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Outline of the thesis

This thesis consists of an introductory chapter and the following three papers, two of
which are joint work. Paper III is supplemented with Python code available at

https://github.com/paultrygs/Section-Complex/.

The introduction provides a context for the papers and gives a brief overview of their
contents.

Paper I
Combinatorial models for topological Reeb spaces.
Submitted.

Paper II
Factorization, extensions and a theorem of Retakh for exact quasi-categories. Joint
with Erlend Due Børve.
Preprint.

Paper III
Section complexes of height functions. Joint with Erik Hermansen and Melvin
Vaupel.
Work in progress.
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Introduction





Outline. Sections 1 and 2 provide a context for papers I and III, whereas Sections 3 and 4
do the same for paper II. In the last section, a summary of the three papers is presented.
All work carried out in this thesis hinge on applications of simplicial techniques.

1 Simplicial sets and spaces

S. Eilenberg and J. Zilber introduced simplicial sets in 1950 [EZ50]. Their motivation
was the need for a modification of simplicial complexes in (co)homology theory. For
example, a singular simplex, a continuous map from a topological simplex into a space,
is not determined by its faces [Eil44]. Hence singular simplices in a given space do not
constitute a simplicial complex. Not long after, it was discovered that simplicial sets
model all topological spaces, at least up to homotopy groups [Mil57]. Work of D. Kan
and D. Quillen in the 50s and 60s marked the beginning of axiomatized homotopy theory
via model categories [Kan57, Qui68, Qui06]. Nowadays it is common knowledge, among
those acquainted with homotopy theory, that the Quillen model structure on simplicial
sets is equivalent to the standard model structure on topological spaces. Simplicial sets
thus provide a combinatorial framework for studying spaces.

Simplicial sets can be described in a very low-tech manner as they are all about simplices
and their faces, but there is also a neat abstract definition. Indeed, if ∆ is the simplex
category, i.e. the full subcategory of small categories spanned by the total orders

0→ 1→ ··· → n,

one defines a simplicial set as a contravariant functors from ∆ into the category of sets.
The prefix ‘simplicial’ can thus be put in front of any category, defining the more general
notion of simplicial objects. To demonstrate the usefulness of such a generalization, we
can for instance consider simplicial abelian groups, which are equivalent to (bounded)
chain complexes via the Dold–Kan correspondence [Dol58, Kan58]. Chain complexes
are undoubtedly interesting from the theoretical point of view, and in recent years they
have even been used to study the shape of data sets using the language of persistent
homology [Car09]. The latter technology has among other things been used to identify a
certain subgroup of breast cancers [NLC11].

Let us use the word ‘space’ as a substitute for both simplicial sets and topological spaces.
Simplicial spaces can be presented as contravariant functors from ∆× ∆ to sets, and
hence they have two spatial directions. Similar to how double chain complexes C has an
associated total complex Tot(C), simplicial spaces have an associated space. Explicitly,
this amounts to mapping a simplicial space X to its geometrical realization |X | [Mil57].
If you want to understand the homology of a chain complex Tot(C), which appears as the
total complex of some double complex C, then there is a spectral sequence to approach it.
In short, homological information in the horizontal and vertical chain complexes of C is
structured to deduce the homology H∗Tot(C), up to extension problems. G. Segal gives
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the cohomological analogue for simplicial spaces in [Seg68]: the vertical and horizontal
spaces in X are used to compute H∗|X |.

2 Simplicial spaces in applied topology and Morse theory

A simplicial space X• is a collection of spaces Xn, n= 0,1, . . . , whose face and degeneracy
maps di and s j are maps of spaces. We now discuss how these can be relevant for real-
world use, such as studying data sets.

Consider a numerable covering U = (Uα)Σ of a space X . For any finite σ in Σ, we
denote by Uσ the intersection ∩α∈σUα . We define the simplicial space XU whose space
of n–simplices is (XU)n =

∏
σ0⊂···⊂σn

Uσn . A 0–simplex in XU is thus a point x contained in

some finite intersection Uσ . A 1–simplex e in Uτ , labeled by σ ⊂ τ , has faces d0x = ix
and d1x = x in Uσ and Uτ , respectively, where i : Uτ ↪→Uσ is the inclusion.

Proposition 2.1 (Segal 1968). If U is a numerable open covering of a space X , then the
space |XU | is homotopy equivalent to X .

Many ideas in applied topology can be understood from this result. To understand how,
we consider the spectral sequence coming from XU . The first page is depicted:

∂ 1
1,0

∂ 1
1,1

∂ 1
1,2

∂ 1
2,0

∂ 1
2,1

∂ 1
2,2

⊕
σ1

H0Uσ1

⊕
σ1

H1Uσ1

⊕
σ1

H2Uσ1

⊕
σ1⊂σ2

H0Uσ2

⊕
σ1⊂σ2

H1Uσ2

⊕
σ1⊂σ2

H2Uσ2

⊕
σ1⊂σ2⊂σ3

H0Uσ3

⊕
σ1⊂σ2⊂σ3

H1Uσ3

⊕
σ1⊂σ2⊂σ3

H2Uσ3

p

q

The differential ∂ 1
p,q is induced in Hq from the alternating sum of face maps, for p= 1 this

is explicitly given by ∂ 1
1,q = Hqd0−Hqd1. The second page of the spectral sequence is

computed by calculating homology of the rows. Proposition 2.1 tells us that this first page
can be used to deduce the homology of X , up to extension problems. This is a Mayer–
Vietoris type phenomenon: intersections in a cover are used to compute the homology
groups of X .

We look at pre-images of an open cover in R under a real-valued function f : X → R.
From that we will be able to recover level-set zigzag and Mapper [CdSM09, SMC+07].
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Assume we are given a finite collection of open intervals Ik such that Uk = f−1Ik is
an open cover of X . Moreover, we require Uk ∩Ul 6= /0 only if l = k± 1. The latter
assumption guarantees that all higher simplices in XU are degenerate so that the spectral
sequence collapses at the second page. Indeed, the chain complex

⊕

σ1

HqUσ1 ←
⊕

σ1⊂σ2

HqUσ2 ←
⊕

σ1⊂σ2⊂σ3

HqUσ3 ← ···

is homology equivalent to ⊕

σ1

HqUσ1 ←
⊕

σ1(σ2

HqUσ2

where we only include non-trivial subset inclusions σ1 ( σ2 [GJ09, p.150]. Another
simplification produces

⊕

k=1,...,n

HqUk
∂←−

⊕

k=1,...,n−1

HqUk∩Uk+1

where ∂ sends a class α in HqUk∩Uk+1 to the difference ( jk)∗α− (ik)∗α , where (ik)∗ is
the induced map on Hq coming from the inclusion ik : Uk∩Uk+1 ↪→Uk, and similarly ( jk)∗
is obtained from the inclusion jk : Uk∩Uk+1 ↪→Uk+1. Wrap out the direct sums to obtain
the levelset zigzag

HqU1← HqU1∩U2→ HqU2← HqU2∩U3→ ·· · ← HqUn−1∩Un→ HqUn

as defined by G. Carlsson, V. de Silva and D. Morozov for real-valued functions of Morse
type [CdSM09]. The spectral sequence thus incorporates information that is equivalent
to levelset zigzag.

From a simplicial space X•, we can always produce the simplicial set π0X• whose set
of n–simplices is π0Xn. For the simplicial space XU , defined from a continuous func-
tion f : X → R as above, the simplicial set π0XU is a graph. This is because all of the
higher simplices are degenerate. The vertices of π0XU correspond to the path compo-
nents of opens Ui and Ui ∩Ui+1, whereas edges connect overlapping components of Ui,
and Ui+1, with components in the intersection Ui ∩Ui+1. This construction is thus a
subdivided version of the graph produced in the method Mapper [SMC+07].

We have described how the simplicial space associated to a covering relates to established
methods in applied topology. Let us see how simplicial spaces can be relevant for a
different application. In unpublished work of R. Cohen, J. Jones and G. Segal [CJS92],
simplicial spaces are utilized to better understand the homotopical properties of Morse
theory. Here I present a simplified version of their construction. Let f : M → R be a
Morse function on a closed Riemannian manifold M. The flow-lines γ : [a,b]→M of f
are certain smooth curves such that γ(a) and γ(b) are critical points. Moreover, the flow-
lines are parametrized as sections: f (γ(c)) = c. A piece-wise flow-line is a concatenation
of flow-lines. We define a simplicial space F f whose space of 0–simplices is the set of
critical points, whereas the space of n–simplices consists of tuples (γ1, . . . ,γn) of piece-
wise flow-lines γi that can be concatenated. The latter space is equipped with a non-trivial
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topology. It turns out that this simplicial space carries very interesting information. For
one, it can be used to calculate the homology of M:

Theorem 2.2 (Cohen, Jones and Segal 1995). Let f : M→ R be a Morse function on a
closed Riemannian manifold M. The realization of F f is homotopy equivalent to M.

If we apply π0 level-wise to F f , then what we end up with is a simplicial set whose
vertices are the critical points of f . Moreover, the edges are determined by classes of
flow-lines between critical points. This thus defines a model for the Reeb graph, or
topological Reeb space, as defined by G. Reeb [Ree46].

V. Nanda, D. Tamaki and K. Tanaka proves an analogous result to Theorem 2.2 for dis-
crete Morse functions. Their idea is to look at certain combinatorial flow-lines, or flow
paths, generalizing Forman’s gradient paths [For98].

3 Quasi-categories

J. Boardman and R. Vogt discovered quasi-categories in the early 1970s [BV06]. Their
motivation was to develop a homotopical machinery for recognizing loop spaces and
infinite loop spaces, or ”homotopy groups” and ”homotopy abelian groups”. A loop
space naturally comes with a product via concatenation of loops, but there is no canonical
choice of such. One could fix this by replacing a loop space with a strict topological
group up to homotopy, as pointed out in [Ada78, p. 31]. A different idea, which quasi-
categories incorporate, is to not require strict products, but rather only demand products
up to homotopy. Another approach in this direction is the Γ–spaces of G. Segal [Seg74],
paving the way for simplicial spaces known as Segal spaces [Rez01].

The idea of composition up to homotopy, as presented in [BV06], generalizes the notion
of categories. Indeed, a quasi-category is a simplicial set in which two concatenated
edges, or morphisms, f and g can be extended to a 2–simplex:

B

A C

gf

The dashed arrow represents a choice of composition g ◦ f . Moreover, the choice made
is, of course, redundant up to homotopy. This framework truly generalizes strict category
theory as most constructions, such as limits and colimits, carry over to a homotopy invari-
ant version in quasi-categories [Joy02]. Moreover, any quasi-category C admits a homo-
topy category hC, which is defined by applying π0 to mapping spaces. If C happens to be
an ordinary category, then it most certainly agrees with its homotopy category; C = hC.
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The applications provided by quasi-categories go beyond (infinite) loop spaces. For one,
they provide a model for a homotopy theory of homotopy theories, by interpreting a
quasi-category itself as a ”homotopy theory”. This is made precise by the Joyal model
structure on simplicial sets, whose fibrant, or ‘nice’, objects are quasi-categories [Lur09].
There are many other equivalent approaches in this direction such as Segal spaces [Rez01]
or categories enriched in simplicial sets [DK80, Ber07].

4 Exact quasi–categories

Abelian categories are fundamental in algebra and topology. Some examples include the
category of left (or right) modules over a ring and sheaves of abelian groups on a topo-
logical space. One advantage of abelian categories is that they allow for homological
algebra, a framework for homology, exact sequences, diagram lemmas and derived func-
tors to mention a few keywords. But there are many close-to-abelian categories in which
homological algebra should be possible. For instance, filtered abelian groups and locally
convex vector spaces are not abelian [Sch99, Pro00].

An exact category is an additive category together with a collection of short exact se-
quences subject to certain conditions [Hel58, Qui73]. Many constructions and results
from the homological algebra of abelian categories carries over to exact categories. I
refer to [Büh10] for a concise survey. An additive category A admits a minimal exact
category by imposing that

A


1
0




−−→ A⊕B

[
0 1

]

−−−−→ B

is exact for all objects A and B in A. A kernel-cokernel pair in A is a sequence

A
f−→ E

g−→ B

such that f is the kernel of g and g is the cokernel of f . Short exact sequences in an
exact category must constitute a kernel-cokernel pair. It is, however, not true that the
collection of all kernel-cokernel pairs in an additive category defines a maximal exact
structure [Rum08]. But there is a notion of quasi-abelian categories for which this is the
case [Sch99]. Both filtered abelian groups and locally convex topological vector spaces
are quasi-abelian, hence they admit this maximal exact structure.

The Hom–sets in an abelian categoryA are abelian groups. This means that HomA(−,−)
defines a bifunctor from A to abelian groups. Assume A to have enough injectives and
projectives, and fix two objects A and B therein. The abelian group of n–extensions of B
by A ExtnA(B,A) is often defined as the nth (right) derived functor of HomA(B,−) applied
to A. Dually, it can be defined as the (right) derived functor of HomA(−,A) applied to B.
To compute Ext–groups, one calculates the homology of a chain complex ExtA(B,A),
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the total derived Hom–space. Unfortunately, this approach is rather restrictive and is not
applicable to general exact categories.

We take a closer look at an alternative definition of Ext–groups. Let A be an abelian
category, and fix two objects A and B therein. An n–extension of B by A is a long exact
sequence

A→ E1→ ·· ·En→ B (1)

in A. Note that (1) is equivalent to a concatenation of short exact sequences

E1 E2 En

A E1.5 · · · B

This means in particular that the notion of n–extensions of B by A makes perfect sense
in the exact setting. The diagrams of shape (1) define a category E xtnA(B,A) whose mor-
phisms are commutative ladders which restrict to identities at A and B. Let us interpret
a category as a quasi-category in which compositions are unique. It is well-known that
the set of Yoneda n–extensions π0 E xtnA(B,A) is an abelian group [Yon60]. Moreover,
the abelian groups π0 E xtnA(B,A) and ExtnA(B,A), as defined above, are isomorphic. One
advantage of Yoneda Ext–groups is that they only depend on the exact structure in A. V.
Retakh shows that the extension categories assemble into a spectrum [Ret86].

Theorem 4.1 (Retakh 1986). Let A be an abelian category, and fix two objects A and B
therein. There is an Ω–spectrum E xtA(B,A) whose nth entry is E xtnA(B,A).

This allows for ‘derived’ Hom–spaces in any exact category.

In recent work, C. Barwick has extended the concept of exact categories to exact quasi-
categories [Bar15], utilizing the minimal axioms of B. Keller [?]. The name is perhaps
best motivated by the fact that ordinary exact categories (interpreted as quasi-categories)
are exact quasi-categories. Another extreme example is given by stable quasi-categories
in the sense of J. Lurie [Lur17], which for instance includes the quasi-category of spectra.
Many results in exact categories are translated to exact quasi-categories. This thesis
extends Theroem 4.1 to exact quasi-categories.

I present a rather ironic observation here. The homotopy category of an exact category
is obviously exact, but the homotopy category of a general exact quasi-category need not
be. Indeed, the axioms imposed by Barwick require the existence of certain pushouts.
But a pushout in an exact quasi-category need not descend to a pushout in the homo-
topy category. An explicit example is given by the quasi-category of spectra: homotopy
pushouts are not pushouts in the homotopy category. More generally, any stable quasi-
category provides a natural triangulated structure to its homotopy category. We can thus
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wonder: what kind of structure does an exact quasi-category induce on its homotopy
category?

On the level of homotopy categories, or ordinary categories, H. Nakaoka and Y. Palu
have introduced extriangulated categories as a generalization of both exact and triangu-
lated categories [NP19]. Based on the above discussion, there is the question of whether
the homotopy category of an exact quasi-category is extriangulated? This was recently
answered in the positive [NP20]. But there are still many questions left unanswered. For
instance, one might wonder just how much of the extriangulated data that is encoded in
the higher structure inherent to an exact quasi-category.

5 Summary of papers

Paper I: Combinatorial models for topological Reeb spaces

For any continuous real-valued function f : X→R on a topological space X , we naturally
associate a topological category S f . Morphisms in S f are the sections σ : [a,b]→ X
satisfying that f ◦ σ is the inclusion [a,b] ↪→ R. Our construction is inspired by the
work of R. Cohen, J. Jones and G. Segal [CJS92]. The classifying space |NS f | does
not have the homotopy type of X in general, but these homotopy types do agree for
many examples. When X is a stratified space, for which the strata are C1–manifolds, we
introduce the class of Reeb functions. This class includes both smooth and combinatorial
examples, e.g. Morse functions and piecewise linear functions. Moreover, we prove
that |NS f | ' X whenever f is a Reeb function.

Two applications are discussed. First, the simplicial topological space NS f comes with
a spectral sequence for computing H∗|NS f | [Seg68]. We investigate its basic algebraic
properties, especially when f is a Reeb function so that H∗X ' H∗|NS f |. Secondly, we
introduce the combinatorial Reeb space π0NS f of any continuous function f , by apply-
ing the nerve followed by level-wise path components. It is proven that this simplicial
set always has the homotopy type of a graph. But it does not always have the same ho-
motopy type as the topological Reeb space, introduced by G. Reeb [Ree46]. However,
the combinatorial and topological Reeb spaces agree when f is a Reeb function, and in
particular a Morse function.

Paper II: Factorization, extensions and a theorem of Retakh for exact quasi-
categories

We generalize a Theorem of V. Retakh [Ret86] to the framework of exact quasi-categories
as defined by C. Barwick [Bar15].
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Given an exact quasi-category C, there is a notion of exact sequences therein. We define
for every pair of objects A and B the quasi-category E xtnC(B,A), whose objects are the n–
extensions of B by A. If C is an ordinary abelian category, then applying π0 to E xtnC(B,A)
produces the abelian group of Yoneda n–extensions.

We arrange all of the extension categories in a spectrum E xtC(B,A) whose nth en-
try is E xtnC(B,A) for n ≥ 1 and map(B,A) for n = 0. Inspired by the result of Re-
takh, this spectrum is proven to be an Ω–spectrum, and hence capture the E∞–structure
on map(B,A). In the case when C is an abelian category, this spectrum has the group of
Yoneda n–extensions as its (−n)th homotopy group.

To prove our generalization of Retakh’s theorem we identify a functorial Kan-fibrant re-
placement fExE xtnC(B,A) of E xtnC(B,A), well suited for our needs. This is a modified
version of Kan’s well-known Ex–functor [Kan57]. But in contrast to Ex, we need only
apply fEx a single time to obtain a Kan complex in the case of E xtnC(B,A). This obser-
vation heavily relies on lifting the factorization property of exact categories [VW20] to
exact quasi-categories.

As an application we deduce that the homotopy category of an exact quasi-category is
extriangulated, a result which was already proven by Nakaoka and Palu in 2020 [NP20].
Moreover, we show that the bifunctor E xtC(−,−) into spectra not only determines a
natural extriangulation on the homotopy category hC, but also descends to all of the
(extriangulated) higher n–extension groups in hC.

Paper III: Section complexes of height functions

We investigate a discrete analogue of the theory developed in [Try21] by only considering
piecewise linear functions on CW complexes. Since this class is purely combinatorial, we
rather work with simplicial sets directly. Our model R for the real line is the nerve of the
poset category (R,≤), and a height function is a simplicial map h : X → R. To a height
function h is associated naturally a bisimplicial set Sh, the section complex of h. It is a
combinatorial analogue of the (nerve of the) topological category introduced in [Try21].
We prove that the diagonal/realization of Sh always has the homotopy type of X .

Any bisimplicial set comes with a spectral sequence for computing the homology of its
diagonal/realization [GJ09]. In particular, any height function h has an associated spec-
tral sequence which computes the homology of diagSh'X . We call it the section spectral
sequence. Note that it does not collapse at the second page in general. An explicit exam-
ple in which there is a non-trivial differential on the second page is calculated. We extract
the Reeb complexes from the chain complexes appearing on the first page of the section
spectral sequence. These chain complexes carry information about how homology gen-
erators flow across height levels (or fibers). To better demonstrate computability of this
discrete theory, Python code for computing section complexes and Reeb complexes is
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made available at https://github.com/paultrygs/Section-Complex/. Examples
computed in the paper are also included in this repository.

If X is sufficiently subdivided, we prove that applying π0 level-wise to Sh recovers the
topological Reeb space [Ree46]. In particular, the zeroth Reeb complex computes the
homology of the topological Reeb space. Moreover, Reeb complexes give rise to zigzag
modules [CdS10]. For many examples these modules complement the level-set zigzag
modules via the diamond principle [CdSM09, CdSM09]. In the special case when h is
obtained from the iterated mapping cylinder of a filtration, our zigzag modules coincide
with the standard persistence modules.
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Abstract. There are two rather distinct approaches to Morse theory nowadays: smooth
and discrete. We propose to study a real-valued function by assembling all associated
sections in a topological category. From this point of view, Reeb functions on stratified
spaces are introduced, including both smooth and combinatorial examples. As a conse-
quence of the simplicial approach taken, the theory comes with a spectral sequence for
computing (generalized) homology. We also model the homotopy type of Reeb graphs/
topological Reeb spaces as simplicial sets, which are combinatorial in nature, as opposed
to the typical description in terms of quotient spaces.

1 Introduction

Let X be a topological space and f : X → R a continuous function on it. A section σ
of f is a map [a,b]→ X , for some real numbers a ≤ b, subject to f ◦σ(c) = c. Two
sections σ : [a,b]→ X and ρ : [b,c]→ X , such that σ(b) = ρ(b), may be concatenated
into a new section ρ ◦σ : [a,c]→ X . This data defines the section category S f associated
to f which is in fact a topological category. The nerve construction thus provides a
simplicial topological space NS f . We did not put any constraints on f as of yet. However,
if the section category is to recover the homotopical information of X by realizing NS f ,
some assumptions are necessary. This should be considered motivation for the concept
of Reeb functions which requires f to be sufficiently ‘nice’. Examples include Morse
functions on smooth manifolds and piecewise linear functions on CW complexes. I refer
to Definition 2.5 for a precise formulation.

Theorem 1.1. For any Reeb function f : X → R, the realization of the nerve of the
section category of f is weakly equivalent to X , that is X ' |NS f |.

Ralph L. Cohen, John D. S. Jones and Graeme B. Segal prove a similar result for Morse
functions in [CJS92] as an attempt to better understand homotopical aspects of Morse
theory [CJS95]. A purely combinatorial analogue can be found in [NTT18] which covers
the discrete Morse theory of Robin Forman [For98]. Our work can thus be described
as an attempt to find a common framework including both smooth and combinatorial
examples.
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Any simplicial topological space comes with a spectral sequence for computing the gen-
eralized homology of its classifying space [Seg68]. A shortcoming of the section cate-
gory S f is that its classifying space is huge, hence nowhere near computationally fea-
sible. Reeb functions provide a way to extract the essential information in S f into the
much smaller critical subcategory C f whose classifying space has unchanged homotopy
type when compared to S f . Computing the homology of X via C f , as opposed to S f , is
analogous to how Morse and CW homology reduces the complexity of singular homol-
ogy. I refer to Section 4 for some basic algebraic properties together with a user-guide
on how to carry out computations.

Consider a continuous function f : X → R on a topological space X . The topological
Reeb space R f , often referred to as the Reeb graph, was introduced by Georges H. Reeb
in [Ree46] to study singularities. Later on it was popularized in computer graphics due
to the work of Y. Shinagawa, T. Kunii and Y. Kergosien [SKK91]. Since then there has
been several applications in shape analysis [BGSF08]. This advertises the need to better
understand combinatorial properties of the topological Reeb space R f , commonly con-
structed as a certain quotient space of X depending on the extra data that is f . I refer to
categorified Reeb graphs [dSMP16] and Mapper [SMC+07] for related work. From the
section category S f we define the combinatorial Reeb space by first applying the nerve
followed by taking path components level-wise π0NS f . It is important to note that this
construction is no topological space, but rather a simplicial set. To compare topological
and combinatorial Reeb spaces we make use of the fact that topological spaces and sim-
plicial sets carry the same homotopical information: we identify the homotopy type of a
simplicial set S with that of its geometric realization |S|. The combinatorial and topolog-
ical Reeb spaces of f do not have the same homotopy type in general. But if we restrict
ourselves to Reeb functions, then they do agree.

Theorem 1.2. For any Reeb function f : X → R, the simplicial set π0NS f has the same
homotopy type as the topological space R f ; there is a zigzag of weak homotopy equiva-
lences between |π0NS f | and R f .

Topological Reeb spaces are not graphs in general (Example 5.2) and we might expect
combinatorial Reeb spaces to have equally nasty homotopy types. But it turns out that
combinatorial Reeb spaces are always weakly homotopic to graphs:

Theorem 1.3. The combinatorial Reeb space of any continuous function has the homo-
topy type of a 1–dimensional CW complex.

Outline. Section 2 is all about Reeb functions f : X → R. To better illustrate the theory
we first restrict ourselves to functions on C1–manifolds in Section 2.1 before handling
more general stratified spaces in Section 2.2. Results that do not hinge upon any simpli-
cial structure are proven along the way. In Section 3 we formally define the topological
section category associated to a continuous function as well as the critical subcategory
and other intermediate subcategories. Some simplicial background is then provided in
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Section 3.2 before proving Theorem 3.9, which implies Theorem 1.1. The spectral se-
quence associated to section categories, as well as critical subcategories, is discussed in
Section 4. General algebraic properties are deduced in Section 4.1, whereas Section 4.2
is concerned with how to use the critical subcategory for numerical computations. In
the remaining Section 5 we introduce combinatorial Reeb spaces. More background on
simplicial sets is presented in Section 5.2 before proving Theorems 1.2 and 1.3 in Sec-
tions 5.3 and 5.4, respectively.

Notation. Categories of familiar objects are put inside parentheses, for instance there
is the category (topological spaces). The set of morphisms between objects x,y in a
category is denoted Map(x,y). In the case of topological spaces map(X ,Y ) reads the
topological space of continuous functions from X to Y . The standard n–simplex ∆n is
modeled as the convex hull of the standard basis vectors in Rn+1. The 1–simplex will
also be represented as the unit interval I. We denote by [n] the category generated by the
directed graph

0→ 1→ ··· → n

on n arrows. In particular, [0] is the trivial one object category and [1] is the category with
two objects 0 and 1 connected by a non-trivial arrow 0→ 1.

2 Reeb functions

We shall clarify what it means for a function f : X → R to be a Reeb function. In this
paper, a stratified space is built out of C1–manifolds, which will be covered more in
depth later on. Hence we start out by restricting ourselves to the simplest spaces, namely
the C1–manifolds, in Section 2.1. Thereafter we move on to the more general stratified
spaces in Section 2.2. The final Proposition 2.7 is utilized many times throughout the
paper.

2.1 Reeb functions on C1–manifolds

A continuous function f is said to be proper if the preimage of compact is compact.

Definition 2.1. Let M be a C1–manifold and f : M→R a C1–function. Then f is a Reeb
function if

i) the subspace of critical values of f is discrete inside R and

ii) the restriction of f to each component of M is proper.

Recall that a C1–function f : M → R has a differential d f : M → T∗M which is a sec-
tion of the cotangent bundle; 1-form. Let us think of d f in terms of its gradient vec-
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tor field: Pick an inner product 〈−,−〉 on TM, and characterize grad( f ) : M → TM
by 〈grad( f ),v〉= d f (v) for all vector fields v : M→ TM. The integral curves of a vector
field v : M→ TM are the C1–curves l : (α,ω)→M, allowing ±∞, satisfying dl

dt = vl(t).
A local flow on M is a map Ψ : U →M, defined on an open neighborhood U of {0}×M
in R×M, such that U∩(R×{p}) is an interval for which Ψ restricts to an integral curve.
The maximal integral curves lp of v : M→ TM form the maximal flow Ψv(p, t) = lp(t).
It is maximal in the sense that there are no other local flows which contains the domain
of Ψv. For this maximal flow, let us write (αp,ωp) = U ∩ (R×{p}), allowing ±∞ as
endpoints. Then lp : (αp,ωp)→M is the maximal integral curve subject to lp(0) = p. If
an integral curve passes through a point q with v(q) = 0 then l : R→ M, t q is the
obvious solution. This means, conversely, that all other integral curves are immersions.
They do not have to be embeddings, in general. But it is the case whenever v = grad( f )
for a function f as above:

d( f ◦ l)
dt

= d fl(t)(
dl
dt
) = 〈grad( f ),grad( f )〉l(t)

which is greater than zero so that f ◦ l and hence l are both injective. The existence of
integral curves follows by solving local differential equations. In fact, vector fields and
maximal flows are in one-to-one correspondence [BJ82, p. 82-83]. I will refer to the
maximal integral curves of grad( f ) as the flow-lines of f .

Definition 2.2. Let f : X → R be a continuous function. A section of f is a continuous
function σ : [a,b]→ R such that f ◦σ is the inclusion [a,b] ↪→ R.

The next assertion tells us how to continuously pick sections of Reeb functions, a prop-
erty which will turn out to be extremely useful.

Proposition 2.3. Let f : M→ R be a Reeb function. For any pair c < d of successive
critical values, there is a continuous function g : [c,d]× f−1(c,d)→ X such that for all x
the curve gx = g(−,x)

i) is a section; f ◦gx(t) = t, and

ii) pass through x at f (x); gx( f (x)) = x.

Proof. The idea is simple: We would like to reparametrize the flow-lines of f . Re-
strict the maximal flow of f to define Ψ : U → f−1(c,d). For every flow-line lx, de-
fined from (αx,ωx) to f−1(c,d), the preceding discussion implies that the composi-
tion f ◦ lx : (αx,ωx) → R is injective. Corestriction thus defines a C1–isomorphism
which we will denote by hx : (αx,ωx)→ ( f ◦ lx(αx), f ◦ lx(ωx)). The target must nec-
essarily equal (c,d), independently of x: there are no critical points in f−1(c,d) and
so an integral curve must meet every fiber. If not, one could have extended it by solv-
ing a local differential equation, contradicting the maximality of Ψ. The reparametrized
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flow h : U → (c,d)× f−1(c,d), (a,x) (hx(a),x) is a C1–diffeomorphism. Its inverse
is explicitly given by (a,x) (h−1

x (a),x). Define

g̃ : (c,d)× f−1(c,d) h−1

−−→U Ψ−→ f−1(c,d),

then lx = Ψ(−,x) implies that the restriction g̃x = g̃(−,x) is equal to g̃x(t) = lx(h−1
x t) and

thus
f ◦ g̃x(t) = ( f ◦ lx)(h−1

x (t)) = t.

Also, the equation x = lx(0) implies

g̃( f (x),x) = lx(h−1
x ◦ f ◦ lx(0)) = lx(0) = x.

Hence the map g̃ satisfies the asserted properties i) and ii).

The proof will be complete once we have extended the map g̃ to [c,d]× f−1(c,d).
One can alternatively view g̃ as a map f−1(c,d)→ map((c,d), f−1[c,d]), utilizing the
right adjoint. In fact, the two properties of g̃ above tells us that its adjoint factor-
izes through the subspace Flow f (c,d), of map((c,d), f−1[c,d]), consisting of flow-lines
reparametrized as sections (c,d)→ f−1[c,d]. So the map g̃ might as well be interpreted
as a map f−1(c,d)→ Flow f (c,d). Since f is Reeb, hence proper on connected com-
ponents, the preimage f−1[c,d] is a disjoint union of compact topological spaces. Con-
sequently any flow-line of the form g̃x : (c,d)→ f−1[c,d] can be extended uniquely to
a section gx : [c,d]→ f−1[c,d]. In other words, there is a function e from Flow f (c,d)
to S f (c,d) that extends reparametrized low-lines on (c,d) to sections on [c,d]. The
rather tedious task of demonstrating the continuity of e is all that remains. For then the
composition

f−1(c,d)
g̃−→ Flow f (c,d)

e−→S f (c,d)

admits an adjoint g : [c,d]× f−1(c,d)→ X satisfying the asserted properties.

For every a ≤ b in [c,d] and V open in M, denote by C([a,b],V ) the subbasis element
whose points are the maps ρ : [a,b] → M for which ρ([a,b]) ⊂ V . Then the collec-
tion of all C([a,b],V )∩S f (c,d) is a subbasis for S f (c,d). Similarly, the collection of
all C([a,b],V )∩Flow f (c,d), with c < a≤ b < d, is a subbasis for Flow f (c,d). We need
only verify that every preimage of the form e−1(C([a,b],V )∩S f (c,d)) is open. This is
trivial whenever c < a and b < d, for then the preimage e−1(C([a,b],V )∩S f (c,d)) is the
set C([a,b],V )∩Flow f (c,d) which is open. To complete the proof, we will assume a = c
and b < d henceforth: The case a > c and b = d is similar, whereas a = c and b = d is a
special case of the former.

Take an arbitrary flow-line g̃ in e−1(C([c,b],V )∩S f (c,d)). Let g = eg̃ be the extension
to [c,d] so that g(c) is the limit point of g̃ in f−1(c). We need only prove that there is an
open neighborhood N, of g̃, inside e−1(C([c,b],V )∩S f (c,d)). To construct such a neigh-
borhood we first pick a monotone sequence (an) in (c,b] converging to c. Ehresmann’s
fibration theorem [Ehr50] provides a C1–diffeomorphism Ea′ over R:
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f−1(c,d) f−1(a′)× (c,d)

R

Ea′

f pr2

for every real number b < a′ < c. The elementary opens in ( f−1(a′)∩V )× (c,d) are
all of the form B× (c′,d′) where B is an open ball. Since every restriction g|[an,b] has
compact image and g maps into V , there are cylinders Cn = E−1

b (Bn× [an,b]) contained
in V with the property that Nn = C([an,b],Cn) is a neighborhood of g̃. Moreover, it is safe
to assume that the radius of Bn tends to zero as n goes to infinity: If B′ is a ball contained
inside B, and B×(c′,d′) maps into V under Ehresmann’s C1–diffeomorphism, then surely
so does B′×(c′,d′). I claim that we can choose N = Nn0 for some n0. Assume conversely
that this is not the case. Then no Nn is contained in e−1(C([c,a′],V )∩S f (c,d)). So for
every n there is a flow-line ρn and a real number a′n in [c,an] such that ρn(a′n) is in the
complement of V . But the sequence (ρn(a′n)) converges to the point g(c)–inside V –by
construction, a contradiction.

2.2 Extension to stratified spaces

There are several notions of ‘stratified spaces’ around. One of which is the locally cone-
like spaces dating back to R. Thom’s work in the late 60s [Tho69]. A more recent ref-
erence is [GM83]. For any topological space Z, there is the open cone C(Z) defined
as Z× [0,1)/Z× 0. As an example the open cone on the (n− 1)–sphere is the open n–
disk. A filtration-preserving map between two filtrations X0 ⊂ X1 ⊂ ·· · and Y0 ⊂Y1 ⊂ ·· ·
of topological spaces, consists of continuous functions gn : Xi→ Yi which commute with
the inclusions: gn+1 ◦ (Xn ⊂ Xn+1) = (Yn ⊂ Yn+1)◦gn.

Definition 2.4. An n–dimensional stratification on a topological space X is a filtration

/0 = X−1 ⊂ X0 ⊂ X1 ⊂ ·· · ⊂ Xn = X

satisfying: i) every ith stratum Si = Xi \Xi−1 is an i–dimensional C1–manifold and ii)
for every point x in Si there exists an open neighborhood U about x and an (n− i− 1)–
dimensional stratified space Z together with h : U ' Ri×C(Z), a filtration-preserving
homeomorphism. The restriction which takes U ∩ Si+ j+1 to Ri×C(Z j−Z j−1), and its
inverse, are both required to be C1. We say that a topological space together with an n–
dimensional stratification is a stratified space of dimension n.

Finite-dimensional stratified spaces and strata-wise C1 filtration-preserving maps form
a category. Include filtered colimits to get a more general notion of stratified spaces,
allowing infinite filtrations. Every CW complex X fits into this larger category: The ith
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stratum of X is the disjoint union of its (open) i–cells. In particular, every weak homo-
topy type can be represented by such a space.

A continuous function f : X → R, from a stratified space X , is strata-wise C1 if it is C1

when restricted to each stratum. A point x in the ith stratum of X is critical if it is a
critical point of the C1–map f |Si .

We extend Definition 2.1 from differentiable manifolds to stratified spaces in the follow-
ing way:

Definition 2.5. Let X be a stratified space and f : X → R a strata-wise C1–function. We
say that f is a Reeb function if

i) the subspace of critical values of f is discrete inside R and

ii) for any connected component C of some stratum, the restriction of f to the closure
of C, in X , is proper.

Example 2.6. For a given stratifiable space X , the definition of a strata-wise C1–function
depends on the choice of stratification. Because of this we can always assume a Reeb
function to have critical values. Indeed, let f : X→R be a Reeb function for which there
are no critical values. We slightly modify the stratified structure on X : refine the already
existing structure by dividing every stratum S into the three strata f |−1

S (−∞,0), f |−1
S (0)

and f |−1
S (0,∞). Then f is still a Reeb function on X with this choice of stratification.

Moreover, we now have a critical value 0.

For the purpose of proving Thoerem 1.1, this will turn out to be a satisfactory extension.
In particular, there is the stratified version of Proposition 2.3.

Proposition 2.7. Let f : X → R be a Reeb function. For any pair c < d of successive
critical values, there is a continuous function g : [c,d]× f−1(c,d)→ X which satisfies

i) every gx : [c,d]→ X , gx(t) = g(t,x) is a section and

ii) g( f (x),x) = x.

Proof. For a general stratified space X , and Reeb function f : X→R, let i1, i2, . . . denote
the indices of the non-empty strata. The proof is by induction on in. To ease notation
I will simply reindex in n. Define fn to be the restriction of f to Xn. For n = 0
there is nothing to prove if X0 is 0–dimensional, otherwise the base case follows by
Proposition 2.3. Assume that a function gn−1 : f−1

n−1(c,d)× [c,d]→ Xn−1 is constructed
to satisfy the assertion. We shall modify the gradient vector field on the nth stratum
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to take into account the flow on lower dimensional strata. Definition 2.4 tells us that a
point x in Si ∩Xn ∩ f−1(c,d) admits a neighborhood Nx, contained in f−1(c,d), of the
form Ri×C(Z) with Z an (n− i− 1)–dimensional stratified space. We shall define a
vector field on each Nx ∩ Sn to obtain a new vector field on all of Sn via a partition of
unity.

If i < n, then the (n− i−1)st stratum of Z, which is locally C1–diffeomorphic to Rn−i−1,
indicates the intersection between Ri×C(Z) and Sn. So the intersection of Nx and the nth
stratum Sn may be covered by opens Nx, jx ' Ri×C(Rn−i−1). Let us construct a vector
field on one such N which meets Sn in U ' Ri×R×Rn−i−1 and Si in V = N ∩Si ' Ri.
There is a C1–map U→V which is given by the projection pr1 : Ri×R×Rn−i−1→Ri in
coordinates. The induced map Tpr1 on tangent spaces admits a right inverse v (v,0,0).
Hence a vector field on V defines a vector field on U . In particular, the vector field
corresponding to an appropriate restriction of gn−1 defines a vector field u : U → TU .
Notice that an integral curve l of u cannot have a limit point in Xn−1∩ f−1(c,d) since gn−1
is a family of C1–sections. For every x in Xn−1, also contained in the closure of Sn, we
associate such a vector field ux : Ux→ TUx. Otherwise, if i = n and x is not contained in
any such Ux, then Nx ' Rn and we simply restrict the gradient vector field on Sn to Nx.

To define a vector field on all of Sn, we cover Sn with a family of opens (Uα) as de-
scribed above and pick a partition of unity (ρUα ). The formula v = ∑α ρUα uα defines
a vector field Sn → TSn. Notice how d f (v) is non-zero everywhere precisely because
each d f (uα) is non-zero everywhere. The corresponding maximal local flow thus results
in a map gn : [c,d]× f |−1

Sn
(c,d)→ X . Combine gn−1 and gn to define the parametrized

family g : [c,d]× f−1
n (c,d)→ Xn

g(t,x) =
{

gn−1(t,x) if x ∈ Xn−1
gn(t,x) if x ∈ Sn

of sections.

We end this entire section by proving a lemma. The result is analogous to two basic
Morse lemmas that utilize flow-lines.

Lemma 2.8. Let f : X → R be a Reeb function with at most one critical value. Then
the inclusion f−1a ↪→ X is a homotopy equivalence for all a if there is no critical value,
otherwise it is a homotopy equivalence for a equal to the critical value.

Proof. Define a filtration Xn = f−1[a−n,a+n], n≥ 0, on X . Given that X is the homo-
topy colimit over Xn, it suffices to prove that the inclusion in : f−1a ↪→ f−1[a−n,a+n]
is a weak homotopy equivalence. The inclusion certainly factorizes

f−1a
jn
↪−→ f−1[a−n,a]

kn
↪−→ f−1[a−n,a+n]

8



and we will only argue that jn is a weak homotopy equivalence. For the case of kn is
similar.

Utilize Proposition 2.7 to continuously map any point x, in f−1[a−n,a], to a section, or
reparametrized flow-line, gx : [a−n,a]→ X through x. If x is in f−1a, then gx : {a}→ X
is the trivial section at x. Define a retract rn of jn by declaring rn(x) = gx(a). This defines
a homotopy equivalence. Indeed, a homotopy can e.g. be constructed

H(x, t) = gx(ta+(1− t) f (x))

from H(x,0) = x to H(x,1) = jn ◦ rn(x).

3 The section category and its classifying space

In Section 3.1 we define the section category S f of a continuous function f . Also,
if f : X → R is a Reeb function, then a subset A of R, which contains the critical val-
ues of f , defines a subcategory CA

f of S f . Section 3.2 is included for the reader that
would like some background on simplicial sets. Thereafter Theorem 1.1 is deduced from
the stronger Theorem 3.9 in Section 3.3.

3.1 The section category

Let us first agree on the meaning of a ‘topological category’. There are two different
flavors: categories enriched in topological spaces and categories internal to topologi-
cal spaces. In this paper a topological category is to be understood in the latter sense,
following G. Segal [Seg68]. A category C can be described in terms of four structural
maps: If obC is the set of objects; morC the set of morphisms; then they are source
and target s, t : morC → obC, injection of objects as identity morphisms i : obC → morC
and composition ◦ : morC ×obC morC → morC. The set morC ×obC morC is the pull-
back obtained from the source and target; consists of pairs (m,m′) of morphisms for
which s(m′) = t(m) such that m′ ◦m is defined. A category C is a topological category
if both obC and morC are equipped with topologies and the four structural maps s, t, i
and ◦ are all continuous. Any topological space X defines a trivial topological category X
whose object space and morphism space are both equal to X . The structural maps s, t, i
all agree with the identity on X , whereas composition is the homeomorphism from the
diagonal on X to X .

Assume that a continuous function f : X → R from a topological space X is given. Re-
call that a section of f is a continuous function σ : [a,b] → X such that the compo-
sition f ◦ σ : [a,b] → R is the inclusion. Arrange all of the sections in the space of
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all sections morS f =
∏

a≤bS f [a,b], ranging over all pairs a ≤ b in R, equipped with
the disjoint union topology. Notice how f−1a and S f [a,a] are canonically homeomor-
phic. It follows that obS f =

∏
a∈R f−1a comes with an inclusion i : obS f → morS f .

Restricting the evaluation eval : S f [a,b]× [a,b]→ X to a and b, provides source and tar-
get maps s, t : morS f → obS f , respectively. If σ : [a,b]→ X is a section, then applying
source and target yields s(σ) = σ(a) and t(σ) = σ(b). Concatenation defines canonical
maps S f [b,c]× f−1b S f [a,b]→S f [a,c]:

ρ ◦σ(r) =
{

σ(r) if a≤ r ≤ b
ρ(r) if b≤ r ≤ c

From which a composition ◦ : morS f ×obS f morS f →morS f is deduced.

R
a b c

σ

ρ

It is straightforward to check that ◦ is associative: morphisms are canonically parametrized
as a result of being sections. The inclusion is clearly unital. In other words, we have de-
fined a topological category S f .

Definition 3.1. The section category of a continuous function f : X → R is the topolog-
ical category S f .

Two continuous functions f : X → R and f ′ : X ′→ R, together with a continuous func-
tion φ : X → X ′ over R in the sense that f ′ ◦φ = f , induce a continuous functor between
topological categories Sφ : S f → S f ′ . So the assignment f S f is functorial from the
category of spaces over the real line.

Assume f : X → R to be a Reeb function from here on. Every section σ : [a,b]→ R
of f is decorated by two real numbers: f (sσ) = a and f (tσ) = b. If A is a non-empty
subset of R containing the critical values of f , we define the subcategory CA

f of sections
decorated only by real numbers in A:

Definition 3.2. Let f : X → R be a Reeb function, and consider A a non-empty subset
of R containing the critical values of f . Define CA

f as the full subcategory of S f with
object space ∏

a⊂A f−1a.

If A = R, then obviously CA
f = S f . And more is true: CA

f and S f carries the same homo-
topical information for any choice of A, as in the above definition. We shall make this
precise in Section 3.3, after giving a brief recap on simplicial spaces.

10



3.2 Some background on simplicial spaces

A simplicial set is a family of sets Xn, n≥ 0, together with face maps di : Xn→ Xn−1 and
degeneracy maps s j : Xn→ Xn+1 satisfying certain relations [GJ09, p. 4]. It resembles a
simplicial complex: the face map di applied to an n–simplex is the (n−1)–simplex to be
interpreted as its ith face. The degeneracy maps, on the other hand, encode the number
of ways in which one could consider an n–simplex as a degenerate (n+1)–simplex. The
latter is not important to us, for all homotopy types in this paper are unaffected by simply
omitting degeneracy maps. This can be made precise by verifying the goodness condi-
tion in [Seg74].

The nerve is a functor

N: (small categories)→ (simplicial sets).

It maps a category C to the simplicial set NC whose set of n–simplices is the n–fold
pullback

(NC)n = morC ×obC · · ·×obC morC,
of composable n–tuples of morphisms. The outer face maps d0 and dn are given by
omitting the first and last component, respectively, whereas the inner face maps di are
given by composing the ith and (i+1)th component.

A simplicial space X• is a simplicial set with the additional requirement that Xn is a
topological space and the face and degeneracy maps are continuous. The nerve makes
perfect sense as a functor

N: (topological categories)→ (simplicial spaces).

Denote by ∆• the cosimplicial space with n–cosimplices the standard topological n–
simplex ∆n. The coface map di : ∆n→ ∆n+1 is the inclusion of ∆n+1’s ith face, whereas
the codegeneracy map s j : ∆n→ ∆n−1 collapses ∆n along its jth edge. Then the geomet-
rical realization

| · | : (simplicial spaces)→ (topological spaces)

is defined by assigning to a simplicial space X• the quotient space

|X•|= (
∏

n
Xn×∆n)/∼

with relations (dix,z) ∼ (x,diz) and (s jx,z) ∼ (x,s jz). Compose the realization with the
nerve to define the classifying space

B = |N(·)| : (topological categories)→ (topological spaces).

11



Example 3.3. Let f : X → R be a continuous function and consider the associated sim-
plicial space NS f obtained from applying the nerve to the section category. For a se-
quence a0 ≤ ·· · ≤ an we introduce the topological space

S f [a0, . . . ,an] = S f [a0,a1]× f−1a1
S f [a1,a2]× f−1a2

· · ·× f−1(an−1) S f [an−1,an]

of sections [a0,an] → X labeled by the given sequence. With this notation, we may
identify the space of n–simplices

(NS f ) =
∏

a0≤···≤an⊂R
S f [a0, . . . ,an].

If, in addition, the function f : X →R is a Reeb function on a stratified space X , then the
simplicial space NCA

f has an associated space of n–simplices

(NCA
f ) =

∏
a0≤···≤an⊂A

S f [a0, . . . ,an].

3.3 A proof of Theorem 1.1

Let f : X → R be a continuous function from a topological space X to the real line. It is
tempting to presume X ' BS f in general (Theorem 1.1). But that is not the case.

Example 3.4. There is a continuous function f : I→R, from the unit interval I, uniquely
determined by the formula f (x) = xsin(1

x ). Proposition 4.5, to be proven, tells us that
there cannot be a path from 1 to any other point in BS f : such a path would have to meet
an infinite number of 1–cells up to homotopy fixing endpoints. Hence BS f has at least
two path components. In fact, BS f is weakly equivalent to the disjoint union of two
points–see Example 4.6, to be computed.

Assume from here on that f : X → R is a Reeb function and that A is a subset of the
real line in concordance with Definition 3.2. Recall from Example 3.3 that the space
of n–simplices in NCA

f is the disjoint union ∏S f [ā], indexed over non-decreasing se-
quences ā = (a0, . . . ,an) in A. Points in BCA

f are thus classes [σ̄ , t̄] with (σ̄ , t̄) a tuple
in S f [ā]×∆n. There is a map φ : BCA

f → X which is soon to be proven a weak homotopy
equivalence. For a representative with σ̄ = (σ1, . . . ,σn), a sequence of composable sec-
tions [ai−1,ai]→ X , and t̄ = (t0, . . . , tn), it is defined by φ [σ̄ , t̄] = σn ◦ · · · ◦σ1(āt̄). The
notation āt̄ is short for the dot product a0t0 + · · ·+ antn. It is a straightforward hassle to
verify that this does in fact induce a well-defined map on BCA

f . Post composition with f
now defines a map f̄ = f ◦φ from BCA

f to the real line. Applying f to the above formula
reveals that f̄ [σ̄ , t̄] = āt̄ on representatives–for the composition σn ◦ · · · ◦σ1 in CA

f is a
section of f .
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Let us establish some notation before proving some convenient lemmas. Given a fi-
nite non-decreasing sequence ā = (a0, . . . ,an) in A and a subspace K of ∆n, we denote
by 〈ā,K〉 the image of ∏S f [b̄]×K, ranging over all subsequences b̄ of ā, under the
quotient map that defines BCA

f . In particular, 〈ā,∆n〉 is the subspace generated by classes
whose representative is decorated by a subsequence of ā.

Lemma 3.5. If m : K→BCA
f is a map from a compact space K, then there is an increasing

sequence ā in A of length n such that the image of K is contained in 〈ā,∆n〉.

Proof. Let
skkBCA

f = (
∏
q≤k

(NS f )q×∆q)/∼

be the k–skeleton of BCA
f . It is well-known that the map m must factor through some k–

skeleton of BCA
f , because K is compact. In our notation, one may alternatively write the

skeleton as a union skkBCA
f = ∪〈b̄,∆k〉, ranging over all non-decreasing sequences b̄ of

length ≤ k in A. Hence we can deduce even more: the image of m can only meet finitely
many subspaces of the form 〈b̄,∆k〉, i.e. it factorizes through ∪i=0,...,q〈b̄i,∆m〉 for finitely
many sequences b̄i = (bi,0, . . . ,bi,k). Include and order all the components bi, j to define
the bigger increasing sequence ā = (a0, . . . ,an). A point [σ̄ , t̄] in the image of m comes
with a subsequence of ā.

Recall the spine sp∆n of the topological n–simplex. It is the subspace parametrized by tu-
ples t̄ = (t0, . . . , tn) satisfying that at most two successive entries are non-zero; there is an i
such that t j = 0 for all j except possibly j = i−1, i. Points, or classes, in 〈ā,sp∆n〉 have a
particularly nice presentation: a point [σ̄ , t̄] in 〈ā,sp∆n〉 can be represented [σi,(ti−1, ti)],
because of how t̄ = (0, . . . , ti−1, ti,0 . . . ,0) for some i.

Lemma 3.6. Consider a Reeb function f : X→R and ā an increasing sequence in A. The
subspace 〈ā,∆n〉 deformation retracts onto 〈ā,sp∆n〉 in BCA

f . Moreover, the deformation
retract preserves fibers of f̄ .

Proof. A point [σ̄ , t̄] = [σi,(ti−1, ti)] in 〈ā,sp∆n〉 is mapped to ti−1ai−1 + tiai under f̄ .
For a fixed σ̄ in S f [ā] the map f̄ ◦ (σ̄ , idsp∆n) : sp∆n → R is injective, because ā is an
increasing sequence. So for every a0 ≤ b ≤ an and σ̄ there is a unique s̄b in sp∆n such
that f̄ [σ̄ , s̄b] = b. Two points in 〈ā,∆n〉∩ f̄−1b both associate to the same s̄b. The homo-
topy

R([σ̄ , t̄], t) = [σ̄ ,(1− t)t̄ + ts̄ f̄ [σ̄ ,t̄]]

is thus well-defined. And it satisfies R(−,0) = id〈ā,∆n〉 whereas the image of R(−,1) is
contained in 〈ā,sp∆n〉. It is a deformation retract because s̄ f̄ [σ̄ ,t̄] = t̄ whenever t̄ is in the
spine; the homotopy is trivial when restricted to the spine.

The third lemma is analogous to Lemma 2.8.

13



Lemma 3.7. Consider a Reeb function f : X → R and ā = (a0, . . . ,an) an increasing
sequence in A such that [a0,an] contains at most one critical value of f . Then the sub-
space 〈ā,sp∆n〉 of BCA

f deformation retracts onto

i) f−1a for any a in ā if there is no critical value or

ii) f−1a for a equal to the critical value, otherwise.

Proof. We may assume a= a0, much like we only consider the case [a−n,a] in the proof
of Lemma 2.8.

The deformation retract will be defined inductively in n. If n = 0, then there is nothing
to prove since 〈a,∆0〉 is equal to f−1a. Assume the existence of a deformation retract

Rn−1 : 〈(a0, . . . ,an−1),sp∆n−1〉× I→ 〈(a0, . . . ,an−1),sp∆n−1〉
onto f−1a. A deformation retract of 〈ā,sp∆n〉 onto 〈(a0, . . . ,an−1),sp∆n−1〉 will be de-
fined. Observe how 〈ā,sp∆n〉 is the union of 〈(a0, . . . ,an−1),sp∆n−1〉 and 〈(an−1,an),∆1〉,
so surely it suffices to deformation retract 〈(an−1,an),∆1〉 onto f−1an−1.

Choose a collection of reparametrized flow-lines gx according to Proposition 2.7. A
point [x] in f−1(an), considered as a subspace of 〈(an−1,an),∆1〉, has a canonical choice
of representative [gx,(0,1)] where gx : [an−1,an]→X is a reparametrized flow-line. Hence
every point in 〈(an−1,an),∆1〉\ f−1an−1 is represented [σ ,(t0, t1)] with σ : [an−1,an]→ X
a section. To every section σ : [an−1,an]→ X we associate the map gσ : [an−1,an]

2→ X
determined by gσ (b,c) = gσ(b)(c), where gσ(b) is the reparametrized flow-line through
the point σ(b). The section σ can be identified with the composition

[an−1,an]
d−→ [an−1,an]

2 gσ−→ X

where d is the diagonal map b (b,b). Similarly, for a fixed value b0, we also re-
cover gσ(b0) as the composition

[an−1,an]
(b0,id)−−−→ [an−1,an]

2 gσ−→ X .

The straight line homotopy Hb0 : I→map([an−1,an ], [an−1,an ]
2),

Hb0(t)(b) = ((1− t)b+ tb0,b)

between d an (b0, id) will give us the desired deformation retract. Indeed, whenever the
point [σ ,(t0, t1)] is contained in 〈(an−1,an),∆1〉 \ f−1an−1, we declare

Rn([σ ,(t0, t1)], t) = [gσ ◦H f̄ [σ ,(t0,t1)](t),(1− t)(t0, t1)+ t(1,0)].

When t = 0 the output is [σ ,(t0, t1)] whereas t = 1 yields [gφ [σ ,(t0,t1)],(1,0)], or equiv-
alently [gφ [σ ,(t0,t1)](an−1)], in f−1an−1. We cannot guarantee the existence of a section
through an−1, so we manually extend Rn to 〈(an−1,an),∆1〉: map a class [x] in f−1an−1
to Rn([x], t) = [x] for all t.
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The following lemma is easily proven directly.

Lemma 3.8. Assume that A′ is constructed from A by adding a single real value a. Then
the inclusion CA

f ↪→CA′
f induces a weak homotopy equivalence on classifying spaces.

Proof. For any commutative diagram

∂∆m CA
f

∆m CA′
f

i

l

we find a lift L : ∆m→ CA
f up to homotopy relative to ∂∆m. Lemma 3.5 tells us that the

map l factorizes through some subspace 〈ā,∆n〉 of CA′
f . If a is not contained in ā, then l

factorizes through CA
f , and we are done. Otherwise, let i be the index of a in ā. Every

point t̄ in the standard n–simplex has a closest point t̄i in the ith face of ∆n. If l(s̄) = [σ̄ , t̄],
we declare L(s̄) = [σ̄ , t̄i] to get the desired lift.

We are prepared to prove that the homotopy types of BCA
f and X coincide for all eligible A.

In particular, Theorem 1.1 follows.

Theorem 3.9. Let f : X → R be a Reeb function. The map φ : BCA
f → X is a weak

homotopy equivalence for all non-empty subsets A ⊂ R containing the critical values
of f .

Proof. We can essentially reduce the problem to two special cases: 1. f has no critical
values and 2. f has precisely one critical value. Indeed, assume that there is at least two
critical values. Enumerate them (ci) according to the standard ordering of the real line.
Every critical value ci is contained in Ni = (ci−1,ci+1), possibly interpreting ci−1 = −∞
or ci+1 = ∞. Whence we deduce open covers of X and CA

f by considering Ui = f−1Ni

and Vi = f̄−1Ni, respectively. Do note that the only non-empty intersections are of the
form Ni, j = Ni ∩N j for j = i, i+ 1. Hence it suffices to prove that φ restricts to weak
homotopy equivalences φ |Vi, j : Vi, j →Ui, j with Vi, j = Vi ∩Vj and Ui, j = Ui ∩U j subject
to j = i, i+ 1. This essentially follows since X and BCA

f can be described as homotopy
colimits over the given covers. See Theorem 6.7.9 in [Die08] for a precise reference.

The open cover Ni is constructed so that Ni, j = Ni ∩N j contains precisely one critical
value when i = j, whereas it contains no critical values when j = i+1. So the reduction
to the above two special cases is made precise.

Fix N = Ni, j, U = Ui, j and V = Vi, j for j = i or i + 1. Also, pick a value a in N.
If i = j, then a must be chosen as the critical value. Otherwise, it can be any real value.
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Lemma 3.8 allow us to assume that a is contained in A without loss of generality. We
may thus assume the inclusion f−1a ↪→U to factorize through φ |V . By the two out of
three property it only remains to see that f−1a ↪→U and f−1a ↪→V are weak homotopy
equivalences. The first follows directly from Lemma 2.8.

To see that f−1a ↪→V is a weak homotopy equivalence we consider an arbitrary commu-
tative diagram

∂∆m f−1a

∆m V

i

l

and find a lift L : ∆m → f−1a up to homotopy relative to ∂∆m. Lemma 3.5 tells us that
the image of l is contained in a subspace 〈ā,∆n〉. The deformation retract onto 〈ā,sp∆n〉,
provided by Lemma 3.6, fixes f−1a and hence l factorizes through 〈ā,sp∆n〉, up to homo-
topy relative ∂∆m. A point in V must map into N under f̄ , hence we can assume ā to be
contained in N without loss of generality. Now Lemma 3.7 applies to give a deformation
retract from 〈ā,sp∆n〉 to f−1a. But then we can homotope l to a map which factorizes
through f−1a, up to homotopy relative to ∂∆m.

4 Reeb functions for homology computations

Section 4.1 introduces the section spectral sequence associated naturally to a continuous
function f : X → R. A noteworthy property of this spectral sequence is that its second
page only consists of two non-trivial columns (Proposition 4.3). In Section 4.2 we intro-
duce the much smaller critical spectral sequence. Basic computational tools are deduced
and illustrated.

4.1 The section spectral sequence

Let us fix a generalized homology theory k∗. Recall that a simplicial space X• comes with
a spectral sequence whose termination is k∗|X•|. The cohomological version is derived
in [Seg68]. For every q, a simplicial abelian group kqX• : ∆op → (Abelian groups) is
obtained by applying kq level-wise. Entries on the first page are given by E1

p,q = kqXp,
whereas the differential is induced by the face maps in kqX•. Indeed, a simplicial abelian
group A• defines a chain complex by collapsing degeneracies entry-wise and defining the
differential ∂ = ∑i(−1)idi. Entries on the second page are given by E2

p,q = HpkqX•. A
map F : X•→Y• of simplicial spaces naturally induces morphisms kqFp : E1

p,q→ Ē1
p,q and
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hence morphisms E2
p,q→ Ē2

p,q on the second page. This does in fact define a map in the
category of (homology) spectral sequences, but there is no need for further abstraction.

We have seen that a continuous function f : X → R, on a topological space X , defines a
section category S f whose morphisms are the sections σ : [a,b]→ X .

Definition 4.1. The section spectral sequence of a continuous function f : X → R is the
spectral sequence naturally associated to the simplicial topological space NS f .

Theorem 1.1 tells us that for a Reeb function defined on a topological space X , the asso-
ciated section spectral sequence converges to H∗X :

Proposition 4.2. For f : X→R a Reeb function, the section spectral sequence converges
to H∗X :

HpkqNS f ⇒ kp+qX .

The first algebraic observation is concerned with computability: there are only two non-
zero columns on the second page of the section spectral sequence. In particular, the
sequence collapses on the second page; all differentials on the second page are zero.

Proposition 4.3. Let f : X →R be a continuous function. The section spectral sequence
of NS f satisfies E2

p,q = 0 for p≥ 2.

Proof. The additivity axiom of k∗ implies

E1
p,q = kq

( ∏
a0<···<ao

S f (a0, . . .ap)
)
'

⊕

a0<···<ap

kqS f (a0, . . . ,ap).

For an arbitrary q we fix a p ≥ 2 and denote by ∂p : E1
p,q → E1

p−1,q the differential.
On the level of elements, an element α in kqS f [a0, . . . ,ap] is mapped to the alternat-
ing sum ∑(−1)idiα with diα an element in kqS f [a0, . . . , âi, . . . ,ap]. We shall see that the
kernel of ∂p is contained in the image of ∂p+1, thus justifying the assertion.

An arbitrary element α in the kernel of ∂p is a linear combination c1α1 + · · ·+ cnαn

where each αi is in some kqS f [ai,0, . . . ,ai,p]. We proceed by defining a process which
splits α into a sum α ′+ ∂p+1β ′ and argue why finitely many iterations must eventually
lead to α = ∂p+1β for some β in kq(NS f )p+1.

Start by picking the αi with smallest possible ai,0 and recursively smallest possible ai, j+1
subject to smallest possible ai, j. Since α is assumed to be in the kernel of ∂p, there must
be a j and n such that dnα j cancels dpαi. But αi was chosen so that n must necessarily
equal p, otherwise we would have picked α j in place of αi. There are now two cases:

1. The class α j restricts to αi. That is, we can find a class β in kqS f [ai,0, . . . ,ai,p,a j,p]
satisfying dp+1β = αi and dpβ = α j. In this case, we replace (−1)p(αi−α j) with the
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linear combination ∂p+1β −∑k 6=p,p+1 dkβ in the linear combination c1α1 + · · ·+ cnαn to
rewrite α = c′1α ′1 + · · ·+ c′mα ′m + ∂p+1β . Now there is one less summand α ′k with the
minimal configuration of αi.

2. Otherwise, if there is no such j, we rather apply dp−1 to αi. This produces an el-
ement dp−1αi contained in kqS f [ai,0, . . . , âi,p−1,ai,p]. There must be a k and m such
that dmαk cancels dp−1αi. As in 1. the minimality of αi implies that m = p− 1. Un-
der the assumption p ≥ 2, it is possible to lift αi to kqS f [ai,0, . . . ,ai,p−1,ak,p−1,ai,p] by
adding the distinct label from αk. Denote such a lift β . This element satisfies dp−1β = αk
and dpβ =αi. Moreover, among the dlβ for l 6= p−1, p, only dp+1β has a smaller config-
uration than αi. As in 1. we replace (−1)p(αi−αk) with ∂p+1β −∑l 6=p−1,p dlβ , yielding
a new linear combination α = c′1α ′1 + · · ·+c′mα ′m +∂p+1β . We did not manage to reduce
the number of minimal configurations, but rather replaced a minimal configuration by a
smaller minimal configuration.

Repeating this process iteratively must terminate. Indeed, case 2. can only repeat finitely
many times as there are only finitely many summands in α . So we have successfully
constructed an iterative process that reduces the number of summands with a minimal
configuration after finitely many steps.

The second page of the section spectral sequence only consists of two adjacent non-trivial
columns. This amounts to a collection of short exact sequences ([Wei95, p. 124])

H0kq(NS f )0 ↪→ kqBS f � H1kq−1(NS f )1

where the kernel map is induced from the evident inclusion of fibers. Moreover, source
and target of sections induce ∂ 1

1,q : E1
1,q → E1

0,q, the differential on the first page. We
recognize H0kq(NS f )0 and H1kq(NS f )1 as the cokernel and kernel of ∂ 1

1,q, respectively.
The sequences can thus be concatenated to obtain the following Mayer–Vietoris type
result.

Corollary 4.4. Any continuous function f : X → R determines a long exact sequence

· · · →
⊕

a∈R
kq f−1a→ kqBS f →

⊕

a≤b

kq−1S f [a,b]→
⊕

a∈R
kq−1 f−1a→ ···

for all q≥ 1.

An f –path is a path p : I → X in X which reparametrizes to a concatenation of paths
contained in fibers of f and possibly reversed sections of f . Define the relation ∼ f on X
by declaring that points are equivalent if they can be connected by an f –path.

Proposition 4.5. For f : X → R a continuous function, the abelian group H0BS f is the
free abelian group on X/∼ f .
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Proof. The assertion is a direct consequence of H0BS f = E2
0,0. Indeed, E2

0,0 = H0H0NS f

where the first application of H0 identifies points in the same path components of fibers,
whereas the second identifies points that can be connected via sections.

The following calculation justifies Example 3.4.

Example 4.6. Consider the continuous function f : I → R, f (x) = xsin(1
x ) . We shall

verify that the homology of BS f with coefficients in Z is

HnBS f =

{
Z2 if n = 0
0 if n 6= 0

It follows from Proposition 4.3 that the associated spectral sequence has E2
p,q = 0 when-

ever p≥ 2. Moreover, all of the section spaces S f [a0, . . . ,an] are discrete, except for the
fiber S f [0] = f−10 which is homeomorphic to the subspace {1

n |n = 1,2, . . .}∪ 0 of R.
Nonetheless, the topological space S f [0] is homotopically discrete as it is weakly equiv-
alent to the natural numbers equipped with the discrete topology. We thus conclude
that E1

p,q = 0 for q ≥ 1. So in light of Proposition 4.3 it only remains to calculate E2
0,0

and E2
1,0.

Let ∂1 : E1
1,0 → E1

0,0 be the remaining non-zero differential on the first page and pick a
linear combination c1σ1 + · · ·+ cnσn in its kernel. Let mi denote the minimum of σi,
a section into I, and consider m the smallest number among the mi. Observe how ev-
ery σi maps into Im = [m,1]. The inclusion j : Im ↪→ I satisfies f |Im = f ◦ j and so there
is an induced map Ē∗p,q→ E∗p,q, between associated spectral sequences. Theorem 1.1 ap-
plies to fIm so that H1Im = 0 implies Ē2

0,1 = 0. Hence c1σ1 + · · ·+ cnσn is in the image
of ∂̄1 : Ē1

2,0 → Ē1
1,0, but then it is also in the image of ∂2 : E1

2,0 → E1
1,0. The isomor-

phism E2
1,0 ' 0 thus follows.

Proposition 4.5 implies E2
0,0 ' Z2: All pairs in (0,1] can be connected by a finite zigzag

of sections, whereas no section starts nor terminates in 0. Hence H0BS f ' Z2.

4.2 The critical spectral sequence

For a continuous function f : X → R, the associated section spectral sequence

HqkpNS f ⇒ Hp+qBS f

collapses on the second page which only consists of two non-zero columns. Alas, it has
a huge problem when it comes to computability. Computing HpkqNS f abouts to an un-
countable number of homology computations. For we would have to determine kqS f [a,b]
for all real numbers a≤ b. But if f : X→R is a Reeb function, we shall see that the com-
plexity is drastically reduced.
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Recall from Section 3.1 that for every non-empty subset A of R which contains the critical
values of f , there is the subcategory CA

f of sections whose source and target are both
contained in f−1A. From here on we assume f to have at least one critical value and
introduce the critical category C f = C{critical values}

f .

Definition 4.7. The critical spectral sequence of a Reeb function f : X → R is the spec-
tral sequence naturally associated to NC f .

Theorem 3.9 tells us that the critical spectral sequence converges to k∗X .

Proposition 4.8. Let f : X → R be a Reeb function. The critical spectral sequence con-
verges to k∗X :

HqkpNC f ⇒ kp+qX .

As opposed to the section spectral sequence, we need only compute the generalized ho-
mology groups of S f [c0,c1] whenever c0 < c1 are critical values of f . If for example X
is compact, this reduces the number of qth generalized homology groups needed to com-
pute from uncountable to finite. We shall reduce the complexity even further: it suffices
to compute the generalized homology groups of S f [c0,c1] whenever c0 < c1 are succes-
sive critical values. Let us introduce some convenient notation before stating the formal
result.

I remind that E1
p,q'⊕kqS f [c0,c1] ranging over all critical values c0 < c1. For every q≥ 0,

the differential ∂ 1
1,q : E1

1,q→ E1
0,q restricts to a morphism

∂ s
1,q :

⊕

successive c0<c1

kqS f [c0,c1]→
⊕

kqS f [c].

only ranging over successive pairs of critical values c0 < c1.

Proposition 4.9. For f : X → R a Reeb function, the second page of the associated
critical spectral sequence satisfies E2

1,q ' ker∂ s
1,q for all q≥ 2.

Proof. Let β be an element in E1
2,q. The relation imposed by ∂ 1

2,q on E2
1,q is determined

by the equation ∂ 1
2,qβ = d0β − d1β + d2β and implies that [d1β ] = [d0β ] + [d2β ]. If β

is in kqS f [c0,c1,c2], then d0β is in kqS f [c1,c2] etc. So the map di simply forgets the ith
label.

For a [α] in E2
1,q represented by α in kqS f [c0,c1], we list all intermediate critical val-

ues d0 < · · · < dn with d0 = c0 and dn = c1. Now it is only a matter of applying the
relation imposed by ∂ 1

2,q n times to rewrite [α] as a linear combination [α1]+ · · ·+[αn]

with αi in kqS f [di−1,di]. Hence the elements in ker∂ s
1,q generates E2

1,q. Moreover, the re-
lation induced by ∂ 1

2,q is trivial on this set of generators, for they cannot be decomposed
further.
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If f : X → R is a Reeb function, then Proposition 4.9 implies

HqX ' (Hq(C f )0/im∂ s
1,q)

⊕
ker∂ s

1,q−1

for q≥ 1 whenever we have chosen coefficients in a field.

As a last computational tool, we recognize the homotopy type of section spaces deco-
rated by successive critical values. These section spaces have the homotopy type of any
intermediate fiber. Hence the critical sequence recovers the homology of X using the
homology type of certain fibers. I refer to Example 4.11 for a hands-on demonstration.

Proposition 4.10. Consider c and d two successive critical values of f as well as a real
number a in (c,d). The evaluation map evala : S f [c,d]→ f−1a is a homotopy equiva-
lence.

Proof. Let g : [c,d]× f−1(c,d)→ X be a family of reparametrized sections which ex-
ists per Proposition 2.7. Its adjoint ḡ : f−1(c,d)→ S f [c,d] restricts to a map from the
fiber ga : f−1a→ S f [c,d], mapping a point x in f−1a to the section, or reparametrized
flow-line, gx through x. It is clear that evala ◦ga is the identity on f−1a. Conversely, the
composition ga ◦ evala maps a section σ : [c,d]→ X to the section gσ(a) through σ(a).

Note that we may identify σ with the section b gσ(b)(b).

Denote by H : [c,d]× I→ [c,d] the straight line homotopy H(b, t) = (1− t)b+ ta, from
which we define a homotopy G : S f [c,d]× I → S f [c,d]. It maps a tuple (σ , t) to the
section b gσ◦H(b,t)(b). Notice that G(−,0) is σ whereas G(−,1) is gσ(a). We have
thus constructed a homotopy from the identity on S f [c,d] to ga ◦ evala.

We calculate the torus’ homology as means to illustrate the computational implication of
Propositions 4.9 and 4.10.

Example 4.11. Let h : T → R be the height function on the torus depicted

•

•

•

•

c

b

d

a

h

r f−1r
a pt

a+b
2 ∂∆2

b ∂∆2∨∂∆2

b+c
2 ∂∆2 ∏∂∆2

c ∂∆2∨∂∆2

c+d
2 ∂∆2

d pt
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It has four critical values a, b, c and d. Proposition 4.10 tells us that the above table
determines the homotopy type of all section spaces. We calculate the first page of the
critical spectral sequence, knowing that we need only compute the homology of section
spaces between successive critical values (Proposition 4.9):

Z⊕Z⊕Z⊕Z

0⊕Z2⊕Z2⊕0

0

Z⊕Z2⊕Z

Z⊕Z2⊕Z

0

0

0

0

p

q

∂1,0

∂1,1

Homology groups are split up according to the above table, e.g.

E1
1,0 = H0∂∆1⊕H0(∂∆1 ∏

∂∆1)⊕H0∂∆1 ' Z⊕Z2⊕Z.

The differentials are induced by subtracting target from source: ∂ = d0 − d1 = t − s.
For instance, the induced map H0t : H0 f−1(a+b

2 )→ H0 f−1b is the identity 1 : Z→ Z
in coordinates. This is because the target of a flow-line through f−1 a+b

2 meets the path
component of f−1b. By such geometric reasoning we deduce

∂1,0 =




−1 0 0 0
1 −1 −1 0
0 1 1 −1
0 0 0 1


 and ∂1,1 =




1 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 −1


 .

Elementary linear algebra gives the second page:

Z

Z

0

Z

Z

0

0

0

0

p

q
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And so we read of that H0T ' Z, H2T ' Z whereas H1T is an extension of Z by Z
hence Z2. The remaining homology groups are trivial.

5 Reeb spaces

The combinatorial Reeb space is introduced in Section 5.1. Section 5.2 is merely a recap
of Quillen’s theorem A and the theory of collapsing schemes due to K. Brown. The last
two Sections are dedicated to clarifying and proving Theorems 1.2 and 1.3.

5.1 From topological to combinatorial Reeb spaces

The topological Reeb space is defined for any continuous function f : X→R. Given such
a function one declares points to be equivalent if they are in the same path component of
some fiber: x∼ f y if there is a real number a and [x] = [y] in f−1(a).

Definition 5.1. The topological Reeb space associated to a continuous real-valued func-
tion f : X → R is the quotient space R f = X/∼ f .

The topological Reeb space is commonly referred to as the Reeb graph, which surely is
accurate for e.g. Morse functions, albeit not accurate in general.

Example 5.2. Consider the Hawaiian earring H embedded as a subspace of R2:

The fibers of the horizontal projection pr1 : H→ R are all discrete. We thus conclude
that the topological Reeb space Rpr1

is homeomorphic to H. But the fundamental group
of H is not free [DS92].

I, for one, would very much like to define a Reeb space whose homotopy type is that
of a graph. This could very well serve as motivation for our next definition. Recall that
a continuous function f : X → R has an associated section category S f . Applying the
nerve and level-wise path components functor produce a simplicial set π0NS f .

Definition 5.3. The combinatorial Reeb space of a continuous function f : X →R is the
simplicial set π0NS f .
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Simplicial sets carry a homotopy theory equivalent to the standard theory on topological
spaces: The homotopy type of a simplicial set S is equivalent to that of the topologi-
cal space |S|. In particular, the homotopy types of π0NS f and R f can be compared by
realizing π0NS f .

5.2 More background on simplicial sets

I will give a brief reminder on Quillen’s well-known theorem A [Qui73] as well as a
theorem on collapsing schemes due to K. Brown [Bro92]. Both are useful to prove The-
orems 1.2 and 1.3.

Let us first review Quillen’s theorem A. For any functor F : C → D and object d in D,
we define the slice category F ↓ d as the pullback

F ↓ y Fun([1],D)

C × [0] D×D
(eval0,eval1)

F×d

where Fun([1],D) is the category of functors [1]→ D. More explicitly, an object is a
tuple (c,m) in the product obC ×morD subject to s(m) = F(c) and t(m) = d; a mor-
phism α : (c,m)→ (c′,m′) is a morphism α : c→ c′ such that m = m′ ◦F(α). This data
is commonly depicted

F(c)

d

m and
F(c) F(c′)

d
m

F(α)

m′

Quillen’s Theorem A gives a sufficient condition as to when F realizes to a weak ho-
motopy equivalence: If B(F ↓ d) is contractible for all d, then BF is a weak homotopy
equivalence.

For S a simplicial set, the topological space |S| is a CW complex whose cells are in
bijection with the non-degenerate simplices in S. In particular, it makes sense to talk
about die, the ith face of a cell e in |S|. Moreover, we define the ith horn of e, which we
will denote ei, to be the union of all its faces except the ith one. We may safely deform |S|
onto a quotient space Y by collapsing e onto ei without changing the homotopy type of S.
Moreover, Y is clearly a CW complex again. Brown gives conditions for how to iterate
this process of collapsing cells without changing the homotopy type of |S|, while making
sure that Y is still a CW complex.
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Partition the non-degenerate simplices of S into three classes: essential, redundant and
collapsible. The cells corresponding to redundant simplices are to be deformed along
the collapsible cells, hence they are truly ”redundant”. So a function c from redundant
simplices to collapsible simplices that maps n–simplices to (n+1)–simplices is required.
If s is redundant and cs admits another redundant face s′, then we write s′ ≤ s. This
data defines a collapsing scheme if i) c is a bijection from redundant n–simplices to
collapsible (n+1)–simplices for all n and ii) there is no infinite descending chain of n–
simplices s≥ s′ ≥ s′′ ≥ ·· · .

Proposition 1 in [Bro92] can then be formulated: For a collapsing scheme on S, the
quotient map |S| → Y is a weak homotopy equivalence onto a CW complex Y whose n–
cells are in bijection with the essential simplices in S.

5.3 Proof of Theorem 1.2

The nerve admits a left adjoint τ1 : (simplicial sets)→ (small categories) commonly re-
ferred to as the fundamental category. It agrees with the homotopy category when re-
stricted to quasi-categories. A simplicial set S is sent to the category τ1S whose ob-
ject set is S0; morphism set is the directed paths S1

∏
(S1×S0 S1)

∏ · · · modulo the rela-
tions s0x∼ 1x for all 0–simplices x and d1s∼ d0s◦d2s for all 2–simplices s. More explic-
itly, a directed path is a tuple (e1, . . . ,en) of edges/1–simplices such that the source of ei+1
is the target of ei; d1ei+1 = d0ei. The corresponding morphism in τ1S is denoted e1 · · ·en,
utilizing the word notation. We define the length of a word e1 · · ·en to be n if there is
no equivalent word on fewer letters. An n–simplex in Nτ1S is a tuple (w1, . . . ,wn) of
composable words/morphisms. We define the length of (w1, . . . ,wn) to be the length of
the word w1 · · ·wn.

Since τ1 is left adjoint to N, there is an associated unit map η : S→Nτ1S, which is natural
in S. It is not a weak homotopy equivalence in general, as pointed out by Thomason
in [Tho80]. But we shall see that the unit always induces a weak homotopy equivalence
on combinatorial Reeb spaces.

Lemma 5.4. Let S be a simplicial set such that

i) S and Nτ1S only differ in cells of length ≥ 2 and

ii) any word of length n has a unique presentation on n letters.

Then the natural map η : S→ Nτ1S is a weak homotopy equivalence.

Proof. The theory of collapsing schemes, due to K. Brown [Bro92], is utilized to con-
struct a homotopy inverse of the realized unit |η |. I refer to Section 5.2 for a quick
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summary of this theory. All morphisms in τ1S will be represented uniquely according to
assumption ii).

To partition Nτ1S into redundant, collapsible and essential simplices we first declare
every 1–simplex e1 · · ·en of length n ≥ 2 redundant and define its associated collapsi-
ble 2–simplex

c(e1 · · ·en) = (e1 · · ·en−1,en).

This function is well-defined because such a presentation is unique. For m ≥ 2 we de-
clare an m–simplex of the form (e1,1 · · ·e1,i1 , . . . ,em,1 · · ·em,im), whose length is greater
than or equal to 2, redundant if its not in the image of c. Its associated (m+1)–simplex
is then determined by taking the biggest k such that ik ≥ 2 and factoring ek,1 · · ·ek,ik
as (ek,1 · · ·ek,ik−1,ek,ik). In other words, we factorize out the last letter not already fac-
torized. The remaining simplices are declared essential. Do note that these are precisely
the ones whose length is equal to 1.

The function c is constructed to be a bijection in the sense required by a collapsing
scheme. Whereas the second demand follows since a chain associated to a redundant n–
simplex s cannot exceed the length of s and is therefore necessarily bounded. We thus
have a map |Nτ1S| → Y with Y a CW complex whose n–cells correspond to essential n–
simplices, i.e. those of length 1 in |Nτ1S|. Hence Y is necessarily equal to |S| per as-
sumption i) and what we have constructed is a homotopy inverse to |η |.

For a combinatorial Reeb space π0NS f , a morphism in τ1π0NS f is a word [σ1][σ2] · · · [σn]
with representatives σi in S f [ai−1,ai] subject to [sσi+1] = [tσi]. So the source and target
of successive classes must agree up to path components in fibers.

Lemma 5.5. A word in τ1π0NS f of length n has a unique presentation on n letters.

Proof. Assume that a word w is presented [σ1] · · · [σn] and [ρ1] · · · [ρn]. We shall see
that for all i the equality [σi] = [ρi] holds. From the domains of σi and ρ j we extract
sequences ā = (a0, . . . ,an) and b̄ = (b0, . . . ,bn) of real numbers.

These sequences must be equal. The statement is clear if n = 1 since a0 = b0 and an = bn.
If n≥ 2 we conversely assume that ā 6= b̄. Consider i the smallest index such that ai 6= bi.
We assume ai < bi without loss of generality. Introduce the real number c=min(ai+1,bi)
and define two letters [σ ′] = [σi+1|[ai,c]] and [ρ ′] = [ρi|[bi−1,c]] to rewrite [σi][σ ′] = [ρ ′].
We observe that [σi+1] and [ρ ′] overlap in [σ ′] and so there must be a section τ such
that [τ] = [σi][σi+1], contradicting the length of w.

Hence the equality [σ1] · · · [σn] = [ρ1] · · · [ρn] can only be achieved if the letters are equal.
For the only relation connecting them is to concatenate sections up to paths in fibers.

The simplicial sets π0NS f and Nτ1π0NS f clearly only differ by simplices of length ≥ 2:
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a word (w1, . . . ,wn) can only be of length 1 if wi = [σi] and there is a section ρ such
that [ρ] = [σ1] · · · [σn].

Lemma 5.6. Let f : X →R be a continuous function. The unit η : π0NS f →Nτ1π0NS f

realizes to a weak homotopy equivalence.

Proof. A direct consequence of Lemmas 5.4 and 5.5.

In the proof of Theorem 1.2 it will be convenient to utilize Theorem 1.1. But to do
so, we must first verify that a Reeb function f : X → R defines a Reeb function on the
topological space R f .

Lemma 5.7. If f : X → R is a Reeb function, then R f has the homeomorphism type of
a 1–dimensional CW complex satisfying that the induced function f̄ : R f → R is piece-
wise linear.

Proof. Let R f be the topological Reeb space, presented as a quotient space according
to Definition 5.1. A topological space Q, homeomorphic to R f , will be constructed to
satisfy the assertion. We assume, without loss of generality, that every point in X is
either contained in some critical level or in between two critical levels. This can always
be achieved by slightly modifying the stratification on X : one may e.g. present X as a
filtered colimit of preimages of closed intervals under the map f .

The set of 0–cells is given by ∏π0 f−1c ranging over all critical values c, whereas the
set of 1–cells is given by ∏π0S f [c,d] ranging over successive critical values c < d. The
attaching maps comes from the source and target: a 1–cell e labeled by a path compo-
nent [σ ] in π0S f [c,d] admits a source in π0 f−1c; target in π0 f−1d. Denote the resulting
CW complex Q.

Define the piecewise linear map f̄ : Q→ R as follows. On a closed 1–cell e ' [0,1]
labeled by a class in π0S f [c,d] it is the orientation-preserving linear map [0,1]→ [c,d].
Note that f̄ : Q→ R is constructed to be piecewise linear.

There is a rather evident surjective map q : X → Q: If x is a point contained in some
critical fiber f−1c, then it is mapped to the 0–cell labeled by [x] in π0 f−1c. Other-
wise, consider the 1–cell e corresponding to gx, the reparametrized flow-line provided
by Proposition 2.7. We then send x to the point in e mapped to f (x) under f̄ . Note that
this map is constructed to be over R in the sense that f = f̄ ◦q.

It only remains to verify that Q has the universal quotient topology–for the topological
space Q is clearly in bijection with R f . We thus verify that a subset U of Q is open
if q−1U is open in X . This is true if for any closed 1–cell e, the intersection e∩U is
open in e. From the construction of Q it follows that there is a section σ : [c,d]→ X
satisfying that q ◦σ : [c,d]→ Q corestricts to a homeomorphism e ' [c,d]. But e∩U
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corresponds to σ([c,d])∩ q−1U under the given homeomorphism, and σ([c,d])∩ q−1U
is open in σ([c,d]) given that q−1U is open in X .

Let us end this section with a

proof of Theorem 1.2. Lemma 5.7 allows us to assume that f : X → R induces a Reeb
function f̄ : R f →R. Theorem 1.1 thus guarantees R f ' BS f̄ . So it suffices to prove that
the simplicial sets π0NS f and NS f̄ are weakly homotopy equivalent.

Functoriality of S induces a functor S f → S f̄ from the quotient map q : X → R f . It
maps a section σ of f to the section q ◦ σ of f̄ . Sections in the same path compo-
nents of (NS f )1 are obviously mapped to the same section of f̄ , so we have an induced
simplicial map F : π0NS f → NS f̄ . A morphism in τ1π0NS f is a word [σ1] · · · [σn], rep-
resented by sections σi which are composable up to paths contained in fibers of f . The
unit η : π0NS f → Nτ1π0NS f provides a factorization

π0NS f
η−→ Nτ1π0NS f

NG−−→ NS f̄

of F . We have already seen that η realizes to a weak homotopy equivalence in Lemma 5.6,
so we need only verify that NG is a weak homotopy equivalence. On the level of ob-
jects, the functor G : τ1π0NS f → S f̄ sends a morphism/word [σ1] · · · [σn] to the compo-
sition (q◦σn)◦ · · · ◦ (q◦σ1) of sections of f̄ . We shall construct an inverse functor G−1

from which we conclude that BG is in fact a homeomorphism.

Consider a section ρ : [c,d]→ R f of f̄ which passes no critical points, except possibly at
the end points. Since f̄ : R f → R is assumed to be piecewise linear on a 1-dimensional
CW complex, the image of ρ must be contained in some edge e of R f . Take any point x
in X which maps to the interior of e and define G−1ρ to be [gx|[c,d]], the reparametrized
flow-line provided by Proposition 2.7. This class in π0S f [c,d] is independent of the
choice of x. Indeed, assume that another point y is mapped to the interior of e. Any
choice of path p : I → f−1(c,d), between x and y, defines a path from gx|[c,d] to gy|[c,d]
in S f [c,d] via the composition

[c,d]× I
id[c,d]×p−−−−→ [c,d]× f−1(c,d)

g−→ X .

A general section ρ of f̄ can only pass finitely many critical values, because f is assumed
a Reeb function. Whence we factorize it accordingly ρ = ρn ◦ · · · ◦ρ1 and define G−1ρ
to be the word G−1ρ1 · · ·G−1ρn.

Applying G−1◦G to a word [σ1] · · · [σn] returns [gx1 ] · · · [gxn ], where xi is chosen according
to the above description of G−1. We can verify the equality [σi] = [gxi ] by considering all
reparametrized flow-lines through points in the image of [σi]. Hence G−1 ◦G = idτ1π0NS f .
The remaining equality G ◦G−1 = idS f̄

follows since the induced map f̄ : R f → R is
piecewise linear on a 1–dimensional CW complex; an edge in R f uniquely determines a
section that traverses it.
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5.4 Combinatorial Reeb spaces are graphs

Before we prove the result, I must first elaborate on the meaning of a ‘graph’. A sim-
plicial set is a graph if it is aspherical–all higher homotopy groups are trivial–and the
fundamental group is free for any choice of basepoint. The category (graphs) of graphs
is then the evident full subcategory of (simplicial sets). Our definition of combinatorial
Reeb spaces gives a functor

(spaces over R)→ (simplicial sets)

by mapping f : X → R to π0NS f , and we shall see that it does in fact define a functor

(spaces over R)→ (graphs).

In light of Example 5.2, I would argue that this is one advantage over topological Reeb
spaces.

Classifying spaces of groupoids are aspherical, a fact which is easily verified by using
simplicial homotopy groups. There is a groupoidification functor from small categories
to groupoids which assigns to a category C the groupoid C[C−1] in which all morphisms
are formally inverted. It may abstractly be described as the left adjoint of the forgetful
functor

(groupoids)→ (small categories).

For a given category C, there is an evident functor j : C → C[C−1] which is not a weak
homotopy equivalence in general: categories can represent all homotopy types, whereas
groupoids cannot. I refer to [McD79] for details. But we shall verify that j does in fact
realize to a weak homotopy equivalence for combinatorial Reeb spaces.

Recall that a morphism in τ1π0NS f is a word [σ1] · · · [σn], represented by sections that are
composable up to paths in fibers. A morphism in the groupoid τ1π0NS f [τ1π0NS−1

f ] is
thus a word [σ1]

i1 [σ2]
i2 · · · [σn]

in in which each i j =±1. The new relations are generated
by [σ ][ρ]−1 = 1[sσ ] and [ρ]−1[σ ] = 1[tσ ] whenever [σ ] = [ρ]; they are in the same com-
ponent of the section space S f [ f (sσ), f (tσ)]. Geometrically you might want to interpret
this as moving up and down, or down and up, along [σ ] cancels to the appropriate iden-
tity. A word [σ ][ρ]−1 is said to be reducible if there are factorizations [σ ] = [σ2] ◦ [σ1]
and [ρ] = [ρ1]◦ [ρ2] such that [σ2] = [ρ2]. In particular, [σ ][ρ]−1 = [σ1][ρ1]

−1. Dually, we
declare what it means for [σ ]−1[ρ] to be reducible. Intuitively, a part of [σ ] may overlap
with [ρ]:
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Reducible Irreducible

A morphism/word [σ1]
i1 [σ2]

i2 · · · [σn]
in in τ1π0NS f [τ1π0NS−1

f ] is then declared irreducible
if the word has length equal to n and there is no reducible subword. Subject to this added
requirement, we extend Lemma 5.5 to the groupoidification:

Lemma 5.8. Any morphism in τ1π0NS f [τ1π0NS−1
f ] is uniquely presentable as an irre-

ducible word.

Proof. Assume w to be presented [σ1]
i1 · · · [σn]

in and [ρ1]
j1 · · · [ρn]

jn , both irreducible.
Let ā = (a0, . . . ,an) and b̄ = (b0, . . . ,bn) be the sequences obtained by successively con-
sidering the domains of sections that appear as representatives in the two words.

These sequences must be equal and so the letters must be equal. Indeed, all relations
connecting them alters the associated sequences of real numbers. The statement is clear if
both are of length 1 since a0 = b0 and an = bn. If the length is≥ 2 we conversely assume
that ā 6= b̄. Consider q ≥ 1 the smallest index such that aq 6= bq. We assume aq < bq

without loss of generality.

Case 1: aq < aq−1 and bq > bq−1. Apply [σ1]
−i1 · · · [σq−1]

−iq and w′= [ρ]− jn
n · · · [ρq+1]

− jq+1

to w. The result is an equality [σq]
iq · · · [σn]

inw′ = [ρq]
jq . For this particular case, we de-

duce iq =−1 and jq = 1. But then the equality can only hold if something cancels [σq]
−1,

contradicting the irreducibility of [σ1]
i1 · · · [σn]

in .

Case 2: aq > aq−1 and bq > bq−1, or aq < aq−1 and bq < bq−1. These are proved in a
similar fashion as the previous case.

Before presenting the next lemma I remind that a natural transformation F⇒G between
two functors C → D is equivalent to a functor C × [1]→D whose restriction to 0 and 1
in [1] is F and G, respectively. A natural transformation F ⇒ G thus defines a homo-
topy BF ∼ BG. See e.g. Segal’s paper [Seg68].

Lemma 5.9. The map j : τ1π0NS f → τ1π0NS f [τ1π0NS−1
f ] realizes to a weak homotopy

equivalence for any combinatorial Reeb space.
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Proof. Consider an arbitrary object [x] in τ1π0NS f [τ1π0NS−1
f ]. Quilen’s theorem A re-

duces the problem to proving that the comma category j ↓ [x] is contractible. An object
in the comma category is a morphism/word w in τ1π0NS f [τ1π0NS−1

f ] terminating at [x].
All words are presented uniquely according to Lemmas 5.5 and 5.8. We shall define a
homotopy from the identity on B( j ↓ [x]) to the trivial map w 1[x]. There are two
essential intermediate functors.

The first functor pr+ : j ↓ [x]→ j ↓ [x] reduces the length of words that start with a letter
of the form [σ1]. It maps a non-trivial word w = [σ1]

i1 · · · [σn]
in to

pr+([σ1]
i1 · · · [σn]

in) =

{
[σ2]

i2 · · · [σn]
in if i1 = 1

[σ1]
i1 · · · [σn]

in if i1 =−1

A morphism w′′ : w→ w′ is a factorization w = w′ ◦ j(w′′) and hence there is a unique
choice for pr+w′′ yielding a factorization pr+w = pr+w′ ◦ (pr+w′′). This data comes with
a rather evident natural transformation η+ from id to pr+ since [σ1] defines a morphism
from a word [σ1][σ2]

i2 · · · [σn]
in to [σ2]

i2 · · · [σn]
in . In other words, we have defined a

functor H+ : ( j ↓ [x])× [1]→ ( j ↓ [x]) whose restriction to ( j ↓ [x])× 0 is id, whereas
the restriction to ( j ↓ [x])×1 is pr+.

The second functor pr− : j ↓ [x]→ j ↓ [x] is complementary to pr+. It maps a non-trivial
word w = [σ1]

i1 · · · [σn]
in to

pr−([σ1]
i1 · · · [σn]

in) =

{
[σ2]

i2 · · · [σn]
in if i1 =−1

[σ1]
i1 · · · [σn]

in if i1 = 1

Analogous to pr+ this data comes with a homotopy H− : ( j ↓ [x])× [1]→ ( j ↓ [x]). But,
in contrast to H+, this homotopy starts at pr− and terminates at id. This is because of
how [σ1] defines a morphism from [σ2]

i2 · · · [σn]
in to [σ1]

−1[σ2]
i2 · · · [σn]

in .

For every object w, we need only alternate H+ and H− a finite number of times to obtain
the trivial word 1[x]. We thus conclude that the identity on ( j ↓ [x])n, generated by words
of length≤ n, is homotopic to the trivial map for all n. It follows that the identity on j ↓ [x]
must be homotopic to the trivial map.

We wrap up the discussion on Combinatorial Reeb spaces with a

proof of Theorem 1.3. We have seen in Lemma 5.9 that a Reeb space π0NS f has the
homotopy type of its groupoidification. In particular, it must be aspherical. It remains
only to verify that the fundamental group is free, regardless of basepoint. So fix a base-
point [x] and consider π1(π0NS f ) which is isomorphic to the automorphism group at [x],
considered as an object in the groupoidification τ1π0NS f [τ1π0NS−1

f ]. This group admits
the irreducible words (Lemma 5.8) as a free generating set. For a non-trivial irreducible
word cannot possibly be reduced further to the unit 1[x].
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[BJ82] Theodor Bröcker and Klaus Jänich, Introduction to differential topology,
Cambridge University Press, 1982.

[Bro92] Kenneth S Brown, The geometry of rewriting systems: a proof of the
Anick-Groves-Squier theorem, Algorithms and Classification in Combina-
torial Group Theory, Springer, 1992, pp. 137–163.

[CJS92] Ralph L Cohen, John DS Jones, and Graeme B Segal, Morse theory and
classifying spaces, preprint (1992).

[CJS95] , Floer’s infinite dimensional Morse theory and homotopy theory,
The Floer Memorial Volume, Springer, 1995, pp. 297–325.

[Die08] Tammo tom Dieck, Algebraic topology, vol. 8, European Mathematical So-
ciety, 2008.

[DS92] Bart De Smit, The fundamental group of the hawaiian earring is not free,
International Journal of Algebra and Computation 2 (1992), no. 01, 33–37.

[dSMP16] Vin de Silva, Elizabeth Munch, and Amit Patel, Categorified Reeb graphs,
Discrete & Computational Geometry 55 (2016), no. 4, 854–906.

[Ehr50] Charles Ehresmann, Les connexions infinitésimales dans un espace fibré
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Factorization, extensions and a theorem of Retakh for
exact quasi-categories

Erlend D. Børve and Paul Trygsland

Abstract. Wedefine extension quasi-categories for exact quasi-categories in an analogous
way to the special case of ordinary exact categories. We show that these form an Omega-
spectrum, generalizing a theorem of Retakh. In so doing, we give an explicit Kan fibrant
resolution of these extension quasi-categories, which relies on a factorization property.
Finally, we show that the homotopy groups of extension quasi-categories are naturally
isomorphic to the higher extension groups of the extriangulated category given by the
homotopy category.

1 Introduction

Roughly speaking, an exact category C is an additive category together with a collection
of short exact sequences subject to certain constraints [Hel58], see [Kel90] for a modern
approach. This allows for homological algebra to be performed in a more general context
than abelian categories. Non-abelian examples include the category of vector bundles of
a scheme and the category of Banach spaces. In addition to homological algebra, exact
categories provide a natural framework for K–theory. Quillen first introduced the higher
algebraic K–groups in this context [Qui73].

The definition has recently been extended by Barwick to quasi-categories in order to
generalize definitions and results in K–theory [Bar15, Bar16, BR10]. This broadens
the scope considerably; it captures both (nerves of) exact categories and stable quasi-
categories. Moreover, every extension closed subcategory of a stable quasi-category
has the structure of an exact quasi-category. In fact, all exact quasi-categories occur
in this manner [Kle20]. One would thus expect more constructions and results about
exact categories to generalize, providing potentially useful applications. In particular,
one could study homological algebra from a quasi-categorical point of view.

In order to better understand the homological algebra of exact quasi-categories C , we
define quasi-categorical analogues of extension categories, denoted by E xtnC (B,A).
These are well understood if C is the nerve of an ordinary exact category. For a start,
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it is well-known that the Yoneda Ext-groups ExtnC (B,A) can be recovered as the zeroth
homotopy groups of E xtnC (B,A) [Mac12, Proposition XII.4.4].

For an exact quasi-category C , we declare that E xt0C (B,A) := homC (B,A), the map-
ping space from B to A. We will define maps Rn : E xtnC (B,A) Ω E xtn+1

C (B,A),
resulting in a spectrum E xtC (B,A). The main result of ours is the following.

Theorem 4.3. Let C be an exact quasi-category and let A and B be objects in C . Then
the spectrum E xtC (B,A) is an Ω–spectrum. In other words, all of the mapsRn are weak
equivalences.

This is a generalization of a theorem of Retakh, who proved the same result for abelian
categories [Ret86, Theorem 2(b)]. It follows that we have isomorphisms

π−n E xtC (B,A) ' π0 E xtnC (B,A) π1 E xtn+1
C (B,A) (1.1)

of homotopy groups. This means, in particular, that the higher structure of E xtC (B,A)
descends to the abelian group structure on classical Ext–groups.

To prove Theorem 4.3 it is required of us to find a manageable model for Ω E xtnC (B,A).
Similar to how you construct injective resolutions in homological algebra, this is achieved
by finding Kan fibrant replacements of higher extension categories. We define a new
variant fEx of the Ex–functor [Kan57], enjoying the property that fEx E xtnC (B,A) is a
Kan complex. This is more computationally feasible, as compared to the usual transfinite
composite E xtnC (B,A) Ex∞ E xtnC (B,A):

Theorem 6.1. The simplicial set fEx E xtnC (B,A) is a Kan complex (or∞–groupoid).

The proof of Theorem 6.1 relies on a factorization property of E xtnC (B,A). We refer
to Proposition 3.6 for the details. In the case of an ordinary exact category C, this
factorization property was first addressed by Hermann [Her16, Definition 2.1.11] in
order to explicitly describe the isomorphisms (1.1). See [Her16, Theorem 1] for details.
Initially, it was not clear whether factorizationwas possible for all exact categories, but this
has now been shown by Volkov–Witherspoon [VW20, Lemma 3.1]. Our Proposition 3.6
then generalizes their result to the quasi-categorical framework.

There is a notion extriangulated categories, defined by Nakaoka–Palu [NP19], which
simultaneously generalizes exact and triangulated categories. Recently, Nakaoka–Palu
have shown that the homotopy category of an exact quasi-category has a natural extriangu-
lated structure [NP20, Theorem 4.22]. In particular, it encapsulates the now well-known
result that the homotopy category of a stable quasi-category is canonically triangulated
[Lur17, Theorem 1.1.2.14], and moreover the homotopy category of the nerve of an
exact category is obviously exact. Note that the homotopy category of a stable quasi-
category is hardly ever exact. Building on Nakaoka–Palu’s work, we show that the Retakh
spectra E xtC (−,−) determine the extriangulation on h C .
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For a non-negative integer n, Gorsky–Nakaoka–Palu [GNP21, Definition 3.1] define
the n–extension groups for extriangulated categories, ultimately inspired by Yoneda’s
classic monograph on extension categories [Yon60]. We show that the higher structure
contained in the Retakh spectra E xtC (−,−) descends to the n–extension groups in the
homotopy category.

Theorem 7.8. Let C be an exact quasi-category, and consider (h C , π0 E xt1C (−,−))
as an extriangulated category. The bifunctor π0 E xtnC (−,−) is naturally isomorphic to
the nth extension functor of h C .

Outline. Section 2 contains little to no original ideas. It is concerned with basics of
exact quasi-categories and diagram lemmas. We define the extension categories for quasi-
categories in Section 3. Moreover, the factorization property of exact quasi-categories is
proven. We follow up with an overview of the Retakh spectrum in Section 4. Although
Theorem 4.3 is stated here, technical details are postponed. The reader only interested
in the application to extriangulated categories, can safely skip straight to Section 7 from
here. Section 5 is all about the factorized fEx–functor and proofs of technical lemmas.
Only the basic intuition on fEx is required to read and follow Section 6, where we prove
Theorems 4.3 and 6.1. In the final Section 7 we discuss how Retakh spectra determine
the extriangulation on homotopy categories. In particular, Theorem 7.8 is proven.

Notation and conventions. Throughout, we fix a Grothendieck universe U . Simplicial
sets should thus be understood as simplicial U–sets unless otherwise is stated. We refer
to Shulman [Shu08, Section 8] for a detailed treatment of Grothendieck universes.

A category J will be identified with its nerve N(J), so that it can be regarded as a
quasi-category. An (∞, 1)-functor between quasi-categories C and D (i.e. a morphism
of the underlying simplicial sets) will simply be referred to as a functor.

A homotopy coherent diagram of J in a quasi-category C is a functor J C . A
homotopy commutative diagram is a functor from J into the homotopy category h C .

Recall that the limit (resp. colimit) of a diagram D : J C arises as a left (resp. right)
adjoint of the diagonal functor C C J . Suppose that C is a quasi-category in which
all natural maps of the form

n∐

i=1

Xi

n∏

i=1

Xi

are homotopy equivalences. In this case, we make the assumption that finite coproducts
and finite product coincide. More precisely, the functors defining the limit

∏n
i=1Xi

coincides strictly with the one defining the colimit
∐n
i=1Xi. The term biproduct will be

used to emphasise that it is both a limit and a colimit, and it will be denoted by
⊕n

i=1Xi.

Let
n⊕
i=1

Xi and
m⊕
j=1

Yj be biproducts in C . Then a map f :
n⊕
i=1

Xi

m⊕
j=1

Yj is uniquely

3



determined, up to homotopy, by its components fj,i : Xi Yj . We will thus write f as
a matrix (fj,i)i,j .

The 0–simplices of a quasi-category C are often referred to as objects. Similarly, 1–
simplices are referred to as maps or morphisms. We write f ∼ g when the 1-simplicies f
and g are homotopic. A degenerate 1-simplex s0X is denoted by X X .

For two simplicial sets X and Y , we denote by hom(X,Y ) the function complex (or
internal hom) whose set of n–simplices is hom(X,Y )n = HomsSet(X × [n], Y ). In the
case of hom([1],C ), where C is a quasi-category, there is the subcomplex homC (B,A)

whose 0–simplices are the 1–simplices B A in C . Note that this space models the
homotopy function complex, as defined in [DK80]. We refer to [Lur09, Rem 1.2.2.5]
and [DS11, Cor 3.7] for details. For an ordinary category C we denote by HomC(X,Y )
the set of maps X → Y .

2 Exact quasi-categories

We first review exact quasi-categories, a generalization of exact categories. Since the
underlying category of an exact category is additive, it is only sensible to introduce the
quasi-categorical generalization.

Definition 2.1. A quasi-category C is additive if the following hold.

(Add1) There is a zero object 0 in C0, which is to say that homC (0, X) and homC (X, 0)
are contractible for all X ∈ C0.

(Add2) Finite products and coproducts exist in C .

(Add3) For any finite family of objects {X1, . . . , Xn}, the natural map
n∐

i=1

Xi

n∏

i=1

Xi,

induced by the identity maps Xi
1
Xi, is a homotopy equivalence.

(Add4) For all X,Y ∈ C0, the Hom-set HomhC (X,Y ) := π0 homC (X,Y ) admits an
abelian group structure: f + g is the composite

X X
∐
X Y

∏
Y Y


1

1





f 0

0 g


 (

1 1
)

in h C .
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A bicomplete quasi-category C is additive precisely when the homotopy category h C
is additive as an ordinary category. Analogously to how biproducts arise in additive
categories, the axioms (Add2) and (Add3) permit the assumption that C has a finite

biproducts, which we denote by
n⊕
i=1

. More precisely, we may choose the product and

coproduct functors ∏
,
∐

: C n C

in such a way that they coincide strictly – for (co)limits in quasi-categories are homotopy
invariant.

Barwick defines exact quasi-categories [Bar15, Definition 3.1] by adapting Keller’s min-
imal set of axioms [Kel90] to the quasi-categorical setting.

Definition 2.2. Let C be an additive quasi-category and let C† and C † be subcategories
that contain all objects inC , as well as all homotopy equivalences. The maps inC† will be
referred to as cofibrations, whereasmorphisms inC † are fibrations. The triple (C ,C†,C †)
is called an exact quasi-category if the following axioms hold.

(Ex1) For any zero object 0 in C0, all morphisms of the form 0 X are cofibrations
and those of the form X 0 are fibrations.

(Ex2) Pushouts of cofibrations exist and are cofibrations, and dually for pullbacks of
fibrations.

(Ex3) The following are equivalent for a homotopy coherent square

A E

C B

i

f p

g

(Ex3.1) The square is a pullback, the map g is a cofibration and p is a fibration.
(Ex3.2) The square is a pushout, the map i is a cofibration and f is a fibration.

If the subcategories C† and C † are implicitly specified, we simply say that C is exact. A
triple (C ,C†,C †) satisfying the axioms above is called an exact structure on C .

Whenever a cofibration appears in a diagram, it will be drawn as follows: (like a
monomorphism in an ordinary category). A fibration will be drawn as a two-headed
arrow .

Nerves of exact categories are exact quasi-categories, where the the class of cofibrations
consists of the admissible monomorphisms, and the fibrations are the admissible epimor-
phisms. Moreover, any stable quasi-category [Lur17, Definition 1.1.1.9] can be seen as
an exact quasi-category where C† = C = C †.
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The axioms above provide a framework for exact sequences, in more or less the usual
fashion.

Definition 2.3. Let C be an exact quasi-category. An exact sequence in C is a square

A E

0 B

where 0 is a zero object and the equivalent criteria in (Ex3) are met.

Equivalently, the exact sequences are the bicartesian squares

A E

0 B

i

� p

As for ordinary exact categories, exact sequences can be drawn horizontally

A E B,i p

omitting the zero object. There is not really any loss of information in such notation, for
the choice of morphisms to/from zero is irrelevant up to homotopy.

Definition 2.4. A map of exact sequences is simply a map of bicartesian squares. Such
maps will mostly be depicted as homotopy commutative diagrams of the form

A E B

A′ E′ B′

i p

i′ p′

Exact functors also have a completely analogous definition.

Definition 2.5. Let C and D be exact quasi-categories. A functor F : C D is exact
if it preserves zero objects, cofibrations and pushouts of cofibrations.

When checking that a functor is exact, one may equivalently consider the dual statement
for fibrations [Bar15, Proposition 4.8]. Exact sequences are obviously preserved by exact
functors, and by considering split exact sequences it is seen that they preserve the additive
structure as well.

Full subcategories D of a given exact quasi-category C inherit the exact structure if they
are closed under extensions, i.e. for all exact sequences

6



A E B

with A,B ∈ D0, we have that E ∈ D0. The cofibrations D† are the maps in C† ∩ D

whose cofiber is in D , and dually for fibrations. The inclusion functor D C is then
exact.

It turns out that all exact quasi-categories occur as extension closed subcategories of
stable quasi-categories.

Theorem 2.6 ([Kle20, Theorem 1]). Given a small exact quasi-category C , there exists
a stable hullHst(C ) into which C embeds exactly and universally.

This provides a generalization of the Gabriel–Quillen embedding theorem for exact cate-
gories, which states that they embed exactly into abelian categories.

A number of results concerning exact quasi-categories generalize to results about exact
quasi-categories. We will make frequent use of our two next lemmas, first generalized by
Barwick.

Lemma 2.7 ([Bar15, Lemma 4.5]). A homotopy coherent square

A E

C B

i

f p

g

in an exact quasi-category is bicartesian if either of the following conditions hold.

1. The square is a pushout and i is a cofibration.

2. The square is a pullback and p is a fibration.

Lemma 2.8 ([Bar15, Lemma 4.7]). Let

A E

C B

i

f p

g

be a homotopy coherent square satisfying one of the properties 1. or 2. in Lemma 2.7.
Then we have an exact sequence

A E ⊕ C B.


−i
f


 (

p g
)

7



In particular, the maps
(
−i
f

)
and

(
i
−f

)
are cofibrations and

(
p g

)
is a fibration.

Generalizations of celebrated diagram lemmas will also be helpful in later sections. The
first relates pushouts to maps of exact sequences.

Lemma 2.9 ([Kle20, Proposition A.1]). A pushout

A E

C F

i

p

where i is cofibration, can be extended to a map of exact sequences

A E B

C F B

i

p

p

Conversely, the existence of such a map of exact sequences implies that the square is a
pushout. A dual statement holds for pullbacks along fibrations.

Secondly, a map of exact sequences has a canonical factorization.

Lemma 2.10 ([Kle20, Proposition A.2]). Any map of exact sequences

A E B

C F D

iA

f ′ f

pB

f ′′

iC pD

can be factored

A E B

C Z B

C F D

iA

f ′ � g

pB

j

h

q

� f ′′

iC pD

where the squares marked by � are bicartesian.
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The renowned Five Lemma is a consequence of Lemma 2.10. It will be proved in
Appendix A, since there is no significant difference from the special case of ordinary
exact categories.

Lemma 2.11 (Five lemma). Consider a map of exact sequences

A E B

C F D

iA

f ′ f

pB

f ′′

iC pD

If f ′ and f ′′ are homotopy equivalences (resp. cofibrations, resp. fibrations), so is f .

Lastly, the 3× 3–lemma will come in handy. It is also proved in Appendix A.

Lemma 2.12 (3 × 3–lemma). Consider the homotopy coherent diagram with exact
columns

A′ E′ B′

A E B

A′′ E′′ B′′

iA

f ′ g′

iE iB

f

pA

g

pE pB

f ′′ g′′

If the middle row and one of the other rows is exact, then the remaining row is exact.

3 Quasi-categories of extensions

Fix an exact quasi-category C and let A and B be arbitrary (not necessarily full)
subcategories of C . We define the quasi-categories of n–extensions E xtnC (B,A ).

Recall that [1] × [1] consists of two 2–simplices glued along their 1–faces to obtain a
square. A short exact sequence is thus a homotopy coherent diagram E : [1] × [1] → C
which defines a bicartesian square

A E

0 B

i

� p

9



The corners in [1] × [1] are commonly labeled (k, l) for k, l = 0, 1. Every inclu-
sion il,k : [0] [1]× [1] induces a map evalk,l : hom([1]× [1],C ) C which restricts
to evalk,l : E xt1(C ,C ) C . In particular a short exact sequence

E : F ′ E F

satisfies eval0,0E = F ′, eval0,1E = 0, eval1,0E = E and eval1,1E = F .

Definition 3.1. Formally, we define the 1–extension category

E xt1C (B,A ) := e−1(B ×A ),

where e is the functor

e : E xt1C (C ,C ) C × C .
eval0,0×eval1,1

In otherwords,E xt1C (B,A ) is the subcategory ofhom([1],C ) generated exact sequences
starting in A and ending in B

Note that the 1–simplices in E xt1(C ,C ) are maps of exact sequences, as defined in
Definition 2.4. If A and B consist of a single object, say A and B, respectively, and all
of its morphisms are homotopic to the identity, we write E xt1C (B,A). The Five Lemma
has a very nice interpretation in this special case.

Proposition 3.2. All maps in E xt1C (B,A) are homotopy equivalences. Consequently,
the quasi-category E xt1C (B,A) is a Kan complex.

Proof. The first assertion is a direct consequence of Lemma 2.11. Thus, the quasi-
category E xt1C (B,A) is a Kan complex [Joy02, Corollary 1.4].

Our next result implies that E xt1C (B,A) does in fact define a bifunctor

E xt1C : C op × C S

into the quasi-category of Kan complexes. We refer to [Lur09, p. 121] for generalities.

Proposition 3.3. The map e : E xt1C (C ,C ) C × C is a bifibration.

Proof. It is required of us to find a lift in

Λ0[n] E xt1C (C ,C )

[n] C × C

γ

s

10



whenever the first 1–simplex in s has a degenerate 1–simplex as its second component.
There is also a dual horn filling requirement for Λn[n] which is follows by replacing
pushouts with pullbacks in the following arguments.

The case n = 1 reduces to filling out a diagram

A E B

A B

to a map of exact sequences (Definition 2.4). Thus we need only compute the pushout
along the leftmost vertical morphism and invoke Lemma 2.9 which results in

A E B

A′ P B

�

The case n ≥ 2 is also a more or less direct consequence of Lemma 2.9. Indeed, the
first 1–simplex in γ is of the form

A0 E0 B0

A1 E1 B0

so that the leftmost square/cocone is in fact a pushout square due to Lemma 2.9. A lift
of s to E xt1C (C ,C ) can now be deduced from the fact that pushout squares are initial in
the category of cocones.

Before defining the higher extension categories, let us first explain how one may interpret
the n–extensions when C is the nerve of an exact category. In this case, the n–extensions
of B by A can be represented as diagrams

E1 E2 · · · En−1 En

A E1.5 E2.5 E(n−2).5 E(n−1).5 B

0 0 · · · 0 0

d1

p1

d2

p2

dn−2

pn−2

dn−1

pn−1 dn

♦

d0

♦

i1

· · ·

i2

♦

in−2

♦

in−1

11



Of course, it is common to simply think of

A E1 E2 · · · En B
d0 d1 d2 dn−1 dn

as the exact sequence. But such a view-point does not encode exactness, at least not for
our purposes. An alternative approach is to rather look at the complementary diagram

E1 E2 · · · En−1 En

A E1.5 E2.5 E(n−2).5 E(n−1).5 B

0 0 · · · 0 0

p1 p2 pn−2 pn−1 dn

♦

d0

♦

i1

· · ·

i2

♦

in−2

♦

in−1

(3.1)

which does contain the information of exactness. Moreover, the boundary maps dj are
uniquely determined as the composition of pj and ij – so there is no loss of information.
Do note that these diagrams are advantageous when working with quasi-categories due
to the fact that the composites dj of ij and pj have not been chosen.

The higher extension quasi-categories are defined recursively:

Definition 3.4. For n ≥ 2 we define the n–extension quasi-category E xtnC (B,A ) as the
pullback of

E xtn−1(B,C )

E xt1(C ,A ) C

eval0,0

eval1,1

If A and B consist of a single object, sayA andB, respectively, and all of its morphisms
are homotopic to the identity, we write E xtnC (B,A). Note that E xtnC (B,A) defines a
functor into the quasi-category of quasi-categories. This essentially follows from the
recursive definition combined with Proposition 3.3.

The objects in E xtnC (B,A) are to be regarded as n conjoined exact sequences, as depicted
in (3.1). As a matter of notation, we will omit the zeros from the elements and write a
typical object E of E xtnC (B,A) as

E1 E2 En

A E1.5 · · · B

p1 p2 dnd0 i1 in−1

A map f : E F of such n–extensions, or 1–simplex in E xtnC (B,A), is then given by
a homotopy coherent diagram

12



E1 E2 En

A E1.5 · · · B

F1 F2 Fn

A F1.5 · · · B

pE1

f1

pE2

f2

dEn

fn

dE0
iE1

f1.5

iEn−1

pF1 pF2 dFndF0 iF1 iFn−1

At a first glance, our notion of maps between exact sequences may seem stronger than
what is conventional. If C is the nerve of an exact category, a map of n–extensions is
usually given as a commutative diagram

A E1 E2 · · · En−1 En B

A′ F1 F2 · · · Fn−1 Fn B′

f1 f2 fn−1 fn

without mention of maps fi.5 : Ei.5 Fi.5. In our setting we must require the fi.5s to
exist, but they can be induced if C is an ordinary exact category. For example, we can
induce f1.5 : E1.5 F1.5 since the left-most square in

E1 E2 · · ·

A E1.5

F1 F2 · · ·

A F1.5

p1

f1 f2

f1.5

commutes. Then using the fact that fibrations in nerves of exact categories are epimor-
phisms forces

E1.5 E2

E1.5 F2

f1.5 f2

to commute. Proceeding in such a manner yields fi.5 for 1 ≤ i ≤ n−1. But this process
does not translate to exact quasi-categories; fibrations are not necessarily epimorphisms.
The discussion thus far is summarized in

Proposition 3.5. If C is the nerve of an exact category, then E xtnC (B,A) is the nerve of
the classical category of n–extensions.

13



Extension categories enjoy a factorization property, which will be crucial later on.

Proposition 3.6. Let n ≥ 1. A map f : E F in E xtnC (B,A)

E1 E2 · · · En

A E1.5 · · · B

F1 F2 · · · Fn

A F1.5 · · · B

pE1
f1

dE1

pE2
f2

dE2 dEn−1

dEn
fn

dE0

iE1

f1.5

iEn−1

pF1 pF2

dFndF0

iF1 iFn−1

can be factored

E cyl(f) Ff ′ p

where f ′ is a term-wise cofibration, and there exists a factorization 1F ∼ pm wherem is
a term-wise cofibration.

Proof. The case n = 1 is easily deduced from Proposition 3.2; choose f ′ as the identity
on E and p = f .

For n ≥ 2, the exact sequence cyl(f) will be chosen as follows

F1 ⊕ E2 F2 ⊕ E3 ⊕ E2 · · ·

A F1.5 ⊕ E2 F2.5 ⊕ E3

· · · Fn−1 ⊕ En ⊕ En−1 Fn ⊕ En

F(n−2).5 ⊕ En−1 F(n−1).5 ⊕ En B


p

F
1 0

0 1





p

F
2 0 0

0 1 0





d

F
0

0







iF1 0

0 0

0 1







iF2 0

0 0

0 1





p

F
n−2 0 0

0 1 0





p

F
n−1 0 0

0 1 0




(
dFn 0

)



iFn−2 0

0 0

0 1





i

F
n−1 0

0 1



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We deduce from Lemma 2.8 that cyl(f) is an n–extension. Since F is a direct summand
of cyl(f), the map p : cyl(f) F is chosen as the projection, and m : F cyl(f) as
the inclusion. For f ′ : E cyl(f) we choose the map in E xtnC (B,A) with components

f ′1 =

(
f1
dE1

)
,

f ′j.5 =

(
fj.5
iEj

)
for 1 ≤ j ≤ n− 1

f ′j =



fi
dEj
1Ej


 for 2 ≤ j ≤ n− 1

f ′n =

(
fn

1En

)
.

Clearly, we have that f = pf ′, so it remains to show that f ′ has cofibrations in all
components. For j 6= 1, we can use Lemma 2.8 (with the squares transposed). Only f ′1
remains. We have a map of exact sequences

A E1 E1.5

A F1 ⊕ E2 F1.5 ⊕ E2

dE0

f ′1

pE1

� f ′1.5


d

F
0

0





p

F
1 0

0 1




in which the right square, by Lemma 2.9, is bicartesian. As (Ex3) applies, the map f ′1 is
a cofibration since f ′1.5 is.

In recent work of Volkow–Witherspoon [VW20, Lemma 3.1], this factorization property
was shown to hold for ordinary exact categories. Our proof for exact quasi-categories can
be specialized to this case. We will use it in Lemma 6.2, via Lemma 5.8, to prove that all
loops in E xtnC (B,A) are homotopic to a loop of length 1, as Hermann does for ordinary
exact categories [Her16].

4 The Retakh spectrum

Inspired by Retakh [Ret86], we organize all of the extension categories in an Ω–spectrum
object E xtC (B,A), whose nth entry is E xtnC (B,A), called the Retakh spectrum. Such a
construction comes with weak equivalences E xtnC (B,A) Ω E xtn+1

C (B,A). We thus
start with a recap of loop spaces in simplicial sets.
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Let X be any simplicial set. The loop space on X , based at x, is defined to be the
homotopy pullback of

[0]

[0] X

x

x

It can be computed by first replacing one x : [0] X with a Kan fibration p : PX X ,
where PX contractible, and then computing the ordinary pullback [BK72]. The problem
of computing loop spaces can thus be solved by finding such a Kan fibration. This is
analogous to how derived functors in homological algebra are calculated by first finding
projective or injective resolutions.

There are two evaluation maps eval0 and eval1 on hom([1], X) induced by apply-
ing hom(−, X) to the inclusions 0: [0] [1] and 1: [0] [1] of 0 and 1 into [1].
These maps send a 1-simplex e inX , which is an object in hom([1], X), to its source d1e
and target d0e in X . The reduced mapping space hom(([1], 0), (X,x)), of 1–simplices
starting at x, may then be defined as the pre-image eval−10 x. Whenever X is a Kan
complex, one may mimic the construction of loop spaces in topological spaces. For in
this case, the evaluation eval1 is a Kan fibration [GJ09, Corollary 5.3 on p. 21]. Hence
the loop space of X based at x, denoted by Ω(X,x), fits into the pullback diagram

Ω(X,x) hom(([1], 0), (X,x))

[0] X

eval1

x

For future reference, we state this as a proposition:

Proposition 4.1. If X is a Kan complex, then the loop space Ω(X,x) on X based at x
is the pre-image of x under the first evaluation eval1 : hom(([1], 0), (X,x)) X .

There is a rather natural choice of basepoint in E xtn(B,A). It is the split exact se-
quence σ1(B,A):

A A⊕B B

for n = 1 and σn(B,A) :

16



A · · · B

A 0 0 B

otherwise. To define the advertisedΩ–spectrum object, wemust first find a suitable model
for Ω(E xtnC (B,A), σn(B,A)), the loop space of E xtnC (B,A) based at σn(B,A), with
the correct homotopy type.

Let us first consider loops on E xt1C (B,A), as the corresponding homotopy type is easily
calculated:

Lemma 4.2. The pre-image eval−11 (σ1(B,A)) is the loop space on E xt1C (B,A), based
at σ1(B,A).

Proof. Propositions 3.2 and 4.1 gives the result.

More explicitly, the objects of Ω(E xt1C(B,A), σ1(B,A)) are the maps

σ1(B,A) σ1(B,A)

i.e. diagrams

A A⊕B B

A A⊕B B

φ

whereas the maps are homotopy coherent cubes of such diagrams and so on for higher
simplices.

The loop spaces of higher extension categories are not as easily determined: Al-
though E xtnC (B,A) is a quasi-category, it is not a Kan complex in general. And so
it is required of us to do some work in order to model its loop space. Technicalities
are postponed till section 5 and 6. But for the purpose of presenting the Ω–spectrum
of extension categories we shall give a brief description of the objects in our model
for Ω(E xtnC (B,A), σ1(B,A)) where n ≥ 2. As we shall prove in Lemma 6.2, they are
simple zigzags

σn(B,A) E σn(B,A)

of length one in E xtC (B,A), starting and terminating in σn(B,A). All of the data
contained in such a zigzag can be depicted

17



A · · · B

A 0 0 B

E1 · · · En

A E1.5 E(n−1).5 B

A · · · B

A 0 0 B

in our exact category C .

We now define the zeroth Retakh functor

R0 : homC (B,A) Ω(E xt1C (B,A), σ1(B,A)),

which will serve as the first structure map in the Retakh spectrum. Every map f : B A
induces a map

A⊕B A⊕B


1 f

0 1




which in turn can be seen as a endomap of σ1(B,A) in E xt1C (B,A) (by Lemma 4.2)

A A⊕B B

A A⊕B B

(
1 f

0 1

)

Functoriality follows since the construction hinges upon the universal property of the
biproduct.

Recall that the homotopy category of an additive quasi-category is additive. In particular,
the path components of hom–spaces are abelian groups. Thus we can pick an additive
inverse −1B of 1B , up to homotopy. For n ≥ 1, we now describe the nth Retakh functor
on objects

Rn : E xtnC (B,A) Ω(E xtn+1
C (B,A), σn+1(B,C)),

generalizing Hermann’s constructive interpretation of Retakh’s work [Her16]. It sends
an n–extension E :

E1 · · · En

A E1.5 E(n−1).5 B

p1 pn−1 dnd0 i1 in−1
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to the loop

A · · · B

A 0 0 B

E1 · · · B ⊕B

A E1.5 B B

A · · · B

A 0 0 B

d0


1

0




p1 dn

(
1 1

)

d0 i1


−1

1




d0


0

1




based at σn+1(B,A). The middle row is the (n+1)–extension (E, ρB), the concatenation
of E with the short exact sequence ρB:

B B ⊕B B


−1

1


 (

1 1
)

Altogether we have defined for every pair (B,A) ∈ C0×C0 a spectrum E xtC (B,A)with
structure maps Rn : E xtnC (B,A) Ω(E xtn+1

C (B,A), σn+1(B,C)) . And, moreover,
it is in fact an Ω–spectrum, to be proven in Propositons 6.3 and 6.5.

Theorem 4.3. The spectrum E xtC (B,A) is an Ω–spectrum. In other words, all of the
Retakh maps Rn are weak equivalences.

Corollary 4.4. The (−n)th homotopy group of E xtC (B,A) is π0 E xtnC (B,A).

Note that E xtC (B,A) only adds to the already existing abelian group structure on the
mapping space homC (B,A). Indeed, the group structure on Ω(E xt1C (B,A), σ1(B,A))
is given by concatenating loops of the form

A A⊕B B

A A⊕B B

(
1 f

0 1

)

But a concatenation of such reduces to computing a matrix product
(

1 f
0 1

)(
1 g
0 1

)
∼
(

1 f + g
0 1

)

which incorporates the same algebraic structure as homC (B,A).
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If C is the nerve of a small abelian category A, Theorem 4.3 specializes to Retakh’s
result that the extension categories E xtnA(B,A) form an Ω–spectrum [Ret86]. More-
over, π0 E xtnA(B,A) is easily seen to be the abelian group of Yoneda n–extensions. In
particular, π0 E xtn(B,A) generalizes the standard Ext-groups from abelian categories
to exact quasi-categories. On the other hand, if we rather consider Db(A), the bounded
derived category of A, we see that the spectrum HomDb(A)(B,Σ

nA) coincides with
the Retakh spectrum E xtA(B,A). Indeed, it is well-known that Yoneda Ext-groups are
isomorphic to Hom-groups in the bounded derived category [Ver96, Prop 3.2.2].

The construction of the Retakh spectrum determines a functor

E xtC : C op × C Sp(Cat∞)

where Sp(Cat∞) is an appropriate category of Ω–spectra. Specifically, the quasi-
category Sp(Cat∞) is that of spectrum objects [Lur06, Section 8] in Cat∞, the quasi-
category of small quasi-categories. In this framework, a map X• Y • of Ω–spectra
simply becomes a family of maps Xn Y n between the corresponding components.
Proposition 4.5. An exact functor

F : C D

induces a canonical natural transformation

ηF : E xtC (−,−) =⇒ E xtD(F−, F−)

of functors C op × C Sp(Cat∞).

Proof. Let (B,A) be an object of C op × C . Then F induces functors

E xtnC (B,A) E xtnD(FA,FB)

sending an exact sequence of length n in C to its image in D . Assembling these functors
yields a map of spectra

E xtC (B,A) E xtD(FB,FA).

More generally, given an n–simplex

(B1, A1) (B2, A2) · · · (Bn, An)

in C op × C , one checks that the [1]× [n]–shaped diagram

E xtC (B1, A1) E xtD(FB1, FA1)

E xtC (B2, A2) E xtD(FB2, FA2)

...
...

E xtC (Bn, An) E xtD(FBn, FAn)

(4.1)
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is homotopy commutative.

A natural transformation of quasi-categories can be given by a simplicial map

ηF : C op × C hom([1],Sp(Cat∞)).

We choose this map as that sending an n–simplex to the diagram (4.1). It can be checked
that the boundary and degeneracy maps behave as expected, yielding the desired map of
simplicial sets.

5 An adaption of the subdivision and Ex-functors

This section is all about introducing a version of Kan’s Ex-functor which is tailored for
the extension categories E xtnC (B,A). We call it the factorized Ex-functor and denote
it by fEx. Only the basic intuition behind fEx is needed to follow Section 6, and in
particular following the proofs of how fEx E xtnC (B,A) is a Kan complex and that the nth
Retakh functor is a weak equivalence.

We spend the next few paragraphs defining the factorized subdivision functor

fsd : ∆ Cat.

The objects in fsd[m] will be generated recursively. Let fsd[0] = [0] be the discrete
category with one object and one identity morphism. Suppose that fsd[m− 1] has been
defined, wherem ≥ 1, and that its objects are certainm− 1 tuples

(M1, . . . ,Mm−1)

of pairwise disjoint subsets of {0, 1, . . . ,m−1}.Wemay also define fsdX , for any totally
ordered setX withm elements, simply by setting up a monotone bijectionX [m− 1].
The objects of fsd[m] will then be certainm–tuples

(M1, . . . ,Mm−1,Mm)

of pairwise disjoint subsets of
{0, 1, . . . ,m}.

We generate them from the objects of fsd[m − 1] according to the procedure given by
(O1)–(O3) below.

(O1) For each 0 ≤ j ≤ m and each object (M1, . . . ,Mm−1) in fsd[0, . . . , ĵ, . . . ,m],
we include (M1, . . . ,Mm−1, ∅). Although duplicates may occur, no element is
counted twice.
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(O2) For each object (M1, . . . ,Mm−1, ∅) introduced in (O1), with the exception of
those of the form (j, ∅, . . . , ∅), we add (M1, . . . ,Mm−1,Mm), where Mm is the

set {0, . . . ,m} \
(
m−1⋃
i=1

Mi

)
of remaining integers ≤ m.

(O3) We add the object (01 · · ·m, ∅, . . . , ∅).

The category fsd[m] will then be the preorder (i.e. category with at most one morphism
connecting any pair of objects) generated by the following morphisms.

(M1) For each 0 ≤ j ≤ m and each morphism

f : (M1, . . . ,Mm−1) (N1, . . . , Nm−1)

in fsd[0, . . . , ĵ, . . . ,m], we add a morphism

f j : (M1, . . . ,Mm−1, ∅) (N1, . . . , Nm−1, ∅).

(M2) For each object (M1, . . . ,Mm−1,Mm) introduced in (O2), we add morphisms

h(M1,...,Mm−1) : (M1, . . . ,Mm−1,Mm) (M1, . . . ,Mm−1, ∅).

(M3) Let f j : (M1, . . . ,Mm−1, ∅) (N1, . . . , Nm−1, ∅) be a morphism introduced in
(M1). If (M1, . . . ,Mm−1, ∅) is not of the form (i, ∅, . . . , ∅), we include amorphism

f̂ j : (M1, . . . ,Mm−1,Mm) (N1, . . . , Nm−1, Nm).

If (M1, . . . ,Mm−1, ∅) = (i, ∅, . . . , ∅), we add

f̂ j : (M1, . . . ,Mm−1, ∅) = (i, ∅, . . . , ∅) (N1, . . . , Nm−1, Nm).

Since fsd[m] is required to be a preorder, we add relations so that all resulting
subdiagrams commute.

(M4) For each object (M1,M2, · · · ,Mm) introduced in (O2), we have a morphism

i(M1,M2,··· ,Mm) : (M1,M2, · · · ,Mm) (01 · · ·m, ∅, . . . , ∅)

We introduce the notation ij for the composites

(j, ∅, . . . , ∅) (01 · · ·m, ∅, . . . , ∅).

We note that all morphisms in fsd[m] fall into one of the cases (M1)–(M4).

From this point on, if an object (M1 . . . ,Mm) has Mi = ∅ for all k < i ≤ m, then we
exclude the empty tail and simply write (M1, . . . ,Mk).
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The recursive procedure above produces the following category for fsd[1]:

0 01 1,
i0 i1

whereas the category fsd[2] is graphically displayed as follows:

1

01 12

(01, 2) 012 (12, 0)

(02, 1)

0 02 2

i21

î21 î01

i01

h01

i(01,2) i(12,0)

h12

h02

i(02,1)
i20

i10

î20

î10

i12

î12

î02

i02

For this particular example, the usual barycentric subdivision sd[2] is clearly seen in the
interior, although three of its 0–simplices have been given unusual indices. From the
geometrical point of view we introduce the following terminology:

• Objects of the form j are the singletons.

• The full subcategory generated by objects (O1) is the boundary of fsd[m].

• The full subcategory generated by singletons and objects (O2) is the thickening of
the boundary in fsd[m].

• The object 01 · · ·m is the central point.

With this in mind, the morphisms (M2) are the irreducible morphisms from the thickening
to the boundary, and morphisms (M4) are the irreducible morphisms from the thickening
to the central point.

To complete the definition of the functor fsd : ∆ Cat, we need to define its ac-
tion on morphisms. Recall how the simplex category ∆ is generated by the coface
maps δmi : [m− 1] [m] and the codegeneracy maps σmi : [m+ 1] [m], subject to
the cosimplicial relations [GJ09, p. 4]. We proceed to define fsd on the coface and
codegeneracy maps.
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As a map of objects, we set fsd δmi to be

ob fsd[m− 1] ob fsd[m],

(M1, . . . ,Mm−1) (δmi M1, . . . , δ
m
i Mm−1, ∅).

fsd δmi

(5.1)

A morphism f in fsd[m − 1] will be sent to f i, introduced in (M1). By considering the
way in which (M1) generates morphisms in fsd[m] from those in fsd[m− 1], it is easy to
see that fsd δmi is a fully faithful functor for each i ≤ m.

The action on the degeneracy maps will be chosen as follows on the level of objects:

ob fsd[m+ 1] ob fsd[m],

(M1, . . . ,Mm,Mm+1) (σmj M1, . . . , σ
m
j Mm).

fsdσmj

(5.2)

Let us proceed with the tedious task of checking that these are indeed functors:

Lemma 5.1. The formulas (5.1) and (5.2) define functors fsd δmi and fsdσmj , respectively.

Proof. For case of fsd δmi , we refer to the above discussion. We can claim that fsdσmj are
functors by showing the following: if there exists a morphism M N in fsd[m + 1],
then there exists a morphism fsdσmj (M) fsdσmj (N) in fsd[m]. After all, we are
mapping a preorder into a preorder, so there is at most one morphism connecting any pair
of objects.

We proceed by induction on m. The base case m = 0 concerns functors into the
category [0], where the claim trivially holds. Let m > 0 and suppose that the claim
holds for m − 1. Given a morphism g : M N in fsd[m + 1], we check that there
exists a morphism fsdσmj g : fsdσmj (M) fsdσmj (N) in fsd[m]. This is achieved by
considering the cases (M1)–(M4).

If g is in (M1), it is of the form f i for some f in fsd[0, . . . , î, . . . ,m + 1]. Since the
functors of the form fsdσm−1k have been assumed to exist, they can be exploited to prove
the existence of a morphism fsdσmj g : fsdσmj (M) fsdσmj (N). Indeed, consider the
cosimplicial relation

σmj ◦ δm+1
i =





δmi ◦ σm−1j−1 if 0 ≤ i < j ≤ m,
id if i = j, j + 1,

δmi−1 ◦ σm−1j if 0 ≤ j + 1 < i ≤ m.
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Thus, ifO is any object in fsd[m], we have that

fsdσmj (δm+1
i O) :=





(fsd δmi ◦ fsdσm−1j−1 )(O) if 0 ≤ i < j ≤ m
O if i = j, j + 1

(fsd δmi−1 ◦ fsdσm−1j )(O) if 0 ≤ j + 1 < i ≤ m.

Since the induction hypothesis guarantees that both fsdσm−1j−1 and fsdσm−1j induce mor-
phisms from g, it follows that fsdσmj does. This is because g is contained in the image
of δm+1

i .

Should g be in (M2), the domain and codomain are sent to the same object. The identity
then works as the image of g.

The case of (M3) can be reduced to (M1). Since the last component is removed in (5.2),
the domain and codomain of the morphism f̂ j in (M3) are sent to the same as the domain
and codomain, respectively, of f j .

The last case (M4) can be addressed by the explicit formula fsdσmj (iM) = iσmj M, when-
ever σmj M does not agree with the central point in fsd[m]. Otherwise we define fsdσmj
as the identity at 0 · · ·m.

Since the cosimplicial identities hold in ∆, it immediately follows that the functors of the
form fsd δmj and fsdσmk satisfy the same relations when considered as maps of objects.
Since the categories fsd[m] are preorders, these relations hold when applied to morphisms
as well. We are therefore in a position to conclude:

Lemma 5.2. We have defined a functor fsd : ∆ Cat. In other words, it is a cosimpli-
cial category.

We will compare the factorizing subdivision fsd[m] with the standard simplex [m] via
the subdivision sd[m] as introduced by Kan in [Kan57]. To do so it will be beneficial to
define sd[m] in a recursive way that resembles the description of fsd[m]. This is achieved
by removing the thickening of faces that occur in (O2), (M2) and (M3). So we simply omit
these constraints and alter (M4) to rather require maps from the boundary to the central
point 01 · · ·m. With such a description there is an evident map r : fsd[n] sd[n]
obtained by collapsing the information in (O2), (M2) and (M3) onto (O1) and (M1). The
result is in fact a map ` : fsd sd of cosimplicial categories.

Lemma 5.3. For every m ≥ 0 the factorizing subdivision fsd[m] is contractible. In
particular, the map `m : fsd[m] sd[m] is a weak equivalence.

Proof. Consider the full subcategory c[m] of fsd[m] generated by singletons, objects in
the thickening and the central point. This category is contractible since the object 01 · · ·m
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is terminal. So it suffices to prove that fsd[m] is weakly equivalent to c[m] in the Quillen
model structure on simplicial sets. It is well-known that taking the opposite of a category
preserves homotopy types. Hence we rather consider the opposites of c[m] and fsd[m].
This allows us to deform along opposites of (M2) from the boundary to the thickening.

We define a retract of the inclusion i : c[m]op ↪→ fsd[m]op. Recall that the boundary
of fsd[m], the union of its faces, is the full subcategory generated by the objects (O1).
When we consider the opposite of fsd[m] every object (O1), excluding the singletons,
admit a unique irreducible morphism hopM1,...,Mm−1

to the thickening, defined by (M2).
To define a retract r : fsd[m]op c[m]op we simply send every hopM1,...,Mm−1

to the
identity at (M1, . . . ,Mm−1,Mm). The morphisms in the boundary, which are all of
the form (M1, . . . ,Mm−1, ∅) (N1, . . . , Nm−1, ∅), are then forced to be sent to their
respective morphisms in the thickening (M3). Geometrically, the functor r collapses the
boundary of fsd[m]op onto c[m]op. Since r fixes singletons as well as objects in (O2)
and (O3), it is clear that r ◦ i is the identity on c[m]op.

There is a rather evident natural transformation η from the identity on fsd[m]op to i ◦ r
defined by utilizing the irreducible morphisms hopM1,...,Mm−1

from the boundary to the
thickening: an object M = (M1, . . . ,Mm−1, ∅) in (O1), except the singleton, associates
uniquely to the morphism

ηM = (M1, . . . ,Mm−1, ∅) (M1, · · · ,Mm−1, 12 . . .m \ ∪Mi).

Such a natural transformation is equivalent to a homotopy fsd[m]op × [1] fsd[m]op

from the identity to i ◦ r.

Any simplicial setX is canonically presentable as a colimit ofm–simplices [GJ09, p. 7].
More precisely, the simplex category ∆, defines, for a fixed simplicial set X , a slice
category ∆ ↓ X and X = colim

[m] X

[m] . Hence we can lift the factorizing subdivision

from the simplex category to all simplicial sets by declaring fsdX = colim
[m] X

fsd[m] .

Lemma 5.4. Every horn inclusion fsd Λk[m] ↪→ fsd[m] is an acyclic cofibration.

Proof. The inclusion is clearly a cofibration, so we need only verify that it is in fact a
weak equivalence. The k–horn Λk[m] is the union of all faces in [m] except the kth one.
It can for example be presented as the coequalizer of

∐

0≤i<j≤m
[m− 2]⇒

∐

i 6=k
[m− 1]

where both of the arrows are coproducts of face inclusions, whence they are cofibra-
tions. Since both sd and fsd preserve colimits, we can apply them to the coequal-
izer and obtain sd Λk[m] and fsd Λk[m] as coequalizers. By Lemma 5.3, the natural
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map `m : fsd[m] sd[m] then provides a level-wise weak equivalence of cofibrant co-
equlizer diagrams. Hence we conclude that the induced map fsd Λk[m] sd Λk[m]
is a weak equivalence, and that fsd Λk[m] is contractible. This means that the inclu-
sion fsd Λk[m] ↪→ fsd[m] is a map of contractible spaces; a weak equivalence.

Analogous to how Kan defines the well-known functor Ex in terms of the subdivision sd,
we define a variant which is tailored for extension categories.

Definition 5.5. The factorizingEx–functor is defined by fExXm = HomsSet(fsd[m], X)
with face and degeneracy maps induced from the cosimplicial structure of fsd.

The next observation is immediate from the definition.

Proposition 5.6. The factorizing Ex–functor fEx is right adjoint to the factorizing sub-
division fsd.

We turn our attention to proving that the factorizing Ex–functor preserves homotopy
types. This is done in a very similar fashion as to how you would prove the analogous
result for Kan’s Ex–functor. First, we derive a map η : X fExX from the natural
map `m : fsd[m] sd[m], as described in the discussion preceding Lemma 5.3, and
the last vertex map vm : sd[m] [m] [GJ09, p. 183]. On the level of simplices, this
is achieved by pre-composing an m–simplex fsd[m] X with `m and vm. Taking
Lemmas 5.3 and 5.4 into account we more or less follow the acyclic models argument
outlined by Goerss–Jardine [GJ09, Chapter 3.4] directly.

Theorem 5.7. The map η : X fExX is a weak equivalence for any simplicial setX .

We end this section with three important diagram lemmas, the two first are vital when
proving the last.

Lemma 5.8. Let J be a finite partially ordered set (considered as a category), and
let D : J E xtnC (B,A) be a be homotopy coherent diagram. Then D extends to a
diagram

H : J × [1] E xtnC (B,A)

with the following properties:

1. H1 := H|J×1 is D,

2. all arrows in H0 := H|J×0 are term-wise cofibrations and

3. if i is an object in J which does not occur as the target of any morphism, thenH is
the identity when restricted to i× [1].
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Proof. Pick an arbitrary morphism f : i j in J . We shall first describe a procedure
to defineH : J × [1] E xtnC (B,A) satisfying thatH(f, 0) is a term-wise cofibration.
Moreover, ifD(g) : D(k) D(j) is a term-wise cofibration, then alsoH(g, 0) should be
a term-wise cofibration. The same goes for morphismsD(g) : D(k) D(i). Applying
the factorization in Proposition 3.6 to D(f) : D(i) D(j) provides a commutative
diagram

D(i) cylD(f)

D(i) D(j)

D(f)′

p

D(f)

which is equivalent to a functor G : [1]× [1] E xtnC (B,A) satisfying properties 1.–3.
above. We extend G to a functor H : J × [1] E xtnC (B,A). An object k 6= i, j in J
is mapped to H(k, 0) = H(k, 1) = D(k). On the level of morphisms g : k ` we
can thus automatically define H(g, 0) = H(g, 1) = D(g) whenever k and ` both differ
from j. If g starts at k = j, then we choose a pre-composition H(g, 0) = D(g) ◦ p.
And lastly, if g terminates at ` = j, then we post-compose with the right inverse m
of p resulting in H(g, 0) = m ◦D(g). The procedure is functorial: the only non-trivial
case to check is g : k j and h : j `, and here we have that H(g, 0) = D(g) ◦ p
and H(h, 0) = m ◦D(h), whence H(h, 0) ◦H(g, 0) ∼ D(g) ◦D(h). Observe that if a
morphism of the formD(g) : D(k) D(j) is a term-wise cofibration, then alsoH(g, 0)
is a term-wise cofibration, since the class of cofibrations is closed under composition.

To finish the proof we shall iterate the above construction to turn every morphism into
a term-wise cofibration. Since J is a finite partially ordered set, there is a finite set of
irreducible morphisms fI which uniquely factorizes all morphisms in J . Since J is a
finite partially ordered set, any object k admits a height h. It is defined as the length of
the longest chain of irreducible morphisms terminating at k. We define the height of an
irreducible morphism fI as the height of its target.

Iterate the above process on the set fI , of irreducible morphisms, by first picking those
whose height is equal to 1, then proceeding to 2 and so on. This is to guarantee that
whenever we apply the procedure to an irreducible morphism f : i j, no morphism
out of j has already been replaced by a term-wise cofibration. Moreover, irreducible mor-
phisms with smaller height will still be replaced by term-wise cofibrations. Indeed, this
follows by the last sentence in the first paragraph. In the end, every irreducible morphism
is replaced by a term-wise cofibration. If we denote by [1]q[0] [1] the concatenation of [1]
by [1], head to tail. What we have produced is a simplicial map

Ĥ : J ×
(
[1]q[0] · · · q[0] [1]

)
E xtnC (B,A)
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where finitely many copies of [1] are concatenated. But E xtnC (B,A) is a quasi-category,
so choosing finitely many compositions determine a functorH : J× [1] E xtnC (B,A).
The functor is constructed to satisfy the three asserted properties 1.–3.

Lemma 5.9. Let J be a finite connected partially ordered set (considered as a category)
with at least three objects. Let D : J E xtnC (B,A) be a homotopy coherent diagram.
Assume that all morphisms of the formD(f), where f is a morphism in J , are term-wise
cofibrations. Then the diagram D has a cocone.

Proof. Recall that D has a cocone if it can be extended to a homotopy coherent dia-
gram DB : JB E xtnC (B,A), where the category JB is obtained from J by adding a
terminal object ∗. We refer to DB(∗) as the cocone of D when its incident morphisms
are obvious from context.

We prove the claim by induction on the number ` of minimal objects in J . The base
case ` = 1 amounts to the existence of an initial object i in J . We prove the base case by
induction on the number of objects in J , denoted bym.

The base case m = 3 only pertains to the diagrams depicted as the solid part of the
diagrams below.

D(i) D(i)

D(a) D(b) D(a) D(b)

P P Q

D(f)

α

In both cases, we construct an object P by taking the pushout of the arrows out of i, adding
new dashed arrows above. The category on the left then obtains a cocone. One more
pushout is needed to identify a cocone in the right-hand diagram, which is that of D(f)
along α.

Suppose that the claim has been proven form− 1. If J hasm objects, let a be a maximal
one. The induction hypothesis then gives a cocone P of the restricted homotopy coherent
diagram

D|J\a : J \ a E xtnC (B,A),

obtained by removing a and all its incident arrows from J . A cocone of D can be found
by constructing an object Q as well as morphisms P Q andD(a) Q, such that for
all immediate predecessors a1 of a, the square

D(a1) D(a)

P Q
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commutes. Suppose that a has k immediate predecessors a1, a2, . . . , ak. The solid part
of the following diagram depicts this situation.

D(a) Q1 Q2 · · · Qk

D(a1) D(a2) · · · D(ak)

P

D(f1)

α1

D(fk)

αk

The pushout ofα1 alongD(f1) gives an objectQ1 and the dashedmorphisms into it. Next,
we take the pushout of α2 along the composite D(a2) D(a) Q1, producing Q2.
This procedure terminates after k steps, producing a cocone Q = Qk of D.

Having just proved the claim in the case where J has a unique minimal object, we now
deal with the inductive step. Suppose that the claim holds when J has fewer than `
minimal objects, for some ` ≥ 2. If J contains exactly ` minimal objects a1, . . . , a`, we
let J1 be the subposet of J containing the objects x such that x ≥ a1. The base case
(shown above) provides a cocone P1 of the subdiagram given by J1.

Now, let J ′ be the full subcategory of J spanned by the objects of
⋃
i≥2 J≥ai . We

extend J ′ to J ′′ by adding an object p1 and morphisms a p1 for all a in J1 ∩ J ′, such
that all resulting triangles commute. The construction ofP1 in the last paragraph paves the
way for a homotopy coherent diagramD′′ : J ′′ E xtnC (B,A) such thatD′′(p1) = P1.
Since J ′′ is a partially ordered set with `−1minimal objects, it follows from the induction
hypothesis that this diagram has a cocone P. We claim that P serves as a cocone for J .
We have suitable morphisms from objects inD(J ′) to P by definition, and we may choose
composites via P1 to get suitable morphisms out of objects in D(J1).

In a Kan complex, all horns can be filled. Two subcategories of fsd[m] are therefore
of particular interest. Consider this statement in (O1), and add the extra assumption
that j > 0. In full:

(Λ1) For each 0 < j ≤ m and each object (M1, . . . ,Mm−1) in fsd[0, . . . , ĵ, . . . ,m], we
include (M1, . . . ,Mm−1, ∅). Although duplicates may arise, no element is counted
twice.

The objects given by this refining of (O1) describes fsd Λ0[m], the factorizing subdivision
applied to the 0–horn. We depict fsd Λ0[m] as the solid part of:
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1

01

(01, 2) 012

(02, 1)

0 02 2

i21

î21

h01

i(01,2)

h02

i(02,1)
i20

i10

î20

î10

i12

î12

The procedures put forward in (O2) and (O3) can then be applied to the objects in fsd Λ0[m]
(i.e. those described in (Λ1)), to generate a larger subcategory fsd+

0 [m] of fsd[m]. This
subcategory is a "fat" 0–horn because it also contains the thickening of j–faces, j > 0,
as well as the central point. The dashed arrows above illustrate n = 2.
Lemma 5.10. Any homotopy coherent diagram of the form

E : fsd Λ0[m] E xtnC (B,A)

fills out to
E+ : fsd+

0 [m] E xtnC (B,A).

Proof. We are given the objects generated by (Λ1). The first step is to fill out to the
thickening. Finally, we add the central point of (O3), and make sure that all morphisms
in (M4) are included. These two steps are achieved by invoking Lemmas 5.8 and 5.9,
respectively.

To address (O2), (M2) and (M3) we ought to provide a filler to the thickening. This
amounts to a homotopy

H : fsd Λ0[m]× [1] E xtnC (B,A)

such thatH is the identity when restricted to j× [1], for all singletons j. Lemma 5.8 thus
provides a filler. The restriction

fsd Λ0[m] fsd Λ0[m]× [1] E xtnC (B,A)
(id,0)

ofH to the thickening satisfy that all entries are term-wise cofibrations. Hence it admits a
cocone P by Lemma 5.9. Altogether we have defined a fillerE+ which is equal toH(−, 0)
on the thickening and maps the central point to P.
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6 Loop spaces of extension categories

We have constructed a modified fEx–functor to Kan’s Ex–functor. This was achieved
by modifying the subdivision functor sd, cf. the beginning of Section 5. The techni-
cal Lemma 5.10 will now be used to prove that fEx E xtnC (B,A) is a Kan complex and
that the nth Retakh functor is a weak equivalence.

Theorem 6.1. Let C be an exact quasi-category in which A and B are objects. Then the
simplicial set fEx E xtnC (B,A) is a Kan complex.

Proof. Let E : Λk[m] fEx E xtnC (B,A) be a k–horn in fEx E xtnC (B,A). We devise
a horn-filling algorithm extending E to anm–simplex F : [m] fEx E xtnC (B,A). Our
algorithm does not depend on the choice of k, up to a re-indexing of 0–simplices. So we
will only consider k = 0. Moreover, utilizing the left adjoint fsd we may rather extend a
diagram E defined on fsd Λ0[m] to anm–simplex F : fsd[m] E xtnC (Definition 5.5).

We treat the special casesm = 1 andm = 2 to give the reader a geometric understanding
of the horn-filling procedure. If m = 1, the 0–horn is simply the discrete category with
a single object 1. Imposing that

F(0) F(01) F(1)

gives an adequate horn filler. For m = 2, we consider a diagram indexed by the 0–
horn fsd Λ0[2], which lifts to the solid part of

1

01 12

(01, 2) 012 (12, 0)

(02, 1)

0 02 2
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utilizing Lemma 5.10. Note that the solid part is equivalent to a homotopy coherent
diagram in fEx E xtnC (B,A) indexed by fsd+

0 [2], the thick 0–horn. Proceed as indicated
by the dashed arrows to complete a diagram F : fsd[2] E xtnC (B,A).

For a general m ≥ 2 we do the same procedure, but some extra care is required when
adding identities in the end. Lemma 5.10 gives a diagram E+ defined on the thick 0–
horn fsd+

0 [m], which restricts to E on fsd Λ0[m]. Comparing fsd+
0 [m] and fsd[m],

we see that the objects in the interior of fsd[m]’s zeroth face fsd[1, . . . ,m] and their
duplicates in the thickening are missing. The boundary of fsd[1, . . . ,m], i.e. the union
over fsd[1, . . . , k̂, . . . ,m], its thickening in fsd[m] and the central point 0 · · ·m defines
a subcategory I[m − 1] equivalent to fsd[m − 1]. Similarly, the thickening T [m − 1]
of fsd[1, . . . ,m] in fsd[m], is of course equivalent to fsd[m − 1]. So we extend E+ to
include T [m − 1] by mapping irreducible morphisms from T [m − 1] onto I[m − 1] to
identities. Lastly, the m–simplex F is obtained by also sending irreducible morphisms
from the thickening T [m− 1] onto fsd[1, . . . ,m] to identities. These two steps of adding
identities specializes to the above picture form = 2.

Recall that eval1 : hom(([1], 0), (fEx E xtnC (B,A), σn(B,A))) fEx E xtnC (B,A) is
the evaltuation at 1, which is induced by the inclusion of the terminal object 1 into [1].

Lemma 6.2. The pre-image eval−11 (σ(B,A)) models the loop space on fEx E xtnC (B,A)
based at σ(B,A).

Proof. This is a direct consequence of Proposition 4.1 and Theorem 6.1.

This is a fairly explicit description of the loop space. In particular, the objects are simple
zigzags

σn(B,A) E σn(B,A),

i.e. diagrams

A · · · B

A 0 0 B

E1 · · · En

A E1.5 E(n−1).5 B

A · · · B

A 0 0 B
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Notice how eval−11 (σn(B,A)) is the space of automaps on σn(B,A) inside the Kan
complex fEx E xtnC (B,A). One model for this space has a particularly neat description
in terms of simplices in fEx E xtnC (B,A). See [Lur09, Remark 1.2.2.5] for generalities.
An m–simplex in eval−11 (σn(B,A)) is an (m + 1)–simplex S in fEx E xtnC (B,A) with
the following properties. The zeroth 0–simplex in S is equal to σn(B,A), also the
zeroth face d0S is equal to sm0 σn(B,A), the m–dimensional copy of σn(B,A). The ith
face of S, considered as an m–simplex in eval−11 (σn(B,A)), is the m–simplex di+1S
in fEx E xtnC (B,A). Here is a simple illustration of a 1–simplex between two loops γ
and γ′ together with the zeroth face map:

s0σn(B,A)

γ γ′

σn(B,A)

γ′
d0

Let us proceed with a proof of Theorem 4.3. The technique used to show that the Retakh
functor Rn is a weak equivalence depends on n. The case n = 1 is significantly simpler
than n ≥ 2: the quasi-category E xt1C (B,A) is a Kan complex, whereas we need to
consider fEx E xtnC (B,A) for higher n. Nonetheless, all Retakh maps are proven to be
weak equivalences via their homotopy fiber. If F : X Y is a simplicial map between
Kan complexes, then for all y in Y the comma category F ↓ y models the homotopy
fiber at y. We refer to either [BK72, p. 298] or [Lur09, Theorem 4.1.3.1] for details.
Its description is very similar to the above mapping space. An m–simplex in F ↓ y is
an (m+1)–simplex S in Y so that the (m+1)st 0–simplex is equal to y, whereas dm+1S
is in the image of F . A 1–simplex and its first face is typically depicted

F (x) F (x) F (x′)

y y

F (e)

Recall the zeroth Retakh functor

R0 : homC (B,A) Ω(E xt1C (B,A), σ1(B,A))
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mapping f : B A to the endomap

A A⊕B B

A A⊕B B

(
1 f

0 1

)

of σ1(B,A)

Proposition 6.3. The zeroth Retakh functor

R0 : homC (B,A) Ω(E xt1C (B,A), σ1(B,A))

is a weak homotopy equivalence.

Proof. It suffices to show that the homotopy fiber, modeled as the comma categoryR0 ↓ γ,
is contractible for all loops γ ∈ Ω(E xt1C (B,A), σ1(B,A)). Any loop is a endomap
of σ1(B,A), and all endomaps of σ1(B,A) are homotopic to a loop in the image of R0.
Hence the homotopy fiber R0 ↓ γ is easily seen to deformation retract onto the identity
at γ. This shows that the homotopy fiber is contractible at any loop γ.

In Section 4 we defined the nth Retakh functor

Rn : E xtnC (B,A) Ω(E xtn+1
C (B,A), σn+1(B,A)).

In short, the loop RnE is given by

σn+1(B,A) (E, ρB) σn+1(B,A).

where (E, ρB) is the concatenation of E and ρB:

B B ⊕B B.


−1

1


 (

1 1
)

Fix a loop γ in Ω(E xtn+1
C (B,A), σn+1(B,A)), which is a diagram in E xtn+1

C (B,A) of
the form

σn+1(B,A) F σn+1(B,A).

Now we aim to construct a universal map of loops Uγ : RnE γ from the image of the
Retakh functor. To better see how such a map can be constructed, we depict γ in full:
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A · · · B

A 0 0 B

F1 · · · Fn+1

A F1.5 Fn.5 B

A · · · B

A 0 0 B

i1 γ1

pn+1i1 in+1

i1 γ2

It is determined by F together with two right inverses γ1 and γ2 of pn+1, i.e. pn+1γi ∼ 1B .
Consequently, a composite

−γ1 + γ2 :=
(
−1 1

)(γ1
γ2

)
: B Fn−1

factors through in+1, which is to say that we have 2-simplex

B Fn−1

Fn.5

−γ1+γ2

b in+1

inC . Note that, up to homotopy, themap b is the uniquemap such that−γ1+γ2 ∼ in+1◦b.
This is because of how it is defined from the universal mapping property of the short
exact sequence

Fn.5 Fn+1 B.
in+1 pn+1

Lemma 2.9 provides a map of n–extensions

F1 · · · En

A F1.5 F(n−1).5 B

F1 · · · Fn

A F1.5 F(n−1).5 Fn.5

un

�
b

in which En is the pullback. Let E be the top row, then the above diagram extends to a
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map of loops Uγ : RnE γ given by

σn+1(B,A) σn+1(B,A)

(E, ρB) F

σn+1(B,A) σn+1(B,A)

uγ

where uγ is the map

· · · En B ⊕B

A F(n−1).5 B B

· · · Fn Fn+1

A F(n−1).5 Fn.5 B

un

�

(
1 1

)

(
γ1 γ2

)

b


−1

1




�

pn+1in+1

If γ = RnE, then both −γ1 + γ2 and in+1 agree with
(
−1
1

)
so that b ∼ 1B . The Five

Lemma (Lemma 2.11) thus implies that un is a homotopy equivalence so that Uγ is the
identity on RnE.

Let J be an indexing category, and consider D : J Ω E xtn+1
C (B,A) a homotopy

coherent diagram. We can apply the above steps to all of D, resulting in a diagram
contained in the image ofRn. Indeed, no matter how complicatedD is when translated to
a diagram in C , the above process only hinges upon the universal mapping property into
short exact sequences as well as functoriality of pullbacks. We summarize the discussion
thus far.

Lemma 6.4. A homotopy coherent diagramD : J Ω E xtn+1
C (B,A), indexed by some

category J , extends to a diagram

H : J × [1] Ω E xtn+1
C (B,A)

by declaring H|γ×[1] = Uγ for all γ = D(j). Moreover, the extended diagram H enjoys
the following properties:

1. H1 := H|J×1 is D,

2. H0 := H|J×0 is in the image of Rn and
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3. if i is an object in J such that D(i) = RnE, then H is the identity when restricted
to i× [1].

The zeroth Retakh functor was proven a weak equivalence in Proposition 6.3, so in order
to finish a proof of Theorem 4.3 we need only verify that the nth Retakh functor is a weak
equivalence.

Proposition 6.5. The nth Retakh functor

Rn : E xtnC (B,A) Ω(E xtn+1
C (B,A), σn(B,A))

is a weak equivalence for all n ≥ 1.

Proof. The objects A and B are fixed within C , so we simply write σ = σn+1(B,A)
and E xtn+1 = E xtn+1

C (B,A) throughout the proof. As in the proof of Proposition 6.3,
we show that the homotopy fiber Rn ↓ γ is contractible for a fixed loop γ:

σ F σ.
γ1 γ2

To do so, we prove that the universal map of loops Uγ : RnE1 γ is initial in Rn ↓ γ.
The definition of an initial object [Joy02, Definition 4.1] requires that every simplicial
sphere

∂[m] Rn ↓ γ
whose restriction to 0 is Uγ can be filled. We first treat the case m = 1 to get a better
geometric grasp of the algorithm for generalm.

Step 1: The 0–dimensional simplicial sphere ∂[1] Rn ↓ γ consists of two loopsRnE1

and RnE2 which constitute a 2–horn

RnE1 RnE2

γ

Uγ

whose 0–simplices are RnE1, RnE2, γ. Notice how the left-most map is Uγ .

Step 2: A 1–simplex in Ω E xtn+1 is a 2–simplex in fEx E xtn+1. The data in Step 1 thus
defines a diagram F′ in fEx E xtn+1 depicted
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F′3

F′1 F′2

F′0

RnE1

γ

RnE2

s0σ s0σ

Every 0–simplex F′i is equal to σ. Define F(123) = s20σ, where s20σ is the degenerate 2–
dimensional copy of σ, to obtain a 3–horn F from F′.

Step 3: Wefill outF toF+ according toLemma5.10. Define a diagramD by restrictingF+

to the boundary spanned by F′0,F′1,F′2, its thickening as well as the central point. This
translates to a diagramD : [1] Ω E xtn+1 fromRnE1 toRnE2. AlthoughD(01) need
not be in the image of Rn, this is easily fixed by applying Lemma 6.4: we have that D
extends to a homotopyH from a diagram in the image ofRn toD. In particular,H(−, 0)
defines a filling of F+ to the thickening of the third face. We further extend F+ to all
of [3] by adding equalities from the zeroth face to its thickening.

This completes the case m = 1. Indeed, the constructed 3–simplex [3] fEx E xtn+1

has a third face of the form

F′1 F′2

F′0

RnE1 RnE2

s0σ

Rnf

which encodes an arrow Rnf : RnE1 RnE2 and fills the horn in step 1:

RnE1 RnE2

γ

Uγ

Rnf

There is nothing special aboutm = 1, except for the possibility of drawing pictures. Here
is the general algorithm outlined above:

Step 1: The simplicial sphere ∂[m] Rn ↓ γ has 0–simplices RnEi γ , which
we index by i = 1, . . . ,m + 1, and the first map agrees with Uγ . This data defines
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an (m + 1)–horn in Ω E xtn+1 since all arrows terminate in γ. We order the 0–
simplices RnE1, . . . , RnEm+1, γ.

Step 2: For every i = 1, . . . ,m+ 1 we now have anm–simplex Γi in Ω E xtn+1 spanned
by

RnE1, . . . , R̂nEi, RnEm+1, γ.

Let S1, . . . , Sm+1 be the corresponding (m + 1)–simplices in fEx E xtn+1. We also
introduce S0 = sm+1

0 σ. These simplices assemble into an (m + 2)–dimensional
horn F : Λm+2[m + 2] fEx E xtn+1. Indeed, it suffices to check that diSj = dj−1Si
for i < j and j 6= m + 1 [GJ09, p. 10]. If j > 0, then applying d0 to Sj always
produces sm0 σ = dj−1s

m+1
0 . So we need only consider i > 0. The m–simplex diSj

corresponds to di−1Γi spanned by

RnE1, . . . , R̂nEi, . . . , R̂nEj , . . . RnEm+1, γ

where the jth term was removed first. If we apply dj−1 to Γi, we get the same output:
we first remove RnEi in the construction of Γi so that reindexing to j − 1 removes RnEj
thereafter.

Step 3: Fill out F to F+ according to Lemma 5.10. To further extend it to an (m + 2)–
simplex we proceed as in the proof of Theorem 6.1. But instead of adding equalities to
include the thickening of the (m + 2)nd face, we rather invoke Lemma 6.4. Thereafter,
we include the (m+ 2)nd face by sending irreducible morphisms from its thickening to
identities. If we interpret the (m + 2)nd face as an (m + 1)–simplex of loops, then this
simplex is necessarily in the image ofRn. The simplicial sphere ∂[m] Rn ↓ γ is thus
filled out.

7 Extriangulated homotopy categories and higher extensions

It has recently been shown that the homotopy category h C of an exact quasi-category C
has a natural extriangulated structure [NP20, Theorem 4.22], when equipped with the
bifunctor π0 E xt1C (B,A) as well as a readily accessible additive realization. In this
section, we use of the Retakh Ext-Ω–spectrum to shed new light onNakaoka–Palu’s result.
More specifically, our claim is that the Retakh spectrum determines the extriangulation
of the homotopy category as well as extriangulated functors between them. We will also
prove in Theorem 7.8 that higher extension categories induce the higher extension groups
when passing to the homotopy category.

We need a few preliminary definitions to review the relatively new theory of extriangulated
categories.

Definition 7.1. Let C be an additive category and let E : Cop × C Ab be an additive
bifunctor into the category of abelian groups. We refer to group elements ξ ∈ E(B,A)
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as E–extensions. A morphism of E–extensions ξ ∈ E(B1, A1) and ξ′ ∈ E(B2, A2) is a
pair of morphisms (a : A1 A2, b : B1 B2) such that E(b, A2)(ξ

′) = E(B1, a)(ξ).

Having defined a notion of a morphism of E–extensions, it is readily checked that there
is a category of such. We denote this by E-Ext1C .

The role played by E–extensions is that of equivalence classes of exact sequences. For
example, if C is an exact quasi-category we have an additive bifunctor

E xt1C (−,−) : C op × C Sp

(recall that Sp is the quasi-category of spectrum objects). This is the first component in
the Retakh spectrum functor E xtC (−,−). It induces a biadditive functor

E := π0 E xt1C (−,−) : (h C )op × h C Ab .

which sends a tuple (B,A) to the set of equivalence classes of exact sequences inC of the
form A E B (i.e. to a connected component of E xt1C (B,A)). An E–extension is
simply an equivalence class of exact sequences. Since the homomorphismE(B, a) sends
an exact sequence A E B to the bottom of the following commutative diagram

A E B

A′ Z B

a �

and dually for E(b, A), it follows by Lemma 2.10 that a morphism of E–extensions is an
equivalence class of morphisms of complexes

(a, e, b) :

A E B

A′ E′ B′

a e b

which is uniquely determined by the pair (a, b).

Lemma 7.2. Let E : Cop × C Ab and E′ : C′op × C′ Ab be additive bifunctors.
If F : C C′ is an additive functor, then a natural transformation

η : E(−,−) E′(F op−, F−)

induces a functor Fη : E-ExtC E′-ExtC′ . If F is an equivalence and η is a natural
isomorphism, then Fη is an equivalence.
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Proof. The maps ηB,A : E(B,A) E′(FB,FA) establish a suitable map of objects.
If (a, b) : ξ1 ξ2 is a morphism of E–extensions ξ1 ∈ E(B1, A1) and ξ2 ∈ E(B2, A2),
the commutativity of the diagram

E(B1, A1) E′(FB1, FA1)

E(B1, A2) E′(FB1, FA2)

E(B2, A2) E′(FB2, FA2)

ηB1,A1

E(B1,a) E′(FB1,a)

ηB1,A2

ηB2,A2

E(b,A2) E′(b,FA2)

shows that (Fa, Fb) is a morphism ηB1,A1ξ1 ηB2,A2ξ2 of E′–extensions.

If F is an equivalence and η is a natural isomorphism, it is clear that Fη is essentially
surjective. Full fidelity follows from the full fidelity of F .

Since we have a natural isomorphism π−1 E xtC π0 E xt1C , between two bifunc-
tors (h C )op × h C Ab, Lemma 7.2 provides an equivalence

E′-ExthC E-ExthC (7.1)

where E = π0 E xt1C and E′ = π−1 E xtC .

Unlike π0 E xt1C , an arbitrary additive bifunctor E need not be directly tied to exact
sequences. In the general case, it necessary to manually link the elements of the abstract
group E(B,A) to concrete diagrams of the form A E B, or rather equivalence
classes of such.

Definition 7.3. Let C be an additive category. Two diagrams of the form A E B

and A E′ B are said to be equivalent if there exists an isomorphism e : E E′

rendering the following diagram commutative.

E

A B

E′

e

The equivalence class containing A E B is denoted [A E B].
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It will be convenient to regard the equivalence classes of sequences as objects in a
category SC . A morphism in this category from [A E B] to [A′ E′ B′]

is pair of morphisms (a : A A′, b : B B′) for which there exists a commutative
diagram as follows:

A E B

A′ E′ B′

a e b

Composition in this category is clearly well defined and associative.

The attentive reader might have had a dejà vu experience when reading the last paragraph.
Indeed, the category of π0 E xt1C –extensions is remarkably similar to ShC . The difference
is that ShC contains more objects, giving rise to an embedding ιC : E-Ext1hC ShC ,
where E = π0 E xt1C . This is an example of the general notion of realization.

Definition 7.4. LetE : Cop×C Ab be an additive bifunctor. A realization is a functor

s : E-Ext1C SC

such that anE–extension ξ ∈ E(B,A) is sent to an equivalence class [A E B]with
appropriate endpoints. Equivalently, a realization is a correspondence s that sends anE–
extension ξ ∈ E(B,A) to an equivalence class [A E B], satisfying the following
property: If (a, b) is a morphism of E–extensions that are realized by [A E B]

and [A′ E′ B′], there exists a morphism e : E E′ such that the diagram

A E B

A′ E′ B′

a e b

is commutative.

A realization s is additive if s(B0A) = [σ1(B,A)], where B0A is the zero element
in E(B,A) and σ1(B,A) is the split exact sequence, and s(ξ1 ⊕ ξ2) = s(ξ1)⊕ s(ξ2).

A realization restricts to a map fromE(B,A) to a subset of the set of equivalence classes
of the form [A E B]. Since E(B,A) is an abelian group, this map gives a group
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structure to this subset. Moreover, an additive realization gives rise to a group structure
that behaves similarly to Yoneda Ext-groups in exact categories.

The embedding ιC : E-Ext1hC ShC , where E = π0 E xt1C , was our motivating ex-
ample of a realization. It is easy to see that this is additive. Composing with the above
equivalence (7.1) yields an additive realization

E′-Ext1hC E-Ext1hC ShC

of E′ = π−1 E xtC .

We now have all ingredients to define what is meant by an extriangulated category and
extriangulated functors.

Definition 7.5 ([NP19, Definition 2.12]). Let C be an additive category, and consider a
bifunctorE : Cop×C Ab as well as an additive realization s ofE. The triple (C,E, s)
is an extriangulated category if the follows axioms hold.

(ET3) Let ξ1 ∈ E(B1, A1) and ξ2 ∈ E(B2, A2) be E–extensions with realizations

s(ξ1) = [A1 E1 B1] s(ξ2) = [A2 E2 B2]

If the solid part of the following diagram commutes

A1 E1 B1

A2 E2 B2

the dashed morphism exists and the resulting diagram is commutative.

(ET3op) Dual of 7.5 [NP19, (ET3op) in Definition 2.12].

(ET4) Let ξ1 ∈ E(B1, A1) and ξ2 ∈ E(C,B) be E–extensions with realizations

s(ξ1) = [A E B], s(ξ2) = [E F C].

There exists a commutative diagram

A E B

A F G

C C

i p

j

q
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and an E–extension ξ3 ∈ E(G,A) which is realized by the middle row. More-
over, we require that

(ET4.1) s(E(C, p)(ξ2)) = [B G C],
(ET4.2) E(j, A)(ξ3) = ξ1,
(ET4.3) E(G, i)(ξ3) = E(q, E)(ξ2).

(ET4op) Dual of 7.5 [NP19, Remark 2.22].

Definition 7.6 ([BTS21, Definition 2.32]). Let (C,E, s) and (C′,E′, s′) be extriangulated
categories. An extriangulated functor consists of an additive functor F : C C′ for
which there exists a natural transformation η : E(−,−) E′(F op−, F−) such that
diagram of functors

E-ExtC E′-ExtC′

SC SC′

Fη

s s′

SF

commutes, where Fη is as in Lemma 7.2 and SF sends the class [A E B] to
the class [FA FE FB]. An extriangulated functor is an equivalence if F is an
equivalence of categories.

As stated above, the homotopy category of an exact quasi-category admits a natural
extriangulation. More precisely:

Theorem 7.7 ([NP20, Theorem 4.22 and Proposition 4.28]). Let C be an exact quasi-
category, and consider the additive bifunctor

E = π0 E xt1C (−,−) : (h C )op × h C Ab,

as well as the additive realization

E = π0 E xt1C
ιC

ShC .

Then the triple (h C ,E, ιC ) is an extriagulated category. Furthermore, if F : C D

is an exact functor, then the induced functor hF : h C h D between homotopy cate-
gories is an extriangulated functor.

An extriangulated category is topological if it is equivalent to the homotopy category of
some exact quasi-category.
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We noted above that we have a natural isomorphism of bifunctors

ϕ : π−1 E xtC (−,−) =⇒ π0 E xt1C (−,−).

A realization of π−1 E xtC (−,−) is achieved by precomposing the realization ιC with the
equivalence (7.1). It now follows from Lemma 7.2 that the identity functor 1hC on h C
yields an extriangulated equivalence

(h C , π−1 E xtC (−,−), ιC ◦ (7.1)) (h C , π0 E xt1C (−,−), ιC ).

In other words, we can present the extriangulation on the topological extriangulated
category h C using the Retakh spectrum.

Let F : C D be an exact functor of exact quasi-categories. By Proposition 4.5 we
have a natural transformation

E xtC (−,−) =⇒ E xtD(F−, F−)

of functors C op × C Sp. We can thus induce a natural transformation

η : π−1 E xtC (−,−) =⇒ π0 E xt1D(F−, F−)

of functors (h C )op × h C Ab. Pushing this natural transformation down to the
homotopy category ensures that the functor

hF : h C h D

is extriangulated. Indeed, by Lemma 7.2, we have a functor

hFη : π−1 E xtC -Ext π−1 E xtC -Ext,

since the vertical maps in the diagram

π−1 E xtC -Ext π−1 E xtD -Ext

ShC ShD

hFη

SF

sends an equivalence class of extensions [A E B] to itself, it is easy to see that the
diagram commutes, and consequently that hF is an extriangulated functor.

Klemenc’ embedding theorem (restated here as Theorem 2.6), as well as the discussion
above, proves that any small topological extriangulated category embeds into a triangu-
lated category.
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As a new contribution, we generalise Theorem 7.7. The spectrum object E xtC does
not only determine a natural extriangulation on h C . It also gives the higher extension
functors, recently defined by Gorsky–Nakaoka–Palu [GNP21, Definition 3.1]. We review
their definition first.

Let F and G be bifunctors Cop × C Ab. For a fixed pair of objects (X,Y ), consider
the bifunctor G(−, Y )⊗

Z
F (X,−). The coend of this defines a product of G and F .

(G � F )(X,Y ) :=

C∈C∫
G(C, Y )⊗

Z
F (X,C).

Since the category of abelian groups is cocomplete, the coend of a bifunctor S on C
into Ab can be obtained as the coequalizer of the diagram

∐
f : c1→c2

S(c2, c1)
∐
c
S(c, c),

S(c2,f)

S(f,c1)
(7.2)

where the first coproduct is indexed over all morphisms in C, and the second over all its
objects.

Let (C ,E, s) be an extriangulated category. We set the zeroth extension functor to be the
Hom-functor C(−,−), and the first to be E. The higher extension functors E�n are then
inductively defined inductively by

E�n := E�n−1 �E.

Theorem 7.8. Let C be an exact quasi-category. The bifunctor π0 E xtnC (−,−) is
naturally isomorphic to the nth extension functor π0 E xt1C (−,−)�n.

Proof. We proceed by induction. The base cases will be ` = 0 and ` = 1, both of which
holding by definition.

Suppose that we have natural isomorphisms

ϕ`X,Y : π0 E xt1C (X,Y )�` π0 E xt`C (X,Y ),

for some ` ≥ 1. Applying the tensor functor gives another natural isomorphism

π0 E xt1C (X,Y )�` ⊗
Z
π0 E xt1C (B,A) π0 E xt`C (X,Y )⊗

Z
π0 E xt1C (B,A).

ϕ`X,Y ⊗1

Consider also the homomorphism

cB,A : π0 E xt`C (C,A)⊗
Z
π0 E xt1C (B,C) π0 E xt`+1

C (B,A)
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that concatenates exact sequences. Our strategy to complete the inductive step will be
to show that cB,A ◦ (ϕ`C,A ⊗ 1) is a coequalizer of the diagram (7.2), with the tensor
product π0 E xt`C (−, A) ⊗

Z
π0 E xt1C (B,−) in place of S. We simplify our notation by

setting S = π0 E xt`C (−, A)⊗
Z
π0 E xt1C (B,−) for the remainder of this proof.

In order to have a coequalizer, it must be the case that

cB,A ◦ (ϕ`C,A ⊗ 1) ◦ S(c2, f) = cB,A ◦ (ϕ`C,A ⊗ 1) ◦ S(f, c1). (7.3)

In other words, it should be shown that

cB,A ◦ (ϕ`C,A ⊗ 1)

is a cofork of the diagram (7.2). The situation is illustrated by the solid part of the diagram

A · · · E(`−1).5 C ′ C2 F B

A · · · E(`−1).5 E` C1 F ′ B

1 1

y
f

p
1 (7.4)

The diagram is completed by taking a pullback and pushout of f along the mor-
phisms E` C1 and C2 F , respectively, and then adding identity morphisms so
that we end up with a morphism of exact sequences. The top row of the entire diagram
then displays a representative of an equivalence class in the left hand side of (7.3), and
the bottom row displays one the right hand side. Since the diagram (7.4) is a morphism
between them in E xt`+1

C (B,A), these representatives belong to the same equivalence
class, as desired.

Lastly, we give reasons as to why cB,A ◦ (ϕ`C,A ⊗ 1) is a universal cofork of (7.2). Given
an abelian groupM and a group homomorphism

∐
c
S(c, c) Mm

satisfyingm ◦ S(c2, f) = m ◦ S(f, c1), our task is to find a homomorphism

m : π0 E xt`+1
C (B,A) M

such thatm = m◦cB,A◦(ϕ`C,A⊗1), and then show thatm is unique. Letm(E) := m(Ẽ),
where Ẽ is a choice of preimage ofE in

∐
c
S(c, c). This is a well-defined homomorphism;

a different choice of preimage would yields the same result. The uniqueness of m is a
direct consequence of the fact that cB,A ◦ (ϕ`C,A ⊗ 1) is an epimorphism.
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A Proofs of diagram lemmas

We ended Section 2 with a series of diagram lemmas for exact categories, claiming that
they generalize to exact quasi-categories. These results are found in Bühler’s mono-
graph [Büh10], as well as countless other texts. The proofs presented here are in a
quasi-categorical context. Unlike the special case of ordinary exact categories where
cofibrations (resp. fibrations) are monomorphisms (resp. epimorphisms), which we may
not assume in a general quasi-categorical context.

Lemma 2.11. Consider a map of exact sequences

A E B

C F D

iA

f ′ f

pB

f ′′

iC pD

If f ′ and f ′′ are homotopy equivalences (resp. cofibrations, resp fibrations), so is f .

Proof. If f ′ and f ′′ are homotopy equivalences, we use Lemma 2.10 to construct a
diagram

A E B

C Z D

C F D

iA

f ′ � g

pB

j

h

q

� f ′′

iC pD

with exact rows. Since pushouts and pullbacks of homotopy equivalences are homotopy
equivalences, the maps g and h are homotopy equivalences, whence f = hg is.

If f ′ and f ′′ are cofibrations, then g is a cofibration since it is a pushout of f ′, and h is a
cofibration as a direct consequence of (Ex3). Thus, the composite f = hg is a cofibration.

If f ′ and f ′′ are fibrations, it is shown dually that f is a fibration.

Lemma 2.12. Consider the commutative diagram with exact columns
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A′ E′ B′

A E B

A′′ E′′ B′′

iA

f ′ g′

iE iB

f

pA

g

pE pB

f ′′ g′′

If the middle row and one of the other rows is exact, then the remaining row is exact.

Proof. We assume that the top and middle rows are exact, and show that the bottom row
is. The other case is dual.

The map of exact sequences connecting the top and middle rows can be factored

A′ E′ B′

A Z B′

A E B

f ′

iA � iA

g′

f

iB

g

� iB

f g

as asserted by Lemma 2.10. Our aim is to prove that f ′′ is a cofibration and that the square

A′′ E′′

0 B′′

f ′′

g′′

is bicartesian. It suffices to show that the top square and outer rectangle in the diagram

Z E

A′′ E′′

0 B′′

iB

q pE

f ′′

g′′

are bicartesian, where q is a cofiber of iA (by Lemma 2.9, the target of q can indeed be
chosen as A′′). Here, the outer rectangle is obtained by pasting two known bicartesian
squares
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Z E

B′ B

0 B′′

iB

g � g

iB

� pB

and the upper square appears on the bottom right when applying Lemma 2.10 to the map

A′ E′

A E

A′′ E′′

iA

f ′

iE

pA

f

pE

f ′′

of exact sequences.
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Section complexes of height functions

Melvin Vaupel, Erik Hermansen and Paul Trygsland

Abstract. Piecewise linear functions appear everywhere in mathematics and nature. For
instance, these maps are intrinsic to surface triangulations and data sets often come with a
real-valued parametrization such as time or density. We model piecewise linear functions
as certain simplicial maps, which we refer to as height functions. This allows us to intro-
duce the associated section complex. To do so, higher section spaces are defined, which
encode flow-lines along the height in a combinatorial way. Our construction comes with a
spectral sequence which computes homology of the height function’s domain. We extract
Reeb complexes from the spectral sequence, which provide a first order approximation
of how homology generators flow along height levels. In this way, Reeb complexes can
be thought of as higher variants of Reeb graphs. Moreover, section complexes give rise
to zigzag modules. These are different, but related, to the ones obtained by level-set
zigzag persistence. In particular, barcodes of filtrations can be calculated using section
complexes.

1 Introduction

A data set often comes with a natural real-valued function, such as time or density. Ex-
isting methods studying this kind of structure, for example level-set zigzag and Map-
per [CdSM09, SMC+07], often build on the idea of looking at preimages of an open
cover in R. We instead consider combinatorial flow-lines in order to directly capture how
homology generators flow across height levels. This is achieved by developing a discrete
variant of the section spaces from [Try21].

Consider a real-valued piecewise linear function f on a CW complex T (e.g. a geometric
simplicial complex). This information is combinatorial in nature: all CW-complexes can
be realized from simplicial sets. Hence we rather work with a simplicial map h : X → R
on a simplicial set X directly. Here R is our preferred simplicial model for the real line
(see Definition 2.3). We refer to h as a height function (Definition 2.6).

The fibers of h assemble into a simplicial set ∏
a∈R h−1a that we call the space of 0–

sections. To capture how these fibers are connected across p levels, we introduce the p–
sections. A 1–section from height a to height b is a 1–simplex in X starting in h−1a
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and ending in h−1b, a 2–section is a 2–simplex labeled by three height values and so on.
There is a simplicial set, (Sh)p, containing the p–sections as its vertices, which we refer
to as the space of p–sections. It turns out that the section spaces are also simplicial in p.
Thus, we may define a bisimplicial set, Sh, associated with the height function h, called
the section complex of h.

The section complex essentially splits up the homology information of X into two di-
rections: the horizontal direction along h and the vertical one transversal to it. This is
encapsulated in the following main result:

Theorem 1.1. Let h : X→R be a height function. The diagonal of the bisimplicial set Sh
is homotopy equivalent to X :

diagSh ' X .

The computational implications of this result comes from the existence of a spectral
sequence which computes the homology of the diagonal, diagSh, from homological fea-
tures of the section spaces (Sh)p (see e.g. [Seg68, GJ09]). We refer to the spectral se-
quence associated to Sh as the section spectral sequence. A similar result was proved
for smooth Morse functions in unpublished work of Cohen, Jones and Segal [CJS92].
In their case, the associated spectral sequence reduces to the widely used Morse ho-
mology. Nanda, Tamaki and Tanaka also have an analogous result for discrete Morse
functions [NTT18].

From the first page of the section spectral sequence we extract for q = 0,1,2, . . . chain
complexes Gq. We refer to Gq as the qth Reeb complex of h. It is a chain complex which
reveals how homology generators in Hq flow across height levels. Moreover, for a finite
simplicial set X , the Reeb complexes can be computed in finite time.

Proposition 1.2. Let h : X → R be a height function and Gq its qth Reeb complex. The
associated section spectral sequence has HpGq appearing as the (p,q)th entry on the
second page E2

p,q ' HpGq and converges to the homology of X :

HpGq⇒ Hp+qX .

This means that the spectral sequence uses the Reeb complexes as a first order approx-
imation of the homology of X , and subsequently uses HpGq in an iterative process to
recover H∗X . The complexity of the section spectral sequence depends on how subdi-
vided X is relative to h. We say that X is subdivided according to h if every 1–section
traverses only successive height levels. In this case, the section spectral sequence col-
lapses at the second page. This means that the Reeb complexes Gq recover the homology
of X directly:

HnX =
⊕

p+q=n
HpGq.
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As the name suggests, the Reeb complexes are closely related to Reeb graphs [Ree46].
Indeed, if X is subdivided according to h, then the Reeb graph is obtained by apply-
ing π0 level-wise to the section spaces (Sh)p in Sh (Proposition 3.6). In particular, the
zeroth Reeb complex G0 calculates the homology of the Reeb graph. Contrast this to how
Mapper produces a graph from applying π0 to preimages of intervals under h [SMC+07].

Given a filtration X= X0
i1
↪−→ X1

i2
↪−→ . . .

in
↪−→ Xn we can construct its iterated mapping cylin-

der CX. The indices of X provide a natural height function hX on CX. In this case the
associated section spectral sequence amounts to a series of zigzag modules Gq, with
which we recover the barcode of X:

Theorem 1.3. The barcodes of HqX and Gq are the same.

More generally, for any X subdivided according to a height function h, the Reeb com-
plex Gq is equivalent to a zigzag module Gq:

Hqh−1a0 Hqh−1a1 · · · Hqh−1an−1 Hqh−1an

HqSh[a0,a1] HqSh[an−1,an]
Hqdh

1 Hqdh
0 Hqdh

1 Hqdh
0

where Sh[ai,ai+1] is the simplicial set of 1–sections from ai to ai+1. Our final result
relates these to level-set zigzag modules [CdSM09]

Hqh−1[a0,a1] Hqh−1[an−1,an]

Hqh−1a0 Hqh−1a1 · · · Hqh−1an−1 Hqh−1an

via the diamond principle [CdS10].

Theorem 1.4 (Diamond Principle). Consider a height function h : X → R for which

i) X is subdivided according to h and

ii) the image of 0–simplices, h(X0), is discrete as a subset of the real numbers.

Then for every pair of successive critical values a < b the sequence

HqSh[a,b]→ Hqh−1a⊕Hqh−1b→ Hqh−1[a,b]

is exact at the middle term.
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Outline. In section 2, we give a brief introduction of simplicial sets, followed by an
in-depth description of the section complex. Thereafter, Theorem 1.1 is proved in Sec-
tion 2.4. Section 3 starts by introducing the Reeb complexes, followed by the more
general section spectral sequence in Section 3.3. Numerous examples are computed to
illustrate the theory. We end the discussion in Section 3.4 with a brief comparison of our
discrete theory and the topological theory in [Try21]. Finally, Section 4 starts by explain-
ing how zigzag modules are produced from Reeb complexes. Sections 4.2 and 4.3 are
dedicated to clarifying and proving Theorems 1.3 and 1.4, respectively.

Computer code. A Python implementation for computing section complexes, as well as
Reeb complexes, is found at https://github.com/paultrygs/Section-Complex/.

Notation. Categories of familiar objects are put inside parenthesis, e.g. (Simplicial Sets).
The hom-set of maps X→Y is denoted Map(X ,Y ), while map(X ,Y ) refers to the simpli-
cial set of maps. We will in general consider chain complexes over coefficients in some
field k.

2 The section complex

We introduce higher section spaces (Sh)p and explain how they assemble into the bisim-
plicial set Sh. In the end, we prove our main Theorem 1.1.

2.1 Background on simplicial sets

A simplicial set X is a sequence Xn of sets, ranging over n = 0,1,2, . . . , together with
face maps di : Xn → Xn−1 and degeneracy maps s j : Xn → Xn+1 satisfying certain rela-
tions [GJ09, p.4]. An element x in Xn is interpreted as an n–simplex whose ith face
is dix, whereas s jx incorporates ways to consider x as an (n+ 1)–simplex. In contrast
to simplicial complexes, this for example implies that an (n+ 1)–simplex y can have
an (n− 1)–simplex x as its face; diy = s jx. Moreover, two distinct n–simplices x and y
can have equal faces dix = diy for all i. Equivalently, the data of a simplicial set X can be
organized into a functor X : ∆op→ (Sets), where ∆ is the simplex category.

Example 2.1. We construct a circle from 0–simplices v0 and v1 and 1–simplices e0
and e1, not counting degeneracies, by declaring d0ei = v1 and d1ei = v0, for i = 0,1.
A sphere can be obtained from a single 0–simplex v and 2–simplex f . In this case, all
faces of f must be equal to s0v, a degenerate 0–simplex. This means that the boundary
of f is equal to the point v.
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v0 v1

e0

e1

v

f

A simplicial map f : X → Y is a series of maps fn : Xn→ Yn which commute with face
and degeneracy maps. Pictures as above are produced by labeling each n–simplex in X
with the topological n–simplex ∆n

t and identifying appropriate simplices via the geomet-
ric realization |X | = (

∏
n

Xn×∆n
t )/ ∼. The quotient glues simplices along faces and col-

lapses degenerate simplices. Note that the realization is a functor from (Simplicial Sets)
to (topological spaces).

Any small category C defines a simplicial set NC, called the nerve of C. The set of 0–
simplices, NC0, consists of objects in C, and NCn consists of tuples (m1, . . . ,mn), of com-
posable morphisms within C. The ith face of (m1, . . . ,mn) is determined by composi-
tion (m1, . . . ,mi+1 ◦mi, . . . ,mn) for i 6= 0,n, whereas d0 and dn omit m0 and mn, respec-
tively. We depict a 2–simplex ( f ,g):

B

A C.

gf

g◦ f

Example 2.2. Let [n] be the category generated by the directed graph 0→ 1→ ··· → n.
Applying the nerve yields the standard simplicial n–simplex ∆n = N[n]. It consists of a
unique n–simplex coming from the tuple (0→ 1,1→ 2, . . . ,n−1→ n) with n+1 distinct
faces. We recover the topological n–simplex ∆n

t as |∆n|.

There are simplicial inclusions δi : ∆n→∆n+1 which identify ∆n with the ith face of ∆n+1.
Observe that δ i(q) equals q if q < i and q+1 otherwise. Conversely, there are simplicial
collapses σ j : ∆n+1→ ∆n for which σ i(q) equals q if n≤ i and q−1 otherwise.

Definition 2.3. Let (R,≤) be the real line equipped with its usual ordering. We define
the simplicial real line R = N(R,≤).

An n–simplex in R is uniquely determined by a non-decreasing sequence ā = (a0, . . . ,an)
of real numbers.
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Two simplicial sets X and Y define a product X×Y with n–simplices Xn×Yn, whose face
and degeneracy maps are computed component-wise.

Example 2.4. Consider the product of two copies of the standard 1–simplex: ∆1×∆1.
Decomposing 0→ 1 in components (0→ 1,0→ 1) = (0→ 1,1→ 1) ◦ (0→ 0,0→ 1)
yields the top 2–simplex in its realization:

(0,0)

(0,1)

(1,0)

(1,1)

The bottom one is obtained as (0→ 1,0→ 1) = (1→ 1,0→ 1)◦ (0→ 1,0→ 0).

A simplicial homotopy is a simplicial map H : X × I → Y such that I realizes to the
standard unit interval. Note that a simplicial homotopy realizes to an ordinary homotopy
in topological spaces [Seg68].

The simplicial mapping space map(X ,Y ) have the simplicial maps f : X → Y as its 0–
simplices . An n–simplex in map(X ,Y )n is a simplicial map X ×∆n → Y . Since ∆1 is
a model of the interval, the 1–simplices are homotopies. Face and degeneracy maps, di

and s j, are obtained by pre-composing with component-wise maps idX×δ i and idX×σ j,
respectively (Example 2.2). Applying di to f : X×∆n→Y thus restricts ∆n to its ith face,
whereas s j adds appropriate identities.

Example 2.5. A 0–simplex in map(∆1,X) is a simplicial map e : ∆1→ X , uniquely de-
termined by a 1–simplex e in X . Homotopies H : ∆1 × ∆1 → X , or 1–simplices, are
determined by squares in X connecting two 1–simplices e0 and e1.

e1

e0

d0 d1

e0

e1

2.2 Sections of height functions

Let f : T → R be a continuous function on a topological space. In [Try21], a sec-
tion of f is defined as a continuous function ρ : [a,b] → T , such that the composi-
tion f ◦ ρ is the inclusion [a,b] ↪→ R. Denote by map([a,b],T ) the topological space
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of maps [a,b]→ T , with the compact-open topology, and define Sect f [a,b] as the sub-
space whose points are the sections of f . These are then arranged in the space of all
sections Sect f =

∏Sect f [a,b], ranging over all real numbers a ≤ b. Note that two sec-
tions, one in Sect f [a,b] and the other in Sect f [b,c], with compatible ending and starting
points can be concatenated to a section in Sect f [a,c]. This makes it possible to define the
section category of f , a category internal to topological spaces with Sect f as its space
of morphisms. In [Try21] it is then shown that under fairly mild assumptions, the clas-
sifying space of this category is homotopy equivalent to T . These assumptions are for
example met by piecewise linear functions.

We will now describe how to obtain such piecewise linear functions from height func-
tions on simplicial sets. To that end, recall the definition of the simplicial real line R
(Definition 2.3).

Definition 2.6. Let X be a simplicial set. A height function h on X is defined as a
simplicial map h : X → R.

We can equivalently characterize a height function, h, as a map between sets h : X0→R.
Indeed, h associates to each 0–simplex v in X0 a height h(v) in R. Conversely, assigning
to every v in X0 a height h(v) such that the orientation of the 1–simplices in X is respected,
defines a unique height function h : X → R. We call the image h(X0) the height levels
of h.

We observe from the previous section that a point in the realization |R| is a class [ā, t̄]
where ā = (a0, . . . ,an) is a non-decreasing sequence of real numbers and t̄ = (t0, . . . , tn)
a point in the topological n–simplex. The dot product āt̄ defines a continuous func-
tion c : |R| → R from the realization of R to the real line. Any height function h : X → R
thus associates to a piecewise linear function f : |X | → R by composing |h| and c. It
is shown in [Try21] that no homotopical information is lost if we only consider those
sections that start and end at the height levels of h.

We now ask the following question: is it possible to construct a simplicial version of
the section category directly from the simplicial height function h : X → R rather than
from the associated piecewise linear function f ? This would render all the information
involved combinatorial, thus accessible for the methods in computational topology.

There is a natural choice for replacing the topological space of sections between two
heights a0 and a1 with a simplicial set, Sh[a0,a1]. Namely, the subspace of the mapping
space, map(∆1,X), carved out by the pullback:

Sh[a0,a1] map(∆1,X)

∆0 map(∆1,R),

map(∆1,h)

(a0,a1)

7



where we interpret the 1–simplex (a0,a1) in R as the simplicial map ∆1→R, with 0 7→ a0
and 1 7→ a1. We may then define (Sh)1, the space of 1–sections of h as the disjoint union

(Sh)1 =
∏

a0≤a1

Sh[a0,a1].

Example 2.7. We take as our simplicial set the standard 2–simplex ∆2 and define a height
function by the labels of the figure:

0

1

1e2

e1

s

The two horizontal 1–simplices e1 and e2 in ∆2 are 0–simplices in the section space Sh[0,1].
The 2–simplex s corresponds to a 1–simplex connecting e1 and e2; d0s = e1 and d1s = e2.

The following example illustrates why we cannot proceed as in the construction of the
topological section category.

Example 2.8. We define a height function on the standard 2–simplex ∆2 as follows:

0

1

2e1

e2 e0
s

There is a unique 1–simplex between each distinct pair of heights. This means that the 1–
section spaces are: Sh[0,1] = {e2}, Sh[1,2] = {e0} and Sh[0,2] = {e1}. Hence the space
of 1–sections cannot be utilized to recover the 2–simplex s in ∆2 connecting e0, e1 and e2.
Contrast this with the corresponding topological situation. In that case, the sections |e2|
and |e0| may be concatenated into |e2| ∗ |e0|, a section from height 0 to height 2 running
through 0→ 1→ 2. We would also find a continuous path from |e2| ∗ |e0| to |e1| moving
along the bottom of the triangle, given by continuous deformation through the realization
of the 2–simplex. In particular, this process encodes the topological information provided
by |s|.

To recover higher simplices across more than two height levels, we introduce higher
sections.
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2.3 Higher sections and the section complex

Definition 2.9. Given a height function h : X→R on a simplicial set X , we may construct
for every p–simplex ā : ∆p→ R, a simplicial set Sh[ā] as the pullback

Sh[ā] map(∆p,X)

∆0 map(∆p,R).

map(∆p,h)

ā

Take the disjoint union over all p–simplices in R to obtain

(Sh)p :=
⊔

ā∈Rp

Sh[ā],

which we refer to as the space of p–sections of h.

By definition, the space of p–sections is a simplicial set. This is guaranteed by the fact
that pullbacks and coproducts always exist in the category of simplicial sets. The 0–
simplices are the p–sections of h, i.e. the p–simplices in X spanning p height lev-
els. The q–simplices are then the (p,q)–sections in (Sh)p corresponding to a simplicial
map ρ : ∆p×∆q→ X such that there is some p–simplex ā = (a0, . . . ,ap) in Rp for which

∆p×∆q ∆p R

X

ρ

pr0 ā

h

commutes. For instance, the 2-simplex, s, of Example 2.7 is a (1,1)–section in (Sh)1. In
Example 2.8, on the other hand, s is a (2,0)–section in (Sh)2.

In Section 2.1, we explained how the face and degeneracy maps in map(∆p,X) are ob-
tained by pre-composing with id∆p×δ i and id∆p×σ j:

∆p×∆q−1 ∆p R ∆p×∆q+1 ∆p R

∆p×∆q ∆p×∆q

X X

dv
i (ρ)

id∆p×δ i

pr0 ā

sv
j(ρ)

id∆p×σ j

pr0 ā

ρ ρ
h h

These diagrams characterize the face and degeneracy maps

dv
i : (Sh)p,q→ (Sh)p,q−1 and sv

j : (Sh)p,q→ (Sh)p,q+1
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in the space of p–sections. As the superscript v indicates, we call these the vertical face
and degeneracy maps.

The above use of ‘vertical’ hints to the fact that there is a second, horizontal, simplicial
structure. Indeed, we can pre-compose a (p,q)–section with a simplicial inclusion or
collapse applied to the first component in ∆p×∆q to obtain commutative diagrams

∆p−1×∆q ∆p−1 ∆p R

∆p×∆q

X

dh
i (ρ)

δ i×id∆q

pr0 δ i ā

ρ
h

and
∆p+1×∆q ∆p+1 ∆p R

∆p×∆q

X

sh
j(ρ)

σ j×id∆q

pr0 σ j ā

ρ
h

These characterize maps of sets

dh
i : (Sh)p,q→ (Sh)p−1,q and sh

j : (Sh)p,q→ (Sh)p+1,q

which we refer to as the horizontal face and degeneracy maps. Alternatively, the hori-
zontal face maps can be induced from the universal property of the pullback via:

map(∆p,X)

map(∆p−1,X)

∆0 map(∆p,R)

∆0 map(∆p−1,R),

map(δ i,X)

ā

map(δ i,R)

ā◦δ i

and similarly for horizontal degeneracy maps. This shows that the horizontal face maps
are in fact simplicial maps

dh
i : (Sh)p→ (Sh)p−1 and sh

j : (Sh)p→ (Sh)p+1

10



going from p–sections to (p− 1) and (p+ 1)–sections, respectively. The intuition is
that dh

i restricts a p–section in Sh[a0, . . . ,ap] to a (p−1)–section in Sh[a0, . . . , âi, . . . ,ap],
whereas sh

j adds a degenerate label Sh[a0, . . . ,a j,a j, . . . ,ap]. The set (Sh)p,q is therefore
simplicial in both p and q, defining a bisimplicial set.

Definition 2.10. The section complex of a height function h : X → R is the bisimplicial
set Sh with (p,q)–simplices given by (Sh)p,q, i.e. the (p,q)–sections ρ : ∆p×∆q→ X . It
has horizontal and vertical face and degeneracy maps as defined above.

Example 2.11. Consider once more the standard 2–simplex with height function like in
Example 2.8. The simplicial set (Sh)0 is the disjoint union Sh[0]

∏Sh[1]
∏Sh[2]. All

these components consist of a single point determined by the 0–simplices at the corre-
sponding heights. If we don’t count degeneracies, the simplicial set (Sh)1 is the disjoint
union Sh[0,1]

∏Sh[1,2]
∏Sh[0,2]. Again, all of the components are singletons corre-

sponding to the 1–simplices e2, e0 and e1, respectively. Lastly, (Sh)2 = Sh[0,1,2], con-
taining the 2–section corresponding to s. In this example, the horizontal face maps of s
correspond to the ordinary face maps of the standard 2–simplex; dh

0s = e0, dh
1s = e1

and dh
2s = e2. Notice how the higher section space (Sh)2 makes it possible to recover the

topology of the 2–simplex.

Example 2.12. Consider the product of two standard 1–simplices as in Example 2.4.

(0,0)

(0,1)

(1,0)

(1,1)
ρ1

ρ0

e0 e1

We obtain a height function by projecting the labels of the vertices to their first com-
ponent h : (i, j) 7→ i. The space of 0–sections is (Sh)0 = Sh[0]

∏Sh[1] = h−10∏h−11,
with two components corresponding to the two 1–simplices e0 and e1. The space of 1–
simplices is (Sh)1 = Sh[0,1]. Consider the (1,1)–section defined in terms of the iden-
tity id∆1×∆1 : ∆1×∆1→ ∆1×∆1. It has two horizontal faces e0 and e1 and two vertical
faces given by the two 1–sections ρ0 and ρ1. We interpret this as id∆1×∆1 being a homo-
topy from ρ0 to ρ1.

2.4 Proof of Theorem 1.1

We will now prove that the diagonal of the section complex Sh, associated to a height
function h : X → R, is homotopy equivalent to X (Theorem 1.1). This makes it possible
to use the spectral sequence of Sh to extract homological features of X , which will be
discussed in Section 3.
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The diagonal of Sh, (diagSh)n, is defined to have (n,n)–sections ρ : ∆n×∆n→ X as n–
simplices. Since horizontal and vertical face maps are independent, we can safely de-
fine di = dh

i dv
i which is equal to dv

i dh
i . Similarly, s j = sh

js
v
j.

Let us understand how to relate diagSh and X : the n–simplices in diagSh define a sub-
set of map(∆n,X)n = Map(∆n × ∆n,X), while the n–simplices of X are given by the
set Map(∆n,X). There are maps (id∆n , id∆n) : ∆n → ∆n×∆n, i 7→ (i, i) and, conversely,
the projection onto the ”section component” is defined: pr0 : ∆n×∆n → ∆n, (i, j) 7→ i.
Pre-composition defines maps

(id, id)∗ : diagSh→ X and pr∗0 : X → diagSh

which will be proven mutual homotopy inverses. The latter map is well-defined. Indeed,
if τ : ∆n→ X is any n–simplex in X , then the composition

∆n×∆n ∆n X R
pr0 τ h

is in Sh(ā), where ā is defined by the n–simplex h◦τ . Furthermore, these maps are clearly
simplicial and the composition (id, id)∗ ◦pr∗0 is the identity. The proof of the theorem is
thus reduced to finding a simplicial homotopy

H : iddiagSh ⇒ pr∗0 ◦(id, id)∗.
To do so we first introduce for every n≥ 0, two families of simplicial maps

{φn,s : ∆n×∆n→ ∆n×∆n}0≤s≤n+1 (1)

and
{ψn,s : ∆n×∆n→ ∆n×∆n}0≤s≤n+1. (2)

Pulling these maps back along sections in (diagSh)n will then provide us with the com-
ponents of our homotopy. Note that the parameter s will be necessary to make these
components fit together into a simplicial map.

We specify how the maps (1) and (2) act on 0–simplices:

φn,s(i, j) =

{
(i, i) if i > n− s and j ≤ i
(i, j) else

(3)

and

ψn,s(i, j) =





(i, i) if j ≤ i
(i, i) if i < s and j ≥ i
(i, j) else

(4)

Note that the so defined assignments preserve the preorder on 0–simplices in ∆n×∆n.
Because ∆n×∆n is the nerve of the category [n]× [n], and the nerve functor preserves
products, (3) and (4) uniquely determine the families (1) and (2), respectively.

The following figure depicts the maps φ1,s and ψ1,s in terms of their image.
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(0,0)

(0,1) (1,1)

(1,0)
φ1,0

(0,0)

(0,1) (1,1)

(1,1)
φ1,1 = φ1,2 = ψ1,0

(0,0)

(1,1) (1,1)

(0,0)
ψ1,1 = ψ1,2

In general, the map φn,0 is always the identity and ψn,n = ψn,n+1 = (id, id) ◦ pr0. These
maps will respectively correspond to the start and end of our final homotopy.

We proceed by looking at how the maps φ2,s act on the three diagonal faces of ∆2×∆2.
Im(δ 0×δ 0(∆1×∆1)):

(1,1)

(1,2) (2,2)

(2,1)
φ2,0

(1,1)

(1,2) (2,2)

(2,2)
φ2,1

(1,1)

(1,2) (2,2)

(2,2)
φ2,2 = φ2,3

Im(δ 1×δ 1(∆1×∆1)):

(0,0)

(0,2) (2,2)

(2,0)
φ2,0

(0,0)

(0,2) (2,2)

(2,2)
φ2,1

(0,0)

(0,2) (2,2)

(2,2)
φ2,2 = φ2,3

Im(δ 2×δ 2(∆1×∆1)):
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(0,0)

(0,1) (1,1)

(1,0)
φ2,0

(0,0)

(0,1) (1,1)

(1,0)
φ2,1

(0,0)

(0,1) (1,1)

(1,1)
φ2,2 = φ2,3

The key observation to be made from looking at these pictures is that on the diagonal
face (δ l × δ l)(∆1× ∆1) the map φ2,s is determined by φ1,s if l ≤ 2− s and by φ1,s−1
if l > 2−s. This pattern generalizes to all dimensions n, also for the maps ψn,s. With this
insight in mind we prove the following lemma.

Lemma 2.13. The family of simplicial maps {φ}n,s satisfies for every n≥ 1

∆n−1×∆n−1 ∆n×∆n

∆n−1×∆n−1 ∆n×∆n,

δ l×δ l

φn−1,s φn,s

δ l×δ l

∆n×∆n ∆n−1×∆n−1

∆n×∆n ∆n−1×∆n−1

σ l×σ l

φn,s φn−1,s

σ l×σ l

for l ≤ n− s (5)

and

∆n−1×∆n−1 ∆n×∆n

∆n−1×∆n−1 ∆n×∆n

δ l×δ l

φn−1,s−1 φn,s

δ l×δ l

∆n×∆n ∆n−1×∆n−1

∆n×∆n ∆n−1×∆n−1

σ l×σ l

φn,s φn−1,s−1

σ l×σ l

for l > n− s (6)

and likewise for the family {ψ}n,s.

Proof. The proof is straightforward: We compute the images of 0–simplices along both
sides of the asserted diagrams. As previously mentioned, this suffices because mor-
phisms between products of standard simplices are uniquely determined by the image
of 0–simplices. We first consider the left-hand diagram in (5). It should commute when-
ever l ≤ n− s. An arbitrary 0–simplex (i, j) is mapped to

(δ l×δ l)◦φn−1,s =

{
(δ l×δ l)(i, i) if i > n−1− s and j ≤ i
(δ l×δ l)(i, j) else

along the lower left composition and

φn,s ◦ (δ l×δ l) =

{
(δ l×δ l)(i, i) if δ l(i)> n− s and δ l( j)≤ δ l(i)
(δ l×δ l)(i, j) else

14



along the upper right composition. Observe how the inequalities j ≤ i and δ l( j)≤ δ l(i)
are equivalent. Moreover, the inequality i > n− 1− s is equivalent to δ l(i) > n− s.
Indeed, if i> n−1−s, then l≤ n−s≤ i so that δ l(i)> n−s. Conversely, if δ l(i)> n−s,
then clearly i > n− s−1. Hence the first diagram commutes.

The commutativity of all the other diagrams is shown in the same manner. No com-
plications arise in the corresponding computations and we will thus not spell them out
here.

With this recursive description of the families {φn,s} and {ψn,s} we can now give the
homotopy

H : iddiagSh ⇒ pr∗1 ◦(id, id)∗,

which finishes the proof.

Proof of Theorem 1.1. Our model for the interval will be the (2,2)–horn Λ2
2: 0→ 2← 1.

Note that an n–simplex in Λ2
2 is equivalent to a map m from {0,1, . . . ,n} to either {0,2}

or {1,2}, respecting the ordering. In the first case, we use the notation (0 : n−s+1,2 : s),
counting the number of times m meets 0 and 2. Dually, (2 : n− s+1,1 : s) is used in the
second case.

The components of the asserted homotopy are given by

Hn : (diagSh)n× (Λ2
2)n→ (diagSh)n

where

Hn(ρ, t) =

{
ρ ◦φn,s t = (0 : n− s+1,2 : s)
ρ ◦ψn,s t = (2 : n− s+1,1 : s)

For this to constitute a simplicial map, there must be commutative diagrams

(diagSh)n× (Λ2
2)n (diagSh)n

(diagSh)n−1× (Λ2
2)n−1 (diagSh)n−1

Hn

dl dl

Hn−1

whenever 0≤ l ≤ n and

(diagSh)n−1× (Λ2
2)n−1 (diagSh)n−1

(diagSh)n× (Λ2
2)n (diagSh)n

Hn−1

sl sl

Hn

15



whenever 0≤ l < n. We will only verify the case t = (0 : n− p+1,2 : p). This is because
of how t = (2 : n− p+1,1 : p) is completely analogous. The upper right composition in
the first diagram is:

dlHn(ρ,(0 : n− s+1,2 : s)) =dl(ρ ◦φn,s)

=ρ ◦φn,s ◦ (δ l×δ l)

Hence, we deduce

dlHn(ρ, t) =

{
ρ ◦ (δ l×δ l)◦φn−1,s l ≤ n− s
ρ ◦ (δ l×δ l)◦φn−1,s−1 l > n− s

due to the left-hand diagrams (5) and (6) given in Lemma 2.13. Since

dl(ρ, t) =

{
(dlρ,(0 : n− s,2 : s)) l ≤ n− s
(dlρ,(0 : n− s+1,2 : s−1)) l > n− s,

we have dlHn(ρ, t) = Hn−1dl(ρ, t). This establishes the commutativity of the first dia-
gram.

Using the right-hand diagrams in (5) and (6) we can show compatibility with the degen-
eracy maps in the same way. This concludes the construction of the homotopy and thus
the proof.

3 Reeb complexes and the section spectral sequence

We first introduce the Reeb complexes and show how these encode the flow of homology
generators across height levels. Thereafter, we will see that the Reeb complexes are
constructed from the first page of the more general section spectral sequence. This will
enable us to recover the homology of X . Finally, we compare the combinatorial section
space with the topological section space.

3.1 Reeb Complexes

Recall that the section complex, Sh, consists of all section spaces (Sh)p. We can thus
apply any homology functor Hq to (Sh)p and induce Hqdh

i : Hq(Sh)p → Hq(Sh)p−1.
This defines a simplicial vector space HqSh, because every set of p–simplices, Hq(Sh)p,
is a vector space. Furthermore, for any simplicial vector space V , there is an asso-
ciated chain complex CV , called the Moore Complex. Its pth entry CVp is equal to
the vector space Vp, and its differentials are induced by the alternating sum of face
maps, ∂ = ∑(−1)idi. Denote by DV the subcomplex of CV whose pth entry only
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consists of the degenerate p–simplices in Vp. The differential induces a well-defined
differential CVp/DVp → CVp−1/DVp−1 from which we define the non-degenerate com-
plex CV/DV .

Definition 3.1. For a height function h : X→R and integer q≥ 1, we define the qth Reeb
complex Gq as the chain complex C(HqSh)/D(HqSh).

Example 3.2. The qth Reeb complex associated to a height function h : X → R has

(Gq)p = Hq

(⊔
Sh(ā)

)
'
⊕

HqSh[ā]

as its pth entry, ranging over all increasing sequences ā = (a0, . . . ,ap) in Rp.

Reeb complexes provide an approximate tool to better understand homological features
of the underlying space X . This is achieved by understanding how homology generators
flow along height levels.

Example 3.3. Recall the standard 2–simplex ∆2, with heights as indicated by the labels:

0

1

2

We glue two copies of ∆2 together along their boundary ∂∆2 to obtain ∆2 ∏
∂∆2 ∆2, a

simplicial model for the 2–sphere. Label 0 and 1–simplices by their integers, e.g. 01
is the 1–simplex from 0 to 1. The two 2–simplices sharing a common boundary, are
denoted a and b. To determine a basis for HqSh, we identify the homotopy types of all
section spaces, indexed by increasing sequences:

ā (0) (1) (2) (0,1) (0,2) (1,2) (0,1,2)
Sh[ā] {0} {1} {2} {01} {02} {12} {a,b}

Homotopy type pt pt pt pt pt pt pt∏pt

Hence, all Reeb complexes with q≥ 1 are trivial. For q = 0, however, we determine the
boundary maps

∂1 : ⊕H0(Sh)1→⊕H0(Sh)0 and ∂2 : H0(Sh)2→⊕H0(Sh)1.

Picking the evident bases from the above table yields

∂1 =



−1 −1 0
1 0 −1
0 1 1


 and ∂2 =




1 1
−1 −1
1 1



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in coordinates. As an example, the first column of ∂1 is obtained by applying the target dh
0

and source dh
1 to generators in HSh[0,1]: ∂1[01] = [1]− [0]. Hence, we can present

G0 : k3 ∂1←− k3 ∂2←− k2.

Elementary linear algebra gives H0G0 = k and H2G0 = k, whereas other homology groups
are trivial. In this particular example, the zeroth Reeb complex carries the homology of
the underlying space ∆2 ∏

∂∆2 ∆2.

Definition 3.4. We say that a simplicial set X is subdivided according to a height func-
tion h : X → R if all section spaces Sh[a,b] are empty whenever there is an intermediate
height level a < c < b.

Whenever X is subdivided with respect to a height function h : X → R, the Reeb com-
plexes only have two non-zero entries (Gq)p. Indeed, the pth entry, ⊕Sh[a0, . . . ,ap], of
the formula in Example 3.2, is zero for p ≥ 2. Thus, choosing coordinates in this case
reduces the information contained in Gq to a single matrix. Interpreting this matrix as an
incidence matrix provides a graph which gives insight as to how homology generators
flow across height levels. This is illustrated with an example.

Example 3.5. We subdivide ∆2 according to the heights given in Example 3.3:

0

1

1′
2

The subdivided 2–simplex still maps to R by also sending 1′ to 1 in R0 =R. We construct
a space, much like in the previous example, by gluing two copies of the subdivided 2–
simplex together along the boundary defined by the cycle 0→ 1→ 2← 1′← 0. It is not
difficult to determine the homotopy types of associated section spaces:

ā (0) (1) (2) (0,1) (0,2) (1,2) (0,1,2)
Sh[ā] pt S1 pt S1 /0 S1 /0

For instance, the homotopy type of Sh[0,1] is deduced as follows. There are two 0–
sections represented by the edges 01 and 01′. Each copy of the subdivided 2–simplex
provides a (1,1)-section, i.e. a homotopy
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0

1

1′

between the two sections 01 and 01′, but no higher simplices connect them. Thus, Sh[0,1]
is isomorphic to two 1–simplices glued tail to tail and head to head. The horizontal face
maps used to calculate Reeb complexes can be depicted:

0

1

1′

1

1′

dh
0

0

dh
1

This translates to H1Sh[0,1]
0−→ H1Sh[0] and H1Sh[0,1]

1−→ H1Sh[1] on H1. We calculate
the two non-trivial Reeb complexes in coordinates

G0 : k3 ∂←− k2, with ∂ =



−1 0
1 −1
0 1




and
G1 : k ∂ ′←− k2, with ∂ ′ =

[
1 −1

]
.

To draw the associated graphs, we think of the basis elements in (G0)0 as vertices whereas
the basis elements in (G0)1 define edges. Then the first column in ∂ tells us that the edge
given by the first basis vector in k2 connects the first and second vertices (basis elements)
in k3. For G1 we have to take a bit care as we have two edges and one vertex. One edge
starts in the vertex, the other ends in it. This is due to face maps being sent to zero maps
in H1, a phenomenon that does not occur for H0. We can assemble this information in a
barcode-like diagram:

H0

H1

0 1 2
R

In the previous example, the reader familiar with Reeb graphs may have observed that the
graph determined by introducing coordinates to G0 is the Reeb graph of the given height
function. This observation is true in general, if X is subdivided according to h : X → R.
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Proposition 3.6. If X is subdivided according to a height function h : X → R. Then the
simplicial set π0Sh is the Reeb graph of h. In particular, the zeroth Reeb complex G0
computes the homology of the associated Reeb graph.

Proof. The result is an immediate consequence of Proposition 3.14, to be proved in Sec-
tion 3.4, and Theorem 1.2 in [Try21].

3.2 Background on spectral sequences

A double chain complex C is a collection Cp,q of vector spaces together with horizontal
and vertical boundary maps ∂h : Cp,q→Cp−1,q and ∂v : Cp,q→Cp,q−1. The maps are fur-
ther required to satisfy ∂ 2

h = 0, ∂ 2
v = 0 and ∂v∂h = ∂h∂v. We always assume a double chain

complex to be contained within the first quadrant, so that all entries with p or q negative
are zero. To a double complex C, we can functorially associate a chain complex TotC,
the total complex of C with TotCn =⊕p+q=nCp,q.

There is a functor F: (Bisimplicial Sets)→ (Double Complexes). It sends a bisimplicial
set X to the double complex FX with (FX)p,q = FXp,q, the free vector space on Xp,q.
The horizontal and vertical boundary maps are induced by the horizontal and vertical
face maps: ∂h = ∑(−1)idh

i and ∂v = ∑(−1)idv
i . Total complexes thus define a func-

tor (Bisimplicial Sets) → (Chain Complexes), by mapping a bisimplicial set X to the
total complex TotFX . A theorem of Dold and Puppe [DP61, GJ09] tells us that TotFX is
homology equivalent to diagX , the diagonal on X :

H∗TotFX ' H∗ diagX .

Therefore in order to understand the homology of diagX , one may rather consider the
homology of TotFX . One advantage of the total complex, is that it comes with a spec-
tral sequence for computing its homology. The following is a brief recap of how this
computational tool works. We refer to [McC01] for a more in-depth introduction.

Given a double complex C, we define the zeroth page of the spectral sequence E0
p,q =Cp,q

and remember only the vertical boundary maps ∂v = ∂ 0:
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∂ 0
0,1

∂ 0
0,2

∂ 0
1,1

∂ 0
1,2

∂ 0
2,1

∂ 0
2,2

C0,0

C0,1

C0,2

C1,0

C1,1

C1,2

C2,0

C2,1

C2,2

p

q

Applying homology produces the first page E1
p,q = HqCp,q with induced differentials ∂ 1

from the horizontal differentials of C.

∂ 1
1,0

∂ 1
1,1

∂ 1
1,2

∂ 1
2,0

∂ 1
2,1

∂ 1
2,2

H0C0,0

H1C0,1

H2C0,2

H0C1,0

H1C1,1

H2C1,2

H0C2,0

H1C2,1

H2C2,2

p

q

Computing homology yet again gives the second page E2
p,q = HpHqCp,q. There are also

induced maps on the second page ∂ 2
p,q : E2

p,q→ E2
p−2,q+1. One can show that the follow-

ing description on the level of representatives is well-defined. If [c] in E1
p,q = HqCp,q

represents an element α in E2
p,q, then it is mapped to zero under ∂ 1

p,q[c] = [∂hc]. This
in turn means that ∂hc is in the image of ∂v = ∂ 0

p−1,q+1. Hence there is a b in Cp−1,q+1
such that ∂vb = ∂hc and applying ∂h then produces an element ∂hb which can be verified
to represent an element in E1

p−2,q+1. Denote by β the element in E2
p−2,q+1 represented

by [∂hb], and define ∂ 2
p,qα = β . This is, of course, difficult to compute in general.
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∂ 2
2,0

∂ 2
2,1

H0H0C0,0

H0H1C0,1

H0H2C0,2

H1H0C1,0

H1H1C1,1

H1H2C1,2

H2H0C2,0

H2H1C2,1

H2H2C2,2

p

q

The process now iterates: E3
p,q is defined as the homology at E2

p,q. There are induced
differentials ∂ 3

p,q : E3
p,q → E3

p−3,q+2, much like in the case of E2. What we end up with
is a collection Er

p,q of vector spaces together with differentials ∂ r
p,q : Er

p,q → Er
p−r,q−1+r

satisfying that Er+1
p,q is obtained from Er

p,q by computing homology. Note that the process
terminates; at some point Er+n

p,q ' Er
p,q for all n≥ 0. This is because of how differentials

must eventually be zero when they leave the first quadrant in the (p,q)–plane. Let E∞
p,q

be the stable value of Er
p,q. It is well-known that

HnTotC '⊕p+q=nE∞
p,q.

Thus, if C = FX for some bisimplicial set X , then we have described a procedure to
compute H∗ diagX from TotFX .

3.3 The section spectral sequence

The previous Section implies the existence of a spectral sequence associated to Sh which
calculates the homology of diagSh.

Definition 3.7. The section spectral sequence of a height function h : X→ R is the spec-
tral sequence naturally associated to Sh.

Entries on the zeroth page are determined by the free double complex FSh. Explic-
itly, E0

p,q = (FSh)p,q is the free vector space on ∏
ā∈Rp Sh[ā]q, ranging over all non-

decreasing real-valued sequences ā = (a0, . . . ,ap). Differentials ∂ 0
p,q : E0

p,q → E0
p,q−1

are induced from the alternating sum of vertical face maps ∑i(−1)idv
i in the spatial q–

direction. Computing homology vertically (in the q–direction) thus produces the entries
of the first page E1

p,q = ⊕ā∈RpHqSh[ā]. Differentials on the first page are then induced
in homology from the alternating sum of the horizontal face maps in the section p–
direction ∑i(−1)iHqdh

i . Proceeding as in Section 3.2, the section spectral sequence tells
us how to recover the homology of diagSh, and thus of X .
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Proposition 3.8 (Proposition 1.2). Let h : X → R be a height function. The associated
section spectral sequence satisfies E2

p,q ' HpGq and converges to the homology of X :

HpGq⇒ Hp+qX

Proof. Theorem 1.1 tells us that diagSh is homotopy equivalent, hence homology equiv-
alent, to X . So it only remains to verify that E2

p,q ' HpGq. The pth entry of the qth Reeb
complex Gq is

(Gq)p =
⊕

HpSh[ā]

ranging over all increasing sequences in Rp, whereas E1
p,q ranges over all non-decreasing

sequences. Hence we observe that Gq is the non-degenerate complex E1
−,q/DE1

−,q. It
is well-known that E1

−,q is chain homotopic to E1
−,q/DE1

−,q, see e.g. [GJ09, p.150]. In
particular, E2

p,q = HpE1
−,q is isomorphic to HpGq = Hp(E1

−,q/DE1
−,q).

To summarize Proposition 3.8: It does not matter if we exchange the qth row E1
−,q, includ-

ing all non-decreasing sequences, with the Reeb complex Gq (including only increasing
sequences). Note the importance of this fact for making computations with section com-
plexes feasible within finite time. This is perhaps best illustrated through some simple
examples:

Example 3.9. In Example 3.3 we identified the first page of the section spectral sequence
of X = ∆2 ∏

∂∆2 ∆2 with a single row – the Reeb complex G0. Hence, the differentials on
the second page must be zero and we conclude that the homology of X and G0 coincide.
In Example 3.5, where the 2-simplices were subdivided prior to gluing, we are left with
two non-zero rows on the first page: G0 and G1. Moreover, the only non-trivial entries of
both G0 and G1 are in p = 0,1, implying that the differentials on the second page must be
equal to zero. We calculate HpGq and thus the second page in coordinates:

k

0

0

0

k

0

0

0

0

p

q

H2H1H0

Since the sequence has converged, we extract H0X = k, H2X = k and HnX = 0 otherwise.
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It was not a coincidence that the section spectral sequence from Example 3.5 converged
on the second page, as we shall make precise.

Definition 3.10. For a height function h : X → R, we introduce the subdivision number
as the biggest n for which there is an increasing sequence ā = (a0, . . . ,an) such that the
section space Sh[ā] is non-empty.

Proposition 3.11. Let h : X → R be a height function with subdivision number s. The
section spectral sequence collapses at the (s+1)st page: En+s

p,q ' Es
p,q for all n≥ 0.

Proof. From the assumption, it follows that every Reeb complex Gq (Example 3.2) has
trivial entries above s. Hence, the first page consists of zeros for p ≥ s + 1 and the
differentials on the (s+ 1)st page must all terminate outside of the first quadrant; be
equal to zero.

Thus, the number of pages we need to compute is bounded by how subdivided X is
relative to h : X → R.

Example 3.12. Construct a simplicial cylinder X by gluing together the leftmost and
rightmost vertical 1–simplices in:

0

1

2

R

A height function h : X → R is indicated by the right-hand values. Each section space
of the form Sh[a0], equal to h−1a0 for a0 = 0,1,2, has one connected component. There
are three 1–section spaces Sh[a0,a1], all of which have a single connected component
indicated by the simplices colored in green, orange and purple above. The section
space Sh[0,1,2] has two connected components represented by the gray 2–simplices.
Only Sh[0] and Sh[2] have generators in H1, obtained by following the horizontal edges
at the bottom and top of the cylinder. We mimic the calculations in Example 3.5 to
deduce

∂ 1
1,0 =



−1 −1 0
1 0 −1
0 1 1


 and ∂ 1

2,0 =




1 1
−1 −1
1 1



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which gives the first page:

k3 k3 k2

k2 0 0

∂ 1
1,0 ∂ 1

2,0

p

q

By computing homology again we obtain the second page:

k 0 k

k2 0 0

∂ 2
2,0

p

q

The sequence must collapse on the next page, and, as the homology of X is not calculated
yet, the differential cannot be zero. The representative in E2

2,0 = k is given by the differ-
ence of the two gray 2–simplices. The alternating sum of the surrounding 1–simplices
is in the image of ∂v. Geometrically, this happens by applying ∂v to the sum of all 2–
simplices (i.e. 1–simplices in the section spaces Sh[a0,a1]) not colored gray. Applying ∂h
to this sum gives the difference of the generators in E2

0,1 ' k2. As an example, the top
generator is obtained from applying the target to purple and orange 2–simplices. We can
thus conclude that ∂ 2

2,0 is the transpose of
[
1 −1

]
. The third page only has two non-zero

entries: E3
0,0 ' k and E3

0,1 ' k. In particular, we calculate H0X = H1X = k and HnX = 0
otherwise.

3.4 Comparison with topological spaces

In Section 2.2, we saw that a height function h : X → R always associates to a piece-
wise linear function f : |X | →R. Example 2.8 illustrated that, in general, the topological
space of sections Sect f from [Try21] and the simplicial space of 1–sections (Sh)1 are sig-
nificantly different. A topological section of the form [a,b]→ T factorizes into smaller
sections defined on [a,c] and [c,b] for any real number a ≤ c ≤ b. Conversely, two
sections ρ : [a,c]→ T and τ : [c,b]→ T compose to a section on [a,b] via a canonical
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concatenation. This means that in contrast to the simplicial sections in (Sh)1, the topolog-
ical sections are automatically subdivided. In particular, the spectral sequence obtained
from Sect f terminates on the second page, reflecting the fact that all information about
the homology of T is contained in Sect f . This is not true for (Sh)1 in general, which
led us to introduce higher sections. Consider now the case where the simplicial set X is
subdivided according to h (Definition 3.4). Then we observed, in Section 3.3, that the
spectral sequence associated to Sh terminates on the second page as well. Whenever X
is subdivided according to h, we can thus expect the space of 1–sections (Sh)1 to contain
the same homological information as the topological section space Sect f .

Generally, for fixed real values a≤ b we can define a map from the realization |Sh[a,b]| to
the space Sect f [a,b] as follows. A point in |Sh[a,b]| is a class [ρ, t̄] with ρ : ∆1×∆n→ X
an n–simplex in Sh[a,b] and t̄ a point in the standard topological n–simplex |∆n|. If we
realize ρ , then we obtain a continuous function |ρ| : |∆1|×|∆n| → |X | which hinges upon
the existence of a homeomorphism |∆1×∆n| ' |∆1| × |∆n|. For a fixed t̄, the restric-
tion of |ρ| to |∆1| × t̄ is a section of f up to the linear orientation-preserving home-
omorphism La,b : [a,b] → |∆1|. Indeed, the composition h ◦ ρ maps the unique non-
degenerate 1–simplex in ∆1 to a ≤ b in R regardless of its second component. See Def-
inition 2.9. It follows that |h| ◦ |ρ|||∆1|×t̄ identifies |∆1| with the 1–cell labeled by a ≤ b
in |X |. Whence we define a continuous function Φh : |Sh[a,b]| → Sect f [a,b] from the
formula Φh[ρ, t̄] = |ρ| ◦ (La,b, t̄).

Example 3.13. Consider the height function h : ∆2 ∏
∂∆2 ∆2→ R from Example 3.3. The

section space Sh[0,1] only consists of a single point represented by the 1–simplex 0→ 1,
whereas the topological version Sect f [0,1] is a circle. Hence, the map Φh cannot be a
weak equivalence. While, if we subdivide ∆2 ∏

∂∆2 ∆2 as in Example 3.5, then Sh[0,1] is
a circle and Φh is a weak equivalence.

Proposition 3.14. Assume that X is subdivided according to h : X → R. For every pair
of successive height levels a≤ b, the continuous function Φh : |Sh[a,b]| → Sect f [a,b] is
a homology equivalence.

We can assume without loss of generality that the only non-empty height levels of h are 0
and 1. The strategy for the proof is then to shift all homological information of X into
the space Sh[0,1]. This can be done by filling out all the simplices in the fibers of h by
by means of the following pushout

h−1(0)∏h−1(1) ∏
a=0,1

(∆1×h−1(a))/((1,x)∼ (1,y))

X X̃

R

(0,id)

a

h

h̃
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from that we in particular get an induced height function h̃ : X̃ → R.

Lemma 3.15. Let h : X → R be a height function that only meets a = 0 and b = 1 and
let h̃ : X̃ → R be the replacement constructed above. Then

Sh[0,1] = Sh̃[0,1].

Proof. Postcomposing a section ρ in Sh[0,1] with the inclusion

∆1×∆n X̃

X

ρ̃

ρ

yields a section ρ̃ in Sh̃[0,1]. Moreover, starting with any ρ̃ in Sh̃[0,1] it always factorizes
like that. Indeed, if we assume that for a given section ρ̃ in Sh̃[0,1] such a factorization
does not exist. Then the image of this ρ̃ contains a simplex that is not in X . This simplex
must then lie either in f−1(0) or in f−1(1) and thus be a horizontal face of ρ̃ . Furthermore
it contain one of the two vertices in X̃ which are not in X . But as this vertex is clearly
no horizontal face of any section we get a contradiction. Thus every section ρ̃ in Sh̃[0,1]
factors through X giving us the desired isomorphism.

We can now proof Proposition 3.14 by reducing to the case of contractible fibers.

Proof of Proposition 3.14. Let h : X → R be a height function that only meets the height
levels 0 and 1 and for which the fibers are contractible. Denote by TSh the simplicial
topological space obtained by realizing Sh level-wise; whose space of p–simplices is the
topological space of p–sections (TSh)p = |(Sh)p|. We can then extend Φh to a morphism
of simplicial spaces

Φh : |TSh| → NSect f

that acts as the identity on zero-simplices. It follows from standard theory that the real-
ization |TSh| is isomorphic to |diagSh|. Combining this fact with the homotopy equiva-
lences from Theorem 1.1 of this paper and from Theorem 1.1 of [Try21] yields a com-
mutative diagram

|TSh| |diagSh|

|NSect f | |X |

∼=

|Φh| ∼
∼

and exhibits |Φh| to be a homotopy equivalence as well. Using the result by Dold and
Puppe [DP61, GJ09], that was already mentioned in Section 3.2 gives us the commutative
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square
H∗TotFSh H∗|TSh|

H∗TotNSect f H∗|NSect f |
H∗|Φh|

where all the arrows are isomorphisms. Consider now the two spectral sequences asso-
ciated to Sh and NSect f respectively. Because X is subdivided according to h these both
converge on the second page. Combine this with the contractability of the fibers of h to
obtain for q≥ 1 the following extension of the above diagram

Hq(Sh)1 Hq+1TotFSh

HqSect f Hq+1TotNSect f

HqΦh

from which we can conclude that HqΦh is an isomorphism for all q≥ 1.

For q = 0 we have to do some extra work. This is because the horizontal differential

∂ 1
1,0 : E1

1,0→ E1
0,0

is non-trivial in both spectral sequences. It’s kernel-cokernel pair however induces the
diagram

0 H1H0(Sh)1 H0(Sh)1 H0(h−1(0)th−1(1)) H0H0(h−1(0)th−1(1))

0 H1H0Sect f H0Sect f H0( f−1(0)t f−1(1)) H0H0( f−1(0)t f−1(1))

∼= H1H0Φh H0Φh

∂ 1
1,0

∼= H0H0Φh

∂ 1
1,0

where the horizontal rows are exact. Using a similar argument as for HqΦh above we see
that H1H0Φh and H0H0Φh are isomorphisms. An application of the five lemma exhibits
the morphism H0Φh as an isomorphism as well and thus concludes the proof for the case
of contractible fibers. The more general case follows from the above, combined with
Lemma 3.15

4 Persistence theory

We start out by illustrating how the Reeb complexes of a height function h : X → R may
be interpreted as representations. In particular, they reduce to zigzag modules when-
ever X is subdivided according to h. In the end, we discuss persistent homology of
filtrations and level-set zigzag.
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4.1 From Reeb complexes to zigzag modules

A zigzag module V is a finite diagram

V0
p1←→V1

p2←→V2
p3←→ ·· · pn←→Vn

of vector spaces Vi and linear maps pi of the form Vi−1 → Vi or Vi → Vi−1 [CdS10].
Representation theorists often refer to such diagrams as representations of quivers of
type An. A celebrated theorem of Gabriel [Gab72] classifies all such representations. In
particular, it shows that there is a unique decomposition of zigzag modules into interval
modules of the form I(a,b):

I0
p1←→ I1

p2←→ I2
p2←→ ·· · pn←→ In

where

Ii =

{
k if a≤ i≤ b
0 if i < a or i > b

and pi is the identity on k for i = a, . . . ,b− 1. Decomposing in this way allows for the
definition of barcodes as an invariant of the persistence module, which has proven useful
in studying data sets [Car09]. The barcode Pers(V) = {[ai,bi]}i of a zigzag module V
is obtained from the intervals appearing in its decomposition into interval modules. We
emphasize that a zigzag module V is called a persistence module when all linear maps
point in the same direction.

Let us consider a simplicial set X together with a height function h : X → R. The qth
Reeb complex Gq has a differential

∂ :
⊕

ā=a0<···<ap

HqSh[ā]→
⊕

b̄=b0<···<bp−1

HqSh[b̄]

for every p≥ 1, determined by Hqdh
i : HqSh[ā]→ HqSh[a0, . . . , âi, . . . ,an]. Restricting ∂

to a single summand may be depicted as a pyramid

HqSh[a0, . . . ,ap]

HqSh[a0, . . . ,ap−1] HqSh[a0, . . . ,ap−2,ap] · · · HqSh[a0,a2 . . . ,ap] HqSh[a1, . . . ,ap]

Hqdh
p

Hqdh
p−1

Hqdh
0

Hqdh
1

Iterating this recursively over all simplices in R yields a representation Gq over some
directed graph. There is no hiding the fact that the underlying graph of Gq is rather
nasty, in general. Thus, we cannot expect to classify representations arising from height
functions in coordinates. For instance, assuming that h only meets 0, 1 and 2, Gq is
drawn:
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HqSh[0,1,2]

HqSh[0,1] HqSh[0,2] HqSh[1,2]

HqSh[0] HqSh[1] HqSh[2]

Hqdh
2

Hqdh
1

Hqdh
0

Hqdh
1

Hqdh
0

Hqdh
1

Hqdh
0

Hqdh
1

Hqdh
0

Let us make two assumptions henceforth:

i) X is subdivided according to h, and

ii) the image of h only meets finitely many 0–simplices a0 < · · ·< an in R0.

In this simplified setting, all non-empty section spaces are of the form Sh[ai] = h−1ai

or Sh[ai,ai+1]. Hence, the representation Gq is a zigzag module:

HqSh[a0] HqSh[a1] · · · HqSh[an−1] HqSh[an]

HqSh[a0,a1] HqSh[an−1,an]
Hqdh

1 Hqdh
0 Hqdh

1 Hqdh
0

In addition to capturing persistence of homology generators, such a diagram is closely
related to the Reeb graph of h. Indeed, the Reeb graph is obtained by applying π0 instead
of Hq (Propostion 3.6).

4.2 Persistent homology from section complexes

From an inclusion i : X→Y we form the simplicial mapping cylinder Ci = (X×∆1)
∏

X Y
as the pushout of

X Y

X×∆1

i

(idX ,1)

where idX is the identity on X and 1: X → ∆1 is the trivial map x 7→ 1 for all x in X . The
pushout Ci is thus obtained by gluing the ”top” X × 1 of the cylinder X ×∆1 to Y via i,
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and with X×0∼= X the ”bottom” of Ci. The evident inclusion j : ∆1 ↪→ R then induces a
height function hi : Ci→ R from the commutative diagram

X Y

X×∆1 R.

i

(id,1) 1

j◦pr1

The height function hi thus sends the bottom of the cylinder to 0 and the top of the
cylinder to 1 as depicted below.

X Ci
Y

R0
0 1

The associated section space then has Shi [0] = X and Shi [1] = Y .

Lemma 4.1. Let i : X →Y be some simplicial inclusion and hi : Ci→ R the height func-
tion of the associated mapping cylinder, like defined above. The first horizontal face map,
or source, dh

1 : Shi [0,1]→ X is a homology equivalence.

Proof. Recall from Section 3.4 that there is a continuous function c : |R| → R and an
induced height function of topological spaces fi = c ◦ |hi| : |Ci| → R. The realization
induces |dh

1 | : |Shi [0,1]| → |X |, a continuous function which fits into a commutative dia-
gram

|Shi [0,1]| Sect fi [0,1]

|X |

Φhi

|dh
1 | eval0

where eval0 evaluates a section at its source. Indeed, recall that a class [ρ, t̄] in |Shi [0,1]|
consists of an n–simplex ρ : ∆1×∆n → X together with a point t̄ in the topological n–
simplex. Applying eval0 ◦Φhi to [ρ, t̄] amounts to evaluating |ρ| : |∆1| × |∆n| → |X |
at (0, t̄). This is achieved by taking the source of ρ , dh

1ρ , which is an n–simplex in X
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and labeling it with t̄. In other words, eval0 ◦Φhi [ρ, t̄] = |dh
1 |[ρ, t̄]. Proposition 3.14 tells

us that Φhi is a homology equivalence, whereas eval0 is a homotopy equivalence due to
Proposition 4.10 in [Try21].

Lemma 4.2. If i : X → Y is an inclusion of simplicial sets with associated height func-
tion h : Ci→ R, then the diagram

Sh(0,1)

X Y

dh
1 dh

0

i

commutes up to homotopy.

Proof. It suffices to define a simplicial homotopy

η : Sh(0,1)×∆1→ Y

from i ◦ dh
1 to dh

0 . Because Sh(0,1) ⊂ map(∆1,Ci), it will be convenient to define η in
terms of its adjoint

η̃ : Sh(0,1)→map(∆1,Y ).

Post-composing a section ρ : ∆1×∆n→Ci with φ : Ci→ Y , induced from the universal
property of the pushout

X Y

X×∆1 Ci

Y,

i

id

i◦pr0

φ

sends ρ to a simplicial map φ ◦ρ : ∆1×∆n→ Y . So we define η̃(ρ) = φ ◦ρ .

Lemmas 4.1 and 4.2 imply that

Sh(0,1)

X Y

dh
1 dh

0

i

maps to a commutative square
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HqSh(0,1) HqY

HqX HqY

'

Hqdh
0

Hqi

under the qth homology functor.

Let X : X0
i1
↪−→ X1

i2
↪−→ ·· · in

↪−→ Xn be a finite filtration of simplicial sets. It is common practice
to define the persistence module

HqX : HqX0
Hqi1−−→ HqX1

Hqi2−−→ ·· · Hqin−−→ HqXn

for all q ≥ 0 in the theory of persistent homology. Surely, there is no topological sig-
nificance in adding equalities. Hence, we prefer to work with the associated degenerate
zigzag module

HqX : HqX0
=←− HqX0

Hqi1−−→ HqX1
=←− HqX1

Hqi2−−→ ·· ·HqXn−1
=←− HqXn−1

Hqin−−→ HqXn

From X we may glue together mapping cylinders to obtain the iterated mapping cylinder:

CX =Ci1
∏
X1

Ci2
∏
X2

· · ·∏
Xn−1

Cin .

It is the pushout of

Ci1 Cin

X0 X1 · · · Xn−1 Xn.

If we modify the height function hi j : Ci j → R to meet the heights j−1 < j, we obtain an
evident height function hX on CX. Here is an illustration for n = 2:

X0 Ci1
X1 Ci2

X2

R0
0 1 2
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Observe how CX is automatically subdivided according to hX. Hence, the associated qth
Reeb complex Gq defines a zigzag module Gq:

HqX0 HqX1 · · · HqXn−1 HqXn

HqShX [0,1] HqShX [n−1,n]
Hqdh

1 Hqdh
0 Hqdh

1 Hqdh
0

whose leftward pointing linear maps are all isomorphisms (Lemma 4.1).

Proposition 4.3 (Theorem 1.3). For any finite filtration X and q ≥ 0, the associated
zigzag modules Gq and HqX are isomorphic.

Proof. Lemma 4.2 provides a zigzag module map from Gq to HqX via the commutative
ladder

HqX0 HqShX [0,1] HqX1 HqShX [1,2] · · · HqXn

HqX0 HqX0 HqX1 HqX1 · · · HqXn

Hqdh
1 Hqdh

0

Hqdh
1

Hqdh
1 Hqdh

0

Hqdh
1

Hqdh
0

Hqi1 Hqi2 Hqin

Every vertical linear map is an isomorphism due to Lemma 4.1.

Corollary 4.4. The barcodes of Gq and HqX are the same.

Proof. In the classification of representations of An–type quivers from [Gab72], isomor-
phic representations have the same decomposition into interval modules and thus the
same barcodes. The result now follows from Proposition 4.3.

4.3 Connection to level-set zigzag

Consider a real-valued function f : T → R on a topological space T together with a
sequence of real numbers a0 < · · ·< an. Considering preimages under f and using inclu-
sions gives a diagram T of topological spaces

f−1[a0,a1] f−1[an−1,an]

f−1a0 f−1a1 · · · f−1an−1 f−1an
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Applying homology produces zigzag modules HqT, called level-set zigzags [CdSM09].

Given a simplicial set X with a height function h : X → R, adhering to the assumptions at
the end of Section 4.1, we can define an analogous diagram, X, of simplicial inclusions
and compute level-set zigzags HqX:

Hqh−1[a0,a1] Hqh−1[an−1,an]

Hqh−1a0 Hqh−1a1 · · · Hqh−1an−1 Hqh−1an

Compare HqX with the diagram Gq given at the end in Section 4.1. There are two imme-
diate differences between the zigzag modules:

1) Sh[ai−1,ai] and h−1[ai−1,ai] are different spaces in general and

2) the arrows in Gq are reversed compared to HqX.

The following example illuminates some of these differences:

Example 4.5. Identify e0 and e1 in the left-hand simplicial set

e0 e1

v0 v1 v2

u0 u1 u2

X

α β

γ

to obtain a cylinder. Pinch together the top circle by identifying u0 = u2 with u1. Sim-
ilarly, we pinch together the bottom circle. From this, we obtain the simplicial set X
depicted on the right-hand side above. Let h be the height function mapping the bottom
two circles to zero and the top two circles to one. Proceed as in Examples 3.3 and 3.5 to
compute G0 and G1 in coordinates:

k k k2 k2

k k
−1 1 

−1

−1





1

1



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The preimage h−1(0,1) = X deformation retracts onto the two horizontal circles α , β
and the vertical circle γ depicted above. Pick these three circles as generators in H1 to
calculate H0X and H1X in coordinates:

k k3

k k k2 k2

1 1




1 0

0 1

−1 1







1 0

0 1

0 0




Note the difference between the zigzag modules G1 and H1X. However, taking direct
sums across the middle rows in concatenated diamonds

k k3

k k k2 k2

k k

results in short exact sequences

k k2 k k k4 k3


−1

1


 [

1 1
]




−1

−1

1

1







1 0 1 0

0 1 0 1

−1 1 0 0




This means that, in this particular example, we can translate between the barcodes of HqX
and Gq via the diamond principle in [CdS10].

We do not get a short exact sequence in general, but the sequence formed in the above
example is always exact in the middle term.

Proposition 4.6 (Theorem 1.4). Consider a height function h : X → R for which

i) X is subdivided according to h and

ii) the image of 0–simplices, h(X0), is discrete as a subset of the real numbers.

Then for every pair of successive critical values a < b the sequence

HqSh[a,b]→ Hqh−1a⊕Hqh−1b→ Hqh−1[a,b]

is exact at the middle term.
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Proof. Proposition 3.14 implies the existence of a commutative ladder

HqSh[a,b] Hqh−1a⊕Hqh−1b Hqh−1[a,b]

HqSect f [a,b] Hq f−1a⊕Hq f−1b Hq f−1[a,b]

where f : |X |→R is induced from h and all vertical arrows are isomorphisms. Evaluation
at a+b

2 defines a homotopy equivalence Sect f [a,b]→ f−1(a+b
2 ), see Proposition 3.10

in [Try21]. The homotopy inverse is given by associating canonical sections/flow-lines
to points in the intermediate fiber f−1(a+b

2 ) and defines a map f−1(a+b
2 )→ f−1a∏ f−1b

which results in a commutative ladder

HqSect f [a,b] Hq f−1a⊕Hq f−1b Hq f−1[a,b]

Hq f−1(a+b
2 ) Hq f−1a⊕Hq f−1b Hq f−1[a,b]

in which the vertical arrows are all isomorphisms. Let Ua and Ub be open neighborhoods
of a and b, respectively, in R. We can safely assume that Ua only contains a from h(X0),
similarly Ub only contains b from h(X0), and that the union Ua ∪Ub contains f−1[a,b].
Inclusions define

Hq f−1(a+b
2 ) Hq f−1a⊕Hq f−1b Hq f−1[a,b]

Hq f−1( f−1Ua∩ f−1Ub) Hq f−1Ua⊕Hq f−1ubb Hq f−1Ua∪ f−1Ub

The vertical arrows are isomorphisms due to Lemma 2.8 in [Try21]. We recognize the
final row as part of the well-known Mayer-Vietoris sequence which is exact. Compose
the given ladders to finish the proof.

This final result allows for a method to translate between the barcodes of HqX (level-set
zigzag) and Gq (coming from the q–th Reeb complex) via Theorem 5.6 in [Car09].
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