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Automatisering av analyser i ekkokardiografi ved hjelp
av maskinlæring

Ekkokardiografi er hjørnesteinen i moderne hjerteavbildning på grunn av tilgjen-

gelighet, lave kostnader og sanntidsfunksjonalitet. Modaliteten har muliggjort

sofistikerte og ikke-invasive vurderinger av hjertets morfofysiologi, med et bredt

spekter av kliniske parametere med høy diagnostisk og prognostisk verdi. Til

tross for klinisk innvirkning blir kvantitative målinger ofte utelatt i praksis fordi

de er ressurskrevende og vanskelig å reprodusere. Automatisering kan redusere

noen av disse begrensningene og omdefinere deler av den kliniske arbeidsflyten,

men utformingen av generiske algoritmer er utfordrende på grunn av den iboende

variasjonen i ekkokardiografidata og ekspertisen som kreves for tolkning.

Det overordnede målet med dette arbeidet var å undersøke bruk av deep
learning metodikk for å helautomatisere flere trinn av bildeanalysen i en standard

ekkokardiografi. Metodetilpasning for ultralyd ble vektlagt, samt adressering av

grunnleggende domenebegrensning som støy og opptaksvariabilitet. Sanntidsstøtte

og forbedring av arbeidsflyten var også viktige aspekter i utviklingen. I den

første delen av avhandlingen presenteres metoder for automatisk klassifisering av

hjertesnitt og deteksjon av hjertehendelser direkte fra ultralydbildene ved hjelp

av kunstige nevrale nettverk. Videre presenteres en metode for estimering av

hjertemuskelens bevegelse, samt integrasjonen av flere deep learning komponenter i

en kaskade for helautomatiserte målinger av hjertemuskelens deformasjon. Den

siste delen av avhandlingen omhandler en mulighetsstudie som sammenligner

overnevnte metoder med en kommersielt tilgjengelig løsning.

Resultatene indikerer at de forskjellige komponentene i en ekkokardiografisk

bildeanalyse kan være fordelaktig eller til og med forbedres ved bruk av deep
learning. Fleksibiliteten av en læringsbasert tilnærming bidrar til å overgå kon-

vensjonelle metoder på kjente begrensninger ved bruk av ultralyd. Integrasjonen

av komponentene i en kaskade for helautomatiserte målinger var mulig, og ga

oppmuntrende resultater ved å være sammenlignbar med variabiliteten mellom

forskjellige kommersielle produsenter. Til tross for flere begrensninger, kan vi være

optimistiske for fremtidig bruk av deep learning i ekkokardiografi.
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Abstract
Echocardiography is the cornerstone of modern cardiac imaging due to its

availability, low cost and real-time functionality. The modality has enabled

sophisticated non-invasive evaluation of the hearts morphophysiology, with

a wide range of clinical parameters of high diagnostic and prognostic value.

However, despite the clinical impact, quantitative measurements are often

omitted in clinical practice by being labor intensive, time consuming and

difficult to reproduce. Automation can reduce some of these limitations and

redefine parts of the clinical workflow, but the design of generic algorithms

is complex due to the inherent variability of echocardiography data and the

expertise required for interpretation.

The overall goal of this work was to investigate the use of deep

learning (DL) methods for fully automating several image analysis steps

of an echocardiography exam. Emphasis was given to method adaptation

for ultrasound (US) image processing, as well as addressing fundamental

domain limitations such as noise and acquisition variability. Real-time

support and workflow enhancements was also important features in the

development. The thesis consists of three technical contributions and one

clinical feasibility study. In the first part, a method for cardiac view

classification with convolutional neural networks (CNNs) is presented.

Further, we describe a recurrent CNN method for cardiac event detection.

The third part presents a DL based motion estimator, and the integration

of several DL components into a pipeline for automated longitudinal strain

(LS) measurements. The last part is dedicated to a feasibility study

comparing the latter with a commercially available solution.

Results indicate that the different components can benefit or even be

improved with DL. The flexibility of learning-based approaches helps to

surpass conventional methods on inherent limitations of US. Integrating DL

components in a pipeline for fully automated measurements was feasible,

and yielded encouraging results by being comparable to intervendor

variability. Despite several limitations described in the thesis, we can be

optimistic about the future employment of DL in echocardiography.
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1Introduction

Through a comprehensive evolution from the early demonstrations by

Edler and Hertz in 1953 [1] to the rich featured modality it is today,

echocardiography remains the cornerstone of modern cardiac imaging.

The combination of availability, low cost, portability and real-time func-

tionality, makes it the most commonly used non-invasive tool in clinical

cardiology [2]. Echocardiography has enabled possibilities for advanced

quantification of the hearts morphophysiology, with clinical parameters

such as left ventricular ejection fraction (LVEF), left atrial volume and

global longitudinal strain. Today, several of these measurements are used

in everyday routine by being readily available in commercial systems and

included in the guidelines for cardiac chamber quantification. Undoubtedly

this has significantly improved patient care and the assessment of the

cardiovascular system.

Despite the impact, the introduction of quantitative measurements has

not been without drawbacks [3]. They often require manual labor, increased

time for examinations and reports, potentially delaying the diagnosis. Time

constraints in the busy clinic can also affect the accuracy and variability

of manual measurements. Incorporating automated measurements can

potentially redefine the workflow in echocardiography laboratories, with

potential benefits including time and cost savings, improved reproducibility,

as well as streamlined acquisitions and reporting. However, quantitative

echocardiography is complex, and the tacit knowledge of the operator

is still necessary for extracting useful and accurate parameters from the

acquisitions.

Today, we witness a paradigm shift in computer vision (CV) with modern

machine learning (ML) algorithms, more specifically within the field of

deep learning (DL). These techniques have surpassed human performance

in a variety of problems, such as labeling images, mastering games and

1



1.1. Automated quantification in echocardiography

classifying skin disease [4–6]. What is even more unique, is that DL

algorithms have not only improved the accuracy on certain tasks, but also

the time required to complete them [7]. This makes them more applicable

for real-life deployment. DL methods have also been applied to a broad

range of ultrasound (US) related tasks with success [8, 9]. From raw signal

processing, advanced filtering and image formation to post-processing and

image analysis tools. All have thrived as a result of progress in CV research,

improved hardware and access to digital data, but analysis of display images

from the traditional systems are so far the most common application of DL

methods in US.

1.1 Automated quantification in echocardiography

Quantitative echocardiography involves the derivation of comprehensible

measurements associated with an US recording, and is pivotal when

evaluating the cardiac function. Usually this requires some form of

software post-processing of the formed US image, but visual assessment,

so-called eyeballing, is still being used extensively in clinical routine. This

even applies for estimating clinical parameters such as LVEF. Eyeballing

clinical parameters is not recommended due to its inherent subjectivity

and high variability, but limitation in the alternatives still makes it a

viable option [10]. Time is at a premium in echocardiographic laboratories,

and manual measurements may be under-prioritized or not considered

reliable. With todays technology, especially facilitated by DL, automated

measurements can become as fast as eyeballing and as accurate as experts.

There are several ways to group quantitative methods. If the operator

needs to interact partially with the software to produce the results, for

instance to define anatomical landmarks, region of interest (ROI) or location

of the image plane, we refer to the method as “semi automated”. “Fully

automated” algorithms can be performed end-to-end without any interac-

tion from the user. Semi automated methods have better reproducibility

compared to manual measurements, while fully automated measurements

have zero variability for the same US images [10].

A typical software pipeline for quantification of a clinical measurement

can be divided into a cascade of different tasks, as presented in Fig. 1.1. The

composition would vary according to desired measurement, but DL can play

2



Chapter 1. Introduction

a key role in most of the steps.

Figure 1.1: An example schematic of different steps that can constitute an

automated echocardiography measurement.

The work herein mainly involves two-dimensional (2D) echocardiography,

and some of the tasks would be less relevant in three dimensions. The

following will be a brief introduction to the parts most relevant for this

thesis, some proposed solutions to the different problems before the advent

of DL, as well as fundamental limitations.

Classification of ultrasound acquisition

The first step of an analysis pipeline is to identify what is being imaged. A

standard echocardiography exam consists of multiple video recordings from

different acquisition postures, often called views [2, 11]. For an automated

image analysis pipeline determining the current view can be regarded a

mandatory step, as most measurements are specialized and thus require

certain structures in the image. In practice, this is often implicit by the

choice of measurement or specified by the operator or machine. In general,

traditional algorithms have struggled to handle the possible diversity in the

data, therefore clinicians mostly pick the required images for analysis and

diagnosis manually [12]. This hampers the workflow, causing a demand for

accurate and automated recognition of views in clinical software.

There are numerous aspects to consider when classifying an US acqui-

sition, especially in terms of application and area of use. Images including

the same content can have different quality depending on several factors,

such as the equipment, patient condition and operator expertise. Some

suitable for quantitative measurements, while others could produce poor

or faulty results. For retrospective analysis, e.g. patient data post-visit,

large databases, PACS organization and so on, detailed and flexible sorting

of data with high detection rate independent of quality is desirable. Since

the physical exam is finished, the quality of the raw acquisition can not

3



1.1. Automated quantification in echocardiography

be improved and one must be content with the data. Also, large research

studies of specific cohorts becomes more feasible with tools to sort views.

In a prospective setting, however, feedback of image quality and guiding

becomes more relevant. If the operator has the information necessary to

improve the quality while scanning, for instance by quality metrics or

suggestions on how to move the probe, this would be very beneficial [13].

Detection of cardiac events

For quantitative echocardiography, another important task is to handle

the periodicity of the pumping heart, and define temporal measurement

points. This is often done by dividing the acquisition into cardiac cycles,

and defining the different phases with corresponding transitions. Several

of the most common measurements in echocardiography are defined at

specific time points, making it important to have accurate and reproducible

timing detection methods. Also, the division into cardiac cycles facilitates

standardization and effective storage.
Several commercial scanners rely on electrocardiograms (ECG) to define

the cardiac cycle in a robust and automatic way [14]. However, it may

be inconvenient with ECG cables, especially in point of care situations,

and there are also shortcomings related to pathological ECG patterns.

Visual inspections of ECG signals and the US sequence is also a recurrent

approach, but the agreement between operators is quite low [15]. Using

spectral Doppler over the valves is an accurate alternative, but in most

cases it can not be performed simultaneously with the recordings used

for measurements [16]. The synchronization across different recordings

are complex and prone to error, partly due to the beat-to-beat variability.

Detecting specific semantic time points also allows for using regression

formulas to relate different subcycle events based on heart rate [17]. This

is typically too general for the full population, and different formulas are

derived based on gender, age, pathophysiology and more [18]. To avoid the

mentioned limitations, the focus should thus be to detect the cardiac events

for the actual recording based on image analysis alone.

Various methods have been proposed to automatically detect cardiac

events directly from echocardiographic images. Some promising solutions

have involved the use of segmentation methods [19]. However, an accurate

segmentation of the left ventricle (LV) can not differentiate events with
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Chapter 1. Introduction

similar area/volume. Also, segmentation methods are still not perfect,

and segmentation errors can cause false event detections. Regional motion

estimation (ME), specifically speckle tracking or tissue Doppler imaging

(TDI) near the mitral annulus, have been successful compared to ECG

and other methods [14, 16]. Despite good results, the feasibility on

pathological cases and limited range of supported heart rates opens for

further improvements.

Segmentation of cardiac structures

Cardiac image segmentation is one of the most important parts of many

analysis workflows. The goal is to partition an image into semantically

meaningful regions such as the ventricle lumen, the myocardium and atria.

Further, this is used as a basis for numerous quantitative measurements, like

the ejection fraction (EF), where accurate delineation of the endocardium is

essential.

Traditionally, segmentation of heart structures in medical imaging

modalities have been performed using methods like deformable models,

active contours or atlases [20–22]. These methods have been extensively

studied, and good performance have been shown. However, they are often

tuned by hyperparameters, and require significant feature engineering or

prior knowledge to achieve satisfactory accuracy [23]. Fully automatic

methods available in clinical routine, some which are based on the latter,

have limited adaption at many hospitals and can still be improved [24]. Due

to this, manual or semi-automatic delineation of cardiac structures remains

part of the daily work in echocardiography laboratories.

Myocardial motion estimation

Estimating the myocardial motion can serve as a rich descriptor of cardiac

function. It can also be used to derive deformation metrics, such as

myocardial strain. This allows for investigation of local wall motion and

deformation, which is affected by many cardiac pathologies, for instance

coronary artery disease. In clinical echocardiography, ME is typically

done using speckle tracking algorithms or TDI, the prior being most

common. Speckle tracking echocardiography (STE) is widely adopted, with

methodological variants based on optical flow (OF). More specifically, block
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1.1. Automated quantification in echocardiography

matching methods have sought a lot of attention in the US community [25,

26]. In research, algorithms such as elastic image registration and phase

sensitivity approaches [27–29], have been extensively investigated and

achieved good results.

Two assumptions that often underlie the traditional algorithms is that

the pixel intensity remains constant along the motion trajectory, and that

motion is a pure translation in local regions. In general, this does not hold

for 2D echocardiography. Cardiac tissue motion is a three dimensional (3D)

phenomenon, involving both an apex to base shortening and a simultaneous

twist. In 2D echocardiography, the motion of the tissue can thus be

out of the image plane, both as a result of poor probe posture or the

inherent myocardial fiber orientation with respect to the acoustic beam

propagation. Therefore, given an optimal probe posture, it is still hard to

tackle the problem in 2D. The effect complicates a lot of the traditional

ME methods which assume consistency in local signal amplitude. The

speckle pattern decorrelates, which reduces the trackable features. Despite

improvements, any imposed assumptions will be a simplification of the

actual problem. Methods have been proposed address this issue, such as

incorporating conservation of the local phase signal [28] and elastic image

registration. The latter is an optimization based method with the goal of

finding a displacement field that minimizes some similarity metric between

two images, where one is warped towards the other. One common problem

with warping is that ambiguity can be caused by signal blocking artefacts,

resulting in an ill-posed problem [30]. Often these methods involves the use

of a priori regularization [26], which to some degree helps for the general

case, but physical modelling of the cardiac muscle is complicated and a lot

of simplifications have to be made.

Similar issues can occur due to noise common in echocardiography. In

US there are several sources, such as reverberations, shadows and haze

artefacts [31]. This hampers the ME accuracy by inflicting arbitrary and

unstructured signals to the tracked regions. For conventional algorithms it

is generally complicated to separate the useful data from noise, especially

since there are many dissimilar origins and effects.

A pervasive problem with the algorithms is that they are often very

complicated, and often require a high degree of manual hyperparameter

tuning. This include the size of the search kernel, the range of the
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Chapter 1. Introduction

search, smoothing factors and more. Their complexity also makes them

computationally demanding, requiring expensive hardware to be fast

enough for real-time use. Further, the heart can beat very fast, and

assumptions made by current solutions require a high speckle consistency

between frames, thus a very high frame rate on the US scanner.

Measurements and estimation of clinical parameters

An integration of the mentioned methods can be the basis of computing

several clinical parameters automatically. For instance, the endocardial

border of the ventricle could be extracted from the segmentation at several

time points and views. Further, this could be used to estimate volume and

EF. Anatomical landmarks, such as the apex and base points, can also be

detected from the segmentation masks and be used to derive diagnostic

parameters. For local deformation measurements, extracting useful points

to track with ME is important.

Despite the possibilities and potential, automated measurements have

not been widely embraced at many hospitals due to several limitations. As

is understood from the previous sections, the task at hand is comprised of

numerous steps that all can fail. Also, it is challenging to create algorithms

that generalize to the extensive data variability. This includes image quality,

pathology such as arrhythmia, abnormal chamber morphophysiology and

more. Further, the different automatic measurements requires substantial

studies, both in general population, but also in unique cohorts. The

reproducibility of automatic measurements are often very high for large

groups of patients, but on the individual level it can be suboptimal. Outliers

must be handled with caution. Also, clinical adaption is not only about

accurate and reproducible measurements. Intuitive presentation of results,

user friendliness and accessibility are also essential. The workflow must be

customized for daily routine and faster procedures.

As mentioned, the implementation of automatic measurements can

be very beneficial in clinical routine. Today, measurements are mostly

performed one single time per examination. Not using the average value

over several cardiac cycles is a major limitation and not recommended as

data quality and pathology can effect the measurements on a beat-to-beat

basis [2, 3]. With fully automated methods, it becomes effortless to average

over multiple heart cycles.

7



1.2. Limitations of myocardial strain imaging

1.2 Limitations of myocardial strain imaging

Despite commends and reassuring experience with strain imaging, it has not

been fully adopted in clinical practice. There could be numerous reasons

for this, but robustness in real-life situations has been questioned [25, 32].

We also believe that the time required to perform these measurements is

limiting. In 2D echocardiography, the pipeline of strain computation is

composed of many components, and as mentioned earlier, these can all be

sources of variation and inconsistencies.

The quality of the acquisition process is very important. It is influenced

by several factors, including patient condition, operator expertise and

equipment. For example, when the imaging plane transects the heart offset
to the true apex, i.e. apical foreshortening, it will make the LV appear shorter

and the apical region thicker. This leads to a geometric distortion which has

a significant impact on measurements, resulting in overestimation of the LV

function and underestimation of volume and length [33]. Further, the spatial

and temporal resolution will have an effect on data quality, as local regions

in the data will be less correlated between images if the resolution is too low.

Lower temporal resolution will also lead to underestimation of strain [25].

Another important component of strain computation is the initialization

of the region of interest (ROI), or tracking area. This can typically be points

along the longitudinal of the ventricle. The placement of these points have

high influence on strain measurements, with a significant gradient from the

endocardial to the epicardial border. For standardization, this is typically

done along one of the anatomic borders, or on the myocardial midline [34].

Naturally, manual contouring makes the operator variability quite high. In

practice, segmentation is used to seed the tracking points, and the operator

is allowed to adjust them upon measurement. The latter is a double-edged

sword, on one side it allows the operator to adjust the worst case outliers,

but on the other side it induces variability between measurements.

Global longitudinal strain is now recommended in the guidelines for

chamber quantification in echocardiography [2]. However, regional strain

measurements is not. The variability and reproducibility of these mea-

surements are significantly higher compared to GLS [35]. The mentioned

limitations are naturally a reason for this, but also regularization, such as

smoothing, is suggested as one of the reasons for reduced reproducibil-
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ity [34]. This typically lowers the resolution of detecting local changes, but

helps on a global level.

Definition of cardiac events also have importance for strain parameters,

especially regional deformation. Scars, reduced function and delayed

polarization can lead to both early systolic lengthening and post-systolic

shortening. It has been demonstrated that different surrogates for end

diastole (ED) and end systole (ES) are unreliable for cases with regional

pathology [36]. ES detection is most vital, and depends on a proper

definition of the aortic valve closure (AVC), while wrong detection of ED

can also result in false peak positive strain and bias in the strain peaks [35].

The training and experience of the operator is essential for strain

imaging, not only to acquire proper data or adjust semi automated outputs

such as ROI, but also to interpret the results. Interpretation of strain results

are less intuitive for inexperienced operators, with an immense amount

of values, variable representations and curves. Especially regional strain

measurements where all the ventricle segments are considered individually

and with respect to each other. Bull’s eye plots and color anatomical M-

Modes are good examples of intuitive summary representations of large

amounts of data that helps the operator interpret the results [37,38].

1.3 Aims of study

The overall aim of this work is to investigate the possibilities of using

modern machine learning, namely deep learning, for fully automating

several steps of an echocardiography examination. One key aspect is

to address shortcomings of existing methods with respect to ultrasound

and develop solutions for improved adaption. Investigations should also

examine if these solutions can help tackle some of the aforementioned

limitations of conventional methods. Another important asset to consider

is the possibility of real-time processing and improved workflow. More

specifically, the aim of this thesis is:

Aim 1: Investigate the use of deep learning for cardiac view

classification, event detection and segmentation.

Aim 2: Investigate the use and potential benefits of using deep

learning for myocardial motion estimation.

9
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Aim 3: Integrate deep learning components into a pipeline for

automatic strain measurements and compare its

performance to state of the art solutions.

1.4 Summary of presented work

The following briefly summarize each contribution included in this thesis.

The first three are focused towards technical method development and

application. The last contribution is a clinical agreement study employing

the integrated methods.

1.4.1 Real-time standard view classification in transthoracic
echocardiography using convolutional neural networks

According to recommendations, a transthoracic echocardiography (TTE)

exam should be performed with different probe postures to provide several

standardized image views of the heart [2]. A standard view, such as

the apical four-chamber (A4C), is usually a necessary prerequisite for

quantitative measurements. Calculating biplane LVEF, for instance, would

require the operator to acquire frames from both the A4C and apical two-

chamber (A2C) views. Another aspect is that non-experts traditionally

struggle to obtain these views in an optimal way. At worst, a suboptimal

view can cause false interpretations of the data and patient diagnosis.

In this work we employ convolutional neural networks (CNNs) to

develop a classification model for predicting cardiac views. We refer

to our architecture as the cardiac view classification (CVC) network. It

is composed of seven blocks of convolution filters, batch normalization,

parametric rectified linear unit activations (PReLU) and max pooling [4,39].

For the five last blocks Inceptionmodules and a dense connection pattern are

employed [40, 41]. Global average pooling layer was used before the final

softmax activation. The network was trained on a dataset of 205 subjects

with seven classes of the most common cardiac views. Further, we proposed

the use of 2D image planes extracted from 3D US volume data acquired in

the apical position to learn optimal probe orientations. The optimal angle

for the three apical views were annotated in a probabilistic manner for 60

patients, and trained with the same network as a regression problem.

Results show that DL based methods provide state of the art results for
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2D echocardiography with a sequence classification accuracy of 98.5% on

the independent test data. With a runtime of 4.4 ms per frame it was also

possible to run the network in real-time. For 3D data, the median deviation

from optimal view was 4°±3°. This suggest that CNNs have the potential of

being used for multiplanar reformatting and orientation guidance.

This paper was published in Ultrasound in Medicine and Biology (UMB), Volume

45, Issue 2, pages 374-384, February 2019. It is presented here in its original

form. The candidate was the main contributor to all aspects of the work, except

for acquisition of ultrasound data.

1.4.2 Detection of cardiac events in echocardiography using 3D
convolutional recurrent neural networks

Another important task when assessing cardiac function is to determine

various cardiac events. The most common measurement points are end-

systole and end-diastole, which correspond to the time when the aortic

and mitral valve closes respectively. Alternatively, the time points of

lowest and highest ventricle volume. ED and ES are used extensively in

quantitative echocardiography, for instance in the calculation of EF and

global longitudinal strain (GLS).

In this work we proposed using a network composed of 3D CNNs

followed by long short term memory (LSTM) layers to alleviate the spatio-

temporal features in the image sequence. We argue that combined use of

3D CNN and LSTMs extends the context in both space and time, compared

to using either individually or in combination with 2D convolutions. The

network is trained to classify whether an image belongs to systole or diastole,

and we use the switch between the states to define ES and ED. The network

is trained on 300 patients of acquisitions from the A4C and A2C views,

validated on 100 during training and tested on 100 patients post training.

Results indicated that the architecture combining 3D CNN and LSTM

provided competitive results with state of the art solutions, and significantly

better than combining 2D CNNs with LSTMs. The mean absolute error

was roughly 1.5 frames for both views and events. In addition, runtime

performance is fast with possibility of use in prospective pipelines.

This paper was published in IEEE International Ultrasonics Symposium (IUS),
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pages 1-4, Oct 2018. It is presented here in its original form. The candidate

was the second author and contributed to development of the employed neural

network, parts of the annotation and data processing, as well as writing the

manuscript. A. M. Fiorito was the first author and primal investigator.

1.4.3 Myocardial function imaging in echocardiography using
deep learning

The deformation of the myocardium can be quantified, and this has shown

beneficial for both diagnostic and prognostic evaluations of cardiac function.

In echocardiography, we often refer to this as myocardial function imaging,

or deformation imaging. Several markers are derived, such as strain

and strain rate. Clinical use, however, still remains limited at many

hospitals, which is partially believed to be due to its retrospective nature

and questionable reproducibility. Motion estimation, commonly by speckle

tracking, is a very important component for these measurements.

In this work, we develop a novel motion estimation method based

on DL. The network is based on the PWC-Net architecture [42], with

modifications to enhance performance on small and local displacements.

This includes the removal of feature warping, higher level feature maps and

flow estimation. A multi-scale loss with end-point error is employed, with

contributions from all pyramid levels. We design a cascaded training regime

with increasing resemblance to echocardiography data, and incorporate US

relevant augmentation routines. The input of the model is two consecutive

US images, and the output is the corresponding dense displacement field.

Finally, we integrate the ME method in a pipeline with view classification,

event detection and segmentation to fully automate longitudinal strain

measurements.

The results show that learning-based ME has an unexploited potential

both in terms of accuracy and runtime performance. We show that inducing

US relevant augmentations can have a twofold benefit, firstly it increases the

representation size of the data, but it also improves the models adaptability

to image artifacts. In vivo results are promising, within expected limits of

agreement seen in intervendor studies.

This paper has been accepted for publication in IEEE Transactions on Medical

Imaging (TMI), Jan. 2021. It is presented here in its original form. The
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candidate was the first author and contributed to all aspects of the work, except

for acquisition of echocardiography data. I.M Salte performed the reference strain

measurements, while E. Smistad and A.M. Fiorito was the primal investigators of

the segmentation and cardiac event detection methods respectively.

1.4.4 Artificial intelligence for automatic measurement of left
ventricular strain in echocardiography

In the previous contribution, we proposed a novel motion estimation

method based on deep learning. We integrated this with view classification,

event detection and segmentation in a pipeline for measuring longitudinal

strain, and showed promising results on a limited amount of simulations

and in vivo data. In this work, we investigated the agreement for GLS

measurements between the proposed pipeline compared to a commercially

available strain estimation software (2DS in EchoPAC v202, GE Vingmed

Ultrasound AS) on a large in vivo dataset. The dataset consisted of

200 patients with a significant variation in LV function and demographic

properties.

For all the patients, and in the majority of individual acquisitions, the DL

pipeline succeeds to estimate GLS. The correspondence with the commercial

system was comparable to intervendor studies. Further, the time required to

analyse all the steps for the three apical views of on patient was less than 15

seconds, significantly faster than other proposed methods.

This paper has been submitted to Journal of the American College of Cardiology:

Cardiovascular Imaging, and is presented here in its current form. The candidate

was the second author and contributed to all aspects of the technical method

development and result generation, in addition to drafting of the manuscript.

I.M. Salte was the first author and performed the statistical analysis and reference

measurements, as well as writing of the manuscript.

1.5 Publication list

Through the course of this studies, both written and oral contributions have

been made to international conferences and peer reviewed journals. The

following is a list of dissemination conducted in the period.
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1.6 Discussion of results

In this work, an investigation of using deep learning for various common

image analysis steps in echocardiography was conducted. Initially this

involved development of cardiac view classification, event detection and

segmentation algorithms. Further, DL based motion estimation models

adapted for echocardiography was proposed, followed by an integration of

components into a pipeline for fully automated strain measurements. We

show that DL methods can perform favourable compared to conventional

methods and state of the art. In parallel with this work, several groups in

the research community have presented related approaches to tackle similar

problems, all supporting benefits of using DL.We try to incorporate some of

the associated work into the further discussion.

Classification of cardiac views

The overall performance of the classification method shows that DL is

an attractive method for cardiac view recognition. On seven of the most

common cardiac views, state of the art results were achieved. Failures

could in most cases be assigned to bad image quality, abnormal features

or high similarity between views. However, the different classes included

in our study represents distinct top level cardiac views with relatively high

disparity between them. For instance, we did not differentiate between an

A4C view with LV focus and one with RV focus. In practice, at least for

quantitative measurements, this would greatly improve the value of the

algorithm. Parallel studies show that similar results could be achieved on

more views, and with less data [43].

The proposed CVCmodel was able to classify over 200 frames per second

on a modern GPU at the time of writing. That is significantly higher than

traditional methods, and could reduce number of clicks and time selecting

data for analysis. Also, the method can be used in a prospective scenario

on streamed US data without significant overhead. Real-time capabilities

allowed for continuous acquisitions, which can be seen in work presented by

our group [44]. This gives the operator the opportunity to acquire data from

different views without clicking any button. In that work, we also propose

metrics for estimating apical foreshortening based on the segmentation

output and show that this significantly affects EF measurements. As
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mentioned, this is also supported by other studies where they also show the

effect on GLS [33]. The foreshortening detection can be run in real-time,

giving the operator feedback if the view is suboptimal. However, further

studies must be conducted to investigate if this improves the quality of the

acquired data and subsequent measurements, and if continuous acquisition

improves the workflow.

One major limitation with this kind of approaches is that classification

models can become overly confident due to the inherent nature of the

optimization procedure. For probe guidance and quality assurance they

are not well suited, and more sensitive metrics must be employed, for

instance, to differentiate a good acquisition from a bad one. In the

work by Abdi et al. they derive a regression based quality score [13, 45]

based on different scanner settings and visual features of the image. This

includes centering of relevant objects, spatial settings, gain, as well as

visibility of boundaries and valves. Results are promising, however, the

number of views are limited and it is not known how these type of

regression approaches would work on additional and more similar views.

An alternative or supplementary direction related to quality assurance and

guidance is discussed in contribution 1, where using 3D data for training the

algorithms for use in a 2D acquisition scenario. With this type of approach,

the operator could potentially get feedback on how to optimally align the

probe. The work is limited to orientation, but extending it to tilting and

position is also worth pursuing. The optimal way for further research is hard

to determine, but a combination of a quality assurance metrics together with

feedback to the operator on how to improve is reasonable.

Both the temporal and spatial resolution affects themeasurement quality.

An extension of this work could for instance include recommendation to the

user regarding scanner configuration, such as width and depth adjustment.

Reducing these parameters typically gives higher frame rate, and should

thus be pursued for quantitative measurements where high temporal

resolution is beneficial. In the future, these adjustments could potentially be

performed without operator interaction enabled by communication between

the ML algorithm and the scanner configurations.

Detection of cardiac events

Event detection using 3D CNNs with recurrent layers yielded promising

results within interobserver variability. We recall that ED and ES represents
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the time of mitral and aortic valve closure respectively. The data used in this

study was limited to A4C and A2C views, and interestingly these does not

include a visible aortic valve. Earlier it has been proposed that a notch/nadir

in the velocity field close to the septal base before mitral valve opening is a

recoil of the AVC [14]. This is visible with speckle tracking, and could also

suggest that the DL models implicitly detects similar features. However,

additional work must be conducted to verify this.

In the work by Dezaki et al. they use a regression based approach

and apply a volume mimicking curve as image labels through the cardiac

cycle [46]. Their best model architecture is composed of a DenseNet

followed by gated recurrent units (GRU) [41, 47], and they design a loss

function promoting ED and ES detection. Their average results on A4C

surpass ours, despite our findings suggesting that 3D CNN followed by

recurrent neural network (RNN) layers were superior to a 2D CNN to RNN

approach. This could suggest that it is still possible to improve the results.

Either way, there is a chance that their approach implicitly uses the ECG for

labeling as they extract it from a conventional software, and as stated earlier,

this should be avoided if possible.

Another potential issue with RNNs is that they often require a sub-

stantial amount of subsequent frames as input for the models to perform

optimal. This can result in memory issues and limit the use on low-end

systems. In recent work employing the model this also appeared as a

bottleneck for real-time use [44], with a significant drop in frame rate when

deployed in practice.

Currently, the models are limited to detecting diastole and systole, but

an extension to detect additional cardiac events should be possible. The

acquisition rate available in US scanners today, together with the capabilities

of DL models, allows for the approximation of valve closures and openings,

as well as the rapid filling phase, diastasis and atrial systole. This could

be beneficial for several existing measurements, but also facilitate the

development of new ones.

In conclusion, event detection using DL is very promising. Not only as a

potential replacement for ECG when needed, but also for advancing current

solutions. Detecting the valve closures from the images directly will remove

the need for surrogates like QRS, which as mentioned is often affected by

cardiac disease. This could potentially make quantitative measurements
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more reliable, especially for regional measurements.

Segmentation of the left ventricle

The segmentation was a very important component in the later phases of

this work, specifically for the automated strain measurements. It was used

to segment the LV myocardium and extract the midline at initialization

of tracking for strain measurements. The employed network was an

U-Net based architecture [48] with modification emphasizing improved

inference [49]. It supported segmentation of the LV lumen, myocardium and

atrium in the A4C and A2C views. It was later used in the CAMUS study by

Leclerc et al. [50], which was a collaboration between our group, the Creatis

laboratory at the University of Lyon (France) and Katholieke Universiteit

(KU) in Leuven (Belgium). More recently, the method was extended to

support apical long-axis (APLAX) views by Smistad et al. [51].

On average we achieve good results on all classes and views. The

worst performance is on the myocardium, which is the most important

class in our strain pipeline. Segmentation of LV lumen has arguably

been a priority, with many natural applications including volume and

EF measurements. In general, this is also considered a simpler task

with better visibility of endocardium compared to the epicardium in

echocardiography. This is also prevalent from the results. In future work,

emphasising myocardium segmentation by inferring shape regularization

or class weighting promoting better delineation of the myocardium could

be worth pursuing. Also, due to the fast inference, model complexity could

be increased without affecting real-time capabilities.

Gradually, DL based segmentation algorithms have outperformed previ-

ous state of the art, and is now dominating the field [23]. The flexibility of

the models and the profound performance on in vivo data supports clinical

implementation and extensive use.

Myocardial motion estimation

For simulated data, the results show good correlation between the velocity

of the underlying biomechanical model and the DL approach. The data

is relatively homogeneous with limited variance between cases, and as

expected the performance decreased when testing on in vivo data. It must be
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taken into account that the reference from the commercial solution is not a

ground truth, and despite proper validation, it can still produce suboptimal

results for individual cases.

The loss and ground truth training data is restricted to optimization

within the myocardium, and we can not assume that the motion estimator

performs well outside of that region. Further studies must be conducted to

evaluate the generalization. Also, in future work, the motion patterns in

the data can be expanded significantly, and in this setting one would strive

to generate a diverse representation for training. Multi-chamber electrome-

chanical models are also becoming a possible direction for generating full

heart motion patterns [52].

Contrary to a majority of ME methods, the DL approach does not

infer any constraints regarding consistency of image intensity or phase.

This makes the models more flexible and may opportune the handling

of fundamental problems like out of plane motion and decorrelation of

speckle. Existing methods such as elastic image registration can bypass

these limitations to some extent, but the use of image warping and model

regularization are not necessarily optimal as mentioned earlier. The

conventional models will not be specialized for the data they are used for,

which is one of the main reasons for pursuing learning-based methods.

However, for ME in echocardiography the ground truth displacement

maps are not practical to extract from in vivo data. So far the most

immediate solution is to use simulated US. This is not optimal, but in

light of the conducted work we believe it is propitious with an increasing

degree of realism and an infinite supply of underlying motion patterns. A

promising alternative to supervised optical flow is unsupervised learning

approaches. These methods have produced competitive results on common

benchmarks [53]. Also, estimating 3D displacement fields from 2D images

can also be a possible direction, and even though its an extremely ill-posed

problem, DL based methods have shown promising results [54]. In any case,

finding solutions for improved in vivo validation will be essential.

A related pilot study using neural networks derived from the FlowNet

2.0 architecture [55] also suggests the use of simulated data to deal with

lack of ground truth for ME [56]. They also show that the simulation to real

transfer is feasible, with competitive result on a rotating phantom versus

a state of the art conventional method. We join them in supporting the
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high potential of these methods, both in terms of simplicity by reduced

hyperparameter tuning and adaptability.

If incorporated in the learning, ME methods with DL have the potential

of being more adaptive if faced by noise. We propose using relevant noise

inducing data augmentation for this, and show that this helps in controlled

experiments. Defining noise for the purpose of augmentation is a paradox

problem, and finding exact descriptions have been a topic of widespread

research in the US community [31]. In DL, augmentations have an explicit

regularization effect, and the variance in random noise application may end

up in the range of realistic noise and thus have a positive effect on the final

model. It will be important in future work to systematically investigate what

kind of augmentation effects improves ME adaptability and performance on

in vivo data.

Despite fast processing, the inference time of roughly 15 frames per

second is relatively far away from the real-time limit. However, compared

to other optical flow methods these methods are fast, and with additional

pruning and optimization we believe it is possible to use in prospective

applications. This part will also be facilitated by the rapid development of

new hardware and optimized inference engines.

Automating strain measurements

Results within proposed intervendor variability indicate that DL based

measurement pipelines for automatic strain estimation is promising. The

patient material in contribution 4 is relatively inhomogeneous with a wide

strain measurement distribution. However, each subgroup is relatively

small, and larger intervendor studies with a broader population is required

to map the general performance. There is still some deviation from

interobserver variability, but we argue that closing the gap is possible with

the aforementioned improvements.

Tackling apical foreshortening and out of plane motion is complex.

Our proposed foreshortening measurement [44] can potentially supplement

the strain calculations as a quality metric. It could also be interesting to

investigate if it is possible to derive compensation functions or variance

estimation based on this. In some subjects, avoiding foreshortening is

impossible, and alternatives in such situations are in demand [33].

As stated in contribution 4, the average time spent by an operator in
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order to conduct a single GLS analysis using commercial semi-automatic

software is 5-10 minutes. The proposed pipeline for fully automated

measurement can perform the full analysis in less than 15 seconds. In the

pipeline, the bottleneck for improving the runtime performance is the ME

network. As suggested in contribution 3, there are several opportunities to

optimize and prune the ME network for improved runtime performance.

A goal should be to surpass the recommended frame rate of 60 frames per

second [2], and enable prospective velocity and strain measurements of the

moving tissue while scanning. However, it is not known if this is required for

learning-based approaches, as the classical assumptions regarding speckle

consistency can be bypassed by DL methods. Nonetheless, we believe real-

time support can be very valuable to the operator, similar to way visual

inspection is almost mandatory when doing Doppler acquisitions.

For clinical implementation, several factors can minimize the impact on

measurement variability and we believe that the flexibility in component-

based approaches can create more trust among clinicians compared to an

fully end-to-end solution. As it is today, operator quality assurance should

still be possible, with an interactive user interface and opportunity of

adjusting the ROI and assessing tracking quality. Adjustments will cause

variability, and should be avoided unless necessary, but an option would be

to present or store results from both tracks. Further, ML based anomaly

detection can be a way to capture potential errors.

Robust regional assessment of myocardial tissue will potentially be

incremental to global measurements, and facilitate more detailed and

patient-specific diagnostics. However, regional strain measurements are still

not a reliable tool [2, 35]. Reasons for this include apical angle distortion,

reverberation and reduction in lateral resolution with depth. The effects
will often cause inhomogeneous tracking conditions from apex to base. This

comes on top of the fundamental noise in US discussed earlier, and makes

it very complicated to design conventional algorithms for good performance

in general. Learning-based algorithms have the potential of bypassing these

limitations by embedding the problem into the optimization procedure. This

is supported by our model adaption results in contribution 3, where the DL

based method adapts to local noise and abnormality along the myocardium,

while the conventional method struggles. This makes DL very attractive for

regional measurements, but efforts are still necessary to reduce uncertainties
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and potential flaws and misinterpretations along the analysis pipeline [57].

1.7 Concluding remarks

In this work, the focus has been to investigate the use of deep learning for

several image analysis tasks in echocardiography. This includes cardiac view

classification, event detection, segmentation and motion estimation. The

results from the studies indicate that all of them can benefit or even be

improved using DL. Further, the flexibility of data driven models surpass

conventional methods on inherent limitations in US due to noise and

acquisition variability. Possibilities within echocardiography are therefore

immense. The integration ofmethods in a fully automated pipeline for strain

measurements was feasible and yielded optimistic results. It is believed that

such pipelines can facilitate accelerated diagnosis within echocardiography

in the future, and potentially improve the robustness and accuracy of clinical

measurements. We believe that the research community has not fully

exploited these powerful tools, and expect them to be widespread in clinical

echocardiography routine within short time.

1.8 Thesis outline

The thesis outline is as follows: In Chapter 2 the relevant background and

terminology for echocardiography, deep learning and motion estimation

is given. This should give the unfamiliar reader an introduction to the

matter and capability of understanding the problems and work presented

in the following chapters. In Chapter 3-5 three technical contributions are

included as originally published, but adapted to the book layout. A clinical

agreement study based on the developed technical methods is presented in

the Chapter 6, and is included here as submitted to the journal.

25



1.8. Thesis outline

26



References

[1] I. Edler and C. H. Hertz, “The use of ultrasonic reflectoscope for the continuous

recording of the movements of heart walls.,” Clinical physiology and functional

imaging, vol. 24, no. 3, pp. 118–136, 1954.

[2] R. M. Lang, L. P. Badano, V. Mor-Avi, J. Afilalo, A. Armstrong, L. Ernande,

F. A. Flachskampf, E. Foster, S. A. Goldstein, T. Kuznetsova, et al.,

“Recommendations for cardiac chamber quantification by echocardiography

in adults: an update from the american society of echocardiography and

the european association of cardiovascular imaging,” European Heart Journal-

Cardiovascular Imaging, vol. 16, no. 3, pp. 233–271, 2015.

[3] M. T. Nolan and P. Thavendiranathan, “Automated quantification in

echocardiography,” JACC: Cardiovascular Imaging, vol. 12, no. 6, pp. 1073–

1092, 2019.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proceedings of the

IEEE international conference on computer vision, pp. 1026–1034, 2015.

[5] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without

human knowledge,” nature, vol. 550, no. 7676, pp. 354–359, 2017.

[6] Y. Liu, A. Jain, C. Eng, D. H. Way, K. Lee, P. Bui, K. Kanada,

G. de Oliveira Marinho, J. Gallegos, S. Gabriele, et al., “A deep learning system

for differential diagnosis of skin diseases,” Nature Medicine, pp. 1–9, 2020.

[7] E. Ilg, N.Mayer, T. Saikia, M.Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0:

Evolution of optical flow estimation with deep networks,” in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Jul 2017.

[8] R. J. Van Sloun, R. Cohen, and Y. C. Eldar, “Deep Learning in Ultrasound

Imaging,” Proceedings of the IEEE, vol. 108, pp. 11–29, jan 2020.

[9] S. Liu, Y. Wang, X. Yang, B. Lei, L. Liu, S. X. Li, D. Ni, and T. Wang, “Deep

Learning in Medical Ultrasound Analysis: A Review,” vol. 5, pp. 261–275, apr

2019.

[10] C. Knackstedt, S. C. Bekkers, G. Schummers, M. Schreckenberg, D. Muraru,

L. P. Badano, A. Franke, C. Bavishi, A. M. S. Omar, and P. P. Sengupta, “Fully

27



References

Automated Versus Standard Tracking of Left Ventricular Ejection Fraction and

Longitudinal Strain the FAST-EFs Multicenter Study,” Journal of the American

College of Cardiology, vol. 66, pp. 1456–1466, sep 2015.

[11] G. Wharton, R. Steeds, J. Allen, H. Phillips, R. Jones, P. Kanagala, G. Lloyd,

N. Masani, T. Mathew, D. Oxborough, B. Rana, J. Sandoval, R. Wheeler,

K. O’gallagher, and V. Sharma, “A minimum dataset for a standard adult

transthoracic echocardiogram: a guideline protocol from the British Society

of Echocardiography York Teaching Hospital NHS Foundation Trust,”

[12] H. Khamis, G. Zurakhov, V. Azar, A. Raz, Z. Friedman, and D. Adam, “Au-

tomatic apical view classification of echocardiograms using a discriminative

learning dictionary,” Medical Image Analysis, vol. 36, pp. 15–21, feb 2017.

[13] A. H. Abdi, C. Luong, T. Tsang, G. Allan, S. Nouranian, J. Jue,

D. Hawley, S. Fleming, K. Gin, J. Swift, R. Rohling, and P. Abolmaesumi,

“Automatic Quality Assessment of Echocardiograms Using Convolutional

Neural Networks: Feasibility on the Apical Four-Chamber View,” IEEE

transactions on medical imaging, vol. 36, no. 6, 2017.

[14] S. A. Aase, S. R. Snare, H. Dalen, A. Stoylen, F. Orderud, and

H. Torp, “Echocardiography without electrocardiogram,” European Journal of

Echocardiography, vol. 12, pp. 3–10, jan 2011.

[15] M. Zolgharni, M. Negoita, N. M. Dhutia, M. Mielewczik, K. Manoharan,

S. M. A. Sohaib, J. A. Finegold, S. Sacchi, G. D. Cole, and D. P.

Francis, “Automatic detection of end-diastolic and end-systolic frames in 2D

echocardiography,” Echocardiography, vol. 34, pp. 956–967, jul 2017.

[16] S. A. Aase, A. Stoylen, C. B. Ingul, S. Frigstad, and H. Torp, “Automatic timing

of aortic valve closure in apical tissue Doppler images,” Ultrasound in Medicine

and Biology, vol. 32, pp. 19–27, jan 2006.

[17] A. M. Weissler, W. S. Harris, and C. D. Schoenfeld, “Systolic Time Intervals in

Heart Failure in Man,” Circulation, vol. 37, pp. 149–159, feb 1968.

[18] R. P. Lewis, S. E. Rittogers,W. F. Froester, and H. Boudoulas, “A critical review

of the systolic time intervals.,” Circulation, vol. 56, pp. 146–158, aug 1977.

[19] S. Darvishi, H. Behnam, M. Pouladian, and N. Samiei, “Measuring Left

Ventricular Volumes in Two-Dimensional Echocardiography Image Sequence

Using Level-set Method for Automatic Detection of End-Diastole and End-

systole Frames,” Research in Cardiovascular Medicine, vol. 1, pp. 39–45, sep

2012.

[20] V. Tavakoli and A. A. Amini, “A survey of shaped-based registration and

segmentation techniques for cardiac images,” Computer Vision and Image

Understanding, vol. 117, pp. 966–989, sep 2013.

[21] C. Petitjean and J. N. Dacher, “A review of segmentation methods in short axis

cardiac MR images,” vol. 15, pp. 169–184, apr 2011.

28



References

[22] J. A. Noble and D. Boukerroui, “Ultrasound image segmentation: A survey,”

vol. 25, pp. 987–1010, aug 2006.

[23] C. Chen, C. Qin, H. Qiu, G. Tarroni, J. Duan, W. Bai, and D. Rueckert, “Deep

learning for cardiac image segmentation: A review,” Frontiers in Cardiovascular

Medicine, vol. 7, p. 25, 2020.

[24] A. C. Armstrong, E. P. Ricketts, C. Cox, P. Adler, A. Arynchyn, K. Liu,

E. Stengel, S. Sidney, C. E. Lewis, P. J. Schreiner, J. M. Shikany,K.Keck, J. Merlo,

S. S. Gidding, and J. A. Lima, “Quality Control and Reproducibility in M-

Mode, Two-Dimensional, and Speckle Tracking Echocardiography Acquisition

and Analysis: The CARDIA Study, Year 25 Examination Experience,”

Echocardiography, vol. 32, pp. 1233–1240, aug 2015.

[25] “Myocardial strain imaging: review of general principles, validation, and

sources of discrepancies,” European Heart Journal - Cardiovascular Imaging,

vol. 20, pp. 605–619, jun 2019.

[26] B. Heyde, R. Jasaityte, D. Barbosa, V. Robesyn, S. Bouchez, P.Wouters, F. Maes,

P. Claus, and J. D’Hooge, “Elastic image registration versus speckle tracking

for 2-d myocardial motion estimation: A direct comparison in vivo,” IEEE

Transactions on Medical Imaging, vol. 32, no. 2, pp. 449–459, 2013.

[27] K. McLeod, A. Prakosa, T. Mansi, M. Sermesant, and X. Pennec, “An

incompressible log-domain demons algorithm for tracking heart tissue,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 7085 LNCS, pp. 55–67,

2012.

[28] M. Alessandrini, A. Basarab, H. Liebgott, and O. Bernard, “Myocardial

motion estimation from medical images using the monogenic signal,” IEEE

Transactions on Image Processing, vol. 22, no. 3, pp. 1084–1095, 2013.

[29] B. Heyde, R. Jasaityte, D. Barbosa, V. Robesyn, S. Bouchez, P.Wouters, F. Maes,

P. Claus, and J. D’Hooge, “Elastic image registration versus speckle tracking

for 2-d myocardial motion estimation: A direct comparison in vivo,” IEEE

Transactions on Medical Imaging, vol. 32, no. 2, pp. 449–459, 2013.

[30] S. Zhao, Y. Sheng, Y. Dong, E. I.-C. Chang, and Y. Xu, “MaskFlownet:

Asymmetric Feature Matching with Learnable Occlusion Mask,” Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pp. 6277–6286, mar 2020.

[31] A. Fatemi, E. A. R. Berg, and A. Rodriguez-Molares, “Studying the Origin of

Reverberation Clutter in Echocardiography: In Vitro Experiments and In Vivo

Demonstrations,” Ultrasound in Medicine and Biology, vol. 45, pp. 1799–1813,

jul 2019.

[32] K. E. Farsalinos, A. M. Daraban, S. Ünlü, J. D. Thomas, L. P. Badano,

and J. U. Voigt, “Head-to-Head Comparison of Global Longitudinal Strain

Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor

29



References

Comparison Study,” Journal of the American Society of Echocardiography, vol. 28,

pp. 1171–1181.e2, oct 2015.

[33] S.Ünlü, J. Duchenne, O. Mirea, E. D. Pagourelias, S. Bézy, M. Cvijic, A. S. Beela,

J. D. Thomas, L. P. Badano, J.-U. Voigt, L. P. Badano, J. D. Thomas, J. Hamilton,

S. Pedri, P. Lysyansky, G. Hansen, Y. Ito, T. Chono, J. Vogel, D. Prater, J. H.

Song, J. Y. Lee, H. Houle, B. Georgescu, R. Baumann, B. Mumm, Y. Abe, and

W. Gorissen, “Impact of apical foreshortening on deformation measurements:

a report from the EACVI-ASE Strain Standardization Task Force,” European

Heart Journal - Cardiovascular Imaging, vol. 21, pp. 337–343, jul 2019.

[34] J. U. Voigt, G. Pedrizzetti, P. Lysyansky, T. H. Marwick, H. Houle,

R. Baumann, S. Pedri, Y. Ito, Y. Abe, S. Metz, J. H. Song, J. Hamilton,

P. P. Sengupta, T. J. Kolias, J. D’Hooge, G. P. Aurigemma, J. D. Thomas,

and L. P. Badano, “Definitions for a common standard for 2D speckle

tracking echocardiography: consensus document of the EACVI/ASE/Industry

Task Force to standardize deformation imaging,” European heart journal

cardiovascular Imaging, vol. 16, no. 1, pp. 1–11, 2015.

[35] O.Mirea, E. D. Pagourelias, J. Duchenne, J. Bogaert, J. D. Thomas, L. P. Badano,

J. U. Voigt, J. Hamilton, S. Pedri, P. Lysyansky, G. Hansen, Y. Ito, T. Chono,

J. Vogel, D. Prater, S. Park, J. Y. Lee, H. Houle, B. Georgescu, R. Baumann,

B. Mumm, Y. Abe, and W. Gorissen, “Variability and Reproducibility of

Segmental Longitudinal Strain Measurement: A Report From the EACVI-

ASE Strain Standardization Task Force,” JACC: Cardiovascular Imaging, vol. 11,

pp. 15–24, jan 2018.

[36] R. O. Mada, P. Lysyansky, A. M. Daraban, J. Duchenne, and J. U. Voigt,

“How to define end-diastole and end-systole?: Impact of timing on strain

measurements,” JACC: Cardiovascular Imaging, vol. 8, pp. 148–157, feb 2015.

[37] D. Liu, K. Hu, P. Nordbeck, G. Ertl, S. Störk, and F.Weidemann, “Longitudinal

strain bull’s eye plot patterns in patients with cardiomyopathy and concentric

left ventricular hypertrophy,” vol. 21, p. 21, may 2016.

[38] L. A. Brodin, J. Van der Linden, and B. Olstad, “Echocardiographic functional

images based on tissue velocity information,” Herz, vol. 23, no. 8, pp. 491–498,

1998.

[39] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in International Conference on

Machine Learning, pp. 448–456, 2015.

[40] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 2818–2826, 2016.

[41] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely

connected convolutional networks,” arXiv preprint arXiv:1608.06993, 2016.

30



References

[42] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “PWC-Net: CNNs for optical

flow using pyramid, warping, and cost volume,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 8934–8943, 2018.

[43] A. Madani, R. Arnaout, M. Mofrad, and R. Arnaout, “Fast and accurate

classification of echocardiograms using deep learning,” p. 8, jun 2018.

[44] E. Smistad, A. Østvik, I. Mjåland Salte, D. Melichova, T. Mi Nguyen,

K. Haugaa, H. Brunvand, T. Edvardsen, S. Leclerc, O. Bernard, B. Grenne,

L. Løvstakken, A. Østvik are, and T. Mi Nguyen are, “Real-Time Automatic

Ejection Fraction and Foreshortening Detection Using Deep Learning,” IEEE

transactions on ultrasonics, ferroelectrics, and frequency control, 2020.

[45] A. H. Abdi, C. Luong, T. Tsang, J. Jue, K. Gin, D. Yeung, D. Hawley, R. Rohling,

and P. Abolmaesumi, “Quality assessment of echocardiographic cine using

recurrent neural networks: Feasibility on five standard view planes,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 10435 LNCS, pp. 302–310,

Springer Verlag, 2017.

[46] F. T. Dezaki, Z. Liao, C. Luong, H. Girgis, N. Dhungel, A. H. Abdi, D. Behnami,

K. Gin, R. Rohling, P. Abolmaesumi, and T. Tsang, “Cardiac Phase Detection in

Echocardiograms with Densely Gated Recurrent Neural Networks and Global

Extrema Loss,” IEEE Transactions on Medical Imaging, vol. 38, pp. 1821–1832,

aug 2019.

[47] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN

encoder-decoder for statistical machine translation,” in EMNLP 2014 - 2014

Conference on Empirical Methods in Natural Language Processing, Proceedings

of the Conference, pp. 1724–1734, Association for Computational Linguistics

(ACL), jun 2014.

[48] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 9351, pp. 234–241, Springer Verlag, may 2015.

[49] E. Smistad, A. Ostvik, B. O. Haugen, and L. Lovstakken, “2D left

ventricle segmentation using deep learning,” in IEEE International Ultrasonics

Symposium, IUS, IEEE Computer Society, oct 2017.

[50] S. Leclerc, E. Smistad, J. Pedrosa, A. Ostvik, F. Cervenansky, F. Espinosa,

T. Espeland, E. A. R. Berg, P. M. Jodoin, T. Grenier, C. Lartizien, J. Dhooge,

L. Lovstakken, and O. Bernard, “Deep Learning for Segmentation Using

an Open Large-Scale Dataset in 2D Echocardiography,” IEEE transactions on

medical imaging, vol. 38, pp. 2198–2210, sep 2019.

[51] E. Smistad, I. M. Salte, A. Ostvik, S. Leclerc, O. Bernard, and L. Lovstakken,

“Segmentation of apical long axis, four- and two-chamber views using deep

neural networks,” in IEEE International Ultrasonics Symposium, IUS, vol. 2019-

Octob, pp. 8–11, IEEE Computer Society, oct 2019.

31



References

[52] C. M. Augustin, A. Neic, M. Liebmann, A. J. Prassl, S. A. Niederer, G. Haase,

and G. Plank, “Anatomically accurate high resolution modeling of human

whole heart electromechanics: A strongly scalable algebraic multigrid solver

method for nonlinear deformation,” Journal of Computational Physics, vol. 305,

pp. 622–646, jan 2016.

[53] L. Liu, J. Zhang, R. He, Y. Liu, Y. Wang, Y. Tai, D. Luo, C. Wang, J. Li, and

F. Huang, “Learning by Analogy: Reliable Supervision from Transformations

for Unsupervised Optical Flow Estimation,” Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pp. 6488–6497,

mar 2020.

[54] J. Hur and S. Roth, “Self-Supervised Monocular Scene Flow Estimation,”

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 7394–7403, apr 2020.

[55] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “FlowNet

2.0: Evolution of Optical Flow Estimation with Deep Networks,” Proceedings -

30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,

vol. 2017-January, pp. 1647–1655, dec 2016.

[56] E. Evain, K. Faraz, T. Grenier, D. Garcia, M. De Craene, and O. Bernard,

“A Pilot Study on Convolutional Neural Networks for Motion Estimation

from Ultrasound Images,” IEEE Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control, vol. 67, pp. 2565–2573, dec 2020.

[57] N. Duchateau, A. P. King, and M. De Craene, “Machine Learning Approaches

for Myocardial Motion and Deformation Analysis,” vol. 6, p. 190, jan 2020.

32



2Background

This chapter aims to provide the unfamiliar reader the necessary prerequi-

sites for understanding the relevant concepts and terminology of this work.

A brief introduction to ultrasound and echocardiography are given initially,

together with a fundamental description of myocardial function imaging.

Further, a technical overview of deep learning and motion estimation for

image analysis is included.

2.1 Ultrasound

Ultrasound is defined as mechanical waves with frequencies higher than

the upper limit of the human audible range [1]. Mechanical waves transfer

energy through a medium by oscillation of its particles. Ultrasound (US)

images are made by transmitting waves into a medium using a transducer,

wherein they propagate and scatter as a result of discontinuity in acoustic

impedance. The energy of the backscattered US is registered on a transducer

surface, and used to form images based on the intensity of the backscattered

echo and the presumed location of the scatterers. The waves propagate with

a velocity

c =

√
K
ρ
, (2.1)

where K is the bulk modulus and ρ is the density of the medium. This

velocity c is often referred to as the speed of sound, and its relationship to

the waves frequency f and wavelength λ is

c = λf . (2.2)
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2.1. Ultrasound

US can traverse fluids and most soft tissues, but has difficulties with bone

and air. This is mainly due to the large difference in impedance and

attenuation properties. For water and blood, and most soft tissue in the

human body, the speed of sound is often set to roughly 1540ms−1. Assuming

a constant wave velocity, it is possible to estimate the distance z between the

source of the scatterer and the probe,

z =
ct
2
, (2.3)

where t is the time from transmission. The ability to distinguish small

structures, i.e. the axial resolution, is dependent on the pulse length, which

is inverse proportional to the frequency of the transmitted pulse. Hence

higher frequency gives better spatial resolution.

As the US waves propagate through a medium, the energy attenuates

due to absorption, scattering loss and spreading. The attenuation is also

frequency dependent, reducing the waves energy with higher frequency.

This effect limits the penetration depth and results in a compromise between

resolution and the size of the sonified region.

Imaging

Conventional US imaging is a pulse-echo technique, which means that

the US waves are transmitted from the same transducer (commonly

called probe) as they are received. The acoustic waves, or beam, are

typically generated and detected by an array of elements situated on this

transducer. These are commonly made up by piezoelectric crystals that

exploits the piezoelectric effect for converting energy from mechanical

stress to an electric charge and vice versa. An alternative concept is the

capacitive micromachined ultrasonic transducer (CMUT), where the energy

is converted due to change in capacitance [2].

Images are formed by steering the beam over a region of interest

(scanning), and registering the backscattered signal. Steering is mainly done

electronically using the transducer array, but applications of mechanical

steering also exist. Scanning can be performed in several ways, for instance

sector scanning that uses transmission delays on the elements to focus and

steer the beam in a desired direction. This is often referred to as phased

array scanning, and is the most widely used imaging technique in cardiac
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US. Further, we have different modalities in US with properties facilitating

tissue or blood imaging. The most common is brightness mode (B-mode),

which is two-dimensional gray scale images of tissue. Motion mode (M-

mode) is another tissue imaging technique, which displays the envelope

signal along a specific beam direction over time. In addition, numerous

Doppler modalities exist, such as continuous wave (CW), pulsed wave (PW)

Dopper and color flow imaging (CFI). In this thesis the focus is B-mode

imaging.

2.2 Echocardiography

The human heart is a muscular organ situated behind the sternum, slightly

offset to the left side of the chest. Its main objective is to pump blood

through the circulatory system, providing oxygen and nutrients to the body

and removing waste products such as carbon dioxide through the lungs. The

pace of the pump in a normal resting adult is generally between 40 and 120

beats per minute (bpm).

The heart is enclosed by a sac called the pericardium, and the heart

wall consists of the layers endocardium, myocardium and epicardium. The

myocardium is the cardiac muscle, built up by muscle and pacemaker cells.

An illustration of the heart can be seen in Fig. 2.1. The adult heart has an

average long axis length of approximately 12 cm [3], width of 8.5 cm and

thickness of 6 cm. This is significantly affected by factors such as age, gender

and physical activity. The heart consists of four chambers, two on the right

and left side for the pulmonary and systemic circulation respectively. Both

sides have one atrium, which receives blood, and a ventricle which ejects

blood into the body and lungs. The chambers are separated by septum walls

of cardiac tissue and four valves.

The cardiac cycle is periodic and consists of the diastolic and systolic

phases. Diastole is the period of muscle relaxation and refilling of blood,

initiated by the semilunar (SL; aortic and pulmonary valve) valves closing

and an isovolumetric relaxation phase where all valves are closed. When

the atrial pressure rises above the ventricular pressure, the atrioventricular

(AV; mitral and tricuspid valve) valves open and blood flows passively into

the ventricles. This is followed by electrical depolarization of the atrium,

where the atria starts to contract forcing additional blood to flow across the
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Figure 2.1: Schematic of the human heart showing the four chambers, valves and

other relevant landmarks.

AV valves. After the atria contraction ends, the pressure drops and the AV

valves close. The next stage is systole, which is the ventricular contraction

phase with blood pumping out of the heart and into the body and lungs.

It is initiated with the isovolumetric contraction, which begins with the

ventricular depolarization and all valves closed. The pressure then increases

in the ventricle till it exceeds the aortic and pulmonary pressure, and the

ejection stage starts with the SL valves opening and blood pumping out of

the ventricles. Towards the end of the ejection stage, the ventricle repolarizes

resulting in a reduction in tension and pressure generation till the SL valves

close and the cardiac cycle is back to start.

Echocardiography is US imaging of the heart. In principle, it does not

differ from other types of diagnostic US, but the intrinsic properties of

the organ and its location requires some specialized adaption. The most

common way of acquiring US images of the heart is by placing a probe

on intercostal locations of a subject. This procedure is called transthoracic

echocardiography (TTE). An examination is typically composed of image

sequences from different standardized probe postures, referred to as

acoustic windows. An example is the apical window, where the probe is

positioned close to the apex of the heart, usually in the 5th intercostal space,
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and oriented along its long axis. See Fig. 2.2 for an illustrative sketch, where

some relevant landmarks are indicated. Different probe postures in the

same window results in US images from different planes called views. For

an echocardiographic examination, the views are often standardized with

semantic names.

Figure 2.2: Illustration of probe posture when acquiring an ultrasound acquisition

of the apical four-chamber view. Corresponding US image is shown on the right

side. Left/right ventricle (LV, RV) and left/right atrium (LA, RA) are indicated.

Illustration courtesy of H. E. Mørk (www.helemork.com).

The intercostal area, i.e. the spacing between the ribs, does not permit

the use of US probes with large apertures. Phased array transducers

with electrical steering and a small footprint are typically used for adult

echocardiography. Due to the compromise between penetration and

resolution, the frequency range is roughly 2-4MHz, reaching depth covering

the whole heart. Another important factor to consider in echocardiography

is the dynamics, and to avoid underestimation of tissue motion or similar,

the frame rate must be sufficient. For adult 2D echocardiography, the frame

rate is typically in the range 45-100 Hz for high-end scanners.

In echocardiography several factors can corrupt the image quality. This

can often be traced back to fundamental physical phenomenons, natural

artefacts and system design. A selection of noise sources includes rever-

berations, aberrations, acoustic shadows, specular reflections, attenuation,

as well as side- and grating lobes [4, 5]. In US imaging we assume that only

one scattering process occurs during wave propagation, however, in reality
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the wave will be scattered multiple times and the backpropagated signal

from a specific scatterer will also be received several times. This is called

reverberation, and will cause a ghosting effect that degrades the contrast of

the image. Another assumption is that the sonified medium is homogeneous

with constant speed of sound. As mentioned earlier, the speed of the US

wave is dependent on the properties of the medium which will vary in

practice. This causes a distortion of the wavefront, so-called aberration,

as it travels through different types of tissue. Aberration degrades the

focus convergence, and makes the resolution worse as a result of broadened

mainlobe. Further, attenuation can for instance be caused by the frequency

dependency, and a shift of center frequency as a result of wave propagation.

Acoustic shadows are characterized by a signal void behind structures that

either strongly absorb or reflect the waves. Specular reflections caused by

the ribs are also assumed to cause hazy clutter noise in the image [6].

2.2.1 Myocardial function imaging

Myocardial function imaging often refers to the principle of quantifying the

cardiac muscle function by velocity and deformation measurements by a

medical imaging modality. In echocardiography, strain is used to describe

local shortening, thickening and lengthening of the myocardium [7], and is

commonly measured by tissue Doppler imaging (TDI) or speckle tracking

echocardiography (STE). Myocardial strain measurements using TDI was

first introduced in the late 1990s [8, 9], while STE later emerged as the

most widely used technique [10]. The dominance of STE compared to

TDI can mainly be attributed to less angle dependency and opportunity for

measurements on conventional B-mode images.

Strain is the deformation produced by the application of a stress, which

is the force per unit cross-sectional area [11]. Strain is dimensionless, and

represents the fractional change from the original to the unstressed state. As

illustrated in Fig. 2.3, strain allows for the investigation of different spatial
components of the contractile function along the anatomical directions of

the ventricle. This includes longitudinal strain (LS), circumferential strain

and radial strain. LS is computed along the long axis of the ventricle, while

circumferential along the short axis. Perpendicular to LS, the radial strain is

computed between the endo- and epicardial borders of the ventricle.

The term strain originates from continuummechanics, where it is used to
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describe deformation of an object normalized to its original shape and size.

There are several ways to describe this, the most common being Lagrangian

or Eulerian (often called natural) strain. Both are illustrated in Fig. 2.3.

Lagrangian strain ε corresponds to fractional change of length L at a given

point in time t with respect to some reference length L0. L0 can for instance

be the longitudinal ventricular length at end diastole. The Eulerian strain εE
is the sum of ratio between the instantaneous deformation and the length,

i.e. the instantaneous length change. They can be found by the formulas,

ε(t) =
L(t)−L0

L0
εE(t) =

∫ t

t0

1

L(t)

dL(t)

dt
dt = ln

(
L(t)

L0

)
. (2.4)

The relationship between Lagrangian and Eulerian strain is given by,

ε(t) = exp(εE(t))− 1. (2.5)

In clinical practice Lagrangian strain with STE is most common. Eulerian

strain is often used with TDI.

Circumferential

Apex

Base

Endocard

ard

d�(t)

dt

L0
L(t)

rangian Eulerian

Figure 2.3: Illustration of a heart ventricle. The apex at the bottom cap, and base on

top. The myocardium is delimited by the epicard and endocard borders. To the top

left, the different anatomical directions are indicated. On the right a representation

of the difference between Lagrangian and Eulerian strain is shown.

As with ejection fraction, strain measured by echocardiography is also

load dependent and is thus not able to describe the true myocardial

contractility. These clinical parameters alone can not be used to fully

describe the cardiac function.
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2.3 Deep learning and neural networks

In our modern society, machine learning algorithms are embedded into

many aspects of our everyday life. From low risk recommendation services

for music and television, to the aid of health personnel making critical

decisions in medical procedures. Machine learning is a broad term in the

subfield of artificial intelligence (AI), and is defined as algorithms that can

learn from data. They include well known algorithms such as decision trees,

support vector machines and regression analysis [12]. In recent years the

field has been dominated by an approach called deep learning, which is a

family of representation learning algorithms. We can refer to the latter as

the automatic formation of useful representations from data.

The building blocks of learning algorithms usually consist of (i) spec-

ification of data, (ii) an objective function, (iii) an optimization procedure

and (iv) a model [13]. Further, we can differentiate between four types of

learning, namely supervised, semi-supervised, unsupervised and reinforce-

ment. In this work supervised learning was most relevant, thus being the

main focus of this chapter. Supervised learning involves using labeled data

to conduct the learning process and produce a model that takes some input

x, for example an image, and map it to a paired output y. The output y is

often referred to as label or ground truth [14].

In DL, the cardinal model is called feedforward neural network (NN) [13].

The main goal of a NN is to approximate a function f , by defining amapping

y = f (x;Θ) and learning the parametersΘ that results in the best estimation.

The input data flows through the function of intermediate calculations to

the final output with no feedback connection, hence feedforward. With

feedback the model is called recurrent neural network (RNN). A feedforward

neural network can be divided into three overarching components; an input

layer accepting some inputs x, an arbitrary amount of hidden layers and

the output layer producing the prediction ŷ. Most hidden layers can be

described as an affine transformation followed by element-wise application

of an activation function σ . This is defined as

f (x;W ,b)
def
= σ (W Tx+b), (2.6)

whereW are the weights and b is the bias. For a neural network of K layers,
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this is a composite function or network [15],

ŷ = f (x) = (f K ◦ f K−1 ◦ · · · ◦ f 0)(x) = f K (f K−1(· · · (f 0(x) · · · )), (2.7)

where ŷ are the predictions. Every function f i possesses its own parameters

W i and bi , often referred to as learnable parametersΘ = {W 0,b0, ...,W K,bK }.
The number of layers correspond to model depth, and it is from this

terminology that the term deep originates.

Activation functions

Activation functions are important in order for a network to learn complex

patterns in the inputs. Most practical problems have a high degree of

complexity, and to that end the functions need to be non-linear. Without

a non-linear activation function the neural network would become a

combination of linear functions, and thus linear itself. They also restrict

the output values from the layer to a certain limit.

One of the most widely used activation functions for DL is the rectified

linear unit (ReLU) [16]. It is defined as,

σReLU(x) =max(0,x) =

⎧⎪⎪⎨⎪⎪⎩x if x > 0,

0 otherwise.
(2.8)

One issue with this activation function is that it is zero for all negative

outputs, which potentially causes layers to degenerate and not learn

anything. Two improvements that allows for positive gradients when the

output is negative is the leaky ReLU and the parametric ReLU (PReLU). They

are defined as σ (x) =max(ax,x), where a is a preset constant for leaky ReLU

and a learnable parameter for PReLU [17,18].

For the output layer, a sigmoid or softmax (SM) function is commonly

used. For n classes, the softmax function for class i is defined as,

σSM(x)i =
exp(xi)∑n
j exp(e

xj )
, (2.9)

where x is the input. This will result in a categorical distribution of the n

different classes with values ranging from zero to one, with the sum of all

class predictions equal to one.
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Loss

Learning algorithms inML rely on optimization of an objective function, e.g.

“minimize the mean squared error loss”. The function we want to minimize

is called the loss function, which computes the error on a single example.

The cost function is typically the average over several examples, or the whole

dataset. These terms are often used interchangeably.

The choice of loss function is an essential part of training a neural

network, and depends on the problem at hand. For classification tasks a

commonly used loss function is cross-entropy (CE), where the idea is to give

a logarithmic penalty while training based on how far the predicted class is

from ground truth. CE is defined as

LCE(y, ŷ) = −
n∑
i=1

yi · log(ŷi), (2.10)

where y is the ground truth, ŷ is the class prediction and n is the number of

classes. For multiclass classification, i.e. each sample belongs to one class,

categorical CE is usually employed. Here, the softmax function is used as

the final activation of ŷ, which gives

LCCE(y, ŷ) = −
n∑
i=1

yi · log(σSM(ŷ)i) = − log
⎛⎜⎜⎜⎜⎜⎝ exp(ŷp)∑n

j exp(e
ŷj )

⎞⎟⎟⎟⎟⎟⎠ , (2.11)

where ŷp is the prediction corresponding to the GT class. Note that for a

multiclass classification, only the GT term is nonzero and kept in the final

expression.

While the classification task seeks to automatically assign a label to an

unlabeled example, regression is a problem of predicting values. Mean

absolute error (MAE), for instance, is a measure of error between the true

and predicted values for a specific example. It can be formulated as

LMAE(y, ŷ) =
1

m

m∑
i=1

|yi − ŷi |, (2.12)

where m is the length of the output vectors. MAE is often used as a loss

function for regression problems.
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Backpropagation and optimization

Neural networks learn using gradient-based algorithms. The learning

consists of two parts called backpropagation and optimization. Backpropa-

gation refers to the method of computing the gradient of the loss function

∇ΘL(y, ŷ;Θ) with respect to the parameters Θ. The optimization performs

the learning using this gradient. Gradient descent, for instance, is a way

to optimize a loss function L parameterized by the models parameters Θ.

This happens by updating the parameters in the opposite direction of the

gradient of the loss function. We separate into three different variants based
on the amount of data used for each update; gradient descent, stochastic

gradient descent (SGD) and mini-batch SGD. Gradient descent utilizes the

whole dataset for one single update of parameters, while SGD performs an

update for every example. In DL practice, the most common is mini-batch

SGD, which performs updates for every N training examples. The common

size of N range from 4 to 256, but varies significantly between different
applications and model capacity.

Gradient descent algorithms proceeds in epochs, which correspond to

using the entire training set once to update the learnable parameters. The

learnable parameters Θ are initialized before the first epoch, typically by

randomized values, zeros or with some known distribution. A few common

initialization methods include He and Glorot/Xavier [18, 19]. Moving on to

the training, the learnable parameters are, as mentioned, updated using the

gradient of the loss and the output after forward propagation. This can be

formulated as

Θ←Θ −α∇ΘL(Θ) =⇒ W ←W −α �L

�W
, b← b−α�L

�b
, (2.13)

where the learning rate α controls the size of the update.

There are several challenges with SGD that limits good convergence.

This includes choosing a proper learning rate and avoiding suboptimal local

minima as a result of highly non-convex loss functions. One problem with

SGD is related to poor updates and oscillations in parts of the loss surface

with large curvatures in one direction. To accelerate learning and limit such

situations, incorporating momentum in the SGD has been proposed [20,21].

The momentum algorithm introduces a new variable ν that accumulates an

exponential decayingmoving average of previous gradients. The new update
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rule is

ν ← ην −α∇ΘL(Θ), (2.14)

Θ←Θ + ν . (2.15)

The contribution of the accumulated gradients are determined by a preset

factor η relative to the learning rate α. The parameter update will then be

dependent of the previous gradients and their alignment.

SGDwithmomentum is one of many ways of improving the optimization

process with respect to the mentioned limitations. An extensive description

of alternative methods is out of scope for this thesis, but we want to briefly

mention the adaptive moment estimation (Adam) [22]. It is one of the most

popular in practice, and combines the use of adaptive learning rate and

momentum. The Adam optimizer stores an exponentially decaying average

of both the past gradient and the past squared gradient. The prior being

similar to momentum. The first moment estimate mt and second moment

estimate vt is calculated as,

mt = β1mt−1 + (1− β1) · ∇ΘL(Θ) (2.16)

vt = β2vt−1 + (1− β2) · ∇ΘL(Θ)�∇ΘL(Θ), (2.17)

where β1 and β2 are the exponential decay rates. To correct for the induced

bias by initialization the moments with zeros, corrected bias estimate for the

first and second moment is calculated as

m̂t =
mt

1− βt1
, v̂t =

vt
1− βt2

. (2.18)

Finally, the parameters are updated according to

Θ←Θ −α m̂t√
v̂t + ε

, (2.19)

where ε is a small constant used for numerical stability. The second term

makes the learning rate adaptive by modification based on past gradients.

2.3.1 Convolutional neural networks

Convolutional neural networks (CNNs) are a type of DL algorithms that

extensively employ convolutional operations in combination with other
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characteristic methods. The key idea is to exploit local connections in the

data at several levels of context resolution together with concepts such as

pooling and sharing of learnable parameters. CNNs are especially effective
for data with a grid-like topology, such as 2D images.

CNNs have been used successfully for many applications since the early

1990s, but was somewhat forsaken by the mainstream CV community until

the ImageNet competition in 2012 [23]. Here, Krizhevsky et al. proposed

the use of a deep CNN called AlexNet, which almost halved the error

rates compared to the best competing image recognition methods [24].

Their success can to some extent be attributed to efficient use of graphics

processing units (GPU), ReLU activation, as well as regularization methods

such as dropout and data augmentation. Now, CNNs constitute the state of the

art for almost any image recognition and detection task, and is dominating

the CV field.

Convolution operation

The convolution operation can be used in place of the general matrix

multiplication in the standard NN mentioned earlier. For the two-

dimensional image I , the 2D convolution is given as

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i −m,j −n), (2.20)

where K is the kernel, and S is referred to as the feature map. The convolution

operator can be extended to any dimensions, for instance to 3D, which is

relevant for volumetric and video data.

In the context of ML, the learning algorithm will learn the appropriate

values of the kernel. In a standard NN, each weight is multiplied once by an

element of the input, and never reused. For CNNs, however, we make use of

the concept of shared weights. This means that the same weights (or kernel)

is used for more than one function in a model, e.g. same kernel for each

position in an image or feature map. This means that, rather than learning

one set of weights for each location in an image, we learn one set to be used

on the entire image. The latter causes equivariance to translation.

Pooling

Pooling refers to a statistic downsampling of the different neighbourhoods
in a feature map, which commonly is an essential part of a CNN. The feature
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map is partitioned into several windows of a specified size, and for each

window a filtering process is performed where the output is a reduced

representation. The most common is max pooling, which outputs the

maximum value of the window. A common alternative is average pooling,

where the values of the window is averaged. The main role of pooling is to

reduce the spatial resolution, and hence increase the global context. This

reduces the memory consumption and number of computations, as well as

the capability of invariance to small translations in the input.

Regularization

One of the recurring challenges in DL is to get the algorithms to generalize,

i.e. achieve good performance on unseen data. DL model performance

are often measured by how well it performs on test data, and its ability

to make the training and test error as small as possible, as well as the gap

between them. If themodel is not able to achieve sufficiently low error on the

training data, we call it underfitting. Overfitting, on the other hand, happens

when the gap between training error and test error becomes very large.

Common ways to tackle this is by increasing the dataset used for training

and reduce the number of learnable parameters (representational capacity)

of the neural network. Other strategies that aim to increase generalization,

but with limited expense to the training error, are collectively referred to as

regularization techniques. A lot of approaches exist, some by adding direct

penalties to the cost function or learnable parameters, other emphasise

manipulating the data or training procedure.

Weight decay One of the simplest and most common parameter penalties

are the L2 and L1 norms, which is a regularization strategy that seeks to bring

the weights closer to the origin by adding a term proportional to the weights

to the cost function [13]. This is also known as weight decay, and can be

added individually to each layer.

Dropout The core idea of dropout is to randomly zero out (drop) the

output of hidden neurons in a neural network with a given probability per

input [25]. These neurons will not contribute to the forward pass, nor

be included in the backpropagation. For every sample this corresponds

to randomly sampling a network with a different weight composition,
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effectively forcing the feature extractors to become more robust. Dropout

can be implemented into many model types, but fully connected layers are

the most relevant. For convolution layers it will introduce a random noise

effect, but can not guarantee weights to be excluded from updates due to

the inherent cross dependency composition of the matrix as a result of the

convolution operation.

Data augmentation Artificially enlarging the dataset using input trans-

formations that preserve labels is an effective way of reducing the general-

ization error. The broad term is data augmentation, and includes numerous

methods such as image flipping, color manipulation, scaling, rotation and

more. The transformations are applied either offline upon training, or online

while training with a given probability. Adding noise to the input can also

be regarded as a form of data augmentation. The total effect is a larger data

representation that limits overfitting, but it can also make the models more

robust to real-life artefacts.

Early stopping Through the course of training, a common scenario is that

the training and validation error decrease simultaneously in a correlated

fashion, but at some point the two metrics starts to diverge with the

validation error rising again. Returning to a parameter selection at an

earlier time step would then yield a model with better validation accuracy.

This strategy is called early stopping, and is a very popular regularization

technique in DL. In practice, the common way is to track the validation

accuracy between epochs and store the best performing model. The patience

(number of epochs) of the stopping routine is set as a hyperparameter, and

determines how many training epochs should be conducted without any

improvement before ending the learning procedure.

Batch normalization

Batch normalization (BN) was proposed by Ioffe and Szegedy in 2015 as a

transform to improve the training procedure by normalizing the inputs of a

layer [26]. Empirical advantages have included faster convergence and more

stable training. Due to practical limitations with stochastic optimization and

impracticality retrieving global information, the normalization is restrained

to each mini-batch B of size m. The mini-batch mean μB and variance σB is
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then given as,

μB =
1

m

m∑
i=1

xi σ2
B =

1

m

m∑
i=1

(xi −μB)2. (2.21)

The normalized x̂ input is then,

x̂i =
xi −μB√
σ2
B + ε

, (2.22)

where ε is an arbitrarily small value added to the denominator for numerical

stabilization. The BN transform is then defined as

yi = γx̂i + β ≡ BN(xi ;γ,β), (2.23)

where γ and β are learned parameters from the optimization procedure, and

y is the output passed to other network layers.

For inference the BN transform is modified to use the expected popula-

tion mean and variance,

E(xi) = EB(μB) Var(xi) =
m

m− 1EB(σ
2
B ). (2.24)

Substituting this into (2.23) gives

BN(xi ;γ,β) =
γxi√

Var(xi)+ ε
+

⎛⎜⎜⎜⎜⎝β − γE(xi)√
Var(xi)+ ε

⎞⎟⎟⎟⎟⎠ , (2.25)

which is a linear transform of xi .

2.3.2 Network architectures

Following the success of Krizhevsky et al. in the ImageNet competition in

2012 [24], advancing research on CNNs have steadily improved results on

various image classification tasks. Initially, the trend was cursory addition

of layers, which led to increased problems with vanishing gradients and

impractical growth in resource demands [27]. This motivated researchers

to discover new ways of effectuating network architectures.

One of the most influential proposals came from the authors of “Network

In Network” (NIN) [28], who suggested the use of convolutions with kernel
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size (1 × 1) to combine features between layers. Feature pooling or

bottlenecks, proved to increase effectiveness per feature, and became a viable

option for parameter reduction. Another interesting finding stems from

the classification part of their network. The feature maps were spatially

averaged, instead of adding the more typical fully connected layers. Further,

the output was fed directly into the softmax activation. This reduces the

parameter count, and it is also claimed to make the network less prone to

overfitting.

The key insights from NIN inspired Szegedy et al. [27] creating the

Inception architecture (introduced as GoogleNet). The principal difference
to other networks was the building blocks referred to as Inception modules.

Each of these blocks consist of parallel routes of convolutions with varying

kernel size, in addition to a pathway with pooling. Several editions of

Inception has been presented after its introduction, and especially the third

edition of the Inception architecture sought a lot of attention for significant

improvements on benchmark datasets [29]. The fundamental philosophy of

parallel routes in depth is the same, and the major architectural difference
compared to the original topology is spatial factorization of large spatial

filters. Based on this, three different modules are designed and used

throughout the network. In the lower parts, i.e where the feature maps are

relatively large, the (5 × 5) convolutions are factorized into two layers of

(3 × 3) convolutions. The other modules utilize asymmetric convolutions,

e.g. a (3 × 1) followed by a (1 × 3) convolution. In addition to factorization,

batch normalization is utilized after convolution layers.

Rethinking connection of layers: ResNet and DenseNet

With increasing network depth, a prevalent problem referred to as degra-

dation may also occur [30]. This is observed by a subpar saturation

of training accuracy followed by a rapid degrade. He et al. addresses

this problem by using a residual connectivity pattern (introduced in the

ResNet architecture). Essentially, this involves implementing a connection

pattern where the output of a component block/layer is added to the input

before further propagation. See Fig. 2.4 for a conceptual example. The

connections proved to reduce the degradation effect and allow a forthright

backpropagation of gradient signal towards the bottom layers, thus enabling

training very deep networks.
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[x, f1, f2]x

x + f1 + f2x

f2ConvConv

Standard connectivity
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Figure 2.4: Example of three common layer connection patterns. The residual

connection pattern is formulated such that layers learn residual functions with

reference to the input using identity mappings. Input is added to the convolution

block (blue) output. Characteristics of dense connectivity are that every layer has a

direct connection to every subsequent layer with the same feature map size. Instead

of summation, this pattern relies on channel-wise concatenation.

Short connections between layers have naturally sought attention, for

instance, it inspired the proposal of the densely connected convolutional

network (DenseNet) [31]. Here, they take the insight a bit further and

concatenate the output of every preceding component block with equally

sized feature maps and use it as input into all subsequent layers. An example

of the concept is also illustrated in Fig. 2.4. Such a dense connectivity pattern

is claimed to further alleviate the vanishing gradient problem, and perhaps

more importantly; it can improve the feature propagation and reusability.

2.3.3 Recurrent neural networks

Recurrent neural networks (RNNs) have shown promising performance on

sequential data such as text and speech recognition [32]. What sets RNNs

apart from the ordinary feedforward networks, is that they have internal

hidden states for retaining temporal information when modelling data over

time. It can be considered a feedforward network dependent on all previous

states. Extending (2.6) to cover time we get

f t(f t−1,xt) = σ (W T · [f t−1,xt] +b), (2.26)

where t is the timestep. Despite being powerful in theory, the vanilla

RNN struggles with practical difficulties of long-term dependencies while
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training [33, 34]. This is especially prevalent if the temporal gap between

the relevant information and the point of prediction becomes very large.

The main reasons for the problem is vanishing or exploding gradients.

Fortunately, several methods have been proposed to alleviate the issue with

long-term dependencies.

Long short term memory

A special type of RNN explicitly designed to tackle the long-term depen-

dency problem is the Long Short-Term Memory (LSTM) networks [35]. A

key components of the LSTM is the cell state c and the three gates, namely

input gate, forget gate and output gate. An illustration of the LSTM module

can be seen in Fig. 2.5. The information added to the cell state is regulated

by the semantically named gates. The forget gate controls what to keep from

the previous cell state ct−1 by element-wise multiplication with a gate factor

gf, which is dependent on the input xt, the previous output f t−1 and some

learned parameters {W f,bf}. This can be formulated as

gf = σs(W f · [f t−1,xt] +bf), (2.27)

where σs is the sigmoid activation function. Further, the input gate decides

what information should be added to the cell state by the term

gi = σs(W i · [f t−1,xt] +bi)� tanh(W c · [f t−1,xt] +bc). (2.28)

The output of the hyperbolic tangent tanh(·) controls the sign of the update.

The new cell state ct is then

ct = gf � ct−1 + gi. (2.29)

Finally, the output gate controls the output f t of the LSTM by a multiplica-

tive weighting between the gate factor go,

go = σs(W o · [f t−1,xt] +bo), (2.30)

and the filtered cell state ct. We end up with

f t = go � tanh(ct). (2.31)
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Forget 
gate

Input
gate

Output 
gate

gf
Cell 
state 

go

gi

Figure 2.5: Data flow in the Long short-term memory (LSTM) layer. The cell

state is updated on the top line, and the different gates are labeled at the bottom.

The beige boxes are the inputs and outputs of the layer, while the red boxes are

mathematical operations with × representing element-wise multiplication. The

blue boxes indicate the weighted transforms with sigmoid activation σs and tanh

activation. Learnable weights are not shared between the transforms.

The above description is a relatively plain LSTM layer, but several

variants exists. For instance, another popular variant in the same method-

ological family is the gated recurrent unit (GRU), which proposes to combine

the input and forget gates into one single update gate, as well as merging the

cell state and the output [36].

2.4 Motion estimation

Motion is an integral part of our visual perception, and a rich source of

information. Estimating the motion is a crucial task in many applications,

including surveillance, action recognition and autonomous vehicles [37–39].

It is also very important in a biomedical context for tasks such as image

registration, blood flow estimation and organ deformation [40–42].

Motion is a 3D phenomenon, and a 2D imaging sensor (e.g. camera,

ultrasound probe) only captures a projection or slice of the 3D scene onto

an image plane. Motion estimation is thus an ill-posed problem in 2D, and

accurate estimation remains difficult both due to theoretical and practical

limitations [43]. The perspective projection of the true velocity onto the

plane is referred to as the motion field [44]. Pure motion parallel to this
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plane can not be guaranteed, and the data available in 2D is explicitly only

the variations of the image brightness pattern. Thus on images, only the

apparent motion or optical flow (OF) is detectable, i.e. the displacements of

the intensity values.

The concept of optical flow was introduced by the psychologist Gibson

in the 1940s to describe howmotion is fundamental to our visual perception

of the world [45]. The term later gained proper foothold in the CV

community after the pioneering work by Horn and Schunck [46], as well

as Lucas and Kanade [47]. Horn and Schunck defined OF as the apparent

motion of the brightness pattern in an image, and used the assumption

that pixel intensity remains constant during displacement. In general, OF

methods have achieved considerable success in tackling the fundamental

problem of estimating the apparent motion v between two adjacent images

I t and I t+1. However, there is still several limitations that hampers the

performance, including highly variable motion, lack of texture, noise, non-

uniform illumination, reflections, transparency and occlusions. The trade-

off between minimizing an optimization criteria and regularization have

been challenging, especially for corner cases and outliers. Recent progress

have been facilitated by learning-based approaches, which can bypass this

formulation [48]. DL methods are now dominating the field and have

surpassed traditional approaches on common benchmark data [49,50].

In the following a brief introduction to traditional approaches, including

some basic assumptions, key concepts and constraints, is presented. A

thorough review of the different methodological branches are outside the

scope of this thesis, but the interested reader is referred to relevant literature

for a survey [51]. Further, some of the seminal learning-based approaches

are described. The latter category of methods is highly influenced by

traditional concepts, and we therefore try to draw some lines between them.

2.4.1 Traditional optical flow

Following the work of Horn and Schunk, many approaches for OF com-

putation have been proposed. We often divide them into classes based

on their assumptions, constraints and optimization procedure. Common

naming includes region based, feature based, differential and energy based
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methods [51–53]1. Among these, the most widely used techniques are

variational methods.

Variational methods

A lot of the traditional optical flow methods can be derived from the

brightness constancy constraint,

I(x,y, t) = I(x+Δx,y +Δy, t +Δt). (2.32)

Assuming small displacements, this can be developed as a first order Taylor

series,

I(x+Δx,y +Δy, t +Δt) ≈ I(x,y, t)+
∂I
∂x

Δx+
∂I
∂y

Δy +
∂I
∂t

Δt. (2.33)

Dividing by Δt and truncating higher order terms yields,

∂I
∂x

Δx
Δt

+
∂I
∂y

Δy

Δt
+
∂I
∂t

= 0 =⇒ ∇I · v = −∂I
∂t

, (2.34)

which is referred to as the optical flow constraint. The system is un-

derdetermined by being an equation with two unknowns. This is also

known as the aperture problem of OF, which states that motion can only be

determined if neighboring context is taken into account [54]. Therefore,

additional assumptions and constraints must be applied for the system to

be solvable. This has resulted in a wide range of well-known methods which

introduce additional conditions for estimating the displacement, such as the

mentioned method by Horn and Schunck. They combine a data term based

on the the OF constraint with a global spatial smoothness term in a energy-

based formulation, which they minimize. This regularizes neighbouring

points to have similar motion profiles [46]. Variational methods includes

the range of extensions and modifications made to the original Horn and

Schunk formulation.

The above approximation is good when the displacements are low (e.g.

less then one pixel), but in real image sequences this is rarely a satisfied

condition. To cope with a larger range of motions, a coarse-to-fine strategy is

often employed [55]. Here, a multi-resolution pyramid, as shown in Fig. 2.6,

1In literature, the terminology can be slightly inconsistent and overlapping.
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is exploited to extract sub-sampled representations of the original image and

hence lower motion fields in a sequence.

Figure 2.6: Illustration of a coarse-to-fine image pyramid. For image sequences, the

pixel displacement between coarser level representations will be lower than the full

resolution images.

The analysis typically starts from the coarsest resolution level where the

velocity is smallest. The velocity is estimated and projected up to a finer

level where it is used to guide the finer resolved computation. At this stage,

warping is often conducted [56, 57], which involves propagating one of the

subsequent images towards the other via forward or backward propagation

using the estimated motion. The warped image can then be used to estimate

more accurate submotion at the given level in an iterative fashion. In Fig. 2.7

an example of image warping with nearest neighbour interpolation is shown.

Source Warped sourceSource with deformed grid

Figure 2.7: Illustration of image warping. The warped representation is constructed

by looking up the pixel value of the source image with the given deformed grid (e.g.

from the estimated flow). Noticeably, this is a nearest neighbour interpolation, but

bilinear and cubic interpolation is often used to obtain intensities at non-integer

coordinates.

55



2.4. Motion estimation

Region-based matching

Numerical differentiation can by error prone due to noise, large displace-

ment and limited number of frames in the image sequence [51]. An

alternative is region-based matching, which aims to locate matching regions

between images, and use this to estimate the displacement field v. The key

idea is to divide the current image I t into a set of macro blocks with a given

size b = (m,n), and compare it to the corresponding block and its spatial

neighbourhood in the adjacent image I t+1. For matching, a cost function

is employed to estimate the similarity between blocks. There are several

common functions, such as the normalized cross correlation (NCC), sum of

squared differences (SSD) and sum of absolute differences (SAD) [52]. SSD

can for instance be formulated as

SSD(x,Δx) =
∑
Δb

(It(x+Δb)− It+1(x+Δx+Δb))2 , (2.35)

where x is the pixel location, Δb corresponds to the macro block size and

Δx is the offset. In its most naive implementation, often called exhaustive

search, the macro blocks for each point in I t is compared to every point in

the adjacent image. To reduce the number of computations, a smaller search

range around x in I t+1is often imposed. Regardless, the result is a cost volume

with total size equal to the multiple of the image size and search range.

The offset Δx with the lowest value per image location x corresponds to an

estimate of the displacement. Further refinement is often performed with

subpixel peak detection [58] or similar algorithms. In Fig. 2.8 an example of

the cost volume created from the correlation between two images is shown.

Farnebäck method

Another popular algorithm in the family of optical flow is the Farnebäck

method [59]. The idea is to approximate some neighborhood of each pixel

with a quadratic polynomial. The local intensity model is then

I1(x,y) = I1(x) = xTA1x+bT1 x+ c1, (2.36)
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Figure 2.8: Illustration of the cost volume C created by the correlation between

the images I t and I t+1. Here, a search range of ±2 in each direction around every

pixel location x is used, and a kernel size of 3× 3. The cube illustrates the resulting
correlation values for the first row y = 0 in the reference image.

where A is a symmetric matrix of size equal to the dimensions of x. Further,
b is a vector and c is a scalar. We then construct the model for the adjacent

image by the displacement field v,

I2(x) = I1(x − v) = (x − v)TA1(x −d)+bT1 (x − v)+ c1, (2.37)

= xTA1x+ (b1 − 2A1v)
T x+ vTA1v −bT1 v + c1, (2.38)

= xTA2x+bT2 x+ c2. (2.39)

Which gives the following relationships,

A2 = A1, b2 = b1 − 2A1v, c2 = vTAv −bT1 v + c1. (2.40)

Noticably, the middle term of the equation above can be solved with respect

to v if A1 is invertible. Solving for the displacement field v gives

v = −1
2
A−11 (b2 −b1). (2.41)

Naturally, the coefficients do not not hold for the entire image, so they are

expanded to have a representation for each location, i.e. Ai(x), bi(x) and
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ci(x). In practice A1(x) � A2(x), so we make the approximation

A(x) ≈ A1(x)+A2(x)
2

. (2.42)

Finally, this gives the constraint

A(x)v(x) = Δb(x), (2.43)

whereΔb(x) = −(b2(x)−b1(x))/2 and v(x) is spatially varying. Equation (2.43)

is a least squares problem and can be solved accordingly.

The solution of equation (2.43) can be found pointwise, but in practice

this can result in suboptimal and noisy results. To make the algorithm

more robust numerous extensions and post-processing have been proposed,

including the use of neighbourhood windows, parameterized motion model,

gaussian intensity smoothing and image pyramids [55].

2.4.2 Learning-based motion estimation

As mentioned, CNNs have been applied successfully to a wide range

of computer vision problems, and have become the de facto algorithms

for modern image analysis. Traditionally, this involved tasks such as

classification, object detection and segmentation, and in that regard a

natural extension would be optical flow. Early demonstrations applying

CNNs for OF estimation used it as a feature extractor substituting the

data term in the variational formulation, with similar smoothing and

optimization strategies [60,61]. Concurrently, Fisher et al. proposed an end-

to-end CNN regression approach for OF estimation which could side-step

the classical formulation with energy minimization and regularization [62,

63]. The CNN architectures named FlowNet resulted in a shift in OF

research, which in later years have been dominated by DL based methods.

The CNN based methods learn to compute OF from pairs of input

images, either supervised with labeled datasets of corresponding motion

patterns or unsupervised minimizing a proxy loss. The latter requires

careful design of the loss function, but is very beneficial as no annotated

data is required for training [64]. So far supervised methods have achieved

best results, and we briefly describe some prominent work in the following.
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FlowNet

Initially, two architectures named FlowNetSimple (FlowNetS) and FlowNet-

Corr (FlowNetC) was introduced [62]. Both are end-to-end approaches with

an U-Net type of structure [65]. The inputs are two consecutive images,

while the output is a dense displacement map. In FlowNetS, the images

are concatenated before being fed into the network, while for FlowNetC, the

images are fed into two parallel routes of feature extraction. The features

of each route is then joined in a correlation layer before further propagation

through the network. The encoder part of both networks consists of nine

convolution layers, but in FlowNetC a correlation between the output of the

two parallel feature extractors occurs after the third layer. They use strides

of two in six of the layers for pooling, and ReLU activations. A refinement

decoder consisting of deconvolutions layers is also used for both networks.

The predicted displacement map is one-quarter size compared to the input,

and from that stage a bilinear upsampling is performed for the output to be

equal to the input shape. Skip connections are used between the encoder

and decoder part. For training they use endpoint error (EPE) loss, which is

the Euclidean distance between the predicted motion vector and the ground

truth. Adam was used as the optimization method, and it was trained on

a dataset they created named FlyingChairs. Further, they achieved better

performance by fine-tuning on the MPI Sintel dataset [66]. The final results

were slightly below state of the art, but demonstrated that CNNs have a

significant potential for OF estimation.

Based on their findings, the same group extended their work with a

new architecture called FlowNet 2.0 [49], and reported competitive results

compared to top rankingmethods. It combines five CNNs into a largemodel,

mainly based on the FlowNetC and FlowNetS architectures. Two parallel

branches are dedicated to large and small displacements respectively. The

branch for large displacements stacks three networks in a cascade, first one

FlowNetC followed by two FlowNetS. The branch for small displacements

is a modified FlowNetS called FlowNetSD. Here, they reduce the filter size

of the first convolution layers, and remove the first stride. They also add

convolution layers between the deconvolutions in the refinement part to

alleviate issues with noise. The inputs to both branches are two concecutive

images, but the intermediate inputs to the FlowNetS models consists of the

predicted flow, the pair of images where the second is warped towards the
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first with the predicted flow, and the brightness error. The brightness error

correspond to the difference between the first image and the second image

warpedwith the flow prediction from the previous CNN. Finally, the outputs

of the two branches are fused together in another CNN before the final

flow prediction. Here, the input is the first image, as well as the flow, flow

magnitude and brightness error from both branches.

FlowNet 2.0 is a very large model that requires sequential training of

each subnetwork. They propose a curriculum learning strategy using several

different datasets in the training schedule. The conducted ablation studies

shows the effect of using multiple datasets, as well as their ordering, and is

an important finding regarding the impact of the training schedule.

Spatial pyramid network (SPyNet) and PWC-Net

To address some of the limitations with the FlowNet models, a trend in

the following work was to integrate classical principles in the architectures.

For instance, in the spatial pyramid network (SPyNet) they use a coarse-to-

fine approach with spatial pyramids consisting of shallow CNNs performing

OF estimates to reduce the model size significantly [67]. From the coarsest

level and up to the top, the estimates are upsampled and used to warp the

target images towards the source for refined output. They achieved similar

results as the base FlowNet models with significantly fewer parameters on

several benchmarks. The results did not surpass FlowNet 2.0, but showed

that integrating traditional concepts into the DL algorithm have potential.

In the PWC-Net architecture they follow this line of research, and

designed a network combining CNNs, spatial pyramids, warping and

cost volumes [50]. The main difference between PWC-Net and the other

networks are that they employ feature warping with the upsampled flow

from lower resolution levels, and construct partial cost volume estimations

between the first image features and the warped features of the second image

at every pyramid level. At the time of publication, it was the best performing

OF method on several benchmarks. Moreover, compared to FlowNet 2.0,

it was significantly smaller in terms of learnable parameters and achieved

faster runtime performance.
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Transthoracic echocardiography examinations are usually performed ac-

cording to a protocol comprising different probe postures providing stan-

dard views of the heart. These are used as a basis when assessing cardiac

function, and it is essential that the morphophysiological representations

are correct. Clinical analysis is often initialized with the current view, and

automatic classification can thus be useful in improving today’s workflow.

In this article, convolutional neural networks (CNNs) are used to create

classification models predicting up to seven different cardiac views. Data

sets of 2-D ultrasound acquired from studies totalingmore than 500 patients

and 7000 videos were included. State-of-the-art accuracies of (98.3±0.6)%
and (98.9±0.6)% on single frames and sequences, respectively, and real-

time performance with (4.4±0.3) ms per frame was achieved. Further, it

was found that CNNs have the potential for use in automatic multiplanar

reformatting and orientation guidance. Using 3-D data to train models

applicable for 2-D classification, we achieved a median deviation of (4±3)◦
from the optimal orientations.

3.1 Introduction

Transthoracic echocardiography (TTE) is widely used for assessment of

cardiac function. The examinations are usually performed according to

protocols involving different probe postures providing several views of the
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heart [1]. Image quality varies substantially between patients and is operator

dependent, which increases inter-observer variability and decreases the

feasibility of detailed quantitative measurements in the clinic. Cardiac view

classification (CVC), that is, determining the image plane through the heart,

is the essential first interpretation step in any TTE examination. Clinical

implementation of automatic solutions is currently limited, but we believe

it could affect several elements of everyday practice.

Finding valid cardiac views has traditionally been difficult for ap-

prentices. The European Association of Echocardiography recommends a

minimum of 350 examinations to acquire basic competence for standard

TTE [2]. Together with the requirement for expert resources, didactic tools

using real-time CVC can potentially reduce this number by providing stan-

dardization through active quality assurance and probe alignment guidance.

Further, a new group of users are adopting echocardiography through the

introduction of hand-held devices, making ultrasound (US) more available

in general. An implementation with low hardware requirements can be used

on such devices and thus provide support in point-of-care situations where

cardiologists normally are absent [3].

Tools used when diagnosing cardiac diseases are often initialized with

specification of current view, and in most cases this must be done manually

by the operator. Automatic classification can improve the workflow and

adaptivity of quantitative tools and allow continuous scanning and on-site

analysis of several quantitative parameters without pushing a single button

on the ultrasound scanner. In addition, such a solution could enhance user

experience in 3-D US acquisitions by improving automatic extraction of

relevant 2-D image planes from volumes [4].

Finally, CVC can also complement patient database archives by automat-

ically labeling recordings and thus enable better search functionality, data

mining and categorization utilities. In turn, this could, for example, improve

follow-up by automatically extracting corresponding views at different
stages of patient care.

3.1.1 Related work and state of the art

[5] reviewed cardiac view classification for TTE up to 2013. Most studies

consider a selection of three or four of the most common cardiac views:

apical two chamber (A2C), apical four-chamber (A4C) and apical long-axis
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(ALAX), as well as the parasternal long-axis (PLAX) and parasternal short-

axis (PSAX). Some consider additional views, such as apical five chamber,

subcostal four-chamber (SC4C) and vena cava inferior (SCVC), together with

a class for unknown data. Examples of relevant views are shown in Fig. 3.1.

Figure 3.1: Seven cardiac views in transthoracic echocardiography obtained in

arbitrary stages of the heart cycle. Examples of the apical four chamber (A4C), long-

axis (ALAX), two chamber (A2C), parasternal long axis (PLAX), short-axis (PSAX),

subcostal four-chamber (SC4C) and vena cava inferior view (SCVC) is illustrated, in

addition to a nonassignable sample labeled unknown.

Prior studies claim to achieve overall accuracies as high as 98% on image

sequences, such as reported by [6]. In general, inclusion of more views have

reduced accuracy considerably. To the best of our knowledge, [7] reported

the largest data set, containing 1080 and 223 image sequences for training

and validation, respectively.

Most previous studies have used a support vector machine classifier

on features extracted with various methods. Recently, deep convolutional

neural networks (CNNs) have had great success in many image classification

tasks [8]. As opposed to traditional machine learning approaches with

hand-crafted features, these methods learn both the feature extraction and

classification directly from the training data. After [9] won the annual

ImageNet challenge (ILSVRC) in 2012 using a CNN [10], it has become the

predominant approach for solving computer vision and recognition tasks.

CNNs have attracted significant attention from the US image analysis

community, where hand-crafting generic features can be difficult. [11] was

among the first to report use of CNNs for US view classification, more
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specifically for locating the fetal abdominal standard plane. Currently, a

body of related work in the domain of fetal US image classification exists

that methodologically also uses CNNs [12–14]. In addition, much research

for TTE currently involves the use of CNNs. [15] and [16] have used it

for evaluation of cardiac function. [17] used it to automatically assess the

quality of up to five views using a regression-based recurrent approach.

Recently, [18] used CNNs for classifying eight different cardiac views using a

method fusing hand-crafted and learned features. Their database consisted

of 432 image sequences, and they achieved an average accuracy of 92.1%

validating on 152 image sequences.

3.1.2 Main contributions

In the work described here, our aim was to develop fully automated and

robust methods for real-time CVC using CNNs and facilitate their use in

a clinical setting. We also investigated the potential for applying these

methods to automatic extraction of 2-D views from 3-D volumes and

orientation guidance for finding optimal views in 2-D US. Compared with

previous studies, the contributions of this paper are as follows:

• Annotation and training on significantly more patient data than

previously included, with extensive patient-based cross-validation and

testing ensuring unbiased results

• Consideration of up to seven of the most common cardiac views: A2C,

A4C, ALAX, PSAX, PLAX, SC4C and SCVC, in addition to a class for

unknown data

• Analysis of two common network topologies and a proposed network

design based on recent work in the field with the aim of being both

accurate and effective

• Experiments on orientation guidance for finding optimal apical views

and a comparison between models trained with either 2-D or 3-D data

• Analysis of computational requirements and performance
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3.2 Convolutional neural networks

Three CNNs were investigated for cardiac view classification. Compared to

the problems in which typical image classification networks are designed, we

consider CVC easier. The consensus on increasing network depth to achieve

better results does not necessarily hold for such tasks, and we believe that

competitive performance can be achieved with less complex networks. We

therefore address this issue by combining observations from relevant work

and propose a network that aims to balance the accuracy and effectiveness
for this use.

For extensive details of the investigated networks, the reader is referred

to relevant articles [9,19]. Herein, we introduce them briefly and emphasize

their differences and our changes to the original topology. Furthermore, we

accentuate the background of our design choices.

3.2.1 AlexNet architecture

The winner of ILSVRC 2012 is a CNN referred to as AlexNet. It is a simple

feed-forward network with five blocks of convolutional layers followed

by rectified linear activation units (ReLU) and maximum pooling. Local

response normalization is used after the first two convolution layers. The

final part of the network is composed of two fully connected layers with

ReLU and dropout regularization, whereas the final classifier is a fully

connected layer followed by softmax activation.

Compared with the original topology, the local response normalization

layers were removed for this study, and batch normalization [20] was used

instead for additional regularization, as suggested by [21].

3.2.2 Inception architecture

Some of the most influential proposals after AlexNet came from the authors

of “Network In Network” (NIN) [22], who suggested using bottlenecks (e.g.,

convolutions with kernel size 1 × 1) to combine features between layers.

The key insights from their article inspired [23] to create the Inception

architecture (introduced as GoogleNet). The principal difference from other

networks is the building blocks, referred to as Inception modules. Each

block consists of parallel routes of convolutions with varying kernel size,
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in addition to a pathway with pooling. Fig. 3.2 is a schematic of a typical

module with bottlenecks and batch normalization. Several editions of

Inception have been presented since its introduction, but the fundamental

philosophy of parallel routes in depth is the same.

Figure 3.2: The inception module is a combination of parallel convolution blocks

with different kernel sizes and a pooling branch concatenated into a single

output. Each convolution block (Conv.) consists of convolutions followed by batch

normalization and non-linear activation.

In this study, the third edition of the Inception architecture [19] was

employed. The major architectural difference compared with the original

topology is spatial factorization of large spatial filters. On this basis, three

different modules were designed and used throughout the network. In

the lower parts, where the feature maps are relatively large, the module is

similar to that in Fig. 3.2, except that the (5 × 5) convolutions are factorized

into two layers of (3 × 3) convolutions. The other modules use asymmetric

convolutions, for example, a (3 × 1) followed by a (1 × 3) convolution.

In addition to factorization, batch normalization is used after convolution

layers. Here we use smaller input images than intended for this architecture,

and to allow better information flow and avoid convolution filters larger

than the feature maps, we removed the second max-pooling layer.

3.2.3 Cardiac view classification architecture

The network we propose resembles that in the discussed work and employs

a combination of introduced concepts. Fig. 3.3 is an overview of the ar-

chitecture. The fundamental building blocks consist of convolutions, batch

normalization [20] and non-linear activation units. Batch normalization was
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added to speed up training by allowing higher learning rates and avoiding

use of network resources to compensate for outlying filter weights during

backpropagation. Parametric rectified linear units (PReLU) were chosen as

the activation unit in all blocks [24]. Compared with the frequently used

ReLU, which is zero for negative values, PReLU allows non-zero gradients

for inactive units. The negative part is a linear function with a learned slope.

Figure 3.3: Schematic of the proposed network architecture used for cardiac view

classification. Convolution blocks (gray boxes) are composed of convolutions, batch

normalization and PReLU activations. Two versions of the Inception module are

employed: the illustrated one being used in the lower part of the network (dark

purple) and a simplified one without the (5 × 5) route in higher parts of the

network (bright purple). The final classifier block consist of another compressing

convolution layer with kernel size (1 × 1) and filter amount equal to the number of

views. The output is activated with a PReLU layer. Finally, global average pooling

followed by softmax activation yields a prediction vector as output.

Initially, input is propagated through two component blocks with (3 × 3)

convolution kernels, followed by max pooling. The first and second

convolution layer have 16 and 32 filters, respectively. We use pooling of

size (2 × 2) and equal strides to downsample without overlap. After the

second pooling layer, data are processed through an Inception module with

three parallel routes. Each route consists of a bottleneck, two of which were

followed by blocks with larger convolution kernels, (3 × 3) and (5 × 5),

respectively. This is equivalent to the module in Fig. 3.2 without the pooling

route. The bottlenecks in the Inception module reduce the number of filters
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by 25%, 25% and 50% in the order of small to large convolution kernels,

respectively. Furthermore, the number of filters is increased by 25% in the

following convolution block.

Inspired by the connection scheme in DenseNet [25], the input of the

Inception module is concatenated with the output and processed into a

transition module with bottleneck and max pooling. This step is repeated

three times, and as emphasized by [26] in the base classifier of the YOLO

object detection system, we doubled the number of filters before every

new pooling layer. As opposed to their implementation, we control this

behavior in the bottleneck of the transition block. The dense connectivity

pattern further alleviates the vanishing gradient problem, and perhaps more

importantly, it can enhance feature propagation and reusability.

After the third transition, the data are processed through two Inception

blocks with a constant number of filters and no pooling. The route with

(5 × 5) convolution kernels was omitted in these modules, and dropout

regularization was used between them. The final classification block

consisted of a compressing convolution layer with (1 × 1) kernels and

number of filters equal to the class count. This was activated with another

PReLU, before features were spatially averaged and fed into a softmax

activation as in NIN. The spatial pooling replaces the more typical fully

connected layers. This reduces the parameter count and, it is also claimed,

makes the network less vulnerable to overfitting [22].

3.3 Experimental setup

Experiments were divided into two parts. First, training and evaluation on

annotated 2-D data were conducted using three different CNNs: AlexNet,

Inception and the proposed CVC architecture. Afterward, 2-D data

extracted from 3-D volumes were included and used to train new models

using the CVC architecture. Three-dimensional data were then evaluated,

together with a comparison between the models trained with the same

architecture on 2-D data.

3.3.1 Database and annotation

Three different data sets of anonymous US data were included in this study.

All data originated from patient studies approved by the Regional Commit-
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tee for Medical Research Ethics and conducted according to the Helsinki

Declaration. Written informed consent was obtained from all patients. The

sample data are considered representative of a regular cardiological clinic

and give a distribution of both healthy and ill participants in the relevant

age groups.

2D US image sequences

The first data set consists of 4582 US videos with varying numbers of frames

from 205 patients. Acquisition was performed by three senior cardiologists

according to a standard protocol for echocardiography using a GE Vivid

E9 US scanner (GE Vingmed Ultrasound, Horten, Norway) with a GE M5S

phased-array transducer. Fifty-six of the patients were diagnosed with

systolic or diastolic cardiac dysfunction. The population age ranged from

20 to 91 years with an average age of 64 years. The second data set was

randomly drawn from the Nord-Trøndelag Health Study (HUNT) population

study [27] and consisted of 2559 US videos from 265 subjects. Acquisition

was performed by one senior cardiologist according to the same protocol

using a GE Vivid 7 scanner with a GE M5S phased-array transducer. All

subjects were free from known cardiac dysfunction, and the population had

an average age of 49 years.

The videos were annotated manually and categorized into seven different
classes: A4C, ALAX, A2C, PLAX, PSAX, SC4C and SCVC. Subcostal

acquisitions were not included in the HUNT study. Fig. 3.4. summarizes

the data indicating the class balance. Non-assignable images were labeled

unknown, but the number was not considered sufficient for training relative

to the other classes. Thus, samples from a laboratory experiment with the

goal of acquiring arbitrary US images without clinical relevance were added.

The total was 41,450 images from 460 videos.

Considerable variations in image quality were discovered, and in a

parallel annotation task, the images were labeled as poor, acceptable or good.

The relative distribution labeled by an expert cardiologist pre-analysis was

(32%, 41%, 27%) from poor to good respectively.

75



3.3. Experimental setup

Figure 3.4: Overview of the two 2-D data sets. The upper value is the number of

frames in the given class, and the lower value is the number of videos.

3D US volume sequences

The 3-D data set consists of 60 anonymous US volumetric exams with

varying numbers of volumes from the same number of patients. Acquisition

was performed by two senior cardiologists by placing the probe in the

apical position using a GE Vivid E9 US scanner with a 3V 4D sector array

transducer probe.

Data were generated by extracting 2-D images, or planes, from the 3-D

volume around a fixed depth axis placed in the frustum center. This mimics

the scenario of rotating a 2-D probe in an apical position, generating all

possible views oriented with respect to the depth axis. Here we extracted one

frame per degree, yielding a total of 360 images per volume. Eyeballing and

simple caliper measures were used to choose three different frames (angles)

from each volume as optimal apical views (A4C, A2C, ALAX). These angles

were further used as the peak of an asymmetric Gaussian weighting when

labeling the data. The tail of the Gaussian label l is determined by the

distance between adjacent peaks and is given by

lview←,→ = exp

⎧⎪⎪⎨⎪⎪⎩−
⎛⎜⎜⎜⎜⎝ Δθ←,→√

2σ←,→

⎞⎟⎟⎟⎟⎠
2
⎫⎪⎪⎬⎪⎪⎭ . (3.1)

Here, Δθ←,→ is the angular distance from the peak of a specific view

in a given direction. The standard deviation is the fractional distance

to the nearest adjacent peak in either direction, that is, σ←,→ = |θview −
θ
adj.view
←,→ |/3. An example annotation with reference to the 17-segment
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left ventricle model [1] is provided in Fig. 3.5. This annotation scheme

was chosen to allow a connection between adjacent peaks. Unlike a

binary classification, this enables a more robust transition region between

optimal views and may be more suitable for orientation guiding and quality

assurance while scanning. It could also be used to extract the desired 2-D

planes automatically from 3-D volumes.

Figure 3.5: Sketch of an example annotation with reference to the left ventricle

segment model (17 divisions). The curves correspond to the confidence label of a

specific cardiac view, where higher values suggests optimal orientation.

3.3.2 Preprocessing

The data were scan converted from beamspace data stored in DICOM

format. The 3-D data were stitched when necessary. No image enhancement

filters were applied. For training, the images were intensity normalized and

downsampled to a size of (128 × 128) pixels. No data augmentation was

applied.

77



3.3. Experimental setup

3.3.3 Learning details

Training was performed over a maximum of 100 epochs using mini-batch

gradient descent with a batch size of 64. In machine learning, one epoch

is defined as a complete pass of training data, whereas the batch size is the

number of examples shown for each weight update. We used the categorical

cross-entropy andmean absolute error (MAE) loss functions [28] for training

on 2-D and 3-D data, respectively. An adaptive moment estimation method

for stochastic optimization named Adam [29] was used with a maximum

learning rate of 10−4. Uniform Glorut initialization [30] was used on the

convolution layers before training. The model was evaluated on unknown

data between epochs, where the best model was saved underway. The data

were fully shuffled after every epoch. To avoid unnecessary training time

and overfitting, early stopping routines based on validation accuracy were

used with a patience of 20 epochs.

As seen in Fig. 3.4, the training data are clearly unbalanced, with a ratio

of 1:29 between the least andmost represented class. To combat possible bias

toward high representations, the training data were downsampled before

every new epoch by randomly drawing frames from each US acquisition

based on its ratio compared with the least represented class. This allows

training on equal amounts of data from each class and every epoch;

by performing this on a per-sequence basis, representations from each

acquisition are also included. Note that we still use the term epoch, although

it breaks the definition of passing the entire dataset.

To setup the learning environment, the framework Keras was utilized

with Tensorflow [31] as backend. Experiments was carried out on a

workstation installed with an Ubuntu 16.04 operating system. The hardware

consisted of an Intel Core i7-6820HK CPU with a clock speed of 4.10 GHz,

32 GB RAM and a NVIDIA GeForce GTX 1070 GPU with 8GB of memory.

3.3.4 Methods and metrics for evaluation

A 10-fold patient-based cross-validation technique was performed, separat-

ing the first data set into training and validation partitions. For each run,

this corresponds to omitting 20 or 21 patients from the 2-D data. The

same was done for the 3-D data, in which each fold consists of six patients.

Such patient-based model validation will give a better impression of the
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expected results on new patient data. To the best of our knowledge, this is

the first publication on the topic in which patient-based cross-validation is

extensively used. To further evaluate the model we included an independent

data set for testing purposes only.

In addition to accuracy, validation metrics such as precision and recall

were used because of the imbalanced class frequency in the 2-D data. They

are defined as T P /(T P +FP ) and T P /(T P +FN ), respectively, where T P is the

true positives, FP the false positive and FN the false negative. The model

accuracy is defined as the ratio of true predictions to all predictions.

Further, for validation on 3-D data, the MAE is calculated over the angle

interval for all volumes of every subject as

MAE =

∑θmax

θ=0 |ltrueθ − lpredθ |
θmax

, (3.2)

where the angle θ ∈ [0,θmax] = [0,2π), and ltrueθ , l
pred

θ is the true and

predicted labels for a given angle. In addition, we performed a qualitative

inspection comparing the predictions to ground truth by visualizing them

together.

To determine the classification time per incoming image in a deployed

setting, an experiment in which images are loaded individually in a loop and

classified with the trained models was conducted. This mimics a clinical

scenario in which frames are acquired and processed one by one. A total

of 30,000 images were processed for each experiment, and for every model

we investigated the change in inference time using the GPU. As a hardware

invariant measure for runtime, the number of floating point operations was

added. This was calculated using the profiler tool released through the

Tensorflow framework.

Together with the network definition, the storage requirements are

determined mainly by the number of parameters needed to initialize the

network. This number is calculated using the Keras framework.
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3.4 Results

3.4.1 Analysis on 2D data

Experimental results from patient-based cross-validation using three dif-

ferent network topologies trained on 2-D data are given in Table 3.1.

The trained models were tested on an independent and unknown test

set, yielding the results outlined in Table 3.2. The sequence validation

was performed using a majority vote approach. The CVC model yielded

competitive results despite having significantly fewer learned parameters.

Compared with the other models, the model variance is lower for the

CVC network. Low average inference time per image was achieved for

all networks using the frameworks Tensorflow and FAST [32]. This was

without any emphasis on inference optimization. Using the GPU, the CVC

network classifies approximately 230 frames per second, whereas AlexNet

manages twice that number. This is well within the limits of real-time view

classification in this context.

Table 3.1: Experimental results from cross-validation on dataset I using three

different network topologies. Validations are per single frame and image sequence

(in parenthesis for precision and recall). Bold metric indicate best score. Runtime

measurements, number of floating point operations and trainable parameters are

also given.

(a) AlexNet with BN

Precision (%) Recall (%)

A4C 97.7 (98.4) 96.0 (97.6)

ALAX 92.1 (95.0) 95.9 (97.7)

A2C 94.7 (96.5) 96.2 (97.0)

PLAX 96.4 (97.6) 98.1 (99.0)

PSAX 95.7 (97.8) 95.2 (96.7)

SC4C 88.4 (93.6) 96.8 (97.3)

SCVC 94.3 (98.5) 92.2 (94.4)

Unknown 99.2 (95.8) 98.7 (100.0)

Overall accuracy(%):

Frame 96.4± 1.2
Sequence 97.5± 1.3

Runtime [ms]:

GPU 2.0± 0.2
CPU 8.1± 0.2

Operations [GFLOPS]: 0.25
Parameters: ∼20.6M

(b) Inception ver. 3 (Modified)

Precision (%) Recall (%)

A4C 97.9 (98.8) 97.8 (99.0)

ALAX 96.8 (99.0) 95.6 (96.2)

A2C 96.5 (97.5) 96.7 (98.2)

PLAX 97.0 (97.8) 98.4 (99.5)

PSAX 96.5 (98.6) 97.0 (97.6)

SC4C 92.6 (96.1) 96.3 (94.9)

SCVC 97.7 (100.0) 92.9 (95.8)
Unknown 99.1 (99.1) 98.8 (100.0)

Overall accuracy(%):

Frame 97.4± 1.1
Sequence 98.5± 0.8

Runtime [ms]:

GPU 10.7± 0.6
CPU 20.4± 0.5

Operations [GFLOPS]: 1.45

Parameters: ∼21.8M

(c) Proposed CVC Network

Precision (%) Recall (%)

A4C 98.5 (99.0) 98.5 (99.3)
ALAX 98.1 (99.2) 96.2 (98.0)
A2C 96.9 (97.5) 97.8 (98.3)

PLAX 98.5 (99.5) 99.1 (100.0)
PSAX 98.7 (100.0) 97.9 (98.2)
SC4C 92.7 (94.0) 99.1 (100.0)
SCVC 99.4 (100.0) 95.3 (94.4)

Unknown 99.6 (99.8) 99.6 (100.0)

Overall accuracy(%):

Frame 98.3± 0.6
Sequence 98.9± 0.6

Runtime [ms]:

GPU 4.4± 0.3
CPU 15.9± 0.4

Operations [GFLOPS]: 0.80

Parameters: ∼10.6M

To the best of our knowledge, the results surpass current state of the art

on 2-D B-mode data and indicate that neural networks are well suited for

ultrasound view classification tasks. Accessible benchmark data would be
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Table 3.2: Experimental results on test dataset II using three different network

topologies. Validations are per single frame and image sequence (in parenthesis

for precision and recall). Bold metric indicate best score.

(a) AlexNet with BN

Precision (%) Recall (%)

A4C 93.7 (96.0) 99.3 (99.7)

ALAX 97.3 (99.0) 90.7 (93.1)

A2C 95.4 (96.4) 93.1 (95.2)

PLAX 93.1 (96.6) 98.3 (99.4)

PSAX 98.9 (99.7) 95.9 (98.3)

Overall accuracy(%):

Frame 95.5± 0.7
Sequence 97.3± 0.6

(b) Inception ver. 3 (Modified)

Precision (%) Recall (%)

A4C 94.7 (96.7) 99.5 (99.8)

ALAX 97.7 (99.1) 90.0 (92.2)

A2C 95.1 (96.1) 94.3 (96.0)

PLAX 94.6 (96.6) 98.9 (99.6)

PSAX 99.1 (99.7) 96.9 (98.3)

Overall accuracy(%):

Frame 96.1± 1.6
Sequence 97.5± 1.4

(c) Proposed CVC Network

Precision (%) Recall (%)

A4C 96.2 (97.8) 99.6 (99.8)
ALAX 98.6 (99.5) 93.1 (95.3)
A2C 96.6 (97.6) 96.0 (97.4)

PLAX 97.5 (99.3) 98.7 (99.7)
PSAX 99.4 (99.9) 98.3 (99.5)

Overall accuracy(%):

Frame 97.4± 0.6
Sequence 98.5± 0.5

needed for a proper comparison with related work, but it is believed that the

diversity and size of the data set used in this study at worst yield an equal

baseline.

3.4.2 Analysis on 3D data

The averaging of MAE over all volumes of every subject is illustrated in

Fig. 3.6. This is calculated from the classification of 360 angles/images per

volume. The worst and best cases are indicated, together with the medians

of all subjects. The predictions and the ground truth from these cases are

illustrated in Fig 3.7. The median MAE of all subjects was (3.8± 2.4)%, and

the median deviation from true to predicted peak was (4± 3)◦. The median

MAE using the CVC model trained on 2D data only was (11.3± 9.7)%.

3.5 Discussion

3.5.1 Technical considerations

Patient-based cross-validation indicates that the CVC network is best in

terms of relevance and accuracy metrics. The standard deviation is almost

halved for the cross-validation models, and it has the smallest parameter

space. Testing on an independent and unknown data set also suggests better

generalization. Excluding the subcostal and unknown views, the overall

accuracy from cross-validation is (98.1±0.7)%, making the test results within

the calculated variation. The slight and consistent underestimation can have
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Figure 3.6: Mean absolute error (MAE) values of all subject volumes. The median

MAE of all subjects is given by the horizontal line.

(a)Worst-MAE = (8.1± 5.6)% (b)Median-MAE = (3.8±1.9)% (c) Best-MAE = (2.9± 2.0)%

Figure 3.7: Evaluation on 2D images extracted from 3D volumes with orientation

angle with respect to the depth axis. The models used are trained with data from

the 3D volumes. The dotted curves correspond to the assigned labels, while the

filled curves is the model predictions.

multiple origins; for instance, it could be a small degree of overfitting toward

the training/validation data set (e.g., scanner, probe and operators and their

preferences). The trained models would probably benefit from a broader

representation domain.

Compared with AlexNet, the other networks have smaller receptive

fields and less coarse downsampling and, at least for the first layers, preserve

more pixel information from the input image. On the other hand, less

expressiveness is captured in the learned features. Though the Inception

module can retain this to some extent by having a route with a semi-
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large kernel, it may seem that adding features benefits generalization more

in this scenario. Though it is hard to pinpoint the specific reason why

CVC models surpass the results of the other networks on this task, we

believe that the combination of Inception modules, dense connections,

activation, bottlenecks and number of features (more than AlexNet, fewer

than Inception) strengthens the generalization.

The subcostal window proves to be the hardest to classify; arguably, lack

of training data is the probable cause. Even if this is the driving factor of

these algorithms, still views with distinct characteristics tend to simplify the

classification. For example, in Fig. 3.1, we see that the parasternal views

seem to have more interclass variance than the apical views and have a

higher success rate on unknown data despite learning from less.

Image quality is dependent on the acquisition environment and setup:

the parameters used on the scanner, expertise of the physician and status

of patient morphophysiology. On an abstract level, this information is

embedded into the sequences from a specific patient, and by omitting the

use of patient-based validation, the model would gain a fictitious advantage

in predicting allegedly unknown data. Examples of poor images from the

data set are provided in Fig. 3.8, where the model has predicted the views

as indicated under every image. The variation in quality from Fig. 3.1 is

apparent, and we discover that the model has more conflicts with ground

truth when images are poor. Of 54 misclassified sequences in the cross-

validation, 42 were classified in this category, whereas the remainder were

acceptable.

Another interesting observation is that the images in Fig. 3.8 were

acquired from two different patients and amount to approximately 15% of

the total sequential error. By observation, sequences from the patient shown

in the upper part of the figure have an abnormal artifact in the left ventricle.

The other patients generally have noisy and virtually invisible structures.

Both types of issues can cause classification problems and could potentially

be present in all image sequences from a specific patient. By distributing

sequences from the same patient in both the training and validation data

sets, the model could effectively adapt to the irregularity. Patient-based

cross-validation and independent tests should thus be emphasized when

assessing results from generated models.

Compared with other work, our results seem promising. Methods
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Figure 3.8: Example of poor cardiac ultrasound images from two different apical
four chamber sequences classified by the proposed view detection model. Green

label indicates the ground truth label, and the size corresponds to the fractional

prediction of the model. The left side shows frames where the model has conflicts

with ground truth.

and potential applications have some overlap with the research conducted

by [17] on quality assessment of cine loops. However, their multistream

regression network required 20 consecutive image frames to assess one label;

to discriminate between views, every frame had to be passed through a

shared layer architecture and into five different view-specific layers. This

could be feasible for distinguishing views because Abdi et al. state that

it is in real time, but their focus is on quality assessment of a given view;

classification is not investigated.

In three dimensions, annotation of optimal views was difficult because

variations in image features were insignificant for small angle intervals. This

held especially for the four- and two-chamber views, whereas the long-axis

view was easier because the diameter of the left ventricular outflow tract

could be used as a reference in most cases. With this in mind, we still achieve

a low median deviation of the predicted to true peaks in all patients, and by

inspecting Fig. 3.7, we argue that the long-axis view appears more robust. In

general, models trained with 3-D data achieve a low MAE. The performance

of models trained with 2-D data, as expected, experiences more fluctuation,
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and it can be difficult to detect the optimal view. The reason might be

variations in image quality and views slightly off orientation. The latter are

not distinguished in the 2-D data set, as we assumed that every examination

contains the best possible view for every patient. Results could therefore be

expected to have a saturating behavior around the optimal view.

3.5.2 Clinical perspective

As stated in the Introduction, automatic CVC has several clinical applica-

tions, such as improving workflow, enabling more automation and guiding

inexperienced users. The results on the second independent data set in this

study indicate that the accuracy of the proposed CVC methods based on

CNNs is real even for data acquired with other scanners and by different
operators. This accuracy, together with the measured low runtime and the

real-time video, suggests that this method is ready for further testing in a

clinical setting. Development in an end-to-end fashion allow low threshold

deployment and applicability in many settings without any tuning or in-

depth knowledge of the methods. No parameters are required; only an input

image is needed. Results also indicate that including training data from

heart volumes can improve guiding utilities and quality assurance while

scanning. Despite this, models trained with 2-D data will probably be better

suited for database utilities, such as data mining, search and categorization.

It is easier to add more views, and the accuracy is very high.

Training opportunities for new health care personnel are limited, and

expert knowledge is often captivated by workload or centralization. We

believe these increasingly relevant problems could be addressed by tools

such as automatic CVC. However, separate clinical studies on training

effects, standardization and workflow must be induced to support this

statement.

3.6 Conclusion

In the study described here, different neural networks were investigated

for cardiac view classification. State-of-the-art results for standard 2-

D echocardiography were achieved. The proposed network had a small

number of trainable parameters and achieved real-time inference with high
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accuracy. Although the demonstration looks robust when training on 2-

D data, our initial experiments into apical view guidance based on 3-D

data indicated room for further work. Using slices of 3-D volumes for

training improved the results significantly, and we believe that further

development toward real-time quality assurance and guidance from US

images is plausible when including such data.
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A proper definition of cardiac events such as end-diastole (ED) and end-

systole (ES) is important for quantitative measurements in echocardiog-

raphy. While ED can be found using electrocardiography (ECG), ES is

difficult to extract from ECG alone. Further, on hand-held devices ECG

is not available or cumbersome. Several methods for automatic detection

of cardiac events have been proposed in the recent years, such as using a

2D convolutional neural network (CNN) followed by 1D recurrent layers.

This structure may be suboptimal, as tissue movement has a spatio-temporal

nature which is ignored in the CNN.

We propose using a 3D CNN to extract spatio-temporal features directly

from the input video, which are fed to long short term memory (LSTM)

layers. The joint network is trained to classify whether frames belong to

either diastole or systole. ES and ED are then automatically detected as

the switch between the two states. The 3D CNN + LSTM model performs

favourably at detecting cardiac events on a dataset consisting of standard

B-mode images of apical four- and two-chamber views from 500 patients.

The mean absolute error between events in the apical four-chamber view is

1.63 and 1.71 frames from ED/ES reference respectively. Model inference is

fast, using (30 ± 2) ms per 30 frame input sequence on a modern graphics

processing unit.
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4.1 Introduction

Detection of end-systole (ES) and end-diastole (ED) in echocardiography

is an important step when assessing cardiac function. ED and ES are

defined as the time points when the mitral valve and aortic valve closes

respectively [1]. Several clinical metrics, such as ejection fraction and

global longitudinal strain [2] are determined using the ES and ED images.

The current approach for detecting ED usually involves finding the QRS-

complex in additional measurements from electrocardiograms (ECG), or by

visual inspection of the videos. Finding ES is more difficult in ECG alone,

making visual inspection of ultrasound (US) images necessary. In clinical

practice, this constitutes a significant amount of work that potentially could

be automated. An additional benefit is that accurate detection of ES and ED

solely using echocardiographic frames removes the need for applying ECG-

patches, further reducing time and resources. This is especially useful for

smaller devices such as the pocket-sized US scanners.

A multitude of machine learning methods have been proposed for

learning video representations. Recently, deep learning have been able to

perform on par or better than traditional approaches. These methods differ
in the way spatial and temporal features are combined. In the two-stream

network [3], one CNN is trained to extract features from still images, and

another CNN is trained to capture motion patterns using a stack of optical

flow frames. Several methods have been proposed to increase the temporal

capacity of these models, such as extending the CNN to 3D [4]. Another

popular approach is the Long-Term Recurrent Convolutional Network [5],

which uses a CNN to extract features for individual frames. These features

are input into a Long Short-term Memory (LSTM) [6] recurrent network for

temporal fusion. Similarly, [7] use a shallow 3D CNN to extract features

from short clips, which are passed to an LSTM network. Other methods use

deeper 3D CNNs to learn spatio-temporal features [8,9].

Several methods have been proposed for detecting cardiac events

automatically in echocardiography. Cardiac cycle start and length are

estimated without the use of ECG in [10]. To detect cycle start, the motion

of a point near the mitral annulus is found using speckle tracking. This is

compared to a database of left ventricle (LV) displacement curves to estimate

the cycle start corresponding to the QRS complex in ECG. Other methods
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explore manifold learning and dimensionality reduction [11,12]. Frames in

an echocardiogram are mapped to a learned manifold, and the fact that ED

and ES occur in periods with small volumetric changes is used to detect these

events as dense regions on the manifold. CNNs have been used to extract ED

and ES with high precision in cine magnetic resonance imaging [13]. Here, a

pretrained CNN is used as a feature extractor, and features are passed on to

an LSTM layer. The model is trained to regress a typical volume curve of the

LV over a single heartbeat. ED and ES is then identified as the largest and

smallest regressed volume in the sequence, respectively. A similar approach

applied to echocardiography replaced the pretrained CNN with a residual

network [14].

In this work, we replaced the standard CNN with a 3D CNN for spatio-

temporal feature learning. Further, we propose training the model on a

target which is more suited for detecting ED and ES. The model is trained on

variable length sequences, whereas previous deep learning approaches use

fixed length input videos.

4.2 Methodology

4.2.1 Problem formulation

To train models for detecting ED and ES frames in a supervised manner,

the target output must be generated. An intuitive approach involves posing

this as classification with three classes: ED, ES, or neither. However,

this introduces a class imbalance problem, as ED and ES frames are

underrepresented. An easy way to achieve low loss is then to output neither

for all frames.

In [13,14] the problem is formulated as a regression task. Here, the target

is set to approximate a typical LV volume curve, by using a cubic function

and normalizing the target 0 to 1. The representation is thus not the actual

volume curve for a given sample, and therefore the model must attempt to

learn a mapping which is not exactly present in the data. For some cases of

pathology, such as in the event of post-systolic contraction, the volumemight

not be smallest at the time of ES. In addition, detecting ED/ES as extrema

in the estimated volume curve might be difficult due to flat regions during

isovolumetric periods, resulting in several candidates.

In this work, the problem is formulated as a binary classification task.
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The target is set to 0 for frames belonging to systole, and 1 for frames in

diastole. This alleviates the issue of class imbalance, as there is a comparable

number of diastole and systole frames. ES and ED is detected as the frames

where the output at the next timestep crosses 0.5 from below or above,

respectively.

4.2.2 Network architecture

A 3D CNN architecture is presented which is capable of handling arbitrarily

long sequences (until GPU memory is full). Due to high GPU memory

utilization of 3D convolutions, the model contains few filters and use

pooling frequently compared to state-of-the-art image recognition models.

The CNN consists of five 3D convolutional layers, each followed by batch

normalization, ReLU activation and max pooling layers. As one prediction

should be made for each input frame, pooling is only performed along the

spatial axes, and not along the temporal axis. For the same reason, each

convolutional layer pads the input with zeroes to preserve the length of the

data. As in [9], kernels have spatial and temporal size of 3, except from the

first layer which uses a spatial size of 7. The number of feature maps double

every convolutional layer, starting at 16 and ending at 256. At the output

of the 3D CNN, dropout with a probability of 0.3 is performed to prevent

overfitting. The output of shape [t,4,2,256] is then reshaped into t vectors

of shape [2048]. LSTM layers are added to filter the CNN predictions and

increase the capability to remember longer movements. Both LSTM layers

have a cell state of size 32, resulting in 32 output features per timestep.

An L2 regularization of 1 × 10−4 is used for recurrent and convolutional

kernels. A 1D convolutional layer with a sigmoid activation is placed at

the end of the model, operating along the temporal axis. The layer has a

single kernel of temporal size 3, with the aim of smoothing the output of the

model and reduce the likelihood of the output erroneously crossing 0.5 as a

result of noisy data. The model is implemented in Keras with the Tensorflow

backend. Fig. 4.1 shows the overall layout.

4.2.3 The dataset

The dataset consists of apical four-chamber (A4C) and two-chamber (A2C)

echocardiograms from 500 patients, acquired at the University Hospital of
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Figure 4.1: Schematic of the network architecture with a 3D CNN followed by

LSTM layers and a 1D convolutional layer at the end.

St-Etienne (France) using a GE Vivid E95 ultrasound system (GE Vingmed

Ultrasound, Horten, Norway) [15]. For most patients, a corresponding

electrocardiogram (ECG) is aligned with each sequence, giving one ECG

measurement per video frame. The data is representative for a typical

outpatient clinic. The videos have varying sector geometries, sampling rates

and duration. The sample time per frame is between 11.99 ms and 21.05 ms.

Each video contains a varying number of cardiac cycles. For each video, one

frame corresponding to ED and one frame corresponding to ES is labeled

by an expert. The labeled ES and ED belongs to the same heart cycle, with

ED labeled first for 498 of the A2C videos, and for 481 of the A4C videos.

The dataset is split randomly into three folds, with 300 patients used for

training, 100 for validation during training, and 100 for testing. Both the

A4C and A2C videos for a single patient are placed in the same fold to avoid

data leakage.

As only one ES and ED is labeled for each video in the dataset, no

labeled input data contains a full heart cycle. In addition, a majority of

the frames between the labeled ED/ES belongs to systole, as the labeled ED

most commonly occurs before ES. To have training data for any part of the

heart cycle, an additional ED is labeled by considering the accompanying

ECG signal. The QRS-complex is used to label the ED that yields a fully

labeled heart cycle. From 500 patients, 333 and 334 of the ECG signals

corresponding to A4C and A2C videos respectively are considered of high
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enough quality to accurately identify a second ED.

A number of frames before and after the labeled ED/ES are included

to further expand the dataset size, and to make sure ED and ES does not

occur at the first and last frames. The resulting dataset contains 26818

frames of A4C and 26170 frames of A2C echocardiograms, belonging to both

diastole and systole. The frames are resized to size 128 × 80 using bicubic

interpolation, and normalized by subtracting the mean and dividing by the

standard deviation over all pixels in the training data.

4.2.4 Learning details

Training is done for 100 epochs with cross-entropy loss applied over each

time step. The Adam optimizer with a learning rate of 1 × 10−4 was used.

At the end of every epoch, the training data is shuffled. Both A4C and A2C

views are used as training data. Model weights are saved at the epoch with

the lowest mean absolute error (MAE) on the validation set. Training on only

A4C views was also tested, but resulted in worse performance. The model

is trained using mini-batches of four videos, and shorter videos and targets

are padded at the end with zeroes. The loss is set to zero for padded frames

before backpropagation.

Data augmentations were important for preventing overfitting. Se-

quences are downsampled temporally by a factor of 2 by discarding every

other input frame with a probability of 0.2. Sequences are temporally

cropped by randomly discarding between 0 − 80% of the original duration,

starting and ending at a random frame. After this, videos are rotated

randomly between -10 to 10 degrees. Next, videos are randomly cropped

spatially, removing between 0 and 20 pixels along each border. After

cropping, the videos are resized to the input size expected by the model.

Training and model evaluations were performed on a NVIDIA Titan V GPU

with 12 GB RAM.

4.2.5 Evaluation

The error is defined as the difference between the time of a labeled event E

and a detected event Ê, either ED or ES. Using the notation of [13], the MAE
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in frames is denoted the average frame difference (aFD),

aFD =
1

N

N∑
1

|E − Ê|, (4.1)

where N is the number of events in the dataset. The mean (μe) and standard

deviation (σe) of the error is also presented in milliseconds (ms).

In order to evaluate if the model is invariant to the cardiac cycle starting

point, a variable number of additional frames are included at the beginning

and end of the sequence. For each video in the test set, results are measured

with 0%, 33% and 66% of the duration between the labeled ED and ES

included at the beginning and end of the input data. The model output

for the included frames are then discarded as there is no ground truth for

these frames.

4.3 Results

Table 4.1 shows the resulting performance on the 100 patients in the test

set. Three of the labeled ED and ES frames are not detected by the model

for the A2C view, due to the event occurring near the first or last frames of

the input. More than one detection of the same event occur three times for

ED, and six times for ES. In all these cases, inspection reveals that the data

is from a non-standard view or noisy. These cases are thus excluded in the

result metrics. Fig. 4.2 shows a patient from the dataset along with labeled

and detected events, while Fig. 4.3 shows the model output for the patient.

Table 4.1: Errors of detected ED and ES relative to labeled ED and ES

View Event aFD μe(ms) σe(ms)
A2C ED 1.40 -5.68 35.8

ES 1.25 -1.94 29.9

A4C ED 1.63 0.50 29.8

ES 1.71 0.60 37.8

Table 4.2 shows the model compared to results reported in [14] for other

deep learning approaches.

The time used to predict a single video consisting of 30 frames is

97



4.4. Discussion

Figure 4.2: Example input sequence (apical four-chamber) along with the labeled

frames (ED, ES) and frames detected by the model (ÊD, ÊS).

Figure 4.3: Output of the model on the sequence shown in Fig. 4.2. The model

output, y, is close to 1 for frames corresponding to the diastole phase and 0 for

frames in systole. ED and ES is detected as frames where the y crosses 0.5.

measured 100 times and averaged. This resulted in (30 ± 2) ms used on

average for predicting 30 frames.

4.4 Discussion

The 3D CNN is able to detect both ED and ES accurately both for A4C

and A2C views, as seen in Table 4.1. This suggests that the network has

learned general features for both cardiac phases, such as movement of the

atrioventricular valves and the contraction / relaxation of the myocardium.

The model is suited for learning these features, as the 3D convolutional

layers are able to learn motions between adjacent pixels. A 3D CNN alone

might result in a noisy output, due to the noisy input data. This is where the

LSTM layers can do a good job of filtering the CNN output. There are few

visible difference between the labeled and detected ES frame in Fig. 4.3, and

the most noticeable difference between the labeled and detected ED frames

is the slightly more closed mitral valve for the labeled ED. As seen from

Fig. 4.3, the model output closely resembles a square wave corresponding
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Table 4.2: Comparison to metrics reported in [14] on the A4C view

Model aFD (ED) aFD (ES)

CNN + LSTM [13] 6.3 7.3

ResNet + LSTM [14] 3.7 4.1

3D CNN + LSTM 1.6 1.7

to systole and diastole frames, with only a few noticeable dips, showing how

well the model separates between systole and diastole. As seen in Table 4.2,

the aFD is less than half of [14]. Comparing the performance must however

be performed with caution, due to the models being evaluated on different
datasets.

An issue is that the labels are not guaranteed to be correct. Determining

the exact moment of ED and ES can be difficult for a human annotator due to

small differences between consecutive frames. These errors increase as the

sampling rate increases. Therefore, it would be interesting to compare the

variability of human annotators.

Frequent pooling and few convolutional kernels ensures that the model

runs efficiently. It also has a regularization effect, as a small network is less

likely to overfit to the training data. The approach has shown to work using

a variable number of input frames, instead of limiting the input to a fixed

number of frames. This means that the model can operate on an arbitrary

long input sequence, and is not restricted to using a single heart cycle as

input. Thus, the method may be used to automatically extract heart cycles

when considering the distinct differences between output for diastole and

systole frames.

4.5 Conclusion

In this paper, a novel method for detecting cardiac events in echocardiogra-

phy using deep learning was proposed. A 3D CNN was employed followed

by recurrent layers to facilitate the learning of spatio-temporal features.

State-of-the-art results are achieved on a large dataset, which indicate that

the chosen components enhances the solution of the task.
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Deformation imaging in echocardiography has been shown to have better

diagnostic and prognostic value than conventional anatomical measures

such as ejection fraction. However, despite clinical availability and

demonstrated efficacy, everyday clinical use remains limited at many

hospitals. The reasons are complex, but practical robustness has been

questioned, and a large inter-vendor variability has been demonstrated. In

this work, we propose a novel deep learning based framework for motion

estimation in echocardiography, and use this to fully automate myocardial

function imaging. A motion estimator was developed based on a PWC-

Net architecture, which achieved an average end point error of (0.06 ±
0.04) mm per frame using simulated data from an open access database,

on par or better compared to previously reported state of the art. We

further demonstrate unique adaptability to image artifacts such as signal

dropouts, made possible using trained models that incorporate relevant

image augmentations. Further, a fully automatic pipeline consisting of

cardiac view classification, event detection, myocardial segmentation and

motion estimation was developed and used to estimate left ventricular

longitudinal strain in vivo. The method showed promise by achieving a

mean deviation of (−0.7 ± 1.6)% compared to a semi-automatic commercial
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solution forN = 30 patients with relevant disease, within the expected limits

of agreement. We thus believe that learning-based motion estimation can

facilitate extended use of strain imaging in clinical practice.

5.1 Introduction

Motion estimation is an essential part of ultrasound imaging, especially in

echocardiography, where it is used to assess cardiac function. Currently

speckle tracking echocardiography (STE) is widely deployed, with many

methodological variants such as variational optical flow (OF) and block-

matching methods [1]. In research, conventional STE methods have been

outperformed by phase sensitivity and elastic registration methods [2–

4]. Despite being considered the standard, these methods have several

unsolved challenges due to fundamental limitations of ultrasound (US)

acquisitions. This includes dropouts, shadows, out-of-plane motion, drift

sensitivity, foreshortening and more [5]. Several of these artifacts leads

to a decorrelation of the US speckle pattern from frame to frame, thus

complicating the tracking task.

Deformation imaging, such as measurement of myocardial strain, has

shown great potential [6–8], and is claimed to have better diagnostic and

prognostic value compared to conventional anatomical measurements such

as ejection fraction (EF). Motion estimation (ME) is usually an essential part

of these methods, and the measurements are dependent on its performance.

Clinical use of deformation imaging is still limited, partly due to time

constraints in the clinic, but also a lack of consensus about robustness and

reproducibility. We also hypothesize that the retrospective nature of the

analysis reduces its use, and believe that having the possibility to quality

assure acquisitions while scanning would facilitate clinical implementation.

Major efforts have been put into standardization of strain estimation

techniques [8, 9]. Part of this involves developing common evaluation

platforms and data, in which Alessandrini et al. [10] proposed a realistic

in silico database of US sequences based on simulations with biomechanical

models for comparison of STE algorithms.

Recently, motion estimation using convolutional neural networks (CNN)

have shown promising results for general optical flow (OF) problems.

Dosovitskiy et al. [11] demonstrated this, by learning to estimate motion
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patterns directly from images using U-Net based architectures called

FlowNet. Several flavours of the topology exists, such as FlowNetS,

FlowNetC and FlowNet-SD, with decisive modifications, for instance to

resolve issues with noisy artifacts and small displacements. By stacking

several of these networks in a cascade and using complex training schedules,

as in FlowNet 2.0, performance was on par or better than state of the

art methods for traditional OF estimation. These methods introduced a

shift in OF research, and in few years the work on the topic has increased

dramatically, where the benchmarks have been dominated by deep learning

(DL) based methods. One of the limitations of FlowNet 2.0 is the network

complexity and inference speed. In PWC-Net, the developers succeeded in

both increasing the accuracy and reducing the size of the CNN model by

leveraging conventional OF components [12]. The PWC-Net and FlowNet

architectures are currently the most common starting point for research on

DL based OF estimation. The main difference between them is that FlowNet

is encoder-decoder based, while PWC-Net use a spatial pyramid.

Using these type of network designs directly for ME in US imaging

raises some concerns. Firstly, their design and training regime facilitate

correlation between global image features, and an optimization for rigid

motion patterns. This is not fully compatible with deformation imaging,

where local coherent speckle is used to track local tissuemotion and inherent

non-rigid deformation patterns. Structures in US images do not have

clear borders and traditionally STE has relied on tracking the local speckle

pattern, rather than global texture features. On the other hand, speckle

decorrelation occurs throughout the cardiac cycle, and this is a fundamental

limit of static tracking kernels. Current CNN methods for ME use block

matching between features of consecutive frames, but not between lower

levels of the architecture [12,13]. This does not distinguish noise and speckle

locally, and the cost volume will thus make limited use of coherent speckle

between consecutive frames. We thus hypothesize that learning-based ME

extended with knowledge from STEmethods could improve robustness, and

therefore be beneficial.

The use of deep learning based ME in US, and especially in echocardiog-

raphy, is limited [14]. Earlier, we demonstrated the use of FlowNet 2.0 out-

of-the-box for estimating global longitudinal strain (GLS) in a pipeline with

view classification, segmentation of the myocardium and state-estimation
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techniques [15]. The results were promising, but both the training data and

methods had several limitations, especially for regional motion patterns. In

elastography, several studies have been conducted with use of FlowNet 2.0

to estimate the displacements [16]. In a recent pilot study, efforts were also

made into benchmarking different networks components of FlowNet 2.0,

with fine-tuning on simulated US data. The results were on par with current

state of the art for flow estimation [17]. In sum, these studies indicate a

potential and adaptability for CNN based ME in US image analysis.

Utilizing DL models in a cascade for fully automating clinical measure-

ments have also become a popular research topic, for instance for measure-

ments such as EF and strain [18]. We recently demonstrated an accuracy

within interobserver variability on calculations of EF, with possibility for

real-time analysis and quality assurance on-site [19]. In this study we aim

to extend our work by incorporating ME in an automatic pipeline, in order

to do fully automatic deformation measurements. Our goal is to develop

DL based methods which may facilitate the implementation of functional

imaging in the clinic by removing several steps of manual post-processing

and enable real-time use. This could make the measurements more robust

and less time consuming.

5.1.1 Main contributions

We propose a novel framework for motion estimation in echocardiography,

and use this, together with other relevant components, to fully automate the

estimation of longitudinal strain. The contributions of this paper are

• A motion estimator for echocardiography inspired by PWC-Net that

incorporates domain knowledge from US, and constraints from rele-

vant morphophysiology.

• A training setup with pretraining on synthetic data, and finetuning on

more realistic US simulations with relevant augmentation routines.

• Analysis of deep learning based motion estimation with comparison

on simulated and in vivo data.

• A fully automated pipeline for longitudinal strainmeasurements using

cardiac view classification, event detection, segmentation and motion

estimation by DL.
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• Comparison between the automated pipeline and a commercial avail-

able system for GLS measurements.

5.2 Methods

5.2.1 Motion estimation with deep learning

Currently, PWC-Net is themost popular architecture for deep learning based

optical flow estimation, and several variations exist [12,20,21]. It is inspired

by conventional OF, including components such as pyramidal coarse-to-fine

estimators, warping and cost volume in the design pattern. Still, it utilizes

the strengths of CNNs by incorporating feature learning in several stages.

A simplified illustration of the network architecture can be seen in the

left part of Fig. 5.1. The core method involves taking two consecutive images

as input, and these are fed separately into a learnable CNN based feature

extractor pyramid of L levels with shared weights. At each level l, the

feature maps from the previous level is downsampled to half its size using

strided convolutions. The features of level l of the second image is warped

towards the first image using the upsampled flow from the consecutive

level. A cost volume is estimated using correlation between the first image

and warped features of the second image. For each layer, the cost volume,

features from the first image and upsampled optical flow are input into

a CNN which outputs a dense displacement map for the current pyramid

level. The estimation is repeated upwards in size until the desired level. The

output is then forwarded into a context network with dilated convolutions,

which refines the flow, taking the estimated flow and features of the second

last layer from the OF estimator as input. The final output is a dense

displacement map resized to the the same spatial size as the input images.

The original PWC-Net implementation has seven feature pyramid

extractor levels including the inputs. The output level is one-quarter of

the inputs spatial size, and the flow is upsampled by bilinear interpolation

after the context network. The basis of our implementation also has

seven pyramid levels, but as opposed to the original implementation which

produces flow estimation up to the second highest level, we extend our

network to produce flow estimation up to the first level. This is further

fed into a context network before the final upsampling as indicated in the

right side of Fig. 5.1. Also, we include the final output in the loss function.

107



5.2. Methods

Figure 5.1: Sketch of a traditional PWC-Net architecture with three pyramid levels

(left). Two consecutive images are fed into a pyramidal feature extractor. The cost

volume is estimated between feature maps of the first image and the backward

warped second image features (no warping at bottom). A CNN named Flow

estimator, is used to estimate the flow at every level. At the top level a context

network is used to refine the flow. The right part of the figure illustrates the

modifications done for the EchoPWC-Net. Firstly, feature maps closer to the input

is propagated through the cost volume and flow estimation routines (a). Warping of

the features of the second image is removed and exchanged with a direct correlation

between features (b) and flow at the two highest levels is also included in the loss (c).

This is to retain some of the useful speckle patterns lost when resampling

from a low resolution level, and optimize for local variations and small

displacements. We also hypothesise that the ambiguity caused by occlusions

and out-of-plane motion during warping makes the original implementation

problematic for echocardiography. One of the main motivations of using

warping is to handle large motions and allow for smaller networks, but

for echocardiography the typical motion between frames is small. We

therefore remove the warping procedure, and instead estimate the cost

volume directly between feature maps at every level. This is illustrated

in Fig. 5.1b. We argue that this integrates some of the benefits of block

matching between frames at every level of the pyramid, and thus have more

resemblance to traditional STE. However, instead of locating the minima of
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the cost volume as you would with STE, the full correlation map is passed

to the flow estimator. We refer to our customized network as EchoPWC-Net.

Additional implementation details are given in Section 5.3.3.

5.2.2 Pipeline for automated functional imaging

The proposed pipeline for myocardial function imaging is summarized in

Fig. 5.2. Together with the discussed motion estimation, it consists of

several in-house DL based methods, including cardiac view classification,

event detection and myocardial segmentation. In addition, we initialize the

tracking by extracting the mid ventricular centerline of the myocardium. We

summarize the steps in the following, and the reader is referred to published

work for more details about the DL networks [22–24].

Figure 5.2: The measurement pipeline. Valid US images are forwarded through a

segmentation network, and the resulting masks are used to extract the centerline

and relevant parts of the image. The US data is further processed through the

motion estimation network yielding a map of velocity vectors. The centerline is

used to seed points which are used for tracking the myocard. The velocities of the

myocardium are optionally used either directly to propagate the centerline points,

or as a measurement update step of a Kalman filter. The results are used as a basis

for strain measurements.

View classification

To ensure valid acoustic windows, we employ an in-house cardiac view

classification (CVC) network [22]. The method recognizes up to eight

different cardiac views, including the apical four-chamber (4CH), apical two-

chamber (2CH), apical long-axis (APLAX), which are relevant for this study.

The network topology is composed of seven block levels of convolution

filters, batch normalization, PReLU activation and max pooling. Inception

modules and a dense connectivity pattern are employed in the last five
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blocks. A global average pooling layer was used before the final softmax

activation. It was trained on a dataset of approximately 250 patients, and

tested on a similarly sized independent dataset. The network input is

standard scan converted B-mode images of size (128×128), and the output is

a softmax activation yielding a confidence score for each class. This network

has shown an accuracy of 98% and inference time of approximately 4 ms per

frame.

Event detection

The cardiac phases are identified using a sequence-to-sequence CNN

that can classify diastole and systole directly from B-mode images [23].

The network consists of five stacked levels of 3D convolutions, batch

normalization, ReLU activation and max pooling. All convolution kernels

have a temporal size of three, while the spatial kernel size is (7×7) for the first
layer and (3×3) for the rest. The output of this stage is then propagated into

two layers of long short-term memory (LSTM) modules with 32 units each.

It was trained and validated on the CAMUS dataset of 500 patients [25]. The

network handles variable number of frames with size (128×80) as input, and
outputs a sequence of scalars in the interval zero to one. Zero indicates that

the image is from the systolic phase, while one is the diastolic phase. End-

diastolic (ED) and end-systolic (ES) frames were identified as the temporal

points where the phase changes, i.e. cross-over from zero to one and vice

versa. Themethod has shown an accuracy of (−5.5±28.2) ms and (−0.6±31.8)
ms on ED and ES frames respectively, and mean absolute error of 1.53 and

1.55 frames from reference. For batch processing, a runtime of 16 ms per

frame was measured.

Myocard segmentation

We utilize a segmentation network proven to work well in several studies.

This is a slight modification of the U-Net architecture [26], with six levels in

the encoder and decoder part. Each level is composed of (3× 3) convolution
filters and ReLU activation. Max pooling is performed in the encoder part,

while upsampling with nearest neighbour interpolation is performed in the

decoder part. Skip connections are used between the levels at each stage.

The network was first described by Smistad et al. [27] and later used in the
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CAMUS study of Leclerc et al. [25]. Recently, it has been used with success in

an automatic measurement pipeline for ejection fraction and foreshortening

detection [19]. In this study, we use the segmentation of the myocardium

Ωm. Initially, the network was trained for 4CH and 2CH views, but it was

later extended to include the APLAX view [24]. It was designed for real-time

performance, with 2 million parameters. Network input is an US image of

size (256×256) together with a binary value indicating if it is an APLAX view

or not. The output is a map of same size of the input image, where each pixel

is classified as either LV lumen, myocard, left atrium or background. Data

from the CAMUS dataset of 500 patients together with parts of an internal

study were used for training. The network achieved a test dice score of 0.79

on the myocardium. A runtime of about 10 ms on a GPU was achieved.

Centerline extraction

The centerline C of the myocardium is defined by extracting the contour

of the myocardial segmentation Ωm and defining the endo- and epicardial

borders. Further the base and apex points are defined as the points

furthest away from the LV lumen centroid, in left bottom, right bottom

and top direction respectively. The centerline is defined as the mid-point

between two nearest endo- and epicardial points on the line perpendicular

to the longitudinal. A total of k equidistant points pk =
〈
x,y

〉
along the

longitudinal direction is then sampled, i.e. C = {p1,p2, ...,pk}.

Motion estimation

The pipeline allows using different motion estimation methods. In this

study, we employ four different variants, a traditional Farnebäck optical

flow method [28], the FlowNet 2.0, the original PWC-Net and a modified

PWCNet which we named EchoPWC-Net. With Farnebäck we use a grid

based optimization minimizing average end point error (EPE) on simulated

data to find the parameters for window size, pyramid levels, pyramid scale,

iterations at pyramid scale, size of the kernel for polynomial expansion and

smoothing factor for the derivative of the polynomial. All the methods

produce a dense displacement map of velocity components v(x,y) =
〈
vx,vy

〉
between two images I(t) and I(t + 1).
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Tracking update

The centerline points pk can either be updated by propagating the points

with the displacement field, i.e. pk(t + 1) = pk(t) + vk(t). Alternatively, it

can be extracted from the segmentation directly without using the motion

estimation method at all.

This step could also involve state estimation techniques such as the

Kalman filter [29] or similar, but this was not pursued further in this study.

Clinical measurements

The centerline C ⊆Ω is used to calculate the longitudinal ventricular length

ι, i.e. the arc length, for each timestep t. Further, this is used to estimate the

Lagrangian strain

ε(t) = (ι(t)− ι0)/ι0, (5.1)

along the center of the myocard. The reference length ι0 is measured at

the ED frame. The peak-systolic strain was used for both GLS and regional

longitudinal strain (RLS) estimation, where the peak was defined as the

minima between ED and ES strain values. For RLS, we divide the ED

centerline at the apex and estimate three equally sized arcs on both sides

and compute their strain individually [9].

5.3 Experiments

5.3.1 Datasets

Several datasets were used developing the methods, and in the following we

will briefly describe the datasets used for modelling the motion estimation

network, and testing the measurement pipeline. For information about

data used to train other models, such as segmentation, view classification

and event detection, the reader is referred to publications on the specific

networks [22–24].

Synthetic data

We used three publicly available datasets commonly used for training and

benchmarking of optical flow methods. All the datasets consist of image

pairs and a corresponding dense displacement map.
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• FlyingChairs2D [11]: Contains images of rendered 3D chair models

moving in front of random backgrounds scraped from the photo

management and sharing site Flickr. A total of 22872 images.

• FlyingThings3D [30]: Contains approximately 25000 stereo images

sampled from a 3D scene of everyday objects flying along randomized

trajectories on a textured background.

• MPI SINTEL [31]: Contains images from an open source animated

short film. A total of 1628 frames from 35 different animation scenes.

Example image pairs from the datasets with corresponding flow can be seen

in the upper part of Fig. 5.3.

Figure 5.3: Examples from the datasets. Synthetic data from FlyingChairs2D [11],

FlyingThings3D [30] andMPI SINTEL [31] and simulated ultrasound [10]. For each

example, from left to right, we have two consecutive frames followed by the flow

field from the first to the second frame.

Simulated ultrasound data

An open database of simulated echocardiography images created for quality

assurance of speckle tracking algorithms [10] were employed. The data is
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created with a complex simulation pipeline, where a 3D dataset of simulated

US volumes of the heart and corresponding myocardial mesh is spatio-

temporally aligned with a 2D template of real US data. Further, a synthetic

motion field from a biomechanical model was used to propagate the mesh

and aligned data. A scatter map was generated from the composition,

and used to generate simulated US. In total, the data is composed of

templates from seven different vendors and five motion patterns from the

biomechanical model, including one healthy and four pathologies. Each

with the three apical views, 4CH, 2CH and APLAX, resulting in a total of

105 sequences or 6165 frames. For each timestep, a set of 180 points divided

among five longitudinal lines and six segments is provided by the authors.

These points correspond to the underlying motion field of the biomechanical

model aligned with the US data. An example of image pairs of 4CH and 2CH

views from the dataset with corresponding flow can be seen in the lower part

of Fig. 5.3. They also provide the view and the cardiac event timing for each

sequence.

Clinical data

A dataset was collected from a clinical database of patients diagnosed

with acute myocardial infarction (MI) or de-novo heart failure (HF) at

a Norwegian hospital. The study was approved by the regional ethics

committee (ref. 2013/573) and written consent was given by all patients.

The images were acquired using GE Vingmed (Vivid 7, E9 or E95) scanners.

Patients were included consecutively regardless of image quality. All exams

were performed in clinically stable patients with sinus rhythm. Images were

analyzed by a single clinician using clinical best practice as defined in [7]

with the 2D strain (2DS) application in the clinical software EchoPAC release

202 (GE Vingmed AS, Horten, Norway.). This ensures that the proposed

automated method is compared to actual clinical practice measurements

techniques. To ensure a representative range of LV pathologies, a total of

30 patients from five different cohorts were randomly selected, resulting in

six patients from each group. The groups were defined by a diagnosis of

ST elevation MI (STEMI), non-ST elevation MI (NSTEMI), ischemic heart

failure (HF), non-ischemic HF and no significant disease. The tracked mid

ventricular points and corresponding strain values were exported from the

software.
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5.3.2 Data augmentation

Due to the unrealistic nature of simulated ultrasound and limited access to

relevant (in vivo) data with a ground truth, we rely on several US-specific

augmentation routines. Here we try to induce realistic artifacts common in

echocardiography that usually hampers the success of speckle tracking, and

describe a selection in the following.

Gaussian shadowing

Acoustic shadows often occur in US imaging due to structures that strongly

reflect or absorb the US waves. This is often identified as a dark region

behind the structure. We mimic this effect by placing random regions of

intensity reductions in the image. Similar methods have been shown to have

an effect on generalization for US segmentation tasks [32].

Haze artifact application

One artifact that is prevalent for some patient is acoustic haze. This can be

identified as a semi-static noise band in the upper parts of the image. We

randomly apply static high intensity artifacts with a Gaussian profile along

the radial direction in polar coordinates.

Depth attenuation

The US wave looses energy as it travels through the body, and this can

be identified as a gradual drop in intensity with distance from the probe.

Similarly like the haze artifact application, we apply a varying degree

of intensity attenuation along the radial direction. The attenuation does

not consider depth independent noise, and is thus a simplification of the

physical artifact.

Speckle reduction

The speckle pattern in images from different vendors often differ due to

image enhancement and various filtering methods. To reproduce this effect,
we smooth the images randomly using a bilateral filter, effectively reducing

the speckle.
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In addition to these US specific augmentations, we apply basic aug-

mentations such as horizontal and vertical flipping, temporal reversing,

frame skipping, rotation, random noise, scaling, image resampling artifacts,

JPEG compression and gamma intensity transformations. Except for the

flipping, reversing, scaling, skipping and rotation, the displacement map

was not modified for any of the augmentation routines. All augmentations

are applied in random combinations and on-line while training. Examples

from some of the individual augmentations are given in the supplementary

material. In addition, the effect on maximum flow distribution after five

epochs with augmentation is visualized.

5.3.3 Implementation details

We implemented the machine learning environment using Tensorflow [33]

version 2. The modelling and experiments were conducted on a workstation

with an Ubuntu 16.04 operating system. The hardware consisted of an Intel

Xeon CPU E5-2637 v2 with a clock speed of 3.50 GHz, 112 GB RAM and a

NVIDIA Titan V GPU with 12 GB of memory.

Architecture parameters

For the feature extractor in EchoPWC-Net, we use one convolution layer in

addition to the strided convolution, with equal amount of filters at each

level. The amount of filters used was 16, 32, 64, 96, 128 and 192, from top to

bottom level respectively. For the cost volume we use a search range of 4 for

every level, and for the context network we use the architecture proposed

in the original implementation [34]. This corresponds to a receptive field of

67× 67 in the last layer.

Data preprocessing

To reduce the feature space and adapt for US, we converted all input data

to grayscale, including the synthetic RGB data. The input was set to a

fixed size of (448 × 576). As mentioned, the simulated US data is provided

together with a set of 180 spatial points inside the myocardium for every

timestep. We use these to generate a sparse displacement field, and we use

cubic interpolation to convert to a dense displacement map with velocities

v(x,y) =
〈
vx,vy

〉
inside the myocardium Ωm. To avoid boundary effects,
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we extrapolate the epicardial points radially by 5% of the radial diameter,

followed by masking by the concave hull enclosing the original points. The

dense displacement map is used as the ground truth flow, and the units were

set to pixel per frame.

Training procedures

Several training dataset schedules were investigated, resulting in four

different setups:

• Synthetic RGB: Sequential training from scratch with FlyingChairs2D

and FlyingThings3D RGB data.

• Synthetic gray: Sequential training from scratch with grayscale

FlyingChairs2D and FlyingThings3D.

• Synthetic gray → Simulated US: Initialized with weights from

synthetic gray followed by fine-tuning on simulated US.

• Simulated US: Trained from scratch on simulated US.

When training with synthetic data, we employ the basic augmentations

mentioned in Section 5.3.2. In addition, we employ the US specific

augmentation when training on simulated US.

Our models are trained with the Adam optimizer and a batch size of 4

for all experiments. The initial learning rate was set to 10−4, with a halving

schedule for each 100k and 20k iterations for synthetic and simulated US

respectively. For fine-tuning, the initial learning rate was set to 10−5.
Training time from scratch was approximately three-four days for synthetic

data with the fine-tuning schedule running over five days, and two days for

simulated US. Early stopping with a patience of 30 epochs were used for all

models.

Loss

We use a multi-scale loss function with end-point error. Since the labeled

motion is sparse, we only optimize regionally where the input lies within

the predefined segmented region Ωm. We let wl denote the dense flow field

at the lth pyramid level. The loss is defined as
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L(Θ) =

L∑
l=l0

βl
∑
x

|w̃l
Θ(x)−wl

GT |+γ |Θ| ∀ w ∈Ωm,

where Θ is the parameters and x is the inputs. The term βl is set manually

and used to weight the loss contribution from each layer. The second term

regularizes the parameters, where γ is the regularization factor. This is

similar to the loss used in FlowNet and PWC-Net, but restricted to regional

optimization. In our implementation, we set the weights to β0 = 0.015,

β1 = 0.03, β2 = 0.06, β3 = 0.12, β4 = 0.25, β5 = 0.50 and β6 = 1.0. Based on

the input size, this correspond to equally weighting each layers contribution

to the loss. The regularization factor γ was set to 10−4.

5.3.4 Evaluation

Metrics

We evaluate our methods using the end point error (EPE), which is a

common metric for benchmarking optical flow performance. It is defined

as the Euclidean distance between the ground truth velocity and the

predictions, i.e. EPE = ||vGT − vpred||. We also compute the strain values,

as defined in (5.1). Regional strain is computed for each segment for each

view, while global strain is computed for each view, and averaged over all

views. In addition, we report correlation metrics, such as regression slope α

and correlation coefficient ρ, as well as bias μ and 95 percentile limits of

agreement (LOA).

Comparison I:Motion estimation

Nine different motion estimation methods are evaluated. The original PWC-

Net, as well as different flavours of the EchoPWC-Net. For reference, the

Farnebäck and FlowNet 2.0 methods are also included. The various methods

are summarized in Table 5.1.

Comparison II: Automatic pipeline

For functional measurements on in vivo data, we also test two variants of the

presented pipeline:
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Table 5.1: Overview of different motion estimation models.

Training dataset schedule Augmentation

Synth. RGB Synth. gray Sim. US Basic US spec.

Farnebäck

FlowNet 2.0 � �
PWC-Net � �

PWC-Net-gray � �
PWC-Net-gray-usft � � � �

PWC-Net-us � � �

EchoPWC-Net � �
EchoPWC-Net-usft � � � �
EchoPWC-Net-us � � �

• Segmentation only: Recalculation of the centerline for every time

point, and not using motion estimation. This refers to skipping part

5) of the measurement pipeline.

• Tracking: Initialization of centerline by segmentation, and propaga-

tion of points using the best performingmotion estimationmodel. This

refers to the full pipeline described earlier.

Comparison III:Model adaption

As mentioned, one of the limitations of traditional speckle tracking is the

adaptability to various noise prevalent in US. To study the investigated

methods ability to regularize, we design an evaluation strategy based on

three of our US relevant augmentation routines, namely Gaussian shadow,

haze artifact application and depth attenuation. More specifically, for

Gaussian shadowing we apply a shadow region at the center of the mid

septal segment of test data samples, and measure the change in relative EPE

as a function of shadow amplitude, i.e. the relative degree of intensity signal.

The size of the region was set to 20% of the image size in both directions,

tuned to cover the whole segment for higher shadow amplitudes. For haze,

we apply a localized band of haze mimicking noise in the upper half of the

sector with an increasing intensity value. Finally, for depth attenuation we

attenuate the intensity values gradually, with a fixed saturation area at the

base level of the myocardium.
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Table 5.2: Results on simulated ultrasound data. Average end point error (EPE) for

(a) every vendor, (b) average over segments and (c) apical views. Units given in mm

per timestep/frame ΔT −1.

(a) Vendors

Method ESAOTE GE Hitachi Philips Siemens Toshiba Samsung

[mm·ΔT −1 ] [mm·ΔT −1 ] [mm·ΔT −1 ] [mm·ΔT −1 ] [mm·ΔT −1 ] [mm·ΔT −1 ] [mm·ΔT −1 ]
Farnebäck 0.08 (0.06) 0.09 (0.07) 0.06 (0.04) 0.08 (0.06) 0.06 (0.05) 0.07 (0.05) 0.07 (0.05)

FlowNet 2.0 0.12 (0.10) 0.17 (0.13) 0.10 (0.08) 0.11 (0.08) 0.09 (0.08) 0.10 (0.08) 0.11 (0.09)

PWC-Net 0.12 (0.09) 0.13 (0.10) 0.10 (0.07) 0.10 (0.07) 0.09 (0.07) 0.10 (0.07) 0.10 (0.08)

PWC-Net-gray 0.19 (0.16) 0.21 (0.19) 0.13 (0.09) 0.15 (0.10) 0.12 (0.09) 0.15 (0.12) 0.17 (0.13)

PWC-Net-gray-usft 0.14 (0.10) 0.17 (0.12) 0.13 (0.09) 0.14 (0.10) 0.14 (0.10) 0.14 (0.11) 0.13 (0.09)

PWC-Net-us 0.10 (0.08) 0.12 (0.10) 0.10 (0.08) 0.10 (0.08) 0.10 (0.08) 0.09 (0.07) 0.09 (0.07)

EchoPWC-Net 0.17 (0.17) 0.19 (0.20) 0.12 (0.09) 0.14 (0.11) 0.12 (0.09) 0.13 (0.10) 0.13 (0.10)

EchoPWC-Net-usft 0.09 (0.11) 0.11 (0.12) 0.09 (0.08) 0.09 (0.08) 0.10 (0.08) 0.08 (0.06) 0.07 (0.07)

EchoPWC-Net-us 0.07 (0.06) 0.07 (0.06) 0.06 (0.04) 0.06 (0.05) 0.06 (0.05) 0.06 (0.04) 0.05 (0.04)

(b) Segments

Method Base Mid Apical Average

[mm·ΔT −1 ] [mm·ΔT −1 ] [mm·ΔT −1 ] [mm·ΔT −1 ]
Farnebäck 0.10 (0.07) 0.07 (0.05) 0.05 (0.04) 0.07 (0.06)

FlowNet 2.0 0.15 (0.10) 0.12 (0.08) 0.07 (0.07) 0.12 (0.09)

PWC-Net 0.14 (0.09) 0.10 (0.07) 0.08 (0.07) 0.11 (0.07)

PWC-Net-gray 0.21 (0.16) 0.14 (0.11) 0.12 (0.11) 0.16 (0.13)

PWC-Net-gray-usft 0.19 (0.12) 0.15 (0.10) 0.09 (0.07) 0.14 (0.10)

PWC-Net-us 0.14 (0.09) 0.10 (0.07) 0.06 (0.05) 0.10 (0.08)

EchoPWC-Net 0.19 (0.16) 0.13 (0.10) 0.10 (0.08) 0.14 (0.11)

EchoPWC-Net-usft 0.12 (0.11) 0.09 (0.08) 0.08 (0.07) 0.10 (0.08)

EchoPWC-Net-us 0.08 (0.06) 0.06 (0.04) 0.04 (0.03) 0.06 (0.04)

(c) Views

4CH 2CH APLAX Average

[mm·ΔT −1 ] [mm·ΔT −1 ] [mm·ΔT −1 ] [mm·ΔT −1 ]
0.07 (0.05) 0.08 (0.06) 0.08 (0.06) 0.07 (0.06)

0.10 (0.08) 0.12 (0.10) 0.12 (0.09) 0.12 (0.09)

0.10 (0.07) 0.11 (0.08) 0.11 (0.08) 0.11 (0.08)

0.15 (0.11) 0.17 (0.15) 0.16 (0.12) 0.16 (0.13)

0.13 (0.09) 0.14 (0.10) 0.15 (0.10) 0.14 (0.10)

0.10 (0.07) 0.10 (0.08) 0.10 (0.08) 0.10 (0.08)

0.13 (0.12) 0.14 (0.16) 0.14 (0.14) 0.14 (0.14)

0.11 (0.08) 0.10 (0.09) 0.10 (0.09) 0.10 (0.09)

0.06 (0.04) 0.06 (0.04) 0.06 (0.05) 0.06 (0.04)

5.4 Results

5.4.1 Simulated ultrasound

The PWC-Net model trained on grayscale FlyingChairs and FlyingThings3D

achieved an average EPE of 4.80 and 6.41 on MPI Sintel Clean and Final

respectively. Cross-validation was performed on the simulated US data by

dividing into folds by vendor. This resulted in seven training sessions for

each DL method. For the Farnebäck method, the grid based optimization

yielded best EPE for 3 pyramid levels, with a scale of 0.5 and a window

size of 69. A total of 5 iterations for each scale, a size of 5 pixels of the

kernel for polynomial expansion and a smoothing factor of 1.1. The average

EPE with corresponding standard deviation can be seen in Table 5.2a. On

the respective test data, the results for segments and views are reported in

Table 5.2b and 5.2c respectively. A correlation plot of the regional strain

estimation for one of the vendors can be seen in Fig. 5.4, while the plots

for all vendors can be found in the supplementary material. An example of
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qualitative results for the different methods are shown in Fig. 5.5.

For reference, the correlation metrics of our implemented methods,

compared to the work by Alessandrini et al., is shown in Table 5.3, and also

indicated in the correlation plots. The average over all vendors is used for

the different metrics.

Results from our model adaption study is given in Fig. 5.6. Here,

the EchoPWC-Net-us models adaptability is measured with respect to

increasing application of different augmentation effects. The relative error of
average EPE as a function of specified effect is given. It is worth noting that

the baseline of the two models are different, i.e. the Farnebäck method has

on average a higher average EPE than EchoPWC-Net-us with no shadows.

The absolute deterioration is therefore higher for Farnebäck in all cases.

Figure 5.4: Correlation plot between the ground truth regional strain estimation

and the DL method on simulated data from one selected vendor. Green dots

represent healthy myocardial segments, while the red sick segments. In the top

left corner, the slope α of the regression line, correlation coefficient ρ, bias μ
and limits of agreement (LOA) is given. The corresponding reference values from

Alessandrini et al. [10] are given in the bottom right corner.
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Figure 5.5: Example of predicted flow patterns for the different methods within the

myocardium. The upper part is color coded with hue values, color and saturation

indicates direction and magnitude respectively. The average EPE is given in the

upper right corner of the image of each case. The bottom part of the image shows

the velocity vector comparison between ground truth and the different methods

inside the base septum segment as indicated by the blue bounding box in the US

image. Light blue arrows are ground truth, while orange arrows are predictions.

Table 5.3: Comparison of the considered methods averaged over the different
vendors in the simulated US data. Metrics include slope of the regression line α,
correlation coeffisient ρ, bias μ and 95% limits of agreement (LOA).

Method α ρ μ LOA

Alessandrini et al. [10] 0.55 (0.14) 0.75 (0.13) 0.37 (0.65) 6.98 (1.53)

Farnebäck 0.42 (0.15) 0.65 (0.16) -0.16 (0.42) 7.38 (1.73)

FlowNet 2.0 0.25 (0.15) 0.49 (0.19) -1.70 (0.86) 8.76 (1.77)

PWC-Net 0.35 (0.12) 0.58 (0.15) 0.01 (0.40) 8.01 (1.51)

PWC-Net-gray 0.24 (0.09) 0.37 (0.18) -0.58 (0.52) 10.07 (1.94)

PWC-Net-gray-usft 0.55 (0.11) 0.66 (0.14) -0.32 (0.54) 7.63 (1.75)

PWC-Net-us 0.57 (0.12) 0.69 (0.14) -0.30 (0.50) 7.40 (1.25)

EchoPWC-Net 0.38 (0.25) 0.44 (0.29) 0.96 (0.74) 10.53 (4.03)

EchoPWC-Net-usft 0.48 (0.13) 0.67 (0.14) 1.11 (0.78) 7.43 (1.43)

EchoPWC-Net-us 0.60 (0.10) 0.84 (0.07) 0.11 (0.37) 5.45 (1.19)

5.4.2 Clinical data

The ME methods were used on clinical in vivo data, and compared to a

commercial system by estimating the average EPE. In Table 5.4 the results

are shown for three cardiac views, and the corresponding average. We also

tested the best performing model from the simulation study on this data
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(a) Shadow (b) Depth attenuation (c) Haze

Figure 5.6: Testing of model adaptation abilities by measuring relative average

end point error (EPE) as a function of fractional increase in augmentation effect.
The Farnebäck method and EchoPWC-Net-us is plotted as red and blue lines

respectively. (a) The shadow is applied in a specific region of the US image, as

indicated by the red bounding box, and the EPE is calculated both regionally inside

this box (dashed) and for the entire myocardium defined by the segmentation

(solid). (b) Depth attenuation is applied with a fixed saturation area close to the

base of the myocardium in radial coordinates. (c) Haze is applied to a fixed area in

the upper half of the myocardium.

using our pipeline for automated functional imaging. The pipeline were

tested with two different flavours as specified earlier, and a summary is given

in Table 5.5. For the tracking method, a correlation plot of the GLS for each

individual view is given in Fig. 5.7, while the average over all views is given

in Fig. 5.8. For additional detail, Bland-Altman plots of the test data are also

presented in the supplementary material.

Table 5.4: Average end point error and standard deviation (parenthesis) for every

view on clinical data compared to a commercial method.

Method A4C A2C APLAX Average

[mm·ΔT −1 ] [mm·ΔT −1 ] [mm·ΔT −1 ] [mm·ΔT −1 ]
Farnebäck 0.19 (0.08) 0.18 (0.08) 0.19 (0.09) 0.19 (0.08)

FlowNet 2.0 0.19 (0.08) 0.18 (0.07) 0.20 (0.09) 0.19 (0.08)

PWC-Net 0.24 (0.09) 0.24 (0.09) 0.25 (0.09) 0.24 (0.09)

PWC-Net-gray 0.25 (0.11) 0.26 (0.12) 0.27 (0.12) 0.26 (0.12)

PWC-Net-gray-usft 0.19 (0.08) 0.19 (0.08) 0.19 (0.09) 0.19 (0.08)

PWC-Net-us 0.19 (0.08) 0.18 (0.08) 0.19 (0.08) 0.19 (0.08)

EchoPWC-Net 0.23 (0.10) 0.24 (0.11) 0.26 (0.12) 0.25 (0.11)

EchoPWC-Net-usft 0.17 (0.07) 0.18 (0.07) 0.18 (0.08) 0.18 (0.07)

EchoPWC-Net-us 0.16 (0.07) 0.16 (0.07) 0.17 (0.08) 0.16 (0.07)
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Table 5.5: Average difference and standard deviation (paranthesis) for global

longitudinal strain on clinical data comparing to a commercial method.

Method A4C A2C APLAX Average

[%] [%] [%] [%]

Segmentation only -0.54 (2.51) -0.34 (3.45) -0.03 (5.00) -0.28 (2.36)

Tracking -0.58 (1.79) -0.30 (1.99) -1.11 (2.50) -0.71 (1.63)

(a) 4CH (b) 2CH (c) APLAX

Figure 5.7: Correlation plot of global longitudinal strain (GLS) estimates between

commercial system and deep learning based method for specific views. Each dot

represents one subject. In the bottom right corner, the slope α of the regression

line, bias μ with limits of agreement (LOA) of 1.96σ in parenthesis, and correlation

coefficient ρ is given.

5.4.3 Runtime performance

The EchoPWC-Net achieves a runtime of (18.9±0.7) frames per second (FPS),

while the Farnebåck method can process at (8.8±0.1) FPS. The frame rates of

the different pipelines for estimating global longitudinal strain was (30.8 ±
0.9) FPS and (15.6± 0.3) FPS for segmentation and tracking respectively.

5.5 Discussion

We have presented a method for motion estimation using DL and integrated

this successfully in a pipeline for longitudinal strain measurements. The

ME method is inspired by PWC-Net and relevant training strategies, but

with modifications to make it more compliant for myocardial tracking. Our

choices have an intuitive motivation, firstly to increase the resemblance to

echocardiography for the training data by using simulated US and relevant
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Figure 5.8: Correlation plot of global longitudinal strain (GLS) estimates between

commercial system and deep learning based method averaged over the three apical

views. Each dot represents one subject. In the bottom right corner, the slope α of

the regression line, bias μ with limits of agreement (LOA) of 1.96σ in parenthesis,

and correlation coefficient ρ is given.

augmentations. Secondly, to improve the tracking task by incorporating a

more direct correlation between features and loss optimization for low level

feature learning, including the cost volumes at every pyramid level.

The motion magnitude of common datasets used in OF research, such

as FlyingChairs2D and FlyingThings3D, is on average much higher than the

displacement between frames in typical echocardiography data. This is

illustrated in the supplementary material. We thus question the validity

of these datasets for pretraining. As shown in Table 5.2, training on

simulated US data alone gives significantly better results. Using pretraining

datasets with lower average flow could improve the results of fine tuning,

but was not pursued here. We further observed a mismatch between the

simulated US data and the clinical in vivo data, where the average maximum

flow distribution for the latter was about twice as high. We used data

augmentations to tackle this problem, but expect that an improvement of

the training data quality and size will further improve the models in later

iterations.
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One motivation for using warping in CNNs is to mitigate the need

of a large search range in the cost volume estimation. Due to the

lower flow magnitudes between frames in echocardiography compared

to general OF problems, incorporating the direct cost volume between

features was feasible. In addition to increasing the general performance

of the network for deformation imaging, the modifications introduced in

EchoPWC-Net may also cause less ambiguity for occluded areas resulting

from warping [35]. We believe further optimizations can be made, for

instance an adaptive search range when calculating the cost volume would

potentially reduce the runtime. Also the size of the pyramid can probably

be reduced.

Table 5.2 suggest that the ME method producing best results is the

EchoPWC-Net-us, which is trained from scratch with simulated data and

several US-specific augmentation routines. Results were consistent across

vendors and views. For segments, the absolute error is decreasing towards

the apex, which is expected. The distribution of velocity vectors is

limited for the dataset which may influence the trained models ability to

generalize. Compared to the FlyingChairs dataset, the typical maximum

velocity magnitude of the simulated US data is more than ten times lower.

This partially explains the mismatch between the fine-tuned model and the

model trained from scratch, as the latter will be biased to a lower velocity

field. The qualitative results in Fig 5.5 further suggest the mismatch, where

FlowNet 2.0 and PWC-Net yield similar results, but relatively far from the

ground truth. The Farnebäck method, as well as the models trained on US

data, yields good results across the entire myocardium. Noticeably, the prior

has a more noisy pattern compared to the DL methods.

For strain values, the tendency of EchoPWC-Net-us is a slight underesti-

mation for healthy segments, and a slight overestimation for sick segments.

This is evident from Fig. 5.4, and also from the correlation plots in the

supplementary material. Noticeably, the majority of peak strain values are

below 10%, and is generally low compared to clinical data. Again this

indicate some limitations in the training data. A comparison to the average

strain values reported by Alessandrini et al. [10] for the same data is given

in Table 5.3. The EchoPWC-Net-us method performs slightly better on

average across vendors, especially considering the variance. Although there

is potential for further improvement, these findings suggest that learning
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based methods can perform on par or better compared to state of the art on

simulated data.

One of the major motivations of investigating the use of DL based

methods, is their ability to adapt to the data representation used while

training. The use of augmentation routines mimicking typical image

artifacts in this scenario is therefore very appealing, as it could also address

some of the big challenges with traditional methods. The result presented

in Fig. 5.6 shows a significant improvement over a traditional OF method.

For Gaussian shadowing the relative regional error is increased by less

than 10% for EchoPWC-Net-us, while over 40% for the Farnebäck method.

Similar effects can be seen for depth attenuation and haze application.

This suggest that the ME model actively uses features from lower levels

of the pyramid, and potentially the context network, in order to get the

necessary global context for filling in parts of missing data. A qualitative

comparison of the methods can also be found in the supplementary material.

Here, the predicted flow is visualized with and without artifact for both

methods. The results from the model adaption study show that the benefits

of augmentation routines are twofold; in addition to increasing the effective
size of the dataset, the models become more robust to image artifacts.

Further studies must be conducted to evaluate the effect in vivo, but we

emphasize the advantages of incorporating relevant augmentations in the

training stage.

The average EPE on clinical data is significantly higher than for

simulated data. We also notice that the relative improvement by training on

simulated data is less effective in vivo. This may be due to the limited range

of displacements present for the training data. Further, as the underlying

biomechanical motionmodel is equal across vendors, we also suspect a slight

overfit to the motion model. As can be observed in Table 5.4, performance

improves as more distinctly relevant data is included, and the lack of

relevant training data is thus believed to be a limitation which needs to be

addressed.

For calculation of GLS using the pipeline we see from Table 5.5 that

the measurement variance improves significantly using tracking instead

of segmentation alone. The segmentation model is trained on ED and

ES frames, thus calculating end-systolic strain instead of peak strain is

expected to yield more similar results. We also note that the results from
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the APLAX view is worse than for A4C and A2C for both approaches.

As the motion estimation is rather consistent across views, the myocard

segmentation and the centerline extraction is the main source of this

discrepancy. As shown in previous work, the segmentation performs worse

on the ALAX view [24]. Also, the asymmetry of the view can complicate

the centerline extraction. Better overall results can therefore be achieved

by improving these components. As seen in Fig. 5.7 and Fig. 5.8 it is a

significant correlation between the methods. However, we also notice a

similar tendency as for simulated data, with an underestimation of larger

strain values, and an overestimation of lower. The range of strain values

for the DL method is therefore slightly smaller compared to the commercial

method. The most probable reason for this is again the training data, where

low strain values are highly over-represented [10].

In the vendor comparison study [8], the commercial system used for our

in vivo data overestimates strain values by an average of 1.6% compared to

the mean of all vendors. Also, software only methods from Epsilon and

TomTec achieve a mean difference for GLS of (2.50 ± 1.94)% and (−0.70 ±
1.68)% respectively when comparing to GE. This suggests that our average

difference of (0.71 ± 1.63)% is within limits of agreement of what can be

expected from different commercial systems when evaluated on the same

data.

The average runtime of the networks and pipelines are reasonable

compared to previously reported findings [12, 19]. The CNN is fast

compared to the Farnebäck implementation used, but more work must

be conducted to achieve real-time performance in echocardiography. As

mentioned, we believe the network can be pruned substantially, for instance

by making the search range in the cost volume adaptive for the different
pyramid levels.

Although the results are encouraging, we believe there are several points

that can be highlighted as a recommendation for further work in addition

to what is already mentioned. Post-processing and regularization are a

common part of the general workflow of strain computation [4]. This

includes drift compensation, temporal and spatial smoothing, as well as

state estimation or recurrent methods. In this work this was not extensively

investigated, but we believe it could enhance the results if important

factors are considered. Post-processing can reduce the noise, but it can
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also limit the range of strain values and thus reduce the ability to detect

local abnormalities. Further, an investigation of regional motion patterns

and strain in vivo is hard to validate, but still a direction that should

be pursued to establish robust methods that allows for extended clinical

use of these sensitive measurements. Representative data is the key, and

continued efforts should be made to establish a larger database for training

and validating motion estimation methods in echocardiography.

5.6 Conclusion

In this paper we present a novel pipeline for myocardial function imaging

in echocardiography using deep learning. We demonstrate that a modified

PWCNet motion estimation network named EchoPWC-Net can perform on

par or better compared to other knownmethods when training on simulated

ultrasound data. Results are within limits of agreements of relevant work

and commercial systems, both on in silico and in vivo data. We argue that

the main limitations stems from limited training data, and that the results

can be further improved by increased data volume, and resemblance to

clinical echocardiography. Our pipeline is able to estimate longitudinal

strain automatically in a prospective nature. By being simple and robust,

we believe these methods can facilitate the use of deformation imaging in

the clinic.

5.7 Appendix

In this supplementary appendix we provide additional examples and results

from the study. Section 5.7.1 contains illustrations of some metrics of

the used datasets, while in Section 5.7.2 some examples of US relevant

augmentations are displayed. In Section 5.7.3 we show some visualization

results from our adaption study, and detailed results from the vendor

comparison of simulated data and clinical analysis.

5.7.1 Datasets

In Fig. 5.9a and Fig. 5.9b the maximum flow distributions of the simulated

dataset without and with augmentations are visualized. The simulated data
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(a) (b)

(c) (d)

Figure 5.9: Maximum flow distribution of (a) simulated US without augmentation,

(b) simulated US with augmentations after five epochs, (c) clinical data used in

the study without augmentation and (d) the flying chairs dataset used in the study

without augmentation. There is a significant mismatch between the clinical and

simulated dataset without augmentation. The plots are in polar coordinates, where

motion towards the heart apex is upwards, and towards the base is downwards (a-
c). The color hue indicates the flow direction, and the transparency the density of

samples. The magnitude is in pixel per frame.

is limited, which is also prevalent by inspecting the magnitude and direction

of the motion.

Augmentations that affect the motion field are horizontal and vertical

flipping, temporal reversing, skipping of frames and rotation. The effect is
noticeable comparing to the example without augmentation. By applying

augmentations, the maximum flow distribution is more aligned with the

clinical data, which is illustrated in Fig. 5.9c. We can also argue that the

clinical data is more complex, as it is also more evened in all directions.
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5.7.2 Example augmentations

In Fig. 5.10 an example of the depth attenuation applied to a raw image is

visualized. Similarly, Fig. 5.11 shows an example of the haze application,

while Fig. 5.12 shows an example of shadowing. The mappings are given for

every example.

Figure 5.10: Example of depth attenuation augmentation. From left to right, the

raw image, the augmented image and the map used to augment the image are

displayed respectively. The raw images is multiplied by the attenuation map.

Figure 5.11: Example of haze application augmentation. From left to right, the raw

image, the augmented image and the map used to augment the image are displayed

respectively. The haze is applied in an additive manner.

Figure 5.12: Example of shadow augmentation. From left to right, the raw image,

the augmented image and the map used to augment the image are displayed

respectively. The raw images is multiplied by the shadow map.
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5.7.3 Results

In Fig. 5.13 the correlation plots between the ground truth regional

strain estimation and the Echo-PWC-Net-us method is given. Some

qualitative results from the model adaption study is given in Fig. 5.14 and

Fig. 5.15 using the Farnebäck and Echo-PWC-Net-us model respectively. For

additional detail about the clinical results, Bland-Altman plots are given for

the average GLS, and each apical view in Fig. 5.16-5.19.

Figure 5.13: Correlation plots between the ground truth regional strain estimation

and the DL method on simulated data for all vendors. Green dots represent healthy

myocardial segments, while the red sick segments. In the top left corner, the slope α
of the regression line, correlation coefficient ρ, bias μ and limits of agreement (LOA)

is given. The corresponding reference values from Alessandrini et al. [10] are given

in the bottom right corner.
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Figure 5.14: Qualitative results from the model adaption study using the Farnebåck

method. On the top, the image, corresponding degraded image and shadow map is

given. In the bottom, the flow magnitude of the ground truth is visualized, together

with the predicted flow with and without the artefact applied.

Figure 5.15: Qualitative results from the model adaption study using the

PWCNet method trained with US relevant augmentation. On the top, the image,

corresponding degraded image and shadow map is given. In the bottom, the flow

magnitude of the ground truth is visualized, together with the predicted flow with

and without the artefact applied.
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Figure 5.16: Bland-Altman plot of global longitudinal strain (GLS) estimates

between commercial system and deep learning based method averaged over the

three apical views. Each dot represents one subject.

Figure 5.17: Bland-Altman plot of global longitudinal strain (GLS) estimates

between commercial system and deep learning basedmethod averaged on the apical

four chamber view (4CH). Each dot represents one subject.
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Figure 5.18: Bland-Altman plot of global longitudinal strain (GLS) estimates

between commercial system and deep learning basedmethod averaged on the apical

two chamber view (2CH). Each dot represents one subject.

Figure 5.19: Bland-Altman plot of global longitudinal strain (GLS) estimates

between commercial system and deep learning basedmethod averaged on the apical

long-axis view (APLAX). Each dot represents one subject.
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Background: Global longitudinal strain (GLS) is an important parameter in

the evaluation of left ventricular function. However, analyses of GLS are

time consuming and demands expertise, and are thus underused in clinical

practice.

Objectives: To examine if fully automated measurements of GLS using a

novel motion estimation technology based on deep learning and artificial

intelligence (AI) are feasible and comparable to a conventional speckle-

tracking application.

Methods: 200 patients with a wide range of LV function were included.

Three standard apical cine-loops were analyzed using the AI pipeline. The

AI method measured GLS and was compared to a commercially available

semi-automatic speckle-tracking software (EchoPAC v202, GE Healthcare).

Results: The AI method succeeded to correctly classify the three standard

apical views and perform timing of cardiac events in 97% and 96% of the

cine-loops, respectively. Furthermore, the method successfully performed

automatic segmentation, motion estimates and measurements of GLS in

all examinations, across different cardiac pathologies and throughout the

spectrum of LV function. GLS was (-12.0±4,1)% for the AI method and
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(-13.5±5.3)% for the reference method. Bias was (-1.4±0.3)% (95% limits

of agreement 2.3 to -5.1), which is comparable to intervendor studies. The

AI method eliminatedmeasurement variability and was fast enough to allow

for real-time analysis.

Conclusions: Through the range of LV function this novel AI method

succeeds, without any operator input, to automatically identify the three

standard apical views, perform timing of cardiac events, trace the my-

ocardium, perform motion estimation and measure GLS. Fully automated

measurements based on AI could facilitate the clinical implementation of

GLS.

6.1 Introduction

Assessment of left ventricular (LV) function is fundamental for diagnosis,

risk stratification and guiding of treatment in patients with cardiac disease.

There are multiple echocardiographic parameters available to measure and

quantify LV function. Left ventricular ejection fraction (LVEF) is the most

widely used method and accepted as a gold standard [1]. However, LVEF

has only modest reproducibility and is limited by geometric assumptions

that results in poor measurements of LV function in regional pathologies

and with concentric remodeling [1, 2]. Moreover, LVEF has limited ability

to detect subtle deprivation of LV function [3]. Global longitudinal strain

(GLS) by speckle-tracking echocardiography has emerged as a promising

parameter to improve assessment of LV function. Multiple studies have

shown that GLS has incremental prognostic value compared to LVEF [4],

as well as being more sensitive detecting subtle changes in LV function

and providing more reproducible measurements [3, 5]. The European

association of cardiovascular imaging (EACVI) and American Society of

Echocardiography (ASE) now recommend GLS as a supplement to LVEF

when evaluating LV function [6]. As a result, vendors have developed

software enabling measurement of GLS [7]. Although these methods are

semi-automatic, analyses are still time consuming and demands expertise,

and thus underused in everyday clinical practice.

Deep learning, the most recent advancement in artificial intelligence

(AI), now enables computers to learn from annotated images and perform

fully automated image analysis without any operator input [8]. Previous
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AI and machine learning techniques required explicitly designed pattern

recognition features to be created by the designers of the AI, while the novel

deep learning techniques enables the AI to independently learn the patterns

and combinations of patterns in the dataset needed to make accurate

predictions, thereby allowing for fully automated calculations previously

only possible with extensive manual work. This has caused deep learning

neural networks to become themost successful and state of the art method of

current AI research [9, 10]. Deep learning neural networks has successfully

been adapted to perform several specific tasks in echocardiographic image

analysis that previously would have needed human input, such as view

classification [11,12], timing of events [13,14], and image segmentation [15].

Even though AI and deep learning in echocardiography are still in its

infancy, there are at present commercially available software solutions that

have implemented neural networks for tasks such as view classification and

segmentation to provide automatic measurement of GLS. However, the core

task of strain imaging, namely motion estimation, is still performed by

traditional speckle tracking algorithms. We have recently demonstrated that

a deep learning neural network could also be trained to estimate motion

in 2D-echocardiography, and that such a network could be implemented

in an end-to-end deep learning AI pipeline for automatic measurements of

GLS [16]. Compared to traditional speckle tracking, far more sophisticated

motion estimation algorithms can be constructed by using deep learning.

A deep learning based motion estimation network could learn to integrate

information about different moving speckle patterns and global features

of an image and independently learn to differentiate artifacts from true

motion. Fully automated GLS measurements based on deep learning for

motion estimation have the potential to both reduce time spent on manual

tracing and improve reproducibility, and due to the processing speed of

optimized deep learning algorithms this could eventually enable on-screen

measurements in real-time while the operator acquires images. Thus, the

field of deep learning represents a paradigm shift in medical imaging and

could change how we perform clinical measurements in cardiology.

We hypothesized that a fully automated AI method based on deep

learning could, without any operator input, identify and classify the three

standard apical views, perform event timing, trace themyocardium, perform

motion estimation and calculate GLS, producing comparable results to a
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commercially available semi-automated speckle-tracking method. The aim

of this study was to test this hypothesis in echocardiographic examinations

from patients with a wide range of LV function, different cardiac pathologies,
and varying image quality.

6.2 Methods

6.2.1 Study design

A measurement system comparison study (MCS) was performed by analysis

of 200 echocardiographic examinations. Each examination represented

a test for each method, resulting in two paired GLS measurements

for each examination. The first measurement system consisted of a

single experienced observer using a commercially available semi-automatic

method for GLS measurements. The second measurement system was a

novel AI method measuring GLS without any observer input. A single

heart cycle was chosen from each view and the exact same recording and

cardiac cycle was used for both methods. Analyses were performed without

knowledge of clinical data or previous measurement results. To assess if

agreement between methods was affected by LV function, subgroup analyses

were performed by categorizing the 200 between method differences by LV

function measured by LVEF (normal LVEF >50%, mildly reduced LVEF

40-59%, moderately reduced LVEF 30-39% and severely reduced LVEF

<30%). Finally, subgroups were evaluated according to image quality

(good, fair or poor). The proposed deep learning AI pipeline automatically

estimates end diastole and end systole using a deep learning AI timing

network. To explore how this automatic event timing affected the GLS

measurements, all examinations were analyzed twice by the AI pipeline.

First, the deep learning AI pipeline was performed as proposed including

automatic event timing using the AI timing network, Secondly, analyses

using the same AI pipeline was repeated using the event timing defined

by the reference method. Intra- and interobserver reproducibility was

assessed in a random subset of 25 patients to illustrate the variability

observed when measuring conventional LVEF and GLS by the reference

method as compared to the novel AI method. Intraobserver reanalyzes of

these examinations were performed by the same observer four weeks after

the initial measurements. An experienced second observer at a different
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hospital analyzed the same examinations to assess interobserver variability.

All reanalyzes were performed using the exact same heart cycle and blinded

to previous measurements and clinical data.

6.2.2 Material

To achieve a study population with a wide range of cardiac function

and different pathologies, we included five predefined patient groups: 35

patients with Non-ST-elevationmyocardial infarction (NSTEMI), 35 patients

with ST-elevation myocardial infarction (STEMI), 50 patients with ischemic

heart failure, 50 patients with non-ischemic heart failure, and 30 patients

admitted for chest pain where neither clinical examination, laboratory tests,

ECG, echocardiography or coronary angiography revealed any evidence

of cardiac origin. Patients were included regardless of the quality of

echocardiographic recordings. Myocardial infarction was defined according

to the universal definition [17]. Patients were included consecutively

for each group and regardless of image quality. Exclusion criteria were

significant valvular disease, atrial fibrillation, age below 18 or inability to

give written informed consent. The study was approved by the Regional

Committee for Medical and Health Research Ethics and was conducted in

compliance with the ethical principles of the Declaration of Helsinki.

6.2.3 Echocardiographic Examinations

The echocardiographic examinations were recorded using GEVivid E7/E9/E95

ultrasound systems (GE Ultrasound, Horten, Norway). Echocardiographic

examinations andmeasurements were performed in accordance with EACVI

guidelines [18]. LV focused echocardiographic recordings were performed

in the three standard apical views with simultaneous ECG tracing. Frame

rate was 67±9 frames/second. LVEF was measured by the Simpson biplane

disc summation method using tracings from apical four-chamber and two-

chamber views. Image quality was assessed based on visual assessment of

each of the 18 individual myocardial segments of the three apical views.

A segment was considered missing if partly outside the image sector, or if

the myocardium was indistinguishable from surrounding structures due to

artifacts. Good quality examination was defined as no missing segments in

neither of the three apical views, fair quality was defined as 1-2 missing
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segments, and poor quality was defined as >2 missing segments.

6.2.4 Strain Measurements using the Reference Method

Conventional GLS was measured by speckle-tracking analyses using the

semi-automatic analysis method (2DS) implemented in a widely used com-

mercially available software (EchoPAC SWO version 202, GE Ultrasound).

End diastole (ED) was defined by the automatic ECG trigger algorithm of

the analysis software and only corrected if the automatic QRS detection

failed. End-systole was manually defined by the aortic valve closure signal

obtained by pulsed-wave Doppler in the left ventricular outflow tract or

from continuous-wave Doppler through the aortic valve. The observer

manually corrected the region of interest (ROI) by visual assessment of the

endocardial and epicardial borders. Spatial and temporal smoothing were

kept at default values. Drift compensation was applied as by default. No

segments were excluded. A single heart cycle was analyzed for each of the

three standard apical views and peak strain was obtained as calculated by

the software. GLS was calculated as the average peak strain of the three

apical views. The speckle-tracking analyses were performed in accordance

with the consensus document of the EACVI/ASE/Industry Task Force to

standardize deformation imaging [19].

6.2.5 Strain Measurements using a Deep Learning AI Pipeline

We used an in-house developed AI method based on deep learning

consisting of a pipeline of four artificial neural networks (ANN), as

illustrated in Fig. 6.1. A detailed technological description of the pipeline

has been published separately [16]. The first network was based on the

Inception and DenseNet architectures and used for image classification [12].

This network was trained to classify a presented image into one of multiple

view classes, including: two-chamber, four-chamber and apical long axis.

The second network was based on a recurrent ANN architecture and used for

event timing [14]. This network was trained to classify series of presented

images into systole or diastole. The third network was based on the U-

net architecture and used for image segmentation [20, 21]. This network

was trained to classify the image per pixel into four segmentation classes:

lumen, left ventricle myocardium, left atrium or other/background. Per
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Figure 6.1: The AI pipeline for automatic measurement of global longitudinal strain

consisting of four artificial neural networks. Visual feedback of the key steps

involved in calculating the GLS is illustrated, such as the segmentation used to

initiate the region of interest, an optical flow field visualizing the predicted local

velocities, the extracted centerline from the segmentation mask and the points

visualizing the motion used to calculate GLS.

pixel predictions were used to extract the position, size and shape of the

ventricular myocardium, lumen and left atrium in an image. Themyocardial

segmentation performed by this network had a previously reported DICE

score of 0.79±0.08 and was used to initialize the region of interest. The

fourth network was based on a modified PWC-net optimized for estimation

of motion in echocardiographic images [22]. This network learned to find

patterns in two consecutive images and was trained to output an optical
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flow vector field of equal size as the input images which when applied to the

patterns in the first image would best reconstruct the location of the same

patterns in the second image.

The view classification network was trained on an in-house dataset of

out-patient examinations containing 424 hand-labeled echocardiographic

recordings. The timing and segmentation networks were trained using the

publicly available CAMUS dataset of 500 hand-labelled echocardiographic

recordings [23]. The optical flow network was trained using synthetic

echocardiography images where the true motion was known [24].

The AI method measured strain frame by frame based on the estimated

movement of equally spaced points initialized along the centerline from

myocardial segmentation at end diastole. The tracking was performed by

updating the position of these points using the displacement fields from the

optical flow network. A spline was fitted to the centerline points for each

frame. The GLS was calculated for each view as the percentage change in

length of the spline from end diastole to its shortest length through cycle.

Similar to the reference method, Lagrangian peak strain was calculated for

the specified heart cycle in each of the three apical views and GLS was

calculated as the average of these three values.

6.2.6 Statistics

Association between methods was estimated by calculating the Pearson’s

correlation coefficient. The mean absolute difference between the two

measurement systems was calculated by the mean value of the absolute

difference between all measurement pairs. The agreement of the pairedmea-

surements was assessed using a Bland-Altman (B-A) analysis, which is the

recommended statistical method in measurement comparison studies [25].

An a priori maximum limit of agreement (LOA) of ±4% was chosen based

on known intervendor variability [7]. A sample size of 200 subjects was

chosen in accordance with recommendations by JM Bland [26], author of

the original B-A paper. This sample size provides sufficient accuracy, with

95% CI about the LOA of approximately ±0.24 standard deviations. Tests

for normality were performed using Shapiro-Wilk andKolmogorov-Smirnov

tests. Brown-Forsythe test was used to assess if there was a statistically

significant difference in variance between subgroups of measurement pairs

when categorized by LVEF, presence of ischemic disease and image quality.
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B-A statistical calculations and plot were performed using Python 3.7.4

(Python Software Foundation), where exact 95% CI limits of the LOA was

calculated using code based on the method proposed by Shie [27]. All other

statistical analyses were performed using open-source statistical Python

packages (SciPy 1.5.4 and Statsmodels 0.12.1).

Table 6.1: Study Population. BMI = body mass index; bpm = beats per minute;

LVEDV = left ventricular end-diastolic volume; LVEF = left ventricular ejection

fraction; LVESV = left ventricular end-systolic volume; mmHg = millimeters

of mercury; NSTEMI = Non ST-segment elevation myocardial infarction; SD =

standard deviation; SBT = systolic blood pressure; STEMI = ST-segment elevation

myocardial infarction.

Parameter
Overall Population

(n=200)

Study Cohorts, n (%)
NSTEMI 35 (17.5%)

STEMI 35 (17.5%)

Ischemic heart failure 50 (25%)

Nonischemic heart failure 50 (25%)

No significant cardiac disease 30 (15%)

Demographics,mean±SD (Range)
Age, years 61±14 (22 – 91)

Male gender, n (%) 144 (72%)

Clinical Characteristics,mean±SD (Range)
BMI, kg/m2 27±4 (18-43)

Heart rate, bpm 74±15 (44 – 132)

SBT, mmHg 125±21 (86-197)

Echocardiographic Measurements,mean±SD (Range)
Echocardiographic LVEF, % 42±13 (7-70)

LVEDV, ml 128±66 (47-372)

LVESV, ml 80±57 (19-306)

LV Function by LVEF Category, n (%)
Severely reduced: <30 % 29 (14.5%)

Moderately reduced: 30-39 % 60 (30%)

Mildly reduced: 40-49 % 41 (20.5%)

Normal: >50% 70 (35%)

ImageQuality, n (%)
Poor (>2 segment missing) 39 (19.5%)

Fair (1-2 segments missing) 71 (35.5%)

Good (0 segments missing) 90 (45%)
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6.3 Results

Patient characteristics are summarized in Table 6.1. The view classification

network succeeded to classify the correct view in 97% of the cine-loops

(584/600). A confusion matrix summarizing classification results for each

view is presented in Fig. 6.2.

Figure 6.2: Confusion matrix presenting view classification results of the 200

echocardiographic examinations included in the study. Every row of the matrix

corresponds with the actual view presented to the deep learning algorithm and each

row sums up to a total of 200 subjects. The values in each column corresponds to

the view prediction output by the deep learning network. Correctly classified views

are accentuated with a darker shade of blue. 2Ch = apical two chamber; 4Ch =

apical four chamber; Aplax = apical long axis view.

The timing network succeeded in estimation of both end-diastole and end-

systole in 98% (593/600) of the cine-loops. Difference in timing of end

systole and end diastole between the deep learning AI timing network and

the reference method was 1.8±2.7 frames (17±42 ms) and 0.5±2.7 frames,

respectively. Detailed results of the timing network for each view are

presented in Table 6.2. When running the AI pipeline as proposed, with

event timing defined by the deep learning AI network, the mean difference
in measured GLS compared to using event timing defined by the reference

method was 0.3%±0.3 (p=0.02). A BA-analysis presenting impact of timing

method is presented in Fig. 6.3. Twenty-one patients (11%) had failures in

either the view classification or timing. Both the reference method and the

AI method succeeded in measuring GLS in all included recordings, when

correct view and timing were verified.

The proposed method was run on a standard desktop computer with

a modern graphics card and used approximately 4 ms per frame for view

classification, 16 ms per frame for event timing, 10 ms per frame for

myocardial segmentation and 30 ms per frame for motion estimation. Total

processing time when running the entire pipeline was 4.3±0.7 seconds per
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Figure 6.3: Bland Altman plot presenting the impact of cardiac event timing on

global longitudinal strain (GLS) measurements by a deep learning (DL) Artificial

intelligence (AI) pipeline. GLS measurements using the proposed AI pipeline,

which includes a deep learning network for event timing, was compared to repeated

measurements using the same AI pipeline with the exception that event timing was

defined by the reference method.

Table 6.2: Cardiac event timing results of a deep learning network in 200

echocardiographic examinations, compared to a semi-automatic reference method.

Feasibility is defined as the number of exams where the deep learning network

was able to detect the cardiac event. Performance in frames and milliseconds

were measured by mean difference and mean absolute difference (deep learning

AI pipeline – reference method). 2Ch = apical two chamber view; 4Ch = apical four

chamber view; Aplax = apical long axis view; SD = standard deviation.

Parameter End diastole End systole All

Feasibility, n (%)
4Ch 198 (99%) 200 (100%) 198 (99%)

2Ch 200 (100%) 200 (100%) 200 (100%)

Aplax 195 (98%) 200 (100%) 195 (98%)

Mean difference, frames±SD
4Ch 0.7±2.5 0.75±2.7 0.7±2.6

2Ch 1.8±2.5 0.1±2.5 0.9±2.7

Aplax 2.9±2.7 0.6±2.9 1.7±3.0

All 1.8±2.7 0.5±2.7 1.1±2.8

Mean difference,msec±SD
4Ch 10±38 13±40 11±39

2Ch 27±38 2±38 15±40

Aplax 43±40 10±43 26±45

All 26±40 8±40 17±42
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view and 13.0±2.0 seconds for a full patient analysis including all three

apical views.

6.3.1 In Between Methods Agreement

Mean GLS in the entire population was -12.1±5.0% and -13.5±5.3% for the

AI method and the conventional method, respectively. The median absolute

deviation was 1.4% and mean absolute difference was 1.8±1.5%. As shown

in Fig. 6.4, there was a highly significant correlation between the methods

(Pearson’s coefficient 0.93, p<0.01). The B-A analysis presented in Fig. 6.5

between method differences revealed a bias of -1.4%±0.3 (p<0.01) with

estimated LOA of ±3.7%.

Figure 6.4: 200 echocardiographic examinations measured by both the reference

method and the novel AI method. Each marker represents one examination. Solid

black line represents the best fit line to the data by linear regression. Solid grey line

represents the theoretical perfect correlation.

6.3.2 Agreement Categorized by LVEF and ImageQuality

The spread of subjects across different categories of LVEF and image quality

is presented in Table 6.1. There was no significant difference in variance
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Figure 6.5: Bland Altman plot presenting measurement comparison results using

200 echocardiographic examinations comparing the reference method and the AI

method. The figure show the limits of agreement (LOA) calculated assuming

normal distribution of the differences between methods.

between measurement pairs from different subgroups categorized by LVEF

(p=0.06). Moreover, no significant difference in variance was found between

subgroups when categorized by image quality (p=0.58). Figure 6.6 presents

the BA-plot where measurement pairs are categorically labeled by LVEF and

image quality, illustrating the distribution of these categories throughout the

range of GLS measured in the study population.

6.3.3 Intra- and Interobserver Variability and Agreement

Figure 6.7 show B-A-plots illustrating the relative difference in repeated GLS

measurements whenmeasured by two observers using the referencemethod,

one observer using the reference method and repeated measurements by the

automated deep learning AI pipeline. Importantly, the AI pipeline had no

operator input and deep learning algorithms are deterministic in design,

thus there were no variability when reanalyzing the exact same images.

Assessment of intraobserver variability using the reference method resulted

in no significant bias -0.1±0.2 (p=0.55) and LOA ±0.5%. However, there

was a small interobserver bias observed when using the reference method

0.5±0.4 (p=0.04) and LOA ±2.1%. Visual representations of measurement

agreement using the reference method are presented in B-A plots in Fig. 6.8

and Fig. 6.9.
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Figure 6.6: Bland Altman plot presenting measurement comparison results using

200 echocardiographic examinations comparing the reference method and the

novel method based on artificial intelligence. Measurement pairs labelled by left

ventricular ejection fraction (LVEF) (a), and by assessment of image quality (b).

6.4 Discussion

The current study presents, for the first time, the clinical feasibility of an

end-to-end AI pipeline which incorporates a deep learning based artificial

neural network specifically trained for motion estimation as an alternative to

traditional speckle tracking based measures of strain. Through a wide range

of LV function and image quality, the AI pipeline succeeded without any

human input to correctly classify cardiac views, perform timing of cardiac

events, and was able to trace myocardium, estimate motion and ultimately

measure GLS.

The main motivation for developing an AI based pipeline for GLS
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Figure 6.7: Bland-Altman plots of absolute GLS difference in repeated

measurements using the exact same video clips in 25 echocardiographic

examinations. The figure show agreement between repeated measurements using

the reference method by two observers (a) and one observer (b), and for illustrative

purposes the expected zero variability of repeated measurements by the fully

automated and deterministic AI method (c). The grey shaded areas represent the

95% CI of estimates.

measurements is to provide a more robust and automatized method, with

the potential to provide fully automatic real-time GLS measurements while

performing the image acquisition, and with improved tracking accuracy and

reduced measurement variability. The currently most widely used semi-

automatic speckle-tracking methods need several steps of operator input,

and time spent performing a single GLS analysis is reported to range from

5-10minutes [28,29]. In contrast, all steps in the AI pipeline were performed

in less than 15 seconds. The novel deep learning AI pipeline eliminates the

need for time-consuming manual input, which make it effortless to acquire

average measurements from multiple cardiac cycles as recommended in

guidelines. Moreover, deep learning algorithms are deterministic. This

means that the same input images always gives identical output, without

variability, as seen in Fig. 6.7.

It is important to emphasize that removing the interpretation vari-

ability completely by a deterministic deep learning algorithm does make

repeated measurements more reproducible but does not necessarily make

the measurements more accurate. A measurement error made by a deep-
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Figure 6.8: Intraobserver study using 25 echocardiographic examinations randomly

picked from the total of 200 participants in study. Blinded reanalyzes were

performed by the same observer using the exact same examination and heart cycle

with 4 weeks between measurements. Bland Altman plot of absolute (a, b) and

relative (c, d) differences of global longitudinal strain (GLS) and left ventricular

ejection fraction (LVEF). Dotted line represents limits of agreement and the grey

shaded area represents the 95% CI.

learning method will be reproduced every time the method is reapplied to

analyze the exact same image. Poor image quality in echocardiography is a

common problem and in the present study a total of 19% of subjects had

more than 2 of 18 segments missing. The high percentage of examinations

with suboptimal image quality could explain that 11% of subjects had

failures of either the view classification network or the timing network.

Suboptimal image quality is an unavoidable factor that limits the achievable
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Figure 6.9: Interobserver study using the same 25 echocardiographic examinations

as included in the intraobserver study. Blinded reanalyzes were performed by an

external observer at another hospital using the exact same examination and heart

cycle and compared to the first measurements in the intraobserver study. Bland-

Altman plot of absolute (a, b) and relative (c, d) differences of global longitudinal
strain (GLS) and left ventricular ejection fraction (LVEF). Dotted line represents

limits of agreement and the grey shaded area represents the 95% CI.

accuracy of both manual and automatic measurements. Thus, measurement

error or failure of deep learning algorithms is inevitable, even if deep

learning algorithms were to outperform humans in terms of precision of

measurements. This underlines the importance of not choosing a fully

“black-box” AI method, such as directly predicting LVEF or GLS from

images equivalent to “eyeballing” as proposed by some authors [30, 31].

An AI method should be designed to give visual feedback to the observer.
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Misclassification of view or timing could easily be corrected by the observer.

Motion estimation involves complex calculations that are not directly

available for the user to inspect, both with the AI method and the semi-

automatic reference method. However, an observer could visually inspect

if tracking and motion estimates seems reasonable if provided a visual

feedback. The method presented in this study was able to give visual

feedback for each frame of the left ventricular segmentation, the motion

estimation flow field, and the movement of the points used to calculate GLS

(Central illustration).

Compared to a previously conducted intervendor comparison study by

the EASCVI/ASE/Industry Task force to standardize deformation imag-

ing [7], the two methods in the present study showed excellent correlation

and high level of agreement. When assessing agreement, no significant

difference in variance was found when measurement differences were

categorized according to LV function measured by LVEF and by degree of

image quality, suggesting that myocardial dysfunction and image quality

had limited effect on agreement.

In the landmark intervendor study by Farsalinos et al. [7], two vendor

independent software packages were compared to the same reference

software as in our study. The bias reported was -0.7% and 2.5% strain

units and LOA ±3.4% and ±3.8%, respectively. A study by Nagata et al.

compared two different vendor independent software packages using the

same reference vendor as in our study. They reported bias of -2.1% and

LOA of ±4.1% [32]. Anwar et al. also compared a vendor independent

software package to the same reference software as in our study, and found

a bias of -2.9% strain units and LOA ±5.5% [33]. Thus, the bias of -1.4%

and LOA of ±3.7% observed in our study are well within the overall range

of the bias and LOA previously reported in intervendor agreement studies.

This provides reasonable evidence to support that GLS measurements by

the present deep learning AI pipeline are comparable to other clinically

available semi-automatic methods.

To the best of our knowledge, there is currently no clinically avail-

able software application for fully automated GLS measurements in 2D

echocardiography that have implemented a deep learning neural network

specifically to estimate motion and produce a motion flow field as an

alternative to traditional speckle tracking strain algorithms. Except for our
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technical manuscript describing the present AI pipeline [16, 34], there are

no published journal papers presenting a deep learning neural network for

local motion estimation in 2D echocardiography that could produce flow

field motion estimates of the entire myocardium. We are only aware of

one other journal paper that presents an in detail description of a fully

automated AI method for GLS measurements [35]. However, although the

authors used deep learning to automatically initialize a ROI, conventional

optical flow and not deep learning was used for motion estimation and

calculation of GLS. Thus, they did not gain the full potential of deep learning

to improve measurements of GLS. Direct comparison with our work is not

possible as they do not present the values of LOA and use at least one

other vendor as reference. They found median absolute deviation in GLS

measurements of 1.4% in a population of 419 examinations and 1.6% in

another population of 110 examinations. These findings are in line with

our study where the median absolute deviation was 1.2%. Their method

resulted in a GLS processing time of 1-4 minutes per view depending on

number of frames and image size, while the pipeline in our study used

less than 5 seconds per view. In addition, the individual networks used

in the pipeline succeeded to process frames within milliseconds. Thus, if

these deep learningmethods are implemented into ultrasoundmachines, the

individual steps of the AI pipeline could be computed during acquisition of

images, enabling rapid bedside analysis, and even real-time measurements

on the ultrasound scanner.

6.5 Study limitations

The study has some limitations. We only compared measurements against

one reference method. There is no gold standard for GLS measurements

and intervendor variability is a known problem. Moreover, the tracking

software used by the vendors are not open source. Thus, we cannot

conclude whether one measurement system in this study is more accurate

than the other. We could only conclude that the measurement variability

between these two measurement systems is within the range of previous

intervendor studies. The total test-retest reliability of an echocardiographic

measurement depends on multiple factors related to both image acquisition

and observer interpretation. A recent study concluded that acquisition and
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reader influenced the variability of both GLS and LVEF measurements to a

similar extent [36]. This suggests that automation of measurements could

substantially reduce the total variability in a test-retest setting by removing

the individual observer interpretation. We focused on image interpretation

and the two measurement systems analyzed the exact same images from

one predefined cardiac cycle. Hence the present study was not designed to

determine the effect of image acquisition on measurement reproducibility.

Another limitation in the present study is that all examinations used

for testing the deep learning algorithms were acquired using ultrasound

machines from the same vendor. Consequently, we cannot conclude whether

the AI method performs equally on images from different vendors. Another
topic for further studies is whether deep learning based strain estimation is

more accurate and robust in terms of capturing subtle differences in strain,

or when exposed to image artifacts compared to currently used speckle-

tracking methods.

Further research is needed to address the mentioned limitations before

the deep learningmeasurements could be routinely used in a clinical setting.

However, we find the present results promising both in terms of feasibility

and agreement with the reference method.

6.6 Conclusion

Fully automated measurements of GLS using a novel deep learning AI

based technology for motion estimation are feasible, fast and yields results

comparable to the most widely used semi-automatic software. Deep

learning networks remove the need for manual tracing and could both

increase efficiency and improve reproducibility. The system can potentially

be implemented in ultrasound scanners and allow for real-time GLS

calculations. Fully automated measurements based on AI could be an

important step to further facilitate the implementation of GLS in clinical

practice.
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