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Abstract

A parameter dependent version of the Stokes Partial Differential Equation (PDE) is considered, with the goal
of modelling flow in arbitrary pipe systems. The pipe systems are created from sub-domains called components
or archetypes. The Stokes equation is solved locally on each archetype using a Mixed Finite Element Method
(FEM) with quadrilateral Taylor-Hood elements, and the Galerkin Reduced Basis (RB) method is used with
the Proper Orthogonal Decomposition (POD) algorithm to create a Reduced Order Model (ROM) for each
archetype. The ROM approach reduces the complexity of the linear system governing each archetype from
∼ 104 degrees of freedom (dofs) to ∼ 50 dofs, thus the linear system can be solved for any new choice of
parameters in real-time, with minimal loss of accuracy (∼ 10−3 measured in both the L2 norm and the H1

semi-norm). When connecting two archetypes, a least-squares fit is performed on the solution at the outlet
boundary nodes of the first archetype, and used as a lifting function for the following archetype inlet boundary.
The pressure of the preceding archetype is shifted to match the pressure at the inlet of the following archetype.

The approach is found to be very effective when considering complex pipe systems, with the relative change
in volume flow from the first inlet to the final outlet staying below 10−3, even with systems consisting of up to
30 components. The full system is usually solved in ∼ 1 second, where an equivalent Full Order Model (FOM)
would have more than 105 dofs. Especially constructing new complex systems is shown to be very efficient, as
it only requires one to specify what components to use and the parameter values for those components.

One limitation of this approach is also discovered. When dealing with bifurcating pipes, there is no way to
retroactively change the pressure gradient of the previous archetype, resulting in incorrect flow rates following
the bifurcations. Thus this approach is limited to single-outlet systems. Click this link to access the code.

Sammendrag

En parameteravhengig versjon av Stokes Partielle Differensialligning (PDE) undersøkes, med et m̊al om å mod-
ellere flyt i et villk̊arlig rørsystem. Rørsystemet bygges opp av subdomener kalt komponenter eller erketyper.
Stokes ligning løses lokalt p̊a hver erketype ved bruk av en Blandet Endelige Elementers Metode (FEM) med
firkantede Taylor-Hood elementer, og Galerkins Reduserte Basis (RB) metode benyttes sammen med en algo-
ritme for Ekte Ortogonal Dekomposisjon (POD) for å lage en Redusert Ordens Modell (ROM) for hver erketype.
Bruken av ROM reduserer kompleksiteten til det lineære ligningssystemet som gjelder for hver erketype fra ∼ 104

frihetsgrader (dofs) til ∼ 50 dofs, hvilket gjør at det lineære ligningssystemet kan løses for alle nye valg av pa-
rametere i sanntid, med minimalt tap av nøyaktighet ( ∼ 10−3 m̊alt i b̊ade L2 norm og H1 semi-norm). N̊ar to
erketyper sammenkobles, gjøres en minste-kvadrats tilpasning p̊a løsningen i rand-nodene ved utløpet til den
første erketypen, som igjen benyttes som løfte-funksjon for den etterfølgende erketypens innløpsrand. Trykket
i den første erketypen løftes slik at det sammenfaller med trykket ved innløpet til den etterfølgende erketypen.

Denne fremgangsm̊aten viser seg å være veldig effektiv n̊ar komplekse rørsystem undersøkes, med en relativ
endring i volumstrøm fra første innløp til siste utløp p̊a under 10−3, selv i systemer konstruert fra opp til 30
komponenter. Det fulle systemet lar seg typisk løse p̊a ∼ 1 sekund, hvor en ekvivalent Full Ordens Modell (FOM)
ville hatt over 105 dofs. Særlig det å konstruere nye komplekse systemer viser seg å være veldig effektivt, da det
kun krever at en spesifiserer hvilke komponenter som skal brukes og parameterverdiene for disse komponentene.

En begrensning med denne fremgangsm̊aten blir ogs̊a oppdaget. N̊ar en benytter forgrenende rør, s̊a er
det ingen mulighet for å retroaktivt endre trykkgradienten til den foreg̊aende erketypen, noe som resulterer
i uriktige flyt-rater etter forgreningen. Dermed er fremgangsm̊aten begrenset til rørsystemer med ett utløp.
Trykk på denne lenken for å f̊a tilgang til all kode.
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1 Introduction

The use of computer simulations in the early stages of engineering projects is by 2021 the standard in almost
any project. It saves plenty of resources to first construct a digital model before developing any prototypes.
However, especially in large-scale projects, constructing these digital models can be very time-consuming [1].
First it is necessary to create a discrete representation of the desired system, which also captures its essential
properties. This requires one to create gigantic meshes, which is then used to approximate the behaviour of the
system according to either one or several governing partial differential equations (PDEs) [2]. To obtain accurate
approximations, one needs to solve a large system of equations, typically with millions of degrees of freedom
(dofs). In addition, these problems typically depend on several different parameters, such as heat conductivity,
pressure, the geometrical structures of the system, and so forth. Naively one would have to re-solve the problem
every time a parameter is changed, or even reconstruct the entire mesh if the parameter affects the geometry
of the system.

This is where the concept of Reduced Order Modelling (ROM) comes into play. The idea is to reduce the
complexity of the Full Order Model (FOM) such that for any new parameter value, the problem can be solved
much more efficiently with a only a slight decrease in accuracy. Essentially the system of equations is rewritten
in such a way that it only depends affinely on the parameters, as well as reducing the complexity of the system
with techniques such as Proper Orthogonal Decomposition (POD). This ensures minimal loss of accuracy, and
enables the user to solve the reduced system in real-time for any new choice of parameters.

Since ROM enables the user to solve complex parameter-dependent PDEs in real-time, the method is utilized
in a variety of problems, such as PDE-constrained optimization, optimal control problems, and inverse prob-
lems [3]. Such problems arise in (but not limited to) fluid mechanics [2], neuroscience [4], renewable energy [5],
neural networks [6] [7], chemical engineering [8], and digital twins [9]. In this thesis we will focus on the use of
ROM in the field of digital twins.

A digital twin is in many ways similar to the digital models used in prototype development. But unlike a
digital prototype, the purpose of a digital twin is to monitor and control the behaviour of the asset or system
it represents in real-time. There are mainly two types of digital twins: physics-based and data-driven [10].
However the two can also be combined in many different ways, commonly referred to as a hybrid twin [11]. In
a data-driven twin, different sensors capture changes in the real world system, and the digital twin is updated
accordingly. If the digital twin is physics-based, it is governed by one or several parameter-dependent PDEs,
and the digital twin can be controlled by changing these parameters. In this thesis we will focus on a purely
physics-based twin.

One of the main advantages of a digital twin compared to similar monitoring systems is its adaptability.
Consider a situation where multiple similar assets needs monitoring. Even if the assets initially are almost
identical from a manufacturing point of view, the wear and tear of time will require all sorts of repairs and
component changes. A single static monitoring system will fail to capture the unique changes in the properties
of each asset, resulting in sub-optimal control of the assets. However with a digital twin system, the unique
changes in each asset could be accounted for, ensuring optimal control of each asset.

There are however some challenges that comes with the use of a digital twin [12]. Maintaining the digital
twin of just one asset can be comprehensive, where for example extensive structural damage or changes in
the asset could require one to rebuild the entire mesh. This may prove to be too time-consuming in larger
systems with hundreds of physical assets [13]. To simplify the management of all the unique digital twins, a
component-based approach can be used. Instead of representing each asset as one unique complete model, each
model is constructed from a library of components called archetype components. Each archetype component
can be altered by adjusting several local parameters, to change its geometrical shape and inherent properties.

8



For each archetype, a ROM is created, and thus the governing PDEs can be solved locally on each archetype in
real-time given any choice of parameters. Thus, if a part of the real asset gets damaged or replaced, one would
simply update or replace the corresponding archetype component on the digital twin. Essentially each digital
twin is constructed as a combination of flexible LEGO-blocks.

In this paper we will investigate the use of component-based ROM to construct arbitrary systems of pipelines,
where the pipe-flow is governed by the Stokes-equation [14] [15] [16] [17]. To construct the ROMs, the Galerkin
Reduced Basis (RB) method will be used. This involves computing a number of high-fidelity approximations
for a small set of possible parameter values using the FOM, called snapshots. These snapshots are then used
to create a much less complex model, the ROM, while still maintaining high accuracy.

Following the introduction, the second section provides a brief introduction to the most essential underlying
mathematical concepts. Using the Poisson equation as an example, we introduce the weak formulation, the
Lax-Milgram Theorem for uniqueness and stability, and the Finite Element Method (FEM). We then show how
to create a ROM using the Galerkin RB method and the Proper Orthogonal Decomposition (POD) algorithm.

In the third section we introduce the problem at hand. We show how the Stokes equation relates to the
Navier-Stokes equation, and obtain the weak formulation of our specific problem. We then introduce the Taylor-
Hood element, a special class of elements well suited for mixed FEM problems. After defining the basis functions
and presenting the Gaussian quadrature used for numerical integration, we utilise theory and concepts from
Section 2 to discretize the equation. The uniqueness and stability of the resulting linear system is discussed, and
the Ladyzhenskaia-Babuška-Brezzi (LBB) inf-sup condition is introduced. Finally we reduce the linear system
and obtain the ROM.

All the archetypes are presented in the fourth Section, along with their parameters, lifting functions, affine
functions and bilinear forms. Our approach for connecting the archetypes are discussed in Section 5, before we
present the results and some noteworthy observations in Section 6.

2 Underlying mathematical concepts

The construction of a digital twin relies on several mathematical concepts. The physics of the model are based
on solving discretized PDEs; we assume that the reader has a conceptual understanding of said PDEs. In
the first subsection we introduce some important definitions from functional analysis, which are used frequently
throughout this paper. In the second subsection we introduce the most common approach for discretizing PDE’s,
the Finite Element Method (FEM). The method is explained by using the rather trivial Poisson equation as
an example. In the final subsection we introduce the Galerkin Reduced Basis (RB) method and show how to
construct the ROM from the FOM using Proper Orthogonal Decomposition (POD).

2.1 Function spaces

In this section we will introduce some useful concepts from functional analysis. This is necessary to understand
the techniques used in the FEM.

For convenience sake, we will only consider the real numbers. Let Ω be our domain of interest, Ω ⊂ Rn. A
function u : Ω 7→ R is defined to be integrable if its integral converges absolutely, i.e.∫

Ω

|u| dΩ <∞. (2.1)

9



For p ≥ 1, define the space of p-integrable functions as

Lp(Ω) :=
{
u : Ω 7→ R;

∫
Ω

|u|p dΩ <∞
}
, (2.2)

i.e. the space of all functions that maps from Ω to R given that the integral of its p-th power converges
absolutely [18]. It can be proven that Lp is a complete space for each p ∈ [1,∞] [19]. In the special case where
p = 2, L2(Ω) is associated with an inner-product and the induced norm

〈u, v〉L2 =

∫
Ω

uv dΩ, ||u||L2 = 〈u, u〉1/2L2 =
(∫

Ω

u2 dΩ
)1/2

. (2.3)

L2(Ω) is thus a complete inner product space, also known as a Hilbert space. It can be shown that it is also
the only Hilbert space among all the Lp-spaces [20]. From this we can define the Sobolev space W k,p(Ω), with
p = 2:

W k,2(Ω) :=
{
u ∈ L2(Ω);Dαu ∈ L2(Ω),∀|α| ≤ k

}
, Dαu =

∂|α|u

∂xα1
1 . . . ∂xαn

n
, |α| =

n∑
i=1

αi, (2.4)

i.e. one requires that all partial derivatives of u up to order k is p-integrable. For p = 2, the notation W k,2 = Hk

will be used. In the problem considered later in this thesis, only first-order derivatives are needed, that is k = 1:

W 1,2(Ω) = H1(Ω) :=
{
u ∈ L2(Ω);∇u ∈ L2(Ω)

}
. (2.5)

This is indeed also a Hilbert space, with the inner-product and norm

〈u, v〉H1 =

∫
Ω

uv+∇u∇v dΩ, ||u||H1 = 〈u, u〉1/2H1 =
(∫

Ω

u2 dΩ+

∫
Ω

|∇u|2 dΩ
)1/2

=
(
||u||2L2 +|u|2H1

)1/2
, (2.6)

where |u|H1 is known as the H1 semi-norm. Finally, let ΓD be the part of the boundary of Ω with Dirichlet
boundary conditions, i.e. u|ΓD

= g, where g is some function or constant describing the Dirichlet boundary
condition. Define H1

ΓD
(Ω) as

H1
ΓD

(Ω) :=
{
u ∈ H1(Ω);u|ΓD

= g
}
, (2.7)

that is the space of functions in H1 with known values on the Dirichlet part of the boundary. H1(Ω) and L2(Ω)
are the spaces of interest throughout the rest of this thesis.

2.2 Finite Elements, the Galerkin projection

In this section we will give a summary on the basics of the FEM; see [21] and [22] for a much more thorough
introduction.

2.2.1 Weak formulation

Let u ∈ V = H1
ΓD

, with H1
ΓD

as defined in the previous section. Consider a rather simple example, the Poisson
equation with homogeneous Dirichlet boundary conditions (that is g = 0, u|ΓD

= 0):{
−∆u = f in Ω,

u = 0 on ΓD.
(2.8)
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First one must obtain the variational formulation of the equation. This is done by multiplying the equation
with a test function v ∈ V, and integrating over the domain [23].

−
∫

Ω

∆uv dΩ =

∫
Ω

fv dΩ. (2.9)

The resulting equation can then be simplified by applying Greens first identity:

−
∫

Ω

∆uv dΩ =

∫
Ω

∇u∇v dΩ−
∫

ΓD

(∇u · n)v dΓD =

∫
Ω

fv dΩ. (2.10)

For v ∈ V, v = 0 on ΓD, and the boundary integral disappears. Thus one is left with∫
Ω

∇u∇v dΩ =

∫
Ω

fv dΩ. (2.11)

The resulting equation is known as the weak formulation of the PDE:

Find u ∈ V, such that a(u, v) = f(v) ∀v ∈ V, where

a(u, v) =

∫
Ω

∇u∇v dΩ =

∫
Ω

fv dΩ = f(v).
(2.12)

2.2.2 Uniqueness and stability

Before we look for the solution of the weak form obtained above, we want to know if the solution (if it exists)
is unique, and if the solution depends continuously on the data (f(v)). For strongly coercive problems such as
the Poisson equation, the Lax-Milgram theorem is sufficient to prove both of these properties:

Theorem 2.1 (Lax-Milgram Theorem). Let V be a Hilbert space and a(·, ·) a bilinear form on V, which is

• Boundedness: |a(u, v)| ≤ C‖u‖V‖v‖V , ∀u, v ∈ V.

• Coercivity: a(u, u) ≥ c‖u‖2V , ∀u ∈ V.

Then, for any f ∈ V ′, there is a unique solution u ∈ V to the equation

a(u, v) = f(v), ∀v ∈ V,

which satisfies the stability estimate

‖u‖V ≤ 1
c‖f‖V′ .

We will now use the variational formulation found above and Theorem 2.1 to prove the uniqueness of the
solution to the Poisson equation, while simultaneously obtaining an estimate for the stability of the solution.

Proof. We first consider the boundedness of the Poisson equation. Using the Cauchy-Schwarz inequality, we
obtain

|a(u, v)| =
∫

Ω

∇u∇vdΩ ≤ ‖∇u‖L2‖∇v‖L2 . (2.13)

Note that
‖u‖2H1 = ‖u‖2V = ‖u‖2L2 + ‖∇u‖2L2 ⇒ ‖u‖2V ≥ ‖∇u‖2L2 , (2.14)
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thus
|a(u, v)| ≤ ‖∇u‖L2‖∇v‖L2 ≤ ‖u‖V‖v‖V . (2.15)

Thus the Poisson equation is bounded. To show coercivity, we write the norm as a sum of two halves, and use
the Poincaré inequality:

a(v, v) =

∫
Ω

|∇v|2dΩ = ‖∇v‖2L2 =
1

2
‖∇v‖2L2 +

1

2
‖∇v‖2L2 ≥

1

2C2
‖v‖2L2 +

1

2
‖∇v‖2L2 . (2.16)

Now let β = min{ 1
2C2 ,

1
2}. Then

a(v, v) ≥ 1

2C2
‖v‖2L2 +

1

2
‖∇v‖2L2 ≥ β

(
‖v‖2L2 + ‖∇v‖2L2

)
= β‖v‖2H1 = β‖v‖2V . (2.17)

Thus by Theorem 2.1, there exists a unique solution u ∈ V to the Poisson equation , that also satisfies the
stability estimate

‖u‖V ≤
1

β
‖f‖V′ . (2.18)

2.2.3 The Galerkin projection

With the weak formulation as above, the next goal is to discretize the domain in question so that u can be
approximated as the solution of a linear system. This is done by considering a discrete subspace of V, that is
Vh ⊂ V. This gives us the Galerkin equation, or the Galerkin formulation:

Find uh ∈ Vh, such that a(uh, vh) = f(vh) ∀vh ∈ Vh. (2.19)

Since the functions uh, vh now are members of the finite dimensional space Vh, they can be expressed as linear
combinations of some basis for said space:

uh =

Nh∑
j=1

u
(j)
h ϕj , vh

Nh∑
i=1

v
(i)
h ϕi, (2.20)

where span(ϕi)
Nh
i=1 = Vh, dim(Vh) = Nh. Inserted into the Galerkin formulation we get

a(uh, vh) =

Nh∑
j=1

Nh∑
i=1

u
(j)
h v

(i)
h a(ϕj , ϕi) = f(vh) =

Nh∑
i=1

v
(i)
h f(ϕi), (2.21)

which can be rewritten as a linear system of equations:

vThAhuh = vTh fh, (Ah)i,j = a(ϕj , ϕi), (fh)i = f(ϕi). (2.22)

The Galerkin formulation requires this to hold for all vh ∈ Vh, which implies that

Ahuh = fh. (2.23)

The matrix Ah is typically referred to as the stiffness matrix, and its construction, as well as the construction
of fh, is discussed in the upcoming section.
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2.2.4 The Finite Elements method

The FEM is a process for constructing discrete subspaces such as Vh. These are referred to as Finite Element
(FE) spaces. The construction of such space is characterized by three basic aspects, known as (FEM 1), (FEM
2), and (FEM 3) [24] [22].

(FEM 1) A partition Th, with |Th| = K (the cardinality of Th is K), is established over the set Ω̄, i.e. the
set Ω̄ (the closure of Ω) is divided into K subsets, called finite elements, El, in such a way that the following
properties are satisfied [24]:

(i)
K⋃
l=1

El = Ω̄.

(ii) For each El ∈ Th the set El is closed and the interior Ėl is non-empty.

(iii) For each distinct El, Em ∈ Th, the intersection of their interior is empty, Ėl ∩ Ėm = ∅.

(iv) For each El ∈ Th, the boundary ∂El is Lipschitz-continuous.

(FEM 2) Let P be a finite-dimensional space of functions (typically polynomials) on Th (the space of shape
functions). This is key to the convergence of the method, as well as it simplifies the construction of the linear
system [24].

(FEM 3) Finally, let N be a canonical basis for P ′, whose corresponding basis functions have ”small”
support, and which are easily described [24].

Then (Th,P,N ) is called a finite element. The importance of these three basis aspects will become apparent
in the following example problem. Let’s once again consider the Poisson equation. Let Ω ⊂ R2, and let it be

divided into K elements El, so that
K⋃
l=1

El = Ω̄. Consider for the sake of simplicity the elements to be triangular,

with bilinear basis functions (later in this paper we use the Q2/Q1 Taylor-Hood element, a quadrilateral element
with biquadratic and bilinear basis functions). To each element we associate three nodes, one in every corner
of the element: (xi, yi), (xj , yj), (xk, yk). To each node we associate one basis function ϕi(xm, ym) = δim, where
δim is the Kronecker delta:

δim =

{
1 if m = i,

0 if m 6= i.
(2.24)

This also ensures that the basis functions have compact support. With bilinear basis functions, the basis
functions vary linearly between 1 and 0 with respect to each variable, ϕi(x, y) = Ci + Cixx + Ciyy. The
coefficients of the basis functions can then be determined by solving the linear system1 xi yi

1 xj yj
1 xk yk

CiCix
Ciy

 =

1
0
0

 ,
and similarly for j and k, replacing the right hand side with [0, 1, 0]T , [0, 0, 1]T respectively. Thus a(ϕl, ϕm)
can be calculated for all nine pairs l,m = i, j, k, and added to (Ah)l,m. This is then repeated for all of the K
elements. For the Poisson equation we get

a(ϕl, ϕm) =

∫
E

∇ϕl∇ϕm dE =

∫
E

ClxC
m
x + ClyC

m
y dE = (ClxC

m
x + ClyC

m
y )Area(E), l,m = i, j, k. (2.25)

13



A similar procedure is used for constructing fh. Every element adds three contributions to fh, one for each
node. In the Poisson example we get

f(ϕm) =

∫
E

fϕm dE =

∫
E

f(Cm + Cmx x+ Cmy y) dE, m = i, j, k. (2.26)

In this simple case there are only constant terms in the integrand of a(ϕl, ϕm), making the solution easy to
compute analytically. When this is not the case, as with f(ϕm), the integral can be solved with some numerical
integration method. After the assembly of Ah and fh, the system can be solved directly with any solver.
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2.3 Galerkin Reduced Basis method

Let us now consider some arbitrary second order PDE, with parametric dependence. Let µ be the input-
parameter vector, and P be the set of all possible input parameters, so that µ ∈ P [3]. The problem can
be solved in the same manner as in the previous section, although this is highly unpreferable. If one of the
parameters is changed, it would affect the stiffness matrix which would have to be recalculated. The domain Ω
could also depend on any number of parameters, and changing one of these would require one to redo the entire
procedure from scratch.

2.3.1 Affine parametric dependence

Denote by Ω̃(µg) a domain with parametric dependence, with µg as a vector of geometrical parameters. It is
then convenient to reformulate and solve the PDE on some reference domain which is independent of µg. The
solution can then be mapped back to the original domain after it is found [25].

Let Ω = Ω̃(µref
g ) be the reference domain, with µref

g as some fixed reference parameters. Assume also that
the PDE have been reformulated to match the reference domain. Then we can find the weak formulation of
the PDE in a very similar manner as in Section 2.2.1. Let V(Ω) be some suitable Hilbert space (typically
V(Ω) = H1

ΓD
(Ω) is sufficient). Let u(µ), v ∈ V be the parameter-dependent function of interest, and some test

function. Then the weak formulation reads:

Given µ ∈ P, Find u(µ) ∈ V, such that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ V,
(2.27)

where a(·, ·;µ) is called the parametrized bilinear form, and f(·;µ) the parametrized linear form. Following the
procedure in Section 2.2.2, we arrive at the linear system

Ah(µ)uh(µ) = fh(µ). (2.28)

Note that both the stiffness matrix Ah(µ) and fh(µ) are parameter dependent, meaning they must be recon-
structed for every new choice of µ. However, this can be avoided if one makes the affine parametric dependence
assumption. That is, one assumes that a(·, ·;µ), f(·;µ) are affine, or separable, with respect to µ:

a(·, ·;µ) =

Qa∑
q=1

θq(µ)aq(·, ·),

f(·;µ) =

Qf∑
q=1

γq(µ)fq(·).

(2.29)

Here θq, γq are functions mapping from P to R. The bilinear and linear forms are written as sums since they
could consist of multiple integrals. If we now follow the procedure from Section 2.2.2, this property will carry
over to the linear system.

Ah(µ)uh(µ) = fh(µ),

Ah(µ) =

Qa∑
q=1

θq(µ)Aqh,

fh(µ) =

Qf∑
q=1

γq(µ)f qh .

(2.30)
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Thus, there is no longer a need to reconstruct the matrices and vectors Aqh, fqh when changing parameters.
Equation 2.30 is known as the FOM.

2.3.2 Reduced Basis methods

The the goal of any RB method is to exploit the µ-dependence of the solutions by projecting the problem onto
a much smaller subspace Vr ⊂ Vh, Nr � Nh. In this paper we use Proper Orthogonal Decomposition (POD)
to generate Vr, a method known as Principal Component Analysis (PCA) in multivariate statistics [26] [27].

Let Mh be the set of all FOM solutions, that is

Mh :=
{
uh(µ) ∈ Vh;µ ∈ P

}
⊂ Vh. (2.31)

The idea is then that any uh(µ) can be approximated well with linear combinations of just a few elements in
Mh. This is done by first selecting a few elements from Mh, that is {uh(µ1), . . . ,uh(µNn)}. These are known
as snapshots. Here {µ1, . . . ,µNn} ⊂ P is a small set of uniformly selected parameters, although these can be
chosen in many different ways [28]. It is important to include the minimum and maximum value for each of the
parameters in these snapshots to avoid extrapolation. The snapshots are then used to form a snapshot matrix,
S ∈ RNh×Nn , and its Singular Value Decomposition (SVD) is computed [29]:

S = UΣZT , (2.32)

U =
[
ζ1| . . . |ζNh

]
∈ RNh×Nh ,

Z =
[
ψ1| . . . |ψNn

]
∈ RNn×Nn ,

Σ = diag(σ1, . . . , σNn
) ∈ RNh×Nn ,

(2.33)

where ζi are the left-singular vectors of S, ψi are the right-singular vectors of S, and σi are the singular values
of S, σ1 ≥ · · · ≥ σNn

. Note that both U and Z are orthonormal matrices. Then we can write

Sψi = σiζi and ST ζi = σiψi i = 1, . . . , Nn, (2.34)

or equivalently
STSψi = σ2

iψi i = 1, . . . , Nn. (2.35)

Thus σ2
i is the eigenvalues of the matrix STS in a non-increasing order. The matrix C = STS is known as

the correlation matrix. Note that the correlation matrix is equivalent to the discrete L2 inner product of the
snapshots, that is (C)i,j = uTi uj . One could consider using different inner products to define the correlation
matrix, such as in [30]. The POD basis of any dimension N ≤ Nn is then defined as the first N left-singular
vectors ζ1, . . . , ζN of S, or equivalently

ζj =
1

σj
Sψj j = 1, . . . , N, (2.36)

where ψj is the first N eigenvectors of the correlation matrix C. This basis is by construction orthonormal. In
addition, the error of the POD basis can be calculated as

E(ζ1, . . . , ζN ) =

Nm∑
i=N+1

σ2
i , (2.37)
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that is the sum of the eigenvalues omitted from the POD basis. This can be used to estimate the error of our
ROM solution compared to the FOM solution. Say we want the average error to stay below a certain threshold,
εPOD. It is then sufficient to choose the smallest N such that

N∑
i=1

σ2
i

/
Nm∑
j=1

σ2
j ≥ 1− ε2

POD. (2.38)

Denote this N as Nr, the dimension of our RB space. The RB matrix V can then be constructed as V =[
|ζ1|, . . . , |ζNr |

]
∈ RNh×Nr , where Nr � Nh. Once the matrix V is constructed, the FOM (equation (2.30)) can

be projected onto our RB space:

V TAh(µ)V =

Qa∑
q=1

θq(µ)V TAqhV =

Qa∑
q=1

θq(µ)Aqr = Ar(µ) ∈ RNr×Nr ,

V Tfh(µ) =

Qf∑
q=1

γq(µ)V Tf qh =

Qf∑
q=1

γq(µ)f qr = fr(µ) ∈ RNr ,

(2.39)

see Figure 1. Thus we are left with the reduced linear system, referred to as the ROM:

Ar(µ)ur(µ) = fr(µ). (2.40)

The reduced solution uN (µ) can then be projected back onto the high-fidelity space for visualization:

uh(µ) = V ur(µ). (2.41)

Thus we have succeeded in reducing the original problem from a Nh × Nh linear system, to a Nr × Nr linear
system. The error will then typically stay below εPOD, although for a new set of parameters one must expect
some added inaccuracies [31]. Typically Nh ≥ 104, 10 ≤ Nr ≤ 30, and the ROM can be solved in a fraction of
the time it takes to solve the FOM [32].

Figure 1: The transformation from Ah to Ar. Illustration from page 628 of [27].
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3 Navier-Stokes and Stokes equation

We will now turn to the problem of interest, fluid flow in a system of pipes. First we will look at how the
Stokes equation relates to the Navier-Stokes equation for incompressible Newtonian fluids. Let Ω ⊂ R3, with
∂Ω = ΓD ∪ ΓN where ΓD,ΓN is the part of the boundary with Dirichlet and Neumann boundary conditions,
respectively. The strong form of Navier Stokes equation can then be derived from Newtons 2nd law and the
law of mass conservation:



∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u+ f in Ω× (0, T ) (Newtons II law),

∇ · u = 0 in Ω× (0, T ) (Mass conservation),

u = g on ΓD × (0, T ),

−pn+ ν(∇u) · n = 0 on ΓN × (0, T ).

(3.1)

Here u = [ux, uy, uz]
T is the fluid velocity, p is the internal pressure force, f are the external forces, g is

some function describing the boundary datum, n is the outer normal vector, and ν is the kinematic viscosity.
The first and second equations are known as the momentum balance equation and the continuity equation,
respectively. In addition to assuming incompressibility, we will now make several important assumptions to
simplify the problem:

• Stationarity: ∂u
∂t = 0.

• No external forces: f = 0.

• Linearity: (u · ∇)u = 0.

Note that we will work in R2, thus also neglecting gravity as an external force. To justify the linearity assumption
we assume that the velocities u are small compared to the viscosity term ν. Thus, we are left with the following
simplified equation, the strong form of the (stationary and incompressible) Stokes equation:


ν∆u−∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = g on ΓD,

−p · n+ ν(∇u) · n = 0 on ΓN .

(3.2)

We will now use equation 3.2 to define the specific problem we intend to investigate, and obtain its weak
formulation as in Section 2.2.1.
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3.1 Setting up the problem

Consider an arbitrary domain Ωsys ⊂ R2, where Ωsys represents some complete system of pipes. Let A be the
set of all pipe-sections or sub-domains Ωi necessary to construct any arbitrary pipe-system Ωsys. Thus any
specific pipe-system can be constructed as the union of a select few elements of A, see Figure 2. We will refer to
the elements of A as archetype components, and the set of necessary archetype components to construct Ωsys

as Asys ⊂ A. Next, we introduce some local geometrical parameters for each archetype, that is Ωi = Ωi(µg).
These parameters alter the initial geometry of the archetype through some geometrical transformation, allowing
us to change each archetype into the desired shape. We design these parameters in such a way that setting
all geometrical parameters to zero yields the initial geometry of the archetype: we will refer to this choice of
parameters as the initial parameters. Note that the geometrical parameters µg also affects the boundaries of
each archetype. Let Γi,I(µg),Γi,W(µg),Γi,O(µg) denote the inlet, walls, and outlet of archetype i, respectively.
That is

Ω̄i(µg) = Ωi(µg) ∪ ∂Ωi(µg) = Ωi(µg) ∪ Γi,I(µg) ∪ Γi,W(µg) ∪ Γi,O(µg). (3.3)

Note that connecting two archetypes will leave one overlapping boundary, that is the outlet and inlet of two
adjacent archetypes:

∂Ωi ∩ ∂Ωj = Γi,O = Γj,I, for Ωi,Ωj adjacent. (3.4)

To avoid this overlap, we remove the inlet boundary of every archetype following the first archetype in the
system. Hence, we should be able to construct the geometry of any given pipe-system as

Ω̄sys =
⋃

Ωi∈Asys

Ω̄i(µg) \ Γi,I(µg), unless Ωi is the first archetype. (3.5)

Note that Asys can contain multiple of the same archetypes as in Figure 2. Let the velocity space be defined as
V = [H1

ΓD
(Ω)]2 and the pressure space as Q = L2(Ω). We seek the local solution pair (ui, pi) ∈ V ×Q on each

archetype Ωi, from which we can hopefully obtain the global solution pair on any arbitrary pipe-system Ωsys:

(usys, psys) =
⋃

Ωi∈Asys

(ui, pi)
∣∣
Ω̄i\Γi,I

, unless Ωi is the first archetype. (3.6)
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Figure 2: An example of a small pipe system consisting of three components, where two of the components are
created from the same archetype.

3.1.1 Boundary conditions

Now that the geometry of any pipe-system can be constructed, the next issue we need to address is the boundary
conditions. To impose the no-slip condition, we require that the velocity is zero on the walls of the archetype
components, that is u|ΓW = 0, or homogeneous Dirichlet boundary conditions on ΓW. At the inlet of each
archetype we assume that the velocity profile has a parabolic shape, where the amplitude of the parabola
is given by µa. Note that since the inlet boundary depends on µg, so will the inlet velocity parabola. Thus
u|ΓI

= µag(µg), or non-homogeneous Dirichlet boundary conditions on ΓI. Finally we leave the outlet boundary
as is, that is imposing a homogeneous Neumann condition on ΓO.

Finally we address the non-homogeneous Dirichlet boundary in standard fashion, by writing u as the sum of
its homogeneous part u0 and a lifting vector function rg ∈ [H1

ΓD
(Ω)]2, that is u = u0+rg where rg|ΓI = µag(µg)

(and u0|ΓI = 0). Note that the lifting function does not have support on ΓO, that is rg|ΓO = 0. Hence we
arrive at the strong form of the Stokes equation for each archetype:



ν∆u0 −∇p = −ν∆rg in Ωi(µg),

∇ · u0 = −∇ · rg in Ωi(µg),

u0 = 0 on ΓI(µg) ∪ ΓW(µg),

rg = µag(µg) on ΓI(µg),

−pn+ ν(∇u0) · n = 0 on ΓO(µg).

(3.7)
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3.1.2 Weak form

Consider the two previously defined spaces V = [H1
ΓD

(Ω)]2,Q = L2(Ω). Let v, q be test functions belonging
to said spaces, v ∈ V, q ∈ Q. Similar to what we did in section 2.2.1, we obtain the weak formulation by
multiplying the momentum balance equation with v and the continuity equation with q, and integrating over
the domain. We will look at the components of u and v separately to simplify notation:

ν

∫
Ωi

∆uxvx dΩ−
∫

Ωi

∂p

∂x
vx dΩ = −ν

∫
Ωi

∆rgxvx dΩ,

ν

∫
Ωi

∆uyvy dΩ−
∫

Ωi

∂p

∂y
vy dΩ = −ν

∫
Ωi

∆rgyvy dΩ,∫
Ωi

∂ux
∂x

q dΩ +

∫
Ωi

∂uy
∂y

q dΩ = −
∫

Ωi

∂rgx
∂x

q dΩ−
∫

Ωi

∂rgy
∂y

q dΩ.

(3.8)

Next we apply Green’s first identity:

−ν
∫

Ωi

∇ux∇vx dΩ +

∫
Ωi

p
∂vx
∂x

dΩ +

∫
ΓO

vx

[
ν(∇ux) · n− (pnx)

]
dΓO = ν

∫
Ωi

∇rgx∇vx dΩ,

−ν
∫

Ωi

∇uy∇vy dΩ +

∫
Ωi

p
∂vy
∂y

dΩ +

∫
ΓO

vy

[
ν(∇uy) · n− (pny)

]
dΓO = ν

∫
Ωi

∇rgy∇vy dΩ,∫
Ωi

q
∂ux
∂x

dΩ +

∫
Ωi

q
∂uy
∂y

dΩ = −
∫

Ωi

q
∂rgx
∂x

dΩ−
∫

Ωi

q
∂rgy
∂y

dΩ.

(3.9)

Note that the integral over ΓO vanishes due to the chosen boundary conditions, leaving us with

ν

∫
Ωi

∇ux∇vx dΩ−
∫

Ωi

p
∂vx
∂x

dΩ = −ν
∫

Ωi

∇rgx∇vx dΩ,

ν

∫
Ωi

∇uy∇vy dΩ−
∫

Ωi

p
∂vy
∂y

dΩ = −ν
∫

Ωi

∇rgy∇vy dΩ,∫
Ωi

q
∂ux
∂x

dΩ +

∫
Ωi

q
∂uy
∂y

dΩ = −
∫

Ωi

q
∂rgx
∂x

dΩ−
∫

Ωi

q
∂rgy
∂y

dΩ.

(3.10)

We can now define the three bilinear forms

a(·, ·) : H1
ΓD

(Ω)×H1
ΓD

(Ω)→ R,
bx(·, ·) : H1

ΓD
(Ω)× L2 → R,

by(·, ·) : H1
ΓD

(Ω)× L2 → R,
(3.11)

where

a(v, w) = ν

∫
Ωi

∇v∇w dΩ,

bx(v, q) = −
∫

Ωi

q
∂v

∂x
dΩ,

by(v, q) = −
∫

Ωi

q
∂v

∂y
dΩ.

(3.12)

Thus we arrive at the weak formulation of our problem:
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Find (u, p) ∈ V ×Q such that
a(ux, vx) + bx(vx, p) = −a(rgx, vx),

a(uy, vy) + by(vy, p) = −a(rgy, vy), ∀v ∈ V,
bx(ux, q) + by(uy, q) = −bx(rgx, q)− by(rgy, q), ∀q ∈ Q.

(3.13)

3.2 The Taylor-Hood element

As in section 2.2.3, we aim to discretize the problem so we can approximate (u, p) as the solution of a linear
system of equations, (uh, ph). But unlike Poisson-equation, our discrete solution pair exist in two different
spaces: the velocity space Vh ⊂ V and the pressure space Qh ⊂ Q. Essentially Qh acts as a set of constraints
on the velocity uh, and if the dimensionality of Qh is too large compared to Vh, there are not enough dofs for
the velocity uh. In addition, the Ladyzhenskaia-Babuška-Brezzi (LBB) inf-sup condition must be satisfied for
any h for the solution to be both stable and unique, further restricting the viable methods of discretizing the
problem [33]. We will discuss this condition further once the problem have been discretized.

Hence we turn to a particular class of elements, the Taylor-Hood elements [34]. Let k denote the degree of
the basis functions associated with a discrete space, and let P,Q indicate whether the elements are triangular or
quadrilateral, respectively (i.e. Q2 is a discrete space constructed from quadrilateral elements with biquadratic
basis functions). We denote by Qk′/Qk (or Pk′/Pk) the Taylor-Hood element associated with two discrete
spaces (in our case Vh×Qh), where the basis functions of the first space are of degree k′, and the basis functions
of the second space are of degree k. It can be shown that for the Stokes equation, k′ = k + 1 is sufficient to
ensure both solvability of the linear system, and stability of the solution, given that the spaces are at least C0

continuous [35]. We will use the Q2/Q1 Taylor-Hood element for this problem, see Figure 3. This was chosen
to ease numerical implementation.

Figure 3: The Q2/Q1 Taylor-Hood reference element. X indicates a velocity-node, O indicates a pressure-node.
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3.2.1 Defining the basis functions

As Figure 3 indicates we have nine velocity-nodes and four pressure-nodes on each element, where each node
has a corresponding basis function. We will define the basis functions in terms of coordinates on the reference
element ξ, η ∈ [−1, 1], and later we introduce a mapping from an arbitrary element to this reference element.
Let ψi(ξ, η), ϕi′(ξ, η) be the basis functions for the velocity and pressure, respectively. As in section 2.2.4, we
require that ψi(ξj , ηj), ϕi′(ξj′ , ηj′) = δij . That is the value of basis function i is one at node i, and zero at any
other node. To enforce the biquadratic form on the velocity-basis we also require that

ψi(ξ, η) = Ci0 + Ci1ξ + Ci2η + Ci3ξη + Ci4ξ
2 + Ci5η

2 + Ci6ξ
2η + Ci7ξη

2 + Ci8ξ
2η2, (3.14)

and similarly for the bilinear pressure-basis

ϕi′(ξ, η) = Ci
′

0 + Ci
′

1 ξ + Ci
′

2 η + Ci
′

3 ξη. (3.15)

The coefficients are of each basis function are then determined by solving a linear system just as in section 2.2.4.
Two of the basis functions are shown in Figure 4.

(a) One of the four bilinear basis functions (b) One of the nine biquadratic basis functions

Figure 4: Two examples of the basis functions on the reference element.
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3.3 Numerical integration, Gaussian quadrature

Figure 5: The mapping from an arbitrary quadrilateral element to the reference element.

To evaluate the bilinear forms, a Gaussian quadrature is used. With f(ξ, η) as the integrand, we have that∫ 1

−1

∫ 1

−1

f(ξ, η) dξdη ≈
n∑
i=1

n∑
j=1

wiwjf(ξi, ηj), (3.16)

where wi, wj , ξi, ηj are the weights and evaluation points associated with the Gaussian quadrature of degree n.
For an arbitrary quadrilateral element, we must first map to this reference element:∫ b

a

∫ d

c

f(x, y) dxdy =

∫ 1

−1

∫ 1

−1

f(ξ, η)

∣∣∣∣∣∂x∂ξ ∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣ dξdη ≈
n∑
i=1

n∑
j=1

wiwj

(∂x
∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

)
f(ξi, ηj). (3.17)

The change of variables can be defined as follows:

x =

4∑
i=1

Ni(ξ, η)xi, y =

4∑
i=1

Ni(ξ, η)xi, (3.18)

where (xi, yi) are the vertices of the original quadrilateral (see Figure 5), and

N1 =
1

4
(1− ξ)(1− η), N2 =

1

4
(1 + ξ)(1− η),

N3 =
1

4
(1 + ξ)(1 + η), N4 =

1

4
(1− ξ)(1 + η).

(3.19)

Thus the partial derivatives are

∂x

∂ξ
=

1

4

[
(1− η)(x2 − x1) + (1 + η)(x3 − x4)

]
,

∂x

∂η
=

1

4

[
(1− ξ)(x4 − x1) + (1 + ξ)(x3 − x2)

]
,

(3.20)

and quite similar for ∂y
∂ξ ,

∂y
∂η .
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3.4 Discretization of the equation

Now that we have acquired a basis for both Vh and Qh, we can proceed with the discretization, starting with
the Galerkin formulation of our problem:

Find (uh, ph) ∈ Vh ×Qh such that
a(ux,h, vx,h) + bx(vx,h, ph) = −a(rgx,h, vx,h),

a(uy,h, vy,h) + by,h(vy,h, ph) = −a(rgy,h, vy,h), ∀vh ∈ Vh,
bx(ux,h, qh) + by(uy,h, qh) = −bx(rgx,h, qh)− by(rgy,h, qh), ∀qh ∈ Qh.

(3.21)

Next we express uh, rg,h,vh, ph, qh as linear combinations of the basis of their respective spaces. Let dim(Vh) =
Nu > dim(Qh) = Np. Then

ux,h =

Nu∑
j=1

u
(j)
x,hψj , uy,h =

Nu∑
j=1

u
(j)
y,hψj ,

rgx,h =

Nu∑
j=1

r
(j)
gx,hψj , rgy,h =

Nu∑
j=1

r
(j)
gy,hψj ,

vx,h =

Nu∑
i=1

v
(i)
x,hψi, vy,h =

Nu∑
i=1

v
(i)
y,hψi,

ph =

Np∑
j=1

p
(j)
h ϕj , qh =

Np∑
i=1

q
(i)
h ϕi.

(3.22)

Note that ψ = ψ(x, y), ϕ = ϕ(x, y). Inserted into the bilinear forms we get

a(ux,h, vx,h) =

Nu∑
j=1

Nu∑
i=1

v
(i)
x,ha(ψj , ψi)u

(j)
x,h = vTxAux, bx(vx,h, ph) =

Np∑
j=1

Nu∑
i=1

p
(j)
h bx(ψi, ϕj)v

(i)
x,h = pTBxvx,

a(rgx,h, vx,h) =

Nu∑
j=1

Nu∑
i=1

v
(i)
x,ha(ψj , ψi)r

(j)
gx,h = vTxArgx, by(uy,h, qh) =

Np∑
i=1

Nu∑
j=1

q
(i)
h by(ψj , ϕi)u

(j)
y,h = qTByuy,

(3.23)
where

(A)i,j = a(ψj , ψi), dim(A) = Nu ×Nu,
(Bx)i,j = bx(ψi, ϕj), dim(Bx) = Np ×Nu,
(By)i,j = by(ψi, ϕj), dim(By) = Np ×Nu,

(3.24)

and similarly for the remaining terms. Note that since xTAy = yTATx we can rewrite our problem as
vTxAux + vTxB

T
x p = −vTxArgx,

vTy Auy + vTy B
T
y p = −vTy Argy,

qTBxux + qTByuy = −qTBxrgx − qTByrgy.
(3.25)

This must hold for all vh ∈ Vh, qh ∈ Qh, which implies
Aux +BTx p = −Argx,
Auy +BTy p = −Argy,

Bxux +Byuy = −Bxrgx −Byrgy.
(3.26)
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We now collect these matrices in a block-matrix to ease notation. Let A be the block matrix, and z,f the
concatenated vectors of unknowns and loads, respectively. That is

Az = f ⇔

 A 0 BTx
0 A BTy
Bx By 0

uxuy
p

 =

 −Argx
−Argy

−Bxrgx −Byrgy

 . (3.27)

Thus we have obtained the linear system of equations, the FOM [36]. Note that every component of this linear
system will depend on the parameters µ, that is A(µ)z(µ) = f(µ). In addition, each archetype will have a
unique FOM associated to it that also depends on its local parameters. That is, for archetype Ωi, we have
Ai(µi)zi(µi) = fi(µi). In the next section we discuss the uniqueness and stability of this linear system, before
we obtain the general form of the ROM.

3.5 Uniqueness and stability, the LBB inf-sup condition

The linear system obtained in the previous section is a saddle point problem. The Ladyzhenskaia-Babuška-
Brezzi (LBB) inf-sup condition is sufficient for such problems to have a unique solution, that also depends
continuously on the input data [3]. As before, let Vh ⊂ V and Qh ⊂ Q be the two discrete Hilbert spaces, and
let a(·, ·) : Vh×Vh → R, b(·, ·) : Vh×Qh → R be the two bilinear forms. Let f1(·) ∈ V ′, f2(·) ∈ Q′, where V ′,Q′
are the dual spaces. Additionally we need to define a subspace of Vh:

Vh0 = {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh} ⊂ Vh, (3.28)

i.e. Vh0 is the kernel of b(·, ·). Again we consider the Galerkin formulation of the mixed variational problem:

Find (uh, ph) ∈ Vh ×Qh such that{
a(uh, vh) + b(vh, ph) = f1(vh), ∀vh ∈ Vh,

b(uh, qh) = f2(qh), ∀qh ∈ Qh.
(3.29)

This problem is well posed, given that the following assumptions hold:

Theorem 3.1 (Ladyzhenskaya-Babuška-Brezzi inf-sup condition). Under the following assumptions:

• Continuity: There exists constants γa, γb > 0 such that

|a(uh, vh)| ≤ γa||uh||V ||vh||V ∀uh, vh ∈ Vh,
|b(vh, qh)| ≤ γb||vh||V ||qh||Q ∀vh ∈ V, qh ∈ Qh.

(3.30)

• Coercivity of a(·, ·): There exists a constant α > 0 such that a(·, ·) is coercive on the kernel of b(·, ·),
that is

inf
uh∈Vh

0

sup
vh∈Vh

0

a(uh, vh)

||uh||V ||vh||V
≥ α, (3.31)

• Coercivity of b(·, ·): There exists a constant β > 0 such that b(·, ·) satisfies the inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

||vh||V ||qh||Q
≥ β, (3.32)
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where β is independent of h. Then for every h > 0, there exists a unique solution (uh, ph) ∈ Vh × Qh to the
mixed variational problem, which also satisfies the stability estimates

||uh||V ≤
1

α

[
||f1||V′ +

α+ γa
β
||f2||Q′

]
,

||ph||Q ≤
1

β

[(
1 +

γa
α

)
||f1||V′ +

γa(α+ γa)

α+ β
||f2||Q′

]
.

(3.33)

Additionally, the following error inequality holds:

||u− uh||V + ||p− ph||Q ≤ C
(

inf
vh∈Vh

||u− vh||V + inf
qh∈Qh

||p− qh||Q
)
, (3.34)

where C = C(α, β, γa, γb), but is independent of h.

We refer to [37] for the proof of this theorem. The assumption regarding the coercivity of b(·, ·) (Equa-
tion (3.32)) is another important reason why the Taylor-Hood element is the element of choice for this problem,
as it has been shown to fulfill this criterion [38].

3.6 Reducing the system

For now, assume that for each archetype, there exists a well-defined mapping from the parameter-dependent
domain to a parameter-independent reference domain. We will define such mappings for each of the archetypes
in the next section. As in section 2.3.2, we aim to construct a RB matrix V using the POD method, so we
can project the FOM onto our RB space. Note that our snapshots are the concatenated solutions of the FOM
{z(µ1), . . . ,z(µNn)}, where Nn is the number of snapshots, and

z(µ1) =

ux(µ1)
uy(µ1)
p(µ

1)

 ∈ R2Nu+Np . (3.35)

The snapshots are collected in the snapshot matrix S, and we compute its SVD. By choosing some tolerance
εPOD, we pick the Nr left-singular vectors corresponding to the Nr largest singular values, as in section 2.3.2.
These vectors then make up our RB matrix V , where V ∈ R(2Nu+Np)×Nr . Thus we can rewrite our FOM as

V TA(µ)V V Tz(µ) = V Tf(µ). (3.36)

Note that although A(µ) could be written directly as a sum of affine functions and sub-matrices, it is easier to
consider the block-components of A instead. First we write V as a block matrix:

V = V =

VxVy
Vp

 , V T =
[
V Tx V Ty V Tp

]
, Vx, Vy ∈ RNu×Nr , Vp ∈ RNp×Nr . (3.37)

Next we write A(µ) in its full form and compute the matrix product V TA(µ)V :

[
V Tx V Ty V Tp

]  A(µ) 0 BTx (µ)
0 A(µ) BTy (µ)

Bx(µ) By(µ) 0

VxVy
Vp

 =

 V Tx A(µ)Vx 0 V Tx B
T
x (µ)Vp

0 V Ty A(µ)Vy V Ty B
T
y (µ)Vp

V Tp Bx(µ)Vx V Tp By(µ)Vy 0

 , (3.38)

27



and similarly for V Tf :

V Tf =
[
V Tx V Ty V Tp

]  −A(µ)rgx
−A(µ)rgy

−Bx(µ)rgx −By(µ)rgy

 =

 −V Tx A(µ)rgx
−V Ty A(µ)rgy

−V Tp Bx(µ)rgx − V Tp By(µ)rgy

 . (3.39)

Thus each sub-matrix of the block matrix A has an affine representation:

V Tx A(µ)Vx =

Qa∑
q=1

θq(µ)V Tx A
qVx =

Qa∑
q=1

θq(µ)Aqx,r = Ax,r(µ) ∈ RNr×Nr ,

V Ty A(µ)Vy =

Qa∑
q=1

θq(µ)V Ty A
qVy =

Qa∑
q=1

θq(µ)Aqy,r = Ay,r(µ) ∈ RNr×Nr ,

V Tp Bx(µ)Vx =

Qb∑
q=1

γx,q(µ)V Tp B
q
xVx =

Qb∑
q=1

γx,q(µ)Bqx,r = Bx,r(µ) ∈ RNr×Nr ,

V Tp By(µ)Vy =

Qb∑
q=1

γy,q(µ)V Tp B
q
yVy =

Qb∑
q=1

γy,q(µ)Bqy,r = By,r(µ) ∈ RNr×Nr .

(3.40)

And similarly for the components of the load vector f :

V Tx A(µ) =

Qa∑
q=1

θq(µ)V Tx A
q =

Qa∑
q=1

θq(µ)F qx = Fx(µ) ∈ RNr×Nu ,

V Ty A(µ) =

Qa∑
q=1

θq(µ)V Ty A
q =

Qa∑
q=1

θq(µ)F qy = Fy(µ) ∈ RNr×Nu ,

V Tp Bx(µ) =

Qb∑
q=1

γx,q(µ)V Tp B
q
x =

Qb∑
q=1

γx,q(µ)F qpx = Fpx(µ) ∈ RNr×Np ,

V Tp By(µ) =

Qb∑
q=1

γy,q(µ)V Tp B
q
y =

Qb∑
q=1

γy,q(µ)F qpy = Fpy(µ) ∈ RNr×Np .

(3.41)

Note that although the number of columns in Fx, Fy, Fpx, Fpu is the same as before reducing the system, we
only need to consider the columns where the corresponding values of rg is different from zero. The reduced
linear system can then be written as

Ar(µ)zr(µ) =

Ax,r(µ) 0 BTx,r(µ)
0 Ay,r(µ) BTy,r(µ)

Bx,r(µ) By,r(µ) 0

ux,r(µ)
uy,r(µ)
pr(µ)

 =

 −Fx(µ)rgx(µ)
−Fy(µ)rgy(µ)

−Fpx(µ)rgx(µ)− Fpy(µ)rgy(µ)

 = fr(µ),

(3.42)
and finally the full solution obtained from the reduced solution and the lifting functions:uxuy

p

 =

Vxux,r + rgx
Vyuy,r + rgy

Vppr

 . (3.43)
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4 The archetype components

In this section we will introduce the different archetype components, and define their related mappings and
affine functions. Let us denote by ΦΩi,j (x, y,µi) the linear mapping that maps the j-th partition of the i-th
archetype from the reference domain to the parameter dependent domain. µi are the local parameters belonging
to archetype i. Let x′, y′ denote the coordinates on the parameter dependent domain. We will restrict these
mappings to stretching and scaling only, giving us the general linear mapping[

x′

y′

]
= ΦΩi,j

(x, y,µi) =

[
c1(µi) 0

0 d1(µi)

] [
x
y

]
+

[
c2(µi)
d2(µi)

]
, (4.1)

here c1, d1, c2, d2 are typically linear functions with respect to µi, not to be confused with the bilinear forms.
Mappings on this form ensures that the Jacobian JΦ will be constant with respect to x, y:

JΦ(x, y,µi) = JΦ(µi)

[
c1(µi) 0

0 d1(µi)

]
. (4.2)

We then map the bilinear forms from the parameter dependent domain to the parameter-independent domain:

a(ψ′j , ψ
′
i) =

∫
Ω′(µ)

∇′ψ′i∇′ψ′j dΩ′(µ) =

d∑
k,l=1

∫
Ω

Mk,l
∂ψi
∂xk

∂ψj
∂xl

dΩ,

b(ψ′iϕ
′
j) =

∫
Ω′(µ)

ϕ′j(∇′ · ψ′) dΩ′(µ) =

d∑
k,l=1

∫
Ω

Nk,lϕj
∂ψi
∂xl

dΩ,

(4.3)

where M(µ) = J−1
Φ J−TΦ |JΦ|, N(µ) = J−TΦ |JΦ|. Note that the structure of JΦ make M(µ), N(µ) quite simple

to compute:

M(µi) =

[
d1(µi)
c1(µi)

0

0 c1(µi)
d1(µi)

]
, N(µi) =

[
d1(µi) 0

0 c1(µi)

]
. (4.4)

Our bilinear forms on the reference domain are then

a(ψj , ψi) =
d1(µ)

c1(µ)
ν

∫
Ω

∂ψi
∂x

∂ψj
∂x

dΩ +
c1(µ)

d1(µ)
ν

∫
Ω

∂ψi
∂y

∂ψj
∂y

dΩ,

bx(ψi, ϕj) = −d1(µ)

∫
Ω

ϕj
∂ψi
∂x

dΩ,

by(ψi, ϕj) = −c1(µ)

∫
Ω

ϕj
∂ψi
∂y

dΩ.

(4.5)

Note that every archetype will have inlets parallel to the y-axis. We assume that the y-component of the inlet
velocity is zero, further simplifying our lifting function:

rg = µag(µ) = µa

[
gx(µ)
gy(µ)

]
= µa

[
gx(µ)

0

]
. (4.6)

Additionally, we assume the inlet velocity to have a parabolic shape only depending on the width of the pipe,
that is µagx(x′, y′,µ) = µagx(y′,µ) where µa is the amplitude of the parabola.
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4.1 Archetype 0 – The straight pipe

Figure 6: Archetype 0 – The straight pipe: Each purple square represents a Q2/Q1 Taylor-Hood element. The
blue edge is the inlet, the black edges are the walls, and the red edge is the outlet.

Due to the simplicity of this archetype, there is no need to define any partitions. Let µ0 = [µ(1), µ(2)] be the
length and width of the pipe, respectively. Our mapping is then simply defined as

ΦΩ0
(x, y,µ0) =

[
1 + µ(1) 0

0 1 + µ(2)

] [
x
y

]
, (4.7)

i.e. µ(1) = 1 doubles the width of the pipe and so forth. To ensure a parabolic shape on the lifting function, let

gx(y′,µ0) = C
(
0.2(1 + µ(2))− y′

)
y′. (4.8)

The maximum value of this lifting function is gx = 0.01C(1 +µ(1))2, which we want to be explicitly determined
by µa. That is

0.01C(1 + µ(2))2 = µa ⇒ C =
100µa

(1 + µ(2))2
. (4.9)

Thus we can express the lifting function both on the original domain, and on the reference domain:

gx(y′,µ0) =
100µa

(1 + µ(2))2

(
0.2(1 + µ(2))− y′

)
y′,

gx(y,µ0) =
100µa

(1 + µ(2))2

(
0.2(1 + µ(2))− (1 + µ(2))y

)
(1 + µ(2))y = 100µa

(
0.2− y

)
y.

(4.10)

The lifting function on the reference domain is used in the linear system, while the original lifting function is
used when obtaining the final solution. Note that the geometrical parameters in the denominator cancels out
on the reference domain, however this is not always the case. From equation (4.5), our affine functions and
bilinear forms can be written as

θ1(µ0) =
1 + µ(2)

1 + µ(1)
, a(1)(ψj , ψi) = ν

∫
Ω

∂ψi
∂x

∂ψj
∂x

dΩ,

θ2(µ0) =
1 + µ(1)

1 + µ(2)
, a(2)(ψj , ψi) = ν

∫
Ω

∂ψi
∂y

∂ψj
∂y

dΩ,

γx,1(µ0) = 1 + µ(2), b(1)
x (ψi, ϕj) = −

∫
Ω

ϕj
∂ψi
∂x

dΩ,

γy,1(µ0) = 1 + µ(1), b(1)
y (ψi, ϕj) = −

∫
Ω

ϕj
∂ψi
∂y

dΩ.

(4.11)
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4.2 Archetype 1 – The closed bifurcation pipe

Figure 7: Archetype 1 – The closed bifurcation pipe: Each purple square represents a Q2/Q1 Taylor-Hood
element. The blue edge is the inlet, the black edges are the walls, and the red edge is the outlet.

We partition the archetype into four sub-domains, to allow reshaping of both the length and width of each
section. Let µ1 = [µ(1), µ(2), µ(3), µ(4), µ(5)] be the parameters, where µ(1) controls the length of Ω1,1, µ(2) the
width of Ω1,1,Ω1,2,Ω1,4, µ(3) the length of Ω1,2,Ω1,3, µ(4) the width of Ω1,3, and µ(5) the length of Ω1,4. This
leads to the four parametric mappings

ΦΩ1,1
(x, y,µ1) =

[
1 + µ(1) 0

0 1 + µ(2)

] [
x
y

]
−
[
0.4µ(1)

0.2µ(2)

]
,

ΦΩ1,2
(x, y,µ1) =

[
1 + µ(3) 0

0 1 + µ(2)

] [
x
y

]
−
[
0.4µ(3)

0.2µ(2)

]
,

ΦΩ1,3(x, y,µ1) =

[
1 + µ(3) 0

0 1 + µ(4)

] [
x
y

]
−
[
0.4µ(3)

0.2µ(4)

]
,

ΦΩ1,4(x, y,µ1) =

[
1 + µ(5) 0

0 1 + µ(2)

] [
x
y

]
−
[
(0.6 + 0.2µ(3))µ(5)

0.2µ(2)

]
.

(4.12)

The lifting function on the reference domain is identical to the straight pipe, although slightly different on the
original domain:

gx(y′,µ1) =
100µa

(1 + µ(2))2

(
0.2− y′

)(
y′ + 0.2µ(2)

)
,

gx(y,µ1) = 100µa
(
0.2− y

)
y.

(4.13)

We get a total of sixteen affine functions (their respective bilinear forms can be found with Equation (4.5)):

θ1(µ1) =
1 + µ(2)

1 + µ(1)
, θ2(µ1) =

1 + µ(1)

1 + µ(2)
, θ3(µ1) =

1 + µ(2)

1 + µ(3)
, θ4(µ1) =

1 + µ(3)

1 + µ(2)
,

θ5(µ1) =
1 + µ(4)

1 + µ(3)
, θ6(µ1) =

1 + µ(3)

1 + µ(4)
, θ7(µ1) =

1 + µ(2)

1 + µ(5)
, θ8(µ1) =

1 + µ(5)

1 + µ(2)
,

γx,1(µ1) = 1 + µ(2), γx,2(µ1) = 1 + µ(2), γx,3(µ1) = 1 + µ(4), γx,4(µ1) = 1 + µ(2),

γy,1(µ1) = 1 + µ(1), γy,2(µ1) = 1 + µ(3), γy,3(µ1) = 1 + µ(3), γy,4(µ1) = 1 + µ(5).

(4.14)
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4.3 Archetype 2 – The open bifurcation pipe

Figure 8: Archetype 2 – The open bifurcation pipe: Each purple square represents a Q2/Q1 Taylor-Hood
element. The blue edge is the inlet, the black edges are the walls, and the red edges are the outlets.

Because of the similar shape to the previous archetype, all mappings, parameters, affine functions and
bilinear forms are equal. The only major difference is the double outlet, and the slightly longer vertical pipe.
Longer pipe sections leading up to the outlets are necessary to ensure that the velocity vector is perpendicular
to the outlet edge, justifying our assumption of perpendicular inlet velocity for the next archetype.
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4.4 Archetype 3 – The left-corner pipe

Figure 9: Archetype 3 – The left-corner pipe: Each purple square represents a Q2/Q1 Taylor-Hood element.
The blue edge is the inlet, the black edges are the walls, and the red edge is the outlet.

Three partitions are necessary for us to control the length and width of both the inlet section and the outlet
section of this pipe. Let µ3 = [µ(1), µ(2), µ(3), µ(4)], where µ(1) controls the length of Ω3,1, µ(2) the width of
Ω3,1,Ω3,2, µ(3) the length of Ω3,2,Ω3,3, and µ(4) the width of Ω3,3. This results in three mappings:

ΦΩ3,1
(x, y,µ3) =

[
1 + µ(1) 0

0 1 + µ(2)

] [
x
y

]
−
[
0.4µ(1)

0.2µ(2)

]
,

ΦΩ3,2
(x, y,µ3) =

[
1 + µ(3) 0

0 1 + µ(2)

] [
x
y

]
−
[
0.4µ(3)

0.2µ(2)

]
,

ΦΩ3,3(x, y,µ3) =

[
1 + µ(3) 0

0 1 + µ(4)

] [
x
y

]
−
[
0.4µ(3)

0.2µ(4)

]
.

(4.15)

The lifting functions are identical to the previous archetype:

gx(y′,µ3) =
100µa

(1 + µ(2))2

(
0.2− y′

)(
y′ + 0.2µ(2)

)
,

gx(y,µ3) = 100µa
(
0.2− y

)
y,

(4.16)

and we get twelve affine functions:

θ1(µ3) =
1 + µ(2)

1 + µ(1)
, θ2(µ3) =

1 + µ(1)

1 + µ(2)
, θ3(µ3) =

1 + µ(2)

1 + µ(3)
,

θ4(µ3) =
1 + µ(3)

1 + µ(2)
, θ5(µ3) =

1 + µ(4)

1 + µ(3)
, θ6(µ3) =

1 + µ(3)

1 + µ(4)
,

γx,1(µ3) = 1 + µ(2), γx,2(µ3) = 1 + µ(2), γx,3(µ3) = 1 + µ(4),

γy,1(µ3) = 1 + µ(1), γy,2(µ3) = 1 + µ(3), γy,3(µ3) = 1 + µ(3).

(4.17)
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4.5 Archetype 4 – The right-corner pipe

Figure 10: Archetype 4 – The right-corner pipe: Each purple square represents a Q2/Q1 Taylor-Hood element.
The blue edge is the inlet, the black edges are the walls, and the red edge is the outlet.

The right-corner pipe is as one would expect identical to the left-corner pipe, only mirrored along the x-axis
and shifted. Thus everything is done as in the previous section before changing the y-coordinates:[

x
y

]
Ω4

=

[
x

−y + 0.2

]
Ω3

. (4.18)

Note that a similar scheme is used when the rotation of an archetype is necessary:[
x
y

]π/2
Ωi

=

[
0 −1
1 0

] [
x
y

]0

Ωi

. (4.19)
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4.6 Archetype 5 – The partially blocked pipe

Figure 11: Archetype 5 – The partially blocked pipe: Each purple square represents a Q2/Q1 Taylor-Hood
element. The blue edge is the inlet, the black edges are the walls, and the red edge is the outlet.

Due to the blockage in the middle of this pipe, this archetype is partitioned into eight subdomains. Let
µ5 = [µ(1), µ(2), µ(3)] be our parameters, where µ(1) controls the length before the blockage, µ(2) the total width
of the pipe, and µ(3) the length after the blockage. Thus we need eight parametric mappings:

ΦΩ5,1
(x, y,µ5) =

[
1 + µ(1) 0

0 1 + 2µ(2)

] [
x
y

]
−
[
0.45µ(1)

0.1µ(2)

]
,

ΦΩ5,2
(x, y,µ5) =

[
1 0
0 1 + 2µ(2)

] [
x
y

]
−
[

0
0.1µ(2)

]
,

ΦΩ5,3
(x, y,µ5) =

[
1 + µ(3) 0

0 1 + 2µ(2)

] [
x
y

]
−
[
0.55µ(3)

0.1µ(2)

]
,

ΦΩ5,4(x, y,µ5) =

[
1 + µ(1) 0

0 1

] [
x
y

]
−
[
0.45µ(1)

0

]
,

ΦΩ5,5
(x, y,µ5) =

[
1 + µ(3) 0

0 1

] [
x
y

]
−
[
0.55µ(3)

0

]
,

ΦΩ5,6
(x, y,µ5) =

[
1 + µ(1) 0

0 1 + 2µ(2)

] [
x
y

]
−
[
0.45µ(1)

0.3µ(2)

]
,

ΦΩ5,7
(x, y,µ5) =

[
1 0
0 1 + 2µ(2)

] [
x
y

]
−
[

0
0.3µ(2)

]
,

ΦΩ5,8(x, y,µ5) =

[
1 + µ(3) 0

0 1 + 2µ(2)

] [
x
y

]
−
[
0.55µ(3)

0.3µ(2)

]
.

(4.20)

The eight mappings results in 32 affine functions and bilinear forms, which can be found using equation (4.5).
Mapping the lifting function to the reference domain results in three distinct equations, due to the fact that
the inlet covers three different subdomains:

gx(y′,µ5) =
100µa

(1 + µ(2))2

(
0.2 + 0.1µ(2) − y′

)(
y′ + 0.1µ(2)

)
,

gx(y,µ5) =



100µa
(1 + µ(2))2

(
0.2 + 0.2µ(2) − (1 + 2µ(2))y

)
(1 + 2µ(2))y, y ∈ Ω5,1,

100µa
(1 + µ(2))2

(
0.2 + 0.1µ(2) − y

)(
y + 0.1µ(2)

)
, y ∈ Ω5,4,

100µa
(1 + µ(2))2

(
0.2 + 0.4µ(2) − (1 + 2µ(2))y

)(
(1 + 2µ(2))y − 0.2µ(2)

)
, y ∈ Ω5,6.

(4.21)
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4.7 Archetype 6 – The contraction pipe

Figure 12: Archetype 6 – The contraction pipe: Each purple square represents a Q2/Q1 Taylor-Hood element.
The blue edge is the inlet, the black edges are the walls, and the red edge is the outlet.

The contraction pipe is partitioned into two subdomains, and we wish to control the width of the inlet and
the outlet independently. Let µ6 = [µ(1), µ(2)] control the width of the outlet and the inlet, respectively. This
results in the two parametric mappings

ΦΩ6,1(x, y,µ6) =

[
1 0
0 1 + µ(1)

] [
x
y

]
,

ΦΩ6,2
(x, y,µ6) =

[
1 0
0 2µ(2) + 1− µ(1)

] [
x
y

]
+

[
0

0.4(µ(1) − µ(2))

]
,

(4.22)

and a total of eight affine functions and bilinear forms. The resulting lifting functions are

gx(y′,µ6) =
25µa

(1 + µ(2))2

(
0.4(1 + µ(2))− y′

)
y′,

gx(y,µ6) =


25µa

(1 + µ(2))2

(
0.4(1 + µ(2))− (1 + µ(1))y

)
(1 + µ(1))y, y ∈ Ω6,1,

25µa
(1 + µ(2))2

(
(2µ(2) + 1− µ(1))(0.4− y)

)(
(2µ(2) + 1− µ(1))y + 0.4(µ(1) − µ(2))

)
, y ∈ Ω6,2.

(4.23)
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4.8 Archetype 7 – The expansion pipe

Figure 13: Archetype 7 – The expansion pipe: Each purple square represents a Q2/Q1 Taylor-Hood element.
The blue edge is the inlet, the black edges are the walls, and the red edge is the outlet.

Since this archetype is essentially the mirrored version of the previous archetype, the mappings, affine
functions and bilinear forms are the same. Note that here µ(1) controls the width of the inlet, and µ(2) the
outlet. The width of the inlet on the reference domain is also different, resulting in different lifting functions.
Also the inlet now only covers one of the domains, thus we only need one lifting function on the reference
domain:

gx(y′,µ7) =
100µa

(1 + µ(1))2

(
0.2(1 + µ(1))− y′

)
y′,

gx(y,µ7) = 100µa
(
0.2− y

)
y.

(4.24)
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5 Connecting the archetypes

With our recently constructed library of reduced archetypes, we turn to the next challenge: Connecting the
archetypes to assemble the desired system [39].

To achieve this we must be able to connect the outlet of the previous archetype to the inlet of the next
archetype in our system. Recall that for each archetype, the amplitude of the inlet velocity are determined by
one parameter, µa. Whereas the width of the inlet and the outlet are controlled by (typically) two separate
parameters, say µin and µout. The general form of our velocity parabola is then

gx =
4µa

b2(1 + µin)2

(
b(1 + µin)− y

)
y. (5.1)

First we require that the width of the previous outlet matches the width of the next inlet, that is

b̂i(1 + µi,out) = bj(1 + µj,in), (5.2)

for adjacent archetypes i, j (where archetype i precedes j). Here bi, b̂i denotes the width of the inlet and outlet
of archetype i, respectively. Then we use the discrete velocity solution at the preceding outlet boundary to
determine the amplitude of the lifting function for the following archetype. This can be done in a multitude
of ways; we use a least-squares algorithm to fit a second-degree polynomial to the preceding outlet boundary
datum, and use the resulting polynomial to calculate the average velocity of the fluid leaving the outlet, as well
as the volume flow/flux.

ux,avg|Γi,out
=

1

b̂i(1 + µi,out)

∫ b̂i(1+µi,out)

0

αiy
2 + βiy dy =

αi
3
b̂i

2
(1 + µi,out)

2 +
βi
2
b̂i(1 + µi,out), (5.3)

where αi, βi are obtained from the least-squares algorithm. The amplitude of the outlet velocity parabola and
the volume flow Vi is then

ux,max =
3

2
ux,avg,

Vi = ux,avgb̂i(1 + µi,out).

(5.4)

This amplitude is then used as the amplitude for the following archetype inlet velocity profile, µj,a = ux,max|Γi,out .
Additionally the volume flow Vi enables us to monitor to which degree mass is conserved in the system.

For this approach to be accurate, we must also make some additional assumptions: The walls leading up
to the outlet must be parallel, ensuring a 90 degree angle with the outlet. This justifies the assumption that
the outlet velocity is one-dimensional, hence also justifying a one-dimensional inlet velocity for the following

Figure 14: Archetype 0 – The straight pipe: An example of how a constant inlet velocity develops its parabolar
shape. The velocity profile appears fully developed at x = 0.15.
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archetype. In addition, this makes the pressure gradient consistent with the imposed boundary conditions: uy =

0 implies ∂p
∂y = 0. In relation to this we must also allow the flow to fully develop before and after each connection

boundary, to ensure that the assumption of a parabolic velocity-profile holds (see Figure 14). Most of these
assumptions could however be avoided had we used a more general approach such as in [40] [41] [42] [43]. In short
it would be necessary to train every possible pair of archetypes for each of the Nn selected parameters [44] [45],
however this is beyond the scope of this thesis.

6 Results

We begin this section by showing the solution to the Stokes’ equation on each of the archetypes in their initial
state, before changing some of the parameters. All the figures shown are ROM’s as they are indistinguishable
from their FOM counterparts. Instead we include a figure showing the difference between the FOM and the
ROM for each archetype. Note that the scale of the color-bar on each figure may vary. Note that the amplitude
of the inlet velocity µa is the last parameter in every µ-list. We omit the results from archetype 4, as they are
identical to those from archetype 3, only mirrored about the x-axis. In addition we show the averaged relative
differences between the FOM’s and the ROM’s as the dimension of the reduced space increases, measured in
L2 norm and H1 semi-norm for the velocities, and L2 norm for the pressure. A table comparing relevant
computational details between the ROM and the FOM is also shown for each archetype. The ROM’s in these
tables were created using the POD algorithm introduced in Section 2.3.2. Following the sections on each
individual archetype, we discuss noteworthy observations for each archetype.

Once each archetype have been presented and discussed, we turn to our component based approach. We
investigate the error between two connected ROM archetypes relative to a full order single-domain approach,
and consider how much the connection contributes to the relative error.

Finally we present three example systems, constructed from multiple archetypes. We analyse the loss of
volume flow through the system, relative to to the inlet flow. Due to the complexity of the pipe systems, no
equivalent FOMs were created for comparison, as this proved to be too time consuming.
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6.1 Archetype 0

(a) ROM x-velocity, µ = [0, 0, 1] (b) ROM pressure, µ = [0, 0, 1]

(c) ROM x-velocity, µ = [.5, .1, 3] (d) ROM pressure, µ = [.5, .1, 3]

(e) ROM x-velocity, µ = [−.3, .2, 6] (f) ROM pressure, µ = [−.3, .2, 6]

Figure 15: Archetype 0 : Three example ROM solutions. The y-velocities are zero, hence not shown here.
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Figure 16: Archetype 0 : Relative differences between the FOM’s and the ROM’s, averaged over all 43 = 64
snapshots. The relative norms of the y-velocities are rather large since the y-velocities are theoretically zero,
thus ||uy − uy,h||/||uy|| ≈ 0/0. Note that machine precision is achieved for the other quantities with only one
basis vector, due to the simplicity of this archetype.

FOM ROM

Total dofs: 11297 Total dofs: 6

Velocity dofs: 2 · 4960 Velocity dofs: 2 · 2

Pressure dofs: 1377 Pressure dofs: 2

Solution time: ∼ 2.2 s. Solution time: ∼ 7 ms.

Snapshots: 64 εPOD: 10−4

Table 1: Archetype 0 : Computational details. ROM dofs were chosen with the POD algorithm.
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6.2 Archetype 1

(a) ROM x-velocity, µ = [0, 0, 0, 0, 0, 1] (b) ROM y-velocity, µ = [0, 0, 0, 0, 0, 1]

(c) ROM absolute velocity, µ = [0, 0, 0, 0, 0, 1] (d) ROM pressure, µ = [0, 0, 0, 0, 0, 1]

(e) ROM and FOM, absolute velocity difference. (f) ROM and FOM, pressure difference.

Figure 17: Archetype 1 : The initial ROM solutions, and the difference between the FOM and the ROM.
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(a) ROM x-velocity, µ = [−.5, 0, 1,−.5,−.5, 1] (b) ROM y-velocity, µ = [−.5, 0, 1,−.5,−.5, 1]

(c) ROM absolute velocity, µ = [−.5, 0, 1,−.5,−.5, 1] (d) ROM pressure, µ = [−.5, 0, 1,−.5,−.5, 1]

Figure 18: Archetype 1 : ROM solutions for a case with a wide closed cavitation and a short inlet and outlet.
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Figure 19: Archetype 1 : Relative differences between the FOM’s and the ROM’s, averaged over all 36 = 729
snapshots.

FOM ROM

Total dofs: 13553 Total dofs: 57

Velocity dofs: 2 · 5952 Velocity dofs: 2 · 19

Pressure dofs: 1649 Pressure dofs: 19

Solution time: ∼ 11.2 s. Solution time: ∼ 20 ms.

Snapshots: 729 εPOD: 10−4

Table 2: Archetype 1 : Computational details.ROM dofs were chosen with the POD algorithm.
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6.3 Archetype 2

(a) ROM x-velocity, µ = [0, 0, 0, 0, 0, 1] (b) ROM y-velocity, µ = [0, 0, 0, 0, 0, 1]

(c) ROM absolute velocity, µ = [0, 0, 0, 0, 0, 1] (d) ROM pressure, µ = [0, 0, 0, 0, 0, 1]

(e) ROM and FOM, absolute velocity difference. (f) ROM and FOM pressure difference.

Figure 20: Archetype 2 : Initial ROM solutions, and the difference between the FOM and the ROM.
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(a) ROM x-velocity, µ = [−.2,−.25,−.5, .4, .5, 4] (b) ROM y-velocity, µ = [−.2,−.25,−.5, .4, .5, 4]

(c) ROM absolute velocity, µ = [−.2,−.25,−.5, .4, .5, 4] (d) ROM pressure, µ = [−.2,−.25,−.5, .4, .5, 4]

Figure 21: Archetype 2 : ROM solutions for a case with narrow vertical outlet. Notice that the dominant flow
occurs in the horizontal outlet pipe.
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(a) ROM x-velocity, µ = [−.5, 0, 0,−.5, 1, 7] (b) ROM y-velocity, µ = [−.5, 0, 0,−.5, 1, 7]

(c) ROM absolute velocity, µ = [−.5, 0, 0,−.5, 1, 7] (d) ROM pressure, µ = [−.5, 0, 0,−.5, 1, 7]

Figure 22: Archetype 2 : ROM solutions for a case with a short vertical outlet and a long horizontal outlet.
Most of the flow occurs in the vertical outlet pipe, as the shorter pipe implies a larger pressure gradient.

47



Figure 23: Archetype 2 : Relative differences between the FOM’s and the ROM’s, averaged over all 36 = 729
snapshots.

FOM ROM

Total dofs: 15871 Total dofs: 84

Velocity dofs: 2 · 6975 Velocity dofs: 2 · 28

Pressure dofs: 1921 Pressure dofs: 28

Solution time: ∼ 14.9 s. Solution time: ∼ 22 ms.

Snapshots: 729 εPOD: 10−4

Table 3: Archetype 2 : Computational details.ROM dofs were chosen with the POD algorithm.
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6.4 Archetype 3

(a) ROM x-velocity, µ = [0, 0, 0, 0, 1] (b) ROM y-velocity, µ = [0, 0, 0, 0, 1]

(c) ROM absolute velocity, µ = [0, 0, 0, 0, 1] (d) ROM pressure, µ = [0, 0, 0, 0, 1]

(e) ROM and FOM, absolute velocity difference. (f) ROM and FOM, pressure difference.

Figure 24: Archetype 3 : Initial ROM solutions, and the difference between the FOM and the ROM.
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(a) ROM x-velocity, µ = [−.5, 1,−.5, 0, 1] (b) ROM y-velocity, µ = [−.5, 1,−.5, 0, 1]

(c) ROM absolute velocity, µ = [−.5, 1,−.5, 0, 1] (d) ROM pressure, µ = [−.5, 1,−.5, 0, 1]

Figure 25: Archetype 3 : ROM solutions for a case with a wide inlet and a narrow outlet. Note the velocity
increase due to the contraction of the pipe.

50



Figure 26: Archetype 3 : Relative differences between the FOM’s and the ROM’s, averaged over all 35 = 243
snapshots.

FOM ROM

Total dofs: 11297 Total dofs: 51

Velocity dofs: 2 · 4960 Velocity dofs: 2 · 17

Pressure dofs: 1377 Pressure dofs: 17

Solution time: ∼ 6.2 s. Solution time: ∼ 16 ms.

Snapshots: 243 εPOD: 10−4

Table 4: Archetype 3 : Computational details.ROM dofs were chosen with the POD algorithm.
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6.5 Archetype 5

(a) ROM x-velocity, µ = [0, 0, 0, 1] (b) ROM y-velocity, µ = [0, 0, 0, 1]

(c) ROM absolute velocity, µ = [0, 0, 0, 1] (d) ROM pressure, µ = [0, 0, 0, 1]

(e) ROM, and FOM, absolute velocity difference. (f) ROM and FOM, pressure difference.

Figure 27: Archetype 5 : Initial ROM solutions, and the difference between the FOM and the ROM.

52



(a) ROM x-velocity, µ = [0, 0, 1, 1] (b) ROM y-velocity, µ = [0, 0, 1, 1]

(c) ROM absolute velocity, µ = [0, 0, 1, 1] (d) ROM pressure, µ = [0, 0, 1, 1]

Figure 28: Archetype 5 : ROM solutions for a case with a relatively wide inlet and outlet. Notice the decrease
in pressure and maximum velocity compared to Figure 27.
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Figure 29: Archetype 5 : Relative differences between the FOM’s and the ROM’s, averaged over all 4 · 33 = 108
snapshots.

FOM ROM

Total dofs: 10670 Total dofs: 33

Velocity dofs: 2 · 4671 Velocity dofs: 2 · 11

Pressure dofs: 1328 Pressure dofs: 11

Solution time: ∼ 13.4 s. Solution time: ∼ 28 ms.

Snapshots: 108 εPOD: 10−4

Table 5: Archetype 5 : Computational details. ROM dofs were chosen with the POD algorithm.
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6.6 Archetype 6

(a) ROM x-velocity, µ = [0, 0, 1] (b) ROM y-velocity, µ = [0, 0, 1]

(c) ROM absolute velocity, µ = [0, 0, 1] (d) ROM pressure, µ = [0, 0, 1]

(e) ROM and FOM, absolute velocity difference. (f) ROM and FOM, pressure difference.

Figure 30: Archetype 6 : Initial ROM solutions, and the difference between the FOM and the ROM.
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(a) ROM x-velocity, µ = [−.2, .3, 5] (b) ROM y-velocity, µ = [−.2, .3, 5]

(c) ROM absolute velocity, µ = [−.2, .3, 5] (d) ROM pressure, µ = [−.2, .3, 5]

Figure 31: Archetype 6 : ROM solutions for a case with a wide inlet and a narrow outlet.
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Figure 32: Archetype 6 : Relative differences between the FOM’s and the ROM’s, averaged over all 4 · 62 = 144
snapshots.

FOM ROM

Total dofs: 18161 Total dofs: 27

Velocity dofs: 2 · 8000 Velocity dofs: 2 · 9

Pressure dofs: 2161 Pressure dofs: 9

Solution time: ∼ 10.5 s. Solution time: ∼ 13 ms.

Snapshots: 144 εPOD: 10−4

Table 6: Archetype 6 : Computational details. ROM dofs were chosen with the POD algorithm.
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6.7 Archetype 7

(a) ROM x-velocity, µ = [0, 0, 1] (b) ROM y-velocity, µ = [0, 0, 1]

(c) ROM absolute velocity, µ = [0, 0, 1] (d) ROM pressure, µ = [0, 0, 1]

(e) ROM and FOM, absolute velocity difference. (f) ROM and FOM, pressure difference.

Figure 33: Archetype 7 : Initial ROM solutions, and the difference between the FOM and the ROM.
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(a) ROM x-velocity, µ = [.2,−.3, 5] (b) ROM y-velocity, µ = [.2,−.3, 5]

(c) ROM absolute velocity, µ = [.2,−.3, 5] (d) ROM pressure, µ = [.2,−.3, 5]

Figure 34: Archetype 7 : ROM solutions for a case with a relatively wide inlet.
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Figure 35: Archetype 7 : Relative differences between the FOM’s and the ROM’s, averaged over all 4 · 62 = 144
snapshots.

FOM ROM

Total dofs: 18225 Total dofs: 30

Velocity dofs: 2 · 8032 Velocity dofs: 2 · 10

Pressure dofs: 2161 Pressure dofs: 10

Solution time: ∼ 10.4 s. Solution time: ∼ 14 ms.

Snapshots: 144 εPOD: 10−4

Table 7: Archetype 7 : Computational details. ROM dofs were chosen with the POD algorithm.
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6.8 Noteworthy observations for the single components

Table 8 shows the relative norms of each archetype with their initial parameters. The dofs of the ROM were
chosen by the POD-algorithm, with εPOD = 10−4. We will now discuss important observations from each of
the archetypes:

• Archetype 0 : The velocity of this archetype is strictly one-dimensional, thus the relative norm of the
y-velocity is excluded from Figure 8.From Figure 16 we see that the average relative errors of the pressure
and x-velocity reaches machine-precision with only one singular vector as basis for the RB-space, making
this ROM extremely efficient.

• Archetype 1 : From sub-figures 17e, 17f, it is clear that the closed bifurcation causes some error in the
corners, especially for the pressure. This can also be seen in Figure 19, where the average pressure error
is significantly higher than the average error in the velocities.

• Archetype 2 : Compared to the previous archetype, opening the bifurcation results in a reduction in the
average pressure error, see Figure 23. Most of the pressure error still accumulates from the corners, but
to a much lesser extent. When changing the diameter and length of the two outlets, there is a notable
change in the resulting volume flow. The dominant flow occurs in the shorter and wider outlet pipes, as
one would expect. In the next section however we shall see that once the bifurcated pipe is connected
to another archetype, our model fails, deeming this archetype infeasible with our way of handling the
couplings.

• Archetype 3 : From sub-Figure 24f, we notice once again that the majority of the pressure error occurs in
the corner. Figure 26 shows that the average pressure error is notably larger than the average velocity
errors, however not to the same extent as with archetype 1.

• Archetype 4 : Since this archetype is the mirror-image of archetype 3, there are no additional notable
observations.

• Archetype 5 : From Figure 29 we see that this archetype converges much faster than every previous
archetype except archetype 0. There are some notable spots close to the blockage where the most of the
pressure error accumulates, similar to the other archetypes. Worth noting is that the partially blocked pipe
induces higher pressures and greater velocities than its open counterpart, archetype 0 (see sub-figures 27a,
27d). We also observe from Figure 28 that as the relative width of the archetype increases, the maximum
velocity and pressure decreases, as a smaller cross-section of the pipe is effectively blocked.

• Archetype 6 : Figure 32 shows good convergence, achieving machine precision by 30 basis vectors. Figure 12
shows how the error propagates from the corners, as with the other archetypes.

• Archetype 7 : Table 8 shows how this archetype is the most accurate apart from archetype 0. Machine
precision is achieved by 30 basis vectors, with quite similar convergence results as archetype 6.
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Archetype:
|ux − ux,r|H1

|ux|H1

|uy − uy,r|H1

|uy|H1

||p− pr||L2

||p||L2

Ω0 1.57 · 10−9 — 5.84 · 10−11

Ω1 3.29 · 10−3 3.65 · 10−2 9.76 · 10−3

Ω2 1.04 · 10−3 3.46 · 10−3 1.74 · 10−3

Ω3 3.75 · 10−3 6.99 · 10−3 2.50 · 10−3

Ω4 3.75 · 10−3 6.99 · 10−3 2.50 · 10−3

Ω5 1.12 · 10−3 3.94 · 10−3 1.31 · 10−4

Ω6 3.06 · 10−3 1.56 · 10−2 1.01 · 10−3

Ω7 8.44 · 10−4 7.36 · 10−3 6.25 · 10−4

Table 8: Relative norms between the FOM and the ROM of all the archetypes, for their initial parameters. The
dofs of the ROM were chosen with the POD algorithm.

6.9 Assembling the system, two-component error analysis

In this section we will look at difference plots and relative norms between two connected ROMs and an equivalent
full order, single domain model. Norms are measured relative to the FOM, with the H1-semi norm for velocities
and the L2-norm for pressure. The degrees of freedom for each archetype are once again chosen with the POD
algorithm, hence they are the same as in the previous sections. We will look at five pairs of archetypes, to give
an indication of how the error is compounded. Finally we discuss some noteworthy observations from each of
the combinations.
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6.9.1 Archetype 0 and 1

(a) Absolute velocity, FOM. (b) Pressure, FOM.

(c) Absolute velocity, ROM. (d) Pressure, ROM.

(e) Absolute velocity difference, FOM and ROM. (f) Pressure difference , FOM and ROM.

Figure 36: Archetype 0 and 1 : Absolute velocity, pressure, and the resulting error from combining the two
archetypes.
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6.9.2 Archetype 1 and 2

(a) Absolute velocity, FOM. (b) Pressure, FOM.

(c) Absolute velocity, ROM. (d) Pressure, ROM.

(e) Absolute velocity difference, FOM and ROM. (f) Pressure difference , FOM and ROM.

Figure 37: Archetype 1 and 2 : Absolute velocity, pressure, and the resulting error from combining the two
archetypes.
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6.9.3 Archetype 2 and 3

(a) Absolute velocity, FOM. (b) Pressure, FOM.

(c) Absolute velocity, ROM. (d) Pressure, ROM.

(e) Absolute velocity difference, FOM and ROM. (f) Pressure difference , FOM and ROM.

Figure 38: Archetype 2 and 3 : Absolute velocity, pressure, and the resulting error from combining the two
archetypes.
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6.9.4 Archetype 5 and 3

(a) Absolute velocity, FOM. (b) Pressure, FOM.

(c) Absolute velocity, ROM. (d) Pressure, ROM.

(e) Absolute velocity difference, FOM and ROM. (f) Pressure difference , FOM and ROM.

Figure 39: Archetype 5 and 3 : Absolute velocity, pressure, and the resulting error from combining the two
archetypes.
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6.9.5 Archetype 6 and 5

(a) Absolute velocity, FOM. (b) Pressure, FOM.

(c) Absolute velocity, ROM. (d) Pressure, ROM.

(e) Absolute velocity difference, FOM and ROM. (f) Pressure difference , FOM and ROM.

Figure 40: Archetype 6 and 5 : Absolute velocity, pressure, and the resulting error from combining the two
archetypes.
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6.9.6 Noteworthy observations for coupled components

Table 9 shows the relative norms of each archetype with their initial parameters. This is the same table as
table 8, but we include it here as well to ease the comparisons. Table 10 shows the relative norms for each of
the five combined systems, relative to the total FOM equivalent. Given that our approach for connecting the
archetypes contributes negligibly to the error, we expect the relative error of the combined archetypes to be
somewhere between the relative error for each of its individual components. The dofs of the ROMs were chosen
by the POD-algorithm, with εPOD = 10−4. We will now discuss important observations:

• Archetype 0 and 1 : From Figure 36 it is clear that almost all the error accumulates in the second archetype,
the closed bifurcation. This is to be expected, as the error in velocity and pressure of archetype 0 is seven
orders of magnitude smaller than the other archetypes. From the difference figures 36e, 36f we see that
there is no visible error in the connection boundary at x = 1. Comparing Table 9 and 10, we see that
the combined relative error is lower than the individual relative error, both for the x-velocity and the
pressure. The error in the y-velocity for the combined model is almost identical to that of archetype 1,
since archetype 0 has zero y-velocity.

• Archetype 1 and 2 : From Sub-figure 37e we see that our method of connecting the archetypes actually
improves the error plot, as the correct parabolar velocity shape is enforced through this method. From
table 8 and 10, we see that all of the relative norms of the combined model lie in between the relative
norms of the individual components.

• Archetype 2 and 3 : This archetype pair illustrates why our method fails for the pipe with two outlets.
From Figure 38 we can clearly see how the dominant flow in the FOM occurs in the first bifurcation,
but in the ROM the volume flow is equal in both pipes. Comparing the pressures, it is clear that the
outlet pressure of the first bifurcation in the ROM is higher than in the FOM. Our method has no way
of retroactively changing the pressure gradient of the previous archetype, thus we omit archetype 2 from
further systems. Table 10 also show how much the ROM solution deviates from the FOM solution.

• Archetype 5 and 3 : Sub-figure 39f shows how most of the pressure error accumulates in the corner of
archetype 3. Comparing table 9 and 10, we see that the relative error of the combined archetypes lies in
between the relative error of the individual archetypes for the x-velocity and the pressure. However for the
y-velocity, the combined archetypes have a higher relative norm than both of its individual components.
This is probably due to the inlet of archetype 3 being too short for the one-dimensional inlet-velocity
assumption to hold. By studying Sub-figure 39e we see that there is some error at the connection boundary
at x = 1, further implying that the inlet of archetype 3 is too short in this case.

• Archetype 6 and 5 : Figure 40 shows once again how the error accumulates around the corner of the
archetypes. Tables 9 and 10 show how the relative velocity errors of the combined model lie in between
the relative velocity error of each individual archetype. However, somehow the relative pressure error is
lower for the combined model than the relative pressure error of its components.
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Archetype:
|ux − ux,r|H1

|ux|H1

|uy − uy,r|H1

|uy|H1

||p− pr||L2

||p||L2

Ω0 1.57 · 10−9 — 5.84 · 10−11

Ω1 3.29 · 10−3 3.65 · 10−2 9.76 · 10−3

Ω2 1.04 · 10−3 3.46 · 10−3 1.74 · 10−3

Ω3 3.75 · 10−3 6.99 · 10−3 2.50 · 10−3

Ω4 3.75 · 10−3 6.99 · 10−3 2.50 · 10−3

Ω5 1.12 · 10−3 3.94 · 10−3 1.31 · 10−4

Ω6 3.06 · 10−3 1.56 · 10−2 1.01 · 10−3

Ω7 8.44 · 10−4 7.36 · 10−3 6.25 · 10−4

Table 9: Relative norms between the FOM and the ROM of all the archetypes, for their initial parameters. The
dofs of the ROM were chosen with the POD algorithm.

Archetypes:
|ux − ux,r|H1

|ux|H1

|uy − uy,r|H1

|uy|H1

||p− pr||L2

||p||L2

Ω0 ∪ Ω1 3.07 · 10−3 3.64 · 10−2 3.61 · 10−3

Ω1 ∪ Ω2 3.61 · 10−3 1.15 · 10−2 4.20 · 10−3

Ω2 ∪ Ω3 3.33 · 10−1 4.43 · 10−1 8.88 · 10−1

Ω5 ∪ Ω3 2.07 · 10−3 5.77 · 10−2 3.08 · 10−4

Ω6 ∪ Ω5 1.66 · 10−3 5.13 · 10−3 1.03 · 10−4

Table 10: Relative norms of some of the archetype pairs, compared to the single domain, FOM equivalent, for
their initial parameters. The dofs of the ROM were chosen with the POD algorithm.

6.10 Full system examples

In this section we show three examples of how the archetypes can be connected to create a complete system.
We omit the use of archetype 2, due to the previously mentioned issues the bifurcation causes. We also measure
the volume inflow and outflow of each system, to calculate the relative error in the volume flow of the system.
The connection boundaries between each archetype are indicated by dashed lines in the velocity figures. We’ve
added contour lines for the pressure figures to better illustrate where the pressure gradient is the steepest.
Unfortunately calculating the norm of a complete FOM proved to be very difficult, as the combined domains
get very complex as more archetypes are added. Thus we only compare the in-flux of the system to the out-flux
of the system. Note that the inlet of each system is located at (x, y) = (0, 0).

69



6.10.1 A1 – The first system

Figure 41: The first system : Absolute velocity of a complete system created from archetypes 0, 3 and 4. The
dotted lines marks the intersections between the archetypes.
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Figure 42: The first system : Pressure of a complete system created from archetypes 0, 3 and 4.
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6.10.2 A2 – The second system

Figure 43: The second system : Absolute velocity of a complete system created from archetypes 1, 3 and 4. The
dotted lines marks the intersections between the archetypes.
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Figure 44: The second system : Pressure of a complete system created from archetypes 1, 3 and 4.
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6.10.3 A3 – The third system

Figure 45: The third system : Absolute velocity of a complete system created from archetypes 0, 1, 3, 4, 5, 6
and 7. The dotted lines marks the intersections between the archetypes.
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Figure 46: The third system : Pressure of a complete system created from archetypes 0, 1, 3, 4, 5, 6 and 7.
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System: Total components: Time elapsed: Vin Vout

∣∣∣Vin − Vout

Vin

∣∣∣
A1 13 0.712s 0.4 0.40153 3.82 · 10−3

A2 28 1.893s 0.13333 0.13349 1.19 · 10−3

A3 19 1.402s 0.09333 0.09339 6.17 · 10−4

Table 11: Computational details from the three example systems, as well as volume inflow, outflow, and relative
volume flow error.

7 Conclusions

Through this thesis we have investigated component-based Reduced Order Model (ROM) to model the Stokes
equation in an arbitrary system of pipes. The pipe-systems were created by combining predefined archetypes,
where the geometry of each archetype could be altered by changing some geometrical parameters. Component-
based ROM shows great promise when dealing with such large-structure problems where it is necessary to solve
the system multiple times for different parameter values.

Breaking the problem into smaller sub-problems and solving them individually does reduce a lot of the
complexity, while the ROM significantly improves the time spent both setting up and solving the individual
problems. For the Stokes equation, this component-based approach proved to be very effective, although with
some noteworthy drawbacks. In cases where the system had multiple outlets, both the pressure and the velocity
of the Component-based ROM did not match its single domain, Full Order Model (FOM) equivalent. This
could possibly be solved with some special boundary conditions allowing us to alter the pressure gradient when
needed. For flow in a pipe-system with a singular inlet and outlet however, the results were satisfactory. For
each individual component, the linear system were solved 300−1000 times faster with the ROM than the FOM,
with a typical relative error between the FOM and the ROM of 10−3.

For the full pipe-systems, the relative difference in the inlet and outlet volume flow were found to be below
0.5%, even for the larger systems of multiple components. A completely new system could be generated in ∼ 1
second, where an equivalent Full Order Model (FOM) with ∼ 105 dofs would take ∼ 300 seconds to compute.
Thus we conclude that this approach, with some alteration to better handle bifurcations, definitely could be
viable to model and monitor a wide range of pipe-systems.
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