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Abstract

One of the most challenging aspects of reproducing human behavior in robotics is performing

non-prehensile (non-gripping) object manipulation. Robots must be able to move and perform

complex activities if they are to be integrated into a human-built world.

This paper aims to introduce a new stabilizing controller to the Butterfly Robot, given that

the transverse linearized dynamics have been found. The system consisting of a figure eight-

shaped frame with a ball rolling on top was proposed as a benchmark example for developing

new techniques within the field of non-prehensile manipulation. While previous stabilizing

methods rely on a linear nominal feedback controller based on the stabilizing solution of

the periodic Ricatti differential equation (PRDE), this paper will introduce a sliding mode

controller to deal with unavoidable perturbations of the system.

The work presented in this paper uses the virtual holonomic constraint approach. Here, a

scalar variable known as a motion generator is utilized in a geometric relation known as

a virtual holonomic constraint to reduce the system’s complexity by keeping the geometric

relation invariant through a feedback controller. The nominal trajectory for the nonlinear

system can then be derived based on the dynamics of the motion generator. The stabilization

method makes use of the well-known equivalence between a nonlinear system’s local, stable

behavior and its linearized system’s local, stable behavior. A set of transverse coordinates

whose origin corresponds to the nominal trajectory can then be linearized and stabilized using

a feedback controller such that its resulting nonlinear system will be stabilized as well.

Based on the transverse linearization, two alternative sliding mode controller architectures will

be designed. The first method is simpler and is based on Lyapunov theory. A control law will

be established that enables finite-time convergence towards a so-called sliding surface (that

matches the nominal behavior). For the second technique, a real invariant subspace of the

linearization will be created before its annihilator, whose co-dimensions equals the number of

control input, is used in a switching function for the controller. Because both methods use the

PRDE’s stabilizing solution, semi-definite programming will be used to find an approximation.

The first method was proven to swiftly converge towards the nominal trajectory for nominal

system parameters by numerical simulations. In contrast, the perturbed parameters showed a

considerable stationary error but still converged towards the trajectory. The second method

did not result in any successful stabilization, which was expected given that the found subspace

failed to satisfy the required conditions, motivating for further work.
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Sammendrag
En av de vanskeligste aspektene ved å reprodusere menneskelig atferd i robotikk er å utføre

ikke-prehensile (ikke-gripende) objektmanipulering. Dersom roboter skal kunne integreres i

en menneskeskapt verden, m̊a de være i stand til å utføre slike komplekse aktiviteter.

Denne oppgaven tar sikte p̊a å introdusere en ny stabiliserende kontroller til Sommerfugl

roboten gitt at den transverse lineariserte dynamikken er funnet. Systemet best̊aende av en

åtteformet ramme med en ball som rullet p̊a toppen ble foresl̊att som et standardeksempel

for utvikling av nye teknikker innen ikke-prehensil manipulasjon. Mens tidligere stabiliser-

ingsmetoder er avhengig av en lineær nominell kontroller basert p̊a stabiliserende løsningen

av den periodiske Ricatti differensialligningen (PRDE), vil denne oppgaven introdusere en

”sliding mode control” for å h̊andtere uunng̊aelige forstyrrelser i systemet.

Arbeidet presentert i denne oppgaven bruker en ”virtual holonomic constraint” tilnærming.

Her brukes en skalar-variabel kjent som en bevegelsesgenerator i et geometrisk forhold kjent

som en virtual holonomic constraint for å redusere systemets kompleksitet ved å holde den

geometriske relasjonen uforanderlig gjennom en feedback kontroller. Den nominelle banen

for det ulineære systemet kan deretter avledes ut fra dynamikken til bevegelsesgeneratoren.

Stabiliseringsmetoden bruker den velkjente ekvivalensen mellom et uineært systems lokale,

stabile oppførsel og dets lineariserte systems lokale, stabile oppførsel. Et sett med transverse

koordinater hvis opprinnelse tilsvarer den nominelle banen, kan deretter lineariseres og sta-

biliseres ved hjelp av en feedback regulator slik at det resulterende ulineære systemet ogs̊a

blir stabilisert.

P̊a grunnlag av den transverse lineariseringen vil det utformes to alternative sliding mode

kontrollere. Den første metoden er enklere og er basert p̊a Lyapunov-teori, der det vil bli

etablert kontrollov som muliggjør en endelig tidskonvergens mot en s̊akalt glidende overflate

(som samsvarer med den nominelle oppførselen). For den andre teknikken vil det opprettes

et reelt ”subspace” av det lineariserte systemet før dens ”annihilator”, hvis samdimensjoner

tilsvarer antall kontrollinnganger, brukes i en svitchfunksjon for kontrolleren. Fordi begge

metodene bruker PRDEs stabiliserende løsning, vil ”semi-definite” programmering brukes

til å finne en tilnærming. Det ble p̊avist at den første metoden raskt konvergerte mot den

nominelle banen for nominelle systemparametere ved numeriske simuleringer, mens for de

forstyrrede parametrene viste en betydelig stasjonær feil, men likevel konvergerte mot banen.

Den andre metoden resulterte ikke i noen vellykket stabilisering, som var forventet gitt at det

ikke ble funnet et subspace som oppfylte de nødvendige betingelsene
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Chapter 1
Introduction

1.1 Background and Motivation

When it comes to robotics and their applications, the research of non-prehensile (non-gripping)

manipulation is becoming increasingly important [1]. The issue with such a topic is how to

influence degrees of freedom that cannot be directly reached by a manipulator’s control ac-

tion. Thus, properties like pushing objects, performing robotic surgeries, and even walking

are categorized as non-prehensile manipulation. The task of performing such manipulation is

indeed challenging, both theoretically and practically [2]. A great effort has been invested into

attempting to solve such an issue, motivated by the numerous applications that a solution to

the problem may provide.

A couple of decades ago, Prof. Lynch et al. proposed a comprehensive analysis and imple-

mentation method based on a simplified benchmark example, which is still of interest within

the robotic community today ([3], [2]). The benchmark example they proposed is currently

known as the ”Butterfly Robot,” which consists of a figure-eight shape frame attached to an

actuator through its shaft and a ball that can move freely. The frame is made up of two

identical plates placed parallel to each other, making it possible for the ball to roll along its

outer curve, see Figure 1.1.1.

The challenge they proposed was to find a family of feasible motions for the combined system,

e.g., a perpetual rolling of the ball in one direction. Clearly, the ball is not attached to the

frame in any way, making it possible to depart if the wrong torque is applied to the shaft.

Note that once the ball has departed the frame, it is no longer possible to influence its motion.

One method that has proven to be successful in some applications in non-prehensile manipu-

lation is the virtual holonomic constraint (VHC) approach [4]. Here, a scalar variable known

as a motion generator is used in the VHC, which will be held invariant by a feedback controller

to synchronize two configuration variables, effectively lowering the complexity. The dynamics

of the motion generator can then be used as a candidate for the nominal trajectory of the

nonlinear system.

1



CHAPTER 1. INTRODUCTION

Figure 1.1.1: A schematic view of the ”Butterfly” Robot

In [5] the VHC approach was used for orbital stabilization of a robotic system underactuated

with degree one. In [6] it was shown that a set of transverse coordinates, whose origin

corresponds to the nominal trajectory, could be linearized and complemented by a stabilizing

controller. Using the well-known fact that the local behavior of a nonlinear system should

comply with the local behavior of the linearized system, the stabilization of the transverse

linearization should imply stabilization of the nonlinear system. In [2] both the VHC approach

and the stabilization of the transverse dynamics was combined and applied to the Butterfly

Robot, where an approximating solution of the periodic ricatti differential equation (PRDE)

was used in a stabilizing feedback controller. A method for finding such an approximating

solution of the PRDE was proposed in [7].

When it comes to stabilizing a mechanical system, several control strategies are available in

the literature. One that has successfully been applied to robotic manipulators since the 1980s

is the sliding mode controller (SMC) [8]. The benefits of using such a control scheme are its

simple approach and design, yet obtaining robustness towards disturbances and variations in

system parameters. In [9] they proposed a robust orbital stabilization method where the SMC

synthesis was used to converge the linearized transverse dynamics towards its stable invariant

subspace, which results in a stable invariant manifold of the original nonlinear mechanical

system.

The main contribution of this thesis is to present how one can implement two different de-

signs of a sliding mode controller to the Butterfly Robot. The work can be considered an

extension of previous work as the transverse linearized dynamics have already been found,

and a stabilizing controller is now needed. The fact that the Butterfly Robot is a practical

example with real parameters being physically measured implies there are variations in such

2



1.2. OUTLINE OF THE THESIS

a linearized system. This variation will naturally complicate any solution to the stabilization

problem, as the solution should, in fact, hold for a family of systems simultaneously. The first

part of this paper will derive the equations of motion and use the virtual holonomic constraint

approach from [2] to generate a nominal trajectory, before the transverse linearized dynamics

will be derived. In the second part, two different designs based on the SMC synthesis will be

applied to the system to deal with uncertainties and disturbances in the modeling, as well as

in the system parameters. One of these methods will introduce the transverse linearization to

a general first-order stabilization method for SMC. In contrast, the second method is based

on the technique presented in [9] where the annihilator of a real subspace of the linearized

system will be used in a switching function for the controller. Both methods will use the ap-

proximating stabilizing solution of the PRDE, which will be found through the semi-definite

programming method presented in [7]. Both SMC designs will then be numerically simulated

and evaluated.

1.2 Outline of the Thesis

The outline of the thesis is as follows. In Chapter 2 the theoretical background of this paper

is presented. This includes a quick notation on the generalized coordinates of a mechanical

system; how to derive the Euler-Lagrange equation of motion; an introduction to periodic

trajectories and orbital stability; the virtual holonomic constraint approach and how this

can be used to find a feasible nominal trajectory, and lastly, the development of a stabilizing

controller for a mechanical system. In Chapter 3 the model assumptions made throughout this

thesis are stated; the generalized coordinates are found and used to obtain the kinematics;

the energy functions of the system are computed and used to find the equation of motion

using the Euler-Lagrange approach. In Chapter 4 the reduced dynamics of the system is

found before the desired trajectory is chosen; a brief description on how to find a VHC are

discussed before choosing one from literature; the reduced dynamics are then simulated, and

the results are discussed. In Chapter 5 the feedforward controller for the system is derived

and simulated before being complemented by a stabilizing term based on the sliding mode

control scheme. The results from the simulations are then presented and discussed. Lastly,

Chapter 6 will give a conclusion of this thesis, as well as some recommendations for further

work.

3
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Chapter 2
Theory

In this chapter, the theoretical background for this thesis is presented in order to supplement

the reader with an understanding of the topics that will be used and discussed. The chapter is

outlined as follows. Section 2.1 gives a quick introduction to generalized coordinates as well as

the notation for position and velocity vectors, in which they are used. Section 2.2 present how

to derive the Euler-Lagrange equations, which is a system of second-order ordinary differential

equations (ODE). It will also give a definition of a fully actuated as well as underactuated

systems. Section 2.3 discuss periodic trajectory of a nonlinear system, orbits and orbital

stability. Section 2.4 present a method for motion planning for underactuated mechanical

systems, as well as how to derive a linearized system based on its transverse dynamics. Lastly,

Section 2.5 presents two different approaches to designing a sliding mode controller.

2.1 Generalized Coordinates

Consider a set of N particles, where each of them are free to move in any direction in a

three-dimensional space. In order to specify the configuration of the system a set of 3N

coordinates are needed. The system is then said to have 3N degrees of freedom (DOF). Using

the Cartesian coordinate system, such a set would consist of [x1, y1, z1, ..., xN , yN , zN ], or,

rewritten in a more general way; [x1, x2, x3, .., xn] where n = 3N . These coordinates, denoted

the generalized coordinates, are independent and the least amount of coordinates needed to

accurately describe the configuration of the system. Conventionally speaking, when a set of

generalized coordinates are used to describe displacements and angles, they are represented

as q(t) = [q1, ..., qn]>, where n is the minimum number of DOF. If there are any constraints

between two of these coordinates, the complexity of q can be reduced to n = 3N − r, where

r is the number of constraints [10].

Having found a set of general coordinates, the position, velocity and angular velocity vectors

5



CHAPTER 2. THEORY

for each object/particle can be defined.

~ri = ~ri(q1, ..., qn, t)

~vi = ~vi(q1, ..., qn, q̇1, ..., q̇n, t) =
d~ri
dt

~ωi = ~ω(q1, ..., qn)

(2.1.1)

2.2 Euler-Lagrange Equation of Motion

To find the equation of motion, i.e. the dynamics of a system, one approach is to derive the

Euler-Lagrange equations. This is equivalent to using the Newton’s law of motion in classical

mechanics, however with the benefits of using the generalized coordinates instead [11].

The first step in deriving the Euler-Lagrange equations is to define the Lagrangian, L(q, q̇),

given by

L(q, q̇) := K − P (2.2.1)

where K is the kinetic energy of the system, and P is the potential energy. These can be

found respectively by computing

Pi = mi~g · ~ri

Ki =
1

2
mi~vi · ~vi +

1

2
Ji~ωi · ~ωi

(2.2.2)

where i denote the object/particle, m is the mass, ~g = [0 9.81 0]> is the gravitational

vector, J is the moment of inertia and ω is the angular velocity. The Euler-Lagrange equation

can now be found by solving

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= B(q)u (2.2.3)

where the matrix B(q) is the coupling matrix of the control input u ∈ Rm. Equation 2.2.3

can further be written on the compact, standard form

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u (2.2.4)

where M(q) is the inertia matrix, C(q, q̇) is the Christoffel symbols matrix and contains the

centrifugal and Coriolis terms and G(q) is the gravitational matrix. The elements of the three

6



2.2. EULER-LAGRANGE EQUATION OF MOTION

matrices in Equation 2.2.4 can be computed as follows

mij :=
∂

∂q̇i

(
∂K
∂q̇j

)

cjk :=
2∑
i=1

cijk(q)q̇i, cijk(q) =
1

2

[
∂mkj

∂qi
+
∂mki

∂qj
− ∂mij

∂qk

]

gi :=
∂P
∂qi

(2.2.5)

Observing that the inertia matrix M is positive definite, and thus invertible, the equation of

motion can be written w.r.t the acceleration vector q̈

q̈ = M(q)−1[−C(q, q̇)q̇ −G(q) +B(q)u] (2.2.6)

Fully Actuated vs Underactuated

A mechanical system, like the one in Equation 2.2.4, with q ∈ Rn and u ∈ Rm, is said to

be fully actuated if n = m [12], meaning that the coupling matrix B(q) will have full rank.

Physically this can be interpreted that the system has as many DOF as it has control inputs

to the system. For cases when u = u(t) is a fixed control input, e.g. u(t) = a cos(t) for some

constant a, the analysis of Equation 2.2.4 quickly becomes a challenging task [22]. However,

when u is unrestricted and can be arbitrarily designed, it can be chosen as the nonlinear

feedback law that cancels the dynamics in Equation 2.2.4 [22]

u = B(q)−1

{
M(q)v + C(q, q̇)q̇ +G(q)

}
(2.2.7)

In theory, with a perfect knowledge of the dynamic model, the feedback linearization law in

Equation 2.2.7 will transform Equation 2.2.4 into the linear system of n decoupled chains of

double integrators [4]

ÿ = v (2.2.8)

If, however, m < n, the coupling matrix B(q) will not have full rank and the system is said

to be underactuated of degree n−m. This implies that the control input u is restricted to a

given subspace of Rn and the transformation in Equation 2.2.7 will not be valid [22]. However,

as we will see later, the concept of partial feedback linearization (PFL) can be implemented.

7



CHAPTER 2. THEORY

2.3 Periodic Trajectories

In systems like the Butterfly Robot, it is often wanted to create a periodic behavior. The

nonlinear system described by

ẋ = f(x) (2.3.1)

is said to have a periodic solution x∗(t) = x∗(t, x∗0) if

x∗(t+ T ) = x∗(t) ∀t

with a period T > 0. To numerically find a T-periodic solution x∗(t) however, is not so

trivial. In the case of finding an equilibrium point x0 of Equation 2.3.1, one would only

need to solve the algebraic equation f(x0) = 0. To rather find a T-periodic solution, in

general, one would need to integrate analytically Equation 2.3.1. Except for particular cases,

this is very challenging [23]. Instead, one can use e.g. the Poincare-Bendixson Criterion to

determine whether some bounded subset of the plane spanned out by Equation 2.3.1 contains

any periodic orbits [4].

Theorem 2.3.1 ([4]) Consider the system in Equation 2.3.1 and a bounded subset M of its

plane such that

• M either contains no equilibrium points, or contains only one unstable node or unstable

focus

• Every trajectory starting in M, will stay in M for all time

Then M contains a periodic orbit of Equation 2.3.1

Orbital Stability

As with all other mechanical systems, the importance of stability arises. However, it does not

make sense to talk about asymptotic stability for systems with a periodic behavior [24]. Due

to the presence of consistent perturbations in the phase, standard tools for stability analysis

like linearization comes short. Consider the linearization of the system in Equation 2.3.1

ż =

[
∂

∂x
f(x)

]∣∣∣∣∣
x=x∗(t)

· z (2.3.2)

Recall that the function f(·) is T-periodic. Clearly such a system cannot be asymptotically

stable since x(t) do not converge to zero as time approach infinity. The more appropriate

term for stability would therefor be orbital stability. The definition of orbital stability is based

on Definition 2.1 and 2.2 in [19].
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Definition 1. Consider the nonlinear system in Equation 2.3.1 and one of its solutions

x∗(t) = x∗(t, x∗0). Let Ox∗ ⊂ Rn denote the orbit of the solution x∗(t). The periodic solution

x∗(t) is called

• Orbitally stable, if for any ε > 0 there exists a δ > 0 such that

if
∥∥x(0)− x∗0

∥∥ < δ, then dist(x(t),Ox∗) < ε ∀t ≥ 0

• Asymptotically orbitally stable, if orbitally stable and

limt→+∞ dist(x(t),Ox∗) = 0

The term dist(x(t),Ox∗) is referred to as the distance between the current state x and the

orbit of interest Ox∗ .

2.4 The Virtual Holonomic Constraint Approach

In control theory, if a mechanical system is underactuated, it follows that it cannot be com-

manded to follow any arbitrarily trajectory [20]. Naturally this will complicate the task of

motion planning for the system. However, by introducing a virtual holonomic constraint the

complexity of the motion planning can be decreased. Consider a solution q∗(t) to the system

in Equation 2.2.4, obtained in response to the control signal u∗(t). Suppose the motion q∗(t)

admits to the kinematic relations described by

q∗1 = φ1(θ∗), q∗2 = φ2(θ∗), ..., q∗n = φn(θ∗), (2.4.1)

where θ∗ is a scalar variable and φi : θ∗ → R, i = 1, ..., n is C2-smooth functions. Equa-

tion 2.4.1 is referred to as an alternative, nested representation of the motion [23]. The

kinematic relations is said to be a virtual holonomic constraints if the relations are kept

invariant by a feedback controller [21]. The scalar variable θ∗ is referred to as a motion gen-

erator (MG), and can to some extent be chosen freely [4]. However, it is often convenient to

choose the MG as one of the generalized coordinates of the mechanical system, as it will be

used as a synchronization variable [21]. Through the relation φi(θ
∗), herein referred to as a

’geometric relation’ or ’synchronization function’, the motion generator will synchronize the

motion of the system.

The Reduced Dynamics

Consider a mechanical system on the alternative nested representation, as in Equation 2.4.1.

Also, let the system be underactuated of degree 1, meaning that one of the generalized

coordinates can be described in terms of the motion generator. This implies there exist a

dynamic constraint to the system due to the presence of one passive degree of freedom [21].

As it is well known, the dynamics of the motion generator should comply with this dynamic

9
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constraint. This in turn implies that the dynamics of the motion generator can be uniquely

described by the geometric relations. The dynamics of the motion generator enforced through

the kinematic relations will herein be referred to as the reduced dynamics.

Given that the geometric relations are C2 smooth functions, it implies the corresponding

relations of the first and second order derivatives, with θ as the motion generator

q(t) = [φ1(θ(t)); ...;φn(θ(t))] = Φ(θ(t))

q̇ = Φ′(θ)θ̇

q̈ = Φ′′(θ)θ̇2 + Φ′(θ)θ̈

(2.4.2)

To obtain the reduced dynamics the equation of motion from Equation 2.2.4 is multiplied with

the annihilation matrix B⊥(q) of the coupling matrix B(q). This is specifically designed to

remove the rows that contains the control input. The kinematic relations and its derivatives

are then substituted into Equation 2.2.4.

B(Φ(θ))⊥
{
M(Φ(θ))[Φ′′(θ)θ̇2 + Φ′(θ)θ̈]+

C(Φ(θ),Φ′(θ)θ̇)Φ′(θ)θ̇ +G(Φ(θ))
}

= B(Φ(θ))⊥B(Φ(θ))u

= 0

(2.4.3)

Collecting terms and writing as a differential equation w.r.t. the motion generator θ

{
B(Φ)⊥M(Φ)Φ′

}
θ̈ +

{
B(Φ)⊥

[
M(Φ)Φ′′ +

C(Φ, Φ̇θ̇)Φ′

θ̇

]}
θ̇2 +B(Φ)⊥G(Φ) = 0 (2.4.4)

Three new variables, α, β, γ can now be defined

α(θ) = B(Φ)⊥M(Φ)Φ′,

β(θ) = B(Φ)⊥

[
M(Φ)Φ′′ +

C(Φ, Φ̇θ̇)Φ′

θ̇

]
,

γ(θ) = B(Φ)⊥G(Φ),

(2.4.5)

which leads to the compact form

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (2.4.6)

Equation 2.4.6 will be referred to as the alpha-beta-gamma, or αβγ equation. Given a feed-

back controller that holds Equation 2.4.1 invariant, the solution of Equation 2.2.4 tends

asymptotically to the solution of Equation 2.4.6.

10



2.4. THE VIRTUAL HOLONOMIC CONSTRAINT APPROACH

Looking at Equation 2.4.6, some observations can be made. Clearly θ will have an asymptote

whenever α(θ) approach zero. Thus, any solution θ∗ must satisfy α(θ∗) 6= 0 ∀θ∗ ∈ Θ∗.

Another property of Equation 2.4.6 is that it is integrable. Consider a solution with initial

conditions (ϕ0, ϕ̇0). Any point (ϕ∗, ϕ̇∗) along this trajectory will preserve the zero value of

the function [2]

I = θ̇2(t)− exp
{
− 2

∫ θ(t)

θ0

β(τ)

α(τ)
dτ
}[
θ̇2

0 −
∫ θ(t)

θ0

exp
{

2

∫ s

θ0

β(τ)

α(τ)
dτ
}2γ(s)

α(s)
ds
]
, (2.4.7)

which will be referred to as the integral of motion.

Partial Feedback Linearization

As mentioned previously, if a mechanical system is underactuated it is not possible to linearize

the whole system through a variable transformation, as in Equation 2.2.7, such that the

resulting system can be written as

ẋ1 = x2

ẋ2 = v
(2.4.8)

However, a partial feedback linearization can still be used [25]. A PFL will transform the

system dynamics into two parts: the external dynamics and the internal dynamics, which will

become the linear and the nonlinear dynamics respectively [25].

Consider a T-periodic motion of an n DOF mechanical system q∗(t) = [q∗1(t), ..., q∗n(t)] =

q∗(t + T ). Given a scalar function θ and the n-smooth functions for the motions nested

representation, φ1(·), ..., φn(·), a new set of (n+1) excessive coordinates can then be introduced

as the generalized coordinates to describe the dynamics in a vicinity of q∗(t) [26]

θ, y1 := q1 − φ1(θ), ..., yn := qn − φn(θ) (2.4.9)

Suppose that in a vicinity of the orbit Ox∗ , the generalized coordinates for the mechanical

system can be described by

θ, y1, ..., yn−1, (2.4.10)

Using Equation 2.4.9, the new set can be written w.r.t. q and its derivatives

q =

[
y

θ

]
+

[
φ(θ)

0

]
, q̇ = L(θ, y)

[
ẏ

θ̇

]
, q̈ = L(θ, y)

[
ÿ

θ̈

]
+N(θ, θ̇, y, ẏ), (2.4.11)

11



CHAPTER 2. THEORY

where L(·) and N(·) are some matrix functions. Through the coordinate transformation

(q, q̇)→ (y, θ, ẏ, θ̇), we can insert Equation 2.4.11 into Equation 2.2.6 to obtain

L(θ, y)

[
ÿ

θ̈

]
+N(θ, θ̇, y, ẏ) = M(θ, y)−1

(
− C(θ, y, θ̇, ẏ)

[
ẏ

θ̇

]
−G(θ, y) +B(θ, y)u

)
, (2.4.12)

where it is assumed that L(θ, y) is non-singular in a vicinity of the solution of Equation 2.4.10

where (θ = θ∗(t), yn−1 = 0n−1), such that Equation 2.4.12 can be written w.r.t. acceleration

vector

[
ÿ

θ̈

]
[
ÿ

θ̈

]
= L(θ, y)−1

{
M(θ, y)−1

(
−C(θ, y, θ̇, ẏ)L(θ, y)

[
ẏ

θ̇

]
−G(θ, y) +B(θ, y)u

)
−N(θ, θ̇, y, ẏ)

}
(2.4.13)

Which gives the expression for ÿ as the (n− 1) dimensional subspace [4]

ÿ = R(θ, θ̇, y, ẏ) +K(θ, y)u, (2.4.14)

where

K(θ, y) := [1 0]L(θ, y)−1M(θ, y)−1B(θ, y)

R(θ, θ̇, y, ẏ) := [1 0]L(θ, y)−1

{
M(θ, y)−1

[
−G(θ, y)

− C(θ, θ̇, y, ẏ)L(θ, y)

[
ẏ

θ̇

] ]
−N(θ, θ̇, y, ẏ)

} (2.4.15)

In the case where the mechanical system is underactuated of degree 1, i.e. n −m = 1, and

assuming K(θ, y) is non-singular in a vicinity of the solution (θ = θ∗(t), y ≡ 0), the PFL

controller

u = K(θ, y)−1
(
v −R(θ, θ̇, y, ẏ)

)
(2.4.16)

will reduce the external dynamics in Equation 2.4.14 to [4]

ÿ = v, (2.4.17)

where v is a control input to be defined. The dynamics should also be complimented by the

remaining internal dynamics, w.r.t. the MG, θ. Lets rearrange Equation 2.4.12 and solve for

B(θ, y)u

B(θ, y)u = M(θ, y)

(
L(θ, y)

[
ÿ

θ̈

]
+N(θ, θ̇, y, ẏ)

)
+ C(θ, y, θ̇, ẏ)

[
ẏ

θ̇

]
+G(θ, y) (2.4.18)

12
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Clearly, by multiplying both sides of Equation 2.4.18 with the annihilation matrix B(, y)⊥,

the left-hand side becomes zero. Recall that on a solution y = ẏ = ÿ = 0, the αβγ equation

is zero. Thus Equation 2.4.18 can be rewritten as [26]

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = g(θ, θ̇, θ̈, y, ẏ, v), (2.4.19)

where g(·) is a smooth function equal to zero on the orbit, and Equation 2.4.17 have replaced

ÿ with v. Note that in order to avoid any asymptotes, α(θ) must be separated from zero on

the trajectory. One can now use Hadamard’s Lemma [27] about the orbit such that g(·) can

be rewritten as

g(θ, θ̇, θ̈, y, ẏ, ÿ, v) = gy(θ, θ̇, θ̈, y, ẏ)y + gẏ(θ, θ̇, θ̈, y, ẏ)ẏ + gv(θ, θ̇, θ̈, y, ẏ)v, (2.4.20)

where gy(·), gẏ(·) and gv(·) are smooth functions. The arguments above are summarized in

the following theorem.

Theorem 2.4.1 ([26]) Let q∗(t) be a solution to Equation 2.2.4, which is underactuated of

degree 1. Let also the generalized coordinates be written on the nested representation given by

Equation 2.4.10 such that N(θ, y) in Equation 2.4.14 is non-singular, then the partial feedback

linearization in Equation 2.4.16 implies that in a vicinity of the orbit Ox∗ of Equation 2.2.4,

the dynamics can be rewritten as

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = gy(θ, θ̇, θ̈, y, ẏ)y + gẏ(θ, θ̇, θ̈, y, ẏ)ẏ

+ gv(θ, θ̇, θ̈, y, ẏ)v

ÿ = v

(2.4.21)

Transverse Coordinates

Let a set of (n + 1) excessive coordinates be given by Equation 2.4.9. Clearly these are

not all independent, meaning at least one of them is redundant. By assuming the variables

θ, y = [y1, ...yn−1] are independent, it turns out that a natural choice of candidates for the

transverse coordinates x⊥ for the motion, assuming the conditions of Theorem 2.4.1 holds, is

given by

x⊥ =

[
I(θ, θ̇, θ∗(0), θ̇∗(0); y1; ...; yn−1; ẏ1; ...; ẏn−1

]
, (2.4.22)

in a vicinity of the solution y = 0 and the integral of motion I(·) is defined in Equation 2.4.7

[4].

Transverse Linearization

Having found that for a system which is underactuated of degree one, the dynamics in a

vicinity of the orbit can be written on the form in Equation 2.4.21, the transverse linearization

13
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can be found. The dynamics of the transverse coordinates will be on the form

ẋ⊥ = [İ; ẏ; ÿ], (2.4.23)

which again can be linearized along the solution of Equation 2.4.21, given by

y1∗ = 0, ..., y(n−1)∗ , θ = θ∗(t), v∗ = 0 (2.4.24)

The linearization of the integral function I(·) can be written on the form [26]

dĪ

dt
= a11(t)Ī + a12(t)Ȳ1 + a13(t)Ȳ2 + b1(t)V̄ , (2.4.25)

where

k(t) =
2θ̇∗

α(θ∗(t))

a11(t) = k(t) · β(θ∗(t)

a12(t) = k(t) · gy(θ∗(t), θ̇∗(t), θ̈∗(t), 0, 0)

a13(t) = k(t) · gẏ(θ∗(t), θ̇∗(t), θ̈∗(t), 0, 0)

b1(t) = k(t) · gv(θ∗(t), θ̇∗(t), 0, 0),

(2.4.26)

where gy(·),ẏ (·) and gv(·) are from Theorem 2.4.1. Similarly, the linearization of y and ẏ

will yield the remaining dynamics. Recall that for a system underactuated of degree one, the

controller in Equation 2.4.16 will reduce the external dynamics to ÿ = v. Thus the transverse

linearization can be written on the form

ẋ⊥ = A⊥(t)x⊥ + B⊥(t)v, (2.4.27)

where the T-periodic matrices A(t) and B(t) are given by

A⊥(t) =

a11(t) a12(t) a13(t)

0 1 0

0 0 0

 , B⊥(t) =

b1(t)

0

1

 (2.4.28)

2.5 Stabilizing Controller Design

Given a linear time-varying system on the form

ẋ(t) = A(t)x(t) +B(t)u(t), (2.5.1)
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where x(t) ∈ Rn are the states of the system, u(t) ∈ Rm is the control inputs, A(t) ∈ Rn×n

and B(t) ∈ Rn×m.

In most cases, such a system do not have a stable origin when the system is unactuated,

meaning there is no control input [13]. The task is therefor to design a controller u(t) such

that the closed-loop system becomes stable.

2.5.1 LQR

One basic optimization problem for linear control is the linear regulator problem, where the

control function u(t) from Equation 2.5.1 is assigned a quadratic cost. The task is then to

minimize the cost function

J =

∫ tf

0

[
x>(t)Q(t)x(t) + u>(t)R(t)u(t)

]
dx+ x>(tf )Sfx(tf ), (2.5.2)

where Q(t) is positive semidefinite, R(t) is positive definite and Sf is positive semidefinite.

The integral term is the running cost where x>Qx penalize deviation of the states from the

origin, and u>Ru penalize the actuator output. x>Sx is the end cost, which penalize the final

deviation of the states.

An optimal control input u∗(t) ∈ Rm to the suggested optimization problem is a control

function that minimizes the cost of J over all possible control functions [4]. The corresponding

solution is the optimal trajectory. It can be shown that if there exists a solution H(t) to the

matrix Riccati Differential Equation (RDE)

R(H, t) = 0, ∀t ≥ 0, (2.5.3)

where the differential Riccati operator is being defined as

R(H, t) = Ḣ(t) +A>(t)H(t) +H(t)A(t)−H(t)B(t)R−1(t)B>(t)H(t) +Q, (2.5.4)

where A(t), B(t) comes from the dynamics of the system and Q(t), R(t) comes from the

running cost, then there exist an optimal feedback controller u∗(t) [2] on the form

u∗(t) = −R−1(t)B(t)H(t)x(t) (2.5.5)

2.5.2 The Periodic Riccati Differential Equation

Consider a dynamical system on the form in Equation 2.5.1 with periodic coefficients, i.e.

A(t) = A(t+T ) and B(t) = B(t+T ) for some T > 0 period. The optimal feedback controller

for the system will have the same form as in Equation 2.5.5, where R(t) = R(t + T ) is the

stabilizing solution of Equation 2.5.4, called the periodic Riccati differential equation (PRDE).
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However, the task of finding such a solution R(t) of the PRDE, and thus the optimal feedback

control for a system with periodic coefficients, is non-trivial [33].

In [7] they proposed a method that do not involve finding a numerical solution to the differ-

ential equation, but rather a stabilizing solution found through approximating the solution

of a constructed finite dimensional semidefinite programming (SDP) problem. The method

is briefly presented here for convenience, as it will be used in the implementation. The rest

of Section 2.5.2 is taken from [7].

Proposition 1 Consider a system on the form in Equation 2.5.1 with A and B being con-

tinuous, T-periodic matrix function. The pair (A,B) is also stabilizable. Let also Q > 0 and

R > 0 be continuous, T-periodic matrix functions. Then there exist a T-periodic, stabilizing

solution H+ of R(H, t) = 0. Moreover, any T-periodic solution H of the Riccati inequality

R(H, t) ≥ 0, ∀t ∈ [0, T ], (2.5.6)

satisfy the inequality

H(t) ≤ H+(t) (2.5.7)

The inequality in Equation 2.5.6 can be turned into an linear matrix inequality (LMI) through

the Schur complement [29].

L(H, t) ≥ 0, ∀t ∈ [0, T ], (2.5.8)

where

L(H, t) =

[
Ḣ(t) +A>(t)H(t) +H(t)A(t) +Q(t) H(t)B(t)

B>(t)H(t) R(t)

]
(2.5.9)

From Proposition 1 it follows that the stabilizing solution is unique and the maximal solution.

The problem can then be reformulated into the following problem of maximizing the function

F(H) =

∫ T

0
tr(H(t)) dt, (2.5.10)

where T is the period and tr(H(t)) is the trace of the matrix function H(t). However,

such an optimization problem is of infinite dimension The numerical solution is therefor

replaced with the approximating stabilizing solution. Consider the finite dimensional version

of Equation 2.5.8

L(H, ti) ≥ 0, ti = (i− 1)
T

N
, i = 1, ..., N (2.5.11)

To guarantee boundedness on H, the following system of LMI’s are introduced

−dIn ≤ H(ti) ≤ dIn, i = 1, ..., N, (2.5.12)
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Lets define some necessary notation.

Definition 2 ([7]) Let H =
∑M

k=−M eikωtFk(H) be a T-periodic trigonometric symmetric

polynomial of dimension n×n, where F0(H) is symmetric real matrix and Fk(H), k = 1, ...,M

are symmetric complex matrices. F−k(H) = F̄k(H). Denote HM the vector space of all such

polynomials of degree at most M

The problem can be reformulated into the following problem

(PM,N ) : Maximize
∫ T

0 tr(H(t)) dt over all H ∈ HM satisfying Equation 2.5.11 and Equa-

tion 2.5.12.

Note that maximizing a function g(·) is identical to minimizing −g(·). It was further shown

in [7] that the error using the method above decreased exponentially as the approximation

order M increased, until the round-off error where no longer negligible. The arguments are

summarized in the following theorem.

Theorem 2.5.1 ([7]) Consider the twice differentiable, T-periodic matrix functions A,B,Q

and R, where Q(t) > 0, R(t) > 0 ∀t ∈ [0, T ]. Let the pair (A,B) be stabilizible, and the

constant d is known such that the stabilizing solution H+ of the PRDE satisfy
∥∥H+

c

∥∥ < d.

Denote H+
M,N a solution of PM,N . Then

∥∥∥H+ −H+
M,N

∥∥∥
c
→ 0 as M →∞ and N

M3 →∞

2.5.3 Sliding Mode Control

Consider the single-input dynamical system given by

ẋ = f(x) + b(x)u, (2.5.13)

where some of the parameters of f(x) contain uncertainties, meaning the function is not

exactly known, however, its bound is. Let also the function b(x) contain uncertainties, but

with a known sign. The control problem is to ensure that the state vector x tracks the

desired trajectory, given by a time-varying state vector xd = [xd, ẋd, ..., x
(n−1)
d ]>, when there

are uncertainties present in in the functions f(x) and b(x).

Introducing the tracking error x̃ defined by x̃ = x − xd = [x̃, ˙̃x, ..., x̃(n−1)]>. Also, let S(t)

define a surface that is time-varying. Introducing a scalar function

s(x, t) = (
d

dt
+ λ)n−1x̃, (2.5.14)

where λ > 0 is a constant. The surface S(t) is defined such that Equation 2.5.14 is zero on

desired trajectory, i.e. on the surface S, s(x, t) = 0.

For a system given by Equation 2.5.13 with n = 2, the scalar function is given by

s = ˙̃x+ λx̃, (2.5.15)
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i.e. a weighted sum of the position and velocity tracking errors. It can be shown that such

an nth-order tracking problem can be replaced by a first order stabilization problem [8]. The

original problem of tracking xd can therefor be achieved by choosing a control law u such that

apart from the surface S(t) we have

1

2

d

dt
s2 ≤ −η|s| , (2.5.16)

where η is a positive design constant. Equation 2.5.16 is called the reachability condition or

the sliding condition. This specific condition however, is called the η - reachability condi-

tion. Searching the literature will yield multiple different sliding conditions ([14], [15], [16]).

Equation 2.5.16 can be interpreted as the squared ”error”, or the distance from the current

trajectory to the surface S. Such a control law will therefor restrict the trajectory to head

towards the surface, and remain there. Any trajectory that verifies Equation 2.5.16 is called

a sliding surface, and the behavior that occurs on the surface is called the sliding mode. Fig-

ure 2.5.1 depicts how the trajectories away from the surface can ”move” while still denoting

the surface S(t)[8].

Figure 2.5.1: Trajectory being restricted to head towards the surface S
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A typical system behavior under the control law from Equation 2.5.16 with n = 2 is shown

in Figure 2.5.2. Here the sliding surface is represented by a straight line with slope −λ
in the phase plane of the system. The idea behind using the sliding mode control can be

summarized by designing a feedback control law u that ensures the tracking error s can be

used as a Lyapunov function of the closed loop, namely s2. The paradigm have shown to

be effective, even with the presence of uncertainties in the system parameters and external

disturbances [28].

Figure 2.5.2: Typical desired behavior in sliding mode control

Note. As with everything in a physical world, the control switching is not perfect, i.e. it do

not happen instantly fast, there are saturation etc. Together with the presence of modeling

imprecision and disturbances, this effect can cause what is called chattering, see Figure 2.5.3.

With a few important exceptions, this is undesired as it contains high control activity which

can trigger neglected, high frequency dynamics in the system, and can cause unusual high

wear and tear on equipment. To reach an optimal compromise between control bandwidth

and tracking precision, the discontinuous control law u is smoothed accordingly in a vicinity

of the sliding surface [8]. A switching action term usw defined by

usw = −Ksat(s) (2.5.17)

is added to the control law. K > 0 is a design constant. The overall control law can therefor

be written as

u = û+ usw, (2.5.18)
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where û deals with the low frequency control and usw deals with the high frequency control.

Figure 2.5.3: Illustration of the undesired ”chattering” effect

Invariant Subspace-Based Switching Functions Design

In [9] they proposed a method based on the local equivalence between the stable invariant

manifolds of a closed-loop, nonlinear mechanical system and the stable invariant subspace of

its corresponding linearized system. The method is summed up in three parts

• Derive the linear periodic system of transverse linearization with a set of (n− 1) trans-

verse coordinates.

• Transform the linear periodic system into an LTI system through a real Floquet-

Lyapunov (FL) factorization of its state transition matrix.

• Construct a switching function for the LTI system, where one of its real invariant

subspaces whose co-dimension equal the number of controls, is annihilated.

Considering the topics of transverse linearization along a nominal orbit already have been

presented, the designing of such a switching function for an LTI will be presented first, before

showing how one can transform a linear time periodic (LTP) system into an LTI system.

Invariant Subspace-Based Switching Function Design for LTI Systems

Consider the LTI system on the form

ẏ = Ay +B(u+ ∆(y, t)), (2.5.19)
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where A and B are constant, and ∆(y, t) is unkown, but with a known upper bound. Consider

the problem of finding a full rank matrix S ∈ Rm×n such that when restricted to the manifold

∑
:= y ∈ Rn : σ(y) := Sy ≡ 0 (2.5.20)

the system in Equation 2.5.19 experiences the control ueq = Ky −∆(y, t), where K ensures

Acl := A − BK is stable. It can be shown that if S satisfy det(SB) 6= 0 and Sy = 0 ⇒
SAcly = 0, then S is a solution to the problem above. The following Lemma is based on

Lemma 2 in [9]

Lemma 1 Let S satisfy det(SB) 6= 0 and Sy = 0⇒ SAcly = 0. Suppose the control variable

u is chosen as

u = Ky + (SB)−1v (2.5.21)

in Equation 2.5.19 for some v ∈Rm. Then the dynamics of σ = Sy away from the manifold∑
will be

σ̇ = Aσσ + v + SB∆(y, t), (2.5.22)

where the constant matrix Aσ = SAclŜ is Hurwitz, and SŜ = I

Proof is given in [9]. One can now use one of the several control strategies available in litter-

ature to ensure the origin of Equation 2.5.21 is reached in finite time, even when considering

the perturbation ∆(y, t) [9].

Linear Time Periodic Systems and Floquet-Lyapunov Theory

Consider a LTP system on the form

ẋ = A(t)x+B(t)(u+ ∆(x, t)), (2.5.23)

where A(t) = A(t+T ) and B(t) = B(t+T ) are T-periodic, bounded matrix functions. ∆(x, t)

is unknown, but with a known upper bound. Assume a continuus, T-period matrix function

K is known, such that the closed loop, disturbance-free system given by

Ẋ = Acl(t)X , Acl := A(t) +B(t)K(t) (2.5.24)

is exponentially stable. Then, any non-singular solution X (t) of Equation 2.5.24 is called

a fundamental matrix to Equation 2.5.24 [18]. Further, let ΦAcl(t, t0), denoted the state

transition matrix, be the unique solution to

Φ̇Acl(t, t0) = Acl(t)ΦAcl(t, t0), Φ(t0, t0) = In (2.5.25)

which is equivalent to all the eigenvalues of the Monodromy matrix

MAcl := ΦAcl(T, 0) (2.5.26)
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having a magnitude strictly lesser than one.

Similarly as with the LTI system, consider the problem of now finding a matrix function

S : R+ → Rm×n such that the forward invariance of the relation S(t)y(t) ≡ 0 ∀t ≥ t0

corresponding to the system in Equation 2.5.23 experiencing the control ueq(t) = K(t)y(t)−
∆(y, t) ∀t ≥ t0. Consider the following Lemma, based on Lemma 3 in [9].

Lemma 2 Let X0 be of full rank and that the matrix function S : R+ → Rn×(n−m) is a left

annihilator of ΦAcl(t, 0)X0 such that
∥∥S(t)ΦAcl(t, 0)X0p

∥∥ ≡ 0, where p ∈ R(n−m). Then S(t)

is a solution to the problem above if rank[S(t)B(t)] = m. Moreover, if S(t) = S(t+ T ), then

X0 is a basis of an invariant subspace of MAcl.

Proof is given in [9]. This implies that if we are able to smoothly transform the LTP system

into an LTI system, the theory presented previously could be used to generate a solution to

the original problem of stabilizing the periodic transverse system.

To do so, consider the Floquet-Lyapunov transformation (FL transformation). Let a linear

time varying (LTV) system be given by

ẏ = A(t)y, (2.5.27)

where A(t) is bounded. Denote ΦA the STM of the system, and let there exist a real matrix

F ∈ R(n×n) and a continuously differentiable, non-singular matrix function L ∈ R(n×n) such

that the STM can be factorized as

ΦA(t, 0) = L(t)eFT (2.5.28)

The following theorem can then be used.

Theorem 2.5.2 [30] If there exist a T-periodic matrix A(t) = A(t+ T ), then there also exist

a real commuting matrices F and Y and a non-singular, continuously differentiable matrix

function L(t) such that

L(t) = L(t+ 2T ), L(t)Y = L(t+ T ), Y 2 = In (2.5.29)

such that Equation 2.5.28 holds for Equation 2.5.27

One can now use e.g. the method proposed in [18], where a boundary value problem was

solved to derive the FL factorization of the system.

Transverse Coordinates-based Switching Function

Having already found the transverse linearized system along a solution Ox∗ , we define the

matrix function K⊥ as the nominal feedback that ensures

ẋ⊥ = [A⊥ + B⊥K⊥]x⊥ := Acl⊥x⊥ (2.5.30)
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Denote Φcl
⊥ the corresponding STM, i.e.

Φ̇cl
⊥ = Acl⊥Φcl

⊥, Φcl
⊥(x0) = I(n−1) (2.5.31)

All the arguments presented above are summarized in the following theorem, which is based

on the main contribution of [9].

Theorem 2.5.3 Suppose there exist a matrix function K(·) such that the STM of the closed

loop system of the transverse linearization admits a real sT -periodic FL factorization

Φcl
⊥(s) = L(s)esF (2.5.32)

Let there also exist a full rank matrix Ŝ such that

• det[ŜL−1(s)B⊥(s)] = 0

• Ŝz = 0⇒ ŜFz = 0

are satisfied, then for any projector operator

σ(x) := S⊥(p(x))x⊥(x), (2.5.33)

where S⊥(s) := ŜL−1(s), any x in a vicinity of the orbital solution Ox∗ of the transverse

linearization will be exponentially stabilized.

Proof is given in [9]
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Chapter 3
Equation of Motion

In this chapter, the Euler-Lagrange equations for the Butterfly Robot will be derived. The

section is outlined as follows. Section 3.1 will state the model assumptions that will be con-

sidered during the modeling of the mechanical system. In Section 3.2 the general coordinates

will be derived, before being used to find the kinematics for the system in Section 3.3. In Sec-

tion 3.4 the energy functions will be derived, and in Section 3.5 the dynamics of the Butterfly

Robot will be derived as a set of differential equations.

3.1 Model Assumptions

Before deriving any dynamics of the system, it would be convenient to state the assumptions

that will be made throughout this thesis. This is because the choice of such assumptions will

largely influence the dynamics. The following assumptions will be made

• The frame do not move in any direction, but rotate around its center axis.

• The two plates that makes up the frame is perfectly identical and aligned.

• The ball and the frame are considered rigid bodies without any imperfections.

• The ball will never depart from the frame, leaving to a situation where it cannot be

influenced by any control input.

3.2 Generalized Coordinates

As any object in a 3D space will have 6 degrees-of-freedom each, three related to translation

(x, y, z) and three related to rotation (Pitch, yaw, roll), the Butterfly Robot originally have

12 degrees-of-freedom. However, using the assumptions stated above, these can be reduced.

Denote ~e 0, ~e 1, ~e 2 as the world frame, body fixed frame of the frame, and the body fixed frame

25



CHAPTER 3. EQUATION OF MOTION

of the ball, respectively. Note, as the word frame is used for both the frame of the robot and

the coordinate frame, context would need to be taken into consideration. By placing the body

fixed frame ~e 1 in the origin of the world frame ~e 0, the complexity of the frame is reduced

with five degrees-of-freedom. As the first model assumption states that it can only rotate in

one direction, around z, the frame can be modeled using only the angle θf .

The assumptions combined will ensure that the ball will only operate in a 2D plane, (xb, yb)

with a rotation θb. The system can be modeled using the four variables (xb, yb, θb, θf ), see

Figure 3.2.1. To further reduce the complexity, the coordinate system will be transformed

from Cartesian to Polar Coordinates.

This change will not influence the DOF of the frame, which will still only have θf . Introducing

the vector ~ρ as the vector from the origin of the frame to the center of the ball, leads to an

expression for its position

~rb = ~ρ (3.2.1)

Figure 3.2.1: Illustration of the Butterfly Robot modeled with four degrees of freedom.

Let us also introduce a variable s, denoted the arclength. s describes the arc that is traced

out by the ball’s center point as it rolls around the curvature of the frame. As any vector ~ρ

can be found through the arclength s if the shape of the frame is known, we re-write ~ρ = ~ρ(s).

To describe the motion of the ball, the Frenet Frame will be used. As the tangential vector

of the ball ~τ is defined as the derivative of the position ~ρ vector w.r.t. the arclength s, the

Frenet frame can be defined

~τ :=
d~ρ

ds
, ~κ :=

d2~ρ

ds2
, ~n := k̂ × ~τ , (3.2.2)
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where k̂ = [0 0 1] is the normal vector in the z-direction. In order to define the position of

the ball along the frame, lets introduce a new variable ϕ. ϕ describes the angle between the

body fixed frame of the frame ~e 1 and the ball, see Figure 3.2.2. As any arclength s can be

determined through any ϕ, we rewrite s = s(ϕ) and ~ρ(s) = ~ρ(ϕ).

Figure 3.2.2: Illustration of the Butterfly Robot modeled with two degrees of freedom.

The last variable needed to describe the full configuration of the system is ψ, defined as the

rotation of the ball w.r.t. ~e 1. However, from the model assumptions stating that the ball

rolls without slipping, clearly ψ is dependent on s, which again is dependent on ϕ. Note that

the curve traced out by the balls center point and its contact point with the frame, will have

an offset due to the distance between the two plates of the frame, see Figure 3.2.3. It can be

seen that this curve do not have an offset equal to the radius of the ball Rb, but rather

R =
√
R2
b − r2

f , (3.2.3)

where R is the effective radius of the ball and 2rf is the distance between the two plates of

the frame.
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Figure 3.2.3: Illustration of the relation between the radius of the ball Rb and the effective

rolling radius R.

The system can therefor be modeled using the two variables θ and ϕ, which will be chosen as

the generalized coordinates of the system;

q = [θ ϕ]> (3.2.4)

3.3 Kinematics

Having found the generalized coordinates q = [θ ϕ]>, the next step in deriving the equation

of motion is to obtain the kinematics. This includes the position, velocity and angular velocity

for both the ball and the frame.

Frame

As the center point of the frame is placed at the world frame ~e 0 its position and velocity will

be identically zero

~rf = ~vf = [0 0 0]> (3.3.1)

Its angular velocity can be written as

~ωf = θ̇k̂ (3.3.2)

with k̂ = [0 0 1]

Ball

As the vector ~ρ(ϕ) desicribes the position of the ball in the body attached frame ~e 1, the

position in world frame ~e 0 can be expressed as

~rb = Π(θ)~ρ(ϕ) (3.3.3)
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where Π(θ) is the rotational matrix

Π(θ) =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (3.3.4)

The velocity of the ball can be found through differentiation of the position

~vb =
d~rb
dt

= Π̇~ρ+ Π~̇ρ

= (θ̇k̂)× (Π~ρ) + Π
d~ρ

ds

ds

dϕ

dϕ

dt

= ~ωf × (Π~ρ) + ~τs′ϕ̇

(3.3.5)

To find the angular velocity of the ball, recall that it is proportional with the distance traveled.

This can be expressed as

sf = Rψ, (3.3.6)

where sf is the curve traced out by the contact between the frame and the ball. The total

angular velocity of ball can therefor be written as

~ωb = θ̇k̂ − ψ̇k̂ = θ̇k̂ −
ṡf k̂

R
(3.3.7)

The negative sign is of ψ̇ due to the ball spinning in the opposite direction of the frame.

3.4 Energy Functions

Having found the kinematics of the system, Equation 2.2.2 can now be used to find the

potential and kinetic energy.

Potential Energy

Inserting the position into the expression for potential energy, it can be found for both the

frame and the ball

Pf = mf~g · ~rf = 0

Pb = mb~g · ~rb = mb~g(Π~ρ)
(3.4.1)

The total potential energy for the system is then found by summing up the two functions

P = Pf + Pb = mb~g(Π~ρ) (3.4.2)
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Kinetic Energy

Similarly, the kinetic energy for the for the frame and the ball can be found.

Kf =
1

2
mf~vf · ~vf +

1

2
Jf~ωf · ~ωf

=
1

2
Jf θ̇

2

Kb =
1

2
mb~vb · ~vb +

1

2
Jb~ωb · ~ωb

=
1

2
mb

(
~ωf × (Π~ρ) + ~τs′ϕ̇

) (
~ωf × (Π~ρ) + ~τs′ϕ̇

)
+

1

2
Jb

(
(θ̇ + ps′ϕ̇)k̂

)(
(θ̇ + ps′ϕ̇)k̂

)
=

1

2
mb

(
θ̇2(k̂ × (Π~ρ) · (k̂ × (Π~ρ)) + 2s′θ̇ϕ̇(Πτ) · (k̂ × (Π~ρ)) + s′2ϕ̇2~τ>Π>Π~τ

)
+

1

2
(θ̇2 + 2ps′θ̇ϕ̇+ p2s′2ϕ̇2)

(3.4.3)

And the total kinetic energy

K = Kf +Kb (3.4.4)

3.5 Equation of Motion

Following the procedure from the theory section, the Lagrangian can be defined.

L = K − P =
1

2
(mb‖~ρ‖2 + Jf + Jb)θ̇

2 + (mbk̂ · (~ρ× ~τ) + Jbp)s
′θ̇ϕ̇

+
1

2
(mb + Jbp

2)s′2ϕ̇2 −mb~g · (Π~ρ)

(3.5.1)

To obtain the equation of motion on the compact form from Equation 2.2.4, Equation 2.2.5

will be used.

The Inertia Matrix M(q)

m11 =
∂

∂θ̇

(
∂K
∂θ̇

)
= mb‖~ρ‖2 + Jf + Jb

m12 =
∂

∂θ̇

(
∂K
∂ϕ̇

)
= (mbk̂ · (~ρ× ~τ) + Jbp)s

′

m21 =
∂

∂ϕ̇

(
∂K
∂θ̇

)
= m12

m22 =
∂

∂ϕ̇

(
∂K
∂ϕ̇

)
= (mb + Jbp

2)s′2

(3.5.2)
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Which lead to the derivation of the inertia matrix

M(q) =

[
mb‖~ρ‖2 + Jf + Jb (mbk̂ · (~ρ× ~τ) + Jbp)s

′

(mbk̂ · (~ρ× ~τ) + Jbp)s
′ (mb + Jbp

2)s′2

]
(3.5.3)

The Coriolis and Centrifugal Matrix C(q, q̇)

Following the same procedure as in the inertia matrix, each elements of the Coriolis and

centrifugal matrix can be computed as

C(q, q̇) =

 mbs
′~ρ · ~τϕ̇ mbs

′~ρ · ~τ θ̇ +

((
mbk̂ · (~ρ× ~τ) + Jbp

)
s′′ +mbk̂ · (~ρ× ~κ)s′2

)
ϕ̇

−mbs
′~ρ · ~τ θ̇ (mb + Jbp

2)s′s′′ϕ̇

 ,
(3.5.4)

where the computations are shown in Appendix A.1

The Gravity Matrix G(q)

Similarly the gravitational vector is found

g1 =
∂P
∂θ

= mb~g ·
(
dΠ

dθ
~ρ

)
= mb~g · (Π′~ρ)

g2 =
∂P
∂ϕ

= mb~g ·
(

Π
d~ρ

dϕ

)
= mb~g · (Π~τs′)

(3.5.5)

Where d~ρ
dϕ = dp

ds
ds
ϕ = ~τs′ is found using Equation 3.2.2. The gravitation matrix is then given

by

G(q) =

[
mb~g · (Π′~ρ)

mb~g · (Π~τs′)

]
(3.5.6)

Expressing the Parameters

Considering that derivation of an analytical expression for the paramateres of the M , C,

G matrices has been documented in multiple previous papers, it will not be repeated here.

Instead, this can be found in e.g. this papers authors specialization project [31], or in [17].
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Chapter 4
Motion Planning

In this chapter the theory presented in Section 2.4 will be used for the motion planning and

deriving a feasible trajectory that can be used as the nominal trajectory of the system. The

section is outlined as follows. In Section 4.1 the reduced dynamics of the system will be

derived and written as a differential equation w.r.t. the motion generator. Section 4.2 will

give a quick introduction to the desired trajectory that will be further investigated, while

Section 4.3 will give an explanation as of how to choose a geometric relation. Section 4.4

will simulate the reduced dynamics before a quick discussion of the results are presented in

Section 4.5.

As mentioned in the introduction, the Butterfly Robot is an underactuated mechanical system.

This can be verified using the generalized coordinates q = [θ ϕ]>, i.e. q ∈ Rn with n = 2

and u ∈ Rm with m = 1. Hence, m < n, and the system is underactuaded of degree 1.

This implies that the coupling matrix B(q) do not have full rank, and no exact feedback

linearization exist such that a control law can be defined as in Equation 2.2.7, effectively

canceling the dynamics.

However, the introduction of a geometric relation between the generalized coordinates, also

known as a VHC, has emerged as a valuable tool for solving motion control problems for

underactuated systems and is a useful paradigm for control of oscillations [20].

4.1 Reduced Dynamics

Suppose that through some control input u∗θ(t) there exist a motion [θ∗(t) ϕ∗(t)] that satisfy

the desired motion. Suppose there also exist some second order smooth function θ∗(t) =

Θ(ϕ∗(t)). Here ϕ is chosen as the MG for θ. In other words, any motion of ϕ will create a

motion for θ through the function Θ. Inserting the geometric relation into Equation 2.4.2,
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the generalized coordinates are rewritten w.r.t. to ϕ.

q =

[
Θ(ϕ)

ϕ

]
= Φ(ϕ)

q̇ =

[
Θ′(ϕ)

1

]
ϕ̇ = Φ′(ϕ)ϕ̇

q̈ =

[
Θ′′(ϕ)

0

]
ϕ̇2 +

[
Θ′(ϕ)

1

]
ϕ̈ = Φ′′(ϕ)ϕ̇2 + Φ′(ϕ)ϕ̈

(4.1.1)

Where

Φ(ϕ) =

[
Θ(ϕ)

ϕ

]
, Φ′(ϕ) =

[
Θ′(ϕ)

1

]
, Φ′′(ϕ) =

[
Θ′′(ϕ)

0

]
(4.1.2)

Defining the annihilator matrix B⊥ = [0 1], the system matrices M(·), G(·) and G(·) can be

inserted into Equation 2.4.5 to obtain the reduced dynamics

α(ϕ)ϕ̈+ β(ϕ)ϕ̇2 + γ(ϕ) = 0, (4.1.3)

where

α(ϕ) = (mbk̂ · (~ρ× ~τ) + Jbp)s
′Θ′ + (mb + Jbp

2)s′2

β(ϕ) = (mbk̂ · (~ρ× ~τ) + Jbp)s
′Θ′′ −mbs

′~ρ · ~τΘ′2 + (mb + Jbp
2)s′s′′

γ(ϕ) = mb~g · (Π~τs′)

(4.1.4)

4.2 Desired Trajectory

There are many different types of motion of interest in the Butterfly Robot. One can create

continuous oscillations of the ball in one of the wells of the robot, or one can rotate the frame

such that the ball goes from one well to the other. Here the well are referred to as the bump

in the frame where the ball will naturally stay. In this thesis however, the desired motion is

selected as a continuous, periodic perpetual rolling of the ball in one direction. Choosing this

motion, a couple of observations can be made. It implies that the ball never stops rolling,

meaning ϕ̇ should never be zero. This also implies that its sign will always be the same.

The MG should be monotonically increasing, e.g. by choosing ϕ in this system. Further, from

Figure 3.2.1 it can be seen that the frame of the robot is symmetric about both its x− axis
and the y− axis. This implies that motion of the ball, and thus the phase portrait of ϕ, will

be periodic with a period of π.
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4.3 Choosing a VHC

There are in theory many VHC that can be chosen as the geometric relation between the two

generalized coordinates. Based on the observation from having chosen a desired trajectory,

the conditions can be set on the behavior of the geometric relation. To show a few, in [2]

they used

Θ(ϕ) = ϕ+ arctan
a sin(2ϕ− π)[Π(ϕ)~τ ]1 − [Π(ϕ)~τ ]2
a sin(2ϕ− π)[Π(ϕ)~τ ]2 + [Π(ϕ)~τ ]1

, (4.3.1)

where a is a constant and Π and ~τ is from the dynamics of the Robot. In [17] they used the

function

Θ(ϕ) = ϕ− c sin(2ϕ) (4.3.2)

for some constant c.

In this thesis the chosen geometric relation is based on the pre-project of Gustav Omberg

Often [32]. Here the relation θ = Θ(ϕ) was used as

Θ(ϕ) = c1 arctan(c2 sin(2ϕ) + c3 sin(4ϕ) + c4 sin(6ϕ) + c5 sin(8ϕ)) + ϕ, (4.3.3)

where the constants c1 − c5 was found by solving an optimization problem of maximizing

the centers in the phase plane of the reduced dynamics. The found constants are shown in

Table 4.1

Table 4.1: Constants used in the geometric relation

Constant Value

c1 60.24

c2 0.0091

c3 0.0019

c4 0.0017

c5 0.000725

4.4 Simulating the Reduced Dynamics

Having selected a geometric relation between the two general coordinates, the dynamics of

the motion generator ϕ can be simulated. The system parameters used in the simulations are

shown in Table 4.2.

The reduced dynamics from Equation 4.1.3 was numerically simulated in MATLAB, resulting

in the phase portrait shown in Figure 4.4.2, while Figure 4.4.2 shows the simulation with initial
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Table 4.2: System parameters used in simulations

Constant Value

mb 3.0e−3

Jb 5.48e−7

Jf 1.581e−3

Rb

√
16.55e−3 − 12.5e−3

a 0.1095

b 0.0405

conditions (ϕ0, ϕ̇0) = (0, 0.17). All code from chapter 4 are available on the Github link in

[35].
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Reduced Dynamics

Figure 4.4.1: Phase portrait of the reduced dynamics with the geometric relation from Equa-

tion 4.3.3, with multiple different initial conditions.

36



4.5. DISCUSSION

0 1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

3.5

Reduced Dynamics

Figure 4.4.2: Phase portrait of the reduced dynamics with the geometric relation from Equa-

tion 4.3.3, with initial conditions (ϕ, ϕ̇) = (0, 0.17).

4.5 Discussion

In Figure 4.4.1 it can be seen that using the geometric relation in Equation 4.3.3, the initial

condition for obtaining the desired trajectory must exceed ≈ 0.15rad/s in velocity. Consider-

ing that too high initial velocity will result in a high peak around π
2 , the initial value will be

chosen somewhere between. The trajectory seen Figure 4.4.2 will therefor be chosen as the

desired trajectory, with initial conditions (ϕ, ϕ̇) = (0, 0.17).
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Chapter 5
Controller Design

This chapter will present different controller designs for the Butterfly Robot. The section is

outlined as follows. Section 5.1 will derive a feedforward controller as well as the performance

of this using simulations. Section 5.2 will derive the transverse linearized system and show

the steps in approximating a stabilizing solution to the PRDE. Section 5.3 will complement

the feedforward controller with the stabilizing terms based on the principles of sliding mode

control and present the results, before they are discussed in Section 5.4.

5.1 Feedforward Controller

Having found a nominal trajectory, the problem of developing a controller arises. The first and

maybe intuitive task will therefor to develop a control variable u that will hold the geometric

relation in Equation 4.3.3 invariant. Using Equation 2.4.14 and inserting Equation 2.4.15,

such a controller can be defined

u∗(ϕ, ϕ̇) =

[1 0]L(ϕ)−1

{
M(ϕ)−1

(
G(ϕ) + C(ϕ, ϕ̇)L(ϕ)

[
0

ϕ̇

])
+N(ϕ, ϕ̇)

}
[1 0]L(ϕ)−1M(ϕ)−1B(ϕ)

, (5.1.1)

where M(·), C(·) and G(·) are the system matrices found in Section 3.5, and L(·) and N(·)
are defined as

L(ϕ) =

[
1 φ′(ϕ)

0 1

]
, N(ϕ, ϕ̇) =

[
φ′′(ϕ)ϕ̇2

0

]
(5.1.2)

and u∗ denotes that the system is on nominal trajectory.

The feedforward controller was then numerically simulated using MATLAB and Simulink. In

Figure 5.1.1 it can be seen that the feedforward controller from Equation 5.1.1 is not able to

stabilize the system. The system was simulated with the same initial conditions as for the
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nominal trajectory. However, due to the presence of error and uncertainties in the numerical

method, any small deviation from the nominal trajectory will result in divergence, which

motivates for further stabilizing terms. All code from chapter 5 are available on the Github

link in [35].
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1

2

3

4

5

6

Figure 5.1.1: Phase portrait of the nominal trajectory vs. the feedforward output trajectory.
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5.2 Stabilizing Controller

Having found that the feedforward controller for holding Equation 4.3.3 invariant is not able

to stabilize the system alone, a stabilizing term will be added to the control variable in Equa-

tion 5.1.1. As it is well known, the stabilization of an orbit can be well interpreted by the

stability of the transverse coordinates associated with the motion [2]. Thus, by designing

a strategy for stabilizing the transverse linearized system, whose coordinates origin is the

nominal orbit, the original nonlinear system should comply with a stable behavior as well.

The dynamics will first be expressed in terms of the internal and external dynamics, be-

fore the transverse linearized system will be found. The technical detail around finding an

approximating solution to the PRDE will then be explained.

Partial Feedback Linearization

Having chosen ϕ as the MG, the same procedure as in Section 2.4 can be followed to obtain

the partial feedback linearization. The new set of general coordinates can be written as

q1 = y + φ(ϕ)

q2 = ϕ
(5.2.1)

yielding

q̇ =

[
1 φ′(ϕ)

0 1

][
ẏ

ϕ̇

]
= L(ϕ)

[
ẏ

ϕ̇

]
,

q̈ =

[
1 φ′(ϕ)

0 1

][
ÿ

ϕ̈

]
+

[
φ′′(ϕ)ϕ̇2

0

]
=  L(ϕ)

[
ÿ

ϕ̈

]
+N(ϕ, ϕ̇),

(5.2.2)

where L(·) and N(·) are as defined in Equation 5.1.2. The PFL controller in Equation 2.4.14,

where K(·) and R(·) are defined in Equation 2.4.15 will therefor bring the external dynamics

to the linear system of double integrators ÿ = v. What is left now is to compliment the

dynamics with the remaining internal dynamics.

For this we will use Equation 2.4.19. By multiplying Equation 2.4.18 with the annihilation

matrix B⊥ and inserting Equation 5.2.2, we are left with

M21(ÿ + Φ′′ϕ̇2 + Φ′ϕ̈) +M22ϕ̈+ C21ẏ + C22ϕ̇+G2 (5.2.3)

Observe that by adding and subtracting the term C21Θ′ϕ̇, some of the terms will be equal

to α, β and γ. Also, considering the l.h.s of the equation is zero, we can move the remaining

term over to the other side and collected as the function g(·)

ϕ̈(M21Θ′ +M22) + ϕ̇2

(
M21Θ′′ +

C22

ϕ̇
+
C21Θ′

ϕ̇

)
+G2 = g(ϕ, ϕ̇, y, ẏ, v) (5.2.4)
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Clearly the equation matches the internal dynamics from Theorem 3.4.1, where the left hand

side is the βγ equation. Thus we can now use Hadamard’s Lemma such that the right hand

side of Equation 5.2.4 becomes

gy(ϕ, ϕ̇, y, ẏ)y + gẏ(ϕ, ϕ̇, y, ẏ)ẏ + gv(ϕ, ϕ̇, y, ẏ, v)v, (5.2.5)

where

gv = −mbs
′
(
~ρ× ~τ − Jb

mbRb

)
gy = mbs

′~ρ>~τ(ẏ + 2Θ′ϕ̇)

gẏ = −mbs
′g
[

cos
(y

2
+ ϕ

)
, − sin

(y
2

+ ϕ
)]
~τsinc

(y
2

) (5.2.6)

Transverse Dynamics

To linearize the system, which is now on the same form as in Theorem 3.4.1, one can simply use

Equation 2.4.25, Equation 2.4.26 and Equation 2.4.28 such that the transverse linearization

can be written on the form

ẋ⊥ = A(t)x⊥ + B(t)w, (5.2.7)

where

A(t) =

 0 1 0

0 0 0
ḡy
ᾱ

ḡẏ
ᾱ

γ̄−β̄ϕ̇2

ᾱϕ̇

 , B(t) =

 0

1
ḡv
ᾱ

 (5.2.8)

The bar indicates that the function is evaluated on nominal trajectory, i.e. ᾱ = α(ϕ∗).

Solving the Periodic Ricatti Differential Equation

To calculate the approximation of the stabilizing solution of the PRDE in Equation 2.5.4,

the method presented in Section 2.5.2 was used. The reduced dynamics was simulated using

the geometric relation from Section 4.3, before the matrices A and B corresponding to the

transverse linearized system was obtained. The optimization problem was then defined using

Equation 2.5.9, Equation 2.5.11 and Equation 2.5.12, and solved using the MATLAB SDPT3

Package [33].

The matrices Q and R was set to

Q =

20 0 0

0 20 0

0 0 20

 , R = 1, (5.2.9)
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and the sample size N and polynomial size M from Theorem 2.5.1 was set to 100 and 40

respectively. After increasing both the step size and the polynomial size, there seemed to be

no improvement in the method, which also was the case in the example used in the original

paper [33].

5.3 Sliding Mode Control

The sliding mode control section consists of two different designs for the sliding surface, or the

switching function. Design I consist of constructing a control law u that ensures the sliding

condition in Equation 2.5.16 is upheld, while Design II will construct a switching surface

based on the annihilation of a real invariant subspace of the linearized system.

SMC Design I

In this section a sliding mode controller will be developed based on the theory presented in

Section 2.5.3.

Having found the linearized system in Equation 5.2.7 based on the transverse coordinates,

the following scalar function s(x⊥, t) was defined as

s(x, t) = y + ẏ + z (5.3.1)

Now, in order for the sliding condition in Equation 2.5.16 to be valid, clearly the condition

sṡ < 0, (5.3.2)

needs to be upheld. Differentiating s yields

ṡ = ẏ + ÿ + ż = ẏ + w(1 + b3) + a31y + a32ÿ + a33, (5.3.3)

Where the parameters ai and bi are the elements of the transverse linearization matrices.

Thus the condition in Equation 5.3.2 will be satisfied if

(y + ẏ + z) < 0 : w >
1

1 + b3
(−a31y − ẏ(1 + a32)− a33z)

(y + ẏ + z) > 0 : w >
1

1 + b3
(a31y + ẏ(1 + a32) + a33z)

(5.3.4)

Which can be written in the compact form

w = g · sgn(y + ẏ + z), (5.3.5)

where g = 1
1+b3

(a31y + ẏ(1 + a32) + a33z).
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Implementation and Results

The method presented above was implemented in MATLAB and simulated using Simulink.

The method however proved to be unsuccessful at first.

The sliding surface s used in the sgn(·) function was further complemented by the approxi-

mation of the stabilizing solution of the PRDE in Equation 2.5.4, which vastly improved the

stabilization of the controller. The system was then tested with both nominal parameters

and perturbed parameters.

Nominal System Parameters

The sliding mode controller was first simulated on the system using the nominal system

parameters given in Table 4.2. The results are shown in Figure 5.3.1 - 5.3.4. In Figure 5.3.1

the plot is showing the nominal trajectory, ϕ∗, given by the reduced dynamics vs. actual

output trajectory, ϕ, of the system. Given that the initial conditions of the simulated system

is (ϕ, ϕ̇) = (0, 0), the controller seems to quickly catch up with the dynamic trajectory, before

converging to some stationary value which will be discussed soon. In Figure 5.3.2 the input

torque of the controller is compared with the nominal output given by the model. Clearly

the controller suffers from the well-known downside of the SMC called chattering during the

first period, before vanishing as the trajectory have converged. It should be mentioned that

it was not a priority to completely remove this effect during the work presented here, as there

are several strategies available in literature to do so [9].

Figure 5.3.3 shows the transverse coordinates throughout the simulation. As mentioned pre-

viously, the transverse coordinates will, in a vicinity of the nominal trajectory, give a measure

of error between the current and the nominal trajectory. Clearly the error is quite large in

the beginning of the run, considering that the system is initiated at zero. However, as we can

see in Figure 5.3.4, which is just zoomed in on the previous plot, the transverse coordinates

have converged to a periodic trajectory whose error doesn’t exceed |y| ,|ẏ| ,|z| < 0.5e−4
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0 1 2 3 4 5 6

-1

0

1

2

3

4

Figure 5.3.1: Phase portrait of the nominal trajectory vs. the sliding mode control output

trajectory, simulated with nominal system parameters.
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Figure 5.3.2: Nominal input vs. actual input torque of the sliding mode controller, simulated

with nominal system parameters.
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Figure 5.3.3: The transverse coordinates under the sliding mode controller, simulated with

nominal system parameters.

Figure 5.3.4: Zoomed in version of Figure 5.3.3. Note the axis values.
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Perturbed System Parameters

As with everything in the real world, the values in Table 4.2 are measured using physical in-

struments on physical objects. This naturally implies there are some uncertainties associated

with the precision of the method. This is one of the main motivations for implementing a

sliding mode control, namely its ability to reject uncertainties and imprecision in the model-

ing. To test the controller for robustness, the system parameters in Table 4.2 are scaled up

by 10% and the system is simulated. The results can be seen in Figure 5.3.5 - 5.3.7.

Figure 5.3.5 shows that the output trajectory do converge towards the nominal trajectory,

however with a considerable larger error as with the nominal case. It seems that the controller

seems to struggle the most around the local maxima and minima of the trajectory. To

maintain readability, the simulation was stopped after two periods, and it should be mentioned

that the output trajectory did not converge any closer than what can be seen in the plot.

In Figure 5.3.6 the control torque also reach a somewhat poorer stationary error than with

the nominal case. However, the chattering effect is considerable lesser in this case. One

explanation for this may be that the stationary error of the perturbed system is larger than

the boundary in which chattering occurs.

As for the transverse coordinates which can be seen in Figure 5.3.7, the first dip for all

three coordinates seems to match that of the nominal case, before converging to a periodic

behavior. The error in the perturbed simulation is noticeable larger, especially for z, which

have an maximum error approximately 4000 times larger than that of the nominal case.
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Figure 5.3.5: Phase portrait of the nominal trajectory vs. the sliding mode control output

trajectory, simulated with system parameters scaled up by 10%.
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Figure 5.3.6: Nominal input vs. actual input torque of the sliding mode controller, simulated

with system parameters scaled up by 10%.
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Figure 5.3.7: The transverse coordinates under the sliding mode controller, simulated with

system parameters scaled up by 10%.
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The system was then simulated again with system parameters now being scaled down by 10%.

The results did not seem to visually change from the plots shown in Figure 5.3.5 - 5.3.7, and

will therefor be omitted.
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SMC Design II

In this section, a switching function for the SMC will be designed based on the subspace of

the linearized system. By the Grobman-Hartman theorem, it is well known that the behavior

of a nonlinear system around one of its equilibirum points can be analyzed by the linearized

system around that same point. One important note is that the locally invariant manifolds

to the original nonlinear system, corresponds to the invariant subspace of linearized system

[9]. Thus, by designing a switching function such that a sliding mode controller converge

the system to a set of stable invariant subspace of the linearized system, the behavior of the

nonlinear system should comply with this stable behavior.

Finding an FL Factorization

In order to design a switching function based on the invariant subspace from the theory, an

FL factorization of the STM in Equation 2.5.31 was needed. To do so, a boundary value

problem (BVP) was solved. The problem formulation was set up in the same manner as in

[18] where it was shown that L(·) satisfy the first order matrix differential equation

∀t ∈ R+, L̇(t) = A(t)L(t)− L(t)F, (5.3.6)

while F is constant, meaning an initial guess was needed. To obtain this, Equation 2.5.25

was integrated and inserted into Equation A.2.1, yielding the F matrix

F ≈

 4.9898 −1.4548 −2.4611

4.4042 −1.1158 −2.2925

−13.1731 3.6652 6.6227

 , (5.3.7)

An initial guess for L was also needed, and was set to

L0 = sin(x) · I3 + I3, (5.3.8)

for some x. In order to simplify the calculations, the following boundary conditions was added

to the system

L(0) = L(sT ) = I3 (5.3.9)

The boundary value problem was then solved using the MATLAB function BVP5C ([34])

with the initial guesses, the function to solve and the boundary conditions were defined as

above.
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Designing a Switching Function

To find a real invariant subspace of co-dimension one of F , the corresponding eigenvalues and

eigenvectors was found

(λ1, v1) ≈
(
− 2.1155e−6,

0.70155

0.71454

1

), (λ2, v2) ≈
(

0.24164,

 0.14916

−1.20486

1

),

(λ3, v3) ≈
(

10.25505,

−0.37191

−0.34566

1

),
(5.3.10)

yielding the three subspaces

span{v1, v2}, span{v1, v3}, span{v2, v3}

The task is then to design Ŝ such that Ŝvi ≡ 0 will be used in the final matrix function for

the switching function; S⊥(s) = ŜL−1(s) = [Sy, Sẏ, Sz]. Note that the span defined by the

vectors above must be chosen so that the non-zero determinant condition from Theorem 2.5.3

is satisfied.

Implementation and Results

Having already found the approximating stabilizing solution H to the PRDE, the optimal

LQR controller u∗⊥ = K⊥(s) was found using Equation 2.5.5, such that

K⊥(s) = −R−1(s)B⊥(s)H(s) (5.3.11)

The elements of K⊥ = [Ky Kẏ Kw] are shown in Figure 5.3.8.

54



5.3. SLIDING MODE CONTROL

0 0.5 1 1.5 2 2.5 3
-400

-300

-200

-100

0

100

200

300

400

Nominal feedback K

Figure 5.3.8: The nominal feedback matrix K⊥(s) given by Equation 5.3.11.

The vector Ŝ was then calculated based on the subspace span{v2, v3}, and used together with

the periodic L(·) matrix to obtain S⊥(s) = ŜL−1(s) = [Sy, Sẏ, Sw]. Figure 5.3.9 shows the

matrix function S⊥(s), while Figure 5.3.10 shows S⊥(s)B⊥(s).
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Figure 5.3.9: The elements of the switching function S⊥(s)
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Figure 5.3.10: The matrix function S⊥(s)B⊥(s)
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The first observation that can be made from Figure 5.3.10 is that S⊥(s)B⊥(s) is not separated

from zero, meaning the conditions of Theorem 2.5.3 are not satisfied. The method was then

repeated for the other two subspaces span{v1, v2} and span{v1, v3} which unfortunately did

not change the outcome, suggesting that there was something wrong in the implementation.

As mentioned as a note in the origin of Theorem 2.5.3 from [9], it is assumed that the FL

factorization is sT periodic, which is not guaranteed to exist, rather than a 2sT periodic

factorization, which is guaranteed. Simulations showed that this was the case indeed, and

L(s) was 2π periodic. Motivated to solve the problem, an effort was put into obtaining the

Yakubovich matrix Y , which may be used when encountering the problem above [18].

The new boundary value problem was identical to the previous, however where the following

boundary condition was swapped

L(sT ) = I3 ⇒ L(sT ) = Y−1,

Meaning that the more correct notation for the condition in Equation 5.3.9 would be L(2sT ) =

I3. However, the solution of the new boundary value problem gave even poorer results than

the BVP suggested at first. As can be seen in Figure 5.3.9 and Figure 5.3.10, there seems to

be an asymptotic behavior at first. This behavior repeated itself several times in the newly

suggested BVP, and the matrix function S⊥B⊥ still was not seperated from zero, meaning the

necessary conditions of Theorem 2.5.3 was still not satisfied. Considering the amount of time

and effort that had been put into this problem, both theoretically and practical, no further

effort was put into trying to find a solution.
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5.4 Discussion

In this chapter, two different sliding mode controller designs was presented and simulated on

the Butterfly Robot. The results are discussed here.

SMC Design I

The unstable feedforward controller from section 5.1 was complemented with a stabilizing

term, which is based on a control law that ensures invariance of the sliding condition in

Equation 2.5.16. As mentioned in the first part of the results, this did not result in any stabi-

lizing controller for the system, motivating for further work. Considering that the stabilizing

solution of the PRDE have previously been used in a stabilizing term similarly to the one

in Equation 2.5.5, the sliding surface in Equation 5.3.1 was complemented with the approx-

imating stabilizing solution H+. The resulting controller managed to stabilize the system

when it was subjected to the nominal system parameters used in the modeling. When the

parameters were scaled up/down by as much as 10%, the controller was still able to track

the nominal trajectory, although a considerable larger error from the nominal curve occurred.

Although scaling all the system parameters up by 10% can be considered a rather extreme

case, considering the accuracy of modern instruments, it would still be of interest to obtain

a better convergence than what was obtained. In a physical experiments the smallest error

could send the ball flying of the frame. And considering that there are a lot of neglected

forces like friction, air resistance and simplifications in the shape of both the ball and the

frame, it would be reasonable to say the perturbation in a real world may be challenging for

this controller. It is possible that the simple design may be a little too simple for such a

complicated system.

One motivation for designing a control law that did not depend on the Ricatti equation was

due to the uncertainties that comes along with it. Solving the PRDE for a highly unstable

system may cause trouble down the line, as the solution found in the beginning will be used

throughout the run. Thus, any imprecision in the modeling will be used in the stabilizing

controller later. However, the upside of using H+ in the manner being done in this paper,

is that instead of being directly used in the control law (as in [2]), it is rather be used as

a term in the Lyapunov function, thus having the possibility that the controller will still be

stabilizing even if the Lyapunov function is wrong.

SMC Design II

Although a substantial effort was put into both understanding and implementation of the

invariant-based SMC, the method did not yield any significant results, other than the fact that

the problem remains unsolved. It would be reasonable to say that this do not prove that such

a method do not work for the Butterfly Robot, but rather that it was not implemented in the
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right way. Having encountered several struggles regarding both way too long computational

time, and the encountering of singular Jacobians during the solving of the boundary value

problem, it may indicate that (one of) the problem(s) originated already here. Considering

the complexity of the robotic system as well, the task of troubleshooting quickly became non-

trivial. When it comes to the encountering of the singular Jacobian, a quick search in literature

yields several possible things that may have been the problem. The initial guess may not be

sufficient to produce a convergence, which often seems to be the case for complex systems.

Although the system was initiated with several different initial guesses, it is important to

consider that the nonlinear solver is just as effective as its initial guess, making the BVP

feel more like art than science. Another reason may have been that the solver was able to

converge for some iterations, but at some point became unable to find the next guess needed

for a solution.

As was mentioned in the introduction, due to the approximation of the system parameters,

any solution should in fact hold for a family of different systems in order to account for

the possible variations in the parameters. This will add another level of complexity to the

problem, as one solution may only work for a particular set of parameters. To the authors

knowledge, no such method has previously been implemented on the Butterfly Robot which is

without a doubt a complicated system. This raises the question of how complicated a solution

may be. It would therefor be reasonable to suggest that further work is needed in order to

evaluate such a method on the robotic system.

It is worth mentioning that the stabilizing methods presented both here and in [2] relies on

the solution of the Ricatti equation. Consider that one is able to design a controller and bring

the linearized system to a closed loop in terms of the transverse coordinates. The stability of

this is equivalent with the fact that there exist a solution to the Ricatti differential equation

such that the Monodromy matrix has eigenvalues within the unit circle. Thus, any stabilizing

controller design will have to solve the RDE. Recognizing this indeed is a challenging task

motivates for the development of alternative solutions.
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Chapter 6
Conclusion and Further Recommendations

6.1 Conclusion

This paper aimed to develop a stabilizing controller based on the sliding mode control syn-

thesis for a system experiencing perturbations in system parameters. The mechanical system

to which the controller was subjected is currently known as the Butterfly Robot. Given that

such a robotic system is underactuated, meaning that the system has more degrees of freedom

than it has control inputs, it will be unstable by nature. To overcome such a problem, several

essential steps were made during the deriving of the generalized coordinates, as well as in the

motion planning section. To find a feasible motion for the system, a geometric relation known

as a virtual holonomic constraint was added to couple the generalized coordinates together

using a scalar function known as a motion generator. The geometric relation was then held

invariant by a feedback controller, essentially lowering the complexity to just one configura-

tion variable. The dynamics of the motion generator, known as the reduced dynamics, could

then be used as a noble candidate for the nominal trajectory.

The main contribution of this paper was to introduce two different designs of a sliding mode

controller to stabilize the transverse linearized dynamics of the Butterfly Robot. Both meth-

ods exploited the well-known fact that the stabilization of a set of transverse coordinates,

whose origin corresponds to the nominal trajectory, corresponds to the stabilization of the

nonlinear system. As a part of the stabilizing terms, an approximation of the stabilizing so-

lution of the periodic Ricatti differential equation was found through semi-definite program-

ming, where the Ricatti differential equation was solved by writing the differential equation

as a linear matrix inequality by taking the Schur complement.

The first design was based on a notation simplification such that an n-th order problem could

be replaced by a first-order problem. Lyapunov theory was then used to design a control law

that provides finite-time convergence towards a so-called sliding surface. This surface could

then be designed to match the nominal trajectory given by the reduced dynamics. As the
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transverse coordinates by nature are zero on the nominal trajectory, they were directly used

in the sliding surface.

The second design is built on the equivalence between the stable invariant manifolds of the

nonlinear system and the stable invariant subspace of the first-order approximation system.

Here, a time-varying subspace of the linearized system was designed before its annihilator was

used in the switching function for the sliding mode controller. To construct such a subspace,

a real Floquet-Lyapunov transformation of the state transition matrix of the transverse lin-

earized system was to be found. Here, the F factor was found through integration of the

system, and the L factor was found by solving a boundary value problem.

Both controllers were implemented and numerically simulated using MATLAB and Simulink.

The first design was able to converge the system trajectory towards the nominal trajectory,

with an absolute maximum error of approximately 0.5e−4 in the transverse coordinates us-

ing the nominal system parameters. The system then experienced a perturbation of ±10%

in the system parameters, resulting in a system that still converged towards the nominal

trajectory, however with an absolute maximum error of approximately 0.2 in the transverse

coordinates. The second design was not able to properly stabilize the system. Considering

that the constructed switching function failed to satisfy the necessary conditions, a great

effort was put into overcoming the problem without success. Due to the complexity of the

system as well, troubleshooting became non-trivial. It should be mentioned that a real FL

transformation where L was π-periodic was not found, suggesting the problem originated in

solving the boundary value problem.

As the Butterfly Robot is a practical example with physically measured system parameters,

any solutions to the stabilization problem should hold for a family of different systems to

account for the variations in parameters. As the complexity of such a solution is questionable,

further work is needed.

6.2 Recommendations for Further Work

In this section, some recommendations for further work is presented.

Construction of a switching function based on the invariant subspace

Considering that the work presented in this paper did not find any real invariant subspace

of the linearized transverse system that satisfied all the necessary conditions, this would be

a natural next step. The switching function could then be designed based on its annihilator,

and later used in a sliding mode controller to evaluate such a controller using numerical

simulations.
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Implementation on the physical system

Clearly mathematics is not useful unless it can be implemented in the real world. Considering

that the SMC in design 1 was able to converge towards the nominal trajectory, even with

a perturbation of ±10% in the system parameters, it would be interesting to see how the

controller would perform on the physical robot where there are real perturbations. Given

that some of the model assumptions made in this paper are not valid in the real world, the

real robustness of the controller could be tested. This also applies for the second design, if

one were to be able to construct such a switching function.
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Appendix A
Various Calculations and Equations

A.1 The Christoffel Symbols

Using Equation 2.2.5 from Section 2.2 in the theory, each element of the C(·) matrix can be

easily computed

c111 =
1

2

[
∂m11

∂θ

]
= 0

c112 =
1

2

[
2 · ∂m21

∂θ
− ∂m11

∂ϕ

]
= −mbs

′~ρ · ~τ

c121 =
1

2

[
∂m11

∂ϕ

]
= mbs

′~ρ · ~τ

c122 =
1

2

[
∂m22

∂θ

]
= 0

c211 =
1

2

[
∂m11

∂ϕ

]
= mbs

′~ρ · ~τ

c212 =
1

2

[
∂m22

∂θ

]
= 0

c221 =
1

2

[
2 · ∂m12

∂ϕ
− ∂m22

∂θ

]
=
(
mbk̂ · (~ρ× ~τ) + Jbp

)
s′′ +mbk̂ · (~ρ× ~κ)s′2

c222 =
1

2

[
∂m22

∂ϕ

]
= (mb + Jbp

2)s′s′′

(A.1.1)
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which will yield the four elements

c11 = c111θ̇ + c211ϕ̇ = mbs
′~ρ · ~τϕ̇

c12 = c121θ̇ + c221ϕ̇ = mbs
′~ρ · ~τ θ̇ +

((
mbk̂ · (~ρ× ~τ) + Jbp

)
s′′ +mbk̂ · (~ρ× ~κ)s′2

)
ϕ̇

c21 = c112θ̇ + c212ϕ̇ = −mbs
′~ρ · ~τ θ̇

c22 = c122θ̇ + c222ϕ̇ = (mb + Jbp
2)s′s′′ϕ̇

(A.1.2)

which gives the final form

C(q, q̇) =

 mbs
′~ρ · ~τϕ̇ mbs

′~ρ · ~τ θ̇ +

((
mbk̂ · (~ρ× ~τ) + Jbp

)
s′′ +mbk̂ · (~ρ× ~κ)s′2

)
ϕ̇

−mbs
′~ρ · ~τ θ̇ (mb + Jbp

2)s′s′′ϕ̇


(A.1.3)

A.2 Constructing a Floquet-Lyapunov Factorization

There are several methods available for computing a real FL factorization for LTP systems.

These are mainly categorized in direct and indirect methods. As for the direct method, one

can use knowledge of the state transition matrix. In [9] it was shown that the matrix F can

be calculated using the Monodromy matrix;

M2
A = M̄AMA = eTBe

¯TB = e2TF , (A.2.1)

i.e. F = (B + B̄)/2, where B may be complex.
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