
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Kristian Rekstad
A M

odeling Environm
ent in the Cloud for Education

Kristian Rekstad

A Modeling Environment in the Cloud
for Education

Master’s thesis in Computer Science
Supervisor: Hallvard Trætteberg

June 2021

M
as

te
r’s

 th
es

is

Kristian Rekstad

A Modeling Environment in the Cloud
for Education

Master’s thesis in Computer Science
Supervisor: Hallvard Trætteberg
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Software engineering has an approach called Model-Driven Development (MDD).
This is taught to students in higher education. The approach is reliant on tools, and
one such tool is the Eclipse Modeling Framework (EMF). While EMF can be used
to teach students about MDD, it is unpopular because of its ties to the Eclipse
Integrated Development Environment (IDE), causing students to resist learning
MDD. Cloud based alternatives exist for the Eclipse IDE, like Gitpod with VSCode,
which provide benefits in an educational organization. However, the EMF tools
used in education are not available in these alternatives. This thesis tries to enable
the cloud based alternatives to support EMF.

The thesis’ approach is based on Design Science Research, where a design
is created and a software artifact is implemented. The design draws inspiration
from the Language Server Protocol (LSP) and Graphical Language Server Platform
(GLSP), protocols for text and diagram editing. These protocols already work in
VSCode.

The result is a Tree Editor extension for VSCode. EMF models can be edited
as trees. This extension uses a three component design: a generic tree editor user
interface, a VSCode extension, and an EMF specific server. The extension and
server communicate with a newly designed protocol, the Tree Language Server
Protocol (TLSP).

The resulting implementation can be built upon to work with EMF modeling in
the cloud. The TLSP protocol and software architecture can be used by other tools
that need tree editors, that aim to support multiple IDEs as well. A wider adoption
of TLSP in IDEs will make migrations of tree editors to other IDEs easy. Regardless,
the design provides a reusable server for EMF, which can ease migrations of EMF
to other IDEs.

iii

Sammendrag

Programvareutvikling har en tilnærming som kalles Model-Dreven Utvikling (MDD).
Dette undervises til studenter i høyere utdanning. Tilnærmingen er avhengig av
verktøy, og et slikt verktøy er Eclipse Modeling Framework (EMF). Selv om EMF
kan brukes for å lære studenter om MDD, er det upopulært på grunn av sin tilknyt-
ning til Eclipse Integrated Development Environment (IDE), som gjør at studenter
stritter i mot å lære MDD. Skybaserte alternativer til Eclipse IDE eksisterer, som
Gitpod med VSCode, og de har nyttige egenskaper for en utdanningsorganisasjon.
Verktøyene i EMF finnes derimot ikke for disse alternativene. Denne masteropp-
gaven prøver å legge til rette for å støtte EMF i de skybaserte alternativene.

Fremgangsmåten i masteroppgaven er basert på Design Science Research, hvor
et design blir lagd og en programvare blir utviklet. Designet drar inspirasjon fra
Language Server Protocol (LSP) og Graphical Language Server Platform (GLSP),
protokoller for tekst- og diagramredigering. Disse protokollene brukes allerede i
VSCode.

Resultatet er en utvidelse for VSCode for redigering av tre-strukturer. EMF-
modeller kan redigeres som trær. Denne utvidelsen består av tre komponenter: et
generisk brukergrensesnitt for tre-redigering, en utvidelse for VSCode, og en EMF-
spesifikk tjener (server). Utvidelsen og serveren snakker med en nylig designet
protokoll: Tree Language Server Protocol (TLSP).

Den resulterende programvaren kan bygges på videre, for å bruke EMF-modellering
i skyen. TLSP-protokollen og programvarearkitekturen kan brukes av også andre
verktøy som trenger tre-redigering, og som sikter på å støtte flere IDE-er. En ut-
bredt bruk av TLSP i IDE-er vil gjøre at migrering av tre-redigeringsverktøy til
andre IDE-er blir forenklet. Uavhengig av dette, så gir designet en gjenbrukbar
server for EMF, som kan forenkle migreringen av EMF til andre IDE-er.

v

Acknowledgments

Hallvard Trætteberg for being a very helpful supervisor and for interesting dis-
cussions.

Norwegian University of Science and Technology (NTNU) for providing ac-
cess to research papers, my education, and for providing an office to write this
thesis.

Dr. Jonas Helming and Maximilian Koegel at EclipseSource for their helpful
blog posts. An Dr. Helming in particular, for providing answers about my research
at the EclipseCon 2020 conference, and the initial title for the thesis.

CoPCSE-NTNU for this latex document template: https://github.com/COPCSE-
NTNU/thesis-NTNU.

All the helpful free software This thesis would be so hard to write, without the
aid of LATEX, VScode, LaTeX Workshop VSCode extension, MiKTeX, Zotero, Calibre,
Obsidian, Git and much more. The creators and contributors to these projects don’t
get enough praise.

Abakus, Online and TIHLDE student organizations for free coffee, and for
selling noodles and candy.

Lånekassen for funding my education through loans and scholarships.

My parents, Jenny and Håvard, and my girlfriend, Ingrid M. J. for all the
love, support and motivation they give me.

vii

https://github.com/COPCSE-NTNU/thesis-NTNU
https://github.com/COPCSE-NTNU/thesis-NTNU

Contents

Abstract . iii
Sammendrag . v
Acknowledgments . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
Glossary . xxi
1 Introduction . 1

1.1 Model-Driven Development in Education at NTNU 1
1.2 The Eclipse Ecosystem Wants to Run Software in the Cloud 2
1.3 A Pre-project Identified a Need for a Tree Editor 3
1.4 Research Objectives . 5

1.4.1 Problem . 5
1.4.2 Scope . 5
1.4.3 Objectives . 5

1.5 Thesis Structure . 6
2 Background . 9

2.1 Conceptual Modeling and Model-Driven Development 9
2.2 Model-Driven Development at NTNU in the Course TDT4250 10
2.3 Eclipse Modeling Framework Editors for Ecore 11

2.3.1 Sample Reflective Ecore Model Editor 12
2.3.2 EMF Forms Ecore Editor . 13

2.4 Introduction to Tree Structures . 14
2.5 Master-Detail Tree Editor . 16
2.6 An Overview of EMF: Ecore Metamodel, XMI Serialization and Gen-

Model for Code Generation . 16
2.7 Visual Studio Code and Theia . 18

2.7.1 Visual Studio Code . 18
2.7.2 Theia . 19

2.8 Visual Studio Code’s Custom Editor API 20
2.9 Language Server Protocol Architecture 21

2.9.1 Base Protocol . 22

ix

x K. Rekstad: Modeling in the Cloud for Education

2.9.2 Language Server Protocol . 23
2.10 JSON-RPC . 24
2.11 Cloud and Gitpod . 24
2.12 Eclipse Modeling Framework in the Cloud 25

2.12.1 EMF.Cloud . 25
2.12.1.1 Model Server . 26
2.12.1.2 Theia Tree Editor . 26
2.12.1.3 Coffee Editor . 27

2.12.2 Graphical Language Server Platform (GLSP) 27
2.12.3 Other Tools by the Eclipse Ecosystem 29

2.12.3.1 JSON-Forms . 29
2.12.3.2 CrossEcore . 29

2.13 Pre-project Results . 30
2.13.1 Research Questions . 30
2.13.2 Stakeholders . 30
2.13.3 Software Requirements . 31
2.13.4 Architecture and Protocol for a Solution 33

2.13.4.1 Architecture . 33
2.13.4.2 Protocol . 35

3 Method . 37
3.1 Design Science Research . 37

3.1.1 The General Design Cycle . 38
3.1.2 Methodology . 40

3.2 Requirements Engineering . 41
3.2.1 Stakeholder Discussion . 42
3.2.2 Requirements Extraction . 42
3.2.3 Source Code Analysis of Similar Projects 43
3.2.4 Use Cases and Prototyping . 43
3.2.5 Agile Requirements . 43

3.3 Development Methodologies . 44
3.3.1 Agile . 45
3.3.2 Iterative Development . 45
3.3.3 Lean and Minimum Viable Product 46
3.3.4 Tracer Bullets . 46
3.3.5 Domain-Driven Design . 47
3.3.6 Test-Driven Development . 48
3.3.7 Prototyping . 48

3.4 Evaluation . 48
3.4.1 Software Artifact . 49
3.4.2 Open Source Viability . 49

4 Results . 51
4.1 Software Artifact: Tree Editor Extension for Ecore in Gitpod 52

4.1.1 Custom Editor . 52
4.1.2 IDE Commands . 54

Contents xi

4.1.3 Genmodel and Model Instance 54
4.1.4 Configuration and Logging . 56

4.2 Design Artifact: Tree Document Model 57
4.2.1 Borrowed Terms . 57
4.2.2 The Domain Model . 58

4.3 Design Artifact: Architecture for Tree Language Server Systems . . . 62
4.3.1 Architecturally Significant Requirements 62
4.3.2 Changes from pre-project . 62
4.3.3 System explanation . 63

4.3.3.1 Context . 63
4.3.3.2 Containers . 65
4.3.3.3 Components . 67
4.3.3.4 Code . 69

4.4 Design Artifact: Tree Language Server Protocol 76
4.4.1 Activation . 76
4.4.2 User Actions . 78
4.4.3 Property Editing . 78
4.4.4 Tree Editing . 81

4.5 Open Source Project: Measures Taken for Viability and Maintain-
ability . 82
4.5.1 Code Availability . 82
4.5.2 Documentation . 82
4.5.3 Automation . 82
4.5.4 Licensing . 83
4.5.5 Code . 83
4.5.6 Issue Tracking . 84

5 Evaluation . 85
5.1 Use Case Completeness Evaluation of Tree Editor Extension 85

5.1.1 Test Case Details . 87
5.2 Qualitative Evaluation of the Tree Editor Extension 90
5.3 Qualitative Software Architecture Evaluation 92

5.3.1 Reusable Components for Related Migrations 92
5.3.2 Components for Migrating EMF to Other IDEs 93

5.4 Evaluation of Open Source Project Viability 93
5.4.1 Project Evaluation . 93
5.4.2 Readme Evaluation . 94

6 Discussion . 97
6.1 VSCode as an EMF Tree Editor in the Cloud 97
6.2 Reuse of EMF java code . 98
6.3 Creating a Tree Editor for VSCode Requires Substantial Effort 99
6.4 Designing a Standardized Tree Language Server Protocol 100
6.5 Limitations . 102

7 Conclusion . 105
7.1 Future Work . 106

xii K. Rekstad: Modeling in the Cloud for Education

Bibliography . 107
A Tree Editor Functional Requirements from Pre-project 113
B Pre-project Data Structure Code . 117

Figures

2.1 Screenshots of the Sample Reflective Ecore Model Editor in Eclipse
IDE. 13

2.2 EMF Forms Ecore Editor . 14
2.3 Tree Structure Visualizations . 15
2.4 VSCode User Interface . 19
2.5 Theia User Interface . 20
2.6 The Language Server Protocol Benefits 21
2.7 LSP Protocol Design . 22
2.8 Class Hierarchy of Theia Tree Editor Nodes 27
2.9 GLSP Overview . 28
2.10 JSON-Forms Example . 30
2.11 Tree Editor Architecture . 34

3.1 Design Science Research Process Model 39
3.2 Layered Architecture . 47

4.1 Overview of Results . 51
4.2 Tree Editor Extension installed in Gitpod 52
4.3 Tree Editor Extension showing studies.ecore 53
4.4 Tree Editor Extension Custom Commands 54
4.5 Tree Editor Extension showing studies.genmodel 55
4.6 Tree Editor Extension showing a dynamic instance 56
4.7 Tree Editor Extension with configuration and logging 57
4.8 System context diagram for Gitpod . 64
4.9 Gitpod container diagram . 66
4.10 Gitpod deployment diagram . 68
4.11 Ecore Tree Editor component diagram 69
4.12 Tree Editor Frontend class diagram . 71
4.13 Tree Editor Extension class diagram . 73
4.14 Tree Language Server class diagram . 75
4.15 Protocol Sequence Diagram of Start/Stop and Document Opening . 77
4.16 Protocol Sequence Diagram of Action Triggering 78
4.17 Protocol Sequence Diagram of Property Form 80
4.18 Protocol Sequence Diagram of Tree Changes 81

xiii

Tables

5.1 Use Case Evaluation of the Tree Editor Extension 87
5.2 Open Source Evaluation of the Project 94
5.3 Open Source Evaluation of the Readme File 95

A.1 Functional requirements for a master-detail Tree editor with prop-
erty sheet. 114

xv

Code Listings

2.1 A Request Message Example . 23
2.2 JSON-RPC examples copied from [28]. 24
2.3 GLSP Server Interface . 28
4.1 TreeDocument . 58
4.2 TreeRoot . 59
4.3 TreeNode . 60
4.4 Action . 60
4.5 ActionConfiguration . 60
4.6 ActionEvent . 61
4.7 HierarchyConfiguration . 61
B.1 Pre-project Tree Data Structure . 117
B.2 Pre-project Available Actions Data Structure 118
B.3 Pre-project Action Data Structure . 118
B.4 Pre-project Hierarchy Schema Data Structure 118

xvii

Acronyms

API Application Programming Interface. 17, 18, 20, 21, 27, 30, 34, 45, 62, 74,
89, 93, 97–99, 102

ASR Architecturally Significant Requirement. 62

DSL Domain-specific language. 1, 5, 11

EMF Eclipse Modeling Framework. iii, 1–6, 10–12, 16–18, 26–28, 30–32, 35, 36,
42, 49, 57, 58, 61, 62, 67, 68, 74, 76, 88–93, 97–103, 105, 106

GLSP Graphical Language Server Platform. 4, 27, 28, 90, 91, 101, 105

IDE Integrated Development Environment. 4–6, 12, 18, 20, 21, 25–27, 33–35,
49, 52, 58, 63, 65–67, 69, 70, 76, 83, 88, 90–93, 97, 99–101, 105

LSP Language Server Protocol. 4, 19, 21–24, 28, 36, 72, 74, 76, 77, 83, 88, 91,
92, 101, 105

MDD Model-Driven Development. 1, 2, 5, 6, 9, 10, 16, 17, 31, 42, 47, 49, 100,
106

NTNU Norges Teknisk-naturvitenskapelige Universitet. 1, 2, 5, 10, 11, 31

OCL Object Constraint Language. 11, 31, 89, 93

RPC Remote Procedure Call. 21, 23, 24

TLSP Tree Language Server Protocol. iii, v, 57, 62, 67, 69, 72, 74, 76–78, 80, 81,
88–90, 92, 93, 99, 101, 102, 105, 106

XMI XML Metadata Interchange. 12, 13, 16–18, 33, 54, 89

XML Extensible Markup Language. 17

xix

Glossary

artifact The term artifact means something artificial or human created, instead
of something occurring in nature [44, p. 6].. 37, 38

cloud Remote data centers that provide computing as a service. Commonly used
by businesses to provide web infrastructure. 2, 3, 5, 6, 12, 25–27, 49, 90,
97, 100, 105

domain A phenomena in the real world or area of interest that must be analyzed
to solve a problem. A domain is often abstracted to consist of entities, rela-
tions, processes and rules. 1

Eclipse Che A cloud based or self hosted workspace and IDE for software devel-
opment. It is based on Kubernetes and Theia. 97

Eclipse IDE An IDE by the Eclipse Foundation. Originally created by IBM. It is
based on a plugin architecture using OSGi, and is written in Java. 1–6, 10–
14, 17, 18, 21, 30–32, 42, 43, 49, 53, 76, 86, 88–91, 98, 100, 101, 103,
105, 106

Ecore The EMF core model. A metamodel similar to UML Class Diagrams. 1–4,
10–14, 16–18, 30–36, 42, 43, 49, 53, 54, 57, 58, 60, 62, 88, 89, 91, 93, 98

Electron A desktop application runtime for javascript, based on Chromium. 19

git A free program to version software code. Users create a git repository in a
folder, and then track and version all the files inside that folder. 63

GitHub A website for software project management and source code sharing.
Based on the Source-control Management (SCM) software called “git” . 2,
19, 26, 63, 82, 84, 95

Gitpod A cloud based workspace and IDE for software development. It is based
on Docker, Kubernetes and Theia. 2, 6, 18, 20, 25, 26, 31, 32, 34, 49, 52,
63, 65, 85, 97, 101, 105

JSON Javascript Object Notation. A serialization format for object structures. 17,
24, 30, 35, 76

xxi

xxii K. Rekstad: Modeling in the Cloud for Education

JSON-RPC Remote Procedure Call (RPC) protocol using Javascript Object Nota-
tion (JSON) serialization. It allows a process to execute functions in another
process and obtain the results. 21, 23–25, 35, 36, 70, 74, 76, 91

NodeJS A javascript interpreter for desktop, based on the Chromium V8 javascript
engine. It also includes some desktop APIs like filesystem access. 18, 72

open source The source code for a software is available; not just for inspection,
but for re-use and modification. 2, 4, 6, 7, 12, 13, 18, 19, 34, 43, 44, 49,
51, 82, 83, 85, 94, 95, 98, 100, 105

REST Represential State Transfer (REST). A paradigm for creating HTTP APIs,
centered around resources. 27, 35, 36, 62, 99, 102

TDT4250 Advanced Software Design. A course at NTNU. It runs during the au-
tumn, and teaches computer science students concepts like MDD, code gen-
eration, DSL and dynamic component based systems. 1–5, 10, 16, 31, 42,
49, 53, 85, 90, 103

Theia An IDE for software development. Theia is accessible in a web browser
and as a desktop application. The implementation reuses much of VSCode’s
internals. Managed by the Eclipse Foundation. 3, 4, 6, 18, 20, 26–29, 32,
34, 35, 52, 65, 67, 85, 90, 97, 101, 106

TypeScript A programming language developed by Microsoft. It is a superset of
the Javascript programming language, and adds static typing. TypeScript
code is compiled to javascript, and can then run in a web browser or NodeJS.
35, 58, 59, 69

UML Unified Modeling Language. A common modeling language for creating di-
agrams such as Class Diagrams. It is standardized by Object Management
Group. 3, 12, 16, 17, 69

VSCode Visual Studio Code. An IDE for software development. The full name is
Visual Studio Code. Managed by Microsoft. 2–4, 6, 18–21, 26–29, 32, 34,
35, 52–54, 56–58, 62, 65–67, 69, 70, 72, 74, 76, 83, 85, 86, 90, 92, 93,
97–101, 105, 106

WebSocket A two-way communication protocol over TCP sockets made available
for web browsers. It allows for a persistent and reusable connection which
can send multiple messages, unlike regular HTTP requests. Commonly used
to avoid polling over HTTP, or live updates of a website. 27, 35, 36

Chapter 1

Introduction

1.1 Model-Driven Development in Education at NTNU

In a world that becomes more digital for each day, there is a large need for
software development. Software is often created by writing code using pro-
gramming languages that compile down to computer instructions. Developers
write the code based on a set of requirements, and change it when the require-
ments change.

One alternative approach to software development, is Model-Driven Develop-
ment (MDD). This approach has the developers create models of their domain,
and this model drives the rest of the software development. The code is usually
generated from the model. If the software requirements change, the model is up-
dated first, and the code is re-generated. The model itself is often one or more
artifacts in the software project, expressed in a modeling language. Modeling
simplifies the domain by using abstraction, and reduces the world down to the
entities, relations, procedures (or other abstractions) that are needed to solve the
relevant problems.

The MDD approach is taught at Norges Teknisk-naturvitenskapelige Univer-
sitet (NTNU). The course is named TDT4250 Advanced Software Design. A mod-
eling language called Ecore is used in TDT4250. This language comes from the
Eclipse Modeling Framework (EMF). The models can generate java code, and can
extend the Eclipse IDE as a plugin. The plugin lets a user enter data for a model
instance by using Eclipse IDE as a user interface. Students also learn to create
Domain-specific languages (DSLs) with an Ecore model as its core.

Eclipse IDE is required to work with EMF modeling. It has editors for Ecore,
code generation and model validation. There are two main types of editors: hierar-
chical tree editors and graphical diagram editors. There are also multiple different
implementation on the tree editors, based on different underlying frameworks.

1

2 K. Rekstad: Modeling in the Cloud for Education

The reliance on Eclipse IDE is a problem for students. Students don’t like to
work in Eclipse, because of various issues with usability, errors or stability [1]. If a
student wants to use EMF afterwards in their job, they would have to use Eclipse
IDE, and also convince their team to do it as well. Some students see EMF as being
too Eclipse IDE related, as well, and incorrectly see it as a tool for only developing
Eclipse plugins. This results in students resisting to learn EMF, and also MDD by
implication, because no EMF alternative is taught.

NTNU wants to move from Eclipse IDE to VSCode running in a web browser.
This is a recent decision, and mainly for the course in Object Oriented Program-
ming with java. Some of the reasoning behind the change, is to avoid installation
issues from Eclipse IDE, and to ease online collaboration through GitHub and
publication of assignments. VSCode is an advanced text editor that has increased
in popularity in the recent years. It is based on web technologies, but normally
runs as a desktop application. A website and service called Gitpod allows run-
ning VSCode in a web browser, and connect it to a workspace based on a GitHub
repository. The workspace has the project files, software development kits and
other tools already installed and running in a remote machine in the cloud. This
avoids all installation on a student’s machine.

For TDT4250 to follow suit and move to Gitpod, the Ecore editors would have
to be available in VSCode as well. The current situation is that there are no
Ecore editors for VSCode. There are also no known MDD frameworks for VSCode
that integrates with the other curriculum of TDT4250 either, as alternatives to
EMF.

1.2 The Eclipse Ecosystem Wants to Run Software in the
Cloud

The Eclipse Modeling Framework is powered by open source software and an
ecosystem of developers. The framework has many tools and software libraries
available, contributed by various developers and organizations. These develop-
ers and organizations, is what this thesis nicknames the Eclipse Ecosystem. Some
prominent actors are the organizations TypeFox, EclipseSource (with Dr. Jonas
Helming and Maximilian Koegel), Obeo and RedHat [1]. For example, Gitpod is
developed by TypeFox, and one of the Eclipse IDE tree editors for Ecore is created
by EclipseSource [2, 3].

Cloud is becoming more popular, and the Eclipse Ecosystem is heading there.
When something runs in the cloud, it really means that it runs on rented computers
in a data center somewhere outside of the organization. Running in the cloud is a
win for developers and organizations, because they don’t need to take care of their
own hardware. And scaling up to more computers is as easy as clicking a button, or

Chapter 1: Introduction 3

often happens automatically with load balancing technology. No more purchasing
of hardware and configuring it. When developers “embrace” the cloud, it also
means working more with web technologies and less with desktop applications.

To use EMF in the cloud, the Eclipse ecosystem has started to create new
tools. Most of the tools are related to running EMF-based software, but not
developing it. There are some advances to developing in the cloud, with Gitpod
and the VSCode re-implementation Theia, but neither have tools for EMF.

1.3 A Pre-project Identified a Need for a Tree Editor

This masters thesis is preceded by a pre-project thesis. This work happened
during the Autumn of 2020, the semester before this masters thesis. The results
were presented in [1]. The project began by identifying what to build. The need
for EMF editing in the cloud was known, but not how to do it or if it was even
possible.

The pre-project identified a need for a web-based tree editor for working with
EMF. Early plans were to create a diagram editor, inspired by UML Class Dia-
grams and the Eclipse IDE diagram editor for Ecore named Ecore Tools (based on
Sirius by aforementioned Obeo) [1]. During an online conference for the Eclipse
ecosystem, EclipseCon 2020, it became clear that EclipseSource was already work-
ing on this [4]. However, based on the author’s experience as a former student of
TDT4250, most of the work with Ecore happened in a tree structure1 editor with
a property sheet. This kind of editor has what is known as a master-detail layout,
where the tree is a master view, and the property sheet is the details of the current
selection in the tree. No actor in the Eclipse ecosystem was working on such a tree
editor for Ecore models for VSCode. Preliminary searches online did not find such
an editor created by anyone outside the Eclipse ecosystem either.

Initial requirements for a tree editor were chosen. The period of work was
constrained to the pre-project and master’s thesis, which is from August 2020 to
June 2021. This constraint made it a goal to reduce the amount of unnecessary
work and reduce re-implementation of existing solutions. For example, the Eclipse
Modeling Framework is big, with many years worth of experience ingrained in its
implementation details. Therefore, a non-functional requirement emerged: the
editor should re-use as much of the existing EMF java code as possible.

Another non-functional requirement was that it should run inside VSCode as
an extension. Gitpod was at the time was using Theia as the editor, which was
compatible with VSCode extensions [1]. Theia has two extension mechanisms,

1Tree structure here means the hierarchical parent-child structure, perhaps better known from
file system folders and file browsers.

4 K. Rekstad: Modeling in the Cloud for Education

but only the VSCode extension mechanism could be installed during runtime by
students [1]. Because a goal was to use the Gitpod service for TDT4250, this com-
patibility was needed.

The third non-functional requirement was that the project should be open source
and designed to live longer than the period of work. A goal is to include all or
most of the functionality already present in Eclipse IDE, which was estimated to
be more work than what was possible to do during the pre-project and master’s
thesis. Therefore, the development will need to be taken over by someone else
afterwards. Either the Eclipse ecosystem, or a master’s thesis by another student.
An open source project needs some additional care if it wants to succeed. For
the Eclipse ecosystem to handle it, the software should have a compatible license,
and not copy or use code with incompatible licenses. The code should also be well
structured, documented and easy to contribute to for others.

The initial, unrefined functional requirement was that VSCode should be able to
view, edit and save Ecore models and model instances in “.ecore” and “.xmi”
files. The pre-project did further work to refine this functional requirement into
multiple smaller requirements, and discovered many new ones, by requirements
extraction [1, p. 47, 48]. As noted in the discussion in [1, p. 51], the list of func-
tional requirements was not complete.

Related software architectures and protocols were analyzed. Because the
EMF tooling had to move to VSCode now, it is plausible that it will need to move
to another IDE later in the future. The pre-project explored protocols related to
this, like Language Server Protocol (LSP) and Graphical Language Server Platform
(GLSP).

The pre-project used prototypes to verify the feasibility of the architecture.
The main issues solved in the pre-project were related to hypothetical design
choices and feasibility. It tried to answer if and how java could be executed from
the VSCode extension, to reuse EMF code. The pre-project also looked for a good
data model to support editing of any tree structure, while providing a user inter-
face with high usability and constraints [1, p. 24, 25].

More work was needed in order to evaluate the pre-project solution. No
complete editor was produced during the pre-project. It only proved the possibility
of creating a custom frontend, and that extensions could run java programs. The
entire protocol was unexplored, and no real EMF data was ever loaded into the
frontend. This master’s thesis will pick up on these results and try develop them
further into a usable solution. It also aims to create an open source repository that
is viable and suitable for further development by the Eclipse ecosystem and other
master students.

Chapter 1: Introduction 5

1.4 Research Objectives

1.4.1 Problem

Problem definition How can students use the Eclipse Modeling Framework
(EMF) in a cloud based Integrated Development Environment (IDE) in order to
learn Model-Driven Development (MDD) as part of the course TDT4250, without
using the Eclipse IDE?

Value

1. Students may be more motivated to learn MDD if they do not need to use
Eclipse IDE, and do not perceive the MDD framework (EMF) as Eclipse IDE-
specific or only for deploying to the Eclipse IDE [1, p. 2]. Few to no other
courses at NTNU target Eclipse IDE as the deployment/target platform, and
Kuzniarz and Martins [5] found that students resist learning when the tech-
nology and skills are not used in other courses. Students also dislike or have
problems with Eclipse IDE itself, and feedback collected from teaching stu-
dents in 2015 by Jordi Cabot [6] found that much of the complaints were
about installation issues and problems with the tools, not problems with
MDD as a concept.

2. By moving EMF from Eclipse IDE to other Integrated Development Environ-
ment (IDE), the value of the framework itself may increase, as adoption of
EMF does not imply adoption or use of Eclipse IDE. Industry may use the
framework for modeling, without requiring the developers to use Eclipse
IDE. A problem for MDD adoption in general is low impact on personal ca-
reer needs, identified by Jon Whittle et al. [7].

1.4.2 Scope

There are many different activities in MDD, and the course TDT4250 investigates
related areas such as creating Domain-specific language (DSL) and custom code
generation templates. Tackling all the aspects of MDD and TDT4250 in this thesis
is unrealistic, because of the size of work.
The scope is therefore limited to enabling the creation and editing of EMF model
files. This thesis is also limited in scope in terms of how far a design for a solution is
developed and instantiated as code. The aim is to prove feasibility of such a design
and instantiation, but not to create a fully functional editor with all the features
needed to do modeling. Instead, a software foundation will be established,
where the design and principles can guide other developers’ further development
towards a complete solution.

1.4.3 Objectives

There are three objectives for this thesis.

6 K. Rekstad: Modeling in the Cloud for Education

Objective 1: EMF Modeling in the Cloud The first objective is to design a so-
lution to enable Model-Driven Development (MDD) with the Eclipse Modeling
Framework (EMF) in a cloud based IDE. Gitpod with VSCode is chosen as the
IDE. A solution should be able to support all the modeling tasks needed to teach
MDD, and Eclipse IDE should not need to be installed on a student’s computer.

Objective 2: Open Source project The artifact should exist longer than the
period of work for the master’s thesis, and be developed further by contributors
other than this thesis’ author. The artifact should be in a open source project, to fit
in with the expectations of the Eclipse ecosystem, current trends and expectations
of students.

Objective 3: An architecture to enable future related IDE migrations This
may not be the last time EMF will be used in a new IDE. And other tools and
frameworks may need the same type of migration, as cloud adoption increases.
Therefore, the solution should apply a software architecture that allows easier
migration to another IDE, by providing more reuseable and “higher abstraction
level” components than what EMF currently has. The software architecture should
also provide guidance or be directly applicable to other tools that work in a similar
fashion. A bonus objective is if this design can provide instantiated components
(artifacts) that are reuseable outside of EMF.

1.5 Thesis Structure

The thesis starts by introducing the core problems and context in Chapter 1.

Next, a substantial amount of background material is presented in Chapter 2. This
introduces Model-Driven Development and how it’s practically done in an educa-
tion context. Existing tools for working with EMF are presented, as they are prior
art and crucial for a solution’s design. Some terminology and theory is presented
for trees and tree editors. Then EMF is described in more detail. After that, the
VSCode and Theia IDEs are introduced, as they are central to the solution. Some
existing protocols are presented, because they solve analogous problems to what
this thesis identifies. A section will then follow, describing how the Eclipse ecosys-
tem is itself targeting the cloud, and some relevant tools they provide. Lastly, the
findings of the pre-project are presented. The pre-project laid a lot of the initial
foundations for this master’s thesis.

The next chapter details the method used to develop a solution. It explains the
overarching methodology of Design Science Research, and the finer grained meth-
ods used for requirements engineering, development and artifact evaluation.

The following results section presents a developed software artifact, a software

Chapter 1: Introduction 7

architecture and a related protocol. It also explains the efforts done to increase
the likelyhood of success as a open source project.

After the results, a chapter of evaluation follows. This sees how valuable, fit and
complete the designs are, as well as how well the project follows open source
project guidelines.

A discussion chapter argues for the implications of the results and evaluation, and
the final chapter concludes this thesis.

Chapter 2

Background

This background section will explain some of the concepts, approaches, technolo-
gies and software architectures required to understand this thesis. The findings
from the pre-project in [1] will also be presented in more detail than the intro-
duction, as the findings are central to this thesis. Lastly, a section on open source
software project management follows, as they shape many of the choices made in
the implementation of a solution.

2.1 Conceptual Modeling and Model-Driven Development

Rationale Model-Driven Development (MDD) is the approach to software de-
velopment which this thesis aims to support. Therefore, and understanding of
MDD is beneficial, in order to see how an editor should work.

Modeling and abstraction The core of MDD is the model. The model is a human
created construct, formed through humans working together to discuss and refine
a problem domain until they reach a consensus of what abstractions help them
solve the relevant problems [8, p. 154]. Humans perceive the world (and prob-
lem domain) as many different phenomena, and conceptual modeling is the act
of trying to describe these at some level of abstraction [9, p. 1, 408]. The model is
assumed to resemble the phenomena and work the same way, and yet be simpler
than the real world [9, p. 414]. Abstraction means to find something common in
different observations of a phenomena, and generalize their features, classify co-
herent clusters of objects and aggregate concepts into more complex ones [8, p. 1].
The model will never describe every aspect of the world perfectly, but can reduce
the world down to relevant aspects, and easily map between model elements and
real world phenomena [8, p. 1-2].

Modeling languages In order to describe the model, a language is used. To re-
alize the benefits of MDD, a formal language is used. The language can be textual
or graphical, or both, and imposes a formally defined syntax on the modeler [8,

9

10 K. Rekstad: Modeling in the Cloud for Education

p. 13].

Modeling tools The advantage of using a formal language is that it can be
parsed and understood by software tools, as well as humans. The tools can vali-
date the model according to the syntax, and to specific rules for the domain. Tools
can also generate code, or execute the model itself. The model can be transformed
into other models, or text or graphics [8, p. 8].

Model-Driven Development The central idea of Model-Driven Development is
that the model is the source of truth that drives the rest of the engineering and
development [8, p. 9]. There is not a separate model for analysis and for design,
but a single one for both [10, p. 49]. The software code becomes an expression of
the model itself, and changes to the code often happen as the result of changes to
the model [10, p. 49]. Because the model and the software are so directly related,
the MDD approach is heavily reliant on tools to automate the tasks of validation
and code generation. The formal language may also sacrifice some of its human
readability in order to be understood by tools [9, p. 232]. To solve this, one can use
other tools that interpret, transform or present models in other ways [9, p. 233].
This increases the reliance on tools for MDD even more, including visual editors.

2.2 Model-Driven Development at NTNU in the Course
TDT4250

Rationale Because the target audience of the software solution (tree editor)
are students at NTNU, it is helpful to know how they work with Model-Driven
Development. Their use cases are the ones being solved, meaning the solution
must be made with this context in mind.

MDD at NTNU To do Model-Driven Development effectively, tools should be
used. In the course “TDT4250 Advanced Software Design”1 at NTNU, the chosen
tools are in the Eclipse Modeling Framework (EMF) [11]. This includes the model-
ing language Ecore, visual editors in Eclipse IDE, model validation logic, the code
generator named “GenModel”2 (generator model), and more. EMF is a battle-
tested technology also used in certain industries, and is well integrated with the
Eclipse IDE. The course TDT4250 also uses Eclipse IDE as a case study for other
software design concepts, such as modularity (plugin architecture) and dynamic
systems (OSGi), and custom Domain-specific languages which automatically work
with Eclipse IDE. EMF is relevant for most or all of those concepts.

1Course description is available at https://www.ntnu.edu/studies/courses/TDT4250#tab=omEmnet.
2The code generator is actually named “codegen”, but users only see the configuration model

called “GenModel”.

https://www.ntnu.edu/studies/courses/TDT4250#tab=omEmnet

Chapter 2: Background 11

Development methodology Students are taught a methodology or approach
for how to do modeling. They start by specifying a problem space, for example
bookkeeping an organization of employees or the courses in NTNU, and then ab-
stract the problem into a model. The initial model is externalized as Ecore by using
a tree editor in Eclipse IDE.

Then an model instance is made, based on the model, and filled with example data
from the domain. This model instance is used to test and verify that the model is
appropriate for the problem space. Adjustments are made to the model to accom-
modate any problems with the model instance.

Then validations can be created for the model, by one or both of the following
approaches: writing Object Constraint Language (OCL) into model annotations,
or marking the model element with an annotation and implementing it as java
code. OCL is a Domain-specific language for navigating models and evaluating
expressions, and the Eclipse IDE can detect annotations with OCL and evaluate
them against the Ecore model. The other option, writing java code, requires the
student to first create a new genmodel file from the model (by using a menu in
Eclipse IDE), generating a java code project from the model, and then writing val-
idation logic into the generated code. For the java code to be picked up, Eclipse
IDE can start a new instance which installs the generated code as a plugin [12].

Next up, when the model is deemed sufficient, and the most important validations
are in place, the student can try to create a user interface. One of several choices
here is to create an Eclipse IDE plugin. EMF provides code generation for utilities
used to integrate the model into an editor for Eclipse IDE. The student uses the
genmodel to create these, and tweaks the code if wanted. Then everything is in-
stalled into Eclipse IDE by launching a new Eclipse IDE instance with the code
installed as a plugin.

Lastly, the user interface can be tested. The student creates a new model instance
file, enters some example data from the domain, and runs validation logic.

Lecture materials The steps mentioned in the methodology above are available
online in [12–15]. This is an advantage, because they can by used used in this
master’s thesis as a basis for creating evaluations and acceptance criteria.

2.3 Eclipse Modeling Framework Editors for Ecore

Rationale These editors are the ones being re-implemented in cloud-based IDEs.
Understanding their functionality and workings is important, as these editors
shape the work of this thesis. The functionalities provided are assumed highly
usable and good, because they are the result of many years of work and experi-
ence. They will be re-implemented in a solution.

12 K. Rekstad: Modeling in the Cloud for Education

Multiple editors When editing Ecore models in Eclipse IDE, there are different
editors to pick from. Usually, Ecore models and model instances are saved as XML
Metadata Interchange (XMI), which is a standardized serialization format based
on XML. The Ecore models have the file extension .ecore while model instances
either have .xmi or a custom extension for the model, specified by the modeler
(e.g. .organization or .courses). The GenModel has .genmodel as file exten-
sion. However, Ecore models are rarely (if ever) edited as XML. Instead, the files
are loaded and presented in a tree structure editor or diagram editor. These edi-
tors are specialized for Ecore, and can understand the model.

The diagram based editors use a notation that is based on UML Class Diagrams,
with boxes, labels and arrows. Which editor to use can often be a personal pref-
erence. They are all functionally equivalent, with regards to modeling. The next
subsections will describe the most common tree editors in more detail.

2.3.1 Sample Reflective Ecore Model Editor

The “Sample Reflective Ecore Model Editor” is one of the main Ecore editors in
Eclipse IDE. A screenshot of the editor is shown in Figure 2.1. The model in-
stances can be edited in a reflective editor (without the user first generating java
code and installing an Eclipse IDE plugin). Here, reflective means that the editor
uses a metamodel (see Section 2.6) for the model instance, and tries to infer the
tree structure from containment relationships.

This editor can open both Ecore models and model instances. A screenshot of a
model opened in the editor is shown in Figure 2.1a, and a model instance in Fig-
ure 2.1b.

This editor is open source3, and the editor is itself originally generated by a gen-
model [1, p. 10].

This editor internally uses a java class called ReflectiveItemProvider4 from the
org.eclipse.emf.edit EMF package, to extract text labels and infer icons for the
tree view [1, p. 10].

For Ecore models (with .ecore file extension, not model instances), it uses an
EcoreItemProviderAdapterFactory5 to get labels and icons [16].

3Sample Reflective editor source: https://git.eclipse.org/c/emf/org.eclipse.emf.git/
tree/plugins/org.eclipse.emf.ecore.editor.

4ReflectiveItemProvider source code: https://git.eclipse.org/c/emf/org.eclipse.
emf.git/tree/plugins/org.eclipse.emf.edit/src/org/eclipse/emf/edit/provider/
ReflectiveItemProvider.java

5EcoreItemProviderAdapterFactory source code: https://git.eclipse.org/c/emf/org.
eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.edit/src/org/eclipse/emf/ecore/
provider/EcoreItemProviderAdapterFactory.java

https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.editor
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.editor
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.edit/src/org/eclipse/emf/edit/provider/ReflectiveItemProvider.java
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.edit/src/org/eclipse/emf/edit/provider/ReflectiveItemProvider.java
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.edit/src/org/eclipse/emf/edit/provider/ReflectiveItemProvider.java
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.edit/src/org/eclipse/emf/ecore/provider/EcoreItemProviderAdapterFactory.java
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.edit/src/org/eclipse/emf/ecore/provider/EcoreItemProviderAdapterFactory.java
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.edit/src/org/eclipse/emf/ecore/provider/EcoreItemProviderAdapterFactory.java

Chapter 2: Background 13

(a) A model opened in the editor.
(b) A dynamic instance (XMI file)
opened in the editor.

Figure 2.1: Screenshots of the Sample Reflective Ecore Model Editor in Eclipse
IDE.

These “item providers” are especially interesting, because they could be reused in
a new editor.

2.3.2 EMF Forms Ecore Editor

The EMF Forms Ecore Editor is a newer editor than the Sample Reflective editor,
and uses EMF Forms6 as the technology to provide a user interface [3]. This editor
is open source7. A screenshot of the editor is shown in Figure 2.2.

This editor is implemented as a generic editor for all Ecore model instances, and
two subclasses that are specialized for Ecore and GenModel [3]. The generic ed-
itor is called Generic XMI Editor in Eclipse IDE, and the Ecore specific editor is
called Ecore Editor.

The biggest difference compared to the Sample Reflective editor, is how the user

6More info about EMF Forms here: https://www.eclipse.org/ecp/emfforms/index.html.
7EMF Forms source code: https://git.eclipse.org/c/emfclient/org.eclipse.emf.ecp.

core.git/tree/bundles/org.eclipse.emfforms.editor.ecore.

https://www.eclipse.org/ecp/emfforms/index.html
https://git.eclipse.org/c/emfclient/org.eclipse.emf.ecp.core.git/tree/bundles/org.eclipse.emfforms.editor.ecore
https://git.eclipse.org/c/emfclient/org.eclipse.emf.ecp.core.git/tree/bundles/org.eclipse.emfforms.editor.ecore

14 K. Rekstad: Modeling in the Cloud for Education

interface looks, and that the property sheet is customized based on a view model
file. Customizing en editor based on a view model or UI schema is a general tech-
nique, also seen in JSON-Forms in Section 2.12.3.1. The Sample Reflective editor
uses Eclipse IDE’s built in property panel. In the EMF Forms editor, the properties
are also grouped into standard and advanced.

Figure 2.2: A screenshot of a model in the EMF Forms based Ecore Editor.

2.4 Introduction to Tree Structures

Rationale Because the editors center around a tree structure, a clear under-
standing of trees is helpful.

Trees A tree is a data structure. The tree is composed of nodes, and one node is
designated as the root node node or tree root. Each node can have zero or more
children nodes, and one parent node. The root node does not have a parent. When
representing the tree as code, it is possible to omit either the parent or child rela-
tionship in a node, making the parent or child implicit. The relationship can still
be found, by traversing the tree. Traversing means to visit every node it the tree
by following the parent or child relationships. Nodes that are children of the same
parent are called siblings, and parents of parents are called grandparents.

Visualizing trees There are many ways to present trees to humans. Two com-
mon approaches are hierarchy and diagram.

In a hierarchy, the parent is presented as a row, and its children on separate rows
below (see Figure 2.3a). The children are often indented as well, and possibly

Chapter 2: Background 15

connected with dots or lines to the parent.

In a diagram, nodes are often displayed as a circle or box (see Figure 2.3b). The
parent is displayed above its children, and the children are aligned on the same
row. The parent-child relationship is shown as a line or arrow, connecting the
parent to the child.

(a) A tree visualized as a hierarchy. The
top node is the root.

Background

The Open
Source Ecosystem

Ecore Editors Editor Extension
Components

Sample Reflective
Ecore Model Editor

EMF Forms
Ecore Editor

Ecore Tools EMF.Cloud
ecore-glsp

(b) A tree visualized as a diagram. The
blue node at the top is the root.

Figure 2.3: A tree visualized as a hierarchy and diagram. The labels are section
titles of [1], as an example.

Nodes The tree is more useful when the nodes have properties. The minimum
property is children or parent. But a useful property is a name, label or id, with
regards to presenting the tree to a human. There may be properties on the relation-
ships between a node and its children, but these may be hard to present visually
in hierarchy-type visualizations. For a diagram type visualization, the properties
may be presented as labels on the edge.

Mapping to trees A data structure can be mapped to a tree if it has separate
objects with a references, containment or aggregation relationship. The references
can not be circular (where a node has a child which is also a parent or grandparent
etc.). There can be different ways to map to a tree, depending on what properties
are used (or not used). The labels can also come from various object properties,
be derived from them or combine multiple properties into one label.

Editing a tree Common operations on trees either modify the structure, or mod-
ify the properties of a node. Structural modifications can be to add a new child,
to delete a child, or to move a child from one parent to another. Nodes can be
copied, and pasted on the same parent or other parents, or themselves. Less com-
mon operations are inserting a new node between a parent and child, turning the
latter into a grandchild. Likewise, a node can be removed, merging its children
into its parent, making them effectively siblings to the removed node.

16 K. Rekstad: Modeling in the Cloud for Education

2.5 Master-Detail Tree Editor

Rationale The tree editors use a layout pattern called master-detail.

Description As the name Tree Editor implies, they are used to edit a tree. There
are mainly two different things that can be edited: the parent-child relationships
and the node’s properties. The user interfaces for the tree editors in Section 2.3
use a pattern called master-detail. This means the user interface is composed of
two parts: a master view and a detail view.

Master view The tree structure is shown as a hierarchy in the master view. It is
common for the master view to be positioned to the left of a detail view, or above it.
The user interacts with the master view to add, remove and select nodes. Adding
a new child to a parent is done here.

Detail view When a node is selected, its properties are displayed in the detail
view. It is common for the detail view to be positioned to the right of a master
view, or below it. The detail view is usually a input form or tabular (rows and
cells) structure. The user usually enters text, numbers, ticks checkboxes and opens
selection dialogues from the detail view.

2.6 An Overview of EMF: Ecore Metamodel, XMI Serial-
ization and GenModel for Code Generation

Rationale The Eclipse Modeling Framework (EMF) is the Model-Driven Devel-
opment framework used in TDT4250. The tree editor will modify Ecore models,
so it helps to understand the concepts and names used in the Ecore metamodel. It
is also useful to know the different tools and components in EMF, because the tree
editor intends to reuse as much of them as possible internally, to save development
effort.

Eclipse Modeling Framework The Eclipse Modeling Framework (EMF) is a part
of the Eclipse Modeling project from the Eclipse Foundation. It is a framework
and code generation facility that lets developers define models. The models can
be java code, XML Metadata Interchange (XMI) or UML, and the other two can
be generated [17, p. 14]. This framework may be chosen as the tools for doing
Model-Driven Development (see Section 2.1). In EMF, the models are expressed
with the Ecore modeling language. This modeling language is similar to UML Class
Diagrams, in terms of the concepts and what it can express [17, p. 16]. The real
world data that could fit inside a specific model is called a model instance.
The framework was made to take use of the editing capabilities and utility of the
Eclipse IDE [17]. This means that there is much tooling and integration for EMF

Chapter 2: Background 17

with Eclipse IDE. For example, EMF can generate a plugin to edit model instances
in Eclipse IDE.

Ecore metamodel The modeling language in EMF is Ecore. A metamodel is the
model of a model. This means that Ecore is the metamodel for all models ex-
pressed using . Ecore is itself modeled in Ecore, so it is its own metamodel.

Model concepts The main concepts used in Ecore to model, are EClass, EAt-
tribute, EReference and EDataType8. These are distinct objects with names,
properties and inheritance, like in object oriented programming. As for the meta-
model, EClass, EAttribute and EReference are all extending ENamedElement,
which defines their name property [17].
When modeling, EClass is used to create java classes. The EAttribute and ERef-
erence are used to model class properties, like member variables. An EAttribute
defines a property, such as e.g. age or address, while EReference defines a refer-
ence/association to another EClass, e.g. parent or order. The EAttribute has a
attribute type, the EDataType, which can be e.g. EInt or EString [17].
Java class methods are modeled with another concept, the EOperation. Lastly,
everything in the model lives inside an EPackage, which represents a java package
(or other kind of code module). There are more concepts in Ecore, but many are
only used internally as part of the metamodel, to represent Ecore itself.

XMI serialization When an Ecore model is written as a text file, it needs seri-
alization. The official format for serializing Ecore is XML Metadata Interchange
(XMI). This format is based on Extensible Markup Language (XML). The file ex-
tension is usually .ecore. Model instances can also be serialized as XMI, and have
custom file extensions or .xmi. It is also possible to serialize Ecore to other for-
mats, like JSON, using third party tools.

EMF runtime java API The java code generated by EMF will by default extend
a set of java classes defined by EMF. Instead of a generated EClass extending
java.lang.Object, it extends EObject. And instead of using an ArrayList, a col-
lection in Ecore will use a EList. When creating a new instance, the class con-
structor is not used, but a Factory instance on the generated EPackage for the
model.

All of these framework java-classes are the EMF java Application Programming
Interface (API). They provide much of the power, flexibility, reflection and meta-
modeling capabilities of EMF in java. For example, a program can work with a
EMF model without knowing the code beforehand, by using the reflection API to
retrieve names and properties of a model object.

8The name Ecore comes from EMF Core, and the ‘E’ prefix for EClass etc. come from Ecore.

18 K. Rekstad: Modeling in the Cloud for Education

The API also provides utilities for working with the model. There are APIs for
listing the children of an EObject, getting a human representation of it, and for
modifying and observing state changes. Another important API is the ResourceSet
and Resource, used to read and save models to serialized XMI files.

GenModel code generation Code generation is an important part of EMF. The
generator can be configured with its own generator model, nicknamed the Gen-
Model. This model holds options for how the code will be named, what templates
should write the code, if the code can use the EMF APIs, and more. This model is
itself an Ecore model, and has an .genmodel file extension [17, p. 28].

The generator can also produce more than just a java representation of the model.
A test suite can be generated, with an empty test skeleton for the generated code.
It can also generate utilities for creating model editors, in what is called the .edit
java package. The name “.edit” is appended to the original package name. This
has ItemProvider classes which helps an editor to find the human representations,
properties, child objects, and to notify on changes.

Another utility is related to the Eclipse IDE, which is the .editor java package. This
holds key classes for integrating with Eclipse IDE, making it a custom editor. For
example, custom actions, project wizards, eclipse plugin logic is part of this.

Custom code The generated code must usually be modified by a developer. This
can be to fill in the implementation of a EOperation, or tweak some behavior. The
generated code has a @Generated java annotation, which the developer changes
to prevent the code generator from overwriting the method body.

2.7 Visual Studio Code and Theia

The two IDEs relevant for this thesis are Visual Studio Code (VSCode) and Theia.
Both are available as editors in Gitpod as cloud based IDEs.

2.7.1 Visual Studio Code

VSCode is a very popular open source IDE created by Microsoft [18]. A screen-
shot is shown in Figure 2.4. It uses web technologies like javascript, NodeJS and
Electron to provide an advanced text editor and tools for programming on a desk-
top. Originally made only for desktop, VSCode was later adapted to also work in
a browser when GitHub9 launched Codespaces [19]. VSCode is extensible, and
allows third party developers to create extensions. These are distributed from Mi-
crosoft’s extension store: Visual Studio Marketplace10.

9GitHub is owned by Microsoft.
10Marketplace website: https://marketplace.visualstudio.com/vscode.

https://marketplace.visualstudio.com/vscode

Chapter 2: Background 19

Programming languages One common use of extensions is to support new pro-
gramming languages. The text editor in VSCode is a generic text editor compo-
nent called Monaco [20]. This same text editor is used for all programming lan-
guages. For the text editor to know the keywords, suggestions and other specifics
of a programming language, the extension uses a standardized protocol to inform
Monaco. This protocol is called the Language Server Protocol, and is described in
Section 2.9.

Figure 2.4: The VSCode user interface, annotation with the different components
(A-E).

2.7.2 Theia

Theia is based on the open source components from VSCode, without a propri-
etary component that Microsoft added for telemetry. Theia is managed by the
Eclipse Foundation under the Cloud Development project (see Section 2.12), and
was created to be web based from the start (before Codespaces launched, when
VSCode was desktop only). A screenshot is shown in Figure 2.5. The main uses of
Theia are workspace services like Gitpod and Eclipse Che, but it is also intended
to be a “web based version” of the Eclipse Rich Client Platform. This means tools
can create their own distribution of Theia, where they are deeply integrated [21].

Extensions Theia can load extensions using the same Application Programming
Interface (API) as VSCode. Theia calls these “Theia Plugins”. Another way to ex-
tend Theia is using “Theia Extensions”. These have full control over the IDEs, and

20 K. Rekstad: Modeling in the Cloud for Education

Figure 2.5: The Theia user interface.

can modify practically anything. Installing a Theia Extension requires the user to
perform a full compilation of Theia itself [22]. A Theia Plugin (or VSCode ex-
tension) however, can be installed at runtime. Because of licensing issues with
Microsoft and the Visual Studio Marketplace, Theia Plugins are instead hosted at
a independent marketplace called OpenVSX [23].

2.8 Visual Studio Code’s Custom Editor API

A VSCode extension is allowed to use a set of Application Programming Inter-
faces provided by VSCode. One such API is the Custom Editor API. This allows
an extension developer to create custom editors other than text editors. This
could be diagrams, pictures, graphs, or trees, for example. The developer has the
full freedom of a web browser, as they are given their own isolated frame. Nor-
mally, an extension cannot modify the user interface outside of the provided APIs.
This is in contrast to inside the provided WebView, where the developer has to
create and manage the entire user interface. In addition to a user facing WebView,
the developer must create their own document model. By default, VSCode uses
a document model for text documents, with selections, edits, versions and more.
The CustomDocument only has a uri pointing to the file. Another central part is the
CustomEditorProvider, with a few methods to fill in, like opening, undoing and
saving a document.

Chapter 2: Background 21

2.9 Language Server Protocol Architecture

Goal There are many programming languages, and many Integrated Develop-
ment Environments. Traditionally, every IDE would have a special integration for
every language it supported. Extracting tokens, keywords, providing auto comple-
tion, code formatting and so on. This leads to a lot of rework every time a new IDE
comes around, and duplication of work every time a new programming language
is supported. Essentially, every m number of IDEs that support an n number of
programming languages result in m× n different integrations. This is illustrated
in the left side of Figure 2.6.

A solution to this m× n problem is the Language Server Protocol (LSP). If instead,
every IDE has a generic text editor for all languages, they only need to support
the LSP. Once an editor “talks” LSP, it can support all programming languages
that have a LSP language server. Likewise, a programming language only needs to
develop one language server, and it supports all IDEs that use LSP [24]. This is
shown in the right side of Figure 2.6.

This protocol was created by Microsoft, and is in use today on VSCode. Many
IDEs and text editors have adopted it afterwards, like Eclipse IDE (with LSP4E),
Atom, Vim, Sublime Text, Spyder and more, via both official and unofficial plugins
to these IDEs [25]. The protocol is quite extensive, and defines approximately 40
different requests with corresponding responses, 20 notification types, in addition
to data structures needed to support all of these [26].

Figure 2.6: The benefits of using the LSP. The left side shows all the integrations
(as arrows) required for 3 languages (javascript, python, java) and 3 editors (VS-
Code, Atom, Vim), without the LSP. The right side shows how the LSP can reduce
the amount of work by unifying the common elements of programming language
editors into a standard protocol. Figure copied from Microsoft [27].

22 K. Rekstad: Modeling in the Cloud for Education

Protocol The Language Server Protocol is based on a Base Protocol. This Base
Protocol is similar to HTTP, in that it has a header section and a content section.
The content section contains Remote Procedure Calls (RPCs), using a protocol
called JSON-RPC. This is shown in Figure 2.7.

Figure 2.7: The Language Server Protocol protocol extends a Base Protocol with
JSON-RPC content.

2.9.1 Base Protocol

All communication in LSP uses concepts from the Base Protocol. This protocol has
a header and content section, as mentioned above. Conceptually, the protocol as-
sumes there is one client and one server which communicates. Note that the server
can also initiate requests to the client. In addition, the Base Protocol defines spe-
cific types of messages: Request Message, Response Message, Notification Message,
and $ Notifications and Requests [26].

Header The header is comparable to a HTTP header, with key-value pairs sepa-
rated by colon, and a line break for each new pair. The currently supported header
keys are Content-Length and Content-Type. The Content-Length specifies how
many bytes the content is [26].

Content The content section contains the actual message data, like requests and
responses. This section follows the JSON-RPC protocol, described later in Sec-
tion 2.10 [26].

Request and Response A Request Message describes a request from a client
to the server. This must have an ID, a method name (for Remote Procedure Call
(RPC)) and parameter values for the method. When a client sends a Request, it
means that the server should execute the given method with the given parame-
ters. The server must then respond with the results of the execution in a Response
Message. This Response must have the id of the originating Request, as well as
the results or an error [26].

An example of a Request is shown in Code listing 2.1. It is the textDocument/sig-
natureHelp method, specifying a textDocument and position with parameter
values for the textDocument/signatureHelp method call.

Chapter 2: Background 23

Code listing 2.1: A Request Message Example

Content-Length: 201

{
"jsonrpc":"2.0",
"id":"1",
"method":"textDocument/signatureHelp",
"params": {

"textDocument": { "uri": "file:/..." },
"position": { "line": 5, "character": 3 },

}
}

Notification A Notification Message is more like an event. It does not have an ID,
and does not get a Response Message in return. The Notification, like the Request,
specifies a method and parameter values [26].

$ Notifications and Requests If a Notification or Request has a $/ at the start of
the method name, it is an optional and protocol implementation-specific message.
Not all clients and servers handle these messages. A notification can be ignored,
and a request must be answered with a specific error, if the message is not imple-
mented.

2.9.2 Language Server Protocol

The Language Server Protocol (LSP) defines JSON-RPC requests, response and
notification messages that are sent in the Base Protocol. These are specified as
method names and parameter values, as well as semantics and rules related to
the sequences, responses to, and content of these messages. LSP also defines a set
of JSON data structures, which are used in the messages as parameter values and
response types [26]. The protocol is versioned, where 3.16 is the current version.

The LSP defines many messages, related to these categories:

• Window
• Telemetry
• Client
• Workspace
• Text Synchronization
• Diagnostics
• Language Features

The most important category is Language Features, which define Requests such
as: completion, hover, signature help, references, code action, formatting, rename,
and more. The full list is available in the LSP Specification [26].

24 K. Rekstad: Modeling in the Cloud for Education

2.10 JSON-RPC

JSON-RPC is a stateless and lightweight protocol for doing Remote Procedure
Calls (RPC). It works over any transport mechanism that can send and receive
text. The data in JSON-RPC is sent as JSON, an object structure serialization for-
mat originally from javascript [28].

RPC is a technique to start a procedure on a remote server, as the name suggests.
A procedure is synonymous with a function or method in programming. In JSON-
RPC, they are called by specifying the name and the parameters in a Request object.
A request object must have the properties jsonrpc and method, and id if it is not a
notification. It may have params. Notifications, as explained for LSP, do not need
a response. The Response object must have the properties jsonrpc, id, and either
result or error. The result is the return value for the called procedure. The error
is an Error object, with code, message and data [28].

The request parameters in params are either a list of positional parameters, or
an object with named parameters. If there are no parameters, they can be omit-
ted [28]. An example of several JSON-RPC messages are shown in Code listing 2.2.
The arrows indicate the direction.

Code listing 2.2: JSON-RPC examples copied from [28].
Syntax:
--> data sent to Server
<-- data sent to Client

RPC call with positional parameters:
--> {"jsonrpc": "2.0", "method": "subtract", "params": [42, 23], "id": 1}
<-- {"jsonrpc": "2.0", "result": 19, "id": 1}

RPC call with named parameters:
--> {"jsonrpc": "2.0", "method": "subtract",

"params": {"subtrahend": 23, "minuend": 42}, "id": 3}
<-- {"jsonrpc": "2.0", "result": 19, "id": 3}

Notifications:
--> {"jsonrpc": "2.0", "method": "update", "params": [1,2,3,4,5]}
--> {"jsonrpc": "2.0", "method": "foobar"}

2.11 Cloud and Gitpod

Cloud The cloud is the term used for rented computing power and data storage
in data centers owned by third parties. This is in contrast to in-house or on-premise
servers. An advantage of running software in the cloud is that maintenance of
hardware is outsourced. If a hard drive or processor breaks down, it is the cloud
vendor’s responsibility to fix, and to provide failover mechanisms so a customer
is not impacted.

Chapter 2: Background 25

Another advantage is the ability to scale up or down instantly on demand. If a
on-premise server is overloaded, the organization has to purchase more servers
and configure them. Just the shipping of hardware alone takes more time than
requesting more compute power from a cloud provider. The cloud providers usu-
ally have so large data centers that they never “run out”, as long as a customer is
able to pay for it. Some of the best known cloud providers today are Amazon with
Amazon Web Services, Google with Google Cloud, and Microsoft with Azure.

Gitpod Gitpod is a cloud based Integrated Development Environment (IDE). It
is provided as a service, or it can be self hosted. The idea behind Gitpod is that
a developer does not need to install the tools on their own machine. Instead, a
machine is provisioned at a cloud provider, and any tools are installed there. The
developer interfaces with this machine through a web based IDE. For Gitpod, the
default IDE is Theia. The source code is downloaded from an online source code
host, such as GitHub, and into a workspace on the provisioned machine.

2.12 Eclipse Modeling Framework in the Cloud

The Eclipse Cloud Development project As mentioned in the introduction (Sec-
tion 1.2), the Eclipse ecosystem is interested in running software in the cloud.
This means that they have spent the last few years creating tools to support
cloud oriented deployments for software built on Eclipse Modeling Framework.
The Eclipse Foundation has an umbrella project called Eclipse Cloud Development.
In the Eclipse Foundation, a project is not a single codebase, but rather a home
for frameworks, tools and components. Under this umbrella exists projects like
EMF.Cloud, Eclipse Che, Eclipse GLSP, Eclipse Theia, Eclipse OpenVSX and more [29].

2.12.1 EMF.Cloud

The Eclipse ecosystem found it suitable to create a new project under this um-
brella, and called it Eclipse EMF.Cloud. The description for Eclipse EMF.Cloud starts
with the following:

“Eclipse EMF.cloud comprises a set of components that facilitate and sim-
plify the adoption of the Eclipse Modeling Framework (EMF) in cloud-
based applications.
[. . .]
As a consequence, by its nature, EMF.cloud is open to any software project
that aims to address the challenges and specific requirements of using
any aspect of EMF in a browser-based setting or cloud deployment.”
— Smith [30]

EMF.Cloud software The components provided by EMF.Cloud are still in active
development. Most of them center around building a modeling environment in

26 K. Rekstad: Modeling in the Cloud for Education

Theia, for existing EMF models. The example case that is used is a “Coffee brew-
ing model”. Because much of the work targets Theia, the Eclipse ecosystem uses
Theia Extensions. This means they can not be used in Gitpod, because the IDE has
to be replaced with their customized Theia. However, much of the work here is
still relevant, as components to use in a VSCode extension, and as design to draw
inspiration from.

The EMF.Cloud project currently provides these components, according to [31]:

• modelserver
• modelserver-theia
• model-validation
• coffee.editor
• ecore-glsp
• theia-tree-editor
• json-forms-property-view
• modelserver-glsp-integration
• emf-jackson

The most relevant components for this thesis are detailed in the following subsec-
tions.

2.12.1.1 Model Server

The EMF.Cloud Model Server provides a web server for working with EMF models.
While EMF already support model loading, manipulation and serialization in the
EMF runtime API, this server exposes these to the web. It does so by providing a
REST API for working with models, and WebSocket channels for subscribing to
change events. The Model Server also manages a “shared editing domain” for the
loaded models, and changes models using EMF Commands [32].

This Model Server is already used in other EMF.Cloud components, like the coffee
editor and ecore-glsp [33, 34].

2.12.1.2 Theia Tree Editor

Theia Tree Editor is a framework for creating master-detail tree editors [32]. It
uses the Theia extension mechanism, and uses core components of Theia itself [1].
This hinders reuse in other IDEs like VSCode. However, the data structures and
configuration schemas used in the Theia Tree Editor are good sources for design in-
spiration. A diagram of its Node interface (for tree nodes) is shown in Figure 2.811

11Node source code: https://github.com/eclipse-emfcloud/theia-tree-editor/blob/
3da9d6a3c58cad140c228408b92a554fe5dd1b41/theia-tree-editor/src/browser/interfaces.
ts#L30.

https://github.com/eclipse-emfcloud/theia-tree-editor/blob/3da9d6a3c58cad140c228408b92a554fe5dd1b41/theia-tree-editor/src/browser/interfaces.ts#L30
https://github.com/eclipse-emfcloud/theia-tree-editor/blob/3da9d6a3c58cad140c228408b92a554fe5dd1b41/theia-tree-editor/src/browser/interfaces.ts#L30
https://github.com/eclipse-emfcloud/theia-tree-editor/blob/3da9d6a3c58cad140c228408b92a554fe5dd1b41/theia-tree-editor/src/browser/interfaces.ts#L30

Chapter 2: Background 27

12.

Figure 2.8: A class hierarchy of the tree nodes in Theia Tree Editor. Class prop-
erties and methods are not shown. The Node interface extends several different
interfaces, picking up various properties from each. Only the Node interface is
in the Theia Tree Editor library itself. The other interfaces are in the core Theia
codebase. Adopted from “Figure 2.7” in [1, p. 15]

2.12.1.3 Coffee Editor

The Coffee Editor is an example application, trying to demonstrate the use of
EMF.Cloud components in a real cloud deployment. This editor uses Theia, JSON-
Forms, GLSP, a code generator, and the Model Server [32]. This editor is inter-
esting because it applies the technologies, demonstrating their use, purpose and
value. It also demonstrates the use of a Model Server shared among multiple edit-
ing components, like the GLSP and Theia Tree Editor working on the same backing
coffee EMF model instances.

2.12.2 Graphical Language Server Platform (GLSP)

This is another project under the Eclipse Cloud Development project. The Graph-
ical Language Server Platform (GLSP) is a framework for building diagram ed-
itors in the web. The editors can either be standalone or integrated into Theia
and VSCode. The GLSP defines its own Language Server Protocol (LSP) for dia-
grams [35]. A figure from the official website is shown in Figure 2.9.

12SelectableTreeNode source: https://github.com/eclipse-theia/theia/blob/
af9b883dd929c79c1593bf4bd526df11600e21cf/packages/core/src/browser/tree/
tree-selection.ts#L109.

https://github.com/eclipse-theia/theia/blob/af9b883dd929c79c1593bf4bd526df11600e21cf/packages/core/src/browser/tree/tree-selection.ts#L109
https://github.com/eclipse-theia/theia/blob/af9b883dd929c79c1593bf4bd526df11600e21cf/packages/core/src/browser/tree/tree-selection.ts#L109
https://github.com/eclipse-theia/theia/blob/af9b883dd929c79c1593bf4bd526df11600e21cf/packages/core/src/browser/tree/tree-selection.ts#L109

28 K. Rekstad: Modeling in the Cloud for Education

This is a good source of design inspiration, because it both works with EMF mod-
els, and it applies the Language Server Protocol architecture to a new domain
other than text editing.

Figure 2.9: A diagram of GLSP. A web based diagram editor shows the diagram
obtained from a Graphical Model Editor Client. This client talks to a graphical
model server over the Graphical Language Server Protocol. Copied from [35].

GLSP Protocol The LSP-based protocol has a very small “surface area”. The
protocol uses the same Base Protocol as defined in LSP (see Section 2.9). The
java implementation also uses the same libraries as Eclipse’s Java LSP server:
the LSP4J jsonrpc library. The server side of the GLSP protocol is shown in Code
listing 2.3. Compare this to LSP, which has about 40 Requests and 20 Notifica-
tions — this GLSP protocol only has two requests and one Notification. Instead of
defining many different methods, the “meat” of the protocol is inside the process
method. The ActionMessage holds an Action, which is an abstract class with a
kind field. This Action is extended (subclassed) to about 20 different versions.
These have names like FitToScreenAction, CenterAction, SelectAction, Save-
ModelAction [36]. The GLSP client and server implementations rely on action
handlers. The Grphical Modeling Editor Client (usually inside VSCode or Theia)
can decide if an ActionMessage from the diagram viewer should be forwarded
to the Graphical Model Server or not. Sometimes the action can be performed
entirely inside the client. The same applies for messages from the server, which
can be forwarded to the diagram editor or stop in the Graphical Model Editor
Client [37].

Code listing 2.3: GLSP Server java interface. Copied from [38].
package org.eclipse.glsp.server.jsonrpc;

import java.util.concurrent.CompletableFuture;

import org.eclipse.glsp.server.actions.ActionMessage;
import org.eclipse.glsp.server.protocol.GLSPServer;
import org.eclipse.glsp.server.protocol.InitializeParameters;
import org.eclipse.lsp4j.jsonrpc.services.JsonNotification;
import org.eclipse.lsp4j.jsonrpc.services.JsonRequest;

Chapter 2: Background 29

public interface GLSPJsonrpcServer extends GLSPServer<GLSPJsonrpcClient> {
@Override
@JsonRequest
CompletableFuture<Boolean> initialize(InitializeParameters params);

@Override
@JsonNotification
void process(ActionMessage message);

@Override
@JsonRequest
CompletableFuture<Boolean> shutdown();

}

2.12.3 Other Tools by the Eclipse Ecosystem

Not all the efforts by the Eclipse ecosystem are made under the Eclipse Foun-
dation’s management. Some projects exist outside this, in code repositories be-
longing to individuals and organizations that work with EMF. Some of the most
relevant software projects are described below.

2.12.3.1 JSON-Forms

The purpose of JSON-Forms is to easily create user interfaces for data entry in
the web, using HTML forms. A screenshot of such a form is shown in Figure 2.10.
JSON-Forms is a project by the EclipseSource organization. This is the same orga-
nization that created the EMF Forms based Ecore editor for Eclipse IDE, described
in Section 2.3.2.

JSON-Forms is using the same core approach as EMF Forms, where the view is
described in a declarative fashion with a UI schema. This schema describes a data
entry form. It describes the input fields, their labels, what data they effect and the
grouping of view elements [39].

In addition to a UI schema, a form using JSON-Forms needs a JSON schema, which
describes the types, structure and validation rules for the underlying data. To-
gether, these two schemas are enough for JSON-Forms to render and edit a JSON
data object in a user interface.

2.12.3.2 CrossEcore

CrossEcore is a project by Simon Schwichtenberg with the aim of cross platform
code generation using EMF. It targets the programming languages C#, TypeScript,
JavaScript, and Swift. CrossEcore also implements the EMF runtime API for these
languages, as well as an Object Constraint Language (OCL) compiler [40].

This project is relevant because it can generate TypeScript code from Ecore mod-
els, and has also experimented with creating online editors [41].

30 K. Rekstad: Modeling in the Cloud for Education

Figure 2.10: Example of a form rendered with JSON-Forms. Adopted from [39].

2.13 Pre-project Results

2.13.1 Research Questions

The pre-project started by asking the following research question:

How can we modernize Model-Driven Development Frameworks to ap-
peal to the next generation of software developers, using recent develop-
ments in cloud IDEs? [1, p. 3]

After answering this question, the pre-project narrowed down to the following
research question:

How can we design an Ecore master-detail tree editor that works in both
VSCode and Theia, while reusing existing tools for Ecore such as codegen
and validation? [1, p. 24]

A set of five related sub-questions were also posed, and subsequently answered.
These questions set the context for a solution, and the stakeholders, constraints
and requirements that would be needed. The following subsections (2.13.2 to
2.13.4) will present the results of the pre-project that are the basis of work done
in this thesis.

2.13.2 Stakeholders

A stakeholder is someone affected by or interested in the solution. It can be an
organization or people [42, p. 52]. The pre-project identified the key stakeholders
in [1, p. 3] to be:

• Kristian Rekstad (author). Goal: increase adoption of MDD by students and
industry. Has to design and develop the initial solution.

• Hallvard Trætteberg (supervisor). Goal: teach students the concepts of MDD
in TDT4250. Wants to use Gitpod and EMF for student assignments.

Chapter 2: Background 31

• Teachers/Lecturers that use EMF. Goal: teach students. Have to present the
tree editor, use it and support students that ask for help.

• Students. Goal: learn useful technologies and pass courses like TDT4250 to
get a grade. Will have to use EMF if they study Computer Science with the
“Software Engineering” specialization at NTNU.

• Industry professional using EMF to do MDD. Goal: develop software for a
business/client. May want to use EMF without using Eclipse IDE, for per-
sonal reasons or organization policy.

• Eclipse Foundation. Goal: foster a community of developers and provide
open source software. The maintainers of EMF.

• Eclipse ecosystem developers. Goal: contribute to Eclipse Foundation projects.
May possibly have to maintain and further develop this (or a derivative) so-
lution if this project succeeds and they embrace it.

• Developers of third party VSCode extensions that use tree editors. Goal:
provide a high quality editor for their specific problem domain. Could use
the architecture, protocol and frontends of this solution, if this solution is
high enough quality, architected to be reusable and partially independent
of EMF, and reuse will reduce their design and/or development time.

2.13.3 Software Requirements

Requirement engineering approach The pre-project tried to establish the soft-
ware requirements for a tree editor. A literature review failed to find related works
that listed the requirements for a tree editor. The literature review also failed to
find related works for modeling in the cloud with the purpose of creating Ecore
models. The related works either deployed Ecore models to the cloud, were textual
editors, or did not use Ecore [1, p. 3].

Without literature to suggest requirements, and without users to test on (except
the author and supervisor), the best option was to analyze the existing tree editors
in Eclipse IDE. Common modeling tasks were performed (see Section 2.2), and
detected functionality was recorded. The result gave an initial list of functional
requirements, but not a complete one. However, by following an agile approach
instead of waterfall, this list does not need to be complete13. More requirements
will emerge naturally as work progresses. Still, having a good overview of the
requirements is needed to correctly decide a software architecture, because of
“architecturally significant requirements” that affect the architecture [42, p. 291].

Constraints A constraint is a restriction on the available choices for a solu-
tion [43, p. 7]. The most important constraint discovered was that the tree ed-
itor must be a VSCode extension. There is an alternative extension mechanism for

13Agile values working software over extensive documentation, thus spending time on creating
a working solution is better than a “worthless” list of everything a solution could have done.

32 K. Rekstad: Modeling in the Cloud for Education

Theia, which was deemed incompatible with Gitpod14 [1, p. 38].

Functional requirements A functional requirement specifies what a solution
must do, such as supported features [43, p. 7]. The pre-project identified several
functional requirements for a tree editor in the cloud. The full list of functional
requirements, with id, requirement and description can be found in Appendix A.
The list can be summarized as follows:

• Provide a master-detail tree editor in VSCode and Theia (Gitpod) by using
an extension mechanism of the IDE.

• The tree editor must show nodes with labels and icons as a hierarchy.
• Allow selecting a node in the tree editor by clicking it.
• Provide a property sheet for the selected node in the tree editor.
• Provide an action bar with actions that can be dynamically specified by a

backend server.
• Child nodes can be hidden or shown in the tree by a user.
• The tree editor and property sheet must update when the underlying model

changes in the server.
• The action bar shows appropriate actions based on the selected node.
• The tree editor must allow creation of new nodes.
• The tree editor must allow deleting nodes.

Some more important requirements were implicit, and not defined in the list. This
was not intentional, and an evidence to the list’s non-completeness. Some of the
implicit requirements are explicitly defined as follows:

• The editor must handle Ecore models.
• The editor must handle model instances from XMI files.
• The tree structure must be based on containment properties in the Ecore

model.
• The editor must provide a command in the IDE to create a new Ecore file

with the minimum XMI needed for a valid empty model.
• Tree nodes can be moved to new parents by drag-and-drop by the user.
• The drag-and-drop can not let the user drop a node on a parent that cannot

contain the node as a child.
• Saving a model will serialize it as XMI to a file on disk.
• An action in the action bar must be added to run model validation.
• An action in the action bar must be added to run code generation.
• The editor shall show multiple tree roots when there are related model files.

Opening a Ecore file shall also show any genmodel file. A model instance
shall also include a root for the Ecore model in the same editor.

• A user can open more than one unique Ecore model at the same time, in

14Gitpod can use Theia as its editor frontend, but the user is not allowed to recompile and upload
a new version of Theia. The alternative extension mechanism, Theia Extensions needs a full recom-
pilation of Theia [1, p. 38]. However, VSCode extensions can be installed during runtime, also in
Theia in Gitpod.

Chapter 2: Background 33

separate “tabs” in the editor.
• Any modification to the model must support undo and redo.

Non-functional requirements A non-functional requirement specifies charac-
teristics or properties of the solution [43, p. 7]. Most of the non-functional re-
quirements are grounded in empirical evidence like what the Eclipse ecosystem
and web development ecosystems are currently doing. A non-formal list of the
non-functional requirements is as follows:

• Compatibility with a code editor in Gitpod.
• Use a permissive open source license.
• Avoid software dependencies that are closed-source or use restrictive li-

censes.
• Use a distributed architecture with components reusable in other IDEs, in-

spired by architectures already in use by similar solutions [1, p. 24].
• Configurability of user-facing options. Choices of colors, fonts, file system

paths and similar should be possible to change [1, p. 24].
• Configurability of mapping of Ecore models to trees. Which containment

references to use as children, and custom logic for labels should be user-
specifiable [1, p. 24].

• Localize the user interface in English.
• Flexibility and extensibility in the protocol to the server, allowing custom

messages [1, p. 24].

2.13.4 Architecture and Protocol for a Solution

A specific software architecture was proposed. It had a goal to solve the require-
ments for: software reuse, Theia and VSCode compatibility, tree hierarchy editing,
and a solution that could be transferable to other tree domains and editors. Ad-
ditionally, the protocol would try to stay close to related solutions, as they are
empirically tested and familiar to developers in the Eclipse ecosystem. By creat-
ing prototypes, major “blockers” or risk factors of the proposed architecture was
tested and proven non-problematic, such as creating a custom frontend and run-
ning java programs [1, p. 38-46].

The presented architecture is a suggestion, but is not validated or implemented.
It may need changes, and implementing it requires a substantial effort.

2.13.4.1 Architecture

The tree editor shall be a VSCode extension, and use the available Application
Programming Interfaces for VSCode extensions. No dependencies to Theia shall
be introduced. To view the tree structure as a hierarchy, the Custom Editor API in
VSCode must be used (see Section 2.8). A custom editor can present the editor

34 K. Rekstad: Modeling in the Cloud for Education

inside VSCode as a WebView, meaning a custom webpage free to render anything,
isolated from the rest of VSCode.

Components The editor thus comprises 4 components: the tree editor WebView
(“editor frontend”), the VSCode extension integration (“extension”), a Tree Lan-
guage Server (“TLS”) and the EMF.Cloud ModelServer (“ModelServer”) [1, p. 48,
49]. An illustration is shown in Figure 2.11

Figure 2.11: A suggested architecture for a tree editor. Copied from Figure
5.15 [1, p. 49]. The diagram is based on Theia, and the JSON-RPC between
TheiaFrontend and TheiaBackend happens behind the scenes, and is therefore
not relevant to discuss.

Editor frontend The editor frontend must be a web application that renders
the tree as HTML, and provides interactivity with javascript. It communicates to
the extension using messages containing JSON15. The editor frontend will send
messages that are commands with the changes or actions a user triggered. The
extension will send messages with the new tree state to be shown.

Extension The extension is the main artifact which a user will install into VS-
Code or Theia. This must be implemented with the TypeScript language or javascript.
The extension will bundle the compiled code for the editor frontend, TLS and
ModelServer inside it. The extension is responsible for integrating with the IDE,
so that model files are opened in the custom editor, and handles commands trig-
gered by the user in the IDE (such as actions to create a new file, or saving a
model). The extension will start and stop the TLS process, and communicate over
a JSON-RPC protocol or REST plus WebSocket. The extension and TLS can either
use TCP sockets or standard in/out as the transport.

15This is a constraint imposed by the WebView API in VSCode.

Chapter 2: Background 35

TLS A Tree Language Server (TLS) will contain specific knowledge about Ecore
and EMF. The choice of programming language is unconstrained. The main pur-
pose of the TLS is informing the extension of tree state, provide configuration for
the tree editor and extension, and receive commands to modify models. The TLS
must be able to communicate using the same protocol as the extension (JSON-
RPC or REST and WebSocket), and either do so over standard in/out, or listen to
incoming TCP sockets. The TLS will perform commands to modify EMF models by
using as much re-use of existing code and frameworks as possible. The TLS will
start the ModelServer and communicate with it to read and modify models. The
ModelServer is a main part in the strategy to re-use existing code.

ModelServer This is a component already made by EclipseSource in java. The
ModelServer exposes REST endpoints for working with EMF models, such as list-
ing models, reading models, and changing models with the EMF Commands frame-
work. Changes to a model are exposed as WebSocket endpoints which can be
“subscribed” to.

2.13.4.2 Protocol

The communication between the extension and the TLS should follow a defined
protocol. The protocol will contain the data structures and message formats to
send, the serialization standard to use for messages, and define any required order
for messages.

Base protcol The pre-project did not progress far enough to formally define this
protocol, and did not implement it (or an alternative) either. However, it speci-
fied a starting point and some rules. The protocol should draw inspiration from
the Language Server Protocol, and use the “Base Protocol” defined in LSP (see
Section 2.9.1). The Base Protocol has two parts: a HTTP header section, and a
JSON-RPC content section [1, p. 17, 18]. The content section will specify the re-
mote procedures to be called, and contain the responses with data, such as tree
structures, success or failure status, and errors.

Data structures This protocol can use the data structures to contain generic tree
structures, proposed in Code listing 5.3 in [1, p. 43, 44] (added as Code listing B.1
in Appendix B). The protocol can not contain any specific references to EMF, ex-
cept as values in the generic data structures. The central properties in the tree
strucure was name, type, id and children. The type would for Ecore be one of for
example: EClass, EPackage, EReference and so on.

The action bar should be populated based on a “action schema” data structure
(Code listing 5.4 and 5.5 in [1, p. 45], see Code listing B.2 and Code listing B.3
respectively in Appendix B), passed from the TLS to the extension in the protocol.

36 K. Rekstad: Modeling in the Cloud for Education

The hierarchy should be constrained by using a “hierarchy schema” (Code listing
5.6 in [1, p. 45], see Code listing B.4 in Appendix B). This would whitelist the
allowed children for a node based on the type property. This would be passed
from the TLS to the extension.

Chapter 3

Method

The method used will try to achieve the project objectives with correct results,
and avoid or lower risks for project failure.

Pre-project The pre-project that came before this master’s thesis, in [1], is re-
garded as a part of the methodology. It did the initial steps of problem identifica-
tion, building, and prototyping a solution.

Software project Alongside this thesis, a software project will be created, which
is developed by the author as part of the method. A substantial amount of time is
dedicated to this project.

General failure criteria The project is a failure if the results are invalid, or can-
not be realized into a real solution, or are so low quality that the project does not
receive further development. The project is also a failure if it does not provide any
value for its stakeholders.

Method overview The following sections describe the key elements to the method.
There is an overarching approach, called Design Science Research. It has 6 phases,
from problem identification, to development, to evaluation and communication.
There is no methodology given by Design Science Research for executing the de-
velopment phase. Therefore, a method for this phase must be crafted from ex-
perience and existing practice. The development phase consists of requirements
engineering methods, and software development methods.

3.1 Design Science Research

Design Science Research in information systems is a methodology for creating new
knowledge by designing, building and evaluating software artifacts. It may not be
as widely known as “the scientific method” is, and is therefore explained in more
detail.

37

38 K. Rekstad: Modeling in the Cloud for Education

Design Design in information systems is an iterative process and a resulting soft-
ware artifact. A software artifact is to be built to solve problems for humans, and
evaluated to prove it solves the problems [44, p. 2].

Research Research is an activity that adds new knowledge and understanding
about something. Research should be systematical and use data to answer ques-
tions, solve problems and provide understanding [44, p. 2, 3].

Design Science Research Design Science Research is an approach to research
where knowledge is created by design. It is defined by Alan Hevner and Samir
Chatterjee [44, p. 5] as follows:

“Design science research is a research paradigm in which a designer an-
swers questions relevant to human problems via the creation of innova-
tive artifacts, thereby contributing new knowledge to the body of scien-
tific evidence. The designed artifacts are both useful and fundamental in
understanding that problem.”

The end goal of a Design Science Research project is to create information tech-
nology artifacts, that improve exiting solutions or solve a problem for the first
time [44, p. 6]. A similar methodology may also be known under the name Design
and Creation, as presented by Oates [45, p. 108]. According to Alan Hevner and
Samir Chatterjee [44], the artifacts are generally classified as constructs, models,
methods, instantiations or better design theories1. A very important aspect of De-
sign Science Research is evaluation of the artifact. The evaluation is the process
that uncovers new knowledge, and separates the process from routine design [44,
p. 7]. There are many aspects that could be evaluated, but the aspects that should
be evaluated are those that are related to the reason for creating the artifact in
the first place; the aspects related to the research objectives [45, p. 115].

3.1.1 The General Design Cycle

Design Cycle Problem solving by design can follow a general design cycle. This
is a circular and iterative process. The reasoning that occurs in a design cycle, and
the knowledge generated during a cycle, is illustrated in Figure 3.1 [44, p. 26].

Awareness of Problem The process begins by becoming aware of a problem or
opportunities, in the context of humans or an organization. A proposal for what
could be solved is made explicit.

1This thesis aims to produce an instantiation: an implemented or prototype system. The thesis
also seeks to advance on better design theories, with regards to software architecture and protocol
design.

Chapter 3: Method 39

Awareness
of Problem

Suggestion

Development

Evaluation

Conclusion

Knowledge
Contribution

Design Science
Knowledge

Proposal

Tenative Design

Artifact

Performance Measures

Results

Knowledge Flows Process Steps Outputs

Figure 3.1: Design Science Research Process Model. The general process fol-
lowed by Design Science Research. Design begins with awareness of a prob-
lem, and progresses through a suggestion for a solution, to development, eval-
uation and a conclusion. The stages produce different outputs, shown in the
right column. After the conclusion, new knowledge is contributed. There is also
knowledge produced by development and evaluation, nicknamed “circumscrip-
tion”. This knowledge is fed back into a new round of suggestion [46, p. 11-13].
(Adopted from Figure 3 in Vijay Vaishnavi et al. [46, p. 11])

40 K. Rekstad: Modeling in the Cloud for Education

Suggestion Then, a suggestion phase begins, where existing knowledge and the-
ories are applied, as well as creativity, to create a tentative design that fits the
proposal. This design could be flawed or incorrect, which is why it is important to
realize the design, to detect issues.

Development The development phase will build a solution or prototype, aiming
to fulfill the suggested design. This phase will uncover problems, inconsistencies,
new learning about the problem, and other related knowledge. That knowledge is
useful for creating a new and improved design. The quality of the implementation
of the artifact does not need to be novel, as it is the design which is interesting [46,
p. 12].

Evaluation After an artifact is created, the evaluation phase will measure the
artifact. The measurements originate from the initial proposal, which holds the
criteria for success. This phase may also discover new knowledge, which can be
used later to create a new and improved design [46, p. 13].

Conclusion Finally, the conclusion phase will consolidate the results. The knowl-
edge gained from the results will either be “firm” or “loose ends”. Vijay Vaishnavi
et al. [46, p. 13] describes this as the following:

“Not only are the results of the effort consolidated and “written up” at
this phase, but the knowledge gained in the effort is frequently catego-
rized as either “firm” — facts that have been learned and can be repeat-
edly applied or behavior that can be repeatedly invoked — or as “loose
ends” — anomalous behavior that defies explanation and may well serve
as the subject of further research.”

3.1.2 Methodology

Based on the understanding of design science research, and the steps of a design
science research process (Figure 3.1), a six step Design Science Research Method-
ology has been made by Alan Hevner and Samir Chatterjee [44, p. 28-30]. This
methodology forms the skeleton of this thesis. The six steps of the methodology
are the following:

1. Problem identification and motivation.
2. Define the objectives for a solution.
3. Design and development.
4. Demonstration.
5. Evaluation.
6. Communication.

1. Problem identification and motivation The specific research problem must
be defined. The definition is used to develop the artifact which solves the problem.

Chapter 3: Method 41

The value of a solution to the problem should be justified as well. If the value of
the solution is justified, it can motivate the researcher and the thesis’ audience to
pursue the solution and accept the results [44, p. 28, 29].

2. Define the objectives for a solution The objectives should be inferred from
the problem definition, and the author’s knowledge of what is possible and fea-
sible. The objectives can be how much better a new solution should be (quan-
titative), or a description of how a new artifact would solve problems that are
currently unsolved (qualitative) [44, p. 29].

3. Design and development Create an artifact to solve the problem and fulfill
the objectives. The artifact can be one of the five classes listed in Section 3.1 (con-
structs, models etc.). The desired functionality and architecture is determined,
and the actual artifact is created [44, p. 29].

4. Demonstration The artifact is demonstrated, to solve instances of the identi-
fied problem. This could be experiments, simulations, case studies etc. [44, p. 30].

5. Evaluation The artifact is observed and evaluated to measure how well it
solves the identified problem. This can be done by comparing the results of the
demonstration to the objectives of an ideal solution. There are many different
ways to evaluate an artifact, and the correct approach should be decided based
on the nature of the identified problem. After evaluation, the researcher can go
back to step 3 to improve the design. If there is not enough time, resources or a
need to do so, the process moves to step 6 instead [44, p. 30].

6. Communication The process must be communicated to other researchers
and relevant audiences. This communication includes: the problem and its im-
portance, the artifact and its utility, the rigor of the artifact design, and the effec-
tiveness of the design [44, p. 30].2

3.2 Requirements Engineering

In Design Science Research, there is little guidance for how to execute the actual
design and development phase. However, the software engineering field has many
approaches and ideas for how to do this.

The design of the artifact starts by gathering requirements. These specify the con-
crete behaviors of the artifact; both the behaviors required for achieving the re-
search objectives in Section 1.4, and those required for a highly usable and valu-
able solution.

2This thesis is a central part of this communication.

42 K. Rekstad: Modeling in the Cloud for Education

The identified requirements are both part of the design, and influence the design.
Most requirements are formed from existing knowledge of the background theory.
They are also discovered as the solution is developed. The following subsections
3.2.1-3.2.5 describe the key inputs for the software requirement engineering pro-
cess.

3.2.1 Stakeholder Discussion

Discussion with stakeholders reveal many requirements, use cases and needs. The
two key types of stakeholders here are EMF experts and TDT4250 students. The
supervisor, Hallvard Trætteberg, fills the role as both a EMF expert and lecturer of
TDT4250. The author, Kristian Rekstad, fills the role as a TDT4250 student.

Dialogue questions include “What features are required to model with EMF?” and
“What features would you like to see in a new solution?”, as well as “Which fea-
tures are missing from the existing solutions?”.

The same questions can be asked both before realizing a solution, and underway
as the response to prototypes and current progress of an unfinished solution.

3.2.2 Requirements Extraction

Based on existing editors The existing tree editors in Eclipse IDE already im-
plement every feature needed to do Model-Driven Development with the Eclipse
Modeling Framework. Therefore, they are excellent sources of requirements. Es-
pecially the Sample Reflective Ecore Editor (Section 2.3.1) and EMF Forms Ecore
Editor (Section 2.3.2).

No official requirements lists The pre-study failed to find any related research
detailing requirements for a tree editor [1, p. 3]. No design documents or require-
ments specifications were found for the Ecore editors in Eclipse IDE either.

Use cases and requirement detection Therefore, the approach became to ex-
tract the requirements from the Ecore tree editors. The extraction is done by fol-
lowing use cases of modeling, as described in Section 2.2. When a new functional
requirement is discovered through use, it is recorded in a list.

Shortcomings This approach will find many of the required and “obvious” re-
quirements. However, hidden functionality and expert level functionality is not
guaranteed to be found. The rationale is that this functionality is not needed (yet)
anyways, as the goal is to fulfil the common use cases that students have when
learning MDD.

Chapter 3: Method 43

There is also a risk that the user which is recording the requirements fail to detect
functionality. Some functionality can be so obvious or “second nature” that the
user is oblivious to it. Such functionality should become apparent later, however,
when the solution is developed and tested. Any big omissions will prevent the use
cases from succeeding.

3.2.3 Source Code Analysis of Similar Projects

Open source editors Because the tree editors for Ecore in Eclipse IDE are open
source, it is possible to read and analyze the source code. Finding the main classes
responsible for editor functionality, and analyzing their method names, initializa-
tion procedures and method calls, may expose requirements. This approach may
also detect some of the more hidden functionalities, and the more “internal” func-
tional requirements.

Architecture and software re-use Another advantage is that the internal ar-
chitecture and patterns are exposed, which can be used to influence the artifact
design. This may increase familiarity with the design for the Eclipse ecosystem,
aiding the open source goals of this project. It also highlights the opportunities for
software re-use, when familiar code, classes, interfaces, design patterns or soft-
ware libraries are used.

Shortcomings Source code analysis is dependent on analyzing the correct source
code files. If they are not found, this will fail. This also requires the source code
to have some level of quality and readability to be useful for someone not already
invested in that editor code base. The software architecture and design patterns
used will matter too, in case functionality is hidden, dispersed or not clearly visible
from the source code.

3.2.4 Use Cases and Prototyping

Creating realistic use cases based on Section 2.2, and executing them with early
versions or prototypes will detect missing requirements. This is because a user will
be blocked from progressing if a critical functionality is missing.

3.2.5 Agile Requirements

Agile Core values during this thesis’ requirements engineering process come
from Agile. Agile is a counterpart to the Waterfall process3

3In waterfall, software is designed, developed and tested in very separate stages. All the re-
quirements are collected, before any design or development begins. An early mistake will not be
discovered until the very end of the process. Changes to requirements require a restart of the project
phases.

44 K. Rekstad: Modeling in the Cloud for Education

Change over Plan It embraces the fact that requirements change during the
design and development, and thus favors responding to change over following
a plan [47]. Requirements will change as they are discovered, refined and better
understood later on.

Software over Documentation Another key value is that Agile prefers work-
ing software over comprehensive documentation [47]. This means that a small,
working software artifact is more valuable than a large, complete and consistent
list of software requirements and design, without any working software to show
for it.

Impact of agile on requirements engineering The result is that the method
here will start by collecting some requirements, by using the previously described
inputs. When there are enough requirements to sufficiently solve the known use
cases, design and development can begin. There is no goal to create a complete
list at the start. The requirements are also changed, and new ones added, during
the design and development.

3.3 Development Methodologies

The case for software development is the same as with requirements engineering:
Design Science Research has little guidance. And again, the software engineering
field has the answers.

The goal for the development methodology is to create the right solution, which
solves the identified problem and fulfils the software requirements. The methodol-
ogy also aims to avoid or reduce risks for project failure, by tackling it as early as
possible. Research often deviates from routine design here, by going for the risks
first instead of delaying or hiding them, as this may lead to new knowledge [45,
p. 114].

Another goal for the development process is to create “good”, high quality soft-
ware, so the project can be accepted by the open source developer ecosystem for
further development and maintenance. Bad code or a bad design may result in
a full rewrite by the next interested developer, or the developer may try to con-
tribute but find it hard and give up.

Development methodology will not follow one strict practice, but rather piece
together many different practices and values, which have lead to good results in
the author’s past.

Chapter 3: Method 45

3.3.1 Agile

Development will follow agile values and principles, as described in Manifesto for
Agile Software Development [47] and Principles behind the Agile Manifesto [48].
This means readjusting plans, rapid feedback from stakeholders, and software
that works underway in development.

Agile development As there are many unknown factors in development, such
as third party components and services to comply and integrate with, and un-
known and hard to use APIs, the plans and designs may change. As with software
requirements, the data structures, algorithms and design in the software solu-
tion will have to change as the developer learns the systems and problem space
better. Responding to change will be valued more than following a plan here.
Also, working software is more valuable than extensive documentation, mean-
ing that code comments, tests, design specifications and diagrams will be given
less effort than code, particularly if done up-front before the code. The alterna-
tive is that this documentation is made, but the code for it quickly proves itself
impossible to make, or there is not enough time to implement it, leaving only use-
less documentation as the result. This also ties in to simplicity and maximizing
work-not-done.

Regular reflection will be used weekly or bi-weekly, to assess if the process can
be more effective. Sometimes tools and technologies may seem like a good fit for
the development, but instead wastes more time than the developer productivity
provided. Retrospective analysis of the development progress will try to detect
this, and then expose if bad approaches are used. If so, these will be removed or
replaced if possible.

Stakeholder involvement is important as well. The development will have a stake-
holder as the developer (the author), which knows how the artifact will be used.
Additionally, the supervisor will see a demo during development, to provide feed-
back and help prioritize the next steps.

3.3.2 Iterative Development

The software system will be developed iteratively. This means the components
will be implemented up to a threshold of functionality, and executed to evaluate
the behavior. The evaluation is not a formal and rigorous one, but rather informal
and aims to quickly confirm if the software has the correct behavior. Then the
components are developed some more, in a loop until the project ends.

The components are also developed incrementally. It also means a component will
be worked on until it reaches some functionality, and then the next component will
be worked on until it is on par. No component is developed to completion while
the others are not started on.

46 K. Rekstad: Modeling in the Cloud for Education

3.3.3 Lean and Minimum Viable Product

Lean development is a set of principles inspired from Lean Manufacturing (for
automobiles and such) [49].

Eliminate waste A core principle is to eliminate waste. This is also seen in
Agile, as maximizing work-not-done. What Lean regards as waste is any work
and output that does not have value. This means avoiding: unnecessary code and
functionality (things deemed “could be nice to have”), unfinished work in progress
(code and features not completed), defects and poor quality (do it well, do it
once).

Build quality in Another principle is building quality in. Important business
logic should have automated unit tests (however not all code needs tests4) Tedious
and repetitive tasks should be automated, for example with scripts and tools.

Create knowledge A third principle is to create knowledge. Code will have
comments where needed5. Documentation will explain the software at a high
level.

Deliver fast The last principle applied is to deliver fast. While there are no
students to use the artifact now, the focus is still on creating a functioning solution
as early as possible. This is done by prioritizing the requirements in an order to
get a minimum viable product (MVP). This is a solution that is just barely usable.
The goal is to get it into the hands of users as quickly as possible, because this
creates valuable feedback.

3.3.4 Tracer Bullets

Tracer bullets Using Tracer Bullets in code is a metaphor from The Pragmatic
Programmer [50]. When using a machine gun, the operator does not precisely
calculate where to shoot ahead of time. Instead, tracer bullets are occasionally
loaded into the gun, which glow up and give visual feedback to the operator as to
where the bullets travel.

Tracer code The same idea applied to coding means that uncertainty and risk is
not dealt with by heavy upfront planning. A software solution likely has to inter-
face with many unknown parts, adding risk for each one. The developer creates
“tracer code”, which has the goal of quickly connecting all the components and
parts of the system, without adding lots of functionality. Stubs and empty code

4A project with high uncertainty and changing requirements may find tests a hinder as they have
to up updated all the time. This results in extra work and rework.

5Not all comments are good comments. Code with side effects, strange design choices or hard
to read implementation may need clarification by using comments.

Chapter 3: Method 47

can be used so the code compiles, as long as all the actual components in the final
design are integrated and running. If any problems are discovered, then adjust
and redesign as necessary [50].

The tracer code is real code, not a prototype. Therefore, it should be made with
proper quality. It just lacks functionality. With a working skeleton system, more
functionality can be added on top.

3.3.5 Domain-Driven Design

Domain-driven design is an approach to domain modeling in software. The goal
is to create a domain model in software that uses the same language a domain
expert uses, to create better, more evolvable and understandable code. If the do-
main has for example “trees” and “nodes”, the code will also use trees and nodes
as names, making stakeholder discussion straight forward. The code will accu-
rately model the domain, increasing understanding and capturing the details of
the business logic [10]. The model is represented as normal, executable code.
There is no specific file representation, and no MDD framework involved. This is
not a MDD method — it is a object oriented coding and naming method.
Another element from Domain-driven design is to use a layered software architec-
ture. The domain model is isolated from the rest of the code. This makes it easy
to see and reason about the behavior of the code, in terms of business logic [10,
p. 69]. The alternative is that business logic is spread around the system, partially
in the user interface components, persistence logic, and so on. The layers makes
every aspect of the program more cohesive and makes interpretation of the de-
signs easier [10, p. 69].

Practically, the domain model will be in its own layer, and the user interface will
be in its own layer. The user interface will depend on the domain model. The
domain model will be unaware of any user interface. An illustration is shown in
Figure 3.2.

Domain model

User interface

Standard library/platform

depends on

depends on

Figure 3.2: Layered architecture. The components above depends on the com-
ponents below, but not vice versa.

48 K. Rekstad: Modeling in the Cloud for Education

3.3.6 Test-Driven Development

Test-driven development is about creating automated tests before writing the im-
plementation [51, p. 105]. It will be used sparingly, for cases where the behavior
is complex and important to get right. The developer will have to judge when it
is needed, based on expected complexity, requirements and behavior for a unit
of code. This may be especially relevant for some business logic in the domain
model. Writing the tests first also creates a more testable design [51, p. 106].

The benefit of automated tests is confidence in the code against bugs. It also helps
for when other developers join the project, as they can be confident about mak-
ing changes without breaking existing code. A goal is to have other contributors
develop this project further, and therefore avoiding “legacy code” is a good thing.
The author of Working Effectively with Legacy Code writes:

“Legacy code is somebody else’s code. But in programmer-speak,
the term means much more than that. [. . .]

In the industry, legacy code is often used as a slang term for difficult-
to-change code that we don’t understand. [. . .]

To me, legacy code is simply code without tests. [. . .]
Code without tests is bad code. It doesn’t matter how well written

it is; it doesn’t matter how pretty or object-oriented or well-encapsulated
it is. With tests, we can change the behavior of our code quickly and
verifiably. Without them, we really don’t know if our code is getting
better or worse.”

— Feathers and Martin [52]

3.3.7 Prototyping

Prototyping will be used to create simple implementations when there is uncer-
tainty of the design and big risks. A prototype will create learning by coding in the
real environment, and then prototype code is discarded afterwards. A prototype
can test feasibility and reveal good and bad sides of a design, quickly and cheaply.

The main bulk of prototyping has already been performed, as part of the pre-
project in [1].

3.4 Evaluation

This section will describe how the evaluations for the artifacts were made. The
evaluations try to test for value in the solution design, by comparing how well the
artifacts solve the identified problem.

Chapter 3: Method 49

3.4.1 Software Artifact

The built artifact is evaluated according to the Design Science Research method-
ology in Section 3.1.2.

Assumptions The functionality of the original Eclipse IDE editors for Ecore is
assumed to be correct and useful for students. The functionality is also required,
in order to effectively use EMF for Model-Driven Development (MDD).

Demonstration goal Therefore, a demonstration should show the presence of
the original functionality from Eclipse IDE in the new artifact. To do this, the ar-
tifact will be used to complete use cases, based on the modeling approach used in
TDT4250 (see Section 2.2).

Additionally, a goal is to not use the Eclipse IDE, and a goal is to perform the use
cases in a cloud based IDE, in this instance Gitpod.

Evaluation of demonstration The evaluation6 will be a list of tests with mod-
eling actions from Section 2.2. A test is successful if the tester (the author) can
perform the action, and without using Eclipse IDE and also doing it in Gitpod.

3.4.2 Open Source Viability

Evaluation goal A goal of this thesis is that the artifact’s source code is devel-
oped further, by either master students, the Eclipse ecosystem, or other contribu-
tors with interest in EMF or tree editors. The strategy to solve this is by making
the source code open source.

Therefore, the source code will be evaluated to indicate how fit it is to be an open
source project.

Test criteria To test how fit the project is, a checklist is synthesized from on-
line guides for open source projects. The sources are highly reputable, such as the
Eclipse Foundation, the GitHub community, and sites endorsed by these. The cri-
teria will check for presence of elements or properties of the project, and succeed
if it is present. A qualitative evaluation will proceed, to conclude the test results.

6The evaluation is classified as ex ante and artificial, for those familiar with the approach by
Sonnenberg and vom Brocke [53] and [54].

Chapter 4

Results

This chapter will present the outcomes of the design and development phase. First,
the artifact is presented from a user’s point of view, showcasing functionality with
screenshots. Then, the artifact’s design will be presented from an architectural
view, and the protocol will be presented last.

The results will also present the measures taken for making the open source
project viable, and something a developer community may want to develop and
maintain further.

Evaluation of the results is presented later, in Chapter 5.

An overview of the results can be previewed in the informal Figure 4.1.

Tree Editor Frontend
VSCode
Extension Tree Language Server

TLSP

Ecore Tree Editor VSCode Extension (.vsix)
Figure 4.1: Informal diagram of the results, showing the main components.

51

52 K. Rekstad: Modeling in the Cloud for Education

4.1 Software Artifact: Tree Editor Extension for Ecore in
Gitpod

This is of interest for a stakeholder, and someone aiming to do further research
on this design.
The output of the development phase is an artifact which is a VSCode extension.
The artifact is a .vsix file, and can be installed in a Gitpod workspace. The fol-
lowing results are from Gitpod using VSCode as the editor frontend, not Theia1.
One way to install it2, is to upload the .vsix file to the workspace, right clicking
on it and selecting “Install Extension VSIX”. When installed in the IDE, it is shown
in the extensions panel as Ecore Tree-editor, shown in Figure 4.2.

Figure 4.2: The extension is installed as Ecore Tree-editor in Gitpod with VSCode.

4.1.1 Custom Editor

This extension adds a new Custom Editor, which is automatically opened when
the user opens a .ecore, .genmodel or .xmi file. The model file is loaded and
transformed by the extension, and presented as a tree to the user.

1VSCode is the default for Gitpod, instead of Theia [19, 55].
2The “best” way is to publish the extension to OpenVSX, and search for it in the extensions panel.

Chapter 4: Results 53

Figure 4.3: The Tree Editor Extension has opened a Custom Editor for the stud-
ies.ecore file.

Example model An Ecore model made in TDT4250 in 2019 has been used as an
example to demonstrate the artifact. The .ecore file is opened in Figure 4.3. This
figure shows three columns, from left to right: the default VSCode file explorer,
the custom editor’s master layout (tree structure), and the custom editor’s detail
layout (properties sheet).

Action bar There is also a red action bar at the top, with an orange action button
to create a new dynamic instance. The action buttons shown will vary, depending
on what the selected node is. The orange color of the button is coming from the
color theme of the VSCode editor. With a dark theme, this action button could be
blue, for example.

Master layout The master layout can show multiple roots. In this document,
single root is shown for the “studies.ecore” file. The root node is a “studies” pack-
age, with children displayed below. This node has a label, “studies”, and a specific
icon indicating it is a package — the purple box with a cross. The icons used are
the same ones used in Eclipse IDE for the Sample Reflective Ecore Editor (see
Section 2.3.1), and depend on the type of node.

54 K. Rekstad: Modeling in the Cloud for Education

Clicking the black triangle next to a node will collapse it, hiding its children and
rotating the triangle 90 degrees counter-clockwise.
Inside the master layout, a node is selected in dark red, with the label “studies”.
Its child node “Study” is also highlighted, in a lighter red. (Note that the colors of
selected nodes were arbitrarily chosen during development, and could be changed
to give more contrast with the node’s label.) A node can be selected by clicking
on it, and holding ctrl will add to the selection, allowing multiple nodes to be
selected.
Dragging a node in the hierarchy and dropping it on a node, should change this
node’s parent. Right clicking a node will open a context menu, with the possible
children nodes to add. Dropping a node on an invalid parent will be prevented,
by using a hierarchy schema, and indicated by changing the mouse cursor to a
“forbidden” icon3.

Detail layout The detail layout has a property sheet, currently showing a un-
finished example form. This layout should use the JSON-Forms library to render
properties, based on the node’s properties and a UI schema for that node type.

4.1.2 IDE Commands

The extension also provides Commands to VSCode. These are actions that can be
invoked at any time. The student can invoke them from the Command Palette4

by typing “Ecore” or another part of the command’s name. A screenshot is shown
in Figure 4.4, with a command to create a new model file. This file will have the
minimum XMI contents required for a blank model.

Figure 4.4: The Tree Editor Extension adds custom commands to the Command
Palette. One of them is shown here, named Ecore: New Model file. . . .

4.1.3 Genmodel and Model Instance

The editor can open a .genmodel file or a .xmimodel dynamic instance file as well.
The genmodel is shown in Figure 4.5, and the dynamic instance in Figure 4.6. This
will show two roots in the editor, as the original .ecore model is related to the
opened file. One root is the genmodel (or model dynamic instance), and the other
root is the study model.
The GenModel editor is not specialized, so it renders the tree as any other Ecore
model.

3Note that drag-and-drop and node creation are not currently implemented, only accounted for
by the design, by using a hierarchy schema.

4Press F1, or ctrl + shift + P (command on mac), or Menu → View → Command palette

Chapter 4: Results 55

Figure 4.5: The Tree Editor Extension with the studies.genmodel file open. It
has two roots, the GenModel and the model. The GenModel is collapsed/hidden
at the “Studies” node.

56 K. Rekstad: Modeling in the Cloud for Education

Figure 4.6: The Tree Editor Extension with the sample_1.xmi dynamic instance
open. This is data that conforms to the model defined in studies.ecore.

4.1.4 Configuration and Logging

The extension has configuration options that a user can set. One such option is
the logging level, a threshold to hide log messages in the log panel. The extension
can also log internal events and messages to a Output panel in VSCode, for the
user to debug and identify extension errors. This is mostly useful for extension
developers, not students. But it works as an example of using configuration op-
tions. It is identified that using configurations will be needed. The configuration
and output panel are shown in Figure 4.7.

Chapter 4: Results 57

Figure 4.7: The Tree Editor Extension adds configuration options to the VSCode
settings menu, shown in the top right. The extension also adds log outputs to
a Output panel. The figure is annotated with two red circles. The upper circle
is indicating the configuration option to filter the output based on log level. The
lower circle is highlighting that same log level from a message in the output panel.

4.2 Design Artifact: Tree Document Model

A central design result is the constructs used to represent trees in an editor. These
constructs are referred to as the domain model or simply model in this section
(not to be confused with an model). This representation is what the frontend
presents to a user, and what the extension and server is using to communicate
over Tree Language Server Protocol (TLSP). Knowing this model is essential for
communicating how the design works. This is because it is used as the “ubiqui-
tous language” formed by Domain-driven design (see Section 3.3.5 and [10]).
Note that the domain model is generic for all trees and unaware of EMF. This
is because it aims to be a domain model for the TLSP, reuseable for other use cases
than EMF editing. This section will explain where some of the names come from,
and what these data structures look like.

4.2.1 Borrowed Terms

Trees When words like tree, node, root and children are used, they refer to the
concepts for tree structures described in Section 2.4. A tree has exactly one root.
The root can have nodes as children, and these can have children again. A node
has a name and an icon that can represent it in a hierarchical tree structure.

58 K. Rekstad: Modeling in the Cloud for Education

Icon An icon is a visual representation — a picture, illustration, symbol — that
represents some information about a node. An icon can show how one node differs
from another, like what type it is, or it can show if a node is invalid or not.

DataUri This is a more technical term. The trees will be displayed on the web,
with icons. A way to store icons as text is using the HTML data-uri scheme. It is just
text, but has a semantic meaning. When set as the image source in a web browser,
it will be displayed as a picture. A data-uri starts with a prefix which specifies the
scheme, the content type and the encoding, for example: data:image/gif;base64,.
Then, it is followed by the encoded image.

Document Because this is for an editor, the concept of documents are borrowed
from VSCode. A document is the editor’s representation of a file that the user
wants to modify. When a editor window is open in an IDE, this editor shows a
single document. The document can be opened, modified, saved, renamed and so
on.

4.2.2 The Domain Model

The domain model is specified in this thesis by using TypeScript, but it can be
translated to other languages, such as java.

A brief summary of the more exotic features of TypeScript may be helpful for the
reader: Note that the ‘?’ means optional or nullable. TypeScript can also “alias”
types, meaning a new type can be defined by simply renaming an existing type.
This can put more meaning into types like string and number, especially when
they are reused in multiple places. Some builtin interfaces are used, like Array (a
list) and Record (an object, or dictionary/map-like structure with keys and val-
ues).

The domain model will now be presented. It consists of the following elements:
TreeDocument, TreeRoot, TreeNode, NodeIcon, IconConfiguration, Hierarchy-
Configuration, Action, ActionEvent, ActionConfiguration and EditorState.
It also defines the following aliases for strings: ActionId, IconDataUri, NodeId
and NodeType. These concepts are explained below.

TreeDocument The main data structure is the TreeDocument, in Code listing 4.1.
This holds a list of TreeRoots. A document can have multiple roots, because there
can be related trees. For example in EMF, the .genmodel file has a related .ecore
file. Opening the GenModel would also show the Ecore model, in an editor with
two roots.

Code listing 4.1: TreeDocument TypeScript code.

interface TreeDocument {

Chapter 4: Results 59

roots: Array<TreeRoot>;
}

TreeRoot The TreeRoot in Code listing 4.2 holds references to the tree’s root
node. It also holds the configurations for how the nodes should be given icons,
what actions a user can perform on the nodes, and what a valid node hierarchy
looks like. The actions, hierarchy and icons use the type property of TreeNode to
enforce this. The TreeRoot has an id as well, to separate it from other roots. This
id must be unique inside the TreeDocument.

A TreeRoot does not require a root node, for example in the case the TreeRoot
was just created or the node was deleted.

Code listing 4.2: TreeRoot TypeScript code.

interface TreeRoot {
id: string;
rootNode?: TreeNode;
actions: ActionConfiguration;
hierarchy: HierarchyConfiguration;
icons?: IconConfiguration;

}

TreeNode For representing the nodes themselves, there is the TreeNode in Code
listing 4.3. It has an id that is unique in the TreeDocument. The id is a string, but
aliased to NodeId in TypeScript.

Next, the TreeNode has a type, which is very important. This type is a string, for
example “EClass” or “EAttribute”, and decides the icon, the allowed child nodes,
and the possible actions a user can perform on this node. The string is aliased as
NodeType in the model.

The name is what shows up in the hierarchical tree structure when presented to
the user. It also reflects a property the user can edit. The name can for example
be “MyClass”, “Organization” or “NTNU”.

To help inform the user what a node represents, the documentation property can
hold a help string. The user interface could show this on hover, or when a node is
selected in a designated help area.

The TreeNode holds instances of other TreeNodes in the children-property. This
is what enables the tree structure to be represented.

Sometimes, a node can be special, for example invalid. To indicate this, the op-
tional iconOverride can specify a new icon instead of the one from the TreeRoot’s

60 K. Rekstad: Modeling in the Cloud for Education

icon configuration.

The last property is the EditorState. This has the properties selected and col-
lapsed, used to hold presentation information about the node. Being collapsed
means that the children are not shown.

Code listing 4.3: TreeNode TypeScript code.

interface TreeNode {
id: NodeId;
type: NodeType;
name?: string;
documentation?: string;
children: Array<TreeNode>;
iconOverride?: IconDataUri | NodeIcon;
editorState?: EditorState;

}

Action As mentioned, a user can perform actions. These can be validating an
Ecore model, creating a new dynamic instance, and so on. This is represented
by an Action in Code listing 4.4. The purpose of the Action is to show the user
something they can perform, but only contain enough information so it can be
sent back to the Tree Language Server to be performed there. Essentially, an Ac-
tion is like a reference to a procedure on the server.

The action has an id, which is unique in the TreeRoot. This is what the server
uses to know which procedure should be executed. The name and optional icon
are for presenting the Action to the user.

Code listing 4.4: Action TypeScript code.

interface Action {
id: ActionId;
name: string;
icon?: IconDataUri;

}

ActionConfiguration The list of all Actions live under the TreeRoot, inside the
ActionConfiguration. The intention is that the user is presented with an action
bar, or other list of actions, which can change depending on the selected TreeN-
ode. This ActionConfiguration in Code listing 4.5 also specifies what actions are
always shown in such an action bar, in the defaultActionbarActions.

The mapping of ActionIds to lists of NodeTypes in nodeActions is used when a
node is selected. Each id can be examined to see if it supports the given NodeType.
The type is supported if it is present in that ActionId’s list.

Code listing 4.5: ActionConfiguration TypeScript code.

interface ActionConfiguration {

Chapter 4: Results 61

availableActions: Array<Action>;
defaultActionbarActions?: Array<ActionId>;
nodeActions?: Record<ActionId, Array<NodeType>>;

}

ActionEvent When the user triggers an action from the frontend, it is sent as
an ActionEvent to the server. The ActionEvent is shown in Code listing 4.6. To
reference which Action was triggered, the ActionId is set in the action property.
The server may also want to know what TreeRoot the selected node was in, at the
time of triggering the action. Because actions can operate on specific nodes, like
creating a new dynamic instance in EMF, the currently selected TreeNode’s id are
set as the targetNodes.

Code listing 4.6: ActionEvent TypeScript code.

interface ActionEvent {
targetNodes?: Array<NodeId>;
action: ActionId;
targetRoot: TreeRoot;

}

NodeIcon and IconDataUri A TreeNode and an Action can have icons. There
are also icons in the TreeRoot’s IconConfiguration. A single image is specified
as IconDataUri, which is just an alias to a string type.
However, for more complex icons like the nodes’, an editor may want to layer or
alter the icons. It could be to add multiplicity information, validity state, or other
variants of an icon. This is supported through composition with the NodeIcon. It
defines a list of IconDataUris, which are drawn from bottom to top, stacked on
each other.

HierarchyConfiguration The final element presented is the HierarchyConfig-
uration in Code listing 4.7. The roots specify what is allowed to be a TreeRoot’s
rootNode. For example, “EPackage” could be such a NodeType.

The allowedChildren specifies a mapping between a parent’s NodeType and its
possible children’s NodeType. This is designed with node creation an drag-and-
drop in mind. A mapping could for example be “EClass” to “EAttribute”, “EAnno-
tation” and “EReference”5.

Code listing 4.7: HierarchyConfiguration TypeScript code.

interface HierarchyConfiguration {
roots: Array<NodeType>;
allowedChildren: Record<NodeType, Array<NodeType>>;

}

5This mapping is an example, and not complete.

62 K. Rekstad: Modeling in the Cloud for Education

4.3 Design Artifact: Architecture for Tree Language Server
Systems

The software architecture may be of interest to developers of tree editors and sim-
ilar kinds of VSCode extensions. There is potential to directly reuse components
from this design as software dependencies/libraries in similar projects.

4.3.1 Architecturally Significant Requirements

The high level software architecture for the tree editor was shaped mainly by
three Architecturally Significant Requirements (ASRs). The editor must be a VS-
Code extension, the tree viewer must use the VSCode Custom Editor API, and the
extension must reuse EMF java code and the EMF.Cloud Model Server. This re-
sults in a system of three main components: a Tree editor frontend, a Tree editor
extension and a Tree Language Server.
Another ASR is that the underlying document may change, and the rest of the
system must respond and be updated. Therefore, a bi-directional communication
between components is established, and an event driven architecture is used. The
communication is isolated and standardized in a protocol, called the Tree Language
Server Protocol (TLSP). This protocol is presented in detail in Section 4.4.

4.3.2 Changes from pre-project

From the pre-project, the high level architecture (see Figure 2.11) changed mainly
by avoiding the EMF.Cloud Model Server as a separate running process, and is now
embedded inside the Tree Language Server [1, p. 49].

On the code level, only the extension code and TreeDocument domain model are
similar. The TreeDocument has changed to accommodate multiple roots, by intro-
ducing the TreeRoot and moving the ArchitectureSchema and IconConfiguration as
children of these root, instead of the TreeDocument. This allows configurations to
be different on a per-root basis, which is needed when for example opening both
a GenModel and Ecore model in the same document.

The frontend is different from the pre-project prototype by using the Vue.js frame-
work, and implementing actual features. The pre-project was only an example
viewer, not communicating with the extension.

For the EMF.Cloud Model Server, this is now bundled inside the Tree Language
Server, instead of a separate component. The pre-project used REST to commu-
nicate, while now it happens in java by using the classes of the EMF.Cloud Model
Server, then relaying the answers over TLSP. The pre-project did not implement
any real logic inside the server either.

Chapter 4: Results 63

4.3.3 System explanation

This section will explain the software architecture through a series of diagrams
called the C4 Model (Context, Container, Component, Code) [56]. This is a top-
down approach where one “zooms” in on the system components, so the wider
context is clear.

4.3.3.1 Context

At a high level, the system has students interacting with Gitpod. The developed
system runs inside Gitpod as an extension. This is illustrated in Figure 4.8. The stu-
dent use Gitpod as a development environment, where they use the IDE, change
files in a Workspace, and runs programs in a terminal. Gitpod uses git to retrieve
the student’s code from GitHub, and pushes changes back to it.
When a Student wants to install an extension to the IDE in Gitpod, it can either let
the Student upload an extension file, or search the publicly available extensions
in the OpenVSX extension registry. The instantiated artifact from this thesis could
be uploaded to OpenVSX.

64 K. Rekstad: Modeling in the Cloud for Education

«person»

Student

A student attending TDT4250
that models with EMF in Gitpod

«system»

Gitpod

A cloud based development
environment. Allows

programming, compiling and
running code.

«external_system»

GitHub

Source code repository,
hosting code versioned with git.

«external_system»

OpenVSX

VSCode extension repository
that is open for every IDE.

Perform modeling and
development

Synchronize repo with
workspace

Download VSCode
extensions

Figure 4.8: A system context diagram for Gitpod. The extension will run inside
the Gitpod service, used by a student to do modeling and developing. Gitpod uses
git to synchronize code with GitHub. The extensions in Gitpod are downloaded
from a service called OpenVSX.

Chapter 4: Results 65

4.3.3.2 Containers

Inside the Gitpod system, there is a IDE, the Ecore Tree Editor Extension from this
thesis, and the Workspace. This is shown in Figure 4.9. The IDE can be Theia or
VSCode. This IDE is responsible for providing the user interface to the student. It
also has the responsibility of installing and activating the extension. The extension
runs in the environment provided by the Workspace. For example, the operating
system and the available programs are provided by the Workspace, as well as the
student’s project files. If the extension wants to run a java program, the Workspace
must have a Java Runtime installed.

66 K. Rekstad: Modeling in the Cloud for Education

«boundary»

Gitpod
[System]

«external_container»

VSCode
[TypeScript]

IDE

«container»

Ecore Tree Editor
Extension

[TypeScript, java]

The tree editor that modifies
Ecore models.

«external_container»

Workspace
[linux]

The project source code and
runtime environment. Ecore

model files live here.

«person»

Student

«external_system»

GitHub

«external_system»

OpenVSX

Manage project files.
Trigger commands. Install

extensions

Install and activate

Provide editor view.
Provide custom

commands.

View and edit models

Clone from and push to

Executes inside, and
operates the files

Downloaded from

Figure 4.9: Container diagram for gitpod. The Gitpod system from Figure 4.8 is
expanded to show its internal components. The IDE used by Gitpod is VSCode.
The student will interact with VSCode, and install the Ecore Tree Editor Exten-
sion created from this thesis. This extension will also provide a user interface,
which the student uses for modeling. This extension reads files from the Gitpod
workspace, and uses the runtime provided by the workspace such as a Java Run-
time Environment.

Chapter 4: Results 67

4.3.3.3 Components

The Ecore Tree Editor Extension itself consists of three main components. It is
the Tree editor extension (or simply “extension”), which integrates with VSCode or
Theia. Then there is the Tree editor frontend (or “frontend”), which provides a user
interface with the hierarchical tree structure, labels and icons to the student. The
last component is the Tree Language Server (TLS, or “server”), a java based server
with knowledge about EMF and the EMF.Cloud Model Server. This is shown in a
deployment diagram in Figure 4.10.

The Tree editor extension and Tree Language Server talk together using a proto-
col named Tree Language Server Protocol (TLSP). This protocol is another design
artifact from this thesis, and is described later in Section 4.4. This protocol knows
nothing about EMF, and the same with the Tree editor frontend. These two parts
of the design only work on generic tree structures, as described in Section 2.4.

The Tree editor extension is the component responsible for providing both the
Tree editor frontend, and the Tree Language Server. It also knows about EMF,
because it registers the ecore, genmodel and xmi file extensions to VSCode and
Theia. The custom Commands from the IDE’s Command Palette are provided by
this Tree editor extension as well.

Any changes to the student’s model files are saved to disk by the Tree Language
Server. The Tree editor frontend is close to stateless, and the Tree editor extension
only bridges the Tree editor frontend and the TLS.

68 K. Rekstad: Modeling in the Cloud for Education

«node»

Student's computer
[windows, mac or linux]

«node»

Web browser
[Google Chrome, Mozilla Firefox,

Apple Safari etc.]

«boundary»

Gitpod website
[Container]

«node»

Gitpod cloud workspace
[linux, kubernetes, docker]

«boundary»

VSCode
[Container]

«container»

Tree editor frontend
[TypeScript, HTML, CSS, Vue.js]

The custom rendering of trees,
and user interactions happen
here. Presented in VSCode

with the WebView API.

«external_container»

VSCode frontend
[TypeScript, HTML, CSS]

«external_container»

Workspace
[linux, filesystem]

«external_container»

VSCode backend
[TypeScript, nodejs]

«container»

Tree editor extension
[TypeScript, nodejs]

«container»

Tree Language Server
[java, EMF, EMF.Cloud Model

Server]

Set tree state
Send user modifications

on the tree
Activate

Run as child process
Change Ecore model. Get

new state
[JSON-RPC, TLSP]

Read and write Ecore
models

[EMF Resource,
EMF.Cloud Model

Server]

Remote procedures
[JSON-RPC, WebSockets]

Figure 4.10: Deployment diagram of Gitpod. The student will use their computer
to load the Gitpod website. The Gitpod service will start a computer in a cloud
provider, to create a cloud workspace. The student only loads the VSCode fron-
tend and Tree editor frontend into their browser. VSCode has a backend which
runs inside the Workspace, and communicates to the frontend over WebSockets,
using JSON-RPC. The VSCode backend will activate the Tree editor extension,
which in turn will start a Tree Language Server. This Tree Language Server runs
java, and reuses the EMF tooling. The Tree editor extension communicates to the
Tree Language Server over a well defined protocol, where it asks to read model
files, and execute commands to change the models. The Tree Language Server
uses the Workspace to read and write .ecore files.

Chapter 4: Results 69

4.3.3.4 Code

Modules At a code module level, the Ecore Tree Editor extension is made of 5
modules. The extension, frontend, server, and two shared libraries: Tree Document
model and VSCode and Webview RPC (or simply RPC library). The frontend and
extension both use the Tree Document model and the RPC library. This is shown in
Figure 4.11. All the modules are coded with TypeScript, except the server, which
uses Java.

The server also “uses” the Tree Document model, but by re-implementing6 it in
java. The Tree Document model module is the result of using Domain Driven De-
sign and a layered architecture (by Evans [10]). It encapsulates the concepts and
business logic related to editing tree structures.

Tree Editor frontend VSCode extension EMF Tree Language Server

Tree Document model js-library VSCode and Webview RPC js-library

compiled frontend js
compiles to

importsimports importsimports

webview TLSP/JSON-RPC

Figure 4.11: Component diagram of the Ecore Tree Editor. The for the the ex-
tension is organized in 5 separate modules. The main module is the VSCode ex-
tension. This extension bundles the compiled frontend javascript artifact, and the
compiled EMF Tree Language Server java jar-file. The Tree DOcument model js-
library is the layer with the domain model for tree editors. It is used in both the
frontend and the extension.

Classes Three UML class diagrams are presented, one each for the frontend,
extension and server. These are not complete, meaning some classes, properties,
methods and relationships are not shown. This is intentional, to increase the clar-
ity, comprehension and the essence of the diagrams.

Frontend classes A diagram of the frontend is shown in Figure 4.12. The ex-
ecution environment for this is a web browser frame, meaning it has access to
the HTML DOM7. It has a view layer using a framework called Vue.js. The fron-
tend’s state (TreeDocument) is held in a state storage called “Store”, using a li-
brary called Vuex. This state can only be changed through explicit mutations and
actions. This is so the store can intercept changes, and send them to the server
via the extension, over the Tree Language Server Protocol. The frontend talks to
the extension using a VSCode interface, where the actual VSCode IDE injects an
implementation. A mocked version (MockVSCode) is provided as an implementa-
tion when testing and developing the frontend outside of the VSCode IDE. Two

6Not ideal, but no good transpiling (programming language translating) software was found in
a reasonable amount of time, to automate this.

7Document Object Model, which is how a web browser represents web pages.

70 K. Rekstad: Modeling in the Cloud for Education

classes help the communication between the extension and frontend: TreeEdi-
torWebview and VscodeExtension. These utilize a JSON-RPC-like protocol, over
the VSCode method called postMessage and the javascript Window’s addEventLis-
tener. The FormEditor view is intended to use the JSON-Forms library, but this
view is not finished.

Chapter 4: Results 71

u
se

r
in

te
rf

ac
e

co
m

p
o

n
en

ts

ac
ti

o
n

s
tr

ee

ex
te

rn
al

 c
o

d
e

s
ta

te

vs
co

d
e

u
ti

lit
ie

s

R
P

C
 p

ro
xy

 f
o

r
th

e
ex

te
n

si
o

n

«
V

u
e

»
A

p
p

«
V

u
e

»
M

as
te

rD
et

ai
lL

ay
ou

t

«
V

u
e

»
F

or
m

E
di

to
r

U
nf

in
is

he
d

«
V

u
e

»
A

ct
io

nB
ar

«
V

u
e

»
A

ct
io

nB
ut

to
n

«
V

u
e

»
T

re
eE

di
to

r

«
V

u
e

»
T

re
eR

oo
t

«
V

u
e

»
T

re
e

N
o

d
e

«
V

u
e

»
T

og
gl

eC
ar

et
«

V
u

e
»

Ic
o

n

V
S

C
o

d
e

po
st

M
es

sa
ge

(a
ny

 m
es

sa
ge

)
ge

tS
ta

te
()

 :
an

y
se

tS
ta

te
(a

ny
 s

ta
te

)

W
in

d
o

w

ac
qu

ire
V

sC
od

eA
pi

()
: V

S
C

od
e

S
to

re

se
tT

re
eD

oc
um

en
t(

T
re

eD
oc

um
en

t t
re

eD
oc

um
en

t)
se

tS
el

ec
te

dN
od

e(
T

re
eN

od
e

no
de

)
to

gg
le

N
od

eC
hi

ld
re

nV
is

ib
le

(T
re

eN
od

e
no

de
)

R
oo

tS
ta

te

M
oc

kV
S

C
od

e
vs

co
de

-e
xt

en
si

on

ge
tV

sc
od

eA
pi

()
: V

S
C

od
e

E
xt

en
si

on
E

ve
nt

s

on
(s

tr
in

g
ev

en
t,

ca
llb

ac
k)

V
sc

od
eE

xt
en

si
on

si
gn

al
R

ea
dy

()
tr

ig
ge

rA
ct

io
n(

A
ct

io
nE

ve
nt

 a
ct

io
nE

ve
nt

)
se

tN
od

eC
hi

ld
re

nV
is

ib
ili

ty
(N

od
eI

d
id

, b
oo

le
an

 v
is

ib
le

)

T
re

eE
di

to
rW

eb
vi

ew

se
tD

oc
um

en
t(

T
re

eD
oc

um
en

t d
oc

um
en

t)
su

bs
cr

ib
eT

oE
ve

nt
s(

)

m
a

in
E

nt
ry

 p
oi

nt

ac
tio

ns

0
..

*

ro
ot

 n
od

e

0
..

1

ch
ild

re
n

0
..

*

0
..

*
Li

st
en

 to
 "

m
es

sa
ge

"
ev

en
t

fr
om

 V
S

C
od

e
ex

te
ns

io
n

se
nd

 R
P

C
 m

es
sa

ge
s

su
bs

cr
ib

e
to

se
t t

re
e

do
cu

m
en

t
se

t n
od

e
ch

ild
re

n
vi

si
bi

lit
y

ge
t T

re
eD

oc
um

en
t

g
e

t
in

iti
a

l s
ta

te
,

sa
ve

 s
ta

te

tr
ig

ge
r

ac
tio

n

Fi
gu

re
4.

12
:

C
la

ss
di

ag
ra

m
of

th
e

Tr
ee

Ed
it

or
Fr

on
te

nd
co

m
po

ne
nt

.

72 K. Rekstad: Modeling in the Cloud for Education

Extension classes A diagram of the VSCode extension is shown in Figure 4.13.
The execution environment for this is NodeJS. The extension file is activated by
VSCode when particular triggers specified in the extension’s package.json mani-
fest occur. One such trigger is opening a .ecore file. The extension then registers
commands and the custom editor. The CustomTreeEditorProvider is asked by
VSCode to create a document and editor for the .ecore file. The editor uses the
compiled outputs of the frontend, and puts it inside a WebView. A WebView is an iso-
lated execution context provided by VSCode (analogous to an IFrame in HTML),
where a custom user interface can be shown. An extension is otherwise not al-
lowed to modify the user interface in VSCode.

The extension also starts a java process with the executable .jar file for the server.
It then attaches to the standard in and standard out as communication channels
for the TLSP. The communication and protocol parsing uses the vscode-jsonrpc
library from Microsoft, also used in the official LSP implementation for VSCode.

Chapter 4: Results 73

tr
ee

-l
an

g
u

ag
e-

se
rv

er

ec
o

re
-c

u
st

o
m

-e
d

it
o

r

R
P

C
 p

ro
xy

 f
o

r
th

e
w

eb
vi

ew

n
o

d
ej

s

vs
co

d
e

vs
co

d
e-

js
o

n
rp

c

T
re

eL
an

gu
ag

eS
er

ve
rR

pc
C

lie
nt

st
ar

t-
se

rv
er

st
ar

tJ
so

nR
pc

S
er

ve
r(

)

se
rv

er
C

om
m

an
ds

re
gi

st
er

S
er

ve
rC

om
m

an
ds

()

T
h

is
 s

ta
rt

s
th

e
T

re
e

La
ng

ua
ge

 S
er

ve
r

ja
r.

T
re

eL
an

gu
ag

eS
er

ve
rC

lie
nt

in
iti

al
iz

e(
pa

ra
m

s)
sh

ut
do

w
n(

)
e

xi
t(

)
pi

ng
()

ge
tM

od
el

(M
od

el
R

eq
ue

st
)

ge
tD

et
ec

te
do

de
lU

ris
()

V
sc

od
eJ

so
nR

P
C

S
er

ve
r

ad
dM

es
sa

ge
H

an
dl

er
s(

)

re
gi

st
er

C
us

to
m

T
re

eE
di

to
r

T
re

eC
us

to
m

D
oc

um
en

t

ur
i:

U
ri

do
cu

m
en

tD
at

a
: T

re
eD

oc
um

en
tM

od
el

C
us

to
m

T
re

eE
di

to
rP

ro
vi

de
r

sa
ve

C
us

to
m

D
oc

um
en

t(
T

re
eC

us
to

m
D

oc
um

en
t)

op
en

C
us

to
m

D
oc

um
en

t(
U

ri)
 :

T
re

eC
us

to
m

D
oc

um
en

t
re

so
lv

eC
us

to
m

E
di

to
r(

T
re

eC
us

to
m

D
oc

um
en

t,
W

eb
vi

ew
P

an
el

)
cr

ea
te

W
eb

vi
ew

H
tm

l()
: s

tr
in

g

T
hi

s
lo

ad
s

th
e

T
re

e
ed

ito
r

fr
on

te
nd

 V
ue

 a
pp

.

T
re

eE
di

to
rW

eb
vi

ew
C

lie
nt

se
tD

oc
um

en
t(

T
re

eD
oc

um
en

t)

V
sc

od
eE

xt
en

si
on

S
er

ve
r

si
gn

al
R

ea
dy

()
tr

ig
ge

rA
ct

io
n(

A
ct

io
nE

ve
nt

)
se

tN
od

eC
hi

ld
re

nV
is

ib
ili

ty
(N

od
eI

d,
 b

oo
le

an
 v

is
ib

le
)

ch
ild

_
p

ro
ce

ss

C
us

to
m

E
di

to
rP

ro
vi

de
r

W
e

b
vi

e
w

P
a

n
e

l
W

eb
vi

ew

M
e

ss
a

g
e

C
o

n
n

e
ct

io
n

e
xt

e
n

si
o

n

ac
tiv

at
e(

)
E

nt
ry

 p
oi

nt

cr
ea

te

im
pl

em
en

ts

cr
ea

te
s

cr
ea

te

st
ar

t s
er

ve
r

lis
te

n
fo

r
m

es
sa

ge

se
nd

 m
es

sa
ge

cr
ea

te
s

w
eb

vi
ew

 fo
r

se
nd

 m
es

sa
ge

lis
te

n
to

 m
es

sa
ge

sp
aw

n
ch

ild
 p

ro
ce

ss

Fi
gu

re
4.

13
:

C
la

ss
di

ag
ra

m
of

th
e

Tr
ee

Ed
it

or
Ex

te
ns

io
n

co
m

po
ne

nt
.

74 K. Rekstad: Modeling in the Cloud for Education

Server classes A diagram of the server is shown in Figure 4.14. The TLSP server
for EMF starts a JSON-RPC server listening to standard in and standard out, to
communicate with the extension. The protocol is defined with two annotated java
interfaces: Server and Client. The Server represent this server itself, while the
Client is the VSCode extension side. An implementation of the Server interface
is central, as it does the actual logic in the Tree Language Server Protocol. The
ServerImpl and Client are handed to a Launcher, which comes from the LSP4J
project. This is an Eclipse Foundation project which provides a Java LSP. Here, the
JSON-RPC component is standalone, and reused here, with the TLSP as protocol
instead of LSP.

The ServerImpl delegates most of the work to an EmfTreeModelController, which
in turn delegates to the EMF.Cloud Model Server or a EcoreToTreeDocumentMap-
per. The latter uses the EMF runtime API and ReflectiveItemProvider from the
.edit EMF package. The EcoreToTreeDocumentMapper maps a EMF Resource to
a TreeDocument data structure, compatible with the one in the Tree Document
model library component for javascript.

Chapter 4: Results 75

em
f

m
o

d
el

js
o

n
rp

c

p
ro

to
co

l

o
rg

.e
cl

ip
se

.ls
p

4j
.js

o
n

rp
c

o
rg

.e
cl

ip
se

.e
m

fc
lo

u
d

.m
o

d
el

se
rv

er

o
rg

.e
cl

ip
se

.e
m

f
c

o
n

fi
g

E
m

fT
re

eM
od

el
C

on
tr

ol
le

r

se
tW

or
ks

pa
ce

U
ri(

S
tr

in
g)

ge
tT

re
eD

oc
um

en
t(

S
tr

in
g)

 :
T

re
eD

oc
um

en
t

ge
tD

et
ec

te
dM

od
el

U
ris

()
 :

Li
st

<
S

tr
in

g>

E
co

re
T

oT
re

eD
oc

um
en

tM
od

el
M

ap
pe

r

m
ap

(R
es

ou
rc

eS
et

)
: T

re
eD

oc
um

en
t

T
re

eD
oc

um
en

t
T

he
 m

od
el

 in
te

rf
ac

es
 a

re
 o

m
itt

ed
.

8
ot

he
r

in
te

rf
ac

es
 a

re
 h

er
e.

T
LS

P
Js

on
R

pc
S

er
ve

r

st
a

rt
()

st
o

p
()

C
lie

nt

se
tM

od
el

(T
re

eD
oc

um
en

t)

O
nl

y
to

 p
ro

vi
de

 ty
pi

ng
.

R
ep

re
se

nt
s

th
e

m
et

ho
ds

in
 th

e
V

S
C

od
e

ex
te

ns
io

n
si

de
.

S
er

ve
r

in
iti

al
iz

e(
In

iti
al

iz
eP

ar
am

s)
sh

ut
do

w
n(

)
e

xi
t(

)
ge

tM
od

el
(M

od
el

R
eq

ue
st

)
tr

ig
ge

rA
ct

io
n(

A
ct

io
nE

ve
nt

)
ge

tN
od

eP
ro

pe
rt

ie
s(

N
od

eI
d)

ch
an

ge
N

od
eP

ro
pe

rt
ie

s(
P

ro
pe

rt
yC

ha
ng

eE
ve

nt
)

ad
dC

hi
ld

(A
dd

R
eq

ue
st

):
 T

re
eD

oc
um

en
t

T
hi

s
sp

ec
ifi

es
 th

e
T

re
e

La
ng

ua
ge

 S
er

ve
r

P
ro

to
co

l
in

 ja
va

.
U

nf
in

is
he

d.

S
er

ve
rI

m
pl

L
a

u
n

ch
e

r

M
od

el
C

on
tr

ol
le

r
M

od
el

R
ep

os
ito

ry
M

od
el

R
es

ou
rc

eM
an

ag
er

S
er

ve
rC

on
fig

ur
at

io
n

R
ef

le
ct

iv
eI

te
m

P
ro

vi
de

r

ge
tT

ex
t(

O
bj

ec
t)

 :
S

tr
in

g

E
O

bj
ec

t

eC
on

te
nt

s(
)

: E
Li

st
<

E
O

bj
ec

t>
eC

la
ss

()
 :

E
C

la
ss

M
o

d
e

lC
o

n
fig

u
ra

tio
n

la
ng

ua
ge

N
am

e(
)

: S
tr

in
g

ac
tio

ns
()

 :
O

pt
io

na
l<

M
od

el
A

ct
io

ns
>

ic
on

s(
)

: O
pt

io
na

l<
M

od
el

Ic
on

s>

M
a

in
R

p
c

M
ai

n
en

tr
yp

oi
nt

st
ar

t

m
ap

pi
ng

C
on

fig

Fi
gu

re
4.

14
:

C
la

ss
di

ag
ra

m
of

th
e

Tr
ee

La
ng

ua
ge

Se
rv

er
co

m
po

ne
nt

.

76 K. Rekstad: Modeling in the Cloud for Education

4.4 Design Artifact: Tree Language Server Protocol

All communication between the Tree Language Server (TLS) and the VSCode ex-
tension happens over a protocol. This protocol is part of the artifact design from
this thesis, and is called the Tree Language Server Protocol.

Because the original EMF editors are being moved from Eclipse IDE to VSCode,
the protocol draws inspiration from Language Server Protocol. If Eclipse IDE al-
ready used a LSP-like language server, the migration would be much easier. And
since it moved once to VSCode, it may move again later, for example to IntelliJ
(or some other IDE).

The TLSP protocol builds on top the the Base Protocol described in Section 2.9.1.
That means it sends a header section followed by a content section. The con-
tent has JSON-RPC data, being requests, responses, errors, and notifications. As
a reminder: a request must be responded to with a response or error, while a no-
tification does not get an answer. This means it is a bidirectional communication,
where both the extension and the server can initiate a request or notification.
The TLSP describes what data structures, method names, parameter values and
return values should be present in the JSON-RPC content. Because the protocol
uses JSON-RPC to call the remote procedures, all the data must be serializable to
JSON.

The following subsections present the orders of procedure calls in the TLSP. The
protocol allows for a stateful server, so for example the workspace must be set
before a model is loaded. The diagrams use UML sequence diagrams. These have
components listed inside boxes at the top, and the timelines as lines coming out
below the boxes. The diagrams are read top to bottom. A timeline with a box on
it represents a process lifetime inside that component.

4.4.1 Activation

Extension activation and document opening is shown in Figure 4.15. When the
extension is activated by VSCode, the server should be started. When the server
is ready to listen for TLSP messages, this is indicated by writing a message to an
output channel not used for TLSPs8.

The extension requests initialize with any options the server would need. The
server responds when it is done, allowing the extension to know when it can send
the next command. The workspace path is set to the folder with a student’s code.

When a CustomTreeEditorProvider in the extension has been asked to open a
.ecore document, the server is requested to get the model for this document. The

8The server uses standard error to log and communicate anything that is not TLSP.

Chapter 4: Results 77

server responds, and the tree document model is set on the frontend.

If the extension is asked to stop, it will first send a shutdown request to the server,
allowing it to respond when ready to stop. Then an exit notification is sent, which
stops the server and breaks the communication. This shutdown followed by exit
procedure is directly inspired by LSP.

external

Tree Editor Frontend

Tree Editor Frontend

Tree Editor Extension

Tree Editor Extension

Tree Language Server

Tree Language Server

VSCode

VSCode

Extension startup

activate

start

ready << side channel >>

initialize

set workspace

open .ecore document

open document uri

create

ready

get model

tree document

set document

render new document

Stopping

shutdown

exit

Figure 4.15: Sequence diagram for the protocol when starting and stopping the
server. The blue half-arrow (+) is part of the Tree Language Server Protocol
(TLSP).

78 K. Rekstad: Modeling in the Cloud for Education

4.4.2 User Actions

When a user triggers an action from the frontend, such as validation or code gen-
eration, an ActionEvent is sent to the server. If this event changes the model, a
notification will be sent by the server to update the document state. This is shown
in Figure 4.16.

Student

Student

Tree Editor Frontend

Tree Editor Frontend

Tree Editor Extension

Tree Editor Extension

Tree Language Server

Tree Language Server

Perform an action

click action button

trigger action event

trigger action event

perform action

new document state

set document

render new document

Figure 4.16: Sequence diagram for the protocol when triggering an action. The
blue half-arrow (+) is part of the Tree Language Server Protocol (TLSP).

4.4.3 Property Editing

When a student wants to modify a model element, they first have to select the cor-
responding tree node. When the selection changes, the frontend asks the extension
for the properties of that node. This request is then sent to the server, where it re-
turns both the node properties and the schema for JSON-Forms to present it. This
is shown in Figure 4.17.

Chapter 4: Results 79

Then when the properties of the node are changed, an event is sent to the server
indicating the id of the node and the new property values. This is shown in the
lower half of Figure 4.17.

80 K. Rekstad: Modeling in the Cloud for Education

Student

Student

Tree Editor Frontend

Tree Editor Frontend

Tree Editor Extension

Tree Editor Extension

Tree Language Server

Tree Language Server

Select a node

select a node

update selected node

get node properties

get node properties

properties
and form schema

set properties
and form schema

render new
properties form

Edit a node property

enter new
property value

apply

send "change
properties of
node" event

send "change
properties of
node" event

create change
command

add command to
undo-history stack

new properties
and form schema

set properties
and form schema

render new
properties form

Figure 4.17: Sequence diagram for the protocol when editing a node property.
The blue half-arrow (+) is part of the Tree Language Server Protocol (TLSP).

Chapter 4: Results 81

4.4.4 Tree Editing

Editing the tree hierarchy by adding children is done by first selecting the child
node’s type. This can be presented using the HierarchySchema, which is already
sent on the TreeDocument when the model was loaded. When a student selects the
node to add a child on, and the type of child node, this is sent via the extension
towards the server. The server should create a Command from the .edit frame-
work, in order to have a undo/redo history. The new document state is returned
afterwards. This is shown in Figure 4.18.
Other structural edits, like deleting nodes and moving children to a new parent
have a similar sequence, although not shown for brevity.

Student

Student

Tree Editor Frontend

Tree Editor Frontend

Tree Editor Extension

Tree Editor Extension

Tree Language Server

Tree Language Server

Add a tree node

open "add child"
menu on a node

show possible
node types

Add child to
node with type X

add child to
node with type X

add child to
node with type X

create change command

add command to
undo-history stack

new tree document

set document

render new document

Figure 4.18: Sequence diagram for the protocol when adding a child node. The
blue half-arrow (+) is part of the Tree Language Server Protocol (TLSP).

82 K. Rekstad: Modeling in the Cloud for Education

4.5 Open Source Project: Measures Taken for Viability
and Maintainability

This section will describe the measures taken in order to make the project9 viable
and maintainable as an open source project.

4.5.1 Code Availability

Possibly the most important part of open source, is available source code. The
project is hosted10 on a public website for collaboration on open source software:
GitHub.
Also important, is the project visibility being public, not private.
The project has the supervisor added as a contributor, in case one project main-
tainer is unavailable.

4.5.2 Documentation

Readme The main project has a “Readme” file with an overview of the project’s
components.
The components named “tree-document-model-js”, “tree-editor-frontend”, “vscode-
ecore-tree-editor-extension” and “vscode-webview-tree-editor-rpc” have a Readme.
The “model-server” component does not have a Readme.

All the readme files are either very minimal, or the default Readme from a project
generator.

Source code All the modules contain some comments inside the source code.
Not all the source code is documented, only where the author deemed it necessary.
A code base search11 returned that 58 files of 169 files had comments, with a total
of 128 comments.

4.5.3 Automation

Package manager A package manager is used for installing dependencies and
compiling each module individually. For the TypeScript modules, npm (Node Pack-
age Manager) is used, and dependencies are tracked in a package.json. For the
java module, mvn (Apache Maven) is used, and dependencies are tracked in a
pom.xml.

9The results report on the project in version 59b722c117, available at
https://github.com/krissrex/tdt4900-master-thesis-ecore-tree-editor/tree/
59b722c117346dcc53da16275819e0d5952f0d05.

10Project source: https://github.com/krissrex/tdt4900-master-thesis-ecore-tree-editor.
11 ag -stats -c -ignore-dir dist ’\Q/**\E\s’ .

https://github.com/krissrex/tdt4900-master-thesis-ecore-tree-editor/tree/59b722c117346dcc53da16275819e0d5952f0d05
https://github.com/krissrex/tdt4900-master-thesis-ecore-tree-editor/tree/59b722c117346dcc53da16275819e0d5952f0d05
https://github.com/krissrex/tdt4900-master-thesis-ecore-tree-editor

Chapter 4: Results 83

Build Build scripts using bash are provided, that compile the modules (using
npm or mvn) and copy the outputs to the correct path. They also build in the
correct order, regarding inter-module dependencies.

IDE configuration Files are added to automatically configure a contributor’s
IDE, if they use VSCode for the TypeScript modules and IntelliJ for the java mod-
ule. When using VSCode, a list of recommended extensions is provided as well,
which can be automatically installed. There are Tasks defined for VSCode that can
trigger the different npm builds, and Run configurations to start the modules.

CI/CD There is no Continuous Integration (CI) and Continuous Deployment
(CD) configured. This can be added later when needed; for 1 developer it is over-
head.

4.5.4 Licensing

Module license The modules use the MIT license12. It is a very simple and per-
missive license, compatible with open source, and commonly used. The licenses
are not in separate files or the readme. They are instead mentioned in the pack-
age.json and pom.xml files.

Copied code Some code is copied from other sources. The original license has
been included in these cases. No code is copied from incompatible or strict licenses
that contradict MIT.

Third party dependencies No proprietary dependencies are used13 , and none
with incompatible or intrusive licenses.

4.5.5 Code

Code style The code uses readable names and small files. The programming
languages (TypeScript and Java) are common, especially in this context. The code
is formatted with automatic code formatters14, ensuring a consistent style.

Dependencies The dependencies and libraries used are common and in some
cases official, in this context. Effort has been put into using the same dependencies
as related works (such as LSP and EMF.Cloud projects).

12https://opensource.org/licenses/MIT
13TypeScript modules were scanned with: npx license-checker --production.
14Prettier and IntelliJ format the code.

84 K. Rekstad: Modeling in the Cloud for Education

4.5.6 Issue Tracking

An issue tracker is available on GitHub. A user is required, but signup is free. A
discussion forum is available as well on GitHub. There is no Wiki, but it is easy to
create one on GitHub if demand arises.

Chapter 5

Evaluation

This chapter uses the Design Science Research methodology’s evaluations on the
previous chapter’s results. The evaluations investigate how much of the needed
functionality is actually supported. They also present some prescriptive design
theories, as design science evaluations are expected to produce knowledge.

The first two evaluations look at the tree editor itself, compared to the goal of
modeling in the cloud and Objective 1. The third evaluation investigates the soft-
ware architecture with regards to Objective 3. The last evaluation examines the
project from an open source contributor’s point of view, using a checklist with best
practices. This stems from Objective 2.

5.1 Use Case Completeness Evaluation of Tree Editor Ex-
tension

Introduction The design was evaluated for completeness based on a list of mod-
eling actions. The modeling actions stem from the modeling process used in TDT4250,
in Section 2.2.
This evaluation was performed by the author, not in a class of TDT4250 students.
Evaluation was based on an artifact at the proof-of-concept stage.

Setup To perform the evaluation, a Gitpod workspace was created with VSCode
as the editor of choice. A Gitpod user can choose between Theia and VSCode in
their preferences before creating the workspace. VSCode was used because it is
the default, and an issue in Theia gave error messages when uploading extensions.
The message indicated a problem with the current version of theia, instead of the
extension.

A Gitpod Workspace using https://github.com/krissrex/ntnu-tdt4250-study-emf
was used. This contains the model from a 2019 run of TDT4250.

85

https://github.com/krissrex/ntnu-tdt4250-study-emf

86 K. Rekstad: Modeling in the Cloud for Education

The Ecore Tree Editor extension was build locally on the author’s machine. The
resulting .vsix extension installer was uploaded to the workspace. Right click-
ing on this file inside VSCode allowed installation, by selecting “Install Extension
VSIX”.

The existing model files reside in the no.ntnu.tdt4250.oving1.model/model directory.

Results The list is shown in Table 5.1. Each row is a test case with a unique ID.
The result is presented in the “Supported?” and “Requires Eclipse IDE” columns.
The optimal result in “Supported?” is “YES”, meaning the design both supported
the case and the artifact implemented it. Next best is “Yes”, meaning a clear ap-
proach can be seen by the author to develop the artifact further using the existing
design’s constructs and models, to support the case. A case with “No” indicates
that the design needs to change. If a case cannot confidently be answered, the
result is “Unknown”. A related paragraph for that test should explain why it is
unknown. If “Requires Eclipse IDE” is “Yes”, the case would need Eclipse IDE to
be solved, requiring design changes to the artifact.

ID Use Case
Supported?

[NA/No/Unknown/
Yes/YES]

Requires
Eclipse IDE

1 Create new .ecore model
file

YES No

2 View Ecore model by
opening the .ecore file

YES No

3 Create an EPackage,
EClass and EAttributes
and EReferences

Yes No

4 Change the properties of
the package, class and at-
tributes

Yes No

5 Create a new dynamic in-
stance file from an EClass

Yes No

6 Enter dynamic instance
data

Yes No

7 Change the .ecore model
by adding a EAttribute to
the EClass

Yes No

Chapter 5: Evaluation 87

Table 5.1 continued from previous page

ID Use Case
Supported?

[NA/No/Unknown/
Yes/YES]

Requires
Eclipse IDE

8

Open the dynamic in-
stance, confirm if it is
marked as invalid
because the new at-
tribute is not filled
in.

Unknown Yes

9

Open the .ecore model
file, and add a new val-
idation
to the EClass as an EAn-
notation. Use the java
validation kind,
not OCL.

Yes No

10 Create a .genmodel file
based on the .ecore file.

Unknown No

11 Generate java project
with the model code

Unknown Yes

12 Write a validation in the
java code

NA No

13 Load the model code into
the IDE, to use the vali-
dation

No Yes

14 Edit the model and run
the custom validation

Yes* Yes

15 Generate a user interface
or editor plugin

No Yes

Table 5.1: Use Case-evaluation of the Tree Editor Extension design. Based on
modeling in TDT4250. Each row and ID is a step in the modeling process. The
evaluation result is in the “Supported?” and “Requires Eclipse IDE” columns. For
tasks that are not applicable to the modeling environment, the NA (Not Applica-
ble) is chosen. The ‘Yes’ in “Supported?” indicates that the design should support
it, possibly with further development, but not major redesign. The all-capital ‘YES’
means the developed artifact has demonstrated it.

5.1.1 Test Case Details

The individual results will now be discussed in more detail. Each paragraph is
denoted with the test ID in Table 5.1. The knowledge presented from the cases
are interior to the design, and provide prescriptive design theories for this context

88 K. Rekstad: Modeling in the Cloud for Education

and scope [53].

1 The design can do this with Commands in the extension. The command should
result in a message over TLSP with a file path to create the model at. The server
should then use the EMF.Cloud Model Server to create the file, giving it a empty
Ecore model as argument.

2 The editor should have a formal and available set of requirements for what it
must do in order to comply with the TLSP. This can help when creating new tree
editor frontends for other IDEs. If the TLSP should be reused to solve the m× n
problem (see Section 2.9), then the protocol must also be used in other IDEs with
the same kind of generic frontend.

The mapping of Ecore elements to nodes should use the EMF ItemProvider mech-
anisms. For the actual Ecore metamodel and GenModel, a specific ItemProvider
should be used, instead of the reflective variant. The reflective variant creates poor
labels, from a usability standpoint, and do not match the ones seen in Eclipse IDE.

3 Creating a new node should be done using the HierarchySchema construct to
constrain the user interface (with regards to child types), and then use a specific
command in TLSP to perform the creation. Commands to the TLSP must include
enough information to identify the document, model root and node to alter.

The existing design does not use versions for TreeCustomDocument, but this may
be required in a new design iteration. The LSP uses versioned documents, which
can ensure actions and problems are done and reported respectively against the
correct document version, where only the “current” version is of interest.

The editor frontend should be as stateless as possible. The frontend can store
(cache) the tree as internal state, but should not be responsible for changing the
state, as it will cause synchronization issues because the state also exists in the
extension and the server. Using the server for all state changes also ensures that
invalid states can be prevented.
Also, when state changes are done in the frontend or extension, there is a risk that
domain specific knowledge (about EMF) is captured there, which should instead
be in the server. Only the server is the truly reusable component, and must contain
all such domain specific knowledge.

4 Changing the properties should use the form in the detail view. This form may
require completions for certain form fields, such as references to names of other
model elements (for example an EReference can have autocompletion for the type
property, suggesting EClass names). The TLSP should be queried for property com-
pletions, given the node ID, an appropriate property identifier and the current

Chapter 5: Evaluation 89

contents of the property to complete.

The property changes must be stored immediately in the extension (as a “dirty”
document or similar), before being applied to the model. This is because the ed-
itor frontend is transient, and lost if the user changes editor tabs, having to be
recreated from the extension’s state and the frontend’s cache. Storing the prop-
erty changes in the extension allows the use of “dirty” (or unsaved) documents,
as opposed to the frontend cache where it risks being lost.

5 The Action construct should be sent via TLSP, with data that indicates a dy-
namic instance must be created. This also needs a file name. The server could call
back the extension over TLSP to request a filename, where the extension prompts
the user.

6 Entering custom instance data should be similar to editing the Ecore model. A
want for customizing the label logic and the “tree mapping rules” has been iden-
tified, but is not designed for. (For example, a student would use a combination
of two fields as the label, such as firstname + ‘_‘ + lastname.) A next design
should accommodate for such flexibility, using configuration files or augmenting
model files in the user’s project. (The GenModel is an augmenting model file).
Alternatively the model could be altered with annotations that specify the label
and tree mapping rules.

7 Changing the model should also notify the extension about changes, so the
dynamic instance editor tab is able to update its state.

8 It is unknown how to handle a changing model from a model instance’s per-
spective. Some suggestions are that the user server tries to correct the model in-
stance, or the user has to edit the instance using a text editor (XMI). Such correc-
tive behavior would require Eclipse IDE for now, if Eclipse IDE even changes the
model instance in this case (this is unknown to the author).

9 The java validation annotations are only text, and defer the job to the code gen-
erator. They are easily added as child nodes. The OCL variant should not be hard
to support either, as the OCL evaluation would be performed in the server. Doing
OCL evaluation in the frontend may need the EMF runtime API to be present,
because the OCL evaluator traverses objects using the metamodel. However, the
javascript based EMF implementation for cross-ecore (see Section 2.12) was not
bug free, based on an attempt to use it in this design.

10 The GenModel needs to know about the Ecore model, because it augments or
decorates it. A new file is not necessarily empty; it may have some minimal data,
like a XMI structure with a reference to the ecore model file. This may need some

90 K. Rekstad: Modeling in the Cloud for Education

custom logic, possibly contained in a java library used in Eclipse IDE. However,
the exact details are unknown because they were not researched, due to being out
of scope (time constraints). A new design should reuse the GenModel file creation
logic, to create a new genmodel file.

11 The Action construct should be sent over TLSP to trigger code generation.
However, the server implementation to trigger code generation is unknown. It is
assumed that it exists in a reusable java library used by Eclipse IDE, but there is a
possibility that it relies on Eclipse IDE internals.

12 Not applicable, as a text editor and java extension does this.

13 When creating a validation in java, the model needs to be compiled and
loaded into the server. The current design does not have a mechanism for loading
a user created java project. The extension should provide a Command to load the
model into the server. The server should be notified with TLSP, in a new design
possibly using a custom Message construct, specifying an action and parameters
the same way GLSP does in its ActionMessage construct (see Section 2.12.2). This
is because loading a java project is very specific to EMF, and not a general concept
for all tree structure editing. Using a custom Message and a handler in the server
will avoid polluting TLSP with EMF concepts.

14 Running the custom validation is trivial, just send an Action over TLSP. How-
ever, this case is marked with an asterisk, because running the validation is only
trivial if the server already has the validation code loaded. So task 14 depends on
13; if 13 cannot be solved then validation cannot be performed using custom code.

15 The code generator for GenModel does not create a web based editor yet.
It creates an Eclipse IDE plugin and editor. A new design should include a code
generator that can create a cloud based editor. This could use Theia, and possibly
this Tree Editor Extension itself. Theia seems intended for this type of use.
Alternatively, it could use the Theia Tree Editor (see Section 2.12.1.2) which the
“coffee-editor” example uses, because this deployment can compile Theia. How-
ever, that approach can not run in VSCode.

5.2 Qualitative Evaluation of the Tree Editor Extension

The current design (models and constructs) achieves the basic goals of modeling
in a cloud based IDE. Applying the architecture of a general editor and domain
specific server seems to fit the problem of tree structure editors.

The developed artifact (instantiation) is not ready to be used by students of TDT4250,
as much of the design is not implemented. Some important features are not yet

Chapter 5: Evaluation 91

supported by the design, mainly related to code generation and validation. They
are not proven to be infeasible, but are unexplored.

Specialized editors Another unexplored area is the special adaptation of edi-
tors to GenModel and Ecore themselves. The GenModel presented in Eclipse IDE
has many options that are not present in the actual file itself. This may mean that
there are default options presented in the Eclipse IDE, and only saved to the gen-
model file if changed. The feasibility of a customized editor is unexplored.

High development cost An important observation is that creating a Tree Edi-
tor frontend from scratch requires many “basic” features to be manually made.
Keyboard shortcuts and right-click context menus are not present by default. For
example, undoing the text entered in a property form field must also be supported
explicitly by the design; the IDE does not provide it for free. The amount of work
may be substantial, to reach a high level of quality and useability.

Another factor increasing the development effort, is that this design requires de-
velopers to work with two separate domains in mind: the EMF and the generic
Tree Editing. Care must be taken to not “bleed” domain concepts and names into
the other components, across bounded domain contexts. Every feature of editing
Ecore models must first be mapped to a generic Tree Editor concept.

Conflicting protocol design paradigms When designing the protocol, two dif-
ferent paradigms of protocol designs were encountered. One is the LSP approach,
where many methods and capabilities are explicit in the protocol. The other is the
GLSP approach, where the protocol has approximately 3 methods in total, and all
the logic is encapsulated in a ActionMessage. The server will perform a handler
lookup for the message, and thus move much of the “surface area” of the pro-
tocol to internal code and handlers. Essentially, the GLSP approach is wrapping
the JSON-RPC data inside another layer of JSON-RPC data. One observed advan-
tage of this is the forwarding of JSON-RPC calls: the GLSP approach only needs
to forward a ActionMessage and it is done. The LSP has to “unpack and re-call”
the forwarded message. One potential cause for the difference is that forwarding
is much more present in GLSP: it also uses a Custom Editor frontend. Thus mes-
sages are relayed from the frontend via the extension and to the server. In LSP,
the editor is natively supported by the IDE.
The design of this thesis’ artifact chose the LSP approach, of a large and explicit
protocol. Without evidence, it is assumed that this approach is easier for other
developers when they want to implement a server for a domain other than EMF.

92 K. Rekstad: Modeling in the Cloud for Education

5.3 Qualitative Software Architecture Evaluation

The software architecture has been designed to keep EMF out of the tree editor
frontend and TLSP protocol. The server has been designed to function indepen-
dently of the IDE, when it comes to EMF editing. The server also reuses software
from EMF to avoid reimplementation.

5.3.1 Reusable Components for Related Migrations

Frontend The frontend instantiation can be further developed to become a high
quality component. This should provide enough utility and value that other VS-
Code extension developers use it when they need to implement tree editors.
Currently, the tree editor frontend is not good enough for this. It is missing a con-
text menu (right click), keyboard navigation, drag-and-drop of nodes, navigation
from the VSCode problems menu and log1. The current styling is visually unpleas-
ing, and the user experience is poor. None of these are unsolvable problems, but
do require substantial effort. That is where the value of a single, reuseable and
standard tree editor lies: avoiding the effort when it has already been done.

Protocol The protocol is designed independent of EMF, on the same ideas of
the editor frontend. When the protocol is specified enough, so it is near complete
and highly functional, different IDEs can start to support it natively. The benefits
of LSP lies in this native IDE support: the text editors are already made and high
quality; the language server implementer only needs to create one component.
Currently, the protocol is underdeveloped. The specified methods have matching
functionality in the editor, but do not go further in “fear” of specifying invalid or
unusable methods.

The protocol does not have an official specification document or website. The
LSP has this, which serves as the authoritative source for the specification, along
with Microsoft’s implementation for VSCode. A protocol should be specified in
clear, unambiguous language, and have a clear indication of who the authors and
maintainers of the specification is. A protocol should also be versioned and have
a changelog. The current design only specifies the protocol in source code.

Component distribution The current open source project is not very reuseable.
While the components have a design and architecture to support reusability, they
are not published to artifact repositories like maven central and npm. This is cru-
cial for reusability in other extension developers’ projects, as copying code or
downloading compiled binaries is deemed “dirty”, wrong, and likely to become
outdated.

1Text editors can navigate to a specific file and line when the user clicks a specific URI. These
are used to link to stack trace source locations, warnings and problems.

Chapter 5: Evaluation 93

5.3.2 Components for Migrating EMF to Other IDEs

Reusable server The server is developed independent of VSCode. The only ex-
ternal dependencies are the Java 11 Runtime and a client for the Tree Language
Server Protocol. The server should contain all the logic related to EMF. The cur-
rent instantiation has some knowledge inside the VSCode extension, like the file
types and VSCode Command names. This is because they must be known before
extension activation. A future and more complete first party integration of TLSP
into could move this knowledge to the protocol instead. Regardless, it is a small
amount of EMF knowledge, compared to what the server holds. Transition to other
IDE will be easy, if they support TLSP and can run the server component.

EMF code reuse The server is successfully able to reuse parts of the EMF frame-
work. The EMF runtime API, the Ecore metamodel, the ReflectiveItemProvider
and the EMF.Cloud Model Server are all used. A server should reuse other compo-
nents as well, like the code generator, OCL compiler/interpreter, validation frame-
work and so on. These are not reused in the instantiation yet, but because of time
constraints. They are not re-implemented either, which is the “worst case sce-
nario”.

5.4 Evaluation of Open Source Project Viability

5.4.1 Project Evaluation

The software project created as part of this thesis has been evaluated according to
Section 3.4.2. The results of the evaluation are shown in Table 5.2. Some results
are clarified further below, using the test requirement’s ID as the paragraph name.

OS8 The project has a Changelog.md file for the VSCode extension, but not for
the other components or the project as a whole.

OS10 There is no official plan. But the project could potentially be promoted us-
ing EclipseCon 2021, or through email to related stakeholders such as EclipseSource
members (like Dr. Jonas Helming).

OS11 The author is the committed person, but the duration of commitment can-
not be guaranteed to be long enough.

OS18 Not all the code is commented, but the (subjectively) required parts are.

94 K. Rekstad: Modeling in the Cloud for Education

ID Requirement
Present
[No/Yes]

OS1 Open source license Yes
OS2 Readme Yes
OS3 Contributing guidelines No
OS4 Code of conduct No
OS5 LICENSE file No
OS6 NOTICE file No
OS7 Easy to remember project name Yes
OS8 Changelog file No*
OS9 No sensitive material in the commit history (passwords

etc)
Yes

OS10 You have a marketing plan for announcing and promot-
ing the project

No*

OS11 A person is committed to managing community interac-
tions (issues, pull requests)

Yes*

OS12 Consistent code conventions and clear function/method-
/variable names

Yes

OS13 Wiki or documentation website No
OS14 GitHub Issue templates for bugs and feature requests No
OS15 GitHub Pull Request templates No
OS16 Semantic release versioning (using major.minor.patch,

like 1.4.1)
Yes

OS17 Code dependencies (and transitive dependencies) do not
use GPL or Sun BCLA

Yes

OS18 Commented and documented code, explaining inten-
tions and edge cases

Yes*

Table 5.2: Evaluation of the project as open source. The requirements are sourced
from Mike Linksvayer et al. [57], Danny Guo et al. [58], Beaton [59] and Wayne
Beaton et al. [60]. The results are in the “Present” column. A result with an as-
terisk (*) is explained further in the text.

5.4.2 Readme Evaluation

The root level “Readme” file is very important. It is the face of the project to the
world. Many of the open source evaluation elements are related to the Readme.
Therefore, they have been condensed to a separate evaluation. Note that this
project has multiple modules, and therefore multiple Readme files. This evalu-
ation only looks at the top level, project wide Readme. The results of the evalu-
ation are shown in Table 5.3. Some results are clarified further below, using the
test requirement’s ID as the paragraph name.

Chapter 5: Evaluation 95

OSR3 The Readme does not have the description, but the GitHub project has a
description shown in the side of the webpage of the project.

OSR5 The Readme does not have a project background story, but the GitHub
project has a description explaining this is a result of a masters thesis.

ID Requirement
Present
[No/Yes]

OSR1 The project has a name. Yes

OSR2
Badges or icons (e.g. CI build status, npm version,
open-vsix store page, vscode store page)

No

OSR3 Description of what the project does. No*
OSR4 List of suported features. No
OSR5 Project background story. No*
OSR6 How can a user use this project? No
OSR7 Where can a user get more help? No
OSR8 Is the project ready for use? No
OSR9 Feature roadmap No
OSR10 Contributing description. No
OSR11 Getting started with contributing. No
OSR12 Authors and acknowledgement No
OSR13 Project license No

OS14
Project status (e.g. active, lost interest,
discontinued, deprecated, looking for new owner, migrated)

No

Table 5.3: Evaluation of an open source project’s Readme. The requirements are
sourced from Mike Linksvayer et al. [57], Danny Guo et al. [58], Beaton [59] and
Wayne Beaton et al. [60]. The results are in the “Present” column. A result with
an asterisk (*) is explained further in the text.

Chapter 6

Discussion

The discussion will look at the implications of the results and their evaluations in
a bigger picture. Arguments will be presented based on these results, eventually
leading to the conclusions in the next chapter.

6.1 VSCode as an EMF Tree Editor in the Cloud

When moving the Eclipse Modeling Framework to the cloud, VSCode is a suitable
IDE for this. It can run as a cloud IDE in Gitpod. VSCode also provides enough
mechanisms to build a tree editor, without unreasonable amounts of effort.

VSCode is a better choice than Theia While Theia is a product of the Eclipse
ecosystem’s efforts, it remains a deployment target rather than a standalone IDE.
Theia is replaced in Gitpod with VSCode as the default IDE. The developers strug-
gle to keep feature parity with VSCode, as they have to catch up whenever VSCode
moves forward, while at the same time managing their other tools and compo-
nents1. The Custom Editor API for example, came much later to Theia2. Even
if Theia have more tools from the Eclipse ecosystem for deploying EMF models,
these mostly rely on the Theia Extension mechanism, incompatible with Gitpod3.

VSCode is extensible enough VSCode does not provide tools for creating tree
editors. However, the extension API provided by VSCode has enough features to
build a tree editor. The different file extensions can be associated with a cus-
tomized document editor. There are APIs to perform Commands, such as request-
ing the extension to create a new file, or some other arbitrary action. Developed
extensions can be distributed and installed without extra work, bureaucracy or

1The main developers behind Theia are the same as those behind Gitpod and Eclipse Che, mean-
ing they are spreading their efforts thinly.

2The API was added in March 2021 to Theia. VSCode released it to the public in March 2020.
3Deploying a Theia Extension requires compilation of Theia, and replacing the entire IDE in

Gitpod. Remember that a Theia Plugin is equivalent to the VSCode extension concept. A Theia
Extension is different and not compatible at all with VSCode.

97

98 K. Rekstad: Modeling in the Cloud for Education

fees/costs. This makes VSCode a good candidate for extending with EMF editor
capabilities.

VSCode extensions can show a tree editor The Custom Editor API from VS-
Code allows an extension to freely render an editor using web technologies like
HTML, javascript and CSS. This is enough flexibility to create a custom tree editor
to show hierarchical tree structures with labels and icons, and a property sheet.
The tree editors in Eclipse IDE can be re-implemented on a functional level as a
Custom Editor in VSCode.

VSCode extensions can run compiled programs The Eclipse Modeling Frame-
work relies heavily on java as it exists now. Because VSCode can run compiled
programs such as executable .jar files, the existing EMF code can be ran under
VSCode. However, this code needs to communicate across processes to integrate
it into a VSCode extension. VSCode itself has no way of reaching inside the pro-
cess, but can use standard mechanisms like streams (stdin/stdout), sockets, and
HTTP requests. This makes it possible to avoid re-implementing all of EMF for a
javascript runtime.

6.2 Reuse of EMF java code

Using a server component in the tree editor allows implementing it with java. This
in turn opens for reuse of the existing EMF java runtime API, related EMF libraries
and the components used in Eclipse IDE.

Java server that reuses EMF Because VSCode extensions can run compiled pro-
grams, and not only javascript extension code, java can be used. This in turn opens
for using the official EMF runtime API, and the official Ecore metamodel imple-
mentation. These allow reflective access to any EMF models. It also saves effort,
because it reuses existing code. A contributing open source developer already fa-
miliar with EMF will also find it intuitive to contribute on such a server component.
It also removes the risk of using third party Eclipse Modeling Framework (EMF)
runtime API implementations, like CrossEcore, which are not as battle tested as
the java one4.

Additionally, it lets the server implementation use any EMF tools already devel-
oped for java, like solutions for storage, change management, change-transactions
and so on.

The EMF.Cloud Model Server can be embeded in the server Instead of adding
another process, another communication step, and another components to man-

4This solution tried using CrossEcore-generated TypeScript in the editor frontend, but scrapped
it because the underlying library and code generator had bugs.

Chapter 6: Discussion 99

age, the EMF.Cloud Model Server can be used from java. The server is itself made
with java, and has an extensible design. The design implementation in this the-
sis demonstrated that this kind of use is possible. Instead of having a REST API
library control the EMF.Cloud Model Server, the internally used components are
extracted and put behind the server’s TLSP implementation. These components
implement several editing-related features, like scanning for al model files, load-
ing EMF Resources and other useful features5.

6.3 Creating a Tree Editor for VSCode Requires Substan-
tial Effort

Even if VSCode is able to support a tree editor for EMF, the editor itself has to be
created. With the current situation, this is a lot of effort.

Many functional requirements No good source can provide all the functional
requirements needed for a EMF tree editor, in a clear and concise manner. Existing
literature does not provide it, so it must be extracted. And because this thesis
did not have it as an objective, little effort was spent on formally capturing and
describing the requirements. The thesis did however attempt to find requirements
as an input to the design process, by simulating use cases. The discovery is that
the amount of requirements is high, and it is hard to separate between necessities
and nice-to-haves. A proper effort to create the tree editor component for all tree
editing uses, other than EMF, needs to do the requirements engineering more
formally. Especially when the functionality needs to be replicated for other IDEs
if they are to support TLSP.

Little comes out of the box Regarding the development of a tree editor in VS-
Code, even the most basic features must be implemented. For example, a text
input field in a browser will normally let a user right click and select “undo”, or
press ctrl Z to undo. In a VSCode custom editor, this is not there. No context
menu shows up at all when right clicking. The reasoning might be that the Cus-
tom Editor is a blank slate, for any kind of editor. But as a developer, one would
prefer if an existing framework could provide most of the common and trivial
functionality. Luckily, the custom editor is still able to use any javascript libraries
and frameworks that target a web browser. If any existing components can pro-
vide a context menu or framework for building editors, they can be used. A catch
is that they have to conform to the stateless and remote-controlled nature of the
Custom Editor’s WebView.

High usability demands high effort Because so little comes out of the box,
many rudimentary features that are assumed and expected by a user will have

5It provides EditingDomains, and processes EMF Commands It also provides UI Schemas for mod-
els, to use with JSON-Forms.

100 K. Rekstad: Modeling in the Cloud for Education

to be implemented. The existing Eclipse IDE and its tools for EMF were disliked
partially for problems with the tools. A tree editor in the cloud might not be judged
on any “lighter” terms by a student, and can be perceived equally bad or worse.
Installation issues and problems with the cloud based editor need to be minimized,
to provide a good user experience. And the functionality may have to match the
existing high standards of quality that are seen elsewhere on the web and IDE
space. Neglecting this may just create another inferior editor, which works against
the purpose of increasing MDD and EMF adoption.

Open sourcing requires investment before payoff Publishing a project online
is not “open sourcing” it. And developers will not flock to the project as free man-
power. As evident in the evaluation, a lot of work has to be done on the Readme
and project documentation. Open source projects almost have to be “sold” to de-
velopers, like commercial products. The Readme must clearly convey the purpose,
the novelty and usefulness, the functionality and guide the contribution setup for
the open source project. The project also needs a good, memorable name. Then
it has to be marketed to interested developers, so they can discover it. And once
contributors come, the project needs a person to manage it, processing any new
issues and feature requests, reviewing incoming contribution code and merging
pull requests. Only after all this, comes the direct payoffs for the project itself.

However, there is another benefit of being open source. Even if no one wants to
contribute, the project can be used as inspiration, code can be copied or “scav-
enged for parts” into other projects. This project did this itself, by taking the Base
Protocol jsonrpc implementation from the open source LSP4J and VSCode LSP
projects.

6.4 Designing a Standardized Tree Language Server Pro-
tocol

When EMF first is in the process of moving from Eclipse IDE to VSCode, choices
to make another future migration easier may pay off. Standardizing on a protocol
for all cloud based tree editors, and also isolating all EMF editing to a single server
component can support this.

Tree editors can use a standardized protocol The design work in this thesis
has shown that EMF can be mapped to a generic tree structure. This tree struc-
ture is free of all EMF concepts, and thus other domains with tree structures6

could map to the same generic tree structure, and immediately fit into the de-
veloped tree editor frontend. This tree editor frontend is also demonstrated to
be instructed about domain specifics (EMF) using a generic tree editor protocol:

6For example HTML, XML, JSON and file systems.

Chapter 6: Discussion 101

TLSP. Standardizing on such a protocol can give the same benefits seen in LSP in
solving the m× n language–IDE problem, and more out-of-the-box support for a
language when moving to a new IDE which supports LSP. Eventually, with good
adoption, such a protocol could reduce migrations of EMF to different IDEs to
become trivial.

EMF may need to migrate IDE again New IDEs show up. Trends change. VS-
Code itself launched in 2015. Eclipse IDE launched in 2001, while EMF7 launched
in 2003. While it has been 14 years between Eclipse IDE and VSCode, it was only 2
years between VSCode and Theia. When IDEs become more component-based and
reuseable, the available IDEs in the market may increase8. Gitpod itself changed
from Theia to VSCode. If a solution had implemented EMF editing in Gitpod a
year earlier, tightly coupled to Theia, it would already need to transition to VS-
Code. There are also non-cloud IDEs where EMF could be integrated. For example,
IntelliJ is a popular IDEs for Java, without any EMFs support. A premise for this
migration, however, is that the other IDEs can implement TLSP and a tree editor
frontend.

LSP has a suitable Base Protocol While the Language Server Protocol is de-
signed for text editing, its Base Protocol is generic and reusable. This Base Protocol
can be specialized to support a tree editor protocol. A big win for this protocol is
that it is proven to work for both LSP and GLSP, for text and diagrams respectively,
and it has readily available components to create new software. The extension in
this design reused the vscode-jsonrpc component, directly from the LSP project.
The server used the java version of this, from the Eclipse LSP4J project. Getting
started with the Base Protocol has essentially no upfront development cost. If the
design is similarly component-based and LSP independent for the other program-
ming languages supported by LSP, the Base Protocol may already be available as
a dependency/library in other programming languages too.

Another advantage of using the Base Protocol, is that it is bi-directional. This al-
lows the server to initiate a request to the client. When working with EMF, the
model can be changed by the server or other editors (like a diagram editor). This
bi-directional protocol then allows the server to notify any editor of changes.

Tree editors can use TLSP The standardized protocol can be created on the
Base Protocol and become analogous to LSP for trees. The design created in this
thesis demonstrates that this is feasible. Thus, tree editors can standardize around
the Tree Language Server Protocol (TLSP). The current protocol design may need
changes, but it should be sufficient as a starting point.

7The earliest version the author could find in the Eclipse EMF release page was v1.0.2 in 2003.
8A parallel is seen in web browsers, where Google’s open source Chromium also is the basis for

Microsoft Edge, Vivaldi, Brave, and others.

102 K. Rekstad: Modeling in the Cloud for Education

TLSP design creates reusable software Regardless of a wider adoption of TLSP
or not, its design when applied to EMF tree editing will create more reusable
software. The editor frontend can be reused by an unrelated tree editing project.
The EMF TLSP server can be reused as an alternative to EMF.Cloud Model Server.
If the server contains the core of EMF editing, the external interface (TLSP) could
be replaced if not needed9.

6.5 Limitations

Research is not always perfect, and creative design is hard to do in an objective
manner. This section addresses some limitations, shortcomings and uncertainties
of this thesis.

An unufinished instantiation leaves risk in the design Because development
takes longer time than what is allocated for a master’s thesis, a substantial amount
the protocol design is left on a theoretical design stage. Many challenges and con-
strains appear first when the design is implemented, imposed by the surrounding
frameworks, APIs and tools used to create the software. Although the author is
confident in this thesis’ use case evaluation, the results cannot be guaranteed with
the utmost certainty before they are all implemented. Regardless, the overarch-
ing design and protocol should still be valid and contribute new knowledge. Most
obstacles encountered from here on, are assumed to be possible to work around
with minor changes to the protocol.

Agile development causes a protocol to emerge slowly Doing an Agile ap-
proach means creating software that works. It also means postponing work, in-
stead of having a lot of unfinished work in progress. This is good for delivering
working software to customers and users, but not for developing a full and com-
plete protocol specification. While an agile approach can always back up the va-
lidity and usefulness of protocol elements with a working implementation, it may
leave unidentified risks for later, contrary to how research aims to tackle risk early.
It can be argued, however, that Design Science Research uses the build-evaluate
cycle exactly to produce correct knowledge, instead of drafts and unproven hy-
potheses.

Lacking contact with stakeholders and Eclipse ecosystem The developers of
tools like Theia Tree Editor, ecore-glsp, JSON-Forms etc. may have deeper insights
and knowledge than the author. They may be able to suggest better, more prag-
matic and effective design solutions. They can also verify or disprove, or at least
indicate, the need for generic tree editors and protocols for EMF. The author did
not actively communicate with the Eclipse ecosystem, outside of two private chats
during EclipseCon 2020. There has also not been contact with other students of

9Just like the implemented server did with EMF.Cloud Model Server’s REST API.

Chapter 6: Discussion 103

TDT4250. The main reason is that the course is taught in the autumn, while the
master thesis is done during the spring semester. However, the author has been a
student of TDT4250 and talked to other classmates during the semester for their
opinion on EMF and Eclipse IDE.

Design Science Research methodologies can cause ad-hoc evaluations The
literature on Design Science Research says little on how to evaluate. There are only
abstract, high level recommendations to the forms of evaluation, such as action
research, case study, simulation and so on. This can cause a researcher to create
an evaluation which is ultimately positive of their view, or disregards important
aspects. The author has attempted to keep the evaluations related to the original
research goals, and grounded in existing practice. Regardless, the weakness of
unguided evaluation design is there.

Chapter 7

Conclusion

This thesis started by finding a way to enable modeling using Eclipse Modeling
Framework in the cloud, to solve Objective 1. A pre-project suggested creating a
tree editor for Gitpod, by creating a VSCode extension. This thesis then designed
an extension which used a software architecture and protocol that drew inspira-
tion from the Language Server Protocol and Graphical Language Server Platform
designs. The thesis also presented a way to implement a tree editor with this archi-
tecture, and a method which extracts functional requirements from the existing
EMF tree editors in Eclipse IDE through use cases. The architecture is a three
component system: a generic tree editor frontend, a VSCode extension, and an
EMF-specific server. This architecture also entailed using a protocol, dubbed the
Tree Language Server Protocol (TLSP), between the VSCode extension and the
server. This design was implemented up to the point it could successfully render
EMF models in Gitpod with VSCode.

The successful design and implementation of this architecture means it can be the
basis of a new sibling protocol to LSP and GLSP: the TLSP. This can be used by
other tools that undergo a similar migration to the cloud. This design also created
encapsulated and reusable components. It can also ease future migration of EMF
to another Integrated Development Environment, because the EMF logic is con-
tained in a reusable server, independent of VSCode. This means it solves Objective
3: An architecture to enable future related IDE migrations.

Lastly, this thesis produced an open source project for the editor and TLSP. How-
ever, open sourcing software requires more effort than what is currently done to
attract contributions. Gaining traction online for open source is similar to prod-
uct marketing. The amount of effort required to create a viable solution for cloud
based tree editing in VSCode is substantial. External contributions may be re-
quired for completing the implementation.

105

106 K. Rekstad: Modeling in the Cloud for Education

7.1 Future Work

This thesis has uncovered some new potential areas of research.

Theia or VSCode as a deployment platform The GenModel and code gener-
ator can target Eclipse IDE as a deployment platform. The model gets a plugin
generated, and an editor in Eclipse IDE for model instances. A similar approach
can be interesting for deploying a tree editor for model instances, but using Theia
or VSCode instead of Eclipse IDE. These could potentially reuse the TLSP as well.
Doing this would increase the value of EMF, and further illustrate the values of
Model-Driven Development and code generation.

Collaborative modeling Modeling is a collaborative task. With the move to
cloud, and with the increased amount of work from home1, collaboration can
move online as well. This is already normal for things like Google Docs, and Jet-
brains just added “Code With Me”. Obeo is also developing this for their cloud
based Sirius modeling tool. When all the editing is done through a protocol like
TLSP, the data could be redirected to multiple clients, meaning multiple students’
computers.

Completing the EMF editor A lot of the remaining work is routine design, not
research. But some remaining parts may be more challenging, such as getting
the GenModel working and specializing the editor to properly show a .genmodel
file like in Eclipse IDE. There are also challenges to loading the generated code
back into the server, for validations and custom ItemProviders. Completing this
will make the editor more useful, and also move it closer to a solution suited for
industry use, beyond just education.

1Due to covid-19.

Bibliography

[1] K. Rekstad, “A Modeling Environment in the Cloud for Education,” Pre-
project, Norwegian University of Science and Technology, Trondheim, Nor-
way, Dec. 9, 2020, 81 pp. [Online]. Available: https://github.com/
krissrex/ntnu- tdt4501- preproject- article/releases/download/
v0.1-29/thesis.pdf.

[2] Typefox. “TypeFox - Smart Tools For Smart People.” (), [Online]. Available:
https://www.typefox.io/ (visited on 12/09/2020).

[3] Eclipsesource. “EMF Forms Editors,” EclipseSource. (Feb. 2016), [Online].
Available: https://eclipsesource.com/blogs/tutorials/emf-forms-
editors/ (visited on 11/11/2020).

[4] Jonas Helming, “Ecore tools in the cloud - behind the scenes,” presented at
the EclipseCon 2020 (https://www.youtube.com/watch?v=YQyaCR_V5zc),
Oct. 22, 2020. [Online]. Available: https://www.eclipsecon.org/2020/
sessions/ecore-tools-cloud-behind-scenes (visited on 05/29/2021).

[5] L. Kuzniarz and L. E. G. Martins, “Teaching Model-Driven Software Devel-
opment: A Pilot Study,” in Proceedings of the 2016 ITiCSE Working Group
Reports, ser. ITiCSE ’16, New York, NY, USA: Association for Computing
Machinery, Jul. 9, 2016, pp. 45–56, ISBN: 978-1-4503-4882-9. DOI: 10.
1145/3024906.3024909. [Online]. Available: https://doi.org/10.1145/
3024906.3024909 (visited on 11/26/2020).

[6] Jordi Cabot. “I failed to convince my students about code-generation,”
Modeling Languages. (Feb. 9, 2015), [Online]. Available: https://modeling-
languages.com/failed-convince-students-benefits-code-generation/
(visited on 12/04/2020).

[7] Jon Whittle, John Hitchinson, Mark Rouncefield, Håkan Burden, and Rog-
ard Heldal, “A taxonomy of tool-related issues affecting the adoption of
model-driven engineering,” 2015. DOI: 10.1007/s10270-015-0487-8.

[8] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering
in Practice, ser. Synthesis Lectures on Software Engineering 1. San Rafael,
Calif.: Morgan & Claypool, 2012, 166 pp., ISBN: 978-1-60845-882-0.

[9] J. Krogstie, Model-Based Development and Evolution of Information Systems:
A Quality Approach. New York: Springer, 2012, ISBN: 978-1-4471-2935-6.

107

https://github.com/krissrex/ntnu-tdt4501-preproject-article/releases/download/v0.1-29/thesis.pdf
https://github.com/krissrex/ntnu-tdt4501-preproject-article/releases/download/v0.1-29/thesis.pdf
https://github.com/krissrex/ntnu-tdt4501-preproject-article/releases/download/v0.1-29/thesis.pdf
https://www.typefox.io/
https://eclipsesource.com/blogs/tutorials/emf-forms-editors/
https://eclipsesource.com/blogs/tutorials/emf-forms-editors/
https://www.eclipsecon.org/2020/sessions/ecore-tools-cloud-behind-scenes
https://www.eclipsecon.org/2020/sessions/ecore-tools-cloud-behind-scenes
https://doi.org/10.1145/3024906.3024909
https://doi.org/10.1145/3024906.3024909
https://doi.org/10.1145/3024906.3024909
https://doi.org/10.1145/3024906.3024909
https://modeling-languages.com/failed-convince-students-benefits-code-generation/
https://modeling-languages.com/failed-convince-students-benefits-code-generation/
https://doi.org/10.1007/s10270-015-0487-8

108 K. Rekstad: Modeling in the Cloud for Education

[10] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware. Boston: Addison-Wesley, 2004, 529 pp., ISBN: 978-0-321-12521-7.

[11] Hallvard Trætteberg and Jon Espen Ingvaldsen. “EMF - TDT4250 - NTNU
Wiki.” (Jun. 26, 2017), [Online]. Available: https://www.ntnu.no/wiki/
display/tdt4250/EMF (visited on 05/30/2021).

[12] Hallvard Trætteberg. “Constraints and validation - TDT4250 - NTNU Wiki.”
(Apr. 9, 2020), [Online]. Available: https://www.ntnu.no/wiki/display/
tdt4250/Constraints+and+validation (visited on 05/30/2021).

[13] Hallvard Trætteberg. “EMF step-by-step - TDT4250 - NTNU Wiki.” (Jun. 15,
2017), [Online]. Available: https://www.ntnu.no/wiki/display/tdt4250/
EMF+step-by-step (visited on 05/30/2021).

[14] Hallvard Trætteberg. “Editing Ecore model instances - TDT4250 - NTNU
Wiki.” (Jun. 25, 2017), [Online]. Available: https://www.ntnu.no/wiki/
display/tdt4250/Editing+Ecore+model+instances (visited on 05/30/2021).

[15] Hallvard Trætteberg. “Genmodel - TDT4250 - NTNU Wiki.” (Jun. 26, 2017),
[Online]. Available: https://www.ntnu.no/wiki/display/tdt4250/
Genmodel (visited on 05/30/2021).

[16] Ed Merks. “EcoreEditor.java.” in collab. with IBM. (May 6, 2021), [Online].
Available: https://git.eclipse.org/c/emf/org.eclipse.emf.git/
tree/plugins/org.eclipse.emf.ecore.editor/src/org/eclipse/emf/
ecore/presentation/EcoreEditor.java (visited on 05/30/2021).

[17] Ed Merks, Frank Budinsky, Marcelo Paternostro, and Dave Steinberg, EMF:
Eclipse Modeling Framework, 2nd ed., Erich Gamma, Lee Nackman, and
John Wiegand, Eds., ser. The Eclipse Series. Upper Saddle River, NJ: Addison-
Wesley, 2009, 704 pp., ISBN: 978-0-321-33188-5.

[18] StackOverflow. “Stack Overflow Developer Survey 2019,” Stack Overflow.
(2019), [Online]. Available: https://insights.stackoverflow.com/
survey/2019/?utm_source=social-share&utm_medium=social&utm_
campaign=dev-survey-2019 (visited on 12/07/2020).

[19] Sven Efftinge. “Product Roadmap, Q1/2021,” Notion. (), [Online]. Avail-
able: https://www.notion.so/Product-Roadmap-b9b5eac0a15147ac8d2dd25cf0519203#
1ddc3df582b14349b9d0ebb194e7af94 (visited on 06/13/2021).

[20] Benjamin Pasero and G. Van Liew, Source Code Organization, in Visual Stu-
dio Code Wiki, 1f6491a, Microsoft, Oct. 5, 2020. [Online]. Available: https:
//github.com/microsoft/vscode/wiki/Source- Code- Organization
(visited on 10/05/2020).

[21] J. Helming and M. Koegel. “The Eclipse Theia IDE vs. VS Code,” EclipseSource.
(Dec. 6, 2019), [Online]. Available: https://eclipsesource.com/blogs/
2019/12/06/the-eclipse-theia-ide-vs-vs-code/ (visited on 10/05/2020).

https://www.ntnu.no/wiki/display/tdt4250/EMF
https://www.ntnu.no/wiki/display/tdt4250/EMF
https://www.ntnu.no/wiki/display/tdt4250/Constraints+and+validation
https://www.ntnu.no/wiki/display/tdt4250/Constraints+and+validation
https://www.ntnu.no/wiki/display/tdt4250/EMF+step-by-step
https://www.ntnu.no/wiki/display/tdt4250/EMF+step-by-step
https://www.ntnu.no/wiki/display/tdt4250/Editing+Ecore+model+instances
https://www.ntnu.no/wiki/display/tdt4250/Editing+Ecore+model+instances
https://www.ntnu.no/wiki/display/tdt4250/Genmodel
https://www.ntnu.no/wiki/display/tdt4250/Genmodel
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.editor/src/org/eclipse/emf/ecore/presentation/EcoreEditor.java
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.editor/src/org/eclipse/emf/ecore/presentation/EcoreEditor.java
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.editor/src/org/eclipse/emf/ecore/presentation/EcoreEditor.java
https://insights.stackoverflow.com/survey/2019/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2019
https://insights.stackoverflow.com/survey/2019/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2019
https://insights.stackoverflow.com/survey/2019/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2019
https://www.notion.so/Product-Roadmap-b9b5eac0a15147ac8d2dd25cf0519203#1ddc3df582b14349b9d0ebb194e7af94
https://www.notion.so/Product-Roadmap-b9b5eac0a15147ac8d2dd25cf0519203#1ddc3df582b14349b9d0ebb194e7af94
https://github.com/microsoft/vscode/wiki/Source-Code-Organization
https://github.com/microsoft/vscode/wiki/Source-Code-Organization
https://eclipsesource.com/blogs/2019/12/06/the-eclipse-theia-ide-vs-vs-code/
https://eclipsesource.com/blogs/2019/12/06/the-eclipse-theia-ide-vs-vs-code/

Bibliography 109

[22] J. Helming and M. Koegel. “How to add extensions and plugins to Eclipse
Theia,” EclipseSource. (Oct. 17, 2019), [Online]. Available: https://eclipsesource.
com/blogs/2019/10/17/how-to-add-extensions-and-plugins-to-
eclipse-theia/ (visited on 12/06/2020).

[23] Sven Efftinge and Miro Spönemann. “Open VSX.” (Apr. 9, 2020), [On-
line]. Available: https://www.gitpod.io/blog/open-vsx/ (visited on
12/06/2020).

[24] Microsoft. “Overview,” LSP/LSIF. (), [Online]. Available: https://microsoft.
github.io/language-server-protocol/overviews/lsp/overview/ (vis-
ited on 12/07/2020).

[25] Microsoft. “Tools supporting the LSP.” (), [Online]. Available: https://
microsoft.github.io/language-server-protocol/implementors/tools/
(visited on 06/15/2021).

[26] Microsoft. “Language Server Protocol Specification - 3.16.” (Jun. 4, 2021),
[Online]. Available: https://microsoft.github.io/language-server-
protocol/specifications/specification-3-16/ (visited on 06/15/2021).

[27] Microsoft. “Language Server Extension Guide,” Language Server Extension
Guide. (Sep. 10, 2020), [Online]. Available: https://code.visualstudio.
com/api/language- extensions/language- server- extension- guide
(visited on 09/23/2020).

[28] JSON-RPC Working Group. “JSON-RPC 2.0 Specification.” (Mar. 26, 2010),
[Online]. Available: https://www.jsonrpc.org/specification (visited
on 09/23/2020).

[29] W. Beaton. “Eclipse Cloud Development,” projects.eclipse.org. (Oct. 28,
2014), [Online]. Available: https://projects.eclipse.org/projects/
ecd (visited on 06/15/2021).

[30] C. Smith. “Eclipse EMF.cloud,” projects.eclipse.org. (Sep. 18, 2019), [On-
line]. Available: https://projects.eclipse.org/projects/ecd.emfcloud
(visited on 06/15/2021).

[31] Tobias Ortmayr, Eugen Neufeld, and Camille Letavernier, Eclipse-emfcloud/emfcloud,
version 06e077d, eclipse-emfcloud, Jun. 14, 2021. [Online]. Available: https:
//github.com/eclipse-emfcloud/emfcloud (visited on 06/16/2021).

[32] E. Foundation. “EMF.cloud.” (), [Online]. Available: https://www.eclipse.
org/emfcloud/ (visited on 06/15/2021).

[33] Eugen Neufeld, Eclipse-emfcloud/coffee-editor, version ddeac18, eclipse-emfcloud,
May 26, 2021. [Online]. Available: https://github.com/eclipse-emfcloud/
coffee-editor/blob/573830104d9ad541568e6b46f8b3359e8dd0948d/backend/
plugins/org.eclipse.emfcloud.coffee.modelserver.app/META-INF/
MANIFEST.MF (visited on 06/16/2021).

https://eclipsesource.com/blogs/2019/10/17/how-to-add-extensions-and-plugins-to-eclipse-theia/
https://eclipsesource.com/blogs/2019/10/17/how-to-add-extensions-and-plugins-to-eclipse-theia/
https://eclipsesource.com/blogs/2019/10/17/how-to-add-extensions-and-plugins-to-eclipse-theia/
https://www.gitpod.io/blog/open-vsx/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://microsoft.github.io/language-server-protocol/implementors/tools/
https://microsoft.github.io/language-server-protocol/implementors/tools/
https://microsoft.github.io/language-server-protocol/specifications/specification-3-16/
https://microsoft.github.io/language-server-protocol/specifications/specification-3-16/
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://www.jsonrpc.org/specification
https://projects.eclipse.org/projects/ecd
https://projects.eclipse.org/projects/ecd
https://projects.eclipse.org/projects/ecd.emfcloud
https://github.com/eclipse-emfcloud/emfcloud
https://github.com/eclipse-emfcloud/emfcloud
https://www.eclipse.org/emfcloud/
https://www.eclipse.org/emfcloud/
https://github.com/eclipse-emfcloud/coffee-editor/blob/573830104d9ad541568e6b46f8b3359e8dd0948d/backend/plugins/org.eclipse.emfcloud.coffee.modelserver.app/META-INF/MANIFEST.MF
https://github.com/eclipse-emfcloud/coffee-editor/blob/573830104d9ad541568e6b46f8b3359e8dd0948d/backend/plugins/org.eclipse.emfcloud.coffee.modelserver.app/META-INF/MANIFEST.MF
https://github.com/eclipse-emfcloud/coffee-editor/blob/573830104d9ad541568e6b46f8b3359e8dd0948d/backend/plugins/org.eclipse.emfcloud.coffee.modelserver.app/META-INF/MANIFEST.MF
https://github.com/eclipse-emfcloud/coffee-editor/blob/573830104d9ad541568e6b46f8b3359e8dd0948d/backend/plugins/org.eclipse.emfcloud.coffee.modelserver.app/META-INF/MANIFEST.MF

110 K. Rekstad: Modeling in the Cloud for Education

[34] Nina Doschek, Eclipse-emfcloud/ecore-glsp, version 03fd9c5, eclipse-emfcloud,
May 17, 2021. [Online]. Available: https://github.com/eclipse-emfcloud/
ecore-glsp/blob/cbb4efff9351a43414c47fba25bad1b9630d9a67/client/
packages/theia-ecore/package.json#L23 (visited on 06/16/2021).

[35] Eclipse Foundation. “GLSP,” GLSP. (2020), [Online]. Available: https://
www.eclipse.org/glsp/ (visited on 09/29/2020).

[36] Tobias Ortmayr, Philip Langer, Martin Fleck, Camille Letavernier, Nina Doschek,
Lucal Koehler, and Johannes Faltermeier, Eclipse-glsp/glsp-server actions,
version db6dac6, eclipse-glsp, Jun. 16, 2021. [Online]. Available: https://
github.com/eclipse-glsp/glsp-server/tree/63a99f86e40c81a5ddd1b08970a1e374e8c79259/
plugins/org.eclipse.glsp.server/src/org/eclipse/glsp/server/
actions (visited on 06/16/2021).

[37] Tobias Ortmayr, Eclipse-glsp/glsp-vscode-integration, version 53fa808, eclipse-
glsp, Jun. 11, 2021. [Online]. Available: https://github.com/eclipse-
glsp/glsp-vscode-integration/blob/0fe499f6abc246e1c2cb0a31edf333c7525b13d4/
packages/vscode-integration/src/glsp-webview.ts#L185 (visited on
06/16/2021).

[38] Philip Langer, Eclipse-glsp/glsp-server, eclipse-glsp, Jun. 16, 2021. [Online].
Available: https://github.com/eclipse- glsp/glsp- server/blob/
63a99f86e40c81a5ddd1b08970a1e374e8c79259/plugins/org.eclipse.
glsp.server/src/org/eclipse/glsp/server/jsonrpc/GLSPJsonrpcServer.
java (visited on 06/16/2021).

[39] EclipseSource. “What is JSON Forms? | JSON Forms.” (), [Online]. Avail-
able: https://jsonforms.io/docs (visited on 06/16/2021).

[40] Simon Schwichtenberg, Crossecore/ecore-typescript, version 2e7b04a, CrossEc-
ore, Apr. 30, 2021. [Online]. Available: https://github.com/crossecore/
ecore-typescript (visited on 06/16/2021).

[41] Simon Schwichtenberg. “CrossEcore,” GitHub. (), [Online]. Available: https:
//github.com/crossecore (visited on 06/16/2021).

[42] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd
ed, ser. SEI Series in Software Engineering. Upper Saddle River, NJ: Addison-
Wesley, 2013, 589 pp., ISBN: 978-0-321-81573-6.

[43] K. E. Wiegers and J. Beatty, Software Requirements, Third edition. Red-
mond, Washington: Microsoft Press, s division of Microsoft Corporation,
2013, 637 pp., ISBN: 978-0-7356-7966-5.

[44] Alan Hevner and Samir Chatterjee, Design Research in Information Systems,
ser. Integrated Series in Information Systems. Springer, Boston, MA, 2010,
vol. 22, ISBN: 978-1-4419-5653-8. [Online]. Available: https://doi.org/
10.1007/978-1-4419-5653-8.

https://github.com/eclipse-emfcloud/ecore-glsp/blob/cbb4efff9351a43414c47fba25bad1b9630d9a67/client/packages/theia-ecore/package.json#L23
https://github.com/eclipse-emfcloud/ecore-glsp/blob/cbb4efff9351a43414c47fba25bad1b9630d9a67/client/packages/theia-ecore/package.json#L23
https://github.com/eclipse-emfcloud/ecore-glsp/blob/cbb4efff9351a43414c47fba25bad1b9630d9a67/client/packages/theia-ecore/package.json#L23
https://www.eclipse.org/glsp/
https://www.eclipse.org/glsp/
https://github.com/eclipse-glsp/glsp-server/tree/63a99f86e40c81a5ddd1b08970a1e374e8c79259/plugins/org.eclipse.glsp.server/src/org/eclipse/glsp/server/actions
https://github.com/eclipse-glsp/glsp-server/tree/63a99f86e40c81a5ddd1b08970a1e374e8c79259/plugins/org.eclipse.glsp.server/src/org/eclipse/glsp/server/actions
https://github.com/eclipse-glsp/glsp-server/tree/63a99f86e40c81a5ddd1b08970a1e374e8c79259/plugins/org.eclipse.glsp.server/src/org/eclipse/glsp/server/actions
https://github.com/eclipse-glsp/glsp-server/tree/63a99f86e40c81a5ddd1b08970a1e374e8c79259/plugins/org.eclipse.glsp.server/src/org/eclipse/glsp/server/actions
https://github.com/eclipse-glsp/glsp-vscode-integration/blob/0fe499f6abc246e1c2cb0a31edf333c7525b13d4/packages/vscode-integration/src/glsp-webview.ts#L185
https://github.com/eclipse-glsp/glsp-vscode-integration/blob/0fe499f6abc246e1c2cb0a31edf333c7525b13d4/packages/vscode-integration/src/glsp-webview.ts#L185
https://github.com/eclipse-glsp/glsp-vscode-integration/blob/0fe499f6abc246e1c2cb0a31edf333c7525b13d4/packages/vscode-integration/src/glsp-webview.ts#L185
https://github.com/eclipse-glsp/glsp-server/blob/63a99f86e40c81a5ddd1b08970a1e374e8c79259/plugins/org.eclipse.glsp.server/src/org/eclipse/glsp/server/jsonrpc/GLSPJsonrpcServer.java
https://github.com/eclipse-glsp/glsp-server/blob/63a99f86e40c81a5ddd1b08970a1e374e8c79259/plugins/org.eclipse.glsp.server/src/org/eclipse/glsp/server/jsonrpc/GLSPJsonrpcServer.java
https://github.com/eclipse-glsp/glsp-server/blob/63a99f86e40c81a5ddd1b08970a1e374e8c79259/plugins/org.eclipse.glsp.server/src/org/eclipse/glsp/server/jsonrpc/GLSPJsonrpcServer.java
https://github.com/eclipse-glsp/glsp-server/blob/63a99f86e40c81a5ddd1b08970a1e374e8c79259/plugins/org.eclipse.glsp.server/src/org/eclipse/glsp/server/jsonrpc/GLSPJsonrpcServer.java
https://jsonforms.io/docs
https://github.com/crossecore/ecore-typescript
https://github.com/crossecore/ecore-typescript
https://github.com/crossecore
https://github.com/crossecore
https://doi.org/10.1007/978-1-4419-5653-8
https://doi.org/10.1007/978-1-4419-5653-8

Bibliography 111

[45] B. J. Oates, Researching Information Systems and Computing. London ; Thou-
sand Oaks, Calif: SAGE Publications, 2006, 341 pp., ISBN: 978-1-4129-
0223-6 978-1-4129-0224-3.

[46] Vijay Vaishnavi, William Lewis Kuechler, and Stacie Petter, Eds., Design
Science Research in Information Systems, in collab. with Gerard De Leoz,
Jun. 30, 2019. [Online]. Available: http://www.desrist.org/design-
research-in-information-systems/ (visited on 02/02/2021).

[47] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cun-
ningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,
Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken
Schwaber, Jeff Sutherland, and Dave Thomas. “Manifesto for Agile Soft-
ware Development.” (2001), [Online]. Available: https://agilemanifesto.
org/ (visited on 06/04/2021).

[48] “Principles behind the Agile Manifesto.” (), [Online]. Available: https:
//agilemanifesto.org/principles.html (visited on 06/04/2021).

[49] Rachelle Lynn. “Guiding Principles of Lean Development,” Planview. (),
[Online]. Available: https://www.planview.com/resources/articles/
lkdc-principles-lean-development/ (visited on 06/05/2021).

[50] A. Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman to
Master. Reading, Mass: Addison-Wesley, 2000, 321 pp., ISBN: 978-0-201-
61622-4.

[51] H. Kniberg, M. Cohn, and J. Sutherland, Scrum and XP from the Trenches:
How We Do Scrum. C4Media, 2015, ISBN: 978-1-4303-2264-1.

[52] M. C. Feathers and R. C. Martin, Working Effectively with Legacy Code, ser. Robert
C. Martin Series. Upper Saddle River, NJ: Prentice Hall Professional Tech-
nical Reference, 2005, 434 pp., ISBN: 978-0-13-117705-5.

[53] C. Sonnenberg and J. vom Brocke, “Evaluations in the Science of the Ar-
tificial – Reconsidering the Build-Evaluate Pattern in Design Science Re-
search,” in Design Science Research in Information Systems. Advances in The-
ory and Practice, K. Peffers, M. Rothenberger, and B. Kuechler, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 381–397, ISBN: 978-3-
642-29863-9.

[54] J. Venable, J. Pries-Heje, and R. Baskerville, “A Comprehensive Framework
for Evaluation in Design Science Research,” in Design Science Research in In-
formation Systems. Advances in Theory and Practice, K. Peffers, M. Rothen-
berger, and B. Kuechler, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 423–438, ISBN: 978-3-642-29863-9.

[55] George Tsiolis. “Menu entry "About Gitpod" for Theia is missing an image ·
Issue #3989 · gitpod-io/gitpod,” GitHub. (Apr. 2019), [Online]. Available:
https://github.com/gitpod-io/gitpod/issues/3989#issuecomment-
822246441 (visited on 06/09/2021).

http://www.desrist.org/design-research-in-information-systems/
http://www.desrist.org/design-research-in-information-systems/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html
https://www.planview.com/resources/articles/lkdc-principles-lean-development/
https://www.planview.com/resources/articles/lkdc-principles-lean-development/
https://github.com/gitpod-io/gitpod/issues/3989#issuecomment-822246441
https://github.com/gitpod-io/gitpod/issues/3989#issuecomment-822246441

112 K. Rekstad: Modeling in the Cloud for Education

[56] Simon Brown. “The C4 model for visualising software architecture.” (),
[Online]. Available: https://c4model.com (visited on 06/07/2021).

[57] Mike Linksvayer, Mike McQuaid, Justin Kenyon, Katrin Leinweber, Sophie
Shepherd, John Mueller, Emil Laine, and Andrew Lee. “Starting an Open
Source Project,” Open Source Guides. (Dec. 16, 2020), [Online]. Avail-
able: https://opensource.guide/starting- a- project/ (visited on
05/20/2021).

[58] Danny Guo, Haroen Viaene, David Kleuker, Eric Berry, and Alex Falcon.
“Make a README,” Make a README. (Aug. 20, 2020), [Online]. Available:
https://www.makeareadme.com (visited on 05/20/2021).

[59] W. Beaton. “Third Party Content Licenses,” The Eclipse Foundation. (Oct. 19,
2017), [Online]. Available: https://www.eclipse.org/legal/licenses.
php#approved (visited on 06/13/2021).

[60] Wayne Beaton, Fabian Steeg, Denis Roy, Dave Carver, Ed Merks, Bjorn
Freeman-Benson, Anne Jacko, Ian Skerrett, Mike Milinkovich, John Arthorne,
and Eclipse Foundation, Inc. “Eclipse Project Handbook | The Eclipse Foun-
dation,” Eclipse Foundation Project Handbook. (2020), [Online]. Available:
https://www.eclipse.org/projects/handbook/ (visited on 05/20/2021).

https://c4model.com
https://opensource.guide/starting-a-project/
https://www.makeareadme.com
https://www.eclipse.org/legal/licenses.php#approved
https://www.eclipse.org/legal/licenses.php#approved
https://www.eclipse.org/projects/handbook/

Appendix A

Tree Editor Functional
Requirements from Pre-project

The following Table A.1 is copied from the results section in the pre-project, at
[1, p. 47-48]. It presents a non-complete list of functional requirements for a tree
editor.

113

114 K. Rekstad: Modeling in the Cloud for Education

Table A.1: Functional requirements for a master-detail Tree editor with property
sheet.

ID Requirement Description

FR1 Provide an interac-
tive Tree Editor in
VSCode and Theia
(Gitpod)

The software must use an extension
mechanism to provide a custom edi-
tor for trees.
A textual representation is not suffi-
cient.
The tree comprises a hierarchy of
nodes and their child nodes.

FR2 Provide an interac-
tive Property sheet
in VSCode and
Theia (Gitpod)

The software must use an extension
mechanism to provide a custom prop-
erty sheet for tree nodes.
The property sheet needs to be syn-
chronized with the selected node in
the tree editor.

FR3 Provide an action
bar with dynam-
ically provided
actions in VS-
Code and Theia
(Gitpod).

The action bar should have actions
that are specified by a backend Tree
Language Server.

FR4 The Tree must
view nodes with
labels and icons.

Every node should have a default icon
that depends on its node "type".
Every node should have a name that
is read from the node data.

FR5 Tree nodes with
children can tog-
gle the visibility of
children by user
interaction.

An icon or symbol will show if a node
has children.
If the user interacts with this icon,
e.g. a click, all the children will tog-
gle their visibility on/off.

FR6 The Tree and
Property views
update automat-
ically when the
underlying model
changes.

Subscribe to change notifications
from the Model Server, in the Tree
Language Server.

FR7 The Action Bar
updates when
the tree selection
changes.

Show the available actions for the
newly selected node.

Chapter A: Tree Editor Functional Requirements from Pre-project 115

Table A.1 continued from previous page
ID Requirement Description

FR8 Support creation
of new nodes.

FR9 Support deletion
of existing nodes.

FR10 Support selecting
a node.

Appendix B

Pre-project Data Structure Code

The data structure for containing a tree, designed in the pre-project during pro-
totype number two, is shown in Code listing B.1.

The structure for Actions are shown in Code listing B.2 and Code listing B.3.

The structure for defining a node hierarchy is shown in Code listing B.4.

Code listing B.1: Javascript code from the WebView for a data model describing
the tree nodes. This listing is copied from “Code listing 5.3” in [1, p.43, 44].

// Icon could be configured as default + optional overrides

var exampleTree = {
type: "root",
children: [
{
type: "EResource",
name: "MyEcore.ecore",
icon: "",
id: "1",
properties: [],
children: [
{
type: "EPackage",
name: "my-ecore",
icon: "",
id: "2",
properties: [],
children: [
{
type: "EClass",
name: "Person",
icon: "",
id: "3",
state: {
selected: true,
valid: false,
dirty: true,

},
properties: [],
children: [

117

118 K. Rekstad: Modeling in the Cloud for Education

{
type: "EAttribute",
name: "age",
icon: "",
id: "4",
properties: [
{
name: "Value",
value: 25,
label: "This␣is␣JSON-Forms␣territory",

},
],

},
],

},
{
type: "EClass",
name: "MyOtherClass",
icon: "",
id: "4",
properties: [],
children: [],

},
],

},
],

},
],

};

Code listing B.2: Javascript code from the WebView to specify the available ac-
tions. This listing is copied from “Code listing 5.4” in [1, p.45].

var exampleAvailableActions = [
{ id: 0, name: "Create␣dynamic␣instance..." },
{ id: 1, name: "Validate" },
{ id: 2, name: "Create␣genmodel..." },

];

Code listing B.3: Javascript code from the WebView to specify default actions
and per-node actions. This listing is copied from “Code listing 5.5” in [1, p.45].

var exampleDefaultActions = [1];
var exampleActionSchema = {
EResource: [2],
EClass: [0],

};

Code listing B.4: Javascript code from the WebView to specify what children a
node type can have. This listing is copied from “Code listing 5.6” in [1, p.45].

/** Could be generated from Ecore using EReferences present in metamodel. */
var exampleHierarchySchema = {
root: ["EResource"],
EResource: ["EPackage"],
EPackage: ["EClass", "EDataType", "EEnum"],
EClass: ["EAttribute", "EReference", "EOperation", "EAnnotation"],
EAttribute: ["EAnnotation"],

Chapter B: Pre-project Data Structure Code 119

};

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Kristian Rekstad
A M

odeling Environm
ent in the Cloud for Education

Kristian Rekstad

A Modeling Environment in the Cloud
for Education

Master’s thesis in Computer Science
Supervisor: Hallvard Trætteberg

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Acknowledgments
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Model-Driven Development in Education at NTNU
	The Eclipse Ecosystem Wants to Run Software in the Cloud
	A Pre-project Identified a Need for a Tree Editor
	Research Objectives
	Problem
	Scope
	Objectives

	Thesis Structure

	Background
	Conceptual Modeling and Model-Driven Development
	Model-Driven Development at NTNU in the Course TDT4250
	Eclipse Modeling Framework Editors for Ecore
	Sample Reflective Ecore Model Editor
	EMF Forms Ecore Editor

	Introduction to Tree Structures
	Master-Detail Tree Editor
	An Overview of EMF: Ecore Metamodel, XMI Serialization and GenModel for Code Generation
	Visual Studio Code and Theia
	Visual Studio Code
	Theia

	Visual Studio Code's Custom Editor API
	Language Server Protocol Architecture
	Base Protocol
	Language Server Protocol

	JSON-RPC
	cloud and Gitpod
	EMF in the cloud
	EMF.Cloud
	Model Server
	Theia Tree Editor
	Coffee Editor

	Graphical Language Server Platform (GLSP)
	Other Tools by the Eclipse Ecosystem
	JSON-Forms
	CrossEcore

	Pre-project Results
	Research Questions
	Stakeholders
	Software Requirements
	Architecture and Protocol for a Solution
	Architecture
	Protocol

	Method
	Design Science Research
	The General Design Cycle
	Methodology

	Requirements Engineering
	Stakeholder Discussion
	Requirements Extraction
	Source Code Analysis of Similar Projects
	Use Cases and Prototyping
	Agile Requirements

	Development Methodologies
	Agile
	Iterative Development
	Lean and Minimum Viable Product
	Tracer Bullets
	Domain-Driven Design
	Test-Driven Development
	Prototyping

	Evaluation
	Software Artifact
	Open Source Viability

	Results
	Software Artifact: Tree Editor Extension for Ecore in Gitpod
	Custom Editor
	IDE Commands
	Genmodel and Model Instance
	Configuration and Logging

	Design Artifact: Tree Document Model
	Borrowed Terms
	The Domain Model

	Design Artifact: Architecture for Tree Language Server Systems
	Architecturally Significant Requirements
	Changes from pre-project
	System explanation
	Context
	Containers
	Components
	Code

	Design Artifact: Tree Language Server Protocol
	Activation
	User Actions
	Property Editing
	Tree Editing

	Open Source Project: Measures Taken for Viability and Maintainability
	Code Availability
	Documentation
	Automation
	Licensing
	Code
	Issue Tracking

	Evaluation
	Use Case Completeness Evaluation of Tree Editor Extension
	Test Case Details

	Qualitative Evaluation of the Tree Editor Extension
	Qualitative Software Architecture Evaluation
	Reusable Components for Related Migrations
	Components for Migrating EMF to Other IDEs

	Evaluation of Open Source Project Viability
	Project Evaluation
	Readme Evaluation

	Discussion
	VSCode as an EMF Tree Editor in the Cloud
	Reuse of EMF java code
	Creating a Tree Editor for VSCode Requires Substantial Effort
	Designing a Standardized Tree Language Server Protocol
	Limitations

	Conclusion
	Future Work

	Bibliography
	Tree Editor Functional Requirements from Pre-project
	Pre-project Data Structure Code

