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Summary

Forecasting of time series is to predict future values based on historical values us-
ing models somehow describing the time series data. Making informative estim-
ates of the future are a useful tool used by our society every day. Businesses use
it to plan productions based on estimated demands and investors to predict stock
returns. Statistical forecasting methods have traditionally been giving the best
estimates. However, Machine Learning approaches have recently given perform-
ances outperforming them. Long Short-Term Memory neural networks (LSTMs)
have become popular for sequential data like time series and are used in this
thesis.

Missing data are values not observed for a variable of interest and are often
found in real-world time series. Forecasting time series with missing data is chal-
lenging since most forecasting techniques require the time series to be complete.
Thus, the missing values must be handled properly or suffer from reduced stat-
istical power and biased estimates. We want a forecasting model that handles
missing values robustly. We add a Missing Value Indicator (MVI) to the model in-
put representing where values are missing (1) and not (0), as this has shown to be
a robust way of handle missing values in my specialization project. This approach
handles missing data directly and incorporates the pattern of the missing values
into the model.

The Makridakis competitions have recently shown promising results for global
models. Global models are trained with numerous time series and can forecast
all of them, in contrast to local models where every time series has individual
forecasting models. Another learning method of increasing popularity is Multi-
task Learning. A multi-task learning model is trained jointly on related tasks to
improve the individual tasks by utilizing information from each other. We hypo-
thesize forecasting and imputation to be related tasks and train them in a global
multi-task model.

A global, multi-task bi-directional LSTM forecasting model with robust hand-
ling of missing values and the auxiliary task imputation is explored in this thesis.
Through the experiments, the architecture of the bi-LSTM block, the weighting of
the imputation loss, and the amount of missing data in the time series are varied.
The main objective is to find out if imputation can improve forecasting.

We use two different data sets, a synthetic, simulated data set from SARIMA
processes and a real-world electricity data set. We find the suggested multi-task
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forecasting model to perform better than the single-task model. Especially for
higher ratios of missing values in the test data. However, for some model archi-
tectures, the imputation task is helping the forecasting performance for all ratios
of missing values. The model performs best on the real-world electricity data,
where a Bi-LSTM model with three hidden layers gives the best utilization of the
auxiliary task imputation. Another finding is that an additional ReLU layer makes
the single-task forecasting model more robust.



Samandrag

Manglande data er ikkje-observerte verdiar for ein variabel, og er ofte å finne i tid-
srekkjer frå den verkelege verda. Ved å lage modellar som beskriv tidsrekkjer kan
ein lage estimat på framtidige verdiar av det tidsrekkja beskriv. Dette er eit nyttig
verkty som blir brukt i samfunnet rundt oss på kvardagsleg basis. Verksemder es-
timerer etterspørsel og kan planleggje produksjon deretter. Investorar brukar det
til å estimere aksjeavkastningar. Tradisjonelt er det statistiske metodar som har
gjort det best på dette området, men i det siste har maskinlæringsmetodar blitt
populære og både konkurrerer med og gjer det betre enn dei klassiske metodane.
For data som tidsrekkjer har det nevrale nettverket LSTM gjort det bra på grunn
av sitt minne, og er den type læringsmodell som blir brukt i denne oppgåva.

Oppgåva å estimere framtidige verdiar av tidsrekkjer når dei inneheld manglande
data er utfordrande, då dei fleste metodane krev fullstendig data. Difor må dei
handterast på best mogleg måte, om ikkje vil det kunne føre til redusert statistisk
haldbarheit og innføring av bias. Me ynskjer at modellen som skal estimere framti-
dige verdiar også skal kunne handtere manglande data på ein robust måte. Måten
det blir gjort på i denne oppgåva er å utvide tidsrekkjene med ein binær variabel
som indikerer kvar i tidsrekkja verdiane manglar (1) og er observert (0). Dette er
det nye dataformatet som læringsmodellen vil bli trena med, og slik kan modellen
direkte handtere manglande data ved å inkorporere mønsteret av dei manglande
verdiane i modellen. I prosjektoppgåva mi viste denne metoden seg for å vere
robust mot aukande andelar av manglande data.

Makridakis-konkurransane har nyleg vist lovande resultat for globale model-
lar. Globale modellar er trena med mange tidsrekkjer og kan estimere framtidige
verdiar for dei alle. Ein annan læringsmetode av aukande popularitet er noko kalla
multitask læring. Då bli ein modell trena til å lære seg fleire relaterte oppgåver
samtidig med håpet om at modellen kan dra utnytte av relasjonen mellom dei for
å gjere dei individuelle oppgåvene betre. I denne oppgåva blir det utforska om det
å estimere framtidige verdiar og estimere manglande verdiar er relaterte, og om
det å estimere manglande data kan forbetre estimeringa av framtidige verdiar.

Det er altså ein global, multitask bi-LSTM modell som robust kan handtere
manglande data som blir utforska i denne oppgåva. Hovudfokuset er å sjå om
modellen trena for både estimering av framtidige og manglande verdiar vil gjere
det betre enn modellen berre trena for estimering av framtidige verdiar. Gjennom
eksperimenta er det fleire ting som blir varier for å sjå korleis det har innverknad
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på resultatet. Dette er arkitekturen til det nevrale nettverket, vektinga av den ek-
stra oppgåva, samt kor mykje manglande data det er i tidsrekkjene. To ulike data-
sett blir brukt i ekperimenta, nemleg eit syntetisk og simulert SARIMA datasett,
og eit elektrisitetsdatasett frå den verkelege verda. Me finn modellen til å op-
pføre seg robust mot manglande data, og den ekstra oppgåva med å estimere dei
manglande verdiane forbetrer hovudoppgåva i mange av eksperimenta. Særleg er
resultata signifikante for elektrisitetsdatasettet når det er mykje data som mang-
lar. Den modellen som i størst grad får utbytte av hjelpeoppgåva er nettverket
med tre gøymde lag på elektrisitetsdatasettet. Denne modellen forbetrar estimata
av framtidige verdiar for alle gradar av manglande data. Me finn også at model-
len berre trena for estimering av framtida blir meir robust når det blir lagt til eit
ikkje-lineært ReLU lag i modellen.
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Chapter 1

Introduction

1.1 Motivation

A time series is a time-oriented or chronological sequence of observations of a
variable of interest [1]. Time series data appears everywhere since time is a com-
ponent in everything observable. In addition, the digitalization of the world leads
to sensors and systems constantly logging data in an unstoppable stream of time
series data. This large amount of available data can potentially be of great value.
A way of transforming the data into something useful is forecasting. A forecast
is a prediction of some future event or trend based on historical observed data.
With good estimates of the future, factories can estimate their product demands
and plan their production. Investors can forecast the returns of their stocks or the
risk associated with them. Governments use population growth forecasts to plan
policy and social service actions like health resources, retirement programs, and
kindergartens [1]. Hence, forecasting plays a role in our everyday lives.

In many time series, missing values appear. They occur due to human er-
rors like manual data entry and incorrect measurements or defective sensors and
equipment. Some standard ways of handling missing data are deleting and im-
putation, meaning that the missing values are either left out or replaced with a
single substitute. In time series, the temporal dependency is essential, and delet-
ing values may interrupt this continuity, and imputation methods may change the
original times series, causing reduced statistical power and biased estimations [2].

A forecasting model robustly handling missing values is to desire. Developing
a robust forecasting baseline that is simple, easy to implement, and naive against
time-series-specific details is helpful for further understanding and investigation
of the topic. My specialization project aimed to determine if training an LSTM
neural network with input added a Missing Value Indicator (MVI) for handling
missing data gave robust forecasts. The MVI is a binary variable indicating if a
value is missing (1) or not (0). With this approach, the method directly handles
the missing values without imputation or similar methods and incorporates the
missing value pattern into the forecasting task. This study showed that the model
behaved more robust than the LSTM model tested on imputed data when the
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number of missing values increased.

With the result from the specialization project in mind, we want to explore if
the model can be improved further by utilizing information from a similar task.
Imputation predicts missing values while forecasting predicts future values. We
want to explore if the tasks of forecasting and imputation are related and if the
imputation task can improve the forecasting task. The approach of training a single
model to learn several tasks is referred to as Multi-task learning. The tasks share
representation during training, and in this manner, forecasting utilizes informa-
tion from the imputation task that potentially leads to better forecasts.

This thesis investigates whether imputation and forecasting are related tasks
and if the imputation task can help improve the robust forecasting model from my
specialization project further. A bi-directional LSTM neural network is trained to
learn the tasks of forecasting and imputation jointly, with forecasting as the main
task. Both tasks have linear output layers for their individual tasks. The model
is fed univariate time series data with a missing value indicator feature handling
missing values. Additionally, the model is trained on numerous time series, mak-
ing the model global, a promising approach from the M4 Makridakis competition.
Analogous to Multi-task models, where the model utilizes information from dif-
ferent tasks, global models utilize information from numerous time series.

1.2 Research Questions

• Q1: Can forecasting of univariate time series with missing data benefit from
its relation to imputation of missing values and perform better when the
tasks are learned jointly in a multi-task model?

• Q3: Does the amount of missing data in the test data set affect the benefit
of the multi-task model, and how robust is the model against an increase of
missing data?

• Q3: How does the model architecture affect the performance of the multi-
task model?

1.3 Contributions

A robust bi-LSTM forecasting model for time series containing missing data is
explored. Imputation of the missing time series values is added as a task to the
forecasting model to see if the robust model can be further improved by the addi-
tional information from the related task. We find that there is a relation between
the tasks and that imputation can significantly improve forecasting in some cases,
making the model more robust.
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1.4 Thesis structure

The outline of the thesis is as follows. Chapter 2 introduces the theory and con-
cepts behind time series, forecasting techniques, missing data, neural networks,
global models, and multi-task learning. The theory chapter also presents the thesis
model. A review of the literature in the fields of global forecasting, multi-task
models, and missing data handling techniques is given in Chapter 3. Chapter 4
describes the data sets, the necessary preprocessing steps, and the experimental
setup before results and discussions are given in Chapter 5. Lastly, the conclusion
from the experiments and possible future work are presented in Chapter 6.





Chapter 2

Theory

2.1 Time Series

Time series can be defined as a collection of random variables indexed according
to the order they are obtained in time. Generally, a collection of random variables
indexed by t can be thought of as a stochastic process. The notation used for
the stochastic process is X = {x t} with x t being the observations/realizations at
time t. The term time series is used to refer to both a general stochastic process
and specific realizations. The temporal dependence is introducing a correlation
between the data points. This correlation restricts the applicability of many statist-
ical data analysis methods because they assume the data points to be independent
and identically distributed [3]. This gives rise to the field of time series analysis.
Time series data appears everywhere since time is a component of everything ob-
servable. Potential information of great value for many companies and similar is
hidden in the great amount of data.

There is a distinction between univariate and multivariate time series. A time
series with one single variable varying over time is called a univariate time series.
Once the time series contains two or more variables, it is a multivariate time series.
The type considered in this thesis is univariate time series. The time considered
is discrete-time, meaning the observations are taken at equally spaced points in
time, and the task we focus on is forecasting of time series.

2.2 Forecasting

Forecasting univariate time series is the process of making predictions of future
values based on previous values using models describing the time series. Accurate
forecasts are essential and helpful guidance for informative planning and sound
decisions. For example, an application of importance from the real world this year
is to forecast the trend of newly infected people of the coronavirus to plan the
opening of the society and the distribution of vaccines.

The Makridakis Competitions allow researchers and practitioners to explore
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and invent new time series forecasting models and approaches. The first com-
petition resulted from statisticians criticizing Makridakis and Hibon’s article [4]
published in the Journal of The Royal Statistical Society in 1978. Their results
showed that simple methods could perform well compared to more complex and
sophisticated ones, and the statisticians meant their results were impossible [5].
There have been five Makridadis competitions so far, the last ones results were
published in 2020 [6].

The literature mainly distinguishes between two different branches of fore-
casting, namely statistical- and Machine Learning(ML) approaches. The forecast-
ing model proposed in this thesis is a machine learning model. The next sections
introduce some of the most widely used techniques in both statistical and machine
learning forecasting.

The notation used in the following sections is as follows: The subscript t indic-
ates time, hence x t is the observation at time t. We denote a forecast of x t based
on the history up to time t−1 with a hat, x̂ t|t−1. If we want to forecast more than
one step, we denote the forecast as x̂ t+h|t where h is the horizon of the forecast. If
h> 1 it is referred to as multi-step forecasting. However the horizon in this thesis
is one-step-ahead forecasting.

2.3 Statistical Forecasting Methods

In the classic statistical approach, the primary objective of time series analysis is
to build a mathematical model to describe the data [3]. The desired forecast can
be considered as a random variable because it is unknown. Some of the methods
are very simple, but in many cases effective. The theory behind the statistical
forecasting methods introduced below are inspired by [7].

2.3.1 Average Method

In the Average Method, the forecast is simply the average/mean of all the histor-
ical data,

x̂ t+h|t =
1
t

t
∑

i=1

x i . (2.1)

This method can be efficient for time series with small variance and values
close to the mean.

2.3.2 Naïve and SNaïve

The Naïve forecasting method assumes that the stochastic model generating the
time series is the random walk, so that the forecast for every horizon, h, is the last
observed value. This method is often used as a benchmark model. Mathematically
it can be defined as,
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x̂ t+h|t = x t .

An extension of this is SNaïve, where S stands for seasonal. In this model, it is
assumed that the time series has a seasonal pattern. Seasonal patterns occur when
seasonal factors influence the behavior of the time series. The seasonal period, m,
is always fixed and known. For example, hourly electricity demand data is expec-
ted to have daily seasonality, thus the seasonal period becomes m= 24. A seasonal
naive forecast can thus predict a value to be the same as the corresponding obser-
vation for the last seasonal period. The forecast for the horizon h is then

x̂ t+h|t = x t+h−m.

2.3.3 Exponential smoothing

Exponential smoothing is one of the most successful classical forecasting meth-
ods. The most basic form of exponential smoothing is called simple exponential
smoothing. The forecasts are calculated using weighted averages of past obser-
vations. The weights decrease exponentially looking back in time such that the
smallest weights are associated with the oldest observations. The one-step-ahead
forecast at time t is given by

x̂ t+1|t = αx t + (1−α) x̂ t|t−1. (2.2)

0 ≤ α ≤ 1 is called the smoothing parameter. Equation (2.2) is recursive and
can be rewritten as

x̂ t+1|t = αx t +α(1−α)x t−1 +α(1−α)2 x t−2 + ...+ (1−α)t l0 (2.3)

=
t−1
∑

j=0

α(1−α) j x t− j + (1−α)t l0, (2.4)

where l0 is the starting point of the process. This forecasting function is "flat",
meaning all forecasts takes the same value, independent of the forecast horizon:

x̂ t+h|t = x̂ t+1|t , h= 2,3, ....

This is not suitable for time series with heavy trend and/or seasonality.

2.3.4 Holt-Winter’s seasonal method

Holt-Winter’s seasonal method is an extension of the simple exponential smooth-
ing to capture trend and seasonality. This method includes the forecast equation
in addition to three smoothing equations (level lt , trend bt and seasonal st), with
corresponding smoothing parameters α,β∗andγ. m is the seasonal order and k is
the integer of (h− 1)/m. The Holt-Winters’ additive method equations are
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x̂ t+h|t = lt + hbt + st+h−m(k+1)

lt = α(x t − st−m) + (1−α)(lt−1 + bt−1)

bt = β
∗(lt − lt−1) + (1− β∗)bt−1

st = γ(x t − lt−1 − bt−1) + (1− γ)st−m,

and Holt-Winters’ multiplicative method is

x̂ t+h|t = (lt + hbt)st+h−m(k+1)

lt = α
x t

st−m
+ (1−α)(lt−1 + bt−1)

bt = β
∗(lt − lt−1) + (1− β∗)bt−1

st = γ
x t

(lt−1 + bt−1)
+ (1− γ)st−m.

2.3.5 ARIMA

ARIMA is short for Auto Regressive Integrated Moving Average and is one of the
most widely used forecasting techniques. It is a combination of one AutoRegress-
ive (AR) and one Moving Average (MA) model. An AR(p) forecasting model is
a linear combination of the p past values of a variable. A time series {x t} is an
AR(p) model if

x t = α1 x t−1 + · · ·+αp x t−p + zt (2.5)

=
p
∑

i=1

αi x t−i + zt , zt ∼W N(0,σ2
z ). (2.6)

In contrast, a MA(q) forecasting model is a linear combination of the q past
forecast errors,

x t = β1zt−1 + · · ·+ βq x t−q + zt (2.7)

=
q
∑

i=1

βizt−i + zt , zt ∼W N(0,σ2
z ). (2.8)

An ARIMA model requires the time series to be stationary, meaning that the
statistical properties of the time series process do not change over time. Namely,
the mean should be the same at all time points, in addition to the covariance
between two time points t and t− k is only dependent on the distance k between
them, not on the specific time [8].

To make the time series stationary, differencing may be a necessary step. Then
the time series is transformed to consist of the differences between consecutive
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values of the original time series. This transformation can be applied several times,
and how many times decides the order of the difference. A useful notation when
working with differencing is the backward shift operator B. This operator shifts the
data back one period (Bx t = x t−1). With the backward shift operator, a difference
of order d can be written as

(1− B)d x t . (2.9)

After the introduction of the backward shift operator, the AR(p) model in
Equation (2.5) may be rewritten as a function of φ and B:

φp(B)x t = (1−α1B −α2B2 − ...−αpBp)x t = zt , zt ∼W N(0,σ2
z ). (2.10)

Equivalently, Equation (2.7) can be written as a function of θ and B:

x t = θq(B)zt = (1− β1B − β2B2 − ...− βpBp)zt , zt ∼W N(0,σ2
z ). (2.11)

The I in ARIMA stands for integrated and represents the stationary time series.
By combining the AR(p), MA(q), and the stationary time series differenced d
times, an ARIMA(p, d, q) mathematically take the form

φp(B) (1− B)d x t
︸ ︷︷ ︸

Stationary x t
︸ ︷︷ ︸

AR(p)

= θq(B)zt
︸ ︷︷ ︸

MA(q)

, zt ∼W N(0,σ2
z ). (2.12)

The parameters p and q are decided by looking at the plots of the autocorrel-
ation function (ACF) and partial autocorrelation (PACF) of the differenced series.
p is decided by looking at significant lags at the PACF plot, while q is decided by
the number of significant lags in the ACF plot.

If time series have a seasonal component, ARIMA can be extended to include
a model for the seasonal component, Seasonal ARIMA (SARIMA). SARIMA adds
three hyperparameters to ARIMA; autoregression(AR), differencing(I), and mov-
ing average(MA) for the seasonal component. The additional seasonal elements
that must be specified are the seasonal AR order, P, the seasonal MA order, Q,
the seasonal difference order, D, and the seasonal period, m. For example, if m
for hourly data is 24, it suggests a daily seasonal cycle. P and Q are decided in
the same way as for ARIMA using ACF and PACF plots looking at the seasonal
lags. The seasonal difference (I) is the difference between an observation and the
corresponding observation from the previous season and is defined as

x t − x t−m ⇐⇒ (1− Bm)x t . (2.13)

A SARIMA(p, d, q)(P, D,Q)m model takes the form

φp(B)ΦP(B
m)(1− B)d(1− Bm)D x t = θq(B)ΘQ(B

m)zt , zt ∼W N(0,σ2
z ), (2.14)

where φp(B) and θq(B) are the equations defined in (2.10) and (2.11), while

ΦP(B
m) = 1−Φ1Bm −Φ2B2m − ...−ΦP BPm

ΘQ(B
m) = 1+Θ1Bm +Θ2B2m + ...+ΘQBQm.
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2.4 Machine Learning Forecasting Methods

Machine learning (ML), first formulated by Arthur Samuel [9] in 1959, is a branch
of Artificial Intelligence where computers learn patterns from data automatic-
ally by experience without being explicitly programmed for it. Supervised ML al-
gorithms learn from labeled data and are introduced further in section 2.4.2. One
can distinguish between classification and regression, where classification models
want to, for example, predict if an ECG measure is normal or not. Regression maps
the input to its continuous response value, like the price of a house. Time series
forecasting can be transformed into a supervised learning regression problem suit-
able for machine learning.

Deep learning is a branch under machine learning where most models are
based on Artificial Neural Networks (ANN) [10]. The next section gives an in-
troduction to different types of ANNs.

2.4.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are a branch of Artificial Intelligence (AI) that
dates back to the 1940s, which was when McCulloch and Pitts [11] developed
the first neural model. Initially, ANNs were developed as mathematical models of
the information process in biological brains [12]. Human brains act on previous
experiences and make fewer mistakes over time. This is also the goal of ANNs
in machine learning. For over 70 years, scientists have been developing neural
networks inspired by [11].

Figure 2.1: An example of a fully connected artificial neural network. This net-
work has an input layer of size four, an output layer of size one, and two hidden
layers of size nine.

ANNs consist of an input layer, an output layer, and hidden layers between
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them. If the number of hidden layers is more than one, the network is called deep.
Figure 2.1 shows an example of a deep ANN with two hidden layers. The layers
contain artificial neurons, represented as circles in Figure 2.1. Edges between the
neurons connect the layers, and if all neurons have all possible connections in
all layers, it is called a fully connected ANN [13]. The ANN in Figure 2.1 is fully
connected. The edges are directed and go from a neuron i to another neuron
j. The edges have associated weights, wi, j , deciding how important the specific
edges are.

The network is activated by providing input to the neurons. The edges propag-
ate the activation ai from i to j through the weighted edges. Each neuron j in the
network starts by computing a weighted sum of its inputs,

n
∑

i=0

wi, jai ,

which is further applied an activation function g to. This leads to neuron j’s ac-
tivation,

a j = g
�

n
∑

i=0

wi, jai

�

. (2.15)

An illustration of the process can be seen in Figure 2.2.

Figure 2.2: This is an illustration of a simple mathematical model for a neuron.
The illustration is from [13].

Some of the most popular activation functions are the hyperbolic tangent

tanh(x) =
e2x − 1
e2x + 1

, (2.16)

the sigmoid function,

σ(x) =
1

1+ e−x
, (2.17)

and the ReLU function

ReLU(x) =max(0, x). (2.18)
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Figure 2.3: Illustration of an RNN. The unfolded version is shown to the right
and is there to get a better understanding of the process.

A common feature of the three activation functions is their nonlinearity. Non-
linear networks are more powerful than linear networks since they among other
things are capable of representing nonlinear patterns.

The objective to learn is the weights of the network, and with differentiable
activation functions, they are trainable using gradient descent and backpropaga-
tion. The learning process is explained further in section 2.4.2.

How the neurons are connected and organized in layers decides what type of
neural network it is. Two distinct methods of doing this are feed-forward neural
networks and recurrent neural networks. They are both named after how they
pass information through the networks.

Feed forward Neural Networks

Feed forward Neural Networks (FNN) are simple ANNs where information flows
in only one direction, not allowing any cycles to appear (also indicated by the
name). Hence, a specific layer can only receive input from the preceding layer, and
a neuron is never fed with information more than once. The network in Figure 2.1
is an FNN. An FNN has no notion of order in time or memory and only concentrates
on the current input [14]. This means that they can not remember previous inputs,
which often is an advantage for sequence data like time series. In order to handle
this limitation, the Recurrent Neural Networks(RNN) were developed.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) got attention in 1982 after the work of Hopfield
[15]. The main difference from FNNs is that RNNs allow cycles to be present. At
every time step, the network is fed with the current input sequence and its recent
output. In this manner, RNNs are said to have a memory and are popular for
sequence data. Information exists in the sequences, and RNNs with their memory
can utilize this information. The hidden states preserve the memory for an amount
of time decided by the weights and inputs of the RNN [16], finding correlations
between events across time steps that are called long-term dependencies [14].
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The memory process can mathematically be formulated as

ht = φ(W x t + Uht−1), (2.19)

meaning that the hidden state at time t, ht , is a function of the current input
x t multiplied with the weight matrix, added to hidden state at the previous time
step ht−1 multiplied with a hidden-state-to-hidden-state matrix U . W is deciding
the importance of the present input and U the importance of the previous hidden
state. φ is a nonlinear activation function, where tanh and ReLU are the most
used. Figure 2.3 is an illustration of what is going on.

The weights in W and U are adjusted through the Backpropagation of the
loss function until convergence [14]. However, since RNNs have two inputs at
each time step, and both are weighted by the same matrices W and U , the back-
propagation of gradients in RNNs involves propagation through time, and each
time step must sum all the previous contributions until the current one. Two prob-
lems may occur during this, namely vanishing and exploding gradients caused by
the following ratio included in the backpropagation equation:

∂ ht

∂ ht−1
.

If || ∂ ht
∂ ht−1

||2 < 1, the term exponentially goes towards zero, challenging the
learning of long-term dependencies because the parameter updates become in-
significant. This is called the vanishing gradient problem. If || ∂ ht

∂ ht−1
||2 > 1, the

term goes exponentially towards infinity and is called the exploding gradient prob-
lem [17]. A solution to the vanishing gradient problem is to use Long Short-Term
Memory Neural Networks (LSTM).

Long Short-Term Memory Neural Networks

Long Short-Term Memory Neural Networks [18] (LSTM) is a type of RNNs, designed
to extract patterns in sequence data like time series where the dependencies may
be several lags behind the current input value. LSTMs also addresses the problem
of vanishing gradients. LSTM cells have three different gates; input-, output- and
forget gates. These are regulating the information flow in the units. The cells can
remember values of interest over arbitrary time intervals. Figure 2.4 shows an
illustration of a LSTM cell.

The yellow boxes represent layers with different non-linear activation func-
tions, and the pink ones are elementwise operations. Following the notation of
PyTorch [20], the process can be written mathematically as:
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Figure 2.4: Structure of LSTM cells. Illustration from [19].

it = σ(Wii x t + bii +Whiht−1 + bhi) (2.20)

ft = σ(Wi f x t + bi f +Whf ht−1 + bhf ) (2.21)

gt = tanh(Wi g x t + bi gWhght−1 + bhg) (2.22)

ot = σ(Wio x t + bio +Whoht−1 + bho) (2.23)

ct = ft � ct−1 + it � gt (2.24)

ht = ot � tanh(ct) (2.25)

(2.26)

it , ft and ot are the input, forget, and output gates respectively at time t. ht
and ct are the hidden state and cell state at time t, and x t the current input. σ is
the sigmoid function from equation (2.17) and � the element-wise product. The
weights Wii , Wi f , Wi g and Wi g are the non-recurrent weights associated with the
input, forget, output and cell gate. Whi , Whf , Whg and Whg are the corresponding
hidden-to-hidden weights.

Equations (2.20)-(2.25) are computed for each element in the input sequence
in each layer. The forget gate decides what information can be forgotten, the input
gate what new information to store, while the output gate determines what to
output. The output gate is a filtered version of the cell state.

Bidirectional LSTMs is an extension of LSTMs, where two hidden layers of op-
posite directions are connected to the same output. One hidden layer is running
the input forward while the other is running a reversed copy of the input. [21].
This approach may provide extra context to the network, and is the type of net-
work used in the model of this thesis.
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2.4.2 Learning

The following sections describe how the models are trained to learn their tasks.
This includes the concepts of supervised learning, backpropagation, gradient des-
cent and loss functions.

Supervised Learning

Supervised learning is a method to train machine learning models. Each of the
training input variables X has corresponding output variables y , and the learn-
ing algorithm aims to learn a function mapping the input to the correct output.
The correct output variables are given. Thus the algorithm iteratively predicts the
training data output variables and gets corrected by making updates based on the
accuracy. Supervised learning problems can be divided into regression and classi-
fication problems. When the output variables are categories, the problem is clas-
sification. The problem is a regression when the output variables are real values
[22].

Times series has to be transformed to be appropriate for supervised learning. A
method that makes univariate time series applicable is the sliding window method.
For a particular time step, previous time steps are used to predict the next time
step. Hence, the time series is divided into overlapping windows of size l with the
following value as the corresponding output variable. An illustration of the sliding
window method can be seen in Figure 2.5.

Figure 2.5: An illustration of how to make time series data appropriate for su-
pervised learning using the sliding window method.

For a univariate time series of length T , [x1, ..., xT ], the windows with corres-
ponding outputs will look like the following:
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X1 = [x1, ..., x l], Y1 = x l+1

X2 = [x2, ..., x l+1], Y2 = x l+2

. . .

XT−l−1 = [xT−l−1, ..., xT−1], YT−l−1 = xT .

A parameter that must be decided is the length of the sliding windows, l. The
larger they are, the more information about the time series is taken into account.
The length of the sequence window should be at least bigger than the seasonal
order such that we keep the autocorrelation of interest.

Loss Function

The forecasting models are learning by looking at the loss function. These are eval-
uating how well the model predicts based on the given input data. For regression
problems, the following loss functions are widely used.

Mean Absolute Error (MAE) or L1 Loss is mathematically defined as

MAE =

∑n
i=1 |x i − x̂ i|

n
, (2.27)

where x i is the true value and x̂ i is the predicted value. Hence, MAE is the aver-
age of the absolute differences between the predicted and the actual observations.
MAE is a measure without direction, meaning it only measures the magnitude of
the error. This function is robust against outliers [23].

Mean square error (MSE) or L2 Loss is defined as

MSE =

∑n
i=1(x i − x̂ i)2

n
. (2.28)

This is the average of squared differences between predicted and actual ob-
servations. MSE is also only looking at the magnitude of the error, but it penalizes
more the predictions that are far from the observed value compared to MAE. An-
other advantage is that it is easier to find the gradient of this metric [23]. The loss
function used in this thesis is MSE, denoted by the letter L.

Backpropagation and Gradient Descent

Training a neural network is usually done by using backpropagation and the Gradi-
ent Descent algorithm.

The forward propagation gives the model output and calculates the loss. Back-
propagation is the process of going through the network backward and finding
the partial derivatives of the loss with respect to the different weights. Further,
gradient descent uses the derivatives to update the weights accordingly to what
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minimizes the loss function [24]. One repetition of the procedures forward- and
backward propagation is referred to as an epoch. Typically a neural network is
trained with the number of epochs necessary to minimize the loss function. With
this approach, there is a risk of overfitting the model to the training data. Early
stopping is a regularization method for avoiding this, setting bounds for how many
epochs to use, and stops the training once the model accuracy of a hold-out val-
idation data set no longer improves [25].

Gradient descent [26] repeatedly takes small fixed-size steps toward the neg-
ative error gradient of the loss function:

∆wn = −α
∂L
∂ wn

. (2.29)

∆wn represents the nth update of the weights, and wn is the weights before
the update. α is the learning rate, a number in the interval [0, 1] that controls
how much to change the model in response to the estimated error each time the
model weights are updated[12].

Adam Optimization algorithm [27] is an extension of the gradient descent al-
gorithm. While gradient descent has one single learning rate α, Adam computes
individual adaptive learning rates for different parameters. The method com-
bines the benefits of Adaptive Gradient Algorithm [28] (AdaGrad) and Root Mean
Square Propagation 1 (RMSProp). From AdaGrad, they use the per-parameter
learning rate that improves performance on problems with sparse gradients. From
RMSProp, they maintain the method of the per-parameter learning rate but based
on how quickly they are changing. RMSProp adapts the learning rates based on the
mean, while Adam base the learning rate adaption on the variance. More specific-
ally, Adam uses an exponential moving average process to represent the gradient
and the squared gradient. The corresponding parameters control the decay rates
[29].

Early stopping and Adam Optimizing algorithm are used in this thesis.

2.5 Missing Values

The increasing amount of real-world time series often includes errors in the form
of missing values. They usually occur in the collection or the recording process.
Defect devices, technical faults, and human errors are possible reasons for their
existence. Some simple forecasting methods like Naïve forecasts can deal with
the missing values by simply providing the last observed value as the forecast.
However, most methods require complete time series data. There are many ways
of dealing with missing values; however, choosing the best one depends on both
types of data and missing values. Missing data handling may influence the stat-
istical power and bias of the forecasting model. Hence the choice of method is
essential.

1RMSProp is an unpublished adaptive learning rate optimizer proposed by Geoff Hinton.
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Before presenting different missing data handling methods, introducing the
three different missing value types is vital.

It was Rubin in 1976 [30] that divided missing values into the three different
classes we widely use today. The classification system is telling the relationship
between the data and the probability of missing data. He added a missing value
indicator, a binary variable denoting whether a value is observed (0) or missing
(1). This indicator defines a pattern of the missing data. Rubin examined how the
missing value indicators probability distribution depends on the observed data in
a Bayesian manner.

Data is Missing Completely at Random (MCAR)if the probability of missing data
on a variable X is unrelated to the other measured variables included to the value
X itself. Can consider it as a random sample of the complete data. In univariate
time series, the probability of a value x i missing is independent of the observation
time.

Data is Missing at Random (MAR) if the probability of a value on variable X
missing only depends on the observed values and not on the missing ones. MAR
is less restrictive than MCAR. For univariate time series data, there are no other
variables other than time, thus it is assumed that the probability of a value missing
depends on the observation time.

Data is Missing Not at Random (MNAR)when the probability of values missing
on the variable X is dependent on both the observed and the missing data. MNAR
is the most complicated type of missing value. It is complicated to both find out
if it is MNAR, and to deal with it. The missing values may be dependent on the
observation time.

Missing data due to sensor recording failures will be treated as MCAR since
the events have no dependencies on the missing data. However, if the sensor fails
and keeps failing for some time, the data is MAR. If the sensor is out due to some
latent factor as limited energy or memory, the data is MNAR [31].

The characteristics and differences between the types of missing data are es-
sential for understanding why some techniques for dealing with them will result
in valid statistical inferences and others not. Most of the simplest methods in the-
ory like ignoring and deletion only work under the assumption of the missing data
being MCAR. If this is not true, the methods will give biased estimates [32]. In
this thesis data missing completely at random is considered.

2.5.1 Imputation

Imputation methods replace the missing values with appropriate estimates. Se-
lecting the appropriate imputation method is important, and there exist both stat-
istical and machine learning methods for imputation. Some statistical examples
are mean/mode imputation, regression, interpolation, expectation and maximiz-
ation, and multiple imputation [33].

Mean/median/mode imputation replaces all missing values by the mean/medi-
an/mode of the observed values. Compared to deletion and ignoring, this method
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often yields better results and keeps the number of values constant. On the other
hand, this method may introduce bias since all the imputed values are the same
[34]. Multiple imputations imputes the missing values m times to represent the
uncertainty about which value to use. The m different imputed datasets are com-
bined to find estimates. This method was proposed by Rubin in 1987 [35]. Some
of these statistical techniques are not applicable for univariate time series. They
either are not suitable for temporal dependence or are based on the correlation
between features.

Imputation methods more suitable for univariate time series are Last observa-
tion carried forward (LOCF), Next observation carried backward (NOCB) and in-
terpolation. LOCF is one of the most used methods. Whenever a value is missing,
it gets replaced with the last observed value. NOCB is similar to LOCF but works
in the opposite direction by taking the first observation after the missing value
and carrying it backward. Interpolation imputes the missing values based on their
neighbors. However, these methods require that adjacent observations are similar
to one another.

2.5.2 Missing value indicator

Rubin [30] used a missing value indicator to segregate missing values into the
three different categories MCAR, MNAR, and MNAR. The same indicator is in this
thesis used as an extra feature to handle missing values. The missing value indic-
ator is a binary feature indicating if the value corresponding to the same index
in the time series are missing (1) or observed (0). The missing value indicator is
added to the univariate time series, meaning the learning model is fed with two-
dimensional input. All the missing values (null, NaN, or NA values) in the time
series are set to the same value, in this thesis chosen to be zero. The missing value
indicator is also referred to as a mask feature.

This approach is a form of feature engineering. An essential part of machine
learning is the preprocessing of the data, where the aim is to transform the data
into a representation making the machine learning model effective and successful
[36]. Feature engineering is a part of this process, where new features are con-
structed from the raw data. Hopefully, the new features can capture additional
information and increase predictive power. In this thesis, the goal is also to make
the model more robust against missing values with the missing value indicator.

2.6 Global Model

The traditional models are trained with the single time series they will predict,
implicating the need of N models to predict N different time series. A model is
global if it is trained with N time series and can forecast all of them. The main idea
is to extract information from numerous time series as they could potentially have
common patterns even though the time series are different. When training an ML
forecasting model for a single time series, and the number of data points available
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is small, capturing the time series characteristics and the model parameters can
be challenging. This can lead to poor accuracy and is one of the limitations of ML.
The use of global models can potentially cope with this problem and is one of the
most important arguments in favor of this approach [37].

Another advantage with global models is the shorter time used to forecast
multiple time series compared to the traditional series-by-series approach. When
building a forecasting model, the most time-consuming part is the training pro-
cess. Though the training cost is higher for a global model, it’s only paid once
compared to the series-by-series approach where the building and training must
be repeated for every time series. If we want to forecast a new unseen time series
in the traditional approach, a new model must be built and trained. A neural net-
work ML model based on cross-learning can produce forecasts for the new series
outside the training set in a short amount of time [37].
[38] has proven that local and global algorithms for time series forecasting

are equivalent. The proposition proved is the following:
Let

• ALocal = set of all local learning algorithms

• AGlobal = set of all global learning algorithms

• FL,S={[ALocal(X i)|X i ∈ S], ALocal ∈ ALocal}, the set of all possible local fore-
casts of S

• FG,S={[AGlobal(S))(X i)|X i ∈ S], AGlobal ∈ AGlobal}, the set of all possible
global forecasts of S.

Then
FL,S = FG,S.

This implies that the local and global forecasting algorithms are theoretically
able to produce the same forecasts.

From the M4[39] competition, one of the most innovative and promising fore-
casting approaches was global learning [40], utilized by the two best-performing
submissions of the competition. However, the time series in this competition were
mainly uncorrelated, and the submissions did not show the full potential of global
learning. In the recent M5 competition[6], the data consisted of more correlated
time series, making it easier to demonstrate the power of global models. Global
methods achieved superior results compared to series-by-series methods in the
M5 competition [6].

2.7 Multitask Learning

The traditional method for creating models for different tasks is to build, train and
fine-tune individual ML models for the different tasks until the performance no



Chapter 2: Theory 21

longer increases. However, with this approach, the model cannot capture inform-
ation from related tasks that could have been helpful. This is where Multi-Task
learning (MTL) can be helpful. In MTL, a model is trained to learn several tasks
jointly. This is an approach to inductive transfer, defined as the ability of a model
to improve performance on a specific task after having learned a different but
related concept on a previous task [41].
[42] defines related tasks as

Related(MainTask, Ex t raTask,LearningAl gori thm) = 1

≡
LearningAl gori thm(MainTask, Ex t raTask)> LearningAl gori thm(MainTask),

meaning that if the tasks are related, this implies that a learning algorithm
trained jointly on both tasks has better performance than the learning algorithm
trained only for the main task. This definition is allowing the benefit of multi-task
learning to be dependent on the learning algorithm.

MTL improves generalization by using domain information from the training
signals of related tasks as an inductive bias. This is done by learning tasks jointly
while using a shared representation. In this way, the model can use knowledge
from one task to help other tasks[43]. Other advantages are reduced memory us-
age and faster inference speed. This because layers are shared between the tasks,
avoiding features from being calculated repeatedly for each task [44]. However,
achieving these advantages has shown to be challenging [45].

Several difficulties can occur in multi-task learning settings that are not present
in single-task learning problems. Negative transfer/destructive interference is a
phenomenon where improved performance of one task hurts other tasks. Hence,
a goal in multi-task learning is to minimize the negative transfer [45]. Choosing
which tasks to learn jointly and how much to share between them are of great
importance.

There are two main types of multi-task learning for neural networks, namely
a distinction between hard parameter sharing and soft parameter sharing. The dif-
ference is how the hidden layers are shared between the different tasks. In hard
parameter sharing the hidden layers are shared between all tasks while the task-
specific output layers are kept separate. This approach has been shown to reduce
the risk of overfitting, and [46] shows that the risk of overfitting the shared para-
meters is a lot smaller than the risk of the task-specific parameters. The difference
is of the same order as the number of tasks considered. Soft parameter sharing is
a different approach. Here each task has a model with its parameters. Now it is
the distance between the models’ parameters that is encouraged to be similar. The
L2 norm is often used as a regularization of the distance [45]. An illustration of
the difference between the two types of parameter sharing can be found in Figure
2.6. Hard parameter sharing is what we use in this thesis.
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Figure 2.6: Illustration of the difference between hard parameter sharing and
soft parameter sharing in multi-task learning.

2.8 Model

The forecasting model explored in this thesis is a Bi-directional LSTM neural net-
work trained jointly with an imputation task in a multi-task manner. The aim
is to determine whether information from the imputation task can improve the
accuracy of the forecasting task by making the loss a weighted combination of
losses from both tasks and still be robust against missing values. Missing values
are handled by expanding the input with a missing value indicator. The model is
also global, meaning the model is trained on numerous time series for general-
ization. Before further details about the proposed model, an introduction to the
specialization project I did last semester will be introduced to emphasize some
key findings that motivated a part of this thesis.

2.8.1 Specialization project

In the great quantity of available time series, missing values appear. The specializa-
tion project aimed to explore if expanding the input with a missing value indicator
could make the forecasting model more robust against the missing values.

The model implemented was an LSTM neural network with a single hidden
layer of size 100, followed by a dense linear layer giving the one-step-ahead fore-
casts. An illustration can be found in Figure 2.7.

The model got trained with data containing different ratios of missing values.
Each of the trained models was tested on data with varying amounts of miss-
ingness. The models were also tested on imputed versions of the same test data
sets for comparison. Two imputation methods were used; Last Observation Car-
ried Forward (LOCF) and Moving window (MW) that averaged the three closest
neighbors to the missing value.

The key findings from the experiments were that the forecasting model be-
came significantly more robust by introducing only a small ratio of missing values
during training, leading to a significant improvement of the forecasting accuracy,
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Figure 2.7: Model from specialization project. A LSTM NN with one hidden layer
of size 100 followed by a dense linear forecasting layer. The hats indicates pre-
dicted values.

especially for the test data with larger ratios of missing values. The forecasting
model tested with data containing missing values handled with the indicator also
did it better than the model tested on imputed datasets. This was the case for
all the trained models except the model trained with no missing data. The res-
ult from the experiments on the dataset "PJM Hourly Energy Consumption Data"
with missing value indicator input (details in section 4.1.2) can be seen in the left
plot in Figure 2.8. To the right, the test losses for the three different test data sets
tested on the model trained with 2% missing values are shown.

Figure 2.8: Results from the specialization project using the PJM Hourly Energy
Consumption Data (see section 4.1.2). The plot to the left is showing test loss as
a function of the amount of missing values the model is trained on. Each graph
represents a test data set with a missing ratio. The plot to the right is showing the
test losses for the three different test data sets on the robust model trained with
2% missing data.
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Since the model became significantly more robust by introducing missing data
during training, and the accuracy of the missing value indicator method performed
better than the imputed data sets, the master thesis is based on these findings.
Therefore the multi-task model is trained with 2% missing data.

2.8.2 A multitask forecasting model

The model explored in this thesis is the specialization project model (section 2.8.1)
added a second task, namely an imputation task. The aim is to find out whether
imputation and forecasting are somehow similar, such that the forecasting task
is improved using information from the imputation task. Hence, it is a multi-task
model with forecasting as the main task with imputation as an auxiliary task.

The tasks share a bi-directional LSTM neural network, while they have in-
dividual linear layers for their respective tasks; forecasting and imputation. An
illustration of the model in Figure 2.9. Since the model is trained for both tasks
jointly, the total loss given as feedback to the model during training is a weighted
combination of the two losses,

L= L1 +αL2, (2.30)

where L1 is the forecasting loss, L2 the imputation loss, and α the weight of
the imputation loss.

Figure 2.9: The proposed model: A multi-task Bi-directional LSTM model for
forecasting using imputation as an auxiliary task.

The output from the bi-LSTM block has shape (batch_size, sequence_length,
2*hidden_size) and contains the hidden features (ht) from the last layer of the
LSTM for each t. This is illustrated in Figure 2.10. The forecast task passes the
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hidden feature ht for the last time step through a dense linear layer giving the
one-step-ahead forecasts for each sequence in the batch. For the imputation task,
by looping over the time steps, the hidden feature corresponding to the current
time step is passed through a linear layer predicting the current value at time t for
all sequences in the batch. In this manner, all observations in the batch are pre-
dicted. However, the imputation estimates are multiplied with the missing value
indicators making sure the loss is only calculated for the values actually missing.

Figure 2.10: Illustration of output from the last layer of the Bi-LSTM network.

The number and size of the hidden layers in the Bi-LSTM network are varied
during the experiments to explore whether the capacity affects the outcome of the
multi-task model. However, the base bi-LSTM model contains one hidden layer of
size 100.
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Literature review

3.1 Global Forecasting Models

Statistical forecasting methods like ARIMA and Exponential Smoothing have tra-
ditionally given the most accurate predictions in the Makridakis competitions.
More advanced and complex methods have not been able to compete with the
accuracy. However, the M4 competition had a winner that utilized both statistical
and machine learning approaches [47]. The winner was ES-RNN [48] created by
Slawek Smyl from Uber Technologies.

ES-RNN is a partly global, hybrid of Exponential Smoothing (ES) and LSTM
blocks. In ES, the time series can be decomposed into trend, seasonality, and level.
In ES-RNN, LSTM predicts the trend, while ES predicts the level and the season-
ality. Even though the combination of ML and statistical methods did it well, the
pure ML contributions to the M4 competition did not even beat the statistical
benchmarks, leading to the conclusion by Makridadis that pure ML models can
not be as accurate as statistical methods [47]. N-BEATS disproved this conclusion.

N-BEATS (Neural Basis Expansion Analysis for interpretable Time Series fore-
casting)[49] is a pure deep learning forecasting method without time-series spe-
cific components. It was the startup ElementAi co-founded by Yoshua Bengio that
published this method. The architecture consists of modified multilayer FC net-
works with ReLU activations. In this manner, the architecture is simple and generic
yet deep. N-BEATS outperforms statistical benchmark methods on M3, M4, and
Tourism datasets. The method shows that the deep learning model can be trained
on multiple time series and successfully sharing their individual information. This
method also beats the score of the winner of the M4 competition, ES-RNN.

Recently [38] proved that local and global models for time series forecasting
are equivalent, meaning they are theoretically able to produce the same forecasts.
Hence, the literature is showing promising tendencies for pure ML global forecast-
ing models.

27
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3.2 Multi-Task learning

Multi-task learning is the process of training a model to learn several tasks sim-
ultaneously, with the goal of common advantage. The idea has been successful in
Natural Language Processing (NLP), where [50] created a convolutional neural
network (CNN) language model to be trained for multiple tasks jointly. The tasks
learned were predictions of part-of-speech tags, chunks, semantic roles, a likeli-
hood of the sentence making sense, entity tags, and semantically similar words
when fed sequences of words.
[51] developed a method called Fast R-CNN, and is using multi-task learning

for image processing where the tasks object detection and their spatial placement
is trained jointly. They find their model to be much faster than other methods for
object detection.

BRITS [52] is a multi-task method for imputation and classification/regression
of multivariate time series data. BRITS is built on a bi-directional recurrent neural
network. The model is fed input containing the time series, in addition to a mask-
ing indicating missing values (0 where a value is missing and 1 if observed) and
a time gap feature with the time gaps from the last observed value to the current
value for all variables. They find BRITS to outperform state-of-the-art methods for
both imputation and classification/regression.

3.3 Missing data

Missing data handling is a problem well-studied across all domains for which
they occur. Traditional methods for dealing with the missing values are deletion
methods, simple imputation methods, and learning-based methods. Imputation
for time series can be divided into two classes; imputation for multivariate time
series and imputation for univariate time series.

Multivariate time series methods often utilize the relationship between differ-
ent variables to fill in missing values like in the Generative Adversarial Network
(GAN) based methods [53] and [54].

MICE [55] is a multiple imputation method by chained equations widely used
for multivariate time series and MAR missing values. The method accounts for the
statistical uncertainty in the imputations and can handle different types of vari-
ables. MAIN [56] is an ML imputation method for multivariate time series based
on multi-head attention to deal with missing data. The method uses a Positional
Encoded Vector (PEV) consisting of a binary mask to indicate missing features
and an orthogonal basis of the feature existence. The method has been shown to
outperform many state-of-the-art methods.

NAOMI [51] is a non-autoregressive imputation method for sequences, mean-
ing the imputations are not based only on previous time steps. Instead of condi-
tioning only on the past, NAOMI uses both the past and the (predicted) future to
impute. This method uses masking of the missing values in the sequences, with
zeros indicating missing values.
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[53] is a GRU-based classification method for multivariate time series that not
use imputation, but handles the missing data directly using a mask vector to indic-
ate where the data is observed (1) and missing (0). The method also maintain the
time since last observed observation for each of the variables in an own variable.

BRITS is a bi-directional RNN prediction model similar to what is explored in
this thesis, however it contains an additional time-series specific feature and have
the opposite masking in the missing value indicator.

Thus, there are several imputation methods using the missing value indicator.
Some methods are using the missing value indicator with opposite masking and
in combination with other time series specific features. The disadvantages with
this is that is makes the model advanced to implement. In this thesis the missing
value indicator is not used solely for imputation, and we use it for univariate time
series.
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Experimental Setup

4.1 Data

In the following sections, the different time series data sets used in the exper-
iments are presented. In addition, all necessary preprocessing steps for making
the time series suitable for LSTM neural networks and supervised learning is de-
scribed.

4.1.1 SARIMA Data

The SARIMA data set consists of synthetical data from numerous SARIMA pro-
cesses. There are 100 time series of length 50 simulated in R [57] using the
function sim.ssarima from the smooth [58] package. The function sim.ssarima
takes as input the parameters p, d, q, P, D,Q and m, and simulate random time
series from the specified SARIMA(p, d, q)(P, D,Q)m model. The parameters used
are m = 24, p, P, q,Q ∈ {0,1, 2,3}, and d, D ∈ {0,1}. Ten of the simulated time
series are plotted in Figure 4.1.

Key features of this data set is that the time series are of the same length, short
with only 50 observations, synthetic and regular.

4.1.2 PJM Hourly Energy Consumption Data

The second data set consists of 10 real-world hourly electricity time series from
the data set ’PJM Hourly Energy Consumption Data’ from the open source Kaggle
database 1.

The data set contains over 10 years of hourly energy consumption data from
PJM in Megawatts. PJM is a regional transmission organization in the United
States which serves electric power to many states in the US. In Figure 4.2, the
time series are plotted together. As observable, the time series are of different
lengths, means, and variances. They are also heavily seasonal, having daily sea-
sonal patterns since the data is hourly.

1https://www.kaggle.com/robikscube/hourly-energy-consumption
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Figure 4.1: A plot of ten different time series from the SARIMA dataset.

Figure 4.2: The ten electricity time series plotted together.

Key features of this data set is that the time series have different lengths, where
the longest time series is containing 145366 values corresponding to over 16 years
of hourly observations, while the shortest time series of 45334 values includes
about five years of hourly observations. The time series are also seasonal with
m= 24 and from the real world.
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4.1.3 Preprosessing

During the preprocessing, the time series must be made appropriate for supervised
learning, scaled, added missing values, and split into train- and test data sets.

Supervised learning

In order to train the model in a supervised manner, the time series must be trans-
formed. Supervised learning requires each input variable to have a corresponding
output variable. The method used to make the univariate time series appropriate
for this type of learning is the sliding window method (see section 2.4.2 for de-
tails). For a particular time step, previous time steps are used to predict the next
time step. Hence, the time series is divided into overlapping windows of size l
with the following value as the corresponding output variable. A parameter that
must be decided is the length of the sliding windows, l. The larger they are, the
more information about the time series is taken into account. l should therefore
be at least greater than the seasonal order m if the time series contains a seasonal
pattern to preserve the autocorrelation of interest. For hourly data, l >= 24. In
this thesis, l is set to 25 since both data sets are hourly, and 25 covers the daily
pattern.

Missing data simulation

In the experiments, the ratio of missingness in the data is varied. Hence missing
data must be simulated accordingly. Also, complete data is needed to compute
the loss of the forecasted and imputed values, which is another reason why the
missing data must be simulated.

The type of missing values simulated is MCAR. This is done by giving each
value in the time series a probability of being missing corresponding to the desired
ratio of missing values, pmiss.

Hence, a missing data indicator is created using a Bernoulli distribution with
parameter pmiss. The missing value indicator is binary and takes the value 1 where
data is missing, and 0 if not. In this thesis, the missing value indicator is added as
a feature to the time series. The missing values are set to zero in the original time
series. A time series of length T can then look like the following:

[x1, x2, 0, ..., xT−1, 0]

[0,0, 1, ... 0, 1]

Train/test split

The time series are split into training and test data in the following way: The 70%
first values in the time series are used as training data, the following 15% are used
as validation data, and the remaining 15% is used as test data. An illustration can
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be seen in Figure 4.3. The validation data is held out from training and is used
to give an unbiased estimate of how good the model predictions are during the
hyperparameter tuning of the model.

Figure 4.3: An illustration of how the time series is split.

Since we are interested in training a global model, the train-test split approach
explained above is applied to all the time series used for training. After the split,
the training data from all time series are merged into one training dataset, and
the same for validation- and test data.

Scaling

The data must be scaled before feeding it to the neural network. This is important
because the time series has different spreads, and the network weights trained on
unscaled data can then become very large, making the model unstable with high
generalization error [59]. Both the input and output variables must be scaled.
In this thesis, the scikit-learn[60] RobustScaler is used. This method removes
the median and scales according to the interquartile range and is robust against
outliers. The scaler is only fitted to the training data, and then the scaler is used
to transform the validation- and test data. This approach is necessary to avoid
information leakage between the datasets.

4.2 Experiments

The experiments aim to determine whether the imputation task improves the fore-
casting task by training the models in a multi-task manner. The experiments are
based on the robust forecasting model investigated in the specialization project.
The findings indicated that the forecasting model became significantly more ro-
bust when 2% missing values were introduced during training. From the special-
ization project to the model in this thesis, some adjustments are made. First, the
LSTM block is made bi-directional. Secondly, the imputation task is added, mak-
ing the model a multi-task model. The model is trained on data containing 0%
and 2% missing data due to the findings in the specialization project. Training the
model on complete data is to monitor how the model robustness behaves when
introducing missing values during training for the model in this thesis. In addition,
this model can be used as a baseline for the multi-task model.

The base architecture of the model is a bi-LSTM block with one hidden layer of
size 100 with linear task-specific output layers. First, the model is trained without
any imputation loss. Secondly, the imputation loss weight (α) is gradually in-
creased. For all α’s considered, the model is tested on time series with six different
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ratios of missing data; 0%, 2%,5%, 10%,20%, and 50%. The missing values are
handled directly without imputation using missing value indicators as an extra
feature. The training, validation, and test data all have missing value indicators.
The imputation task added is there only to help the forecasting loss. The estimated
imputation values are never included in the input variables.

First, the base architecture with one hidden layer of size 100 is the focus.
Secondly, the bi-LSTM block architecture is first made deeper and then wider to
explore how the capacity affects the utilization of the imputation task. As a fi-
nal experiment, more non-linearity in the form of a ReLU layer between the last
hidden layer of the bi-LSTM block and the linear forecasting layer is added. For
all architectures, the imputation task is increased gradually in the same way as
described for the base architecture.

4.2.1 Implementation

Multi-task model

The models are implemented using PyTorch [61], a machine learning library in
Python [62] and the wrapper PyTorch Lightning [63]. Pytorch Lightning makes
the code easier to read and train, and makes the model scalable to run on any
hardware of interest (CPU, GPU, or TPU). The code is written in Google Colab, a
free cloud service delivered by Google that provides a fast training process when
trained on their Tesla K80 GPU, which is used.

The neural network is trained using the Adam optimizer with a learning rate
of 0.001 for the SARIMA data and 0.0001 for the Electricity data. For the bi-LSTM
block, a dropout probability of 0.2 is used to avoid overfitting. The network is fed
batches of sequences, where the batch size is the number of sequences to work
through before updating the model parameters. For the SARIMA data, a batch
size of 64 is used, while for the electricity data the batch size is 128. A maximum
of 15 epochs is used, meaning this is the maximum number of times the learn-
ing algorithm works through the whole training data set. Another regularization
tool to avoid overfitting used is early stopping, which stops the training when the
validation performance is no longer improving.

In Table 4.2.1 an overview of different values and training parameters used
can be found. The code is available at GitHub 2.

2https://github.com/elenek97/TMA4900
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Description Explored
Time Series Univariate
Loss MSE
Optimizer Adam
Learning rate [0.001, 0.0001]
Dropout [0.2]
Epochs Maximum 15
Early stopping validation loss
Window size [25]
Batch size [64,128]
LSTM layers [1,2,3,5]
Size of LSTM layers [100, 200]
Output layer Linear, ReLU+Linear
Ratio of missing data [0, 2%, 5%, 10%, 20%, 50%]
Weigth of imputation loss 0.0-1.5

Table 4.1: Information and training parameters for the thesis model.

SARIMA model

As a baseline, SARIMA(p, d, q)(P, D,Q)m models are fitted to each of the time
series, and the forecasts are compared to the forecasts by the multi-task model.
The Algorithm 1 describes how the forecasting is done. Implemented in Python
using the pmdarima package [64] and the function auto_arima with seasonality
that automatically finds the best SARIMA model for each time series.

Algorithm 1 Forecast With SARIMA

0: procedure FORECASTWITHSARIMA(Dataset)
0: ForecastMatrix←[] {Matrix to store forecasts}
0: for TimeSeries in Dataset do
0: t← the first time step in test data
0: model← AutoSARIMA(TimeSeries)
0: ForecastVector← []
0: for i← t to length(test data) do
0: Fit model to time series up to time t-1
0: Forecast time series at time t
0: Add forecast to ForecastVector
0: end for
0: Add ForecastVector to ForecastMatrix
0: end for

return ForecastMatrix
end procedure=0



Chapter 5

Results and Discussion

The thesis is motivated by the robustness findings from the specialization project.
Consequently, the first experiment is to check whether the model still behaves
more robust when introducing 2% missing values during training when the net-
work changes from uni- to a bi-directional LSTM. Further, the forecasting model
is extended with the second task, imputation. Experiments are done for different
weightings of the imputation loss to see how this affects the forecasting accuracy
for the different ratios of missing values in the test data. After that, the model
architecture is varied to determine if the model needs more capacity to utilize the
information from the imputation task. Lastly, the model is added an additional
layer, namely a non-linear ReLU layer between the last hidden layer of the bi-
LSTM block and the linear forecasting output layer. The forecasting accuracies
will be compared to the statistical forecasting baseline SARIMA. All results with
discussion are presented in this chapter. The best results for the individual models
are highlighted with bold font in the tables.

5.1 From LSTM to bi-directional LSTM

The first thing to check is whether the change from LSTM (specialization pro-
ject model) to bi-directional LSTM still gives more robust forecasts when the
model is introduced to missing values during training. The change from uni- to
bi-directional LSTM is due to the property of bi-LSTM running the inputs in two
ways. In this manner, information from both past and future is preserved, and
thus bi-LSTM often understands the context better. This adjustment hypothesizes
that the imputation task will perform better with the bi-directional LSTM since
the values imputed are not only based on past values.

The model has not been introduced for the imputation task during this exper-
iment, meaning the imputation loss weight α equals zero. Table 5.1 is showing
the forecasting test losses for both LSTM and bi-LSTM trained with 0% and 2%
missing data, tested with data between 0% − 50% missing data. Both have one
hidden layer of size 100.
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Dataset Type of LSTM
% missing data in

training data
Test loss

0% missing in
test data

2% missing in
test data

5% missing in
test data

10% missing in
test data

20% missing in
test data

50% missing in
test data

SARIMA LSTM 0% 0.5094 0.5225 0.5353 0.5666 0.6397 0.8142
SARIMA LSTM 2% 0.5065 0.5170 0.5281 0.5579 0.6232 0.7964
SARIMA Bi-LSTM 0% 0.5138 0.5233 0.5282 0.5290 0.5703 0.7075
SARIMA Bi-LSTM 2% 0.5127 0.5221 0.5272 0.5267 0.5671 0.7018
ELECTRICITY LSTM 0% 1.1789 2.9214 5.3970 9.5165 17.0470 39.0487
ELECTRICITY LSTM 2% 1.1047 1.1047 1.2123 1.3579 1.7299 5.4064
ELECTRICITY Bi-LSTM 0% 1.0948 3.9040 8.1008 14.9697 27.7122 56.4444
ELECTRICITY Bi-LSTM 2% 1.0487 1.1066 1.1992 1.4148 2.0929 9.5105

Table 5.1: MSE test losses from the specialization project model (LSTM) with
one hidden layer of size 100 trained with 0% and 2% missing data, and likewise
for the thesis model (bi-LSTM). The results for both the SARIMA data and the
Electricity data can be found in this table.

For each combination of data set and model, the test losses decrease from the
model trained with 0% missing data to the model trained with 2% missing data
for all the different test data. For the SARIMA data, the improvements are not very
big. However, since this data set is synthetic and very regular, the fact that it is
stable indicates that the model is working, at least not making the results worse.
For the electricity data set, the improvements are still significant when changing
to bi-LSTM. These results indicate that the model still becomes more robust after
introducing 2% missing data during training even though the model has changed
from uni- to bi-directional LSTM. The overall performance of the bi-LSTM model
is worse than the uni-directional LSTM. However, since the hypothesis is that the
bi-directional network may understand contexts better and be a good choice for
the imputation task that has not yet been introduced, the bi-LSTM network is
chosen to be the base model.

5.2 From Single-task to Multi-task model

In the following experiments, the model change from a single- to a multi-task
model. The hypothesis is that forecasting and imputation of missing values are two
tasks that are somehow related. If the hypothesis is true, the model trained jointly
on both tasks will give more accurate forecasts than the model trained solely for
forecasting. The architecture is the same as before, i.e., the bi-LSTM block has
one single layer of size 100. The two tasks have task-specific dense linear layers
while they are sharing the bi-LSTM block. The weight of the imputation loss α is
gradually increased during the experiment to study how the loss weight affects
the forecasting performance. Table 5.2 and 5.3 shows the results from the two
data sets individually.

It is observable in Table 5.2 that the imputation task does not improve the
forecasting accuracy before the missing ratio in test data is 50%. However, the
improvement is minimal and could be random. Overall, the SARIMA data results
indicate that the imputation task does not make the forecasts any worse. For the
electricity data results in Table 5.3, the benefits of the imputation task are not
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α

(weight of
imputation loss)

Bi-LSTM layers hidden_size
%missing in
training data

Test loss
forecasting

(MSE)

1 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5138 0.5233 0.5282 0.5290 0.5703 0.7075

1 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5127 0.5221 0.5272 0.5267 0.5671 0.7018

0.02 0.5128 0.5222 0.5272 0.5267 0.5671 0.7017
0.5 0.5153 0.5244 0.5296 0.5285 0.5677 0.7006
1.0 0.5162 0.5253 0.5305 0.5288 0.5675 0.6992

Table 5.2: Test losses for SARIMA data. The bi-LSTM has one hidden layer of size
100.

α

(weight of
imputation loss)

Bi-LSTM layers hidden_size
%missing in
training data

Test loss
forecasting

(MSE)

1 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.0948 3.9040 8.1008 14.9697 27.7122 56.4444

1 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.0487 1.1066 1.1992 1.4148 2.0929 9.5105

0.02 1.0785 1.1330 1.2225 1.4187 2.0177 9.0475
0.5 1.1739 1.2306 1.3287 1.5311 2.1003 6.7117
1.0 1.1941 1.2512 1.3408 1.5423 2.0881 6.9421
1.2 1.1943 1.2483 1.3341 1.5298 2.0762 6.7869

Table 5.3: Test losses for electricity data. The bi-LSTM has one hidden layer of
size 100.

seen until the test data contains 20% missing data, however, it is for 50% missing
data the improvements become significant. The test loss greatly improves for 50%
missing data when α= 0.5. This improvement substantiates the hypothesis of the
tasks being related and that forecasting can benefit from imputation at least when
the missingness is high. A theory of why the multi-task model does not improve the
performance on the test data with lower missing ratios is that the problem could
be too complex for the simple model. As a result of this, the model is changed in
the following experiments to have increased capacity. Capacity can be increased
by either making the network deeper (adding hidden layers) or wider (making
the hidden layer bigger).

5.3 Increased Capacity

With the new hypothesis of the forecasting model needing more capacity to take
advantage of the imputation task, the capacity is increased. The first approach
considered is making the bi-LSTM block deeper by adding hidden layers of size
100, and secondly, the width of the hidden layer is doubled from 100 to 200.

5.3.1 Deeper model

Models with 1,2, 3 and 5 hidden layers of size 100 in the bi-LSTM block are studied
to determine how the model’s deepness affects the forecasting performance. The
task-specific layers are unchanged. Table 5.4 and Table 5.5 are showing the results
for the SARIMA data and the electricity data, respectively. The tables are showing
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how the forecasting accuracies act with respect to the number of hidden layers in
the bi-LSTM block and the weight of imputation loss.

For both data sets, the deepness seems to have an impact on the forecasting
performances. For the SARIMA data, it is observable from Table 5.4 that the model
with two hidden layers performs better when trained on 2% missing data and
α = 0 compared to the one-layered model for the three lowest ratios of missing
data. On the other hand, for the higher ratios of missing data in the same model,
the loss increases compared to the base model. However, when α > 0, the model
performances of all missing ratios are improved. Hence it seems like the increased
capacity is affecting the benefit from the imputation task. For the three lowest test
missing ratios, the loss weight α = 0.02 gives the most significant improvements
from the model without imputation loss. For the highest test missing ratios, α =
1.2 gives the best performances and beats the base model both when trained with
complete and missing data for α = 0 (except for test data with 50% missing but
this could be random since it is very close). The results for 3 and 5 hidden layers
show that the overall model performance worsens for this data set. For 3 hidden
layers, the performance improves when adding the imputation task. However,
this is not the case for 5 hidden layers. This is indicating that the deepest models
probably is overfitted to the training data. The SARIMA data set is small, and a
too big model easily overfits the data. Even though the individual time series used
for training is short, the model with 2 hidden layers seems to benefit from the
multi-task setting across time series to improve the forecasting results.
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Alpha
(weight of

imputation loss)
Bi-LSTM layers Relu hidden_size

%missing in
training data

Test loss
forecasting

(MSE)

1 No 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5138 0.5233 0.5282 0.5290 0.5703 0.7075

1 No 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5127 0.5221 0.5272 0.5267 0.5671 0.7018

0.02 0.5128 0.5222 0.5272 0.5267 0.5671 0.7017
0.5 0.5153 0.5244 0.5296 0.5285 0.5677 0.7006
1.0 0.5162 0.5253 0.5305 0.5288 0.5675 0.6992

2 No 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5123 0.5130 0.5236 0.5597 0.5873 0.7371

2 No 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5105 0.5108 0.5215 0.5568 0.5838 0.7323

0.02 0.5096 0.5098 0.5203 0.5551 0.5818 0.7282
0.5 0.5114 0.5205 0.5275 0.5269 0.5636 0.7080
1.0 0.5105 0.5196 0.5266 0.5249 0.5612 0.7051
1.2 0.5107 0.5198 0.5266 0.5249 0.5612 0.7048

3 No 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5284 0.5288 0.5393 0.5726 0.6001 0.7475

3 No 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5291 0.5293 0.5399 0.5723 0.5978 0.7395

0.02 0.5278 0.5281 0.5388 0.5715 0.5972 0.7375
0.5 0.5306 0.5397 0.5466 0.5473 0.5857 0.7283
1.0 0.5264 0.5358 0.5423 0.5420 0.5796 0.7190
1.2 0.5277 0.5372 0.5434 0.5427 0.5803 0.7179

5 No 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5467 0.5507 0.5587 0.5789 0.5897 0.7330

5 No 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5609 0.5648 0.5719 0.5737 0.6291 0.7744

0.02 0.5559 0.5601 0.5672 0.5695 0.6266 0.7762
0.5 0.5573 0.5611 0.5721 0.5759 0.6334 0.7802
1.0 0.5648 0.5725 0.5805 0.5840 0.6244 0.7620
1.2 0.5627 0.5701 0.5784 0.5821 0.6228 0.7626

Table 5.4: The test losses from the deeper bi-LSTM models for the SARIMA data.

The Electricity data set has bigger and more significant forecasting improve-
ments with deeper model architecture than for the SARIMA data. Table 5.5 is
showing that the forecasting performance improves for all depths of the bi-LSTM
block when the imputation task is introduced. The expansion to two hidden lay-
ers is showing that the forecasting task benefits from the imputation task also
for lower test missing ratios compared with the findings from the base model.
The overall performance of the forecasting model with two hidden layers is bet-
ter than for the base model containing only one hidden layer. By expanding the
model to consist of three hidden layers, the forecasting performance further im-
proves compared to the two-layered model and is the best-performing model for
the electricity data in this experiment. The weight of the imputation loss perform-
ing best for the electricity data set in this architecture is α= 0.5. The model with
5 hidden LSTM layers has overall worse performance compared to the shallower
models.

To summarize the effect of deeper models, both data sets needed more capa-
city to benefit from the imputation task, especially for the lower ratios of missing
data. The best deepness for the electricity data was three hidden layers, while for
SARIMA, the model with two hidden LSTM layers scored best. The fact that the
electricity data needed more capacity than the SARIMA data makes sense since the
electricity data set is much bigger and more complex being from the real world,
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Alpha
(weight of

imputation loss)
Bi-LSTM layers Relu hidden_size

%missing in
training data

Test loss
forecasting

(MSE)

1 No 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.0948 3.9040 8.1008 14.9697 27.7122 56.4444

1 No 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.0487 1.1066 1.1992 1.4148 2.0929 9.5105

0.02 1.0785 1.1330 1.2225 1.4187 2.0177 9.0475
0.3 1.1389 1.1978 1.2974 1.5060 2.1250 6.7248
0.5 1.1739 1.2306 1.3287 1.5311 2.1003 6.7117
1.0 1.1941 1.2512 1.3408 1.5423 2.0881 6.9421
1.2 1.1943 1.2483 1.3341 1.5298 2.0762 6.7869

2 No 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.9173 2.4841 4.8049 8.4069 15.4964, 35.6437

2 No 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.0667 1.1141 1.1837 1.3464 1.8619 6.7990

0.02 1.0573 1.0976 1.1637 1.3037 1.7229 6.1126
0.10 0.9912 1.0316 1.0943 1.2472 1.6872 6.9211
0.3 0.9670 1.0092 1.0746 1.2288 1.6693 7.0290
0.5 1.0442 1.0831 1.1463 1.2616 1.6203 5.8342
1.0 0.9851 1.0261 1.0896 1.2312 1.6196 6.2019
1.2 1.0012 1.0433 1.1123 1.2626 1.6653 6.0116

3 No 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.9915 2.3730 4.3879 7.8836 14.4134 34.5529

3 No 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.0365 1.0774 1.1403 1.2885 1.7470 6.7621

0.02 0.9350 0.9736 1.0422 1.1842 1.5962 5.9331
0.1 0.9269 0.9647 1.0243 1.1649 1.5664 6.3320
0.5 0.8766 0.9110 0.9635 1.0912 1.4488 6.0827
0.7 0.9445 0.9753 1.0266 1.1447 1.4749 5.1761
1.0 0.9167 0.9506 1.0060 1.1304 1.4932 5.2851

5 No 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.1137 2.4062 4.5246 8.0138 14.1822 33.8879

5 No 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.0282 1.0664 1.1326 1.2729 1.7801 7.50434

0.02 0.9780 1.0171 1.0849 1.2361 1.7338 7.5986
0.5 0.9292 0.9645 1.0206 1.1504 1.5229 7.0362
1.0 0.9653 1.0019 1.0557 1.1860 1.5584 7.6966

Table 5.5: The test losses from the deeper bi-LSTM models for the Electricity
data.

compared to the small, synthetic and regular SARIMA data set. A final observation
is that the higher ratios of missing values in many of the experiments benefit from
a higher weighting of the imputation task compared to the lower missing ratios.

5.3.2 Wider model

Now the other variation of increased capacity is explored, namely expanding the
width of the hidden layer. The only experiment in this category is a doubling of
the hidden layer from the base model from 100 to 200.

For the SARIMA data set, this architecture still makes the model more robust
when introducing missing values during training. However, as seen in Table 5.6,
the forecast performance significantly worsens when the imputation task is added.
Most likely the model overfits the small training data in the SARIMA data case.

Table 5.7 is showing that the wider model performs better on the electricity
data. For the test data containing 50% missing data, the wide model with α= 0.5
is actually giving the overall best performance across the explored models for this
missing ratio. However, for the remaining missing ratios, the wide model improves
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a little for α = 0.02, however not as significantly as for the deeper model added
imputation loss.

Alpha
(weight of

imputation loss)
Bi-LSTM layers hidden_size

%missing in
training data

Test loss
forecasting

(MSE)

1 200 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5153 0.5166 0.5262 0.5622 0.5921 0.7375

1 200 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5143 0.5159 0.5247 0.5599 0.5884 0.7211

0.02 0.5147 0.5163 0.5251 0.5604 0.5889 0.7217
0.5 0.5261 0.5283 0.5373 0.5745 0.6041 0.7419
1.0 0.5334 0.5360 0.5455 0.5837 0.6136 0.7530

Table 5.6: Wider model results for the sarima data set.

Alpha
(weight of

imputation loss)
Bi-LSTM layers hidden_size

%missing in
training data

Test loss
forecasting

(MSE)

1 200 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.9222 4.0276 8.6972 15.9872 29.1945 56.2056

1 200 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.0691 1.1169 1.1977 1.3489 1.7870 6.0463

0.02 1.0639 1.0991 1.1641 1.2855 1.6796 5.9834
0.5 1.1163 1.1690 1.2587 1.4173 1.8602 5.0121

Table 5.7: Wider model results for the electricity data set.

The barplot in Figure 5.1 is showing the improvements from the base model
with one hidden layer and no imputation loss (left bar) to the best performance
from the models with increased capacity (right bar) for each missing ratio. All
the best models with increased capacity utilize the imputation task. The SARIMA
data are showing little or no improvement, however, for the electricity data, the
imputation task is improving the performance significantly for all missing ratios.
This indicates that the tasks are related and can benefit from each other and im-
prove the forecasting.
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(a) SARIMA data

(b) Electricity data

Figure 5.1: Barplot comparing the performance of the forecasting models. For
each missing ratio in test data, the bar to the left is showing the performance
with no imputation loss. The middle bar is showing the best performance of the
deeper models, and the right bar is showing the best performance when ReLU is
added.

5.4 Increased Non-linearity: ReLU

The last hypothesis explored is that the forecasting task with the auxiliary im-
putation task is highly complex and non-linear such that the non-linear activation
functions tanh and sigmoid internally in the bi-LSTM block is not sufficient to
capture the relationship. ReLU layer between the bi-LSTM output and the dense
linear layer is added to test the hypothesis. The models extended with the addi-
tional ReLU layer are the models containing 1,2 and 3 hidden layers of size 100.

One might think that adding a non-linear layer only is transforming the already
non-linear representations and that this would be unnecessary and perhaps not
make sense. However, the additional layer seems to affect the forecasting per-
formance.

All results can be found in Table 5.8 for SARIMA data and Table 5.9 for the
Electricity data. For the SARIMA data, it is observable that the extra non-linear
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layer is helpful for the model with two hidden layers, which we found to be best
for this data before. For the three highest missing ratios the forecasting perform-
ances significantly improve from α = 0 to α = 1.0 and also slightly beats the
performance from the model with two layers without the extra ReLU layer.

Table 5.9 is showing that the additional non-linear layer is also having a pos-
itive impact on the electricity data for benefiting from the imputation. The first
interesting observation from Table 5.9 is that the ReLU layer is significantly im-
proving the base model with one hidden layer when α = 0, indicating the ReLU
layer makes the base model more robust against missing values. This architecture
only benefits from the imputation task when there are 10% or more missing val-
ues. The architecture benefiting from the imputation task for all missing ratios is
again the one with three hidden LSTM layers for the electricity data. However,
the performance does not beat the corresponding model without the ReLU layer
for the best α.

Alpha
(weight of

imputation loss)
Bi-LSTM layers Relu hidden_size

%missing in
training data

Test loss
forecasting

(MSE)

1 Yes 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5172 0.5250 0.5313 0.5307 0.5684 0.7124

1 Yes 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5170 0.5250 0.5315 0.5300 0.5669 0.7090

0.02 0.5174 0.5253 0.5319 0.5304 0.5671 0.7086
0.5 0.5186 0.5268 0.5333 0.5315 0.5688 0.7116
1.0 0.5211 0.5294 0.5359 0.5333 0.5707 0.7122

2 Yes 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5128 0.5106 0.5228 0.5501 0.5734 0.7202

2 Yes 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5153 0.5130 0.5250 0.5502 0.5713 0.7178

0.02 0.5132 0.5114 0.5233 0.5501 0.5728 0.7183
0.5 0.5129 0.5198 0.5275 0.5247 0.5593 0.7125
1.0 0.5134 0.5202 0.5279 0.5235 0.5570 0.7088
1.2 0.5134 0.5204 0.5279 0.5242 0.5581 0.7099
1.5 0.5148 0.5216 0.5291 0.5242 0.5574 0.7067

3 Yes 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5297 0.5281 0.5403 0.5669 0.5910 0.7451

3 Yes 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.5333 0.5318 0.5441 0.5707 0.5930 0.7490

0.02 0.5327 0.5313 0.5438 0.5702 0.5932 0.7489
0.5 0.5269 0.5330 0.5408 0.5383 0.5734 0.7227
0.7 0.5265 0.5327 0.5404 0.5376 0.5727 0.7218
1.0 0.5269 0.5334 0.5414 0.5382 0.5734 0.7218

Table 5.8: Results for the sarima data when a ReLU is added between the last
hidden layer of the bi-LSTM and the linear output layer.
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Alpha
(weight of

imputation loss)
Bi-LSTM layers Relu hidden_size

%missing in
training data

Test loss
forecasting

(MSE)

1 Yes 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.8363 2.7714 5.5988 10.2466 19.0253 41.6118

1 Yes 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.8230 0.8580 0.9151 1.0482 1.4122 5.2965

0.02 0.9627 1.0121 1.0928 1.2270 1.6058 5.4793
0.5 0.8772 0.9106 0.9694 1.0918 1.4242 4.8301
1.0 0.8324 0.8694 0.9250 1.0472 1.3955 5.7361

2 Yes 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.1579 2.6646 4.9460 8.3416, 15.5222 36.6040

2 Yes 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.0384 1.0868 1.1690 1.3460 1.8993 7.6438

0.02 1.0458 1.0872 1.1605 1.3188 1.8181 7.5278
0.3 0.9745 1.0156 1.0821 1.2219 1.6435 8.4865
0.4 0.9745 1.0124 1.0724 1.2037 1.5812 6.7925
0.5 0.9994 1.0397 1.1005 1.2321 1.5941 6.0525
1.0 1.0124 1.0483 1.1075 1.2369 1.6119 6.2905

3 Yes 100 0%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 0.9384 2.1442 4.0487 7.2348 13.4826 32.9579

3 Yes 100 2%
0 %missing in

test data
2 %missing in

test data
5 %missing in

test data
10 %missing in

test data
20%missing in

test data
50 %missing in

test data
0 1.0009 1.0401 1.1077 1.2562 1.6917 7.2984

0.02 0.9059 0.9423 1.0063 1.1451 1.5314 5.7842
0.5 0.9245 0.9585 1.0098 1.1257 1.4440 4.6647
1 0.8861 0.9205 0.9698 1.0966 1.4462 5.6243

1.2 0.9097 0.9452 0.9990 1.1331 1.4821 5.8007

Table 5.9: Results for the electricity data when a ReLU is added between the last
hidden layer of the bi-LSTM and the linear output layer.

5.5 Compare performance with other baselines

The focus in this thesis has not been to find the best model for forecasting the
time series, but rather how the imputation task improves the forecasting task in a
simple neural network model. In addition, we have looked at the model’s robust-
ness when there is missing data in the time series. To get an insight into how bad
or good the model performance is, a comparison against two local-based baseline
models is given. The methods considered are Naïve forecasts and SARIMA fore-
casts. MCAR missing values are simulated in the same way as earlier, however,
now the missing values are filled using LOCF imputation. The data set considered
for the comparisons is the SARIMA data set.

The first baseline model is the Naïve forecasting method where the forecasted
values are the last observed value. The test losses from the Naïve approach are
found in Table 5.10. The test losses in this table are unscaled, hence we back
transform the predicted values from the bi-LSTM model for the best model for
this data set found earlier in Table 5.11. If we compare these two models, it is
observable that for the three lowest ratios of missing values, the thesis model
outperforms the naive method. However, this is not the case for the three higher
missing ratios where the naive forecasts outperform the thesis model. A possible
reason for this is that since the test data set is only containing 5 values from each
time series and that the data set used for the naive approach have imputed values,
there are limits for how bad it can get when the forecast are based on the last value
of the training data and five values ahead in time. For the thesis model, the values



Chapter 5: Results and Discussion 47

are not imputed, meaning all five values in a time series could be missing (set
to zero when scaled), and then the model is only leaning on the missing value
indicator to forecast the values.

Amount of missing data
0% 2% 5% 10% 20% 50%

MSE 541214 541122 541156 478768 510733 444043

Table 5.10: MSE test losses from local Naive forecasting models on the SARIMA
time series with LOCF imputed values. The losses are the total MSE loss across
the time series.

The local SARIMA model beats the thesis model for all missing ratios as seen in
Table 5.12. However, the way these models are fitted has an advantage compared
to the thesis model. First of all, we use a function that automatically finds the
best-suited model for each individual time series. Secondly, the SARIMA models
get fitted to all values except for the value to forecast next.

By focusing on the three lower ratios of missing data, the thesis model per-
forms better than the naive forecast but worse than local SARIMA models. An ad-
vantage of the thesis model over the SARIMA approach is that it is global, meaning
there is only one model forecasting all the different time series. In this way, it is
much faster than finding local SARIMA models for all time series in the data set
individually.

Amount of missing data
0% 2% 5% 10% 20% 50%

MSE 193530 195273 191427 204116 203803 278467

Table 5.11: MSE test losses from local SARIMA models on the SARIMA time
series with LOCF imputed values. The losses are the total MSE loss across the
time series.

Amount of missing data in test
0% 2% 5% 10% 20% 50%

α= 0 364301 367925 396055 577013 742956 1401883
α= 0.02 354741 358363 386743 570079 735687 1380210
α= 1.2 347963 358146 425437 386720 471059 989168

Table 5.12: Back-transformed test losses for the best model for the SARIMA data
set with two hidden layers of size 100 in the LSTM-block.





Chapter 6

Conclusion

In this thesis, the relationship between forecasting and imputation of univariate
time series with missing data has been explored. A robust forecasting model has
been added an imputation task, trained in a multi-task manner with a weighted
combination of the losses of the two tasks. The benefit of this approach is ex-
plored. How the ratio of missing values affects the utilization of the auxiliary task
and the robustness of the model are also investigated. In addition, the research
questions encouraged to explore whether the model architecture affects the an-
swers of these questions.

We found that the forecasting task does benefit from the imputation task. The
benefit of the imputation task is most significant for higher ratios of missing data,
however, the improvements become significant for lower ratios of missing data
when the capacity of the neural networks are increased from 1 hidden layer to
2 and 3 hidden layers for the SARIMA and the Electricity data, respectively. For
the SARIMA data, the best deep model utilized the additional task best when the
imputation loss weight was small (α= 0.02) for lower missing ratios, and for the
higher ratios, the model trained with α= 1.2 utilized the additional task best. For
the Electricity data, the best deep model improved the forecast performance for
all missing ratios with α= 0.5. Another advantage with the deeper models is that
the robustness against an increasing amount of missing values for the single-task
model (α= 0) increases. The robustness of the base model with one hidden layer
of size 100 became significantly improved by adding a ReLU layer between the
last hidden layer and the forecasting linear output layer. With these findings, we
can conclude with the two tasks forecasting and imputation being related and can
utilize information from each other.

6.1 Future work

Based on the findings in this thesis, it would be natural to further investigate fore-
casting models for univariate time series with missing data utilizing information
from imputation tasks. The model should be tested on several datasets with other
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characteristics, and compared to other baselines. The results for the electricity
data should also be compared against other baseline models that I, unfortunately,
did not have the time to.

Replacing the bi-LSTM block with other standard neural network architectures
to find the best choice for this problem should be done to find a baseline forecast-
ing model robust against missing values or other types of noise on univariate time
series. The relation between forecasting and imputation should also be further
worked with due to the potential it has shown in this thesis. Perhaps the type of
missing data affects the benefit of the missing value indicator and the imputation
task, and the model should thus be explored with MAR and MNAR missing values
to find out.
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