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Robust bacterial co‑occurence 
community structures are 
independent of r‑ and K‑selection 
history
Jakob Peder Pettersen1, Madeleine S. Gundersen1 & Eivind Almaas1,2*

Selection for bacteria which are K‑strategists instead of r‑strategists has been shown to improve fish 
health and survival in aquaculture. We considered an experiment where microcosms were inoculated 
with natural seawater and the selection regime was switched from K‑selection (by continuous feeding) 
to r‑selection (by pulse feeding) and vice versa. We found the networks of significant co‑occurrences 
to contain clusters of taxonomically related bacteria having positive associations. Comparing this with 
the time dynamics, we found that the clusters most likely were results of similar niche preferences 
of the involved bacteria. In particular, the distinction between r‑ or K‑strategists was evident. 
Each selection regime seemed to give rise to a specific pattern, to which the community converges 
regardless of its prehistory. Furthermore, the results proved robust to parameter choices in the 
analysis, such as the filtering threshold, level of random noise, replacing absolute abundances with 
relative abundances, and the choice of similarity measure. Even though our data and approaches 
cannot directly predict ecological interactions, our approach provides insights on how the selection 
regime affects the composition of the microbial community, providing a basis for aquaculture 
experiments targeted at eliminating opportunistic fish pathogens.

In aquaculture, the fish is in close contact with its environmental  microbiome1. Fish larvae are at an especially 
vulnerable life stage, with high death rates causing economic problems in the aquaculture  industry2,3. Research 
during the last decades has uncovered that the bacterial composition of the larval environment affects their sur-
vival, and both detrimental and favourable host-microbe interactions have been identified. This interplay strongly 
suggests that one may manipulate the larval environmental microbiome to improve their health and  survival4,5.

A viable approach for microbiome control is to select against opportunistic pathogens and select for favour-
able bacteria. This approach is based on the concept of r- and K-strategists, introduced in microbial ecology 
by Andrews and  Harris6. Most opportunistic bacteria are r-strategists, meaning that they grow rapidly when 
resources are in surplus. If the opportunistic strain is pathogenic, such environments facilitate its prolifera-
tion and may subsequently lead to fish disease. However, r-strategists compete poorly when the environment 
is resource-limited. In such a competitive environment, the slow-growing K-strategists will quickly dominate 
due to their high resource-acquiring affinities and high  yields1,7. Thus, resource availability is a crucial variable 
to manage in aquaculture. Stable resource availability promotes K-selection, whereas fluctuating availability 
promotes r-selection7.

Since it is unclear, due to lack of experimental evidence, whether selecting for K-strategists will make a 
recurring set of bacteria co-occur or whether competition results in co-exclusion among the K-strategists, we 
wanted to investigate this problem using co-occurrence network analysis. Furthermore, we also wanted to study 
the extent to which r-strategists co-occur with K-strategists. Earlier studies have suggested that using similarity 
measures for network inference could determine bacterial niches, describe a microbial community’s response 
to environmental disturbances, predict ecological keystone organisms, and explain changes in a microbial com-
munity over  time8–12. We hypothesized that such a tool could partition bacteria based on their growth preferences 
and be useful to characterise and identify which bacteria are r-strategists and which are K-strategists. When a 
microbial community is subjected to external disturbances, it may change composition permanently, it may be 
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resistant (insensitive to the disturbance), or it may “remember” its original state and be resilient (return to its 
original state after initially changing)13. We were interested in investigating whether r- and K-selection will give 
the microbial communities memory, and whether the selection regime would provide resistance or resilience 
against changing external factors.

Given our research questions, we found the dataset from Gundersen et al.14 to be particularly useful. This is 
a 2 × 2 factorial crossover microcosm experiment that tested varying feeding regime and resource availability 
(high/low). Briefly, half of the microcosms were pulse-fed resources which promotes the growth of r-strategists, 
whereas the other half received a steady, continuous supply of nutrients promoting K-strategists. We hereafter 
refer to these selection regimes as r- and K-selection. The bacterial communities were sampled and characterised 
through 16S ribosomal RNA gene sequencing (16S-RNA)9,15,16 at 18 time-points over a 50 day period.

What made the Gundersen  dataset14 particularly suited for our analysis, was that approximately halfway 
into the experiment (i.e. between day 28 and 29), the r- and K-selection regimes were switched such that each 
microcosm was subjected to both selection regimes. While the original paper on the dataset focused on study-
ing the effect of the selection regimes and resource availability on ecological community assembly, our work 
uses network analysis to gain a more detailed understanding of the community dynamics than solely comparing 
samples can provide.

Results
To investigate the bacterial community structure and dynamics in r- and K-selected communities, we assessed the 
co-occurrence patterns of 1,537 operational taxonomic  units17 (OTUs) observed in the microcosm experiment. 
This 16S-rRNA gene dataset consisted of 202 samples from 12 microcosms cultivated over 50 days. Note that, 6 
of the microcosm were r-selected, and 6 were K-selected. Between day 28 and 29, the r/K-selection regime was 
switched such that r-selected communities now were K-selected (the RK-group) and vice versa (the KR group). 
Furthermore, the microcosms varied by the amount of resources supplied, high (H) and low (L). However, 
exploratory analysis of the dataset did not indicate any relevant effect of the resource supply, and hereafter we 
will only focus on the r- and K-selection regimes.

Similarity measurements and network inference. We assessed the co-occurrence patters between the 
OTUs using two similarity measurements and varying levels of random noise, OTU filtering, and type of abun-
dance (relative/absolute). In contrast to many other 16S-rRNA microbiome datasets, we estimated the bacterial 
community’s absolute abundances using flow cytometry.

Here, we present the results for the Spearman correlation measure with a low level of random noise, low 
OTU filtering threshold and absolute abundances (see the Methods’ section for more details). We decided to 
focus on the rank-based Spearman correlation because it is widely applied for detecting  associations16,18,19. We 
will later discuss the robustness of these results by contrasting and comparing with other similarity measures 
and parameter choices.

From an ecological perspective, an interaction between two microbes is an effect which one microorgan-
ism has on another. This includes cross-feeding, biofilm formation, and  parasitism9,20,21. However, in further 
discussion, unless stated otherwise, we will use the term interaction in a network-theoretic perspective, where 
we apply a “guilt by association” heuristic. This means that, we define two OTUs to have a positive interaction if 
they co-occur in the same samples to a larger degree than expected by random chance. Conversely, we define two 
OTUs to have a negative interaction if they co-occur more rarely than expected by random  chance16,22,23. Even 
if there cannot be any direct ecological interactions between the bacteria in different microcosms, the network 
concept of interactions still enables us to infer associations across samples collected from different microcosms.

We wanted to create a network of the pairwise associations between the OTUs and thus had to determine 
which edges to include. Selecting a hard threshold for the q-value for an interaction to be statistically significant 
(for instance at q ≤ 0.05 ), is not an easy  choice24. We, therefore, illustrate the number of significant interactions 
over a range of threshold q-values up to 0.05 (Fig. 1). From this figure, we see that there is no obvious cutoff.

There were in total 3250 interactions having q ≤ 0.05 , of which 1679 were 0.05 ≥ q ≥ 10−4 and 639 with 
q < 10−10 . Therefore, we determined 500 edges to be a reasonable balance between selecting high-significance 
edges and a network with lower average node connections. With this setting, the effective q-value threshold 
became 5.0 · 10−13 . The resulting network modules were labelled using the walktrap algorithm with 20  steps25 
(Fig. 2).

Phylogenetic clustering within the modules. The co-occurance network analysis clustered the OTUs 
into four distinct modules (Fig. 2). Also, two OTUs were not assigned any module (shown as colourless nodes 
inside module 3) as they were connected to the rest of the network with negative interactions only. Module 3 and 
4 stood out as the most interesting modules for two reasons. First, they had the largest number of nodes. Second, 
there were negative links between the modules, suggesting mutual exclusion between modules. For these two 
main modules we observed a large number of positive links within the modules, but negative edges between 
them. Therefore we wondered whether the modules were phylogenetically clustered. Indeed, we observed a clear 
pattern between OTU module membership and phylogenetic classification (Fig. 3 and Supplementary Table S1). 
Module 3 consisted primarily of Alphaproteobacteria (including Rhodobacteraceae) and Flavobacteria, whereas 
most OTUs in module 4 were Gammaproteobacteria (including Colwellia and Vibrio). Hence, we see that within 
each module, the OTUs were most often phylogenetically related.

Temporal trajectories of the microbial communities. After having observed the network modules, 
we were interested in understanding the co-occurrence structures and how it influenced community dynamics. 
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To investigate the community dynamics within the microbial communities, we plotted the Bray-Curtis PCoA-
ordinations of the samples and observed the successional trajectories of each microcosm (Fig. 4).

From this time trajectory plot, we compared the panels diagonally and observed that microcosms undergoing 
K-section converged towards the upper-left area in the plot, whereas microcosms under r-section converged 
the middle-right area. This effect seemed independent of the experimental period and of pre-existing experi-
mental conditions. A PERMANOVA analysis showed that the current selection regime was most important for 
the community composition ( R2 = 0.344 and p < 10−6 ) compared to the minor effect of the overall selection 
group ( R2 = 0.084 and p = 0.017 ), see Methods for details. Consequently, in this respect the communities did 
not seem to have any memory-effect that gave rise to resistance against changes in composition. As the r/K-
selection regimes resulted in clustered communities, we aimed at investigating how the network arose from 
these dynamics.
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Figure 1.  The cumulative number of significant interactions as a function of the critical q-value threshold 
considered. The solid line signifies positive interactions detected, while the dashed line represents the number of 
negative interactions.
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Figure 2.  Module-labelled network of the 500 most significant interactions in the r/K-selection-switch 
dataset. Each of the 86 nodes is an OTU, while each edge corresponds to a statistically significant association 
between the OTUs. Blue solid edges indicate positive interactions, whereas red dashed edges indicate negative 
interactions. The node-sizes are scaled logarithmically according to overall mean abundance.
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r/K‑strategist network patterns. We further investigated what influenced the dynamics of the commu-
nity, and conversely the dynamics’ contributions to the overall network network in Fig. 2. For this, we visualised 
the rank-based z-scores of the OTU abundances (see Methods for details) for selected days during the experi-
ment for high resource supply (Fig. 5). For low resource supply, the results were very similar and is thus not 
discussed any further (see Supplementary Fig. S1 for further details).

There were some obvious patterns that were apparent when investigating the temporal networks, especially 
with regards to module 3 and 4. The abundance of the OTUs in module 3 increased during K-selection, while 
the ones in module 4 had the opposite trend and had high abundances during r-selection. Hence, within each 
module, the OTUs had coordinated abundance patterns leading to positive inferred interactions. On the other 
hand, between module 3 and 4, the abundance patterns were anti-coordinated such that we obtained negative 
interactions.

We expected the dataset to display two time periods of instability: The first at the start of the experiment 
when the microbial community would adapt to lab-culture conditions, and the second disturbance instability 
after switching the selection regime, after day 28. During these unsteady periods, we expected more instability 
and less coordination between OTUs belonging to the same module. This in turn, would contribute to negative 
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c_Flavobacteriia
c_Bacilli
c_Gammaproteobacteria

Figure 3.  The phylogentic tree of the 86 OTUs from Fig. 2. together with the class level taxonomical 
assignment. Point colour indicates module membership, whereas the shape indicates class level taxonomical 
assignment. Notice that there are some inconsistencies between the phylogenetic tree and the assigned 
taxonomy.
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interactions or weaken the positive ones. However, this expectation was only partially fulfilled because we 
observed negative edges within modules in Fig. 5 also outside the two predicted periods of instability. One 
potential factor contributing to instability at the beginning of the experiment, was the fact that the oligotrophic 
seawater was introduced to high amount of nutrients, favouring r-strategists to proliferate even if the feeding 
was continuous.

Network robustness. If our results were different when changing parameters, the conclusions would be 
less likely to give us any real insight into how the communities actually behave. Therefore, we checked the robust-
ness of the chosen parameters, changing one at a time while keeping all other parameters constant. Increasing 
the levels of random noise from low to medium (see Methods section) did not give any substantial difference in 
terms of significant interactions. Some cosmetic changes were visible due to different color labeling of communi-
ties and orientations of plots (details in Supplementary Section S2). Exchanging estimated absolute abundances 
with relative ones gave higher proportion of negative interactions and different assignments of OTUs into mod-
ules (see Supplementary Section S3). However, the greater trends in the results stay the same, such as clustering 
based on phylogeny and the considerable change in the community behaviour after switching selection regime.

Selecting a more stringent OTU filtering cutoff only has a minor consequence on the results, at the level of 
cosmetic changes in the plots (see Supplementary Section S4 for details). On the other hand, we notice a more 
pronounced effect when replacing the Spearman correlation by Pearson correlation. This is not surprising, since 
Spearman is non-parametric and Pearson measures degree of linear co-occurrence. In this case (Pearson), we got 
far fewer negative significant interactions for the same q-value, none of which are among the 500 most significant 
ones. Still, modules of phylogenetically related OTUs are present, and the selection regime still seems to explain 
the modules (Supplementary Section S5).

Discussion
In literature, challenges of microbial datasets such as sparsity, compositionality and habitat filtering have been 
addressed and solutions proposed for finding ecological  interactions22,26–29. Despite the fact that predictions 
from ecological interaction-inference tools have been successfully validated in some  cases30,31, any universally 
accepted gold standard of finding ecological microbial interactions is not yet agreed upon. Furthermore, some 
reviews assessing existing methods for inferring ecological interactions have demonstrated that current methods 
have far too low predictive power, and more refined approaches specifically designed to cope with difficulties 
in microbial datasets have failed to perform better than the basic  ones19,32. Hence, we believe that our choice 
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Figure 4.  PCoA ordination of Bray-Curtis distances between samples showing the time trajectories for each 
microcosm. The single ordination was faceted vertically based on the state of selection regime at the time of 
sampling (being r or K-selection), and horizontally to highlight temporal trends. Solid and dotted lines indicate 
high (H) and low (L) resource supply, respectively. The labels indicate the day of sampling, whereas the line 
colours are purely to visually distinguish the replicate time series.
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Figure 5.  Dynamic visualisation of the network in Fig. 2, for (a) the RK selection group and (b) the KR 
selection group for high (H) resource supply. Nodes are coloured according to the corresponding OTUs’ 
abundance compared to its overall mean for all sampling days, represented by its z-score. Orange, grey and black 
nodes mean higher, about the same or lower abundance than its mean, respectively. The edges are coloured 
by the product of the nodes’ z-scores. This means that blue and red edges contribute to positive and negative 
association across the time series, respectively. The grey edges indicate that no major contribution to neither 
positive nor negative association is made. As we want to emphasize the orange and black nodes, the nodes with 
higher absolute z-scores are larger.
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of using the relatively simple  ReBoot22 procedure is reasonable, even though the approach in and of itself is 
somewhat coarse-grained.

We observed that our correlation networks clustered the OTUs according to taxonomy and niche preferences 
as a result of selection for K- and r-strategists. The finding that taxonomy and niche preferences dominate co-
occurrence patterns is in line with work by Chaffron et al.33 who produced similar results from samples stored 
in a ribosomal RNA database. Along the same line, Bock et al34 also noted that many of the interactions in a 
correlation network occur between closely related species when studying bacterial and protist communities in 
European lakes. Bacteria with similar niches are expected to be competitors and, hence, have negative interac-
tions with each other. However, the effect of habitat filtering will create positive correlations between species with 
similar niches that are often stronger than those arising from ecological  competition10,35,36. The same reasoning 
goes for taxonomical relatedness, as closely related organisms often belong to the same niche and have similar 
functions. This favours positive interactions within modules, whereas we, to a lesser extent got negative interac-
tions between modules where the growth requirements are different.

Moreover, we have not undertaken any attempt to deal with indirect interactions. This means that two OTUs 
can appear with a strong (correlation) link even though they have no direct effect on each other, but instead 
interact with a third OTU. Consequently, it is challenging to determine causality when working with inferred 
interactions. Also, such indirect effects can be caused by environmental variables and biological entities not taken 
into account, such as protists and bacteriophages.

For reasons mentioned above, our results are not meant to directly represent real ecological interactions. 
Nevertheless, our results are interesting from a fish-health perspective, as they show that selection regime can 
control community composition. In terms of r- and K-selection, literature consider the orders Alteromonadales 
and Vibrionales represented in module 4 as r-strategists, whereas the Rhodobacteraceae in module 3 are consid-
ered K-strategists37. Additionally, Vibrio strains are known to cause disease in fish, whereas Rhodobacteraceae 
bacteria have been shown to protect against Vibrio infections through  competition38–41. This agrees with and 
extends prior knowledge that K-selection is a potent tools for improving fish health and  survival1,7.

The long-term behaviour of the community did not appear to depend on its prehistory. Potentially, this means 
that changing the microbiota from a detrimental to a healthy state in a running aquaculture facility requires 
the same measures as ensuring a healthy microbiota for a new facility. Furthermore, the trustworthiness of the 
results is strengthened by their robustness to changes in parameter settings, such as filtering cut-off, amount of 
random noise, type of abundance, and similarity measure.

This experiment was conducted in an artificial setting without any fish of which the health could be tracked. 
Furthermore, we do not know whether up-scaling and broader exposure could change the workings of the micro-
bial community. Therefore, follow-up studies could be implemented in realistic aquaculture settings, perhaps 
such as a RAS facility, to investigate whether switching between K-selection and r-selection will yield the same 
community dynamics as described in this paper. Additionally, such an experiment would provide opportunity 
to investigate possible connections between the state of the microbial community and the health of the fish.

We acknowledge that there exist alternative approaches one could follow. For instance, treating the OTUs as 
discrete units is a bit misleading. As the results show, closely related OTUs often occur together, so it could make 
more sense to treat the bacteria as a taxonomical continuum. A novel approach based on amplicon sequence 
variants (ASVs) avoids the clustering of OTUs altogether by considering each individual unique read as an own 
 entity42. The phylogenetic relatedness between ASVs could then be used as a constraint for finding co-occurrence 
patterns. In addition, incorporating environmental information, such as organic nutrient load, salinity, and 
temperature, would be useful because this allows us to better predict how the desired K-selection should be 
obtained. Joint Species Distribution Models (JSDMs)43,44 might have this useful potential to account for both 
species interaction, environmental factors, and taxonomical relatedness. However, its use in microbial ecology 
is still in its early stages and time dynamics are not yet embedded into the  framework45,46.

Methods
Selection‑switch experiment. The dataset used for this article is previously  published14, but we include 
a brief summary for completeness: Natural seawater was collected and used to inoculate microcosms in a 2 × 2 
factorial crossover design with 3 replicates conducted for 50 days, which were sampled 18 times during the 
experiment. Half of the microcosms were given high (H) resource supply, whereas the other half were given 
low (L) resource supply. The factor of resource supply level was constant throughout the experiment. The other 
factor was the selection regime, which meant that the microcosms were either given continuous supply of nutri-
ents (favouring K-selection, and hence the designation K) or being pulse-fed with nutrients after diluting the 
contents of the microcosms with growth medium (favouring r-selection, designated R). The active selection 
regime was switched at the experimental halfway point (between days 28 and 29), yielding two selection groups 
designated as RK and KR.

DNA was extracted from the collected samples, and the V3-V4 region of the bacterial 16S-rRNA gene was 
amplified with PCR using broad-coverage primers and the index sequences were ligated. The amplicon library 
was pooled and sequenced with two runs on an Illumina MiSeq machine. The reads are available at the European 
Nucleotide Archive with accession number ERS7182426-ERS7182513.

The USEARCH  pipeline47 (v11) was used to remove low-quality reads and cluster the reads into OTUs at 97% 
similarity level. Finally, the taxonomy of the OTUs was determined by the Sintax classifier using data from the 
RPD training set (v.16) where the confidence threshold was set to 80%.

Quantification of bacterial density. For each sample, the bacterial density was quantified using flow 
cytometry (BC Accuri C6)14. In brief, the bacterial communities were diluted in 0.1x TE buffer, mixed with 2x 
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SYBR Green II RNA gel stain (ThermoFisher Scientific) and incubated in the dark at room temperature for 15 
minutes. Then, each sample was measured for 2.5 minutes at 35 μL  min−1 with an FL1-H (533/30 nm) threshold 
of 3000. We gated the bacterial population as those events with an FL1-A > 104 and FSC-A < 105 . The raw flow 
cytometry data files are available at https:// doi. org/ 10. 6084/ m9. figsh are. 15104 409.

Alignment and phylogentic tree. The selection-switch dataset was acquired directly from the  authors14. 
This dataset consists of a total of 206 samples. Two of these samples were taken from the communities from 
which the reactors were inoculated, whereas the other samples were taken from the microcosms with 17 time 
points x 4 regimes x 3 replicates. We discarded the inoculum samples for further analysis. The OTU reference 
sequences were aligned with SINA version 1.6.148 using the SILVA Release 138 NR 99 SSU  dataset49. Using this 
aligment, the phylogentic tree was constructed by neighbour-joining using MEGA  X50 with default parameters.

Filtering and preprocessing. The mean number of reads per sample was 63,460 with standard devia-
tion 31,411. For our analysis, we wanted to estimate the abundance of each OTU as accurately as possible and 
therefore skipped any correction for unequal sequencing depth. Read counts for each OTU in each sample 
were divided by the total number of reads for the sample, generating relative abundances. Thereafter, all OTUs 
having a maximum abundance (across all samples) below a certain threshold, were removed. Three levels of 
filtering thresholds (as count proportions) were applied: High level at 5 · 10−3 , medium level at 1 · 10−3 and 
low level at 5 · 10−4 . The purpose of the filtering was to remove rare OTUs in order to avoid noise and spuri-
ous  correlations11. For obtaining estimates of absolute abundances, the relative abundances were scaled by the 
estimate of total bacterial cell density for each sample. The phyloseq package (version 1.36.0)51 and the R 
programming language (version 4.1.1)52 facilitated this procedure. In addition, we wrote an R-package named 
micInt (version 0.18.0, available at https:// github. com/ Almaa sLab/ micInt) to facilitate and provide a pipeline 
for the analysis.

Similarity measures and addition of noise. For this study, we used two similarity measures, the Pear-
son correlation and the Spearman correlation. A similarity measure, as referred to in this article, can be thought 
of as a function f : Rn × R

n → D where D = [−1, 1] . In this regard, f
(

x, y
)

 is the similarity of two abundance 
vectors x and y belonging to different OTUs, where f

(

x, y
)

= 1 indicates perfect correlation, f
(

x, y
)

= 0 indi-
cates no correlation and f

(

x, y
)

= −1 indicates perfect negative correlation. Noise was added to distort patterns 
of double zeros, which otherwise could result in spurious correlations. Given two vectors x and y of abundances, 
normally distributed noise was added to each of the abundance vectors, and the similarity measure has invoked 
thereafter: Given a similarity measure f, the similarity between the abundance vectors after adding noise is given 
by:

where εx and εy are random vector where all components are independent and normally distributed with mean 
zero and variance γ 2 . The level of noise γ was determined by the smallest non-zero relative abundance xmin in 
the dataset and a fixed constant s called the magnitude factor, such that γ = s · xmin . For no noise, s = 0 , for low 
noise s = 1 , for middle noise s = 10 and for high noise s = 100.

Network creation. Significance of the pairwise OTU associations were determined by the ReBoot proce-
dure introduced by Faust et al.22 and shares the underlying algorithm used in the CoNet Cytoscape  package53. 
This approach accepts a dataset of microbial abundances and a similarity measure, and evaluates for each pair 
of OTUs in the dataset the null hypothesis H0 : “The association between the OTUs is caused by chance”. By 
bootstrapping over the samples, the similarity score of each pair of OTUs is estimated, forming a bootstrap 
distribution. By randomly permuting the pairwise abundances of OTUs and finding the pairwise similarity 
scores, a bootstrap distribution is formed. The bootstrap and permutation distribution are then compared with a 
two-sided Z-test (based on the normal distribution) to evaluate whether the difference is statistically significant. 
For this, the z-value, p-value and q-value (calculated by the Benjamini-Hochberg-Yekutieli  procedure54) are pro-
vided for each pair of OTUs in the dataset. Our ReBoot approach is based on the R-package ccrepe (version 
1.28.0)55, but is integrated into the micInt package with the following major changes:

• The original ReBoot uses renormalization of the permuted abundances to keep the sum-to-constant con-
straint. Whereas this is reasonable to do with relative abundances, our modified version enables turning this 
feature off when we analyse data with absolute abundances.

• Optimizations have been made to memory use and CPU consumption to enable analyses of large datasets.
• In contrast to the usual ReBoot procedure, networks generated by the different similarity measures are not 

merged by p-value, but kept as they are.

For our analysis the number of bootstrap and permutation iterations was set to 1000. All OTUs being absent in 
more than n · 10−

4
n samples, where n is the total number of samples, were excluded through the errthresh 

argument but still kept for renormalization (if turned on). The associations were made across all samples, even 
the ones belonging to a different selection group or resource supply.

(1)f ∗
(

x, y
)

= f
(

x + εx , y + εy

)

,

https://doi.org/10.6084/m9.figshare.15104409
https://github.com/AlmaasLab/micInt
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Dynamic PCoA visualization. All samples in the dataset were used for PCoA ordination, where the Bray-
Curtis distance metric between the samples was applied before creating the decomposition. After the ordina-
tion was computed, the samples were divided into four facets based on their combination of current selection 
regime and resource supply. Finally, all samples belonging to the same microcosm were connected by a line in 
chronological order and the line was given a separate style based on the resource supply and coloured to visually 
distinguish it from the two other replicate microcosm within the same facet.

Permutational multivariate analysis of variance. Sequential PERmutational Multivariate Analysis of 
VAriance (PERMANOVA) of the samples was conducted on the absolute abundances, where only the sam-
ples from day 28 and 50 were included. These sample points correspond to time just before the experimental 
selection-regime crossover and a point at the end of the experiment. These days were selected because they were 
the most likely to capture the composition of stable communities in contrast to transient ones. The procedure 
was carried out by the function adonis from the R package vegan (version 2.5-7) with 106 permutations. The 
dependent data given to the function was the matrix of one minus the Spearman correlation of the samples (in 
order to resample dissimilarity), while the independent variables were the selection group (first variable) and the 
current selection regime (second variable).

Network visualization. The networks were plotted by the R package igraph (version 1.2.6)56. Network 
modules were found by the  walktrap25 algorithm implemented in igraph with the setting steps=20, includ-
ing the positive edges only. Later, the negative edges were added and the networks plotted with the community 
labelling.

The time dynamics of the networks were visualised by taking the former network and adjusting the node 
colour and size, as well as the edge colour. For this, a certain combination of selection group (i.e RK) and resource 
supply (i.e H) was chosen. Further, let xi,j,k be the abundance of OTU k at sampling day i in microcosm j. As 
there are three replicates, we have that j = 1, 2, 3 . If the underlying network was created by Pearson correlation, 
we denote the day mean xi,.,k as the average over the replicates, this is:

The time series mean of OTU k, x.,.,k is the mean of these daily means over all sampling days,

where N denotes the number of sampling days. Furthermore, we have the associated standard deviation σk as 
given by:

The z-value of the abundance of OTU k at day i is then:

This value is used in the mapping of the node sizes and colours. The node for OTU k at sampling day i has 
the size a+ b ·

∣

∣zi,k
∣

∣ , where a and b are constants. Furthermore, the same node is coloured:

• Black if zi,k < −1 . This indicates that the OTU that day had a lower abundance than the average.
• Grey if −1 ≤ zi,k ≤ 1 . This indicates that the OTU that day had about the same abundance as the average.
• Orange if zi,k > 1 . This indicates that the OTU that day had a higher abundance than the average.

Furthermore, the edge colour are dependent on the product of the two participating nodes. Hence, the edge 
between OTU k and OTU l at day i will have the colour:

• Red if zi,k · zi,l < −0.3 . This shows a contribution to a negative interaction.
• Gray if −0.3 ≤ zi,k · zi,l ≤ 0.3 . This shows no major contribution of neither a positive nor negative interaction.
• Blue if zi,k · zi,l > 0.3 . This shows a contribution to a positive interaction.

Our approach is motivated by the fact that the Pearson correlation ρk,l of the day means of OTU k and OTU l 
is given by:

For the Spearman correlation, the visualization is based on the rank of each of the OTU abundance values 
in a sample. Hence, instead of using the raw abundances xi,j,k in the calculation of the day mean, the ranks ri,j,k 

(2)xi,.,k =
xi,1,k + xi,2,k + xi,3,k

3
.

(3)x.,.,k =

∑N
i=1 xi,.,k

N
,

(4)σk =

√

√

√

√

1

N

N
∑

i=1

(

xi,.,k − x.,.,k
)2
.

(5)zi,k =
xi,.,k − x.,.,k

σk
.

(6)ρk,l =
1

N

N
∑

i=1

zi,k · zi,l .
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are used instead, and all subsequent calculations and mappings are the same. In a scenario when there is only 
one replicate, the quantity ρk,l would then be the Spearman correlation of the abundances of OTU k and OTU l.

Data availability
The micInt package used for the analysis is available at GitHub https:// github. com/ Almaa sLab/ micInt. The raw 
flow cytometry data files are available at https:// doi. org/ 10. 6084/ m9. figsh are. 15104 409 The scripts used the ana-
lyse the data and create the figures are available on GitHub at https:// github. com/ yaccos/ Micro bial- co- occur ence.
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