
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
agnus M

idtbø Kristiansen
Proving Theorem

s U
sing D

eep Learning

Magnus Midtbø Kristiansen

Proving Theorems Using Deep
Learning

Graph Convolutional Networks, Transformers,
and Deep Reinforcement Learning for Automatic
Formal Reasoning

Master’s thesis in Computer Science
Supervisor: Björn Gambäck

June 2021

M
as

te
r’s

 th
es

is

Magnus Midtbø Kristiansen

Proving Theorems Using Deep Learning

Graph Convolutional Networks, Transformers, and
Deep Reinforcement Learning for Automatic Formal
Reasoning

Master’s thesis in Computer Science
Supervisor: Björn Gambäck
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract
Interactive Theorem Proving (ITP) systems are symbolic-based software systems used
to write and verify formal mathematical proofs. These systems often contain large
datasets of human-written formalized proofs, structured as step-by-step applications of
high-level proof strategies called tactics. The space of tactics is well-defined and contains
a combination of core tactics and tactic arguments. Tactic arguments generally refer
to either already proven theorems or terms and hypotheses in the local proof search
context. Recently, several research groups have focused on automating ITP systems by
training machine learning models to predict what next tactic to apply in any given proof
state. This has resulted in whole frameworks developed for more accessible research into
machine learning models automating underlying ITP systems. Such ITP automation
allows the model to perform high-level formal reasoning similar to human mathematical
reasoning.

This Master’s Thesis develops a new theorem proving agent for end-to-end ITP
theorem proving. The agent transforms the theorem proving task into three separate
multi-class classification problems, allowing a more natural machine learning interpreta-
tion of the theorem proving task than previous approaches.

In addition to models imitating human proofs via supervised learning, deep re-
inforcement learning – implemented using deep Q-learning – is deployed. This has two
advantages: (1) it deals with data scarcity, and (2) it allows the agent to develop its own
proof style, effectively circumventing noisy human-written proofs. Furthermore, two
novel deep learning embedding techniques are tested: Graph Convolutional Networks
(GCNs) and the Bidirectional Encoder Representations from Transformers (BERT)
architecture. More general non-convolutional Graph Neural Networks have recently been
shown to work well on formal logic and been used successfully for ITP theorem proving.
BERT has shown state-of-the-art results on several Natural Language Processing tasks.
In addition, Transformer-based models have recently shown promising results on related
mathematical reasoning tasks.

When trained to imitate human proofs, GCN and BERT-based agents signifi-
cantly outperform corresponding random guessing agents, proving 37.3% and 16.3%
more theorems, respectively. Deep reinforcement learning improves results further.
These agents are capable of proving 7.6% more theorems than corresponding supervised
agents and 47.7% more theorems than corresponding random guessing agents. This is
the first time GCN, Transformers, and deep reinforcement learning have been used for
tactic-based formal theorem proving.

i

Sammendrag
Interaktive teorembevissystemer (ITP-systemer) er symbolbaserte programvaresystemer
som brukes til å skrive og verifisere formelle matematiske bevis. Disse systemene
inneholder ofte store datasett med menneskeskrevne formaliserte bevis, strukturert som
trinnvise applikasjoner av bevis-strategier kalt taktikker. Rommet av mulige taktikker
er veldefinert og inneholder en kombinasjon av kjernetaktikker og taktikkargumenter.
Taktikkargumenter refererer som regel enten til allerede beviste teoremer eller termer og
hypoteser i den lokale beviskonteksten. Nylig har flere forskningsgrupper fokusert på
automatisering av ITP-systemer ved å trene maskinlæringsmodeller til å forutsi hvilken
neste taktikk som skal brukes i bevissøket. Dette har resultert i rammeverk utviklet for
mer tilgjengelig forskning på maskinlæringsmodeller som automatiserer underliggende
ITP-systemer. En slik automatisering av ITP-systemer lar modeller utføre formell
resonnering på et høyt abstraksjonsnivå, lignende menneskelig matematisk resonnering.

Denne masteroppgaven utvikler en ny bevisagent for ende-til-ende bevissøk i
ITP-systemer. Agenten transformerer bevisproblemet til tre separate klassifiserings-
problemer, noe som gir en mer naturlig maskinlæringstolkning av bevisproblemet enn
tidligere tilnærminger.

I tillegg til modeller som imiterer mennesskrevne bevis via veiledet læring, an-
vendes også dyp forsterkningslæring – implementert ved hjelp av dyp Q-læring. Dette
har to fordeler: (1) det håndterer knappheten av annotert data, og (2) agenten
har muligheten til å utvikle sin egen bevisstrategi, noe som lar den omgå støy i
menneskeskrevne bevis. Videre testes to nye dyplæringsteknikker: Konvolusjonelle
nevrale nettverk for grafstrukturer (GCNs) og Bidirectional Encoder Representations
from Transformers (BERT) arkitekturen. Mer generelle ikke-konvolusjonelle nevrale
nettverk for grafstrukturer er nylig vist å fungere godt på formell logikk og blitt brukt
til å bevise teoremer i ITP-systemer. BERT har vist overlegne resultater på flere
problemer innen språkbehandlings-feltet (Natural Language Processing). I tillegg har
andre Transformer-modeller nylig vist lovende resultater på relaterte problemer innen
formell logikk.

GCN- og BERT-baserte agenter beviser henholdsvis 37,3 % og 16,3 % flere teo-
remer enn tilsvarende agenter basert på tilfeldig gjetting, når de blir trent til å imitere
menneskeskrevne bevis. Dyp forsterkningslæring forbedrer resultatene ytterligere. Disse
agentene er i stand til å bevise 7,6 % flere teoremer enn tilsvarende veiledete agenter
og 47,7 % flere teoremer enn tilsvarende agenter basert på tilfeldig gjetting. Dette er
første gang GCN, Transformers og dyp forsterkningslæring er brukt til å automatisere
taktisk-baserte ITP-systemer.

ii

Preface
This Master’s Thesis is written as part of the degree Master of Science in Computer
Science at the Norwegian University of Science and Technology, under the supervision of
Björn Gambäck. A special thanks goes out to Björn Gambäck for his valuable guidance
and feedback throughout the entire duration of the project. A thanks also goes out to
Kaiyu Yang at Princeton University for his helpful responses on the CoqGym discussion
board. Furthermore, a thanks goes out to Felix Wu and Yixin Chen for allowing their
figures to be depicted in the Thesis. The HPC group at NTNU also deserves a big
thanks for allowing the use of the Idun cluster to conduct experiments.

I would also like to thank friends and family for their great support along the
way. Finally, I would like to give a special thanks to Elise for having the patience to
listen to my somewhat long-winded monologues about topics in this Thesis and for her
continued support.

Magnus Midtbø Kristiansen
Trondheim, June 11, 2021

iii

Contents
1 Introduction 1

1.1 Background and Motivation . 2
1.2 Goals and Research Questions . 4
1.3 Research Method . 6
1.4 Contributions . 6
1.5 Thesis Structure . 7

2 Background Theory 9
2.1 Traditional Automated Theorem Proving 9

2.1.1 Resolution . 11
2.1.2 Analytic Tableaux . 12
2.1.3 Superposition Calculus . 13

2.2 Interactive Theorem Proving . 14
2.2.1 Tactic-based Interaction . 15
2.2.2 Tactic Arguments and Proof Context 16
2.2.3 Internal Automatic Engines . 17
2.2.4 The Logic of Computable Functions Principle 17
2.2.5 Coq . 18

2.3 Machine Learning . 20
2.3.1 Features . 21
2.3.2 Classification Problems . 22
2.3.3 Mini-Batch Training . 23
2.3.4 Loss Function . 23
2.3.5 Evaluation . 24
2.3.6 Neural Networks . 25
2.3.7 Optimizers . 25
2.3.8 Regularization . 27
2.3.9 Activation Functions . 27
2.3.10 Convolutional Neural Networks . 28
2.3.11 Graph Neural Networks . 29
2.3.12 Transformers . 32
2.3.13 Deep Q-Learning . 34
2.3.14 Other Techniques . 37

3 Related Work 39
3.1 Literature Review . 39

v

Contents

3.2 Auto-ITP . 41
3.2.1 TacticToe . 42
3.2.2 HOList . 43
3.2.3 GamePad . 45
3.2.4 CoqGym . 46

3.3 Hammers . 49
3.3.1 The 3-step Process . 50
3.3.2 Premise Selection . 51
3.3.3 HOL(y)Hammer and CoqHammer 52

3.4 Other Applications of Machine Learning in Formal Reasoning and Mathe-
matics . 53
3.4.1 Transformer Models Applied to Mathematics 53
3.4.2 Synthesizing Theorems . 54
3.4.3 Tactic Application in Latent Space 55
3.4.4 Evolutionary Algorithms . 55
3.4.5 Internal Guidance . 55
3.4.6 Autoformalization . 56

4 Motivation, Agent Design and Architectures 57
4.1 Motivation . 57

4.1.1 Choosing an Auto-ITP Framework 57
4.1.2 Usefulness of Proxy Metrics . 58
4.1.3 Machine Learning Interpretation of ITP Systems 58
4.1.4 Choosing Machine Learning Techniques 59

4.2 Proxy Metric: Tactic Groups . 60
4.3 Agent Design . 62
4.4 Designing Architectures . 65

4.4.1 GAST – Graph Convolutional Network-based Architecture 65
4.4.2 BERTac – BERT-based Architecture 67
4.4.3 QTac – Deep Q-learning Architecture 68

5 Experiments and Results 71
5.1 Experimental Plan . 71

5.1.1 Experiment 1 – Tactic Groups . 71
5.1.2 Experiment 2 – Supervised Learning 75
5.1.3 Experiment 3 – Reinforcement Learning 78

5.2 Experimental Setup . 80
5.2.1 Deep Learning Frameworks . 80
5.2.2 CoqGym Setup . 80
5.2.3 Computing Resources . 81

5.3 Experimental Results . 81
5.3.1 Results from Experiment 1 . 82
5.3.2 Results from Experiment 2 . 85
5.3.3 Results from Experiment 3 . 88

vi

Contents

6 Evaluation and Discussion 91
6.1 Evaluation and Discussion of Research Questions 91
6.2 Evaluation of Goal . 94
6.3 Further Discussion . 95

6.3.1 Cτ Predictions . 95
6.3.2 QTac Training . 96
6.3.3 Proof Style . 97
6.3.4 The CoqGym Dataset . 98
6.3.5 CoqGym’s Synthetic Data . 99
6.3.6 Tailoring Transformer Models to Formal Expressions 99
6.3.7 Comparison to Hammers . 100
6.3.8 Proof Tree Traversal . 100

7 Conclusion and Future Work 101
7.1 Contributions . 101
7.2 Future Work . 102

Bibliography 107

vii

List of Figures
2.1 The high-level architecture of a generic ATP system. 10
2.2 Example of a resolution tree. 11
2.3 Example of a tableau. 13
2.4 Example of a hypothetical proof tree. 15
2.5 Example of a Feed Forward Network. 26
2.6 Illustration of the GCN message passing algorithm. 30
2.7 Illustration of the SGC message passing algorithm. 31
2.8 Illustration of the DGCNN end-to-end graph classification architecture. . 32

3.1 Overview of the Auto-ITP setting. 41
3.2 The high-level architecture of a Hammer 51

4.1 Frequency of core tactics in the proof step datasets. 62
4.2 Frequency of global and local argument occurrence in the proof step datasets. 63
4.3 The end-to-end theorem proving agent. 64
4.4 The overall end-to-end theorem proving architecture. 65
4.5 The GAST architecture. 66
4.6 The BERTac architecture. 67
4.7 The QTac architecture. 69

5.1 Percentage of proof steps that have n number of hypotheses in the local
context. 76

5.2 Validation accuracy plots for FFN baseline models from experiment 1. . . 83
5.3 Validation accuracy plots for GAST models from experiment 1. 84
5.4 Validation accuracy plots for BERTac models from experiment 1. 85
5.5 Validation accuracy plots for C models from experiment 2. 86

6.1 Confusion matrices for Cτ models . 96
6.2 Frequency of core tactic use for different proof agents. 98

ix

List of Tables
2.1 Overview of Coq tactics. 20

3.1 Overview of existing Auto-ITP frameworks. 42
3.2 State-of-the-art and main results in TacticToe. 44
3.3 State-of-the-art and main results in HOList. 45
3.4 State-of-the-art and main results in GamePad. 46
3.5 The CoqGym dataset. 47
3.6 State-of-the-art and main results in CoqGym. 49
3.7 State-of-the-art and main results for HOL(y)Hammer and CoqHammer. . 53

4.1 GitHub repository statistics for HOL Light, HOL4, and Coq. 58
4.2 Proof steps in CoqGym for both human-written and synthetic proofs. . . 61
4.3 The tactic grouping. 62

5.1 Regularization levels defined for experiments. 72
5.2 GAST configurations for phase 2 of experiment 1b. 74
5.3 BERTac configurations for experiment 1c. 74
5.4 Configurations for experiment 2. 75
5.5 Dataset sizes for the supervised C models. 76
5.6 Main end-to-end theorem proving results. 82
5.7 Main results from experiment 1. 83
5.8 Validation accuracy for GAST and BERTac C models. 86
5.9 Performance of GAST and BERTac agents on end-to-end theorem proving. 87
5.10 Results for different depth limits and beam widths. 88
5.11 Performance of QTac agents on end-to-end theorem proving. 88
5.12 Theorem proving results for different Coq projects. 89

xi

Chapter 1

Introduction
Automated Theorem Proving (ATP) is a field of study concerned with automatically
proving mathematical theorems using a computer. Traditionally, a set of theorems
and a conjecture (the theorem to be proven) are expressed formally, based on some
logical framework, with the task of proving the conjecture focused around symbolic
manipulation on the set of logically expressed statements. Even with state-of-the-art
inference techniques deployed, this essentially turns into a combinatorial search problem,
where one quickly encounters an exponentially increasing space of combinations (Hoder
and Voronkov, 2011). In addition, validity in First-Order Logic, the most common logic
used in ATP systems, is known to be a semi-decidable problem (Church, 1936; Turing,
1936). Because ATP systems often seek to prove validity, this means there is no effective
way to disprove a conjecture that is in fact false.

Because of these issues, the field of Interactive Theorem Proving (ITP)1 has
emerged as an alternative way of doing computer-based theorem proving (Harrison
et al., 2014). This branch of computer theorem proving is not concerned with a fully
automated process, but instead tries to facilitate an enhanced theorem proving process
for human users. This is made possible by letting the system deal with the tedious
details of the proof, while the user guides the proof search by inputting high-level proof
strategies (most commonly taking the form of so-called tactics). As with ATP systems,
ITP systems are based on formal logic and designed to guarantee correctness of the
produced proofs (Harrison et al., 2014). Such systems have become the de facto tools in
efforts to formalize mathematics (Hales, 2006; Gonthier et al., 2013; Leroy, 2016).

Several machine learning researchers have recently used ITP systems as a way
to tackle the domain of mathematics and formal reasoning (Bansal et al., 2019a; Huang
et al., 2019; Yang and Deng, 2019; Gauthier et al., 2017). The main idea is to train
machine learning models to predict the next tactic to apply and drive the ITP’s proof
procedure forward automatically. Because this approach automates an underlying ITP
system, it will be referred to as Auto-ITP in this Thesis, a term coined by Yang and
Deng (2019)2. In a way, Auto-ITP can be seen as a form of ATP. However, it very

1ITP systems are often also called Proof Assistants. However, this Thesis will only use the term ITP
systems.

2Although the term “Auto-ITP” is not a widely adopted one, it does provide a useful shorthand term to
refer to machine learning-driven automation of ITP systems.

1

Chapter 1 Introduction

different from the classical low-level inference techniques traditional ATP systems rely
on. Instead, Auto-ITP emulates how a human user would interact with ITP systems. It
can therefore be considered a more human-inspired approach to ATP than traditional
ATP systems, where the model proves theorems on abstraction levels closer to human
mathematical reasoning (Yang and Deng, 2019). The Auto-ITP process is similar
to an active learning setup (Settles, 2009), where the Auto-ITP model serves as an
(automatic) oracle for the underlying ITP system. The ITP system queries subgoals
to the Auto-ITP model and the model responds with a tactic corresponding to the subgoal.

In the last couple of years, several frameworks for doing Auto-ITP have emerged
(Bansal et al., 2019a; Huang et al., 2019; Yang and Deng, 2019; Wu et al., 2020). These
frameworks allow machine learning researchers interested in the domain of mathematics
to leverage powerful underlying ITP systems and large datasets of human-written proofs
in the quest to progress machine learning applied to formal reasoning and the progress of
artificial intelligence more broadly (Urban and Vyskočil, 2013; Szegedy, 2020).

This Master’s Thesis will cover state-of-the-art within each existing Auto-ITP
framework, in addition to other work related to Auto-ITP. This includes other
applications of machine learning in mathematics and formal reasoning as well as another
popular approach for automating underlying ITP systems – so-called Hammer systems
(Blanchette et al., 2016). Then, the Thesis narrows its focus to a single Auto-ITP
framework, in which new experiments will be conducted. The framework chosen is
the CoqGym framework (Yang and Deng, 2019), with the overall goal to explore
machine learning techniques not yet tested in CoqGym. This Master’s Thesis tests
new deep learning methods – based on Graph Convolutional Networks (GCNs) and
the Bidirectional Encoder Representations from Transformers (BERT) model (Devlin
et al., 2018) – as embedding techniques for Coq expressions. Models are trained both
to imitate human proofs using supervised learning, and with the deep reinforcement
learning method deep Q-learning (Mnih et al., 2015). In addition, a new theorem proving
agent is developed, interpreting the ITP theorem proving process as three multi-class
classification problems. Lastly, a proxy metric is designed to allow for less expensive
prototyping of supervised learning models in CoqGym.

1.1 Background and Motivation

ATP is in itself motivated by several things. The most obvious might be the goal of
proving new mathematical theorems. Some theorems lend themselves naturally to the
formal way in which traditional ATP systems work, and in those cases ATP systems
have performed reasonably well. An example of this is Robbins’ problem, which asks if
all Robbins algebras are Boolean algebras. This was proven by the EQP system in 1997
(McCune, 1997), essentially by brute-force calculations on combinations of First-Order
expressions.

2

1.1 Background and Motivation

Another important use of both ATP and ITP systems is formal (and guaran-
teed correct) verification of logically expressed statements. This has been particularly
useful in software and hardware verification, where behavior can be naturally expressed
through formal logic. State-of-the-art systems have been used to verify the correctness of
processors (Harrison, 2000), operating systems (Klein et al., 2014; Chen et al., 2015)
and compilers (Leroy, 2009). Intel, for example, hired ITP pioneer John Harrison to
verify floating point arithmetic on their processors. He developed the ITP system HOL
Light (Harrison, 1996), capable of producing guaranteed correct verification of processor
operations (Harrison, 2000).

Computer systems also provide a natural tool for formalizing mathematics. It
has been a long-standing dream of computer scientists and mathematicians to one day
formalize all of mathematics and science in a machine-understandable way – effectively
reducing the problem of reasoning to “number crunching”, which can be executed by a
machine. This was made explicit in the QED manifesto (Boyer, 1994). While the QED vi-
sion has yet to come into full fruition, plenty of efforts in both ATP and ITP research aim
to formalize mathematical proofs (Gonthier, 2008; Gonthier et al., 2013; Hales et al., 2017).

Auto-ITP, on the other hand, has its roots in the machine learning community
and is consequently motivated by mathematics and formal reasoning being a challenging
and relatively unexplored domain for machine learning models (Urban and Vyskočil,
2013; Kaliszyk et al., 2017; Szegedy, 2020). As pointed out by Urban and Vyskočil (2013)
and Szegedy (2020), the theorem proving domain can potentially be used to develop new
and novel machine learning methods. Because of the bridge between formal theorem
proving and software systems, Auto-ITP can also be motivated as a steppingstone for
developing models capable of software synthesis (Szegedy, 2020). An essential aspect
of Auto-ITP research has been large datasets of proof data resulting from already
completed large-scale formalization projects (Kaliszyk et al., 2017). This access to data
opens up the door for data-hungry machine learning methods. However, frameworks
and benchmarks have been lacking from the domain up until recently. Bansal et al.
(2019a) argue that widely adopted benchmarks in other domains, such as ImageNet
(Deng et al., 2009) for object detection and LibriSpeech (Panayotov et al., 2015) for
speech recognition, have been instrumental for the success of machine learning in these
domains. This has led to efforts by several research groups to provide both frameworks
and benchmarks in the domain of theorem proving. These frameworks have mainly been
developed with the goal of tactic application as a machine learning problem in mind,
which has evolved into Auto-ITP.

It is also worth noting that the rapid progress machine learning (in particular
deep learning) has experienced in the last few years motivates Auto-ITP from a
traditional formal theorem proving perspective as well. In particular, large-scale

3

Chapter 1 Introduction

formalization work is massively labor-intensive3 and more automation of such tasks
is therefore desirable. This has been a significant motivation for developing Hammer
systems, which are capable of proving large chunks of formalization projects automatically
(Blanchette et al., 2016).

Experiments in this Thesis are primarily motivated by asking the following question:
“What successes in machine learning (in the field of formal reasoning and at large)
can be drawn on to explore new techniques for the Auto-ITP task?”. In particular,
this Thesis explores Graph Neural Networks and Transformer networks further, as
they have recently shown promising results as embedding techniques for mathematical
expressions (Paliwal et al., 2020; Rabe et al., 2020; Lample and Charton, 2020; Polu
and Sutskever, 2020). Allowing models to train on not only human-written proofs but
also machine-generated proofs has shown to improve results in the theorem proving
context (Bansal et al., 2019b). Data scarcity is also a concern when training theorem
proving models (Wang and Deng, 2020). This motivates experiments involving both
supervised learning models and reinforcement learning models. Reinforcement learning
allows the agent to learn from exploring tactic applications rather than from a curriculum.

Since there is overhead associated with achieving complete end-to-end theorem
proving, the prototyping of new machine learning models can benefit from simplified
proxy metrics indicating the prototype’s success. However, because of the infancy of
Auto-ITP frameworks, there is a lack of such methodology in the field. This motivates
the focus on developing a proxy metric allowing easier prototyping of models. The
development of a new theorem proving agent for ITP is motivated by a similar idea.
Namely, it is helpful to have familiar machine learning interpretations of the theorem
proving task when studying Auto-ITP.

1.2 Goals and Research Questions
Based on the backdrop described above, a single overarching Goal is formulated for this
Master’s Thesis:

Goal Further progress machine learning applied to formal reasoning by testing new
machine learning techniques on the Auto-ITP task.

This Goal is fairly broad and could potentially encompass a vast amount of experiments.
It will therefore be necessary to restrict the scope to a manageable set of ideas. The first
is to restrict experiments to a single Auto-ITP framework. The chosen framework for
this Thesis is the CoqGym framework (Yang et al., 2016), based on the popular ITP
system Coq (Barras et al., 1997). Furthermore, four main ideas are pursued: (1) proxy
metrics for Auto-ITP, allowing easy prototyping of models, (2) an end-to-end theorem
proving agent easy to interpret from a machine learning perspective, (3) supervised

3An example of this is the formal proof of the Kepler conjecture (Hales et al., 2017), which took
20-person years to complete.

4

1.2 Goals and Research Questions

learning using novel embedding techniques and (4) reinforcement learning. Section 4.1
(after related work has been presented in Chapter 3) covers a more detailed explanation
for why CoqGym and these ideas were chosen. The following Research Questions make
the ideas more explicit:

Research Question 1 How to design an easy and fast Auto-ITP proxy metric that also
indicates end-to-end theorem proving performance?

Auto-ITP is a domain where training and testing can be reasonably complicated and
slow. Research Question 1 addresses the need for easier and faster prototyping of
Auto-ITP models.

Research Question 2 How can a conceptually simple end-to-end theorem proving agent
be designed for tactic-based ITP theorem proving?

Although tactic prediction is a fairly straightforward machine learning problem, it gets
more complicated when tactic arguments are introduced. It is not clear exactly how
to interpret ITP theorem proving as a machine learning problem. Thus, this Thesis
argues that designing an agent where the theorem proving task is broken down into
familiar machine learning problems can be helpful. Research Question 2 targets this topic.

Research Question 3 What novel embedding techniques can help models perform well in
CoqGym?

Research Question 3 is based on the idea that the semantic information contained in
logical expressions is likely essential for Auto-ITP models. Strong embedding networks
have been hugely successful in Natural Language Processing (NLP), with Transformers
like BERT (Devlin et al., 2018) becoming household names in this field. Similar attention
networks have shown promising results for embedding mathematical expressions (Rabe
et al., 2020; Lample and Charton, 2020; Polu and Sutskever, 2020), although not yet
been used specifically for Auto-ITP. Embedding using Graph Neural Networks and
TreeLSTM has already shown promising results in the Auto-ITP domain (Paliwal et al.,
2020; Yang and Deng, 2019), and is therefore also an interesting approach to pursue
further in CoqGym.

Research Question 4 How does reinforcement learning compare to supervised learning
in CoqGym?

It might be the case that human-written proofs are noisy and hard to learn from. The
proofs are gathered from different formalization projects, where different teams of humans
have been involved. Bansal et al. (2019b) experienced significant improvements with
their Auto-ITP model by letting the model learn from its own proofs and not only

5

Chapter 1 Introduction

human-written proofs. In other words, a machine learning model might be better off
learning its own “style” of proving theorems rather than trying to imitate a human. Data
scarcity has also been pointed out as a bottleneck for formal theorem proving models
(Wang and Deng, 2020). Research Question 4 addresses these points in the context of
CoqGym.

1.3 Research Method

A literature review of machine learning applied to formal reasoning is the starting point
for this Master’s Thesis research. A review of the mechanics of Coq and tactic-based ITP
theorem proving in general is needed to answer Research Questions 1 and 2. Dataset
statistics from CoqGym will also be used to answer Research Question 1 and 2. Research
Questions 3 and 4 are answered using an experimental approach. Each model and
theorem proving agent is compared against each other and to related results from the
literature. To better understand the agents’ performance, a random guessing baseline
agent will be developed and tested.

1.4 Contributions

The main contributions of this Master’s Thesis are the following:

1. An Auto-ITP proxy metric based on predicting tactic groups.

2. An end-to-end theorem proving agent based on solving three multi-class classification
problems.

3. Experiments using supervised Graph Neural Network – more specifically, Graph
Convolutional Network – models in CoqGym. These models are trained on both
human-written and synthetic proof steps.

4. Experiments using supervised BERT models in CoqGym. These models are trained
on both human-written and synthetic proof steps. Models with and without pre-
trained weights are trained and compared.

5. Experiments with end-to-end theorem proving agents, combining different Graph
Convolutional Network models and BERT models.

6. Experiments with end-to-end theorem proving agents, trained using a combination
of deep reinforcement learning and supervised learning.

7. Experiments with end-to-end theorem proving agents, with different depth limits
and beam widths.

All agents prove significantly more theorems than corresponding random guessing agents
– 16.30% more for the BERT-based agent, 37.28% more for the Graph Convolutional

6

1.5 Thesis Structure

Network-based agent, and 47.76% more for the deep reinforcement learning agent. How-
ever, no agent is capable of outperforming state-of-the-art (First et al., 2020), with the
best-performing agent proving 10.74% of the CoqGym test set – 2.16 percentage points
lower than state-of-the-art. Note that a direct comparison to state-of-the-art is difficult
as the theorem agent in this Thesis operates (by design) differently than the agent used
by First et al. (2020).

1.5 Thesis Structure
Chapter 2 covers all relevant background theory necessary to follow the rest of the
Thesis. This includes an introduction of traditional ATP and ITP, as well as relevant
machine learning theory.

Chapter 3 covers relevant work. This includes work in Auto-ITP, Hammer systems and
other applications of machine learning in the domain of mathematics and formal reasoning.

Chapter 4 explains the motivation for the experiments pursued in this Thesis.
This chapter also explains how the proxy metric and the end-to-end theorem proving
agent are designed, as well as the overall deep learning architectures used in the
experiments.

Chapter 5 covers experiments and results. This includes concrete model con-
figurations, the experimental setup, and a detailed account of the results.

Chapter 6 evaluates and discusses how the Master’s Thesis has answered the
Goal and Research Questions, in addition to further discussing findings from the
experiments and relevant topics in this Thesis.

Finally, Chapter 7 summarizes the Thesis’ contributions and addresses possible future
avenues of work.

7

Chapter 2

Background Theory
This chapter contains the necessary background theory needed to follow the experiments
in this Thesis. In addition, some concepts are included to understand better the
related work covered in Chapter 3. First, Section 2.1 covers a general introduction to
traditional Automated Theorem Proving (ATP) systems. The focus is mainly on the
inference techniques used by such systems. Although this section is not strictly needed
to understand Auto-ITP, it is included because it provides more context to Interactive
Theorem Proving (ITP) systems and, therefore, also Auto-ITP. In addition, Hammer
systems, which are part of the body of related work in Chapter 3, rely on ATP systems,
and many of the ATP inference techniques are used internally by ITP systems. Section 2.2
introduces the main ideas of traditional ITP systems. Relevant details on Coq (Chlipala,
2013) (CoqGym’s underlying ITP system) are included in this section. The focus
then shifts to machine learning, with Section 2.3 covering relevant machine learning theory.

It is assumed that the reader is already familiar with First-Order Logic, calcu-
lus, linear algebra, and statistics. ITP systems are typically based on Higher-Order Logic,
but this topic is not strictly necessary for this Master’s Thesis and is not included in the
background theory. Väänänen (2020) provides an excellent introduction to Higher-Order
Logic for the interested reader.

2.1 Traditional Automated Theorem Proving

An Automated Theorem Proving (ATP) system is a computer program operating within
some logical framework (Bibel, 2007). This section focuses on the most common type of
ATP system: systems based on First-Order Logic with equality (Schulz, 2002; Kovács
and Voronkov, 2013). First-Order Logic’s popularity stems from the fact that a vast
amount of mathematics can be expressed formally through First-Order Logic (Ewald,
2019), while it at the same time offers fast inference techniques (some of which will be
discussed here).

The general setup for an ATP system consists of a Knowledge Base of already
known theorems, plus a new theorem to be proven. The new theorem is referred to
as the conjecture. The system tries to infer the conjecture based on the Knowledge
Base by applying one or more inference techniques. Figure 2.1 illustrates the high-level

9

Chapter 2 Background Theory

architecture of a generic ATP system. The inference techniques included in the figure
will be discussed shortly. In the figure, a concrete example of a conjecture that an ATP
system would be able to solve reasonably quickly is included – proving the Inverse of
Group Product from the Group Axioms.

Resolution
Analytic Tableaux
Superpos. calc.

Premise Selection
Knowledge Base Inference

Validity

Add new theorem to Knowledge Base

Figure 2.1: The high-level architecture of a generic ATP system.

It is important to note that “to prove something” is fairly loosely defined. More precise
definitions of what is meant by a proof in a formal setting are (1) satisfiability: there
exists some assignment of the variables (also known as a model) such that this assignment
reduces the conjecture to logical True, given the Knowledge Base (Russell and Norvig,
2010, p. 250), and (2) validity: all assignments of variables reduces the conjecture to
logical True, given the Knowledge Base (Russell and Norvig, 2010, p. 249).

The key component in an ATP system is the inference engine. ATP systems
have large libraries of already proven facts, and it is the system’s job to infer new facts
automatically. Inference is, therefore, at the heart of all ATP systems. Most inference
techniques use a so-called proof by refutation (Russell and Norvig, 2010, p. 250). Proof
by refutation works by first negating the conjecture and showing that the negation of the
conjecture is unsatisfiable (i.e., not satisfiable), which proves that the original conjecture is
valid. This is true because a conjecture is valid if, and only if, its negation is unsatisfiable
(Russell and Norvig, 2010, p. 250). The inference techniques involve a preprocessing
step where the set of expressions is formulated using Conjunctive Normal Form (CNF)
(Russell and Norvig, 2010, p. 345). In short, the set represents a conjunction (i.e., the log-
ical AND ∧) of clauses, where each clause is a disjunction (i.e., the logical OR ∨) of terms.

Another important aspect of ATP systems, is the premise selection step (Blanchette
et al., 2016) (depicted in Figure 2.1). When performing inference, the system usually
experiences an explosion in the combinatorial search space. Therefore, it is desirable
only to include the background theory necessary to prove a conjecture and nothing more
(Hoder and Voronkov, 2011). This task is known as premise selection.

10

2.1 Traditional Automated Theorem Proving

Next, instead of going into details about specific ATP systems, the most com-
mon inference techniques are introduced in a general setting. This covers the theory
needed to understand ATP systems while focusing on the important conceptual aspects
and not on implementation details. Note that, while this section is restricted to
the three most heavily adopted techniques, modern ATP systems usually deploy a
combination of several different inference techniques. Other popular techniques, not
covered here, include generalized Modus Ponens, Model Elimination/Model Checking,
and the Davis–Putnam–Logemann–Loveland algorithm (Davis et al., 1962).

2.1.1 Resolution

The resolution technique (Russell and Norvig, 2010, p. 347 - 356) used in ATP systems
combines variable substitution and the resolution inference rule. The idea is to resolve
two disjunctions by unifying the variables in such a way that straightforward application
of standard resolution is possible.

In order to illustrate the resolution inference technique, consider the following
Knowledge Base (in CNF):

Knowledge Base = {¬P (x) ∨Q(x),¬Q(y) ∨ S(y), P (z)},

with the goal to prove S(A). The first step is to negate the conjecture: ¬S(A). Then,
inference by resolution will yield the resolution tree depicted in figure 2.2, and the
conjecture is proven by refutation. This happens when resolution yields an empty set
of clauses. Resolution is known to be refutation-complete, in that a set of clauses is
unsatisfiable if and only if there exists a derivation of the empty clause using resolution
alone (Russell and Norvig, 2010, p. 345).

Figure 2.2: Example of a resolution tree.

11

Chapter 2 Background Theory

2.1.2 Analytic Tableaux

Analytic Tableaux (Smullyan, 1968, p. 52-63) is a family of inference techniques, where
the main idea is to break an expression into sub-expressions by a given set of rules for
the logical connectives and quantifiers. This yields a tree structure (the tableau), where
the leaves consist of atomic expressions that cannot be broken down further. A branch
in the tree is considered closed when it inhabits a term and its negation. The original
expression is unsatisfiable when all branches are closed, meaning the conjecture is proven
by refutation.

In general, the tableau is expanded based on the following rules for logical con-
nectives and quantifiers:

• ∧: If a branch of the tree contains A∧B, add A and B to the leaves of that branch.

• ∨: If a branch of the tree contains A ∨ B, split each leaf of the branch into two
new leaves; one containing A and one containing B.

• ¬: If a branch of the tree contains ¬(A ∨B) or ¬(A ∧B), use De Morgan’s law to
“push” the negation inwards.

• ⇒ or ⇔: If a branch of the tree contains A ⇒ B or A ⇔ B, use the implication
identity or the equivalence identity.

• ∃: Get rid of ∃ by existential instantiation.

• ∀: Get rid of ∀ by universal instantiation.

Many variations are possible. For example, one can delay branching as long as possible
in order to avoid duplicate work, and do universal instantiation by the so-called most
general unifier (Russell and Norvig, 2010, p. 327). Intuitively meaning that we want the
instantiation variable to correspond to as many already instantiated variables as possible,
so that a direct comparison of terms can be done.

Consider the example

Knowledge Base = {∃x.¬P (x) ∧ ¬Q(x), ∀y.Q(y) ∨ S(y)}

where the goal is to prove S(A). Using Analytic Tableaux, the tableau illustrated in
Figure 2.3 is obtained. Each branch of the tree contains a contradiction (marked by
dotted line), and S(A) is therefore valid.

12

2.1 Traditional Automated Theorem Proving

Figure 2.3: Example of a tableau. The dotted lines indicate conflicting terms (i.e., closed
branches). All branches are closed in this tableau, meaning the original
conjecture is valid by refutation.

2.1.3 Superposition Calculus

Most traditional ATP systems revolve around First-Order Logic with equality. The
axiomatic way for dealing with equality (i.e. introducing new rules to the Knowledge
Base that dictates how equality is handled) is usually inefficient, so designers have instead
turned to another concept: Superposition Calculus (Rusinowitch, 1991; Schulz, 2002).
Superposition Calculus involves the introduction of a new inference rule dictating how
the system deals with equality:

C1 ∨ s = t, C2 ∨ P (s′)
σ(C1 ∨ C2 ∨ P (t)), where σ = most general unifier of (s, s′)

This style of inference under equality creates a rewrite system where equations are
subject to some ordering � of terms. Ordering is a way to ensure termination, because it
dictates in which “direction” to apply the rewrite associated with an equality (e.g., if we
have x = y, should we set occurrences of x equal to y or set occurrences of y equal to x?).

A common problem in superposition calculus is the failure to achieve a conflu-
ent rewrite system. The rewrite system is considered confluent only when it
deterministically outputs the expanded Knowledge Base, without considering the order
of rewrite application (e.g., if we have x = y and a = b, should be rewrite using x = y
first or rewrite using a = b first?). The way to get around this problem is by applying

13

Chapter 2 Background Theory

so-called Knuth-Bendix completion (Knuth and Bendix, 1970). The general approach is
the following:

• Identify “critical pairs” (pairs of equations where confluence fails) by leveraging
unification.

• Add critical pairs to Knowledge Base with the correct ordering. And repeat.
Superposition calculus is quite powerful. In the example from Figure 2.1, repeated
mechanical application of the superposition calculus technique on the Knowledge Base
results in:

Knowledge Base = {(x · y) · z = x · (y · z),
1 · x = x,

x−1 · x = 1,
(x · y)−1 = x−1 · y−1,

(x−1)−1 = x,

1−1 = 1,
x · x−1 = 1,
(x · x−1) · y = y,

x · 1 = x,

(x−1 · x) · y = y}
Notice that the conjecture from Figure 2.1 is now part of the Knowledge Base. That is,
Inverse of Group Product simply drops out from the Group Axioms by a straightforward
application of superposition calculus.

2.2 Interactive Theorem Proving
Traditional Interactive Theorem Proving (ITP) systems are not designed for theorem
proving automation. Instead, they are used in cooperation with a human user. ITP
research is a large subject, and diverse approaches and systems exist within this line of
research. On one extreme, there are systems that act as safeguards and only formally
verify proof made by a human. On the other extreme, systems can be “almost automated”
and only subject to a small degree of human guidance during proof search. Harrison
et al. (2014) provides an excellent introduction to the field and its history and Nawaz
et al. (2019) a comprehensive comparison of different ITP systems.

Here, the scope is restricted to the concepts needed to understand Auto-ITP.
These concepts are introduced in a general setting rather than via any concrete system.
Some simplifications and generalizations are made as implementation details of specific
systems are not central. However, some extra details are included on the ITP system
Coq – the central ITP systems concerned in this Thesis. Other ITP systems used for
Auto-ITP include HOL Light (Harrison, 1996) and HOL4 (Slind and Norrish, 2008).

14

2.2 Interactive Theorem Proving

2.2.1 Tactic-based Interaction

Most ITP systems implement so-called tactics (Harrison et al., 2014; Nawaz et al., 2019).
This allows the user to interact with the system in a “backward searching” manner,
meaning that the user starts with the goal (i.e., the conjecture) and breaks down this
goal into simpler and simpler subgoals by applying tactics. This process continues until
only trivially true (e.g., 1 = 1) subgoals are left. Although tactic-based interaction is
not the only option1, it is this approach used in Auto-ITP. It is also normally the way
human users interact with ITP systems (Harrison et al., 2014).

When interacting with an ITP system using tactics, a search tree is built (Bansal et al.,
2019a). In this tree, the root is the original top-level goal, internal nodes consist of
subgoals, and edges are associated with an applied tactic. Leaves are reached when
a goal is trivially true. A node is closed when all its subgoals are proved. Figure 2.4

Subgoal1.2Subgoal1.1 Subgoal2.1

Subgoal3Subgoal2Subgoal1

Unsolvable

Tactic3

UnsolvableUnsolvableSolvedSolved

Solved

Tactic2Tactic1

Tactic1 Tactic1

Tactic1 Tactic2 Tactic1 Tactic2 Tactic3

Goal

Figure 2.4: Example of a hypothetical proof tree. Green indicates closed nodes, yellow
open nodes, and red nodes that are unprovable with the available tactics.

illustrates a hypothetical proof tree. In this example, three tactics are available: Tactic1,
Tactic2 and Tactic3. The user has first applied Tactic1, resulting in the left-hand side
subtree. The user has then decided to pursue this subtree further before encountering
Subgoal2.1. This subgoal is unsolvable with the three available tactics. The user has then

1One can, for example, interact in a “forward” fashion, using rules like Conjugate and Modus Ponens
to build from a set of background knowledge (Harrison et al., 2014). This is more similar to how
traditional ATP systems work.

15

Chapter 2 Background Theory

backtracked to the root and applied Tactic2, resulting in the right-hand side subtree.
This branch is solved by applying Tactic3 to the only subgoal, Subgoal3, in the node.
In this way, the top-level goal is solved too. A more seasoned user might have applied
Tactic2 and Tactic3 right away, avoiding the left-hand side subtree altogether.

Tactic-based ITP systems usually support their own custom tactic language (Nawaz
et al., 2019). Under the hood of such ITP systems, there is a parser that interprets the
specifics of a tactic script (i.e., a sequence of tactics) and reduces the steps to code that
is interpretable by the underlying programming language. Different systems support
different tactics. In general though, they always represent high-level strategies in the
proof procedure. A tactic can for example be an induction tactic or a rewrite tactic,
corresponding to a proof by induction or a rewriting of the goal (usually using some
already proven theorem), respectively.

2.2.2 Tactic Arguments and Proof Context

A user can sometimes pass arguments along with tactics (Barras et al., 1997; Harrison,
1996). Tactic arguments can generally be interpreted as part of one of two proof contexts
(Yang and Deng, 2019; Bansal et al., 2019a). This Thesis will refer to these as the global
context and the local context and interprets them in the following way (based on the the
interpretations in Auto-ITP frameworks (Yang and Deng, 2019; Bansal et al., 2019a;
Gauthier et al., 2020; Huang et al., 2019)).

The global context defines all background knowledge available at search time.
This is analogous to an ATP system’s Knowledge Base. That is, the global context
contains already proven theorems, that can be used as tactic arguments in the proof
procedure. For example, when applying a rewrite tactic, it can be useful to pass an
equality theorem with the tactic, in order for the ITP system to know how to rewrite the
current subgoal. This is essentially the same as the premise selection step done by ATP
systems.

The local context includes the current goal/subgoal being evaluated, in addition
to local hypotheses. Local hypotheses can occur as part of a tactic application. For
example, when proving that n+ 0 = 0 using an induction tactic, the problem can be split
in two: the base case 0 + 0 = 0 and the inductive case “if for any n = k we have k+ 0 = k,
then k+1+0 = k+1”. In this example, the ITP system will generate a new node contain-
ing two subgoals, each within an associated local context: (1) a subgoal for the base case
0 + 0 = 0 where the local context does not include any hypotheses, and (2) a subgoal for
the inductive case k+1+0 = k+1 where the local context includes the hypothesis k+0 = k.

Some generalizations are made in this Thesis, in order to make it easier to talk
about the ITP proof procedure:

• Core tactic. The core tactic is a tactic without any arguments. Some core tactics

16

2.2 Interactive Theorem Proving

can be applied right away, while others require arguments to work. A core tactic
will sometimes be denoted τ in this Thesis.

• Tactic argument. A tactic argument is either a theorem from the global context
or a reference in the local context. The local context reference refers either to a
term in the current subgoal or a local hypothesis. Most ITP systems support other
types of arguments as well, but they are less typical and will not be considered in
this Thesis. Theorems from the global context will sometimes be denoted t and
hypotheses from the local context by h.

• Tactic application. A tactic application consists of a core tactic and arguments
from the local and global context. Arguments can be empty, depending on the core
tactic. It will sometimes be denoted T in this Thesis.

Terms in the subgoal can generally be moved to the list of local hypotheses using specific
tactics, resulting in a transformed but equivalent local context. This means that the
local context argument can in practice be considered as only local hypotheses without
restricting the space of tactic applications, if such transformations are applied.

2.2.3 Internal Automatic Engines

ITP systems often have internal small-scale automatic inference engines built-in (Hurd,
2003). These are invoked by tactic calls and often work by translating the goal and the
tactic arguments into First-Order Logic before applying traditional First-Order inference
techniques. This allows the user to solve subgoals that are not trivially true with a single
tactic application. These engines are interesting in the context of Auto-ITP because they
can serve as initial baselines (Yang et al., 2016) and are available for the Auto-ITP model
to solve non-trivial subgoals.

2.2.4 The Logic of Computable Functions Principle

Modern ITP systems follow the so-called Logic of Computable Functions (LCF) principle
(Geuvers, 2009). Two properties are emphasized in LCF-based ITP systems (Harrison,
2009):

1. The system revolves around a dedicated core: the kernel. The kernel consists of a
set of inference rules, usually referred to as the primitives.

2. The system is implemented in a functional programming language. Type checking
in the programming language ensures that all new inference rules in the system
eventually reduce to the primitives.

The main idea is that if the kernel and the type checking mechanism in the programming
language are sound, then the LCF approach is able to guarantee correctness of all new
theorems entering the system. This is because all theorems that the system encounters
will have to pass through the kernel and thus the system will know if the new theorem is

17

Chapter 2 Background Theory

consistent with the primitives.

To implement this, the general-purpose functional programming language Meta-
Language was developed (Gordon, 2000; Harrison et al., 2014). It works so that inference
and theorems are of the same type in the language: thm. This makes it possible
to implement thm as an abstract type of the primitives, which ensures validity by
construction for new instances of type thm (Harrison et al., 2014).

The kernel also allows LCF-based systems to adhere to the De Bruijn criterion
(Geuvers, 2009). This criterion states that any proof generated by the ITP system should
be checkable by an (ideally simple) proof checker. Furthermore, this checker should be
self-contained and independent of anything outside of itself. That is, the proof checker is
a trustable and sound “black box” which can guarantee the correctness of proofs. This is
precisely what the kernel in LCF-based systems provides.

2.2.5 Coq

The ITP system Coq (Barras et al., 1997) was released in 1989 and has been used in
several formalization projects. Some of the most well known include formal proofs of
the the Feit-Thompson theorem (Gonthier et al., 2013) and the Four Color theorem
(Gonthier, 2008). A C compiler has also been formally verified using Coq (Leroy, 2016),
in addition to the correctness of a Union-Find implementation (Conchon and Filliâtre,
2007). In other words, Coq is used for several problem types, not only pure mathematics.
Each formalization project contains several formal Coq proofs. The large number of
proofs is a primary reason why Coq is attractive as an underlying ITP system for
Auto-ITP frameworks (Yang and Deng, 2019; Huang et al., 2019). Coq also has its own
dedicated website2, a standalone Integrated Development Environment, and is open
source3.

Coq implements a tactic language called LTac (Delahaye, 2000), defined by a
context-free grammar (CFG). In short, grammar entries start with core tactics with
production rules defining how to expand the tactic to include arguments. Some core
tactics are terminal grammar entries, meaning that they do not take arguments. Others
have the option of taking arguments, while some require arguments to work. For a full
overview see the Coq reference manual (Barras et al., 1997), which is also available fully
up-to-date in the form of a website: https://coq.inria.fr/doc/.

To keep things simple, this Thesis follows the Coq tactic space defined by the
simplified CFG provided by Yang and Deng (2019) for the CoqGym framework (more
on the CoqGym framework in Section 3.2.4). As explained by Yang and Deng (2019),
statistics from Coq projects show that many tactics are rarely used in practice. The CFG

2https://coq.inria.fr/about-coq
3https://github.com/coq/coq

18

2.2 Interactive Theorem Proving

provided in CoqGym covers the most used Coq tactics. For details of the full grammar
see Yang and Deng (2019). An overview of core tactics and their use of arguments is
provided in Table 2.1. Furthermore, relevant tactics are summarized in the following
list. Note that the tactics are interpreted using the CFG from Yang and Deng (2019),
meaning their explanations are simplified compared to the full Coq documentation.

• apply. Matches the subgoal against global context arguments using First-Order
unification. E.g., if the user knows that x implies y, and x is a known theorem
in the global context, apply with x as an argument can be used to solve y. A
local context argument can be used to specify if only a sub-expression should be
matched, including local hypotheses.

• rewrite. Rewrites the subgoal using a global context argument. This only works
if the subgoal and argument are equivalent. A local context argument can be used
to specify if only a sub-expression should be rewritten, including local hypotheses.

• intro/intros. Puts universally quantified (i.e., “forall”) variable in the list of local
hypotheses. This can also be done for the left-hand side of implications. intros is
the same as intro applied continuously until no more variables can be converted
to a local hypothesis.

• unfold. If a term in the subgoal has a definition in the global context, unfold
replaces the term by its definition. A local context argument can be used to specify
if only a sub-expression should be unfolded, including local hypotheses.

• induction. Breaks up the subgoal into a base case and an inductive case by
introducing an inductive hypothesis to the local context. A local context argument
is used as an argument to identify the term to induct on. This can be a direct
reference to a term in the subgoal or a reference to a local context hypothesis.

• split. Splits a subgoal consisting of a conjunction. For instance, splitting the
subgoal x ∧ y into two separate subgoals x and y.

• Main internal automatic engines: trivial, auto, tauto, easy, intuition, ring,
field, congruence. These implement different strategies for automatic proofs of
subgoals. E.g., trivial tries to apply a variety of other tactics under the hood and
auto implements a full First-Order resolution procedure. Some are more specialized
than others. E.g., auto is general-purpose while ring is specialized for subgoals
consisting of addition and multiplication.

19

Chapter 2 Background Theory

Table 2.1: Overview of Coq tactics. LC and GC refer to the local and global context,
respectively. Only tactics from CoqGym’s context-free grammar are included.

Core tactic LC arg. GC arg.
intro No No
intros No No
apply Optional Required
auto No Optional
rewrite Optional Required
simpl Optional No
unfold Optional Required
destruct No Required
induction Required No
elim No Required
split No No
assumption No No
trivial No No
reflexivity No No
case No Required
clear Optional No
subst Optional No
generalize No Required
exists Required No
red Optional No
omega No No
discriminate Optional No
inversion Required No
constructor No No

Core tactic LC arg. GC arg.
congruence No No
left No No
right No No
ring No No
symmetry No No
f_equal No No
tauto No No
revert Required No
specialize Required Required
idtac No No
hnf Optional No
inversion_clear Required No
contradiction Optional No
injection Required No
exfalso No No
cbv No No
contradict Required No
lia No No
field No No
easy No No
cbn No No
exact No Required
intuition No No
eauto No Optional

2.3 Machine Learning

Machine learning refers to a subfield of artificial intelligence concerned with methods
that allow some model to learn over time. Typically, the machine learning model
is a general-purpose function approximator, where a set of trainable parameters θ
describe the function. The task of learning is the task of updating the parameters so
that the model better approximates some ideal function. This Thesis is mainly inter-
ested in two subfields of machine learning: supervised learning and reinforcement learning.

Supervised learning (Russell and Norvig, 2010, p. 695) refers to machine learn-
ing methods that learn from a dataset of labeled examples. In this setting, one
has a dataset of feature vectors where each feature vector x corresponds to some
label y. A supervised learning model tries to learn the correlation between the
datasets X = (x1,x2, . . . ,xn) and Y = (y1, y2, . . . , yn). When fed a new example, the

20

2.3 Machine Learning

model makes a prediction ŷ. During training, ŷ is compared to the true label y in
order to compute some error term. The error term is used to incrementally correct
the model’s parameters so it more accurately predicts the true y for the next feature vector.

In reinforcement learning (Russell and Norvig, 2010, p. 830), the model does
not learn from a set of labeled examples. Instead, the model interacts with some
environment, which in turn leads to either positive or negative reinforcements. It is up to
the model to learn what actions lead to positive reinforcements and what actions lead to
negative. Typically, this means that the model will deploy some form of trial-and-error
strategy, where a balance between exploration and exploitation is desirable (Russell and
Norvig, 2010, p. 839). The reinforcement learning method relevant in this Thesis is deep
Q-learning (Mnih et al., 2015).

Deep Q-learning is similar to supervised learning in that the model also takes
in a feature vector x and makes a prediction ŷ. ŷ will in this case be an action the model
can do in the current state st. However, there is no true label y to compare ŷ against.
Instead, a replay memory is used to train the model. In this setup, there is an expected
reward r̂ whenever st+1 (the state reached by applying action y in st) is not a terminal
state and a true reward r when st+1 is a terminal state. r (or r̂) is compared to the
models expected reward for applying y in st (known as the temporal difference (Russell
and Norvig, 2010, p. 836)), which is used to correct the models perception of whether or
not y was a good action in st. When a model trains using a temporal difference-based
replay memory, it is trained in a self-supervised manner. This essentially means the model
trains in a supervised way, where labels are generated by interacting with the environment.

The following subsections will cover relevant theory in machine learning. Be-
cause deep Q-learning utilizes self-learning, the concepts are explained primarily from
a supervised learning point-of-view. Topics specific to deep Q-learning is explained in
Subsection 2.3.13.

2.3.1 Features

Machine learning models take feature vectors as input. Each entry in this vector is called
a feature. Simply put, a feature corresponds to some attribute from the domain at hand.
Models need x to be in a format that is computer understandable. This means that the
attributes have to be converted to some real-valued representation – an encoding of the
attributes – in which x is a real-valued vector that can be used to train the model.

To understand what constitutes features, an Auto-ITP example will be used.
Say the goal g is to prove the expression

a+ 0 = a.

For simplicity, say also that there is a finite set defining all syntactical elements used
to make expressions: S = {a, b, 0,=,−,+}. Then, a simple way to obtain a feature

21

Chapter 2 Background Theory

representation of g is to one-hot encode the expression:

x = (1, 0, 1, 1, 0, 1)

This is a representation where 1 on index i indicates that element i from S is present in
the expression, and vice versa for 0.

A one-hot encoding, like the one described here, is easy to implement and is a
common starting point for dealing with non-numerical categorical attributes. Categorical
attributes are attributes that are (as might be clear from the name) discrete and belong
to some category. However, x does not capture semantic information well. In addition,
it suffers from the curse of dimensional, meaning that feature vectors can become
extensively large when the set of all symbols is large. To deal with this, the encoding can
be mapped to an embedding before a predictive model uses the embedding to make a
prediction. A good embedding will capture semantic information and deal with the curse
of dimensionality.

Other attributes might not need a one-hot encoding as they have a natural
real-valued representation (e.g., the age or height of a person). Alternatively, it could
be the case that no obvious real-valued representation exists for the attribute, and a
one-hot encoding is also not a reasonable approach. In these cases, a more sophisticated
encoding is needed. For example, Transformer models map sequence elements to set of
tokens to obtain a feature representation (explained further in Subsection 2.3.12).

2.3.2 Classification Problems

A classification problem is a type of machine learning problem where each example
belongs to a single class. In binary classification problems, there are two classes. An
example of this is to predict whether a cat is in an image or not. The two classes would,
in this case, be “no cat” and “cat”.

All models in this Thesis are classification models. More specifically, they are
multi-class classification models. Multi-class means that there are more than two classes
to consider. The output of such a model is a probability distribution over the classes,
where the class with the highest probability is the model’s prediction.

Note that this Thesis does not consider multi-label multi-class models. That is,
there is never more than one correct class for each example.

The Softmax Function

The Softmax function (Russell and Norvig, 2010, p. 848) is a function mapping any
real-valued vector to a probability distribution of the same dimension of the input vector.
This probability distribution is mapped so that the largest value in the input vector has
the highest probability, the second largest has the second-highest probability, and so

22

2.3 Machine Learning

on. Softmax is typically used as a final function in a multi-class classification model to
achieve a probability distribution over the classes. It is given by

softmax(yi) = eyi∑K
j=1 e

yj
,

where K is the number of classes and yi denotes the ith class.

2.3.3 Mini-Batch Training

An important concept in training machine learning models is the idea of mini-batch
training (Ruder, 2016). Mini-batch training refers to a method of training where models
predict a mini-batch of the training data at a time. Training only occurs between each
mini-batch, where the error term is computed over the whole mini-batch rather than on
individual examples.

The size of the mini-batch can vary and impacts both performance and the
time it takes to train a model (Smith et al., 2018). If available hardware resources can
support it, increasing the mini-batch size will typically decrease the training time. This
is because more (or all) of the examples in the mini-batch can be computed in parallel.
When setting the mini-batch size to one, training simply follows an example-by-example
routine. When setting the mini-batch size equal to the size of the entire training set,
a batch-style training routine is followed (Ruder, 2016). If an example-by-example,
mini-batch-style or batch-style training leads to the best performance usually varies from
problem to problem.

2.3.4 Loss Function

For machine learning models to be able to learn, they need some feedback that indicates
whether or not they are doing well or not well. This is usually dealt with by using a loss
function (Russell and Norvig, 2010, p. 710). The loss function takes the prediction ŷ and
the label y as input and calculates the loss based on how “wrong” ŷ was compared to y.
Importantly, this loss is a real value which can be used to update the model’s parameters.
When deploying mini-batch training, the loss is usually the mean of the loss for each
example in the mini-batch.

Many variations of loss functions are possible. Two loss functions are used in
this Thesis: Cross-entropy loss and Huber loss.

Cross-Entropy Loss

Cross-entropy is defined for two probability distributions. To explain cross-entropy,
assume the binary case with distributions P = (p, 1 − p) and Q = (q, 1 − q). The
cross-entropy of Q relative to P is defined as

cross-entropy, binary = −(p log(q) + (1− p) log(1− q))

23

Chapter 2 Background Theory

This is easily extended to the general case in which the probability distributions are over
n elements:

cross-entropy = −
n∑
i=0

pi log(qi)

Cross-entropy is used as a loss function by simply applying this formula directly, where
the loss is calculated as the cross-entropy of ŷ relative to y.

Cross-entropy loss is zero whenever ŷ = y. It grows relatively slowly for correct
predictions (i.e., prediction > 0.5 when the label is one) and relatively fast for predictions
that are wrong and where the model is fairly confident in its prediction (i.e., prediction
<< 0.5 when the label is one). The idea is that the penalty is much stricter when the
model is radically wrong and milder, but still not zero, when the model is correct but
not confident.

Huber Loss

Huber loss, named after its inventor Peter J. Huber (1964), is a combination of mean-
squared-error (MSE) and mean-absolute-error (MAE). MSE and MAE are defined as
follows (for the binary case, where mini-batch size is set to one):

MSE = 1
2(y − ŷ)2

MAE = 1
2 |y − ŷ|

The idea of Huber loss is to use MSE whenever the |y − ŷ| is below a certain threshold,
and MAE otherwise. In this way, the loss puts less emphasis on large losses and is,
therefore, less sensitive to outliers. This is useful if the training process is unstable, which
is typically the case training a deep reinforcement learning model like a deep Q-learning
model (Mnih et al., 2015).

2.3.5 Evaluation

The loss function is the metric that guides the learning process for machine learning
models. However, the loss function alone is rarely the metric used to evaluate models.
For classification models, it is more typical to care about the accuracy of the model. The
accuracy is the percentage of correctly labeled examples from a given set of examples.

It is common to split the dataset into two parts; one part being the training
set and the other being the test set (also called the holdout set). It is important to
“hold out” the test set from the model so that a fair, final evaluation can be performed.
Furthermore, it is common to use some of the examples in the train set as a validation set.
The model is tested on the validation set at even intervals during training. This is useful
because it indicates how well the model is doing while training and hyperparameters can
be modified dynamically while training.

24

2.3 Machine Learning

2.3.6 Neural Networks

Neural networks (Russell and Norvig, 2010, p. 727 - 736) are machine learning methods
inspired by the low-level physical structure of the brain. They are part of a family of
methods called deep learning. Neural networks are built as networks of nodes and edges,
where information passes along edges and through nodes. Each edge in the network has
an associated weight. A node takes in the sum of the weighted values of all its input
edges and computes an output value based on an activation function (discussed further in
Subsection 2.3.9). Weights are, therefore, the trainable parameters of the neural network
models. A neural network architecture is made up of layers, with an input layer, an output
layer, and layers in between called hidden layers. In addition to weights, neural networks
have something called bias. Bias is similar to constants in a linear function, whereby
the function is shifted by the constant value. Bias is typically trained, just like the weights.

To train Neural Networks a method known as backpropagation is used (Russell
and Norvig, 2010, p. 733). The general idea is to propagate the error through the
network, from the output layer to the input layer. The gradients of the weights in each
layer are efficiently computed based on the gradients in the prior layer, using the chain
rule. In this way, gradients are calculated while avoiding redundant calculations and
gradient decent can be applied layer-by-layer. This means that weights can be adjusted
to minimize the loss by following the slopes of the loss function. In gradient descent, a
step size is defined, dictating how much the weights should be adjusted in each iteration.
This step size is commonly called the learning rate and denoted α. Neural networks are
usually trained for several epochs. One epoch corresponds to one pass over the training
data. Furthermore, validation is typically performed between each epoch.

Feed Forward Networks

A common type of neural metwork used for prediction is the Feed Forward Network
(FFN) (Russell and Norvig, 2010, p. 729). The input layer takes in the feature vector,
values are passed along edges and nodes, being manipulated by the activation functions,
and the output layer outputs the prediction. Edges in an FFN point “forward” in the
network. Figure 2.5 illustrates an FFN taking in the goal expression from Subsection
2.3.1 and outputting a probability distribution over two tactics.

2.3.7 Optimizers

When training neural networks, an optimizer (Ruder, 2016) is used. Optimizers dictate
exactly how the propagation and gradient descent algorithm is implemented. Most
optimizer leverage so-called momentum. Momentum is a way to favor the previous
direction of the gradient descent by adding the previous update times a constant to the
current update function. This creates the effect of “momentum” being kept from time
step to time step in the search along the loss function’s slopes. Momentum speeds up
the gradient descent process and avoids oscillation.

25

Chapter 2 Background Theory

: Rewrite

: Induction

Figure 2.5: Example of a Feed Forward Network.

Adam

The Adaptive Moment Estimation (Adam) (Kingma and Ba, 2017) optimizer has become
one of the most popular optimizers for deep learning (Ruder, 2016). It is (as the name
suggests) an adaptive optimizer. This means that the optimizer adapts the learning rate
based on some rules. In the case of Adam, the learning rate for each weight is adapted
based on momentum.

Specifically, Adam uses an exponentially decaying average of previous gradients
as part of the current update function. Furthermore, Adam uses two types of momentum:
first-order mt and second-order vt momentum. The second-order momentum is past
gradients squared. Also, accounting for the fact that first-order and second-order
exponentially decaying momentum is biased towards 0, Kingma and Ba (2017) arrive at
the following bias-correct momentum updates:

mt = β1mt−1 + (1− β1)gt
1− βt1

vt = β2vt−1 + (1− β2)g2
t

1− βt2

β is the decay rate and gt is the gradient at time step t. The update rule for the model
parameters is:

θt+1 = θt − α
mt√
vt + ε

ε is a small constant included to avoid division by zero.

26

2.3 Machine Learning

2.3.8 Regularization

Regularization is an essential concept in machine learning. Regularization methods are
used to combat overfitting of the training data. Overfitting is a phenomenon where
the machine learning model is able to perform well on the training data but does not
perform well on the validation or test data. The model essentially finds a correlation
between Xtrain and Ytrain that is too specific for the training set. This leads to the
model not being able to generalize to other examples outside of the training set4.

Regularization techniques generally try to penalize more complex models, in fa-
vor of simpler ones. Many techniques exist. Here, two are explained as they are the ones
used by models in this Thesis: weight decay and dropout.

Weight Decay

Weight decay is a simple technique well known to combat overfitting (Krogh and Hertz,
1992). The basic idea is to decrease the complexity of the network by limiting the growth
of weights. This is achieved by penalizing large weights using a cost term in the loss
function5:

ˆloss(θ) = loss(θ) + 1
2λ

∑
θ2

In this way, smaller weights will be favored over large weights, decreasing the complexity
of the network and combating overfitting.

Dropout

Dropout (Srivastava et al., 2014) is a technique where at each time step during training,
each neuron in the neural network will have its output (its “contribution”) set to zero.
This happens with probability p (the dropout rate). Dropout works because it limits
co-dependency between neurons, meaning that neurons become less dependent on the
output of other neurons. This is a way to create a more “robust” network, which is less
likely to overfit.

2.3.9 Activation Functions

Activation functions are often applied to the output of neurons to allow the network to
approximate non-linear functions. This is because activation functions are non-linear
mappings. Two activation functions are used in this Thesis: ReLU and Tanh.

4The opposite phenomenon is called underfitting, where the model is not even able to find good
predictions for the training set.

5This is very similar to so-called L2 regularization, and weight decay is therefore sometimes referred to
as L2 regularization for neural networks.

27

Chapter 2 Background Theory

ReLU

The Rectified Linear Unit (ReLU) function is given by

ReLU(x) = max{x, 0}

It is a straightforward function and has become the most popular activation function
(Nwankpa et al., 2021). It is faster than most other activation functions and shows strong
generalization ability for deep learning models (Nwankpa et al., 2021).

Tanh

Hyperbolic tangent (tanh) maps inputs to the interval (−1, 1). This allows it to keep
contributions from negative outputs (something that ReLU does not), while at the same
time making sure that no outputs grow too large (in either negative or positive direction).
The function is given by:

tanh(x) = ex − e−x

ex + e−x

It is a common activation function for natural language tasks (Nwankpa et al., 2021).

2.3.10 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a special type of neural network designed to
capture spatial relationships in images (Nielsen, 2015). Three key ideas are introduced in
CNNs: local receptive fields, shared weights and pooling.

Instead of having the input neurons fully connected to every neuron in the first
hidden layer, a CNN connects a cluster of spatially close neurons to the same hidden
neuron. For the example of an image, the input neurons can be considered as a matrix
corresponding to the pixels in the image. Each region in the pixel matrix is connected to
a single neuron in the first hidden layer. The regions are defined by a kernel of fixed
dimensions that “slides” across the pixel matrix, mapping local receptive fields to hidden
units. This is known as the convolutional layer, also sometimes also called a feature map
(Nielsen, 2015). Another key property of CNNs is that the weights of the hidden units in
the convolution layer share the same weights and bias (Nielsen, 2015).

CNNs also have pooling layers (Nielsen, 2015). Pooling is the process of simpli-
fying the feature map by mapping regions from the hidden layer to a new layer by some
(simple) mathematical operation. For instance, 2x2 max pooling maps 2x2 regions in the
hidden layer to the largest value contained in the 2x2 window. This is a parameter-free
operation, meaning that the pooling layer does not contain weights and is therefore not
trained during backpropagation.

28

2.3 Machine Learning

2.3.11 Graph Neural Networks

Graph Neural Networks (GNNs) refer to deep learning methods applied to graph
structures. This is achieved by so-called message passing techniques (Paliwal et al.,
2020). In a typical setup, node embeddings are computed using message passing before
predictions can be made on either individual nodes or the graph as a whole (Zhang
et al., 2018). The message passing function takes in the embedding of a node vi xi and
embeddings of nodes in the local neighborhood of vi. For GNNs, the message passing
function is a neural network and therefore consists of trainable parameters θ (i.e., the
network weights). A typically embedding process involves several rounds of message
passing, called hops. For K hops, a node embedding will depend on neighbors as far as
K edges away. Self-loops are usually added, meaning that information from vi’s own
embedding is not lost in the message passing process. Note, in the following subsection
X does not denote a training set but rather the initial node embedding of the graph.

Three GNN methods are used in this Thesis: Graph Convolutional Networks
(GCN) (Kipf and Welling, 2017), Simple Graph Convolutional Networks (SGC) (Wu
et al., 2019) and Deep Graph Convolutional Neural Networks for end-to-end graph
classification (DGCNN) (Zhang et al., 2018). GCN and SGC were proposed as node
classification methods. However, this Thesis is concerned with graph classification, in
which the graph itself is classified, and not individual nodes. GCN and SGC (and most
types of GNN methods) can serve this purpose too by having some form of readout
function. The readout function takes in the embedded nodes and maps them to a
fixed-sized graph representation. The graph representation can, in turn, be used in
a standard classification model. DGCNN is an architecture that does precisely this.
It leverages the GCN technique for node embeddings and uses a novel sorting-based
readout function. Each of the three methods will now be covered in more detail.

Graph Convolutional Network

The starting point for the Graph Convolutional Networks (GCNs) describe by Kipf and
Welling (2017) is a semi-supervised node classification problem. This means that labels
are available for a subset of nodes, but not all. The problem is then to predict the labels
for the remaining nodes.

In short, Kipf and Welling (2017) solve this problem by considering the labeled
nodes as training data for a neural network model, in which both the node embedding
matrix X and the adjacency matrix A are inputs. In this way, both node embeddings and
the relationships between nodes is part of the feature space. This means that crucial rela-
tional semantics encoded by the graph structure is included in the message passing process.

A K-layer GCN is identical to propagating node feature vector through a K-
layer FFN, with the addition that the hidden representation of each feature wi is
averaged with the feature vectors of its local neighborhood (Wu et al., 2019). This is

29

Chapter 2 Background Theory

analogous to a convolution in CNNs (hence the name Graph Convolutional Network).

This achieved in the following way. GCN first adds self-loops to A, using the
identity matrix I: Ã = A+ I. Then, Ã is normalized using its diagonal degree matrix D̃:

S = D̃−
1
2 ÃD̃−

1
2

The convolutional step in GCN for the kth hidden representation W (k) can then be
compactly described by:

W̄ (k) ← SW (k−1)

This is known as feature propagation (Wu et al., 2019) and is similar to feature mapping
in CNNs. The next step is to apply linear transformation by passing W̄ (k) through a
parameterized function; an FFN with trainable parameters θ, before nonlinear activation
is applied:

W (k) → σ(W̄ (k)θ)

The overall algorithm is depicted in Figure 2.6. The figure showcases how GCN implements
a 3-step process: feature propagation, linear transformation, and nonlinear activation.
ReLU is used as the activation function σ in the figure. Softmax is applied at the end to
obtain a classification. Simplifying Graph Convolutional Networks

Nonlinearity

Linear Transformation

GCN

H̄(k) SH(k�1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

H̄(k) H̄(k)⇥(k)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Predictions

ŶGCN = softmax(SH(K�1)⇥(K))
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇥(K � 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Feature Propagation

Logistic Regression
ŶSGC = softmax

�
X̄⇥

�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Predictions

-1 +10
Feature Value:

Class +1: Class -1: Feature Vector:

K-step Feature Propagation
X̄ SKX

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SGC

Input Graph

x1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> x3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x5
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x6
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x7
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

H(0) = X = [x1, . . . ,xn]
>

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Input Graph

x1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> x3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x5
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x6
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x7
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

X = [x1, . . . ,xn]
>

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

H(k) ReLU(H̄(k))
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 1. Schematic layout of a GCN v.s. a SGC. Top row: The GCN transforms the feature vectors repeatedly throughout K layers
and then applies a linear classifier on the final representation. Bottom row: the SGC reduces the entire procedure to a simple feature
propagation step followed by standard logistic regression.

strate that this method effectively shrinks the graph spectral
domain, resulting in a low-pass-type filter when applied to
SGC. Crucially, this filtering operation gives rise to locally
smooth features across the graph (Bruna et al., 2014).

Through an empirical assessment on node classification
benchmark datasets for citation and social networks, we
show that the SGC achieves comparable performance to
GCN and other state-of-the-art graph neural networks. How-
ever, it is significantly faster, and even outperforms Fast-
GCN (Chen et al., 2018) by up to two orders of magnitude
on the largest dataset (Reddit) in our evaluation. Finally,
we demonstrate that SGC extrapolates its effectiveness to a
wide-range of downstream tasks. In particular, SGC rivals,
if not surpasses, GCN-based approaches on text classifi-
cation, user geolocation, relation extraction, and zero-shot
image classification tasks. The code is available on Github1.

2. Simple Graph Convolution
We follow Kipf & Welling (2017) to introduce GCNs (and
subsequently SGC) in the context of node classification.
Here, GCNs take a graph with some labeled nodes as input
and generate label predictions for all graph nodes. Let
us formally define such a graph as G = (V,A), where V
represents the vertex set consisting of nodes {v1, . . . , vn},
and A 2 Rn⇥n is a symmetric (typically sparse) adjacency
matrix where aij denotes the edge weight between nodes

1https://github.com/Tiiiger/SGC

vi and vj . A missing edge is represented through aij = 0.
We define the degree matrix D = diag(d1, . . . , dn) as a
diagonal matrix where each entry on the diagonal is equal
to the row-sum of the adjacency matrix di =

P
j aij .

Each node vi in the graph has a corresponding d-
dimensional feature vector xi 2 Rd. The entire feature
matrix X 2 Rn⇥d stacks n feature vectors on top of one
another, X = [x1, . . . ,xn]

>. Each node belongs to one
out of C classes and can be labeled with a C-dimensional
one-hot vector yi 2 {0, 1}C . We only know the labels of a
subset of the nodes and want to predict the unknown labels.

2.1. Graph Convolutional Networks

Similar to CNNs or MLPs, GCNs learn a new feature repre-
sentation for the feature xi of each node over multiple layers,
which is subsequently used as input into a linear classifier.
For the k-th graph convolution layer, we denote the input
node representations of all nodes by the matrix H(k�1) and
the output node representations H(k). Naturally, the initial
node representations are just the original input features:

H(0) = X, (1)

which serve as input to the first GCN layer.

A K-layer GCN is identical to applying a K-layer MLP
to the feature vector xi of each node in the graph, except
that the hidden representation of each node is averaged with
its neighbors at the beginning of each layer. In each graph
convolution layer, node representations are updated in three

Figure 2.6: Illustration of the GCN message passing algorithm. Figure from Wu et al.
(2019), with permission from Felix Wu.

Simplified Graph Convolutions

The Simplified Graph Convolution (SGC) message passing technique (Wu et al., 2019)
makes two key simplifications to the GCN technique. The first is to remove the nonlinear
activation function between each GCN layer. Wu et al. (2019) hypothesize that activation
between messages is not crucial for capturing relational semantics. The resulting classifier
becomes:

SGC = softmax(SS . . . SXθ(1)θ(2) . . . θ(K))

30

2.3 Machine Learning

forK hop message passing. The notation is simplified further by collapsing the normalized
adjacency matrix multiplications into a single operations where S is raised to the power
of K. The weights can also be reparameterized into a single matrix θ:

SGC = softmax(SKXθ)

SGC is depicted in Figure 2.7. As noted by Wu et al. (2019), SGC is easy to interpret. It
first consists of a parameter-free feature extraction step (the message passing) X̄ = SKX,
before a classification step outputs the prediction (shown as “Logistic Regression” in
Figure 2.7) Ŷ = softmax(X̄θ).

Simplifying Graph Convolutional Networks

Nonlinearity

Linear Transformation

GCN

H̄(k) SH(k�1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

H̄(k) H̄(k)⇥(k)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Predictions

ŶGCN = softmax(SH(K�1)⇥(K))
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇥(K � 1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Feature Propagation

Logistic Regression
ŶSGC = softmax

�
X̄⇥

�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Predictions

-1 +10
Feature Value:

Class +1: Class -1: Feature Vector:

K-step Feature Propagation
X̄ SKX

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SGC

Input Graph

x1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> x3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x5
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x6
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x7
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

H(0) = X = [x1, . . . ,xn]
>

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Input Graph

x1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> x3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x5
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x6
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x7
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

X = [x1, . . . ,xn]
>

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

H(k) ReLU(H̄(k))
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 1. Schematic layout of a GCN v.s. a SGC. Top row: The GCN transforms the feature vectors repeatedly throughout K layers
and then applies a linear classifier on the final representation. Bottom row: the SGC reduces the entire procedure to a simple feature
propagation step followed by standard logistic regression.

strate that this method effectively shrinks the graph spectral
domain, resulting in a low-pass-type filter when applied to
SGC. Crucially, this filtering operation gives rise to locally
smooth features across the graph (Bruna et al., 2014).

Through an empirical assessment on node classification
benchmark datasets for citation and social networks, we
show that the SGC achieves comparable performance to
GCN and other state-of-the-art graph neural networks. How-
ever, it is significantly faster, and even outperforms Fast-
GCN (Chen et al., 2018) by up to two orders of magnitude
on the largest dataset (Reddit) in our evaluation. Finally,
we demonstrate that SGC extrapolates its effectiveness to a
wide-range of downstream tasks. In particular, SGC rivals,
if not surpasses, GCN-based approaches on text classifi-
cation, user geolocation, relation extraction, and zero-shot
image classification tasks. The code is available on Github1.

2. Simple Graph Convolution
We follow Kipf & Welling (2017) to introduce GCNs (and
subsequently SGC) in the context of node classification.
Here, GCNs take a graph with some labeled nodes as input
and generate label predictions for all graph nodes. Let
us formally define such a graph as G = (V,A), where V
represents the vertex set consisting of nodes {v1, . . . , vn},
and A 2 Rn⇥n is a symmetric (typically sparse) adjacency
matrix where aij denotes the edge weight between nodes

1https://github.com/Tiiiger/SGC

vi and vj . A missing edge is represented through aij = 0.
We define the degree matrix D = diag(d1, . . . , dn) as a
diagonal matrix where each entry on the diagonal is equal
to the row-sum of the adjacency matrix di =

P
j aij .

Each node vi in the graph has a corresponding d-
dimensional feature vector xi 2 Rd. The entire feature
matrix X 2 Rn⇥d stacks n feature vectors on top of one
another, X = [x1, . . . ,xn]

>. Each node belongs to one
out of C classes and can be labeled with a C-dimensional
one-hot vector yi 2 {0, 1}C . We only know the labels of a
subset of the nodes and want to predict the unknown labels.

2.1. Graph Convolutional Networks

Similar to CNNs or MLPs, GCNs learn a new feature repre-
sentation for the feature xi of each node over multiple layers,
which is subsequently used as input into a linear classifier.
For the k-th graph convolution layer, we denote the input
node representations of all nodes by the matrix H(k�1) and
the output node representations H(k). Naturally, the initial
node representations are just the original input features:

H(0) = X, (1)

which serve as input to the first GCN layer.

A K-layer GCN is identical to applying a K-layer MLP
to the feature vector xi of each node in the graph, except
that the hidden representation of each node is averaged with
its neighbors at the beginning of each layer. In each graph
convolution layer, node representations are updated in three

Figure 2.7: Illustration of the SGC message passing algorithm. Figure from Wu et al.
(2019), with permission from Felix Wu.

Deep Graph Convolutional Neural Network

Deep Graph Convolutional Neural Network (DGCNN) (Zhang et al., 2018) is an end-to-
end architecture for graph classification. The overall architecture is depicted in Figure 2.8.
The first step is K rounds of GCN message passing. For each round, a node embedding
W is stored. Zhang et al. (2018) propose the following GCN implementation:

W (k+1) = σ(D̃−1ÃW (k)θ(k))

As with GCN from Kipf and Welling (2017), Ã denotes the graph adjacency matrix with
added self-loops Ã = A+ I, and D̃ is the diagonal degree matrix of Ã. In other words,
this implementation is almost identical to the GCN implementation from Kipf and
Welling (2017). Node embeddings from each round of message passing is concatenated
into a single graph representation W (1:K) = [W (1), . . . ,W (K)], with W (0) = X.

The next step is to perform a readout of the node embeddings. DGCNN achieves this
by a novel SortPool layer, which extracts the top n rows from W (1:K). This is done
by first sorting W (1:K) based on the final message passing computation W (K). Zhang
et al. (2018) show that the output from the message passing rounds can be viewed as
continuous Weisfeiler-Lehman (WL) node colors (Weisfeiler and Lehmann, 1968). In
short, WL colors are node colors obtained by iteratively updating colors based on the
node’s previous color and the color of its local neighborhood6. The final output W (K) is

6“Color” is not meant to be interpreted literally, but rather as a fingerprint representing the node.

31

Chapter 2 Background Theory

the most “refined” such coloring, and therefore the basis for the sort (Zhang et al., 2018).
Crucially, SortPool provides a consistent graph representation. This means that if two
graphs are isomorphic7, their graph representation after SortPool is the same Zhang
et al. (2018).

SortPool can pass gradient loss back to the GCN layers. Learning end-to-end
graph classification is therefore possible with DGCNN. Zhang et al. (2018) also pad
the output from SortPool always contains exactly n rows. Finally, a traditional CNN
network is implemented as a prediction network.

B C

E

A

F

D B C

E

A

F

D

C C C

D DD
E EE

B BB
A AA
F FF

Sort

SortPooling

C

D

E

B

A

1-D convolution Dense layers

Train CNNs on sorted
representations and predict

Graph convolution layersInput graph

B C

E

A

F

D

B C

E

A

F

D

B C

E

A

F

D

Substructure feature extraction in terms of
continuous WL colors using graph convolution

Concatenate WL colors
from all iterations

Sort vertices using the last
layer’s colors and pool

Pooling
C

E

D

B

A

E

D

B

A

C

Figure 2: The overall structure of DGCNN. An input graph of arbitrary structure is first passed through multiple graph convolution
layers where node information is propagated between neighbors. Then the vertex features are sorted and pooled with a
SortPooling layer, and passed to traditional CNN structures to learn a predictive model. Features are visualized as colors.

Following this idea, we invent a novel SortPooling layer.
In this layer, the input is an n × ∑h

1ct tensor Z1:h, where
each row is a vertex’s feature descriptor and each column is
a feature channel. The output of SortPooling is a k × ∑h

1ct

tensor, where k is a user-defined integer. In the SortPooling
layer, the input Z1:h is first sorted row-wise according to Zh.
We can regard this last layer’s output as the vertices’ most re-
fined continuous WL colors, and sort all the vertices using
these final colors. This way, a consistent ordering is imposed
for graph vertices, making it possible to train traditional neu-
ral networks on the sorted graph representations. Ideally, we
need the graph convolution layers to be deep enough (mean-
ing h is large), so that Zh is able to partition vertices into
different colors/groups as finely as possible.

The vertex order based on Zh is calculated by first sorting
vertices using the last channel of Zh in a descending order.
If two vertices have the same value in the last channel, the
tie is broken by comparing their values in the second to last
channel, and so on. If ties still exist, we continue comparing
their values in Zh−1

i , Zh−2
i , and so on until ties are broken.

Such an order is similar to the lexicographical order, except
for comparing sequences from right to left.

In addition to sorting vertex features in a consistent order,
the next function of SortPooling is to unify the sizes of the
output tensors. After sorting, we truncate/extend the output
tensor in the first dimension from n to k. The intention is
to unify graph sizes, making graphs with different numbers
of vertices unify their sizes to k. The unifying is done by
deleting the last n − k rows if n > k, or adding k − n zero
rows if n < k.

As a bridge between graph convolution layers and tradi-
tional layers, SortPooling has another great benefit in that it
can pass loss gradients back to previous layers by remem-
bering the sorted order of its input, making the training of
previous layers’ parameters feasible. In comparison, since
(Niepert, Ahmed, and Kutzkov 2016) sorts vertices in the
preprocessing step, their parameter training cannot take place
before sorting. We show how to do backpropagation for
SortPooling in the supplementary material.

2.3 Remaining layers

After SortPooling, we get a tensor Zsp of size k ×∑h
1ct with

each row representing a vertex and each column representing
a feature channel. To train CNNs on them, we first reshape
Zsp into a k(

∑h
1ct) × 1 vector row-wise. Then we add a 1-D

convolutional layer with filter size and step
∑h

1ct, in order
to sequentially apply filters on vertices’ feature descriptors.
After that, several MaxPooling layers and 1-D convolutional
layers are added in order to learn local patterns on the node
sequence. Finally, we add a fully-connected layer followed
by a softmax layer.

3 Related Work
Graph Kernels Graph kernels make kernel machines
such as SVMs feasible for graph classification by com-
puting some positive semidefinite graph similarity mea-
sures, which have achieved state-of-the-art classification re-
sults on many graph datasets (Vishwanathan et al. 2010;
Shervashidze et al. 2011). A pioneering work was intro-
duced as the convolution kernel in (Haussler 1999), which
decomposes graphs into small substructures and computes
kernel functions by adding up the pair-wise similarities be-
tween these components. Common types of substructures
include walks (Vishwanathan et al. 2010), subgraphs (Kriege
and Mutzel 2012), paths (Borgwardt and Kriegel 2005), and
subtrees (Shervashidze et al. 2011; Neumann et al. 2016).
(Orsini, Frasconi, and De Raedt 2015) reformulated many
well-known substructure-based kernels in a general way
called graph invariant kernels. (Yanardag and Vishwanathan
2015) proposed deep graph kernels which learn latent rep-
resentations of substructures to leverage their dependency
information. Convolution kernels compare two graphs based
on all pairs of their substructures. Assignment kernels, on
the other hand, tend to find a correspondence between parts
of two graphs. (Bai et al. 2015) proposed aligned subtree ker-
nels incorporating explicit subtree correspondences. (Kriege,
Giscard, and Wilson 2016) proposed the optimal assignment
kernels for a type of hierarchy-induced kernels. Most ex-
isting graph kernels focus on comparing small local pat-
terns. Recent studies show comparing graphs more glob-
ally can improve the performance (Kondor and Pan 2016;

Figure 2.8: Illustration of the DGCNN end-to-end graph classification architecture. Figure
from Zhang et al. (2018), with permission from Yixin Chen.

2.3.12 Transformers

The Transformer (Vaswani et al., 2017) is a deep learning architecture developed in the
field of Natural Language Processing (NLP). The architecture implements two modules:
an encode and a decoder. In addition, K encoders and decoders are stacked. The input
to these modules is tokenized representations of natural language, and the output is a
probability distribution. The key components in the Transformer are multi-headed self-
attention networks, responsible for capturing semantic information in the input sequence.
Transformers are so-called autoregressive systems, meaning that previous outputs are
part of the current input. The main components will now be explained in more detail.

Tokens and Input Embedding

The tokenization step maps an input sequence to a vector of tokens. For instance, the
input “My name is Bob” might be mapped to the tokens [My, name, is, Bob]. Before the
Transformer encoder and decoder can make computations on the tokens, each token is
mapped to a real-valued vector representation. For example, [My, name, is, Bob] might
be mapped to [0.5, 0.3, 0.2, 0.8]. The input embedding can be obtained in several ways.
Often a pre-defined map is used to ensure that the same word always has the same initial

7Isomorphism between two graphs G1, G2 means that their exists a one-to-one mapping between nodes
in G1 and G2.

32

2.3 Machine Learning

embedding vector. Embedding vectors can be based on pre-trained models that have
learned a meaningful mapping.

Positional Encoding

Before input embeddings are fed into the encoder and decoder, positional encodings
are computed for each input embedding. A positional encoding contains additional
information about the absolute and relative position of tokens in a sequence. Vaswani
et al. (2017) compute positional encoding in the following way:

PE(pos, 2i) = sin(pos/100002i/dmodel)
PE(pos, 2i+ 1) = cos(pos/100002i/dmodel)

pos is the position of the token in the sequence, i is the dimension of the positional
encoding, and dmodel is the input embedding dimension. These functions are chosen
because PEpos+k, where k is an offset, is a linear function of Ppos. This means that the
relative position of a token is well formulated in the positional encoding, in addition to
the sinusoid representation of absolute position.

Multi-Head Self-Attention

Both the encoder and the decoder consist of multi-head self-attention networks.
Multi-head refers to the fact that several self-attention layers are stacked and run
in parallel before the output from each is concatenated and run through a final linear layer.

Self-attention is a technique able to focus its “attention” on the most important
tokens in the input embedding, based on the relationship between the tokens. The
self-attention layer takes in a query Q and key-value pairs K,V (in matrix form). Q is
the current word, and the key-value pairs represent the “memory” of all the words that
have been generated up to that point. Vaswani et al. (2017) call their attention Scaled
Dot-Product Attention, because attention is computed based on the dot-product between
the input matrices and scaled based on the dimension of the key matrix dk:

Attention(Q,K, V) = softmax(QK
T

√
dk

)V

Encoder and Decoder

The encoder takes in the input embedding and the positional encoding. The is
transformed into query Q and key-value pairs K,V and fed into a multi-headed
attention layer. Both the input and the multi-head attention are added together and
normalized in a new layer. Finally, an FFN is used to obtain a linear combination before
the FNN input and output is again added and normalized to obtain a final encoder output.

33

Chapter 2 Background Theory

The decoder is similar to the encoder. However, an additional multi-head atten-
tion layer is used over the output of the encoder and the output of the first multi-head
attention layer in the decoder. The decoder is autoregressive, meaning it generates
tokens one at a time while being fed in the previous outputs. The input is also right
shifted one position to ensure that the prediction at position i only depends on the
known outputs at positions before i.

BERT

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018)
is a Transformer-based architecture allowing embeddings to be computed based on both
the left and right (i.e., bidirectional) context of the token. A key idea is that BERT can
first be pre-trained on general tasks (so-called upstream training) and later fine-tuned to
a specific task (so-called downstream training). BERT has to attend to both preceding
and succeeding tokens during pre-training.

BERT consists of several layers of fully connected Transformers. Two versions
are implemented by Devlin et al. (2018). BERT-base consists of 12 transformer blocks,
each made up of 12 attention heads. Hidden representations are of size 768, making
BERT-base consist of 110 million parameters. A BERT-large version is also implemented,
which implements more transformer blocks and attention heads. BERT-base is the only
relevant BERT implementation for this Thesis.

BERT uses a so-called WordPiece tokenization technique. In short, an input
embedding is extracted from natural language by breaking words into tokens from a set
of more than 30,000 tokens. It is possible to input more than one sentence to BERT by
separating sentences using a special separation token.

Devlin et al. (2018) define two pre-training tasks for BERT. One is to mask to-
kens with a 15% probability. BERT is then tasked with predicting the masked tokens.
The second is a next sentence prediction task. Given sentence A and B, BERT has to
predict whether or not B is the next sentence after A in the dataset. The total number
of words in the pre-training data is 3.3 billion.

2.3.13 Deep Q-Learning

Deep Q-learning (Mnih et al., 2015) is a reinforcement learning technique, combining
Q-learning and deep learning. Here, Q-learning will be explained first, before the deep
learning aspect of deep Q-learning is explained. The important exploration-exploitation
trade-off will also be explained.

34

2.3 Machine Learning

Q-Learning

Q-learning (Russell and Norvig, 2010, p. 831) is a so-called model free reinforcement
learning method. A model in reinforcement learning refers to an explicit transition
probability distribution over the possible state-action pairs in the environment and a
reward function mapping states to reinforcements. Q-learning works without any such
explicit model.

In Q-learning, a function Q(s, a) is learned through trial-and-error. Q(s, a) maps a
state-action pair (s, a) to some real-value. This value represents the expected utility
obtained by performing action a in state s. If a good Q(s, a) is learned, an effective
Q-learning agent can operate by choosing to perform the best action a∗ for each state:

a∗ = argmax
a

Q(s, a)

The Q function is trained by using the Bellman equation (Russell and Norvig,
2010, p. 652), where the temporal difference δ (Russell and Norvig, 2010, p. 836) between
state st and st+1 is the critical component. The Bellman equation is the following value
iteration update function:

Q(st, at)← Q(st, at) + αδ,

where

δ = rt + γmax
a

Q(st+1, a)−Q(st, at)

rt is the reward obtained when reaching st+1. rt is often a neutral reward whenever
st+1 is not a terminal state, and either positive or negative reward whenever st+1 is a
desirable or not desirable terminal state. γ is the discount factor. The purpose of γ is to
discount the importance of estimated future rewards, incentivizing closer rewards over
distant rewards. The temporal difference is weighted by a learning rate α.

maxaQ(st+1, a) means that the model uses the (so-far) best known policy to es-
timate the future reward obtainable from st+1, called off-policy learning. Off-policy
agents learn the value of the optimal action policy, independently of the agent’s actions8.

Q-learning works because the estimate Q(st, at) is gradually refined based on
the true outcome from performing at in st. The temporal difference essentially encodes
the error between the estimate at time step t and the slightly better estimate at time
step t+ 1. Importantly, a reward at a terminal state reveals the ground truth about the
final state, which makes learning possible.

8The opposite is known as on-policy learning. In this setup, the agent will learn the value of the true
policy being carried out by the agent, which typically includes non-optimal explorative actions.

35

Chapter 2 Background Theory

Approximating Q(s, a) via Neural Networks

Traditional Q-learning encodes the Q function as an explicit dictionary-style map.
However, this is not feasible in complex environments where the space of states (and
possibly actions) is large. A way to overcome this is approximating for Q(s, a) via a
learnable function approximator. This is the main idea of deep Q-learning (Mnih et al.,
2015). Neural networks are universal function approximators and can be used as an
efficient alternative to explicit Q maps.

A replay memory is used to train deep Q-learning agents (Mnih et al., 2015).
Whenever the agent performs a new action at the tuple Q(st, at), Q(st+1, a

∗
t+1), rt) is

added to the replay memory. This is a new experience that the agent can learn from.
Experiences in the replay memory are used to train the model in a self-supervised
manner, where the labels are are rt +Q(st+1, a

∗
t+1) and the prediction is Q(st, at). The

error then becomes the temporal difference and can be used for backpropagation training.
Learning from a replay memory, therefore, closely resembles supervised learning. The
difference is that the labels are imperfect estimates of true values that gradually improve
as the true terminal rewards drive the estimates towards more and more correct estimates.

In practice, a few enhancements are used to improve the replay memory tech-
nique. Instead of training on all experiences in the replay memory, only a subset is
used. These are typically chosen uniformly at random. This has shown to result in a
more stable learning process (Mnih et al., 2015). Also, a separate network Qtarget is
used to calculate Q(st+1, a

∗
t+1) (Mnih et al., 2015). This network is known as the target

network. The target network is periodically updated with the Q-network’s weights,
making it converge towards better and better estimates while always “lagging” behind
the Q-network. This has shown to result in a more stable learning process (Mnih et al.,
2015). In practice the Q-network takes in the current state and outputs a probability
distribution over the entire action space, rather than taking in each state-action pairs
one at a time.

Exploration vs. Exploitation

A key aspect of Q-learning (and reinforcement learning in general) is the idea of
exploration vs. exploitation (Russell and Norvig, 2010, p. 839). The idea is that the
agent should not always perform the best action at every time step (exploitation) and
do sub-optimal actions to facilitate exploration of so-far unseen states. Given that the
agent does not know ahead of time what good states are, it risks converging towards a
sub-optimal policy if it has not seen enough different states. The agent needs to combine
the exploitation of previous knowledge and explore new options to ensure that it finds a
good policy. In other words, it is crucial that the model explores many different actions
to be sure that it finds the best actions while at the same time exploiting the best
actions enough times so that it finds strong sequences of actions and becomes confident
in these actions.

36

2.3 Machine Learning

A common way to achieve this is by deploying an ε-greedy strategy (Mnih et al., 2015).
In this setup, the agent chooses a random action, over the best action with probability ε.
ε will typically be a value that decreases over time, meaning that the agent deploys more
aggressive exploration in the beginning, before steadily choosing the best actions more
and more often. ε is decayed exponentially in this Thesis. Given a decay rate d, ε at
time step t is calculated as follows:

εt = εend + εstart − εend
et/d

2.3.14 Other Techniques

Some more machine learning techniques are mentioned in the context of the related work
covered in Chapter 3. The main ones will now be briefly mentioned.

Naive Bayes

Naive Bayes (Russell and Norvig, 2010, p. 808) is a supervised learning algorithm based
on Bayes Theorem and the so-called naive assumption that features are not correlated
with each other (i.e., independent variables). It is a simple machine learning algorithm
that has empirically shown to yield strong results, even though the naive assumption
might not be strictly true for the given problem (Russell and Norvig, 2010, p. 499). It
also has the advantage that it is fast and easily scaled (Alama et al., 2014).

k Nearest Neighbors

k Nearest Neighbors (k-NN) (Russell and Norvig, 2010, p. 738) is a method that, given a
new example, computes the k most similar examples to the new example. This is based
on some distance measure between points in the feature space. A way to make k-NN
more sophisticated is by including a weight on the features. For example, one typically
wants rare features to have a greater impact on the similarity measure, and common
features to have less impact. A popular way to achieve this is by using so-called term
frequency–inverse document frequency (TF-IDF). TF-IDF is a concept from the field of
information retrieval that normalizes the weight of a feature based on how common the
feature is across all examples.

TreeLSTM

TreeLSTM (Tai et al., 2015) is a method that can be used on tree structures. It
is a generalization of the Long Short-Term Memory (LSTM) unit (Hochreiter and
Schmidhuber, 1997), able to embed the topology of tree structures. This is done by
having LSTM units (explained below) depend not only on the input vector and the
hidden state at the previous time step but also on the hidden state of units belonging
to children nodes in the tree. The idea is that this allows information to pass from
children to the parent node, meaning that the embedding will capture the relationship

37

Chapter 2 Background Theory

between these nodes. This is different from regular chained LSTM units that linearly
pass information between tokens in a sequence.

LSTM units are a special case of recurrent neural networks (RNNs). In short,
RNNs are neural networks containing nodes with edges that point back to the node (i.e.,
they are recurrent). That is, inputs to the recurrent node depend not only on the new
input in the input layer but also on the previous inputs to the node. LSTMs are different
from RNNs in that they also include three gates: input gate, output gate, and forget
gate. By closing the input gate, new inputs will not override the LSTM unit information,
making it capable of longer-term memory. The forget gate controls how long a sequence
element should be part of the recurrent information in the unit, while the output gate
controls the activation of the output from the unit.

38

Chapter 3

Related Work
The first section in this chapter, Section 3.1, will cover how the structured literature review
for this Master’s Thesis was performed. Section 3.2 addresses related work involving
Auto-ITP. This section is considered the most relevant for the experiments in this Thesis.
Then, Section 3.3 covers so-called Hammers, which is another popular way of automating
ITP systems. This method is fundamentally different from Auto-ITP but still aims to
achieve end-to-end automation of ITP systems. Hammers are also interesting because
several machine learning techniques have been deployed in these systems to increase
performance, and they have been used to supplement Auto-ITP models. Finally, Section
3.4 covers other related work involving machine learning applied to mathematics and
formal reasoning. Although this literature addresses different problems than Auto-ITP,
many subproblems overlap, and many techniques can be applied to Auto-ITP.

3.1 Literature Review

The initial interest for the topic in this Thesis came from an article written by a team at
Google, where they introduced a new proof dataset (Kaliszyk et al., 2017). To explore
the topic further, a top-down approach was used, where the related work section in
Kaliszyk et al. (2017) served as a starting point. The literature review then quickly
evolved into three distinct branches explored in parallel. The first was related work in
the Auto-ITP space, the second was work on Hammers, and the third was a broader
review of machine learning applied to formal reasoning. A review of ATP, ITP and
machine learning was also conducted. This was performed on an ongoing basis, as
important concepts were mentioned in literature. ATP, ITP and machine learning are
considered background theory and therefore included in Chapter 2.

In order to review the current literature on Auto-ITP, the starting point was,
as mentioned, the work of Kaliszyk et al. (2017). They pointed to other related
work leveraging underlying ITP systems to train machine learning models, which
in turn pointed to other related work within the Auto-ITP space. All Auto-ITP
frameworks developed have been given a name, which was helpful because it enabled
concrete searches on Google and Google Scholar for specific Auto-ITP frameworks.
Such searches were very fruitful. For example, searching for “HOList” on Google
revealed a website dedicated to this framework, where all Auto-ITP efforts in HOList

39

Chapter 3 Related Work

are summarized1. Moreover, searching for “CoqGym” on Google Scholar revealed
work by several research groups using CoqGym as their benchmark (Sanchez-Stern
et al., 2020; First et al., 2020). More general Google Scholar searches supplemented
this. Here, keywords like “tactic prediction” and “automating proof assistants” were
used, revealing relevant work outside of any defined Auto-ITP framework (Nawaz
et al., 2020; Yang et al., 2016; Lee et al., 2020; Szegedy, 2020; Lample and Charton, 2020).

Hammers were researched similarly to Auto-ITP, with a top-down approach as
the primary review method. This search started with HOL Light’s Hammer:
HOL(y)Hammer (Kaliszyk and Urban, 2015b). It became clear that there are many
Hammer systems already developed. However, Hammers are mainly interesting as
a comparison to Auto-ITP in this Thesis, and the review was therefore restricted to
Hammer systems developed for ITP systems with an Auto-ITP counterpart. This led the
review to focus on HOL(y)Hammer and its evolution (Kaliszyk and Urban, 2013, 2014,
2015b), and the Hammer system for Coq: CoqHammer (Czajka and Kaliszyk, 2018).
Another essential resource on Hammers was the survey article Blanchette et al. (2016).

In order to fully understand Auto-ITP, it was necessary to have a basic grasp
of the underlying ITP systems and the fundamentals of traditional ATP. Therefore
a review of the ITP systems themselves was conducted. Two main approaches were
taken. One was to read survey literature on ITP systems. These articles compared
different modern ITP systems (Nawaz et al., 2019) and explained historical aspects
of the systems (Harrison et al., 2014; Gordon, 2000). The second was to use the
documentation provided by the ITP community234. ITP systems are relatively mature
and have thorough documentation. As for ATP, the primary resource was first a survey
lecture given by the ITP pioneer John Harrison5, which pointed to relevant techniques
and approaches in the field. The methods used by ATP systems are well studied and
included in several books on logic and inference. The primary sources for this research
were the widely adopted Russell and Norvig (2010) and Robinson and Voronkov (2001),
as well as articles introducing the relevant techniques (Smullyan, 1968; Rusinowitch, 1991).

Machine learning literature was reviewed on an ongoing basis, as machine learn-
ing techniques came up in the Auto-ITP literature. Both introductory articles and
survey articles were used. To filter out the most relevant articles, the supervisor for the
Master’s Thesis, Björn Gambäck, provided valuable insights and suggestions.

1https://sites.google.com/view/holist/home
2https://coq.inria.fr/distrib/current/refman/
3https://www.cl.cam.ac.uk/ jrh13/hol-light/reference.html
4https://hol-theorem-prover.org/#doc
5https://www.lektorium.tv/lecture/14805

40

3.2 Auto-ITP

3.2 Auto-ITP
In this Thesis, Auto-ITP refers to recent efforts by the machine learning community
to build predictive models on top of existing ITP systems in order to predict tactic
application (Bansal et al., 2019a; Yang and Deng, 2019; Gauthier et al., 2017). The whole
system (ITP + predictive model) can automate the theorem proving task end-to-end, in
a way where the machine learning model “acts as the human user”. Figure 3.1 illustrates
this setting. In order to be clear, the following definition is provided for Auto-ITP:

Auto-ITP Any approach to automating an underlying ITP system where the proof search
is driven forward by machine learning models that have learned to predict what
tactics and tactic arguments to apply in a given proof state.

Theorems

Local context
(subgoal + local hypotheses)

(tactic + arguments)

Proof Tree

Auto-ITP Agent
Database of

theorems

Global context

Embedder
GNN
Transformer
...

Predictive model
FFN

-NN
...

Encoding
one-hot
tokenization
...

Figure 3.1: Overview of the Auto-ITP setting. Examples of possible encoding, embedding
and predictive approaches are included for the Auto-ITP model.

There are multiple ways to train Auto-ITP models. In particular, one has to decide what
kind of data the models are going to train on. In an imitation setting, the models are
trained on human-written proofs (Bansal et al., 2019b). In this way, the model tries to
imitate how humans prove theorems. In a self-learning setting models trains on its own
proofs. These are typically generated during a reinforcement learning session (Bansal

41

Chapter 3 Related Work

et al., 2019b). It is possible to have a pure imitation setting, a combination of imitation
and self-learning, and a pure self-learning setting.

The Auto-ITP process can be interleaved with Hammer calls. This means that
the Hammer tries to prove the current subgoal first. If it fails, the Auto-ITP agent
selects a new tactic, which leads to a new subgoal. The Hammer can then try to prove
this subgoal, and so on. The same idea can be used with the ITP system’s internal
automatic engine (see Section 2.2.3).

Although formal reasoning is a cornerstone of symbolic-based artificial intelli-
gence (Russell and Norvig, 2010), frameworks and benchmarks for combining machine
learning and formal reasoning has been lacking. Auto-ITP research has been focused on
providing full-fledged frameworks to address this. These frameworks generally choose
an existing ITP system as the starting point and provide an Application Programming
Interface (API) for engaging with the system programmatically. Machine learning
researchers can then interact with the ITP systems in a black box fashion and avoid
overheads associated with learning ITP specific domain knowledge. Four Auto-ITP
frameworks have been developed so far. An overview is provided in Table 3.1. Auto-ITP
models for each framework will now be covered. For the CoqGym framework, more
details of the framework itself is provided.

Table 3.1: Overview of existing Auto-ITP frameworks. The data is gathered from several
sources: Kaliszyk and Urban (2013); Gauthier and Kaliszyk (2015); Bansal
et al. (2019a); Gauthier et al. (2017); Huang et al. (2019); Yang and Deng
(2019). Values are rounded to the closest thousand.

Name Underlying ITP Human-written proofs
HOList HOL Light 29k
TacticToe HOL4 8k
GamePad Coq 2k
CoqGym Coq 71k

3.2.1 TacticToe

The first attempt at Auto-ITP was made by Gauthier et al. (2017), in the TacticToe
environment. Gauthier et al. (2017) focus exclusively on k-NN as the core machine
learning model. This is motivated by the success of this technique in the Hammer system
HOL(y)Hammer6 (explained later in Section 3.3.3). TacticToe extracts syntactic features
of the current conjecture and scores its similarity to already proven conjectures using
k-NN with an Inverse Document Frequency-based weighting scheme. Inverse Document
Frequency essentially means that similarity is normalized based on how common terms
are. The tactics used to prove the k most similar already-proven goals are applied to the

6The developers of TacticToe are also pioneers on Hammer research

42

3.2 Auto-ITP

current goal.

The first experiments with TacticToe did not treat argument prediction as a
standalone problem. Instead, they simply predict tactics with already defined arguments
(Gauthier et al., 2017). However, in later experiments, Gauthier et al. (2020) generalize
tactics by removing their arguments. Arguments are then predicted by a separate k-NN
model. Furthermore, they have one model predicting arguments from the global context
and another model predicting arguments from the local context.

Gauthier et al. (2017) use a novel approach to proof search: a modified version
of the best-first A* algorithm which pursues proof paths that are most likely to
lead to a full proof. They do this by scoring each not-yet closed node in the search
tree and choosing the node with the best score as the next node to expand. In
order to score nodes, Gauthier et al. (2017) try a few different variations. The most
successful is a simple summation of the depth of the node and the number of tactics
previously applied on the goals in the node. Intuitively it makes sense that goals deeper
in the proof tree are likely to be simpler than goals further up, and therefore easier to prove.

Gauthier et al. (2020) replace A* by a variant of the popular Monte Carlo algo-
rithm (Raychaudhuri, 2008). In short, the next node to be evaluated is based on the
number of times nodes along its proof path have been visited. An exploration term is
also included, to allow nodes with not the highest score to be chosen from time to time.

Both the A* experiments (Gauthier et al., 2017) and the Monte Carlo experi-
ments (Gauthier et al., 2020) complement the proof search by integrating a minimal
version of a Hammer with TacticToe. This is done by invoking one of HOL4’s (TacticToe’s
underlying ITP system) internal automatic engines (see Section 2.2.3) every time a
selected goal is being evaluated. The hope is that the automatic engine will be able to
prove the goal without further need for proof tree expansion. As noted by Gauthier
et al. (2020), integration with Hammers are expensive and built-in an internal automatic
engine are therefore chosen instead.

Results from Gauthier et al. (2017) and Gauthier et al. (2020) are summarized
in Table 3.2. This constitutes state-of-the-art in TacticToe. Models are only trained in a
supervised manner human-written proof (the Monte Carlo technique only updates the
next-node heuristic in a reinforcement manner, not the machine learning model itself).

3.2.2 HOList

HOList is an Auto-ITP framework developed by Google (Bansal et al., 2019a). Initial
results in this framework are provided by Bansal et al. (2019a). They have two networks
responsible for embedding: one for the goal and one for arguments. They decide to
drop the hypotheses from the local context, meaning that only arguments from the
global context are considered. This comes at the cost that the model will fail on certain

43

Chapter 3 Related Work

Table 3.2: State-of-the-art and main results in TacticToe. Results are from experiments
in Gauthier et al. (2017, 2020).

Setting Proof Search Argument prediction Hammer Result
Imitation Monte Carlo Yes Automatic engine 66.4%
Imitation A* No Automatic engine 39.43%
Imitation A* No None 29.73%

goals while keeping the experiment reasonably simple. Bansal et al. (2019a) use a
neural network called WaveNet van den Oord et al. (2016) to compute the embed-
dings. Details of WaveNet are omitted as it is not highly relevant for the rest of the Thesis.

The embedding for the goal is fed into a simple one-layer FFN. This network
predicts what tactic to choose. For each global context theorem, its embedding is
concatenated with the goal embedding and fed into another one-layer FFN. This network
ranks the relevance of the theorem.

In Paliwal et al. (2020) the same high-level architecture is used. However, they
choose to use Graph Neural Networks (GNNs) as embedding networks. In order to
do this, they represent each term as an Abstract Syntax Tree (AST). A few AST
modifications are tested. The most notable being:

• Standard AST.

• Subexpression sharing. Nodes that are syntactically equal are merged.

• Top down. Only keep edges from parent to children.

• Bottom up. Only keep edges from child to parent.

Paliwal et al. (2020) choose GNN message passing over the similar TreeLSTM
architecture, because TreeLSTM fail to consider the full context of sub-expressions.
TreeLSTM will always compute the same embedding for a sub-expressions, regardless of
its context in the whole formula, as they only consider information flow from children
nodes to parent nodes, not in both directions. Part of the reason why Paliwal et al.
(2020) experiment with top-down and bottom-up variations of the ASTs is to better
understand what constitutes the most important context for sub-expressions (e.g., does
the parent node contain more important semantic meaning for child nodes than the other
way around?).

Bansal et al. (2019a) and Paliwal et al. (2020) train in both a strict imitation
manner, in an imitation+self-learning manner, and in a strict self-learning manner.
Self-learning is achieved by appending newly generated theorems to the training
set. A hybrid imitation and self-learning setting is done by seeding the models
with human-written proofs first, allowing it to train on that data in addition to

44

3.2 Auto-ITP

machine-generated proofs. In the strict self-learning setting, the dataset is initially
empty.

Results for the self-learning setting were improved in Bansal et al. (2019b), by
including a mechanism for doing exploration of possible tactic arguments, instead of
only exploiting the top-ranked premises. In short, “explorative” premises are selected
based on an Inverse Document Frequency-style similarity measure, similar to the k-NN
weighting scheme used by Gauthier et al. (2017). Top-ranked premises and exploration
premises are interleaved into one list and sent as arguments with the tactic. If the
model produces a successful proof, the self-learning loop ensures that this proof is
used for further training, meaning that the model can explore different (and maybe
unconventional) tactic arguments.

Main results from experiments in Bansal et al. (2019a,b); Paliwal et al. (2020)
are summarized in Table 3.3, which constitutes state-of-the-art in the HOList framework.
All experiments use Breath-First Search to traverse the proof tree (i.e., decide the next
node to evaluate), and no Hammer or automatic engine calls are interleaved with the
proof procedure. Bottom up ASTs perform significantly worse than other AST variations.
This indicates that information flow from parent to child node is important to capture
in AST embeddings. Furthermore, imitation+self-learning models preform better than
both strict imitation and self-learning models.

Table 3.3: State-of-the-art and main results in HOList. Results are from experiments in
Bansal et al. (2019a,b); Paliwal et al. (2020).

Setting Embedding AST variant Exploration Result

Imitation

WaveNet - No 32.65%
GNN Standard No 46.66%
GNN Bottom up No 41.86%
GNN Top down No 48.40%
GNN Sub. share No 49.95%

Imitation + Self-learning WaveNet - No 38.9%
GNN Sub. share Yes 59.9%

Self-learning GNN Sub. share Yes 56.3%

3.2.3 GamePad

Researchers at OpenAI and Berkeley introduced the GamePad framework in 2019
(Huang et al., 2019). However, there have yet to be any models performing end-to-end
theorem proving in this framework. Part of the reason for this is likely that only 1,602
theorems are available in this framework.

Unlike in other Auto-ITP experiments, Huang et al. (2019) do not attempt to

45

Chapter 3 Related Work

prove theorems end-to-end. Instead, they introduce three proxy metrics: position, tactic
and argument prediction. Position prediction is the task of predicting how many tactic
applications are left before the current goal/subgoal is proved. Tactic prediction is the
task of predicting the tactic used in the human-written proof. Argument prediction is the
task of predicting what arguments were used with a given tactic, in the human-written
proof.

Like with experiments in HOList, Huang et al. (2019) simplify the argument
problem by only focusing on the global context. In addition, they use a preprocessing
step that generalizes tactics. This results in only 23 tactics to predict. Furthermore,
position prediction is simplified to predicting one of three classes: (1) close (< 5 steps),
(2) medium (between 6 - 19 steps), and (3) far (> 20 steps).

Notable methods used by Huang et al. (2019) include: (1) always guess the
most common category, (2) predict using a straight-forward Support Vector Machine
(SVM) method, and (3) using TreeLSTM and FFN. For (2), formulas are not embedded
in any feature space. Instead, metrics like goal size and the number of local assumptions
are used as features. For (3), formulas are embedded using TreeLSTM on the Coq AST
representations before a FNN makes the final prediction. Results from experiments in
(Huang et al., 2019) are summarized in Table 3.4. FFN+TreeLSTM outperforms the
other models on all tasks. Results indicate that argument prediction is a difficult task,
with an accuracy of 23.91% being the best result from Huang et al. (2019).

Table 3.4: State-of-the-art and main results in GamePad. Results are from experiments
in Huang et al. (2019)

Position Tactic Argument
Most common category 53.66% 44.75% < 10%
SVM 57.52% 49.45% < 10%
TreeLSTM+FFN 66.30% 60.55% 23.91%

3.2.4 CoqGym

Yang and Deng (2019) developed the Auto-ITP framework CoqGym in 2019. The
framework implements a Python API for interacting with Coq, and provides a large set
of proof data. CoqGym’s proof data comprises 70,856 human-written theorems from 123
different formalization projects in Coq. CoqGym will be explained in more detail, as it is
the primary framework concerned in this Master’s Thesis.

Dataset

The dataset is split between a train, validation, and test set. This includes proof data
belonging to both pure mathematical domains and software and hardware verification.

46

3.2 Auto-ITP

CoqGym also ships with synthetic proofs, generated from human-written the-
orems. These proofs were generated from intermediate subgoals found in the
human-written proofs. Yang and Deng (2019) extract synthetic proofs of length (i.e., the
number of tactics used in the proof) 1, 2, 3, and 4. The process of generating synthetic
theorems convert terms in the subgoals into hypotheses in the local context, before
human-written sequences of tactics are applied followed by the auto tactic. The sequence
of human-written tactics can be of desired length to generated fixed-size synthetic proofs.
Crucially, this process makes synthetic proofs similar to human-written proofs meaning
they are not a replacement for reinforcement learning but rather an enhancement to
human-based imitation training. Table 3.5 summarizes the proof data in CoqGym for
the train, validation, and test split.

Table 3.5: The CoqGym dataset. h and s refer to human-written and synthetic proofs,
respectively. Information on the number of synthetic proofs for the different
splits is not provided by Yang and Deng (2019).

h s, length 1 s, length 2 s, length 3 s, length 4
Train 43,844 - - - -
Validation 13,875 - - - -
Test 13,137 - - - -
Total 70,856 159,761 109,602 79,967 61,126

SerAPI

In order to communicate with Coq, CoqGym leverages an API called SerAPI
(Gallego Arias, 2016). SerAPI responds with s-expressions (i.e., a nested list of symbols
with an obvious tree representation), representing the Coq response for the given
input. However, CoqGym wraps the SerAPI calls in a Python class, meaning that one
does not have to directly deal with SerAPI when developing Auto-ITP models in CoqGym.

SerAPI calls are time-consuming and the main bottleneck when a model proves
theorems in an interactive mode (Yang and Deng, 2019). CoqGym sets a default timeout
for each SerAPI call to 12 minutes. If one needs a model to cover more proofs in a
shorter amount of time (e.g., when training a reinforcement learning agent), this timeout
parameter can be modified.

Abstract Syntax Trees

All Coq expressions in CoqGym have an associated AST representation. These represen-
tations are built using a fixed vocabulary of nonterminals. Simply put, the nonterminals
define the values in which a node in the AST can take. There are 55 nonterminals
in CoqGym. They allow an unambiguous and general way to build ASTs from Coq

47

Chapter 3 Related Work

expressions. To build ASTs, CoqGym uses a Python library called Lark7, which parses
s-expressions based on a provided well-defined grammar.

Results in CoqGym

For initial testing in CoqGym, Yang and Deng (2019) develop a deep learning model
capable of generating tactics in a non-trivial way. They call their model ASTactic. The
main idea is to generate tactics as ASTs, not predict tactics from a pre-defined set. To
do this, ASTactic leverages the tactic space defined by Coq’s context-free tactic grammar.
This grammar is briefly explained in Section 2.2.5. More details can be found in (Barras
et al., 1997), for interested readers.

ASTactic embeds ASTs using TreeLSTM. The embeddings and features from
the tactic grammar are inputted to a Gated Recurrent Unit (GRU)8. The GRU is
responsible for building a new AST, which represents the next tactic to apply. The
hidden state of the GRU st is the central component in expanding the tactic AST. st is
updated based on st−1, and a concatenation of the current node’s symbol, the parent
node’s symbol, the production rules from the context-free tactic grammar, the goal
embedding and the weighted sum of possible tactic arguments. Arguments are weighted
using an attention mechanism, which depends on the argument and st−1. Yang and
Deng (2019) also test Coq’s Hammer CoqHammer on CoqGym’s test set, and experiment
with interleaving calls to CoqHammer with ASTactic’s proof procedure.

Another Auto-ITP model in CoqGym is TacTok (First et al., 2020). TacTok
was motivated by the fact that the not-yet-finished proof contains semantic information
in the proof procedure. This makes it useful in predicting the next tactic to apply
to subgoals in the node. First et al. (2020) follow the same architecture as ASTactic;
they generate tactics as ASTs, based on embeddings of context and goals, in addition
to the tactic space. However, in TacTok, the current path of tactics in the proof tree
(i.e., the unfinished proof) to the current node is also embedded and part of the GRU input.

Proverbot9001 (Sanchez-Stern et al., 2020) is another model built to do Coq
Auto-ATP. The model works by dealing with tactic selection and premise selection
separately. Formulas are embedded using Recurrent Neural Networks (RNNs). Tactics
are predicted by inputting the embedding of the local context to an FFN, resulting in
a ranking of a pre-defined set of tactics. For each possible tactic argument, a score is
computed by another FNN. This setup is similar to models in HOList (Bansal et al.,
2019a). Tactics and arguments are then given a common score by multiplying their
scores. The unique thing about this is that arguments themselves influence if a core
tactic should be chosen or not instead of first finding the best tactic and then computing
the most relevant arguments for it.

7https://lark-parser.readthedocs.io/en/latest/
8GRUs are almost like LSTMs. The main difference is that GRUs do not have output gates.

48

3.3 Hammers

The main results from the experiments in Yang and Deng (2019); First et al.
(2020); Sanchez-Stern et al. (2020) are shown in Table 3.6. Yang and Deng (2019)
and (First et al., 2020) run their experiments on the whole dataset in CoqGym, while
Sanchez-Stern et al. (2020) only run them on a one specific Coq library: the CompCert
project. All experiments used Depth-First Search to traverse the proof tree.

Table 3.6: State-of-the-art and main results in CoqGym. Results are from experiments
in Yang and Deng (2019); First et al. (2020); Sanchez-Stern et al. (2020)

.

Dataset Hammer Result
ASTactic Full None 12.2%
TacTok Full None 12.9%
CoqHammer Full - 24.8%
ASTactic Full CoqHammer 30.0%
CoqHammer CompCert - 7.39%
ASTactic CompCert None 4.59%
Proverbot9001 CompCert None 19.36%

3.3 Hammers

Hammers (Blanchette et al., 2016) are a way of achieving automation of ITP systems.
This means they can serve as a comparison to Auto-ITP models. Furthermore, they
can enhance the ability of Auto-ITP models by interleaving calls to the Hammer
with Auto-ITP’s automated tactic application. However, how Hammers achieve
automation is different from Auto-ITP. Therefore, they are considered a distinct
topic in this Thesis. This section will describe Hammers and provide an overview of
results from two concrete Hammers: HOL(y)Hammer (Kaliszyk and Urban, 2013)
and CoqHammer (Czajka and Kaliszyk, 2018). These are the most relevant for this
Thesis because they are the Hammers developed for HOL Light, HOL4, and Coq,
and therefore provide automation of the same ITP systems as current Auto-ITP models do.

Hammers are tools built on top of existing ITP systems, allowing the system to
prove theorems automatically. They do this by outsourcing the theorem proving job
to third-party ATP systems. Today, most ITP systems have a Hammer extension.
After the first Hammer appeared, in the form of Sledgehammer for the ITP system
Isabelle (Böhme and Nipkow, 2010), the field experienced traction, and other ITP
system designers enabled their own system with a corresponding tool. Hammers
are particularly popular for users who are formalizing large proofs, as they allow
much of the task to be automated. For example, Kaliszyk and Urban (2015c) were
able to generate proofs for 40% of the theorems in the famous Mizar Mathematical
Library (see Grabowski et al. (2010) for details on the Mizar Mathematical Library,

49

Chapter 3 Related Work

and Bancerek et al. (2018) for its role in ITP research) fully automatically using Hammers.

An important detail to note is that Hammers do not have to be used in a way
that achieves full automation. One can, for example, invoke the Hammer to solve
particular subgoals in the proof tree, while a human is still responsible for guiding the
system to those subgoals. Full automation is only achieved when the Hammer is already
invoked on the top-level goal. This means that the proof procedure carried out by a
Hammer does not generate a proof tree, in the way shown in Figure 2.4.

3.3.1 The 3-step Process

Blanchette et al. (2016) explain the ideas that allow Hammers to work. Hammers are
made possible by a 3-step process:

1. Premise selection. Select a subset of available theorems to pass along with the goal
conjecture to the ATP systems. This is equivalent to deciding the Knowledge Base
for the ATP systems to use (see Section 2.1).

2. Logic translation. For the ATP systems to function, they need to have both the goal
conjecture and Knowledge Base in a logic they can understand. Therefore a process
of translating from the ITP system’s logic (usually a variation of Higher-Order
Logic) to the ATP system’s logic (usually a variation of First-Order Logic) is
needed.

3. Proof reconstruction. For a proof found by an ATP system to be accepted by the
ITP system, it is necessary to reconstruct the proof so that the ITP system can
check it. This is because the translation step is usually not a fully sound process.
The reconstructed proof is checked by running it through the ITP system’s kernel
(see Section 2.2.4).

These problems have to be solved sequentially. The high-level architecture of a Hammer
system is depicted in Figure 3.2.

When evaluating Hammers a human-chronological approach is generally used
(Blanchette et al., 2016). This refers to a setting where the Hammer tries to build
the corpus of proof data in the same order humans built it. In other words, at any
given time, when the Hammer is proving a conjecture c, the only theorems available
to the Hammer are the ones that were also available to humans, when they proved
conjecture c. In this way, the Hammer emulates the actual corpus construction.
This is a way to assure that the correctness of the Hammer evaluation is guaranteed
by construction. It also allows the Hammer to prove a corpus in a “push-button”
mode. This is different from a typical machine learning setting, where the model is
usually indifferent to the order in which it learns from examples. This means that
results from a Hammer cannot be directly compared to the results of an Auto-ITP system.

50

3.3 Hammers

In general, it is the premise selection step, together with the number of theo-
rem provers and the resources provided (e.g. time constraints, CPU power, etc.), that
determine the success of the Hammer, not the translation or the reconstruction steps.
Translation and reconstruction are necessary steps with minimal ability to be optimized.
Most Hammer research has therefore focused on premise selection. Premise selection
is also highly agnostic to the underlying systems and can therefore be researched
independently of a specific Hammer system.

ITP

Logic Translation

Reconstruction

Proof as

tactic script

Large corpus of
theorems

KB

KB + Conjecture

Proof

Reconstructed proof

Step 2

Step 3

ATP1

ATP2

ATP3

ATPs

Tactic
language

Conjecture

Hammer

Database of
theorems

Conjecture

Premise Selection
Naive Bayes

-NN
deep learning
... Step 1

Figure 3.2: The high-level architecture of a Hammer system. KB denotes Knowledge
Base.

3.3.2 Premise Selection

Premise selection is the process of choosing a subset of available theorems to include as
background theory in a proof procedure. Alama et al. (2014) define it in the following
way:

Premise selection Given a large number of premises P and a new conjecture c, predict
those premises from P that are likely to be useful for automatically constructing a
proof of c (Alama et al., 2014).

Hammers do this step outside of the ATP systems. However, it is common for ATP
systems to have their own internal premise selector, meaning that premise selection is

51

Chapter 3 Related Work

performed twice in a Hammer: external of the ATP systems and internally within the
ATP systems.

Several techniques have been applied to the problem, including both non-learning and
learning-based methods. In particular, k-NN, Naive Bayes, Kernel-based methods, and
deep learning methods have been applied to premise selection9 (Alama et al., 2014;
Kaliszyk et al., 2017; Wang et al., 2017). So far, only Naive Bayes and k-NN have been
implemented as part of a full-fledged Hammer. Naive Bayes and k-NN models are easy
to implement and, crucially, scale well with a full-fledged Hammer (Kaliszyk and Urban,
2014). A popular non-learning method is the SInE method (Hoder and Voronkov,
2011). This is often used internally in ATP systems. Kühlwein et al. (2012) show in a
comparison of different premise selection methods that non-learning methods perform
significantly worse than learning-based methods when tested outside of ATP systems.

3.3.3 HOL(y)Hammer and CoqHammer

Kaliszyk and Urban (2014) were the first to experiment with a Hammer for HOL Light.
This resulted in the Hammer system HOL(y)Hammer10. Gauthier and Kaliszyk (2015)
ported the same Hammer to make it work for HOL4. In other words, HOL(y)Hammer is
the Hammer used by both HOL Light and HOL4.

For HOL(y)Hammer’s premise selection method to work, features from the the-
orems in the proof need to be extracted. So far in Hammer research, only syntactic
features have been used.

Kaliszyk and Urban (2013) test HOL(y)Hammer on one of HOL Light’s proof
libraries called Flyspeck, and Gauthier and Kaliszyk (2015) test it on HOL4’s Standard
Library (SL). The Hammer is always tested in a human-chronological way, and the
premise selector is only trained on top-level human-written proofs. Kaliszyk and Urban
(2013) test HOL(y)Hammer using Naive Bayes and k-NN as the premise selector.
Gauthier and Kaliszyk (2015) only test it using k-NN.

Czajka and Kaliszyk (2018) develop the Hammer system CoqHammer for Coq.
Most parts of CoqHammer function in the same way as HOL(y)Hammer. Of course,
because of different logical foundations, the details of the translation and reconstruction
steps must be adopted to account for this. Premise selection in CoqHammer has also
only been implemented using k-NN and Naive Bayes.

State-of-the-art for both HOL(y)Hammer and CoqHammer are shown in Table

9Not all of these methods are explained in the background theory, as not all are highly relevant for the
Thesis.

10https://www.thibaultgauthier.fr/holyhammer.html

52

3.4 Other Applications of Machine Learning in Formal Reasoning and Mathematics

3.7. E11 and Vampire12 are ATP systems. Note that E-BliStr denotes E run with a
mechanism that allows it to predict what inference strategy (e.g., resolution, tableaux,
superposition calculus, etc.) best suited for solving the given conjecture.

Table 3.7: State-of-the-art and main results for HOL(y)Hammer and CoqHammer. Re-
sults are from experiments in Kaliszyk and Urban (2013); Gauthier and
Kaliszyk (2015); Czajka and Kaliszyk (2018). SL denotes the ITP system’s
Standard Library.

Hammer Premise Selection #Premises Dataset ATP Result
HOL(y)Hammer k-NN 128 Flyspeck E 31.43%
HOL(y)Hammer k-NN 128 Flyspeck E-BliStr 34.88%
HOL(y)Hammer Naive Bayes 164 Flyspeck E 24.17%
HOL(y)Hammer k-NN 128 HOL4’s SL E-BliStr 44.45%
CoqHammer k-NN 1,024 Coq’s SL Vampire 28.82%
CoqHammer k-NN 1,024 Coq’s SL E-BliStr 25.59%
CoqHammer Naive Bayes 256 Coq’s SL E-BliStr 17.50%

3.4 Other Applications of Machine Learning in Formal
Reasoning and Mathematics

Although this Thesis is mainly concerned with Auto-ITP, numerous works address
different uses of machine learning applied to formal reasoning and mathematics. This
section will provide an overview of selected literature review findings that do not fit neatly
into Auto-ITP or Hammers, but are still interesting as they can inspire new approaches
in Auto-ITP research. Indeed, as will become apparent in Section 4.1, some of the ideas
in the following subsections provide natural starting points for this Thesis’ research in
CoqGym.

3.4.1 Transformer Models Applied to Mathematics

A handful of recent papers address the idea of applying Natural Language Processing
(NLP) methods in both formal and informal mathematics and can inspire potential
Auto-ITP models. Three relevant papers are discussed here, all revolving around the
Transformer model (Vaswani et al., 2017).

Rabe et al. (2020) introduce a so-called skip-tree task. The idea is to pre-train
a Transformer model on a task similar to language models such as BERT (see Section
2.3.12). This is achieved by having the model predict masked sub-expressions in the AST
representation of logical expressions based on the unmasked part of the sub-expression.
11https://wwwlehre.dhbw-stuttgart.de/ sschulz/E/E.html
12http://www.vprover.org/

53

Chapter 3 Related Work

Rabe et al. (2020) use expressions from the HOList dataset for training, meaning that the
expressions take the form of Higher-Order Logic. The pre-trained model is then tested
on a series of mathematical tasks, with no fine-tuning to specialize it on each particular
task. Although it is hard to argue how strong the results are – there are no benchmarks
to compare them to – they seem to indicate solid formal reasoning capabilities. For
instance, the model achieves an accuracy of 40.86% when tasked with predicting missing
local context hypotheses, and as high as 96.23% when the model predicts masked term
types (i.e., what Higher-Order type a given term in the expression is).

Lample and Charton (2020) train a Transformer network to solve integral prob-
lems and ordinary differential equations (ODEs). However, unlike all related work
discussed so far, Lample and Charton (2020) train on mathematics outside of any
formal framework. Instead, they focus on much more familiar textbook-style syntactical
expressions. The model does not train on the skip-tree task presented by Rabe et al.
(2020), but rather on mathematical expressions expressed using infix notation. The
Transformer decoder outputs the integral of the expression or solution to the ODE. The
model is not pre-trained but still able to show strong results. For instance, the model is
capable of solving of 81.2% of order two ODEs from the test set correctly.

OpenAI develops the theorem proving model GPT-f for the ITP system Meta-
Math (Polu and Sutskever, 2020). MetaMath (Megill and Wheeler, 2019) is an ITP
system with a unique style of interaction. Instead of relying on high-level tactics,
MetaMath uses a substitution-based proof procedure. In short, proofs search is only
driven forward by substituting terms in the current goal using previously proved
theorems13. GPT-f is a Transformer model, training in both a pre-training session and
fine-tuned for MetaMath theorem proving. Pre-training is done on data collected from
Github14, Math StackExchange15 and arXiv Math16.

3.4.2 Synthesizing Theorems

Synthesizing theorems is the task of teaching machines to generate synthetic theorems
automatically Wang and Deng (2020). This topic tackles data scarcity in the proof
domain. It is related to self-learning Auto-ITP models; machine-generated theorems can
be used in a feedback loop for such models. This is similar to how machine-generated
proofs are used in HOList’s self-learning models (Bansal et al., 2019b).

Generating synthetic theorems is an extensive topic in its own right. Only the
example of Wang and Deng (2020) is mentioned here. They propose a setup where the
goal is to generated human-like theorems in the MetaMath system (mentioned above).
13Note that, because MetaMath operates with such a distinct theorem proving setup, it is considered

different from Auto-ITP in this Thesis.
14github.com
15https://math.stackexchange.com/
16https://arxiv.org/archive/math

54

3.4 Other Applications of Machine Learning in Formal Reasoning and Mathematics

The setup is based on loss functions used to teach models to generate new theorems.
The loss function computes how “different” a machine-generated theorem is, compared
to human-written theorems. An adversarial-based loss generated by a network trained to
distinguish human-written and randomly generated theorems is proposed, in addition to
a cross-entropy loss outputed by a language model trained on human-written proofs.
In this way, models can be trained to gradually generate more and more human-like
theorems.

3.4.3 Tactic Application in Latent Space

Another interesting, but still very infant, line of research is to predict the outcome of
tactic applications using machine learning. Lee et al. (2020) provide some initial results.
A model is trained to predict the resulting goal after the series of rewrite tactics are
applied to the original goal. Although results are very much early stage, it is still a
fascinating approach to tactic application, where the underlying ITP system is taken
completely out of the loop.

3.4.4 Evolutionary Algorithms

A completely different approach to Auto-ITP is to use evolutionary algorithms for tactic
prediction. Some initial results in this line of research are developed by Nawaz et al. (2020)
and Yang et al. (2016). So far, no experiments have been conducted where end-to-end
theorem proving is done on large corpora of proof data. This Thesis chooses not to focus
on evolutionary algorithms simply because of time constraints, but it is an interesting
avenue worth mentioning.

3.4.5 Internal Guidance

Internal guidance is an approach to ATP, where machine learning models guide the
internal inference process. It has mainly been studied for analytic tableaux (see Section
2.1.2) style theorem provers (Urban et al., 2011; Kaliszyk and Urban, 2015a). The idea
is to use machine learning models to predict which branch of the tableau to expand
next and select a relevant subset of the Knowledge Base (i.e., premise selection). This
speeds up the inference process by only considering the most promising branches and
relevant theorems (Urban et al., 2011). (Loos et al., 2017) deploy such models in the
ATP system E. Using deep learning internal guidance, they prove 7.36% new theorems
in the famous Mizar Mathematical Library (see Grabowski et al. (2010) for details on
the Mizar Mathematical Library).

This Thesis does not focus on internal guidance. However, it is an interesting
topic to compare to Auto-ITP against and therefore mentioned. While both internal
guidance and Auto-ITP revolve around machine learning applied to formal reasoning,
they are, in some sense, on opposite sides of the spectrum. Internal guidance models
prove theorems by guiding low-level inference processes far from how humans reasons

55

Chapter 3 Related Work

while Auto-ITP, on the other hand, operates on high-level tactics much closer to how
humans reasons about mathematics (Yang and Deng, 2019).

3.4.6 Autoformalization

Szegedy (2020) outlines a possible path forward for developing better machine learning
models in the context of formal reasoning and, more broadly, artificial general intelligence.
He emphasizes the task of autoformalization as a critical ingredient for reaching artificial
intelligence models capable of more generalized reasoning. The main idea is that the
agent needs to take informal data as input, formalize this data in a way that is consistent
with some logical framework, and then reason based on the formal data. Auto-ITP is a
line of research targeting the latter – reasoning over formal data.

Szegedy (2020) argues that in order to perform autoformalization effectively,
the model needs strong NLP and computer vision capabilities. While it is not the goal
for this Thesis to do autoformalization, the vision outlined by Szegedy (2020) puts the
relative niche task of Auto-ITP into an interesting context of generalized reasoning.

56

Chapter 4

Motivation, Agent Design and
Architectures
With both background theory and relevant work having been presented, the reminder of
this Master’s Thesis is focused on new experiments in CoqGym. This chapter begins
with a section about the motivation for various decisions made when scoping experiments
and choosing deep learning techniques (Section 4.1). Then, a section is dedicated to
the tactic group proxy metric experiment designed for CoqGym (Section 4.2). This is
followed by a section about the new Interactive Theorem Proving (ITP) agent developed
in this Thesis (Section 4.3). Finally, the last section describes the overall deep learning
model architectures (Section 4.4). Some statistics from the CoqGym dataset are included
in various parts of this chapter to understand the design decisions better.

4.1 Motivation

4.1.1 Choosing an Auto-ITP Framework

CoqGym has a larger dataset of human-written proofs than other frameworks, with
~42k more theorems than the following largest dataset (an overview of dataset sizes is
shown in Table 3.1). Having lots of training data is hugely important when training deep
learning models, and was therefore emphasized when choosing an Auto-ITP framework.
CoqGym also provides a large number of synthetic proofs (explained in Section 3.2.4).
No other framework does this.

Another consideration was the diversity of the research groups using each Auto-
ITP framework. CoqGym is the only framework used as a benchmark by researchers
outside the group that introduced the framework. In the case of CoqGym, both TacTok
(First et al., 2020) and Proverbot9001 (Sanchez-Stern et al., 2020) compare themselves
to ASTactic (Yang and Deng, 2019). This seems attractive, as it indicates other research
groups finding CoqGym to be a good benchmark.

The adoption of the underlying ITP system was also considered. As inexperi-
ence with ITP systems was a concern in the early phase of the Thesis work, having
a mature community of developers and users supporting the underlying ITP system

57

Chapter 4 Motivation, Agent Design and Architectures

was important. Coq is one of the most widely adopted ITP systems. Because HOL
Light, HOL4, and Coq are all open source projects hosted on GitHub, one can look at
repository statistics to indicate the adoption of each system. Table 4.1 summarizes some
main statistics. This is, of course, only an heuristic and not in any way indicating that
one system is superior to others.

Table 4.1: GitHub repository statistics for HOL Light, HOL4, and Coq. Extracted April
30, 2021.

System Contributors Stars Forks
HOL Light 8 276 54
HOL4 56 422 80
Coq 194 3,287 498

4.1.2 Usefulness of Proxy Metrics

It became clear early on when experimenting in CoqGym that the overhead of training a
model to do end-to-end theorem proving is significant. This means that prototyping a
model becomes cumbersome if the goal is end-to-end proving right away. A possible
way to overcome this is by first using proxy metric experiments before moving on to
end-to-end theorem proving.

Huang et al. (2019) already focus on this task in the GamePad framework. The
experiments in Huang et al. (2019) are more straightforward than end-to-end theorem
proving, while, as argued by Huang et al. (2019), they still have a clear similarity to the
task of predicting tactic application. This makes them helpful in understanding a model’s
ability to do formal reasoning. In other words, it is likely hard for a model to perform
poorly on the proxy metric tasks, but well on end-to-end theorem proving, and vice
versa. This idea is followed here. A proxy metric experiment, based on predicting tactic
groups, is introduced, with the goal that this will allow easier and faster prototyping of
Auto-ITP models.

4.1.3 Machine Learning Interpretation of ITP Systems

The Auto-ITP models described in Section 3.2 interpret the ITP theorem proving task in
different ways. TacticToe and HOList models turns the task into classification problems
(Bansal et al., 2019a; Gauthier et al., 2020), where one model focuses on core tactics and
another focuses on arguments. This is similar to ProverBot9001 (Sanchez-Stern et al.,
2020). Together the models form a theorem proving agent. However, while core tactic
prediction is a multi-class classification problem, argument prediction is viewed as a series
of binary classification tasks. Moreover, the local context is typically discarded. Yang and
Deng (2019) propose a different setup, involving building tactics from Coq’s context-free
tactic grammar. Core tactic prediction and argument prediction is intertwined in this

58

4.1 Motivation

setup. While it is a flexible setup, allowing the models to express the full Coq tactic
space, it is also more difficult to interpret as a traditional machine learning problem.
Having an easy machine learning interpretation of the ITP theorem proving process is
desirable, as it allows less ITP specific knowledge needed when researching Auto-ITP.
This is the motivation for designing a new theorem proving agent in this Thesis.

4.1.4 Choosing Machine Learning Techniques

As shown by Paliwal et al. (2020), using Graph Neural Networks (GNNs) for embedding
HOL Light expressions increases performance in HOList. Paliwal et al. (2020) argue that
this is because such embedding techniques capture more of the semantic information
contained in the expressions. This is also partly the reason why TreeLSTM is chosen for
ASTactic (Yang and Deng, 2019). The success of GNNs in HOList serves as a significant
motivation for trying the same approach in CoqGym.

With an easy-to-use proxy metric at hand, several GNN variations can be tested
relatively quickly. Three message passing implementations will be used: (1) Multilayer
Perceptron (MLP)1, (2) Graph Convolutional Networks (GCN) (Kipf and Welling, 2017),
and (3) Simple Graph Convolutions (SGC) (Wu et al., 2019). See Section 2.3.11 for an
introduction to these GNN techniques.

(1) is directly inspired by the implementation in Paliwal et al. (2020), where
MLPs are used for message passing. It also serves as comparison with the more
sophisticated convolution-based techniques.

(2) is motivated by GCNs success on several graph tasks (Kipf and Welling, 2017).

(3) is motivated by the fast training allowed by SGC (Wu et al., 2019) and its
strong performance on several graph tasks.

For end-to-end theorem proving, efforts are mainly focused on one architecture to make
experiments more manageable. The DGCNN architecture (Zhang et al., 2018) (explained
in Section 2.3.11) is a universal end-to-end graph classification architecture showing
strong performance on several graph tasks and therefore serves as the basis for the
implementation.

In a similar vein, the use of Transformers has shown promising results on sev-
eral mathematical tasks (Rabe et al., 2020; Lample and Charton, 2020; Polu and
Sutskever, 2020) (explained in Section 3.4.1). However, they have yet to be tested on
the Auto-ITP task. Because of time constraints, developing a tailored Transformer
architecture and performing pre-training, like the skip-tree task (Rabe et al., 2020) or
the GPT-f pre-training (Polu and Sutskever, 2020) is left for future work. Instead,
the powerful BERT (Devlin et al., 2018) architecture will be used off-the-shelf. BERT
has shown state-of-the-art results on several NLP tasks (Devlin et al., 2018), and it is

1An MLP is essentially the same as an FFN. MLP is used here to avoid confusion with other models.

59

Chapter 4 Motivation, Agent Design and Architectures

interesting to see how this model performs when natural language is substituted for
formal expressions. To also see if there is any transferability between NLP pre-training
and the Auto-ITP task, BERT will be tested both with and without pre-trained weights.
These weights are provided by Devlin et al. (2018) after BERT has been trained on the
NLP-specific tasks explained in Section 2.3.12.

Bansal et al. (2019b) hypothesize that it could potentially be easier for a ma-
chine learning model to teach itself to prove theorems rather than rely on imitation
training. It might be the case that there is so much variation in the way humans prove
theorems in Coq that it is difficult for the model to pick up on clear correlations. Also,
Wang and Deng (2020) point out that the scarcity of labeled examples is a bottleneck
in the formal reasoning domain. This motivates CoqGym experiments involving
self-learning. A reinforcement learning agent is built with the idea that it can find its
own “unique” style of proving theorems based on trial-and-error. The agent will also
have a chance to learn from both successful and failed proof attempts. In other words,
CoqGym’s training data is used more efficiently, combating data scarcity.

In addition, Huang et al. (2019) have argued that theorem proving through an
ITP system is similar to a game, in which the agent has a space of actions it can perform
in any given state, where a subset of actions might lead to a better state. Reinforcement
learning agents have shown strong performance on classical games, such as chess (Silver
et al., 2018), making it a natural approach to also test in the context of Auto-ITP.

It turns out that running even a single theorem proving “game” in CoqGym is
relatively expensive. Each action has to communicate with Coq via SerAPI (see
Section 3.2.4), which is a time-consuming process. As explained by Yang and Deng
(2019); ASTactic is tested on a CPU, rather than a GPU, because the neural network
component of the agent is not the bottleneck but rather the SerAPI calls. This means
that developing a reinforcement learning agent dependent on running lots and lots of
theorem proving simulation is not ideal. Therefore, the famous Monte Carlo algorithm
(Raychaudhuri, 2008) will not be used, but rather Q-learning (Russell and Norvig, 2010).
Moreover, because both the proof space and tactic space is large, a deep Q-learning
(Mnih et al., 2015) approach will be used, allowing the model to approximate the
Q-function rather than encoding it explicitly (which would likely be infeasible).

4.2 Proxy Metric: Tactic Groups

The main motivation for having a proxy metric experiment is to allow faster and easier
prototyping of models in CoqGym, with the idea being that promising models can
eventually be used as full-fledged Auto-ITP models. A proxy metric would therefore
ideally possess the following two characteristics:

1. The proxy metric should be easy and fast to use.

60

4.2 Proxy Metric: Tactic Groups

2. The proxy metric should be indicative of end-to-end theorem proving performance.

The proxy metric proposed here is based on individual proof steps extracted from the
train and validation set in CoqGym. Yang and Deng (2019) provide a pre-implemented
method that extracts such proof steps from human-written proofs. Extending this to
also include synthetic proofs results in the proof step dataset shown in Table 4.2.

Table 4.2: Proof steps in CoqGym for both human-written and synthetic proofs.
Human Synthetic Total

Train 121,644 174,076 295,720
Validation 68,180 113,048 181,228

The first simplification made for the proxy metric is to only consider the core
tactics. Instead of predicting full tactic applications (i.e., tactic + arguments), the model
only predicts the tactic without arguments (i.e., the core tactic). There are 49 core Coq
tactics (see Section 2.2.5). Further simplification is made by grouping similar tactics
together and having the model only predict the tactic group.

Tactic grouping has two advantages. One is to balance the dataset. Plotting
the occurrence of each tactic for the proof step datasets reveals that some tactics occur
far more often than others. This is shown in Figure 4.1. Unbalanced datasets are often
not desirable for machine learning models. Groups are designed to “even out” the
dataset, making it more balanced.

The second is that it focuses on the overall proof strategy. Usually, more than
just one useful tactic can be applied in a given proof state. For instance, when the proof
state is close to being proven, it often suffices to apply one of the tactics corresponding
to Coq’s internal small-scale inference engines (see Section 2.2.3). Which exact one is
not necessarily crucial, as similar tactics solve many of the same subgoals. The grouping
tries to capture the fact that it is not necessarily essential to predict which exact tactic
to apply, but instead what type of tactic. Huang et al. (2019) also point out that many
tactics have strong similarities.

The groups were designed based on the Coq manual (Barras et al., 1997), as
well as introductory resources on Coq23. Table 4.3 details the the exact grouping, as well
as the distribution of each group across the human-written proof steps.

2https://www.cs.cornell.edu/courses/cs3110/2017fa/a5/coq-tactics-cheatsheet.html
3https://coq.inria.fr/refman/proof-engine/tactics.html

61

Chapter 4 Motivation, Agent Design and Architectures

(%
)

0

5

10

15

20

25

ap
pl

y
re

w
rit

e
in

tro
s

un
fo

ld
as

su
m

pt
io

n
au

to
si

m
pl

in
tro el
im

sp
lit

su
bs

t
re

fle
xi

vi
ty

ta
ut

o
ex

is
ts

in
du

ct
io

n
om

eg
a

di
sc

rim
in

at
tri

vi
al

cl
ea

r
ex

ac
t

de
st

ru
ct

in
ve

rs
io

n
le

ft
in

tu
iti

on
rig

ht
co

ns
tru

ct
or

co
nt

ra
di

ct
O

TH
E

R

Train, human Validation, human Train, synthetic Validation, synthetic

Figure 4.1: Frequency of core tactics in the proof step datasets. The least common tactics
are aggregated and put in under the category OTHER.

Table 4.3: The tactic grouping.
Group Frequency Members

Easy goals Train: 24.86%
Validation: 21.32%

reflexivity, f_equal, symmetry,
assumption, trivial, easy, auto,
exact, discriminate, constructor,
contradiction, intuition, omega,
eauto, tauto, contradict, ring, field

Transformations Train: 31.22%
Validation: 33.66%

intro, intros, subst, simpl, unfold,
left, right

Apply/Rewrite Train: 30.56%
Validation: 31.98% apply, rewrite

Goal break up/Other Train: 13.36%
Validation: 13.04%

split, destruct, inversion,
inversion_clear, induction, elim,
case, generalize, idtac, hnf,
exists, red, congruence, specialize,
clear, injection, exfalso, cbv,
lia, cbn, revert

4.3 Agent Design

In order to have an agent perform end-to-end theorem proving, one has to define the
output of the models contained in the agent. This Thesis sticks with the idea that tactic
application can be viewed as classification problems. However, ranking each argument

62

4.3 Agent Design

independently (i.e., a series of binary classification tasks) (Bansal et al., 2019a) will not
be followed. This is due to two reasons:

1. Ranking each argument independently in every proof state is an expensive process,
as noted by Paliwal et al. (2020).

2. When training the binary argument classification model, it will almost never be
exposed to examples where the argument currently being evaluated was used in the
given example. Therefore, there is the danger that the model will converge towards
always scoring arguments with zero.

Table 4.2 showcases the later argument for CoqGym. It plots the number of tactics that
use arguments from either context. Notice that most tactics use zero arguments. Fur-
thermore, local context arguments are relatively more rare than global context arguments.

Number of tactic arguments

(%
)

0

20

40

60

80

0 1 2

LC, human LC, synthetic GC, human GC, synthetic

Figure 4.2: Frequency of global and local argument occurrence for the training split of
the proof step datasets. GC refers to the global context and LC to the local
context.

This Thesis considers tactic application instead as three distinct multi-class classification
problems, each dedicated a classification model:

• Cτ : Predict which of the 49 available tactics is the most likely to be used on a
given subgoal. This model only takes the current subgoal as input. The output is a
probability distribution over the 49 tactics P{τ1,τ2,,...,τ49,}.

• CLC : Predict which of the n first available hypotheses in the local context is the
most likely to be used on a given subgoal. This model takes the current subgoal
and the n first local hypotheses as input. The output is a probability distribution
over the n first local hypotheses P{h1,h2,...,hn}.

63

Chapter 4 Motivation, Agent Design and Architectures

• CGC : Predict which of the m available theorems from the global context is the
most likely to be used on a given subgoal. This model takes the current subgoal
and the m available theorems as input. The output is a probability distribution
over the m first theorems P{t1,t2,...,tm}.

When training CGC , examples not containing a theorem as an argument will be filtered
out. The same will be the case for CLC for local hypotheses. The models will, therefore,
always have a positive example to learn from. n and m will affect the complexity of
the model and the number of examples in the filtered datasets, and therefore also time
and memory consumption. The higher these values are, the more tactic applications
are available to the agent. In other words, there is a tradeoff between how expensive
training is and the expressivity of the models.

A tactic application T is constructed in the simplest way possible. Whenever
Cτ suggests a tactic dependent on a theorem from the global context to work, the top
CGC theorem is used as a tactic argument. The same is the case for tactics dependent on
local context arguments to work. In this case, CLC will be used to select an appropriate
argument. The resulting agent is depicted in Figure 4.3. Note that, as explained in
Section 2.2.2, even though ITP local context arguments can be both direct references to
terms contained in subgoals and local hypotheses, the agent can still use local context
argument successfully assuming it modifies local context so that subgoal terms are
put among the local hypotheses. In Coq this can be done by for example the intros
tactic (see Section 2.2.5). The “tactic building” module is independent of the classifiers,
meaning it can be tailored to specific ITP systems. In this Thesis, Table 2.1 is used to
ensure the agent only outputs valid tactic applications.

CoqGym API

Build tactic

LCGoalGC

Figure 4.3: The end-to-end theorem proving agent.

64

4.4 Designing Architectures

4.4 Designing Architectures

This section will explain the model architectures. This means explaining different
architectures for Cτ , CLC and CGC . Each architecture is given a name for easier
reference. Hyperparameters and other concrete configurations are not included in this
section. These are instead described in Section 5.1 when a concrete plan for each
experiment is laid out.

All architectures follow the same overall implementation. Each classification
model implements an embedding network E and a prediction network P. In addition,
CLC and CGC concatenate the embeddings corresponding to the goal and the arguments.
This concatenation is then padded if there are less arguments than the set values n (for
CLC) and m (for CGC). The resulting overall architecture is shown in Figure 4.4. Note
that each classifier implements a separate embedding network.

LCGoal

Concatenate

GC

Concatenate

Padd Padd

Figure 4.4: The overall end-to-end theorem proving architecture. e refers to an embedding
vector, E to an embedding network, and P to a prediction network. GC refers
to the global context and LC to the local context.

4.4.1 GAST – Graph Convolutional Network-based Architecture

GAST is a GCN-based architecture, inspired by Paliwal et al. (2020). The main idea is
to use message passing on the nodes of the Abstract Syntax Tree (AST) representation
of logical expressions. The resulting embedding is fed into the predictive model. In other
words, GAST is a graph classification model.

65

Chapter 4 Motivation, Agent Design and Architectures

A preprocessing step where CoqGym’s Lark ASTs (see Section 3.2.4) are con-
verted to matrix representations is needed. This is done by a simple post-order traversal
of the AST, where a sparse matrix containing the one-hot encoded nodes is built X,
as well as the adjacency matrix A. Crucially, the one-hot encoding is possible because
CoqGym ASTs are built using values from a finite set of 55 abstract symbols – CoqGym’s
“nonterminals” (explained in Section 3.2.4).

Message passing can take many forms. In the tactic group experiments, a few
variations are tested. A simple linear layer is used in these experiments to make
predictions, and a mean operation is used as the readout function. In the end-to-end
experiments, the universal graph classification architecture DGCNN from Zhang et al.
(2018) is used (see Section 2.3.11 for details on DGCNN). This means that in the case of
end-to-end theorem proving the GAST prediction network is a convolutional network
with a dense hidden layer, and SoortPool operator from Zhang et al. (2018) is used as
readout. Figure 4.5 depicts the overall model architecture of GAST.

Coq expression

prod

name app int

int rel app

rel inductive

Extract AST

Preprocessing Graph Embedding

Message passing
Message passing

Message passing
Message passing

Readout

 hops

Prediction network

Edge indexOne-hot encode

Figure 4.5: The GAST architecture. W denotes the node embedding after obtained after
message passing.

66

4.4 Designing Architectures

4.4.2 BERTac – BERT-based Architecture

BERTac is a BERT-based (Devlin et al., 2018) architecture (see Section 2.3.12 for details
on BERT). Before expressions are inputted to BERT, some preprocessing is needed. All
expressions have an identifier which is important information to pass with the expressions.
This is because the identifier is directly referenced in other related expressions. For
instance, a goal expression might contain the variable H. In the local context, there
can be a hypothesis attached to H. The expression of this hypothesis does not contain
any reference to H, but the identifier does. In order to relate the hypothesis to the
correct term in the goal expression, the identifier is needed. The input to BERT is a
concatenation of (identifier, expression)-pairs. Each pair is mapped to a single sequence of
the form identifier + “points to” + expression. The input sequence is tokenized using the
pre-trained BERT tokenizer containing tokens for 30,522. While this works off-the-shelf,
it is by no means ideal, as this tokenizer is intended for natural language and not logical
expressions. The prediction network is a linear layer with a Softmax function applied to
the output. Figure 4.6 shows the overall BERTac architecture.

Tokenize

Coq expression

Preprocessing
BERT Attention

BERT Output

BERT Intermediate

BERT Encoding

BERT Attention

BERT Output

BERT Intermediate

BERT Encoding

BERT Attention

BERT Output

BERT Intermediate

BERT Encoding

BERT Attention

BERT Output

BERT Intermediate

BERT Encoding

BERT Embedder

identifier + points to + expression

BERT Pooling

 Layers

BERT Embedding

Prediction network

Figure 4.6: The BERTac architecture. t denotes a tokenized sequence.

67

Chapter 4 Motivation, Agent Design and Architectures

4.4.3 QTac – Deep Q-learning Architecture

QTac is a deep reinforcement learning agent implementing deep Q-learning (Mnih
et al., 2015) (see section 2.3.13 for an introduction to deep Q-learning). It trains by
interacting with CoqGym proofs and is constructed in the same way as the agent
described in Section 4.3. Furthermore, rather than having each classifier trained using
deep Q-learning, only Cτ is trained this way. The Q-network implements the same
model as the GAST Cτ model. CLC and CGC are pre-trained models, loaded from the
top-performing CLC and CGC from the supervised learning experiments. The QTac
architecture is shown in Figure 4.7.

QTac is trained using a replay memory. However, to make sure the Q-network
only trains on relevant experiences, only actions that lead to a new proof state are added
to the replay memory. Some actions result in an error response from Coq, even though
the tactic application is valid in itself. Other actions do not respond with an error
message, but the proof state is not changed (i.e., the tactic application corresponds to a
loop in the proof tree). In both of these cases, the experience is discarded. A target
network is used for more stable training with weights from the Q-network periodically
copied to the target network. QTac will also not train on every experience in the replay
memory. Instead, a mini-batch from the replay memory is picked whenever the replay
memory has filled up with 20% more experiences than the mini-batch size. This process
is not entirely random. Instead, experiences from successful proof attempts will be
guaranteed included in the mini-batch and the remaining chosen uniformly at random.
This is because the theorem proving task is difficult and QTac is likely to fail in most
cases. To make sure the agent sees enough positive examples, they are guaranteed to be
replayed when they occur.

In order for QTac to balance explorations and exploitation, ε-greedy approach
is used. Furthermore, ε is set to decay exponentially. Two modes for training QTac are
implemented:

• Wide: Consider each proof as an episode and decay ε between each proof. This
means that each theorem is attempted only once. The idea is that QTac will see as
many theorems a possible during training.

• Deep: Have QTac attempt n number of episodes for each theorem successively. ε is
decayed between each episode and reset for each new theorem. The idea is that
QTac will try to get “really good” at proving the theorems it is exposed to at the
cost of seeing fewer unique theorems.

QTac can combine reinforcement learning and supervised learning by periodically training
the Q-network on a labeled batch from the proof step dataset. The target network is in
this case also updated after a supervised session has taken place. This is a straightfor-
ward addition as the Q-network implements the same architecture as the GAST Cτ model.

68

4.4 Designing Architectures

A simple reward function r is used for each new state QTac encounters, where
a timeout or reaching the maximum number of tactics is considered a failed proof
attempt and results in r = −1 (negative reinforcement). A successful proof yields
r = 1 (positive reinforcement), and reaching a non-terminal state yields r = 0 (neutral
reinforcement).

CoqGym API

Replay Memory

Build tactic

Experience

Tac

Figure 4.7: The QTac architecture. fε is the ε-greedy function, r is the reward function,
s denotes a proof state and tn denotes time step n.

69

Chapter 5

Experiments and Results
All relevant results will now be presented. This begins with an experimental plan
(Section 5.1), where experiments are broken down into smaller concrete experiments and
configurations are defined. Then, the experimental setup is explained (Section 5.2). This
includes deep learning frameworks, setting up CoqGym, and the computational resources
used to run the experiments. Finally, results are presented (Section 5.3).

5.1 Experimental Plan
Experiments in this Thesis are broken down into three categories:

• Experiment 1: Tactic group experiments.

• Experiment 2: Supervised learning models for end-to-end theorem proving.

• Experiment 3: Reinforcement learning models for end-to-end theorem proving.

Several models are trained and tested for each experiment. To keep things simple, all
models are trained using the popular Adam optimizer (Kingma and Ba, 2017) (see Section
2.3.7). This is the same optimizer used in the HOList experiments (Bansal et al., 2019b,a;
Paliwal et al., 2020). A mini-batch size of four will be used if not stated otherwise. Any
mini-batch size higher risked running into memory issues on the available hardware
resources. Cross-entropy loss will be used for all supervised models and Huber loss will be
used for replay memory training as this is loss is less sensitive to outliers (see Section 2.3.4).

Three levels of regularization are defined for the experiments. These are sum-
marized in Table 5.1, and will be referred to as low, medium and high regularization,
for the sake of brevity. Models will be trained on one or more regularization levels,
depending on indications from previous results. For an explanation of weight decay and
dropout, see Section 2.3.8. Furthermore, models are early stopped based on validation
accuracy scores computed after each training epoch.

5.1.1 Experiment 1 – Tactic Groups

The goal of the tactic group experiments is to prototype GCN-based models (the GAST
models designed in section 4.4.1) and BERT-based models (the BERTac models designed

71

Chapter 5 Experiments and Results

Table 5.1: The three levels of regularization defined for experiments.
low medium high

Weight decay 1e-6 1e-5 1e-5
Dropout 0.1 0.5 0.7

Section 4.4.2) on labeled proof step data. The models are tasked with predicting the tactic
groups defined in Section 4.2 corresponding to proof steps. Models will only be trained
and validated on human-written proof steps. This assumes that good hyperparameters
for models trained in human-written proofs will also be good hyperparameters for models
trained on synthetic proofs. See Section 3.2.4 for an explanation of CoqGym’s synthetic
proof data.

Experiment 1a: Tactic Group Baselines

The tactic group proxy metric is designed in this Thesis. Therefore, there are no previous
comparable results for this metric. In order to have benchmarks to compare GAST and
BERTac against, the following baselines are defined:

• Weighted guesses (baseline 1).

• Most common class (baseline 2)

• Feed Forward Network (FFN) classifier (baseline 3).

Baseline 1 and 2 are straightforward. Baseline 1 makes a random guess, where the
probability for picking a tactic group is weighted by the frequency of how often that
tactic group occurs. Baseline 2 always guesses the most common class.

Baseline 3 is an FFN classifier. A goal encoding is passed to the input layer
and propagated through two fully connected hidden layers of the same dimension as
the input layer. The hidden state is then passed to a fully connected output layer of
dimension four (as there are four tactic groups).

The main challenge with baseline 3 is to obtain a goal encoding. Fortunately,
CoqGym provides Abstract Syntax Tree (AST) representation of Coq expressions (see
Section 3.2.4). Nodes take a value from a fixed-size space. An encoding for baseline 3 is
obtained by simply counting the number of each nonterminal in the goal AST. Note that
this means the relational semantics in the relationship (i.e., the AST edges) are lost.

There are 55 nonterminals, meaning this will be the dimension of the input and
hidden layers. Baseline 3 therefore consists of 55 · 55 · 2 + 55 · 4 = 6,270 parameters in
total. Dropout and ReLU activation is used between each layer before Softmax is applied
on the output logits to obtain a probability distribution over the four tactic groups. The
model will be trained on both low and medium regularization levels.

72

5.1 Experimental Plan

Experiment 1b: GAST on Tactic Groups

A variety of hyperparameters and message passing algorithms will be tested for the GAST
model. Two phases are defined for this experiment:

1. Phase 1: Vary message passing algorithm. Fix everything else.

2. Phase 2: Vary the complexity and regularization of the network. Fix everything
else.

Although everything except message passing stays fixed in phase 1, models will still run
on low and medium regularization levels. This is to help determine what regularization
level is best suited for GAST. Three message passing algorithms will be tested in phase 1:

• Multilayer Perceptron (MLP). A custom, and simple, message passing algorithm
based on the message passing algorithm from Paliwal et al. (2020). The encodings
of two adjacent nodes are passed through an FFN with one hidden layer to compute
node embeddings.

• Graph Convolutional Network (GCN). Message passer from Kipf and Welling (2017)
(see Section 2.3.11).

• Simple Graph Convolutions (SGC). Message passer from Wu et al. (2019) (see
Section 2.3.11).

MLP is included to see if an MLP message passing technique can compete with the more
sophisticated convolution-based techniques. It is also similar to the implementation
in Paliwal et al. (2020), which showed improvements in the HOList framework. GCN
(Kipf and Welling, 2017) is arguably the most adopted message passing technique and
serves as a natural starting point for GCN implementations. SGC (Wu et al., 2019) is
interesting because it is essentially the same algorithm as GCN, only simplified. This
makes it a faster algorithm while still being competitive with GCN (Wu et al., 2019).
Models are trained and validated for eight epochs in this experiment. As a comparison,
Yang and Deng (2019) train ASTactic for four epochs.

Some hyperparameters are not focused on and remain fixed. A linear layer
serves as the prediction network, and only a single round of message passing (the number
of hops, see Section 2.3.11) will be used. The learning rate will simply be set to 1e-3.
This is higher than a learning rate of 3e-5, used by Yang and Deng (2019) and First
et al. (2020), and 1e-4, used by Paliwal et al. (2020). A node embedding of 256 is chosen
as default – the same as ASTactic (Yang and Deng, 2019) and TacTok (First et al.,
2020). A simple mean operation will be used as the readout function, to globally pool
node embeddings to a fixed size graph embedding of size 256. ReLU activation is used
between each neural network layer.

Only SGC will be used during phase 2, as this is the fastest to run. These

73

Chapter 5 Experiments and Results

experiments will be run for 20 epochs instead of just eight, as this is not too compu-
tationally expensive when using SGC. It will also allow the models a better chance of
escaping local minimums. Three configurations will be tested. These are summarized in
Table 5.2. The main goal is to compare low and medium regularization further and see if
adding complexity to the network increases performance.

Table 5.2: GAST configurations for phase 2 of experiment 1b.
default reg. complex

Node emb. dim. 256 256 1024
Message passing SGC SGC SGC
Readout Mean Mean Mean
Prediction network Linear Linear Linear
Hops 1 1 4
Regularization low medium medium

Experiment 1c: BERTac on Tactic Groups

The focus for experiment 1c is not the BERT architecture, but rather regularization
levels and learning rate. Three configurations will be tested for BERTac. These are
summarized in Table 5.3. Note that fixed BERT-specific configurations are also included
in the table.

Table 5.3: BERTac configurations for experiment 1c.
low reg. low α medium reg. + low α

Regularization low low medium
Learning rate (α) 1e-3 1e-6 1e-3
Tokenizer length 512 512 512
Vocabulary size 30,522 30,522 30,522
Hidden layers 6 6 6
Attention heads 6 6 6

The drop in learning rate is due to recommendations provided by Devlin et al.
(2018). They suggest that a learning rate in the range 1e-5 is usually preferable for
BERT.

Tokenizer length and vocabulary size are simply set to the default values used
in the original BERT implementation. The number of hidden layers is reduced from 12 to
6. The same is done for the number of attention heads. This is to speed up the training
process. While it would be interesting to drill deeper into the BERT architecture, time
constraints dictated that these experiments stayed reasonably off-the-shelf.

74

5.1 Experimental Plan

5.1.2 Experiment 2 – Supervised Learning

Table 5.4 summarizes the configurations used in experiment 2. For both GAST and
BERTac, a tactic classifier Cτ , a local context classifier CLC and a global context
classifier CGC needs to be trained (see the theorem proving agent described in Section
4.3). Three different models will be trained for each classifier – one on human-written
proofs, one on synthetic proofs, and one on both datasets.

Table 5.4: Configurations for experiment 2. LC denotes the local context and GC the
global context.

Datasets human, synthetic, both
n (hypotheses from LC) 10
m (theorems from GC) 10
d (depth limit) 10, 50, 100
k (beam width) 5, 10, 20
Regularization medium, high

Results from experiment 1 indicated that models should at least be trained us-
ing medium regularization. The models will therefore use this setting as a default. A
version using high regularization will also be tested to see the effect of increased dropout
(see Table 5.1). Only the models with the highest validation scores will be used to build
theorem proving agents.

When designing the theorem proving agent the variables n and m were defined
(see Section 4.3). These correspond to the number of hypotheses to include from the local
context (n) and the number of theorems to include from the global context (m). m is
simply chosen to be the same as Yang and Deng (2019) and First et al. (2020): m = 10.
To decide a reasonable value for n, observe Table 5.1. This table plots the percentage of
the proof step datasets with n number of hypotheses in the local context. Most proof
steps have a local context consisting of less than 20 hypotheses. Setting n = 20 therefore
seems like a reasonable choice. Unfortunately, the ASTs can be fairly large, and GAST
needs to deal with one more AST for every added hypothesis. That is, increasing n by
one corresponds to one more AST. Therefore, n = 10 will be used instead of n = 20.
This decreases the complexity of CLC models, which is particularly important for GAST
CLC models as too many ASTs can result in memory issues. The downside is that CLC
will be able to deal with fewer proof states than if n is was higher.

Recall too that both CLC and CGC are only trained on examples where a true
correct argument exists (explained in Section 4.3). This means that lowering n and m
decreases the dataset sizes CLC and CGC train on. The resulting dataset sizes for the
classification models, when n = 10 and m = 10, are shown in Table 5.5. As can be seen
in the table, there is a significant drop in the dataset sizes for the argument models.

75

Chapter 5 Experiments and Results

Number of hypotheses in the local context

(%
)

0.0

2.5

5.0

7.5

10.0

0 5 10 15 20 25 30

Human Synthetic

Figure 5.1: The percentage of proof steps that have n number of hypotheses in the local
context.

Table 5.5: The dataset sizes for the supervised learning models. The numbers are pre-
sented in the format “train / validation”.

Human Synthetic Both

Cτ
121,764
68,180

174,076
113,048

295,720
181,228

CLC
16,492
9,705

30,350
19,862

46,842
29,567

CGC
6,108
3,280

14,464
8,688

20,572
11,964

Depth-First Search will be used to traverse the proof tree, same as ASTactic
and TacTok. In addition, a beam width of the top k tactic applications is calculated for
each proof state so that the agent can apply a new tactic whenever it has to backtrack
the proof tree. A depth limit d is used to limit how far down a branch in the proof tree
the agent traverses. As default values d = 50 and k = 10 will be used. d is chosen to be
the same value as Yang and Deng (2019). Although k = 10 is not the optimal value
for TacTok or ASTactic, it is chosen as default because it speeds up the test process
(Yang and Deng, 2019). Note that experiment 2e will address different values for d and k
(including the optimal k = 20 from Yang et al. (2016); First et al. (2020)), to see what
impact these variables have on performance.

The default timeout and the total number of tactics the agent is allowed to try

76

5.1 Experimental Plan

before giving up on a proof search is set to the same as experiments in Yang and Deng
(2019) and First et al. (2020). This is a timeout of ten minutes and a limit of 300 tactics
for each theorem.

Experiment 2a: Random Guessing Baseline

A random guessing agent, using the design from Section 4.3 will be tested as a baseline.
Because this baseline implements the same agent design as the rest of the agents in
this Thesis, results can be compared directly. Whenever either a global context or local
context dependent tactic is guessed, a random guess over the corresponding argument
space will be made. The random guessing agent will be tested with the default d = 50
and k = 10 values, and again with updated d and k values if experiment 1e shows that
different values improve results.

Experiment 2b: Supervised GAST Models

For this experiment, the learning rate will be set to 1e-3 and node embedding size to 256,
based on results from tactic group experiments. The readout function in this architecture
is the SortPoll operator from Zhang et al. (2018) that selects the top k features from the
node features. The top k = 30 features will be pooled.

Experiment 2c: Supervised BERTac Models

For this experiment, the learning rate will set to 1e-6, based on results from tactic group
experiments. The number of hidden layers and attention heads is reduced from 12 to 6
to speed up the training process.

BERTac will also be trained and validated in one additional setting: loading
pre-trained BERT model weights before training. Although it seems unlikely that
weights obtained from classical NLP pre-training tasks will help a model trying to reason
about logical expressions, it is included out of curiosity.

Experiment 2d: Combining GAST and BERTac Models

It is possible to combine the classifiers in arbitrary ways, as each classifier making up
the theorem proving agent is independent of each other. Suppose, for example, a GAST
model is the best core tactic classifier (Cτ), and BERTac models are the best argument
classifiers (CLC and CGC). In that case, it is trivial to have the agent load the GAST
model as its tactic classifier and the BERTac models as its argument classifiers. For each
proof step dataset, the best performing classifier from each architecture will be combined
to form a “best” agent.

77

Chapter 5 Experiments and Results

Experiment 2e: Changing depth limit and beam width

In order to see if the depth limit d and beam width (i.e., the number of tactic candidates)
k impact the performance, a few variations of these values will be tested. d will be set to
10 and 100, and k to 5 and 20. If the result is better for different d or k than the default
d = 50 and k = 10, the best combination will be tested. This experiment will only use
the overall best-performing end-to-end agent from previous experiments. Yang and Deng
(2019) also tests ASTactic with different k values. They found that k = 20 is optimal.
However, they only test with d = 50. First et al. (2020) use k = 20 and d = 5.

5.1.3 Experiment 3 – Reinforcement Learning

Since the deep Q-learning agent QTac (described in Section 4.4.3) trains by interactive
proof attempts, it is subject to the SerAPI bottleneck (see Section 3.2.4). This means
that exposing QTac to the whole training dataset within a reasonable time frame can be
challenging. Yang and Deng (2019) provide the average time used to prove theorems for
ASTactic. This is 2.2 seconds when k = 10. With this in mind, a time limit of only three
seconds, as opposed to the default 10 minutes, will be used when training QTac. This
drastically lowers the time spent on each proof; QTac will see more proofs in a shorter
amount of time, at the cost of failing on proofs it potentially could have solved given
more time. This is not a major issue if one assumes that most proofs are solved within
three seconds.

QTac’s Q-network follows the same architecture as the GAST Cτ model. This
means that it is possible to train the QTac agent with labeled examples, in addition
to replay memory training. Bansal et al. (2019b) use this approach when training
their reinforcement agent in HOList. To help QTac in the training phase, the
same idea will be used here. However, instead of only using an initial supervised
learning phase before reinforcement learning is deployed, as done by Bansal et al.
(2019a), supervised training will be interleaved with the reinforcement learning
process. Specifically, after each 1,000 proof attempt, QTac will be supervised on 2,000
synthetic proof steps. This means that an imitation proof style will influence QTac
less in the highly explorative beginning phase of training. Hopefully, this increases
the chance that QTac finds its own “style” of proving theorems, which is the main
goal for this agent. The mini-batch size is simply set to one during the supervised training.

Regularization techniques are less common in reinforcement learning than in su-
pervised learning. This usually is fine when the test task is identical to the training task
(e.g., when teaching an agent to play chess), as overwitting is not a concern. However,
in the case of theorem proving, each proof is different and the agent must learn a
general approach to the proof procedure. Regularization can sometimes help increase
generalization. Therefore, two approaches will be tested: (1) use low regularization
while training, and (2) use medium regularization. Regularization will apply to both the
Q-network and the target Q-network.

78

5.1 Experimental Plan

When training the Q-network in a supervised fashion, the learning rate will be
set to 1e-3 (the same as for the supervised learning models). A lower learning rate of
1e-5 will be used for replay memory training. The reason for this is that replay memory
includes a considerable amount of noisy training data. The theorem proving task is hard,
and QTac will most likely fail in most cases. It is not desirable that QTac steps too far
along gradients when seeing potentially highly irrelevant experiences.

Interacting via SerAPI remains a bottleneck even with a time limit of three sec-
onds. This is because SerAPI sometimes has to wait several minutes before Coq responds
to a tactic application, making the three-second timeout . QTac will, therefore, only be
trained on 10,000 theorems. This is less than 25% of the full training set in CoqGym.
QTac will do supervised learning on 10 · 2, 000 = 20, 000 proof steps. Setting the
maximum number of tactic applications for each proof attempt to 50 means each proof
attempt will typically generate around 50 replay experiences, as QTac is expected to fail
on most theorems (i.e., by using up all 50 tactic applications). The resulting experiences
QTac can potentially train on amounts to 10, 000 · 50 = 500, 000. As mentioned in
Section 4.4.3, not all replay memories are used for training. Instead, a random sample of
256 is pooled whenever the replay memory exceeds 307 experiences (20% more than the
replay batch size of 256). This means that QTac will train on around 400,000 replay
experiences from 10,000 proof attempts.

Experiment 3a: Wide QTac

As mentioned in Section 4.4.3, two training modes will be used for QTac. One is the
wide mode. In this mode, QTac only sees each theorem once. The exploration rate ε is
decayed after each proof attempt. ε will start at 1.0 and approach 0.2. The decay rate is
set to 3e3 in this mode. When trained on 10,000 proofs, this means ε will be ~0.2 at the
end of the training session.

Experiment 3b: Deep QTac

QTac is also trained in the deep mode. The idea is that QTac will attempt each theorem
10 times before moving on to the next.

However, CoqGym does not support a straightforward way to handle individual
theorems. Instead, the agents interact with proof files. This does not matter for most
cases (and has therefore not been mentioned before now), but when deciding wide
QTac’s ε decay, it does. Each proof file contains an unknown, small number of theorems.
Therefore, a simple solution will be used to almost train QTac in the ideal deep mode.
Namely, have QTac train on the same proof file 10 times before moving on to the next.
It is simply assumed that each file contains around 20 theorems each.

ε will be decayed so that it starts at 1.0 and ends at 0.2 when 10 · 20 = 200

79

Chapter 5 Experiments and Results

proof attempts are reached. ε decay is set to 3e1, meaning that ε ends at ~0.2 when
reaching 200 theorems. ε is then reset. In this mode, QTac will only be exposed to 10,000

10
= 1,000 unique proofs, as each proof is attempted 10 times.

5.2 Experimental Setup

This section explains the different frameworks and resources used in the experiment
implementation. The code for all end-to-end experiments is available in a CoqGym
fork on GitHub1. The code for the tactic group experiments is available in a separate
repository2.

5.2.1 Deep Learning Frameworks

All models are implemented using PyTorch3. PyTorch is a popular deep learning
framework which is high-level, flexible and allows for easy integration with Nvidia GPUs
through the CUDA API.

PyTorch Geometric4 (Fey and Lenssen, 2019) is used to implement GNN mod-
els. This framework is a general-purpose GNN framework built on top of PyTorch. It
provides easy implementations of both custom and pre-implemented message passing
algorithms5. The framework also implements additional graph-related functionality, like
readout functions and graph batch handling.

The Hugging Face6 implementation of BERT is used. Hugging Face provides
an API to extract both general-purpose Transformer implementations and specific
implementations such as BERT. Furthermore, one can load in pre-trained versions of
both a BERT tokenizer and the BERT model itself, or simply the architecture with no
specific weight initialization. The API is very flexible and lets the user specify BERT
details, like the number of hidden layers, the number of attention layers, and the number
of unique tokens in the tokenizer.

5.2.2 CoqGym Setup

A handful of libraries are needed when using CoqGym. A specific version of OCaml7
must be set up with the OPAM package manager8. OCaml is the functional programming
language in which Coq is written. The Coq projects comprising the CoqGym proof

1https://github.com/MaganMK/CoqGym
2https://github.com/MaganMK/prox
3https://pytorch.org/
4https://pytorch-geometric.readthedocs.io/en/latest/
5https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
6https://huggingface.co/
7https://ocaml.org/
8https://opam.ocaml.org/

80

5.3 Experimental Results

data have to be built, a process taking around four hours. CoqGym’s caching system
also leverages a library called Lightning Memory-Mapped Database (LMDB)9, which
needs to be available for CoqGym to work properly. Some Coq projects also use Ruby,
meaning that Ruby also has to be installed for the full dataset to be available. A detailed
description of setting up CoqGym can be found in the README on the official GitHub
repository10.

When building the various Coq projects, an issue occurred for the coquelicot
project. Coq claims that this project makes inconsistent assumptions over another
Coq library ssreflect. Despite continued efforts, the problem was never resolved.
This means that the coquelicot project remained broken and could not be used for
experiments in this Thesis. coquelicot is part of the CoqGym test set, meaning that
agents are not evaluated on this Coq project, reducing the test set from 13,137 theorems
to 11,670 theorems.

5.2.3 Computing Resources

All experiments were run using the NTNU Idun HPC cluster11 (Själander et al., 2019).
Idun provides both high-end CPU and GPU clusters. Experiments were primarily run on
Tesla P100 GPU clusters with four to eight logical cores. The exception was end-to-end
theorem proving experiments as matrix computations were not the main bottleneck but
rather the CoqGym SerAPI calls. These experiments were run on CPU clusters with
Intel Xeon cores. The tactic group experiments took between one and three days to
run, depending on the number of epochs. Training supervised learning models for the
end-to-end theorem proving task took around two days. Training reinforcement learning
agents took around two days as well, when proof search timeout was set to three seconds.
Testing models on end-to-end theorem proving took around three days, with a ten minute
time limit for each proof.

5.3 Experimental Results

All relevant results will now be presented. An overview of best-performing theorem
proving agents is provided in Table 5.6. These are the main results from experiments
2 and 3. Using the default depth limit d of 50 and beam width k of 10, the baseline
random guesser can prove 6.87% of CoqGym’s test set. Keeping d = 50 and k = 10, the
best-performing supervised learning agent proves 8.65% of the theorems. This is 25.91%
more theorems than the random guessing baseline. Note that ASTactic is also included
in the table as the main comparison for this model, as it is tested using the same values
for d and k. The best-performing supervised agent with d = 50 and k = 10 scores 2.15
percentage points lower than the corresponding ASTactic model.

9https://symas.com/lmdb/
10https://github.com/princeton-vl/CoqGym
11https://www.hpc.ntnu.no/idun

81

Chapter 5 Experiments and Results

When modifying d and k, a score of 9.98% is achieved for the supervised agent.
The random baseline also slightly improves results to 7.27%, when the same d and
k values are used. This means that the best-performing supervised learning agent
proves 37.28% more theorems than the corresponding random guessing agent and 2.92
percentage points lower than the state-of-the-art TacTok model (First et al., 2020).

The best-performing wide QTac agent proves 10.63%, and the best-performing
deep QTac agent proves 10.74%. 10.74% is the highest score for any agent in this Thesis,
ending up at 47.73% more theorems proved than the corresponding random guessing
agent, and 2.16 percentage points lower than TacTok.

Table 5.6: Main end-to-end theorem proving results from experiments 2 and 3. h indicate
the model was trained on human-written proof steps and s that it was trained
on synthetic proof steps. G indicates that the model was a GAST model, and
B that it was a BERTac model. Only the best-performing combination of
models is included in this overview. The easy baseline corresponds to the
best-performing Coq internal automatic engine.

Agent Cτ CLC CGC d k Test accuracy
easy (baseline 1) - - - - - 4.90%
random guesser (baseline 2) - - - 50 10 6.87%
random guesser (baseline 2) - - - 10 20 7.27%
ASTactic - - - 50 10 10.80%
ASTactic - - - 50 20 12.20%
TacTok (state-of-the-art) - - - 5 20 12.90%
BERTac B, s B, h B, s 50 10 7.99%
GAST G, s G, h G, s 50 10 8.65%
GAST G, s G, h G, s 10 20 9.98%
QTac, wide - G, h G, s 10 20 10.63%
QTac, deep - G, h G, s 10 20 10.74%

5.3.1 Results from Experiment 1

The main results from experiment 1 are shown in Table 5.7. Both GAST and BERTac
beat the FFN benchmark. However, this is only by a few percentage points. Furthermore,
BERTac performed slightly better than GAST. All deep learning models significantly
outperform the weighted random guesser (baseline 1) and the most common class (baseline
2).

82

5.3 Experimental Results

Table 5.7: Main results from experiment 1.
Model Validation accuracy
Weighted guesses (baseline 1) 27.80%
Most common class (baseline 2) 33.66%
FFN (baseline 3) 48.86%
GAST 51.28%
BERTac 52.58%

Results from Experiment 1a: Tactic Group Baselines

Baselines 1 and 2 are computed based on the validation set statistics and achieve
accuracies of 27.80% and 33.66%, respectively.

Baseline 3 (the FFN model) is trained for 30 epochs. Figure 5.2 plots the vali-
dation accuracy of both the low and medium regularized models. The model does better
when medium regularization is applied, with the best accuracy of 48.86%.

0 10 20 30
Epoch

44

45

46

47

48

49

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

low
medium

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.2: Validation accuracy plots for FFN baseline from experiment 1. “low” and
“medium” refer to regularization levels.

Results from Experiment 1b: GAST on Tactic Groups

Figure 5.3a plots the validation accuracy from phase 1 of experiment 1b. These are the
GAST models tested with different message passing algorithms. Both the MLP and
GCN models benefit from increased regularization. This is consistent with the FFN
baseline. SGC performs well with both low and medium regularization. This might be
because SGC implements a less complex message passing algorithm (see Section 2.3.11),

83

Chapter 5 Experiments and Results

and regularization is typically needed for more complex networks (see Section 2.3.8). All
models seem to converge towards an optimum at around 50% accuracy.

Figure 5.3b plots the validation accuracy from models in phase 2 of experiment
1b. GAST seems to benefit from training for longer than eight epochs as the models
approach 52% when trained for 20 epochs. Medium regularization helps GAST even
though SGC is the implemented message passing algorithm. The benefit from using
medium regularization can be seen from epoch 14 onward. Increasing node embedding
and the number of hops (the “complex” model) results in a more unstable learning
process and does not result in a better validation score. The best performing GAST
model achieves a validation score of 51.28% when medium regularization is applied,
SGC is the message passing algorithm, and the model is allowed to train for 20 epochs.

2 4 6 8
Epoch

20

25

30

35

40

45

50

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

MLP, low
GCN, low
SGC, low

MLP, medium
GCN, medium
SGC, medium

5 10 15 20
Epoch

45

46

47

48

49

50

51

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

SGC, low
SGC, medium
SGC, complex

(a) GAST using different message passing tech-
niques.

2 4 6 8
Epoch

20

25

30

35

40

45

50

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

MLP, low reg.
GCN, low
SGC, low

MLP, medium
GCN, medium
SGC, medium

5 10 15 20
Epoch

45

46

47

48

49

50

51

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

SGC, low
SGC, medium
SGC, complex

(b) GAST using different levels of regulariza-
tion and network complexity.

Figure 5.3: Validation accuracy plots for GAST models from experiment 1. “low” and
“medium” refer to regularization levels.

Results from Experiment 1c: BERTac on Tactic Groups

The validation accuracy plots from experiment 1c are shown in Figure 5.4. Even with
much less tuning than GAST, BERTac performs slightly better. The best score is
achieved by the low α model, at 52.58% accuracy. This is consistent with suggestions
from (Devlin et al., 2018), where a learning rate around 1e-5 is recommended.

Comparing Figure 5.4 with Figure 5.3b shows how BERTac converges faster to-
wards an optimum than GAST. Increasing regularization does not seem to have any
impact on performance for BERTac. It hinders the convergence somewhat during the
first few epochs.

84

5.3 Experimental Results

5 10 15 20
Epoch

35

40

45

50

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

low
low α
medium + low α

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.4: Results from of experiment 1c. BERTac is tested with different levels of
regularization and learning rates. “low α” means that learning rate is reduced
from 1e-3 to 1e-6. “low” and “medium” refer to regularization levels.

5.3.2 Results from Experiment 2

Validation Accuracy for Cτ , CLC , and CGC Models

The validation scores for each of the three classifiers, for both GAST and BERTac,
are shown in Table 5.8. The validation scores for BERTac with pre-trained weights
are included as well. BERTac scores the highest on tactic classification but signif-
icantly lower on both argument classification tasks. Both Cτ and CGC experience
performance gains when trained (and validated) on synthetic proof steps rather
than human-written proof steps. However, CLC performance is higher when trained
(and validated) on human-written proof steps. Training on both human-written and
synthetic proof data does not help any of the models. This points to differences in the
human-written and synthetic proof data, making it counterproductive to learn from both
datasets. It does not help BERTac to load pre-trained BERT weights, meaning clas-
sic NLP-style upstream training does not transfer well to formal expressions in this setting.

Validation plots are shown in Figure 5.5. Figure 5.5a shows how GAST and
BERTac perform similarly on the tactic classification task when trained on synthetic
proofs. Differences are bigger when training on human-written proofs. Figure 5.5b and
5.5c show how all GAST models outperform BERTac models on argument classification
tasks. The plots also show that the type of training data impacts performance for all
classifiers. Plot 5.5d is included to showcase how GAST performs better when high
regularization is applied, while BERTac performs better when medium regularization is
applied. This is consistent with experiment 1, where increasing regularization from low
to medium improved results for GAST but slightly decreased results for BERTac.

85

Chapter 5 Experiments and Results

Table 5.8: Validation accuracy for GAST and BERTac C models.
Model Dataset GAST BERTac Pre-trained BERTac

Cτ

human
synthetic
both

30.19%
36.10%
34.46%

32.98%
37.72%
36.14%

28.90%
37.52%

-

CLC

human
synthetic
both

50.24%
48.28%
45.44%

32.92%
29.08%
32.56%

26.54%
22.04%

-

CGC

human
synthetic
both

31.28%
32.30%
31.08%

23.47%
27.97%
27.06%

23.47%
25.50%

-

5 10 15 20
Epoch

15

20

25

30

35

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

GAST, h
GAST, s
BERTac, h

BERTac, s
pt BERTac, h
pt BERTac, s

5 10 15 20
Epoch

20

30

40

50

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)
GAST, h
GAST, s
BERTac, h

BERTac, s
pt BERTac, h
pt BERTac, s

(a) Cτ models from experiment 2.

5 10 15 20
Epoch

15

20

25

30

35

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

GAST, h
GAST, s
BERTac, h

BERTac, s
pt BERTac, h
pt BERTac, s

5 10 15 20
Epoch

20

30

40

50

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)
GAST, h
GAST, s
BERTac, h

BERTac, s
pt BERTac, h
pt BERTac, s

(b) CLC models from experiment 2.

0 10 20 30 40
Epoch

24

26

28

30

32

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

GAST, h
GAST, s
BERTac, h

BERTac, s
pt BERTac, h
pt BERTac, s

5 10 15 20
Epoch

20

30

40

50

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

GAST, medium
GAST, high
BERTac, medium
BERTac, high

(c) CGC models from experiment 2.

0 10 20 30 40
Epoch

24

26

28

30

32

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

GAST, h
GAST, s
BERTac, h

BERTac, s
pt BERTac, h
pt BERTac, s

5 10 15 20
Epoch

20

30

40

50

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

GAST, medium
GAST, high
BERTac, medium
BERTac, high

(d) CLC models with different regularization.

Figure 5.5: Validation accuracy plots for C models. “pt” denotes “pre-trained”. h refers
human-written proof steps and s to synthetic proof steps as the training data.

86

5.3 Experimental Results

End-to-End Theorem Proving Accuracy

The end-to-end theorem proving accuracy for each agent from experiment 2b-d is shown
in Table 5.9. These are agents combining different classifiers based on Table 5.8. All
agents benefit from training on synthetic proofs over human-written or both datasets.
Moreover, performance for GAST and BERTac agents is improved further when having
Cτ and CGC trained on synthetic proofs and CLC trained on human-written proofs. This
is consistent with the validation scores from Table 5.8.

However, it is not necessarily the case that it is best to use BERTac as the Cτ
model and GAST as the argument models. This is somewhat inconsistent with the
validation scores, as validation scores for BERTac Cτ models are higher than for GAST
Cτ models, regardless of the dataset. The best agent consists of only GAST models,
where Cτ and CGC are trained on synthetic proofs, and CLC is trained on human-written
proofs. This agent proves 8.65% of the test set.

Table 5.9: Performance of GAST and BERTac on end-to-end theorem proving. Each
column indicates what proof step data the models were trained on. “Best
dataset” refers to each classifier being trained on the best proof step data
for that specific classifier (best meaning the highest validation score). “Best
combination” combines the best GAST and BERTac classifiers, based on
validation scores.

Human Synthetic Both Best dataset
GAST 7.92% 8.46% 8.29% 8.65%
BERTac 6.39% 7.71% 7.75% 7.99%
Best combination 7.04% 8.62% 8.36% 8.61%

For experiment 2e, only the best performing agent from experiment 2b-d is
used: the “best dataset” GAST agent (see Table 5.9). Results for different depth limits d
and beam widths k are shown in Table 5.10. Results for different d values show that
lowering d to 10 improves results. This indicates that the agent should focus on shorter
proofs, searching wider in the proof tree rather than deeper. Increasing k to 20 improves
performance, and decreasing it to 5 significantly lowers performance. This is consistent
with results from (Yang and Deng, 2019) – ASTactic proves 6.5%, 10.8%, and 12.2%
for beam widths 5, 10, and 20, respectively. It is easier for the agent to perform well
if it also evaluates lower probability tactic candidates in proof states. Note that the
maximum number of tactic applications allowed in a proof search is always the same (at
300). The agent is therefore never attempting more tactic applications when k increases.

Finally, by combining the best depth limit d = 10 and beam width k = 20, the
agent proves 9.98% of the theorems in the test set.

87

Chapter 5 Experiments and Results

Table 5.10: Results for different depth limits d and beam widths k.
d / k 5 10 20
10 - 8.95% 9.98%
50 3.94% 8.65% 9.36%
100 - 8.19% -

5.3.3 Results from Experiment 3

The results from experiment 3 are shown in Table 5.11. Even when exposed to less
than 25% of the whole training set, QTac agents generally prove more theorems than
the supervised agents. This is encouraging. Moreover, only the Cτ model is trained
using deep Q-learning, meaning that there is potentially more to be gained by training
argument models in the same way.

Results are similar for both the deep and wide mode. Higher regularization
seems to be more critical in the wide mode than the deep. This is unexpected. Recall
that the deep mode has QTac attempt the same theorems several times, while the wide
mode only once. In other words, the deep model should become more specialized for the
theorems it is exposed to. One might expect regularization to be more beneficial in this
scenario, but this is not the case. The impact of regularization will likely be clearer if
QTac models are trained on more theorems.

Table 5.11: Performance of QTac agents on end-to-end theorem proving. “low” and
“medium” refers to the regularization level.

low medium
Wide 10.33% 10.63%
Deep 10.74% 9.51%

Results for Different Coq Projects

Table 5.12 provides an overview of results for each Coq project in CoqGym’s test set.
The table compares the best GAST and QTac agents, in addition to the random guesser
for d = 10 and k = 20. Note that the coquelicot project is marked in red as it was not
testable, as explained in Section 5.2.2.

The table shows relatively large differences in how many proofs an agent is able
to prove for different Coq projects. For example, projects like PolTac and Demos seem
to be fairly easy, while verdi and verdi-raft seem to be hard. QTac solves 20.1%
of PolTac and 67.6% of demos, while only solving 6.5% of verdi-raft and 7.0% of verdi.

In general, QTac beats GAST on most projects. However, there are some projects where

88

5.3 Experimental Results

GAST beats QTac by a reasonable margin. For instance, on the project PolTac, GAST
proves 87 theorems, and QTac proves 73 theorems. This is a relative improvement of
19.18%. A possible explanation for this is that QTac and GAST have learned slightly
different proof styles (elaborated more on in Section 6.3.3), where following the QTac
proof style is less effective in the PolTac project. It could also be because QTac is
exposed to fewer proofs than GAST. Perhaps a subset of the training data contains
important learning examples for learning to prove the PolTac theorems, and QTac might
never be exposed to those examples.

Table 5.12: Theorem proving results for different Coq projects. The number of theorems
contained in each Coq project is shown next to the project name.

Random Guesser GAST QTac
weak-up-to 139 9 (6.5%) 8 (5.8%) 10 (7.2%)
buchberger 725 63 (8.7%) 76 (10.5%) 74 (8.7%)
jordan-curve-theorem 628 15 (2.4%) 25 (4.0%) 27 (4.3%)
dblib 180 22 (12.2%) 31 (17.2%) 38 (21.1%)
disel 634 35 (5.5%) 55 (8.7%) 81 (12.8%)
zchinese 43 0 (0.0%) 3 (7.0%) 3 (7.0%)
zfc 237 14 (5.9%) 27 (11.4%) 35 (14.8%)
dep-map 43 9 (20.9%) 5 (11.6%) 9 (20.9%)
chinese 131 15 (11.5%) 18 (13.7%) 30 (22.9%)
UnifySL 968 71 (7.3%) 85 (8.8%) 87 (9.0%)
hoare-tut 18 0 (0.0%) 0 (0.0%) 2 (11.1%)
huffman 314 14 (4.5%) 22 (7.0%) 26 (8.3%)
PolTac 363 56 (15.4%) 87 (24.0%) 73 (20.1%)
angles 62 3 (4.8%) 4 (6.5%) 4 (6.5%)
coq-procrastination 8 2 (25.0%) 2 (25.0%) 3 (37.5%)
coq-library-undecidability 2,355 155 (6.6%) 243 (10.3%) 253 (10.7%)
tree-automata 828 58 (7.0%) 83 (10.0%) 76 (9.2%)
fermat4 130 0 (0.0%) 0 (0.0%) 7 (5.4%)
demos 68 43 (63.2%) 49 (72.1%) 46 (67.6%)
coqoban 2 0 (0.0%) 0 (0.0%) 0 (0.0%)
goedel 606 33 (5.4%) 51 (8.4%) 48 (7.9%)
verdi-raft 2,127 75 (3.5%) 119 (5.6%) 139 (6.5%)
verdi 514 32 (6.2%) 35 (6.8%) 36 (7.0%)
zorns-lemma 149 6 (4.0%) 10 (6.7%) 8 (5.4%)
coqrel 256 111 (43.4%) 118 (46.1%) 130 (50.8%)
fundamental-arithmetics 142 7 (4.9%) 9 (6.3%) 8 (5.6%)
coquelicot 1,467 - - -
Total 11,670 848 (7.3%) 1,165 (10.0%) 1,253 (10.7%)

89

Chapter 6

Evaluation and Discussion
The following chapter will evaluate and discuss results from this Master’s Thesis. Section
6.1 evaluates and discusses the Research Questions formulated in Chapter 1 in light of
the experimental results. Section 6.2 evaluates the Goal formulated in Chapter 1 based
on how the Thesis has answered the Research Questions. Section 6.3 discusses interesting
findings and relevant topics further.

6.1 Evaluation and Discussion of Research Questions

Research Question 1 How to design an easy and fast Auto-ITP proxy metric that also
indicates end-to-end theorem proving performance?

The tactic group proxy metric designed in Section 4.3 directly addresses Research
Question 1. It is designed to balance the CoqGym dataset and emphasizes overall proof
strategy rather than individual tactics. Results from the tactic group experiments
(Section 5.3.1) indicate that the BERT-based model BERTac should predict core tactics
better than the GCN-based model GAST. This is also the case; comparing the validation
scores for the Cτ models from experiment 2 (Table 5.8 in Section 5.3.2), BERTac
outperforms GAST by 1.62 percentage points when models are trained on synthetic
proofs and by 2.79 percentage points when trained on human-written proofs.

However, this does not directly transfer to improved theorem proving ability as
shown by the end-to-end theorem proving accuracies in Table 5.9. In other words, a
model performing well on the tactic group experiment is likely to achieve a relatively
higher validation score as a Cτ model but is not necessarily a strong model for theorem
proving (this is discussed further in Section 6.3.1). A key characteristic of the metric
should be that it is indicative of theorem proving performance. Thus, there is still work
needed to meet this criterion with the tactic group-based metric proposed in this Thesis.

Another important aspect of the tactic group proxy metric is that it does not
address tactic arguments. Although the BERTac model performs better on the tactic
group experiment (as noted above), it performs significantly worse as an argument model.
This is shown by the BERTac CLC and CGC validation scores in Table 5.8. For example,
when trained on synthetic proofs, the BERTac CLC model scores 19.2 percentage points

91

Chapter 6 Evaluation and Discussion

lower than the GAST CLC model. For the CGC models, the difference is 4.33 percentage
points, in GAST’s favor. Therefore, a key improvement to the tactic group proxy metric
would be to also account for tactic arguments. Another option is to reconsider what the
metric should be based on entirely. For example, Huang et al. (2019) propose a metric
where the model predicts how many proof steps are left. This metric is neither based on
core tactics nor tactic arguments but might still indicate end-to-end theorem proving
performance.

Research Question 2 How can a conceptually simple end-to-end theorem proving agent
be designed for tactic-based ITP theorem proving?

The theorem proving agent designed in Section 4.3 directly addresses Research Question
2. The agent is conceptually simple in that the ITP theorem proving process is
interpreted as classic machine learning problems – three separate multi-class classification
problems. The three classifiers share the same overall architecture, making model design
easier. Furthermore, each classifier is independent of the others meaning models can be
combined in arbitrary ways to build a working agent.

The agent is similar to the agents designed for the HOList framework (Bansal
et al., 2019a). The primary difference is that this Thesis’ agent does not discard the local
context and does not consider argument classification as a series of independent binary
classification tasks. This makes training argument models less expensive and avoids the
problem of the model seeing few positive examples, as explained in Section 4.3.

A drawback of this approach is that the space of potential tactic applications is
restricted. The agent designed by Yang and Deng (2019), also used by First et al.
(2020), can build tactic applications from the entire Coq tactic space, making them more
flexible. Part of the reason why agents in this Thesis are not able to outperform neither
ASTactic (Yang and Deng, 2019) nor TacTok (First et al., 2020) could be the limited
expressivity of the agent. Expressivity can, however, be improved by further developing
the tactic-building module, which can be done independently of the classifiers.

Research Question 3 What novel embedding techniques can help models perform well in
CoqGym?

Two novel embedding techniques are tested: Graph Convolutional Networks (GCNs)
(Kipf and Welling, 2017) and the BERT Transformer architecture (Devlin et al., 2018).
Supervised GAST and BERTac agents outperform corresponding random guessing agents.
The strongest BERTac agent proves 16.30% more theorems than the corresponding
random guesser, and the strongest GAST agent proves 37.28% more theorems than
the corresponding random guesser (an overview of main end-to-end theorem proving
results can be found in Table 5.6). This indicates that both GCN and off-the-shelf
BERT models can be deployed effectively for Auto-ITP in CoqGym. Moreover, when

92

6.1 Evaluation and Discussion of Research Questions

comparing corresponding GAST and BERTac agents (i.e., when they both use the
same depth limit and beam width), the GAST agent proves 8.26% more theorems
than the BERTac agent. This can likely be attributed to GAST models significantly
outperforming BERTac models on argument prediction as shown in Table 5.8. Results
in this Thesis, therefore, suggest that GCN is more suited for Auto-ITP than BERT.
Note that tuning hyperparameters was not a significant concern in this Thesis but could
provide more nuances to this claim. Some shortcomings of the BERT-implementation in
this Thesis will be discussed further in Section 6.3.6. If these are addressed effectively,
BERT-based models could perhaps compete with the GCN models.

To gain further insights into Research Question 3, an FFN baseline model, simi-
lar to the one developed for the tactic group experiments, would shed more light on
the gains made from using GCNs and BERT. Experiment 1 indicates that GAST and
BERTac only marginally beat the FFN baseline on core tactic prediction. However, as
already explained under Research Question 1, this does not reveal the FFN baseline’s
ability to predict arguments. It is therefore not obvious how an FFN baseline model
would compare to GAST and BERTac models on end-to-end theorem proving.

It is not central to directly compare agents in this Thesis to ASTactic (Yang
and Deng, 2019) and TacTok (First et al., 2020) as different theorem proving agents are
deployed. An implementation using the same theorem proving agent could provide more
insights into how the deep learning models themselves perform. So far, different research
groups have designed unique agents, making it difficult to know what performance gains
should be contributed to the agent design and what should be contributed to the deep
learning models. The same is the case for this Thesis, as a more accessible machine
learning interpretation of the theorem proving task was a priority instead of relying on
the agent designed by Yang and Deng (2019).

Research Question 4 How does reinforcement learning compare to supervised learning
in CoqGym?

To answer this Research Question, the deep Q-learning architecture QTac was designed
(see Section 4.4.3). QTac leverages the modular theorem proving agent designed
in Section 4.3 – it trains a Cτ model and relies on supervised models for argument
prediction, making experiments more manageable. QTac generally outperforms the
supervised learning agents, as shown in experiment 3 (Section 5.3.3), even when exposed
to less than 25% of the CoqGym training data. The best-performing QTac model proves
7.6% more theorems than the best-performing supervised agent. This shows that a deep
reinforcement learning method, like deep Q-learning, can be leveraged effectively on the
Auto-ITP problem.

A key aspect of QTac is how it generates more training data from existing the-
orems by learning from both successful and failed proofs. Every intermediate proof step

93

Chapter 6 Evaluation and Discussion

is a potential learning experience for QTac, and a single explorative proof procedure can
generate tens of such proof steps, as explained in Section 5.1.3.

It would be interesting to see how a deep reinforcement learning agent absent
of any imitation-style training performs. Note that results from Bansal et al. (2019b)
indicate that combining reinforcement learning with imitation training is superior in
HOList. Similar results for deep reinforcement learning would likely be the case. Still, it
would shed more light on the learning process of deep reinforcement learning Auto-ITP
models.

6.2 Evaluation of Goal
The Goal for this Master’s Thesis was the following:

Goal Further progress machine learning applied to formal reasoning by testing new
machine learning techniques on the Auto-ITP task.

Two new deep learning methods have been implemented: A GCN-based and a
BERT-based method. GNN-based models have been used in the Auto-ITP context before
(Paliwal et al., 2020), but not in CoqGym. However, the related TreeLSTM method has
been used in CoqGym (Yang and Deng, 2019; First et al., 2020). GCNs are therefore
not an entirely novel approach but rather a natural next step. Applying BERT is more
novel. It was inspired by several related works applying Natural Language Processing
(NLP) techniques to mathematics and formal reasoning (Rabe et al., 2020; Lample and
Charton, 2020; Polu and Sutskever, 2020) (see Section 3.4.1). When trained to imitate
human proofs, these techniques outperform corresponding random guessing agents by a
large margin – 16.30% for the BERT-based agent and 37.28% for the GCN-based agent.

As part of the work in this Thesis, a new theorem proving agent is developed.
This does not directly apply to the Goal of the Thesis but is a step towards better
understanding theorem proving from a machine learning perspective. This Master’s
Thesis argues that this is important, and it was therefore prioritized. A proxy metric
was developed, which also does not directly apply to the Goal of the Thesis. However, it
allows easier testing of models, which is helpful in the challenging theorem proving domain.

In addition, a deep Q-learning agent was developed and trained using a replay
memory. This model further improved results 7.6%, showing that it is possible to use
deep reinforcement learning effectively on the Auto-ITP task. This is the first time deep
reinforcement learning has been applied to ITP theorem proving. It deals with the
problem of data scarcity, which is crucial. This is pointed out by Bansal et al. (2019b)
and in the context of theorem synthesis (Wang and Deng, 2020) (see Section 3.4.2). It
also lets the agent find a unique proof strategy, effectively dealing with potential noisy
human proof styles across different formalization projects (further discussed in Section
6.3.3).

94

6.3 Further Discussion

6.3 Further Discussion

Further discussion on findings from experiments and relevant topics now follows. Section
6.3.1 takes a closer look at GAST versus BERTac Cτ models, explaining some of the
reason why it does not help to replace the GAST Cτ model with a (higher validation
score) BERTac Cτ model (as shown from results in Section 5.3.2). A discussion of the
QTac training methodology is included in Section 6.3.2. Proof style – based on core
tactic use – is discussed in Section 6.3.3. The CoqGym dataset is further discussed in
Section 6.3.4, where the differences between results in CoqGym versus other Auto-ITP
frameworks are addressed. Subsection 6.3.5 drills down specifically on the synthetic proof
data in CoqGym, discussing why this dataset leads to better results for imitation models
than human-written proofs. Transformer models applied to formal logic is discussed
in Section 6.3.6 where some of the shortcomings of the BERTac models are brought
up. Finally, Section 6.3.7 notes some comparisons to Hammers and Section 6.3.8 briefly
discusses proof tree traversal.

6.3.1 Cτ Predictions

To better understand the predictions made by supervised learning models, confusion
matrices for the weakest and strongest supervised Cτ models are plotted. Figure 6.1a
shows the confusion matrix for the GAST Cτ model trained on human-written proofs.
Figure 6.1b shows the confusion matrix for the BERTac Cτ model trained on synthetic
proofs. These are built from the predictions made during validation. Only a subset of
core tactics is included for the sake of readability. See Section 2.2.5 for an explanation of
relevant tactics.

Both models are biased towards predicting apply and rewrite. This indicates
that the Cτ models are dependent on effective CGC models in order to function well, as
both apply and rewrite are dependent on arguments from the global context to work
with the theorem proving agent. This is especially true for the GAST model. Note
that the proof step datasets are unbalanced (explained in Section 4.2), meaning the
strong bias towards predicting only a few tactics is expected and still allows the models
to achieve a validation score greater than 30% (as shown in Table 5.8). The BERTac
model predicts a wider span of tactics. This could explain the reasons why end-to-end
theorem proving performance does not necessarily improve when changing from a pure
GAST-based agent to a combination where Cτ is a BERTac model (shown in Table 5.9).
Even though Cτ has a strong validation score, it is not going to help the agent if it
proposes tactics that are not effective in driving theorem proving process forward. For
instance, BERTac Cτ is able to predict the tactic split reasonably well, which is not the
case for the GAST Cτ model, as shown in the confusion matrices. This leads to a higher
validation score but is not necessarily helpful when proving theorems, as it simply splits
subgoal into two new subgoals. split is also not a common tactic in human proofs –
it is used only in 2.4% of human-written proofs. This is much less than more popular
tactics like apply and rewrite (used in 19.47% and 11.07% of human proofs, respectively).

95

Chapter 6 Evaluation and Discussion

c
o
n
s
t
r
u
c
t
o
r

o
m
e
g
a

i
n
t
r
o

i
n
t
r
o
s

s
i
m
p
l

u
n
f
o
l
d

r
i
g
h
t

a
p
p
l
y

r
e
w
r
i
t
e

s
p
l
i
t

e
x
i
s
t
s

constructor

omega

intro

intros

simpl

unfold

right

apply

rewrite

split

exists
0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix for the GAST Cτ model
trained on human-written proofs.

c
o
n
s
t
r
u
c
t
o
r

o
m
e
g
a

i
n
t
r
o

i
n
t
r
o
s

s
i
m
p
l

u
n
f
o
l
d

r
i
g
h
t

a
p
p
l
y

r
e
w
r
i
t
e

s
p
l
i
t

e
x
i
s
t
s

constructor

omega

intro

intros

simpl

unfold

right

apply

rewrite

split

exists
0.0

0.2

0.4

0.6

0.8

1.0

(b) Confusion matrix for the BERTac Cτ model
trained on synthetic proofs.

Figure 6.1: Confusion matrices for Cτ models. The true tactic is denoted along the
vertical axis and the predicted along the horizontal. Values are normalized to
a probability between zero and one. Only a subset of tactics are included,
meaning each row does not necessarily add up to one.

The importance of the CGC model, as explained above, is interesting. Predict-
ing global context arguments is essentially the same as the premise selection problem
(explained in the context of Hammers in Section 3.3.2). This problem has been pointed
out as a critical part of theorem proving in several contexts (Hoder and Voronkov, 2011;
Gauthier and Kaliszyk, 2015; Wang et al., 2017) (for example in Hammers (Gauthier
and Kaliszyk, 2015) and traditional ATP systems (Hoder and Voronkov, 2011)). This is,
as shown here, also a critical problem for the Auto-ITP agents.

6.3.2 QTac Training

One of the main advantages of deploying deep reinforcement learning for Auto-ITP is
that it deals with data scarcity. This has been pointed out as a key bottleneck in theorem
proving (Wang and Deng, 2020). The QTac model in this Thesis tackles this because it
learns from not just successful proofs, but also failed proofs. As explained in Section
5.1.3, it generates around 500k proof step experiences from 10k proof attempts (less than
25% of CoqGym’s training set). This is much more data than the 296k proof steps in
the combined CoqGym human-written and synthetic datasets. Of course, with many
failed proof attempts, there is likely to be lots of noise in the replay memory dataset.
To deal with this, several techniques can be applied. QTac uses a target network to
stabilize training (Mnih et al., 2015), only trains on a subset of the replay memory with
a guarantee that successful proofs will be part of the subset (as explained in Section 4.4.3).

96

6.3 Further Discussion

However, it is not clear from experiments exactly how QTac responds to differ-
ent training methods. For instance, applying more regularization to the model does not
yield any conclusive indications for how this affects training. Furthermore, exposing
the agent to fewer proofs more times (i.e., the “deep” mode, see Section 4.4.3) versus
more proofs one time (i.e., the “wide” mode, see Section 4.4.3) also does not conclusively
indicate which one is preferable as results are similar (see Table 5.11 for QTac results).
Time constraints meant that more QTac experiments had to be left out, leaving the
above questions for future study.

6.3.3 Proof Style

A way to get more insights into how agents prove theorems is by looking at the frequency
of how often they deploy different tactics. Figure 6.2 plots tactic frequency for successful
proofs, for the GAST and QTac agents and human-written Coq proofs. The random
guessing agent is also included for comparison. Only a subset of the most common
tactics are included, for the sake of readability. See Section 2.2.5 for an explanation of
important tactics. The following observations can be made.

The random guesser relies primarily on tactics that do not use arguments. In-
stead, it proves theorem by leveraging Coq’s internal automatic engines. For the random
guesser to successfully include arguments, it would have to guess both the core tactic
and the argument correctly, which is difficult.

Both the GAST and QTac agents make fair use of the internal automatic en-
gine auto. This is expected, as auto is a powerful tactic capable of proving non-trivial
subgoals automatically. Yang et al. (2016) report that auto can prove 2.9% of the whole
CoqGym test set by itself. Such engines are used less often in human proofs.

Both the GAST and QTac agent uses intro and intros actively. This is ex-
pected as intros is a popular tactic also among human proofs. In addition, the agents
rely on local hypotheses to supply local context arguments, not direct references to terms
contained in subgoals. This does not hinder the agent, as was mentioned in Section
2.2.2, as long as the local context is modified so that subgoal terms are part of the local
hypotheses. This is achieved by using intro and intros.

The QTac agent uses induction 137.42% more often than the GAST agent.
This is interesting because induction is a tactic dependent on arguments from the local
context to work (as shown in Table 2.1). The CLC model used by QTac has a significantly
higher validation than the CGC it uses (shown in Table 5.8). A weak CGC model leads
to tactics dependent on arguments from the global context (e.g., apply or rewrite) to
fail more often, likely making QTac tend towards the local context-dependent tactic
induction instead. In other words, QTac appears to adopt its proof style, in a way not
possible for imitation-based agents.

97

Chapter 6 Evaluation and Discussion

(%
)

0

20

40

60
ap

pl
y

as
su

m
pt

io
n

au
to

cb
n

cb
v

cle
ar

co
ng

ru
en

ce
co

ns
tru

ct
or

de
st

ru
ct

di
sc

rim
in

at
ea

sy
ea

ut
o

el
im

ex
ist

s
ge

ne
ra

liz
e

hn
f

in
du

ct
io

n
in

tro
in

tro
s

in
tu

itio
n

om
eg

a
re

d
re

fle
xiv

ity
re

ve
rt

re
wr

ite
sim

pl
sp

lit
su

bs
t

sy
m

m
et

ry
ta

ut
o

tri
via

l
un

fo
ld

QTac GAST Random Guesser Human

Figure 6.2: Frequency of core tactic use for different proof agents. The plot is stacked for
improved readability.

6.3.4 The CoqGym Dataset

Results in CoqGym may in part be explained by the way the CoqGym dataset is split
between train, validation, and test sets. It is important to realize that the theorems in
the different splits come from different Coq projects. Models, therefore, need to learn
how to prove theorems independent of Coq projects to be able to generalize well to the
test set. However, this can be difficult as many aspects of Coq projects differ. Yang and
Deng (2019) point out that the average number of theorems in the global context varies
significantly across different projects. For instance, in the CompCert the average number
is 13,340 and in InfSeqExt it is 661 (Yang and Deng, 2019). Table 5.12 also supports
this, as it shows how performance varies significantly across different Coq projects. For
example, the best-performing QTac agent can prove 50.78% of the coqrel project and
only 6.54% of the verdi-raft project.

Perhaps it would be more reasonable to make the Auto-ITP task easier by fo-
cusing exclusively on one project. The model would train on a subset of theorems
from that specific project before being tested on the same project. In this context, the
problem of data leakage has to be addressed. In the Hammer context, this is dealt with
by human-chronological corpus building (described in Section 3.3.1) (Blanchette et al.,
2016). The performance difference between models in CoqGym and other Auto-ITP
frameworks, like HOList, might also be explained this way. The datasets in HOList
are sorted in a human-chronological ordering (Bansal et al., 2019a), meaning that
generalization from training projects to test projects might be less of an issue in this

98

6.3 Further Discussion

framework. Results between different Auto-ITP are therefore hard to compare directly.

Tactics dependent on arguments from the global context are some of the most
popular tactics in human-written proofs. For example, apply, rewrite and unfold are
collectively used in 39.94% of the human proofs in the training set (see Table 4.1 for
an overview of tactic frequency in human proofs). The average number of theorems in
the global context across all projects is 10,350.3 (Yang and Deng, 2019), more than
one hundred times more than the ten theorems included in global context supplied to
ASTactic, TacTok, and the agents in this Thesis. This global context restriction is likely
to be a significant.

6.3.5 CoqGym’s Synthetic Data

As explained in Section 3.2.4, CoqGym ships with synthetic data extracted from human
proofs. Results from end-to-end theorem proving experiments in Section 5.3.2 show
that this dataset increases performance over human-written proofs. However, it is
not apparent exactly why this is. It is important to note, as also noted by Yang and
Deng (2019), that because the synthetic proof data relies on tactics extracted from
human proofs, it should not lead to a radically different theorem proving strategy than
human-written proofs. The data does not serve as a replacement for reinforcement
learning but instead provides more human-like labeled training data in CoqGym.

However, the unique characteristics of the synthetic proofs can provide insights
into how this data affects models. Synthetic proofs finish proofs by using the auto tactic.
This is interesting. It could be that this leads to less noise when training models because
the data is consistent about how to solve simple subgoals. Moreover, synthetic proofs
start by moving subgoals to the list of local hypotheses. This leads to a larger space of
potential local context arguments (Figure 5.1 explicitly shows this). Perhaps this is why
CLC models (as the only model) perform better when trained on human-written proofs
(shown in Table 5.8).

6.3.6 Tailoring Transformer Models to Formal Expressions

Formal expressions are not the same as natural human language. This clearly shows
when comparing pre-trained versions of BERTac to one without pre-trained weights (see
validation plots in Figure 5.5). The pre-trained versions perform worse across the board,
meaning that NLP-tailored pre-training seems not to transfer well to Coq expressions.
Pre-training tailored to formal expressions – similar to the he skip-tree task (Rabe et al.,
2020) and the GPT-f system (Polu and Sutskever, 2020) – is a way to address this.

When deploying the model as an argument classifier (in which multiple expres-
sions are handled), the model performs significantly lower than the GCN models.
This points to some potential weak points of the BERTac model. An off-the-shelf
separation token might not be well-suited for Auto-ITP. It could also be a problem

99

Chapter 6 Evaluation and Discussion

for BERTac that the concatenation of several Coq expressions results in sequences too
large for the BERT model. The preprocessing step where identifiers and expressions
are concatenated (explained in Section 4.4.2) could be modified too, by introducing a
designated BERT-style token for this purpose.

6.3.7 Comparison to Hammers

Hammers (described in Section 3.3) are a radically different way of automating ITP
systems. So far, CoqHammer (Czajka and Kaliszyk, 2018) significantly outperforms
Auto-ITP models in Coq. Yang and Deng (2019) report that CoqHammer is able to
prove 24.8% of CoqGym’s test set. This is 11.9 percentage points more than TacTok and
14.06 more than the best-performing QTac agent. In other words, highly optimized ATP
systems, using classical inference techniques (explained in Section 2.1), prove hard to
outperform in Coq theorem proving for now. However, results can not be compared
directly as CoqHammer deploys a premise selection step using machine learning models
trained in a human-chronological way, not using CoqGym’s training data. It could even
be that part of CoqHammer’s premise selection training data overlaps with CoqGym’s
test data.

Integration between Hammers and Auto-ITP models have significantly boosted
results in CoqGym, with ASTactic improving results by 17.8 percentage points when
CoqHammer calls are interleaved with tactic prediction (Yang and Deng, 2019). A
similar integration for agents in this Thesis is possible but was not the focus of the
Thesis. It would be interesting to test, as it allows further investigation into proof style.
In particular, it would reveal the overlap between what theorems CoqHammer and
Auto-ITP agents can prove. Perhaps, for example, QTac overlaps more with CoqHammer
than supervised agents and would therefore benefit less from integrated Hammer calls.

6.3.8 Proof Tree Traversal

An interesting topic not focused on in this Thesis is proof tree traversal. Agents deploy
Depth-First Search following Yang and Deng (2019), and First et al. (2020). In HOList,
Breath-First Search has been used (Bansal et al., 2019a) and TacticToe agents have been
equipped with more sophisticated heuristic-based strategies – one based on A∗ (Gauthier
et al., 2017) and one based on Monte Carlo tree search (Gauthier et al., 2020). This latter
modification resulted in significant improvements in TacticToe (explained in Section
3.2.1), indicating that proof tree traversal has an impact on performance. Furthermore,
Yang and Deng (2019) point out that ASTactic typically finds much shorter proofs than
typical human-written proofs. This, and the fact that a lower depth limit in experiment
2 (Section 5.3.2) improves accuracy, indicates that traversing far down a branch in the
proof tree is not desirable. Therefore, using a Breath-First Search, like in HOList, could
potentially improve results in CoqGym.

100

Chapter 7

Conclusion and Future Work
To conclude the Master’s Thesis, Section 7.1 summarizes contributions and Section 7.2
ends with some notes on possible avenues for future research.

7.1 Contributions

This Master’s Thesis designs a new proxy metric for the CoqGym framework and argues
why such metrics are helpful for the theorem proving domain. The proxy metric is based
on grouping related tactics together into tactic groups (see Section 4.2). The grouping
allows the tactic dataset to become more balanced and emphasizes proof strategy rather
than specific tactics. This metric can provide a step towards easier prototyping of
Auto-ITP models. Further improvements will be to also include tactic arguments in the
proxy metric.

A new theorem proving agent is designed for Interactive Theorem Proving (ITP)
(Section 4.3). This agent turns the ITP proof procedure into three separate multi-class
classification problems. Each classification problem focuses on one of three key
aspects of tactic applications – the core tactic, the local context, and the global
context. This provides a natural machine learning interpretation of the proof procedure,
making it suited for machine learning research. Building tactics based on the output
from each classifier is done in a separate module and can be tailored (e.g., building
tactics consisting of more than one argument) independently. This agent is not
unique to Coq, as most ITP systems implement an almost identical proof procedure
with core tactics and a local and global context. Furthermore, each classifier oper-
ates independently of the others meaning classifiers can be combined in any arbitrary way.

Experiments in this Thesis focus on two deep learning embedding techniques.
One is a Graph Neural Network (GNN) technique based on Graph Convolutional
Networks (GCN) (Kipf and Welling, 2017) and the end-to-end graph classification
architecture DGCNN (Zhang et al., 2018). This implementation uses GCN message
passing to obtain node embeddings of the Abstract Syntax Tree (AST) representations
of Coq expressions before pooling node embeddings to obtain a graph representation
(see Figure 4.5 for the model architecture). The other is the Transformer model BERT
(Devlin et al., 2018). This model obtains embeddings by leveraging self-attention

101

Chapter 7 Conclusion and Future Work

techniques directly on Coq expressions (see Figure 4.6 for the model architecture).
Furthermore, BERT is tested with and without pre-trained weights. Pre-trained weights
are obtained from Natural Language Processing (NLP) tasks, and results show that
this pre-training process does not transfer well to formal expressions (shown in Section
5.3.2). This is the first time GCNs and Transformers have been used for tactic-based
ITP theorem proving.

Several combinations of supervised GCN and BERT models are tested for end-
to-end theorem proving (results are presented in Section 5.3.2). The GCN models
outperform the BERT models. This can be attributed to GCN models working signifi-
cantly better as argument classifiers. Several proof tree depth limits and beam widths are
tested. Results are consistent with previous results (Yang and Deng, 2019; First et al.,
2020): lowering the depth limit to 10 and increasing the beam width to 20 improves results.

A deep reinforcement learning agent is developed for CoqGym (see Figure 4.7
for the agent architecture). This agent is based on deep Q-learning (Mnih et al., 2015)
and trains by interleaving replay memory training with imitation training. The agent
trains a core tactic classifier and relies on supervised models for argument prediction.
Analysis of the deep Q-learning agent’s proof style in Section 6.3 reveals that it relies
more on the induction tactic supervised learning agents. This is interesting as the
induction tactic is dependent on arguments from the local context to work, and the
local context classifier paired with the deep Q-learning agent is stronger than the global
context classifier. This indicates that the deep Q-learning agent adapts its proof style so
that it leverages its strongest argument model. Furthermore, it trains on around 400k
proof steps generated from less than 25% of CoqGym’s test set showing how a deep
reinforcement learning approach can tackle the problem of data scarcity, as discussed
in Section 6.3.2. Results presented in Section 5.3.3 show that this agent is capable of
proving 7.55% more theorems than corresponding supervised agents.

The best-performing agent in this Master’s Thesis scored 2.16 percentage points
lower than state-of-the-art (First et al., 2020). However, results are difficult to compare
directly as a new agent was deployed in this Thesis. As a more appropriate comparison,
a random guessing baseline agent was tested. All agents prove significantly more
theorems than corresponding random guessing agents: BERT-based agent 16.30%
more, GCN-based agent 37.28% more, and deep Q-learning agent 47.73% more. As an
interesting side note, best-performing BERT, GCN, and deep Q-learning agents prove
63.06%, 103.67%, and 119.18% more theorems than Coq’s best-performing internal
automatic engine easy (Yang and Deng, 2019), respectively.

7.2 Future Work

Several directions for future work are possible and will be summarized here. Some directly
build on work in this Thesis, some are inspired by work in this Thesis, while other are

102

7.2 Future Work

completely different avenues to explore.

Further Exploration of Deep Reinforcement Learning

A bottleneck for training machine learning models on formal proof data is the scarcity of
labeled data. This hinders supervised learning. A way to generate more training data
from theorems is by using reinforcement learning. This has been explored in this Thesis
and by others (Wu et al., 2020; Bansal et al., 2019b). An effective theorem proving model
will likely leverage a combination of supervised and reinforcement training and can be
an exciting path to explore further. Many directions are possible. A potential starting
point is to apply deep reinforcement learning, which has shown promising initial results
in this Thesis, to not just core tactic prediction but also argument prediction. Another
is to explore the balance between exploration and exploitation further. In this context,
the ideas of training the model in a “deep” vs. “wide” mode, as described in Section
4.4.3, could be better understood. Also, training models on more proofs can be tested
and will lead to a better understanding of how regularization affects the model. Another
way to gain more insights into the deep reinforcement learning process is to gather more
statistics during training. For instance, a sliding average over the last n proof attempts
could reveal more about the convergence rate of different models.

Focus on Premise Selection in the Auto-ITP Context

Analysis of theorem proving agents and work by others (Hoder and Voronkov, 2011;
Gauthier and Kaliszyk, 2015; Wang et al., 2017) point to premise selection as a critical
aspect of theorem proving. For Auto-ITP, this can be interpreted as global context
classification. This is also an essential aspect of Hammers (Gauthier and Kaliszyk, 2015)
and traditional ATP systems (Hoder and Voronkov, 2011), making it an essential topic
in its own right. A new way to study this problem is as a standalone problem in the
Auto-ITP context. For example, one can define the only available core tactic to be
anything similar to Coq’s apply tactic and focus on designing the best premise selection
model for this tactic. This can be deployed as a simple Auto-ITP agent focused solely on
premise selection.

Further Developing Proxy Metrics and Theorem Proving Agents

This Master’s Thesis argues that the development of theorem proving proxy metrics
can benefit Auto-ITP research. Such metrics need to account for both core tactics and
tactic arguments. Further developing standardized theorem proving agents can also be
a valuable topic for future research, as an even more unambiguous machine learning
interpretation of the theorem proving task is desirable.

Further developing the agent proposed in this Thesis is a possible starting point. One
concrete way to improve this agent is to implement the tactic application ranking scheme
used in Proverbot9001 (Sanchez-Stern et al., 2020). Sanchez-Stern et al. (2020) show

103

Chapter 7 Conclusion and Future Work

that it is beneficial to combine the ranking of core tactics and tactic arguments before
deciding on a tactic application. A similar idea can be pursued for this Thesis’ agent.
Given its modular design, this will be a reasonably straightforward customization to
make. Another concrete way to further develop the agent is to build tactics containing
multiple arguments from both the local and global context.

Improvements on BERT and Other Transformer Models Applied to
Auto-ITP

Several improvements on the BERT-based model are possible as this Thesis only deployed
an off-the-shelf solution. Some key topics here (as discussed in Section 6.3.6) are
tokenization, handling multiple expressions, dealing with expression identifiers, and pre-
training. Furthermore, other Transformer models can be explored too. Several related
works focus on Transformer-based models tailored to formal logic and mathematics (Rabe
et al., 2020; Lample and Charton, 2020; Polu and Sutskever, 2020) and can be built on
for future research along these lines.

Integration with Hammers

Integration between Hammers (Blanchette et al., 2016) and Auto-ITP models is yet
another interesting topic. Yang et al. (2016) show how calls to CoqHammer (Czajka
and Kaliszyk, 2018) significantly boost results. On the other hand, Hammer calls are
expensive, as pointed out by Gauthier et al. (2017) in the context of the TacticToe system.
Understanding how to best leverage both Hammers and Auto-ITP models is therefore
relevant. One option for future work in this direction is to develop an agent leveraging
meta-classifiers responsible for deciding when to call the Hammer versus the Auto-ITP
model. Hammers are also interesting because they can be used to compare the overlap of
theorems classic inference techniques (i.e., the ATP inference) and tactic-based machine
learning models (i.e., the Auto-ITP models) solve. It would be interesting to investigate
this overlap for both imitation-style Auto-ITP agents and deep reinforcement learning
agents to understand better the difference between proof styles in these two settings.

Unified Benchmarks and Frameworks

Auto-ITP research (and machine learning applied to formal mathematics at large) has
been studied in the context of several systems. Some have focused on HOL4 (Gauthier
et al., 2017, 2020), some on HOL Light (Bansal et al., 2019a; Paliwal et al., 2020; Bansal
et al., 2019b), and some on Coq (Yang and Deng, 2019; Huang et al., 2019; First et al.,
2020; Sanchez-Stern et al., 2020). Similar work has also been based on the MetaMath
system (Wang et al., 2017; Polu and Sutskever, 2020). Even in parallel to the writing
of this Master’s Thesis, two new Auto-ITP frameworks have been proposed: LeanStep
(Han et al., 2021) and IsarStep (Li et al., 2021)1. While this is encouraging, it also makes
it harder to compare models and performance. A unified system and benchmark could

1This work is not mentioned in Chapter 3, as it was published in parallel to writing the Master’s Thesis.

104

7.2 Future Work

therefore be useful. Very recently, such work has started to take place, with OpenAI
working on a common benchmark across different formal systems2. This is promising
for the field and an exciting avenue for further research. As discussed in Section 6.3.4,
important considerations for such a benchmark is human-chronological versus more
traditional train-validation-test splits, as mentioned in Section 6.3.4.

Combining Autoformalization and Formal Reasoning

Another fascinating topic is described by Szegedy (2020). Szegedy (2020) proposes
autoformalization as a natural extension of machine learning-based formal reasoning.
Most information is not stated formally but rather informally. An autoformalization
system would be able to map informal information to formal expressions. Furthermore,
one can imagine an end-to-end system, where an autoformalization module takes in
informal text, maps it to logical expressions, and an Auto-ITP-like system can reason
over the formal expressions effectively. The output of the formal reasoning procedure
could then be mapped back to informal human-readable information. As argued by
Szegedy (2020), such an end-to-end system would combine strong NLP models with
formal reasoning capabilities.

2https://github.com/openai/miniF2F

105

Bibliography
Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban.

Premise Selection for Mathematics by Corpus Analysis and Kernel Methods. Journal
of Automated Reasoning, 52(2):191–213, 2014.

Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman
Matuszewski, Adam Naumowicz, and Karol Pąk. The Role of the Mizar Mathematical
Library for Interactive Proof Development in Mizar. Journal of Automated Reasoning,
61:9–32, 2018.

Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stewart Wilcox.
HOList: An Environment for Machine Learning of Higher-Order Theorem Proving. In
International Conference on Machine Learning, pages 454–463, 2019a.

Kshitij Bansal, Sarah M Loos, Markus N Rabe, and Christian Szegedy. Learning to
Reason in Large Theories without Imitation. arXiv preprint arXiv:1905.10501, 2019b.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe
Filliâtre, Eduardo Giménez, Hugo Herbelin, Gérard Huet, César Muñoz, Chetan
Murthy, Catherine Parent, Christine Paulin-Mohring, Amokrane Saïbi, and Benjamin
Werner. The Coq Proof Assistant Reference Manual : Version 6.1. Technical report,
INRIA, 1997.

Wolfgang Bibel. Early History and Perspectives of Automated Deduction. In Annual
Conference on Artificial Intelligence, pages 2–18. Springer, 2007.

Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C Paulson, and Josef Urban.
Hammering towards QED. Journal of Formalized Reasoning, 9(1):101–148, 2016.

Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement Day. In International
Joint Conference on Automated Reasoning, pages 107–121. Springer, 2010.

Robert Boyer. The QED Manifesto. Automated Deduction - CADE, 12:238–251, 1994.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans Kaashoek, and
Nickolai Zeldovich. Using Crash Hoare Logic for Certifying the FSCQ File System.
In Proceedings of the 25th Symposium on Operating Systems Principles, pages 18–37,
2015.

Adam James Chlipala. Certified Programming with Dependent Types: A Pragmatic
Introduction to the Coq Proof Assistant. MIT Press, 2013.

107

Bibliography

Alonzo Church. A note on the Entscheidungsproblem. The Journal of Symbolic Logic, 1
(1):40–41, 1936.

Sylvain Conchon and Jean-Christophe Filliâtre. A Persistent Union-Find Data Structure.
In Proceedings of the 2007 workshop on Workshop on ML, pages 37–46, 2007.

Łukasz Czajka and Cezary Kaliszyk. Hammer for Coq: Automation for Dependent Type
Theory. Journal of Automated Reasoning, 61(1-4):423–453, 2018.

Martin Davis, George Logemann, and Donald Loveland. A Machine Program for Theorem-
Proving. Communications of the ACM, 5(7):394–397, 1962.

David Delahaye. A Tactic Language for the System Coq. In International Conference on
Logic for Programming Artificial Intelligence and Reasoning, pages 85–95. Springer,
2000.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In Conference on Computer Vision and
Pattern Recognition, pages 248–255. IEEE, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of Deep Bidirectional Transformers for Language Understanding. arXiv preprint
arXiv:1810.04805, 2018.

William Ewald. The Emergence of First-Order Logic. In The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, spring 2019 edition, 2019.

Matthias Fey and Jan E. Lenssen. Fast Graph Representation Learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

Emily First, Yuriy Brun, and Arjun Guha. TacTok: Semantics-Aware Proof Synthesis.
Proceedings of the ACM on Programming Languages, 4:1–31, 2020.

Emilio Jesús Gallego Arias. SerAPI: Machine-Friendly, Data-Centric Serialization for
Coq. Technical report, MINES ParisTech, 2016.

Thibault Gauthier and Cezary Kaliszyk. Premise Selection and External Provers for
HOL4. In Conference on Certified Programs and Proofs, pages 49–57, 2015.

Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. TacticToe: Learning to Reason
with HOL4 Tactics. In 21st International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, volume 46 of EPiC Series in Computing, pages
125–143. EasyChair, 2017.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish.
TacticToe: Learning to Prove with Tactics. Journal of Automated Reasoning, pages
1–30, 2020.

108

Bibliography

Herman Geuvers. Proof assistants: History, ideas and future. Sadhana, 34(1):3–25, 2009.

Georges Gonthier. Formal Proof–The Four-Color Theorem. Notices of the American
Mathematical Society, 55(11):1382–1393, 2008.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François
Garillot, Stéphane Roux, Assia Mahboubi, Russell O’Connor, Sidi Biha, Ioana Pasca,
Laurence Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A Machine-
Checked Proof of the Odd Order Theorem. In International Conference on Interactive
Theorem Proving, pages 163–179. Springer, 2013.

Mike Gordon. From LCF to HOL: A Short History. In Proof, language, and interaction,
pages 169–186, 2000.

Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz. Mizar in a Nutshell.
Journal of Formalized Reasoning, 3(2):153–245, 2010.

Thomas Hales, Mark Adams, Gertrud Bauer, Dat Dang, John Harrison, Truong Hoang,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Nguyen, Truong Nguyen,
Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, An Ta, Trân
Trung, Diep Trieu, and Roland Zumkeller. A formal proof of the Kepler conjecture. In
Forum of mathematics, Pi, volume 5. Cambridge University Press, 2017.

Thomas C Hales. Introduction to the Flyspeck Project. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2006.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu. Proof
Artifact Co-training for Theorem Proving with Language Models. arXiv preprint
arXiv:2102.06203, 2021.

John Harrison. HOL Light: A tutorial introduction. In International Conference on
Formal Methods in Computer-Aided Design, pages 265–269. Springer, 1996.

John Harrison. Floating Point Verification in HOL Light: The Exponential Function.
Formal Methods in System Design, 16(3):271–305, 2000.

John Harrison. HOL Light: An overview. In International Conference on Theorem
Proving in Higher Order Logics, pages 60–66. Springer, 2009.

John Harrison, Josef Urban, and Freek Wiedijk. History of Interactive Theorem Proving.
In Computational Logic, volume 9, pages 135–214, 2014.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural computation,
9(8):1735–1780, 1997.

Kryštof Hoder and Andrei Voronkov. Sine Qua Non for Large Theory Reasoning. In
International Conference on Automated Deduction, pages 299–314. Springer, 2011.

109

Bibliography

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. GamePad: A Learn-
ing Environment for Theorem Proving. In International Conference on Learning
Representations, 2019.

Joe Hurd. First-Order Proof Tactics in Higher-Order Logic Theorem Provers. Design
and Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-
212448 in NASA Technical Reports, pages 56–68, 2003.

Cezary Kaliszyk and Josef Urban. Stronger Automation for Flyspeck by Feature Weighting
and Strategy Evolution. In Third International Workshop on Proof Exchange for
Theorem Proving, volume 14 of EPiC Series in Computing, pages 87–95. EasyChair,
2013.

Cezary Kaliszyk and Josef Urban. Learning-Assisted Automated Reasoning with Flyspeck.
Journal of Automated Reasoning, 53(2):173–213, 2014.

Cezary Kaliszyk and Josef Urban. FEMaLeCoP: Fairly Efficient Machine Learning
Connection Prover. In Logic for Programming, Artificial Intelligence, and Reasoning,
pages 88–96. Springer, 2015a.

Cezary Kaliszyk and Josef Urban. HOL(y)Hammer: Online ATP service for HOL Light.
Mathematics in Computer Science, 9(1):5–22, 2015b.

Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. Journal of Automated
Reasoning, 55(3):245–256, 2015c.

Cezary Kaliszyk, François Chollet, and Christian Szegedy. HolStep: A Machine Learning
Dataset for Higher-order Logic Theorem Proving. International Conference on Learning
Representations, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations, 2017.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolu-
tional Networks. International Conference on Learning Representations, 2017.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. Comprehensive Formal Verification of an OS Microkernel.
ACM Transactions on Computer Systems, 32(1):1–70, 2014.

Donald E. Knuth and Peter B. Bendix. Simple Word Problems in Universal Algebras. In
Computational Problems in Abstract Algebra, pages 263 – 297. Pergamon, 1970.

Laura Kovács and Andrei Voronkov. First-Order Theorem proving And Vampire. In
International Conference on Computer Aided Verification, pages 1–35. Springer, 2013.

Anders Krogh and John A Hertz. A Simple Weight Decay Can Improve Generalization.
In Advances in neural information processing systems, pages 950–957, 1992.

110

Bibliography

Daniel Kühlwein, Twan van Laarhoven, Evgeni Tsivtsivadze, Josef Urban, and Tom
Heskes. Overview and Evaluation of Premise Selection Techniques for Large Theory
Mathematics. In International Joint Conference on Automated Reasoning, pages
378–392. Springer, 2012.

Guillaume Lample and François Charton. Deep Learning for Symbolic Mathematics.
International Conference on Learning Representations, 2020.

Dennis Lee, Christian Szegedy, Markus Rabe, Sarah Loos, and Kshitij Bansal. Mathemati-
cal Reasoning in Latent Space. In International Conference on Learning Representations,
2020.

Xavier Leroy. Formal Verification of a Realistic Compiler. Communications of the ACM,
52(7):107–115, 2009.

Xavier Leroy. The CompCert C verified compiler: Documentation and user’s manual.
PhD thesis, Inria, 2016.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C Paulson. IsarStep: a Benchmark
for High-level Mathematical Reasoning. In International Conference on Learning
Representations, 2021.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network
guided proof search. arXiv preprint arXiv:1701.06972, 2017.

William McCune. Solution of the Robbins Problem. Journal of Automated Reasoning,
19(3):263–276, 1997.

Norman Megill and David AWheeler. Metamath: A Computer Language for Mathematical
Proofs. Lulu.com, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness, Marc
Bellemare, Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

M Saqib Nawaz, Moin Malik, Yi Li, Meng Sun, and M Lali. A Survey on Theorem
Provers in Formal Methods. arXiv preprint arXiv:1912.03028, 2019.

M Saqib Nawaz, M Zohaib Nawaz, Osman Hasan, Philippe Fournier-Viger, and Meng
Sun. Proof searching and prediction in HOL4 with evolutionary/heuristic and deep
learning techniques. Applied Intelligence, pages 1–22, 2020.

Michael A Nielsen. Neural Networks and Deep Learning, volume 25. Determination press
San Francisco, CA, 2015.

111

Bibliography

Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Activa-
tion Functions: Comparison of Trends in Practice and Research for Deep Learning.
International Conference on Computational Sciences and Technology, 2021.

Aditya Paliwal, Sarah M Loos, Markus N Rabe, Kshitij Bansal, and Christian Szegedy.
Graph Representations for Higher-Order Logic and Theorem Proving. In Association
for the Advancement of Artificial Intelligence, pages 2967–2974, 2020.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech:
An ASR corpus based on public domain audio books. In International Conference on
Acoustics, Speech and Signal Processing, pages 5206–5210. IEEE, 2015.

Peter J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical
Statistics, 35(1):73 – 101, 1964.

Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem
Proving. arXiv preprint arXiv:2009.03393, 2020.

Markus N Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical
Reasoning via Self-supervised Skip-tree Training. arXiv preprint arXiv:2006.04757,
2020.

Samik Raychaudhuri. Introduction to Monte Carlo simulation. In 2008 Winter simulation
conference, pages 91–100. IEEE, 2008.

Alan JA Robinson and Andrei Voronkov. Handbook of Automated Reasoning, volume 1.
Elsevier, 2001.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Michael Rusinowitch. Theorem-proving with Resolution and Superposition. Journal of
Symbolic Computation, 11:21–49, 1991.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Press, 3rd edition, 2010.

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. Generating
Correctness Proofs with Neural Networks. In Proceedings of the 4th ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages, pages
1–10, 2020.

Stephan Schulz. E - A Brainiac Theorem Prover. AI Communications, 15, 09 2002.

Burr Settles. Active Learning Literature Survey. 2009. URL http://active-learning.
net/.

112

http://active-learning.net/
http://active-learning.net/

Bibliography

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timo-
thy Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419):
1140–1144, 2018.

Magnus Själander, Magnus Jahre, Gunnar Tufte, and Nico Reissmann. EPIC: An Energy-
Efficient, High-Performance GPGPU Computing Research Infrastructure, 2019.

Konrad Slind and Michael Norrish. A Brief Overview of HOL4. In International
Conference on Theorem Proving in Higher Order Logics, pages 28–32. Springer, 2008.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t Decay
the Learning Rate, Increase the Batch Size. International Conference on Learning
Representations, 2018.

Raymond Smullyan. First-Order Logic. Springer, 1968.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Christian Szegedy. A Promising Path Towards Autoformalization and General Artificial
Intelligence. In International Conference on Intelligent Computer Mathematics, pages
3–20. Springer, 2020.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved Semantic
Representations From Tree-Structured Long Short-TermMemory Networks. Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing, 2015.

Alan Mathison Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(1):230–265, 1936.

Josef Urban and Jiří Vyskočil. Theorem Proving in Large Formal Mathematics as an
Emerging AI Field. In Automated Reasoning and Mathematics, pages 240–257. Springer,
2013.

Josef Urban, Jiří Vyskočil, and Petr Štěpánek. MaLeCoP Machine Learning Connection
Prover. In International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods, pages 263–277. Springer, 2011.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A
Generative Model for Raw Audio. In 9th ISCA Speech Synthesis Workshop, pages
125–125, 2016.

113

Bibliography

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances
in Neural Information Processing Systems, volume 30, 2017.

Jouko Väänänen. Second-order and Higher-order Logic. In The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, fall edition, 2020.

Mingzhe Wang and Jia Deng. Learning to Prove Theorems by Learning to Generate
Theorems. In Advances in Neural Information Processing Systems, volume 33, 2020.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise Selection for Theorem
Proving by Deep Graph Embedding. In Advances in Neural Information Processing
Systems, pages 2786–2796, 2017.

Boris Weisfeiler and A. A. Lehmann. A reduction of a graph to a canonical form and
an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, pages
12–16, 1968.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying Graph Convolutional Networks. In International conference on machine
learning, pages 6861–6871, 2019.

Minchao Wu, Michael Norrish, Christian Walder, and Amir Dezfouli. Reinforcement
Learning for Interactive Theorem Proving in HOL4. 5th Conference on Artificial
Intelligence and Theorem Proving, 2020.

Kaiyu Yang and Jia Deng. Learning to Prove Theorems via Interacting with Proof
Assistants. In International Conference on Machine Learning, pages 6984–6994, 2019.

Li-An Yang, Jui-Pin Liu, Chao-Hong Chen, and Ying-ping Chen. Automatically Proving
Mathematical Theorems with Evolutionary Algorithms and Proof Assistants. In
Congress on Evolutionary Computation, pages 4421–4428. IEEE, 2016.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An End-to-End Deep
Learning Architecture for Graph Classification. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

114

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
agnus M

idtbø Kristiansen
Proving Theorem

s U
sing D

eep Learning

Magnus Midtbø Kristiansen

Proving Theorems Using Deep
Learning

Graph Convolutional Networks, Transformers,
and Deep Reinforcement Learning for Automatic
Formal Reasoning

Master’s thesis in Computer Science
Supervisor: Björn Gambäck

June 2021

M
as

te
r’s

 th
es

is

	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory
	Traditional Automated Theorem Proving
	Resolution
	Analytic Tableaux
	Superposition Calculus

	Interactive Theorem Proving
	Tactic-based Interaction
	Tactic Arguments and Proof Context
	Internal Automatic Engines
	The Logic of Computable Functions Principle
	Coq

	Machine Learning
	Features
	Classification Problems
	Mini-Batch Training
	Loss Function
	Evaluation
	Neural Networks
	Optimizers
	Regularization
	Activation Functions
	Convolutional Neural Networks
	Graph Neural Networks
	Transformers
	Deep Q-Learning
	Other Techniques

	Related Work
	Literature Review
	Auto-ITP
	TacticToe
	HOList
	GamePad
	CoqGym

	Hammers
	The 3-step Process
	Premise Selection
	HOL(y)Hammer and CoqHammer

	Other Applications of Machine Learning in Formal Reasoning and Mathematics
	Transformer Models Applied to Mathematics
	Synthesizing Theorems
	Tactic Application in Latent Space
	Evolutionary Algorithms
	Internal Guidance
	Autoformalization

	Motivation, Agent Design and Architectures
	Motivation
	Choosing an Auto-ITP Framework
	Usefulness of Proxy Metrics
	Machine Learning Interpretation of ITP Systems
	Choosing Machine Learning Techniques

	Proxy Metric: Tactic Groups
	Agent Design
	Designing Architectures
	GAST – Graph Convolutional Network-based Architecture
	BERTac – BERT-based Architecture
	QTac – Deep Q-learning Architecture

	Experiments and Results
	Experimental Plan
	Experiment 1 – Tactic Groups
	Experiment 2 – Supervised Learning
	Experiment 3 – Reinforcement Learning

	Experimental Setup
	Deep Learning Frameworks
	CoqGym Setup
	Computing Resources

	Experimental Results
	Results from Experiment 1
	Results from Experiment 2
	Results from Experiment 3

	Evaluation and Discussion
	Evaluation and Discussion of Research Questions
	Evaluation of Goal
	Further Discussion
	C Predictions
	QTac Training
	Proof Style
	The CoqGym Dataset
	CoqGym's Synthetic Data
	Tailoring Transformer Models to Formal Expressions
	Comparison to Hammers
	Proof Tree Traversal

	Conclusion and Future Work
	Contributions
	Future Work

	Bibliography

