling via the XT is weak the post-split modes
remain in a narrow frequency band. This is what is referred to
as a mode cluster in the following. By definition, all modes
in the same cluster have the same axial order. Later, when
considering modes obtained from a linear stability analysis,
the axial order is used to assign cluster numbers.

Ghirardo et al. (2019, 2020) and von Saldern et al. (2020)
predicted the splitting of N -fold degenerate modes as the
XT size is increased from zero. Both show that the m = 0
mode before and after the split stays in place and that higher
order modes are further offset from m = 0. Unlike in these
models, in experiments a XT has a finite volume and thus
the mode m = 0 experiences a minor shift in frequency.
Furthermore, in the aforementioned studies it is also show
that clustered modes are ordered by increasing frequency
according to their mode order and that modes of higher order
are more sensitive to the coupling strength, i.e. more offset
from m = 0. Experimentally, Moon et al. (2019, 2020b)
give a first proof of these properties and report a variety of
oscillation patterns.

Results from Ghirardo et al. (2020) show that modes
in a cluster occupy the lowest azimuthal mode orders.
Mathematically, a breakdown into higher mode orders is
possible. For the first few clusters at low frequencies, which
are of thermoacoustic relevance, this is not the case. As a
consequence and in the limit of low frequencies, for the
N = 4 combustor of Moon et al. (2020a,b), modes of orders
m = 0, 1, 2 are obtained. The modes m = 0, 2 are simple
while m = 1 is twofold degenerate. The combustor in the
present paper with N = 8 exhibits m = 0, 1, 2, 3, 4 modes.
Likewise, all modes are degenerate except for the m = 0, 4
modes.

In the present work, modes m = 0 are called push-push
while those of highest order m = 4 are referred to as push-
pull. The latter correspond to ‘push-pull alternating’ in Moon
et al. For standing modes m = 1, 2, the nodal lines can be
located inside opposite cans or between cans, i.e. in the
XTs. This notation differs from the one in Moon et al.
who refer to an m = 1 mode as ‘push-pull pairwise’ or
‘push-pull 2-cans’, depending on the location of the nodal
line. Furthermore, degenerate modes m = 1, 2, 3 can be of
spinning and mixed type.

Experimental setup and data analysis
The baseline configuration of the combustor is depicted in
Fig. 1. It consists of eight cans that are fed with perfectly
premixed mixture from a shared plenum. Up until the end
of the injector section, the combustor is identical to the
atmospheric annular combustor employed by Worth and
Dawson (2013); Mazur et al. (2019); Indlekofer et al. (2021).
However, in the work cited above, twelve or more injectors
were employed.

For the cans, steel pipes with inner diameter dcan =
41.9 mm are used: hence, there is no optical access except
via the outlets. Each can consists of a lower and upper piece
with the XT in-between, see Fig. 1 b).

In Figure 1 c), the lower half of the XT-segment is
depicted. Blocking elements of cuboidal shape with a central
bore can be inserted into the annular groove to vary the
strength of the acoustic coupling. Apart from inserting
no element at all, blocking elements with five different
bore sizes are available, see Tab. 1. In addition, loose
sheet metal pieces are put on top of the outlets to reduce
acoustic communication via the outlets, Fig. 2a. Hereafter,
this configuration is referred to as BL (baseline). In this
paper, the effects of an additional adjustment to the base
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Figure 1. a) Rendering of the can-annular rig. From the plenum, injectors feed mixture into individual cans. Pressure transducers
are mounted in the injectors. Each can consists of a lower and an upper part, with the two-part XT-ring sandwiched in between. b)
Axial cut through the rig. Dimensions upstream of the base of the cans and of the bluff bodies can be found in Indlekofer et al. (2021).
Pressure transducers are mounted in the lower ports (blue), while the upper ones (red) are blocked. Steel wool is inserted into the
conical section at the inlet and closed with a mesh to suppress any large-scale asymmetries in the inflow. c) Lower half of the XT
with the blocking stones mounted. An identical plate is mounted from above. The revolving groove is 10 mm deep (in each plate) and
has outer and inner diameters 189.6 mm and 149.6 mm, respectively. d) Photos of the rig during operation with quartz tubes instead
of steel pipes for the combustion chambers. The setup with quartz tubes was employed during a later experimental campaign; all
data discussed in the present work was acquired with steel tubes.

Table 1. Dimensions of the blocking elements.

Name Tiny Small Medium Large Huge Open
dXT 9.4 mm 13.2 mm 16.2 mm 18.7 mm 20.0 mm -

AXT/Acan 0.05 0.10 0.15 0.20 0.23 0.29

(a) (b)

Figure 2. a) Top view of the combustor with sheet metals placed loosely on top to suppress acoustic communication via the outlets.
An end correction gives 0.61dcan/2 = 12.78 mm for the location of the pressure node downstream of each outlet. The length of
the pipe segment is 45 mm to yield a total of 57.78 mm, which is significantly shorter then the sheet metal of height 150 mm. b)
Detailed view of the plenum in Fig. 1 with the sintered plate (yellow) mounted upstream of the injectors. The sintered plate is of type
SIKA-B200 with a porosity of 51% and pore size 124µm.

configuration is also investigated: in order to decouple
acoustic communication via the plenum, a sintered plate is
mounted upstream of the injectors, Fig. 2b. The plate has
a high pressure drop and is highly acoustically reflective.
This configuration is referred to as SP (sintered plate). Figure
3 depicts transfer functions for BL and SP obtained from
forcing via the outlets and recording signals in all cans.
There is significant communication via the plenum in the
BL case and the addition of the sintered plate reduces

this significantly in the entire range of frequencies but
particularly between 750 Hz and 1000 Hz.

Operation of the combustor
Perfectly premixed blends of methane, hydrogen and air are
injected into the plenum. The precise mixture compositions
are given in the respective result sections.

To monitor whether all flames are stabilised as intended on
the bluff body flame holders rather than lifted, an overhead
Photron SA1.1 CMOS camera is employed. In conjunction
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addition of the sintered plate significantly reduces communication via the plenum.

with a LaVision Intensified Relay Optics unit and a Cerco
2178 UV lens equipped with a D20-VG0035942 filter (centre
wavelength 310 nm, full width half maximum 10 nm), the
camera images the OH∗ chemiluminescence in the heat
release zone. Apart from the monitoring, the camera data
is not used in this paper. On the OH∗ images a lifted
flame can be clearly distinguished from a flame stabilized
at the flame holders. If a lifted flame is identified, an
upstream propagation is triggered by briefly increasing the
hydrogen content of the reactants or by repeating the ignition
procedure. Measurements are taken for a duration of 60 s.

An Optris CTlaser 3MHCF4 pyrometer is aimed at the
inside wall of the outlet of the can at an angle of 225◦

to record the temperature. A new experimental run is
commenced once the outlet temperature has dropped to
350 ◦C.

Pressure data acquisition and spectral analysis
In every injector tube, one Kulite (XCS-093-05D) pressure
transducer is mounted, see Fig. 1. The pressure transducers
are located in the lower of the two ports with the upper one
blocked. Ideally, at least two pressure transducers would be
placed in every injector to reconstruct the fluctuations in
the cans via the multi-microphone method. However, eight
microphones was the maximum number available during
the experiments. A 24-bit DAQ system (NI model 9174) is
used for the signal recording. Signals are recorded at fs =
51.2 kHz and amplified with a FE-579-TA Bridge Amplifier
from FYLDE set to a gain of 300 and using a built-in low-
pass filter with cut-off at 20 kHz.

During operation, short time Fourier transform (STFT)
is employed to identify dominant frequencies over time.
Hereby, the data is binned into segments of 400 ms with an
overlap of 75%. Each segment is extended via zero padding
to 4 times its length. The spectra are computed with Welch’s
method with the same FFT parameters as the STFT.

In the post-processing step signals are filtered in the
band of 250 Hz to 1450 Hz by using the inverse Fourier
transformation and setting all frequencies outside this band
to zero. As will be evident in the result section, the spectra
show multiple peaks. In order to determine the mode orders
of these peaks, the signals are filtered tightly with the inverse
Fourier transformation and then projected onto a modal basis

(see next section). Filter limits are chosen on a case-by-
case basis depending on the spectra and to account for drifts
in frequencies due to heat up of the rig. All oscillation
amplitudes discussed in the following are obtained as the
RMS of the pressure signals p or of the modal coefficients
asm, a

c
m discussed next.

Projection onto modal bases and definition of
spin ratio
In the following, it is assumed that all eight pressure signals
have been narrowly band-pass filtered around a frequency
of interest. The signals are cast into a matrix p ∈ RN×l,
where N = 8 is the number of pressure transducers and l
is the number of samples – contingent on the chosen window
in time domain during operation. In order to determine
azimuthal mode orders m of a limit cycle oscillation, the
signals are projected onto a set of circumferential basis
functions, following Moeck (2010).

A standing wave basis is constructed in the form of a
transformation matrix BN ∈ RN×N with columns

bn =




w01
w1 cosφn
w1 sinφn

. . .
wN/2 cos (N/2φn)




(1)

where the azimuthal coordinate takes discrete value φn =
0, . . . , 2π (N − 1) /N , and weights are chosen as w0 =
wN/2 = 1/

√
N and w1, . . . , wN/2−1 = 1/

√
N/2 to make

B unitary. The matrix of modal coefficients pm ∈ RN×l is
obtained via projection

pm = BNp . (2)

Columns of pm contain the modal coefficients, which are
termed asm and acm for sine and cosine basis, respectively.
To represent the physical oscillation amplitudes, the modal
coefficients need to be normalized by

√
N/2 for m =

1, . . . , N − 1 and
√
N otherwise. Notice that for the m =

N/2 mode (here m = 4) it cannot be determined whether
the mode is of spinning or standing type due to aliasing.
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A spin ratio is defined following Bourgouin et al. (2013)
as

∆sp =
|a+m| − |a−m|∣∣a+m
∣∣+
∣∣a−m

∣∣ ∈ [−1,+1] , (3)

where a+m and a−m are spinning mode coefficients derived
from the standing basis. Values +1 and −1 denote a
spinning state in clockwise and counterclockwise directions,
respectively. A spin ratio of zero corresponds to a standing
mode.

Numerical model for linear stability analysis
Linear stability analysis of the combustor is conducted
using the package WavesAndEigenvalues.jl (Mensah and
Orchini 2021), which solves the 3D thermoacoustic
Helmholtz equation (Nicoud et al. 2007). Meshes are
created with GMSH (Geuzaine and Remacle 2009) and
have approximately 24 k degrees of freedom on a Bloch
cell (Mensah et al. 2016). The cans are extended via an
end correction Lcorr = 0.61dcan/2 (Levine and Schwinger
1948) to account for the effective downstream location of the
pressure node.

For the mixtures employed in this work, flame transfer
functions (FTFs) have been recorded on a single sector setup
identical to the one employed in Æsøy et al. (2020). The
temperature in the flame zone is set to 80% of the adiabatic
flame temperature, to account for unknown heat losses, and
then decreases linearly to the outlet where it is matched with
the value recorded by the pyrometer.

Modal dynamics in the baseline
configuration
The baseline configuration of Fig. 1 with the L-shaped
decoupling at the outlets (Fig. 2a) is operated exclusively
with CH4–air mixture at 4 kW per burner and equivalence
ratio of φ = 0.8. The combustor is unstable for this operating
condition.

In Figure 4 a), b), d) the frequencies, amplitudes of the
modal coefficients and the pressure amplitudes over the
circumference are depicted for the final 30 s of each run.
Sizes ‘Small’ and ‘Large’ were not recorded since this
data set was part of an exploratory test at the end of the
commissioning campaign to characterize the test rig. For
all XT sizes several peaks in a relatively narrow frequency
band (approx. 150 Hz) can be observed, indicating clustered
modes. The dominant frequency for the three largest XT
sizes are close at around 760 Hz, while ‘Tiny’ shows two
active frequencies at 730 Hz and 765 Hz. The right peak
of ‘Tiny’ belongs to a mode with different azimuthal order
(m = 4) than the main peaks corresponding to ‘Open’,
‘Large’ and ‘Medium’ (m = 2).

All XT sizes show most activity in them = 2 mode except
for ‘Tiny’, which has an active m = 4 mode in addition,
see Fig. 4 c). For ‘Open’ and ‘Huge’ the amplitudes of
sine and cosine components are very similar. This property
in combination with an almost identical pressure amplitude
in all eight cans shows that the m = 2 modes oscillate
pairwise for these two geometries. The spin ratios in Fig.
7 confirm this predominantly standing state. As the XT

size is decreased to ‘Medium’, the amplitudes of the cosine
component increases while the sine component decreases.
The spin ratio for ‘Medium’ shows this in the form of
a mixed mode with a preference for a counterclockwise
rotation.

The amplitudes in Fig. 4 d) are constant over the
circumference for ‘Open’, ‘Huge’ and ‘Tiny’. Only
‘Medium’ shows a spatially varying amplitude; however, this
is not sufficient proof of mode localization. Figure 4 b) shows
that them = 3 component is strongest for ‘Medium’ and that
there is very little activity in any other mode orders. Thus,
the variation in amplitude over the circumference is due to
the mixed state of the mode, see the spin ratio in Fig. 7 a).

Figure 4 e) shows the mean pressure amplitude of the
two peaks for ‘Tiny’ and Figure 4 c) the amplitudes of
the modal coefficients. The mode at 730 Hz shows mainly
activity in the m = 2 components and as such the nodal
lines are located in cans at angles 45◦, 135◦, 225◦ and 315◦.
The non-vanishing value of the pressure amplitude in the
nodes is again due to the mixed state of the mode, see Fig.
7 a). The mode at 765 Hz has an active m = 4 component,
indicating a push-pull mode. In addition, there is activity in
the m = 3 component. For this mode there is a significantly
higher amplitude in the can at 225◦. This is the only sign of
mode localization in this configuration.

In Figures 4 f) & g) the STFTs are shown for two pressure
transducers. The pressure transducer at 135◦ is located in a
pressure node of them = 2 mode and the pressure transducer
at 180◦ in an antinode. According to the STFTs, both modes
are active simultaneously and it can be observed how the
frequencies drift upwards during operation due to the heating
of the rig during operation.

Figure 5 depicts the eigenvalues from the linear stability
analysis in the complex plane. A group of modes is
unstable. In that group, the m = 2 mode matches with the
experimentally observed m = 2 mode. The side peaks in the
pressure spectrum corresponding to ‘Open’ match well with
the FEM but the noise content is so high that no modal order
can be determined for these to further validate the numerical
result. Table 2 lists the experimental and numerical results.
The agreement for other XT sizes is similarly good, see
Fig. 5 c). However, the agreement should be treated with
caution. The linear stability analysis does not model finite-
amplitude effects and interaction between multiple unstable
modes. These nonlinear effects may play a role that results in
a shift in frequency but it cannot be determined to what extent
this is the case, since there is a second unknown in the form
of the actual heat losses. Setting the temperature in the flame
zone to 80% of the adiabatic flame temperature also has an
effect on the frequencies. Thus, it cannot be determined if
the temperature is chosen correctly and the nonlinear effects
are insignificant or if the choice in temperature incidentally
conceals the nonlinear effects.

The experimental results and the linear stability analysis
agree that a decrease in XT size results in a lowering of
the frequencies, as predicted by Ghirardo et al. (2019) and
von Saldern et al. (2021). Also, frequencies of higher mode
orders are more sensitive to the XT strength, see bottom of
Fig. 5 b), which is consistent with the results of Ghirardo
et al. (2019). The modes will not merge for XT→ 0 because
of coupling through the plenum.

Prepared using sagej.cls



6 Symposium on Thermoacoustics in Combustion: Industry meets Academia (SoTiC 2021) XX(X)

500 600 700 800 900 1000 1100 1200

Frequency f in Hz

10−1

101

103

105

P
S

D
in

P
a2
/H

z
Open

Huge

Medium

Tiny

ac0 ac1 as1 ac2 as2 ac3 as3 ac4
Modal coefficients

0

500

1000

A
m

p
lit

u
d

e
A

in
P

a Open

Huge

Medium

Tiny

ac0 ac1 as1 ac2 as2 ac3 as3 ac4
Modal coefficients

0

500

1000
XT: Tiny

around 730 Hz

around 765 Hz

0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

Pressure transducer angle

0

500

1000

1500

A
m

p
lit

u
d

e
A

in
P

a Open

Huge

Medium

Tiny

0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

Pressure transducer angle

0

250

500

750

1000

A
m

p
lit

u
d

e
A

in
P

a XT: Tiny
around 730 Hz

around 765 Hz

30 35 40 45 50 55 60

time in s

720

735

750

765

780

Press. transd. angle 180◦

80 160 240 320 400

PSD in Pa2/Hz

30 35 40 45 50 55 60

time in s

720

735

750

765

780

F
re

qu
en

cy
f

in
H

z

Press. transd. angle 135◦

a)

b) c)

d)

e)

f) g)

Figure 4. Baseline configuration with four different XT sizes. Pressure signals are taken from the last 30 s of an experimental run. a)
Spectra for all eight pressure transducers and every XT size. b) Modal amplitudes for signals filtered in range f ∈ [600, 900] Hz. c)
Modal amplitudes for ‘Tiny’ filtered around the two peaks, i.e. in the range f ∈ [710, 742] Hz and f ∈ [742, 800] Hz, respectively. d)
Mean pressure amplitude over the circumference. e) Mean pressure amplitudes over the circumference for ‘Tiny’ when the pressure
signals are filtered narrowly around the two peaks in a). f) and g) STFT for ‘Tiny’ for the two pressure transducers at angles of 135◦

and 180◦.
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Figure 5. Baseline case. a) Eigenfrequencies computed with a linear stability analysis below 1400 Hz for ‘Open’ and the average
spectrum from Fig. 4 a) for ‘Open’. The spectra from all eight microphones are averaged. A stable plenum mode around 60 Hz is
not depicted. A group of unstable modes is found in the vicinity of the experimentally observed m = 2 mode at 773 Hz. b) Clustered
modes in range f ∈ [700 Hz, 800 Hz] for all XT sizes. A darker shading signifies a larger XT. The higher the mode order, the larger the
effect of the increase in XT strength: Difference in the complex plane between eigenvalues ω = 2πf of ‘Tiny’ vs. ‘Open’ is denoted
as |∆f |. c) Average spectra of Fig. 4 a) and eigenvalues of m = 2 for all XT sizes. Numerical results and experiments match well
except for the smallest XT size ‘Tiny’.

According to the eigenvalues of Fig. 5 the two most
unstable modes (with almost the same growth rates) are a
push-push and an m = 1 mode. However, an m = 2 mode is
observed experimentally. The linear stability analysis cannot
explain this discrepancy and more sophisticated models
for the flame dynamics (von Saldern et al. 2020) and the
acoustic-flow coupling via the XT (Orchini et al. 2021) are
needed.

Altogether, the preferred state of the BL case is an m =
2 mode. A reduction in XT size shifts the frequencies
downwards and also effects the states of the m = 2 modes.
Only for the smallest XT size is an additional push-pull mode
observed.

Effect of decoupling the plenum with a
sintered plate

In the BL case a group of modes within a frequency band
of 150 Hz is observed. However, due to the plenum acoustic
communication between cans – including non-adjacent ones
– is not restricted to the XTs. In order to isolate the effect
of coupling via XTs a sintered plate, as depicted in Fig.
2b, is installed upstream of the injectors. The goal of this
modification is to tighten the grouping of closely spaced
modes and change the overall topology of the spectrum
such that more than one cluster of modes can be studied.
Moreover, the linear stability analysis shows that the unstable
group in Fig. 5 does not nominally form a cluster: The mode

Table 2. Active modes below 1400 Hz for BL with XT ‘Open’,
computed numerically. The cluster label is determined from the
axial order. Modes belonging to the first cluster are depicted
with a gray background, and the experimentally observed mode
with a darker gray background. The group in the range f ∈
[721 Hz, 793 Hz] contains a mode from another cluster, since the
plenum mode at 60 Hz is the first mode in the first cluster. More
overlap between clustered modes can be observed for modes at
higher frequencies.

f in Hz Azi. ord. Ax. ord. Cluster
60 0 0 I.

721 0 1 II.
737 1 0 I.
770 2 0 I.
773 m = 2 in experiments, main peak
788 3 0 I.
793 4 0 I.
797 Side peak in experiments
840 Side peak in experiments
841 0 2 III.
902 1 1 II.

1115 2 1 II.
1121 1 2 III.
1137 0 3 IV.
1151 3 1 II.
1160 4 1 II.
1309 1 3 IV.
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Figure 6. Sintered plate case. a) A lower cluster at 500 Hz and an upper cluster at ca. 900 Hz to 1100 Hz are observed, depending
on XT size. The XT size strongly affects the dominant frequencies in the upper clusters. b) Sizes ‘Large’, ‘Huge’ and ‘Open’ can be
grouped together: Frequencies and amplitudes are similar and the limit cycle oscillation is a mode of order m = 3. c) Amplitudes
of modal coefficients for ‘Tiny’ when the peaks are filtered in the range f ∈ [400, 550] Hz and f ∈ [900, 960] Hz, respectively. d)
Pressure amplitude decreases in all cans as the XT strength is decreased. e) & f) Spectrogram for pressure transducer at an angle
of 180◦. e) For ‘Medium’ the combustor jumps between two modes. The mode at 1000 Hz is of orderm = 3 and the mode at 1018 Hz
of order m = 4. These are not identifiable as isolated peaks in a) since the spectrum contains the frequency content for the entire
experimental run of 60 s. During operation the rig heats up and causes a gradual shift in both frequencies, which results in the
smooth peak shown in a). f) The smallest XT size, ‘Tiny’, shows activity in the m = 4 mode at 932 Hz which transitions over time into
the m = 0 mode at 507 Hz.
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Figure 7. a) and b) Spin ratios for observed limit cycle oscillations. The time signal is filtered in a band of width 40 Hz centered at
the respective frequencies. a) BL case. For ‘Huge’ and ’Open’, a standing mode is observed. For ’Medium’ the spin ratio stays close
to 0.5 pointing to a mixed mode. The spin ratio for ‘Tiny’ is not conclusive. b) SP case. For the largest XT sizes spinning states are
observed.

at 721 Hz has a higher axial order than the rest, see Tab. 2.
This property seems to bear no consequence for treating the
group as a cluster, as detailed in the previous section.

With the sintered plate the combustor is stable for a
CH4–air mixture and φ = 0.8 – the operating condition in
the previous section. However, for a CH4–H2–air mixture
instabilities are observed. A hydrogen content of 8% by
power (20.09% by volume) is chosen at a total power of
8.3 kW per burner. The combustor is stable for φ = 0.75 and
unstable for higher φ. All results presented in the following
are for φ = 0.85.

Figure 6 depicts the results for case SP. Comparison
with the BL case in Fig. 4 shows that the spectra have
decidedly fewer peaks: only two well-separated broad peaks
are observed for all XT sizes. In fact, both peaks are formed
by clustered modes. The analysis and its result are not
depicted here, but for both clusters any available side-peaks
are narrowly filtered in frequency domain and projected onto
a modal basis. With this procedure it is observed that any
identifiable peaks belong to modes of distinct azimuthal
orders. Given that several modes are observed in a narrow
band (50 Hz) the data suggests that clusters are present.
However, per cluster and for all XT sizes at most three
peaks are observed in parallel. Hence, some of the modes
in the cluster are not unstable at any moment during an
experimental run. Compared to the BL configuration the
clusters are much more compact (50 Hz vs. 150 Hz).

The pressure spectra of the three largest XT sizes match
almost identically. As the XT size is decreased, the dominant
frequencies are strongly affected. For ‘Tiny’ the peak at
1040 Hz seems to be due to a higher harmonic of a mode
from the lower cluster. Comparing Fig. 4 a) and Fig. 6
a) shows that the limit cycle frequencies are much more
sensitive to a decrease in XT size for SP compared to BL.

All XT sizes show activities in the m = 3 and m = 4
modes but to varying degrees. For the three largest sizes, the
m = 3 mode has larger amplitude than the m = 4 mode. At
around ‘Medium’ the balance is shifted in favor of them = 4
mode. Subsequent smaller sizes retain this slight preference.
The lower left plot in Fig. 6 e) shows that the case ‘Medium’
jumps between modes of orders m = 3 and m = 4. No
steady state is reached and unlike the case BL-Tiny in Fig.
4 f) and g) the two modes are not active simultaneously.

During an experimental run with ‘Tiny’, the combustor starts
in anm = 4 mode but slowly transitions intom = 0, see Fig.
6 f). The transition itself takes approximately 30 s.

The three largest XT sizes with a pronounced m = 3
mode show a spinning state, see Fig. 7. This preference is
lost as the XT size is decreased. Due to the simultaneously
high activity in modes of orders m = 3 and m = 4 for
all XT sizes, a mode localization is visible in the form of
a significant variation of the pressure amplitude over the
circumference. This is more pronounced for larger XT sizes.

Overall, as the XT size is decreased the pressure
amplitudes decrease strongly. However, case SP shows
overall higher amplitudes than case BL and while case BL
prefers standing or mixed modes, case SP shows a preference
for a spinning state.

Conclusion
The first experimental results on a can-annular laboratory
combustor with N = 8 cans are presented. The combustor
facilitates studying the effect of varying cross-talk strength
on modal dynamics and mode selection.

The spectrum of a baseline configuration shows a cluster
of modes. Frequencies obtained from a linear stability
analysis match well with the experimentally recorded ones
and the numerical results predict that all clustered modes
are unstable. By mounting a sintered plate upstream of
the injectors, acoustic wave propagation via the plenum
is suppressed. The consequent reduction in overall can-
to-can coupling strongly affects the modes: two distinct
clusters within narrow frequency bands emerge. The pressure
amplitudes are consistently higher in the decoupled (SP) case
when comparing XT sizes with the coupled (BL) case.

The experiments confirm several predictions of theoretical
studies in the literature, namely: (1) clustered modes are
ordered by increasing frequency, (2) a reduction in XT size
lowers the frequency of the modes and (3) frequencies of
higher order modes are more sensitive to the XT strength.
In the BL case an m = 2 mode of standing/mixed type
is mainly observed, while for the SP case it is an m = 3
mode of mixed/spinning type. Both cases show an increase
of activity in a push-pull mode (m = 4) as the XT size is
reduced. The probability density of the spin ratios is strongly
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affected by the XT strength. Overall, the SP configuration
is better suited to focus on the role of XT strength for
thermoacoustic instabilities, since the clustered modes are
more tightly grouped and several clusters are identifiable.
Sensitivities of frequencies to changes in XT strength are
also higher.

In conclusion, the presented dynamics show that
thermoacoustic instabilities in a nominally symmetric can-
annular combustor are strongly affected by the coupling
strength. Small variation in the coupling strength leads to
major shifts in the frequencies of the limit cycles. This has
implications for the design of dampers of Helmholtz type
for specific instability frequencies. Besides the limit cycle
frequencies, amplitudes and modal coefficients also show
strong variations as functions of the XT size.

The presence of multiple unstable modes makes it difficult
to characterise and predict the steady states. For instance, for
the BL case the most unstable mode (m = 0), according to
a linear stability analysis, is not observed experimentally but
another mode (m = 2) is. This shows that more sophisticated
models are needed to capture the interaction and competition
between the unstable modes. In the experiments, multiple
unstable modes simultaneously, jumping between two modes
and slow transitioning between two modes are all observed.
These are interesting phenomena in their own right and
show how diverse the steady states of thermoacoustic
instabilities in can-annular combustors can be. In addition,
mode localization in the form of simultaneously active
modes of different azimuthal orders is observed for the case
SP.
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Abstract

Thermoacoustic instabilities in stationary gas turbines may cause high-am-
plitude limit cycles, leading to damaged components and costly down-time.
To better understand the physical origin of such instabilities in a can-annular
combustor configuration, we study the properties of the spectrum of a reduced-
order can-annular thermoacoustic system. Increased focus is placed on rep-
resenting the aeroacoustic interaction between the longitudinal eigenmodes
of the individual cans with physically relevant models. To represent the
acoustic pressure dynamics in the combustor, we combine an analytical, ex-
perimentally validated model for the can-to-can impedance with a frequency-
dependent model of the flame response in the cans to acoustic perturbations.
By using this approach, we perform a parametric study of the linear sta-
bility of an atmospheric can-annular thermoacoustic system, and emphasize
general features of the structure and properties of the eigenvalues and the
eigenvectors of can-annular combustors. Lastly, we emphasize the differences
in the can-to-can coupling that arise when considering open-end boundary
conditions – as in atmospheric set-ups – or closed-end boundary conditions
– as in real gas turbine combustors.
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Nomenclature

Latin symbols

Ar Ratio between gap (Ag) and
can (Ac) surface area

b Bloch number

ci Speed of sound

fi, gi Riemann invariants

G Flame front level set (G=0)

KR Rayleigh conductivity

Lf Flame length

lg Gap length

Mx Mach number

N Number of cans

p Pressure

q Heat release rate

rcan Can radius

Ri Reflection coefficient

s Laplace variable

sL Flame speed

T Temperature

u Velocity

Uc Convective velocity

Zi Impedance

Greek symbols

ω Angular frequency

ρ Density

σ Growth rate

τ Time delay

ζ Can-to-can impedance

Other symbols

·̂ Laplace domain variable

· Mean value

·̃ Non-dimensional impedance
(scaled with ρc)

FTF Flame Transfer Function

1. Introduction1

1.1. Thermoacoustic instabilities in can-annular combustors2

Thermoacoustic instabilities can arise from the constructive interaction3

of a flame with the sound field in an enclosed volume, such as the combus-4

tion chamber of a gas turbine. This classic physical phenomenon was first5

studied in modern terms by [1]. Insufficiently damped instabilities lead to6

high-amplitude pressure oscillations in the chamber. These oscillations in7

turn induce high-cycle fatigue in the metal parts surrounding the enclosure,8

for instance the turbine vanes, which causes down-time and incurs fees and9

repair costs for the manufacturer. The modeling, prediction and suppression10

of thermoacoustic instabilities has come to renewed importance in the last11

40 years due to strict emission limits and the resulting increased demand12

for lean-premixed combustion. In modern combustors for power generation,13

most of the air flow passes through the burner to ensure a lean mixture. The14

absence of dilution holes that are commonly found in aeroengines – and that15

2



are highly efficient sound absorbers – leads to combustion instability prob-16

lems similar to those encountered in rocket engines, with the difference that17

the life span of stationary gas turbines is expected to be in the order of tens18

of thousands of hours [2].19

Much research has been devoted in the last decade to modeling and un-20

derstanding thermoacoustics of single-can [3, 4, 5] and annular combustion21

chambers [6, 7]. In contrast, modern high-efficiency H-class gas turbines ex-22

clusively feature can-annular combustor architectures. In this design, com-23

bustion takes place in a number (typically 12 or 16) of cans. The annular24

turbine inlet is common to all cans and allows for acoustic cross-talk between25

neighboring elements. Upstream coupling via a plenum is also possible, but26

it will not be considered in this study. The increasing interest in the subject27

of thermoacoustic instabilities in can-annular combustor architectures is ex-28

emplified by numerical and experimental studies performed in academia and29

in industry, including Siemens [8, 9, 10, 11], General Electric [12, 13, 14], and30

Ansaldo Energia Switzerland [15, 16].31

In the present work, we describe a general reduced-order model for pre-32

dicting thermoacoustic instabilities in can-annular combustors (§2 and §3).33

This model is used to study a lab-scale can-annular combustor (§4), with the34

objective of understanding the influence that various physical parameters –35

viz., the mean flow speed and the magnitude of the heat release rate response36

– have on the frequency spectrum of the system. The physical counterpart37

of the modelled setup is located at NTNU, Norway [17]. This experimen-38

tal setup is a modified version of the one described in [18], with the major39

difference that the annular combustion chamber has been replaced by a pe-40

riodic set of weakly coupled ducts. This lab-scale combustor operates at41

atmospheric conditions, and the cans are (acoustically) open at the down-42

stream end. This is in contrast to the acoustic boundary condition in real43

gas turbines, in which the cans are acoustically closed at their downstream44

end (choked turbine inlet). To address this key difference, in §5 we discuss45

the effect of the downstream boundary condition on the can-to-can coupling46

and the thermoacoustic spectrum.47

1.2. Modelling of the aeroacoustic can-to-can coupling48

In this work, special focus is placed on the effect that the can-to-can49

impedance has on the acoustic pressure dynamics in the chamber. The50

can-to-can impedance describes the aeroacoustic response at the openings51

connecting the ducts. It depends on the interaction between the acoustic52

3



pressure fields in neighbouring cans and the aerodynamic modes of the tur-53

bulent wake in the openings connecting them. This acoustic–aerodynamic54

interaction plays an important role in self-sustained cavity oscillations, a clas-55

sic physical phenomenon first described by [19]. The model we use is based56

on impedance measurements of a side-branch aperture presented in Fig. 6(a)57

of [20], which show a non-trivial behavior around a frequency corresponding58

to the least stable aerodynamic mode of the shear layer. For small enough59

acoustic pressure amplitudes, it was found that the aeroacoustic response of60

the aperture can be amplifying, which manifests itself in a reflection coeffi-61

cient R exceeding 1. As the amplitude is increased, the response saturates,62

an effect that was recently studied numerically using large-eddy simulations63

(LES) by [21]. These measurements were used in [22] to calibrate an explicit,64

analytical model able to quantitatively predict the effect of the mean flow65

speed and the acoustic pressure amplitude on the acoustic impedance over66

the relevant frequency range.67

2. Reduced-order thermoacoustic model68

The reduced-order approach outlined in this study can be used to model69

a general can-annular combustor system. The generic configuration that70

highlights the can-to-can communication is shown in Figure 1. The reduced-71

order model will be applied to an atmospheric can-annular setup, whose72

details are outlined in [17], to study its thermoacoustic response and the73

sensitivity of its spectrum.74

2.1. Can-acoustic network model75

Analogous to [23], [15] and [24] we consider an array of N cans that76

communicate acoustically at the downstream end via small gaps. For the77

range of frequencies that will be considered in this study, transverse acoustic78

modes in a can are cut-off. It is thus appropriate to assume planar wave79

propagation in the axial direction for the acoustics. This is consistent with80

the results of [15], in which it was shown that non-axial acoustic propagation81

is relevant only in the vicinity of the connection gaps. To account for these82

near field effects, the acoustic transmission at the gaps will be modelled by83

means of an experimentally fitted impedance, presented in §3.84

The one-dimensional acoustic field is described in terms of its Riemann85

invariants [25]. Considering the flame (and burner) as a scattering element,86
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pj ujpj−1 uj−1 pj+1 uj+1

uj−1,j uj,j+1

lg

rcan

ZdsZds Zds

Figure 1: Sketch of the geometry considered. The cans are assumed to communicate only
downstream through apertures having axial extension lg. Acoustic waves at the down-
stream end of the cans are partly reflected back in the can by a downstream impedance
Zds (dashed red lines) and partly transmitted to neighbouring cans, via transverse acoustic
velocity fluctuations in the apertures. This coupling mechanism is driven by the dynamics
of the shear layer that forms at the interface between the cans and the gaps (in green).

conservation of mass, momentum and energy yield [26, 27]87

[
ĝ1
f̂2

]
=

[
S11 S12

S21 S22

] [
f̂1
ĝ2

]
+

[
H1

H2

]
q̂, (1)

where q̂ is the unsteady heat release rate, Sij the elements of the scattering88

matrix, and Hj constant factors scaling the heat release response to acoustic89

fluctuations. Closure for the acoustics is provided by expressions for the90

reflection coefficients at the upstream (R1) and downstream (R2) boundaries91

92

f̂1 = R1e
−sτ1 ĝ1, ĝ2 = R2e

−sτ2 f̂2, (2)

with τj ≡ 2ljcj/(c
2
j − u2j) and s ≡ σ + iω. By substituting these expressions93

in the conservation laws (1) one obtains94

(
I −

[
S11R1e

−sτ1 S12R2e
−sτ2

S21R1e
−sτ1 S22R2e

−sτ2

])

︸ ︷︷ ︸
Mac

[
ĝ1
f̂2

]
=

[
H1

H2

]
q̂, (3)

where I is the identity matrix. In the absence of an unsteady heat release95

input, q̂ = 0, the eigenvalues s of the matrix Mac yield the acoustic eigen-96

values.97
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To account for the effect of the flame on the thermoacoustic stability, the
heat release rate term is modelled by means of a Flame Transfer Function
(FTF)

q̂ =
Q

u1
FTF(s)û1 =

Q

ρ1c1u1
FTF(s)

(
f̂1 − ĝ1

)
=

=

[
Q

ρ1c1u1
FTF(s)

(
R1e

−sτ1 − 1
)
, 0

] [
ĝ1
f̂2

]
.

(4)

By defining the matrix98

Mhr =

[
H1

H2

] [
Q

ρ1c1u1
FTF(s)

(
R1e

−sτ1 − 1
)
, 0

]
(5)

the thermoacoustic eigenvalue problem reads99

(
Mac(s)−Mhr(s)

)[
ĝ1
f̂2

]
=

[
0
0

]
. (6)

2.2. Bloch boundary conditions100

Expressions for the boundary conditions are required to close the ther-
moacoustic equations. In particular, at the downstream boundary we wish to
model the can-to-can acoustic interaction. To understand the effect that can-
to-can communication has on the (thermo)acoustic response, it is convenient
to make use of Bloch-wave theory. By assuming that all cans are identi-
cal, an effective expression for the Bloch-wavenumber-dependent reflection
coefficient can be derived. From the results of [24] this effective can-to-can
reflection coefficient Rb can be expressed as

Rb =
Zb − ρc
Zb + ρc

= 1− 2
4Ar

ζ̃
sin2

(
πb
N

)

1 + 4Ar

ζ̃
sin2

(
πb
N

) , (7)

where ρc is the characteristic specific acoustic impedance, N the number of101

cans, b the Bloch wavenumber, Ar the ratio between the cross section of102

the can-to-can aperture and the cross section of the can, and ζ̃ the (non-103

dimensional) impedance that links the acoustic pressure difference between104

two adjacent cans and the acoustic velocity:105

ζ̃ ≡ ζ

ρc
=

1

ρc

p̂j − p̂j+1

ûj,j+1

. (8)
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In [24] a simple purely reactive can-to-can impedance model was used. In106

this study we shall instead adopt a more realistic empirical model, fitted to107

experimental data, as discussed in §3.108

Equation (7) has, however, been derived with some restrictions, specif-
ically that (i) the Helmholtz number defined by He ≡ (slg)/c, where lg is
the axial extension of the gap, is negligible; (ii) the cans are acoustically
closed after the openings, thus having Zds = ∞; (iii) the mean flow effects
due to a non-zero Mach number grazing flow along the gap are negligible.
Although assumption (i) holds in most practical cases, the same is not true
for the others. It was in fact shown in [28] that the effect of the mean flow
is non-negligible. Moreover, a downstream choked boundary condition does
not represent the correct physics for atmospheric test-rigs, which normally
have open ends. Assumptions (ii) and (iii) can be relaxed, and a more gen-
eral expression for the effective reflection coefficient can be derived, which
retains the Mach number effects and an arbitrary downstream impedance. It
reads [29]

Rb = 1− 2
(1−M2

x) + 4Ar/ζ̃(Mx + Z̃ds) sin2
(
πb
N

)
(
Z̃ds + 1

)
(1−M2

x) + 4Ar/ζ̃(Mx + Z̃ds) sin2
(
πb
N

) , (9)

where we have introduced the (axial) Mach number Mx = u2/c2. It can be109

verified that, in the zero Mach number and infinite downstream impedance110

case, Eq. (7) is retrieved.111

At the downstream end of our reduced-order can model we shall therefore112

set R2 = Rb, which makes the thermoacoustic problem (6) Bloch-number113

dependent.114

2.3. Flame Transfer Function115

The unsteady heat release rate response is chosen to be that of an axisym-116

metric, laminar V-flame. The flame dynamics is modelled via the kinematic117

G-equation, which tracks the flame front as the level set G = 0, and reads118

∂G

∂t
+ u · ∇G = sL|∇G|. (10)

The underlying velocity field is modelled as a uniform axial mean flow119

and an unsteady travelling wave moving along the axial direction at velocity120

uc [30, 31]121

u = (u1 + ε sin [ω (t− x/uc)])x. (11)
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For small fluctuations amplitudes ε, the flame front can be considered a122

single-valued function of the radial coordinate, see Figure 2. Within this123

limit, the G-equation can be linearised and solved, and the instantenous124

heat release rate can be quantified by125

Q = 2πρsLhr

∫∫

V

|∇G|δ(G)r dr dx. (12)

Following steps analogous to those of [32] and [33], it can be shown that126

the FTF for the V-flame configuration outlined in Figure 2 reads127

FTF = 2
e−ηSt2 (γ + ηSt2)− ηe−St2 (γ + St2) + γ(η − 1)

ηSt22(2− γ)(1− η)
. (13)

α

sL

u1α

r

x

θ

u
′ x

=
ε

si
n

[ω
(t
−
x
/
u
c
)]

(0, 0)
(Ri, 0)

(Rw, Lf )

Figure 2: Geometry of the axisymmetric V-flame dynamics modelled with the G-equation.
The steady flame (red dashed line) forms an angle α with the can wall, determined by the
flame speed sL and the axial mean flow velocity u1. An axially travelling perturbation,
u′x, induces oscillations in the flame front (thick red line), which in turn cause heat release
rate fluctuations, quantified by the FTF (13).
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In the latter, we have introduced the following non-dimensional variables:

β ≡ Lf
Rw

, γ ≡ Rw −Ri

Rw

,

sinα =
sL
u1

=
Rw −Ri√

L2
f + (Rw −Ri)

2
=

γ√
β2 + γ2

,

St2 ≡
sLf

u1 cos2 α
, η ≡ u1

uc
cos2 α.

(14)

This FTF is a generalisation of that presented in Equation (28) of [32], in128

that the flame we consider is not (necessarily) anchored at the origin. The129

results of [32] are retrieved when setting γ = 1. The FTF that will be used130

in the rest of this study is shown in Figure 3.131

We note that the FTF (13) depends on two time scales, τf,1 ≡ St2/s and132

τf,2 ≡ ηSt2/s. The first is the characteristic time that perturbations take133

to travel along the unperturbed flame extension, Lf/ cosα, when carried134

by the component of the mean velocity parallel to the unperturbed flame,135

u1 cosα. This time scale was recognised as a characteristic time scale in136

both conical and V-flames in [34] and [35]. The second time scale is the137

characteristic time taken by velocity disturbances to travel along the axial138

extension of the flame Lf at the convective velocity uc. As discussed in [32], it139

is the constructive (destructive) interference between the waves propagating140

with these characteristic times that causes the presence of maxima (minima)141

Figure 3: Gain and phase of the V-flame FTF that will be used in this study. The non-
dimensional parameters used are β = 0.955, γ = 0.690, η = 0.645. They are are scaled by
the cold mean flow velocity u1 = 10 m/s and the radial distance of the tip of the flame
from the axis of symmetry, Rw = 21 mm.
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in the amplitude of the FTF. This is shown in Fig. 3, where the distance142

between two zeros in the FTF response has been calculated analytically from143

knowledge on the characteristic time scales.144

3. Effective can reflection coefficient with experimental can-to-can145

impedance model146

The work of [22] has identified semi-empirical models that characterize147

the impedance of a side-branch aperture. These models were fitted against148

the experimental data of [20]. For the purpose of this manuscript, we shall149

adopt an impedance model based on the Rayleigh conductivity of an aperture150

with bias flow [36]151

Kr(Ω) = w

[
π

2F (Ω) + log 8w
elg

+ γ1

]
. (15)

2.5 3 3.5 4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: Fit of the impedance model (17) against the frequency response of the shear layer
reported in [20] and [22]. The fitted coefficient values are κ = 0.412, γ1 = −0.196 + 0.162i
and γ2 = 0.154 + 0.079i.

The non-dimensional function F is defined by1
152

F (Ω) =
−J0K − (J0 + 2K)(J0 + iΩ(J0 − iJ1))

Ω(J0J1 + Ω(J2
1 + (J0 + 2iJ1)2))

, (16)

1Eq. (16) is the complex conjugate of the expression reported in Eq. (3.3) of [36].
The complex conjugation is needed to compensate the different conventions used in the
definition of the Laplace variable.
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where w is the transverse dimension of the aperture, K ≡ iΩ(J0 + iJ1),153

and Ji = Ji(Ω) are Bessel functions. The non-dimensional complex fre-154

quency used to evaluate the Rayleigh conductivity is Ω ≡ −islg/(2Uc), where155

Uc ≡ κU is the characteristic convective velocity in the shear layer. From156

the definition of the Rayleigh conductivity, the impedance model for the157

aperture (8) is158

ζ̃ =
sAg

Kr(Ω)c
+ γ2. (17)

The non-dimensional coefficients γ1 and γ2 in Eqs. (15) and (17) are intro-159

duced to account for radiation losses and three dimensional effects. Together160

with κ, they are fitted against the experimental results of [20]. Figure 4161

compares the measured and fitted resistance, <[ζ], and reactance, =[ζ], of162

the impedance at the connection cavities.163

Figure 5: Effective reflection coefficient magnitude for a system with N = 8 cans, as a
function of the mean flow and the frequency. The dashed lines indicate the upper limit of
the data of [20] to which the aperture impedance model (17) has been fitted. Above this
line (shaded regions), the higher the frequency the less reliable the fitted model.

To demonstrate how Eq. (9) can be used to understand the effect that164

the can-to-can coupling has on the effective reflection coefficient, we set165

up a generic system with N = 8 cans, and use the can-to-can impedance166

model (17) to represent the interaction of the cans. The can impedance167

downstream of the opening is chosen to be representative of the experimen-168

tal configuration that will be considered in the following sections. It reads169
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170

Z̃ds ≡
Zds

ρc
=
esτend − 1

esτend + 1
, with τend =

2lendc

c2 − U2 , (18)

which is the impedance of a tube of length lend with mean flow and an open-171

end – when neglecting radiation and effective length corrections. Figure 5172

shows the magnitude of the effective reflection coefficients for all positive173

values of the Bloch number b as a function of the mean flow and frequency.174

For b = 0, the can-to-can connection has no influence on the reflection co-175

efficient. The (small) deviations from R = 1 are due to variations in the176

grazing flow Mach number. For b > 0, the effective reflection coefficient is177

strongly influenced by the flow properties and the forcing frequency. For any178

value of the convective mean flow uc, we can identify a frequency at which179

the effective reflection coefficient for a specific Bloch number is minimized,180

and a frequency at which it is maximised. Notably, the effective reflection181

coefficient can exceed 1, due to the fact that, at its resonance frequency, the182

aerodynamic shear layer acts as an amplifier and enhances small impinging183

perturbations.184

4. Thermoacoustic analysis of an atmospheric can-annular setup185

The geometry we consider is an atmospheric can-annular setup, discussed186

in detail in [17]. It consists of 8 identical cans. Its geometrical details are187

reported in Figure 6. In the experiment, the cans are mounted on a large188

plenum upstream, which could couple the acoustics also on that side. To189

avoid this coupling, a reflective sintered plate is mounted at the connection190

between the plenum and the tubes. This plate was characterised experimen-191

tally by means of the multi-microphone method in [18]. From the scattering192

matrix coefficients shown in Fig. A2 of the latter study, one can infer that for193

frequencies below 1.5 kHz, the reflection coefficient of the plate is about 0.8194

(it coincides with the S11 element of their scattering matrix). We therefore195

set R1 = 0.8 in Eq. (6).196

The downstream boundary condition of the modelled portion of the can197

is the Bloch-number dependent reflection coefficient downstream of the aper-198

ture, Eq. (9). This requires a model for the response of the shear layer at the199

gaps and the downstream boundary condition just after the gap in the sce-200

nario in which the gaps are closed. The former is given by Eq. (17), the latter201

by the impedance of an open-end tube of length lend = 37 mm, Eq. (18). All202

geometrical, flow and thermal parameters, listed in Figure 6, are chosen to be203
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rinj = 9.5 mm

linj = 155 mm

u1 = 10 m/s

T1 = 300 K

T2 = 1200 K

Lf = 20 mm

rcan = 20.95 mm

lcan = 147 mm

lg = 20 mm

lend = 37 mm

R1 = 0.8

Rend = −1

ζgap = Eq. (17)

FTF = Eq. (13)

Figure 6: Left: rendering of the combustor considered in this study, with the Bloch-cell
forming the highlighted can. Right: Sketch of the modelled can. The upstream boundary
condition of the injectors (blue) is a reflective plate. A bluff-body stabilised flame is
located at the intersection between the injector and the can. Close to the downstream
end of the can, a small gap (green) allows for the aeroacoustic communication with the
adjacent cans. The downstream end of the can (red) is open.

representative of the experiments described in [17]. The FTF is the only data204

that is not available. It is modelled by Eq. (13), using the geometrical/flow205

parameters of the experiment to determine the steady flame shape.206

The spectrum of the semi-empirical can-annular combustor model de-207

scribed above (duct acoustics + FTF + Bloch boundary conditions + empir-208

ical can-to-can impedance) is shown in Figure 7. The eigenvalues are obtained209

by using the integral method described in [37] to solve the nonlinear eigen-210

value problem (6) for each value of the Bloch wavenumber b. The circular211

contour is centered at 500 Hz and has radius 490 Hz. Only the eigenvalues212

with frequencies below 800 Hz are discussed: above this frequency, the range213

of validity of the empirical can-to-can impedance is exceeded, and spurious214

modes may be found. The spectrum shown in Figure 7 clearly exhibits the215

existence of clusters of eigenvalues. In particular, the clusters (a) and (b) can216

be related to frequencies which are close to the classic thermoacoustic fre-217

quencies of a single can. As will be further discussed in §4.1, cluster (a) is of218

acoustic origin whereas cluster (b) is of intrinsic origin [38, 39]. Each of these219

clusters (a and b) comprises a total of 8 eigenvalues (counting multiplicity).220
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7: Clusters of eigenvalues in the can-annular configuration considered. The markers
differentiate the modes by their azimuthal phase pattern. The modes in clusters (a) and
(b) are associated to eigenvalues of thermoacoustic origin. The clusters (c)-(f), instead,
originate from the aeroacoustic coupling with the response of the shear layer in the gaps
between two cans. Notably, these clusters lack the b = 0 mode since no dynamics in the
gaps can occur if the cans oscillate in phase.

In fact, due to the mirror symmetry of the Bloch cell, all eigenvalues found221

for Bloch numbers b in the range 0 < b < N/2 are also eigenvalues of the222

system with Bloch number −b [40]. For the b = 0 eigenvalues the effective223

reflection coefficient (9) reduces to the reflection coefficient of an open duct224

with mean flow. These eigenvalues are identical to those that one would225

find if the connection orifices would be closed, and the dynamics in each can226

would be independent of that in the others. The clusters of eigenvalues (c)227

to (f) in Figure 7, instead, are not originating from the can thermoacoustic228

response, but rather from the shear layer response in the openings, and its229

interaction with the can acoustics. In fact, the lowest frequency (cluster (c),230

approx. 180 Hz) can be linked to the reciprocal of the time that a perturba-231

tion takes to travel along the aperture at the convective velocity uc; higher232

frequencies are multiples of this fundamental frequency. Notably, these clus-233

ters lack the b = 0 mode. This is correct because for b = 0, the cans oscillate234

in phase, and there is, hence, no dynamics in the apertures connecting the235

cans. These clusters therefore comprise only 7 eigenvalues (counting multi-236

plicity; 3 semi-simple degenerate pairs for b = {1, 2, 3} and a simple one for237
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b = 4).238

To gain further insight into the characteristics of the eigenvalues in the two239

types of clusters, Figure 8 shows the acoustic velocity of the b = 1 eigenvalues240

and pressure modeshapes of the b = 2 eigenvalues. The acoustic field in the241

section of the can downstream of the aperture is reconstructed using planar242

propagation of acoustic waves in a duct with a mean flow. All modeshapes243

satisfy the upstream boundary condition (close to be a velocity node) and244

the open-end boundary condition at the downstream end of the can (pressure245

node). The pressure modes in the cluster of acoustic origin, (a), have the246

typical quarter-wave shape; the acoustic velocity has a discontinuity at the247

combustor inlet due the area change. The modeshapes of the modes in the248

cluster of intrinsic origin, (b), has a strong response in the injectors, with a249

Figure 8: Top: Acoustic velocity modeshapes ûb for Bloch number b = 1. Bottom:
Acoustic pressure modeshapes p̂b for Bloch number b = 2. With reference to Figure 7,
modeshapes (a) and (b) belong to clusters of thermoacoustic origin, whereas modeshapes
(c) to (f) belong to clusters of aeroacoustic origin, in ascending frequency order. On the
right end, a top view of the full annular combustor shows the phase oscillation patterns.
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maximum at the flame, consistently with the typical modeshapes of intrinsic250

origin [41]. Lastly, the modeshapes of the eigenvalues associated with the251

aperture dynamics, (c) to (f), have less canonical shapes. In particular, all252

the acoustic velocity modeshapes have a low intensity in the whole section253

upstream of the aperture, followed by a strong gradient across the aperture254

and a maximum in the can’s downstream ends.255

4.1. Eigenvalue cluster sensitivity256

The identified eigenvalue clusters can be related to three fundamentally257

different physical mechanisms: acoustic, intrinsic and shear layer dynamics.258

It is therefore reasonable to expect that their sensitivity to variations in the259

system parameters will be different, and depend on the influence that a spe-260

cific parameter has on the dynamics of the underlying physical mechanisms.261

In this section, we will systematically vary (i) the flame heat release response262

magnitude and (ii) the shear layer convective velocity, to investigate how263

these two parameters influence the evolution of the eigenvalue clusters.264

4.1.1. Sensitivity to FTF magnitude265

To study the influence of the flame response strength on the eigenvalue266

clusters, we introduce a scaling parameter ξ in the definition of the FTF267

FTFξ(s) = ξFTF(s) (19)

and we use this scaled Flame Transfer Function FTFξ in the definition of the268

heat release matrix response (5). When ξ = 1, the original FTF definition269

is unaffected, and the spectrum of the can-annular thermoacoustic system270

corresponds to that shown in Figure 7. When ξ = 0, instead, the flame271

response vanishes – i.e., Mhr = 0 in Eq. (5) – and only the aeroacoustic272

can-annular response in the absence of an active heat source is identified.273

Figure 9 shows the evolution of the eigenvalues in all clusters when ξ274

is varied in the range [0,1]. The colors identify the clusters, in accordance275

to Fig. 7, and the markers indicate the Bloch-number associated with each276

eigenvalue and are located in the ξ → 0 limit. The cluster of acoustic origin277

(a) moves into the stable half-plane (σ < 0) when the flame is switched off;278

indeed, in the absence of an active flame source, no thermoacoustic instabil-279

ity can occur. The cluster of intrinsic origin (b) is pushed towards growth280

rates tending to −∞ as ξ → 0. It was shown in [39, 42] that, in the van-281

ishing flame limit, all the Bloch modes of this cluster tend towards the same282
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Figure 9: Eigenvalue trajectories when the flame gain is decreased. The markers indi-
cate the eigenvalues (by their Bloch-number) in the passive flame case, i.e., in the limit
|FTFξ| → 0. The color-scheme corresponds to that used in Figure 7 to emphasize the
existence of clusters of eigenvalues.

frequency value, which can be predicted theoretically from the coefficients of283

the scattering matrix at the flame (see Appendix of [39]).284

The remaining clusters, (c) to (f), are of shear layer dynamics origin.285

Their physical nature is not closely connected to the heat release dynamics,286

and it is reasonable to expect them to be almost independent of the flame287

response. This is true for clusters (c), (e) and (f), but not for cluster (d). The288

sensitivity of cluster (d) to the flame dynamics can be attributed to the fact289

that, when the flame dynamics is turned off (ξ = 0), its eigenvalues have both290

frequencies and growth rates close to those of cluster (a). This suggests that291

close-by in parameter space the eigenvalues coalesce, becoming degenerate.292

As discussed in [43], eigenvalues that are close to being degenerate exhibit293

a phenomenon known as mode veering. To avoid crossing, the eigenvalues294

steer away from each other. This can be observed in Fig. 9, which shows295

that the trajectories of the (a) and (d) clusters move in opposite directions296

for small values of ξ – close to the markers. To emphasize this further, Fig. 10297

shows the dependence of the eigenvalues in cluster (d) on the parameter ξ.298

The sensitivity of the eigenvalues (slope of the curves) is non-uniform and299

high for small values of ξ, but tends to flatten as ξ becomes larger. When300
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Figure 10: Evolution of the eigenvalues of cluster (d) when ξ is varied in Eq. (19).

the eigenvalues of clusters (d) are sufficiently far from those of cluster (a),301

the sensitivity of the eigenvalues of cluster (d) to the intensity of the flame302

becomes very small, similar to those of clusters (c), (e) and (f).303

4.1.2. Sensitivity to aeroacoustic coupling304

We shall now focus on the sensitivity that the the shear layer response has305

on the can-annular system’s spectrum. In particular, we will investigate the306

effect of the convective speed in the shear layer, Uc ≡ κU , by varying the non-307

dimensional value κ in the range [0.2,0.62]. The mean flow velocities in the308

cold/hot regions of the can-annular system are unchanged. The trajectories309

of the eigenvalue clusters obtained while varying κ are shown in Figure 11.310

The thin (thick) markers identify the eigenvalues obtained for the minimum311

(maximum) values of κ considered.312

First, we note that the b = 0 eigenvalues are not affected by κ. This is313

because only the can-to-can impedance (17) is affected by this parameter.314

For b = 0 the cans oscillate in phase, so that the pressure drop between315

neighbouring cans vanishes, and the can-to-can impedance does not play any316

role. The eigenvalues of the cluster of acoustic origin (a) are almost unaffected317

by this parameter, as emphasized in the bottom-right inset of Figure 11.318

Its eigenvalues with b 6= 0 exhibit loop patterns. This cyclic behavior is a319

manifestation of the phase induced by the convective time scale in the shear320

layer, which scales with lg/Uc. It is analogous to the eigenvalue behaviour321

described in [44] when varying the time delay of the heat release response.322

Cluster (b), of intrinsic origin, has a non-trivial response to variations in323
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Figure 11: Eigenvalue trajectories when the convective speed in the aperture between cans
is varied. Thick and thin markers indicate, respectively, the eigenvalues (by their Bloch-
number) for the maximum (thick markers, κ = 0.62) and minimum (thin markers, κ = 0.2)
convective speed considered. The color-scheme corresponds to that used in Figure 7 to
emphasize the existence of clusters of eigenvalues. Right panels: magnification of the
regions highlighted.

the convective velocity. For small values of κ, its frequency is particularly324

sensitive to variations in the shear layer convective speed. For larger values325

of κ, a cyclic behavior is again observed, emphasized in the top-right inset326

of Figure 11.327

Clusters (c) to (f) are the most sensitive to a variations of κ, since they328

are directly related to the shear layer dynamics. Since the shear layer con-329

vection speed enters in the definition of the non-dimensional frequency Ω in330

the Rayleigh conductivity (15), increasing (decreasing) κ shifts the peak of331

the response of the can-to-can impedance (Figure 4) towards higher (lower)332

frequencies. The convection speed also has a significant effect on the growth333

rates of the eigenvalues of these clusters. For almost all the eigenvalues in334

these clusters, the larger the convection speed, the more stable are the eigen-335

values. Additionally, for smaller values of κ the eigenvalue clusters are more336

dense, in the sense that a cluster is confined in a smaller portion of the337

complex frequency space.338
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5. Acoustically closed downstream end339

A major difference between the experimental setup of [17] modelled in §4340

and can-annular combustors in gas turbines is that in the former the cans341

are acoustically open at the downstream end, whereas in the latter the flow342

is nearly choked at the connection between the cans and the turbine inlet.343

Since the gaps that connect the cans are close to the downstream ends, they344

are located close to an acoustic pressure node when the cans are acoustically345

open. In this scenario, the coupling between the aerodynamics of the shear346

layer in the gaps and the thermoacoustics of the can is generally weaker, since347

it depends on the pressure difference between the cans [24, 29], which remains348

small close to a pressure node. This was already visible in Figure 9, in which349

almost all eigenvalues of aeroacoustic origin had very negative growth rates,350

corresponding to the (stable) dynamics of the decoupled aeroacoustic modes.351

On the contrary, for an acoustically closed boundary condition, the gaps are352

located in the vicinity of a pressure antinode. In this scenario, the pressure353

differences between neighbouring cans can be significantly higher, enhancing354

the can-to-can communication effects. In this last section, we will discuss355

how the spectrum and mode shapes of the can-annular system vary when356

the downstream boundary condition is acoustically closed.357

An acoustically closed end of the cans, downstream of the gap, can be
modelled by setting the downstream impedance to Zds = ∞ in place of
Eq. (18). In this limit, the effective downstream reflection coefficient (9)
simplifies to

Rb = 1− 2
4Ar/ζ̃ sin2

(
πb
N

)

(1−M2
x) + 4Ar/ζ̃ sin2

(
πb
N

) . (20)

Except for the downstream boundary condition, all the other parameters are358

kept to those presented in §4.359

Figure 12 shows the spectrum of the can-annular system with a closed360

boundary condition. The existence of eigenvalue clusters has been empha-361

sized, and the eigenvalues are distinguished by their Bloch-number, following362

the same color and marker conventions of Figure 7. Clusters (a) and (b) are363

clusters of classic thermoacoustic origin. We note how the frequencies and364

growth rates of cluster (a), which is of acoustic origin, have significantly365

changed compared to those of the open-end configuration, since acoustic366

modes are strongly affected by the boundary conditions. On the other hand,367

the frequencies of cluster (b) are very similar to those found for an open368
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Figure 12: Clusters of eigenvalues in the can-annular configuration considered with a
closed end. The markers differentiate the modes by their azimuthal phase pattern. The
modes in clusters (a) and (b) are associated with eigenvalues of thermoacoustic origin.
The clusters (c)–(f), that lack the b = 0 mode, originate from the aeroacoustic coupling
with the response of the shear layer in the gaps between two cans. Notably, it is a cluster
of aeroacoustic origin that becomes unstable.

end. This is consistent with the fact that this cluster was found to be asso-369

ciated with an intrinsic mode, and it is mostly ruled by the flame dynamics370

– unchanged with respect to the results shown in Figure 7 – and not by371

the acoustics. Clusters (c) to (f) of Figure 12 are associated with modes of372

aeroacoustic origin, as can be seen by the fact that they lack the b = 0 eigen-373

values. The stronger coupling between the aeroacoustics of the gaps and the374

thermoacoustics of the cans in comparison to the open-end case can be seen375

by the fact that the growth rates of these eigenvalues are significantly differ-376

ent, and tend to have larger values. In particular, some of the eigenvalues377

of cluster (c) now have positive growth rates, implying that an instability in378

this configuration will mostly be driven by the aeroacoustics in the gaps.379

The mode shapes associated with some of the eigenvalues of Figure 12380

are shown in Figure 13. In comparison to Figure 8, the downstream open381

tube is missing since it has been replaced by a sound-hard end. Thus, the382

mode shapes exhibit qualitative differences as the acoustic pressure needs to383

now exhibit a pressure antinode at the downstream end rather than a node,384

and vice versa for the acoustic velocity. An exception to this observation385
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Figure 13: Modeshapes for the Zds = ∞. Top: Acoustic velocity modeshapes ûb for
Bloch number b = 3. Bottom: Acoustic pressure modeshapes p̂b for Bloch number b = 4.
With reference to Figure 7, modeshapes (a) and (b) belong to clusters of thermoacoustic
origin, whereas modeshapes (c) to (f) belong to clusters of aeroacoustic origin, in ascending
frequency order. On the right end, a top view of the full annular combustor shows the
phase oscillation patterns.

occurs for cluster (b), the cluster associated with an intrinsic mode, which is386

therefore relatively insensitive to variations in the boundary conditions [39].387

For this reason, both the pressure and acoustic mode shapes of cluster (b)388

are similar for open (Figure 8) or closed (Figure 13) boundary conditions. It389

is interesting to note how in clusters (c) to (f) the magnitude of the acoustic390

pressure field remains not very high close to the downstream end, despite391

having a local maximum close to the gaps, and has instead large pressure392

amplitudes upstream of the flame. By looking at the mode shapes only, it393

would therefore be difficult to determine the origin of these modes.394
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6. Conclusions395

In this study, we have presented a general reduced-order model for inves-396

tigating the thermoacoustic properties of can-annular combustors. Partic-397

ular focus was placed on appropriately modelling the can-to-can communi-398

cation, which was accomplished by embedding in the model semi-empirical399

impedance expressions fitted against experimental data. The modelling ap-400

proach exploits Bloch-wave theory and reduces the analysis to a single can,401

equipped with an effective boundary condition that contains the aeroacoustic402

response of the apertures and the acoustic properties of the can downstream403

of the aperture.404

The model was used to study the response of an existing atmospheric405

can-annular test-rig. Since the flame response data is not available, the406

flame dynamics has been approximated by that of a V-flame, modelled with407

the kinematic G-equation. The spectrum of the setup has been determined,408

highlighting the presence of clusters of eigenvalues. The origin of the clusters409

has been discussed, emphasizing how some clusters originate from the aeroa-410

coustic response of the aperture, and not the acoustic response of the can.411

These clusters are peculiar in that they lack the presence of b = 0 (in-phase412

oscillation) modes. They, therefore, cannot be predicted if the can-to-can413

communication is ignored.414

The properties of eigenvalues and eigenvectors having different physical415

origins – related to the acoustic, intrinsic and shear layer dynamics, respec-416

tively – have been discussed. In particular, a parametric analysis has been417

performed to demonstrate that the sensitivity of the eigenvalues with respect418

to specific parameters is strongly dependent on their physical origin. Lastly,419

the effect of the downstream boundary conditions has been analysed and420

discussed, emphasizing the differences between the can-to-can coupling in421

atmospheric experiments – which have acoustically open ends – and real gas422

turbine combustors – which have acoustically closed ends. Our discussion423

highlights how knowledge on the physical mechanisms that are responsible424

for the creation of a particular eigenvalue cluster is important for an assess-425

ment of the thermoacoustic spectrum, the eigenvalue sensitivities and their426

potential control. Future research on this topic will include the modelling of427

the nonlinear response of the apertures’ dynamics, which, as recently shown428

by [20], may be non-negligible.429

23



Acknowledgments430

This work is the result of a D-A-CH international collaboration funded431

by the German Research Foundation (DFG project nr. 422037803) and the432

Swiss National Science Foundation (SNF project nr. 184617).433

References434

[1] J. W. S. Rayleigh, The explanation of certain acoustical phenomena,435

Nature 18 (1878) 319–321.436

[2] J. Keller, Thermoacoustic oscillations in combustion chambers of gas437

turbines, AIAA J. 33 (1995) 2280–2287.438

[3] L. Crocco, Aspects of combustion stability in liquid propellant rocket439

motors part i: fundamentals. low frequency instability with monopro-440

pellants, J. Am. Rocket Soc. 21 (1951) 163–178.441

[4] J. Keller, W. Egli, J. Hellat, Thermally induced low-frequency oscilla-442

tions, Z. Angew. Math. Phys. 36 (1985) 250–274.443

[5] T. Schuller, T. Poinsot, S. Candel, Dynamics and control of premixed444

combustion systems based on flame transfer and describing functions,445

J. Fluid Mech. 894 (2020).446

[6] N. Noiray, B. Schuermans, On the dynamic nature of azimuthal ther-447

moacoustic modes in annular gas turbine combustion chambers, Proc.448

R. Soc. A 469 (2013).449

[7] G. Ghirardo, M. Juniper, Azimuthal instabilities in annular combustors:450

Standing and spinning modes, Proc. R. Soc. A 469 (2013).451

[8] S. Bethke, W. Krebs, P. Flohr, B. Prade, Thermoacoustic properties of452

can annular combustors, in: 8th AIAA/CEAS Aeroacoustics Conference453

and Exhibit, 2002, pp. 1–11.454

[9] W. Krebs, S. Bethke, J. Lepers, P. Flohr, B. Prade, C. Johnson, S. Sat-455

tinger, Thermoacoustic Design Tools And Passive Control: Siemens456

Power Generation Approaches, AIAA, 2005, pp. 89–112.457

24



[10] P. Kaufmann, W. Krebs, R. Valdes, U. Wever, 3D thermoacoustic prop-458

erties of single can and multi can combustor configurations, in: Proceed-459

ings of the ASME Turbo Expo, volume 3A, 2008, pp. 527–538.460

[11] F. Farisco, L. Panek, J. B. W. Kok, Thermo-acoustic cross-talk between461

cans in a can-annular combustor, Int. J. Spray Combust. 9 (2017) 452–462

469.463

[12] K. Venkatesan, A. Cross, C. Yoon, F. Han, S. Bethke, Heavy duty gas464

turbine combustion dynamics study using a two-can combustion system,465

in: Proceedings of the ASME Turbo Expo, volume 4A, 2019, pp. 1–9.466

[13] K. Moon, H. Jegal, C. Yoon, K. T. Kim, Cross-talk-interaction-induced467

combustion instabilities in a can-annular lean-premixed combustor con-468

figuration, Combust. Flame 220 (2020) 178–188.469

[14] K. Moon, C. Yoon, K. T. Kim, Influence of rotational asymmetry on470

thermoacoustic instabilities in a can-annular lean-premixed combustor,471

Combust. Flame 223 (2021) 295–306.472

[15] G. Ghirardo, C. D. Giovine, J. P. Moeck, M. R. Bothien, Thermoacous-473

tics of Can-Annular Combustors, Journal of Engineering for Gas Tur-474

bines and Power 141 (2019) 011007 (10 pages). doi:10.1115/1.4040743.475

[16] G. Ghirardo, J. P. Moeck, M. R. Bothien, Effect of noise and nonlinear-476

ities on thermoacoustics of can-annular combustors, J. Eng. Gas Turb.477

Power 142 (2020).478

[17] P. E. Buschmann, N. A. Worth, J. P. Moeck, Experimental study of479

thermoacoustic modes in a can-annular model combustor, in: SoTiC480

2021 - Symposium on Thermoacoustics in Combustion: Industry meets481

Academia, 2021.482

[18] T. Indlekofer, B. Ahn, Y. H. Kwah, S. Wiseman, M. Mazur, J. R. Daw-483

son, N. A. Worth, The effect of hydrogen addition on the amplitude484

and harmonic response of azimuthal instabilities in a pressurized annu-485

lar combustor, Combustion and Flame 228 (2021) 375–387.486

[19] C. Sondhauss, Ueber die beim ausströmen der luft entstehenden töne,487
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A B S T R A C T
We propose a method to accelerate the solution of 3D FEM-discretized nonlinear eigenvalueproblems by drastically reducing the problem dimension. Our method yields a reduced ordermodel (ROM) via a projection onto a suitable subspace, with eigenpairs identical to the fullproblem in a region of the complex plane. The subspace is automatically constructed by solvingthe full problem at a few random points inside the region of interest. The method requiresminimal user input and, although exemplified for with a thermoacoustic application, readilygeneralizes to applications dealing with other vibrational problems.

1. Introduction
Self-excited oscillations are detrimental in many technical systems. Stability of a design is often determined by solving large-scale, potentially nonlinear eigenvalue problems that arise from the discretization of the PDEs describing the underlying physics. Forinstance, in combustion chambers of gas turbines and aircraft engines thermoacoustic stability is sought. A combination of adjoint-based perturbation theory [1] and optimization methods has made significant advances in automatizing the process of designing athermoacoustically stable combustor [2]. However, these strategies incur a substantial numerical cost by repeatedly solving large-scale eigenvalue problems as they iterate through the parameter space. A natural reduction technique for thermoacoustics requiresa linearization of the nonlinear eigenvalue dependency [3]. However, the employed iterative reduction techniques can be unstable.This letter proposes a projection method that significantly reduces the dimension of the thermoacoustic eigenvalue problem in aregion of the complex plane, while retaining the nonlinear dependency on the eigenvalue.Thermoacoustic instabilities may arise in combustion chambers due to a constructive feedback between acoustics and heat releaserate oscillations. The feedback mechanism can be modelled with equations derived from the reactive Navier–Stokes equations, orfitted on experimental data. In gas turbine engineering, one popular choice of the thermoacoustic eigenvalue problem reads [4]

∇ ⋅ 𝑐2∇�̂� + 𝜔2�̂� = 𝑛 exp (−i𝜔𝜏) ∇�̂�|xref , (1)
where 𝑐 is the speed of sound, and 𝑛 and 𝜏 an interaction index and time delay, respectively, quantifying the coupling between theacoustics and the heat release rate fluctuations. The flame response model 𝑛 exp(−i𝜔𝜏) is chosen for simplicity, but the proposedprojection method is valid for any flame response model. By closing Eq. (1) with suitable boundary conditions, the aim is that of
∗ Corresponding author.E-mail address: philip.e.buschmann@ntnu.no (P.E. Buschmann).

https://doi.org/10.1016/j.jsv.2021.116553Received 4 August 2021; Received in revised form 14 October 2021; Accepted 15 October 2021



Journal of Sound and Vibration 520 (2022) 116553

2

G.A. Mensah et al.
efficiently identifying eigenpairs (𝜔, �̂�) in a region of the complex plane. In engineering practise, only eigenvalues with frequenciesbelow a cut-off threshold are sought, since for these values the flame is acoustically compact and correctly modelled by Eq. (1).Discretization of Eq. (1) by the finite element method yields [4]

[
𝗞 + 𝜔

∑
𝑖
𝑓𝑖 (𝜔)𝗖𝑖 + 𝜔2𝗠 + 𝑛 exp (−i𝜔𝜏)𝗙

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡𝗟(𝜔)

𝒑 = 𝟎. (2)

The matrices 𝗖𝑖 are associated with the boundaries of the domain, labelled by index 𝑖, where 𝜔-dependent boundary conditions 𝑓𝑖(related to acoustic impedances) are prescribed. All matrices in Eq. (2) have size 𝑁 (ca. 103–106) corresponding to the degrees offreedom of the chosen discretization.Eq. (2) is an eigenvalue problem nonlinear in the eigenvalue 𝜔. We recall that linear eigenvalue problems can be written as
(𝗔 − 𝜔𝗕)𝒑 = 𝟎, 𝗔,𝗕 ∈ C𝑁×𝑁 , (3)

where 𝗔 and 𝗕 are constant matrices and (𝜔,𝒑) are the desired eigenpairs. Fast solution algorithms for Eq. (3) are well-established [5]. In contrast, nonlinear eigenvalue problems (NLEVPs) cannot be expressed in the special form Eq. (3), but onlymore generally as [6]
𝗟(𝜔)𝒑 = 𝟎, 𝗟 ∈ C𝑁×𝑁 . (4)

The nonlinearities in 𝜔 are typically associated with the presence of frequency-dependent boundary conditions, time delays, andhigher-order time derivatives. All these sources of nonlinearity are present in the thermoacoustic equation (2), respectively via theboundary matrices 𝜔𝑓𝑖 (𝜔)𝗖𝑖, the delayed heat release response exp (−i𝜔𝜏)𝗙, and the mass term 𝜔2𝗠. One can always approximate anonlinear eigenvalue problem in the special form Eq. (3) by linearizing the nonlinear dependency via a state–space formulation [7].However, such a linearization increases the dimension of the eigenvalue problem and can introduce additional eigenvalues that arenot solutions of the NLEVP — see Sec. 6 in [6]. By retaining the nonlinear dependence in 𝜔 these drawbacks are avoided.Because 𝗟 can take many forms depending on the underlying physics, many different solution strategies for NLEVPs tailored tospecific problems have been developed [5,6]. These methods either require the iterative solution of 𝑙𝑁 × 𝑙𝑁 linearized eigenvalueproblems [4] – where 𝑙 is a positive integer that depends on the chosen linearization – or the repeated solution of large linearsystems of the form [8,9]
𝗟 (𝑧)𝗫 = 𝗬 , 𝗫,𝗬 ∈ C𝑁×𝑅, 𝑅 ≪ 𝑁, (5)

where 𝑧 takes values in C. Both strategies are numerically costly when 𝑁 is very large. An efficiency development was suggestedby Jorkowski et al. [10], who improved on a contour-integration solution method devised by Beyn [8] by using ideas from modelorder reduction. Their method uses a projection matrix to generate a low-rank subspace approximation of the linear Eqs. (5) – whichappear in Beyn’s method – along a contour in the complex plane. The subspace is automatically enlarged when a residual criterionis violated. The method achieves significant speed-up, but is deeply intertwined with the structure of Beyn’s method.In this letter, a reduced order method (ROM) is proposed to separate the subspace generation from the solution strategy byprojecting the large operator 𝗟 in Eq. (4) onto a precomputed subspace. The subspace can be adaptively enlarged should an aposteriori analysis based on residuals indicate that its quality is insufficient. The subspace is constructed by randomly exploring aregion of the complex space within a contour 𝛤 . After the projection, a reduced nonlinear eigenvalue problem of much smaller size
𝑀 (ca. 101 − 102) is obtained

𝗟(𝜔)�̃� = 𝟎, 𝗟 ∈ C𝑀×𝑀 , 𝑀 ≪ 𝑁, (6)
which, in a region of the complex plane, well-approximates the spectrum of the original problem (4). The reduced NLEVP can thenbe tackled by a variety of solution methods, not only contour-integration based ones.
2. Reduced order model method

We denote by {𝒒1,… , 𝒒𝑀} the orthonormal basis of the subspace we project the problem onto. Then, the orthogonal matrix
𝗤 ≡ [

𝒒1 … 𝒒𝑀
]
∈ C𝑁×𝑀 is used to construct the ROM operator 𝗟(𝑧) via

𝗟(𝑧) ≡ 𝗤H𝗟(𝑧)𝗤. (7)
If range(𝗤) well-approximates (some of) the eigenvectors of 𝗟(𝑧), then 𝗟(𝑧) will feature the corresponding eigenvalues 𝜔 as its owneigenvalues, as per Eq. (6), and the eigenvectors are obtained from 𝒑 = 𝗤�̃�. The challenge is to efficiently construct 𝗤 withoutexplicitly calculating the eigenmodes. The method we propose improves on that first proposed in [10], by modifying the spectralparameter sampling strategy in the ROM construction. Namely, a set of sampling points 𝑧𝑖 inside and on a contour 𝛤 in the complexplane is chosen, where 𝛤 is a region of the complex plane of interest. It reads:

1. Initialize the matrix 𝗬 that appears on the r.h.s. of Eq. (5) with a small set of random, normalized vectors. Initialize theprojection matrix 𝗤 as 𝗤 = 𝗬;
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Fig. 1. (a) Geometry of the BRS combustor highlighting the flame domain (red), and the inlet (blue) and outlet (green) surface; b) FE mesh with 12200 points;(b) (c–d) lowest and highest frequency pressure eigenmodes identified by the ROM; (e–f) lowest and highest frequency pressure eigenmodes identified by thefull model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2. For a set of sampling points 𝑧𝑖 solve the linear system of equations
𝗟(𝑧𝑖)�̃�𝑖 = 𝗤𝐻𝗬, (8)

in the current subspace of the ROM;3. Map the ROM solution back in the original space via,1 �̂�𝑖 = 𝗤�̃�𝑖;4. If the residual ‖𝗟(𝑧𝑖)�̂�𝑖 − 𝗬‖2 is below a given tolerance, then the ROM well-approximates the behaviour of the originaloperator at 𝑧𝑖; otherwise the dimension of the subspace model has to be increased. This is accomplished by (i) calculatingthe exact solution 𝗫𝑖 of the (large) original problem
𝗟(𝑧𝑖)𝗫𝑖 = 𝗬, (9)

(ii) appending it to the compression matrix 𝗤, and (iii) orthonormalizing the columns of 𝗤.
The computational savings of the outlined algorithm arise from the fact that most calculations are performed in the ROM subspace,and only a handful of operations – needed to enlarge the subspace on-the-fly – are done on the full-sized problem. We emphasizethat the update to the orthogonal basis 𝗤 can be efficiently implemented in an incremental fashion by exploiting Householdertransformations or Givens rotations. We also note that the reduced order problem (7) may feature eigenpairs that do not correspondto eigenpairs of the original problem. Therefore, testing the residual of the approximate solution in the original space is requiredas an additional step [6].In [10], the ROM is constructed to well-approximate 𝗟(𝑧)𝗫 = 𝗬 on a contour 𝛤 only, i.e., the sampling points 𝑧𝑖 are all chosento lie on 𝛤 . This allows one to use Beyn’s contour-integration method on the ROM to identify the eigenvalues of 𝗟 – which well-approximate those of 𝗟 – inside the contour. The method proposed here, instead, constructs the compression matrix by samplingthe complex plane not only on a contour, but also inside a contour 𝛤 . As outlined in [10], the resolution of the contour ensures thatthe eigenvalues of the ROM operator approximate those of the original operator to a given threshold in a region of the complexplane. Resolving also the space inside the contour may result in a somewhat larger ROM, but it allows us to leverage any solutiontechnique (not only contour-integrals) on the NLEVP resulting from the ROM [6].The presented algorithm has been implemented in the open-source package WavesAndEigenvalues.jl.2 The package provides allessential tools for discretizing a PDE-based NLEVP with FE, identifying a ROM of the full operator, and solving the NLEVP withcontour-integral or iterative methods.
3. Model reduction of a Finite Element thermoacoustic NLEVP

As an application example, we consider the NLEVP resulting from the finite element discretization of the thermoacousticHelmholtz equation (2). The geometry we model is that of the so-called BRS combustor, which has been thoroughly studied bothexperimentally and numerically in [11,12], to which we refer for all the geometrical and thermodynamic details. The boundaryconditions are set to be sound hard (∇�̂� ⋅ 𝑛 = 0) at all boundaries except the outlet, where an acoustically open-end (�̂� = 0) isimposed. The speed of sound jumps from 343 m/s to 801 m/s across the flame base, and the flame parameters are chosen to be
𝑛 = 1 and 𝜏 = 7.45 ms. By using a fine mesh, the resulting finite element discretized operator 𝗟 has 𝑁 = 12200 degrees of freedom.The geometry defining the problem and the mesh on which it has been discretized are shown in Fig. 1(a–b) .

1 This is a cheap operation because both 𝗤 and �̃�𝑖 are known, and, contrary to Eq. (5) no inversions nor least square solution methods are needed.2 https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.
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Fig. 2. (a) : Region of the complex plane considered and sampled at the circles. Eigenvalues computed with the ROM and full model show perfect agreement.(b): Residuals of the calculations in the ROM (corresponding points feature an identical unique shade of blue). The points that are highlighted in yellow did notpass the threshold test in the ROM subspace. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version ofthis article.)

Eigenmodes are sought in the region 𝛤 of the complex plane having frequencies between 50 and 500 Hz and growth ratesbetween ±50 s−1. 256 sample points are uniformly distributed in 𝛤 and used to generate the subspace — see Fig. 2(a). A singlenormalized vector 𝒚1 was chosen at random, to both define the matrix 𝗬 on the r.h.s. of Eq. (8) and initialize the projection matrix
𝗤. The threshold for the residual was set to 10−3 — dashed line in Fig. 2(b).The sample points were tested in a random order to construct the subspace. The procedure led to the inclusion of 15 vectorsin the subspace, which are drawn in yellow in Fig. 2. For these points an exact solution 𝗫𝑖 in the full space – Eq. (9) – has beenevaluated, and the results included in the subspace. The depicted residuals are computed after expanding the subspace for thesepoints. Together with the randomly initialized vector, the ROM has 𝑀 = 16 degrees of freedom. Note that the majority of the vectorsused to construct the subspace belong to the first points tested by the algorithm — the first 9 points are all included, while of theremaining 247 only 6 are. This is because the first few samples show new, linearly independent features. The points added at a latestage often lie in the vicinity of an eigenvalue, although this is not a necessary condition.Both the 16-dimensional reduced order model and the 104-dimensional full model were solved using Beyn’s algorithm and themethod of successive linear problems (MSLP) [5]. Both the eigenvalues (Fig. 2) and the eigenvectors (Fig. 1c–f) calculated withthe ROM show excellent agreement with those from the full problem. Referring to Fig. 2, five eigenmodes are identified in theconsidered contour. The modeshapes of the lowest and highest modes in the contour are shown in Fig. 1. For some initial guesses,the MSLP also converges to eigenvalues that lie outside the contour. Jorkowski’s method [10] relies on Beyn’s method and, thus,the ROM obtained with it is restricted to the eigenvalues inside 𝛤 . The method in this letter is guaranteed to approximate theeigenvalues inside 𝛤 , but the sampling proves more robust and can even approximates eigenvalues outside 𝛤 .We conclude with some remarks on the numerical efficiency of the algorithm. Including the time needed to construct thesubspace, the identification of the eigenvalues in the ROM subspace was about 15 times faster than in the full-problem space whenusing Beyn’s method. A similar comparison has been made for a coarser and a finer grid resolution, yielding a speed-up factor of 8for 𝑁 = 1800 and of 30 for 𝑁 = 87000. In general, the larger is 𝑁 the greater is the computational gain, because the dimension of theROM, 𝑀 , relates to the number of eigenvalues in the portion of the complex plane investigated. When using the MSLP, a quantitativecomparison depends on the number of initial guesses chosen. For the considered problem, it was found that the analysis in the ROMis already more efficient when the number of sampling point was larger than 8. Thus, unless good guesses for all the eigenvaluesare known, the analysis in the ROM space should be preferred. When compared to the method of [10], the method proposed herehas an analogous computational cost, but is more powerful since (i) it allows for the use of multiple solution algorithms and (ii) itis less dependent on the specific choice of the contour 𝛤 , since it can identify also eigenvalues which lie outside of the considereddomain.
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4. Conclusions

We have presented a method that actively identifies a small dimensional subspace within which the eigenvalues and eigenvectorsof a large matrix operator 𝗟, resulting from the discretization of a vibrational problem, are well-approximated in a region of thecomplex plane. In contrast to existing models in the literature, the generated subspace retains the nonlinear dependency on theeigenvalues, and well-approximates the action of 𝗟 not only along a contour, but also inside it. This allows us to leverage not onlycontour-based methods, but any solution technique on the reduced nonlinear eigenvalue problem. An application example to athermoacoustic eigenvalue problem has been presented. It was shown how the method is able to cut down the dimension of theproblem from  (
104

) for the full finite element model to  (
101

) after projection onto the subspace, without any significant loss inthe accuracy of the calculated eigenvalues and eigenvectors. This results in a ROM able to accurately identify eigenpairs in a finiteregion of the complex plane with a much lower computational effort. It has also been shown how the constructed ROM is able toidentify eigenvalues which lay outside of the considered region of the complex plane. How far these eigenvalues can be from thesampled domain is an open question currently under investigation.
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1. Introduction

Thermoacoustic instabilities are a dangerous type of self-excited pressure oscillations in the combustion
chambers of high-powered systems such as gas turbines and rocket engines. A considerable amount of
research has been invested in predicting and mitigating these unwanted oscillations that can cause significant
damage [1].

Two designs of major industrial importance are can-annular [2] and annular combustion chambers [3].
Both designs employ a large number of burners arranged around a circumference. Annular designs permit a
high power density and are, thus, mainly employed in helicopter and aircraft engines. Can-annular designs,
in which individual burners are isolated and only connected via a small gap at the downstream end, are
favored in stationary power generation. The isolation of individual burners reduces development cost since
flow properties and thermal loads can be characterised on a single burner.

To ensure that a combustion system is stable, an effective strategy consists in performing a linear stability
analysis by solving the thermoacoustic Helmholtz equation [4, 5]. In shortened notation, the mathematical
problem reads

L (ω) p̂ = 0 , (1)

where L is an operator representing the governing partial differential equation as well as boundary conditions.
L is (generally) a nonlinear function of the complex eigenfrequency ω but depends linearly on the eigenvector
p̂. A combustion chamber is stable1 when Im (ω) > 0 for all ω. Thus, Equation (1) constitutes a nonlinear
eigenvalue problem (NLEVP) for the eigenpairs (ω, p̂).

In physics it is well known that if in an eigenvalue problem of type L exhibits an underlying symmetry, a
number of properties of the solutions (ω, p̂) can be inferred without solving the problem. In fact, the annular
and can-annular combustors encountered in thermoacoustics exhibit a discrete rotational symmetry. Here,
‘symmetry’ refers to the fact that for a can-annular or annular design consisting of N burners any multiple
of a rotation by 2π/N leaves the geometry invariant. However, this is only one class of possible symmetry
operations. The two most important groups for annular and can-annular combustors are CN and CNv,
where N is the number of burners (usually denoted as n in the literature).

Loosely speaking, all possible symmetry operations together form a symmetry group2. Symmetry groups
themselves are invariant objects – molecules, geometric objects and equations can have the same symmetry
group [6, Chap. 1]. Their properties are tabulated and these can be used once the symmetry group of an
object, here a combustion chamber, has been identified.

The subject of this paper is to express thermoacoustics in the language of symmetry groups and use its
powerful machinery to address a number of questions and re-interpret existing results. In particular, we
will answer the following questions: What is the connection between symmetry and eigenvalue degeneracy?
Why can only a combustor with CNv symmetry have degenerate modes? What is the relationship between
azimuthal mode orders and Bloch wave numbers? Under which conditions can Bloch waves be used to
reduce computational costs? Is there a maximal azimuthal mode order? How do degenerate thermoacoustic
modes split under symmetry perturbations?

1The Fourier transformation follows the convention ∂tp′ → +iωp̂.
2Care needs to be taken in not counting operations twice.
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The machinery of symmetry groups is a powerful tool to draw upon when solving eigenvalue problems
with underlying symmetries in engineering. However, symmetry group theory is most often encountered
in quantum mechanics. Hence, there is a high barrier to transfer knowledge to more classical engineering
applications, unless a solid background in quantum mechanics exists. This paper aims at removing this
barrier.

Proofs for elementary properties of symmetry groups are largely omitted. Instead, examples are used
to confirm stated properties. However, detailed references to proofs are given. The main reference for this
work is the book by Inui, Tanabe and Onodera Group Theory and Its Applications in Physics [6].

1.1. Thermoacoustic model and basic assumptions

Following Nicoud et al. [4] the thermoacoustic Helmholtz equation is written as

∇ ·
(
c2∇p̂

)
+ ω2p̂ = −iω (γ − 1) q̂ , (2)

where q̂ is the frequency response of the fluctuating heat-release rate(s). It is assumed that suitable boundary
conditions have been prescribed. In order to close the equation, q̂ needs to be expressed as a function of p̂.
One possible choice relates q̂ linearly to an upstream velocity fluctuation at a reference location û|ref via a
flame transfer function (FTF) F (ω)

q̂ =
Q0

u0VF
F (ω) û|ref . (3)

Here Q0 is the mean global heat release, u0 the mean flow at the reference position and VF the volume of the
flame. FTFs can be obtained via measurements [7], large-eddy simulations [8] or from analytic considerations
[9, 10]. In order to close the problem, the velocity fluctuation û|ref in Eq. (3) can be expressed via the
linearized momentum balance as

−iωû =
1

ρ0
∇p̂ . (4)

By closing Eq. (2) with Eqs. (3) and (4) the eigenvalue problem is expressed only in the unknown eigenpairs
(ω, p̂)

∇ ·
(
c2∇p̂

)
+ ω2p̂ = (γ − 1)

Q0

ρ0u0VF︸ ︷︷ ︸
nloc

F (ω) ∇p̂|ref , (5)

and abbreviated to

L (ω) p̂ = 0 . (6)

For visualization purposes concrete tests cases of annular and can-annular combustors are solved numer-
ically to visualize eigenpairs (ω, p̂). Using the packages [11] and [12] the thermoacoustic Helmholtz equation
is discretized with the finite-element method (FEM) and a matrix-valued equation is obtained [13], written
in abbreviated form as

L (ω)p = 0 , L ∈ Cd×d , (7)

where d is the number of degrees of freedom in the discrete mesh. Care is taken that the discretization that
leads from Eq. (6) to Eq. (7) conserves the underlying symmetries. Solutions to the discrete NLEVP Eq.
(7) are obtained using the methods described in [13] and [14]. Occasionally, it is convenient to trigger the
effect of the flame term in Eq. (5) by a switch s ∈ [0, 1]

∇ ·
(
c2∇p̂

)
+ ω2p̂ = s nloc F (ω) ∇p̂|ref , (8)

whereby s = 0 corresponds to a purely acoustic problem. The eigenvalues are then considered as functions
of the switching parameter ω = ω (s) and can be traced in the complex plane.
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1.2. Literature review of previous studies of symmetry groups in thermoacoustics

The importance of symmetry groups has been recognized in thermoacoustics. Moeck et al. [15] study
the splitting of twofold degenerate modes in an annular combustor due to a reduction of symmetry. In [15]
as well as the subsequent dissertation by Moeck [16] the symmetry groups are identified as CN . However,
for the geometries featured in both publications [15, 16] the correct names are CNv – the group CN cannot
have degenerate modes associated with symmetry. The mistake is simply a miss-labelling: Moeck uses the
properties of CNv to characterise the systems at hand and to deduce their degeneracy properties. A later
publication by Ghirardo, Juniper and Moeck [17] identifies CNv correctly.

Mensah et al. [18] employed so-called Bloch waves successfully to significantly reduce the computational
cost required to solve the eigenvalue problem Eq. (6). The reduction amounts to solving the eigenvalue
problem on a unit cell with special boundary conditions, yet the eigenvalues of the full geometry are obtained.
The Bloch-based approach has since been adopted in thermoacoustic research [19, 2, 20]. Bloch waves exploit
the translational group CN . Since CN is a subgroup of CNv it can also be employed for the latter.

Bauerheim et al. in two papers [21, 22] discuss the splitting of degenerate eigenvalues from a quantitative
perspective using a network model of an annular combustor.

1.3. Outline of this paper

Section 2 focuses on the simple case of a single combustor that only exhibits a mirror symmetry. By
exploring this example, the language of symmetry groups is introduced. Section 2.4 covers the central
derivation that links physics to symmetry groups.

In Section 3 the group of a (can)-annular combustor is studied in which a single combustor does not
have a mirror symmetry. Here, the Bloch wave theory as employed by Mensah et al. [18] is cast into the
formal language of symmetry groups. For this type of combustor thermoacoustic modes are often labelled
by azimuthal mode orders m. However, care needs to be taken when relating m and Bloch wave numbers
b. This is also subject of Sec. 3. In addition, the existence of special degenerate modes due to time-reversal
symmetry is explained.

Section 4 extends the work of the previous section by treating (can)-annular combustors with a mirror
symmetry. The group of the combustor is derived in its entirety from a geometrical analysis. In particular,
it is explored why a theory similar to Mensah et al. [18] is not possible to further reduce computational cost.

Section 5, explains how perturbations affect eigenvalue degeneracy and how these can be predicted by
knowing the symmetry groups before and after the perturbation.

2. Single combustor cell with parity symmetry

Consider the annular combustor in Fig. 1a and cut out one of the 16 identical combustors, Fig. 1b. This
unit cell exhibits a mirror symmetry along the xz-plane, denoted by the symbol σv. Hence, the operation
σv (with the σv for the first letter of the German word for mirroring ’Spiegelung’, [6, p. 2]) brings the unit
cell into coincidence with itself and is an element of the symmetry group G of the single cell. Unfortunately,
it is the only non-trivial operation. Together with the identity operation E, a set is formed

G = {E, σv} . (9)

To make G into a group a group multiplication “∗” between elements needs to be defined. Later, ∗ is
dropped for better readability. Using a geometric understanding, i.e. using the mirror operation twice yields
the identity operation σv ∗ σv = E, the multiplication table 1 is obtained.

In the following, symmetry groups are denoted as G and their elements as gi with i = 1, . . . , |G|. The
number of elements, or order, of the group is denoted by the finite number |G|. The more elements in a
symmetry group the higher its symmetry. In the next section it is proven that G is a group.

In this work only finite groups, i.e. |G| < ∞ are considered. Their properties (which are the so-called
character tables, which are introduced later) are tabulated in books [6, 23] or online resources [24]. Groups
with infinite order are called continuous groups. An example is an annular combustor with a continuous
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Table 1: Multiplication table for CS . The group multiplication is denoted as “∗”. A multiplication table contains all possible
combinations between elements. By convention the first element is always the identity element. The table itself is only
symmetric if group elements commute.

E σv
E E ∗ E = E E ∗ σv = σv
σv σv ∗ E = σv σv ∗ σv = E

(a) (b) (c)

Figure 1: Left: Annular combustion chamber with 16 identical combustors. Middle: One of the sixteen combustors, a unit
cell. In contrast to a half-cell, i.e. the top half of the single cell. Right: Top view of the single cell with the mirroring plane
highlighted. The mirroring operation (not the plane itself) is denoted by σv . The Northern and Southern half cells form the
unit cell ΩSingle cell = ΩNorth ∪ ΩSouth. Throughout the unit cell, the mesh is symmetric with respect to the mirroring plane
∂Ωxz = ΩNorth ∩ ΩSouth.

heat-release zone over the circumference, see [25]. The combustor is invariant with respect to a rotation by
an arbitrary angle, which is the group C∞ and discussed in [16, p. 137]. Continuous groups, like the special
orthogonal group SO (3), are important for field theories [6, p. 115] but not for thermoacoustic stability
analysis.

The group in Eq. (9) is known as the group CS (or C1v) in Schönfliess3 notation, a crystallographic point
group of order |G| = 2. The term crystallographic stems from the original application: Chemical molecules
have precisely these symmetries. For instance, the methanol molecule CH3OH has CS symmetry while the
methane molecule CH4 has Td, which includes rotations around different axes and several reflections. A
point group is a group that leaves at least one point invariant, for the single cell these are all the points on
the yellow line in Fig. 1c. The property CS is also known as parity symmetry. Due to molecular restrictions,
only 32 point groups are relevant for quantum physics. Consequently, the literature in physics usually only
tabulates these. Mathematically there is no constraint but it can become difficult to obtain character tables
and representations for groups of high order. There are automatic tools available [26].

Now, consider a group Ḡ = {1,−1} with “∗” taken as ordinary multiplication. Evidently, the multipli-
cation tables of Ḡ and CS are identical. Hence, a one-to-one correspondence between group elements of the
two groups can be established. The two groups are said to be isomorphic

CS ∼= Ḡ . (10)

The isomorphism property signifies that symmetry groups themselves are unique objects: Ḡ and CS describe
the same object yet originate from different applications.

2.1. Group properties of CS

CS is a group, and not just a set, because it fulfills the four group axioms G1–G4 [6, p. 7]. According
to the multiplication table 1, the group is closed under multiplication (axiom G1), there exists an identity

3This is the convention employed in this work. Other conventions exist, see [6, p. 172].
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element E (axiom G3) and the inverse element of every group element is contained in the group (axiom G4).
Here, both E and σv are their own inverses.

The second axiom G2 is associativity. In order to show this, consider the geometric effect of the operations
E and σv. For an arbitrary point r ∈ R3 in the combustor, the identity operation E can be represented
by the identity matrix and the mirroring operation along xz by the reflection matrix. In a Cartesian basis
these are

E
.
= D (E) =




1 0 0
0 1 0
0 0 1


 and σv

.
= D (σv) = Reflxz =




1 0 0
0 −1 0
0 0 1 ,


 . (11)

In the following representation matrices are denoted as D. Since matrix multiplication is associative, it can
be concluded that this property traces back to CS . The symbol

.
= denotes ‘represented by’. Notice that the

two elements E and σv commute, i.e. E ∗ σv = σv ∗ E. The symmetric multiplication table in Tab. 1 also
signifies this. Such a group is called Abelian or commutative. Importantly, only non-Abelian groups lead to
degenerate modes.

2.2. Representations and characters of CS

In the previous section the abstract elements E and σv were represented by matrices and the group
multiplication “∗” was taken as the standard matrix multiplication. In fact, if every element gi of a group
is associated with a square matrix D and it holds

D (gi)D (gj) = D (gk) , (12)

for the group relations

gi ∗ gj = gk , (13)

the set of matrices D (g1) , . . . , D
(
g|G|

)
is called a representation. The representations are not unique: For

CS the element E can be represented by the number 1 and so can the element σv

D1 (E) = 1 , and D1 (σv) = 1 . (14)

Together with ordinary multiplication for “∗” Eq. (12) holds. This is the identity representation, which is
an unfaithful representation in contrast to the matrices in Eq. (11) which form a faithful representation.
The matrices Eq. (12) are ’too big’ in the sense that it suffices to represent the elements of CS by

D2 (E) = 1 , and D2 (σv) = −1 . (15)

The representations in Eq. (14) and Eq. (15) are irreducible representations (irreps.) of the group CS . It
can be observed that the matrices in Eq. (12) are formed by combining the irreps. as

D̂ (gi) =



D1 (gi) 0 0

0 D2 (gi) 0
0 0 D1 (gi)


 . (16)

The block-diagonal structure of Eq. (16) signifies that it is a reducible representation. Conversely, a rep-
resentation that cannot be block-diagonalized is irreducible. For a more comprehensive introduction to
representations see [6, Chapter 4].

Groups can be characterised completely by their character tables. A character χ is simply the trace of
a representation matrix

χ (gi) = TrD (gi) , for i = 1, . . . , |G| . (17)
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Table 2: Character table for CS . All irreps. Γi are one-dimensional, so the characters χi are identical to the irreps. If the
character tables of two groups are 1:1, the groups are isomorphic.

CS E σv
Γ1 = χ1 1 1
Γ2 = χ2 1 −1

For CS the character table is given in Tab. 2, which is trivial since all irreps are one-dimensional. The first
column of the character table necessarily gives the dimension of the irrep. For now, it is sufficient that
character tables and irreps. for all finite groups can be found online and need not be generated by hand.

Character tables are governed by orthogonality properties in column- and row-wise direction. Plus, the
total number of irreps. of a group is identical to the number of classes. For details see Sec. 4 where the
character table for a group of an annular combustor with mirror symmetry is derived in its entirety using
these properties.

In the next two sections important theory is developed, s.t. if the governing symmetry group is known it
can be exploited by means of its character table to: (1) Draw conclusions about degeneracy of modes and
(2) potentially reduce computational cost.

2.3. Operators applied to vectors and functions
Consider a function ψ : R3 → C which could describe the shape of a thermoacoustic mode in a given

combustor geometry – for the following theory the function does not have to be an eigenfunction. For an
example see Fig. 2. Here, ψ (r) could describe the level of the acoustic pressure at a given location. Notice
that ψ (r) is not yet mirror symmetric – that comes later. If the figure is mirrored along the xz-plane, the
new position vector r′ is given by

r′ =



x′

y′

z′


 = Reflxz



x
y
z


 = R r , (18)

where Reflxz is the previously introduced reflection matrix. Or for an arbitrary symmetry operation

r′ = Rr . (19)

This relation can be inverted to yield r = R−1r′. Next, consider a function ψ′ which describes the mirrored
mode shape

ψ′ (r′) = PRψ (r′) . (20)

In this work we discern in our notation between operations R acting on coordinates r and operations PR
acting on functions ψ. Both, R and PR implement the same geometric operation, but it is technically
more elegant to discern between them: A mirroring matrix R acting on a scalar function is mathematically
inaccurate. In the literature this is often neglected, but in this work the distinction is made for readability.
In addition, a general group element is denoted as g and a matrix that represents its geometric operation
as Rg. The value of ψ′ at r′ should be equal to the value before the mirroring ψ (r), see Fig. 2

ψ′ (r′) = ψ (r) , (21)

which is written with Eq. (20) as

PRψ (r′) = ψ (r) , (22)

and

PRψ (r′) = ψ
(
R−1r′

)
. (23)

Since r and r′ are chosen arbitrarily, the primes are dropped and one obtains

PRψ (r) = ψ
(
R−1r

)
, (24)

which expresses that the value of the transformed function PRψ (r) is equal to the value of ψ at R−1r.
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Figure 2: Top view of the single cell combustor in Fig. 1c with mode shape ψ and its mirrored version ψ′.

2.4. Transformation of L by elements of a symmetry group
The relation PRψ (r) = ψ

(
R−1r

)
expresses that PR acts on a function ψ. Hence, PR is an operator in the

same way as L, the linear operator describing thermoacoustic stability in an annular combustion chamber,
is. Operators PR are unitary4 and leave the inner product invariant

(PRφ, PRψ) = (φ, ψ) . (25)

Then it can be written

(φ,Lψ) = (PRφ, PRLψ) =
(
PRφ, PRLP−1

R PRψ
)
. (26)

Next, define PRψ = ψ′ and PRφ = φ′ to obtain

(φ,Lψ) =
(
φ′, PRLP−1

R ψ′
)

= (φ′,L′ψ′) , (27)

which gives the definition of the transformed operator

L′ = PRLP−1
R . (28)

In this work, the subject is symmetry operations, that leave the operator invariant5, therefore

L = L′ , (29)

and by definition

L = PRLP−1
R , (30)

Acting with PR from the right

LPR = PRLP−1
R PR , (31)

yields

LPR = PRL , (32)

which shows that L commutes with PR. This is usually denoted as [L, PR] = 0 in quantum mechanics. In
order to return to the subject of symmetry groups: The operator L is invariant under a set of symmetry
transformations PR ∈ sym (L) which form a group. For the single-cell, the symmetry group of the operator
is (isomorphic to) the symmetry group studied previously sym (L) ∼= CS and which is properly characterised
by its character table.

4An exception is the time-reversal operator in Section 3.6.
5The formulations in Eqs. (25)-(28) and Sec. 2.3 are more general and not restricted to symmetry operations. In quantum

mechanics PR can be an operator of interest which does not leave L invariant.
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2.5. Basis of a representation

This section is taken from [6, Chap. 4.1.1.]. Consider d independent elements ψ1, ψ2, . . . , ψd in a vector
space Cd. The operators PR, which are elements of the finite group sym (L), operate on the ψn vectors.
The set {ψ1, ψ2, . . . , ψd} is a basis for a representation of sym (L) if it holds that

PRψn =
n∑

m=1

ψmDmn (R) ,∀R ∈ sym (L) , (33)

i.e. that the basis is large enough that PR maps elements of Cd to itself. The Γmn are expansion coefficients
with D being a coefficient matrix. One can show that the coefficient matrices Γ form a representation [6,
4.1.1. ].

2.6. A first result: Dimensions of representations imply degeneracy

The crux from the previous section is that the operator L is invariant under actions PR ∈ sym (L) and
thus PRL = LPR. Consider the thermoacoustic eigenvalue problem for a specific eigenpair (ωn, p̂n)

L (ωn) p̂n = 0 , (34)

and act from the left with PR

PRL (ωn) p̂n = PR · 0 . (35)

Due to the commutation

L (ωn) (PR p̂n) = 0 . (36)

Consequently p̂n and PR p̂n belong to the same eigenvalue ωn and represent the same state. Moreover, a
formula for PR p̂n has been obtained in Sec. 2.5

PR p̂n =
d∑

m=1

p̂nDmn (R) , (37)

where Γmn are the representation matrices for a representation of sym (L). The dimension d is then the
dimension of the irrep. of sym (L) and, thus, equal to the degeneracy of the eigenvalue.

For the single cell, there are two sets of modes: p̂1 and p̂2, belonging to Γ1 and Γ2, respectively. These
modes are simple since their irreps. are one-dimensional. However, for a two-dimensional irrep. – as encoun-
tered in the annular combustor – the associated eigenvalue will be twofold degenerate. As a consequence,
we can restrict our studies to the symmetry group G in order to analyse the system described by L.

In general it can be expected that eigenfunctions belonging to different irreps. have different eigenvalues.
It is possible, that due to some non-symmetry related property two eigenvalues coincide. This is referred
to as an accidental degeneracy: Picture an annular combustor, where the dimensions of the plenum and
the combustion chamber are adjusted s.t. the eigenvalues of the first plenum mode and the first axial mode
coincide.

2.7. A second result: Reduction in computational cost

For a single cell that exhibits a mirror symmetry, the operator L (·) commutes with the mirror symmetry
operation. Thus, application of the mirror operation Pσv to an eigenfunction yields

Pσv p̂ (r) = p̂
(
R−1
σv r
)
. (38)

The left-hand side can be re-written in terms of the irreps. as

Pσv p̂i (r) = Γi (σv) p̂i (r) = χi (σv) p̂i (r) , (39)

9



where i = 1, 2 are the values of the characters as given in Tab. 2. Equation (38) is written as

χi (σv) p̂i (r) = p̂i
(
R−1
σv r
)
. (40)

Next, the set of points is restricted to the xz plane and clearly r = R−1
σv r, since these points are mapped to

themselves. Two different cases need to be distinguished, first the symmetric (or even) one with i = 1

1 · p̂1 (r)|xz = p̂1 (r)|xz , (41)

and second the anti-symmetric (or odd) one with i = 2

−1 · p̂2 (r)|xz = p̂2 (r)|xz . (42)

These two conditions reveal properties of the associated eigenfunctions: All anti-symmetric eigenfunctions p̂2

have a node at the mirror plane, otherwise Eq. (42) cannot be fulfilled, hence the name. A Taylor expansion
of Eq. (41) yields that all symmetric functions p̂1 have a pressure anti-node at the mirror plane.

Importantly, the set of all eigenfunctions is split into two types of functions and a label can be assigned
to them depending on the irrep. they belong to. For the single cell combustor there are only two types,
while for the full annular chamber the irreps. will lead to labeling by Bloch numbers b or azimuthal mode
orders m.

Since any eigenfunction must belong to one of the irreps. the computational cost can be reduced by
solving two separate eigenvalue problems on the northern half cell to the same eigenvalue. The problem
that yields all symmetric eigenpairs is given as

L (ω1) p̂1 = 0 , in Ω1/2 ,

∂p̂1

∂n
= 0 , on ∂Ωxz , (43)

and the problem that yields all anti-symmetric eigenpairs is

L (ω2) p̂2 = 0 , in Ω1/2 ,

p̂2 = 0 , on ∂Ωxz . (44)

For a result where Eqs. (44) and (43) are solved, see Fig. 3. The result is compared with the solution on
a full cell. In conclusion, half the computational effort is required in terms of degrees of freedom (DOF).
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Figure 3: Acoustic resonance frequencies of a single cell below 2300 Hz. Solution computed on the full cell is identical to the
solution computed on the half cell with adjusted boundary conditions. There are no frequencies outside the depicted range
below 2600 Hz.
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2.8. On the scope of validity of the theory presented in this paper

In this paper, it is always assumed that the geometric symmetry group of a combustor is the same as the
symmetry group of L. This is not the case, say, for a symmetric can-annular combustor with an asymmetric
equivalence ratio distribution. In this case, the lower symmetry associated with the equivalence ratio would
dictate the properties.

Due to manufacturing tolerances no real combustor is perfectly symmetric. However, the imperfections
are usually small enough to consider the combustor as symmetric.

Notice that a can-annular and an annular combustor with the same number of burners N can have the
same associated symmetry group. For this to hold, the symmetry groups of the unit elements – the cans
or annular segments – must be identical. As an example: A can-annular combustor with 4 burners with
swirl has the same symmetry group as an annular combustor with 4 burners with swirl. The swirl removes
any mirror symmetry. Hence, both combustors are identical from the perspective of studying them via their
symmetry groups. Therefore, the term ‘annular’ can be interchanges with ‘can-annular’ in this document.

In order to apply symmetry group theory L needs to commute with elements of a symmetry group, as
detailed in Sec. 2.4. This is the case as long as L depends linearly on p̂. In contrast, a nonlinear dependence
on p̂ due to a flame describing function [27] violates the commutation property – except under special
conditions [19]. This case is not considered except in a short note in Sec. 3.7.

The theory presented in this paper is not limited to linear stability analysis by the thermoacoustic
Helmholtz equation. A stability analysis of annular or can-annular combustion chambers by means of
linearized Euler [28] or linearized Navier-Stokes equations [29] lends itself to the same analysis. However,
the correct symmetry groups need to be identified. Unlike Eq. (2), these formulations contain mean flow
fields, which can reduce the symmetry easily up to the point of leaving none left.

In quantum mechanics the Hamiltonian H takes the role of L and is Hermitian6 – unlike in thermoa-
coustics, see discussions in [31] and [32]. The absence of the hermicity property increases difficulty, i.e.
certain theorems that are exploited in quantum mechanics cannot be applied to thermoacoustic problems.
In Section 3.6 a special case is considered where L is Hermitian.

An analysis of symmetry groups yields qualitative properties, i.e it predicts if degenerate modes exist
and if they split under perturbations but not the quantitative values before and after the split. This is a
subject extensively covered in Kato’s book [33] and applied to thermoacoustic problems in [34] and [35].

3. Point group of an annular combustion chamber lacking mirror symmetry

In this section the point group of an annular combustor without mirror symmetry is derived: The cyclic
group CN (with N burners). From the irreps. of CN it is shown that degenerate modes do not exist – unless
the operator L has an additional T -symmetry. Mensah et al. [18] reduced computational cost by exploiting
the cyclic symmetry: Eigenmodes (ω, p̂) of the full annulus are obtained by solving smaller problem on a unit
cell. In this work, Mensah et al.’s theory is formulated in the syntax of symmetry groups. This serves as an
important preparation for the next section, where it is demonstrated that such a reduction in computational
cost is not feasible for the annular combustor with mirror symmetry.

3.1. The unit cell as a generating element

In Figure 4 an annular combustion chamber with N = 16 burners is depicted. The highlighted single
cell serves as the so-called unit cell: The complete annulus is obtained by repeated rotation of the unit cell
by an angle 2π/16. Such a rotation is written as C16. An n-fold rotation can be written as

C16 ∗ C16 ∗ . . . ∗ C16︸ ︷︷ ︸
n times

= Cn16 . (45)

6Neglecting non-Hermitian quantum mechanics [30].
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Figure 4: Left: Schematic depiction of an annular combustor that only exhibits a rotational symmetry in the form of the
group C16. Repeated rotation of the unit cell (orange) by an angle 2π/16 yields the full annulus. Sixteen such rotations are
unique. The diagonal bar in each cell signifies the absence of a mirror symmetry. Right: The unit cell with the Bloch boundary
conditions.

Moreover, a periodic boundary condition exists

CN16 = E , (46)

with N = 16 in this case. The set of all rotations Cn16

C16 =
{
E = C0

16, C16, C
2
16, . . . , C

N−1
16

}
, (47)

forms the group C16 of order 16. The group axioms can be checked straightforwardly. Notice that the group
operations Cn16 are written in italic while the group C16 itself is written non-italic. The two properties Eq.
(45) and Eq. (46) make C16 a cyclic group, with the generating element C16. Clearly, all elements of C16

commute with each other, which makes the group Abelian.
For now, the index n is restricted to the range 0, . . . , N − 1. An index n = −1 refers to the same

symmetry operation as the index n = 17 and, hence, different choices are possible. All the properties easily
generalize to a combustor of arbitrary discrete rotational symmetry N <∞.

3.2. Construction of the character table for CN

In an Abelian Group every element is in a class of its own, [6, Chap. 2.8.]. From this it can be shown
that all irreducible matrix representations are one-dimensional and, thus, identical to their characters

D (CnN ) = χ (CnN ) . (48)

There are N elements in CN and, thus, N classes. This is a standard result for discrete groups, see [6, Chap.
4.6]. Therefore, the character table for CN has N rows and columns. This gives the layout of the empty
character table in Tab. 3 where only the trivial irrep. (first row) and the dimensions (first column) are filled
in. The rest will be filled in step by step in the following.
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In one irrep., the characters satisfy the homomorphism property [6, Chap. 2.5.2] which states for any
two elements gi and gj of a group that

χ (gi ∗ gj) = χ (gi)χ (gj) . (49)

For any of the N irreps. the homomorphism property gives

[χ (CN )]
N

= χ (E) = 1 . (50)

Thus, the character of CN takes values as the N -th roots of unity

χb (CN ) = e2πi bN , b = 0, . . . , N − 1 . (51)

Consequently, the integer b can be used as a label for the irreps. With the abbreviation ξ = e2πi/N the
second column is filled in Tab. 4. Equation (49) can be applied to the second column of the table. This
yields the character of C2

16 for all irreps.

χb
(
C2
N

)
= χb (CN )χb (CN ) = ξ2 . (52)

In this way, the character table can be completed, see Tab. 5. The character table can be extended with
redundant rows, see Tab. 6 due to the complex root

e2πi bN = e2πi(NN + b−N
N ) = e2πi b−NN . (53)

Hence, for two integers k and b, the characters are identical

χkN+b = χb . (54)

Thus, the integer b does not have to be chosen in the range 0, . . . , N − 1 but instead it is more convenient to
use − (N/2− 1) , . . . N/2. The proof for odd N is skipped, but it can be chosen as − (N − 1) /2, . . . , N−1/2.
This labelling has certain advantages. A general element in the Tab. 6 is written as

χb (CnN ) = ei(2π b
N n) (55)

and, thus, characterised by the integer b (defines to which irrep. it belongs) and n (defines for which group
element it is).

3.3. Bloch’s theorem and basis functions for CN

An action by an element of CN on a function ψ (r) – which is not yet an eigenfunction p̂ – defined in the
annulus is written as

PCnNψ (r) = ψ (r′) = ψ
(
R−1
CnN

r
)
, (56)

according to Eq. (24). As a visualization aid, a rotated function is depicted in Fig. 5. If the points r form
the unit cell, the rotated points r′ constitute the n-th cell in the annulus – a translation of sorts. In polar
coordinates with r = φ eφ, this can be written as

R−1
CnN

r =

(
φ− 2π

N
n

)
eφ . (57)

Elements of CN also leave the linear operator L invariant and, thus, commute with it. As in Sec. 2.7 the
commutation and Eq. (56) are the two key properties. All representations are one-dimensional and the basis
function p̂b (r) of the irrep. (labelled by) b satisfies

PCnN p̂b (r) = χb (CnN ) p̂b (r) = ei(2π b
N n)p̂b (r) . (58)
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Table 3: Empty character table for the cyclic group CN . The group has N classes and must of have N irreps. The trivial irrep.
is written in the first row. The first column is given, since the group is Abelian and all irreps. are one-dimensional.

C0
N = E C1

N C2
N . . . CN−1

N

Γ0 = χ0 1 1 1 . . . 1
χ1 1
χ2 1
...

...
χN−1 1

Table 4: Character table for the cyclic subgroup CN with the characters for C1
N filled in.

C0
N = E C1

N C2
N . . . CN−1

N

χ0 1 1 1 . . . 1
χ1 1 ξ1

χ2 1 ξ2

...
...

...
χN−1 1 ξN−1

Table 5: Character table for the cyclic subgroup CN with the remaining entries filled in.

C0
N = E C1

N C2
N . . . CN−1

N

χ0 1 1 1 . . . 1
χ1 1 ξ1 ξ2 . . . ξN−1

χ2 1 ξ2 ξ4 . . . ξ2(N−1)

...
...

...
...

...
...

χN−1 1 ξN−1 ξ2(N−1) . . . ξ(N−1)2

Table 6: Character table for the cyclic subgroup CN extended with redundant rows above and below the dashed line.

C0
N = E C1

N C2
N . . . CN−1

N
...

...
...

...
...

...
χ−2 ξ−2 ξ−4 ξ−6 . . . ξ−2(N−1)

χ−1 ξ−1 ξ−2 ξ−3 . . . ξ−(N−1)

χ0 1 1 1 . . . 1
χ1 1 ξ1 ξ2 . . . ξN−1

χ2 1 ξ2 ξ4 . . . ξ2(N−1)

...
...

...
...

...
...

χN−1 1 ξN−1 ξ2(N−1) . . . ξ(N−1)2

χN 1 1 1 . . . 1
χN+1 1 ξ1 ξ2 . . . ξN−1

...
...

...
...

...
...
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Figure 5: An arbitrary function ψ in an annular combustion chamber and its rotated version ψ′. This example is motivated
from Inui et al. [6, Sec. 4.3 ] where a plot of the contour lines of Mount Fuji is considered.

By Equations (56) and (58) Bloch’s Theorem is obtained

p̂b

(
R−1
CnN

r
)

= ei(2π b
N n)p̂b (r) . (59)

The functions p̂b (r) are called Bloch functions and the origin of the phase factor ei(2π b
N n) becomes evident:

The irreps. is labelled by b, the Bloch number. Equation (58) shows that the phase factor ei(2π b
N n) is the

eigenvalue of the operator PCnN and the Bloch functions p̂b (r) are the basis functions for CN . With the
azimuthal coordinate φ another function can be defined as

p̂b (r) = e−ibφub (r) (60)

and substitute into Bloch’s Theorem (59) to obtain for the left-hand side

p̂b

(
R−1
CnN

r
)

= e−ib(φ− 2π
N n)ub

(
R−1
CnN

r
)

= e−ibφei(2π b
N n)ub

(
R−1
CnN

r
)
, (61)

and for the right-hand side

ei(2π b
N n)p̂b (r) = ei(2π b

N n)e−ibφub (r) , (62)

to yield

ub

(
R−1
CnN

r
)

= ub (r) . (63)

Thus, ub (r) is periodic on a unit cell. In this section Bloch’s theorem was motivated with the point group
CN . In the literature, the theorem is part of space group theory, see [6, Chap. 11]. In short, the rotation
by a set angle can be considered a translation around the circumference and PCnN is then a translation
operator. This has applications in periodic crystals that exhibit translation-invariance in more than one
dimension. The Bloch numbers b are considered continuous, not discrete, since the number N is large as
it corresponds to the number of atoms in a crystal. Space group theory has its own syntax that is more
convenient to express the extremely high symmetries associated with crystals. Usually, every atom (for us:
a single combustor) alone exhibits a point group with high symmetry (for us: at most CS) on top of the
translational invariance in three dimension.
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3.4. Unit cell computation and extrapolation to the full annulus using Bloch waves

Bloch’s theorem from the previous section is the central equation from Mensah et al.’s work [18], repeated
here

p̂b

(
R−1
CnN

r
)

= ei(2π b
N n)p̂b (r) . (64)

Hence, if the mode shape is known for a unit cell p̂b (r), an extrapolation to any other cell p̂b

(
R−1
CnN

r
)

is

straightforward by multiplication with the phase factor. In order to solve the problem on a unit cell a Bloch
boundary condition has to be prescribed. Set n = 1 in Eq. (64) to obtain

p̂b
(
R−1
CN

r
)

= eib( 2π
N )p̂b (r) . (65)

This relation between values of p̂b at different points r is valid for all points r. For a unit cell computation of
explicit interest are the points on the face ∂Ωref , which are partnered with a boundary at the next unit cell
∂Ωref+1. Yet the boundary ∂Ωref+1 still belongs to the original unit cell and is, hence, defined as ∂ΩBloch

eib( 2π
N ) p̂b (r)|∂Ωref

= p̂b (r)|∂Ωref+1
≡ p̂b (r)|∂ΩBloch

. (66)

Consequently, the boundary ∂ΩBloch is equipped with a modified boundary condition. See Figure 4 for a
depiction. The value on the Bloch boundary is simply the value on the reference boundary times the phase
factor. Consequently, for every b the eigenvalue problem is solved on the unit cell with the Bloch boundary
conditions. Eigenfunctions of the full annulus are obtained by extrapolation from the unit cell using Eq.
(64). An ordinary periodic boundary condition is obtained for b = 0.

3.5. Azimuthal wave number and Bloch number: Labelling modes by symmetry

Bloch numbers b label the irreps. and are the only correct labelling for eigenpairs (ω, p̂). How does a
label by azimuthal mode order m relate to b? Consider a solution to the linear thermoacoustic eigenvalue

problem p̂b (r) of order m = 2. This function is π-periodic and a rotation by C
N/2
N turns this function into

itself. Formally, this can be written as

P
C
N/2
N

p̂b (r)
!
= p̂b (r) , (67)

and using the phase factor with n = N/2

eib(n 2π
N )p̂b (r) = p̂b (r) , (68)

eib(n 2π
N ) = 1 , (69)

eib(N2
2π
N ) = 1 , (70)

eibπ = 1 . (71)

Excluding the trivial case b = 0 it holds that b = 2 = m, and the Bloch number and azimuthal mode number
are identical. Generalizing Eq. (67) for arbitrary m, one obtains for the phase factor

e2πi bm = 1 . (72)

This result expresses that for azimuthal wave numbers with

m ≤ max (b) = N/2 , (73)

Bloch numbers corresponds to the azimuthal wave number. As noted in Mensah et al. [18]: N/2 is sufficiently
high in practical applications to use them interchangeably. What about higher mode orders? For N = 4
and m = 3 the relation yields

P
C

4/3
4
p̂b (r) = p̂b (r) , (74)
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but clearly C
4/3
4 is not a symmetry operation of C4. Using the cyclic property

(
C

4/3
4

)3

= C4
4 = C

4/1
4 , (75)

and Eq. (72) gives

e2πib = 1 , (76)

which yields b = −1, 1. Likewise for m = 4

PC1
4
p̂b (r) = p̂b (r) , (77)

one obtains

e2πi b4 = 1 , (78)

and b = 0. Mode m = 5 yields b = −1, 1 again, while m = 6 with P
C

4/6
4

gives C
4/6
4 = C

2/3
4 such that

(
C

2/3
4

)3

= C2
4 , (79)

and one obtains b = 2. Consequently azimuthal modes m ≥ N/2 are not forbidden but alias in lower Bloch
numbers. For C4 the result is

m 0 1 2 3 4 5 6 7 8
b 0 −1, 1 2 −1, 1 0 −1, 1 2 −1, 1 0

. (80)

3.6. Degenerate modes in the annulus due to time-reversal symmetry

The Abelian nature of CN prohibits degenerate eigenvalues, since these require at least one 2D irrep.
However, there is an exception when the linear operator is self-adjoint (or Hermitian). In the following, it
is shown how the Hermitian property is a consequence of an additional symmetry of L (·) that is not part
of the geometric symmetry: Time-reversal T , which pairs two 1D irreps. of CN into one 2D irrep., resulting
in two-fold degenerate modes. The group is then denoted as C̄N .

Time-reversal symmetry is only encountered in special cases in thermoacoustics. For instance in a
combustor with purely homogeneous boundary conditions, no viscous damping term(s) and a “switched-off”
flame (also referred to as a passive flame in the literature), i.e. no damping or amplification. Under these
conditions, Eq. (2) simplifies in time domain to

∂2p′ (t, r)

∂t2
−∇ ·

(
c2∇p′ (t, r)

)
= 0 . (81)

This equation is symmetric with respect to time-reversal: t can be replaced with −t and no signs of the
operators change. Moreover, under complex-conjugation (·)† both operators are invariant

[
∂2 p′ † (t, r)

∂t2

]
−
[
∇ ·
(
c2∇ p′

†
(t, r)

)]
= 0 , (82)

and p′ † solves the same equation as p′. Hence, p′ = p′ † and p′ must be real. Fourier transformation of the
equation for the time-reversed function p′ (−t) yields

∇ ·
(
c2∇ p̂ † (r)

)
+ (ω)

2
p̂ † (r) = 0 , (83)
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since the Fourier transformation of a real, time-reversed function is the complex-conjugate of the original
function. Taking the complex-conjugate of Eq. (81) in frequency domain yields

∇ ·
(
c2∇p̂† (r)

)
+
(
ω†
)2
p̂† (r) = 0 . (84)

For Equations (83) and (84) to hold simultaneously ω must be real, and since the elliptic operator ∇·
(
c2∇

)

is real, L is self-adjoint

L† (ω) = L (ω) . (85)

This analysis shows that symmetry under time-reversal implies symmetry under complex-conjugation in
frequency domain. Therefore, the time-reversal operator PT is realized by complex-conjugation (·)†.

A difficulty arises: Complex-conjugation is an anti-unitary operation and the addition of T to CN leads
to the theory of non-unitary groups, see [6, Chap. 13] for a thorough treatment. The non-unitary group
with added T -symmetry has a left coset decomposition

Ḡ = G + T G , (86)

where G is a normal subgroup. In this work it suffices that T does not add another symmetry label (in the
form of another irrep.), but pairs two irreps. with each other. As in Sec. 2.7 an eigenfunction belonging to
a 1D irrep. j transforms under a symmetry operation R as

Pgp̂j = Dj (g) p̂j . (87)

Applying the time-reversal operator PT yields

PT Dj (g) p̂j = D†j (g) p̂†j . (88)

As an example, consider C4 in Tab. 7 and its four irreps. j = 1, 2, 3, 4. For j = 1, 2 the representation
matrices are real, and the time-reversal has no effect

D†j (g) = Dj (g) ,∀g ∈ C4 , (89)

For j = 3 the situation is different

D†3 (g) = D4 (g) ,∀g ∈ C4 , (90)

as the matrices belonging to j = 3 are complex-conjugate to matrices in j = 4. Both of them form a time
reversal symmetry pair according to [23, p. 408]. Consequently, there are two irreps. belonging to the same
eigenvalue and the eigenvalue is two-fold degenerate.

As an example consider the case depicted in Figure 6. This case employs the same parameters as [13]
but a field of the speed of sound and flame zones are chosen, such that every unit cell does not exhibit a
mirror symmetry, akin to the schematic in Fig. 4. Consequently, the symmetry group is C16. At first the
problem is self-adjoint and a degenerate mode is found on the real line. As the flames are ‘switched’ on, the
hermicity is lost and the degenerate modes split Fig. 6c. In quantum mechanics this is known as Kramer
degeneracy [6, p. 294] and the equivalent to adding an active flame is the imposition of a magnetic field.

3.7. Nonlinearity in the eigenvector

Equation (67) can be valid even for a wave function p̂ (r) describing the mode shape in a limit cycle
oscillation, e.g. a standing wave of order m = 2. However, such a function is a solution to a nonlinear
eigenvector problem N (ω, p̂) = 0. To the best of the authors’ knowledge, a symmetry operator PR does
not necessarily commute with N (·, ·) – a necessary condition in Sec. 2.4. Thus, even if N (·, ·) is invariant
under a symmetry operation R ∈ sym (N ), this does not imply that the eigenfunction p̂ (r) can be written
in terms of irreps of R. In [19] Mensah et al. exploit Bloch wave theory for a spinning limit cycle oscillation,
for which [PR,N ] = 0.
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Table 7: Character table for the cyclic group C4 as encountered in the literature [23, App. A]. All classes have one element;
all irreps. are 1D and equal to their characters. If the system exhibits T -symmetry, the irreps. Γ3 and Γ4 are paired via
complex-conjugation. In quantum mechanics T -symmetry is encountered so frequently, that in the character tables of groups
curly brackets indicate time reversal symmetry pairs, here via the letter E.

C4 E C4 C2
4 C3

4

Γ1 1 1 1 1
Γ2 1 −1 1 −1

E

{
Γ3 1 −i −1 i
Γ4 1 i −1 −i

(a) (b)

872 880 888 896

f in Hz

−300

−250

−200

−150

−100

−50

0

Im
ag

(ω
)

in
s−

1

b = 1

b = −1

Twofold degenerate

(c)

Figure 6: a) and b): Degenerate mode pair in the Micca combustor as featured in [13]. The normalized real part is depicted.
The mode is of azimuthal order m = 1 and dominant in the combustion chamber. c): The T -symmetric system exhibits a
degenerate mode. As the active flame is activated the system loses T -symmetry and the degenerate eigenvalue splits. The
color of the line corresponds to the value of s ∈ [0, 1]. The split is very weak with ∆f = 2.67 Hz at n = 1. Both eigenvalues
can individually be obtained via Bloch computations with b = +1,−1.

4. Point group of an annular combustion chamber exhibiting mirror symmetry

Consider the collection of points r0 ∈ R2, which form a half cell for an annulus with N = 16 burners,
see Fig. 7. There are M = 2N identical half cells which form the full annular combustor. In the following,
the symmetry group of this combustor is derived in a systematic way by defining a set of lattice operations
which, applied to r0, yield the full lattice. Then it is proven that the set forms a group, its character table
is derived and its name in Schönfliess notation given.

In counter-clockwise direction, the second cell can be obtained by performing a mirror operation of the
half cell in the vertical x−z plane, denoted as σv, see Fig. 7. Denote as CM a rotation that shifts the original
half-cell onto the subsequent one. It is not a covering operation. A third cell is obtained by performing
the rotation twice C2

M but no mirroring. For the fourth cell, mirroring σv is followed by C2
M . The pattern

that emerges is summarised in Tab. 8. Notice that the mirroring plane σv is fixed, as depicted in Fig. 7.
Successive application of the symmetry operations yields the full annular combustion chamber.

Are these all symmetry operations? Yes. Due to the systematic approach every half cell has a distinct
label going from ’zero’ to M − 1 counterclockwise. The order of these has to be retained by any symmetry
operation, i.e. ‘zero’ has neighbors ‘one’ (counterclockwise) and M − 1 (clockwise) and so forth. In total,
there are only M distinct ways of orienting this chain of numbers. The set of all M operations in Tab. 8
is called LM (‘Lattice group’) for now. This is a non-standard name and the correct group name, CNv in
Schönfliess notation, is identified later. This derivation also shows that symmetry groups are the groups of
all permutations of a finite set.
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Table 8: Symmetry operations for the half cell. The index k labels the half cells in counter-clockwise direction.

k = 0 E

k = 1 σv

k = 2 C2
M

k = 3 C2
M σv

k = 4 C4
M

k = 5 C4
Mσv

k = 6 C6
M

...
...

k = M − 1 CkMσv

k = M CkM = E

−0.22 −0.20 −0.18 −0.16 −0.14 −0.12

x

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

y

−0.22 −0.20 −0.18 −0.16 −0.14 −0.12

x

Mirror plane

−0.22 −0.20 −0.18 −0.16 −0.14 −0.12

x

Figure 7: Left: One out of the M = 2N half cells in a combustor with N burners. Middle: Mirroring operation σv to obtain
the second cell. Right: Rotation (or also translation) operation C2

16 to obtain the third cell.

4.1. A group L8 for an annular combustor with four burners

To make the algebraic derivations simpler and an example of LM with N = 4 is considered, see Fig. 8a.
The set is written as

L8 =
{
E, σv, C

2, C2σv, C
4, C4σv, C

6, C6σv
}
, (91)

where the subscript for the rotational operations CM (here C8) is dropped for brevity. The multiplication
table is given in Tab. 9. Every element only appears once in every column and row. Therefore, the re-
arrangement theorem [6, Chap. 2.4] holds and closure, existence of identity and existence of inverse are
given. The mirroring and rotation operations can be represented by matrices. Since matrix multiplication
is associative, L8 is a group by extension. However, the multiplication table is not symmetric and thus
elements of L8 do not commute, e.g. σvC

2 = C6σv 6= C2σv. Thus, L8 is not an Abelian group.

4.2. Group structure of L8

Which properties does L8 have and what is the structure of L8? First, the class structure is derived.
Two elements a and b are conjugate to each other if there exists and element g such that

b = g a g−1 . (92)
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Figure 8: Left: Top view of a combustor with N = 4 burners, which themselves exhibit a mirror symmetry. Right: The
square and its covering operations leading to the symmetry group D4 in 2D. The four mirror planes are specified. In addition,
rotations by π (and multiples thereof) are possible.

Table 9: Multiplication table for the group L8 with N = 4 burners and eight unit cells.

E σv C2 C2σv C4 C4σv C6 C6σv

E E σv C2 C2σv C4 C4σv C6 C6σv

σv σv E C6σv C6 C4σv C4 C2σv C2

C2 C2 C2σv C4 C4σv C6 C6σv E σv

C2σv C2σv C2 σv E C6σv C6 C4σv C4

C4 C4 C4σv C6 C6σv E σv C2 C2σv

C4σv C4σv C4 C2σv C2 σv E C6σv C6

C6 C6 C6σv E σv C2 C2σv C4 C4σv

C6σv C6σv C6 C4σv C4 C2σv C2 σv E

Elements a and b are said to be in the same conjugacy class. The relation Eq. (92) is evaluated by looping
over all elements in L8 as a and then looping over all elements as g. The result is depicted in Tab. 11. After
the trivial first row, the second row is obtained via

σv σv (σv)
−1

= σv (93)

C2 σv
(
C2
)−1

= C4σv (94)

... =
... (95)

The five (conjugate) classes are then the sets of unique elements in every respective row of Tab. 11 and
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Table 10: Inverse elements summarized, as specified in Tab. 9.

g E σv C2 C2σv C4 C4σv C6 C6σv
g−1 E σv C6 C2σv C4 C4σv C2 C6σv

Table 11: Calculation of the conjugate classes for L8. Notice that the bottom three rows are redundant, after the first five
have been specified.

E σv C2 C2σv C4 C4σv C6 C6σv

E E E E E E E E E

σv σv σv C4σv C4σv σv σv C4σv C4σv

C2 C2 C6 C2 C6 C2 C6 C2 C6

C2σv C2σv C6σv C6σv C2σv C2σv C6σv C6σv C2σv

C4 C4 C4 C4 C4 C4 C4 C4 C4

C4σv C4σv C4σv σv σv C4σv C4σv σv σv

C6 C6 C2 C6 C2 C6 C2 C6 C2

C6σv C6σv C2σv C2σv C6σv C6σv C2σv C2σv C6σv

given as

C1 = {E} , (96)

C2 =
{
σv, C

4σv
}
, (97)

C3 =
{
C2, C6

}
, (98)

C4 =
{
C2σv, C

6σv
}
, (99)

C5 =
{
C4
}
. (100)

(101)

Evidently, classes have no elements in common. By Lagrange’s theorem [36, Chap. 1.4.3] the order of a
subgroup must be an divisor of the order of a group. Here, |L8| = 8, thus possible divisors are 1, 2, 4 and
8. Unless the group is Abelian, the number of subgroups cannot be determined from the order of the group
alone and needs to be computed. The two trivial subgroups are

H1 = {E} (102)

H2 = L8 . (103)

By observation, a subgroup of order two is

H3 = {E,C4} , (104)

where the knowledge that C4 is its own inverse is used to conveniently fulfill all group axioms. Other
subgroups of order two are {E, σv} ,

{
E,C2σv

}
,
{
E,C4σv

}
and

{
E,C6σv

}
but only H3 consists of complete

conjugacy classes and is, hence, normal or invariant [6, Chap. 2.10]. Evidently, {E, σv} has been encountered
previously as the mirror group CS in Sec. 2. It is also trivial to see that a subgroup of order four is

H4 =
{
E,C2, C4, C6

}
. (105)

The right coset decomposition of L8 with respect to H4 is

L8 = H4 + H4σv , (106)
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and for the left coset decomposition

L8 = H4 + σvH4 , (107)

which shows that the left and right cosets are identical for a normal subgroup. H4 is evidently a cyclic group
CN of order four as detailed in the previous Section 3. More normal subgroups of order 4 can be obtained,
for instance

H5 =
{
E, σv, C

4, C4σv
}
, (108)

H6 =
{
E,C2σv, C

4, C6σv
}
, (109)

and H3 together with any of the subgroups of order two also forms a normal subgroup of order 4. Only the
normal subgroup C4 is relevant in the following. Since C4 is a normal subgroup a factor (or quotient) group
[6, Chap. 2.11] can be defined

L8/C4 = {E, σv} , (110)

whose elements are the cosets. The elements of the factor group are formed by the cosets themselves

L8/C4 = {C4,C4σv} , (111)

and a quick computation yields the Multiplication table 12. However, the existence of the factor group does
not imply that L8 can be formed as a direct product [6, Chap. 2.12] of C4 and CS

L8 6= C4 × CS , (112)

because the elements of the two groups do not commute.

Table 12: Multiplication table of factor group L8/C4.

C4 C4σv
C4 C4 C4σv
C4σv C4σv C4

4.3. Irreducible representation for L8

The operations C and σv are conventional rotations and reflections, respectively. Hence, these can be
represented by matrices in a Cartesian basis as

C
.
= Rot (∆φ) =

(
cos (∆φ) − sin (∆φ)
sin (∆φ) cos (∆φ)

)
, (113)

and

σv
.
= Reflxz =

(
1 0
0 −1

)
, (114)

with a fixed ∆φ = 2π/M . The rotation operation is always employed at least in squared fashion and so

C2 .
= Rot2 (∆φ) =

(
cos (2∆φ) − sin (2∆φ)
sin (2∆φ) cos (2∆φ)

)
= Rot (2∆φ) . (115)
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The representation matrices for all group elements of L8 are then written as

E
.
=

(
1 0
0 1

)
(116)

σv
.
=

(
1 0
0 −1

)
(117)

C2 .
= Rot (2∆φ) (118)

C2σv
.
= Rot (2∆φ) Reflxz (119)

C4 .
= Rot (4∆φ) (120)

C4σv
.
= Rot (4∆φ) Reflxz (121)

C6 .
= Rot (6∆φ) (122)

C6σv
.
= Rot (6∆φ) Reflxz (123)

Is this representation reducible? This can be answered by computing the characters of the representation,
see Tab. 13. Choose two irreps. i and j and sum over all classes

Table 13: Characters for the representations Eqs. (116)-(123).

E σv C2 C2σv C4 C4σv C6 C6σv
Tr (·) 2 0 2 cos (π/2) 0 2 cos (π) 0 2 cos (3π/2) 0

nC∑

c

ecχi (gc) χj
† (gc) = |G|δij , (124)

a property that is called first orthogonality of characters [6, p. 62]. gc is any one element in a class and ec
the number of elements in that class. This is a row-wise orthogonality in a character table. This relation
expresses that for i = j the squared sum of all traces must be equal to the order of the group. For the
chosen representation one obtains

22 + 0 + (−2)2 + 0 = 8 = |L8| . (125)

Hence, the chosen representation is in fact irreducible. Otherwise, the sum on the left hand side would be
not equal to |L8|. Consequently, one irrep. of L8 has been obtained, which is even two-dimensional. Modes
associated with this irrep. are twofold degenerate.

4.4. Character table for L8

The group L8 has five classes. Thus, the number of in-equivalent irreducible representations is five as
well, see [6, Chap. 4.6.1]. Elements belonging to the same class have the same characters [6, Chap. 4.6]. A
second orthogonality of characters [6, p. 62] holds for a sum over all irreps. nIR. Hereby choose an element
gc from one class and an element gc′ from another class

nIR∑

i=1

χi (gc) χi
† (gc′) = δcc′

|G|
ec

. (126)

This is a column-wise orthogonality in a character table. For the first class, the identity element E with
ec = 1, one obtains

nIR∑

i=1

d2
i = |G| . (127)
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Table 14: Character table for the lattice group L8.

E
{
σv, C

4σv
} {

C2, C6
} {

C2σv, C
6σv
} {

C4
}

χ1 1 1 1 1 1
χ2 1 1 −1 −1 1
χ3 1 −1 1 −1 1
χ4 1 −1 −1 1 1
χ5 2 0 0 0 −2

This yields with the known trivial irrep. d0 = 1

7 = d2
1 + d2

2 + d2
3 + d2

4 . (128)

The only way to satisfy this is by choosing d1 = 1, d2 = 1, d3 = 1, d4 = 2. The choice itself is arbitrary, but
by convention the highest dimension is chosen as the final row. This yields together with the trivial first
row all black-colored digits in Tab. 14. In addition the characters for the fifth irrep. can be filled in from
the result of the previous section.

Consider the three unknown 1D irreps. All elements g ∈
{
E, σv, C

2σv, C
4, C4σv, C

6σv
}

are their own
inverses and thus by the homomorphism theorem Eq. (49)

χj
(
g2
)

= χj (E) = χj (g)χj (g) = χ2
j (g) , (129)

and hence

1 = χ2
j (g) . (130)

The multiplication table gives

σcC
4σv = C4 , (131)

and by the homomorphism theorem

χ (σv)χ
(
C4σv

)
= χ

(
C4
)
. (132)

Both elements in the left hand side belong to the same class and must have the same character. Even though
this could be +1 or −1 it still holds

1 = χj
(
C4
)
, (133)

which is valid for all 1D irreps. and gives the blue digits in Tab. 14. With this result, row orthogonality
between the first i = 1 and any of the other three rows j = 2, 3, 4 gives

−1 = χj (σv) + χj
(
C2
)

+ χj
(
C2σv

)
. (134)

In order to fulfill this equation, two characters have to be +1 and one character −1 and thus the red digits
in Tab. 14 are obtained. If the characters of j = 5 were unknown they could be computed by using column
orthogonality and choosing c = E while looping over all other classes.

4.5. Is L8 isomorphic to C4v or D4?

The character Table 14 is known and is, in fact, the character table of the dihedral group D4 (in Schönflies
notation), a 2D point group. Dihedral groups in 2D are also known as the group of symmetries of regular
n-polygons. See Figure 8b for the depiction of a square that exhibits the same symmetries as a 2D annular
combustion chamber with N = 4 burners.

The situation is a little nebulous when point group notations and definitions are employed. In the
derivation so far, symmetry properties in 2D have been studied exclusively – the third dimension was
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Table 15: Character table for C4v as commonly encountered in the literature. Every symmetry element represents a class and
the given number specifies the number of elements in said class, i.e. 2 for C4 (which includes rotation C3

4 ). The labelling of
the irreps. is not consistent in the literature. In this work Γj is used but sometimes letters A,B,E, F etc. are chosen. A and
B for one-dimensional irreps. while E is for two-dimensional irreps. and so on, see [37, Chap. 4].

C4v E 2C4 C2
4 2σv 2σd

A1 Γ1 1 1 1 1 1
A2 Γ2 1 1 1 −1 −1
B1 Γ3 1 −1 1 1 −1
B2 Γ4 1 −1 1 −1 1
E Γ5 2 0 −2 0 0

neglected since annular combustion chambers do not exhibit a symmetry in this direction. In 2D the
constructed lattice group L8 is isomorphic to the abstract group D4. However, once the combustor is
considered in 3D – even if this does not add any symmetry – the resulting point group is denoted as C4v

and not D4. The examples in the wikipedia article on 3D point groups clarify the difference between Dn

and CNv.
This is purely an issue of naming convention. In our application the distinction is important because

character tables and irreps. for abstract groups are tabulated in textbooks or generated automatically by
online tools. Hence, the tables for the symmetry group of an annular combustor with N burners, CNv can
be looked up/generated. Depending on the source, the term ‘point group’ alone can imply 3D. This is due
to the fact that most of the applications of point groups are of 3D-type in quantum mechanics and quantum
chemistry. Consequently, online tools that generate character tables for point groups of arbitrary order will
(likely) focus on 3D. The 2D point groups are also known as ‘Rosette groups´.

Comparison between the derived character table 14 and the one from literature 15 shows that symmetry
operations have a naming convention themselves. The operation C2 (C2

8 with subscript) is denoted as C4.
Operation C4σv is another vertical mirroring operation going through the center off an annular combustor
segment and denoted as σv′ .The operations C2σv, C

6σv are vertical mirroring operations as well – but
off-burner, i.e. planes between annular segments and denoted as σd, σd′ . Figure 8b makes the distinction
between σv and σd clear.

4.6. Irreps. of C4v and associated azimuthal mode orders m

C4v has five irreps. j = 1, 2, 3, 4, 5 including a two-dimensional one. These are the correct labels for
eigenpairs (ω, p̂). How does the notion of an azimuthal mode order tie in here? Can an irrep. label be
replaced by a specific m? These questions can be answered by considering how a function is transformed by
irreps. In addition, the labelling as customary for can-annular combustors is given, since the can-annular
combustor of Moon et al. [38, 39] exhibits this group – if swirlers are neglected. The characters of irrep. Γ1

are all one
E 2C4 C2 2σv 2σd

Γ1 1 1 1 1 1
(135)

Consider an eigenfunction p̂ belonging to Γ1 (with no prior assumption on its shape) and its value at φ = 0
denoted as +1 · p̂, see Fig. 9. According to the characters, a transformation by any symmetry operation
leads to the same value around the circumference. Connecting the dots yields the example mode shape: A
purely axial mode m = 0 or push-push mode.

Irrep. Γ2 is more challenging due to the characters for the mirroring operations, see Fig. 8b for a depiction
of the mirroring planes, and one obtains

E 2C4 C2 2σv 2σd
Γ2 1 1 1 −1 −1

(136)

Nominally, the rotations C4, C
3
4 and C2 would result in values of +1 · p̂ at the locations φ = π/2, π, 3π/2.

However, this contradicts with the mirroring operations, e.g. σv enforces −1 · p̂ at φ = π. Taking this
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Table 16: Labelling irreps. of C4v with azimuthal mode orders m and Bloch numbers b.

C4v Γ1 Γ2 Γ3 Γ4 Γ5

m 0 4 2 2 1
b 0 0 2 2 −1, 1

argumentation to its logical conclusion, only p̂ = 0 is possible at those locations. However, the mode is not
the trivial one, as the mode shape in Fig. 9 depicts. In fact a mode m = 4 fulfills the symmetry required by
the characters. There are no such conflicts for Γ3

E 2C4 C2 2σv 2σd
Γ3 1 −1 1 1 −1

(137)

and the mode is quickly identified to be a cosine function of order m = 2. In contrast for Γ4

E 2C4 C2 2σv 2σd
Γ4 1 −1 1 −1 1

(138)

the characters enforce p̂ = 0 at φ = 0, π/2, π and 3π/2. Hence, the mode shape is a sine function of order
m = 2. Both modes are called push-pull modes. In a can-annular context a standing mode belonging to Γ4

would have nodal lines in cans and anti-nodal lines in the cross talks. The remaining irrep. is two-dimensional
and yields a degenerate eigenvalue. Hence, the eigenspace is formed by two functions p̂1 (φ) and p̂2 (φ). As
before, apply irreps. for instance for

σv :

(
1 0
0 −1

)(
p̂1

p̂2

)
=

(
p̂1

−p̂2

)
(139)

to the functions. Is this fashion a number of constraints are obtained and it can be concluded that functions
p̂1 = cos (φ) and p̂2 = sin (φ) fulfill these – modes of order m = 1. In Section 4.2 it was derived that CS
and C4 are subgroups of C4v. Consequently, the Bloch numbers b can also be used to label irreps. of C4v,
albeit at a loss of information. Preempting a result from Sec. 5.4, the labelling is given in Tab. 16. In
order to determine to which irrep. higher order modes m > N/2 belong, it is best to follow the procedure
of Sec. 3.5 and to derive Bloch number. From b it is straightforward to obtain the irrep. number. If a mode
m belongs to two Bloch numbers it is degenerate. It now becomes evident that a label m, as customary
in thermoacoustics, is problematic from the perspective of symmetry groups which employs irreps.: Both
labels cannot be mapped bijectively onto each other.

4.7. Higher order degeneracies and generalization to arbitrary N

Except for a specifically designed experiment, a degeneracy of higher order than two is not relevant for
practical thermoacoustic systems. A threefold degeneracy would require a symmetry group with at least one
3D irrep. The group of lowest order with this property is the tetrahedral point group T associated with an
equilateral tetrahedron – an impractical burner arrangement. Since combustion systems have a dedicated
main flow direction this alone excludes symmetries in that direction.

Can a CNv of arbitrary order exhibit a 3D (or higher) irrep.? No. The answer touches upon bound
estimates for the number of classes in finite groups of arbitrary order [40]. Here it suffices that Ito [41]
published a result that can be applied. Any CNv has an Abelian normal subgroup CN of order N (the
maximal Abelian subgroup). The number of left and right cosets is called the index and given as

[CNv : CN ] =
|CNv|
|CN |

= 2 . (140)

According to Ito [41] the dimension (called degree) of CNv must be a divisor of the index. Thus, only 1D
and 2D irreps. are possible.
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Figure 9: From top until bottom: Irreps. Γ1,Γ2,Γ3 and Γ4 (left) and their characters. Example mode shapes (right) over
azimuthal coordinate φ.
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Can T -symmetry couple two irreps. of CNv into a 3D or 4D irrep.? Also No. Because Wang et al. [42]
proved that boundedness of the index by two implies that all irreps. are real-valued and, hence, cannot form
complex-conjugate pairs. Notice that the index for C16 with a subgroup C8 is also two. Ito’s bound does
not prohibit a 2D irrep. but the Abelian property does.

4.8. Exploiting the mirror symmetry to reduce computational cost?

Following Mensah’s success [18] in exploiting CN to reduce computational cost with Bloch waves, it is
natural to ask: Can CNv be exploited even further? The answer in short is: Yes, but not for degenerate
modes. Bossavit’s papers [43, 44]7 give a machinery to formulate suitable boundary conditions in order to
exploit underlying symmetry groups and it is a lone exception that treats the non-Abelian case. In this
section his machinery ‘Step 1. until Step 5.’ [43, p. 209] is carried out for a combustor with C4v symmetry.
Step 1. requires listing all irreps. Γi of C4v. According to the character table 15 all but the Γ5 irrep. are 1D
and, hence identical to their characters. The 2D irreps. of Γ5 are readily written as

Γ5 : D5 (σv) =

(
1 0
0 −1

)
, D5 (σd) =

(
0 −1
−1 0

)
. (141)

In Step 2. a symmetric cell is chosen, which is the half-cell depicted in Fig. 10. Step 3. is not applicable
to eigenvalues problems, since it treats the load vector, i.e. the inhomogeneous term of boundary value
problems.

Step 4. is the main part. Parts of the boundaries, that are mapped onto themselves by elements g of
C4v, are identified according to

∂Ωg =
{
r ∈ ∂Ω| R−1

g r ∈ ∂Ω
}
. (142)

Figure 10 shows that there are only ∂Ωσv and ∂Ωσd . Bossavit employs a variational restriction theorem
to restrict the eigenfunction p̂ defined on the entire domain to boundaries ∂Ωg for an irrep Γj . The trace

7The earlier paper contains a number of errors in the equations, so the later one is recommended.
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operator8 γj that realizes this restriction is written as

γj p̂ (r) =

{
p̂i (r)−

∑

k

Dik
j (g) p̂k

(
R−1
g r
)
| i = 1, . . . , dj

}
, (143)

and it holds only for eigenvalue problems that

γj p̂ (r) = 0 , (144)

which expresses that eigenvalue problems must have homogeneous boundary conditions. Here Dj (g) is the
irrep. matrix for a symmetry element belonging to an irrep Γj of dimension dj . Notice that Eq. (143)
expresses that a set of functions forms p̂ on the respective boundary – foreboding a 2D eigenspace for a 2D
irrep. with a degenerate eigenvalue. Consequently, γj p̂ is a tuple for dj > 1.

4.8.1. Boundary conditions for the 1D irreps.

For the four 1D irreps. of C4v Eq. (143) reduces on ∂Ωg to

γj p̂ (r) = p̂ (r)−Dj (g) p̂
(
R−1
g r
)

= 0 , (145)

where the superscript i = 1 is dropped. Starting with the identity irrep. Γ1 on ∂Ωσv one obtains

0 = p̂ (r)−D1 (σv) p̂
(
R−1
σv r
)
, (146)

and re-arranging

p̂ (r) = 1 · p̂
(
R−1
σv r
)
. (147)

Just like in Sec. 2.7 a Taylor expansion yields a homogeneous Neumann boundary condition. The same
applies to ∂Ωσd . In summary the conditions are given as all possible permutations of homogeneous Neumann
and Dirichlet boundary conditions

Γ1 : p̂ (r) = +1 · p̂
(
R−1
σv r
)
→ ∂p̂

∂n = 0 on ∂Ωσv

p̂ (r) = +1 · p̂
(
R−1
σd

r
)
→ ∂p̂

∂n = 0 on ∂Ωσd

Γ2 : p̂ (r) = −1 · p̂
(
R−1
σv r
)
→ p̂ = 0 on ∂Ωσv

p̂ (r) = −1 · p̂
(
R−1
σd

r
)
→ p̂ = 0 on ∂Ωσd

Γ3 : p̂ (r) = +1 · p̂
(
R−1
σv r
)
→ ∂p̂

∂n = 0 on ∂Ωσv

p̂ (r) = −1 · p̂
(
R−1
σd

r
)
→ p̂ = 0 on ∂Ωσd

Γ4 : p̂ (r) = −1 · p̂
(
R−1
σv r
)
→ p̂ = 0 on ∂Ωσv

p̂ (r) = +1 · p̂
(
R−1
σd

r
)
→ ∂p̂

∂n = 0 on ∂Ωσd

(148)

In Figure 11 the result of an eigenvalue computation of the annular combustor is depicted. Solving the PDE
on the half-cell with boundary conditions Eq. (148) yields all simple eigenvalues.

4.8.2. Boundary conditions for the 2D irrep.

For the 2D irrep. Γ5 Equation (143) is written as

0 =

{
p̂1 (r)−

∑

k

D1k
5 (g) p̂k

(
R−1
g r
)
, p̂2 (r)−

∑

k

D2k
5 (g) p̂k

(
R−1
g r
)
}
. (149)

8For a definition for Sobolev space see [45, Chap. 6.6].
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as such. Knowing that b = 1 and b = −1 return the same eigenvalue is enough to identify it as degenerate. All eigenvalues are
labelled by irreps. including eigenvalues of intrinsic origin.

and clearly Eq. (149) can be written as

(
p̂1

p̂2

)
= D5 (g)

(
p̂1

p̂2

)
. (150)

For ∂Ωσv one obtains

(
p̂1

p̂2

)
= D5 (σv)

(
p̂1

p̂2

)
=

(
p̂1

−p̂2

)
, (151)

which yields homogeneous boundary conditions again

p̂1 (r) = +1 · p̂1

(
R1
σvr
)
→ ∂p̂1

∂n
= 0 (152)

p̂2 (r) = −1 · p̂2

(
R−1
σv r
)
→ p̂2 = 0

However, the problem is different for ∂Ωσd
(
p̂1

p̂2

)
= D5 (σd)

(
p̂1

p̂2

)
=

(
−p̂2

−p̂1

)
, (153)

where the problems become coupled via the boundaries

p̂1 (r) = −p̂2

(
R−1
σd

r
)
, (154)

p̂2 (r) = −p̂1

(
R−1
σd

r
)
, (155)

which yields

p̂1 + p̂2 = 0 on ∂Ωσd
. (156)
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How to use this? One could formulate numerically two identical domains – one for p̂1 and one for p̂2 –
connected at ∂Ωσd and enforce Eq. (156) there. The sub problems would have boundary conditions Eq.
(152) on their respective domains, see Fig. 10. Bossavit also notes in [44, p. 1368]: “Solving a coupled
problem is the only way to do this.” (emphasis his). Choosing a different representation instead of Eq.
(141) leads to different boundary conditions but does not remove the coupling. Such a procedure could
make sense for boundary value problems, which can have non-homogeneous boundary conditions.

However, there is little purpose in implementing such a constraint numerically in a thermoacoustic
context, when a computation can be conducted on the unit cell using Bloch boundary conditions instead. It
is expected that the constraint Eq. (156) requires an iterative procedure to be enforced. Degenerate modes
belonging to Γ5 also have the Bloch numbers b = 1,−1 and can, thus, be computed on a unit cell, see Fig.
11 which also gives the eigenvectors.

4.9. Parity property connects Bloch numbers: Kramer’s Theorem

This section gives a formal proof that modes belonging to Bloch numbers −b and +b have the same
eigenvalue for groups CNv. Mensah et al. [18] give a short proof but use the property ub (−r) = u−b (r),
which is a consequence of the proof and should not be presupposed. Applying the parity operator Pσv to
the eigenvalue problem and using commutation yields

PσvL (ωb) p̂b (r) = L (ωb)Pσv p̂b (r) = 0 . (157)

Since L (ωb) p̂b (r) = 0 by definition, it must also hold that

L (ωb)Pσv p̂b (r) = 0 , (158)

and Pσv p̂b (r) is an eigenvector to eigenvalue ωb. If Pσv p̂b (r) and p̂b (r) are linearly independet, the eigenvalue
is degenerate. Next, apply the rotation operator (here translation is a better word) to the newly created
vector and using the definition of a Bloch function Eq. (60) plus the character of the rotation operator Eq.
(58)

PCnNPσv p̂b (r) = PCnN p̂b (−r) = PCnN e
+ibφub (−r) = eib(φ− 2π

N n)ub (− (r− 2π/Neφ)) . (159)

The function ub (r) is periodic on the unit cell and thus

PCnNPσv p̂b (r) = e−i(2π b
N n)eibφub (−r) , (160)

= e−i(2π b
N n)p̂b (−r) , (161)

= e−i(2π b
N n)Pσv p̂b (r) . (162)

However, for a function belonging to an irrep. −b it holds

PCnN p̂−b (r) = e−i(2π b
N n)p̂−b (r) . (163)

Thus, Pσv p̂b (r) and p̂−b (r) are both eigenfunction of PCnN with the phase factor e−i(2π b
N n) as the eigenvalue.

All irreps. of PCnN are 1D and, hence, the two cannot form a degenerate pair9 for the operator Pσv p̂b (r).
Therefore

Pσv p̂b (r) = p̂−b (r) , (164)

so that the parity property for the eigenfunctions is obtained

p̂b (−r) = p̂−b (r) . (165)

9The two still form a degenerate pair for L.

32



Since Pσv p̂b (r) is an eigenfunction to ωb according to Eq. (158), then so must be p̂−b (r). However, the
latter is evidently an eigenfunction to ω−b and Kramer’s Theorem [46, p. 117] is obtained

ωb = ω−b . (166)

Using the definition, parity also holds for Bloch functions

ub (−r) = u−b (r) . (167)

4.10. CNv = CN × P?

In Figure 4 the combustor with CN symmetry is depicted. It can be seen that from the depicted angle
the combustor seems to exhibit a parity (or inversion) symmetry, i.e. a point symmetry through the origin
in the xy-plane. The abstract operation is denoted as Cixy and the matrix that implements the operation
as Ixy, which realizes

Ixyr = Ixy



x
y
z


 =



−x
−y
z


 . (168)

However, this is not a symmetry operation that has possibly been overlooked, like the T -symmetry in Sec.
3.6, which would introduce degeneracy by connecting irreps. Because Ixy has the same effect as rotating
the combustor by π/N . Hence,

Cixy = CN/2 , (169)

the operation has been accounted for. One could construct a hypothetical – and unphysical – situation in
which a combustor would exhibit an additional mirroring symmetry in z-direction, denoted as σh, then the
group would be CNh instead of CN . This groups contains full inversion symmetry Ci (also in z direction)
for even N with

Ixyzr = −r , (170)

and hence, can be decomposed into

CNh = CN × P , N even . (171)

The parity P (or inversion) group only has the elements

P = {E,Ci} , (172)

and often appears as a subgroup of bigger groups. In essence, a combination of rotations and inversions
realizes a mirroring. More details can be found in [6][Chap. 8]. To conclude this section, it holds

CNv 6= CN × P . (173)

5. Symmetry breaking due to perturbations

Symmetry groups provide a dedicated machinery to analyse the splitting of degenerate eigenvalues due
to a reduction in symmetry caused by a perturbation. Assume that the original problem L0 is perturbed
by L1

L = L0 + L1 , (174)

such that L1 has lower symmetry than L0. ‘Lower’ refers to the fact that group sym (L) = Gp must be a
subgroup10 of sym (L0) = G. A two-fold degenerate mode belonging to an irrep. Γj of L0 can consequently
split into two simple eigenvalues. The split – and if it happens or the mode stays degenerate – can be
predicted merely by the knowledge of the symmetry groups before and after the perturbation. The splitting
of degenerate modes in Section 3.6 is an example: Loss of T -symmetry causes degenerate modes to split.

104.2 shows how to determine if a group is a subgroup. But these are usually listed online as well.
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5.1. Recipe to predict eigenvalue splitting

In the literature the study of eigenvalue splitting is termed (energy) level splitting and a treatment can
be found in [37, Chap. 5.6] and [23, Chap. 5.3]. An irrep. Γj of the unperturbed group is decomposed into
irreps. Γα of the group with lower symmetry sym (L) = Gp as

ΓG
j =

⊕

α

aαΓGp
α , (175)

with the coefficients given by

aα =
1

|Gp|
∑

g∈Gp

χ†α (g)χj (g) . (176)

Importantly, the sum goes over all group elements. Since elements in the same class have the same character,
summation can also be conducted over classes

aα =
1

|Gp|
∑

c∈Class(Gp)

ec χ
†
α (gc)χj (gc) . (177)

and gc is the number of elements in the class and gc is one (any) operation from the class. To employ these
formulas character tables of G and Gp are needed, e.g. from [24] or [6, App. B]. Care needs to be taken
in identifying elements g of the perturbed group with their counterparts in the unperturbed group, e.g. a
rotation by 2π/4 (or C4) is easy to identify but for mirror operations this can be more intricate due to
labelling conventions – see a later case. A derivation of Eq. (177) can be found in [23, Chap. 3.4.] or [6,
Chap. 5.1.].

5.2. Loss of mirror symmetry in annular combustor

Consider the degenerate eigenvalue of the group C4v belonging to irrep. j = 5 as the mirror symmetry is
lost. As discussed previously, the resulting system only exhibits a discrete rotational symmetry sym (L) =
C4, which has exclusively one-dimensional irreps as listed in Tab. 7. Applying Eq. (176) yields

a1 =
1

4

[
χ†1 (E)χ5 (E) + χ†1 (C4)χ5 (C4) + χ†1

(
C2

4

)
χ5

(
C2

4

)
+ χ†1

(
C3

4

)
χ5

(
C3

4

)]
, (178)

a1 =
1

4
[1 · 2 + 1 · 0 + 1 · (−2) + 1 · 0] = 0 . (179)

For the other three coefficients

a2 =
1

4
[1 · 2− 1 · 0 + 1 · (−2)− 1 · 0] = 0 , (180)

a3 =
1

4
[1 · 2 + i · 0− 1 · (−2) + i · 0] = 1 , (181)

a4 =
1

4
[1 · 2− i · 0− 1 · (−2)− i · 0] = 1 , (182)

and the irrep. is decomposed into

ΓC4v
5 = ΓC4

3 ⊕ ΓC4
4 . (183)

Hence, the degenerate eigenvalue of azimuthal order m = 1 splits into two simple eigenvalues belonging to
irreps. three and four, respectively. This case also corresponds to the presence of a mean-swirl in the annulus
that removes the mirror symmetry. A representation of an irrep. Γj by irreps. of Gp is denoted as Γj ↓ Gp.

Equation (183) expresses that ΓC4v
5 is a representation of Gp and is ’too big’, i.e. it permits a decom-

position into irreps. of Gp. This is the origin of Eq. (176): It is a recipe to decompose representations into
irreps. In Algorithm 1 instructions are given how to use a tool available online to compute the decomposition
instead of using Eq. (176).
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Table 17: Decomposition of the irreps. from higher to lower symmetry. Degenerate modes of C16v that retain their degeneracy
are highlighted in gray.

simple degenerate
C16v Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ10 Γ11

C4v Γ1 Γ2 Γ1 Γ2 Γ5 Γ3 ⊕ Γ4 Γ5 Γ1 ⊕ Γ2 Γ5 Γ3 ⊕ Γ4 Γ5

5.3. Patterns considered in the thermoacoustic literature

In Figure 12 patterns considered by Mensah et al. in [47] are depicted. The unperturbed group is C16v

with four one-dimensional (j = 1, 2, 3, 4) and seven two-dimensional irreps. (j = 5, . . . 11) which can be
studied for splitting. The character table can be found in [48]. For Mensah et al.’s Pattern C the perturbed
group only consists of the identity element and, hence, it is not studied since all degeneracies are lost.

For Pattern A the perturbed group is CS . Like in the single sector of Sec. 2 all modes bust be either
symmetric or anti-symmetric. Consequently, every degenerate mode splits into one even and one odd mode.
Equation (176) shows this, by considering all j = 5, . . . , 11 labelling the two-dimensional irreps.

a1 =
1

2

[
χ†1 (E)χj (E) + χ†1 (σv)χj (σv)

]
, (184)

a2 =
1

2

[
χ†2 (E)χj (E) + χ2† (σv)χj (σv)

]
. (185)

Firstly, the characters χ†α (E) are one and the characters χj (E) are two. Secondly, characters χj (σv) are
all zero, see [48]. Hence, the decomposition is always a1 = a2 = 1 and

Γj = Γ1 ⊕ Γ2 , j = 5, . . . 11 . (186)

Pattern B has more interesting implications since the perturbed group, C4v, exhibits degenerate modes
as well. Therefore some degeneracies are conserved under the perturbation.

In this case it is more tricky to identify elements between the two groups. In Fig. 12 (right) the symmetry
planes of C4v are depicted. By convention σv specifies vertical mirror planes. Here, these are mirror planes
going through two burners (two orange ones). Diagonal mirror planes σd are off-burner. Clearly, what is a
plane σd for C4v is a plane σv for C16v, since the plane is no longer off-burner. The practical consequence is
that in the character table of C16v the column for σv is used exclusively – the column with σd is discarded
since those operations are not present in C4v. Even though C4v has a column labelled σd, but these operations
are found under σv for C16v.

In Table 17 the decomposition is depicted. The result is consistent with Mensah et al. [47]: The mode of
first order belonging to Γ5 (mode#1 in [47]) does not split under the perturbation while the mode of second
order belonging to Γ6 (mode#2 ibidem.) splits.

Algorithm 1 Using an online tool of [24] to compute the eigenvalue splitting

1: Go to Jacobs University Tool Symmetry Groups.
2: Open tabs for higher symmetry (e.g. C4v) and lower symmetry (e.g. C4.)
3: Identify classes with each other. Care needs to be taken: See Fig. 12 (right).
4: for all irreps. Γi do
5: Take characters from higher group (e.g. χ (E) = 2, χ (2C4) = 0, χ (C2) = −2 for C4v)
6: Insert into reduction formula for lower group (e.g. 2, 0,−2, 0, taking the value of 2C4 for C4 and C3

4 )
7: Hit Submit button
8: Obtain Γj ↓ Gp

9: end for
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Figure 12: Perturbation patterns considered in [47] for an annular combustor with 16 burners. Left: Pattern A with CS

symmetry. Right: Pattern B with C4v . All vertical mirror planes of C4v are depicted. The planes σd and σ′d are of type σv
for C16v . One of the eight σd planes of C16v is shown, which does not exist for C4v .

Table 18: Reduction of C4v to C4. The Bloch numbers for C4 are given in addition.

C4v Γ1 Γ2 Γ3 Γ4 Γ5

m 0 4 2 2 1, 3
C4 Γ1 Γ1 Γ2 Γ2 Γ3 ⊗ Γ4

b 0 0 2 2 1,−1

5.4. Perturbation of C4v

Consider a can-annular combustor with N = 4 cans operated with bluff-bodies and add swirlers. This
perturbs C4v into the lower symmetry C4. With Equation (177) or the online tool [24], the splitting is
obtained as depicted in Tab. 18

A reduction from C4 to CS is not possible, since the latter is not a subgroup of the former. This is
obvious, since C4 simply lacks any type of mirror operation – the formulas Eq. (176) cannot be applied. It
is only possible to go from C4v to CS . Without a rotational symmetry only an off-burner plane σd remains.
From the perspective of CS , the character table of C4v is

C4v E σd
Γ1 1 1
Γ2 1 −1
Γ3 1 −1
Γ4 1 1
Γ5 2 0

(187)

and it is obvious that modes belonging to Γ1 and Γ4 need to end up in the same irrep. of CS (just like Γ2

and Γ3). One obtains

C4v Γ1 Γ2 Γ3 Γ4 Γ5

CS Γ1 Γ2 Γ2 Γ1 Γ1 ⊗ Γ2
(188)

Modes belonging to ΓC4v
5 are degenerate and of orders m = 1, 3, . . .. These split into a symmetric and an

anti-symmetric one. Modes of order m = 2 (cosine) and m = 4 become odd, while modes m = 2 (sine) and
m = 0 become even.

In Figure 13 the reduction of symmetry is depicted for the computational case of Fig. 11. The result gives
a perspective on the importance of the highest symmetry group C4v. Even in the configurations without any
symmetry, the eigenvalues are very close to those of C4v. Thus, its presence is felt and explains the location
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Figure 13: Splitting of modes as the symmetry is lowered. To introduce the perturbations the strength of the response of
the four flames is adjusted but the global strength is conserved. For CS the flame at φ = 0 is increased by factor 1.5 and
at φ = π reduced to 0.5. For CS → E the individual flames are split into two domains (one per half cell) and factors are
{(1.8, 0) , (0.5, 0.5) , (0.1, 0.1) , (0.5, 0.5)}. Similarly for C4 it is set to {(2.0, 0) , (2.0, 0.0) , (2.0, 0.0) , (2.0, 0.0)} and for C4 → E
the values are {(0.5 + 3/3, 0) , (0.5 + 2/3, 0.0) , (0.5 + 1/3, 0.0) , (0.5, 0.0)}.

of the modes. The formerly degenerate modes are least affected by the reduction in symmetry. Modes that
are completely unaffected are plenum modes.

6. Conclusion

This work has derived and discussed the groups CS ,CN and CNv that are of major importance to
thermoacoustic applications. A comprehensive introduction to the formal language of symmetry groups
is given. Physical implications of the groups for thermoacoustic modes are discussed and visualised with
computational results.
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Appendix A

Technical drawings of the
can-annular laboratory
combustor

Table A.1: List of the technical drawings in the appendix with page numbers.

No. Technical drawing Quantity Page
1. Baseplate mounted on top of the plenum 1 p. 256
2. Lower XT plate 1 p. 257
3. Upper XT plate 1 p. 258
4. Blocking element Blind 9 p. 259
5. Blocking element Tiny 9 p. 260
6. Blocking element Small 9 p. 261
7. Blocking element Medium 9 p. 262
8. Blocking element Large 9 p. 263
9. Blocking element Huge 9 p. 264

10. Can holder 9 p. 265
11. Adapter for quartz tubes 9 p. 266

Table A.2: Steel pipes and quartz tubes used for the can combustors.

Component Technical description Quant./Vol.
Steel pipe EN1.4404 - 1904074 48, 3 × 3, 2 mm 6 m

Quartz tube EN07 �50 ± 1, 5 × 2, 5 ± 0, 25 × 100 ± 1 mm 10
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A4
316 stainless steel

WEIGHT: 

Buschmann

Brandåstrø

Moeck
Can holder
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A4

WEIGHT: 

Adapter Quartz316 stainless steel
(or similar)
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