
Uncertainty estimation in
autoregressive exogenous
networks and nonlinear
autoregressive exogenous neural
networks

June 2021

M
as

te
r's

 th
es

is

M
aster's thesis

Ingeborg Kristine Eilertsen

2021
Ingeborg Kristine Eilertsen

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Uncertainty estimation in autoregressive
exogenous networks and nonlinear
autoregressive exogenous neural
networks
Ingeborg Kristine Eilertsen

Submission date: June 2021
Supervisor: Prof. Jan Tommy Gravdahl
Co-supervisor: Dr. Esten Ingar Grøtli, Dr. Mark Haring, Dr. Signe Moe, Katrine Seel

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Abstract

Autoregressive exogenous (ARX) networks and nonlinear autoregressive (NARX) neural
networks are reliant on a measure of uncertainty if they are going to be employed in
safety critical tasks, where wrong decisions in the worst case scenario can lead to serious
accidents. There are two main types of uncertainties which can be estimated in neural
networks; epistemic uncertainty and aleatoric uncertainty. The former is caused by
missing data-points in the training set the network is trained on. The latter, on the
other hand, is caused by uncertainties in the network’s inputs.

In this thesis, a method which propagates means and covariance through the network
is proposed to estimate the aleatoric uncertainty. This method is tested on an ARX
network in the combination with a Kalman filter which resets the estimated variance,
where the system equations of the Kalman filter is given by the ARX network’s model
parameters. Further, is the aleatoric estimation method tested on a neural network and
a NARX neural. Moreover, an epistemic uncertainty method which use dropout at test
time to estimate uncertainty is applied to a NARX neural network.

The aleatoric uncertainty estimation method can be used to get good estimates of the
uncertainty in ARX networks and neural networks. The method does also offer an
estimate of the aleatoric uncertainty in a NARX neural network. However, this estimate
is not a good estimate for the true aleatoric uncertainty in a NARX neural network. The
epistemic uncertainty method estimates a higher uncertainty when predictions are made
on data underrepresented in the training set. Furthermore, the uncertainty estimates
scale with how represented the data on which the prediction is made is in the training
set.

i

Sammendrag

Autoregressive eksogene (ARX) nettverk og ikke-lineære autoregressive eksogene (NARX)
nevrale nettverk er avhengige av et m̊al p̊a usikkerhet hvis de skal brukes til sikkerhets
kritiske oppgaver, der feil valg i det verste tilfellet kan føre til alvorlige ulykker. Det finnes
to hovedtyper av usikkerheter man kan estimere i nevrale nettverk; modell-usikkerhet
og data-usikkerhet. Den første kommer av manglende datapunkter i treningssettet som
nettverket trenes p̊a, og den andre er for̊arsaket av usikkerhet knyttet til nettverkets
innganger.

I denne masteroppgaven er foresl̊as det en data-usikkerhetsestimeringsmetode som propagerer
forventningsverdier og kovarianser gjennom nettverket. Denne metoden er testet p̊a et
ARX nettverk i kombinasjon med et Kalman filter, som resetter den estimerte variansen.
Kalman filteres systemligninger er bestemt av ARX nettverkets modellparameter. Videre
vil denne data-usikkerhetsestimerings metoden bli teste p̊a et nevralt nettverk og et
NARX nevralt nettverk. En modell-usikkerhetsestimeringsmetode vil ogs̊a bli teste p̊a et
NARX nevralt nettverk. Denne bruker dropout til å estimer modell-usikkerheten.

Data-usikkerhetsestimeringsmetoden kan brukes til å oppn̊a gode estimater for usikker-
heten i ARX nettverk og nevrale nettverk. Metoden gir ogs̊a et estimat for data-
usikkerheten i et NARX nevralt nettverk, men dette estimatet er ikke et godt esti-
mat p̊a den reelle data-usikkerheten i nettverket. Model-usikkerhetsestimeringsmetoden
estimerer høyere usikkerhet for prediksjoner som er underrepresenterte i treningssettet.
Videre, skalerer den estimerte usikkerhet med hvor representert dataen som prediksjonen
er utført p̊a er i treningssettet.

ii

Acknowledgments

I want to thank my supervisors Professor Jan Tommy Gravdahl, Dr. Esten Ingar Grøtli,
Dr. Mark Haring, Dr. Signe Moe, and Katrine Seel for valuable guidance throughout
this master thesis.

I also want to thank my family for their support and time spent proofreading.

iii

Contents

Abstract i

Sammendrag ii

Acknowledgments iii

1 Introduction 2
1.1 Background . 2

1.2 Problem Formulation . 4

1.3 Outline Of This Thesis . 5

2 Theory 6
2.1 Machine Learning . 6

2.1.1 Supervised learning - Regression 7

2.1.2 Linear Regression . 7

2.1.3 Deep forward networks . 8

2.2 Autoregressive Exogenous Model (ARX) 12

2.2.1 ARX network . 12

2.2.2 NARX neural network . 13

2.3 Uncertainty In Neural Networks . 14

2.3.1 Epistemic Uncertainty . 14

2.3.2 Aleatoric Uncertainty . 15

2.3.3 Uncertainty In NARX Neural Networks 15

2.4 Assumed Density Filtering (ADF) . 15

2.5 Monte Carlo sampling . 17

2.6 MC-dropout . 17

2.7 Kalman Filter . 18

3 Methods 20
3.1 Full ADF . 20

3.2 Output mean and covariance of a ReLU activation function 21

3.2.1 Expressions . 21

3.2.2 Implementation . 24

3.3 Estimating aleatoric uncertainty in an ARX network 26

3.3.1 Data . 26

3.3.2 Network . 27

iv

Contents

3.3.3 Training . 29
3.3.4 Evaluation . 29
3.3.5 Kalman Filter . 29

3.4 Estimating aleatoric uncertainty in a nonlinear network with full ADF . . 31
3.4.1 Data . 31
3.4.2 Networks . 31
3.4.3 Evaluation . 32

3.5 Uncertainty estimation in NARX neural networks 32
3.5.1 Data . 33
3.5.2 Implementation . 34
3.5.3 Training . 37
3.5.4 Evaluation . 38

4 Experiments and Results 39
4.1 Experiment 1: Estimating aleatoric uncertainty of a linear system 39

4.1.1 Aleatoric uncertainty estimation 39
4.1.2 Resetting the estimated variance with a Kalman filter 40

4.2 Experiment 2: Estimating aleatoric uncertainty in a nonlinear system . . 41
4.2.1 Unnormalized network . 41
4.2.2 Normalized network . 45

4.3 Experiment 3: Estimating aleatoric uncertainty in a NARX neural network 48
4.4 Experiment 4: Estimating epistemic uncertainty in a NARX neural network 51
4.5 Experiment 2: Estimating epistemic uncertainty in a NARX neural network 54

5 Discussion and Further Work 57
5.1 Discussion . 57
5.2 Further Work . 60

6 Conclusion 61

1

1 Introduction

1.1 Background

This section is a rewritten version of section 1.1 Background in Eilertsen 2020.

Machine learning is a field of research which has taken enormous strides in the last
decades. The majority of this progress is due to increased availability of data and
improvements in computing technology. One area of machine learning is regression
which entails approximating relations between input-output pairs. Regression can be
split into two parts, linear regression and nonlinear regression. Deep neural networks
are used to solve nonlinear regression problems. These networks are composed of one or
several layers which each contain linear transformations and nonlinear functions. Linear
regression models are used to solve linear regression problems. These models contains
one layer which is linear.

A nonlinear autoregressive exogenous (NARX) neural network is a special type of deep
neural network which approximates nonlinear dynamical systems
(Narendra and Parthasarathy 1990). A NARX neural network performs one-step ahead
predictions of the dynamical system based on the system’s current and previous inputs,
and the network’s previous predictions. Thus, a NARX neural network is recurrent
as the network’s previous predictions are used to obtain the next prediction. Figure

z−1

z−1

ŷk+1

uk

uk−1

ŷk

Figure 1.1: Graphical illustration of a NARX neural network. Where one previous input
together with the current input, and the previous output is used to make the
next prediction.

2

1.1 Background

1.1 shows a graphical illustration of a NARX neural network. NARX neural networks
have many applications, some examples are compensations of nonlinearities in dynamical
systems, economic forecasting, solar forecasting and weather forecasting (Tavares, Abreu,
and Aguirre 2020) (Tang 2020) (Alanazi, Mahoor, and Khodaei 2017) (Rahimi, Mohd
Shafri, and Norman 2018). An autoregressive exogenous (ARX) network is a NARX
neural network which consist of only one linear layer. These networks are used to
approximate linear dynamical systems.

One significant weakness of traditional machine learning models which solves regression
problems, are that they do not offer a measure of uncertainty associated with their
predictions. When used in safety critical tasks, where wrong decisions can be detrimental
and might lead to fatalities, injuries, material damage, or stop of production, a measure
of uncertainty can be used to determine if the models prediction should be used or if
another mechanism should take over.

In machine learning there are two leading types of uncertainties which can be estimated,
aleatoric and epistemic uncertainty (Gal 2016). The former is the uncertainty caused
by uncertainty in the network’s inputs, uncertainty in yields uncertainty out. Epistemic
uncertainty, on the other hand, is the uncertainty stemming from missing input-output
pairs in the data set the model is trained on. There is a higher level of uncertainty
associated with predictions made on data which is seen less during training.

In recent years several different methods for estimating uncertainty in deep neural net-
works have been proposed. Lakshminarayanan, Pritzel, and Blundell 2017 estimates
epistemic uncertainty by performing Monte Carlo sampling on an ensemble of differ-
ent networks. Monte Carlo sampling consists of collecting independent samples from a
distribution, and approximating the mean and variance of the distribution with these
samples. This method’s downside is that several networks have to be trained, which
might be unsuitable and impractical for large networks. The advantages of this method
are that traditional deep learning techniques can be used. On the other hand, Gal and
Ghahramani 2015 estimate epistemic uncertainty by applying dropout (Srivastava et al.
2014) at test time. Dropout consists of removing some of the network’s units at random
for each forward pass, and in the next forward pass the units are included in the network
and some other units are removed. The uncertainty is found by Monte Carlo sampling;
thus, this technique’s drawback is the time it takes to obtain the samples. The method’s
strengths are that it is easy to implement and there is no need to change network archi-
tecture. The method can also be applied on already trained networks regardless of being
trained with dropout. Diversely Postels et al. 2019 proposes a method for estimating
epistemic uncertainty which does not require sampling. The method is based on error
propagation where errors are equivalent to variances (Taylor 1996). Noise is injected in
the network with a noise layer, which can either be a dropout layer or a batch normal-
ization layer (Ioffe and Szegedy 2015). The injected noise is regraded as errors on the
output of the noise layers. Then these errors are propagated to the output of the net-
work. When training a neural network with noise, the training loss will be greater when
the errors on the outputs are greater. Therefore, the network will indirectly minimize

3

1 Introduction

errors since the aim of training is to minimize the training loss. The main advantage of
this method is that it does not involve sampling.

Gast and Roth 2018 propose a method for estimating aleatoric uncertainty by utiliz-
ing assumed density filtering (ADF) to propagate the input noise through the network
(Boyen and Koller 1998),(Maybeck 1979), (Lauritzen 1992),(Opper and Winther 1999).
The network propagates intermediate estimates and variances. It is assumed that the
output of each network layer is independent and that the network’s inputs are indepen-
dent. The main advantage of this method is that it only requires a small change in
network architecture. The method’s weakness is that it assumes independence, which is
generally not the case.

Another paradigm for uncertainty estimation is Bayesian neural networks(MacKay 1992),
(Geoffrey E. Hinton and Neal 1995), where the network’s model parameters are distribu-
tions, in contrast to traditional neural networks where the model parameters are fixed.
Bayesian neural networks typically estimate either aleatoric uncertainty or epistemic
uncertainty. Kendall and Gal 2017 propose a Bayesian neural network which estimates
both aleatoric and epistemic uncertainty. The main disadvantage of Bayesian neural
networks is that traditional deep learning techniques can not be used.

1.2 Problem Formulation

This thesis is concerned with estimating uncertainty in regression tasks in machine learn-
ing, with a focus on uncertainty estimation in NARX neural networks and aleatoric
uncertainty estimation in ARX networks.

This thesis aims to improve the existing aleatoric uncertainty estimation method ADF
proposed by Gast and Roth 2018 to obtain an estimate of aleatoric uncertainty which
is closer to the true uncertainty. By assuming that the network’s inputs are dependent
and that the output from each network layer is dependent, as opposed to the original
method where this is assumed independent. The altered method will be tested on the
following systems:

1. ARX network in combination with a Kalman filter to reset the uncertainty estimate

2. Feedforward neural network

3. NARX neural network

Furthermore, will the thesis try to answer the following question: Is the aleatoric un-
certainty in a neural network the same as the aleatoric uncertainty in the system it
approximates?

Moreover, estimating epistemic uncertainty with dropout and Monte Carlo sampling
(Gal and Ghahramani 2015) will be implemented and evaluated with regards to uncer-
tainty estimation capabilities in a NARX neural network. This method will be denoted

4

1.3 Outline Of This Thesis

by MC-dropout.

These methods have been chosen because they only require minimal network architec-
ture changes, and existing deep learning techniques can be used; most importantly, the
networks training process is unchanged. Moreover, these methods can be employed on
already trained networks with minimal modifications. To the author’s best knowledge,
these two methods have never previously been applied to NARX neural networks.

1.3 Outline Of This Thesis

This thesis is organized as following:

Chapter 2 gives an introduction to machine learning, where supervised learning with a
focus on regression, linear regression and deep feedforward networks are presented. More-
over, ARX and NARX models are presented together with ARX networks and NARX
neural networks. Furthermore, uncertainty in neural networks is presented. Followed by
a description of Monte Carlo sampling. Then the uncertainty estimation methods, ADF
to estimate aleatoric uncertainty and MC-dropout to estimate epistemic uncertainty are
presented. Finally, the Kalman filter is described.

Next in Chapter 3 the extended version of ADF is presented. Then, the output mean
of a rectified linear unit activation function is given when the input is multivariate
Gaussian distributed. Next, the output covariance of the same function is derived when
the input is multivariate Gaussian distributed. Further, the uncertainty estimations
methods implementation details are described, together with their training details and
the systems they are tested on.

In Chapter 4 experiments and their results will be presented.

Chapter 5 the results from the experiments will be discussed, and further work will be
presented.

In Chapter 6 a conclusion is given.

5

2 Theory

This chapter gives an overview of the theory needed in this thesis. First machine learn-
ing will be presented in section 2.1 with a focus on regression tasks, specifically linear
regression which is presented in section 2.1.2 and deep feedforward networks presented
in section 2.1.3. Further, autoregressive exogenous models and nonlinear autoregres-
sive exogenous models are presented together with autoregressive exogenous networks
and nonlinear autoregressive exogenous neural networks in section 2.2. Then, in section
2.3 uncertainty in neural networks is described. Further, assumed density filtering for
estimating aleatoric uncertainty is presented, in section 2.4. Next, in section 2.5 a de-
scription of Monte Carlo Sampling is given. Then, MC-dropout to estimate epistemic
uncertainty is presented in section 2.6. Finally, in section 2.7 the Kalman filter will be
described.

2.1 Machine Learning

Machine learning is a subset of artificial intelligence, consisting of a collection of algo-
rithms that learn from experience. Learning from experience means that the algorithm
improves its performance measure in accomplishing a task when it has more experience
(Mitchell 1997). The performance measure is different for different tasks, depending on
what the algorithm is supposed to learn.

There are three main classes of machine learning: unsupervised learning, reinforcement
learning, and supervised learning. In unsupervised learning, the experience is a dataset
composed of features. An unsupervised learning algorithm wants to find the patterns
in the dataset. Reinforcement learning algorithms interact with an environment. The
algorithm’s experience is the feedback it gets from the environment based on decisions the
algorithm makes. In supervised learning, the experience is a dataset consisting of inputs
and outputs of a system. The learning algorithm wants to learn the relation between
the inputs and the outputs. Tasks performed by a supervised learning algorithm can be
separated into two main categories, classification, and regression. Classification consists
of mapping the input into distinct categories. For example, if the input is an image
containing either a cat or a dog, the classification learning algorithm should determine
if the image depicts a cat or a dog. Regression, on the other hand, consists of mapping
the input to a numerical value.

This section will give an overview of supervised learning in the context of regression
tasks. We are starting with an outline of supervised learning in section 2.1.1. Further

6

2.1 Machine Learning

two regression algorithms will be presented, beginning with linear regression in section
2.1.2 and continuing with deep feedforward networks in section 2.1.3.

2.1.1 Supervised learning - Regression

This section is based on Goodfellow, Bengio, and Courville 2016. A supervised learning
regression algorithm wants to find the relation between the inputs and the outputs
of an unknown system. Given a dataset with N input-output pairs from a system,
D = {(x1,y1), · · · , (xN ,yN)}, where xn and yn are vectors or scalars, the algorithm
wants to best model the relation between the inputs and outputs.

The data in the dataset D comes from a data-generating process. There exists a hy-
pothetical probability distribution over the data-generating process that describes how
the data in the data-generating process is distributed. The dataset consists of indepen-
dently drawn samples from this distribution. So the dataset is said to be empirically
distributed. Thus, the distribution over the dataset is the observed distribution over the
data-generating process. The overarching of the machine learning algorithm is to learn
the data-generating distribution based on the empirically distribution. The distribution
that the algorithm learns is called the model distribution.

2.1.2 Linear Regression

One supervised machine learning algorithm is linear regression. This section is based on
Goodfellow, Bengio, and Courville 2016. Given a dataset with N input-output pairs,
D = {(x1,y1), · · · , (xN ,yN)}, where xn and yn for n ∈ {1, .., N} where N is positive,
are vectors or scalars, the algorithm wants to best approximate the relation between the
inputs and outputs. It is assumed that this relationship is linear and can be described
by yn = f∗(xn) + εn n ∈ {1, .., N}, where f∗ is an unknown linear function and εn is
noise. The algorithm wants to find a linear function on the from ŷn = f(xn) = Wxn+b
that best models f∗. The matrix W and the vector b are called the weight matrix and
the bias vector respectively, and are the model parameters. The model parameters are
often gathered in a model parameter vector, θθθ.

The dataset D can be written on matrix form as X and Y, where xn, with n ∈ {1, .., N}
are the rows of X, and similarly yn, with n ∈ {1, .., N} are the rows of Y. The dataset D
can be split up into two datasets. Where the first dataset is used for training called the
training set, and the second dataset is called the test set and is used for testing. These two
data sets can be denoted by D(train) = {X(train),Y(train)} and D(test) = {X(test),Y(test)}.
The training set is used to learn the model parameters, and the test set is used to evaluate
the model’s performance.

To find the model distribution that most closely resembles the data-generating distribu-
tion one can maximize the likelihood of the conditional probability

P (Y(train) | X(train);θθθ) (2.1)

7

2 Theory

with respect to θθθ. This can be expressed as

θθθML = argmax
θθθ

P (Y(train) | X(train);θθθ) (2.2)

where θθθML is θθθ which maximizes the likelihood of (2.1). It can be shown that maximizing
this likelihood is equivalent to minimizing the mean square error between the outputs
in the training set and the linear regressions output, which is given by X(train)θθθ, which
can be expressed as the following

MSE =
1

m

∥∥∥X(train)θθθ −Y(train)
∥∥∥2
2

(2.3)

assuming that there are m examples in the training dataset. It can be shown that
minimizing the mean squared error with respect to θθθ yields

θθθ = ((X(train))TX(train))†(X(train))TY(train) (2.4)

where † denotes the Moore–Penrose inverse (Harville 1997).

2.1.3 Deep forward networks

One type of machine learning model is neural networks, which are most commonly used
for supervised learning. This section is based on section 2.1.1 Deep forward networks
in Eilertsen 2020. The majority of this section is based on Goodfellow, Bengio, and
Courville 2016. A deep feedforward network’s objective is to approximate an unknown
function f∗ given a dataset containing input-output pairs of the unknown function. The
inputs are called examples, and the outputs are called labels. They are denoted by x
and y respectively, y = f∗(x).

A deep feedforward network defines a mapping y = f(x;θθθ). x is the network’s input, y
is its output, and θθθ is a parameterization of the network. This map can be decomposed
into several maps

f(x) = f (L)(f (L−1)(...(f (1)(x; θ)))) (2.5)

where each f (l), l ∈ {1, .., L}, is a layer of the network. The number of layers is the depth
of the network. The L-th layer is called the output layer, and the first layer is called
the input layer. The rest of the layers are the hidden layers, and they can be expressed
as

z(l) = f (l) = φ(W(l)z(l−1) + b(l)) (2.6)

where φ is an activation function which usually is non-linear. Examples of commonly
used activation functions are the rectified linear unit activation (ReLU) function which
is defined as

ReLU(x) = max{0, x} (2.7)

the hyperbolic tangent function and the sigmoid function. If the functions input is a
vector the functions are applied element-wise. z(l−1) is a vector of outputs from the

8

2.1 Machine Learning

x1

x2

x3

y

Figure 2.1: Graphical illustration of a deep feedforward network with three inputs, one
output and one hidden layer with seven units. Each node represents a unit.

previous layer. W(l) and b(l) are trainable parameters, where W(l) is the weight matrix
which connects the outputs from layer l − 1 with the l-th layer, and b(l) is the layer’s
bias vector. z(l) is also referred to as an activation.

Each hidden layer again consists of units. The number of units in a layer is called the
width of the layer. Each unit i in a given layer l can be expressed as

z
(l)
i = φ(w

(l)
i z(l−1) + b

(l)
i) (2.8)

where bi is the unit’s bias, and w
(l)
i are the weights connecting the outputs from the

previous layer with the unit.

The input and output layers are different from the hidden layers because they do not
normally contain activation functions. A deep feedforward network can be visualized as
a graph depicted in figure 2.1, where each unit is represented by a node.

Neural networks extends linear regression which is described in section 2.1.2. Linear
regression models are neural network which have one linear layer connecting the input
with the output.

Now that the basics of deep feedforward networks have been presented, the training
process can be explored. As previously mentioned, the trainable parameters are the
weight matrices connecting each layer and each layer’s bias vector. Let θθθ contain these
parameters. The training aims to find the θθθ which makes the network f , best approximate
the unknown function f∗. A measure for how good this approximation is, is the mean

9

2 Theory

square error (MSE) given by

J =
1

N

N∑
i=1

(yi − ŷi)2 (2.9)

where yi is the label and ŷi is the network’s corresponding prediction. The process of
obtaining the estimate ŷ is known as forward propagation or a forward pass. An input
x is given to the network, and is then propagated through the layers of the network.
J is referred to as a cost function. The model parameters can be updated by gradient
descent

θθθ ← θθθ − α∇θθθJ (2.10)

where α is the learning rate.

There are three main methods for finding the gradients, namely batch gradient descent,
stochastic gradient descent and mini-batch gradient descent. The first method consists
of calculating the cost function on the whole dataset. In contrast, the second method
calculates the cost function on one sample of the dataset at a time. The third method
is a combination of the two others, where the cost function is calculated on a subset of
the dataset. Mini-batch gradient descent usually converges faster than the two other
methods (Ruder 2017).

One way of obtaining the gradient of J with respect to θθθ is known as back-propagation
(Rumelhart, G. E. Hinton, and Williams 1986). Back-propagation utilizes the chain rule
of calculus and computational graphs to calculate the gradient. The method exploits
the fact that a lot of the derivatives share terms.

When the gradients have been found, θθθ can be updated. This is done with an optimizer.
An example of an optimizer is equation (2.10). Other optimizeres may extend the
second term of equation (2.10) to include more complex elements such as momentum
and adaptive learning rates to achieve faster convergence.

When training a network, some data is removed from the dataset and kept aside for
testing. The performance, for example measured with the MSE described by Equation
(2.9), on the data kept aside is called the generalization error, which is a measure of
how well the network performs on unseen data. The network’s goal is to minimize
the generalization error, and by doing that, approximating the function f∗. It is called
overfitting when the network performs well in training but fails to generalize. Overfitting
occurs because the network is taking into account noise in the training data and is
modeling noise instead of the underlying process that has generated the data. The
network is modeling a higher-order model than the underlying data. Regularization
is a collection of techniques that aim to prevent overfitting. Two such techniques are
L2-regularization and dropout.

10

2.1 Machine Learning

L2 regularization

L2-regularization is also known as ridge regression. It forces the weights to be small by
adding the following term to the cost function described by Equation (2.9)

λ
∑
wi∈θ

w2
i (2.11)

where wi are the network’s model parameters and λ is a positive tuneable regularization
parameter.

Dropout

x1

x2

x3

y

Figure 2.2: Graphical illustration of dropout in a neural network with three input values,
two hidden layers, and one output. Dropout is applied at every network layer.
Here three units are not connected to the units in the previous and next layer.

Dropout is another regularization method (Srivastava et al. 2014). It consists of ignoring
some of the network’s units during training. For each forward pass and corresponding
backward pass, a percentage of the units are ignored, essentially removing some of the
network’s units. Which units that are removed is random. In the next forward and
backward pass other units are ignored. During validation and testing, all units are
active. The percent of which are ignored is called the dropout rate, denoted by p.
Usually, it is set to between 20% - 50% for each layer. Dropout is graphically illustrated
in figure 2.2. Here three units are not connected to the units in the previous and next
layer.

When dropout is active, the output of each layer is scaled by 1
(1−p) where p is the dropout

rate for the layer. This is done to mitigate the loss of magnitude when units are ignored.

11

2 Theory

Mathematically dropout for a layer can be expressed as

z(l) = φ(W(l)rl ◦ z(l−1) + b(l)) (2.12)

where rl is a vector consisting of independent Bernoulli random variables, each of which

has probability p of being zero, r
(l)
j ∼ Bern(1 − q), where p = 1 − q and ◦ denotes the

element-wise product, which takes two matrices with the same dimensions and performs
element-wise multiplication, to produce a new matrix with the same dimensions.

2.2 Autoregressive Exogenous Model (ARX)

This section is based on section 2.2 Nonlinear autoregressive exogenous model (NARX)
in Eilertsen 2020. An autoregressive exogenous model (ARX) is a model that relates the
next value of a time series to the past and current value of the time series and the past
and current values of a driving input of system. The system can either be linear or non-
linear. When the system is nonlinear it is called a nonlinear autoregressive exogenous
model (NARX).

When the system is linear the discrete ARX model with a scalar output can be expressed
as

yk+1 =

my∑
i=0

aiyk−i +

mu∑
i=0

biuk−i + εk+1 (2.13)

where ai and bi are constants, and yk+1 is the next value of the time series, and
yk, ..., yk−my are the current and previous values of the time series, my describes how
many previous steps of the time series which are used to find the current value.
uk, .., uk−mu are the current and previous driving input, mu indicates how many previous
inputs are used. And εk+1 is noise.

When the system is nonlinear the NARX model can be expressed as the following

yk+1 = f(uk, ..., uk−mu , yk, ..., yk−my) + εk+1

where f is an unknown nonlinear function, and the rest of the variables are the same as
the ARX model.

2.2.1 ARX network

An ARX model can be approximated with linear regression, described in section 2.1.2,
where one or several previous predictions are used as inputs in the next prediction
together with one or several of the inputs of the system that is approximated. An ARX
model approximated by linear regression will be referred to as an ARX network.

Figure 2.3 shows a graphical representation of an ARX network. The network visualized
has the system’s current input, uk, the previous system input, uk−1, and two previous

12

2.2 Autoregressive Exogenous Model (ARX)

z−1

z−1

z−1

uk

uk−1

ŷk−1

ŷk

ŷk+1

uk

Figure 2.3: Graphical illustration of an ARX network with one output. And the current
and a previous system input and two previous outputs as network inputs.

model predictions, ŷk and ŷk−1 as model inputs. These inputs are used to predict the
systems next output, ŷk+1. The edges from the inputs to the output represents the
multiplication of the inputs with the model parameters, θθθ.

2.2.2 NARX neural network

A NARX model can be approximated by a NARX neural network (Narendra and
Parthasarathy 1990). A NARX neural network is a recurrent network that performs
one-step ahead predictions of a discrete non-linear system based on the system’s current
and previous inputs and previous outputs. The network is recurrent because the net-
work’s current output is fed back as a network input in the next time step, so that the
network can perform consecutive one-step ahead predictions.

Figure 2.4 is a graphical illustration of a NARX neural network where one previous
input, the current input and two previous outputs are used to estimate the next output.
The uk, .., uk−mu denotes the systems and networks inputs where mu are the number
of previous inputs used to obtain the prediction. In the figure mu is one. uk is the
system’s current input. Similarly, the ŷk, ..., ŷk−my denotes the previous outputs from
the network, where my+1 is the number of previous outputs which are used as inputs to
the network to obtain the prediction. In the figure, my is equal to one. ŷk is the output
from the previous time step. ŷk+1 denotes the network’s prediction.

The training of a NARX neural network is usually executed on a feedforward network.
This is feasible when time-series data of the systems inputs and outputs is available.

13

2 Theory

z−1

z−1

z−1

ŷk+1

uk

uk−1

ŷk

ŷk−1

Figure 2.4: Graphical illustration of a NARX neural network with one hidden layer with
5 units and one output. The network uses one previous input and the current
input and two outputs as inputs.

Training it in this manner is favoured because then mini-batch gradient decent can be
used. If it where to be trained in its recurrent form, stochastic gradient descent has
to be used to update the model parameters. The network is converted to a recurrent
network after training.

2.3 Uncertainty In Neural Networks

The uncertainty associated with a deep neural network’s predictions is affected by two
main types of uncertainties; epistemic and aleatoric uncertainty (Gal 2016). The former
is caused by missing data in the data the network is trained on, and the latter is induced
by uncertainties affecting the network’s input.

2.3.1 Epistemic Uncertainty

Epistemic uncertainty is also known as model uncertainty. It is the uncertainty due to
missing data points in the training set; specific data from the input and output space are
underrepresented or are not included in the training set at all. It is not always possible
to represent all potential edge cases in the training data because those situations occur
so infrequently that it is impossible to record them or it is infeasible to gather more
observations due to cost.

A neural network can only model the data it is trained on. Thus, situations that do not

14

2.4 Assumed Density Filtering (ADF)

frequently appear in training data will have a higher degree of epistemic uncertainty than
data that often occur. The epistemic uncertainty usually decreases when the amount of
training data is increased. However, just adding more data to the training set does not
always reduce the model uncertainty. If the training data added is similar to the data
that is already in the training set, the epistemic uncertainty will not decline. If data
that is dissimilar is added, the epistemic uncertainty will decrease.

2.3.2 Aleatoric Uncertainty

Aleatoric uncertainty, also called data uncertainty, is the uncertainty caused by uncer-
tainty in the inputs. All observations are corrupted by noise because all sensor measure-
ments are affected by noise. Hence, it is impossible to obtain an exact measurement.
Some characteristics of this noise is often known and provided by the sensor manufac-
turer. This noise affects the uncertainty associated with the network prediction.

There are two types of aleatoric uncertainty, homoscedastic and heteroscedastic aleatoric
uncertainty (Kendall and Gal 2017). Homoscedastic aleatoric uncertainty, the uncer-
tainties associated with the inputs, are constant for all predictions, but they might be
different for the different inputs used for each prediction. Different types of sensors have
different levels of noise associated with them. Heteroscedastic aleatoric uncertainty, on
the other hand, is when the uncertainties associated with the inputs are not constant
for all predictions.

2.3.3 Uncertainty In NARX Neural Networks

A NARX neural network or any neural network where the network’s output is used as
network inputs in subsequent predictions has heteroscedastic aleatoric uncertainty. The
data uncertainty affecting the current input depends on the uncertainty associated with
a number of the network’s previous predictions.

2.4 Assumed Density Filtering (ADF)

This section is a rewritten version of section ADF - propagation in Eilertsen 2020. As-
sumed density filtering is a Bayesian inference method, where an exact update step is per-
formed, and then the posterior is approximated by a tractable distribution, q(x) (Boyen
and Koller 1998),(Maybeck 1979),(Lauritzen 1992),(Opper and Winther 1999).

Gast and Roth 2018 proposes a method for estimating data uncertainty by applying
ADF to a deep neural network. Traditional units are replaced by probabilistic units,
which instead of propagating intermediate values, propagates probability distributions,
or more specifically; means and variances. Since this method uses ADF to propagate
the input noise through the network it will be denoted by ADF.

15

2 Theory

The joint density over all activations in a deterministic deep neural network is given
by

p(z(0:l)) = p(z(0))
l∏

i=1

p(z(i) | z(i−1)) (2.14)

p(z(i) | z(i−1)) = δ[z(i) − f (i)(z(i−1))] (2.15)

where δ[·] is the Dirac delta and f (i) is network layer i. The input in deterministic
networks, p(z(0)) is Dirac delta distributed, thus they are assumed to be noise free. In
general inputs are not noise free, especially if they are measurements of a physical process
or asset. Therefore it is assumed that the probabilistic network’s inputs are corrupted
by Gaussian white noise. This can be expressed as

p(z(0)) =
∏
j

N (z
(0)
j | xj , σ

2
j) (2.16)

where xj and σ2j is the mean and the variance of input j. The aim of the probabilistic net-

work is to propagate this uncertainty to the output, and find p(z(0:l)). This distribution
is intractable, hence it is approximated by ADF. Which can be described by

p(z(0:l)) ≈ q(z(0:l)) = q(z(0))

l∏
i=1

q(z(i)) (2.17)

where q(z(0)) = p(z(0)) is the network’s input. It is assumed that every q(z(i)) is inde-
pendently Gaussian distributed. This can be expressed as

q(z(i)) =
∏
j

N (z
(i)
j | µ

(i)
j , v

(i)
j) (2.18)

where µj is the activation value for the j-th unit in the layer, and vj is the variance
associated with that activation value.

The noise which is affecting the inputs is propagated through the network. After each
layer q(z(i)) is calculated and passed to the next layer, a layer, f (i) takes a distribution
q(z(i−1)) as an input and transforms it into a joint probability density distribution, which
is expressed as

p(z(i) | z(i−1))q(z(i−1)) (2.19)

This distribution is not necessarily independently Gaussian distributed and can be a
complex form. ADF approximates this distribution to be

p̃(z(0:i)) = p(z(i) | z(i−1))
i−1∏
j=0

q(z(j)) (2.20)

16

2.5 Monte Carlo sampling

ADF then finds q(z(i)) by minimizing the Kullback–Leibler divergence (Kullback and
Leibler 1951)

q(z(i)) = argmin
q̃(z(0:i))

DKL

(
p̃(z(0:i) || q̃(z(0:i))

)
(2.21)

Minimizing the Kullback-Leibler divergence is the same as matching the expectation and
the variance of the two distributions (Minka and Picard 2001), that is

µ(i)z = Eq(z(i−1))

[
f (i)(z(i−1);θθθ(i))

]
(2.22)

v(i)
z = Vq(z(i−1))

[
f (i)(z(i−1);θθθ(i))

]
(2.23)

2.5 Monte Carlo sampling

This section is a direct copy of section 2.3 Monte Carlo sampling in Eilertsen 2020.
Monte Carlo sampling entails collecting random samples from a distribution. These
samples are i.i.d (independent identically distributed), and based on the samples, the
mean and the variance of the distribution can be approximated. Monte Carlo sampling
is used either when the distribution is intractable, or it is too computationally inefficient
to compute it exactly.

Given n independent samples randomly drawn from a distribution. Where each sample
is denoted by xi, the mean of the distribution can be approximated as

x̄ =
1

n

n∑
i=1

xi (2.24)

this quantity is called the sample mean. The law of large numbers state that given a
distribution with expected value, µ and a finite variance, σ2, the sample mean converges
almost surely to µ when n → ∞, which means that it converges with probability equal
to one (Evans and J.S.Rosenthal 2004).

The distributions variance can be approximated by

s2 =
1

n

n∑
i=1

(xi − x̄)2 (2.25)

Generally the error decreases when the amount of samples increase.

2.6 MC-dropout

This section is taken from Eilertsen 2020. Gal and Ghahramani 2015 shows that dropout,
described in section 2.1.3, Bayesian approximates a deep Gaussian process (Damianou
and Lawrence 2013). Which means that predictions made on data that is similar to the

17

2 Theory

data used during training will have a lower degree of uncertainty associated with them,
than predictions made on data which is dissimilar to the data in the training set.

Dropout is applied before every fully connected layer in the network. A fully connected
layer is a layer where every unit in the layer is connected to every unit in the pre-
vious layer. Dropout is active at test time. At test time the network’s prediction is
sampled T times for every input. Since dropout is a random process the samples are
independent identically distributed, and the samples are therefore Monte Carlo samples,
described in 2.5. Thus, the mean and variance of the prediction can be calculated by
the following

ȳ =
1

T

T∑
i=1

ŷi (2.26)

vmodel =
1

T

T∑
t=1

(ŷi − ȳ)2 (2.27)

where ŷi is the network’s prediction for each sample.

The optimal dropout rate for estimating the model uncertainty is the same dropout rate
used during training. It is also possible to use this method when dropout is not used
during training. Then the optimal dropout rate is given by minimizing the negative log-
likelihood between predicted, and ground-truth labels (Loquercio, Segu, and Scaramuzza
2020). In practice, the optimal dropout rate for a network trained without dropout is
found by grid-search.

Since this method for estimating model uncertainty use Monte Carlo sampling and
dropout it is denoted by MC-dropout.

2.7 Kalman Filter

The Kalman filter is a recursive state estimator (Kalman 1960). Given a discrete linear
system

xk+1 = Fxk + Guk + wk (2.28)

yk+1 = Hxk+1 + vk (2.29)

where xk is a vector containing the systems states, F is the state-transition model, G
is the control input model and H is the observation model. uk is the system’s input.
Further, yk is a measurement of some or all of the system states, and wk and vk are
white noise process which are zero mean, uncorrelated with known covariance matrices,
which are denoted by Qk and Rk respectively. The Kalman filter estimates value of
xk+1 which has minimum estimation error covariance based on the noisy measurements
of the system, yk+1.

18

2.7 Kalman Filter

The Kalman filter consists of two steps, a time update step and a measurement update
step, also referred to the as the prediction and correction step. This is because the
time update step predicts the estimate based on the previous measurement and the
measurement step correct this estimate when a new measurement is available. The time
update step is given by

Pk+1|k = FPk|kF
T + Qk

x̂k+1|k = Fx̂k|k + Buk
(2.30)

where x̂k+1|k and x̂k|k are the estimates of xk+1 and xk after measurement yk is pro-
cessed. Similarly Pk+1|k and Pk|k are the covariance matrices of the estimation errors
of the estimates of xk+1 and xk respectively, after measurement yk is processed.

The measurement update step is given as

Kk+1 = Pk+1|kH
T (HPk+1|kH

T + Rk+1)
−1 (2.31)

x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 −Hx̂k+1|k) (2.32)

Pk+1|k+1 = (I −Kk+1H)Pk+1|k(I −Kk+1H)T + Kk+1Rk+1K
T
k+1 (2.33)

where Kk+1 is the Kalman gain.

19

3 Methods

This chapter is organized as the following: first ADF propagation presented in section
2.4 is extended to the case where the network’s inputs and the outputs from each layer
are assumed dependent, in section 3.1, this method will be denoted by full ADF. Further,
expressions for the mean output of a ReLU activation function is given, and the output
covariance of the ReLU activation function is derived, in section 3.2.1. Next, in section
3.3 the implementation of full ADF in an ARX network is described together with a
method for resetting the estimated variance of the ARX network with a Kalman filter.
Then, the implementation of full ADF in a neural network is presented, in section 3.4,
and finally in section 3.5 the implementations of both MC-dropout presented in section
2.6 and full ADF will be presented in the context of NARX neural networks.

3.1 Full ADF

In this section, ADF, presented in section 2.4, is extended to the case where both the net-
work inputs and output from each network layer are dependent. This extension is done
to try to better capture the true aleatoric uncertainty in machine learning models.

The assumptions made in section 2.4 are relaxed. It is now assumed that the output
from each network layer is multivariate Gaussian distributed and that the network input
is also multivariate Gaussian distributed. Instead of propagating the diagonal of the
covariance matrix through the network, the full covariance matrix is propagated, thus
this method will be denoted as full ADF.

A linear layer can be expressed as the following

z(i+1) = W(i+1)z(i) + b(i+1) (3.1)

where z(i) is the layers input, and W(i+1) and b(i+1) is the layer’s weights and biases.
When the input is multivariate Gaussian distributed, z(i) ∼ N (µµµ(i),ΣΣΣ(i)) the output
mean and covariance matrix are given by

µµµ(i+1) = W(i+1)µµµ(i) + b(i+1) (3.2a)

ΣΣΣ(i+1) = W(i+1)ΣΣΣ(i)(W(i+1))T (3.2b)

where µµµ(i) and µµµ(i+1) is the layer’s input and output mean, and ΣΣΣ(i) and ΣΣΣ(i+1) is the
layer’s input and output covariance matrices.

20

3.2 Output mean and covariance of a ReLU activation function

The output mean of the rectified linear unit function is given in section 3.2. Moreover,
the output covariance matrix of the function is derived in the same section when function
input is a multivariate Gaussian.

3.2 Output mean and covariance of a ReLU activation function

One of the most commonly used activation functions in neural networks is the ReLU
activation function (Geoffrey E. Hinton and Neal 1995). The function’s definition is
given by Equation (2.7) in section 2.1.3.

This section presents expressions for the output mean and variance of a ReLU activation
function when the input is an independent Gaussian. Furthermore, the output covariance
matrix of the ReLU activation function is derived when the input is a multivariate
Gaussian. Moreover, the implementation of the calculation of this mean and covariance
is outlined. These expressions are presented and derived because they will be used
to implement full ADF, presented in section 3.1, in neural networks, when the ReLU
function is used as activation functions.

3.2.1 Expressions

Let X be a Gaussian distributed random variable with mean µ and variance σ2, X ∼
N (µ, σ2), and let Y be the output of the ReLU function, Y = max{0, X}. The output
distribution of a ReLU function is the rectified Gaussian distribution. (Socci, Lee, and
Seung 1998). This distribution is a modified Gaussian distribution which is a combina-
tion of a discrete distribution that is constant zero and the lower truncated Gaussian
distribution on the interval (0,∞) with a point mass at the origin. Nair and G. Hinton
2010 states that the output mean and variance of a ReLU function is given by

E[Y] = µΦ
(µ
σ

)
+ σφ

(µ
σ

)
(3.3)

V[Y] = (µ2 + σ2)Φ
(µ
σ

)
+ µσφ

(µ
σ

)
− E[Y]2 (3.4)

where φ and Φ denotes the probability density function and cumulative distribution
function of a standard normal variable, which are given by

φ(x) =
1√
2π
e−

x2

2

Φ(x) =

∫ x

−∞

1√
2π
e−

t2

2 dt

(3.5)

When the ReLU function’s input is a random vector, the output will be multivariate rec-

tified Gaussian distributed. Given a normal distributed random vector X =
[
X1 X2

]T
,

21

3 Methods

where the elements Xi ∼ N (µxi , σ
2
xi) and X ∼ N (µµµx,Σx), where

µxµxµx =
[
µx1 µx2

]T
, Σx =

[
σ2x1 ρσx1σx2

ρσx1σx2 σ2x2

]
.

Let Y = ReLU(X), where Y =
[
Y1 Y2

]
. The mean and variance of each element in Y

can be found by element-wise applying equations (3.3) and (3.4)

E[Yi] = µxiΦ

(
µxi
σxi

)
+ σxiφ

(
µxi
σxi

)
(3.6)

V[Yi] = (µ2xi + σ2xi)Φ

(
µxi
σxi

)
+ µxiσxiφ

(
µxi
σxi

)
− E[Yi]

2 (3.7)

The output covariance of the ReLU activation function can be found by

cov(Y1, Y2) = E[Y1Y2]− E[Y1]E[Y2] (3.8)

The product moment, E[Y1Y2], of two truncated variables is given by

E[Y1Y2] = E[X1X2 | X > νννx]P (X > νννx) + 0P (X ≤ νννx) (3.9)

where P is the cumulative distribution function of the bivariate normal distribution.
νννx is a vector containing the variables truncation points, which are zero for both vari-
ables.

Since X1 and X2 are Gaussian variables they can be expressed as, X1 = σx21U1 + µx1
and X2 = σx2U2 + µx2 where U1 and U2 are standard normal variables. Thus, equation
(3.9) can be rewritten as

E[Y1Y2] = E[(σx1U1 + µx1)(σx2U2 + µx2) | X > νννx]P (X > νννx)

= σx1σx2E[U1U2 | X > νννx]P (X > νννx) + µx2σx1E[U1 | X > νννx]P (X > νννx)

+µx1σx2E[U2 | X > νννx]P (X > νννx) + µx1µx2P (X > νννx)

= σx1σx2E[U1U2 | U > νννu]P (U > νννu) + µx2σx1E[U1 | U > νννu]P (U > νννu)

+µx1σx2E[U2 | U > νννu]P (U > νννu) + µx1µx2P (X > νννx)

(3.10)

where νννu is a vector containing the truncation points of the standard normal variables.

Since the X is truncated at X1 = 0 and X2 = 0, νννu =
[
−µx1
σx1

−µx2
σx2

]T
. According

to Rosenbaum 1961 E[U1 | U > νννu]P (U > νννu), E[U2 | U > νννu]P (U > νννu) and

22

3.2 Output mean and covariance of a ReLU activation function

E[U1U2 | U > νννu]P (U > νννu) are given by

E[U1 | U > νννu]P (U > νννu) = φ

(
µx1
σx1

)
Φ

(µx2
σx2
− ρµx1σx1√
1− ρ2

)
+

ρφ

(
µx2
σx2

)
Φ

(µx1
σx1
− ρµx2σx2√
1− ρ2

)

E[U2 | U > νννu]P (U > νννu) = ρφ

(
µx1
σx1

)
Φ

(µx2
σx2
− ρµx1σx1√
1− ρ2

)
+

φ

(
µx2
σx2

)
Φ

(µx1
σx1
− ρµx2σx2√
1− ρ2

)
E[U1U2 | U > νννu]P (U > νννu) = ρP (U > νννu)−

ρ
µx2
σx2

φ

(
µx2
σx2

)
Φ

(µx2
σx2
− ρµx1σx1√
1− ρ2

)
−

ρ
µx2
σx2

φ

(
µx2
σx2

)
Φ

(µx1
σx1
− ρµx2σx2√
1− ρ2

)
+

√
1− ρ2√

2π
φ

√

(
µx1
σx1

)2 − 2ρ
µx1
σx1

µx2
σx2

+ (
µx2
σx2

)2√
1− ρ2

(3.11)

where ρ is the correlation between X1 and X2. Combining equations (3.10) and (3.11)
yields

E[Y1Y2] = P (X > νννx)(µx1µx2 + σx1σx2ρ)+

µx1σx2φ

(
µx2
σx2

)
Φ

(µx1
σx1
− ρµx2σx2√
1− ρ2

)
+

µx2σx1φ

(
µx1
σx1

)
Φ

(µx2
σx2
− ρµx1σx1√
1− ρ2

)
+

σx1σx2

√
1− ρ2√

2π
φ

√√√√(µx1σx1

)2
− 2ρµx1µx2

σx1σx2
+
(
µx2
σx2

)2
1− ρ2

(3.12)

Inserting equation (3.12) into equation (3.8) gives the following expression for the output

23

3 Methods

covariance of a ReLU activation function

cov(Y1, Y2) = P (X > νννx)(µx1µx2 + σx1σx2ρ)+

µx1σx2φ

(
µx2
σx2

)
Φ

(µx1
σx1
− ρµx2σx2√
1− ρ2

)
+

µx2σx1φ

(
µx1
σx1

)
Φ

(µx2
σx2
− ρµx1σx1√
1− ρ2

)
+

σx1σx2

√
1− ρ2√

2π
φ

√√√√(µx1σx1

)2
− 2ρµx1µx2

σx1σx2
+
(
µx2
σx2

)2
1− ρ2

−
E[Y1]E[Y2]

(3.13)

3.2.2 Implementation

This section describes the implementation of the calculation of the output mean and
covariance of a ReLU unit. In this section ◦ denotes the element-wise product, all ex-
ponents, divisions and square roots are preformed element-wise. Moreover, φ and Φ
denotes the probability density function and cumulative distribution function respec-
tively of a standard normal variable, both functions preforms element-wise operations.
It has been implemented in Python with the Pytorch framework (Van Rossum and Drake
2009)(Paszke et al. 2019).

Given a Gaussian random vector X =
[
X1, · · · , Xn

]
where X ∼ N (µµµx,ΣΣΣx), where

µµµx =
[
µx1 , · · · , µxn

]
, ΣΣΣx =

 σ2x1 · · · ρ1nσx1σxn
...

. . .
...

ρ1nσx1σxn · · · σ2xn

Let σσσx denote element-wise square root of the diagonal of ΣΣΣx, σσσx =

√
diag(ΣΣΣx) and let

Y = Relu(X). The mean and the diagonal elements of the covariance matrix of Y can
be found with equations (3.3) and (3.3), but some extra precautions have to be taken

when one or more of the elements of σσσx is equal to zero. Since σxi =
√
σ2xi

lim
σxi→0

µxi
σxi

=

{
0, if µxi = 0

∞× sgn(µxi), if µxi 6= 0
(3.14)

Therefore, the calculation of the mean of a ReLU unit can be implemented as the
following

E[Yi] =

µxiφ

(
µxi
σxi

)
+ σxiΦ

(
µxi
σxi

)
, if σxi 6= 0

0, if σxi = 0 and µxi = 0

µxiΦ (∞× sgn(µxi)) , if σxi = 0 and µxi 6= 0

(3.15)

24

3.2 Output mean and covariance of a ReLU activation function

Similar precautions has to be taken regarding the diagonal elements of the covariance
matrix of Y. Thus, the output variance of Y can be found by

V[Yi] =

(µ2xi + σ2xi)Φ

(
µxi
σxi

)
+ µxiσxiφ

(
µxi
σxi

)
− E[Yi]

2, if σxi 6= 0

0, if σxi = 0 and µxi = 0

µ2xiΦ (sgn(µxi)×∞)− E[Yi]
2, if σxi = 0 and µxi 6= 0

(3.16)

To easily calculate the off diagonal elements of the covariance matrix, defined by equation
(3.13), some matrices has to be defined. Let the matrix ρρρ and the n × n matrix A be
defined as the following

ρρρ =
ΣΣΣx

σσσx(σσσx)T
=

σx1 · · · ρ1n
...

. . .
...

ρ1n · · · σxn

 A =

— µxµxµx
σxσxσx

—
...

— µxµxµx
σxσxσx

—

n×n

and the let matrix B be defined as

B = µµµx(σσσx)T ◦ φ(A) ◦ Φ

(
AT − ρρρ ◦A√

1− ρρρ2

)
(3.17)

Let P be the following matrix

P =

0 p12 · · · p1n

p12
. . . · · · p2n

...
. . . pn−1n

p1n · · · pn−1n 0

where pij denotes P ([Xi, Xj] > [0, 0]), where P is the bivariate cumulative distribution
function. These probabilities are obtained with the Scipy framework (Virtanen et al.
2020), as the Pytorch framework does not support this functionality.

The off diagonal elements of the output covariance matrix, described by equation (3.13),
can then be calculated with the following expression

ΣΣΣy = P ◦ (µµµx(µµµx)T −ΣΣΣx) + B + BT+

σσσx(σσσx)T ◦
√

1− ρρρ2√
2π

◦ φ

√√√√(AT)2 − 2ρρρ ◦

(
µxµxµx
σxσxσx

)T (
µxµxµx
σxσxσx

)
+ A2

1− ρρρ2

− (E[Y])TE[Y]
(3.18)

As with the calculation of the mean and the diagonal of the covariance matrix there
are some special considerations which has to be taken into account when computing the
off diagonal elements of the covariance matrix. The first one is when two or more of

25

3 Methods

the input variables are perfectly correlated or perfectly negatively correlated. In other
words, when ρij is equal to one or negative one. The second to last term in equation
(3.18) will be zero, and the B matrix in the equation will change to the following if it is
expressed element-wise

bij =

µxiσxjφ
(
µxj
σxj

)
Φ (0) , if |ρij | = 1 and

µxi
σxi
− ρij

µxj
σxj

= 0

µxiσxjφ
(
µxj
σxj

)
Φ
(
∞× sgn(

µxi
σxi
− ρij

µxj
σxj

)
)
, if |ρij | = 1

(3.19)

Furthermore, when the calculation of the covariance is done in a neural network some
numerical rounding issues may arise, leading to the input covariance matrix not being
positive semi-definite. And thus, it is not possible to calculate the entries in the P
matrix. To circumvent this problem a very small number is added to the diagonal of
covariance matrix of the input. In the implementation used in this thesis the following
is done, if the covariance matrix has a negative eigenvalue, the absolute value of the
eigenvalue is added to the covariance matrix’s diagonal.

3.3 Estimating aleatoric uncertainty in an ARX network

In this section, a method for estimating aleatoric uncertainty with full ADF, presented in
3.1, in an ARX network, described in section 2.2.1 which approximates a linear process is
outlined. Furthermore, a mechanism for resetting the estimated uncertainty is presented
when measurements from the process are available. This is done with a Kalman filter,
described in section 2.7, where the Kalman filter’s state transition model and control
input model are given by the ARX network’s model parameters.

The network which implements full ADF will be denoted by full ADF ARX network.
The network will predict the mean value of the process and estimate the output variance
when the process is affected by a disturbance with known mean and variance.

The section is organized as follows: first the ARX model which is approximated by
the network is presented and the ARX network is described. Thereafter training of the
network is outlined. Finally the resetting of the estimated variance with a Kalman filter
is presented.

3.3.1 Data

The process which the ARX network is approximating is given by the following equa-
tion

yk+1 = yk − 0.5yk−1 + 3uk − 2uk−1 + wk+1 (3.20)

This is an ARX model, which is described in section 2.2, where yk is the process output
at time step k and uk is the process input at time step k. Both the process input and
output are scalar valued. wk+1 is a disturbance which is Gaussian distributed with zero

26

3.3 Estimating aleatoric uncertainty in an ARX network

mean and variance of 1, wk+1 ∼ N (0, 1). The disturbance is uncorrelated in time. The
ARX model can be written on state space form as

xk+1 = Axk + Bpk+1 (3.21)

yk+1 = Cxk+1 (3.22)

where

xk =

uk−1yk−1
yk

 pk+1 =

[
uk
wk+1

]
A =

 0 0 0
0 0 1
−2 −0.5 1

 B =

1 0
0 0
3 1

 C =
[
0 0 1

]
The mean of xk+1 is given by

µµµxk+1 = E[xk+1] = Aµµµxk + Bµµµpk+1 (3.23)

where µµµpk+1 = E[pk+1] and the covariance matrix of xk+1 is given by

ΣΣΣx
k+1 = E[(xk+1 −µµµxk+1)(xk+1 −µµµxk+1)

T] = AΣΣΣx
k(A)T + BΣΣΣp

k+1(B)T (3.24)

where ΣΣΣp
k+1 = E[(pk+1 −µµµpk+1)(pk+1 −µµµpk+1)

T], assuming that the ARX model’s inputs
are deterministic.

The training set has been generated by creating several different time varying input
signals, and simulating the ARX model with these input signals.

3.3.2 Network

The ARX network which is used to approximate the ARX model is illustrated in Figure
3.1. The network has five inputs, one linear layer, and two outputs. The network predicts
both ŷk+1 and ŷk, although ŷk is known because it is used to estimate the covariance
between the two predictions at each time step, Σŷk−1ŷk which is used to estimate the
variance in the next time step, when the network is a full ADF ARX network.

The network is converted to a full ADF ARX network by replacing the linear layer with
a linear layer which propagates means and covariances, which is given by Equation (3.2).
The full ADF ARX network’s input mean vector with corresponding input covariance
vector is as follows

xnk =
[
uk uk−1 µŷk−1

µŷk µwk+1

]

Σn
k =

0 0 0 0 0
0 0 0 0 0
0 0 σ2ŷk−1

Σŷk−1ŷk 0

0 0 Σŷk−1ŷk σ2ŷk 0

0 0 0 0 σ2wk+1

(3.25)

where σ2ŷk−1
is the estimated variance of ŷk−1, σ

2
ŷk

is the estimated variance of ŷk, σ
2
wk+1

is
the variance of wk+1 and Σŷk−1ŷk is the estimated covariance between ŷk+1 and ŷk. wk+1

is equal to zero for all predictions, and σ2wk+1
is equal to one for all predictions.

27

3 Methods

z−1

z−1

z−1

uk

uk−1

ŷk−1

ŷk

wk+1

ŷk+1

ŷk

wk+1

uk

Figure 3.1: Illustration of ARX neural network used to approximate the ARX model
described by Equation (3.20). The network has five inputs, one linear layer,
and two outputs.

28

3.3 Estimating aleatoric uncertainty in an ARX network

At each time step the full ADF ARX network predicts the mean of ŷk+1 and ŷk, µŷk+1

and µŷk and estimates their covariance matrix. This can be expressed as

ŷk+1 =

[
µŷk
µŷk+1

]
Σŷk+1

=

[
σ2ŷk Σŷk−1ŷk

Σŷk−1ŷk σ2ŷk+1

]

At each time step the input vector and input covariance matrix are updated with values
obtained in the previous time step.

3.3.3 Training

The network is trained as a linear feedforward network. Since the relation between the
network’s input and yk is known, it does not have to be learned. Furthermore, since the
network input wk+1 is additive white noise affecting the prediction, its relation with the
prediction cannot be learned. However, since the mean and variance of the noise known
and the goal of full ADF propagation is to predict the mean and estimate the variance,
it does not need to be learned. Therefore, the network only needs to learn the relation
between the inputs uk, uk−1, yk and yk−1 and the output yk+1. This relation can be
expressed as

ŷk+1 = w1uk−1 + w2uk + w3yk + w4yk−1 (3.26)

Then the whole feedforward network can be described by

[
ŷk
ŷk+1

]
=

[
0 0 1 0 0
w1 w2 w3 w4 1

]
uk−1
uk
yk
yk−1
wk+1

 (3.27)

Where the model parameters w1, w2, w3 and w4 are found with Equation (2.4) given in
section 2.1.2.

3.3.4 Evaluation

To evaluate both the full ADF ARX network’s performance and variance estimate, the
MSE given by Equation (2.9) in section 2.1.3 will be used. The mean estimate will be
compared to the output mean of the ARX model described by Equation (3.23), and
variance estimate will be compared with the output variance of the ARX model given
by Equation (3.24).

3.3.5 Kalman Filter

A Kalman filter presented in section 2.7 will be used to update the full ADF ARX
network’s input covariance when a measurement from the ARX model is available. When

29

3 Methods

measurements are unavailable the Kalman filter will be updated with the output mean
and covariance from the full ADF ARX network and the ARX model’s input. The
Kalman filter can be expressed as

xk+1 = Fxk + Guk + wk+1 (3.28)

yk+1 = Hxk+1 + vk+1 (3.29)

where

xk =

[
yk−1
yk

]
uk =

[
uk−1
uk

]
and

F =

[
0 1
w4 w3

]
G =

[
0 0
w1 w2

]
H =

[
0 1

]
where w1, w2, w3 and w4 are the ARX networks model parameters. wk+1 is the same
disturbance as in Equation (3.20). Therefore, the Q matrix is given as

Q =

[
0 0
0 1

]
vk+1 is noise affecting the measurements of the ARX model. Since the filter is either
updated with measurements from the ARX model which are noise free or from the mean
predictions made by the full ADF ARX network which have an associated estimated
variance, Rk+1 = 0 if a measurement from the ARX model is available and Rk+1 =
σ2ŷk+1

if the measurement is not available.When a measurement from the ARX model

Algorithm 1: Full ADF ARX network with Kalman filter

Initialize full ADF ARX network’s mean input vector, µµµnx0 , and covariance input
vector ΣΣΣn

x0
Initialize the Kalman filter’s priori estimate covariance matrix, P0, and initial state
vector, x0

for k = 1, 2, . . . , N do
Make prediction and variance estimate with full ADF ARX network
if Measurement is available then

Update Kalman filter with the measurement and Rk+1 = 0
Update network’s output covariance matrix with covariance matrix from
Kalman filter, Σŷk+1

= Pk+1|k+1

else
Update Kalman filter with prediction, µŷk+1, and Rk+1 = σ2ŷk+1

end
Update network’s input mean vector and input covariance matrix.

end

is available the output covariance matrix of the full ADF ARX network is replaced by
the Kalman filter’s covariance matrix of the estimation errors, after the Kalman filter’s
correction step is preformed. The whole procedure is summarized in Algorithm 1.

30

3.4 Estimating aleatoric uncertainty in a nonlinear network with full ADF

3.4 Estimating aleatoric uncertainty in a nonlinear network
with full ADF

In this section, a method for estimating aleatoric uncertainty with full ADF, presented
in 3.1, in neural network, described in section 2.2.1 is outlined. Two networks are trained
to approximate the same system. One of the networks is trained on normalized data
and the other network is trained on data which is not normalized.

This section is organized as the following: first the system which the networks are
approximating is presented together with how the training set is created. Then, the
implementations and training of the networks are described. Followed by a description
of how the networks will be evaluated, both in terms of mean predictive performance
and variance estimate performance.

3.4.1 Data

The uncertainty estimation method will be be tested on the following system

y = x2 (3.30)

where x is the system’s input and y is the system’s output. The output variance of this
system when the input is Gaussian distributed, X ∼ N (µx, σ

2
x), is given by

σ2y = 2σ4x + 4µ2xσ
2
x (3.31)

The training set has been created by applying uniformly distributed inputs to the system
on the interval [0, 20], and corrupting the outputs of the system with Gaussian white
noise with a mean equal to zero and variance equal to 0.12. Two training set where
created, one were the inputs and the outputs are normalized between 0 and 1, and one
which is not normalized.

3.4.2 Networks

Two networks were trained to evaluate the aleatoric uncertainty estimate obtained
from full ADF. One was trained on the training set that is not normalized, and one
trained on the normalized training set. Both networks were trained with mini-batch
gradient descent with the MSE-loss function, presented in section 2.1.3. Moreover,
L2-regularization described in section 2.1.3 was applied to prevent overfitting. The
ADAM-optimizer(Kingma and Ba 2017) with learning rate 1× 10−3 was used to train
both networks. Furthermore, the networks were trained as deterministic networks and
converted to full ADF networks after the training process was finished. Both networks
consists of one hidden layers with ten units, where the hidden layer has ReLU activation
functions. The mean and the covariance matrix of the linear layers in a full ADF network
are given by Equation (3.2a) and Equation (3.2b) respectively. The output mean and

31

3 Methods

output covariance of the ReLU activation functions are given in section 3.2.1. The full
ADF network’s input vector contains the input mean and input variance, and can be
expressed as

xi = (µxi , σ
2
xi)

for each input i. The output vector of the system is expressed as

ŷi = (µŷi , σ̂
2
ŷi

)

where µŷi is the mean of prediction i and σ̂2ŷi is the estimated variance of the predic-
tion.

3.4.3 Evaluation

The MSE, described by Equation (2.9) in section 2.1.3, is used to evaluate both the
networks predictive performance and uncertainty estimates. The MSE of the uncertainty
estimates will be calculated against the output variance of the system, described by
equation (3.31). Furthermore, will the networks estimated variances be compared to the
output sample variance of the networks with the purpose to evaluate how accurately full
ADF estimates the true output variance of the network. The sample output variance
of the networks will be obtained with Monte Carlo sampling described in section 2.5.
The i.i.d samples of the networks are acquired by drawing independent samples from a
Gaussian distribution which have the same mean and variance as the input given to the
full ADF networks for each prediction. The sample output variance is obtained on the
deterministic networks. 108 samples are used to obtain each sample output variance.
The output sample variance will be denoted by S2

ŷ .

3.5 Uncertainty estimation in NARX neural networks

In this section, two methods for estimating uncertainty in a NARX neural network is
presented. MC-dropout for estimating epistemic uncertainty, presented in section 2.6
and full ADF for estimating aleatoric uncertainty, described in section 3.1 is presented
in the context of a NARX neural network, detailed in section 2.2.2. The network which
implements MC-dropout will be denoted by MC-dropout The network which implements
full ADF will be denoted by full ADF network.

The aim of the full ADF network is to estimate the aleatoric variance associated with
each prediction which is caused by the variance associated with the network’s initial
input. Unlike in full ADF ARX networks presented in section 3.3, where it is trivial to
find the covariance between subsequent predictions, since the network is linear, this is
not the case in full ADF NARX neural networks. Therefore, it will be assumed that the
network predictions are independent. It is also assumed that the initial mean value of the
inputs are known and that the variance associated with these inputs is the measurement
noise of the process output.

32

3.5 Uncertainty estimation in NARX neural networks

This section is organized as follows, first the process which the estimation methods are
tested on is introduced and then a description of how the data sets are created. Further,
the implementation, training and evaluation of the networks is presented.

3.5.1 Data

This section is a rewritten version of section 3.1 Data in Eilertsen 2020. In this section,
the system which the uncertainty estimation methods are tested on is presented. Further,
how the training set is created is described.

Model

The data for testing the different methods for computing uncertainty was obtained from
simulations of a continuous stirred-tank reactor (CSTR) process (Seborg, Edgar, and
Mellichamp 1989). This is a chemical process where a reactant A is converted to a
product B through a chemical reaction. The CSTR model is described by

ĊA(t) =
q0
V

(Cf − CA(t))− k0e−
−E

RT (t)CA(t) (3.32)

Ṫ (t) =
q0
V

(Tf − T (t))− ∆Hr

ρCp
e

−E
RT (t)CA(t) +

UA

V ρCp
(Tc(t)− T (t)) (3.33)

Ṫc(t) =
Tr(t)− Tc(t)

τ
(3.34)

where CA [mol/l] is the concentration of reactant A in the tank, T [K] is the temperature
in the tank and Tc [K] is the coolant temperature. Tr [K] is the reference temperature
for Tc. The model parameters are given in Table 3.1, the model parameters are the same
as used by Manzano et al. 2019. Tr is the process input and CA is the output. And
accordingly Tr are the u’s in the NARX neural network and CA are the y’s. Tr has been
constrained to the interval 335 K ≤ u ≤ 370 K, which corresponds to 0.2 mol/l ≤ y ≤
0.81 mol/l. Moving forward these intervals will be referred to as the state space.

Datasets

The training data set have been generated by applying a sweeping chirp signal as the
coolant temperature reference. A sweeping chirp signal is a signal where the frequency
varies with time. This signal is persistently exciting, which makes it possible to perform
system identification. When creating the data sets, it is assumed that the process is
steady-state before the time-varying input signal is applied. A constant input signal,
known to bring the process to steady state, was applied at the beginning of the sim-
ulations to achieve this. The process was simulated with forward Euler with a time
step of 0.5 min. The inputs where normalized between 0 and 1 to ease the training
process. Two training sets were created. The first training set, visualized in Figure
3.2, contains a subset of the state space, where u ∈ (345 K, 370 K) which corresponds

33

3 Methods

Parameter Value Definition

q0 10 l/min Reactive input flow

V 150 l Liquid volume in the tank

k0 6× 1010 l/min Frequency constant
E
R 9750 K Arrhenius constant

−∆Hr 104 J/mol Reaction enthalpy

UA 7× 104 J/(min K) Heat transfer coefficient

ρ 1100 g/l Density

Cp 0.3 J/(g K) Specific heat

τ 1.5 min Time constant

Cf 1 mol/l Ca in input flow

Tf 370 K Input flow temperature

Table 3.1: CSTR-process model parameters

to y ∈ (0.2 mol/l, 0.6466 mol/l), moving forward this subset will be refereed to as the
training space. The inputs and outputs in the state space which are not represented
in the training space are u ∈ (335 K, 345 K) and y ∈ (0.6466 mol/l, 0.81 mol/l). Note
that not every part of the training space is represented equally in the training set. The
subset [354.5 K, 360.5 K] which corresponds to y ∈ [0.3596 mol/l, 0.4670 mol/l] is most
represented in the training set.

The second training set contains the whole state space with added white Gaussian noise
to the processes output signal, y. The noise has zero mean and a standard deviation of
0.015 25 mol/l, which corresponds to a variance of 2.5 % of the magnitude of the space
spanned by y. The process input is not affected by noise.

The CSTR-process dynamics are assumed unknown to the networks. The networks only
sees the process inputs and outputs.

3.5.2 Implementation

In this section, the implementation, training and evaluation of the networks are de-
scribed. The neural networks have been implemented in Python with the Pytorch
framework (Van Rossum and Drake 2009)(Paszke et al. 2019).

NARX neural network

This section is a rewritten version of section NARX neural network in (Eilertsen 2020).
The NARX neural network, presented in 2.2.2, is implemented as a fully connected
feedforward network, where all the layers are linear. Every unit in the hidden layers
have ReLU activation functions. The number of hidden layers and the number of units

34

3.5 Uncertainty estimation in NARX neural networks

(a) CSTR-process input (b) CSTR-process output

Figure 3.2: Training set which contains a subset of the state space, which is denoted
by the training space. The training space consists of inputs and outputs in
the intervals, u ∈ (345 K, 370 K), y ∈ (0.2 mol/l, 0.6466 mol/l). Note that
there are more training examples in the middle of these intervals and that
all the examples are time varying. The part of the state space that is not
represented in the training set are inputs in the interval (335 K, 345 K) which
corresponds to outputs in the interval (0.65 mol/l, 0.81 mol/l).

in each layer can be chosen. In the implementation, the number of units in each hidden
layer is the same.

The network’s input vector for a time step k can be expressed as

xk =
[
uk · · · uk−mu ŷk−my · · · ŷk

]
(3.35)

where mu and my describe how many previous process inputs and outputs respectively
are used to obtain a prediction. This input vector is forward passed through the network
to obtain the output ŷk+1, the network’s prediction. This output is then added to the
input vector at the next time step k + 1, while concurrently ŷk−my and uk−my are
removed, and the process input uk is added to the input vector. Thus, the input vector
at time uk+1 is

xk+1 =
[
uk+1 · · · uk−mu+1 ŷk−my+1 · · · ŷk+1

]
(3.36)

where uk is obtained from a dataset and is known for the entire prediction period.

At the first time step, k = 0, the input vector is initialized with values for u and y from
a dataset. This is possible because the process is assumed to be in steady state before
collecting data, as described in section 3.5.1. Accordingly the input vector for the first
time step is

x0 =
[
u0 · · · u0 y0 · · · y0

]
(3.37)

35

3 Methods

MC dropout-network

This section is rewritten version of section MC dropout-network in Eilertsen 2020. The
MC dropout-network is an extension of the NARX network. This network implements
the method for estimating epistemic uncertainty presented in section 2.6. A dropout
layer, described in section 2.1.3, is added before every hidden layer of the NARX network.
The same dropout rate is used for every dropout layer.

The network’s prediction for one input is the average of T forward passes of that input
with different dropout configurations, as described in section 2.6. This prediction is
denoted by ŷk+1. Hence, the input vector becomes

xk = (uk+1, ..., uk−mu+1, ŷk−my+1, ..., ŷk+1) (3.38)

The variance associated with each prediction is calculated using Equation (2.27), given
in section 2.5.

Full ADF network

The full ADF network is another extension of the NARX network. This network imple-
ments the method for estimating aleatoric uncertainty described in section 3.1. In this
network, the linear layers which propagates intermediate values are replaced by linear
layers, which propagate intermediate means and covariances. The same is done for the
ReLU activation functions. The output mean and covariance of the linear layers are
given by Equations (3.2a) and (3.2b). Moreover, the implementation of the calculation
of the output mean and output covariance of the ReLU activation functions are given in
section 3.2.2.

Since the network propagates means and covariances, the network’s input vector can be
described as

xk =
[
µµµxk ΣΣΣxk

]
(3.39)

where µµµxk is a vector containing the mean values of the network’s input at time step k.
This vector can be expressed as

µµµxk =
[
uk · · ·uk−my µŷk−my

· · · µŷk

]
(3.40)

where uk · · ·uk−my are the process inputs at time k · · · k−mu which are equal to process
mean inputs at time k · · · k − mu since the process inputs are assumed deterministic.
µŷk−my

· · ·µŷk are the network’s mean predictions at time steps k · · · k −my. ΣΣΣxk is the
inputs covariance matrix. This is a diagonal matrix due to the facts that the process
inputs are assumed deterministic and that it is assumed that the network’s predictions
are independent. ΣΣΣxk can be expressed as

ΣΣΣxk = diag
(

0, · · · , 0, σ2ŷk , · · · , σ
2
ŷk−my

)
(3.41)

36

3.5 Uncertainty estimation in NARX neural networks

where σ2ŷk , · · · , σ
2
ŷk−my

are the network’s estimated aleatoric variances at time steps

k · · · k −my.

The output vector of the full ADF network is

ŷk =
[
µŷk σ2ŷk

]
(3.42)

where µŷk and σ2ŷk are the network’s mean prediction and aleatoric variance estimate
respectively.

The mean input vector is initialized at the first time step to the following

µµµx0 =
[
u0 · · · u0 · · · µy0 · · · µy0

]
(3.43)

where both u0 and µy0 are assumed to be known.The network’s initial input covariance
matrix is

ΣΣΣx0 = diag
(
0, · · · , 0, σ2y0 , · · · , σ

2
y0

)
(3.44)

where σ2y0 is the variance of the measurement of the process output.

3.5.3 Training

In this section, the training process of the MC-dropout NARX neural network and the
full ADF NARX neural network is described. First the general training for both networks
is described, then the specific for each network. The objective of the training is not to
find the best networks, but to find networks which the uncertainty estimation methods
can be evaluated on.

Both networks are trained as the following: a feedforward network has been trained
to find the network parameters. Thereafter the validation loss was computed on a
NARX neural network to evaluate the network’s performance on data not seen during
training. The MSE described by Equation (2.9) in section 2.1.3 has been used as the cost
function during training and to find the validation performance. The network was trained
with mini-batch gradient decent and back-propagation to calculate the gradients, both
presented in section 2.1.3. Further, the ADAM-optimizer with learning rate 1× 10−3

was used to update the network parameters (Kingma and Ba 2017).

MC-dropout

The MC-dropout network has been trained on the first training set, which contains parts
of the state space described in section 3.5.1. The hyperparameter tuning framework
Ray Tune was used during training (Liaw et al. 2018). The framework trains several
different versions of the network, with different hyperparameters concurrently. Where
the hyperparameters are the mini-batch size, number of layers, number of units in each
layer, dropout rate, number of previous process inputs, mu, and number of previous
process outputs, my. This framework was used to speed up the training process. The

37

3 Methods

final MC-dropout NARX neural network has the following architecture mu = 3, my = 3,
3 hidden layers with 9 units each. The dropout rate used to train the network was
0.01.

Full ADF

Two different full ADF NARX networks have been trained, both networks have the
same architecture, the same number of hidden layers and number of units in each layer.
The networks have been trained on the second training set presented in 3.5.1. L2-
regularization, described in section 2.1.3, was used to prevent overfitting. Moreover,
several different combinations of number of previous process inputs and outputs where
tried. The combination which provided the best results, in terms of lowest validation
loss, were one previous process input and three previous process outputs, mu = 1 and
my = 3.

The final networks which have been used to test the uncertainty estimation methods
have the following network architecture; two hidden layers with 3 units each. Both
the networks have approximately the same validation loss, in the range of 5× 10−5 to
6× 10−5. Moving forward the networks will be denoted by network 1 and network
2.

3.5.4 Evaluation

The predictive performance of the networks will be evaluated with the MSE given in
section 2.1.3 by Equation (2.9). The MSE will be calculated against the mean output of
the process. The estimated variance of the full ADF networks will be compared between
the two networks. The epistemic uncertainty estimated by MC-dropout will be compared
between test cases.

38

4 Experiments and Results

In this chapter, the results from several experiments are presented. First the estimation
of aleatoric uncertainty in an ARX network, presented in section 3.3 is tested together
with the mechanism for resetting the estimated variance presented in the same section.
Then, the method for estimating aleatoric variance in a neural network presented in
section 3.4. Further, aleatoric uncertainty estimation in a NARX neural network, pre-
sented in 3.5.2 is tested. And finally estimation of epistemic uncertainty in a NARX
neural network, presented in section 3.5.2 is tested.

4.1 Experiment 1: Estimating aleatoric uncertainty of a linear
system

This experiment tests the estimation of aleatoric uncertainty in an ARX network pre-
sented in 3.3. First the the result from the uncertainty estimation is presented, then the
result from resetting the estimated variance with a Kalman filter is presented. A test
set have been created with the ARX model, described by Equation (3.20), which both
cases are tested on.

4.1.1 Aleatoric uncertainty estimation

Figure 4.1 shows a visualization of the network’s mean predictions together with the
ground-truth mean, given by Equation (3.23). Further, the figure shows the estimated
variance as well as the ground-truth variance. The ground-truth variance is obtained
from Equation (3.24). Note that the mean predictions is shown for 10 time steps and
that the variance estimation is shown for 6 time steps. This is done to capture the most
essential parts of the mean predictions and variance estimation. The mean predictions
starts by deviating from the ground-truth mean for time steps 1 to 5, where the deviation
increases for each time step. Then at time step 6 the deviation decreases and for the
rest of the predictions there is a constant error between the ground-truth mean and the
predicted mean. The ground-truth mean is lower than the predicted mean for all time
steps. The estimated variance for time steps 1 to 3 tracks the ground-truth variance
perfectly. Then for prediction 4 and from there on, there is a constant error between
the ground-truth and estimated variance, where the estimated variance is greater than
the ground-truth. Table 4.1 summarizes the network’s mean predictive and variance
estimation performance. The network’s mean prediction performance is better than the

39

4 Experiments and Results

network’s estimated variance performance, in terms of the MSE against the ground-
truths.

The deviations seen in both the mean predictions and variance estimate is due to the
training set the ARX network is trained on. Since a disturbance is affecting every
example in the training set, the network does not learn the underlying ARX model,
which is not affected by a disturbance. The network instead learns to model the best fit
of the training data. The reason for the mean predictions having a smaller deviations
from the ground-truth than the variance estimate is most likely to due to the fact that
the variance has a greater magnitude than the mean.

(a) Network’s mean prediction, µŷ and the
ground truth mean µy, given by

Equation (3.23).

(b) Network’s estimated variance, σ2
ŷ and

the process ground truth variance σ2
y,

given by Equation (3.24).

Figure 4.1: Estimated variance of ŷ. The red plot is the ground-truth variance, σ2y ,
and the blue is the network’s prediction, σ2ŷ . The ground-truth variance is
obtained from equation (3.24). Note that the mean predictions are shown
for 10 time steps and that the variance estimation is shown for 6 time steps.
The mean predictions starts by deviating from the ground-truth mean for
time steps 1 to 5, where the deviation increases for each time step. Then
at time step 6 the deviation decreases and for the rest of the predictions
there is a constant error between the ground-truth mean and the predicted
mean. The ground-truth mean is lower than the predicted mean for all time
steps. The estimated variance for time steps 1 to 3 tracks the ground-truth
variance perfectly. Then for prediction 4 and from there on there is a constant
error between the ground-truth and estimated variance, where the estimated
variance is greater than the ground-truth.

4.1.2 Resetting the estimated variance with a Kalman filter

In this experiment the resetting of the full ADF ARX network estimated variance with
a Kalman filer, described in section 3.3.5 is tested. A measurement of the ARX model is

40

4.2 Experiment 2: Estimating aleatoric uncertainty in a nonlinear system

MSE(µŷ, µy) MSE (σ2ŷ , σ
2
y)

9.71× 10−5 3.65× 10−4

Table 4.1: Results experiment 1: where MSE(µŷ, µy) is the mean prediction error and
MSE (σ2ŷ , σ

2
y) is the estimated variance error.

available every fourth time step. This section will only focus on the estimated variance,
because the resetting of the variance with the Kalman filter has no effect on the mean
predictions, since the mean predictions and estimated variance are independent in an
full ADF ARX network. Thus, the network’s mean predictions are the same as in the
previous experiment. However, a visualization of the mean predictions is shown for
completeness.

Figure 4.2 shows a visualization of the network’s mean predictions in the same plot as the
ground-truth mean, given by Equation (3.23). Moreover, the figure shows the network’s
estimated variance together with the ground-truth variance, given by Equation (3.24).
One can see that every time a measurement from the ARX model is available that the
estimated variance decreases. This is expected since new information about the system
is available. The estimated variance is lower after the first measurement of the ARX
model is available than when the rest of the measurements are available. This is due
to the fact that estimated variance associated with previous prediction is lower when
the first measurement is available then for the rest of the predictions. Moreover, the
estimated variance is lower than the ground-truth variance for all predictions. This is
because the measurements are available before the network reaches maximum estimated
variance.

4.2 Experiment 2: Estimating aleatoric uncertainty in a
nonlinear system

In this section, the two full ADF networks presented in section 3.4 are tested on the
simple nonlinear system presented in the same section. The difference between the two
networks are that on is trained on normalized data and the other is trained on data
which is not normalized. Two test cases are used to evaluate the networks. The test
cases have the same input means, but different input variances. The input mean is on
the interval [5, 10], and the inputs variances are as follows, 1 and 0.25.

4.2.1 Unnormalized network

In this section, the results from the network trained without normalized training data
is presented.

Figures 4.3 and 4.4 shows visualization of the network’s predictive performance and vari-

41

4 Experiments and Results

(a) Network’s mean prediction, µŷ and the
ground truth mean µy, given by

Equation (3.23).

(b) Network’s estimated variance, σ2
ŷ and

the process ground truth variance σ2
y,

given by Equation (3.24). When the
estimated variance is reset with a

Kalman filter every fourth time step.

Figure 4.2: Result experiment 1: The estimated variance decreases every time a mea-
surement from the ARX model is available.. Furthermore, the estimated
variance is lower after the first measurement of the ARX model is avail-
able than when the rest of the measurements are available. Moreover, the
estimated variance is lower than the ground-truth mean for all predictions.

ance estimate when the input variance, σ2x, is equal to 1 and 0.25 respectively. Table 4.2
summarize the network’s predictive and variance estimation performance with different
input variances. Figures 4.3a and 4.4a shows the full ADF network’s predicted mean, µŷ
in blue, together with the ground truth mean, µy, in red, when the network has different
input variances. The predictions are better, closer to the ground truth mean, in the test
cases where the input variance is lower. In the test case where the input variance is 1
the network’s mean prediction is greater than the ground truth mean for all predictions.
These results show that the input variance has an affect on the network’s predicted mean,
which is expected since the output mean of the ReLU activation function is dependent
on its input variance, which again is dependent on the network’s input variance.

Furthermore, figures 4.3b and 4.4b shows the network’s estimated output variance, σ2ŷ ,

in blue together with the network’s output sample variance, S2
ŷ , in red, for each input

variance. One can see that the full ADF network’s variance estimation very closely
tracks the output sample variance for the tested input variances. Thus, the full ADF
network consisting of linear layers and ReLU activation functions estimates the output
variance of the network to be very similar to the true output variance of the network.
Since the reference output variance of the network is found by sampling, which is not
equal, but very similar, to the true output variance of the network, it is hard to quantify
how similar the estimated variance is to the true variance.

The system’s output variance, σ2y , in red is shown together with network’s estimated

42

4.2 Experiment 2: Estimating aleatoric uncertainty in a nonlinear system

(a) Network’s mean prediction, µŷ and the
ground truth mean µy, given by

Equation (3.30).

(b) Network’s estimated variance, σ2
ŷ and

the network’s sample output variance
S2
ŷk

.

(c) Network’s estimated variance, σ2
ŷ and

the system’s ground truth variance σ2
y,

given by Equation (3.31).

Figure 4.3: The network’s predictive performance and variance estimate when the in-
put variance, σ2x, is equal to 1 when the network is trained on data without
normalization. The networks predictive mean is slightly greater than the
ground-truth mean for all predictions. The estimated output variance is
nearly equal to the output sample variance for all predictions. Moreover, the
estimated output variance oscillates around the ground-truth output vari-
ance. Where the deviations from the ground-truth increase when the input
mean increase.

43

4 Experiments and Results

(a) Network’s mean prediction, µŷ and the
ground truth mean µy, given by

Equation (3.30).

(b) Network’s estimated variance, σ2
ŷ and

the network’s sample output variance
S2
ŷk

.

(c) Network’s estimated variance, σ2
ŷ and

the system’s ground truth variance σ2
y,

given by Equation (3.31).

Figure 4.4: The network’s predictive performance and variance estimate when the input
variance, σ2x, is equal to 0.25 when the network is trained on data without
normalization. The networks predictive mean is slightly greater than the
ground-truth mean for all predictions. The estimated output variance is
nearly equal to the output sample variance for all predictions. Moreover, the
estimated output variance oscillates around the ground-truth output vari-
ance. Where the deviations from the ground-truth increase when the input
mean increase.

44

4.2 Experiment 2: Estimating aleatoric uncertainty in a nonlinear system

output variance, σ2ŷ , in blue for each input variance in figures 4.3c and 4.4c. It is clear
that the output variance of the network is not equal to the output variance of the system
that it is approximated when the input variance is 0.25. The estimated variance oscillates
around the system’s output variance, increasingly deviating from the system’s output
variance as the mean input increases. The same can be seen when the output variance
is 1, but to a lesser extent.

Full ADF does estimate the output variance in a neural network. However, this out-
put variance is not the same as the output variance of the system that the network is
approximating. Moreover, the estimated variance is not closer to the system’s output
variance if the network makes mean predictions closer to the ground truth mean, than
if the predictions are poorer.

σ2x MSE(µŷ, µy) MSE (σ2ŷ , σ
2
y) MSE (σ2ŷ , S

2
ŷ)

1 1.110 14.96 1.40× 10−3

0.25 0.192 24.14 8.15× 10−5

Table 4.2: Predictive and variance estimation performance on the network trained on
training data without normalization with different input variances.

4.2.2 Normalized network

In this section, the results from the network trained with normalized training data is
presented.

Figures 4.5 and 4.6 shows visualization of the network’s predictive performance and vari-
ance estimate when the input variance, σ2x, is equal to 1 and 0.25 respectively. Table 4.3
summarize the network’s predictive and variance estimation performance with different
input variances. Figures 4.5a and 4.6a shows the full ADF network’s predicted mean, µŷ
in blue, together with the ground truth mean, µy, in red, when the network has different
input variances. The network’s mean predictive performance is slightly better when the
input variance is 1 than when it is 0.25. The mean prediction for each input variance
has the same shape, it over predicts the output mean from input mean equal to 5 to
approximately 8. Then from input mean 8 to 10 the network still over predict the mean
when the input variance is equal to 1, but to a lesser extent. When the input variance
is 0.25 the network slightly under predicts the output mean on the same interval.

Moreover, figures 4.5b and 4.6b shows the network’s estimated output variance, σ2ŷ , in

blue together with the network’s output sample variance, S2
ŷ , in red, for each input

variance. One can see that the full ADF network estimates the output variance to be
very similar to the output sample variance for the tested input variances. Hence, the
full ADF network consisting of linear layers and ReLU activation functions estimates
the output variance of the network to be very similar to the true output variance of the
network. Since the reference output variance of the network is found by sampling, which

45

4 Experiments and Results

(a) Network’s mean prediction, µŷ and the
ground truth mean µy, given by

Equation (3.30).

(b) Network’s estimated variance, σ2
ŷ and

the network’s sample output variance
S2
ŷk

.

(c) Network’s estimated variance, σ2
ŷ and

the system’s ground truth variance σ2
y,

given by Equation (3.31)

Figure 4.5: The network’s predictive performance and variance estimate when the input
variance, σ2x, is equal to 1 when the network is trained on normalized data.
The estimated output variance is nearly equal to the output sample variance
for all predictions. Moreover, the estimated output variance oscillates around
the ground-truth output variance. Where the deviations from the ground-
truth increase when the input mean increase.

46

4.2 Experiment 2: Estimating aleatoric uncertainty in a nonlinear system

is not equal, but very similar to the true output variance of the network, it is hard to
quantify how similar the estimated variance is to the true variance.

(a) Network’s mean prediction, µŷ and the
ground truth mean µy, given by

Equation (3.30).

(b) Network’s estimated variance, σ2
ŷ and

the network’s sample output variance
S2.

(c) Network’s estimated variance, σ2
ŷ and

the network’s sample output variance
S2
ŷk

. σ2
y, given by Equation (3.31).

Figure 4.6: The network’s predictive performance and variance estimate when the input
variance, σ2x, is equal to 0.25 when the network is trained on normalized data.
The estimated output variance is nearly equal to the output sample variance
for all predictions. Moreover, the estimated output variance oscillates around
the ground-truth output variance. Where the deviations from the ground-
truth increase when the input mean increase

The system’s output variance, σ2y , in red is shown together with network’s estimated
output variance, σ2ŷ , in blue for each input variance in figures 4.5c and 4.6c. When
the input variance is 0.25 the full ADF network estimates an almost constant variance
from input mean equal to 5 to approximately 8. Then the estimated variance rapidly
increases. In both the test cases the estimated variance oscillates around the true output
variance of the system.

47

4 Experiments and Results

σ2x MSE(µŷ, µy) MSE (σ2ŷ , σ
2
y) MSE (σ2ŷ , S

2
ŷ)

1 2.061 227 1.63× 10−3

0.25 3.023 874 1.02× 10−4

Table 4.3: Predictive and variance estimation performance on the network trained on
normalized data different input variances.

Full ADF does estimate the output variance in a neural network which is trained on
normalized data. However, this output variance is not the same as the output variance
of the system that the network is approximating.

4.3 Experiment 3: Estimating aleatoric uncertainty in a NARX
neural network

In this experiment, the full ADF NARX neural network presented in section 3.5.2 is
tested. The two full ADF NARX networks, network 1 and network 2 introduced in
section 3.5.3 are tested on the same test set. The test set is created by applying a time
varying input signal to the CSTR-process, described in section 3.5.1, which covers the
whole state space.

The networks initial variance associated with the process outputs used as network inputs
at time step zero is equal to the noise added to process outputs in the training set, which
is σ2y0 = 0.015252 mol2/l2. The process input is not affected by noise. The full ADF
networks initial input covariance matrix is therefore given by

ΣΣΣx0 = diag
(
0, · · · , 0, σ2y0 , · · · , σ

2
y0

)
(4.1)

Figure 4.7 shows a visualization of the mean predictions of network 1 together with the
ground-truth mean and the network’s estimated output variance for each prediction. One
can see that the mean predictions follows the ground-truth mean closely for nearly all
predictions. Table 4.4 summarizes the network’s predictive performance. The network’s
estimated variance approximately follows the same shape as the mean predictions, in
the sense that estimated variance is lower when the mean prediction is lower and the
estimated variance is greater when the mean predictions are greater. One can see that
the estimated variance increase and decrease more rapidly when ground-truth mean and
predictive mean is higher, than is does when the ground-truth mean and predictive mean
is lower. This can be seen in the intervals between approximately 800 min to 1175 min
and approximately 200 min to approximately 425 min respectively. Furthermore, the
estimated variance is greater than the initial input variance for all predictions.

Figure 4.8 shows a visualization of network 2’s mean predictions together with the
ground-truth mean, and the network’s estimated output variance for each prediction.
Note that the variance estimate is shown in three separate figures for better visualization.

48

4.3 Experiment 3: Estimating aleatoric uncertainty in a NARX neural network

(a) The network’s mean predictions, µŷ,
and ground-truth mean, µy.

(b) The estimated variance associated with
each prediction, σ2

ŷ.

Figure 4.7: Results experiment 3 network 1: The mean predictions follows the ground-
truth mean closely for nearly all predictions. The network’s estimated vari-
ance approximately follows the same shape as the mean predictions, in the
sense that estimated variance is lower when the mean prediction is lower and
the estimated variance is greater when the mean predictions are greater. Fur-
thermore, the estimated variance increase and decrease more rapidly when
ground-truth mean and predictive mean is higher, than is does when the
ground-truth mean and predictive mean is lower. This can be seen in the
intervals between approximately 800 min to 1175 min and approximately 200
min to approximately 425 min respectively.

49

4 Experiments and Results

(a) The network’s mean predictions, µŷ,
and ground-truth mean, µy.

(b) Network’s estimated variance, σ2
ŷ for

time 0 min to 7 min.

(c) Network’s estimated variance, σ2
ŷ for

time 7 min to 18 min.
(d) Network’s estimated variance, σ2

ŷ for
time 18 min to 1200 min.

Figure 4.8: Results experiment 3 network 2: The mean predictions tracks the ground-
truth mean closely for nearly all predictions. The estimated variance begins
by rapidly decreasing for each prediction before settling at time 18 min. From
that point forward the network’s estimated variance approximately follows
the same shape as the mean predictions, in the sense that estimated vari-
ance is lower when the mean prediction is lower and the estimated variance is
greater when the mean predictions are greater. Furthermore, the estimated
variance increase and decrease more rapidly when ground-truth mean and
predictive mean is higher, than is does when the ground-truth mean and
predictive mean is lower. This can be seen in the intervals between approx-
imately 800 min to 1175 min and approximately 200 min to approximately
425 min respectively.

50

4.4 Experiment 4: Estimating epistemic uncertainty in a NARX neural network

The mean predictions tracks the ground-truth mean closely for nearly all predictions.
Table 4.4 summarizes the network’s predictive performance. The estimated variance be-
gins by rapidly decreasing for each prediction before settling at time 18 min. And from
that point forward the estimated variance has the same shape as the variance estimated
in network 1, but with a lower magnitude. In this network the estimated variance is
lower than the input variance for all predictions.

From the results from network 1 and network 2 it is clear that two networks with the same
architecture, same number of layers with the same number of units in each layer which is
approximating the same system with approximately equal mean predictive performance,
estimates the variance to be completely different in order of magnitude. However, the
form of the estimated variance is similar in the two networks, in the sense that both
networks estimates lower variance for the same inputs. Moreover, the network which
has the greatest performance in terms of the MSE has a higher estimated variance than
the network with poorer performance.

Network MSE

1 5.96× 10−5

2 6.88× 10−5

Table 4.4: Results experiment 3: both networks mean predictive performance.

4.4 Experiment 4: Estimating epistemic uncertainty in a
NARX neural network

This experiment is the same as section 4.2 Experiment 2: model uncertainty in Eilertsen
2020. In this experiment epistemic uncertainty estimation with MC-dropout, described
in section 2.6, is tested. The experiment is performed on the MC-dropout network,
presented in section 3.5.2. To evaluate the network’s model epistemic capabilities, two
test sets are used, one which is generated from a CSTR-process (presented in section
3.5.1) with an input signal in the range of 345 K < u < 355 K, which is inside the training
space, introduced in section 3.5.1. This test set will be denoted by inside the training
space. The second test set is generated from a CSTR-process input signal in the range
335 K < u < 345 K, which is outside the training space, and accordingly, this test set
will be denoted by outside the training space. Both input signals have the same form
and cover equal parts of the input space, but because the CSTR-process is nonlinear,
the output signals have the same form, but do not cover equal parts of the output space.
The input and output signals for both test sets are visualized in Figure 4.9. One can see
that the output from the CSTR-process in the test set inside the training space, covers a
larger part of the output space than the output signal in the test set outside the training
space.

For every input, 200 samples are used to obtain the network’s prediction and associated

51

4 Experiments and Results

(a) CSTR-process input for test set inside
training space

(b) CSTR-process output for test set inside
training space

(c) CSTR-process input for test set outside
training space

(d) CSTR-process output for test set out-
side training space

Figure 4.9: Input and outputs from the CSTR-process of both test sets used in exper-
iment 1. The input signals for both tests cover an equal part of the input
space, while the process output signals do not cover equal parts of the output
space. The output signal in the test set inside the training space covers a
larger part of the output space than the output signal in the test set outside
the training space.

52

4.4 Experiment 4: Estimating epistemic uncertainty in a NARX neural network

(a) inside training space (b) outside training space

Figure 4.10: Results experiment 4. The red plot is the ground-truth signal, y, and the
blue is the network’s prediction, ŷ, The shaded blue area is the predictions
± one standard deviation. The estimated one standard deviation is higher
in the test set outside the training space, and the predictions are closer to
the ground-truth in the test set inside the training space. Furthermore, the
estimated one standard deviation is higher when the process is at steady
state than for the rest of the predictions for both test sets. The predictions
are closer to the ground-truth in the test set outside the training space when
the process is at steady state.

epistemic uncertainty on both test sets. Figure 4.10 shows a visualization of the predic-
tions and the ground-truth signal together with the predictions estimated one standard
deviation on both test sets. From this figure, it is clear that the estimated one standard
deviation is higher on the test set outside the training space than on the test set inside
the training space. Furthermore, the predictions on the test set inside the training space
are closer to the ground-truth than the predictions on the test set outside the training
space. Moreover, the estimated uncertainty, when the process is in a steady state is
higher than when it is not, for both test sets. The performance on the test set outside
the training space is better than on test set inside the training space, when the process
is at steady state.

The higher degree of uncertainty associated with the predictions when the process is at
steady state can be explained by the training set, which is presented in section 3.5.1. All
the examples in the training set are time varying process input signals. Therefore, the
process at steady state is not seen during training, and the predictions made when the
process is at steady state will have a higher degree of uncertainty associated with them.
Moreover, the test set outside the training space has a higher estimated variance for
predictions when the process is at steady than the test set inside the training space. So
the uncertainty estimated is affected by at the minimum two factors in the training set.
The first one is that if the predictions are made on data in the same range as the data
in the training set, and the second if the process input signal frequency is represented

53

4 Experiments and Results

in the training set.

On the other hand, the reason why the predictive performance on the test set outside the
training space is better than the performance on the test set inside the training space,
when the process is at steady state, cannot be explained by the training set. One would
expect that the predictive performance on the test set inside the training space would be
better because the predictions are made on data in the range seen by the network during
training, but that is not the case. Since there are no constant process input signals in
the training set, the network is not trained to preform predictions on such signals. So
it can be a coincidence that the performance on the test set outside the training set
is better. If another constant input signal had been used in one or both test sets, the
outcome might have been different. The performance on the test set inside the training
space could have been better than the performance on the test set outside of the training
space.

Table 4.5 summaries the network’s performance and corresponding uncertainty estimates
on both test sets. From these results, it is clear that the estimated uncertainty is higher
on the test set outside the training space, which is in line with the theory presented in
section 2.6.

- MSE vmin vmax v̄

Inside training space 9.00× 10−4 2.64× 10−5 8.00× 10−4 2.00× 10−4

Outside training space 1.80× 10−3 3.00× 10−4 2.80× 10−3 1.00× 10−3

Table 4.5: Results experiment 4: vmin is the lowest estimated variance, similarly vmax
is the highest estimated variance, and v̄ is the average estimated variance, all
in mol2/l2.

4.5 Experiment 2: Estimating epistemic uncertainty in a
NARX neural network

This experiment is the same as section 4.2 Experiment 2: model uncertainty in Eilertsen
2020. In this experiment epistemic uncertainty estimation with MC-dropout, described
in section 2.6, is tested. The experiment is performed on the MC-dropout network,
presented in section 3.5.2.

A test set is created by applying an input signal to the CSTR-process, described by
equation (3.32), which covers the whole state space. For every input, 200 samples
are used to obtain the network’s prediction and associated model uncertainty. Figure
4.11 shows a visualization of the predictions and the associated estimated one standard
deviation together with the ground-truth signal. The green shaded area in the figure
shows the part of the output space, which was not included in the training space. The
figure shows that the estimated variance is higher in the region not included in the

54

4.5 Experiment 2: Estimating epistemic uncertainty in a NARX neural network

Figure 4.11: Results experiment 5. The green shaded area is not included in the training
space. The red plot is the ground-truth signal, y, and the blue is the
network’s prediction, ŷ, and the blue shaded area is the predictions ± one
standard deviation. The estimated one standard deviation is higher in the
area not included in the training space. Furthermore, the prediction made in
the middle of the training space has a lower degree of uncertainty associated
with them than other predictions within the bounds of the training space.
The network’s performance is generally better inside the training space, but
the network achieves its best performance in the first half of the predictions
outside of the training space. This performance is not sustained for the
second half of the prediction outside of the training space.

55

4 Experiments and Results

training space. Furthermore, the estimated one standard deviation is lower when the
predictions are made in the middle of the training space, specifically between 0.55 mol/l
and 0.3 mol/l, than when it is not and still within the bounds of the training space. The
deviations between the predictions and the ground-truth are generally smaller in the
training space. However, the first half of the prediction outside of the training space has
a very low deviation from the ground-truth. But this deteriorates in the second half of
the prediction that is outside the training space. And these predictions deviate the most
from the ground-truth.

The higher degree of uncertainty associated with certain predictions inside the training
space can be explained by the fact that part of the training space is underrepresented
in the training set. The training set is presented in section 3.5.1. So, in addition to es-
timating a higher degree of uncertainty associated with predictions outside the training
space, predictions made on data that is less represented in the training set have a higher
degree of uncertainty associated with them. This is in line with the theory presented
in section 2.6. The uncertainty estimate is higher for prediction made on data which is
underrepresented or not represented in the training set. Moreover, the estimated uncer-
tainty scales with how represented it is in the training set. The uncertainty associated
with the predictions made outside the training space is higher than the uncertainty asso-
ciated with the predictions made on the data which is present in the training set, which
is underrepresented. Table 4.6 summaries the network’s performance and corresponding
uncertainty estimate.

MSE vmin vmax v̄

3.83× 10−4 1.72× 10−5 2.60× 10−3 5.00× 10−4

Table 4.6: Results experiment 5: vmin is the lowest estimated variance, similarly vmax
is the highest estimated variance, and v̄ is the average estimated variance, all
in mol2/l2.

56

5 Discussion and Further Work

In this section the results from the experiments will be discussed and further work will
be suggested. The discussion regarding experiment 4 and 5 are rewritten versions of the
discussion of the results given in Eilertsen 2020.

5.1 Discussion

Experiment 1 shows that full ADF estimates the aleatoric uncertainty in an ARX net-
work which approximates an ARX model. There are some discrepancies between the
ground-truth mean and the estimated mean, and the ground-truth variance and the
estimated variance. However, this is expected because the network is trained on data
which is affected by a disturbance. If however the ARX network where to approximate
a linear dynamical system instead of an ARX model the outcome might be different.
When a dynamical system is approximated there are more parameters which effect the
network’s model parameters, which affect the estimation of aleatoric uncertainty. Most
importantly are the number of previous system inputs, mu and network outputs, my,
which are used to obtain the next prediction. For any given linear dynamical system a
number of combinations of mu and my will yield a network with good predictive perfor-
mance. Yet it is not certain that any of these network’s captures the uncertainty aspects
of the dynamical system. Furthermore, considering that the dynamical system will be
assumed unknown to the network, there exists no method to verify that the network’s
estimated variance is the same as the variance of the dynamical system.

Furthermore, experiment 1 shows that a Kalman filter, where the state-transition model
and control input model is given by the model parameters in the ARX network, can
be used to reset the estimated variance, without any knowledge about the underlying
system that the ARX network is approximating. As with the ARX network, for this to
work one must find the model parameters which captures the uncertainty aspect of the
underlying system.

Experiment 2 demonstrates that full ADF estimates the output variance of a neural
network to be very similar to the sample variance of the network, regardless of whether
the network has been trained with normalized data or not. Considering that the true
output variance of the system is intractable, it is difficult to determinate how close
to the true output variance the full ADF variance estimation is, although, the sample
output variance provides a good indication. Moreover, it is not assumed that full ADF
can exactly estimate the output variance in a network consisting of linear layers and

57

5 Discussion and Further Work

ReLU activation functions, because the calculation of the covariance output of a ReLU
activation function contains approximations.

Moreover, experiment 2 shows that a neural network’s estimated variance is not the same
as the output variance of the system the neural network is approximating. A neural
network is not an exact replica of the system it is approximating. It is a combination of
linear transformations and nonlinear activation functions. Furthermore, the network is
only an approximation on the interval contained in the network’s training data. Thus,
the network does not approximate the underlying system well or at all outside of this
interval. Therefore, the network only learns the system on the interval it is trained on
and not the system as a whole.

Furthermore, experiment 2 shows that the estimated output variance for both networks
oscillates around the ground-truth output variance of the system the networks are ap-
proximating. So there is at least some connection between the variance of the networks
and the system. There probably exists some realizations of the networks which have the
same output variance as the system, but there are as of now no way of finding them.
However, in general the output variance of a neural network is not equal to the output
variance of the system which the network is approximating.

The variance estimates made by the network trained without normalized data is better
than the estimates made by the other network, when compared to the output variance
of the system that is approximated by the networks. Furthermore, the predictive perfor-
mance show a similar result, the predictive performance is poorer on the network trained
with normalized data. There is no way of telling if this is due to the normalization or
because of chance. In general when a network is trained with normalized data, the pre-
dictive performance is better, the network is more stable and it is easier to train because
most training procedures are tailored to normalized data. Normalization especially make
the training process easier when the network has inputs which have different orders of
magnitude.

Experiment 3 demonstrates that full ADF can be used to estimate the output variance in
a NARX neural network when it is assumed that subsequent predictions are independent.
Further, the experiment shows that two networks with the same network architecture
which have approximately the same mean predictive performance, yields vastly different
output variance estimates in terms of order of magnitude. However, the form of the
estimates are the same, in the sense that both networks estimates higher and lower
variance for the same predictions.

Clearly the estimated output variance is not the true output variance of the NARX
neural network since subsequent predictions are not independent. It is however the best
estimation which is currently possible. Moreover, the true output variance of the network
is intractable, so it is hard to evaluate how good the estimates are and how much the
cross correlations between subsequent predictions affect the true output variance of a
NARX neural network. But based on the results from experiment 2 and the results from
the different networks in experiment 3, which respectively indicate that the estimated

58

5.1 Discussion

output variance and the sample variance in a neural network oscillates around the true
output variance of the system being approximated, and that the estimated variance in
the two NARX neural networks have significantly differences in order of magnitude.
It is probable that the cross correlations between the consecutive predictions have a
major impact on the true variance of the network, because if the estimated variance in a
NARX neural network was to oscillate around the true variance such a great discrepancy
between the estimated variance in the two networks would not have been observed.

The estimation of the output covariance of the ReLU activation function is computa-
tionally expensive, since the bivariate probability has to be calculated between all the
elements in the functions input vector. In the implementation used in this thesis these
are calculated one at a time. This renders full ADF unsuitable for large networks where
the time aspect is important.

The results from experiments 4 and 5 show that MC-dropout can be used to estimate
epistemic uncertainty in NARX neural networks. The uncertainty estimates are higher
for predictions which are either underrepresented or not represented in the training set.
Furthermore, the uncertainty estimates scale with how represented the data on which
the prediction is made is in the training set. The estimated uncertainty associated with
situations which are not represented in the training set is higher than the uncertainty
associated with situation which there are few examples of in the training set.

It is difficult to quantify the uncertainty estimates since there exists no ground-truth for
epistemic uncertainty. The exact values which are estimated might not be so important,
it is the estimated uncertainty for one prediction compared to the estimated uncertainty
for other predictions that is important. If the MC-dropout method were to be used in
practice a baseline uncertainty estimate which is associated with predictions made on
situations that are well represented in the training set can be found. Then the estimated
uncertainties can be compared to the baseline to decide the level of uncertainty.

Experiment 4 shows that the network’s performance is better on data seen by the net-
work during training. One the other hand, experiment 5 does not show the same, the
network’s best performance is on data not seen during training, but the network’s worst
performance is also on data not seen during training. As the network used to obtain
the results is not trained for optimal performance these results might suggest that a
higher degree of uncertainty does not indicate that the network’s prediction is poorer
than when the uncertainty estimate is lower. So, the uncertainty estimates only indi-
cated when the network is preforming predictions on situations it has not seen during
training or have seen few examples of during training. Then to utilize the uncertainty
estimate the network must be trained for optimal performance, which will most likely
provide better performance in situations where the estimated uncertainty is higher and
vice versa. The uncertainty estimate cannot be used as a replacement for training the
network optimally.

The MC-dropout network that have been used to obtain the results in experiment 4
and 5 has been trained with a small dropout rate equal to 0.01. Moreover, there is no

59

5 Discussion and Further Work

noise in the training set. Since dropout is a regularization method used to prevent the
network from modeling the noise in the training set, a small dropout rate can be used,
and dropout is only used to estimate the uncertainty, and not for regularization. In other
applications where the training set contains noise a higher dropout rate must be used for
regularization. According to the theory presented in section 2.6 the best dropout rate for
estimating the uncertainty is the same as the dropout rate the network is trained with.
This suggest that the uncertainty estimation is not sensitive to the dropout rate.

5.2 Further Work

As the estimation of aleatoric uncertainty in an ARX network with a Kalman filter to
reset the estimated uncertainty is only tested on an ARX model, it would be interesting
to see if the method proposed could be used to estimate the aleatoric uncertainty in a
linear dynamical system, estimated with an ARX model.

Moreover, a method for estimating the cross-correlation between subsequent predictions
in a NARX neural network is needed to estimate the true output variance of a NARX
neural network.

60

6 Conclusion

This work attempts to estimate the uncertainty in ARX networks and NARX neural
networks. The aleatoric uncertainty estimating method ADF is extended to the case
where it is assumed that both the network inputs and the outputs from each network
layer are multivariate Gaussian distributed, this method is denoted by full ADF. Full
ADF has been tested on an ARX network, a neural network and a NARX neural network.
In, addition has MC-dropout to estimate epistemic uncertainty been tested on a NARX
neural network.

Full ADF estimates the aleatoric uncertainty in an ARX network when the ARX net-
work is approximating an ARX model. Furthermore, can the model parameters of the
ARX network be used as the system equation in a Kalman filter to reset the network’s
estimated variance when measurements from the ARX model is available.

In a neural network estimates full ADF the output variance of the network to be very
similar to the output sample variance of the network, which is the best estimate of the
true output variance that is available. Hence, the estimated variance obtained with full
ADF in a neural network is a good estimate of the true output variance of the network.
Moreover, the estimated variance is not the same as the output variance of the system
which is approximated by the neural network. However, the estimated variance oscillates
around the output variance of the system, thus there exists a relationship between the
estimated variance and the true variance of the system that is approximated by the
neural network.

Full ADF can also be used to obtain an estimate of the output variance in a NARX neural
network. However, this estimate is not close to the true output variance of the NARX
neural network, because there exists not method for estimating the cross correlations
between subsequent predictions made by the network which are used as inputs in the
next predictions.

MC-dropout can be used to epistemic model uncertainty in NARX neural networks.
MC-dropout estimates a higher degree of uncertainty associated with predictions made
on situations which are underrepresented in the training set. Furthermore, the estimated
uncertainty scales with how represented the situation is in the training set. It can be
difficult to quantify the estimated uncertainty.

61

Bibliography

Alanazi, Mohana, Mohsen Mahoor, and Amin Khodaei (2017). Day-Ahead Solar Fore-
casting Based on Multi-level Solar Measurements. arXiv: 1710.03803 [cs.CE].

Boyen, Xavier and Daphne Koller (1998). “Tractable Inference for Complex Stochas-
tic Processes”. In: Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence—UAI 1998. Available at http://www.cs.stanford.edu/~xb/uai98/.
San Francisco: Morgan Kaufmann, pp. 33–42.

Damianou, Andreas and Neil Lawrence (29 Apr–01 May 2013). “Deep Gaussian Pro-
cesses”. In: Proceedings of the Sixteenth International Conference on Artificial Intelli-
gence and Statistics. Ed. by Carlos M. Carvalho and Pradeep Ravikumar. Vol. 31. Pro-
ceedings of Machine Learning Research. Scottsdale, Arizona, USA: PMLR, pp. 207–
215. url: http://proceedings.mlr.press/v31/damianou13a.html.

Eilertsen, I. (2020). Uncertainty estimation in nonlinear autoregressive exogenous neural
networks.

Evans, M.J. and J.S.Rosenthal (2004). Probability & Statistics - The Science of Uncer-
tainty. New York: W.H.Freeman.

Gal, Yarin (2016). “Uncertainty in Deep Learning”. PhD thesis. University of Cambridge.
Gal, Yarin and Zoubin Ghahramani (2015). Dropout as a Bayesian Approximation: Rep-

resenting Model Uncertainty in Deep Learning. arXiv: 1506.02142 [stat.ML].
Gast, Jochen and Stefan Roth (2018). Lightweight Probabilistic Deep Networks. arXiv:
1805.11327 [cs.CV].

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:

//www.deeplearningbook.org. MIT Press.
Harville, David A. (1997). “The Moore-Penrose Inverse”. In: Matrix Algebra From a

Statistician’s Perspective. New York, NY: Springer New York, pp. 497–519. isbn: 978-
0-387-22677-4. doi: 10.1007/0-387-22677-X_20. url: https://doi.org/10.1007/
0-387-22677-X_20.

Hinton, Geoffrey E. and R. Neal (1995). Bayesian learning for neural networks.
Ioffe, Sergey and Christian Szegedy (2015). Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift. arXiv: 1502.03167 [cs.LG].
Kalman, Rudolph Emil (1960). “A New Approach to Linear Filtering and Prediction

Problems”. In: Journal of Basic Engineering 82.1, p. 35. doi: 10.1115/1.3662552.
url: http://dx.doi.org/10.1115/1.3662552.

Kendall, Alex and Yarin Gal (2017). What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision? arXiv: 1703.04977 [cs.CV].

Kingma, Diederik P. and Jimmy Ba (2017). Adam: A Method for Stochastic Optimiza-
tion. arXiv: 1412.6980 [cs.LG].

62

https://arxiv.org/abs/1710.03803
http://www.cs.stanford.edu/~xb/uai98/
http://proceedings.mlr.press/v31/damianou13a.html
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1805.11327
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/0-387-22677-X_20
https://doi.org/10.1007/0-387-22677-X_20
https://doi.org/10.1007/0-387-22677-X_20
https://arxiv.org/abs/1502.03167
https://doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
https://arxiv.org/abs/1703.04977
https://arxiv.org/abs/1412.6980

Bibliography

Kullback, S. and R. A. Leibler (Mar. 1951). “On Information and Sufficiency”. In: Ann.
Math. Statist. 22.1, pp. 79–86. doi: 10.1214/aoms/1177729694. url: https://doi.
org/10.1214/aoms/1177729694.

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell (2017). Simple and
Scalable Predictive Uncertainty Estimation using Deep Ensembles. arXiv: 1612.01474
[stat.ML].

Lauritzen, Steffen Lilholt (1992). “Propagation of probabilities, means and variances in
mixed graphical association models”. English. In: Journal of the American Statistical
Association 87, pp. 1098–1108. issn: 0162-1459.

Liaw, Richard et al. (2018). “Tune: A Research Platform for Distributed Model Selection
and Training”. In: arXiv preprint arXiv:1807.05118.

Loquercio, Antonio, Mattia Segu, and Davide Scaramuzza (Apr. 2020). “A General
Framework for Uncertainty Estimation in Deep Learning”. In: IEEE Robotics and
Automation Letters 5.2, pp. 3153–3160. issn: 2377-3774. doi: 10.1109/lra.2020.
2974682. url: http://dx.doi.org/10.1109/LRA.2020.2974682.

MacKay, David J. C. (1992). “A Practical Bayesian Framework for Backpropagation
Networks”. In: Neural Computation 4.3, pp. 448–472. doi: 10.1162/neco.1992.4.
3.448. eprint: https://doi.org/10.1162/neco.1992.4.3.448. url: https:

//doi.org/10.1162/neco.1992.4.3.448.
Manzano, J. M. et al. (2019). “Output feedback MPC based on smoothed projected kinky

inference”. In: IET Control Theory Applications 13.6, pp. 795–805. doi: 10.1049/iet-
cta.2018.5522.

Maybeck, Peter S. (1979). Stochastic models, estimation and control / Peter S. Maybeck.
English. Academic Press New York. Chap. 12.7, 3 v. : isbn: 0124807011 012480702
0124807038.

Minka, Thomas P. and Rosalind Picard (2001). “A Family of Algorithms for Approximate
Bayesian Inference”. AAI0803033. PhD thesis. USA.

Mitchell, Tom M. (1997). Machine Learning. New York: McGraw-Hill. isbn: 978-0-07-
042807-2.

Nair, Vinod and Geoffrey Hinton (June 2010). “Rectified Linear Units Improve Re-
stricted Boltzmann Machines Vinod Nair”. In: vol. 27, pp. 807–814.

Narendra, K. S. and K. Parthasarathy (1990). “Identification and control of dynamical
systems using neural networks”. In: IEEE Transactions on Neural Networks 1.1, pp. 4–
27. doi: 10.1109/72.80202.

Opper, Manfred and Ole Winther (Jan. 1999). “A Bayesian approach to on-line learning”.
English. In: On-line learning in neural networks. Ed. by David Saad. Publications of
the Newton Institute. Copyright of Cambridge University Press Available on Google
Books. United Kingdom: Cambridge University Press, pp. 363–378. isbn: 0262194163.
doi: 10.2277/0521652634.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-

63

https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1612.01474
https://doi.org/10.1109/lra.2020.2974682
https://doi.org/10.1109/lra.2020.2974682
http://dx.doi.org/10.1109/LRA.2020.2974682
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1049/iet-cta.2018.5522
https://doi.org/10.1049/iet-cta.2018.5522
https://doi.org/10.1109/72.80202
https://doi.org/10.2277/0521652634
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Bibliography

pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.
Postels, Janis et al. (2019). Sampling-free Epistemic Uncertainty Estimation Using Ap-

proximated Variance Propagation. arXiv: 1908.00598 [cs.LG].
Rahimi, Zhoobin, Helmi Zulhaidi Mohd Shafri, and Masayu Norman (2018). “A GNSS-

based weather forecasting approach using Nonlinear Auto Regressive Approach with
Exogenous Input (NARX)”. In: Journal of Atmospheric and Solar-Terrestrial Physics
178, pp. 74–84. issn: 1364-6826. doi: https : / / doi . org / 10 . 1016 / j . jastp .

2018.06.011. url: http://www.sciencedirect.com/science/article/pii/

S1364682618302220.
Rosenbaum, S. (1961). “Moments of a Truncated Bivariate Normal Distribution”. In:

Journal of the Royal Statistical Society. Series B (Methodological) 23.2, pp. 405–408.
issn: 00359246. url: http://www.jstor.org/stable/2984029.

Ruder, Sebastian (2017). An overview of gradient descent optimization algorithms. arXiv:
1609.04747 [cs.LG].

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning Internal Rep-
resentations by Error Propagation”. In: Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vol. 1: Foundations. Cambridge, MA, USA: MIT
Press, pp. 318–362. isbn: 026268053X.

Seborg, Dale E., Thomas F. Edgar, and Duncan A. Mellichamp (Aug. 1989). Process
Dynamics and Control. New York: Wiley.

Socci, Nicholas, Daniel Lee, and H. Sebastian Seung (1998). “The Rectified Gaussian
Distribution”. In: Advances in Neural Information Processing Systems. Ed. by M.
Jordan, M. Kearns, and S. Solla. Vol. 10. MIT Press. url: https://proceedings.
neurips.cc/paper/1997/file/28fc2782ea7ef51c1104ccf7b9bea13d-Paper.pdf.

Srivastava, Nitish et al. (2014). “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15.56, pp. 1929–1958.
url: http://jmlr.org/papers/v15/srivastava14a.html.

Tang, Liyang (2020). Application of Nonlinear Autoregressive with Exogenous Input
(NARX) neural network in macroeconomic forecasting, national goal setting and global
competitiveness assessment. arXiv: 2005.08735 [physics.soc-ph].

Tavares, Lucas A., Petrus E. O. G. B. Abreu, and Luis A. Aguirre (2020). Nonlinearity
Compensation Based on Identified NARX Polynomials Models. arXiv: 2011.12246
[eess.SY].

Taylor, John R. (1996). An Introduction to Error Analysis: The Study of Uncertain-
ties in Physical Measurements. 2 Sub. University Science Books. isbn: 093570275X.
url: http://www.amazon.com/Introduction-Error-Analysis-Uncertainties-
Measurements/dp/093570275X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%

3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%

3D093570275X.
Van Rossum, Guido and Fred L. Drake (2009). Python 3 Reference Manual. Scotts Valley,

CA: CreateSpace. isbn: 1441412697.

64

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1908.00598
https://doi.org/https://doi.org/10.1016/j.jastp.2018.06.011
https://doi.org/https://doi.org/10.1016/j.jastp.2018.06.011
http://www.sciencedirect.com/science/article/pii/S1364682618302220
http://www.sciencedirect.com/science/article/pii/S1364682618302220
http://www.jstor.org/stable/2984029
https://arxiv.org/abs/1609.04747
https://proceedings.neurips.cc/paper/1997/file/28fc2782ea7ef51c1104ccf7b9bea13d-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/28fc2782ea7ef51c1104ccf7b9bea13d-Paper.pdf
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/2005.08735
https://arxiv.org/abs/2011.12246
https://arxiv.org/abs/2011.12246
http://www.amazon.com/Introduction-Error-Analysis-Uncertainties-Measurements/dp/093570275X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D093570275X
http://www.amazon.com/Introduction-Error-Analysis-Uncertainties-Measurements/dp/093570275X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D093570275X
http://www.amazon.com/Introduction-Error-Analysis-Uncertainties-Measurements/dp/093570275X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D093570275X
http://www.amazon.com/Introduction-Error-Analysis-Uncertainties-Measurements/dp/093570275X%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D093570275X

Bibliography

Virtanen, Pauli et al. (2020). “SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python”. In: Nature Methods 17, pp. 261–272. doi: 10.1038/s41592-019-
0686-2.

65

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

