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1 Introduction
This thesis is submitted as a collection of three papers, from hereon denoted Paper 1, Paper 2 and Paper
3. All three papers are connected to so-called genome-wide association studies (GWAS), and statistical
challenges that arise in this particular setting. In short, the aim of a GWAS is to infer whether there
is an association between a genetic marker and a trait for a particular organism. We will in this thesis
work with human data. The genetic marker in this particular setting is a so-called single nucleotide
polymorphism (SNP) to be in Section 2. A trait is a particular feature of a given species. This can be
weight, height, blood pressure or presence or absence of a disease such as obesity or sepsis. A phenotype
is a particular observation, or outcome, of a given trait. This is for instance a height of 180 cm, or the
observation of a BMI greater than 30, in which case the particular individual will be defined as obese.
In this thesis we will restrict ourselves to traits with two possible outcomes such as presence or absence
of a disease, and we will refer to this as a trait with binary outcomes.

Assuming a set of unrelated individuals, the statistical approach most used in GWAS is by construc-
tion of generalized linear regression models for each SNP, and then inference of statistically significant
associations via statistical tests such as the likelihood ratio test, the Wald test or the score test (Casella
& Berger, 2001). Calculation of the corresponding p-values can often be achieved accurately by normal
approximation of the test statistic. However, for traits with only two possible outcomes, there are cir-
cumstances in which normal approximation is not sufficiently accurate, consequently resulting in invalid
p-values. It turns out that another type of approximation is even more accurate than the normal ap-
proximation, namely the so-called saddlepoint approximation (Dey et al., 2017; Ma et al., 2013). In fact,
there are several possible approaches to do saddlepoint approximation of a probability distribution. In
Paper 1, the use of saddlepoint approximations for GWAS is investigated thoroughly to see in which
cases the corresponding p-value is considered valid.

The aim of a GWAS to infer association between a single SNP and a trait can be further generalized.
There is reason to believe that the association of a SNP and a trait may depend on some other SNP, not
simply because of potential correlation between the two SNPs, but because the effect of the two SNPs
on the trait is intertwined. In other words, the total effect of the two SNPs on the trait is not simply the
additive effect of the two SNPs. In this case, one says there is an interaction between the two SNPs with
respect to the associative effect on the trait. Likewise, one can say there is an interaction between a SNP
and a so-called environmental covariate. Examples of environmental covariates are age, sex and smoking
status or any other covariate not connected to one simple SNP. Inferring interactions has turned out
to be particularly challenging when applying classical generalized linear models with interaction terms.
One reason for this is due to the strict, but necessary, rule for declaring the interaction as statistically
significant. This is in general called the multiple comparison problem to be discussed in Section 4. Another
possible reason may be that the constructed regression models are not sufficiently complex to find such
interactions. At the same time, there has been several breakthroughs within machine learning from the
end of 20th century, and until now. Machine learning models such as deep neural networks, and tree-
ensemble models have been shown to be strong predictive models, and advances in computer science made
sure that the models could be efficiently constructed within feasible time frames and storage capacities,
even when based on high-dimensional data. At the same time, these complex models are often referred to
as black box models, as they are far from as interpretable as linear regression models. The question then
arises whether such models still have the capacity to find interactions in a GWAS setting, and if so how
to interpret these black box models. This is the aim of Paper 2, where it is investigated how one such
black box model, a tree-ensemble model, can be used in order to interpret and find possible interaction
candidates in a GWAS setting specifically for a trait with binary outcomes.

Even though black box models may find more complex relationships than generalized regression mod-
els, the complexity of these models makes it more challenging to infer whether for instance an interaction
candidate actually is a true interaction. While one can often achieve, at least asymptotically, reasonable
approximations of the distribution of the test statistics applied in generalized linear models, the same
can not be said when applying Shapley based procedures to interpret black box models. The question
of how to infer whether covariate effects are significant (non-zero) or not in black box models has been
an increasingly popular topic within the machine learning community. This is particularly challenging
in high-dimensional data. In Paper 3, a Shapley based feature importance measure is proposed, to-
gether with a bootstrap procedure to estimate the uncertainty in the corresponding feature importance
estimator.
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Before presenting the three papers that constitute the research contribution of the thesis, a brief
introduction of central topics is given.

2 The human genome, SNPs, genotyping and UK biobank
Recall that for human beings the genome consists of 23 chromosome pairs, where each chromosome
includes a DNA molecule with its characteristic double helix structure. Each of the two strands in the
double helix consists of a sequence of repeated molecular units called nucleotides. A nucleotide includes
a nucleobase, or simply a base, and the two strands are connected as a result of hydrogen bonds between
nucleobases from each strand. There are only four possible bases: Adenine (A), cytocine (C), guanine
(G) and thymine (T). Moreover, two bases are bounded in only two ways: Adenine with thymine (A-T),
and cytocine with guanine (C-G). Apart from the two chromosomes deciding the sex, each of the 22
other pairs, called autosomal chromosomes, consists of two identical chromosomes of same size. Hence, a
specific position in the genome refers to a base-pair position in a particular chromosome. In around 0.01
% of the in total 3.2 billion base-pair positions in the genome, there is variation in the type of base-pair
defined as a single nucleotide polymorphism (SNP). Variation in a base-pair position is defined as a SNP
variant if the least frequent base-pair arises in more than 1 % of the population. A specific base-pair in
such a position is often denoted an allele. Most SNPs are biallelic, meaning there are only two possible
alleles. The minor allele frequency (MAF) is the proportion of the least frequent allele, in a population.
For instance with N individuals and m observations of the least frequent allele, the MAF is estimated
to be m/2N since there are two copies of each chromosome in each individual. Variants with MAF less
than 1 % are called rare variants. In this thesis, the focus will be on biallelic variants.

In order to investigate the SNPs in the human genome and to do a GWAS, the genetic data is
produced by so-called genotyping arrays. Advances in the technology has enabled low production cost
for high-accuracy genetic data. As a result, for each individual, the exact base-pair is investigated in
several selected base-pair positions spread along the whole genome. The data produced for each base-
pair position, and each individual is given as a minor allele count, sometimes also called the genotype
value. This is simply the count of the minor allele in the given base-pair position, by looking at both of
the paired chromosomes. As there in most cases are only two possible alleles, the count goes from zero to
two. Typically the resulting SNP data includes hundreds of thousands of SNPs spread along the whole
genome.

UK biobank is a large-scale long-term biomedical database consisting of around 500 000 British
participants, and available for all bona fide researchers via application (Bycroft et al., 2018). As the
participants are followed up also after initial assessment, it is called a prospective cohort study. The
individuals were aged 40-69 years when they joined UK Biobank in the period 2006-2010. For each of
the 500 000 participants, their genome has been genotyped. Along with genetic data, the biobank also
consists of a vast amount of clinical data collected during initial assessment such as sex, smoking status
and amount of physical activity to mention a few. In addition, records of hospitalizations before and
after initial assessment is available for each individual given as ICD-codes (ICD-9 and ICD-10). The
ICD, abbreviated for International Statistical Classification of Diseases and Related Health Problems, is
an international register with a specific code for each disease as well as symptoms. Consequently, this
makes the biobank one of the most popular data sources to conduct a GWAS. In all three papers of this
thesis, UK Biobank is applied when conducting the research.

3 Score vector
The score vector, U , with respect to the random vector Y of size n and parameters θ is by definition
the gradient of the loglikelihood function with respect to θ:

U = ∇θ lnL(θ|Y ) =
∂

∂θ
lnL(θ|Y ) =

∂

∂θ
`(θ|Y),

where the likelihood function L(θ | y) = fY (y | θ), the joint probability distribution of the random
vector Y . Observe that we may write according to the rule of derivative of natural logarithms:

6



E(U) = E

(
∂

∂θ
`(θ|Y)

)
= E

( ∂

∂θ
ln f(Y|θ)

)
= E

(
∂
∂θf(Y|θ)

f(Y|θ)

)
. (1)

If Y has a discrete distribution it can easily be seen that Eθ(U) = 0:

E(U) = E

(
∂
∂θf(Y|θ)

f(Y|θ)

)
=
∑

y

∂

∂θ
f(y|θ) =

∂

∂θ

∑

y
f(y|θ) =

∂

∂θ
1 = 0,

by the linearity property of differentiation. If Y is continuous:

E(U) = E

(
∂
∂θf(Y|θ)

f(Y|θ)

)
=

∫

y

∂

∂θ
f(y|θ)dy.

In the cases where the following applies:
∫

y

∂

∂θ
f(y|θ)dy =

∂

∂θ

∫

y
f(y|θ)dy, (2)

E(U) = 0 in this case as well. This property holds for all parametric probability distributions within the
exponential family. By having such a probability distribution, the covariance of the score vector:

Cov(U) = Eθ
(
UUT

)
− Eθ (U)Eθ (U)

T
= Eθ

(
UUT

)

= E




( ∂
∂θ1

`(θ|Y))2 · · · · · · ( ∂
∂θ1

`(θ|Y))( ∂
∂θp

`(θ|Y))

( ∂
∂θ2

`(θ|Y))( ∂
∂θ1

`(θ|Y)) ( ∂
∂θ2

`(θ|Y))2 · · · ( ∂
∂θ2

`(θ|Y))( ∂
∂θp

`(θ|Y))
...

...
. . .

...
( ∂
∂θp

`(θ|Y))( ∂
∂θ1

`(θ|Y)) · · · · · · ( ∂
∂θp

`(θ|Y))2



.

(3)

For some probability distributions, such as those within the exponential family, one can show that:

E

((
∂

∂θj
` (θ|Y)

)(
∂

∂θk
` (θ|Y)

))
= −E

(
∂

∂θj

∂

∂θk
` (θ|Y)

)
.

With this property we refer the covariance of the score vector as the expected Fisher information, F (θ),
given by:

F (θ) = −E




∂2

∂θ21
`(θ|Y) · · · · · · ∂2

∂θ1∂θp
`(θ|Y)

∂2

∂θ2∂θ1
`(θ|Y) ∂2

∂θ22
`(θ|Y) · · · ∂2

∂θ2∂θp
`(θ|Y)

...
...

. . .
...

∂2

∂θp∂θ1
`(θ|Y) · · · · · · ∂2

∂θ2p
`(θ|Y).




(4)

From hereon, we consider the elements of the random vector Y , denoted Y1, . . . , Yn, to be identically
distributed and independent random variables. Then L(θ | y) =

∏N
i=1 fY (yi | θ), where fY (y;θ) is the

probability distribution of Y with parameter vector θ, and therefore `(θ|y) =
∑n
i=1 ln fY (yi;θ), in which

each element of the score vector, Uj , for j = 1, . . . , p is given by Uj =
∑n
i=1

∂
∂θj

ln fY (Yi;θ). By, the
central limit theorem as n → ∞, the score vector U will asymptotically have a multivariate normal
distribution:

U
d−→ N(0, F (θ)).

We define the observed Fisher Information, I(θ):
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I(θ) = −




∂2

∂θ21
`(θ|Y) · · · · · · ∂2

∂θ1∂θp
`(θ|Y)

∂2

∂θ2∂θ1
`(θ|Y) ∂2

∂θ22
`(θ|Y) · · · ∂2

∂θ2∂θp
`(θ|Y)

...
...

. . .
...

∂2

∂θp∂θ1
`(θ|Y) · · · · · · ∂2

∂θ2p
`(θ|Y)




(5)

By the (strong) law of large numbers, the observed Fisher information, I(θ), converges almost surely
(and therefore in probability) to the true Fisher information (4). Hence, one can show that:

U
d−→ N(0, I(θ)).

Consider the partition of the parameter θ = (βT ,γT )T consisting of the parameter vector β and γ,
and let Uβ and Uγ denote the corresponding partition of the score vector U . In this case we may write
the observed Fischer information as:

I(θ) = −
(

∂2

∂β∂βT
`(θ|Y) ∂2

∂β∂γT
`(θ|Y)

∂2

∂γ∂βT
`(θ|Y) ∂2

∂γ∂γT
`(θ|Y)

)
=

(
Iββ Iβγ
Iγβ Iγγ ,

)
(6)

where Iββ, Iγγ and Iβγ = ITγβ are submatrices of the observed Fisher information in (5) involving
the particular parameters of interest. Using this notation, and by the property of multivariate normal
distributions, one can show that the conditional distribution f(uγ | Uβ = uβ) asymptotically will have
a multivariate normal distribution:

Uγ | (Uβ = uβ)
d−→ N

(
IβγI−1ββuβ , Iγγ − IγβI−1ββIβγ

)
.

Consider the hypothesis test

H0 : γ = 0 against H1 : γ 6= 0.

Assuming the parameters β are unknown, we denote these as nuisance parameters. We denote β̂ as the
maximum likelihood estimates of β when the null hypothesis is true, with the estimator by definition
given by the equation Uβ = 0. Let θ̂ = (β̂T ,0T )T denote the corresponding parameter estimate under
the null hypothesis. Assuming the null hypothesis to be true, and due to the consistency of maximum
likelihood estimators, one can show that (Lindsey, 1996):

Uγ(θ) | (Uβ = 0)
d−→ N

(
0, I(θ̂)γγ − I(θ̂)γβI(θ̂)−1ββI(θ̂)βγ

)
. (7)

4 GWAS
The usual set-up when performing a GWAS, assuming unrelated individuals, and based on SNP array
data is to first construct a generalized regression model for each SNP, including the allele count of the
SNP as well as additional covariates, sometimes also called environmental covariates, such as intercept,
age, sex or smoking status. Denote g the genotype vector including the allele count, gi, for each individual
i for a total of N individuals. Moreover, let xi denote the vector of d− 1 covariates, including intercept,
for individual i. Furthermore, let Y denote the random vector of responses with probability distribution
according to the generalized regression model:

g(µi) = xTi β + γgi, (8)

where the function g() is such that g−1(xTi β + γgi) = µi = E[Yi | xi, gi]. Two examples are the identity
function g(µi) = µi which gives the classical multiple regression model, and g(µi) = logit(µi) with

logit(µi) = ln

(
µi

1− µi

)
, (9)
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which gives the logistic regression model. Furthermore, β is the nuisance parameter vector of size d− 1,
while γ is the parameter of interest in the sense that we want to perform the following hypothesis test:

H0 : γ = 0 against H1 : γ 6= 0. (10)

In other words, we want to test whether there is an association between a particular SNP and the trait
of interest.

In this thesis, the focus will be on logistic regression models, meaning that the response, Yi, is either
zero or one, hence having a Bernoulli distribution:

f(yi) = µyii (1− µi)1−yi .
with µi = E[Yi | xi, gi] = P (Yi = 1 | xi, gi), modelled as in (8) with identity function as in (9). We will
from hereon denote this as a binary GWAS. In most cases, the purpose of a binary GWAS is to investigate
the presence or absence of a certain disease or symptom, and usually Yi = 1 denotes the presence of a
disease for individual i. There are typically two strategies when collecting the data in a binary GWAS.
In a case-control study, we first collect individuals that we know have a disease, called cases, as well as
individuals that are thought to never have had the disease, denoted controls. The individuals are chosen
in order to avoid biases such as making sure that the groups come from similar populations. Afterwards,
we collect environmental covariates as well as collect genetic samples in order to create SNP data. In a
prospective cohort study, individuals from a given population are selected at a time point and followed up
in a given period of time. During this time interval, the health conditions of the individuals are recorded,
perhaps limited to certain diseases or symptoms of interest. This allows us to investigate the presence
of a disease for each individual during the time period. The environmental covariates as well as genetic
samples are collected already during recruitment of individuals.

Both case-control studies and prospective cohort studies are equally valid procedures to conduct a
binary GWAS. In this thesis, we use the UK Biobank, a prospective cohort study. In that case, the
interpretation of what we try to model, for each SNP, is: What is the probability that a given individual
will get a certain disease within a given period of time given information about the allele count of the
SNP and the covariates.

4.1 Application of the score test statistic in binary GWAS
For each SNP, the hypothesis test in (10) can be evaluated by using well known test statistics such as
the likelihood ratio test statistic, the Wald test statistic or the score test statistic, all based on maximum
likelihood (ML) theory. The likelihood ratio test (LRT) requires the corresponding ML estimates under
both the null hypothesis, H0, as well as the alternative hypothesis, H1. For the Wald test, we require the
ML estimates only under the alternative hypothesis. For the score test, we only require the estimates
under the null hypothesis. This property of the score test statistic is particularly convenient when doing
a large number of hypothesis tests, such as in GWAS. Practically it means that the ML estimates under
the null hypothesis need only be computed once for all SNPs since the null hypothesis is exactly the
same for each SNP.

The score vector, U , for the Bernoulli distribution modelled as in (8) with parameters θ = (βT , γ)T

is given by:

U =

(
∂
∂β `(θ | Y )
∂
∂γ `(θ | Y )

)
=

(
∂
∂β

∑n
i=1 Yi ln(µi) + (1− Yi) ln(1− µi)

∂
∂γ

∑n
i=1 Yi ln(µi) + (1− Yi) ln(1− µi)

)

=

(
∂
∂β

∑n
i=1 Yi(x

T
i β + γgi)− ln(1 + exp(xTi β + γgi))

∂
∂γ

∑n
i=1 Yi(x

T
i β + γgi)− ln(1 + exp(xTi β + γgi))

)

=

(
XTY −XTµ∑n
i=1 Yigi − µigi

)
=

(
XT (Y − µ)
gT (Y − µ)

)
.

(11)

Observe that:

Iγγ = Fγγ = − ∂2

∂γ2
`(θ | Y ) =

n∑

i=1

µi(1− µi)g2i = gTWgT ,

9



where W is defined as the n× n diagonal matrix with Wii = µi(1− µi), and that:

− ∂2

∂βj∂γ
`(θ | Y ) =

n∑

i=1

µi(1− µi)xi,jgi,

with xi,j the jth element of the covariate vector xi, and βj the corresponding parameter. We can therefore
write, Iβγ = XTWg and Iγβ = ITβγ = gTWX. Finally, we have that:

− ∂2

∂βj∂βk
`(θ | Y ) =

n∑

i=1

µi(1− µi)xi,jxi,k,

which means that we can write Iββ = XTWX. The expected Fisher information, equal to the observed
Fisher information, for the logistic regression model is therefore given by

F (θ) =

(
XTWX XTWg
gTWX gTWgT

)
. (12)

Note that the Fischer information indeed is parameter-dependent through the mean vector µ.
We do not know what µ is. At the same time, our interest is in the hypothesis given in 10. In fact,

if we assume the null hypothesis to be true, γ = 0, the maximum likelihood estimate of µ, denoted µ̂, is
by definition given by the equation:

XT (Y − µ) = Uβ = 0.

From (7), we have asymptotically, as n→∞, under the null hypothesis that:

Uγ(µ) | (Uβ = 0)
d−→ N

(
0, gTWgT − gTWX(XTWX)−1XTWg

)
,

where Uγ(µ̂) = gT (Y − µ̂) is the score test statistic in this case.

4.2 Multiple testing, and application in GWAS
In cases where there are a large number of hypothesis tests, such as in GWAS, the probability of com-
mitting a Type I error, that is rejecting the null hypothesis when it is indeed true, increases the more
tests there are. As a simple example, assume one has s independent tests, each having a probability of
type I error equal to ε. The probability of falsely rejecting the null hypothesis at least once is called the
family-wise error rate (FWER). The FWER is then given by:

FWER = 1− (1− ε)s.

As (1 − ε) ∈ (0, 1), (1 − ε)s → 0 as s → ∞, and so the FWER approaches to have probability one of
falsely rejecting the null hypothesis at least once. Therefore, in such a setting one would like to control
the FWER to be less than some value α.

Assume we have s tests, each with the corresponding statistic Tj , j = 1, . . . , s. Let p(Tj) denote the
corresponding p-value, a random variable with 0 ≤ p(tj) ≤ 1, with a small p-value indicating the null
hypothesis to be unlikely, and a rule that the null hypothesis is rejected when p(tj) ≤ λ. A p-value is
valid if Pθ(Tj ≤ λ) ≤ λ for every λ and every θ ∈ Θ0, where Θ0 is the parameter set where the null
hypothesis is true. The question is what λ should be in order to control the FWER to be less than some
α. One solution is to apply the Bonferroni correction. Let s0 ≤ s be the number of tests where the null
hypothesis is true. Assume the p-value is valid. Then, by Boole’s inequality:

FWER = P




s0⋃

j=1

(p(Tj) ≤ λ)


 ≤

s0∑

j=1

P (p(Tj) ≤ λ) ≤ s0λ.

Hence, if we set λ = α/s, then FWER ≤ s0
s α ≤ α. Note that this result applies no matter whether the

tests are independent or not.
In a GWAS, a standard value is to set λ = 5× 10−8, being small precisely to control the number of

false rejections. In fact, it can be seen as to originate from a Bonferroni correction in order to control the
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FWER at level α = 0.05 based on the effective number of tests along the whole genome, corresponding
to the total number of independent variants along the genome, estimated to be around 106 (Dudbridge
& Gusnanto, 2008). The FWER is seen as a more rigorous method in order to control the Type I error
rate, at the cost of a larger Type II error rate (false negative rate), than other procedures that aim to
control the Type I error rate (Goeman & Solari, 2014).

4.3 Covariates and confounders
The purpose of the covariates in a GWAS is often to increase the power of the statistical tests, meaning
increasing the probability of rejecting the null hypothesis, when the null hypothesis is false. Typical
examples of these are adding age and sex. However, there are other reasons to include covariates, such
as to avoid confounding, a situation in which a confounder causes false associations. When inferring
the association between a covariate of interest and a response, A covariate is defined as a confounder
if it directly influences both the covariate of interest (in our case the SNP), as well as the response. In
GWAS, an important confounder is due to population stratification, the fact that there are differences in
allele frequencies (MAFs), of the same SNPs, between subpopulations in a population, for instance due
to the physical distance between them. It turns out that a way to correct for this is to include principal
components based on the genotype data (Price et al., 2006).

4.4 When the individuals are related
So far we have assumed the individuals to be unrelated, and the statistical results assumed the individuals
to be independent. Typically, the set of individuals in a GWAS are not unrelated. In practice, to reduce
the violation of the assumption of independence, one would first need to reduce the total number of
individuals to a set of individuals with a sufficiently small degree of mutual relatedness. However, this
will reduce the power of the statistical tests. Therefore, the most popular method in GWAS, taking into
account relatedness, is to use mixed-effects models. See for instance Loh et al. (2015) and Zhou et al.
(2018). In this thesis, we will assume the individuals to be unrelated.

5 Saddlepoint approximations
Saddlepoint approximation was first introduced in Daniels (1954), and is a way to estimate the probability
distribution of a random variable. It is based on the so-called cumulant generating function (CGF),
denoted K(s), for a real value s ∈ (a, b) which is closely related to the moment generating function
(MGF), denoted M(s), defined for a random variable X as:

K(s) = lnM(s) = E(esX). (13)

If we first assume the random variable X to be continuous, the saddlepoint approximation of the prob-
ability density of X, denoted f̂(x), is given by:

f̂(x) =
1√

2πK ′′(ŝ)
exp(K(ŝ)− ŝx), (14)

where K ′′(ŝ) is the second derivative of the CGF at the saddlepoint ŝ which satisfies:

K ′(ŝ) = x, (15)

namely that the first derivative of the CGF at the saddlepoint ŝ ∈ (a, b) is equal to the observed valued
x. The approximation is achievable for all interior points x in which f(x) > 0, that is within the support,
χ, of the probability distribution of f , excluding the boundaries of the support. We let Iχ denote the
interior of the support of f . Note that even though Expression (14) approximates the density f , it is not
itself a density since

∫
χ
f̂(x) 6= 1. For the derivation of the saddlepoint approximation, we refer to Butler

(2007), Chapter 2.
An approximation of the corresponding cumulative distribution function, F (x) = P (X ≤ x), first

introduced in Lugannani and Rice (1980), where E(X) = µ is given by:
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F̂ (x) =

{
Φ(w) + φ(w)( 1

w − 1
v ), if x 6= µ

1
2 + K′′′(0)

6
√
2πK′′(0)3/2

, if x = µ,
(16)

where
v = ŝ

√
K ′′(ŝ) w = sgn(ŝ)

√
2(ŝx−K(ŝ)), (17)

and the functions φ() and Φ() denote the standard normal density and cumulative distribution function
respectively. When x → µ, the top expression approaches the bottom expression in (16), and so the
entire expression is continuous.

If the random variable X has a discrete distribution, the saddlepoint approximation of the probability
mass function, denoted p̂(x), has the exact same expression as in (14):

p̂(x) =
1√

2πK ′′(ŝ)
exp(K(ŝ)− ŝx), (18)

with the saddlepoint ŝ defined as in (15). The approximation is meaningful for all interior points x in
which p(x) > 0, even though the approximation can be computed for any y in which x1 < y < x2, where
x1 and x2 are two neighbouring values in Iχ. Again, the approximation is not achievable at the boundary
of the support.

For discrete distributions, Daniels (1987) suggested two so-called continuity-corrected saddlepoint
approximations to the CDF applied on so-called lattice distributions. A lattice distribution has a support
of regular grid points with equal distance between neighbouring values. Formally, a discrete random
variable has a lattice distribution if the support of the distribution, χ, is on the δ-lattice {a, a+δ, a+2δ, . . .}
for some real value a and positive real value δ 6= 0. In this thesis, the focus is on one of these continuity-
corrections, namely the second continuity correction (see Butler (2007), Chapter 1 for the first as well
as a third continuity correction). In the rest of this thesis, we will restrict ourselves to discrete random
variables with support on the integer lattice, meaning δ = 1. Then, the survival function defined as
S(x) = P (X ≥ x) is approximated as:

Ŝ(x) =

{
1− Φ(w̃)− φ(w̃)( 1

w̃ − 1
ṽ ), if x− 1

2 6= µ
1
2 −

K′′′(0)
6
√
2πK′′(0)3/2

, if x− 1
2 = µ,

(19)

where

ṽ = 2 sinh

(
s̃

2

)√
K ′′(s̃) w̃ = sgn(s̃)

√
2(s̃(x− 1

2
)−K(s̃)), (20)

where the saddlepoint is denoted s̃ (to make clear the difference between the saddlepoint ŝ in the con-
tinuous setting), and satisfies:

K ′(s̃) = x− 1

2
. (21)

From this result, the corresponding cumulative distribution function can be directly approximated, and
is given by F̂ (x) = 1− Ŝ(x+ 1).

5.1 Multivariate distributions
The saddlepoint approximation can be generalized to multivariate distributions. Consider the random
vector X of size m, and assume for now it has a continuous distribution, f . Then the corresponding
saddlepoint approximation of the multivariate distribution, in the interior of the support of f , is given
as:

f̂(x) =
1

(2π)m/2 | H(ŝ) |1/2 exp(K(ŝ)− ŝTx), (22)

where K(ŝ) is the CGF of the random vector X, | H(ŝ) | is the determinant of the m ×m Hessian of
the CGF, while the saddlepoint (vector) ŝ must satisfy:

∇K(ŝ) = x, (23)
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where ∇K(ŝ) is the gradient of the CGF. The saddlepoint approximation of a multivariate discrete
random vector X, denoted p̂(x), has the same expression as f̂(x), but again only meaningful for interior
of the support of p.

5.2 Conditional distributions
Given the random vector (X,Y ) with X of size mx and Y of size my with m = mx + my. Assume
for ease of notation that the vector is continuous. The conditional probability density of Y given that
X = x is defined as:

f(y | x) =
f(x,y)

f(x)
(x,y) ∈ χ. (24)

A natural saddlepoint approximation of such conditional distributions, restricted to the interior of the
support, can be achieved through the saddlepoint approximation of multivariate distributions:

f̂(y | x) =
f̂(x,y)

f̂(x)
(x,y) ∈ Iχ. (25)

This is called double saddlepoint approximation since we do saddlepoint approximation on two distribu-
tions. In fact, by using the results in Section 1.1, one can show that the double saddlepoint density is
given by:

f̂(y|x) = (2π)−my/2
{ | H(ŝ, t̂) |
| H(ŝ0) |

}−1/2
× exp

((
K(ŝ, t̂)− ŝTx− t̂Ty

)
−
(
K(ŝ0)− ŝT0 x

))
, (26)

where | H(ŝ, t̂) | is the determinant of the Hessian of the CGF, K(s, t), of the joint distribution f(x,y),
evaluated at the saddlepoint

(
ŝT t̂T

)
T which satisfies

∇s,tK(ŝ, t̂) =
(
xT yT

)T, (27)

with ∇s,tK(s, t) the gradient of the CGF K(s, t) with respect to s and t (in that order), where s and
t are associated with x and y respectively. The expression | H(ŝ0) | is the determinant of the Hessian
with respect to the CGF, K(s), of the marginal distribution of X, f(x), evaluated at the saddlepoint
ŝ0 that satisfies

∇sK(ŝ0) = x, (28)

with ∇sK(s) the gradient of K(s). The results can be generalized to discrete distributions simply by
replacing the symbol f with p above.

The approximation of the cumulative distribution function conditional on x, denoted F̂ (y | x), in the
case where my = 1 was first derived in Skovgaard (1987). We restrict ourselves to all y 6= E(Y | x):

F̂ (y | x) = Φ(w) + φ(w)

(
1

w
− 1

v

)
(29)

with

v = t̂

√
| H(ŝ, t̂) |
| H(ŝ0) | w = sgn(t̂)

√
2
((
K(ŝ0)− ŝT0 x

)
−
(
K(ŝ, t̂)− ŝTx− t̂y

))
. (30)

5.2.1 Integer lattice distributions

As for the univariate case, continuity corrections for the cumulative distribution function of p(y | x) are
available when Y has an integer lattice distribution. Of notice is that this is achievable no matter the
type of support of X (lattice or continuous, or even a mix). The second continuity correction of the
survival function, Ŝ(y) = P (Y ≥ y |X = x), is given by

Ŝ(y) = 1− Φ(w̃)− φ(w̃)(
1

w̃
− 1

ṽ
) y 6= E[Y |X = x], (31)
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with

ṽ = 2 sinh

(
t̃

2

)√ | H(s̃, t̃) |
| H(s̃0) | w̃ = sgn(t̃)

√
2

((
K (s̃0)− s̃T0 x

)
−
(
K
(
s̃, t̃
)
− s̃Tx− t̃

(
y − 1

2

)))
,

(32)
where the saddlepoint

(
s̃T t̃T

)
T must satisfy

∇s,tK(s̃, t̃) =
(
xT y − 1

2

)T, (33)

while the saddlepoint s̃0 must satisfy
∇sK(s̃0) = x. (34)

5.2.2 Alternative approximation to the CDF

An alternative to the saddlepoint approximation of the CDF given in (16), was introduced by Barndorff-
Nielsen (1990) and is given by:

F̂ (x) = Φ

(
w +

1

w
log
( v
w

))
x 6= µ, (35)

with v and w unchanged and defined as in (17). The results given above, using (16), is equally valid when
using (35). For instance, the conditional survival function for integer lattice distributions using (35) is
simply given by:

Ŝ(y) = 1− Φ

(
w̃ +

1

w̃
log

(
ṽ

w̃

))
y 6= E[Y |X = x],

with ṽ and w̃ defined as in (32).

6 Statistical learning and inference
Given a model matrix Xn×p including n samples xi each including the observed value from p covariates,
from hereon denoted features, as well as corresponding univariate response values y for each sample.
Assume there exists some unknown data generating process where a response value, Y , is generated
according to a probability distribution depending on the corresponding observed feature values x. We
denote a machine learning model to be a function, ŷ(x), that approximates the unknown data generating
process. Let the loss function, `(y, ŷ(x)), denote some measure for the distance between the observed
response value, y, and the corresponding predicted response value ŷ(xi). The machine learning model is
constructed by searching for the model that minimizes the expected loss per sample. Let ŷ∗(x) denote
this ideal function. Then

ŷ∗(x) = arg min
ŷ

EX,Y [`(Y, ŷ(X))].

The procedure is to generate a model ŷ(x) that is as close as possible to ŷ∗(x) by using the data Xn×p
and y. Broadly speaking, statistical learning is the theory and methods behind the process that leads
to the construction of the model ŷ(x), as well as how to assess the quality of the model (Hastie et al.,
2009). Statistical inference refers to the theory behind how to draw conclusions about some unknown
parameter or measure, in which one is interested in estimating (Casella & Berger, 2001).

6.1 Model assessment
Having constructed the model ŷ(x), the question is how well it reflects the unknown underlying generating
process, and therefore how well it generalizes to new data. A natural way to measure this is to consider the
expected prediction error, Err(x0) = EX0,Y0

[`(Y0, ŷ(X0))], based on a new sample x0 and corresponding
response value y0 generated from the same underlying probability distribution.

Consider the data generating process Y = f(X) + ε, with E(ε) = 0 and Var(ε) = σ2
ε . Let Y be

continuous, and therefore can take any real-valued number. We apply the loss, `(y, ŷ(x)) = (y − ŷ (x))
2,
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the squared distance between the true response value, and the response value predicted by the model.
Then one can show that (Hastie et al., 2009)

Err(x0) = EX0,Y0

[
(Y0 − ŷ (X0))

2
]

= σ2
ε + [E [ŷ (X0)]− f (X0)]

2
+ Var(ŷ(X0)). (36)

The first term in (36) is the variance of the irreducible error which we can not control. The second term
is the bias squared, where the bias is the expected difference between the output of the model and the
true output. The last term is simply the variance of the model output. When the variance of the model
is large, this can be as a result that the model imitates the training data too much, not accounting for
random noise. This is called overfitting. On the other hand, if the bias is too large, this can be as a
result that the model has not captured important relationships between the features and the response.
We call this underfitting. The bias-variance tradeoff is the situation where the best model will need to
have neither too large variance nor too large bias, a tradeoff between finding important relationships
between the features and the model, but at the same time not falsely modelling random noise. The idea
of bias-variance tradeoff can be generalized for other loss functions than the squared error.

6.1.1 Training data, validation data and test data

To quantify how well a model generalizes to new data, and to observe potential underfitting or overfitting,
the normal procedure is to disjointly split data in training data, validation data and test data. The training
data is used to fit the model. Validation data, never observed during training, can be used to compare
several models, or used to evaluate the progression of the model during model fitting. The test data,
never used during training or validation, is used to measure how well the constructed model generalizes
to new data.

6.1.2 Estimation of test error and expected prediction error

We denote the test error, ErrT = EX,Y [`(Y, ŷ(X))|T ] as the expected prediction error conditioned on
the training data, T . It turns out that this measure is difficult to estimate (Hastie et al., 2009). However,
the expected prediction error, Err = ET [ErrT ], including the randomness in the training data, can be
estimated by cross-validation. In cross-validation, the data is randomly split in K disjoint sets. For each
iteration, K−1 sets are used to train a model, while the last set is used as test data. Let ŷk(i)(xi) denote
the prediction with respect to the pair (xi, yi) based on the model constructed by the training data k(i)
that does not include (xi, yi). Then the estimate of the expected prediction error is given by:

Êrr(ŷ) =
1

n

n∑

i=1

`(yi, ŷ
k(i)(xi)).

6.2 Bootstrapping
By having an estimator of some unknown parameter of interest, the uncertainty in the corresponding
estimate is often evaluated by making assumptions about the underlying probability distribution of
the estimator, for instance based on some parametric model, as well as by using maximum likelihood
theory (Casella and Berger (2001)). However, there may be circumstances where it is difficult to come
up with reasonable assumptions about the probability distribution of the estimator. In this case, we may
use bootstrapping (Efron & Tibshirani, 1994) instead in order to infer the distribution of the estimator
without making any assumptions of the underlying probability distribution. The general procedure in
bootstrapping is to iteratively resample the data at hand with replacement, and for each iteration,
compute the estimate based on this bootstrap sample. Specifically, consider we have the data (z1, . . . , zn)
of size n. Then a bootstrap sample (z∗1, . . . , z∗n) of size n is generated by sampling from the empirical
distribution that assigns equal probability of sampling each data point each time equal to 1/n. For
some estimator T (Z1, . . . ,Zn), the corresponding estimate for this bootstrap sample is then given by
T (z∗1, . . . , z∗n). By having B bootstrap iterations, we get B observations from the estimator.

By resampling the data with replacement, we imitate sampling of data generated from the true
underlying probability distribution, and hence we may imitate the true probability distribution of the
corresponding estimator after sufficiently many iterations. From the estimated probability distribution,
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xi,1

xi,2 xi,2

xi,3

xi,4

xi,1

xi,3

xi,1 = 2 xi,1 <= 1

xi,2 >= 1xi,2 = 0
xi,2 <= 1 xi,2 = 2

xi,3 = 1

xi,4 <= 60 xi,4  > 60
xi,5<=1 xi,5=2

xi,1= 0 xi,1 >= 1

xi,3= 0

0.146 -0.53 0.164 0.488 -0.67 -0.57 -0.18 -0.76 0.24 0.1 -0.35 0.7

xi = {xi,1 = 1, xi,2 = 2, xi,3 =1, xi,4 = 65, xi,5 = 2, xi,6 = 0}

f(xi) = f1(xi) + f2(xi) + f3(xi) =  - 0.53 - 0.76 - 0.35 = - 1.64  

xi,3 = 0

xi,5

xi,3= 1

xi,6

xi,6 <=1 xi,6 =2

Figure 1: An example with three constructed regression trees with six features xi,1 to xi,6 used as splitting
points at each branch, and leaf node values. Also shown is the computation of f(xi) given an example
of feature values xi. The structure of the trees opens the possibility to explore interactions since a path
from a root node to a leaf node denotes a combination of feature values (copy from Paper 2 published
in BMC Bioinformatics).

we may also construct confidence intervals. The accuracy in the estimated probability distribution of the
estimator, and the corresponding confidence interval, naturally depends on the size of the data, and the
number of bootstrap iterations (Efron & Tibshirani, 1994).

7 Tree ensemble models
Tree ensemble models is a type of machine learning model which is a member of the class of ensemble
models, sometimes also denoted additive models. What all ensemble models have in common is that they
include several base learners. Given a model ŷ(xi), J base learners fj(xi), and some transformation
function g(·), then the ensemble model is written as

ŷ(xi) = g




J∑

j=1

fj(xi)


 .

What exactly the base learners look like, and whether they are of the same structure is up to the
user. For regression tree ensemble models, all base learners are so-called regression trees1. A regression
tree is a function including nodes, leaves and branches. In each node, there is a binary split creating two
branches. The output of the function with feature values xi, is given by starting at the root node. At
each split, there is a splitting point equal to one of the features, and a rule including a splitting value
deciding which branch to move along depending on the feature value of this feature in xi. At a leaf node,
there is some leaf value, continuous and real valued, which will be the output of the regression tree. In
the ensemble model, the regression tree, fj(xi), may be multiplied by some constant, fj(xi) = ηf∗j (xi),
with f∗j (xi) the raw regression tree. The output from the regression trees is simply the additive output
of each single regression tree. See Figure 1 for an example with three regression trees of depth two (two
generations after the root node), with η = 1 for each regression tree, and the corresponding tree ensemble
output. The regression trees are typically symmetric, meaning that there are leaf nodes only at the last
level of the tree. But there may also be leaf nodes closer to the root node.

Whether the exact structure of each base learner is decided before fitting the model, or if the structure
of each base learner is built during model fitting is in principle up to the user. For instance for tree

1The base learners in a tree ensemble model can also be a classification tree, but for brevity we have ommited this type
of tree ensemble model.
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ensemble models: Whether the structure of the regression tree is predetermined, and only the leaf values
are decided during model fitting, or if each regression tree is built during the model fitting, is up to
the user. Naturally, one would like to be as least biased and restrictive as possible before fitting the
model, and so the last option is preferred, namely constructing the base learners during model fitting.
What is typically done, is that each base learner is constructed sequentially, one by one, and each base
learner is constructed by minimizing some loss function, in which the transformation function g() is
naturally decided. For instance, consider after model fitting a resulting tree ensemble model ŷ(xi) =

g
(∑T

τ=1 fτ (xi)
)

including T regression trees. Let Xn×p denote the matrix of n feature samples and
p features, with observed feature values xi at each row, and let y denote the vector of corresponding
response values. For a linear regression problem with continuous response, a natural loss function is the
mean square error for which the identity function, g(x) = x is a natural choice. In this case, the loss
function, L(Xn×p,y, ŷ), is given by

L(Xn×p,y, ŷ) =
1

n

n∑

i=1

(yi − ŷ(xi))2 =
1

n

n∑

i=1

(
yi −

(
T∑

τ=1

fτ (xi)

))2

.

The purpose of the model fitting is to search for the model ŷ(xi) that minimizes the loss function, which
is an estimate of the expected squared error, E[`(yi, ŷ(xi)], where `(yi, ŷ(xi)) = (yi− ŷ(xi))2 in this case.
For a classification problem with binary response values, that is yi is either zero or one, a typical loss
function is the estimate of the binary cross entropy

L(Xn×p,y, ŷ) =
1

n

n∑

i=1

`(yi, ŷ(xi)),

with `(yi, ŷ(xi)) = −yi log(ŷ(xi))− (1− yi) log(1− ŷ(xi)). In this particular case, ŷ(xi) must indicate a
probability, hence equal to a number between zero and one. A natural transformation function, applied
in logistic regression models, is to use the logit function g(x) = logit(x) in which

ŷ(xi) =
1

1 + e−
∑T
τ=1 fτ (xi)

,

which will make sure that ŷ(xi) ∈ (0, 1)2.

7.1 Bagging and column sampling
Having training data Xn×p and y, a natural procedure for ensemble models would be to fit the base
learner using the same training data each time. However, this results in an expected prediction error to
become large due to overfitting (Hastie et al. (2009), Chapter 10). We present two strategies on how to
reduce overfitting in ensemble models.

7.1.1 Bagging

The idea of bagging is, for each base learner, to first make bootstrap samples, namely resampling the
training data with replacement, and then fit the base learner. The output of the ensemble model, con-
sisting of J base learners, is then the average of all base learners (η = 1/J). In that way, the bootstrap
samples used for each base learner resembles the observed samples coming from the underlying prob-
ability distribution function of the data. Let us assume that each base learner estimator is identically
distributed with some variance σ2. Then averaging the base learners will not reduce the bias. However,
assume ρ to be the correlation between any pair of base learner estimators. Then one can show that the
variance, Var(ŷ(X0)), given B base learners is given by

Var(ŷ(X0)) = ρσ2 +
1− ρ
B

σ2.

2This type of transformation makes sense for regression tree ensemble models using boosting, a model fitting procedure
to be introduced later. For tree ensemble models using classification trees, we refer to Hastie et al. (2009), Chapter 9.
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In other words, the larger the number of base learners in a bagging process, the smaller the second
expression will be, and so the ensemble model will have a reduced variance, and so performing better
with respect to the expected prediction error. Bagging of regression trees turned out to be particularly
useful, as regression trees with sufficiently depth are low-biased, yet with large variance, even for complex
relationships such as interactions.

7.1.2 Column sampling

Even though the bagging process reduces the variance of the model, we still have the correlation, ρ,
between the base learners. An idea to reduce this correlation is to moderate the splitting decision when
fitting each base learner, a strategy that is applied in random forest models (Breiman, 2001). Specifically,
for each split, randomly sample m < p features, and use only these features to make a splitting decision
(choose which feature to split on, and by what value). By doing this, the features are more spread
along all trees, and so two randomly chosen trees will have less features in common, and correlate less.
This procedure turned out to be particularly successful when using trees as base learners. In general,
this strategy with the aim of reducing the model variance, is often denoted column sampling, as we in
principle randomly sample along the columns of the data matrix Xn×p to choose which m features to
use in each splitting decision.

7.2 Boosting
So far, for bagging and for random forests, each regression tree is constructed independently of the
others in such a way that the information from the previous constructed regression trees are not used
to construct a new regression tree. In addition, for high-dimensional data where only a small fraction
of the features are important, random forest models are expected to perform poorly, as the features
are randomly selected in each regression tree. Notice also that each base learner is considered equally
important because η = 1/B for all the B base learners.

What all boosting models have in common is that each base learner is fitted based on the previous
fitted base learners. Specifically for tree boosting models: Based on the history of the previously fitted
trees, and the corresponding ensemble model created so far, the next tree is constructed with the aim
of minimizing the loss function of the updated ensemble model. See examples in Chapter 10 in Hastie
et al. (2009). We will now introduce one such tree boosting model that is implemented in the XGBoost
software (Chen & Guestrin, 2016).

7.2.1 XGBoost

XGBoost, an abbreviation for extreme gradient boosting is a popular software for producing a tree
ensemble model of the type ŷ(xi)(T ) =

∑T
τ=1 fτ (xi) consisting of T regression trees. The total loss

function after the construction of T trees is given by

L(Xn×p,y, ŷ(T )) =

n∑

i=1

`
(
yi, ŷ(xi)(T )

)
+

T∑

τ=1

γVτ +
1

2
λ||vτ ||2,

for some first and second differentiable convex loss function per sample `(yi, ŷ(xi)), and where γ and λ
are predetermined regularization parameters, while vτ and Vτ are the vectors of leaf values and the total
number of leaves in regression tree τ , respectively. The boosting procedure is as follows: Given t−1 fitted
regression trees, and corresponding model ŷ(xi)(t−1) =

∑t−1
τ=1 fτ (xi), the aim is, given the structure of

tree t denoted ft, to find the leaf values v∗t that minimize the updated loss function:

min
v∗t

L(Xn×p,y, ŷ(t−1), ft,vt) =

n∑

i=1

`(yi, ŷ(xi)(t−1) + ft(xi)) +

t−1∑

τ=1

γVτ +
1

2
λ||vτ ||2 + γVt +

1

2
λ||vt||2.
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In XGBoost, Newton boosting is used to approximate the solution by estimating the loss function as a
quadratic function by applying a second order Taylor expansion:

L(Xn×p,y, ŷ(t−1), ft,vt) ≈ L̃(Xn×p,y, ŷ(t−1), ft,vt)

=

n∑

i=1

`(yi, ŷ(xi)(t−1)) + gift(xi) + hift(xi)2 +

t−1∑

τ=1

(
γVτ +

1

2
λ||vτ ||2

)
+ γVt +

1

2
λ||vt||2,

(37)

with gi = ∂
∂ŷ(xi)(t−1) `(yi, ŷ(xi)(t−1)) and hi = 1

2
∂2

∂ŷ2(xi)(t−1) `(yi, ŷ(xi)(t−1)).

Due to the convexity of L̃, and that each leaf value in tree t can take any real value, the weights v∗t
that minimizes L̃(Xn×p,y, ŷ(t−1), ft,vt) is a unique solution of

∂

∂vt
L̃(Xn×p,y, ŷ(t−1), ft,v∗t ) = 0.

Let Ij denote the set of all samples which leads to the same leaf node j in the regression tree t, Ij =
{∀ i|ft(xi) = vt,j}. Then we may rewrite (37) as

L̃(Xn×p,y, ŷ(t−1), ft,vt) =

Vt∑

j=1




∑

i∈Ij
gi


 vt,j +

1

2


∑

i∈Ij
hi + λ


 v2t,j




+
n∑

i=1

`(yi, ŷ(xi)(t−1)) +
t−1∑

τ=1

(
γVτ +

1

2
λ||vτ ||2

)
+ γVt.

(38)

The leaf values v∗t in the regression tree ft that minimizes (38) is given by

v∗t,j =
−∑i∈Ij gi∑
i∈Ij hi + λ

,

with the corresponding updated loss equal to

L̃(Xn×p,y, ŷ(t)) = −1

2

Vt∑

j=1

(
(
∑
i∈Ij gi)

2

∑
i∈Ij hi + λ

)

+

n∑

i=1

`(yi, ŷ(xi)(t−1)) +

t−1∑

τ=1

(
γVτ +

1

2
λ||vτ ||2

)
+ γVt.

(39)

However, we do not know what the structure of the tree should be. Instead, a greedy approach is
developed when constructing each regression tree. One starts at the root node, and investigate every
feature and every possible splitting rule, and look at the corresponding reduced loss function in (39).
The feature and splitting rule that gives the smallest updated loss function is then used. The algorithm
continues to split on the newly created leaf nodes in the same manner. This is however an exhaustive
search method, and there exist other splitting rule algorithms that are not exact, however faster and
provide good approximations such as the histogram method (Alsabti et al., 1998; Jin & Agrawal, 2003;
Li et al., 2008) which is implemented in the XGBoost software packages.

7.2.2 Reducing overfitting in boosting models

Using only the training data during model fitting, the model will overfit as the number of trees T increases.
One must therefore have a rule that stops the algorithm before it begins to overfit. One solution is to
disjointly separate the data in training data, validation data and test data. The training data is used to
fit the model. However, for each step of the model fitting procedure, the loss function is applied to the
validation data to quantify performance. Note that the validation data is never used to fit the model,
and one can therefore reliably evaluate the model at each step. One possible rule is to stop the training
of the model when the total loss based on the validation data has not decreased within a given number
of consecutive updates. We denote the parameters that control the learning process of the boosting
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model as hyperparameters. For XGBoost, one can use the early_stopping_rounds hyperparameter in
the software for this purpose. To evaluate how well the fitted model generalizes to new data, this can be
assessed by using the test data.

The purpose of the regularization hyperparameters λ and γ is to reduce the variance of the model,
by reducing the effect each base learner will have on the full model such as pruning large leaf values and
large trees. There are several possible rules to incorporate when creating each tree. For instance, if the
proposed splitting according to the algorithm leads to an increased loss, one may decide to stop training
this regression tree, and create a new one (using the regression tree from before the splitting). Another
option is to limit the maximum depth of each regression tree. Similarly to random forests, one can sample
a reduced set of features for each splitting to reduce overfitting as well as reducing the running time.

What turns out to reduce the overfitting even further for boosting models is to randomly choose
a subset of samples, without replacement, for each regression tree referred to as stochastic gradient
boosting, or subsampling (Friedman, 2002). This will also reduce the running time in each iteration.
Another important hyperparameter in boosting models is the learning rate, which is the constant η
multiplied by the raw regression tree. By setting this constant to some small value below one, this will
also limit the effect each base learner has on the full model. A smaller learning rate will also typically
generate a model with a larger number of regression trees.

8 Shapley values
The Shapley value was first introduced by Lloyd Shapley (1953) originally to be applied within game
theory which involves mathematical modelling of a system in which agents, often denoted players, interact
with each other, and where each player makes rational decisions on how to maximize its own value, for
instance by cooperation with other players (cooperative game). The purpose of the Shapley value is to
measure the contribution, or value, for each player in a given cooperative game compared to the total
value of the cooperative game. The use of Shapley values is an example of a payment rule in a game.
Formally, let there be M players in the cooperative game. Let S be a set of players, such as {1, 2, 3},
meaning player one, two and three. We define a value function, v(S), which is a measure of the total
value or payoff for the players in S. In this setting we define v(∅) = 0, with ∅ the empty set. Let M
denote the set of all players in the game. The Shapley value, φk, for player k is then defined as:

φk =
∑

S⊆M\{k}

|S!|(M − |S| − 1)!

M !
(v(S ∪ {k})− v(S)). (40)

Here, S ⊆M\ {k} means any achievable subset S, among all 2M possible subsets, not including player
k. The Shapley values have several desirable properties:

Symmetry. Given players j and k where v(S ∪{j}) = v(S ∪{k}) for all S ⊆M\{j, k}. Then φj = φk,

Dummy player. For a player j with v(S ∪ {j}) = v(S) for all S ⊆M \ {j}, φj = 0.

Linearity. Given two independent games consisting of the same players, but with different value func-
tions v and w. Then φ(v + w) = φ(v) + φ(w).

Efficiency.
∑M
k=1 φk = v(M)− v(φ) = v(M).

The symmetry property means that two players with equal payoffs (value) with the same coalitions
will have the same Shapley value, and therefore considered equally worthy in the game, and so has the
same Shapley value. If a player has no payoff with any coalition, then the player has no worth and the
Shapley value equals zero. The linearity property is a direct result of the linearity of sums. The efficiency
property is the least intuitive, and deserves a proof. This can be achieved by applying an equivalent
definition of the Shapley value:

φk =
1

M !

∑

R

[v(sk(R) ∪ {k})− v(sk(R))] , (41)

where the sum is over all orderings R of the M features, with a total of M ! orders. The function sk(R)
maps a given ordering R and a particular feature k to the corresponding subset of features preceding
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feature k in the specific ordering. For instance, for M = {1, 2, 3}, one possible ordering is R = (2, 3, 1)
with s1(R) = (2, 3).

Proof.

M∑

k=1

φk =

M∑

k=1

1

M !

∑

R

[v(sk(R) ∪ {k})− v(sk(R))]

=
1

M !

∑

R

M∑

k=1

[v(sk(R) ∪ {k})− v(sk(R))]

=
1

M !

∑

R

(v(M)− v(∅))

=
1

M !
M ! (v(M)− v(∅)) = v(M)− v(∅),

(42)

since for a specific ordering R and feature k, in the sum
∑M
k=1 [v(sk(R) ∪ {k})− v(sk(R))] all terms

cancel each other, except v(M) and v(∅). Hence, with v(∅) = 0,
∑M
k=1 φk = v(M).

As a result, the efficiency property means that the sum of the contribution for each player is equal to
the total contribution in the game. Hence, the Shapley values can be compared with each other in such
a way that if φk > φj , then player k has a larger contribution than player j in the game. In fact, Lloyd
Shapley (1953) showed that the only payment rule that satisfies the properties of symmetry, dummy
player, linearity and efficiency is by the construction of the Shapley values.

8.1 Shapley values in machine learning
With the increased popularity of complex high-dimensional machine learning models such as deep neural
networks and ensemble models, there has been an increased interest in developing methods to interpret
such models, often called black-box models. There are mainly two reasons for why this is important. One
reason is to analyse whether the predictions of the models make sense. The other reason is to find out what
the model considers important for each prediction. The idea of using Shapley values to explain what a
model considers important was introduced for linear regression models in Lipovetsky and Conklin (2001)
using the coefficient of determination, R2, as value function. In more detail, for each subset S ⊆ M of
all M features/covariates, a linear regression model was fitted based on this subset S, and a resulting
value function defined by v(S) = R2

S for this subset with v(∅) = 0.
For high-dimensional data, the approach in Lipovetsky and Conklin (2001) to fit a model for each

subset S, out of all 2M subsets, can quickly become infeasible as the number of subsets increases ex-
ponentially for increasing number of features. In Štrumbelj and Kononenko (2014), the use of Shapley
values in regression models was generalized by defining the same value function independently of which
type of regression model was analysed, however applied to the same prediction model for each subset.
Specifically, the value function, vxi,ŷ(S), for feature values x and a fitted regression model ŷ is defined
as

vx,ŷ(S) = EXS [ŷ(X|XS = xS)], (43)

which means for S = ∅ that
vx,ŷ(∅) = EX[ŷ(X)].

For instance, if we assume all features to take continuous values, then

vx,ŷ(S) = EX[ŷ(X)] =

∫

xS
ŷ(xS ,xS)p(XS = xS |XS = xS)dxS , (44)

where xS denotes the subset of feature values in the observed vector x for the features in the subset S,
and p(XS = xS |XS = xS) is the conditional probability distribution of XS given that XS = xS . In this
setting, the corresponding Shapley value, φk, for a feature k is given by

φk(x, ŷ) =
∑

S⊆M\{k}

|S|!(M − |S| − 1)!

M !
[vx,ŷ(S ∪ {k})− vx,ŷ(S)] , (45)
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with the value function defined as in (43). Notice that the Shapley values can be computed for each
prediction of the model ŷ. We denote such explainable methods as local. With the definition of the
value function in (43), the Shapley value for each feature in a given prediction can be interpreted as the
expected change in the prediction model, over all subsets S, when including feature k actively in the model
compared to when feature k is marginalized in the prediction. The marginalization of feature k means
that we regard the value of feature k as unknown, and so the corresponding conditional expectation of
the prediction model will depend on the random variable Xk. By the construction of the Shapley values,
we will also have

M∑

k=1

φk(x, ŷ) = v(M)− v(φ) = ŷ(x)− EX[ŷ(X)],

which shows that the sum of the Shapley values equals to the net change in the prediction compared
to the expected prediction, and so the Shapley value for each feature can be interpreted as the portion
of this net change that is due to this feature. Note that the Shapley value can be both positive and
negative. This can also be interpreted as the direction in which feature k contributes to the prediction.

In a broader context, evaluating the properties of several explanation methods, in Lundberg and
Lee (2017) the definition in (45) was defined as Shapley additive explanation values, abbreviated SHAP
values, where additive explanation methods referred to the property that the sum of the explanation of
each feature was equal to the difference between the prediction itself and the prediction v(φ) = φ0. We
will from hereon denote φSHAP

k (x, ŷ) as the corresponding Shapley value with value functions defined as
in the SHAP framework.

8.1.1 Approximation methods

Even with the procedure of SHAP values, only needing to fit one model, the computations are still heavy
as we need to iterate over all subsets, for each feature. In addition, the value functions defined in (43)
are in general unknown, and need to be estimated. This also means that the SHAP values need to be
estimated. A general procedure as outlined in Castro et al. (2009), and applied on regression models in
Štrumbelj and Kononenko (2014) is to instead develop a resampling algorithm in which a value iteratively
converges to the true Shapley estimate for a particular feature. Formally, use the definition of SHAP
value as in (41) with

φSHAP
k (x, ŷ) =

1

M !

∑

R

[vx,ŷ(sk(R) ∪ {k})− vx,ŷ(sk(R))] . (46)

We will for the moment assume all features to be mutually independent, that is E[Xj |Xk = xk] = E[Xj ]
for all j 6= k. Given L data samples x1, . . . ,xL for instance coming from the training data used to
construct ŷ, then an estimate of (43), denoted v̂x,ŷ(S), for a given subset S and observation x is given
by

v̂x,ŷ(S) =
1

L

L∑

l=1

ŷ(xS ,xlS), (47)

where xS is the constant vector of features values from the subset of features S in the observation x,
while xlS denotes the observed feature values in the subset of features S̄ for sample l. The estimate
v̂x,ŷ(S) simply comes from the conditional sample mean estimator which is an unbiased estimator that
converges in probability to the true conditional expectation as L → ∞. Applying the estimate given in
(47), consider the following iterative procedure: In each iteration, sample a particular reordering Ri of
the features (with probability 1/M !). Compute v̂ix,ŷ(sk(R)∪{k})− v̂ix,ŷ(sk(R)) based on L data samples
for the training data. Perform I iterations, and do the same procedure. See Algorithm 1.

By the central limit theorem, the estimator of the approximation in Algorithm 1 asymptotically has
a normal distribution with mean equal to the true Shapley estimate, and a variance which decreases
inversely proportional with the number of iterations I (Štrumbelj & Kononenko, 2014). However, in
order to compare the contribution between the features, one wants to estimate the SHAP value for each
feature, and so using Algorithm 1 for each feature separately would be infeasible when the number of
feature M is large. An alternative is to adaptively approximate all SHAP values in the same loop, using
some criterion to reduce the total number of iterations needed to get satisfactory approximations. For
instance in Štrumbelj and Kononenko (2014), a feature is randomly sampled, and the approximation of
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Algorithm 1 Approximating SHAP value estimate for feature k

1: Given data samples x1, . . . ,xN (for instance training data), a model ŷ(x), and a feature k.
2: φ̂k = 0.
3: for i = 1, 2, . . . , I do
4: Sample a reordering Ri ofM.
5: Sample L < N data samples.
6: φ̂k = φ̂k + v̂ix,ŷ(sk(Ri) ∪ {k})− v̂ix,ŷ(sk(Ri))
7: end for
8: φ̂k = φ̂k

I

the SHAP value is updated by using Algorithm 1 with I = 1. However, when each feature has been
updated sufficiently many times, the algorithm investigates the asymptotic variance of the estimator
of the approximation for each feature, and chooses to update the SHAP value where the variance will
reduce the most. See Algorithm 2 in Štrumbelj and Kononenko (2014).

Another approximation method is the kernel SHAP method introduced in Lundberg and Lee (2017),
and based on the fact that computation of Shapley values can be seen as a minimization problem (Charnes
et al., 1988):

arg min
(φ1,...,φM )∈RM

∑

S⊆M


v(S)−


φ0 +

∑

j∈S
φj






2

k(M,S), (48)

where
k(M,S) =

M − 1(
M
|S|
)
|S|(M − |S|)

denote the Shapley kernel weights. As described in Aas et al. (2021), let Z denote the 2M × (M + 1)
matrix where the first column is one for each row, while the rest of the columns in any row is a binary
representation (zero or one) of which features are included in a particular subset S out of all 2M subsets.
Further, we define the vector v of value functions and the 2M × 2M diagonal matrix of Shapley kernel
weights, with the order of the subsets S to be in the same order as the subsets S in each row of Z. Then
the objective function in (48) can be written as

(v− Zφ)TW (v− Zφ)

with solution
φ = (ZTWZ)−1ZTWv (49)

Note that k(M,M) = k(M, ∅) = ∞, and so in practice one may set these as a large number instead.
The Kernel SHAP aims to approximate the solution in (49), by construction of a resampling procedure,
and then approximation of v by v̂ as given in (47). The resampling procedure is constructed by the fact
that the value of k(M,S) has a large variation for different subsets S, and so several subsets contribute
a small amount to the objective in (48). Therefore, in each iteration a subset S (not including ∅ and
M) is sampled (with replacement) with probability distribution according to the Shapley kernel weights.
Given I such iterations, the kernel SHAP estimate is then given by

φ̂ = (ZTI WIZI)
−1ZTI WI v̂I , (50)

with ZI , WI and vI are with respect to the I resampled subsets S.
When the features are not mutually independent, the approximation given in (47) is no longer valid,

and the complexity in the computations increases dramatically as one must in this case estimate condi-
tional probability distributions. We refer to Aas et al. (2021) for several approaches on how to account
for this situation.

8.1.2 SHAP values in tree ensemble models

The complexity in the SHAP values due to all the subsets S as well as the estimation of the value functions
often makes the computations tiresome in large high-dimensional black-box models, with exponential
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running time. However, for one particular black-box model, namely tree ensemble models, Lundberg et
al. (2020) showed that it was possible to compute the SHAP values in polynomial running time without
having to do any resampling.

8.1.3 SHAP interaction values

The SHAP values can be generalized according to the Shapley interaction index from game theory
(Fujimoto et al., 2006). Given a pair of features j and k, the interaction contribution, ΦSHAP

j,k (x, ŷ), from
feature j and k other than their marginal contributions is given by

ΦSHAP
j,k (x, ŷ) =

∑

S⊆M\{j,k}

|S|!(M − |S| − 2)!

2(M − 1)!
∇j,k(S), (51)

with
∇j,k(S) = vx,ŷ(S ∪ {j, k})− vx,ŷ(S ∪ {k})− [vx,ŷ(S ∪ {k})− vx,ŷ(S)] .

We can interpret ∇j,k(S) as the additional contribution in the prediction of including feature j actively
and simultaneously together with feature k, compared to the contribution of feature k not including
information of feature j. We define the marginal SHAP value of feature j, φSHAP

j,j (x, ŷ), as

φSHAP
j,j (x, ŷ) = φSHAP

j (x, ŷ)−
∑

k 6=j
ΦSHAP
j,k (x, ŷ),

and consequently we have that
M∑

j=0

M∑

k=0

ΦSHAP
j,k (x, ŷ) = ŷ(x),

with ΦSHAP
0,0 (x, ŷ) = vx,ŷ(∅).

8.1.4 Explaining the model or explaining the data?

What is important to have in mind is that SHAP values are helpful to explain the predictions of the
model. However, the model may not be reliable, and may not be a good representation of the underlying
data generating process it is supposed to imitate. Covert et al. (2020) suggested an alternative to the
SHAP value, referred to as SAGE value, in which the value function is defined not only as a function of
the model, but also the underlying data through a loss function.
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Motivation and summary of papers
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Overview PhD
As part of the PhD, I collaborated together with the Gemini Center for Sepsis Research lead by Erik
Solligård. The research team collaborated with Yale School of Public Health via Associate Professor
in Epidemiology and Director at Yale Center for Perinatal, Pediatric and Environmental Epidemiology,
Andrew Thomas DeWan. As a result I had a research stay at Yale School of Public Health in fall 2019.
During the research stay, I got access to the computing infrastructure at Yale, specifically the Farnam
cluster. The computing resources via Farnam was essential in order to be able to do the computations
needed in all the papers on such high-dimensional data. Through the team of Andrew Thomas DeWan,
I also got access to UK Biobank, a large long-term biobank consisting of around 500 000 participants
each including genotype data. All three papers included the use of UK Biobank.

Paper 1

Saddlepoint approximations in binary genome-wide association studies
An essential problem in GWAS was the frequent observation that SNPs were declared significantly
associated with a disease (which typically meant p-value less than 5 × 10−8), however it could not be
replicated in independent studies. It turned that a reason for this is that the p-values were simply not
valid, as the normal approximation of the corresponding statistic was not sufficiently accurate. This was
particularly observed for imbalanced binary phenotypes in Ma et al. (2013) and later Dey et al. (2017).
It was also observed that SNPs with a small MAF, typically the most interesting SNPs, would also lead
to a greater chance of invalid p-values, and therefore false positives.

In Dey et al. (2017), a saddlepoint approximation to the score test statistic was proposed, even being
accurate far out in the tail of the distribution of the statistic. It was really surprising to us how accurate
the saddlepoint approximation seemed to be based on their simulation. At first, we could not really
understand the idea behind the transformation of the genotype vector, and why the maximum likeli-
hood estimate under the null hypothesis was simply regarded as a plug-in constant. After reviewing the
complex theory behind saddlepoint approximations, we discovered that the so-called double saddlepoint
approximation would be a more intuitive procedure as we would then condition on the null hypothesis
rather than assuming it to be true. After closer inspection, we also realized that Dey et al. (2017) assumed
the probability distribution of the score test statistic to be continuous. However, when the allele count
is simply integer-valued, we found out that the score test statistic actually is discrete, or specifically, has
a lattice distribution. We therefore developed a continuity-corrected double saddlepoint approximation.
Simultaneously, we managed to derive the exact probability distribution of the score test statistic for the
model only including intercept as nuisance parameter, as well as the model with intercept and a binary
covariate as nuisance parameters. Finally, we realized that the saddlepoint approximation proposed in
Dey et al. (2017) actually was based on the efficient score, which really is a parameter transformation.
By the theory of the efficient score, the corresponding score test statistic is asymptotically independent of
the null hypothesis, which was the reason why the maximum likelihood estimate (at least asymptotically)
could be treated as a constant when performing the saddlepoint approximation. Also here, we derived a
continuity-corrected saddlepoint approximation when applying the efficient score.

By developing the double saddlepoint approximation for the score test statistic in a GWAS, as well
as deriving the exact score test statistic in some scenarios, we could finally compare double saddlepoint
approximation and the saddlepoint approximation using the efficient score proposed in Dey et al. (2017)
with the exact distribution of the score test statistic. However, we found out that the evaluation of the
different methods should be partitioned in what we refer to as conditionally valid tests and overall valid
tests. By doing this we could conclude that continuity-correction is absolutely essential when the score
test statistic has a lattice distribution. By simulations using a binary as well as a continuous covariate,
we would also see that the double saddlepoint approximation appeared as having somewhat larger power
than the efficient score in the case with imbalanced phenotypes as well as small MAFs.

Future work

Single variant tests are low-powered, particularly for variants with a small MAF, such as rare variants.
However, such variants are of extra interest as many of them is situated in exons, regions inside the genes.
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Several region-based tests have been proposed to increase the power. However, many of these region-based
tests are based on several single-variant tests. At the best of our knowledge, there are still no region-based
tests present taking into account the fact that the single-variant tests may include a statistic with a lattice
distribution, and so continuity-corrections are needed. Even when using saddlepoint approximations, the
region-based tests appear to be close to invalid or even invalid at the significance level Zhao et al. (2020).

Paper 2

A new method for exploring gene–gene and gene–environment interactions in
GWAS with tree ensemble methods and SHAP values
One of the central topics in my PhD was so-called gene-gene and gene-environment interactions. GWAS
has been successful in finding several single SNPs associated with several diseases, replicated in other
studies (Visscher et al., 2017). However, one would still expect a larger genetic predisposition for a trait
of disease than what was found via the estimated heritability, the observed variation in a trait or disease
that could be explained by genetic variation, and not the environment. This is often called the missing
heritability problem. One of the most frequent answers to why this is the case, is that the studies do
not account for interactions, namely that the effects of two genes, or even between a gene and some
environmental factor, is not simply additive with respect to the model output (Cox, 1984). However,
incorporating such interactions in a generalized regression model in a genome-wide association study
would exponentially increase the total number of tests to investigate. This will again lead to an even
stricter rejection rule of the null hypothesis in order to control the false positive rate. Performing such
genome-wide association studies has so far not been particularly successful. One might question whether
the regression models are just to simple in order to model such complex relationships as interactions.
With the rise of much more flexible machine learning models, the question was whether such models
would be able to find these interactions. Tree ensemble models have been a popular alternative to the
generalized regression models, such as random forests. In fact, the tree structures will automatically
open up the possibilities to explore interactions. However, in this particular case, we expect only a small
proportion of all SNPs to be relevant. The tree boosting models are known to be more suited for this
setting. In addition, XGBoost, a tree boosting framework, had become very popular due to its smart
and effective solutions both with respect to running time and memory capacity, making it a feasible
software for high-dimensional data. However, even if the XGBoost model would give better predictions,
they would still need to be interpreted. There have previously been several proposals on how to interpret
such tree ensemble models (Lundberg et al., 2019), but with the introduction of SHAP values to explain
machine learning models discussed in Section 8, Part I, several properties induced by the Shapley values
turned out to be beneficial when fairly estimating the contribution of each feature in a model. The
efficient TreeSHAP algorithm introduced in Lundberg et al. (2020) made it possible to explain XGBoost
models based on high-dimensional data.

An important goal in Paper 2 was to investigate whether XGBoost models together with SHAP values
could identify gene-gene and gene-environment interactions. However, before we could start with this, we
would need to know whether this procedure would even find marginal effects from single SNPs such as in a
regular GWAS. We therefore wanted to apply our procedure on a use-case where genome-wide association
studies had been particularly successful in finding SNP associations, replicated in independent studies.
Hence we chose to focus on obesity. Our procedure succeeded in finding the same SNP associations.
We therefore moved on to develop a procedure for exploring interactions through Shapley interaction
values. In this case, there were no known gene-gene interaction effects with respect to obesity. The results
suggested that if there were any gene-gene interactions, they would be very small. What is important to
have in mind is that our proposed procedure was intended to explore interaction effects. However, how
reliable these suggested effects actually were in terms of uncertainty, was not known, and this became a
natural next step that was investigated thoroughly in Paper 3.

Further work

Apart from developing methods to infer the uncertainty in the feature importance measures based on
Shapley values, there are many other challenges specifically during the construction of the models. One
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challenge was the fact that all the features, SNPs and environmental features, needed to have small
mutual correlations, or else the SHAP values would need to include estimated conditional probabilities
in order to make reliable SHAP estimates (Aas et al., 2021). This will increase the computation time
dramatically, and it would be interesting to consider efficient methods that can incorporate feature
correlations in a high-dimensional setting when computing the SHAP values.

Paper 3

Inferring feature importance with uncertainties in high-dimensional data
A natural next step based on Paper 2 is to investigate how to infer the interaction effects including
uncertainty of the features in XGBoost models using Shapley values. However, even inferring the uncer-
tainty in marginal effects using Shapley values has not been investigated thoroughly yet so this became
the focus.

What we realized in Paper 2, is that SHAP values are valuable when trying to explain which features
the model considers important. However, the model can perform poorly, and it typically does for SNPs
with small effects. Therefore, what the model considers important is not necessarily what actually should
be considered important. We therefore went on to investigate alternatives to SHAP values that would not
only bluntly investigate the model, but also take into account the data generating process the model was
based on. The SAGE value introduced in Covert et al. (2020) differs from SHAP in the definition of the
value function in the Shapley value context. In fact, the value function in SAGE is not only a function of
the model, but also of the data it originates from via the loss function. We therefore consider this measure
more reliable when the focus is to infer the actual feature importance from the unknown underlying data
generation process. However, when going from SHAP to SAGE, the computation time needed increases
dramatically, also for tree ensemble models, which makes it infeasible with high-dimensional data. We
therefore introduced sub-SAGE, inspired by SAGE, but adjusted in order to be used for high-dimensional
data.

Having a feature importance measure feasible to compute for high-dimensional data, the next step
was how to infer the uncertainty in the sub-SAGE estimates. This meant we needed to find out actually
what was stochastic and what was not when calculating the value functions. Due to the complexity in
the sub-SAGE measure, we proposed a paired bootstrapping procedure in order to infer the uncertainty
in the sub-SAGE estimates.

Even for sub-SAGE, efficient code is required. This was partly obtained through the R software, but
also with help from the more efficient programming language C++, via the Rcpp package in R. Using the
Rcpp package, the computation time of the part of the code including a recursive algorithm, dramatically
reduced. By letting the many for-loops to be executed in C++ also improved the running time greatly.

Further work

The next natural step would be to move on to inferring feature importance for interactions. This could
in principle be done by defining sub-SAGE interaction values in a similar fashion as SHAP interaction
values with adjustments. However, this step would require even faster code, and therefore more of the
R-code would have to be translated to C++ code.
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Abstract

We investigate saddlepoint approximations applied to the score test statistic in genome-wide
association studies with binary phenotypes. The inaccuracy in the normal approximation of the
score test statistic increases with increasing sample imbalance and with decreasing minor allele
count. Applying saddlepoint approximations to the score test statistic distribution greatly improve
the accuracy, even far out in the tail of the distribution. By using exact results for an intercept
model and binary covariate model, as well as simulations for models with nuisance parameters, we
emphasize the need for continuity corrections in order to achieve valid p-values. The performance of
the saddlepoint approximations is evaluated by overall and conditional type I error rate on simulated
data. We investigate the methods further by using data from UK Biobank with skin and soft tissue
infections as phenotype, using both common and rare variants. The analysis confirms that continuity
correction is important particularly for rare variants, and that the normal approximation gives a
highly inflated type I error rate for case imbalance.

1 Introduction
We consider score tests for logistic regression models in which the response is imbalanced and the covariate
of interest is discrete and skewed. This typically occurs in a genome-wide association study (GWAS) with
binary phenotypes, henceforth denoted binary GWAS, where one of the phenotypes is rare.

In a GWAS each single nucleotide polymorphism (SNP) is tested individually for association with a
particular phenotype. In a modern biobank including several hundred thousands SNPs, rejection of the
null hypothesis needs to be evaluated with a very low p-value threshold, typically equal to 5 · 10−8, in
order to control the family-wise error rate (FWER). In a binary GWAS with imbalanced response, new
challenges arise.

As an example, we consider a follow-up study on skin and soft tissue infection (SSTI) using UK-
biobank data, motivated by Rogne et al. (2021). Using data on unrelated white European individuals
with no prior history of SSTI at recruitment, we obtain 6.5 years of follow-up data on approximately
300 000 individuals, out of which approximately 0.7% where diagnosed with SSTI during follow-up, and
classified as cases. The overall sample size may be large, but if there are few cases or controls with a
certain genotype, relying on asymptotic normality of the score test statistic may yield spurious results.
In fact, the score test applied under asymptotic theory yields invalid p-values if the case proportion is
too small. In addition, the severity in this flaw increases with decreasing minor allele frequencies (MAF).
Both Ma et al. (2013) and Dey et al. (2017) have illustrated this issue for sample sizes of up to 20 000
individuals of which between 1% and 10% were cases. Motivated by the UK-Biobank SSTI data set, we
show that the normal approximation can be flawed even when the total sample size is in the order of
several hundred thousands. A solution proposed by Ma et al. (2013) is to apply the Firth (1993) bias-
corrected logistic regression test. The test gives valid p-values when the imbalance is not too severe, and
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it is at the same time less conservative than the likelihood ratio test. As Firth’s test is computationally
inefficient for genome-wide testing, a test based on a saddlepoint approximation to the score statistic
was proposed by Dey et al. (2017). This so-called SPA-test showed good properties yielding both valid
or close to valid p-values even when Firth’s test failed to do so, as well as being as powerful as Firth’s
test.

Our theoretical contribution to the ongoing development of valid score tests for genome-wide as-
sociation studies with imbalanced binary phenotypes is twofold. First, we establish the discrete and
bounded nature of the score, and derive the exact conditional distribution of the score test statistic for
two particular examples of logistic regression models, namely models with intercept and genetic variant
only, as well a models with an additional binary nuisance covariate (covariates associated with regres-
sion nuisance parameters). Second, we propose continuity-corrected saddlepoint approximations to the
conditional distribution of the score statistic. We compare our proposed method against exact results as
well as the approach introduced in Dey et al. (2017). We study the validity of tests both conditionally
and unconditionally.

We show that a score test derived from the efficient score, or equivalently a null-orthogonal reparame-
terization of the logistic regression model, coincides with the SPA-test by Dey et al. (2017), thus providing
a novel interpretation of the SPA-test as a two-step approximation to the conditional distribution of the
score statistic.

We study our proposed continuity-corrected saddlepoint approximations as well as other existing
methods, using the follow-up study of SSTIs as explained above, and on simulated data.

2 The score test statistic for logistic regression models in GWAS

2.1 Notation, statistical model and hypotheses
We consider tests for genotype–phenotype associations in large cohorts or populations. We assume that
binary phenotypes, Yi, non-genetic covariates xi and allele counts gi for a single variant, i = 1, . . . , n,
have been collected from n individuals. We consider directly biallelic allele counts in which gi ∈ {0, 1, 2}.
We model the relationship between the response and the covariates in a logistic regression model in which
the Yi are independent and Bernoulli distributed with success probability µi and

logitµi = xT
i β + γgi, (1)

i = 1, . . . , n. Here, xi is a vector of dimension d containing 1 (corresponding to an intercept) and d− 1
covariates, β a d-dimensional vector of nuisance parameters and γ the parameter of interest. Our aim is
to perform the hypothesis test

H0 : γ = 0 against H1 : γ 6= 0. (2)

In a GWAS, the test is performed multiple times, for different genetic variants. To control the FWER
at a 5% level in GWAS involving common variants, a significance level of 5 · 10−8 is commonly used for
each test (Jannot et al., 2015).

2.2 The score test statistic
The score vector is the gradient of the log-likelihood function with respect to the parameters, which for
the logistic regression model (1) is

U =

(
Uβ
Uγ

)
=

(
XT(Y − µ)
gT(Y − µ)

)
, (3)

where Y and g are column vectors of length n with Yi and gi as elements respectively, µ = EY , and
X is an n× d matrix with xT

i as rows. We have partitioned the score vector according to the parameter
of interest, γ, and the nuisance parameters, β. The score vector has mean 0 and covariance matrix, by
definition referred to as the expected Fisher information

F =

(
Fββ FT

γβ

Fγβ Fγγ

)
=

(
XTWX XTWg
gTWX gTWg

)
, (4)
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where W is a diagonal matrix with µi(1− µi) as the ii entry.
Using the score test, the null hypothesis of (2) is rejected if there is sufficient distance between the

null value γ = 0 and the maximum likelihood estimate of γ. To judge this distance, without actually
calculating the estimate, one uses the partial derivative Uγ of the log-likelihood with respect to γ at γ = 0,
along with the probability distribution of Uγ under the null. The proof of the following observation is
given in Appendix A.

Observation 1. When gi ∈ (0, 1, 2), the score Uγ with respect to γ is a bounded lattice random variable
with support on −gTµ, 1− gTµ, 2− gTµ, . . . , gT1− gTµ.

Importantly, the score is – as in our situation – often a function of unknown nuisance parameters.
Then, one may consider the conditional null distribution of the score for the parameter of interest, Uγ ,
given that the components of the score vector corresponding to the nuisance parameters are equal to
zero, Uβ = 0 (see e.g. Smyth, 2003). In this conditional framework, the unknown nuisance parameters
are equal to the corresponding maximum likelihood estimates calculated under the null hypothesis γ = 0,
so that Uγ = gT(Y −µ̂), where µ̂ consists of the fitted values of the null model. However, this conditional
score test statistic will still be a lattice random variable, yet with a narrower support than described in
Observation 1. See Appendix B.

In many applications, one may approximate the distribution of the score vector U by a multivariate
normal distribution with mean 0 and covariance matrix F . The conditional distribution of Uγ given
Uβ = 0 under the null (γ = 0) is then asymptotically a normal distribution with mean 0 and variance

F̃γγ = gTWg − gTWX(XTWX)−1XTWg. (5)

As outlined in the Introduction, the normal approximation to the score vector may lead to spurious
results for genotype–phenotype associations when the phenotype is a binary variable. For example, even
if the the overall sample size is large, the normal approximation may be inaccurate if the sample contains
few individuals with response yi = 1 (e.g., having the disease under study) and genotype gi > 0 (carrying
the minor allele).

In the next section, we present a score test for (2) based on a double saddlepoint approximation
to the conditional null distribution of the score statistic Uγ for the logistic regression model (1), given
Uβ = 0. Here, we first state two observations that give the exact conditional null distribution for two
special cases of the regression model (1). Proofs are given in Appendix A.

Observation 2. Consider a logistic regression model as in (1), but with logitµi = β + γgi, henceforth
denoted the intercept model. Let nj be the number of individuals with genotype gi = j, j = 0, 1, 2, and let
logitµ = β. Then, the null distribution of Uγ given Uβ = 0 is a sum of trivariate hypergeometric point
probabilities,

P (Uγ = u | Uβ = 0) =
∑

(v0,v1,v2)∈S

(
n0

v0

)(
n1

v1

)(
n2

v2

)
(
n
nµ

) =

min(bu∗/2c,n2)∑

k=max(d(u∗−n1)/2e,0)

(
n0

nµ−u∗+k

)(
n1

u∗−2k
)(
n2

k

)
(
n
nµ

) ,

where the sum is taken over all triples (v0, v1, v2) of integers in the set S defined by 0 ≤ vj ≤ nj for
j = 0, 1, 2, v0 + v1 + v2 = nµ and v1 + 2v2 = u∗, and u∗ = u+ (n1 + 2n2)µ. The function outputs dxe
and bxc denote the least integer greater than or equal to x (ceiling), and the largest integer less than or
equal to x (floor) respectively.

Observation 3. Consider a logistic regression model as in (1), where logitµi = β0 + β1xi + γgi, and xi
is a binary covariate taking value 0 or 1 (model with intercept and one binary non-genetic covariate).
Let lj be the number of individuals with xi = 0 and genotype gi = j, j = 0, 1, 2, and let l = l0 + l1 + l2.
Define similar counts mj and m for individuals with xi = 1. Let logitµ0 = β0, and logitµ1 = β0 + β1.
Then, under the null hypothesis,

P (Uγ = u | Uβ = 0) =
∑

s∈S

(
l0
v0

)(
l1
v1

)(
l2
v2

)
(
l
lµ0

)
(
m0

w0

)(
m1

w1

)(
m2

w2

)
(
m
mµ1

) ,

where the sum is taken over all sextuples s = (v0, v1, v2, w0, w1, w2) of integers in the set S defined
by 0 ≤ vj ≤ lj, 0 ≤ wj ≤ mj for j = 0, 1, 2, v0 + v1 + v1 = lµ0, w0 + w1 + w2 = mµ1 and
v1 + 2v2 − (l1 + 2l2)µ0 + w1 + 2w2 − (m1 + 2m2)µ1 = u.
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From Observations 2 and 3, it follows that an exact p-value for the hypothesis test (2) can be com-
puted for these two special cases of the logistic regression model (1). An extension of Observation 3
can also be derived for regression models with more categorical covariates. However, for more complex
covariate patterns, this approach becomes computationally infeasible, or even intractable when contin-
uous covariates are included. The next section introduces a method of computing p-values using double
saddlepoint approximation.

3 Double saddlepoint approximation
Tail probabilities P (Uγ ≥ u | Uβ = 0) may be estimated by double saddlepoint approximation (Butler,
2007). This will require the cumulant generating function of U =

(
UT
β Uγ

)
T =

(
X g

)
T(Y − µ)

(Section 2.2) and of Uβ.

3.1 Cumulant generating function

The joint cumulant generating function of U is defined by K(t) = lnE
(
et

TU
)
, were t is a vector of

dimension d + 1. By using the fact that Yi is Bernoulli distributed with parameter µi (Section 2.1), we
obtain

K(t) =

n∑

i=1

(
ln
(
1− µi + µie

tTzi
)
− µitTzi

)
, (6)

∇K(t) =

n∑

i=1

µi

(
1

(1− µi)e−tTzi + µi
− 1

)
zi, and (7)

H(t) =
n∑

i=1

µi(1− µi)e−t
Tzi

(
(1− µi)e−tTzi + µi

)2 zizT
i , (8)

where ∇K and H denote the gradient and the Hessian of K, respectively, and zi =
(
xT
i gi

)
T. The

cumulant generating function of Uβ, its gradient and Hessian, Kβ, ∇Kβ and Hβ, respectively, are
obtained by replacing zi by xi and letting t have dimension d in (6)–(8).

3.2 Approximated tail probabilities with continuity correction
The survival function (right-tail probability) S(u) = P (Uγ ≥ u | Uβ = 0) can be approximated as given
by Barndorff-Nielsen (1990),

Ŝ(u) = 1− Φ
(
w − 1

w
ln
v

w

)
, (9)

where Φ denotes the standard normal cumulative distribution function. To approximate the conditional
survival function of a lattice random variable we have chosen the double saddlepoint survival approxi-
mation with the so-called second continuity correction. Using f(t1, t2) as shorthand for f

((
tT1 tT2

)
T
)
,

where f is a function and t1, t2 vectors, we have

w = sgn(t̂γ)

√
2

(
−K(t̂β, t̂γ) + t̂γ

(
u− 1

2

))
and

v = 2
(

sinh
t̂γ
2

)√detH(t̂β, t̂γ)

detHβ(0)
,

where
(
t̂Tβ t̂γ

)
T is the saddlepoint satisfying ∇K(t̂β, t̂γ) =

(
0T u− 1/2

)
T (Skovgaard, 1987, see But-

ler, 2007, p.114). In general, also the d-dimensional vector t̃β satisfying ∇Kβ(t̃β) = 0 is involved in the
expressions for w and v, but t̃β = 0 in our case (see Appendix C). Left-tail probabilities can be approxi-
mated, taking into account that Uγ is a lattice variable with step 1, by P (Uγ ≤ u | Uβ = 0) = 1−S(u+1).
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3.3 Two-sided p-values
By assuming the score test statistic to have a normal distribution, and for some observation u, a two-
sided p-value is reasonable and given by P (|Uγ | ≥ |u| | Uβ = 0) (under the null). However, as the score
test statistic has a lattice distribution, the point −u might not be on the grid. If so, the closest grid
point to −u farthest away from zero is obtained by uinv = u − sgn(u) · d2 · |u|e. We define a two-sided
p-value, assuming u positive, to be P (Uγ ≥ u | Uβ = 0) + P (Uγ ≤ uinv | Uβ = 0), and vice versa when
u is negative.

An example is given in Figure 1a where the exact lattice distribution of the score test statistic under
the null hypothesis is given for the intercept model with a genotype vector simulated with MAF = 0.05
and a case proportion of 0.05 (n = 1000). Included is the support of the lattice distribution [umin, umax] =
[−5.5, 46.5]. An observed u = 4.5 will then give uinv = −4.5, a situation where uinv = −u. The p-value
is then equal to the sum of the bars coloured in orange. The deviation from the normal distribution
increases for decreasing case proportion, as can be seen when comparing Figure 1a to 1b, where the
case proportion is reduced to 0.01 while keeping the same genotype vector in Figure 1b. In fact, the
skewness increases for decreasing case proportion such that the probability mass of the distribution is
concentrated on the left, with a longer right tail. Consequently, the score test statistic is asymmetric as
well as bounded, which means the point uinv might be outside the support of the lattice distribution.
In that case, a one-sided p-value will be computed as seen in Figure 1b with bars coloured orange only
to the right of the observed u = 1.9 (uinv = −2.1 < umin = −1.1). The same observation of increased
skewness can be seen with a fixed case proportion, but decreasing MAF.

MAF = 0.05, case proportion(#cases) = 0.05(50)

−5.5 4.5 46.5
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f(
u γ

|u
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0)

MAF = 0.05, case proportion(#cases) = 0.01(10)

−1.1 1.9 10.9

0.
00

0.
10

0.
20

0.
30 b)

uγ

Figure 1: The exact lattice distribution of the score test statistic for the intercept model for different case
proportions (genotype vector fixed, 1000 individuals). Included is the support [umin, umax] of the lattice
distribution in each case together with an example of an observed statistic in between, as well as the
corresponding computed p-value coloured in orange. The deviation from normal distribution increases for
decreasing case proportion. When the distribution is sufficiently skewed, a one-sided p-value is computed.

4 Single saddlepoint approximation using the efficient score
Our proposed method is related to the SPA-test by Dey et al. (2017), which is also based on a saddlepoint
approximation to the distribution of a score test statistic. In this section, we provide a novel interpretation
of the SPA-test as a two-step approximation to conditional inference, and propose a modification.

We implicitly introduced the score test statistic gT (Y − µ̂), where µ̂ is the maximum likelihood
estimate of µ under the null hypothesis, solved by Uβ = 0. Rather than approximating the distribution
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of this test statistic directly, the common procedure for score test statistics in the presence of nuisance
parameters is to use conditional inference by conditioning Uγ on Uβ = 0.

Other methods for approximate conditional inference in the presence of nuisance parameters include
orthogonal parametrization (Cox & Reid, 1987) and projective methods (Waterman & Lindsay, 1996).
The first-order projective score, perhaps better known as the efficient score, is for our model (Equation
(1)) defined by

Ũγ = Uγ − FγβF−1ββUβ.
As noted by Bickel et al. (1993), the efficient score may be interpreted in general as the score cor-
responding to a reparameterization (β, γ) → (α, γ), by letting β(α, γ) = α − F−1ββF

T
γβγ. With this

reparameterization of the logistic regression model, logit(µi) = xT
i β(α, γ) + γgi = xT

i α + γg̃i, where
g̃i = gi − xT

i F
−1
ββF

T
γβ. Let F̃ denote the expected Fisher information of Ũ =

(
ŨT
α Ũγ

)
T, the repa-

rameterized score vector. With this reparameterization, the parameter γ and the nuisance parameters
α are locally information orthogonal at γ = 0, which means that F̃αγ and F̃γα in the expected Fisher
information F̃ are zero-vectors (see e.g. Lindsey (1996)). In this case, asymptotically Ũ has a normal
distribution, however additionally Cov(Ũα(µ̂), Ũγ(µ̂))→ 0 when γ = 0 and µ = µ̂. With Ũ asymptoti-
cally multivariate normal, so will Ũα and Ũγ (univariate) be. As covariance equal to zero for two normal
distributed random variables implies independence, this means that the statistic of Ũγ conditional on
Ũα = 0 is asymptotically the same as the unconditional distribution of Ũγ when the null hypothesis is
true with µ̂ treated as a plug-in constant for µ.

In our case with expected Fisher information given in (4),

Ũγ = gT(Y − µ)− gTWX(XTWX)−1XT(Y − µ)

= (gT − gTWX(XTWX)−1XT)(Y − µ)

= (g −X(XTWX)−1XTWg)T(Y − µ)

= g̃T(Y − µ),

with g̃ = g −X(XTWX)−1XTWg the vector of all components g̃i, and defined as in Dey et al. (2017).
Observe that when Uβ = XT(Y − µ) = 0, the observed efficient score, ũ, is equal to u, the original
observed score. Moreover, E(Ũγ |Ũα = 0) = E(Uγ |Uβ = 0) = 0, and Var(Ũγ |Ũα = 0) = Var(Uγ |Uβ =

0) = g̃TW g̃ with Ũα = Uβ under the null hypothesis. At last, observe that asymptotically as µ̂ p−→ µ
under the null hypothesis,

Cov(Ũγ(µ̂), Ũα(µ̂)) = Fγα(µ̂) = E
(
Ũγ(µ̂)Ũα(µ̂)T

)

= E

((
g −X

(
XTŴX

)−1
XTŴg

)T

(Y − µ̂) (Y − µ̂)
T
X

)

= gTE
(

(Y − µ̂) (Y − µ̂)
T
)
X − E

(
gTŴX

(
XTŴX

)−1
XT (Y − µ̂) (Y − µ̂)

T
)
X

→ gTWX − gTWX
(
XTWX

)−1
XTWX = 0T ,

where Ŵ is the diagonal matrix with µ̂i(1 − µ̂i) as the ii entry. Hence, we have shown indeed that Ũγ
and Ũα are asymptotically independent under the null hypothesis.

Under the null hypothesis, using Ũ leads asymptotically to the same unconditional inference of Ũγ(µ̂)

as the conditional inference of Uγ given Uβ = 0. In other words, f(Ũγ)
d−→ N(0, F̃γγ), with F̃γγ given in

(5). However, this will still be inaccurate for an imbalanced response and a skewed covariate of interest.
Under this framework, we interpret the test proposed by Dey et al. (2017) as a two-step approach,
where the first step is to apply the efficient score, and in the second step the corresponding unconditional
statistic is approximated by a single saddlepoint method via the univariate cumulant generating function
of Ũγ , given by

K(t) =
n∑

i=1

ln(1− µ̂i + µ̂ie
g̃it)− t g̃T µ̂.
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Since such a two-step approach does not require a double saddlepoint approximation, this method is
computationally more efficient. In Dey et al. (2017), the efficient score test statistic is assumed to have a
continuous distribution. However, when gi ∈ {0, 1, 2}, the efficient score test statistic in fact has a lattice
distribution. Therefore, we propose to use a continuity correction. Similarly to the continuity-corrected
double saddlepoint method outlined in the previous section, left-tail probabilities are estimated as in
Equation (9), now with

w = sgn(t̂)

√
2(t̂(uγ − 1/2)−K(t̂)), and v = 2sinh(t̂/2)

√
K ′′(t̂),

where t̂ is the saddlepoint obtained by solving K ′(t̂) = uγ − 1/2. Furthermore, we apply the same
algorithm for obtaining two-sided p-values as in Section 3.3.

5 Comparison of methods
For a specified significance level α, a valid test satisfies P (type I error) ≤ α. In our setting, we find it
relevant to distinguish between conditional and overall (unconditional) validity. To clarify what is meant
by this, consider a simple logistic regression model with no nuisance covariates (intercept only model).
The covariate vector g is fixed while the response vector Y is random. Under the null, Yi ∼ binom(1, µ)
for all i = 1, . . . , n, where µ = exp(β0)/(1 + exp(β0)). For a particular realization y, the observed score
test statistic uγ = gT (y − µ̂) = gT (y − ȳ1) may be compared to the conditional null distribution of Uγ ,
i.e. the distribution of gT (Y − ȳ1) given that Y is restricted by

∑
i Yi = nȳ = v (Observation 2). Thus,

for all datasets in which the realization y satisfies
∑
i yi = v, a test is conditionally valid only when

P (type I error|∑i Yi = v) ≤ α. On the other hand, the overall probability of type I error is given by

∑

v

[
P

(
type I error |

n∑

i=1

Yi = v

)
P

(
n∑

i=1

Yi = v

)]
. (10)

A test that is conditionally valid for all v, will also be valid overall. The exact test derived in Obser-
vation 2 satisfies this property. An approximation to the exact test may be conditionally valid for some
v, but invalid overall, or valid overall but conditionally invalid for some v. In the case with nuisance
covariates, Equation (10) may be generalized to:

∑

X,y : Uβ=0

[P (type I error | Uβ = 0)P (Uβ = 0)] .

To evaluate the performance of our proposed methods, we consider both conditional and overall
validity for models where the exact test is available. Approximation methods are evaluated based on their
ability to control the overall type I error rate as well as the proportion of tests that are conditionally
invalid.

5.1 Intercept model
In this section, we consider the intercept model with no nuisance parameters. We compare two discrete
and two continuous conditional inference approximation methods with the exact test. The discrete meth-
ods are the double saddlepoint method with continuity correction as described in section 3, henceforth
termed DSPA-CC, and the continuity-corrected single saddlepoint method based on the efficient score
as described in section 4, henceforth termed ESPA-CC. The continuous methods are the normal approx-
imation and the single saddlepoint method based on the efficient score (henceforth termed ESPA). To
the best of our knowledge, the ESPA method mimics the SPA-test of Dey et al. (2017) as implemented
in the SPA-package in R. We present a simple example in order to highlight some of the key differences
between the methods.

Let n = 1000 and let g be the covariate vector with n0 = 980 and n1 = 20 and n2 = 0. Without speci-
fying what µ is, we first calculate the probabilities P (type I error |∑n

i=1 Yi = v), for all v = 1, 2, . . . , n−1.
For a particular realization v, and discrete sample space within the support [uL, uU ] of the condi-
tional null distribution of Uγ , where uL and uU need not be integers, we obtain the rejection region
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{uL, . . . , cL} ∪ {cU , . . . , uU} of the exact test. This can be achieved by a grid search from the left to
obtain cL as well as a separate grid search from the right to obtain cU since the probability distribution
is not symmetric. Then, P (type I error |∑n

i=1 Yi = v) = P (Uγ ≤ cL ∪ Uγ ≥ cU |
∑n
i=1 Yi = v). For the

approximation methods DSPA-CC, SPA-CC and SPA, we similarly use a grid search to identify lower
(c∗L) and upper (c∗U ) critical values that lead to rejection at the specified significance level. For the nor-
mal approximation, we obtain a critical value c∗ from the normal distribution with mean 0 and variance
v
n (1− v

n )
[
n0(0− n1

n )2 + n1(1− n1

n )2
]
, and then obtain the proper lower and upper critical values by the

nearest grid points c∗L and c∗U to −c∗ and c∗ such that c∗L ≤ −c∗ and c∗U ≥ c∗. Then, for rejection regions
{uL, . . . , c∗L} ∪ {c∗U , . . . , uU}, we calculate the exact conditional probability of erroneously rejecting the
null hypothesis using the different approximation methods. For a specified value of µ, we obtain prob-
abilities P (

∑n
i=1 Yi = v) for each observed v. The overall probability of type I error can be computed

according to Equation (10). In addition, the probability of a conditionally invalid test for each method
and for each µ can be computed by observing which values v where P (type I error | ∑i Yi = v) > α,
and add together the probabilities P (

∑n
i=1 Yi = v) for each such v. See Figure 2.

From this example, we make four observations;

1. The exact test is always conservative (see Figure 2). When a significance level α is specified, the
discrete nature of the test results in an achieved significance level less than α. This observation is
of course well-known for discrete test statistics.

2. Both of the discrete approximations (DSPA-CC and SPA-CC) closely resemble the exact test in
terms of overall type I error rates (Figure 2). At significance level α = 0.05, both methods gave
conditionally invalid tests in four situations; v = 301, v = 325, v = 675, and v = 699. For instance
for µ = 0.31 and µ = 0.69, this results in probabilities ≈ 0.04 of sampling a dataset where these
methods are conditionally invalid. At significance level α = 5 · 10−5, DSPA-CC is conditionally
valid for any v, while SPA-CC is conditionally invalid for v = 406 and v = 594. For instance for
µ = 0.41 and µ = 0.59, this results in a slight probability (≈ 0.02) of sampling a dataset where the
SPA-CC method is conditionally invalid.

3. Even at significance level α = 0.05, the normal approximation is invalid for different µ-values
(Figure 2). For significance level 5 · 10−5, the normal approximation is valid when the response is
balanced (µ ≈ 0.5). However, for skewed responses (small or large µ), the normal approximation
becomes severely unreliable. At significance level α = 0.05, the normal approximation was condi-
tionally invalid in around 40% of possible realizations of

∑
i Yi. At significance level α = 5 · 10−5,

this number had increased to around 64%. The majority of situations where the normal approxi-
mation was conditionally invalid was for small or large number of cases v, which is in-line with the
observations made of overall type I error rates for skewed responses (Figure 2).

4. The SPA method is less conservative than the exact test, and at times anti-conservative. At signifi-
cance level α = 0.05, the SPA method was conditionally invalid around 43% of possible realizations
of
∑
i Yi, and at significance level α = 5 · 10−5, the SPA method was conditionally invalid around

39% of situations. As opposed to the normal approximation method where invalid tests clustered
towards skewed response distributions, the SPA method fluctuates relatively evenly between con-
ditionally valid and conditionally invalid as the number of cases v increases for both significance
levels 0.05 and 5 · 10−5. Therefore, the test is approximately equally good at any µ (Figure 2).
Furthermore, the absolute differences in type I error rate control improves as the significance level
decreases. This observation has a simple explanation. For some data sets, the SPA method yields
the same critical region as the exact test, while at times the critical region is shifted by as little as
one unit (c∗U = cU − 1 or c∗L = cL + 1). At a significance level of α = 0.05, this shift can result in a
substantial inflation in type I error rates, while at small significance levels, point probabilities are
of such small magnitudes that the shift is less notable. As critical regions oscillate between correct
and slightly shifted, conditional type I error rates oscillate above and below α, and averaging out
to produce an overall type I error rate ≈ α.

5.2 Simulations of genetic association studies with an imbalanced response
The purpose of the following simulation study is to compare methods in a setting resembling a genome-
wide association study with an imbalanced response, for which exact tests are not available. The simu-
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Figure 2: Exact overall type I error probabilities as well as probability of conditionally invalid tests for
the different approximations methods for the distribution of the score test statistic, for different values
of µ in the intercept model. We compare with the exact test using the known distribution of the score
test statistic.

lation set-up is motivated by Dey et al. (2017) by conditioning on the number of cases, and we estimate
the type I error rate conditional on the number of cases. The sample size considered is n = 20000, with
case proportion 2% and 0.2%. We consider the logistic regression model

logit(µi) = β0 + xi,1 + xi,2 + γgi,

with X1 ∼ Bernoulli(0.5), X2 ∼ N(0, 1) and G ∼ binom(2,MAF) with the MAF taking the values
0.05, 0.005, 0.0005 and 0.00025. Since we are evaluating validity of tests, we set γ = 0. Finally, we set
β0 = −5.6 such that the disease prevalence is 1% in the population.

The covariates xi,1 and xi,2 are sampled conditionally on their respective phenotype value yi, while
the genotype value is sampled independently of this under the null hypothesis. See Supplementary File for
details. This ensures that the number of cases is equal for all simulations. For each set of case proportion
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and MAF, we simulate 109 data sets and record the number of times the null hypothesis is rejected at
the α = 5 · 10−8 significance level when using (1) the double saddlepoint approximation with continuity
correction (DSPA-CC), (2) the continuity-corrected univariate saddlepoint approximation based on the
efficient score (ESPA-CC), and (3) the continuous univariate saddlepoint approximation of the efficient
score (ESPA). The resulting empirical type I error rates are presented in Figure 3, along with 95%
Clopper-Pearson confidence intervals.
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Figure 3: Approximated expected type I error rates - conditional on the number of cases - for ESPA,
ESPA-CC and DSPA-CC from simulations with case proportions 0.02 and 0.002, and for small MAFs
when nuisance covariates are included.

The simulation results closely follow the observations made in the previous section. The DSPA-CC
and ESPA-CC are conservative (overall probability of type I error < α), while the type I error rate of
the ESPA method is ≈ α. The results are comparable with the pattern for conditionally invalid tests in
Figure 2, specifically for the small case proportion, in that we sense a large fluctuation in the probability
of invalid tests for ESPA, while both ESPA-CC and DSPA-CC have a small probability of invalid test,
which is decreasing for decreasing MAF. We also observe that the type I error rate, conditional on the
number of cases, for EPSA is increasing for decreasing MAF. The simulation study with case proportion
0.002 serves to illustrate deviations between the DSPA-CC and ESPA-CC method, and we observe that
the ESPA-CC is somewhat more conservative in this setting.

6 Application to UK biobank data
We consider a recent GWAS in the UK Biobank with motivation from Rogne et al. (2021). The phenotype
of interest is skin and soft tissue infections (SSTIs), and individuals are defined as cases if they have been
hospitalized with main ICD-10 codes A46 (erysipelas), L03 (cellulitis and acute lymphangitis), or M72.6
(necrotizing fasciitis) in the period between the end of the recruitment period (2010-10-01) and April
2017 (2017-03-31). Individuals who had reported ICD-10 codes, or corresponding ICD-9 codes (035 and
729.4), before 2010-10-01 are removed as well as individuals with date of death reported after 2010-10-01
in the death register (see Data-Field 40000 in the UK Biobank data). As nuisance covariates we include
age when attended assessment centre, genetic sex, and four principal components. To avoid complexities
due to cryptic relatedness we only include unrelated individuals reported as White British (achieved
through Data-Field 22006 and 22020 in UK Biobank). The principal components are calculated using
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EIGENSOFT (version 6.1.4) SmartPCA (Patterson et al., 2006; Price et al., 2006). Only directly geno-
typed SNPs are considered, and phenotype-independent quality control of the genetic data is completed
using PLINK1.9, with details given in the Supplementary File. This results in a total of 293 964 individ-
uals and 529 024 SNPs with 2051 individuals defined as cases and 291 913 controls, resulting in a case
proportion of 0.7 %. All SNPs are first investigated by computing p-values using the normal approxima-
tion to the score test statistic. As this test is proven to be too optimistic, SNPs with p-values less than
α = 5 ·10−5 are investigated more thoroughly by computing p-values using the DSPA-CC and ESPA-CC
methods as implemented by us, as well as the SPA-test of Dey et al. (2017), denoted ESPA. Dey et al.
(2017) also propose a computationally more efficient approximation to their SPA-test by essentially as-
suming that the nuisance covariates are balanced. In a double saddlepoint setting, this assumption may
be generalized to argue that the score vector Uβ approximately has a multivariate normal distribution
under the null hypothesis. Taking a similar approach to Dey et al. (2017), we may partition the joint
CDF of Uβ and Uγ into a sum over all individuals with genotype value gi > 0 and those with gi = 0.
For the latter sub-sample, the CGF simplifies to a CGF of the score vector U∗β including individuals
with gi = 0. Assuming that also U∗β is normal, this part of the joint CGF may be replaced by a normal
CGF, and by pre-computing the variance of U∗β, an approximated double saddlepoint method may be
computed based only on the sub-sample individuals with genotypes gi > 0. Details may be found in the
Supplementary File. For comparative purposes, we also compute p-values based on the fastSPA method
of Dey et al. (2017) and our similar fastDSPA-CC approach.

Test results for the SNPs with the smallest normal-approximated p-values are given in Table 1. In
this setting, we no longer know whether the null hypothesis is true or not for each variant. However, we
expect only a tiny proportion of all variants where the null hypothesis is false. Even though no SNPs
reached the significance level α = 5 · 10−8, we see a pattern similar to the results for the intercept
model and our simulation results. The normal approximation is the most optimistic, followed by ESPA
and fastSPA tests. The DSPA-CC test is more conservative, while the most conservative test is ESPA-
CC. The fastDSPA-CC is slightly less conservative than DSPA-CC. The greatest difference between
test results is observed for the SNP with a small minor allele frequency (rs113113104, MAF = 0.03).
The difference between the p-values reduces for increasing MAFs. For the SNP rs566530 with MAF =
0.48, the SPA test gives a smaller p-value than the normal approximation, while the other methods give
consistently larger p-values.

Table 1: The common variants with the smallest computed p-values using normal approximation to the
score test statistic for the GWAS of skin and soft tissue infections. Alternative p-value computations are
included for comparison.

SNP CHR MAF Norm. apx. ESPA fastSPA SPA-CC DSPA-CC fastDSPA-CC
rs113113104 6 0.03 2.39e-07 5.97e-07 6.04e-07 7.27e-07 7.10e-07 6.52e-07
rs6551253 3 0.28 8.38e-06 8.47e-06 8.78e-06 9.18e-06 9.00e-06 8.92e-06
rs78404737 2 0.10 8.50e-06 9.63e-06 9.78e-06 1.08e-05 1.06e-05 1.00e-05
rs78696065 7 0.02 8.80e-06 1.54e-05 1.55e-05 1.89e-05 1.87e-05 1.75e-05
rs479947 6 0.11 1.19e-05 1.29e-05 1.33e-05 1.44e-05 1.42e-05 1.35e-05
rs566530 6 0.48 1.46e-05 1.40e-05 1.48e-05 1.50e-05 1.47e-05 1.48e-05
rs56355912 10 0.03 1.51e-05 2.16e-05 2.16e-05 2.57e-05 2.54e-05 2.38e-05
rs72733294 5 0.36 1.58e-05 1.60e-05 1.60e-05 1.72e-05 1.69e-05 1.69e-05
rs11074743 16 0.40 1.69e-05 1.68e-05 1.71e-05 1.80e-05 1.77e-05 1.77e-05
rs1562963 11 0.07 2.02e-05 1.99e-05 2.33e-05 2.26e-05 2.23e-05 2.13e-05

6.1 Rare variants
The difference between the methods becomes even larger when investigating rare variants. We consider the
UK Biobank exome sequence data consisting of 45 596 unrelated individuals of European origin. We limit
ourselves to White British individuals using the same requirements for the definition of SSTIs as for the
common variants. This results in a total number of 30 210 individuals to investigate with 210 individuals
defined as cases, once again leading to a case proportion of about 0.7 %. See the Supplementary File for
further information about quality control. The principal components are computed as for the common
variants analysis, however separately on these 30 210 individuals. We will in addition only consider
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chromosome 6 as well as rare variants with a minimum minor allele count (MAC) equal to 3. The results
are given in Table 2.

Table 2: The rare variants with the smallest computed p-values using normal approximation to the
score test statistic for the GWAS of skin and soft tissue infections. Alternative p-value computations are
included for comparison.

SNP CHR MAC Norm. apx. ESPA fastSPA ESPA-CC DSPA-CC fastDSPA-CC
6:26045407:G:A 6 4 2.07e-36 4.31e-05 4.31e-05 2.2e-04 2.2e-04 2.2e-04
6:41097421:T:C 6 4 2.21e-32 4.92e-05 4.92e-05 2.6e-04 2.6e-04 2.5e-04
6:24852645:G:T 6 4 1.37e-25 8.93e-05 8.93e-05 4.4e-04 4.3e-04 4.2e-04
6:31772925:C:A 6 5 6.36e-23 1.3e-04 1.3e-04 6.0e-04 6.0e-04 5.8e-04
6:20402579:C:T 6 3 4.19e-22 0.0020 0.0020 0.010 0.010 0.010
6:132588925:C:T 6 6 8.78e-22 1.5e-04 1.5e-04 6.9e-04 6.9e-04 6.7e-04
6:17675831:G:A 6 3 8.94e-22 0.0020 0.0020 0.010 0.010 0.010
6:110960684:T:G 6 3 2.05e-21 0.0017 0.0017 0.0049 0.0049 0.0049
6:7894854:T:C 6 16 1.88e-20 3.07e-05 3.073e-05 1.2e-04 1.2e-04 1.0e-04
6:148514044:G:T 6 3 1.94e-20 0.0022 0.0022 0.011 0.011 0.011

It is clear that the normal approximation to the score test statistic is very inaccurate in this setting.
However, we also see that the difference between ESPA and the other saddlepoint approximations with
continuity correction differ in about one order of magnitude. As a result, we expect the importance of
the continuity correction to be most consequential for rare variants. Another observation is that ESPA-
CC and DSPA-CC are practically identical in this case. We also see that the speed-up approximation
methods are more accurate which can be explained by observing that the accuracy of the multivariate
normal approximation of U∗β in fastDSPA-CC, depends on the number of individuals with gi = 0, which
increases for decreasing MACs. The same applies for the approximation of the corresponding normal
distribution in fastSPA.

7 Discussion
We have investigated different saddlepoint approximations for GWAS with binary phenotypes in order
to achieve valid p-values. We have shown how the saddlepoint approximation introduced in Dey et
al. (2017) can be interpreted as a two-stage procedure in which one first applies the efficient score to
approximate the conditional score test statistic as an unconditional statistic, and then performs single-
saddlepoint approximation. We further show how to apply the double saddlepoint approximation to
directly approximate the conditional score test statistic.

We distinguish between conditional and overall type I error rate. Taking into account both these
measures, we conclude that continuity-corrected saddlepoint approximations are most appropriate in this
setting. The continuity-corrected double saddlepoint approximation, DSPA-CC, and single-saddlepoint
approximation, ESPA-CC, using the efficient score are both considered to perform well, however there
are situations in which ESPA-CC is somewhat more conservative than DSPA-CC, indicating DSPA-CC
to be somewhat more powerful.

There are additional continuity correction variants, and the one used here is called the second conti-
nuity correction. A first and a third continuity correction are alternatives (Butler, 2007), and specifically
the first continuity correction was also investigated with very similar results as when using the second
continuity correction, however slightly more inaccurate when considering the intercept model, see Sup-
plementary File. An alternative saddlepoint approximation to the CDF of a random variable is the one
introduced in Lugannani and Rice (1980). This approximation gives the same results as the approxi-
mation by Barndorff-Nielsen (1990) in most situations. However, we observed in simulations that when
the case proportion and MAF approaches zero, the approximation by Lugananni and Rice is inaccurate,
see Supplementary File. See for instance Booth and Wood (1995) for similar observations in a different
application.

Consider the case where one wants to include imputed SNPs. For most imputation methods, the
output for each imputed SNP is a probability that the minor allele count is equal to 0, 1 or 2, denoted
p0, p1 and p2. Then one must be aware of the fact that when the imputed genotype is set to be the
expected minor allele count, p1 + 2p2, the score test statistic will no longer have a lattice distribution,
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and so continuity correction does no longer apply. However, to account for imputed SNPs in our method
one can instead set the imputed minor allele count to be equal to the most likely allele count according
to the imputation method.

Single-variant tests on rare variants are often low-powered, and therefore several region-based tests
including several SNPs in the same genetic region have been proposed to gain power. However, many of
these methods again rely on single-variant tests as building blocks, among them SKAT and ACAT (Liu
et al., 2019; Wu et al., 2011). It is therefore essential that the single-variant tests are sufficiently accurate.
How the insights into the score test statistic introduced in this work would impact region-based tests,
could be the topic of future research.
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A Proofs of Observations 1–3
Proof of Observation 1. When gi ∈ (0, 1, 2), we note that gTY is an integer and gTµ a constant, so that
Uγ = gTY − gTµ has support on a subset of a lattice with step 1. The minimum is obtained for Y = 0
and the maximum for Y = 1 (a vector of ones), and the result follows.

Proof of Observation 2. We assume throughout the proof that the null hypothesis is true, γ = 0. Denote
by Vj the sum of responses Yi among individuals with genotype gi = j, j = 0, 1, 2, and let V =
V0 + V1 + V2 =

∑n
i=1 Yi be the total sum of responses. With this notation, Uγ = V1 + 2V2− (n1 + 2n2)µ,

and Uβ = V − nµ, so that the condition Uβ = 0 is equivalent to V = nµ.
The Vj are independent, and Vj is binomially distributed with parameters nj and µ, j = 0, 1, 2,

and V is binomially distributed with parameters n and µ. Assume that v0 + v1 + v2 = nµ with vj in the
support of Vj . Then

P (V0 = v0, V1 = v1, V2 = v2 | V = nµ
)

=
P (V0 = v0)P (V1 = v1)P (V2 = v2)

P (V = nµ)

=

(
n0

v0

)
µv0(1− µ)n0−v0(n1

v1

)
µv1(1− µ)n1−v1(n2

v2

)
µv2(1− µ)n2−v2

(
n
nµ

)
µnµ(1− µ)n−nµ

=

(
n0

v0

)(
n1

v1

)(
n2

v2

)
(
n
nµ

) ,

a trivariate hypergeometric probability.
Now, P (Uγ = u | Uβ = 0) = P

(
V1 + 2V2 = u∗

∣∣ V = nµ
)
can be found by summing the above

probabilities over (v0, v1, v2) ∈ S. This gives the first sum of the Observation. The more explicit second
version of the sum is obtained by solving the two equations in the definition of S for v0 and v1 in terms
of k = v2. The limits of the sum is determined by the inequalities in the definition of S.

Proof of Observation 3. We assume throughout the proof that the null hypothesis is true, γ = 0. Denote
by Vj the sum of responses Yi among individuals with xi = 0 and genotype gi = j, j = 0, 1, 2, and
let V = V0 + V1 + V2. Define similar sums Wj and W for individuals with xi = 1. With this notation,
Uγ = V1 + 2V2− (l1 + 2l2)µ0 +W1 + 2W2− (m1 + 2m2)µ1, and UT

β =
(
V +W − lµ0 −mµ1 W −mµ1

)
,

so that the condition Uβ = 0 is equivalent to V = lµ0 and W = mµ1.
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All the Vj and Wj are independent, and Vj is binomially distributed with parameters lj and µ0,
and Wj with parameters mj and µ1, j = 0, 1, 2. As in the proof of Observation 2, the conditional point
probabilites of (V0, V1, V2) given V = lµ0 and (W0,W1,W2) givenW = mµ1 are trivariate hypergeometric
probabilities, and by independence of the two triples, the conditional joint point probability is the product
of the two. Then P (Uγ = u | Uβ = 0) can be found by summing those probabilities over s ∈ S.

B Support of the conditional score test statistic
Consider the score test statistic of Uγ conditional on Uβ = 0, given by gT (Y − µ̂). We have −µ̂ ≤
Y − µ̂ ≤ 1 − µ̂ (elementwise inequalities), where 1 is a vector of ones. Since all gi ≥ 0, premultiplying
the inequalities with gT gives bounds on the support of gT (Y − µ̂):

−gTµ̂ ≤ Uγ ≤ gT(1− µ̂). (11)

The first equality holds when gTY = 0 and the second when gTY = gT1. However, this combination
is not achievable if it does not satisfy Uβ = XT (Y − µ̂) = 0. Specifically, the minimal and maximal
achievable values of the conditional score test statistic is given by the constraint optimization problems:

min(Uγ) = min
y

gT (y − µ̂)

such that XT (y − µ̂) = 0,

and

max(Uγ) = max
y

gT (y − µ̂)

such that XT (y − µ̂) = 0.

As an example, consider the intercept model with n = 1000 and g as in Section 5.1 with n0 = 980,
n1 = 20 and n2 = 0 as well as the observation

∑1000
i=1 Yi = 10. Then µ̂i = 10/1000 = 0.01 satisfies

Uβ0
=
∑1000
i=1 (Yi − µi) = 0. Then the minimum achievable value is indeed min(Uγ) = −gT µ̂ = −0.2,

since we may have a combination where Yi = 0 for all gi > 0, and still get
∑1000
i=1 Yi = 10. However,

max(Uγ) = 10 − gT µ̂ = 9.8 since gTY can be no larger than the combinations where gi = 1 for all
Yi = 1, which can only occur ten times in order to satisfy

∑1000
i=1 Yi = 10.

C Solution to ∇tβKβ(t̃β) = 0

Given the marginal cumulant generating function of Uβ, defined by Kβ(tβ) (a function of d variables)
with

Kβ(tβ) =
n∑

i=1

ln(1− µi + µi exp(xTi tβ))− tTβXTµ, (12)

and corresponding gradient

∇tβKβ(tβ) =
n∑

i=1

µixi

(
1

(1− µi) exp(−xTi tβ) + µi
− 1

)
. (13)

First, one can easily observe that t̃β = 0 is a solution to ∇tβKβ(tβ) = 0. Second, if one can prove
that the CGF is a convex function, then t̃β = 0 is a unique solution to ∇tβKβ(tβ) = 0.

Proof. In fact, convexity of a cumulant generating function with any random variable U , K(t) =

lnE(et
TU ), in general follows from the Hölder inequality, E(|X|c|Y |1−c) ≤ (E|X|)c(E|Y |)1−c for all
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c in (0, 1), where X and Y are random variables. A function f is convex if f(ct1 + (1 − c)t2) ≤
cf(t1) + (1− c)f(t2) for all c in (0, 1). Now,

K(ct1 + (1− c)t2) = lnEe(ct1+(1−c)t2)TU = lnE
(
ect

T
1 Ue(1−c)t

T
2 U
)

≤ ln
((
Eet

T
1 U
)c(

Eet
T
2 U
)1−c)

= c lnEet
T
1 U + (1− c) lnEet

T
2 U

= cK(t1) + (1− c)K(t2),

showing that K is convex.
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1 Quality assessment of UK Biobank Genetic Data

1.1 Common variants
Analyses were limited to autosomal variants covered by both genotype arrays used over the course of
the study and that passed the batch-level quality control. SNPs were included if the call rate was above
99%, the Hardy-Weinberg equilibrium p-value was less than 5 · 10−8, and the minor allele frequency was
larger than 1%. 529 024 SNPs passed these filters.

Individuals were removed if the genetic and reported sex did not match and if the sex chromosomes
were not XX or XY. Outliers in heterozygosity and missing rates were removed. The analyses were limited
to those identified as Caucasian through the UK Biobank’s PCA analysis (field 22006). All individuals
had an individual call rate larger than 99%. 366 752 individuals passed these filters. Individuals were
removed if the genetic and reported sex did not match and if the sex chromosomes were not XX or XY.

1.2 Rare variants
Analyses were limited to autosomal variants at chromosome 6. Details of quality assessment of the
sequenced exomes from 49 960 UKB participants is given in Van Hout et al. (2019). For further quality
assessment, out of these 49 960 participants, the analysis were limited to those identified as Caucasian
through the UK Biobank’s PCA analysis (field 22006). Individuals were removed if the genetic and
reported sex did not match and if the sex chromosomes were not XX or XY. The SNPs had a MAF less
than 0.01, but a MAC larger than two. All SNPs had a missing rate less than 0.01, and all individuals
had an individual call rate larger than 99%.

2 Approximating the double saddlepoint method by a normal
approximation to Uβ

By a double saddlepoint method we may, under the null, estimate

P (Uγ = uγ |Uβ = 0) =
f(0, uγ)

fβ(0)
, (1)

by using saddlepoint techniques to approximate the joint distribution f of Uβ and Uγ at Uβ = 0, and
the marginal distribution fβ of Uβ at Uβ = 0.
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2.1 The joint cumulant generating function
Let t be a vector of dimension d+1, which we partition into the vector tβ of dimension d and the scalar
tγ . Since Yi ∼ binomial(µi), the CGF of U may then be expressed as

K(t) = K(tβ, tγ) =

n∑

i=1

ln
(
1− µi + µi exp(gitγ + t

T
βxi)

)

− tγ
n∑

i=1

giµi − tTβ
n∑

i=1

xiµi. (2)

Derivatives of K(tβ , tγ) with respect to tβ and tγ , denoted ∇tβK(tβ , tγ) and ∂
∂tγ

K(tβ , tγ) respectively,
are

∇tβK(tβ, tγ) =
n∑

i=1

µi


 exp(gitγ + t

T
βxi)(

1− µi + µi exp(gitγ + tTβxi)
) − 1


xi,

and

∂

∂tγ
K(tβ, tγ) =

n∑

i=1

µi


 exp(gitγ + t

T
βxi)(

1− µi + µi exp(gitγ + tTβxi)
) − 1


 gi,

so that the gradient of K(tβ, tγ), denoted ∇K(tβ, tγ), may be expressed as

∇K(tβ, tγ) =

(∇tβK(tβ, tγ)
∂
∂tγ

K(tβ, tγ)

)
.

Let θ =
(
βT γ

)
T denote the full parameter set, and define a diagonal matrix Mθ with entries

Mθ
ii =

µi(1− µi) exp(−gitγ − tTβxi)(
(1− µi) exp(−gitγ − tTβxi) + µi

)2 .

The Hessian of K, denoted H(t), can be expressed as

H(t) =

[
∂2

∂β∂βT
K(tβ, tγ)

∂2

∂β∂tγ
K(tβ, tγ)

∂2

∂tγ∂β
K(tβ, tγ)

∂2

∂t2γ
K(tβ, tγ)

]
=

[
XTMX XTMg
gTMX gTMg

]
.

2.2 The marginal cumulant generating function
The cumulant generating function of Uβ, denoted Kβ(tβ), is given by

Kβ(tβ) =
n∑

i=1

ln
(
1− µi + µi exp

(
tTβxi

))
−

n∑

i=1

tTβxiµi. (3)

The gradient, denoted ∇Kβ(tβ), is

∇Kβ(tβ) =
n∑

i=1

µi


 exp(tTβxi)(

1− µi + µi exp(gitγ + tTβxi)
) − 1


xi,

and the Hessian, denoted Hβ(tβ), is

Hβ(tβ) = XTMβX,

where Mβ is a diagonal matrix with entries

Mβ
ii =

µi(1− µi) exp(−tTβxi)(
(1− µi) exp(−tTβxi) + µi

)2 .

We note that

K(tβ, 0) = Kβ(tβ). (4)
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2.3 Double-saddlepoint approximation
The saddlepoint approximation of the probability distribution of the score vector U evaluated at Uβ = 0
is given by

f̂(0, uγ) = (2π)−(d+1)/2|H(t̂)|−1/2 exp
{
K(t̂β, t̂γ)− t̂γuγ)

}
,

where
(
t̂Tβ t̂γ

)
T is the (d+1)-dimensional saddlepoint that solves K ′(t̂β, t̂γ) =

(
0T uγ

)
T. The saddle-

point approximation of the marginal distribution of Uβ, evaluated at Uβ = 0 is similarly

f̂β(0) = (2π)−d/2|Hβ(t̃β)|−1/2 exp
{
Kβ(t̃β)

}
,

where t̃β is the d-dimensional saddlepoint that solves ∇Kβ(tβ) = 0. We showed in Appendix B that
t̃β = 0, hence

f̂β(0) = (2π)−d/2|Hβ(0)|−1/2 exp {Kβ(0)} .

2.4 Speed-up algorithm
Starting with the joint CGF K(tβ, tγ) in Equation (2) we split the sum into the sets of individuals with
and without minor alleles:

K(tβ, tγ) =

m∑

i=1

ln
(
1− µi + µi exp(gitγ + t

T
βxi)

)
− tγ

m∑

i=1

giµi − tTβ
m∑

i=1

xiµi

+

n∑

i=m+1

ln
(
1− µi + µi exp(t

T
βxi)

)
− tTβ

n∑

i=m+1

xiµi.

By comparing with Equation (3), the last two terms is in fact the part of the cumulant generating
function of Uβ restricted to individuals with gi = 0, denoted K∗β(tβ). As discussed in Dey et al. (2017),
if the non-genetic covariates are not particularly skewed, then a normal approximation to Uβ may be
accurate. If there are few individuals with gi > 0, which is typically the case, this would imply that a
normal approximation of U∗β, the part of Uβ with gi = 0, may also be accurate. Therefore, let Xgi=0,
Ygi=0 and µgi=0 denote the part of X, Y and µ with gi = 0, and so U∗β = XT

gi=0(Ygi=0 − µgi=0) with
E(U∗β) = 0 and Cov(U∗β) = XT

gi=0Wgi=0Xgi=0, with Wgi=0 the submatrix of the diagonal matrix W
with entries µi(1 − µi) among those individuals with gi = 0. By approximating U∗β to have a normal
distribution, the approximation of the CGF of U∗β is K∗β(tβ) ≈ 1

2t
T
β Cov(U∗β)tβ. And consequently, the

original CGF may be approximated as

K(tβ, tγ) ≈
m∑

i=1

ln
(
1− µi + µi exp(gitγ + t

T
βxi)

)
− tγ

m∑

i=1

giµi − tTβ
m∑

i=1

xTi µi

+
1

2
tTβ Cov(U∗β)tβ.

This approximation to the CGF does not represent any reasonable speed-up yet, since Cov(U∗β) must
be computed for each genetic variant and requires O(n−m) calculations. However, we may express for
each variant Cov(U∗β) = Cov(Uβ) − Cov(Uβ), with Cov(Uβ) the same for all variants, while Uβ is the
part of Uβ with gi > 0, and so Cov(Uβ) = XT

gi>0Wgi>0Xgi>0. As Cov(Uβ) can be precomputed for all
variants, this requires O(m) calculations. Hence, the approximation

K(tβ, tγ) ≈
m∑

i=1

ln
(
1− µi + µi exp(gitγ + t

T
βxi)

)
− tγ

m∑

i=1

giµi − tTβ
m∑

i=1

xTi µi

+
1

2
tTβ
(
Cov(Uβ)− Cov(Uβ)

)
tβ

is computed only for those individuals with gi > 0 which leads to a substantial reduction in running
time from O(n −m) to O(m) calculations when m << n, which is typically the case, and particularly
relevant for rare variants.
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Similarly as for the normal approximation of K(tβ, tγ), the normal approximation of Kβ(tβ) is given
by

Kβ(tβ) ≈
1

2
tTβ Cov(Uβ)tβ.

3 Simulations of genetic association studies with an imbalanced
response

We will in detail explain the simulations given in Section 5.3. The simulation set-up is motivated by Dey
et al. (2017) by conditioning on the which individuals are cases and controls, say y = (0c,0

T
n−c), with

0c and 0n−c vectors of zeros with size c (the number of cases) and n − c (the number of controls). We
consider the logistic regression model

logit(µi) = β0 + xi,1 + xi,2 + γgi,

with X1 ∼ Bernoulli(0.5), X2 ∼ N(0, 1) and G ∼ binom(2,MAF) mutually independent. Since we are
evaluating validity of tests, we set γ = 0. For each iteration, the genotype vector is sampled independently
of y, while the nuisance covariates for each individual are sampled conditionally on y. In each iteration,
and for each method, we record whether a false rejection has occurred. With a total of 109 iterations,
we estimate the type I error rate conditioned on the constant phenotype vector y when applying SPA,
ESPA-CC and DSPA-CC. We want β0 to be such that the disease prevalence to be 1% in the population,
i.e. P (Y = 1) = 0.01. That is we want:

P (Y = 1) =

∫ ∞

x1=−∞

1∑

x1=0

P (Y = 1|x1, x2)P (x1, x2)dx1

= P (Y = 1) =

∫ ∞

x1=−∞

1∑

x1=0

P (Y = 1|x1, x2)P (x1)P (x2)dx1

= 0.5

√
1

2π
·
∫ ∞

x2=−∞
exp(−0.5x22)

(
1

1 + exp(−β0 − x2)
+

1

1 + exp(−β0 − 1− x2)

)
dx2 = 0.01

(5)

A solution is β0 = −5.6.

Given the vector of phenotype values y, the nuisance covariates need to be sampled according to their
conditional probabilities:

P (x1|y) = P (x1, y)/P (y) = P (y|x1)P (x1)/P (y)

= P (x1)/P (y1)

∫ ∞

x2=−∞
P (y|x1, x2)P (x2)dx2,

(6)

and

P (x2|y) = P (x2, y)/P (y) = P (y|x2)P (x2)/P (y)

= P (x2)/P (y1)
1∑

x1=0

P (y|x1, x2)P (x2),
(7)

Therefore from (6) (with prevalence 0.01):

P (X1 = x1|y = 1) = 50

√
1

2π
·
∫ ∞

x2=−∞

exp(−0.5x2)
1 + exp(−β0 − x1 − x2)

dx2, (8)

and similarly one can compute P (X1 = x1|y = 0) for each value of x1. For the sampling of x2
conditional on y we will get for instance:

4



P (x2|y = 1) = 50

√
1

2π
exp(−0.5x2)

(
1

1 + exp(−β0 − x2)
+

1

1 + exp(−β0 − 1− x2)

)
. (9)

The continuous probability distribution of P (x2|y = 1), as well as for P (x2|y = 0), does not belong
to any known distribution class, however one can see that P (x2|y = 1) ≤ φ(x2) for all x2 with φ() the
standard normal distribution. Therefore the standard normal can be used as a proposal distribution in a
rejection sampling procedure. However, the large amount of simulations needed requires a faster approach
as the efficiency in the rejection sampling depends on how close the proposal distribution resembles the
true distribution. It can be shown in this particular case that the efficiency decreases for decreasing
prevalence (P (Y = 1)). Since the probability distribution of P (x2|y = 1) as well as P (x2|y = 0) can be
shown to be log-concave, one can apply the much more efficient adaptive rejection sampling procedure,
where the proposal distribution is adaptively improved during the iterations.

4 PCA plots

Figure 1: PCA plot of first and second principal components when analysing the common variants.
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Figure 2: PCA plot of third and fourth principal components when analysing the common variants.

Figure 3: PCA plot of first and second principal components when analysing the rare variants.
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Figure 4: PCA plot of first and second principal components when analysing the rare variants.
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Background
In a traditional genome-wide association study (GWAS) each single nucleotide poly-
morphism (SNP) is tested individually for association with a particular phenotype. Using 
computationally efficient generalized or Bayesian linear mixed models that account for 
population stratification and cryptic relatedness, this approach can successfully identify 
risk alleles in the genome for complex diseases such as type 2 diabetes, Celiac disease and 
schizophrenia using large biobanks consisting of hundreds of thousands of individuals 

Abstract 

Background: The identification of gene–gene and gene–environment interactions 
in genome‑wide association studies is challenging due to the unknown nature of the 
interactions and the overwhelmingly large number of possible combinations. Paramet‑
ric regression models are suitable to look for prespecified interactions. Nonparametric 
models such as tree ensemble models, with the ability to detect any unspecified inter‑
action, have previously been difficult to interpret. However, with the development of 
methods for model explainability, it is now possible to interpret tree ensemble models 
efficiently and with a strong theoretical basis.

Results: We propose a tree ensemble‑ and SHAP‑based method for identifying as well 
as interpreting potential gene–gene and gene–environment interactions on large‑
scale biobank data. A set of independent cross‑validation runs are used to implicitly 
investigate the whole genome. We apply and evaluate the method using data from 
the UK Biobank with obesity as the phenotype. The results are in line with previous 
research on obesity as we identify top SNPs previously associated with obesity. We 
further demonstrate how to interpret and visualize interaction candidates.

Conclusions: The new method identifies interaction candidates otherwise not 
detected with parametric regression models. However, further research is needed to 
evaluate the uncertainties of these candidates. The method can be applied to large‑
scale biobanks with high‑dimensional data.

Keywords: GWAS, Tree ensemble models, XGBoost, SHAP, Model explainability, Gene–
gene and gene–environment interactions
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and SNPs [1–3]. Despite this, the estimated effects of the risk alleles are typically small 
and a large proportion of the estimated genetic heritability is yet to be explained for 
common traits and diseases [4]. One reason may be that most traits and diseases are 
highly polygenic, and thus many risk alleles with tiny effects will not be declared statisti-
cally significant due to stringent p-value significance thresholds. A second reason may 
be that the effect of the risk alleles are parametrically misspecified in the models. Model 
misspecification may lead to reduced power of detecting risk alleles [5, 6]. A third rea-
son may be failure to account for epistasis, namely interactions between genes which 
together can impact the association with a certain phenotype [7, 8]. A fourth reason for 
the missing genetic heritability may be gene–environment interactions where the effect 
of a gene depends on some external environmental factor. Incorporating interactions in 
a generalized linear mixed model, particularly gene–gene interactions, remains a dif-
ficult task in GWAS due to the large number of interactions to investigate, the strict 
assumptions of the interaction effects needed and the multiple testing problem among 
other things [9].

In many situations the number of directly genotyped SNPs to evaluate, ignoring 
imputed genotype values, may be of the order of millions. With millions of SNPs to 
investigate the total number of SNP-pairs becomes of the order of 1012 . For instance, 
with a family-wise error rate (FWER) less that 0.05, using the Bonferroni method this 
will require rejection of the null hypothesis of no interaction for p-values less than 10−14 . 
Even with less conservative criteria than FWER, the small group of true interactions 
would be required to have very strong signals in order to be identified. Therefore, sev-
eral two-stage algorithms have been developed such as GBOOST, SHEsisEpi and DSS 
where the first stage is a screening procedure to find the most promising gene–gene 
interactions, and the second stage is further investigation only based on these gene–
gene interaction candidates [10–14]. However, inclusion of environmental features is 
either not considered or limited in the aforementioned two-stage algorithms [10, 15]. 
This can lead to overlooking important relationships including gene–environment inter-
actions. Within modern biobanks, a rich amount of information, clinical, demographic, 
environmental and genetic, is available for each individual. A GWAS implemented using 
biobank data should therefore take full advantage of information with any perceived rel-
evance for the trait of interest.

As an alternative to separately testing one parametric model for each interaction as 
well as the two-stage algorithms mentioned above, we suggest a nonparametric three-
phase algorithm that can adjust for an unlimited number of features while searching 
for both gene–gene and gene–environment interaction candidates using tree ensemble 
models and SHAP values. We first rank the importance of each feature using the tree 
ensemble model XGBoost, a powerful prediction model suitable for high-dimensional 
data [16]. Recent research has demonstrated the possibility to interpret efficiently and 
with strong theoretical basis the importance of each feature from tree ensemble models 
using so-called SHapley Additive exPlanation (SHAP) values [17]. Based on this ranking, 
we further propose a model fitting process where the aim is to find the best XGBoost 
models with respect to predictive performance. The idea is that better predictive per-
formance is a result of revealing additional relationships. Finally, based on these mod-
els, the aim is to explain the relationships that the models consider most important, and 
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specifically the interactions. This type of procedure is more inclusive in order to find true 
interactions with the intention that these interaction candidates will need to be thor-
oughly investigated in a second stage. By using real data from UK Biobank, we demon-
strate these models’ capability to: (a) Rank features by importance and thereby removing 
noise. (b) Evaluate the use of XGBoost as both a predictive model and explainable model, 
and finally (c) Rank and explain plausible gene–gene and gene–environment interac-
tions. We finish by comparing the top ranked interactions with logistic regression with 
interaction terms and perform statistical tests. We will in addition do a stratified analysis 
of the interaction candidates. In this paper, the focus is on a case-control setting, but the 
method outlined in this paper can be applied to both continuous and discrete pheno-
types. Obesity was selected since this particular trait has been extensively researched in 
previous GWAS [18–20] providing a meaningful way to evaluate our method.

Methods
Recent research within GWAS to account for both genetic and environmental interac-
tions have focused on how to explore the large amount of data in a more systematic way 
by using various nonparametric machine learning models such as tree ensemble models 
and deep neural networks [21–23]. So far, the most successfully applied machine learn-
ing methods for genotype data are tree ensemble models such as gradient tree boosting 
models [24] first introduced by Jerome H. Friedman [25], but with subsequent improve-
ments. One such improvement is the so-called XGBoost implementation [16] used in 
this paper. XGBoost, as any tree ensemble model, consists of many so-called weak learn-
ers which in our case are regression trees. There are several advantages of using trees as 
they can naturally handle data of mixed type (continuous, categorical etc.) and missing 
values, they have the ability to deal with irrelevant and correlated variables, and they are 
computationally efficient to use [26]. However, trees suffer from low predictive power, 
high variance, lack of smoothness, and inability to capture linear structures. High vari-
ance and overfitting are of greater concern with deeper trees. Tree ensemble models, 
consisting of many trees, will reduce this variance and improve the predictive power 
[26]. Smoothness and ability to capture linear structures have also been shown to be 
improved [27]. The concern about using tree ensemble models within GWAS has been 
how to objectively evaluate the importance of each feature similar to p-values in tradi-
tional GWAS. However, a recent paper by Lundeberg et al. [17] showed that tree ensem-
ble models have the capability to be efficiently and objectively interpreted by measuring 
the importance of each feature with respect to the predictions of the model by introduc-
ing so-called SHAP values. Interpretation of the XGBoost models through SHAP values 
will allow us to explain the prediction for each individual, a beneficial property in a pre-
cision medicine setting.

Problem description and syntax

Let yi be the value/phenotype of some trait for individual i. This value may signify the 
absence or presence of a certain trait, such as a disease, or some continuous measure such as 
height, weight or blood pressure, or even a combination of measures such as the body mass 
index (BMI). Let gi,a denote the number of copies (0, 1 or 2) of the minor allele (referred to 
as the genotype) for a biallelic SNP a and individual i. Furthermore, let xi,e denote the value 
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of some environmental feature, and let the matrix XN×M represent all genetic and envi-
ronmental data for all N individuals and M features. Usually in a GWAS, the association 
between a SNP and a trait is tested separately for each SNP. However, another approach is 
to model the association between several SNPs and a trait simultaneously. We will use the 
latter approach, and will refer to genetic and environmental data as features, xi , for each 
individual i. Consider a model for predicting the phenotype, yi , denoted ŷi(xi) . The perfor-
mance of the model depends on how close each ŷi(xi) is to yi for all individuals with respect 
to some loss function. However, equally important in this setting is to understand what 
influences the prediction ŷi(xi) . In other words, we would like to understand how each fea-
ture contributes to the prediction ŷi(xi) for each individual i. In this paper we aim to derive 
such a model and we will specifically consider the special case where the trait yi is binary, 
that is, presence or absence of a phenotype. We denote the group consisting of individuals 
where the phenotype is absent as the control group, and the other group as the case group.

Before introducing our tree ensemble- and SHAP-based method for identifying inter-
action candidates, we will outline the necessary building blocks applied in our method 
including the choice of tree ensemble model, the performance metric to use in a binary 
classification setting as well as which metrics to use in order to evaluate the importance of 
each feature.

XGBoost

The XGBoost tree ensemble model consists of several regression trees, as illustrated in 
Fig. 1. An important aspect of trees, is that they automatically handle interactions between 
features. Consider the leftmost tree in Fig. 1, where the first split is for feature x1 , and then 
for both branches of the tree the next split is for feature x2 . Observe that the impact of fea-
ture x2 in the tree is dependent on the value of feature x1 , with a different outcome if x1 ≤ 1 
than if x1 = 2 . This means that a statistical interaction between feature x1 and x2 is encoded 
in the tree.

xi,1

xi,2 xi,2

xi,3

xi,4

xi,1

xi,3

xi,1 = 2 xi,1 <= 1

xi,2 >= 1xi,2 = 0
xi,2 <= 1 xi,2 = 2

xi,3 = 1

xi,4 <= 60 xi,4  > 60

xi,5<=1 xi,5=2

xi,1= 0 xi,1 >= 1

xi,3= 0

0.146 -0.53 0.164 0.488 -0.67 -0.57 -0.18 -0.76 0.24 0.1 -0.35 0.7

xi = {xi,1 = 1, xi,2 = 2, xi,3 =1, xi,4 = 65, xi,5 = 2, xi,6 = 0}

f(xi) = f1(xi) + f2(xi) + f3(xi) =  - 0.53 - 0.76 - 0.35 = - 1.64  

xi,3 = 0

xi,5

xi,3= 1

xi,6

xi,6 <=1 xi,6 =2

Fig. 1 An example with three constructed regression trees with six features xi,1 to xi,6 used as splitting points 
at each branch, and leaf node values. Also shown is the computation of f (xi) given an example of feature 
values xi . The structure of the trees opens the possibility to explore interactions since a path from a root node 
to a leaf node denotes a combination of feature values
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Constructing trees

The XGBoost algorithm starts with the construction of a single regression tree, and then 
new regression trees are consecutively constructed in a gradient boosting matter based on 
a loss function. The loss function is a sum of a loss function per individual, ℓ(yi, ŷ(T )

i (xi)) , 
which is a differentiable convex function. It measures the performance of the prediction, 
ŷ
(T )
i (xi) , with respect to the observed response, yi , for observation i with features xi when 

there is a total of T trees in the model. In a binary classification setting a convenient loss 
function is the binary cross-entropy:

Regression tree number τ is denoted as fτ , a data structure that contains information 
of nodes, features used as splitting points and leaf node values. The function fτ (xi) ∈ R 
outputs the value of the leaf node (green circles in Fig. 1) corresponding to features xi 
based on tree τ . In a binary classification setting, the prediction ŷ(T )

i (xi) is interpreted as 
the probability that individual i is a case given a total of T regression trees.

In order for ŷ(T )
i (xi) to represent a probability, a much used transformation is the sig-

moid function:

When constructing each tree, one starts at the root node and successively investigates 
which feature to use as a splitting point at each node. The model will choose the split 
that minimizes the total loss function at that point. There are different strategies when 
constructing the trees. Splitting at the node which gives the largest decrease in loss is 
the approach that will be used in our case. The XGBoost R software package applies the 
histogram method to reduce the search time [28–30]. For the handling of missing values, 
we refer to the original XGBoost paper [16].

The model will typically stop training when the total loss function has not decreased 
in a given number of iterations, where a new regression tree is constructed in each itera-
tion. The prediction of the final model on the logit scale given features xi is given by 
f (xi) =

∑T
τ=1 fτ (xi) , while the probability of the case class will be calculated using the 

sigmoid transform on f (xi) , as in Eq. (1).

Hyperparameters in XGBoost

XGBoost has a large set of hyperparameters, which may influence the performance of 
the algorithm and its ability to find the best representation of the data. In this paper, we 
focus on the learning rate η , subsample, colsample_bytree, colsample_bylevel and max_
depth. The learning rate η ∈ (0, 1] scales the values of the leaf nodes after the construc-
tion of each new tree, in which case ft(xi) = ηf ∗t (xi) where f ∗t (xi) is the raw regression 
tree before the scaling of the leaf node values has been applied. This will limit particular 
trees to dominate the prediction. It has been shown to be important since it influences 
how fast the model will learn and it can prevent early overfitting. In high-dimensional 
problems this is crucial and the learning rate should be well below 1 and is typically 0.1 
or smaller [26, 31]. The subsample and colsample_bytree hyperparameters decide the 

ℓ(yi, ŷ
(T )
i (xi)) = −yi log(ŷ

(T )
i (xi))− (1− yi) log(1− ŷ

(T )
i (xi)).

(1)ŷ
(T )
i (xi) =

1

1+ e−
∑T

τ=1 fτ (xi)
.
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proportion of individuals and features to be evaluated in each regression tree respec-
tively. They also prevent overfitting, and in addition reduce the training time of the 
model. A typical value for both hyperparameters is 0.5, and in high-dimensional data 
it has been proposed that even smaller values can be beneficial [26]. However, this will 
depend on what proportion of the high-dimensional data is relevant. If the relevant 
proportion is small, a more reasonable value is closer to 1 [16]. The parameter colsam-
ple_bylevel is used to partition the number of possible features to use as splitting points 
in each level of the tree. The literature is quite scarce on its effect, but it may oppose 
the non-optimal greedy approach search as well as providing more room for learning 
in a way similar to the learning rate. The parameter max_depth is the maximum depth 
in each tree. Other important hyperparameters are the regularization parameter � 
described in Chen and Guestrin [16] as well as the parameter early_stopping_rounds 
which is the maximum number of rounds without predictive improvement of the valida-
tion data before the training stops. To avoid overfitting, the validation data is independ-
ent of the training data.

Classification performance metric

For a binary classification model, the predictive performance in the validation data 
can be evaluated with specific focus on the group that is of particular interest (the case 
group). Let TP, FP and FN be the number of true positives, false positives and false nega-
tives, respectively. The precision and recall given the classifications from a model are 
defined as follows,

A convenient measure for the model performance is the area under the curve, denoted 
PR-AUC (precision-recall area-under-curve) [32]. PR-AUC is most often used in the 
case of imbalance, meaning that one group is larger than the other. When TP = 0 and 
FP = 0, corresponding to a model that always predicts an individual to be a control, the 
precision is defined to be zero.

A measure of feature importance in tree ensemble models ‑ SHapley Additive exPlanation 

(SHAP) values

When evaluating the global feature importance in a tree ensemble model, one possibility 
is to look at the relative decrease in loss for all splits by a given feature over all trees [33]. 
Unfortunately, this measure suffers from so-called inconsistency as discussed in Lundberg 
et al. [34]. In short, this means that the feature contributions are unfairly distributed as a 
result of not accounting for the importance of the order in which the features are intro-
duced in the trees. Another popular, but similarly inconsistent, importance metric is count-
ing the number of times each feature is used as a splitting point. Instead, a metric based 
on so-called SHapley Additive exPlanation (SHAP) values can be shown to achieve con-
sistency [17, 35]. In the case of tree ensemble models, each feature j for each individual i 
is given a SHAP value, φi,j , which represents the contribution of feature j with respect to 

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
.
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the prediction, f (xi) =
∑T

τ=1 ηf
∗
τ (xi) , equal to the output of the linear sum of all T regres-

sion trees in a tree ensemble model given features xi . This metric exhibits several favourable 
properties aside from consistency [35]. For instance, the sum of the contributions of each 
feature, φi,j , including a constant φ0 equals the prediction of the model f (xi):

where M is the number of features included in the model. Moreover, the total contribu-
tion of a subset of all features for each individual is simply equal to the sum of the SHAP 
values for each feature. The reason for these favourable properties is that the contribu-
tion, φi,j , is computed based on a concept from game theory first introduced by Lloyd 
Shapley [36]:

where M is the set of all features included in the model, the function vi(S) measures 
the total contribution of a given set of features (vi(M) = f (xi) ), and the sum is across 
all possible subsets where feature j is not included. The parameter φ0 is defined as 
φ0 = v(S = ∅) . The key idea is that the contribution of each feature for each individ-
ual is measured by evaluating the difference between the prediction when the value of 
feature j is known, versus the case when the value feature j is unknown for all subsets 
S ⊆ M \ {j} . In a statistical setting, the marginal expectation first introduced in Janzing, 
Minorics, and Blöbaum [37] seems to be a reasonable measure:

where E[f (Xi,S∪{j} = x
∗
i,S∪{j},Xi,S∪{j})] is the expected prediction when only the values 

of the feature subset S as well as feature j, denoted x∗i,S∪{j} , are known, while the vector 
of the complement set, Xi,S∪{j} , is regarded as a random vector. Notice that S ∪ S = M . 
The values φi,j in Expression (3) with vi(S) measured as marginal expectations are 
denoted as SHAP values [35]. In the case of binary classification using a tree ensemble 
model, the prediction f (xi) can be interpreted as the log-odds prediction.

By assuming all features are mutually independent, Lundberg et al. [17] constructed an 
algorithm to estimate the SHAP values in polynomial running time, O(TLD2) , with maxi-
mum depth D and maximum number of leaves L in all T trees. The assumption about 
mutual independence is a limitation, and without this assumption the estimation of the 
SHAP values becomes more complicated [38]. For further details about estimations of 
SHAP values assuming mutual independence, see Additional File 1.

SHAP interaction value

The SHAP values can be further generalized to interpret pairwise interactions through 
the SHAP interaction values �i,j,k , j  = k , for individual i and features j and k given by 
[17, 39]:

(2)f (xi) = φ0 +

M
∑

j=1

φi,j ,

(3)φi,j =
∑

S⊆M\{j}

|S|!(M − |S| − 1)!

M!
[vi(S ∪ j)− vi(S)],

vi(S ∪ j) = E[f (Xi,S∪{j} = x
∗
i,S∪{j},Xi,S∪{j})]
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where

If feature k yields additional information when present simultaneously with feature j, 
∇i,j,k(S) will be different from zero with the sign depending on how feature k (when pre-
sent) affects feature j. With these definitions, the pairwise SHAP interaction values have 
the same properties as the single-feature SHAP values. For instance, the contribution of 
a given feature j, φi,j , can be separated into the contribution of j itself, denoted �i,j,j , in 
addition to all interactions including feature j, denoted as �i,j,k , for all k  = j:

The final prediction for each individual can be decomposed into

where �i,j,k = �i,k ,j.
The interactions for all possible pairs of features for a particular tree ensemble model 

can be computed in O(TMLD2) time [17].

Tree ensemble‑ and SHAP‑based method for identifying interaction candidates

We propose a new method using XGBoost and SHAP values to identify potential inter-
actions such as SNP-SNP interactions or SNP-environment interactions, but also non-
parametric single-SNP effects. The method is outlined in Fig. 2.

We use a tree ensemble model (XGBoost) trained on data consisting of observations 
from individuals each with a trait yi and features xi , to rank features by importance using 
SHAP values. The ranked list of features makes it possible to construct new models 
that use only the most important features, and therefore have higher predictive power. 
Finally, having a fitted model that only consists of relevant features, we want to graphi-
cally present which relationships are important with respect to the phenotype, both 
marginal effects and interactions.

In order to evaluate the ability to both rank features by importance, find the best pre-
dictive models, and explain the best models without causing optimism bias, we divide 
the individuals in three disjoint subsets, namely the ranking data, fitting data and evalu-
ation data (Fig. 3).

Dividing the data into several subsets will reduce the power to detect relevant fea-
tures as well as reducing the degree to which each subset is representative of the 

(4)�i,j,k =
∑

S⊆M\{j,k}

|S|!(M − |S| − 2)!

2(M − 1)!
∇i,j,k(S),

∇i,j,k(S) =
[

E[f (Xi,S∪{j,k} = x
∗
i,S∪{j,k},Xi,S∪{j,k})]

−E[f (Xi,S∪{k} = x
∗
i,S∪{k},Xi,S∪{k})]

]

−
[

E[f (Xi,S∪{j} = x
∗
i,S∪{j},Xi,S∪{j})] − E[f (Xi,S = x

∗
i,S ,Xi,S)]

]

.

φi,j = �i,j,j +
∑

j �=k

�i,j,k .

(5)f (xi) = φ0 +

M
�

j=1

φi,j = φ0 +

M
�

j=1



�i,j,j +
�

k �=j

�i,j,k



,
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full data set. However, the procedures are intended to be used on data from large 
biobanks to reduce power loss and representativeness of the subsets. By using inde-
pendent subsets of the data for each phase of our method, we avoid potential overfit-
ting by reusing data, and will be able to give an accurate account to which extent tree 
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Fig. 2 The ranking, model fitting and explanation phases. In the ranking phase, the SNPs and environmental 
features are ordered by their relative importance. The ranking is achieved with XGBoost and SHAP values as 
explained in Fig. 4. In the model fitting process, the top ranked features are combined and modelled with 
XGBoost as described in Fig. 6. Finally, the explanations and interactions are obtained from the SHAP values. 
This is visualized in Figs. 10, and 11
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ensemble models are able to capture relationships between features and the trait of 
interest that classical GWAS methods might have difficulties to achieve [40].

Phase 1: The ranking process

Identifying associations between SNPs and a phenotype is a typical example of a high-
dimensional problem. Experience from several GWAS suggests that many low-effect 
SNPs are not detected. At the same time we still expect only a small proportion of the 
total genome to have any effect with respect to the trait of interest. Consequently, we 
face a challenge where many potential SNPs have a causal effect on the trait, but a much 
larger number of SNPs are not causal at all and therefore contribute as noise. To make it 
even more complicated, among the large number of SNPs in the human genome, there 
exist correlations between different SNPs throughout the whole genome in a given pop-
ulation called linkage disequilibrium [41]. In general, the closer the physical distance 
between a pair of SNPs is, the more correlated the SNPs tend to be. As not all SNPs are 
genotyped, and if we disregard imputed data, there will be gaps between the SNPs that 
are present. We expect that in many cases, SNPs with causal effect fall in such gaps. But 
here we are helped by the linkage disequilibrium and the correlation between nearby 
SNPs. For practical purpose this means that a subset of all SNPs available can provide 
information beyond only those SNPs selected, but also those nearby SNPs that are in 
linkage disequilibrium. This also applies for interactions.

The analysis is further complicated by confounders such as population stratification 
and cryptic relatedness between individuals which can lead to spurious associations in 
our models [42]. Cross-validation is a model validation technique in which several mod-
els of identical structure are trained on different portions of the training data, and each 
model is evaluated on independent validation data. With respect to feature importance, 

ALL DATA
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TO SPLIT INTO
THREE SUBSETS

RANKING DATA FITTING DATA EVALUATION DATA

Fig. 3 All data available is divided into three subsets: Ranking data, fitting data and evaluation data. The 
ranking data is used to rank features by importance in order to remove noise. The fitting data is used to fit 
models by using the ranking derived from the ranking data. The evaluation data is finally used to explain 
what is considered important with respect to the predictions from the models trained on the fitting data
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a procedure with the purpose of preventing spurious associations, is to evaluate the 
importance of each feature based on all models constructed during cross-validation.

From our knowledge about linkage disequilibrium, population stratification and 
cryptic relatedness, we therefore propose a method to implicitly investigate the whole 
genome efficiently and objectively through a series of independent cross-validations by 
using XGBoost, a tree ensemble model, as shown in Fig. 4. It is from these independent 
cross-validations we will provide a ranking of the importance of each feature.

Consider a data set with N individuals and R directly genotyped SNPs. We create 
A randomly selected subsets, where each subset consist of S SNPs with low mutual 
correlation and G ≤ N  individuals randomly sampled with equal probability in order 
to keep an as agnostic narrowed search as possible. Furthermore, each sampled sub-
set is divided into F folds where F − 1 folds are used in an ordinary cross-validation 
to train F − 1 XGBoost models, while the last fold never seen or used during cross-
validation is used as test data. This will create F − 1 models trained on different 
data, and their performance can be objectively evaluated on the test data. As shown 
in Fig.  5 for the F − 1 folds used in cross-validation, in each iteration F − 2 folds 
are used to train an XGBoost model, while the last fold is used as validation data. 
Training of the model will proceed as long as the performance on the validation 
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Fig. 4 In the ranking process, multiple independent subsets are created and used in a cross‑validation 
procedure with tree ensemble models. The trained models will be used to rank the importance of the 
features
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data improves within a certain number of iterations as given by the early_stopping_
rounds hyperparameter. Cross-validation reduces the harm of both overfitting and 
selection bias [43]. The degree of overfitting can be further investigated by looking 
at the model performance difference on the validation and test data.

With A subsets each creating F − 1 models, the question is now how to rank all 
features investigated in all A subsets for all P = A(F − 1) models. We define a new 
concept called the relative feature contribution, denoted κpi,j , for individual i, feature 
j and model p as:

where φp
i,j is the SHAP value for feature j. The measure κpi,j can be interpreted as the pro-

portion of the prediction for individual i attributed to feature j for model p. We now 
want to estimate the expected relative contribution of feature j using all the past inde-
pendent cross-validations. The expected relative feature contribution (ERFC), Ê[κj] , is 
defined as:

where κpi,j denotes the relative feature contribution of feature j for individual i in a set 
of Gp individuals used to explain model p, and I(j ∈ σp) is the indicator function which 
is equal to one if feature j is included in the subset data used to train model p, and zero 
elsewhere.

The individuals Gp used to explain a particular model p created from a particu-
lar subset a are chosen to be the individuals from the test data of the subset. This 
means that the contribution of each feature in each model will be based on individu-
als never seen during training. The estimation of Ê[κj] for each feature j will finally 
create a ranking of the contribution of each feature.
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Fig. 5 The cross‑validation phase when training data consists of F − 2 specific merged folds. Training of the 
model will proceed as long as the performance on the validation data improves within a certain number of 
iterations as given by the early_stopping_rounds hyperparameter
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Phase 2: The model fitting process

Given a ranked list of features based on their feature contribution with respect to the 
trait of interest, this allows us to disregard irrelevant features and thus increases the 
ability to detect important relationships.

At this stage we are interested in finding the models with the best performance on 
some test data by utilizing the ranking of feature importance from the ranking pro-
cess. For this purpose we use the fitting data never seen before in order to avoid any 
optimism bias [40]. The heterogeneity as well as possible relatedness among the indi-
viduals are taken into account by again using cross-validation. First we split the data 
in F folds, of which F − 1 folds are used for cross-validation while the last fold is used 
as test data. This gives F − 1 fitted models in total. The model fitting procedure is 
summarized in Fig. 6 which shows how one model (out of F − 1 ) is fitted using only 
the top K features as well a set of hyperparameters. The aim is to find which set of 
F − 1 models that on average performs best on the test data as a function of the value 
of K and hyperparameter values.

In order to explain the XGBoost models at a later stage we want to compute the 
SHAP values. We assume the features are mutually independent when computing the 
SHAP values. To take this into account, we combine the ranking with low values of 
the mutual squared Pearson’s correlation, denoted r2 , when selecting the K features to 
include. See Sect. 2 in Additional File 1 for more information. Even though we are not 
guaranteed an independent set of features using r2 , it significantly limits the number 
of dependent features and therefore reduces the negative effect of misleading compu-
tations of SHAP values.
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CONSISTING OF
TOP K FEATURES

F-2 FOLDS AS
TRAINING DATA

SPLIT DATA
IN F FOLDS

TREE
ENSEMBLE

MODEL

FEED DATA TO MODEL
LEFT-OUT FOLD 
FOR VALIDATION

IF STOPPING CONDITION
NOT MET:
REPEAT PROCESS
ELSE: STOP TRAINING

MODEL FITTED
BASED ON

TRAINING AND
VALIDATION DATA

IFELSE

LEFT-OUT FOLD 
FOR TESTING

HYPERPARAMETER
SET FOR TREE

ENSEMBLE MODEL

IMPORTANCE
RANKING OF

MAIN EFFECTS

FITTING
DATA

EVALUTATION
METRIC

ON 
MODEL

Fig. 6 Given a table of ranked feature importances, XGBoost models based on the top K features are trained 
in a new cross‑validation procedure based on an independent set of individuals, namely the fitting data. 
We search for the XGBoost models that on average performs the best for a given set of hyperparameters 
(including the value of K) based on test data
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Phase 3: Model explainability

After finding the best predictive models from the model fitting process, we can investi-
gate which features and interactions contribute to the models through the SHAP values. 
Along the same lines as for the marginal feature importance used for ranking, the rela-
tive contribution for each interaction between feature j and k for a particular individual i 
and model p can be computed as:

We can estimate the expected relative interaction contribution, Ê[µp
j,k |Ge, p] , given data 

consisting of Ge individuals and a model p:

The Ge individuals are part of the evaluation data as shown in Fig. 2. As we have F − 1 
models from the model fitting process, we average the result from all F − 1 models:

We define this new concept as the expected relative interaction contribution (ERIC). 
This will provide a ranked list of interactions. A ranked list of marginal effects can be 
constructed as explained in the ranking process, but this time based on the F − 1 models 
constructed after the model fitting process.

The contribution of the top ranked marginal effects and interactions to the predic-
tion for each individual can be visualized with sina plots and partial dependence plots 
as illustrated in Figs.  10 and 11 [17]. For one particular trained tree ensemble model, 
the sina plot in Fig. 10 shows the SHAP value for each individual indicated as a point 
with color depending on the value of the feature. The larger the absolute SHAP value, 
the more the feature contributes to the model prediction for a specific individual. Partial 
dependence plots, exemplified in Fig. 11, are used to visualize how the contribution, in 
other words the SHAP value, for a particular feature depends on another feature for dif-
ferent combinations of feature values. Here as well, each individual is marked as a point 
with the value of a given feature given on the x-axis and the corresponding SHAP value 
for this feature with respect to the prediction on the y-axis. The color of the point, how-
ever, represents the value of some other feature. In this way, interactions can be visual-
ized and interpreted.

Results: application using UK Biobank data
As an example, we apply and evaluate the method described on data from the UK 
Biobank Resource [44]. Among the available phenotypes, obesity was chosen because 
it has been subjected to a number of high quality and well-powered GWAS that have 
identified more than 100 loci, many that have been consistently replicated across studies 
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(e.g. FTO, BDNF, MC4R, TMEM18, SEC16B) [18–20] . Thus, we have a good set of true-
positive loci with which to compare our results. We only analyzed White European indi-
viduals to limit the effect of population stratification. We define an individual to be part 
of either the control group ( yi = 0 ) or case group ( yi = 1 ) by:

As should be evident above, we exclude overweight individuals with 25 < BMI < 30 
from the analysis and only compare normal-weight individuals ( 18.5 ≤ BMI ≤ 25 ) with 
obese individuals ( BMI ≥ 30 ). This reduces the number of subjects available for anal-
ysis, but allows us to define more distinct case and control groups. For power analy-
ses of extreme phenotype data we refer the reader to [45]. The BMI data is provided 
from measurements at the initial assessment visit (2006–2010) at which participants 
were recruited and consent given. Phenotype-independent quality control of the genetic 
data for White European subjects consisting of the genotyped SNPs is completed using 
PLINK1.9 [46], and the details are given in Additional File 1. We only consider directly 
genotyped SNPs. In addition, we limit our analysis to SNPs with minor allele frequency 
(MAF) greater than 0.01. By only considering the two groups defined in Equation (11), 
this results in a total of 529 024 SNPs and 207 015 individuals to investigate, of which 
43% of these individuals are in the group defined as obese. We apply the R package 
xgboost to both train xgboost models and to estimate SHAP values [47].

Environmental features

We include environmental features that are previously reported to be of importance 
with respect to obesity, namely sex, age, physical activity, intake of saturated fat, sleep 
duration, stress and alcohol consumption [48–52]. These environmental features are a 
representative set for the demonstration of the methodology and were not intended to 
be an exhaustive set of environmental features available in the UK Biobank for obesity. 
Information about the environmental features, including their definitions, are included 
in Additional File 1.

Ranking, fitting and evaluation data

We let the ranking data consist of 80,000 randomly chosen individuals, which will be 
used to rank the features by importance. The fitting data also consists of 80,000 individu-
als. This subset is used to find the best predictive models in the model fitting process. 
The evaluation data consists of 47 015 individuals, and is used to explain what the mod-
els found in the model fitting process consider the most important features and in which 
way they contribute. In all subsets, we retain the proportion of obese individuals.

Phase 1: The ranking process

By using the ranking data, at this stage we create A = 50 subsets where each subset con-
sists of G = 70,000 individuals and S = 110,000 randomly chosen SNPs corresponding 
to 21% of the total number of SNPs available. The choice of total number of subsets to 
create is motivated from Eq. (2) in Additional File 1 with the criteria that any pair of 
SNPs appears in the same subset at least once with 90% certainty. The larger the number 

(11)yi =

{

1, if 30 ≤ BMI ≤ 70
0, if 18.5 ≤ BMI ≤ 25
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of individuals in each subset, the higher statistical power, but at the same time, the mem-
ory capacity limits the number of individuals in each subset at the cost of lost power. 
As the ranking process is time-consuming, we do not attempt any sophisticated hyper-
parameter optimization, but instead choose four hyperparameters sets that we regard 
as reasonable, given in Table  1. In addition, in all further analysis, the regularization 
parameter � is set to 1, the default value in most XGBoost softwares [47]. The parameter 
early_stopping_rounds is set to 20.

As discussed in Blagus and Lusa [31], the learning rate η is set to be small for high-
dimensional data such as 0.1, while as discussed in Chen and Guestrin [16], colsam-
ple_bytree is set to be large as there is only a small proportion of all features that are 
relevant. The hyperparameter subsample is also set to be large in order to increase the 
power to detect features of importance. The parameter colsample_bylevel has not been 
extensively discussed in the literature, but the parameter will oppose the greedy con-
struction of the trees which may be beneficial in the long run. The maximum depth of 
the trees are set to no more than three, the reason being both computational considera-
tions as well as the fact that the marginal expectations used to compute the SHAP values 
in (3) will be more inaccurate the deeper the trees are (see Additional File 1).

Using Eq. (7) to estimate the expected relative contribution for each feature, we give 
the ranking for the top 20 features in Table 2 for hyperparameter set 2 in Table 1.

Not surprisingly, the environmental features are considered most important. The 
next features are predominantly those connected to the FTO gene at chromosome 16 as 
expected from previous studies. A SNP close to the TMEM18 gene (rs13393304) is also 
found in the top 20 list. The next SNPs on the list are predominantly from chromosome 
2, one SNP from chromosome 1 at the SEC16B gene (rs10913469) and further down 
SNPs from chromosome 18, yet no SNPs connected to the MC4R gene for instance. By 
further investigation, this is due to the fact that the SNPs randomly selected from the 50 
subsets did not include any SNPs close to the MC4R gene which illuminates the issue 
when not creating enough subsets. Apart from this, one can see that the ranking process 
is able to detect small effects, and importance of each feature can be evaluated by com-
puting SHAP values.

We compare with the corresponding ranked list derived using BOLT-LMM, a Bayes-
ian mixed model that evaluates the marginal effect of each SNP, and computes p-val-
ues based on the BOLT-LMM infinitesimal mixed-model statistic [1]. The p-values are 
shown to be well-calibrated for significance levels as low as 5 · 10−8 when the MAF of 
each SNP is larger than 1%, and that the case fraction is larger than 30% for a sample 
of 50,000 individuals [53]. All these criteria are satisfied in our ranking data set (with 
case fraction 42%, MAF greater than 1% and 80,000 individuals). Table 3 shows the top 
ranked 13 SNPs (top environmental features are not listed) where features with the 
smallest p-values are regarded to be of most importance.

In this case, all SNPs are related to the FTO gene, and most of the SNPs except two are 
also present in Table 2. These two SNPs were not sampled in any subset from the rank-
ing process. The ordering in Table 2 and 3 between SNPs related to the FTO gene are 
slightly different. However, at this stage it is not strictly necessary to find the true order 
of the feature impacts, but an approximate order that allows us to discard features with 
insignificant impact in the further analysis.
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Evaluation of the trained models used in the ranking process

To explore the degree of overfitting of the models trained during the ranking process, 
the PR-AUC score of each model computed on its corresponding validation data and test 
data (see Fig. 5) are explored in a Bland–Altman (mean—difference) plot. This shows the 
average PR-AUC score for each model on the x-axis, and the difference between the two 
scores on the y-axis. The results for all chosen sets of hyperparameters given in Table 1 
can be seen in Fig. 7.

Figure  7 shows no clear pattern of overfitting as can be seen from the agreement 
between the density plots of the difference in PR-AUC scores. However, hyperparameter 
set 1 from Table 1 shows a cluster of bad predictions with PR-AUC around 0.56. The 
reason for this can be seen in Fig. 8 where bad predictions using hyperparameter set 1 is 
due to early stopping in the training. When there is no early stopping in the training, we 
also see that due to the small learning rate given in set 1, more trees are constructed than 
for the other hyperparameter sets, but yet the performance score is not superior. This 
emphasizes the importance of hyperparameters.

Phase 2: model fit from the ranking process and from BOLT‑LMM ranking

In the model fitting process, we use the fitting data to train new XGBoost models with 
cross-validation by including the K most important SNPs for K = 0 (only including 
environmental features), K = 100 , 500, 1000, 3000, 5000, 10,000 and finally K = 15,000 . 
The ranking of the features is the output of the ranking process. In addition, to assess 
the quality of our method, we also train models based on the ranked table produced by 
BOLT-LMM.

Before training, the set of the K chosen SNPs is reduced such that the SNPs have 
mutually squared Pearson’s correlation r2 < 0.2 (see Additional File 1 for practical 
details about implementation). Due to computational limitations, we will only consider 

Fig. 7 Bland–Altman plot for the trained models used for ranking. No clear signs of overfitting, but one set of 
hyperparameters shows one cluster of poorer predictions than the others
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hyperparameter tuning from the XGBoost models through the sets given in Table 4, and 
optimize based on these sets. For each K and for the ranking based on our method and 
the ranking based on the BOLT-LMM model, the maximum average PR-AUC-score for 
the XGBoost models constructed in the cross-validation is found among the possible 
hyperparameter sets. For each K, we compare how the predictive model perform on the 
held-out test data from the fitting data. The results are shown in Fig. 9. When we vary K 
from small to large values, we expect that the model performance increases the most at 
the beginning as the most influential features are included, while as more features with 
low importance are added, the performance increases steadily until it flattens. At the 
end, the performance may even decrease as noise are added to the model in the form of 
SNPs without any predictive power.

The turning point for the BOLT-LMM ranking is K = 1000 while for the models based 
on the ranking process the turning point is consistently for a larger K value. The maxi-
mum average PR-AUC-score for the XGBoost models created in cross-validation is in 
general larger when using the ranking based on our method than the ranking based 
on BOLT-LMM. From Fig. 9, the average performance score is in general better when 
allowing the regression trees to be of maximum depth three instead of two. Addition-
ally, inclusion of the SNPs provide only a small contribution to the increase in the aver-
age prediction performance, where the best models increase the average PR-AUC score 
from 0.606 when only environmental features are included to 0.629 when the top 5000 
SNPs are included (blue line, Fig. 9b). This corresponds to an increase in average classifi-
cation accuracy from 0.64 to 0.66.

Phase 3: Model explainability

In the model explainability phase we use the evaluation data consisting of 47,015 indi-
viduals, that has not been used in Phase 1 and 2. For convenience, we consider the 
models constructed during cross-validation that performed best on average on the test 
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Fig. 9 The model fitting process based on top K features from both the ranking process (for different sets 
of XGBoost‑hyperparameters indicated by the different colours and the legend) and from BOLT‑LMM, for 
different values of K. In a hyperparameter sets 1–8 (all with max_depth = 2 ) from Table 4 in the model fitting 
process are used. In b hyperparameter sets 9–16 ( max_depth = 3 ) are used. Both figures show that the use of 
the ranking process gives in general better model performance than for the BOLT‑LMM ranking. There is also 
some gain in performance by increasing the hyperparameter max_depth from two to three

Fig. 10 A sina plot visualise the importance of each feature from a fitted model. Here we show the sina plot 
of the marginal effects for one of the four models constructed during the model fitting process when applied 
to the evaluation data from UK Biobank
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data during the model fitting process. These are the four models from fourfold cross-
validation trained on the top 5000 ranked features with hyperparameter set 2 visualised 
as the blue line in Fig. 9b. We now explore what these four models consider important 
with respect to their predictions on the evaluation data. This is done by computing the 
expected relative contribution for both individual features as well as interactions. Mar-
ginal and interaction effects can be visualized with sina plots and partial dependence 
plots respectively. For the case of marginal effects, Fig. 10 shows the sina plot for one 
of the four models trained on the SNPs with the largest expected relative contributions. 
Here, we visualize both dominant and additive main effects found by our nonparametric 
method.

We use Eq. (8) together with Eq. (10) to compute the average relative interaction con-
tribution (ERIC) for each pair of features based on the evaluation data, and list the top 
10 interaction candidates in Table 5.

First of all, we see that the contributions from the interactions are quite small with 
expected relative interaction contribution (ERIC) of no more than 0.001. To further 
investigate the behaviour of these interaction candidates, in Fig.  11 we show partial 

Fig. 11 Partial dependence plots for the pairs a rs180743 and rs171329, b rs17817449 and genetic sex, c 
rs17817449 and saturated fat intake, and d rs12123815 and rs12123815. In all panels we see how the SHAP 
values (vertical axis) depends on the feature value of the SNP (horizontal axis) and on the value of the second 
feature (color)
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dependence plots [17, 26] for the top four interactions from Table 5 when regarding one 
specific chosen model, out of the four, for each interaction.

We see in Fig. 11 examples where the SHAP value of the feature for each individual 
represented along the x-axis not only depends on its own feature value, but the value 
of some other feature as well. For instance, in Fig. 11a, we see that the increased risk of 
being obese when the genotype value is equal to two for rs180743, is reduced if the geno-
type value of rs171329 is equal to two as well. We also see in Fig. 11b that being a male 
(orange points) gives higher risk of being obese when the genotype value of rs17817449 
is two, compared to when the genotype value is zero or one. A positive SHAP value 
implies a positive contribution to the log-odds prediction, and therefore a contribution 
making it more likely to be a case (obese).

Interaction models in logistic regression

We compare the interaction rankings from Phase 3 with logistic regression fits on the 
full UK Biobank data set and the evaluation data alone. We consider a parametric model, 
assuming additive effects, for both SNP-SNP and SNP-environment interaction effects 
for logistic regression, and construct a hypothesis test to infer the presence of interac-
tions. For the test of SNP-SNP interactions between two SNPs a and b, the null model 
will be:

where xTi,c is a vector of features such as intercept, age, environmental features and prin-
cipal components, while γ is the vector of corresponding parameters for each feature. 
The parameters α and β are the marginal effects from SNP a and b resepectively. The 
corresponding alternative model incorporating an additive interaction effect will be:

For a SNP-environment interaction we will use the following alternative model:

where βe and φ are marginal environmental effect and interactions parameters 
respectively.

For the testing of the interactions we apply the likelihood ratio test (LRT) to test the 
null hypothesis that ν = 0 for SNP-SNP interactions or φ = 0 for SNP–environment 
interactions [26, 54]. The LRT assumes independence between the samples, and so we 
need to make sure the individuals included in the test are not related to any significant 
degree.

Comparison of Phase 3 results with logistic regression tests

Let the vector xi,c given in (13) consist of the intercept in addition to the features sex, age 
and the top four principal components for each individual. The principal components 
are used to correct for population stratification [55]. The ranking of the pairwise inter-
actions is based on the evaluation data consisting of 47,015 individuals. We fit a logis-
tic regression model based on all unrelated individuals in the evaluation data (39,286 

(12)logit H0,add
(P(Yi = 1|gi,a, gi,b, xi,c)) = x

T
i,cγ + αgi,a + βgi,b,

(13)logit H1,add
(P(Yi = 1|gi,a, gi,b, xi,c)) = x

T
i,cγ + αgi,a + βgi,b + νgi,agi,b.

(14)logit H1
(P(Yi = 1|gi, xi,e, xi,c)) = x

T
i,cγ + αgi,a + βexi,e + φgi,axi,e,
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individuals), as well as a logistic regression based on all unrelated individuals used in this 
paper (173,468 individuals). Unrelatedness is ensured by using data field 22020 in the UK 
Biobank Data Showcase [44]. The principal components were calculated using EIGEN-
SOFT (version 6.1.4) SmartPCA [56, 57]. We compute the principal components on the 
unrelated individuals in the evaluation data and all unrelated individuals separately. PCA 
plots for both the evaluation data and the full data set can be seen in the Additional File 
1. A few individuals have missing values for each test and are removed.

The top four interactions from the SHAP values visualized in Fig. 11 are evaluated by 
applying likelihood ratio tests for each interaction. The results are given in Table 6.

It is clear that the sample size is the dominating factor for the computed p-values. All 
p-values based on the evaluation data, the same data that is used to rank the interactions, 
are non-significant. As expected, the p-values are in general smaller when considering all 
individuals, yet none of them would be declared significant in the case of any reasonable 
genome-wide multiple testing procedure [58]. The smallest p-value is achieved for the 
interaction between the SNP rs17817449 and genetic sex when including all individu-
als. In the Additional File 1, we apply likelihood ratio tests based on logistic models with 
less stricter assumptions, but with the need for more parameters. However, this does not 
provide smaller p-values to any significant degree. The reason may be that these tests are 
less powerful due to a higher number of degrees of freedom [54].

Stratified analysis

Instead of incorporating prespecified interactions in the logistic regression model, one 
can instead stratify in groups according to the value of a feature a, and investigate the 
effect of a feature b for each group. For instance, one can fit for each group a logistic 
regression model with respect to feature b such as in (12). For a true interaction, the log 
odds ratio of feature b will differ between some or all groups. Fig. 12 shows a stratified 
analysis for the top four interactions in Table 5, with 95% confidence intervals assuming 
normality of the estimated log odds ratios, adjusting for the same environmental fea-
tures. The first example where the log odds ratio of rs171329 is compared within strati-
fied groups of rs180743 do not change additively, the opposite of what is assumed in 
(13). However, the second example concerning rs17817449 and sex do show additive 
changes in the log odds ratios. The third interaction also shows small, yet indicative, dif-
ferences in the log odds ratios. In the last example with rs12123815 and rs757318 the 
uncertainties in the log odds ratios are too large to give any conclusion.

Discussion
We have proposed how tree ensemble models, such as XGBoost, can be combined with 
SHAP values to explain the importance of individual SNPs as well as gene–gene and 
gene–environment interactions. The method has been illustrated on an example from 
the UK Biobank. We have shown that through several independent cross-validations on 
XGBoost models using subsets of SNPs spread along the genome, one is able to find a 
reasonable ranking of individual SNPs similar to what is found in previous GWAS of 
obesity [18]. In fact, Fig. 9 suggests that the ranking process has the potential to outper-
form BOLT-LMM.
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Ranking of interactions through SHAP values

The SHAP values may also identify interactions, but further investigation is needed. 
Comparing the top ranked interactions with logistic regression including interaction 
parameters, we see that none of the corresponding statistical tests provide convinc-
ing p-values. Assuming the ranking of interactions via SHAP values is reliable, we see 
from Table 5 that the interaction effects are small. Any genome-wide multiple testing 
procedure would struggle to find such small interaction effects. In addition, misspeci-
fication of the effects in the logistic regression models may reduce statistical power. 
Figure  12 shows that only the potential interaction between rs17817449 and sex 
seems to be additive. Tree ensemble models do not have any presumptions of what 
kind of effects are present, but instead they learn the effects iteratively. These effects 
can be investigated efficiently through SHAP values. However, the SHAP values are 
estimated, and uncertainties in these estimates must be accounted for. The interaction 
between rs12123815 and rs757318 in Fig.  12 is an example that may very well be a 
false positive. There is therefore a need to develop tests that can infer the trustworthi-
ness of the SHAP values in a similar fashion as through p values. The development of 
such tests will be important future research within SHAP values.

Table 1 The four hyperparameter sets for XGBoost considered in the analysis during the ranking 
process

Set η colsample_bytree subsample colsample_bylevel max_depth

1 0.01 0.9 0.9 0.9 2

2 0.05 0.8 0.8 0.8 2

3 0.05 0.8 0.8 0.8 3

4 0.1 0.8 0.8 0.8 2

Straified by
rs180743_G
  = 0
  = 1
  = 2
rs17817449_G
  = 0
  = 1
  = 2
rs17817449_G
  = 0
  = 1
  = 2
rs12123815_T
  = 0
  = 1
  = 2

LOR estimate for
rs171329_A

Sex

Saturated fat intake

rs757318_A

−0.2 0.7
Log odds ratio, β

Fig. 12 Stratified analysis of the top four interactions based on all unrelated individuals to illustrate how the 
log odds ratio, with 95% confidence intervals, of one feature changes depending on the value of another 
feature
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One natural way to account for some of the uncertainties in the SHAP values is 
through cross-validation. In addition, larger absolute SHAP values may not only be 
as a consequence of larger feature importance, but also as a consequence of larger 
uncertainties in the SHAP values. The denominator in ERFC and ERIC, given in (7) 

Table 2 The resulting ranking based on the expected relative feature contribution (ERFC) from the 
ranking process for hyperparameter set 2 in Table 1

The environmental features are, as expected, considered more important than the SNPs, while the most important SNPs are 
at or nearby the FTO gene in agreement with previous studies

Feature ERFC

Sex 0.12

Alcohol intake frequency 0.12

Physical activity 0.11

Saturated fat intake 0.058

Stressful events 0.056

Sleep duration 0.049

Age at initial assessment 0.047

rs17817449 (FTO, Chr. 16) 0.025

rs1421085 (FTO, Chr. 16) 0.025

rs1121980 (FTO, Chr. 16) 0.024

rs7202116 (FTO) 0.023

rs9941349 (FTO) 0.023

rs9940128 (FTO) 0.023

rs9922619 (FTO) 0.023

rs13393304 (FAM150B ‑ TMEM18, Chr. 2) 0.022

rs12149832 (FTO) 0.021

rs9939609 (FTO) 0.021

rs9930506 (FTO) 0.021

rs11642841 (FTO) 0.020

rs2947411 (Chr. 2) 0.019

Table 3 The result after running BOLT‑LMM on the ranking data showing the top SNPs with smallest 
p‑value from the BOLT‑LMM infinitesimal mixed‑model statistic

All top SNPs are connected to the FTO gene

Feature BOLT‑LMM p‑value

rs1421085 (FTO) 3.7E–57

rs9940128 (FTO) 1.8E–54

rs1121980 (FTO) 2.4E–54

rs3751812 (FTO) 7.0E–54

rs17817449 (FTO) 8.5E–54

rs9939609 (FTO) 1.3E–53

rs8050136 (FTO) 2.2E–53

rs7202116 (FTO) 5.7E–53

rs9941349 (FTO) 5.0E–52

rs12149832 (FTO) 3.0E–50

rs9922619 (FTO) 1.0E–48

rs9930506 (FTO) 1.1E–48

rs11642841 (FTO) 1.3E–40
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Table 4 The hyperparameter sets considered during the model fitting process

Set η colsample_bytree Subsample colsample_bylevel max_depth

1 0.1 0.3 0.3 0.3 2

2 0.1 0.5 0.5 0.5 2

3 0.1 0.5 0.5 1 2

4 0.1 0.8 0.8 0.8 2

5 0.1 1 1 1 2

6 0.05 0.5 0.5 0.5 2

7 0.05 0.8 0.8 0.8 2

8 0.2 0.5 0.5 0.5 2

9 0.1 0.3 0.3 0.3 3

10 0.1 0.5 0.5 0.5 3

11 0.1 0.5 0.5 1 3

12 0.1 0.8 0.8 0.8 3

13 0.1 1 1 1 3

14 0.05 0.5 0.5 0.5 3

15 0.05 0.8 0.8 0.8 3

16 0.2 0.5 0.5 0.5 3

Table 5 The top 10 interactions based on the expected relative interaction contribution (ERIC) 
estimated on the evaluation data (Phase 3), with the aim of explaining the best predictive models 
from Phase 2

Feature 1 Feature 2 ERIC

rs171329 rs180743 0.001

Sex rs17817449 0.001

Saturated fat intake rs17817449 0.00094

rs757318 rs12123815 0.0008

rs4697952 rs1488830 0.00074

rs60822591 rs17854357 0.00066

rs4711329 rs11676272 0.00066

rs1518278 rs1488830 0.0006

Sex rs12123815 0.00056

rs7132908 rs9949796 0.00054

Table 6 Results from likelihood ratio tests applied on the top four ranked interactions found from 
the model explainability process based on the evaluation data

Data set Interaction p‑value LRT

Evaluation data rs171329 and rs180743 0.85

All individuals rs171329 and rs180743 0.024

Evaluation data rs17817449 and genetic sex 0.77

All individuals rs17817449 and genetic sex 4.09e‑05

Evaluation data rs17817449 and saturated fat intake 0.44

All individuals rs17817449 and saturated fat intake 0.0017

Evaluation data rs757318 and rs12123815 0.25

All individuals rs757318 and rs12123815 0.71
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and (10), equal to the sum of the absolute SHAP values for each individual will tend 
to be larger, the larger the variance of the SHAP value estimates are. Consequently, 
the importance measures ERFC and ERIC are reduced for increasing uncertainties in 
the SHAP values.

Data split

In this paper, data is split in three subsets used for ranking, model fitting and model 
explanation respectively. This procedure requires a large amount of data, but the pur-
pose was to evaluate the credibility and potential of using tree ensemble models together 
with SHAP values. For smaller data samples, an alternative procedure is to rank interac-
tions directly during the ranking process by computing the expected relative interactions 
contributions (ERIC). However, the ranking process consists of many models with low 
predictive power, which makes it more difficult to explore the true relationships com-
pared to the models constructed in the model fitting process.

Limitations and improvements

The choice of number of SNPs S, individuals G, folds F and r2-threshold in each cross-
validation in the ranking process are all important with respect to performance, and 
should be considered as hyperparameters. The number of SNPs S must be large enough 
to represent important regions in the genome, but not so large that it introduces noise to 
the model. The number of individuals in each cross-validation, G, should be as large as 
possible as it increases the power to detect small as well as nonlinear effects. However, 
that may lead to computational challenges. The number of folds in the cross-validations, 
F, should neither be too small nor too large as we want to train the model on as many 
different subsets of the population as possible in order to find the most general effects, 
but at the same time the validation data set must be large enough to be sufficiently 
representative.

The mutual independence assumption when computing the SHAP values is a signifi-
cant restriction, and a mutual r2 below any threshold between features will by no means 
ascertain mutual independence as r2 measures linear dependency. Correlation measures 
that can also account for nonlinear dependencies in a high-dimensional setting could 
provide more trustworthy results.

Hyperparameter optimization

We have seen that the hyperparameters for XGBoost are important. Unfortunately, 
the computation time for each set of hyperparameters is protracted, and consequently 
systematic hyperparameter optimization is not feasible. However, from the choice of 
hyperparameter sets in this paper, the hyperparameters colsample_bytree, subsam-
ple and colsample_bylevel should be high (0.8–0.9), while the learning rate η should be 
low (0.05–0.1), but not too low. Another important hyperparameter, the regularization 
parameter, � , should be investigated more extensively.
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Predictive performance and obesity

Even with strong predictors such as physical activity, intake of saturated fat, alcohol use, 
stressful events, sleep duration, age and sex in addition to genome-wide genetic data, we 
are not capable of constructing a model with more than 66% classification accuracy, and 
the genetic data only provide a small portion of the predictive performance. The useful-
ness lies in the fact that tree ensemble models can be used to identify nonparametric 
gene–gene and gene–environment interaction candidates while accounting for a large 
amount of features simultaneously. If the prediction performance of the model is consid-
ered satisfactory, this can be an important diagnostic tool in the future.

Conclusion
Our proposed tree ensemble- and SHAP-based method gives us the possibility of explor-
ing both gene–gene and gene–environment interactions without any presumptions 
of what kind of effects may be present as well as adjusting for environmental features. 
Our proposed method can be applied to high-dimensional genetic data in large-scale 
biobanks. There is however a need to develop methods for assessing the uncertainties of 
the SHAP values to conclude whether the interaction candidates are reliable.
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1 Quality assessment of UK Biobank Genetic Data

Analyses were limited to autosomal variants covered by both genotype arrays used over the course
of the study and that passed the batch-level quality control. SNPs were included if the call rate
was above 99%, the Hardy-Weinberg equilibrium p-value was less than 5 · 10−8, and the minor
allele frequency was larger than 1%. 529,024 SNPs passed these filters.

Individuals were removed if the genetic and reported sex did not match and if the sex chromosomes
were not XX or XY. Outliers in heterozygosity and missing rates were removed. The analyses were
limited to those identified as Caucasian through the UK Biobank’s PCA analysis (field 22006). All
individuals had an individual call rate larger than 99%. 366,752 individuals passed these filters.

2 Details of environmental features from UK Biobank

A sample set of personal and environmental characteristics were included in the model as features
to demonstrate sample use of the method. All descriptions are from the UK Biobank Showcase,
and no outliers were removed. Individuals that answered ”prefer not to answer” or ”do now
know” to any given question were treated as missing values. All features are taken from the
baseline assessment, the same point in time when the BMI phenotype was measured. The following
environmental and personal features collected at baseline were evaluated:
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Description Data field
Age when attended assessment centre 21003
Genetic sex 22001
Number of days/week walked 10+ minutes 864
Minutes spent walking per day 874
Number of days/week of moderate physical activity 10+ minutes 884
Duration of moderate activity per day 894
Number of days/week of vigorous physical activity 10+ minutes 904
Duration of vigorous activity per day 914
Alcohol intake frequency 1558
Sleep duration 1160
Processed meat intake 1349
Beef intake 1369
Lamb/mutton intake 1379
Pork intake 1389
Cheese intake 1408
Milk type used 1418
Illness, injury, bereavement, stress in last 2 years 6145

2.1 Age when attended assessment centre

Age at the initial assessment visit (2006-2010) during which participants were recruited and pro-
vided consent.

2.2 Genetic sex

Sex as determined from genotyping analysis.

2.3 Physical activity

To measure the degree of physical activity, the duration of walking, moderate activity and vigorous
activity per day were added with equal weight. The duration of any given activity per day is set
to zero if an individual spent no days during the week with more than 10 minutes of that activity.

2.4 Alcohol intake

Participants were asked how frequently they consumed alcohol, with potential responses never,
only on special occasions, one to three times a month, one to three times a week, three or four
times a week, or daily or nearly daily.

2.5 Sleep duration

Participants were asked to report how many hours of sleep they got in a 24 hour period.

2.6 Saturated fat intake

Participants were asked how frequently they consumed each food item, from never to daily. Fre-
quency of beef, lamb, mutton, pork, cheese and milk intake per week was added with equal weight.
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2.7 Stressful events

We treated this as a binary variable, such that those that have not experienced any of the categories
listed in the ”Illness, injury, bereavement, stress in last 2 years” variable during the past two years
are represented by the value zero, and the rest were set to one.

2.8 Treatment of categorical features and correlation plot

XGBoost does not automatically take into account categorical features. Sex, alcohol consumption
and sleep duration can be considered categorical features, but as sex is a binary feature, while
alcohol consumption and sleep duration are ordinal features, a split between two categories for
these features in a regression tree is meaningful, and therefore the features can be treated as
they are. The correlation of the final seven environmental features were investigated further by
computing the Pearson’s correlation between all pairs of features by excluding missing values.
No pair of features showed Pearson’s correlation r larger than 0.2, and we therefore treat these
features as if they were independent of each other when computing the SHAP values. Correlations
between environmental features and SNPs are also surprisingly not very small. Even though there
exist dependence between SNPs and environmental features, the effects are so small that we also
in this case regard them to be independent to each other when computing the SHAP values.
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Figure 1: Pearson’s correlation, r, between environmental features.
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3 The minimum number of random subsets to choose in the
ranking process

In Phase 1 of the method described in the main article, we perform a ranking process for the
SNPs using a combination of random subsets of SNPs with cross-validation. Here we show the
probability calculations guiding the choice of the number of random subsets of SNPs that we use,
first for one SNP and then for a SNP pair.

3.1 Number of subsets for single SNP sampling

We have a total of R SNPs, and draw S < R SNPs without replacement. Let A = 1 denote the
case where we study one randomly sampled subset of S SNPs, and A = a the case where we study
a different samples. The question is how large a at least should be in order to investigate the
whole genome to a sufficient extent.

Let Cj be the number of times a particular SNP j is chosen among all A = a subsets. Since the
SNPs are randomly sampled without replacement, the probability that SNP j is contained in at
least one of the a subsets, P (Cj ≥ 1|A = a), is given by:

P (Cj ≥ 1|A = a) = 1− P (Cj = 0|A = a) = 1− P (Cj = 0|A = 1)a = 1−
(
1− S

R

)a
,

since P (Cj = 0|A = 1) is given from the corresponding hypergeometric distribution:

P (Cj = 0|A = 1) =

(
1
0

)(
R−1
S

)
(
R
S

) = 1− S

R
.

If we want the probability to be larger than some preferred value p, we get the inequality referred
to in the main article:

a ≥ log(1− p)
log(1− S

R )
. (1)

However, after the SNPs are randomly sampled, we also perform a pruning to minimize the
correlation in the sample as explained in Section 4, so the number of subsets to create should be
even larger than this.

3.2 Number of subsets for pair SNP sampling

Similarly, assume the SNPs to be randomly sampled, and let Cj,k be the number of times SNP j
and SNP k are present simultaneously in a total of a subsets. We then have:

P (Cj,k ≥ 1|A = a) = 1− P (Cj,k = 0|A = a) = 1− P (Cj,k = 0|A = 1)a

= 1−
(
1− P (Cj,k = 1|A = 1)

)a

= 1−
(

1− S(S − 1)

R(R− 1)

)a
,

since P (Cj,k = 1|A = 1) is given from a corresponding hypergeometric distribution:
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P (Cjk = 1|A = 1) =

(
2
2

)(
R−2
S−2

)
(
R
S

) =
S(S − 1)

R(R− 1)
.

For this probability to be larger than a preferred value p, we get the inequality referred to in the
main article:

a ≥ log(1− p)
log
(
S(S−1)
R(R−1

) . (2)

Again, the total number of subsets should be larger due to the need for SNP pruning to ensure
low correlation among the SNPs. Anyhow, inequalities (1) and (2) can be used as guidance as to
how many subsets should at least be created.

4 SNP pruning with PLINK1.9

When creating the subsets explained in Section 3.1 (the ranking process) of the main article,
we create a subset of S SNPs with mutually low correlation together with G randomly sampled
individuals. This is implemented by using both R and PLINK1.9 [4].

First, S∗ SNPs and G individuals are sampled with equal probability and without replacement.
Next we apply the PLINK1.9 function −−indep-pairwise with the following parameter values
window size = 50 kb, step size = 5kb and r2 = 0.2 in order to get a subset of S SNPs were all pairs
of SNPs within a region of 50 kilobases have squared Pearson’s correlation less than 0.2. SNPs
that are more than 50 kilobases from each other are not expected to correlate to any significant
extent. Pearson correlation measures linear dependency, and therefore zero correlation does not
imply independence in general. We will anyhow rely on r2 as a measure of independence due to
its fast computation on large amounts of data. In the example analysis we manually find, by trial
and error, the appropriate size of S∗ corresponding to the chosen value for S.

In a similar manner, the PLINK1.9 function −−indep-pairwise can be used to obtain a subset
of SNPs with mutually low correlation based on some ranked set of SNPs, as in Section 3.2 (model
fitting process) in the main article. However, the ranked list of SNPs should be added as a .frq-
datafile via −−read-freq, where the column variable MAF is edited such that it does not denote
the minor allele frequencies, but some feature importance score of each SNP. The larger the score
is, the higher priority the SNP will have to be kept among the subset.

5 Running BOLT-LMM on the ranking data

In the obesity example, we run BOLT-LMM on the ranking data (from Phase 1) with obesity as
trait in order to rank the importance of each SNP based on the their computed p-values by using
the BOLT-LMM-infinitesimal mixed-model statistic [2]. BOLT-LMM is intentionally constructed
for quantitative traits and not for case-control traits such as obesity, but it can be applied by
treating the binary trait as a quantitative trait. The caveat is however that the p-values may be
invalid. However, the p-values computed have been shown to be valid as long as the MAFs of
each SNP are larger than 1%, and that the case fraction is larger than 30% for a sample of 50 000
individuals [2]. The ranking data has a case fraction of 43 %, MAF greater than 1 % and 80 000
individuals, and so we regard the p-values computed as valid. Obesity and features were defined as
described in Appendix B in the main article. Categorical features in the model were genetic sex,
alcohol intake frequency, sleep duration (in hours), and any events of illness, injury, bereavement,
or stress in the previous two years. Quantitative features were physical activity, saturated fat
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intake, and age at initial assessment. All features excluding genetic sex were self-reported during
the initial assessment.

6 Computations of SHAP values

The SHAP value, φi,j(xi), for a model f(xi), individual i and feature j given all features xi is
defined in Lundberg et al. [3] and Janzing, Minorics, and Blöbaum [1] as:

φi,j(xi) =
∑
S⊆M\{j}

|S|!(M−|S|−1)!
M !

[
E[f(Xi,S∪{j} = x∗i,S∪{j},Xi,S∪{j})]− E[f(Xi,S = x∗i,S ,Xi,S)]

]
(3)

where E[f(Xi,S∪{j} = x∗i,S∪{j},Xi,S∪{j})] is the expected prediction when only the values of the

feature subset S as well as feature j, denoted x∗i,S∪{j}, are known, while the vector of unknown

values from the complement set, X
i,S∪{j} are regarded as a random vector. Notice that S∪S =M.

6.1 SHAP values for tree ensemble models

We consider a tree ensemble model where the prediction, f(xi), is a linear sum of outputs from
all regression trees given features xi. By the linearity property of expectation, the marginal
expectation, E[f(Xi,S = x∗i,S ,Xi,S)], given in Equation (3) is equal to the sum of the marginal
expectation of the output from each regression tree, denoted E[fτ (Xi,S = x∗i,S ,Xi,S)]:

E[f(Xi,S = x∗i,S ,Xi,S)] =

T∑

τ=1

E[fτ (Xi,S = x∗i,S ,Xi,S)].

The marginal expectation for each regression tree, assuming only continuous features, is mathe-
matically expressed as:

E[fτ (Xi,S = x∗i,S ,Xi,S)] =

∫

xi,S

fτ (Xi,S = x∗i,S ,Xi,S = x∗
i,S)p(Xi,S̄ = x∗

i,S)dxi,S , (4)

where we denote x∗i = (x∗i,S ,x
∗
i,S̄) as the constant vector where all feature values are known. As

each regression tree fτ only takes a distinct number of values equal to the number of leaves Bτ in
the regression tree, the integral in (4) can be expressed as a sum of integrals:

E[fτ (Xi,S = x∗i,S ,Xi,S)] =

Bτ∑

k=1

cτ,k

∫

xi,Sτ,k

p(Xi,S = x∗
i,Sτ,k)dxi,Sτ,k ,

where each x∗
i,Sτ,k

is such that fτ (x∗i = (x∗i,S ,x
∗
i,Sτ,k

)) = cτ,k where cτ,k is leaf value number k for

tree τ .

If we assume the complement subset S̄ of features are mutually independent, the integral can be
further partitioned into a product of integrals , where each integral will be integrated over the
range of the corresponding feature in S̄ that leads to the path from root to leaf node with leaf
node value cτk:

E[fτ (Xi,S = x∗i,S ,Xi,S)] =

Bτ∑

k=1

cτ,k

l∏

`=1

∫ b`,τ,k

xi,`=a`,τ,k

p(Xi,` = x∗i,`)dxi,`,
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where xi,` denotes the feature value of feature number ` among a total of l unknown features in
the subset S̄, while (a`,τ,k, b`,τ,k) is the range in which feature number ` must be integrated over
in order to get the output value cτ,k for regression tree τ . For features in S̄ that are not present in
the regression tree τ , these features can take any value. We define the value of the corresponding
integrals in the product operator to be one.

What remains in order to compute the marginal expectation given in Equation (3) is to estimate
each of the integrals given above. In Lundberg et al. [3] these are estimated by using the proportion
of samples in each node in each tree in the training phase of the tree ensemble model that goes in the
same direction from a particular node to another. Under the assumption of mutual independence
this is a reasonable estimate, but the estimate naturally relies on the total number of individuals
that are used for estimation, and so these estimations will be poorer the deeper the trees are.
Finally, and most importantly, in order to compute the SHAP values for a tree ensemble model,
Lundberg et al. [3] have constructed an algorithm with polynomial running time, O(TLD2), for
maximum depth D and leaves L.
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7 Logistic regression with different additivity assumptions

In the main article, all likelihood ratio tests are based on the assumption of both additive marginal
effects and additive interaction effects. Here we provide two additional tests with less stricter
additive assumptions.

For the case of SNP-SNP interactions, the first model is unconstrained in both main effects and
interactions [5]:

logit(P (Yi = 1|gi,a, gi,b,xi,c)) =

xTi,cγ + α1I(gi,a = 1) + α2I(gi,a = 2) + β1I(gi,b = 1) + β2I(gi,b = 2)

+ ν11I(gi,a = 1)I(gi,b = 1) + ν12I(gi,a = 1)I(gi,b = 2)

+ ν21I(gi,a = 2)I(gi,b = 1) + ν22I(gi,a = 2)I(gi,b = 2),

(5)

where xTi,c is a vector of features such as intercept, age, environmental features and principal
components, γ is the vector of corresponding parameters for each feature, I() is the indicator
function, α1, α2, β1 and β2 are marginal effects of the SNPs gi,a and gi,b when the genotype value
is one or two respectively, while ν11, ν12, ν21 and ν22 are unconstrained interaction parameters for
gi,a and gi,b.

When testing the presence of interaction effects, the null hypothesis is ν11 = ν12 = ν21 = ν22 = 0,
with null model:

logitH0
(P (Yi = 1|gi,a, gi,b,xi,c)) =

xTi,cγ + α1I(gi,a = 1) + α2I(gi,a = 2) + β1I(gi,b = 1) + β2I(gi,b = 2).
(6)

If we assume additive interaction effects, corresponding to ν11 = ν, ν12 = ν21 = 2ν and ν22 = 4ν,
we get the alternative model:

logit(P (Yi = 1|gi,a, gi,b,xi,c)) = xTi,cγ + α1I(gi,a = 1) + α2I(gi,a = 2)

+ β1I(gi,b = 1) + β2I(gi,b = 2) + νgi,agi,b.
(7)

We will then have two new tests based on the following null and alternative models: Models (6)
and (5) in the case of no assumptions and models (6) and (7) in the case of additive interactions.
We denote these tests as Test 1 and Test 2 respectively. The test applied in the main article is
denoted as Test 3 with null and alternative models:

logitH0,add(P (Yi = 1|gi,a, gi,b,xi,c)) = xTi,cγ + αgi,a + βgi,b. (8)

logitH1,add(P (Yi = 1|gi,a, gi,b,xi,c)) = xTi,cγ + αgi,a + βgi,b + νgi,agi,b. (9)

For the case of SNP-environment interactions, the logistic models will look similar in the case
where the environmental feature is discrete. For the case where the environmental feature, xi,e, is
continuous, the unconstrained Test 1 will for instance have the following alternative model:

logit(P (Yi = 1|gi,a, xi,e,xi,c)) = xTi,cγ + α1I(gi,a = 1) + α2I(gi,a = 2) + βexi,e

+ φ1I(gi,a = 1)xi,e + φ2I(gi,a = 2)xi,e,
(10)
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where βe, φ1 and φ2 are the marginal effect of the environmental feature, and interaction effects
respectively.

The results when applying all three tests for each of the interactions based on both the evaluation
data and all individuals is given in Table 1.

Table 1: Results from all likelihood ratio tests with different assumptions of additivity. The tests
are applied on the top four ranked interactions found from the model explainability process based
on the evaluation data.

Test Interaction p-value LRT
Test 1 evaluation data rs171329 and rs180743 0.49
Test 1 all individuals rs171329 and rs180743 0.0063
Test 2 evaluation data rs171329 and rs180743 0.85
Test 2 all individuals rs171329 and rs180743 0.024
Test 3 evaluation data rs171329 and rs180743 0.85
Test 3 all individuals rs171329 and rs180743 0.024
Test 1 evaluation data rs17817449 and genetic sex 0.96
Test 1 all individuals rs17817449 and genetic sex 0.00022
Test 2 evaluation data rs17817449 and genetic sex 0.79
Test 2 all individuals rs17817449 and genetic sex 4.78e-05
Test 3 evaluation data rs17817449 and genetic sex 0.77
Test 3 all individuals rs17817449 and genetic sex 4.09e-05
Test 1 evaluation data rs17817449 and saturated fat intake 0.59
Test 1 all individuals rs17817449 and saturated fat intake 0.0019
Test 2 evaluation data rs17817449 and saturated fat intake 0.45
Test 2 all individuals rs17817449 and saturated fat intake 0.0017
Test 3 evaluation data rs17817449 and saturated fat intake 0.44
Test 3 all individuals rs17817449 and saturated fat intake 0.0017
Test 1 evaluation data rs757318 and rs12123815 0.48
Test 1 all individuals rs757318 and rs12123815 0.49
Test 2 evaluation data rs757318 and rs12123815 0.25
Test 2 all individuals rs757318 and rs12123815 0.71
Test 3 evaluation data rs757318 and rs12123815 0.25
Test 3 all individuals rs757318 and rs12123815 0.71

Even though the three statistical tests have different assumptions, the p-values for the three tests
for each interaction do not vary greatly. Therefore, in this case, the assumptions of additivity do
not have any significant impact of the computed p-values.
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8 PCA plots - Evaluation data and full dataset

Figure 2: PCA plot for the first and second principal components for unrelated individuals in the
full dataset.

Figure 3: PCA plot for third and fourth principal components for unrelated individuals in the full
dataset.
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Figure 4: PCA plot for first and second principal components for unrelated individuals in the
evaluation dataset.

Figure 5: PCA plot for third and fourth principal components for unrelated individuals in the
evaluation dataset.
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Abstract

Estimating feature importance is an essential aspect of explaining data-based
models. Besides explaining the model itself, an equally relevant question is
which features are important in the underlying data generating process. We
present a Shapley value based framework for inferring the importance of in-
dividual features, including uncertainty in the estimator. We build upon the
recently published feature importance measure of SAGE (Shapley additive
global importance) and introduce sub-SAGE which can be estimated with-
out resampling for tree-based models. We argue that the uncertainties can
be estimated from bootstrapping and demonstrate the approach for tree en-
semble methods. The framework is exemplified on synthetic data as well as
high-dimensional genomics data.
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1. Introduction

With the strong improvement of black-box machine learning models such
as gradient boosting models and deep neural networks, the question of how
to infer feature importance in these types of models has become increas-
ingly important. The Shapley decomposition, a solution concept from co-
operative game theory (Shapley, 1953), has enjoyed a surge of interest in
the literature on explainable artificial intelligence in recent years, (cf. Aas
et al. (2021); Lundberg et al. (2020); Sellereite and Jullum (2019); Lundberg
and Lee (2017); Strumbelj and Kononenko (2013, 2010); Lundberg et al.
(2019); Redelmeier et al. (2020); Kwon et al. (2021); Song et al. (2016);
Moehle et al. (2021); Covert et al. (2020a); Keinan et al. (2003); Fryer
et al. (2021b)). A widely used Shapley based framework for deriving fea-
ture importances in a fitted machine learning model is Shapley additive ex-
planations (SHAP) (Lundberg and Lee, 2017; Lundberg et al., 2020), which
explains single predictions’ deviations from the average model prediction.
As such, SHAP attributes feature importances as they are perceived by
the model. The more recently introduced Shapley additive global impor-
tance (SAGE) is also based on the Shapley decomposition, but attributes
feature importances by a global decomposition of the model loss across a
whole data set (Covert et al., 2020b). The SAGE framework thus provides
an explanation of the influence of the features taking into account not only
the model, but also implicitly the data via the loss function, thus encapsulat-
ing that the model might not be – and most likely isn’t – a perfect description
of the data (see Fryer et al., 2021a, for a discussion and comparison between
SHAP and SAGE as feature performance measures).

The SAGE value needs to be estimated, and the SAGE estimator is itself
a random variable as the corresponding SAGE estimate is based on data
of finite size generated from some unknown probability distribution. As is
the case for any feature importance measure, we argue that the uncertainty
in the estimate is equally important as the estimate itself for drawing con-
clusions. However, even computation of the SAGE-estimate is infeasible for
high-dimensional data, and thus further approximations are needed (Covert
et al., 2020b). To this end, we introduce sub-SAGE, which is motivated by
SAGE but can be estimated exactly for tree-ensemble models, by using a
reduced subset of coalitions. Additionally, we describe how to estimate a
confidence interval of the sub-SAGE value. No calculation of such uncer-
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tainty exists in the SAGE package or the literature. We do this using paired
bootstrapping, and demonstrate its calculation on simulated as well as ob-
served high-dimensional data. We argue that this procedure provides a way
to infer the true importance of a feature in the underlying data. We restrict
ourselves to tree ensemble models. The remainder of this paper is structured
as follows. In section 2 we introduce background concepts such as the Shap-
ley value, SHAP and SAGE, before moving on to sub-SAGE in section 3
and its uncertainty in section 4. The method is exemplified in section 5
and section 6 before we discuss the results in section 7.

2. Background

In this section, we provide a brief introduction to the Shapley decomposition-
based SHAP and SAGE frameworks, and how to apply these to tree ensemble
models. The Shapley decomposition is a solution concept from cooperative
game theory (Shapley, 1953). It provides a decomposition of any value func-
tion v(S) that characterises the game, and produces a single real number, or
payoff, per set of players in the game. The resulting decomposition satisfies
the three properties of efficiency, monotonicity and symmetry, and is prov-
ably the only method to satisfy all three (Young, 1985; Huettner and Sunder,
2012, Thm. 2). For details see Appendix E.

Consider a supervised learning task characterised by a set of M features xi
and corresponding univariate1 responses yi, for i = 1, . . . , N , and a fitted
model that is a mapping from feature values to response values, i.e. xi →
ŷ(xi). As usual, uppercase letters denote random variables while lowercase
letters denote observed data values. In this work, we assume independent
features, meaning E[Xj|Xk = xk] = E[Xj] ∀ j 6= k.

2.1. The SHAP value

Let S ⊆ M \ {k}, with M = {1, . . . ,M}, denote a subset of all features
not including feature k. Denote S̄ the corresponding complement subset of
excluded features (S ∪ S̄ = M). The SHAP value, φSHAP

k (x, ŷ), introduced

1The procedures described in this paper can be generalised to multivariate responses,
but this renders the derivations more convoluted.
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by Lundberg and Lee (2017), for a feature with index k with respect to
feature values x and a corresponding fitted model ŷ, is defined as

φSHAP
k (x, ŷ) =

∑

S⊆M\{k}

|S|!(M − |S| − 1)!

M !
[vx,ŷ(S ∪ {k})− vx,ŷ(S)] . (1)

Here, the value function vx,ŷ(S) is defined as the expected output of a pre-
diction model conditioned that only a subset S of all features are included
in the model,

vx,ŷ(S) = EXS [ŷ(X|XS = xS)] . (2)

For instance, if xS is continuous and we assume all features to be mutually
independent, we have

EXS [ŷ(X|XS = xS)] =

∫

xS

ŷ (XS = xS ,XS = xS) p (XS = xS |XS = xS) dxS

=

∫

xS

ŷ (XS = xS ,XS = xS) p (XS = xS) dxS .

(3)

The stochastic behaviour in ŷ(X|XS = xS) is due to the random vector XS̄ of
unknown feature values. We can think of the difference vx,ŷ(S∪{k})−vx,ŷ(S)
as the mean difference in a single model prediction when using feature k in
the model compared to when the value of feature k is absent. Therefore,
the SHAP value can be interpreted as a feature importance measure for each
single model prediction. The larger absolute SHAP value a feature k has in
a single prediction, the more influence the feature is regarded to have.

2.2. The SAGE value

Define a loss function `(yi, ŷ(xi)) as a measure of how well the fitted model
ŷ(xi) maps the features to a response, compared to the true response value
yi. As defined in Covert et al. (2020b), we take the SAGE value function
w(S) as the expected difference in the observed value of the loss function
when the features in S are included in the model compared to excluding all
features,

wX,Y,ŷ(S) = EX,Y [`(Y, VX,ŷ(∅))]− EX,Y [`(Y, VX,ŷ(S))] . (4)
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Here, ∅ denotes the empty set, while VX,ŷ(S) is the stochastic version of
eq. (2). Specifically, VX,ŷ(S) is a random variable since its observed value
varies depending on the random vector XS , while vx,ŷ(S) is a constant as we
condition on the observed vector xS . For instance, for the case where x and
y are continuous, the expected value of the loss function when only a subset
S of feature values are known is

EX,Y [`(Y, VX,ŷ(S))] =

∫

y

∫

xS

`
(
y(x), EXS̄ [ŷ (X|XS = xS)]

)
p(y|xS)p(xS)dxSdy . (5)

Notice that the computation of vx,ŷ(S) = EXS̄ [ŷ (X|XS = xS)] happens in-
side the loss function, which is usually non-linear. Also notice that in eq. (5),
we integrate over all possible values of XS .

The SAGE value for a feature k is defined as

φSAGE
k (X, Y, ŷ) =

∑

S⊆M\{k}

|S|!(M − |S| − 1)!

M !
[wX,Y,ŷ(S ∪ {k})− wX,Y,ŷ(S)] .

(6)
We can think of the difference wX,Y,ŷ(S ∪ {k}) − wX,Y,ŷ(S) as the expected
difference in the loss function when including feature k in the model compared
to excluding feature k with respect to the subset S of known feature values.
SAGE is therefore a global feature importance measure, as opposed to the
SHAP value, as it does not evaluate a single prediction, but rather the impact
feature k has across all predictions. The use of the loss function in the SAGE
definition also makes sure that the feature importance is not only based on
the model, as for the SHAP value, but also on the data itself.

The features and response can be both continuous and discrete. In the dis-
crete case, integrals must replaced by sums and vice versa in eqs. (3) and (5).
The expressions in eqs. (2) and (4) are in general unknown and need to be es-
timated for each choice of model and loss function. Consequently, the SHAP
and SAGE values become estimates as well.

An interpretation of SAGE is that a positive SAGE value for a features
implies that including this feature in the model reduces the expected model
loss compared to when not including the feature.

2.3. Tree ensemble models

Consider a tree ensemble model consisting of several regression trees fτ (xi)
with predicted response ŷ(xi), such that ŷ(xi) =

∑T
τ=1 fτ (xi) for T trees. By
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Figure 1: A regression tree including two features X1 and X2.

the linearity property of the expected value, we have

vx,ŷ(S) = EXS̄

[
T∑

τ=1

fτ (X|XS = xS)

]
=

T∑

τ=1

EXS̄ [fτ (X|XS = xS)] . (7)

The computation of EXS̄ [fτ (X|XS = xS)] can be understood through a sim-
ple example: Consider the regression tree illustrated in fig. 1. It has depth
two and splits on the two features indexed 1 and 2, which are continuous and
mutually independent. The regression tree has parameters such as splitting
points, tj, for branch nodes, and leaf values vj, for leaf nodes. Assume that
x2 = 3 is observed. We then have

EXS̄ [fτ (X|XS = xS)] = EX1 [fτ (X1|X2 = 3)]

= P (X1 ≥ 20)v3 + P (X1 < 20)v2 .
(8)

In general, we do not know the value of P (X1 ≤ 20), and need to estimate
it. Consider N data instances with recorded feature values from feature k.
An unbiased estimate of P (Xk ≤ t) is then

P̂ (Xk ≤ t) =
1

N

N∑

i=1

I(xi,k ≤ t) , (9)

where xi,k is the observed value of feature k for data instance i. Using this
estimate, we can also get an unbiased estimate for eq. (8). An unbiased
estimate of EXS̄ [fτ (X|XS = xS)] for any regression tree can be achieved by
a recursive algorithm (Lundberg et al., 2020) with running time O(L2M),
where L is the number of leaves, see algorithm 1.
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Algorithm 1 Recursive algorithm for computation of EXS̄ [fτ (X|XS = xS)].

1: Input: Tree fτ with depth d, leaf values v = (v1, . . . , v2d), feature
used for splitting f = (f1, . . . , f2d−1) and corresponding splitting points
t = (t1, . . . , t2d−1). Estimated probabilities of ending at a node j given
previous information, for all nodes in the tree, p = (p1, . . . , p2d−1), by
using some data (x1, y1), . . . , (xN , yN) of size N . The subset of features
S with corresponding known values xS . The left and right descendant
node for each internal node l = (l1, . . . , l2d−1) and r = (r1, . . . , r2d−1).
The index of a node j in the tree fτ .

2: Function CondExpTree(j, fτ ,v, t, f , l, r,p)
3: if IsLeaf(j) then
4: return vj
5: else
6: if fj ∈ S then
7: if xj ≤ tj then
8: return CondExpTree(lj, fτ ,v, t, f , l, r,p)
9: else

10: return CondExpTree(rj, fτ ,v, t, f , l, r,p)
11: end if
12: else
13: return CondExpTree(lj, fτ ,v, t, f , l, r,p) plj +
14: CondExpTree(rj, fτ ,v, t, f , l, r,p) prj
15: end if
16: end if
17: End Function
18: CondExpTree(1, fτ ,v, t, f , l, r,p) . Start at root node.
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2.4. SAGE in practice

In practice, as the expressions in eq. (2) and eq. (4) must be estimated, we
get a SAGE estimator rather than a SAGE value. However, since the SAGE
estimator requires summing over all 2M−1 subsets S ⊆ M \ {k}, for each
feature, computing the SAGE estimator for observed data with many fea-
tures becomes infeasible. In Covert et al. (2020b), the SAGE estimate is
approximated through a Monte Carlo simulation process. Specifically, in-
stead of iterating over all 2M−1 subsets, a subset S is randomly sampled with
replacement in each iteration out of I iterations in total. The differences
wX,Y,ŷ(S ∪ {k}) − wX,Y,ŷ(S) for each S are estimated by sampling data in-
stances with replacement and computing sample means (see Covert et al.,
2020b, Appendix D for details). For an arbitrarily large data set, the au-
thors show convergence to the true SAGE estimate as I →∞. Among other
things, both the accuracy and convergence speed of the algorithm naturally
depends on the number of features in the prediction model.

Keeping in mind that the SAGE estimator is a random variable, we argue
that its uncertainty is equally important as the estimate itself. No calculation
of this inherent uncertainty exists in the SAGE package or the literature 2. To
this end, we introduce sub-SAGE, which is inspired by the SAGE framework,
but consisting of a reduced number of subsets S ∈ Q. While applicable to
any number of features, it is best suited for interpreting a small number of
features, or a small subset of features in a large feature set.

3. Sub-SAGE

Given hundreds or thousands of features in a model, the computation time re-
quired to get a satisfactory accurate estimate of SAGE (Covert et al., 2020b),
for each feature, quickly becomes unacceptable. A hybrid approach is to se-
lect a reduced subset of features of particular interest to investigate. Such
a subset can for instance be selected by computing a model-based feature
importance score for all features in the model and selecting the most inter-
esting looking ones. The reduced subset of promising features can then by
more thoroughly investigated in order to infer whether their model-based

2Covert et al. (2020b) provides the degree of convergence of the approximation of the
estimate, not the uncertainty in the estimate.
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importance is also reflected in the underlying data generating process. For
this purpose, we introduce sub-SAGE, where only a selection of the in total
2M−1 subsets are involved in the computation of each feature.

If we want to measure the importance of a feature k based on its marginal
effect, as well as potential pairwise interactions it may be involved in, com-
puting S = {∅} and S = {m} for m = 1, . . . , k− 1, k+ 1, . . . ,M is sufficient.
In addition, by including S = {1, . . . , k − 1, k + 1, . . . ,M}, the set of all fea-
tures except feature k, this can be used to measure the importance of feature
k in the presence of all features at the same time. Let Qk denote the set of
subsets S chosen above. We define the sub-SAGE value, ψk, for feature k as

ψk(X, Y, ŷ) =
∑

S∈Qk

|S|!(M − |S| − 1)!

3(M − 1)!
[wX,Y,ŷ(S ∪ {k})− wX,Y,ŷ(S)] , (10)

Each subset is weighted such that the sum of the weights of all subsets with
equal size is the same for each subset size. In addition, the sum of all weights
is equal to one. Hence, the construction is similar to the weights defined for
Shapley values. See Appendix A for details. In this particular case, there are
three possible subset sizes, and so the sum of the weights for each subset size is
1
3
. Shapley properties such as symmetry, dummy property and monotonicity

still holds for sub-SAGE. However, as the sum is not over all possible subsets,
the sub-SAGE values do no longer satisfy the efficiency axiom of the Shapley
decomposition, which SHAP and SAGE do (see Appendix E) However, we
regard the efficiency property as not necessary in this particular setting, as
we still consider the sub-SAGE to be informative with respect to feature
importance via the computed differences wX,Y,ŷ(S ∪ {k}) − wX,Y,ŷ(S). In
addition, the purpose is only to evaluate a small fraction of all features, not
all of them. By only considering a reduced number of subsets S, compared
to SAGE, and only considering a reduced number of features to evaluate,
both computing the sub-SAGE estimate as well as the uncertainty in the
corresponding sub-SAGE estimator become feasible for black-box models,
such as for tree ensemble models as discussed in section 4.

3.1. Using sub-SAGE to infer true relationships in the data

As the goal is to infer feature importance from a black-box model using sub-
SAGE values, similar to calculating p-values without taking into account the
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effect of model selection, we must be extra careful. Any model selection pro-
cedure using training data is likely to overfit, resulting in a model containing
false relationships that are not a general property of the population from
which the data was sampled. It is therefore essential that the sub-SAGE
value is calculated using independent data the model was not fitted on. We
denote such independent data as test data, (X0

1, Y
0

1 ), . . . , (X0
NI
, Y 0

NI
), with

NI samples in total.

Consider a fitted linear regression model ŷi = β̂Txi. By using test data
independent of the data used for constructing the linear regression model,
and using the squared error loss, one can show that for a feature k, and any
S ∈ Qk (see Appendix C):

wX,Y,ŷ(S ∪ {k})− wX,Y,ŷ(S) = 2β̂k Cov(Y,Xk)− β̂2
k Var(Xk). (11)

As the expression is independent of the subset S, this is also equal to the
sub-SAGE value of feature k.

The first term in eq. (11) can be interpreted as the extent to which the
influence of feature k based on the model, constructed using training data,
is reflected in the independent test data. If the signs of β̂k and Cov(Y,Xk)
are identical, the first term is positive. If they differ, the sub-SAGE value
will always be negative since the second term in eq. (11) is always negative.

The second term β̂k
2

Var(Xk) is equal to the increased variance in the model
by including feature k. So, if the model regards the feature as important
(resulting in non-zero β̂k), while the covariance between Xk and Y from the
independent test data goes in the same direction (same sign as β̂k), however
small, then the benefit of including feature k in the model is smaller, the
larger the variance of the feature, and at some point disadvantageous for
sufficiently large variance.

3.2. sub-SAGE applied on tree ensemble models

SHAP values can be shown to be estimated efficiently for tree ensemble
models, even with hundreds of thousands of features (e.g. Johnsen et al.,
2021), by improving algorithm 1 to get a significantly reduced running time
of O(TLD2), for T trees each of tree depth D (see Lundberg et al., 2020, for
details). Unfortunately, there is no similar way to reduce the running time
for estimation of SAGE values, as well as sub-SAGE values, for tree ensemble
models with non-linear choices of loss functions (Lundberg et al., 2020).
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We consider a tree ensemble model consisting of T trees. Consider a partic-
ular feature k to compute the sub-SAGE value as well as a subset S ∈ Qk.
We separate the trees in the model into two groups τk and the complement
group (τ k) where τk is the set of trees including feature k as a splitting fea-
ture. The loss function is taken to be the squared error between the response
and prediction per sample, i.e. ` = (y(x)− ŷ(x))2. Then one can show that
(see Appendix B for the derivation),

wX,Y,ŷ(S ∪ {k})− wX,Y,ŷ(S)

= EX,Y

[
(Y (X)− VX,ŷ (S))2

]
− EX,Y [(Y (X)− VX,ŷ(S ∪ {k}))2]

= EX,Y


2Y (X)


∑

j∈τk

VX,fj (S ∪ {k})− VX,fj (S)


+


∑

j∈τk

VX,fj (S)




2

−


∑

j∈τk

VX,fj (S ∪ {k})




2

+ 2


∑

j /∈τk

VX,fj (S)




∑

j∈τk

VX,fj (S ∪ {k})− VX,fj (S)




 .

(12)

A commonly used loss function for binary classification problems is binary
cross-entropy, ` = −y(x) log ŷ(x)−(1−y(x)) log(1−ŷ(x)) = (1−y(x))

∑T
j=1 fj(x)

+ log
(

1 + e−
∑T
j=1 fj(x)

)
. For this loss function, one can show that (see Ap-

pendix B)

wX,Y,ŷ(S ∪ {k})− wX,Y,ŷ(S)

= EX,Y


(1− Y (X))

T∑

j=1

VX,fj (S) + log


1 + exp


−

T∑

j=1

VX,fj (S)








− EX,Y


(1− Y (X))

T∑

j=1

VX,fj (S ∪ {k}) + log


1 + exp


−

T∑

j=1

VX,fj (S ∪ {k})








= EX,Y


(1− Y (X))


∑

j∈τk
VX,fj (S)− VX,fj (S ∪ {k})




+ log




1 + exp
(
−∑j∈τk VX,fj (S)−∑j /∈τk VX,fj (S)

)

1 + exp
(
−∑j∈τk VX,fj (S ∪ {k})−

∑
j /∈τk VX,fj (S ∪ {k})

)




 .

(13)

3.2.1. Plug-in estimates

As discussed earlier, the expression wX,Y,ŷ(S ∪ {k}) − wX,Y,ŷ(S) needs to
be estimated for each S ∈ Qk, and based on data, (x0

1, y
0
1), . . . , (x0

NI
, y0
NI

),
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never used during training of the model. Let v̂x0,y0,fτ (S) for a particular
observation (x0, y0) and regression tree fτ denote the estimate of vx0,fτ (S) =
EXS̄ [fτ (X

0|X0
S = x0

S)] as described in algorithm 1. A plug-in estimate of

ψk, denoted ψ̂k, for a regression problem with continuous response, for a tree
ensemble model using the squared error loss is given by

ψ̂k =
∑

S∈Q

|S|!(M − |S| − 1)!

3(M − 1)!


 2

NI

NI∑

i=1

y0
i


∑

j∈τk
v̂x0

i ,fj
(S ∪ {k})− v̂x0

i ,fj
(S)




+
1

NI

NI∑

i=1


∑

j∈τk
v̂x0

i ,fj
(S)




2

− 1

NI

NI∑

i=1


∑

j∈τk
v̂x0

i ,fj
(S ∪ {k})




2

+
2

NI

NI∑

i=1


∑

j /∈τk
v̂x0

i ,fj
(S)




∑

j∈τk
v̂x0

i ,fj
(S ∪ {k})− v̂x0

i ,fj
(S)




 .

(14)

The corresponding plug-in estimate for the binary cross-entropy loss given in
eq. (13) can be found in a similar fashion, basically by estimating expected values
as their corresponding sample means. For tree ensemble models with tree stumps
(maximum depth of one for each tree), the estimate in (14) is further reduced and
can be expressed as sample variance and covariance terms, see Appendix D.

4. Inference of sub-SAGE via bootstrapping

The importance of any feature may be evaluated by estimating sub-SAGE val-
ues. Similar to SAGE, a positive sub-SAGE value for a feature k indicates that
including the feature in the model is expected, based on the subsets S ∈ Qk, to
reduce the loss function. However, the corresponding sub-SAGE plug-in estimator
given the data generating process (X0

1, Y
0

1 ), . . . , (X0
NI
, Y 0

NI
) from some unknown

probability distribution includes uncertainty, and this should be evaluated be-
fore making any assumptions about feature importance. The complexity of the
sub-SAGE plug-in estimators makes paired bootstrapping a tempting approach.
Specifically, the procedure is to iteratively, given independent data points at hand
(x0

1, y
0
1), . . . , (x0

NI
, y0
NI

), resample the data points with replacement to get a new
bootstrapped sample (x∗1, y

∗
1), . . . , (x∗NI , y

∗
NI

). For each bootstrapped sample, a

corresponding plug-in estimate, ψ̂∗b , can be computed, and after B iterations, the

sample (ψ̂∗1, . . . , ψ̂
∗
B) can approximate B realizations arising from the true distri-

bution of the plug-in estimator. A 1−2α confidence interval can be approximated
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by the percentile interval given by [ψ̂∗(α), ψ̂∗(1−α)], where ψ̂∗(α) is the 100α empir-
ical percentile, meaning the B · αth least value in the ordered list of the samples
(ψ̂∗1, . . . , ψ̂

∗
B)3. The accuracy in the percentile interval increases for larger number

of bootstrap iterations. A typical number is B = 1000 regarded to be sufficient
in most cases. The algorithm of the paired bootstrap applied specifically to tree
ensemble models is given in algorithm 2. Notice that for each bootstrap sample,
the probability estimates in the trees need to be updated according to eq. (9).
In situations where the plug-in estimator is biased, or there is skewness in the
corresponding distribution, the bias-corrected and accelerated bootstrap, first in-
troduced in Efron (1987), may give even more accurate confidence intervals at the
cost of considerable increase in computational efforts.

Algorithm 2 Paired bootstrap of sub-SAGE value with percentile interval

1: Given independent test data (x0
1, y

0
1), . . . , (x0

NI
, y0
NI

), model ŷ(x) =∑T
τ=1 fτ (x), feature k, a loss function and α to estimate 1 − 2α con-

fidence interval:
2: Preallocate vector BootVec of length B, the total number of bootstrap

iterations.
3: for b = 1, 2, . . . , B do
4: Resample data NI times with replacement to get
5: (x∗1, y

∗
1), . . . , (x∗NI , y

∗
NI

)
6: Update probabilities estimates in all the trees in ŷ(x) to get p∗

7: BootVec[b] = ψ̂∗k
8: end for
9: Percentile interval given by [ψ̂∗(α), ψ̂∗(1−α)]

5. Proof of concept - With known underlying data generating pro-
cess

In this section, we exemplify the sub-SAGE method on synthetic data with a
known relationship defined as

f(Xi) = a0 + a1Xi,1 + a2Xi,2 + a21Xi,1e
Xi,2 + a3X

2
i,3 + a4 sin(Xi,4)

a5 log(1 +Xi,5)−Xi,5I(Xi,6 > 7) + εi ,
(15)

3Assuming B · α is an integer. See for instance Efron and Tibshirani (1994) for con-
ventions.
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with a0 = −0.5, a1 = 0.03, a2 = −0.05, a21 = 0.3, a3 = 0.02, a4 = 0.35, a5 = −0.2,
and where the features are sampled from the following distributions

X1 ∼ Binom(size = 2, p = 0.4)

X2 ∼ Binom(size = 2, p = 0.04)

X3 ∼ Γ(shape = 10, rate = 2)

X4 ∼ Unif(0, π)

X5 ∼ Poisson(λ = 15)

X6 ∼ N(µ = 0, σ = 10)

εi ∼ N(µ = 0, σ = 2) .

(16)

In addition, we generate 94 noise variables. j = 7, . . . , 47 with a normal distri-
bution Xj ∼ N(µj , σj) and j = 48, . . . , 100 with a binomial distribution Xj ∼
Binom(2, pj) where µj , σj and pj are sampled from a uniform distribution. Data
is generated to give a total of 16000 samples, and then separated randomly in
three disjoint subsets: Data for training (50%), data for evaluation during train-
ing (30%) and independent test data (20%) used for estimating sub-SAGE values.
We fit an ensemble tree model using XGBoost (Chen and Guestrin, 2016) to the
true influential features 1, . . . , 6 together with the noise variables 7, . . . , 100.

The hyperparameters are fixed to max depth = 2, learning rate η = 0.05, subsample =
0.7, regularization parameters λ = 1, γ = 0 and colsample bytree = 0.8 with
early stopping rounds = 20 using training data (n = 8000) and validation data
(n = 4800). See (Chen and Guestrin, 2016) for details about the hyperparame-
ters. We apply the squared error loss during training. This results in a final model
including a total of 230 trees and 62 unique features out of the 100 input-features.

From the trained model, each feature is given a score to evaluate its feature im-
portance based on the model. We apply the expected relative feature contribu-
tion (ERFC), given N data points, introduced in Johnsen et al. (2021), which is
basically a summary score from the corresponding SHAP values for each feature
and individual data point,

κk =

N∑

i=1

|φSHAP
i,k (xi, ŷ)|

|φSHAP
0 |+∑K

j=1 |φSHAP
i,j (xi, ŷ)|

, (17)

with φSHAP
0 = vx,ŷ(∅). The ERFCs scores can be computed based on the data used

to construct the model, as we only need to measure what the model considers im-
portant. The features with the largest ERFC-values are then considered the most
promising ones based on the model. Depending on your hypothesis of interest, one
can evaluate the uncertainty in the feature importance by computing sub-SAGE
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Table 1: The resulting ranking based on the expected relative feature contribution (ERFC)
after having trained an XGBoost model consisting of 6 influential features and 94 noise
features.

Feature ERFC

x6 0.48

x5 0.060

x3 0.026

x1 0.022

x4 0.0036

x2 0.0030

x12 0.0028

x30 0.0022

x40 0.0019

estimates with corresponding bootstrap-derived percentile intervals. However, it is
important that the sub-SAGE estimates are calculated based on independent test
data never used during training. From the trained model, we compute the ERFC
based on the training data and validation data together (n = 12800), and table 1
shows the top 10 features with the largest ERFC-values. This shows that the XG-
Boost model has accurately ranked the most influential features among the top
10 list, for this rather simple relationship. These scores, based on SHAP values,
are only with respect to what the model considers important. The sub-SAGE can
now be applied to infer whether the importance of any feature from the model
is also reflected in the data. As an example, let us consider features 6, 1, 2 and
12 where feature 6 has a strong influence, feature 1 has a weaker influence, and
feature 2 has the weakest influence, while feature 12 has no influence with respect
to f(xi) in eq. (15). Their sub-SAGE estimate along with histograms to estimate
the corresponding distribution of the sub-SAGE estimators are shown in fig. 2 for
training plus validation data as well as for independent test data. We see that
sub-SAGE values inferred using training data overestimates the false influence of
feature 12, while using the test data correctly indicates that feature 12 has a weak
or no influence. We also see from the other histograms that using the training
data underestimates the uncertainty in the sub-SAGE estimate.

By using the test data for computation of the sub-SAGE estimates, the esti-

15



mated 95% percentile intervals of the sub-SAGE values for each feature are 6 :
(39.45, 44.15), 1 : (−0.038, 0.14), 2 : (−0.043, 0.040) and 12 : (−0.030, 0.0050).
These ranges allow us to conclude that feature 6, correctly, is highly influential,
while feature 12 is highly unlikely to have any influence. The added benefit of
the estimated confidence intervals is to prevent us from concluding that features
1 and 2 are influential but rather concluding that feature 1 is highly likely to be
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Figure 2: The estimate of the sub-SAGE, and the corresponding bootstrap distribution
for the synthetic data for features x6, x2, x1 and x12, when applying data used during
training (orange), and independent test data (blue).
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influential, as its average is above zero.

To correct for a potential bias in the plug-in estimator of the sub-SAGE as well
as potential changes in the standard deviation of the estimator at different levels,
the bias-corrected and accelerated bootstrap confidence interval may give more
accurate bootstrap confidence intervals (Efron, 1987). This results in the fol-
lowing intervals 6 : (39.45, 44.13), 1 : (−0.034, 0.14), 2 : (−0.047, 0.037) and
12 : (−0.031, 0.0040), with only negligible changes from the percentile confidence
intervals. The sub-SAGE underestimation of the influence of both features 1 and
2, but particularly feature 2, can be explained by looking at fig. 3.

Figure 3: Comparison of true SHAP value for each data point with the estimated SHAP
value from the model fitted on the synthetic data, eq. (15). The deviations explain the
reasons behind under- and overestimation of feature importance.
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As the data generating process is known, we can compare the true SHAP value at
each point with the corresponding SHAP value from the fitted model. It shows
that the influence of feature 6 is quite accurately modelled, while the effect of
feature 1 and particularly feature 2 is highly underestimated when x1 = 1 and
x2 = 2. As features 1 and 2 interact, the SHAP value of feature 1 depends on the
value of feature 2. It also becomes clear that feature 12, according to the model,
has a negative trend in the SHAP value, but the true SHAP value is equal to
zero (no importance), regardless of the value of feature 12. See Appendix F for
derivations.

6. Application on genetic data using the UK Biobank resource

To demonstrate the ability of sub-SAGE on observed data, we consider a realistic
high-dimensional machine learning problem that often occurs when using genetic
data, namely the influence of specific features on a given trait.

We use both genetic and non-genetic data from UK Biobank, a large prospective
cohort study in the United Kingdom that began in 2006 consisting of about 500′000
participants (Sudlow et al., 2015; Bycroft et al., 2018), and attempt to infer the
influence of specific features with respect to obesity (BMI ≥ 30), by training an
XGBoost model and computing sub-SAGE values.

We treat this as a classification problem between the categories obese and non-
obese (see Johnsen et al., 2021, for details). Of particular interest is whether
any genetic markers are important. The most used method in this setting is a
so-called genome-wide association study (GWAS), where each genetic variant is
tested individually in a general linear (mixed-effects) regression model (Visscher
et al., 2017; Zhou et al., 2018). A corresponding p-value less than 5×10−8 is often
considered statistically significant, a tiny significance level due to the multiple
comparison problem (Goeman and Solari, 2014). When the same association is
replicated in an independent data set, the association is considered to be robust.

We study the XGBoost model constructed in Johnsen et al. (2021) based on 3000
features both genetic (single nucleotide polymorphism (SNP)) and non-genetic,
for 64′000 unrelated White-British participants from UK Biobank. The genetic
data consists of so-called minor allele counts or genotype values from SNPs (see
e.g. Visscher et al., 2017) filtered to ensure independence without significant loss
of information (Johnsen et al., 2021). Non-genetic features included are sex, age,
physical activity frequency, intake of saturated fate, sleep duration, stress and
alcohol consumption (see Johnsen et al., 2021, for definitions). The model is
trained with hyperparameters: learning rate η = 0.05, colsample = subsample =
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Table 2: The resulting ranking based on the expected relative feature contribution (ERFC)
after having trained an XGBoost model consisting of 3000 features and 64′000 individuals
from UK Biobank.

Feature ERFC

Alcohol intake frequency 0.088

Genetic sex 0.086

Physical activity frequency 0.073

Intake of saturated fat 0.044

Sleep duration 0.036

Stress 0.034

Age at recruitment 0.033

rs17817449 0.017

rs489693 0.012

rs1488830 0.011

rs13393304 0.010

rs10913469 0.01

rs2820312 0.0086

colsample by tree = 0.8, max depth = 2, λ = 1, γ = 1, early stopping rounds =
20, and binary cross-entropy loss. The trained model included only 532 features
among the 3000 input features spread along a total of 607 trees. The features with
the largest ERFC-scores, based on the training data, and therefore considered the
most promising features, are given in table 2.

While the non-genetic features are considered the most important, the most impor-
tant SNP according to the model is rs17817449, a SNP connected to the FTO gene
at chromosome 16, previously associated (statistically significant) with obesity in
a large number of genome-wide association studies including different indepen-
dent data sets (Locke et al., 2015). The SNP rs13393304 at chromosome 2 has
previously been associated with obesity using UK Biobank data (Karlsson et al.,
2019). The SNP rs2820312 has not previously been associated with obesity, but
with hypertension based on UK Biobank data (Gagliano Taliun et al., 2020). The
SNPs mentioned above are explored further by computing sub-SAGE estimates

19



rs17817449

F
re

qu
en

cy

0.0000 0.0005 0.0010 0.0015 0.0020

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

rs13393304

0e+00 4e−04 8e−04

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

rs2820312

F
re

qu
en

cy

−2e−04 0e+00 2e−04 4e−04

0.
00

0.
05

0.
10

0.
15

0.
20

rs7318381

F
re

qu
en

cy

−2e−05 2e−05 6e−05

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 4: The estimates and corresponding uncertainties in the sub-SAGE values for the
four SNPs agree with previous studies (GWAS) regarding SNP-association with obesity.

including paired bootstrap-derived percentile intervals by using 20′000 (unrelated
White-British) participants from UK Biobank not used while training the model.
We also compute sub-SAGE for the randomly selected SNP rs7318381, which has
never been associated with obesity, and with a small ERFCs in the XGBoost model
(0.0016). The result is given in fig. 4.

The sub-SAGE values do indicate that both rs17817449 and rs13393304 are highly
likely to be associated with obesity. The 95% percentile interval of the sub-SAGE
value for rs17817449 is (0.0006, 0.0016), and (0.00014, 0.00073) for rs13393304.
The SNPs rs2820312 and rs7318381 are less likely to be associated with obesity,
and if they are true associations, the uncertainties in the estimates indicate that
the effects are microscopic. The 95% percentile intervals for rs2820312 is (−7.08 ·
10−5, 2.95 · 10−4), and (−1.13 · 10−5, 6.32 · 10−5) for rs7318381.
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When dealing with relatively large data sizes such as for the genetic example
above, the bias-corrected and accelerated bootstrap interval can become infeasible
due to the estimation of the acceleration parameter. However, as the acceleration
parameter is proportional to the skewness of the bootstrap distribution, and if the
bootstrap distribution indeed has a small skewness, as is the case here, it is often
sufficient to set the acceleration parameter equal to zero. This gives no change in
the percentile intervals of rs17817449 and rs13393304, but the bias-corrected 95%
bootstrap intervals of rs2820312 and rs7318381 become (−6.10·10−5, 0.00030) and
(−1.18 · 10−5, 6.19 · 10−5) respectively. These are negligible changes, indicating
that the plug-in estimates are low-biased.

7. Discussion and conclusion

We present a Shapley value based framework for inferring the importance of in-
dividual features, including uncertainty in the estimator. We demonstrate how to
infer feature influence for a tree ensemble model with high-dimensional data using
sub-SAGE and paired bootstrapping. As an example, we use XGBoost, a gradient
tree-boosting model, applied to both a known data generating process, as well as
realistic high-dimensional data. We emphasize the importance of using test data,
independent of data used to construct the model, to compute sub-SAGE estimates.

It is important to notice that the percentile intervals, constructed to evaluate
the uncertainty in the sub-SAGE estimate, themselves include uncertainty. The
uncertainty of the percentile intervals depends on the number of bootstraps, B,
as well as the size n of data. However, in addition, the uncertainty also depends
on the ratio p/n, where p is the total number of features used in the model (not
necessarily the number of input-features for constructing the model). This fact
is particularly important in high-dimensional problems, and it has been discussed
for instance in Karoui and Purdom (2018). When applied to linear models, one
observation from a simulation is for instance that the paired bootstrap becomes
more conservative (loss of power) the larger the ratio p/n is. Observe that for
the simulation example above, p/n = 62/3200 = 0.019, while for the genetic data,
the ratio is p/n = 533/20000 = 0.027, deliberately chosen to be small in order
to account for the problems arising when p/n becomes too large. For the genetic
data, a filtering process is first needed as the data from UK Biobank originally
includes around 530′000 SNPs and 207′000 individuals (p/n = 2.56). The applied
filtering method and potential pitfalls are described in Johnsen et al. (2021).

It seems reasonable to apply the same loss function in the sub-SAGE estimate as
the loss function that was used to construct the model. However, there may be
situations where it is meaningful to compute the sub-SAGE values for a different
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loss function than the loss function used during training in order to make more
objective interpretations. This may e.g. be the case when the model is provided
‘as is’ and you do not know the training loss function, or when using adapted loss
functions, e.g. weighted binary cross-entropy, but the interpretation is relevant for
a standard cross-entropy.

In this work we have assumed all features to be mutually statistically independent,
an unrealistic scenario in most cases, except for situations such as with genetic data
where one can make sure that the genetic distance between the SNPs is sufficiently
large to minimize the correlation. If many features are statistically dependent, one
is required to estimate conditional expected values (see e.g. Aas et al., 2021). In
a high-dimensional setting, this often becomes very tedious and even infeasible in
most cases. An important line of future research to allow for easy evaluation of
feature influence in a high-dimensional setting, is dimensionality reduction of the
features with reduced loss of interpretation of the cluster variables created.
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Appendix A. The weights in sub-SAGE

The sub-SAGE, ψk, is defined as eq. (10) and repeated here for convenience,

ψk(X, Y, ŷ) =
∑

S∈Qk

|S|!(M − |S| − 1)!

3(M − 1)!
[wX,Y,ŷ(S ∪ {k})− wX,Y,ŷ(S)] , (A.1)

with Qk consisting of the subsets {∅}, {m} for m = 1, . . . , k− 1, k+ 1, . . . ,M and
{1, 2, . . . , k− 1, k+ 1, . . . ,M}. In other words, there are three different achievable
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subset sizes, namely of size zero, one and M − 1. As we want the sum of all
weights to be equal to one, and that the sum of the weights of equal subset size is
the same for all subset sizes, we need the corresponding weight for S = {∅} and
S = {1, 2, . . . , k− 1, k+ 1, . . . ,M} to be 1/3, while the sum of the weights for S =
{m} for m = 1, . . . , k − 1, k + 1, . . . ,M needs to be 1/3. For S = {∅}, we see that
the weight is 0!(M−1)!/3(M−1)! = 1/3 and for S = {1, 2, . . . , k−1, k+1, . . . ,M}
the weight is (M − 1)!0!/3(M − 1)! = 1/3, just as we wanted. For the subsets of
size one, the weight is 1!(M − 2)!/3(M − 1)! = 1/3(M − 1). There are M − 1
subsets of size one in total, and so the sum of the weights are also 1/3. In other
words, the definition of the weights in sub-SAGE makes sure that the sum of all
weights is equal to one, and that the sum of the weights of equal subset size is the
same for all subset sizes.

Appendix B. Derivation of Sub-SAGE for squared error and bi-
nary cross-entropy

Using as loss function the squared error loss, the loss per sample is ` = (y − ŷ)2.
Considering a feature k for which to compute the sub-SAGE value, we separate the
trees in our ensemble model into two groups: τk, being the set of trees including
feature k as a splitting point, and its complement group (τ̄k). Then, for any
S ∈ Qk,

wX,Y,ŷ(S ∪ {k})− wX,Y,ŷ(S)

= EX,Y

[(
Y (X)− VX,ŷ (S)

)2]− EX,Y [
(
Y (X)− VX,ŷ(S ∪ {k})

)2
]

= EX,Y
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(B.1)

having used that the two random variables VX,fj (S ∪{k}) and VX,fj (S) are equiv-
alent, or equal in distribution, for j /∈ τk. Note that the corresponding observed
value vx,fj (S ∪ {k}) = EXS [fj(X|XS = xS∪{k})] = EXS [fj(X|XS = xS)] =
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vx,fj (S) for all S ∈ Qk since the regression tree fj does not include feature k,
and the features are assumed mutually independent.

Using as loss function the binary cross-entropy, the loss function per sample is

` = −y log ŷ − (1 − y) log(1 − ŷ) = (1 − y)
∑T

τ=1 fτ + log
(

1 + e−
∑T
τ=1 fτ

)
. Then,

we have

wX,Y,ŷ(S ∪ {k})− wX,Y,ŷ(S)

= EX,Y

[
(1− Y (X))

T∑

τ=1

VX,fτ (S) + log

(
1 + exp

(
−

T∑

τ=1

VX,fτ (S)

))]

− EX,Y
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(B.2)

Appendix C. (Sub-)SAGE with multiple linear regression

Consider a fitted linear regression model ŷi = β̂Txi, with uncorrelated features.
By applying the squared error loss, and by considering β̂ as a constant (by using
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data not used to estimate β̂), we have for a feature k, and a subset S ∈ Qk that

wX,Y,ŷ(S ∪ {k})− wX,Y,ŷ(S) = EX,Y [(Y − VX,ŷ(S))2]− EX,Y [(Y − VX,ŷ(S ∪ {k}))2]

= EX,Y [2Y β̂k(Xk − E[Xk]) + VX,ŷ(S)2 − VX,ŷ(S ∪ {k})2]

= 2β̂kEX,Y [Y (Xk − E[Xk])] + 2EX,Y

[
β̂k(β̂TSXS + β̂TS∪{k}XS∪{k}])(E[Xk]−Xk)

]

− β̂2
kEX,Y

[(
Xk

2 − E[Xk]
2
)]

= 2β̂k Cov(Y,Xk)− β̂2
k Var(Xk),

(C.1)

with
VX,ŷ(S) = β̂kE[Xk] + β̂SXs + β̂S∪{k}E[XS∪{k}],

the stochastic version of vx,ŷ(S) = E[ŷ(X)|XS = xS ] = β̂kE[Xk] + β̂Sxs +

β̂S∪{k}E[XS∪{k}], and

VX,ŷ(S ∪ {k}) = β̂kXk + β̂SXs + β̂S∪{k}E[XS∪{k}],

the stochastic version of vx,ŷ(S ∪ {k}). See Appendix B in Aas et al. (2021) for
derivation of vx,ŷ(S) in linear regression. The second term in the third line of

eq. (C.1) is equal to zero since the features are independent, and β̂ is considered a
constant. Notice therefore that the sub-SAGE value, as well as the SAGE-value,
is independent of the subset S used, and equal to eq. (C.1).

The second term β̂k
2

Var(Xk) is in fact equal to the increased variance in the model
by including feature k actively in the model since

E[VX,ŷ(S)2 − VX,ŷ(S ∪ {k})2]

= E[VX,ŷ(S)2]− E[VX,ŷ(S)]2 − (E[VX,ŷ(S ∪ {k})2]− E[VX,ŷ(S ∪ {k})]2)

= Var(VX,ŷ(S))−Var(VX,ŷ(S ∪ {k})),
(C.2)

because E[VX,ŷ(S)] = E[VX,ŷ(S ∪ {k})].
For linear regression models, this shows that the sub-SAGE value is only positive
if the agreement between the model and the independent test data (first term in
eq. (C.1)) upweights the increased variance in the model (second term in eq. (C.1))
by including feature k.

We neither know the variance of Xk nor the correlation between Xk and Y , and
so these must also be estimated from the data. The sample mean and sample
covariance are unbiased and consistent estimators. Therefore, by using independent
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test data (x0
1, y

0
1), ..., (x0

NI
, y0
NI

) of size NI , the estimator of β̂k, denote it T (β̂k),
is statistically independent from the test data, and by applying the sample mean
and covariance we get the following unbiased estimate of eq. (C.1)
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= 2β̂jĈov
0
(Y,Xk)− β̂k

2
V̂ar

0
(Xk) .

(C.3)

If we did not use training data separately for constructing the model, and test data
to compute sub-SAGE values, the second term in the third line of eq. (C.1) would
no longer become zero since the estimator T (β̂) naturally is correlated with the
training data itself. It may seem confusing to treat β̂k in eq. (C.1) as a constant
when the corresponding estimator T (β̂k) indeed has a distribution based on the
training data. However, one may look at the procedure of sub-SAGE as objectively
observing the properties of the raw model itself without taking into account the
data used for training the model.

Appendix D. Sub-SAGE estimate for tree ensemble models with
tree stumps

Consider a tree ensemble model with regression trees of depth one, so-called tree
stumps. Each tree stump includes exactly one feature from the set M of all M
features. In accordance with earlier notation, let τk denote the set of tree stumps
that include feature k. Then, eq. (B.1) reduces to

wX,Y,ŷ(S ∪ {k})− wX,Y,ŷ(S)

= EX,Y
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(D.1)

because all random variables VX,fj (S) for j /∈ τk, for every S are now independent
of all VX,fj (S) and VX,fj (S ∪{k}) for j ∈ τk. Further, for every j ∈ τk, VX,fj (S) =
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EX[fj(X)], a constant equal to the expected value of the output of the regression
tree fj , and EX[VX,fj (S ∪ {k})] = EX[fj(X)], since the regression tree fj only
includes feature k. Therefore, the last term in eq. (B.1) vanishes. Observe that,
in the case of tree stumps,

EX,Y
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Likewise,
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Hence, the expression given in eq. (D.1) independent of the subset S. The ex-
pression in eq. (D.1) is therefore also equal to the sub-SAGE value, ψ̂k (or SAGE
value). Both the covariance and the variance need to be must be estimated in prac-
tice. Given independent test data (x0

1, y
0
1), . . . , (x0

NI
, y0
NI

), an unbiased estimate is
given by
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(D.2)

Appendix E. Sub-SAGE properties related to Shapley values

Symmetry, null player, linearity, monotonicity and efficiency are all properties of
Shapley values. Below we investigate whether the same properties apply for sub-
SAGE values.
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Appendix E.1. Symmetry

Given two features j and k such that v(S ∪{j}) = v(S ∪{k}) for all S ∈ {Qj ,Qk}
in which {j, k} /∈ S. Then their sub-SAGE values indeed are identical, ψj = ψk,
and so the symmetry property follows by definition. This means in practice that
two perfectly correlated features have equal sub-SAGE values.

Appendix E.2. Dummy property (null player)

Given a feature k where v(S ∪ {k}) = v(S) for all S ∈ Qk. Then ψk = 0, and so
the dummy property follows by definition.

Appendix E.3. Linearity

Given two value functions v(S) and w(S), the sub-SAGE value of the sum of the
value functions v(S) + w(S) is equal to the sum of the sub-SAGE for each value
function,

ψk(v + w) = ψk(v) + ψk(w) . (E.1)

Appendix E.4. Monotonicity

Consider two models f̂1 and f̂2 used to predict the same relationship y = f(x),
for the same features x. If for any feature k we have vf̂1

(S ∪ {k}) − vf̂1
(S) ≥

vf̂2
(S ∪ {k}) − vf̂2

(S) for all S ∈ Qk, then by definition, ψf̂1

k ≥ ψf̂2

k , with ψf̂1

k the

sub-SAGE value of feature k when applying model f̂1 and ψf̂2

k the corresponding

sub-SAGE value when applying model f̂2. This means that an adjustment of model
f̂2 to f̂1 such that feature k’s importance increases also increases its sub-SAGE
value. Therefore, the monotonicity property follows by definition.

Appendix E.5. sub-SAGE does not share the efficiency property

Consider the definition of the Shapley value, φk, applied on a specific value function
v:

φk =
∑

S⊆M\{k}

|S|!(M − |S| − 1)!

M !
[v(S ∪ {k})− v(S)] . (E.2)

The efficiency property for the Shapley value reads

M∑

k=1

φk = v(M)− v(∅) , (E.3)
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for M ”players”. This can be observed more easily by using instead the following
formulation of the Shapley value

φk =
1

M !

∑

R

[v(sk(R) ∪ {k})− v(sk(R))] , (E.4)

where the sum is over all orderings R of the M features, with a total of M ! orders.
The function sk(R) maps a given ordering R and a particular feature k to the
corresponding subset of features preceding feature k in the specific ordering. For
instance, for M = {1, 2, 3}, one possible ordering is R = (2, 3, 1) with s1(R) =
(2, 3). We then have

M∑

k=1

φk =

M∑

k=1

1

M !

∑

R

[v(sk(R) ∪ {k})− v(sk(R))]

=
1

M !

∑

R

M∑

k=1

[v(sk(R) ∪ {k})− v(sk(R))]

=
1

M !

∑

R

(v(M)− v(∅))

=
1

M !
M ! (v(M)− v(∅)) = v(M)− v(∅),

(E.5)

since for a specific orderingR and feature k, in the sum
∑M

k=1 [v(sk(R) ∪ {k})− v(sk(R))]
all terms cancel each other, except v(M) and v(∅).

The sub-SAGE value, ψk, for a feature k is not a sum over all subsets S ⊆M\{k},
but limited to the sets in Qk,

ψk(y, ŷ) =
∑

S∈Qk

|S|!(M − |S| − 1)!

3(M − 1)!
[v (S ∪ {k})− v (S)] , (E.6)

and therefore, from the definition in eq. (E.4), is not the sum over all orderings
R. The sub-SAGE value therefore does not share the efficiency property of the
Shapley value.

Appendix F. SHAP computations for fig. 3

Consider this time the SHAP value of a given data generating process, f , with
known relationship:

φSHAP
k (x, f) =

∑

S⊆M\{k}

|S|!(M − |S| − 1)!

M !
[vx,f (S ∪ {k})− vx,f (S)] , (F.1)
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By applying the data generating process, f , explained in Section 5, the exact
SHAP value of feature 1 can be computed by partitioning in the subsets S not
including feature 2, as well as those including feature 2. For all S not including
feature 2, and by using the result in Appendix B in Aas et al. (2021):

vxi,f (S ∪ {k})− vxi,f (S) = a1(xi,1 − E[X1]) + a21E[eX2 ](xi,1 − E[X1]),

independent of the subset S used. Of all S ⊆ M \ {1}, a half of them will not
include feature 2, and the sum of the corresponding Shapley weights are given by:

M−2∑

|S|=0

|S|!(M − |S| − 1

M !

(
M − 2

|S|

)
=

M−2∑

|S|=0

|S|!(M − |S| − 1

M !

(M − 2)!

|S|!(M − 2− |S|!)

=
M−2∑

|S|=0

1

M
− 1

M(M − 1)

M−2∑

|S|=0

|S| = 1

2
.

For all S including feature 2:

vxi,f (S ∪ {k})− vxi,f (S) = a1(xi,1 − E[X1]) + a21e
xi,2(xi,1 − E[X1]).

As the sum of the Shapley weights are equal to one, the sum of the Shapley weights
for these S must also be 1/2. Hence, the SHAP value of feature 1 is given by:

φi,1(xi) =
1

2
(a1(xi,1 − E[X1]) + a21E[eX2 ](xi,1 − E[X1]))

+
1

2
(a1(xi,1 − E[X1]) + a21e

xi,2(xi,1 − E[X1]))

= a1(xi,1 − E[X1]) + a21E[eX2 ](xi,1 − E[X1])

+
1

2
a21xi,1(exi,2 − E[eX2 ])− 1

2
a21E[X1](exi,2 − E[eX2 ]).

(F.2)

In the exact same manner one can show that:

φi,2(xi) =
1

2
(a2(xi,2 − E[X2]) + a21E[X1](exi,2 − E[eX2 ])

+
1

2
(a2(xi,2 − E[X2]) + a21xi,1(exi,2 − E[eX2 ]))

= a2(xi,2 − E[X2]) + a21E[X1](exi,2 − E[eX2 ])

+
1

2
a21xi,1(exi,2 − E[eX2 ])− 1

2
a21E[X1](exi,2 − E[eX2 ]).

(F.3)
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φi,6 =
1

2
(a6E[X5](I(xi,6 > 7)− E[I(X6 > 7)])

1

2
(a6xi,5(I(xi,6 > 7)− E[I(X6 > 7)]))

= a6E[X5](I(xi,6 > 7)− E[I(X6 > 7)])

+
1

2
a6I(xi,6 > 7)(xi,5 − E[X5])− 1

2
a6E[I(X6 > 7)](xi,5 − E[X5]).

(F.4)
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