
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Richard Bachmann

Performance Modeling of Finite
Difference Shallow Water Equation
Solvers with Variable Domain
Geometry

Master’s thesis in Computer Science
Supervisor: Jan Christian Meyer

June 2021

M
as

te
r’s

 th
es

is

Richard Bachmann

Performance Modeling of Finite
Difference Shallow Water Equation
Solvers with Variable Domain
Geometry

Master’s thesis in Computer Science
Supervisor: Jan Christian Meyer
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Performance Modeling of Finite Difference
Shallow Water Equation Solvers with Variable

Domain Geometry

Richard Bachmann

June 22, 2021

Problem Description

This study aims to develop quantitative models of performance and scalability effects when
solving the Shallow Water Equations for domains with complex geometry features, and to
validate these models experimentally.

i

Abstract

In this thesis we examine techniques for reducing the computational load imbalance which
may arise when creating decompsitions of a two-dimensional finite difference domain with
regions of uneven computational cost. In this case a simple Cartesian decomposition may
create partitions which are not balanced, because it does not exploit the domain’s features.
Depending on the choice of implementation, such an imbalance can result in significant
periods of idle time in the application, as a consequence of one process having to wait for
the results of another.

We describe two decomposition schemes to contrast with the simple Cartesian decom-
positon. One of these is rooted in orthogonal recursive bisection, while the other is based
on diagonal rectangulation. We then show that the increase in communication cost intro-
duced by the more complex decomposition schemes is outweighed by the efficiency gained
though reduced wait times. Finally, we implement a proxy-application which solves the
shallow water equations numerically. This application introduces regions of differing com-
putational cost, which allows us to test our ideas and demonstrate their efficacy.

ii

Sammendrag

I denne oppgaven undersøker vi metoder som kan brukes til å redusere ubalansert bereg-
ningslast, som kan oppstå når man dekomponerer et todimensjonalt domene av endelige
differanser med ujevn beregningskostnad. I dette tilfellet kan en Kartesisk dekomponering
opprette ubalanserte partisjoner, fordi den ikke utnytter strukturen til domenet. Slike ubal-
anser kan resultere i signifikante ventetider for applikasjonen, som skyldes at en prosess
må vente på å motta resultatdata fra en annen.

Vi beskriver to dekomponeringsteknikker som står i kontrast til den Kartesiske meto-
den. En av disse er basert på ortogonal rekursiv halvering, mens den andre er basert på
diagonal rektangulering. Vi viser så at den økte kommunikasjonskostnaden som disse
fører til oppveies gjennom økt effektivitet som følge av reduserte ventetider. Til slutt im-
plementerer vi en proxy-applikasjon som løser grunntvannslikningene numerisk. Denne
applikasjonen introduserer regioner med varierende beregningskostnad som lar oss teste
våre ideer og demonstrere deres nytte.

iii

Table of Contents

Problem Description i

Abstract ii

Sammendrag iii

Table of Contents vi

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Scope . 1
1.3 Related work . 2
1.4 Structure . 2

2 Computational Fluid Dynamics 3
2.1 The Simulated Fluid . 3
2.2 The Shallow Water Equations . 4
2.3 Numerical Methods . 5
2.4 Finite Differences . 5

2.4.1 The MacCormack Method . 6
2.4.2 Stability . 7

2.5 Boundary Conditions . 8

3 Domain Decomposition 9
3.1 Rectangulations . 9

3.1.1 Scanning Decomposition . 10
3.1.2 Diagonal Rectangulation . 10

iv

4 Parallel Programming and Models 14
4.1 Approaches to Parallelism . 14
4.2 Performance Modelling . 15
4.3 Domain Decomposition . 17
4.4 Communication Models . 17

4.4.1 The LogGP Model . 17
4.5 Parallel Programming APIs . 20

4.5.1 OpenMP . 20
4.5.2 MPI . 21
4.5.3 Open MPI . 21

5 The Proxy Application 23
5.1 Goal . 23
5.2 The Grid . 23
5.3 Load Balance . 25

5.3.1 Semi-static Map Parsing . 25
5.4 Parallelism . 26

5.4.1 Chunking . 27
5.5 Ghosts Points and Interfaces . 27

5.5.1 Collision Handling . 28
5.6 A Model for the Application . 29

5.6.1 Initialization Cost . 29
5.6.2 Computation Cost and Overlap 29
5.6.3 Communication Model . 30

5.7 Application Structure . 30

6 Methodology 33
6.1 Experiments . 33

6.1.1 Decomposition . 34
6.1.2 Communication . 34

6.2 Computation Platform . 35
6.2.1 Idun . 35
6.2.2 Fram . 36
6.2.3 Betzy . 37
6.2.4 LogGP Communication Performance 38

6.3 Parameter Space . 41
6.3.1 Domain Dimensions and Geography 41
6.3.2 Domain Decomposition . 41
6.3.3 Rank Distribution and Resource Availability 41
6.3.4 Initial condition . 41
6.3.5 Step Size . 41
6.3.6 Number of Iterations . 42

v

7 Results and Discussion 43
7.1 Rectangulations . 43

7.1.1 Decompositions and Scalability 43
7.1.2 Reduction of Load Imbalance 45

7.2 Communication . 45
7.3 LogGP Benchmarks . 47

7.3.1 Verification of Stable Communication Cost 47
7.3.2 Strong Scaling Comparison of Rectangulation 48

8 Conclusion 51
8.1 Future Work . 51

Acknowledgements 53

Appendix 54
8.1.1 Supplementary Tables . 54

8.2 Symbols . 55
8.3 Other software . 56

Glossary 57

Acronyms 58

Bibliography 59

vi

List of Tables

4.1 Open MPI frameworks . 22

6.1 Important parameters which are shared by the experiments. 33
6.2 Idun - Hardware and software properties 35
6.3 Fram - Hardware and software properties 36
6.4 openib Settings . 36
6.5 Betzy - Hardware and software properties 37
6.6 Latency measurements . 39

7.1 Diagonal Rectangulation Times . 43

8.1 A Selection of Baxter Numbers . 54
8.2 Symbols and definitions . 55

vii

List of Figures

2.1 Shallow Water Flow . 4

3.1 Scanning rectangulation . 10
3.2 Diagonal Rectangulation . 11

4.1 Netgauge Bechmark . 20

5.1 Bitmap creation process . 24
5.2 Use of OpenMP threads . 26
5.3 Ghost points and border exchanges . 27
5.4 Ghost points and interfaces . 28
5.5 Fluid in Complex Domain . 29
5.6 Application Structure . 31
5.7 Data Exchanges . 32
5.8 Performance Model Summary . 32

6.1 Load imbalance tested on the 1800× 1000 point Trondheimsfjord map. . 34
6.2 Strong scaling tested on a custom 1800× 1800 point archipelago map. . . 35
6.3 Fram Island Fat Tree . 37
6.4 Dragonfly+ Group . 38
6.5 Dragonfly+ Largest Topology . 38
6.6 LogGP measurement on Idun . 39
6.7 LogGP measurement on Fram . 40
6.8 [LogGP measurement on Betzy . 40

7.1 A 24 degree Cartesian partition. 44
7.2 A 24 degree scanning partition. 44
7.3 A 9 degree diagonal rectangulation. 44
7.4 Decompositon Idle Times . 46
7.5 Runtime Speedup and Efficiency . 47
7.6 Communication time per iteration . 48

viii

7.7 Strong Scaling on Betzy . 49
7.8 Strong Scaling on Fram . 49
7.9 Strong Scaling on Fram . 50

ix

Chapter 1
Introduction

In this chapter we state the motivation and scope of our work. This is followed by a
description of how this paper is structured.

1.1 Motivation
A great number of domain decomposition techniques for fluid simulations exist. We iden-
tified that few studies examine these in conjunction with the cost they incur in terms of
communication. By measuring the time spent on communications we develop a quanti-
tative model, which may be used to judge the scalability of the decomposition scheme.
Such models are useful tools for judging the time and computational resources needed to
complete a task.

1.2 Scope
Our overarching goal is to to investigate behaviors stemming from the introduction of a
heterogeneous domain into our finite difference simulation. Prime among these is the
aspect of load balance and additional communication overhead.

We choose to focus our efforts on the computational aspects of our fluid simulation, at
the expense of some physical realism. This allows us to spend more time on studying how
the software interacts with its computational platform. For this reason, fluids simulated
in this work do not accurately reflect any fluid from the real world in particular. We do,
however, mirror the behaviors of proper fluid simulation programs in our own.

Our investigations are heavily tied to parallel execution and communications. There
exists a great variety of architectures and design patterns for their implementation, which
are too numerous to investigated all at once. We choose to focus on a hybrid MPI+OpenMP
solution, where communications take place between separate nodes and computations are
parallelized locally using threads. With this setup we examine inter-node communications,
which we assume to be more significant in terms of cost than intra-node communications.

1

Chapter 1. Introduction

1.3 Related work
Parna et al [1] have created a WENO-based finite difference simulation with overlapping
subdomains. The program runs on multiple GPUs in parallel, and it handles wetting and
drying of complex three-dimensional terrain.

Colicchio et al [2] utilize domain decompositions of 3D space to combine two different
solvers. The technique allows the authors to model water-on-deck phenomena which occur
when ships are hit by tall waves.

Alfonso Sánchez-Beato outlines in his blog a technique for efficiently partitioning a
screen into multiple video windows, while preserving the videos’ respective aspect ratios
to the best possible degree [3]. This can be viewed as a form of domain decomposition,
and serves as a major source of inspiration for our work. In the Chapter 3 we extend some
of his ideas to our shallow water domain.

Other spatial domain compositions exist, such as Yin-Yang grids and the Schwarz al-
ternating method. The former can be used to decompose the surface of a three-dimensional
sphere into a set of two-dimensional rectangles, which is useful for weather forecasts [4].
The latter allows for the decomposition of a domain with a complex shape into a set of
overlapping domains with simple geometric shapes [5].

1.4 Structure
We draw from knowledge of three interconnected fields, each of which we introduce in
their own chapter. In Chapter 2 we give an introduction to computational fluid dynam-
ics and numerical methods. We use Chapter 3 to explain the techniques for our domain
decomposition, and Chapter 4 presents methods for achieving high performance through
parallelism in HPC applications. These three topics are followed by Chapter 5, where we
combine them in our developed application. The chapter presents implementation details
and concludes with a performance model. Chapter 6 describes the measurements we per-
form and introduces our computing platforms. The results of the former are then displayed
and discussed in Chapter 7. Finally, we summarise our findings in the conclusion found in
Chapter 8.

2

Chapter 2
Computational Fluid Dynamics

In this chapter we present some fundamentals of fluid simulation, which are needed to
describe our application. We first give a short introduction to fluid dynamics, and then we
follow this up with a description of our numerical method of choice.

Computational Fluid Dynamics (CFD) is a versatile field at the intersection of research
and engineering, concerned with the simulation of fluid motion by solving non-linear par-
tial differential equations. CFD techniques are applicable both for fluids and gases, under
a wide range of conditions. It follows that there are many practical use cases, such as:
Modeling the interactions of ship hulls with ocean waves [2], meteorological forecasts
[6], flood prediction [1], landslide modeling [7], and modeling blood flow through elastic
3D arteries [8]. CFD simulations are typically executed on High Performance Computing
(HPC) platforms, due to their great need for computing resources.

2.1 The Simulated Fluid
Fluids are capable of a wide variety of dynamic behaviors, which depend on the properties
of the fluid in question as well as the features of its surroundings. While fluid dynamics
may refer to the behaviors of both liquids and gases, we here focus on liquids alone. Thus,
our fluids are treated as incompressible, such that their density does not change over time.

The vast majority of fluids experience a frictional force when interacting with their
surroundings, and they have a viscosity such that they have a degree of internal friction
which originates from its layered structure or individual particles. An ideal fluid is a much
simpler construct which is inviscid. That is, it experiences neither internal nor external
friction. It therefore has no internal shear stress, nor surface tension. Such a fluid is char-
acterized exclusively by its isotropic pressure, density, and the shape of its surroundings.

We say that fluids in motion experience shallow water flow, as seen in Figure 2.1, if
the width and length of the examined areas far exceed their depth. In such a flow the
differences in horizontal velocities experienced by a column of fluid, as well as vertical
flows, are negligible. In practice, this means that we may consider the whole column as a
mass with a uniform horizontal velocity, without internal friction and turbulences. Indeed,

3

Chapter 2. Computational Fluid Dynamics

our model defines our fluid as a set of heights on a set of coordinates, instead of regarding
it as a collection of particles.

In this work we examine open channel shallow water flows, which have a solid border
below, but not on top. Our simulated fluid is an ideal, homogeneous fluid with a density
approximately equal to that of water.

2.2 The Shallow Water Equations

Figure 2.1: A rendering of shallow water flow,
where the height of the wave is much smaller than
the domain’s width and length.

The shallow water equations are a set
of hyperbolic Partial Differential Equa-
tions (PDEs) used to model shallow water
flows. We will use these PDEs to model
two-dimensional flows, with explicit ve-
locities in two horizontal directions. The
equations also exist for one-dimensional
simulations, in which case they are also
known as the Saint-Venant equations. The
equation set is derived from the three-
dimensional Navier-Stokes equations inte-
grated over the domain depth. The latter in
turn follow from the principle of conserva-
tion of mass and momentum.

The equations may be written both in
conservative and non-conservative fash-
ions.

Since our fluid is an ideal fluid we may
ignore the effects of friction and viscos-
ity. Additionally, we amortize external
forces such as the Coriolis forces and wind
effects. The conservative shallow water
equations may then be written as:

∂(ηρ)

∂t
+

∂(ηρu)

∂x
+

∂(ηρv)

∂y
= 0 (2.1)

∂(ηρu)

∂t
+

∂

∂x

(
ηρu2 +

1

2
gρη2

)
+

∂(ηρuv)

∂y
= 0 (2.2)

∂(ηρu)

∂t
+

∂(ηρuv)

∂x
+

∂

∂y

(
ηρv2 +

1

2
gρη2

)
= 0 (2.3)

Where:

• η is the total height of the fluid column at the given point.
• ρ is the density of the simulated fluid.
• g is the gravity acceleration.
• u and v are the fluid’s depth-averaged velocities in x and y dimensions respectively.

4

2.3 Numerical Methods

We treat the density ρ as a constant in this work, and may therefore simplify Equation
2.1, 2.2, and 2.3:

∂m

∂t
+

∂(mu)

∂x
+

∂(mv)

∂y
= 0 (2.4)

∂(mu)

∂t
+

∂

∂x

(
mu2 +

1

2
gmη

)
+

∂(muv)

∂y
= 0 (2.5)

∂(mu)

∂t
+

∂(muv)

∂x
+

∂

∂y

(
mv2 +

1

2
gmη

)
= 0 (2.6)

Where:

• m denotes the mass represented by a fluid column.

2.3 Numerical Methods
PDEs, such as the shallow water equations, generally have no analytical solution. Numeri-
cal analysis allows for the discovery of acceptable solutions to such complex mathematical
problems by the use of approximation. Solutions are computed for discrete, successive
time steps.

Numerical methods may be either explicit, or implicit in their representation of the
problem at hand. Explicit methods compute the next system state from the system’s current
state. Implicit methods state the problem as a function of the current state and the next
state, which can then be solved.

2.4 Finite Differences
Numerical methods may take many shapes, depending on the chosen abstraction and pro-
cedure. The Finite Difference Method (FDM) is one such approach. Here the simulated
domain is overlaid with a mesh, either structured or unstructured, which consists of a set of
discrete points. We start with an initial condition at time t = t0, where we define the fluid
level and velocity at each point. This state can represent a set of conditions we wish to in-
vestigate, such as a wave on open water. In order to obtain a subsequent state we increment
the time by one time step tk+1 = tk + ∆t and perform an integration on an expression
which involves a derivative and a selection of current states. The value obtained from the
integration gives the new value at a specific point. We repeat this procedure for each point
in the domain. A function to integrate may be given by forward-, backward- and cen-
tered differences, respectively shown by Equations 2.7, 2.8, and 2.9, or some combination
thereof.

f ′(x) ≈ f(xi+1)− f(xi)

∆x
(2.7)

f ′(x) ≈ f(xi)− f(xi−1)

∆x
(2.8)

f ′(x) ≈ f(xi+1)− f(xi−1)

2∆x
(2.9)

5

Chapter 2. Computational Fluid Dynamics

FDMs are generally characterized by their order of accuracy, which indicates the low-
est order derivative in the truncation error of the utilized series expansion.

We elect to use a well-studied method as a basis for our research: The MacCormack
method. The equations in this work use x and y to indicate relative position in two-
dimensional space, and k to indicate the iteration for which the value is valid.

2.4.1 The MacCormack Method
The MacCormack method is a well-studied explicit numerical technique for solving hy-
perbolic PDEs. The method is based on Taylor series expansion in time and is second
order accurate in both space and time, given that a symmetric sequence of operations is
used [9]. It uses a two-step predictor-corrector algorithm to calculate the next state of the
domain. Backward space differences are used in the predictor step, and the corrector uti-
lizes forward space differences. In doing so, the method eliminates most of the directional
bias [10]. Furthermore, the MacCormack method belongs to the time-splitting methods,
also known as "fractional time steps" methods [11], where the operations associated with
each space dimension are applied individually and in succession.

The MacCormack method has gained great popularity, due to its relative ease of imple-
mentation while simultaneously delivering reliable and fast results. It is related to the Lax-
Wendroff method, which it simplifies and extends with the mentioned predictor-corrector
procedure. Numerous variations of the MacCormack method have been developed, such
as: MacCormack-TVD schemes [7] [12] and an implicit-explicit MacCormack and Crank-
Nicolson hybrid [13]

Basic Two Dimensional MacCormack steps

The predictor step is defined as:

mk+1
x,y = mk

x,y −∆t

(
(mu)kx+1,y − (mu)kx,y

∆x
−

(mv)kx,y+1 − (mv)kx,y
∆y

)
(2.10)

The corrector step is given as:

mk+1
x,y =

mk
x,y +mk+1

x,y

2
− ∆t

2

(
(mu)k+1

x,y − (mu)k+1
x+1,y

∆x
−

(mv)k+1
x,y − (mv)k+1

x,y−1

∆y

)
(2.11)

Where:

• uk+1 and vk+1 are intermediate velocities in x and y dimensions calculated using
mk+1

The velocities in the x dimension have their own predictor-corrector stages, which are
given by:

uk+1
x,y = uk

x,y −∆t

(
(uk

x+1,y)
2 − (uk

x,y)
2

∆x
+

(muv)kx,y+1 − (muv)kx,y
∆y

)
(2.12)

6

2.4 Finite Differences

uk+1
x,y =

uk
x,y + uk+1

x,y

2
− ∆t

2

(
(uk

x,y)
2 − (uk

x−1,y)
2

∆x
+

(muv)kx,y − (muv)kx−1,y

∆y

)
(2.13)

The velocities in the y dimension are similarly calculated using:

vk+1
x,y = vkx,y −∆t

(
(vkx,y+1)

2 − (vkx,y)
2

∆y
+

(muv)kx+1,y − (muv)kx,y
∆x

)
(2.14)

vk+1
x,y =

vkx,y + vk+1
x,y

2
− ∆t

2

(
(vkx,y)

2 − (vkx,y−1)
2

∆y
+

(muv)kx,y−1 − (muv)x−1,y

∆x

)
(2.15)

The relative position of the points used to calculate the value of mk+1
x,y forms our sten-

cil.

2.4.2 Stability

The notion of stability in the simulated domain is central to CFD. Instabilities occur when
the error between the numerical solution and exact solution is unbounded. These can
manifest as singularities, where there is a discontinuity in some derivative. Singularities
tend to spread from a single source until the whole domain is destabilized by moving
along the stencil of our numerical method each iteration. The practical consequence of a
singularity is a breakdown of our simulation. Singularities may also occur in the absence
of numerical instabilities, such as locations where the fluid surface has excessively sharp
curvatures.

Roache describes two general kinds of instabilities [11]: Dynamic instability, stem-
ming from effects such as oscillatory overshoot with increasing amplitude, and static in-
stability. The first of these my be avoided by selecting a sufficiently small time step ∆t. To
help us select such a ∆t we can make use of the Courant-Friedrich-Lewy (CFL) condition.
The CFL condition serves an indicator for whether or not a simulation can be considered
as stable. It indicates broadly how far information travels in one iteration of a simulation.
In the two-dimensional case the CFL condition may be written as:

C =
|u|∆t

∆x
+

|v|∆t

∆y
≤ Cmax (2.16)

Where:

• C is the Courant number.

• Cmax is our condition for retaining stability.

We want information to travel no further than one point in a single ∆t, since larger
movements may cause divergences that can evolve into singularities with the MacCormack
scheme. This means that our Cmax can be no greater than one. In practice it must often
times be even smaller [13].

7

Chapter 2. Computational Fluid Dynamics

2.5 Boundary Conditions
In simulating a finite domain one inevitably has to decide how the system is to interact with
the imagined surroundings outside the simulated domain. Without physical laws that give
exact specifications, we have to settle for approximations that yield sufficiently realistic
behaviors. Boundaries may be passable, allowing waves to pass freely out of the domain,
or reflective, such that they act as a solid wall. Other behaviors, such as inflows or outflows
of fluid or oscillations are possible as well. The choice of boundary condition determine
the behavior and the method of achieving them. Boundary conditions may in other works
also be referred to as interface conditions.

Neumann boundary conditions define the derivative value of the function along the
boundary explicitly. We may set this derivative to equal 0 in combination with the Mac-
Cormack scheme, which has the effect of stopping wave propagations.

∂m(t)

∂t
= β = 0 (2.17)

8

Chapter 3
Domain Decomposition

In this chapter we present two techniques for partitioning the simulated domain into a set
of smaller sub-domains. The aim is to partition a domain with regions of varying compu-
tational load in a way that equalizes the workload of the sub-domains. The partitioning
process is performed with a separate program before the application described in Chapter
5 is executed. The produced layout is exported to a file which is saved and later imported
by the application.

3.1 Rectangulations
We limit our partition style to rectangulations which are rectangular partitionings that
split a rectangular domain into a set of smaller, non-overlapping rectangles. These smaller
rectangles may be referred to as tiles. Both the sides of the original rectangle and any tile
are parallel with the coordinate axes. The placement and size of each rectangle may vary
based on the implementation of the algorithm and the sequence of execution. We refer to
the number of partitionings of a rectangulation as the rectangulation degree.

Rectangulations are concerned with the number of ways to perform such a partition for
a given domain and degree. Ordinarily the term rectangulation refers to tiling a domain
with a sparse distribution of points, such that each point is on the intersection of two
rectangles. Point-free rectangulations are a variant of these which, instead of operating on
a set of points, split the domain into a discrete lattice coordinate system. For example by
splitting the axes such that x, y ∈ N. We utilize only the latter, as it corresponds to the
discretization of our numerical domain. By extending this notion to include the topological
structure of the domains, that is the spatial relation of any two rectangles, we get what is
known as a floorplan [14]. A spatial relation may for example be a tile being "south of" and
"west of" its neighbor. The partition of a floor in a house into separate rooms is a popular
metaphor for this concept. Useful applications of floorplans can be found in integrated
circuit design and Very Large Scale Integration (VLSI) [15]. A floorplan is referred to as
a mosaic floorplan if we also require that every region of the domain must be covered by
a tile.

9

Chapter 3. Domain Decomposition

We implement two mosaic floorplan algorithms for our study: The first method, which
we call the scanning partitioner, is an algorithm which is simple to implement and run.
The second method is based on the process of diagonal rectangulation.

3.1.1 Scanning Decomposition

We implement a simple scanning partitioning scheme as a baseline for comparison. This
scheme is a variant of the Orthogonal Recursive Bisection (ORB) algorithm described by
Geoffrey C. Fox [16]. Our scheme scans across a domain, aggregating the total computa-
tional load represented by the encountered points. This load is estimated using the model
described in Section 5.3. Once the scanned workload exceeds half of the domain’s total
load, the rectangle is split in two smaller ones. We alternate between scanning along the
width and length of the domain. Each iteration the algorithm picks the most computation-
ally intensive rectangle to be split. This continues until the number of rectangles equals
the number of participating processes. The process for creating a partition with four tiles
can be seen in Figure 3.1.

Figure 3.1: The scanning algorithm alternates between traversing the domain horizontally and ver-
tically. Once half the load has been encountered, the current rectangle is split.

3.1.2 Diagonal Rectangulation

The generic rectangulations are a subset of rectangulations which have the additional
property of having no points where four rectangles intersect, referred to as a cross [17].
This means that tiles may only meet by having parallel adjacent outlines, or through three
tiles forming a ’T’ shape junction. Diagonal rectangulations are a subclass of the generic
rectangulations, which are created such that every tile contains one point along a diagonal
of the original rectangle.

A diagonal rectangulation is conducted by drawing a line segment between two diag-
onally opposing corners of the bounding rectangle R, and assigning each discrete point
the diagonal intersects with an index 1..n. For the purpose of creating only one set of
equivalent solutions, we specify that the line segment must originate in the north-western
corner, and end in the south-western one. We now select points, one by one, as the start of
our rectangles. The order of selection makes up our sequence seq for the rectangulation.

10

3.1 Rectangulations

Each rectangle, indexed by its element in the sequence, is drawn by using the following
algorithm:

1. Select the next indexed point p along the diagonal of R from seq.

2. Draw the largest possible rectangle such that:

• The rectangle incorporates p.

• The rectangle originates from the first free point furthest toward the south-
western edge of R that may incorporate p.

• The sides of the rectangle cross no existing rectangle, including R.

• The rectangle includes no other points in the sequence along the diagonal.

• It goes no further west than the rectangle to its south.

• It goes no further north than the rectangle west of it.

We show a simple example of the diagonal rectangulation process in Figure 3.2.

Figure 3.2: A valid diagonal rectangulation using the sequence 3,4,1,2.

Deduplication

In rectangulating R we may come across different sequences for R which yield equivalent
tilings. We say that a tiling of R using sequence seq is equivalent to a tiling of R′ with
sequence sec′ if there exists a bijection of the tiles of R to the tiles of R′ which preserves

11

Chapter 3. Domain Decomposition

the mosaic floorplan relations of ’north of’ and ’west of’. These equivalent rectangulations
may be identified and avoided by use of Baxter permutations [18].

The Baxter number B(n) gives the number of Baxter permutations contained in a se-
quence of length n. Each Baxter permutation represents a unique diagonal rectangulation.
We may calculate such a Baxter number by using Equation 3.1

B(n) =

n∑
k=1

(
n+1
k−1

)(
n+1
k

)(
n+1
k+1

)(
n+1
1

)(
n+1
2

) (3.1)

Where:

• n is the number of elements in the sequence, in our case the degree of the rectangu-
lation.

• k is the number of elements in a chosen subset of said sequence.

The growth of this number is not intuitive form this equation alone. We include a table
of reference Baxter numbers in the appendix 8.1. Shen and Chu [19] prove that there exists
a tight bound for the growth of the Baxter number:

B(n) = Θ

(
n!23n

n4

)
(3.2)

We may identify Baxter permutations using the procedure outlined by Plott [20]. Let
σa be an element of the sequence indexed by a, and the indexes i, j, k, and l have the
relation 1 ≤ i < j < k < l ≤ n. A sequence is then a Baxter permutation if it satisfies
the following conditions:

1. If (σi + 1 = σl) ∧ (σj > σl), then σk > σl

2. If (σl + 1 = σi) ∧ (σk > σi), then σj > σi

We may state the first more plainly by saying that we for any seq pick two numbers σi

and σl in seq such that σi + 1 = σl. We then examine the values in seq which are located
between them. From these we select our all pairs of σj and σk such that j < k, and
see whether or not the condition σk > σl applies. The second condition is equivalent
to the first, but reversed. For instance, the sequence seq = 61832547 is not a Baxter
permutation, since we may pick σi = 6 and σl = 7. This allows us to select σj = 8 and
σk = 3 from the values between the two, which is in conflict with the first condition.

We are only interested in sequences which are Baxter sequences of a given diagonal.
Other sequences are considered to be duplicates and are therefore discarded.

Workload Optimization

For each diagonal rectangulation we attempt to scale the dimensions of the rectangles such
that the difference in projected workload is minimized.

The workload minimization is performed iteratively using an Sequential Least Squares
Programming (SLSQP). This is a variation of the Sequential Quadratic Programming

12

3.1 Rectangulations

(SQP) algorithm where the quadratic programming subproblem is replaced by linear least
squares subproblem. A detailed description of the procedure is given by Kraft [21].

The minimization algorithm requires inputs in the form of our domain layout, a cost
estimation function, and a start state for the floorplan. The estimated workload represented
by a single point during one iteration is given through a ponderated function f of the given
point’s type τ . We return to this function in Section 5.3.

During the minimization process we recalculate the estimated load balance of the rect-
angulation for each iteration. The rectangulation is optimized with regards to the differ-
ence in load of each rectangle when compared to the domain average, as shown in Equation
3.3.

E =

n∑
i=0

(
L(ri)−

∑
L(r)

n

)2

(3.3)

Where:

• L(r) is the computational load represented all points within a rectangle r.

• n is the degree of the rectangulation, which corresponds to the number of points
along the diagonal.

The SLSQP algorithm also requires a Jacobian of the minimized function, which is
derived from the derivative of Equation 3.3.

E′ =

n∑
i=0

2 ∗
(
L(ri)−

∑
L(r)

n

)
(3.4)

Listing 3.1 summarizes the described diagonal rectangulation, deduplication, and min-
imization procedures in pseudocode.
doma in_decompos i t i on (domain , d e g r e e) :

b e s t _ r e c t = None

f o r p e r m u t a t i o n in 1 . . d e g r e e :
i f p e r m u t a t i o n i s B a x t e r :

r e c t = d i a g o n a l _ r e c t a n g u l a t i o n (domain , p e r m u t a t i o n)
o p t _ r e c t = SLSQP_min (r e c t , domain , f ())
i f o p t _ r e c t < b e s t _ r e c t :

b e s t _ r e c t = o p t + r e c t
re turn b e s t _ r e c t

Listing 3.1: Diagonal Rectangulation pseudocode.

13

Chapter 4
Parallel Programming and Models

HPC relies on the utilization of large-scale parallelism in order to overcome the limited
performance achievable by a single CPU core. The largest modern HPC platforms rely on
on highly parallel architectures, composed of many independent units cooperating through
high-speed interconnects. Each of these units is can be regarded as a fully functioning
computer, composed of one or multiple CPUs, local memory, and either local or remote
storage. In this chapter we examine how we can divide the total work among multiple
computing units operating in parallel, thereby significantly speeding up the completion of
computationally intensive tasks.

In this context a node refers to a physical computing unit connected to a local high-
bandwidth network. Each node contains at least one CPU, which in turn is composed
of multiple CPU cores executing in parallel. A core is capable of executing one process
thread at a time, but may switch between threads.

4.1 Approaches to Parallelism
Parallelization can take many forms, depending on the problem at hand, the platform and
the context. We here consider three different approaches:

• Sequential Pipelined: A problem can be split into a series of sub-problems sequen-
tial in time, where each depends on the outcome of the previous one. This approach
is conceptually reminiscent of a factory production line, and it allows each of the sta-
tions handling an operation to be highly specialized. We see this style of parallelism
in hardware design, for instance in the pipeline of a processor.

• Batch Programming: Instead of reducing the problem into a series of sequential
steps, it may be split into a pool of parallel tasks running from start to finish. These
sub-tasks can be either atomic units of the problem space, such as a single point, or
aggregates thereof. Batch programming is useful when the problem may be logi-
cally split into a number of sub-problems that far exceeds the available computing
resources.

14

4.2 Performance Modelling

• Bulk Synchronous Parallel: Instead of splitting the problem into logically atomic
tasks, the problem is split into a number of sub-problems that is equal to the num-
ber of computing units. In the Bulk Synchronous Parallel (BSP) model [22], each
computing unit performs an iteration of local computations, followed by a commu-
nication and synchronization step. The communication step is used to exchange data
needed for the next iteration with the other units.

For our purposes we select a BSP-inspired approach. This decision is rooted in the fact
that our platforms do not have a pipelined architecture specifically designed for the shallow
water equations. Furthermore, the domain may grow so large that the data exchanges
required to transmit a batch-style subproblem from one node to another could become a
significant strain on the system. With a BSP-style approach, each node can be assigned
its own sub-domain. Data transmissions are kept at a minimum, since only the outermost
rim of the sub-domains need to be exchanged. We return to the details of communication
implementations in Section 5.6.3.

In order to assess the gains and costs of our parallelism we introduce the notion of
speedup and efficiency. We define the speedup S(c) to be how much faster a progam
performs when utilizing multiple computing units.

S(c) =
T1

Tc
(4.1)

Where:

• T is the observed execution time.

• c is the number of discrete computing units.

The speedup tells us the attainable performance gain when compared to using only a single
computing unit. The efficiency E is the time spent performing productive operations. It
can be defined as a function of the speedup:

E(c) =
S(c)

c
(4.2)

Efficiency decreases from the ideal value of 1, due to the overhead associated with using
multiple processing units and interconnecting them.

4.2 Performance Modelling
The complexity of modern computing platforms is a great gain in terms of performance,
but makes it difficult to reason about how an application will perform. Even individ-
ual computing units can be regarded as complex systems with many features intended to
speed up the computation. Processors utilize pipelining to progress on multiple instruc-
tions simultaneously [23]. Memory is cached using multiple intermediate layers, in order
to balance access speed with the expense of cache capacity [24]. Prefetching further cuts
down on the cost of memory accesses, be retrieving information just before it is requested
[25]. Communication can be delegated to lower level hardware systems [26]. These boons

15

Chapter 4. Parallel Programming and Models

come at the expense of our ability to reliably reason about aspects of a program’s execu-
tion, such as execution time. At some point there are too many involved mechanisms to
easily understand them and their mutual interactions.

Performance models provide a layer of abstraction. They may sacrifice some accuracy
and resolution in return for a manageable reduced parameter space.

Developed models may give developers insight which help in tuning and scaling the ap-
plication. Models may also help users estimate the required computing resources required
to perform a given task. Additionally, models may be used by a platform’s scheduler to
efficiently allocate resources such as compute nodes and cores.

Jingwei Sun et al describe three general types of performance models [27]:

1. Analytical models These describe an application’s performance using arithmetic
formulas. This category of model requires in-depth understanding of the application
in question, but may offer quick results for relatively simple programs.

2. Replay-based models By recording the execution of the application that is to be
modelled, one may construct a synthetic replica which models parts of it and repro-
duces the same behaviors and strains on the system. This approach is limited by the
fact that it may require a preventatively large amount of storage for the recordings,
and that it can reproduce specific execution paths.

3. Statistical models Machine learning is used to take the replay-based model one step
further. After training the model provides a compact way to predict an application’s
performance. The model can then be given new input parameters, to see how the
real application will perform. These parameters, however, represent a limitation of
the range of this approach. Some aspects, such as non-scalar input and dynamic
tuning, may be very difficult to capture.

Additionally, Williams et al describe an higher-level approach called bound and bot-
tleneck analysis [28]. This approach is rooted in the idea that the performance of most ap-
plications can be traced back to small set of bottlenecks. The authors present the Roofline
Model, which maps the attainable computational performance into a memory-bound re-
gion and a compute-bound region. The modelled program is limited by the memory band-
width until it reaches a platform-specific compute-operations to memory access operations
threshold. After this it is the speed of the processor which determines performance.

We choose an analytical model for our purposes, since the developed proxy-application
is small enough to be comfortably analyzed by the developer. Our model starts with the
"fundamental equation of modeling" described by Barker et al [29]. This simple model
splits the execution time of an application into three contributing categories:

Ttotal = Tcomp + Tcomm − Toverlap (4.3)

That is, the total execution time is given by the time required to compute the local solution,
the time spent on exchanging results with other computing units, and the degree to which
the former two may be overlapped. Here the cost of initialization is included in Tcomp.
We return to our modelled values of T in Section 5.6, after introducing the features of our
application on which the model depends.

16

4.3 Domain Decomposition

4.3 Domain Decomposition
In the realm of mathematics the process of decomposing may refer to splitting a boundary
value problem, such as ours, into multiple smaller ones. This subdivision can make an
otherwise insurmountably large computational problem possible by leveraging HPC and
parallelism. The problem is first split into multiple sub-problems, which may be computed
individually by a processing unit, and then later recombined for a complete solution.

Many decomposition strategies exist, depending on the problem at hand. Decompo-
sitions may be overlapping or non-overlapping, depending on whether parts of one parti-
tions are made up of section from another.

I.M Navon and Y. Cai outline four reasons for decomposing a domain [30], which may
be summarised as follows:

1. The domain decomposition technique may be used to exploit the geometry of irreg-
ular domains.

2. Decompositions can be used both to apply different resolutions and different meth-
ods to specific sections of a domain. In doing so, one can increase the results level
of detail in regions of particular interest or combine the benefits of multiple methods
in the same solution.

3. An appropriate method may be selected for each partition, based on special condi-
tions within that sub-problem, such as singularities large gradients.

4. Specific properties can be applied to the phenomena simulated in certain partitions.
For fluid simulations, such as ours, this may include viscosity or compressibility.

The first of these is our main interest in this work, as further outlined in Chapter 5. Our
rectangulation techniques described in Chapter 3 are suitable for creating our BSP-style
decompositions, where the majority of the processed data remains local to a processing
unit.

4.4 Communication Models
Our decomposition strategy has a clear expected effect on the computation time, which is
an evening out of Tcomp among all computation units. Its effect on the communication
time, however, is not as clear. We must determine whether or not the increased complexity
of the sub-domain layouts has a tangible effect on how communication is done. Communi-
cations are difficult to predict, as their behavior are a function of multiple tiers of software
and hardware, as well as the behaviors of the application itself. To assist with this, we
employ a communication model, which serves as an abstraction.

4.4.1 The LogGP Model
Numerous models for parallel computations exist, one of them being the LogGP model
[31]. With it, we may make predictions about the time required to transmit data between
two communicating processes in one direction. This model expands upon the LogP model

17

Chapter 4. Parallel Programming and Models

of Culler et al [32] by taking into account that the size of transmitted messages may vary
and thereby influence transmission performance. The LogGP model requires five parame-
ters in order to be able to make predictions:

• L: The latency of the a transmission represents the time a unit of information spends
in the network between the sending and receiving ranks. L is given as an upper
bound, i.e. the worst-case scenario.

• o: The act of setting up a data transfer carries an overhead, which is captured by
o. o represents the time the CPU is busy with communication only. This includes
time needed to initialize communications, designate a sending or receiving buffer,
and interacting with the network interface. o may be split into a sending overhead
os and a receiving overhead or, which need not be identical. We use the average of
the two as our o, due to our symmetric communication pattern, described in Section
5.5, where each send implies a corresponding receive operation.

• g: In many situations multiple messages are sent in bursts. g is the gap in time
between the end of a transmission and the start of the next. g represents the startup
bottleneck of the network, which is created by actions such as the opening of a
communication channel. The inverse of g corresponds to the modelled per-processor
network bandwidth for short messages.

• G: Similarly to the gap between messages g, there also exists a gap in time between
the transmission of individual bytes which are part of the same message. This gap is
represented by G. The inverse of G corresponds to the modelled per-processor long
message bandwidth.

• P: The number of processes partaking in the communication. For one-to-one com-
munications such as MPI_Send() and MPI_Recv() this parameter will intuitively be
equal to 2. Other operations, such as MPI_Bcast(), may have a much larger number
of processes.

With a LogGP model, a single one-to-one communication may in terms of time cost
be expressed as:

o+ (s− 1)G+ L+ o (4.4)

Where:

• s is the number of bytes in a single message.

LogGP parameters depend on the computing platform which facilitates the communi-
cation. Primarily, these are determined by processor, memory, and interconnects used by
the system. Hoefler et al. propose a fast technique for the measurement of the LogGP pa-
rameters on HPC platforms [33]. Similarly to other approaches, the authors implemented
a ping-pong benchmark where messages are passed back and forth between two nodes.
We recount Hoefler’s method here, as it is used for our benchmarking measurements in
Section 6.2.4.

18

4.4 Communication Models

The Round Trip Time (RTT), which is the time it takes for a message to travel from
one node to the other and back, is measured on only one of the two nodes. This way there
is no need for micro-second accurate time synchronization between the nodes. The RTT
is parameterized (PRTT) by noting that it depends on the message’s size s, the number
of messages i, and the artificial delay between sent messages d. PRTT (i, d, s) is then
measured for

Using Equation 4.4 we can see that the time needed for a single round trip PRTT (1, 0, s)
must be:

PRTT (1, 0, s) = 2 · (L+ 2o+ (s− 1)G) (4.5)

We call the sum of transmission gaps of a single on-way transmission Gall:

Gall = g + (s− 1)G (4.6)

This leads to i transmitted messages without delay incurring a PRTT of:

PRTT (i, 0, s) = 2 · (L+ 2o+ (s− 1)G) + (i− 1)Gall (4.7)

Where:

• we require o < Gall

Equation 4.5, when combined with Equation 4.7 yields:

PRTT (i, 0, s) = PRTT (1, 0, s) + (i− 1)Gall (4.8)

We may extend this to a general expression for for PRTT (i, d, s), and then rewrite it
further to gain an expression for o:

PRTT (i, d, s) = PRTT (1, 0, s) + (i− 1) ·max(o+ d,Gall) (4.9)

PRTT (i, d, s)− PRTT (1, 0, s)

i− 1
= max(o+ d,Gall) (4.10)

o =
PRTT (i, d, s)− PRTT (1, 0, s)

i− 1
− d (4.11)

where:

• a d is selected such that d > Gall

In order to determine g and G we may rewrite Equation 4.8 and expand Gall such that:

G(s− 1) + g =
PRTT (i, 0, s)− PRTT (1, 0, s)

i− 1
(4.12)

This is a linear function, which may be fitted using the least squares method.
Finally, L is approximated with:

L ≈ PRTT (1, 0, 1)

2
(4.13)

19

Chapter 4. Parallel Programming and Models

Figure 4.1: A single ping-pong iteration for i = 3
in the synthetic LogGP benchmark, provided by
Netgauge [34].

This is done because L and o over-
lap, as some of the operations associated
with the overhead are performed in par-
allel with data transiting through the net-
work. As such, L may not be measured
directly.

A part of the ping-pong benchmark is
shown in Figure 4.1. The described tech-
nique has, in addition to the speed of the
instrumentation, the added benefit of not
relying on flooding the network, which
other approaches may do. Taking the mea-
surements should therefore not have sig-
nificant negative impact on similar mea-
surements and operations performed by
other processes on the platform. Further-
more, o may be computed from a single
measurement and without relying on other
measured LogGP parameters. The graph
for Gall is useful for revealing protocol
changes in the underlying network, which
manifest as discontinuities.

4.5 Parallel Programming
APIs

Similarly to the domain, the program itself
must be adapted to functioning in a paral-
lel manner. In order to accomplish this the
program must provide a unit for parallel
execution and potentially also a way for these to communicate between one another. The
units may be threads, processes, or entire nodes.

OpenMP and MPI are two popular software solutions for incorporating the manage-
ment of these units in software applications. The former specializes in the use of threads in
shared-memory systems, the latter in separate processes and processes running on multi-
ple nodes. Hybrid programs which incorporate both are also a popular choice. We provide
additional details about OpenMP and MPI in the next sections, as we implement such a
hybrid in our application.

4.5.1 OpenMP

OpenMP is a specification for a set of compiler directives, library routines,
and environment variables that can be used to specify high-level parallelism
in Fortran and C/C++ programs.[35]

20

4.5 Parallel Programming APIs

Open Multi-Processing (OpenMP) [36] provides an API which simplifies the use of
threads in order to achieve parallelism. On most platforms this means the use of POSIX
threads, also referred to as pthread. OpenMP can be used for parallel operations within the
same process, utilizing the available cores to execute independent subproblems in separate
threads. OpenMP threads exchange data using shared-memory operation, which is very
efficient, but restricts the communication to occurring on the same address space. This
space is usually only available locally within a single node.

4.5.2 MPI

The Message Programming Interface (MPI) is a standard for message passing between
multiple concurrent processes [37] . It may be used in cases where local techniques such
as shared memory cannot be used, for instance when multiple separate nodes with dis-
tributed memory participate in the same computation. Each process represents a running
instance of the same program, which is referred to as a rank. MPI can be used to split the
computational load among multiple nodes on multi-core and multi-node systems.

MPI provides the opportunity to easily use a number of communication patterns be-
tween ranks. The simplest of them are the Point-to-Point (P2P) functions, which facilitate
the exchange of information between exactly two ranks. MPI_Send() and MPI_Recv()
are the most basic basic functions for P2P communication. When one rank calls its com-
munication function, it expects its peer to call the corresponding opposite. When both
are engaged in the data exchange the target data is transmitted from one to the other.
MPI_Isend() and MPI_Irecv() are variants of the basic send/receive functions which are
explicitly non-blocking. Once executed, these functions return once the data transfer has
been engaged and before it has been completed, which allows the rank to perform other
actions in the meantime. These methods are useful for two reasons: They allow a certain
degree of overlap in communication and computation, and they are useful for the purpose
of avoiding deadlocks, which may occur if a circle of blocking ranks forms.

MPI also provides a set of collective functions, which provide simple and efficient
ways of performing one-to-many, many-to-one, and many-to-many communications. The
collective functions include synchronizing operations such as barriers.

MPI does not refer to a single program. Multiple implementations of the MPI standard
exist, such as Open MPI, MPICH, and numerous commercial ones. We focus on Open
MPI and settle on this implementation for our application.

4.5.3 Open MPI

Open MPI is a widely adopted open source implementation with a modular architecture.
It can be split into three main functional areas, which form layers in the MPI transmission
stack [26, 38]:

1. MCA: The Modular Component Architecture (MCA) provides management ser-
vices for the other network transmission layers. It detects available components
at build time, and accepts run-time parameters from higher level abstractions such
as the mpirun and srun command line tool command line tools.

21

Chapter 4. Parallel Programming and Models

2. Component Frameworks: Frameworks provide specific services to the Open MPI
installation. They logically group together components and manage modules.

3. Components: Components are self-contained software units with well-defined in-
terfaces.

Table 4.1 gives an overview of a selection of relevant Open MPI component frame-
works and their roles.

Framework Full Name Purpose
PML Point-to-Point Messaging

Layer
Implements the logic for MPI communi-
cations between two peers

BTL Byte Transfer Layer Responsible for data delivery between
two network interfaces

BML BTL Management Layer Discovery, management and sharing of
BTLs with upper layers

COLL Collective Communication Backend for one-to-many, many-to-one
and many-to-many communications

MPool Memory Pool Memory allocation/deallocation ser-
vices, shared among layers

TOPO Process Topology Cartesian and graph functionality, al-
lows topology and locality-based opti-
mizations

Table 4.1: A non-exhaustive list of Open MPI frameworks and their purposes.

Open MPI utilizes the openib BTL for communications across the Infiniband intercon-
nects used by the larger platforms described in Section 6.2. This component determines
how the data exchanges take place, for instance the choice of protocol. It manages con-
nections dynamically, estabilishing new ones as the ranks send messages to a peer for the
first time. Two protocols are supported by the Open MPI PML:

• Eager Protocol, which is a low-latency option used to transmit short messages.

• Rendezvous Protocol, which is a high-bandwidth option used for larger messages.

Eager protocol transfers may utilize Remote Direct Memory Access (RDMA) for its
data transfers. In these on rank is able to directly write to a memory region owned by the
remote host, without that host’s CPU being involved. This style of transfer also avoids
context switches and caching. The Infiniband implementation supports two-sided send
and receive operations, as well as one-sided put-get operations for these transfers [26].
Use of RDMA requires preallocating and registering the utilized memory regions. This
poses a limit to its scalability and means that the use of RDMA ordinarily is restricted, for
example by only adding new connections up to a specified limit.

The Rendezvous protocol may also be implemented with RDMA capabilities [39],
but is slower because it involves a negotiation process to determine the receiver’s buffer
availability. This incurs additional RTT times.

We show Openib settings relevant to the choice of transfer protocol in Table 6.4.

22

Chapter 5
The Proxy Application

We develop a proxy application for solving the shallow water equations numerically on
a heterogeneous domain. It is based on the MacCormack method described in Section
2.4.1 and supports both Cartesian and non-Cartesian decompositions. In this chapter we
describe this application and develop an analytical communication model based on its
traits and the model described in Section 4.4.1. The developed proxy application is the
subject of our studies in Chapter 6.

5.1 Goal
Proxy applications are simplified HPC applications which are simpler to analyse. They
address the fact that production-grade HPC applications can be highly complex, which
makes their performance difficult to reason about. By mirroring the full-size application’s
performance bottlenecks inside of a proxy application we can study them and find opti-
mizations at a lower cost. Proxy applications and similar concepts are sometimes also
referred to as MiniApps.

Every proxy application represents a trade-off between suitability, stability, accuracy,
and scalability. Our proxy application mirrors the Bulk Synchronous Parallel behavior seen
in many HPC applications, where ranks perform a relatively intensive local computation
step, followed by a data exchange and synchronization stage. With this we can examine
how the cost of processing compares to the cost of data exchanges, and how the data
exchange between ranks takes place.

5.2 The Grid
We assign one rectangular sub-domain of the global domain to each rank. This sub-domain
corresponds to a grid. A grid contains a set of arrays which in turn hold the data that makes
up the bulk of the area’s state. Each array entry represents a value belonging to a point
within or along the rim of the domain. The stored state includes the points’ fluid heights

23

Chapter 5. The Proxy Application

and velocities, as well as partial results of the integration steps. For the purpose of the
simulation, each point represents a coordinate on a dense Cartesian grid, where each point
is separated from the next by a constant ∆x and ∆y. The grid corresponds to the pixels in
our input map, such that one pixel is one grid point. Figure 5.1 shows how the conversion
from map to grid data takes place.

We define boundaries to be the perimeter regions of the full domain, and borders to be
the regions between adjacent grids.

We limit ourselves to flat domains without slopes or varying depths, and scenarios
where the bulk of the total fluid mass is at rest.

(a) Map export from ©Kartverket [40],
Geonorge N250Raster 132 and 133, EURF89
zone 33, 2d, TIFF.

(b) Converted bitmap file. Areas colored
black are treated as land, white areas are fluid
regions.

(c) A rendering of a simulation performed on the derived domain. The center
contains a small perturbation. The different shades of the fluid indicate the do-
mains of the participating ranks.

Figure 5.1: The Trondheimsfjord, converted into a bitmap used as input for ours simulations.

24

5.3 Load Balance

5.3 Load Balance
Since computation and communication occur in sequence, the next computation step may
not begin before a rank has finished communicating with all of its neighbors. It follows
that an uneven load balance may cause one rank to hold back others and cause CPU cycles
to be wasted.

Imbalances may be caused by a number of effects, depending on the implementation
and features of the application in question. One may for instance choose to refine the
resolution of specific areas through Adaptive Mesh Refinement [41–43]. We introduce a
simple difference in computational load of individual points through the introduction of
non-fluid points, hereafter referred to as land points. Land points are points where no fluid
flows. These behave as infinitely tall solid walls in the context of our fluid simulation.

During the simulation, the computational cost of each individual point is determined by
the number of Floating Point Operation (FLOP) and the number of Memory Access (MA)
needed to compute the new height value of that point in a given iteration. The FLOPs
are associated with performing mathematical computations, while the MAs are a result of
fetching the grid values required by the stencil from memory.

Utilizing the Roofline model, we reason that the number of FLOPs compared to the
number of MAs is so low that the application is memory bound, such that the performance
is limited by the node’s ability to fetch data from memory. For this reason, we adopt the
number of MAs required to compute a given point as a measure of it’s workload. We find
this number through code inspection and show the result in Equation 5.1.

f(τ) =

{
68 τ = fluid

11 τ = land
(5.1)

Memory accesses associated with land points stem from the act of checking the given
point’s state. Through the introduction of Chunking, as described in Section 5.4.1, the
presented count becomes an upper bound instead of an exact value.

5.3.1 Semi-static Map Parsing
The geography of a grid determines which points are defined either as ’fluid’ or ’land’.
It is defined by an n × m bitmap file, which we supply to the application. We see three
different approaches to this:

1. Statically, where the map is provided at compile-time.

2. Semi-statically, such that the map is read at the initialization stage of the program’s
execution.

3. Dynamically, which allows for the map to be re-read and applied arbitrarily at run-
time.

We utilize a semi-static implementation, which allows us to switch between maps without
having to re-compile the application.

Each rank reads the segment of the bitmap corresponding to its sub-domain during the
initialization process of a grid. First, an integer grid that corresponds to the values of the

25

Chapter 5. The Proxy Application

Figure 5.2: A single stage of our time step integration procedure, which may be either the predictor
or the corrector stage. We use OpenMP to turn the local processing task into a pool of parallel
subproblems. These are then assigned to available threads.

bitmap is created. This grid is then analyzed to create a secondary grid, which reflects the
state of each point’s neighbors. Our implementation stores the state of directly adjacent
points, as well as points on the target’s diagonals. A border exchange of the first array is
required in order to accurately capture the neighbor state of points along the rank’s borders.

5.4 Parallelism

The bulk of our application’s processing time is spent on solving the SWE and updating
the local state, and not on communications. This limits our sampling rate and significantly
increases the cost of gathering them. We can artificially skew the total time consumption
in favor of communications by altering the domain, for example by creating very long,
thin sub-domains. Doing that, however, could jeopardize the realism of the application.
We might, for instance, no longer use the same caching and prefetching patterns as the
applications we seek to model.

Instead, we reduce the computation step time by efficiently utilizing the resources
available on our platforms. Each platform, as described in greater detail in Section 6.2, has
a given number of cores available on each node. We can involve these in the processing
steps by parallelizing the main data loops using OpenMP. Each spawned OpenMP thread
is assigned part of the loop to process by itself. Furthermore, we can split the operations
performed per-point into separate loops, thereby increasing the number of tasks which can
be run in parallel. Figure 5.2 shows how we do this.

26

5.5 Ghosts Points and Interfaces

5.4.1 Chunking

The processing cost of land points in the domain may be further reduced by disabling larger
accumulations of them. This reduces the number of memory accessed needed to check the
points’ state from one per point to one per accumulation. We split the sub-domain of each
rank into n × n chunks, which have a state which is either active or inactive. Chunks
which contain no fluid points are set to be inactive, which means that their points are
skipped during processing.

We implement the chunks ourselves, instead of relying on the OpenMP’s loop chunk-
ing, which allows us to control their state. The collapse directive shown in 5.2 combines
the iteration across our x-y chunk grid into a single loop. Chunks are assigned to threads
using OpenMP dynamic scheduling. This results in an unprocessed chunk being assigned
with a "first come first served" heuristic, which is appropriate since the workload repre-
sented by a chunk may vary from one to the next. The optimal chunk size depends on the
distribution of land points in the domain. We settled on a chunk size of 50 by 50 pixels for
our experiments, as it was found to perform well in the general case.

Figure 5.3 demonstrates what a 5× 5 chunking would look like on an 8× 8 grid.

Figure 5.3: The grid of fluid points (white) and land points (black) is processed chunk by chunk.
The bottom right chunk is disabled, as it contains no fluid points.

Chunking may be enabled or disabled at compile-time.

5.5 Ghosts Points and Interfaces
It is of interest to enforce a strict set of conditions where fluid points are adjacent to the
domain’s outermost edge, despite our ability to draw arbitrary domain layouts. We do this
through the introduction of ghost points, similarly to the ghost cells described by Randall
J. LeVeque [44]. Ghost points are a set of artificial points which line the rim of each grid.
Each point stores the same values for depth, velocity, etc. as a regular point, which in turn
may be accessed by the stencil of neighboring points during the integration step. They
are, however, not updated by the numerical method each iteration, as one would update a
regular point. For this reason we consider our domains to be non-overlapping.

Ghost points have two uses: In areas where the ghost points lie at the boundary of the
global domain we apply our selected boundary condition to them. This way the desired

27

Chapter 5. The Proxy Application

effect is transferred to adjacent fluid, without affecting the rendered domain. Ghost points
along the border of two grids serve as buffers for their interfaces.

A grid has an interface for each of its neighboring grids, as shown by Figure 5.4. The
interface contains a reference to the neighboring grid’s MPI rank and a set of offsets which
specify sources and destinations for the data exchange. Grids transfer fluid data from the
line of regular points that is parallel to the referenced neighboring grid. Received data is
stored in the adjacent, parallel line of ghost points. This way the ghost points emulate the
domain of the neighboring grid, producing the effect of a contiguous domain. The data
transfer is done in bulk, one column or row of a given value at a time.

Figure 5.4: Grid 1 has two neighboring grids along the y axis, 2 and 3. The interfaces A and B
specify where to transmit data to and from during the communication steps. Dotted lines show the
location of a border where ghost points are located. The variable B on the axes refers to the border
width, which is equal to 1 for our implementation.

5.5.1 Collision Handling

We define the boundaries of the domain and all individual land points to be hard obstacles,
that is, immovable obstacles of infinite height. Collisions between waves and obstacles can
therefore occur at any place where fluid points are adjacent to either outer boundaries or
land points.

We implement the reflection of waves using the Neumann boundary condition as given
by Equation 2.17. For any point adjacent to a hard obstacle, we set the simulated velocity
of that point to 0 in both north/south and east/west directions. Diagonally adjacent points
are counted as adjacent as well. We reflect waves without dampening in our proxy appli-
cation, although a dampening factor can easily be applied when desired. Figure 5.5 shows
how our fluid interacts with a complex domain.

28

5.6 A Model for the Application

Figure 5.5: An initial condition with a disturbance in the center. Fluid is reflected off solid walls.

5.6 A Model for the Application
By building upon the modified fundamental equation, see Equation 4.3, we can construct
a performance model for our application.

5.6.1 Initialization Cost

The initialization cost depends primarily on the reading of the input files and the initializa-
tion of the MPI topology. The former is an IO-heavy operation which scales with the do-
main size. It is, however, a one-time operation, such that it may be amortized after a num-
ber of iterations. The topology is initialized using the MPI_Dist_graph_create_adjacent()
operation, which creates a distributed graph. This operation scales well, due to the fact that
each rank only needs to be aware of its own neighbors, not the global topology. We refer
to Hoefler et al for a more detailed comparison of distributed graphs and globally defined
graphs [45]. Furthermore, at the investigated scales our decompositions create no neigh-
borhood graphs which should challenge this. We therefore disregard this initialization cost
as well.

5.6.2 Computation Cost and Overlap

With our cost function f(τ) and our knowledge of the communication system 4.5.2 we
expect the bulk of the execution time to be spent on the computation of the local domain,
which is captured by Tcomp. The local computation time of a rank is expected to scale
proportionally to the size of its subdomain. The global computation time of the program
as a whole depends on the size of the global domain, as well as the load balance between

29

Chapter 5. The Proxy Application

the ranks.
Due to our BSP-like architecture Toverlap may be disregarded. There may be a small

degree of indirect overlap, stemming from the fact that our ranks only synchronize com-
munications with their direct neighbors in the topology, as opposed to the whole commu-
nicator. The graph topology’s dependencies should however keep this in check. A slow
rank will hold back its direct neighbors, which in time will hold back their neighbors and
so on. We include no explicit overlap between communications and computation.

5.6.3 Communication Model
This leaves us the construction of a model for how the communication time Tcomm de-
velops, which must be a function of both domain size and decomposition. Ranks com-
municate to their direct neighbors through their corresponding interface. The transmission
contents are unique for each rank pair. Communication therefore relies on MPI’s single
send and receive operations, rather than collective methods such as broadcasts. The only
MPI collective we make use of after initialization is the Barrier function, which synchro-
nizes the ranks for the purpose of instrumentation.

From the LogGP model presented in Section 4.4.1 we may devise a performance model
for these communications. Remember that with LogGP a single send will have a cost given
by Equation 4.4:

o+ (s− 1)G+ L+ o (4.4)

Each rank may have an arbitrary number of neighbors Pneigh with which it must ex-
change border values. Each neighbor represents a one-to-one communication. We also
observe that regions along the outer boundary of the domain need not exchange boundary
values with any other rank.

The interface-based proxy application uses MPI Isend and Irecv calls for their com-
munication. By using nonblocking routines we avoid communication deadlocks that could
arise as a consequence of cycles in the domain’s neighbor graph. Every communication
cycle participating ranks initiate their transmissions by issuing all Isend calls in bulk, fol-
lowed by the corresponding Irecv calls and a wait for these to complete.

We may from the LogGP model derive an expression that allows us to estimate the
time each rank spends on communication per iteration:

Tcomm =

(
(P − 1) · g +

P∑
i=0

(2 · o+ L+ (si − 1) ·G)

)
· ncomm (5.2)

where:

• si is the number of bytes of information along the length of the given interface.

• ncomm is the number of interface exchanges per iteration. For our application
ncomm is 14, as shown in Figure 5.7.

5.7 Application Structure
The developed proxy application executes as shown in Figure 5.6.

30

5.7 Application Structure

The initialization stage accepts our input parameters and data files. The rectangle
layout file specifies the number and domain dimensions of the participating ranks. Each
rank then reads the interfaces file, which tells it what ranks to communicate with and
what data to exchange. Based on this information we create an MPI Distributed Graph,
where each rank specifies its neighbors for the creation of the topology. This makes MPI
aware of which ranks will interact and allows for optimizations in the newly spawned
communicator. After this each rank reads the geography of its local domain from the map
file and initializes the local state. This state includes an initial condition for the fluid levels,
which allows us to describe waves and other disturbances.

During the execution phase we run the MacCormack method in order to solve the shal-
low water equations numerically. The main execution loop calculates the desired number
of time steps sequentially. We may periodically take a snapshot of the domain’s current
state at the beginning of this loop. The next three stages update the partial results based
on the current height and velocity values, perform the predictor-corrector integration step,
and finally update the height and velocity values.

The execution is completed by outputting the results of our instrumentations.
Communications between ranks are as shown in Figure 5.7. Each exchange involves

the data values required by the next computation stage and overlaps the sending and re-
ception stages. We exchange vertical interfaces first, followed by the horizontal interfaces
in a separate stage.

Figure 5.6: Execution stages in a run of our proxy application.

31

Chapter 5. The Proxy Application

Figure 5.7: Data exchanges taking place between neighboring ranks at various stages of program
execution. Values on the right side are intermediate results which are exchanged along the borders
of two adjacent domains at various stages of execution.

Figure 5.8: A summary of our developed performance model, based on the features of our applica-
tion, our assumptions, and the LogGP model.

32

Chapter 6
Methodology

We determine the potential gains and costs of our decomposition technique experimen-
tally. The potential gain lies primarily in dividing the total workload represented by a
heterogeneous domain more evenly than a traditional Cartesian layout can. Potential costs
include the time spent on the decomposition itself, as well as the additional communication
overhead that is introduced. We perform a series of experiments to verify the functional-
ity of our implementation, the efficiency of our load balancing and the accuracy of our
communication model. These are conducted on multiple HPC platforms: Idun, Fram, and
Betzy.

6.1 Experiments

Property Value
ηsteady 1.0
max(ηwave) 0.01
dt 0.004
dx 0.1
dy 0.1

Table 6.1: Important parameters which are shared
by the experiments.

Our experiments utilize a provided open
source toolchain based on GCC, OpenMPI
and, OpenMP. Temporal instrumentations
rely on the function
omp_get_wtime(), which is provided by
OpenMP. Experiments on Idun and Fram
execute 2500 iterations. On Betzy this
number is doubled to 5000, in order to
compensate for the reduced execution time
which follows from the greater availability
of cores.

The following experiments were performed on our proxy-application:

33

Chapter 6. Methodology

6.1.1 Decomposition

Decomposition Scalability

We decompose a domain using our scanning and diagonal decomposition algorithms. The
time required to create these decompositions is measured, and we determine when it be-
comes impractical to perform the full minimization. Since our decomposition algorithms
are not parallelized they are unsuitable for execution on our HPC platforms. We therefore
perform our decomposition tests on an ordinary workstation with an Intel(R) Core(TM)
i7-4610M 3.00GHz CPU.

In addition to this we make observations on the decomposition layouts we receive in
practice. The layout determines the number of neighbors each rank will communicate
with. The theoretical increase in communicating neighbors permitted by the scanning
and diagonal rectangulations could lead to communication-based load imbalances. An
example of this could be one rank being placed in the center such that it neighbors all
other ranks. The produced decompositions should give an indication of whether or not
these concerns are warranted.

Reduction of Load Imbalance

Figure 6.1: Load imbalance tested on
the 1800× 1000 point Trondheimsfjord
map.

We measure the time each rank spends waiting for
its peers before performing a data exchange. In do-
ing so we gain an estimate of how well the com-
putational load of the ranks is balanced, since ranks
with less workload will finish faster and spend more
cycles waiting. A comparison of the load balance
when using the Cartesian, scanning, and diagonal
decompositions allows us to see whether or not the
techniques produce a reduction of required compute
time. Each decomposition technique is tested on the
same heterogeneous domain, with a varying num-
ber of ranks. We expect the per-rank imbalance to
decrease as the assigned sub-domain size decreases. For this experiment we disable the
chunking feature, since our estimate of point cost f(τ) does not account for it. Figure 6.1
shows the map used for thes experiment. Its fluid to land ratio is approximately 2:3.

6.1.2 Communication

Verification of Stable Communication Cost

Our communication model predicts that the time spent on communications should be con-
stant over time. We ascertain that this is the case. To do so, we set up a simple simulation
where the domain is divided among two ranks which communicate through a singe inter-
face. We measure the total communication time of each rank during each iteration, and
compare it to the others.

34

6.2 Computation Platform

Strong Scaling Comparison of Rectangulations

Figure 6.2: Strong scaling tested on a
custom 1800 × 1800 point archipelago
map.

We compare the communication cost of regular
Cartesian decomposition and irregular decomposi-
tion. For this experiment we keep the problem size
constant and scale up the available computing re-
sources. This translates to maintaining the size of
the domain and adding more nodes, each of which
runs a single process. A regular and irregular de-
composition is computed for each rank count. We
then examine how the total time spent on commu-
nications between ranks changes as the number of
exchanges increases with the rank count, and the
size of exchanged messages decreases. By insert-
ing Equations 6.1 and 6.2, or Equations 6.3 and 6.4, into Equation 5.2 together with our
interface sizes we obtain a prediction for the communication cost. In our case the commu-
nication times should not exceed 1 second, a small fraction of the total run time, for any of
the tests. The size of the selected 1800× 1800 point domain limits the maximum possible
single message size to 14400 bytes. Figure 6.2 shows the used map for this experiment.

6.2 Computation Platform

6.2.1 Idun

Idun is a rapid testing and prototyping HPC cluster hosted at the Norwegian University of
Science and Technology [46]. It is a collaborative effort between various departments and
faculties, which contribute by providing the hardware that makes up the machine.

The hardware and software specifications of Idun related to our computations are
shown in Table 6.2.

Property Value
Compiler version mpicc - gcc 8.3.0
Compiler Flags -std=c99 -g O3 -fopenmp -lm -lnetpbm -lgomp
MPI version OpenMPI 3.1.4
OpenMP version 4.5
Processor Intel Xeon E5-2630
Processors per node 2
Cores per node 20
Memory per node 120 GB
Interconnect 3 Mellanox passive FDR switches
Launcher srun

Table 6.2: Hardware and software properties of the experimental setup on Idun

35

Chapter 6. Methodology

6.2.2 Fram
Fram is a large-scale parallel distributed-memory HPC platform hosted at UiT Arctic Uni-
versity of Norway. It is part of Sigma2 Metacenter collaboration and was brought online
in October 2017.

Property Value
Compiler version mpicc - gcc 8.3.0
Compiler Flags -std=c99 -g O3 -fopenmp -lm -lnetpbm -lgomp
MPI version Open MPI 3.1.4
OpenMP version 4.5
Processor Intel E5-2683v4, 2.1 GHz
Processors per node 2
Cores per node 32
Memory per node 64GB
Interconnect Infiniband, island topology
Launcher srun

Table 6.3: Hardware and software properties of the experimental setup on Fram

Setting Value Description
btl_openib_eager_rdma_threshold 16 Use RDMA for short messages after this

number of messages are received from a
given peer

btl_openib_message_coalescing false If nonzero, use message coalescing
btl_openib_max_eager_rdma 16 Maximum number of peers allowed to

use RDMA for short messages
btl_openib_eager_rdma_num 17 Number of RDMA buffers to allocate for

small messages
btl_openib_use_async_event true If nonzero, use thread that will handle

InfiniBand asynchronous events
btl_openib_eager_limit 12288 Maximum size (in bytes, including

header) of "short" messages

Table 6.4: Relevant openib configuration options on Fram and Betzy.

Mellanox Island Topology

The nodes of Fram are placed in groups referred to as islands, shown in Figure 6.3. Nodes
on the same island are interconnected using Infiniband with a two-level fat tree topology.
There is a limited connection between islands, but jobs are under ordinary circumstances
scheduled such that their ranks land on the same island. Fat tree topologies, as described
by Al-Fares et al [47], have historically been a popular choice. On Fram one can expect the
maximum theoretical bandwidth between two nodes in the same island to be 100Gbits/s.
The interconnect network is however implemented with some oversubscription, which

36

6.2 Computation Platform

may cause the effective bandwidth to decrease in situations with many communication-
heavy jobs.

Figure 6.3: Nodes on Fram are organized in an island topology. Nodes in the same island are
connected using a 2-level fat tree topology.

6.2.3 Betzy

Betzy is the most recent machine of the Sigma2 Metacenter collaboration. It is also a
large-scale parallel distributed-memory system, and it has been operational since 2020.
Betzy is located at NTNU Trondheim.

Property Value
Compiler version mpicc - gcc 8.3.0
Compiler Flags -std=c99 -g O3 -fopenmp -lm -lnetpbm -lgomp
MPI version OpenMPI 3.1.4
OpenMP version 4.5
Processor AMD Epyc 7742, 2.25GHz
Processors per node 2
Cores per node 128
Memory per node 256GB
Interconnect InfiniBand HDR 100, Dragonfly+ topology
Launcher mpirun

Table 6.5: Hardware and software properties of the experimental setup on Betzy

Dragonfly+ Topology

Betzy’s compute nodes, of which there are 1344 in total, are interconnected using an In-
finiband Dragonfly+ topology. The Dragonfly+ topology is a modern, highly scalable
configuration which Shpiner et al [48] describe in greater detail. Figure 6.4 and 6.5 illus-
trate how the routers and nodes are connected. Connections follow the HDR-100 standard,
which allows for a theoretical bandwidth of 100 Gbits/s between two nodes.

37

Chapter 6. Methodology

Figure 6.4: Structure of a group in Betzy’s Dragonfly+ topology.

Figure 6.5: Dragonfly+ largest size topology on Betzy. Each group is directly connected to all other
groups through at least one spine switch. Note that the fifth group has two fewer leaf switches than
the others.

6.2.4 LogGP Communication Performance
We measured the LogGP parameters of our platforms as described in Section 4.4.1, in or-
der to complete our communication model. The results are displayed in Figures 6.6, 6.7,
and 6.8, in addition to Table 6.6. These measurements were taken using the open-source
network measurement framework Netgauge [34] and repeated three times, such that dif-
ferent node placements were probed. We fit curves to our LogGP parameter measurements
in order to derive corresponding functions of message size.

The measurements on Fram yield Equations 6.1 and 6.2:

Gall(s) = 0.00010(s− 1) + 0.259 (6.1)

o(s) = 0.00010s (6.2)

38

6.2 Computation Platform

On Betzy we have the corresponding Equations 6.3 and 6.4:

Gall(s) = 0.00009 ∗ (s− 1) + 0.103 (6.3)

o(s) = −2.56744 + 2.73683
s

106281.417 (6.4)

We note that these approximations are valid only on the measured message domain.
Even though an exponential function gave a superior fit compared to a linear one for Betzy
we do not exprect the overhead growth to follow this curve indefinitely.

Platform L (µs) σ
Idun 1.631257 0.031566
Fram 0.939723 0.015453
Betzy 1.218127 0.009428

Table 6.6: Measurement of the latency parameter L. L is the averaged latency from three measure-
ments which we input into our model. σ is the standard deviation.

Figure 6.6: Measurement of o, g and G parameters on Idun. Both the communication gap and
overhead may be modelled using linear functions.

39

Chapter 6. Methodology

Figure 6.7: Measurement of o, g and G parameters on Fram. Both the communication gap and
overhead may be modelled using linear functions.

Measurement of o, g and G parameters on Betzy. We observe that the communication
gap follows a linear curve, while the overhead associated with sending and receiving is

approximately exponential for the examined transmission sizes.

Figure 6.8:]

40

6.3 Parameter Space

6.3 Parameter Space
The following is an overview of the parameters we consider particularly influential in
regards to the outcome of our simulations and measurements.

6.3.1 Domain Dimensions and Geography

The total size of the domain determines the number of individual points which need to
be calculated. The ratio between the number of fluid and land points influences the cost
of these calculations. Furthermore, their distribution, specifically whether or not they are
clustered together, determines the efficacy of our chunking technique.

6.3.2 Domain Decomposition

The decomposition of the domain determines the load balance between ranks,see Section
5.3, as well as the communication graph of the participating ranks. Load imbalances can
negatively impact the total execution time. Communications do so too, but we expect that
the effect will be much smaller in comparison.

6.3.3 Rank Distribution and Resource Availability

The physical placement of nodes and how they are interconnected can affect their commu-
nication time. We rely on the scheduler to give us nodes with reasonable proximity to one
another. Additionally we specify an MPI topology, such that adjacent ranks are assigned
to adjacent nodes whenever possible.

6.3.4 Initial condition

The shape and dimensions of the wave created during initialization determines the fluid
levels of the following states. It does not affect the computational workload. However, it
can cause destabilizations and affect where and when they occur. We know from Equation
2.16 that the velocity is key in the calculation of our Courant number. The step equations
of our MacCormack method 2.4.1 show that the velocity in a direction is a function of
both the existing velocity and fluid level at a given point. This means that excessive wave
heights may put us over the CFL threshold. Besides the height of the wave at initialization
we must also consider how it will interact with the domain. The geography may lead to
wave energy being focused in regions such as corners, which can put the fluid level above
the height of the initial wave.

6.3.5 Step Size

The parameters ∆x, ∆y and ∆t indicate the distance in space between points and the dis-
tance in time between time steps. They affect the speed at which perturbations in the fluid
travel across the domain. We select these such that we gain meaningful fluid movements,
yet avoid instabilities. The values we settled on can be found in table 6.1.

41

Chapter 6. Methodology

6.3.6 Number of Iterations
The number of iterations I determines the total length of the simulation. As the simula-
tion progresses, the chance of singularities increases, which means that the domain could
destabilize. Once this happens our load balance estimates no longer apply. To avoid such
situations we settled on running around 2500 to 5000 iterations for the experiments, de-
pending on the platform and domain size of the experiment.

42

Chapter 7
Results and Discussion

In this chapter we display the outcomes of our experiments and discuss their implications.
We examine the performance and behaviors of the decompositons themselves, and see
what effect they have on the load balance of our application. Then we investigate the
effects on our communication times, and compare the results to our model.

7.1 Rectangulations

Our three decomposition techniques yield different behaviors, both in the decomposition
layout itself and in the executing proxy application. We describe these here and compare
their effects on the proxy application’s performance.

7.1.1 Decompositions and Scalability

The cost of producing the three decompositions varies strongly. For the domain sizes we
investigated the Cartesian decomposition completes almost immediately, while the scan-
ning decomposition completes within a minute. Our diagonal rectangulation algorithm is
by far the most expensive one to run. Table 7.1 gives an idea of how the algorithm scales
for a selection of very small problem sizes.

Degree
Dimensions 250 × 450 500 × 900 1000 × 1800

3 1 3 13
4 3 12 59
6 51 246 -

Table 7.1: The time required to run the diagonal rectangulation algorithm to completion, in minutes.

43

Chapter 7. Results and Discussion

Observations on Cartesian Decomposition

Figure 7.1: A 24 degree Cartesian partition.

The Cartesian decomposition produces a reg-
ular grid layout, an example of which is
shown in Figure 7.1. Consequently a sub-
domain may have at most four neighbors,
each of which translates into one communi-
cation interface. In cases where we do not
have a degree equal to a power of two the al-
gorithm defaults to creating unevenly spaced
regions.

Figure 7.2: A 24 degree scanning parti-
tion.

Observations on the Scanning Rectangulations

The scanning decomposition produces more irreg-
ular grids, though we can still see artifacts that re-
semble the regular grid layout of the cartesian grid.
With this decomposition a sub-domain may have
more than four neighbors, see Figure 7.2. In prac-
tice this number rarely exceeds six neighbors.

Observations on the Diagonal Rectangulations

Figure 7.3: A 9 degree diagonal rectan-
gulation.

The diagonal rectangulation algorithm is able to
produce a much more varied set of decompositions
than the Cartesian one. Figure 7.3 gives an exam-
ple of such a decomposition. Stopping the process
early reveals that the exploration of the solution
space tends to start with a scaled set of exclusively
horizontal or vertical splits, and then moves on to
ever more complex patterns. It does however scale
poorly in terms of computational time, as shown in
Table 7.1. Increases in domain size noticeably in-
crease the computation time, while increase in de-
composition degree may increase the computation time.

We observe that the non-Cartesian rectangulations settle on decompositions where the
center ranks have around 6 neighbors, up to 8 at most. This means that there is no dra-
matic increase in communications per-node, when compared to the 4 rank maximum of the
Cartesian decomposition. Furthermore, this means that we don not exceed the maximum
number of RDMA peers specified by the openib configuration shown in Table 6.4.

The steep cost curve of the diagonal rectangulation algorithm makes its application
a question which has to be considered more carefully than the presented alternatives. It
can be said that the obtainable gains from pre-computing a rectangulation are theoretically
infinite, since the rectangulations may be re-used for any number of experiments. How-
ever, if we are only interested in a few executions the cost of decomposing this way may
outweigh the gains.

44

7.2 Communication

There exist two practical work-arounds for the long rectangulation times: The algo-
rithm can be run on a downscaled version of the target domain, which produces faster
results at the cost of resolution. The speedup is gained by reducing the convergence time
for each evaluated Baxter permuation. Alternatively, the algorithm may be terminated
early before it has explored the full solution space. The diagonal rectangulation algorithm
discovers many valid solution before reaching its conclusion, which may be used at the
cost of them not necessarily being the most optimal solutions. In our implementation
these early solutions usually involve minor variations of column-wise partitions. For large
rectangulation degrees only the second approach is valid, due to the Baxter number’s rapid
growth.

7.1.2 Reduction of Load Imbalance

Figures 7.4a, 7.4b, and 7.4c show how much time each rank spends waiting for other ranks
to finish their local computation before a communication step. In this scenario the rank
with the greatest computational load determines the wait time of all the other ones. In our
figures each horizontal bar in a column shows the wait time of the corresponding rank, as
a percentage of the time spent in the main execution loop. Each column then shows the
unutilized computation time of the whole MPI communicator. For instance, the column
for a 12 rank decomposition in Figure 7.4a shows that four ranks spent approximately 70%
of their execution time waiting, and that the idle time of the whole rank group amounts to
about half of the total execution time.

The regular Cartesian rectangulations predictably have the worst performance, since
they do not exploit the map’s variations in computational load. The scanning decomposi-
tion gives only a moderate reduction in wait times compared to the Cartesian algorithm in
the worst case (P=3), but far exceeds it when the number of ranks is a power of two. It is
only in this case that no ranks with approximately twice the computational cost of another
can be found. The diagonal rectangulations have the best performance in the general case,
but are just barely beaten by the scanning rectangulations when the number of ranks is a
power of two. Here, the worst case wait time of a single rank is 23% of its execution time,
and the wait times of the communicator as a whole don’t exceed 16% of the total execution
time.

The fact that the accumulated wait times of the diagonal rectangulation algorithm are
consistently low shows that the analytical load estimate in Equation 5.1 is reasonably ac-
curate, though not quite perfect.

Figure 7.5 displays the attained speedup and efficiency during the load balancing tests.
It reveals that the rectangulating decomposition is not thrown off by decomposition degrees
which are not powers of two.

7.2 Communication

We investigate the effects of the decompositon on the cost of communications between
ranks on separate nodes. First we verify constant communication cost, then we compare
the communication times of a Cartesian layout with non-Cartesian ones.

45

Chapter 7. Results and Discussion

(a) Cartesian decomposition wait time

(b) Scanning decompositon wait time

(c) Diagonal rectangulation wait time

Figure 7.4: Time spent idle while waiting for other ranks to finish their iteration, when using dif-
ferent decompositions on Fram. The y-axis shows time in terms of percentage, compared to an
executions total time spent in the main processing loop.

46

7.3 LogGP Benchmarks

(a) (b)

Figure 7.5: Measured speedup and efficiency for our decompositions on Fram.

7.3 LogGP Benchmarks

The LogGP benchmarks of our platforms, displayed in Section 6.2, indicate that both Idun,
Betzy and Fram behave reasonably similarly in terms of point-to-point communications
when using matching toolchains. The benchmarks show that the transmission cost per
byte is strongly linear with regards to the message size on the examined size range. The
same can be said about the transmission overhead, except on Betzy, where the overhead is
better fitted to an exponential curve on the examined domain.

Interestingly, we do not see any clear discontinuities indicating protocol switches, as
described by Hoefler et al [33]. We would expect at least one in the lower region on x-axis,
at the point specified by the btl_openib_eager_limit listed in Table 6.4. It is at this point
that the benchmark should switch from using eager to rendezvous protocol. We attribute
this to the fact that the eager and rendezvous protocols implemented in the PML may have
similar communications costs at the point of transition.

7.3.1 Verification of Stable Communication Cost

We sampled the communication cost of a single iteration over the course of a complete
run, in order to eliminate the possibility that it could increase or decrease over time. This
could conceivably happen due to our application structure or system mechanisms such as
caching.

Figure 7.6 shows the results of these measurements on our computation platforms. It is
Fram that has the longest communication times, in spite of its superior LogGP benchmark
and more sophisticated interconnect when compared to Idun.

We observe that although the communication time varies somewhat from iteration to
iteration, there is no significant upward or downward trend.

47

Chapter 7. Results and Discussion

Figure 7.6: Time spent on communication per iteration for out platforms, Betzy, Fram and Idun.
We observe no steady trend of increase or decrease.

7.3.2 Strong Scaling Comparison of Rectangulation

Figures 7.7 and 7.8 show how the average per-rank communication time develops as the
domain is split into smaller and smaller sub-domains. This increases the total number
of data exchanges, but reduces the number of exchanged bytes per message. Figure 7.9
shows how much time is spent on communications across the whole communicator in each
test. The per-rank communication times for Betzy never exceed 1% of the total execution
time. For Fram communications account for at most 3% of the execution time. We see a
consistent difference between the Cartesian and irregular domains, which is proportional
to the average message size.

Our communication model, described in Section 5.6.3, correctly predicts that the com-
munication time does not vary over the course of a full execution. In figure 7.7 we can see
that the prediction converges towards the measured results around 32 participating ranks.

However, it fails at capturing the communication times of lower-degree decomposi-
tions before this points. On Fram the model is proven wholly insufficient. The outcome is
hinted at by Figure 7.6, but cannot be explained by means of the benchmark and LogGP
parameters, which do not differ that significantly between Betzy and Fram. This indi-
cates that there is at least one important factor which the LogGP model does not take into
account, which we attribute to three primary causes:

1. The model does not consider network contention. Contention may stem from the
experiment itself, as many ranks synchronized by the instrumentation barrier send
messages at the exact same point in time. Other experiments running concurrently
on the same platform can have the same, and likely an even greater, effect. While
our experiments exclusively reserve all of the resources available on a single node
for the duration of their execution, the network interconnect remains shared.

48

7.3 LogGP Benchmarks

Figure 7.7: Average accumulated communication times observed on Betzy with strong scaling.

Figure 7.8: Average accumulated communication times observed on Fram with strong scaling

2. The model does not consider synchronization overheads. Other variants of the LogP
model, such as the LogGPS [49] and LogGOPSim [50] models, consider the syn-
chronization costs of MPI data exchanges. These synchronizations cost should,
however, only occur when rendezvous-style messages are exchanged.

3. There may be shortcomings in terms of our use of the model. The LogGP model and
its Netgauge benchmark was designed around ordinary Send() and Receive() calls,
not their non-blocking counterparts.

49

Chapter 7. Results and Discussion

Figure 7.9: Total accumulated communication times observed on both Betzy and Fram with strong
scaling

50

Chapter 8
Conclusion

In this thesis we demonstrate that diagonal rectangulation is a valuable domain decompo-
sition technique for two-dimensional solution spaces of partial differential equations.

We show this though the implementation of a proxy application, which serves as a
simplified model of large scale HPC applications. Our application solves the shallow
water equations numerically on a domain that contains mixed fluid and land areas, which
introduces differences in computational cost. Using the application we are able to test and
compare cartesian decompositions, decompositions obtained through orthogonal recursive
bisection, and decompositions by diagonal rectangulation. We show that the diagonal
rectangulations have the greatest benefit, but their computation times scale poorly with
the problem size. The ORB decompositions prove to be a valid compromise with lower
efficiency.

Furthermore, we show that the additional communication cost introduced by the de-
composition is insignificant at the examined scales when compared to the gains of im-
proved load balance. We predict this through a LogGP model, the parameters of which we
find for our platforms, and confirm it with our instrumentation.

8.1 Future Work
We recognize that our diagonal rectangulation algorithm produces superior results in terms
of load balance, but is quite expensive to run at scale. In contrast to our proxy-application,
it is implemented in a strictly sequential manner and scales poorly for larger domains and
greater numbers of sub-domains. We propose two improvements which may address this:

• The generation of a rectangulation and its tuning by a minimization algorithm can
be done independently of the next. This stage can therefore be considered as em-
barassingly parallel and can be easily parallelized.

• It seems likely that the SLSQP minimization algorithm we selected may be tuned
to converge faster, for example by adjusting the tolerance and deltas. The algorithm
could also be exchanged for a more efficient one altogether.

51

Chapter 8. Conclusion

Furthermore, the employed analytical measure of per-point computational cost works
well for our proxy-application, but may be difficult to create for larger applications. An
overview of estimated local cost for popular processing and optimization techniques would
be useful in combination with the decomposition algorithms.

52

8.1 Future Work

Acknowledgements

I would like to thank Jan Christian Meyer, my supervisor, for his patient and experienced
guidance and for introducing me to the world of scientific computing at large.

The computations were performed on resources provided by the NTNU IDUN/EPIC
computing cluster [46], as well as resources provided by UNINETT Sigma2 - the National
Infrastructure for High Performance Computing and Data Storage in Norway.

53

Chapter 8. Conclusion

Appendix

8.1.1 Supplementary Tables

n B(n)
1 1
2 2
3 6
4 22
5 92
6 422
7 2074
8 10754
9 58202
10 326240
20 29949238543316
30 7101857696077190042814
40 2554987813422078288794169298972
50 1163558691573487855005674103586862832160

Table 8.1: A Selection of Baxter Numbers B(n).

54

8.2 Symbols

8.2 Symbols

B Baxter number
c Number of computing units
C Courant number
d Delay between message transmissions
E Efficiency
η Fluid column height
g Time gap between transmitted messages when they are sent/received one

after the other
G Time gap between the transmission of two bytes in the same message
i Number of transmitted messages
I Number of iterations
k Iteration or time step number
L Transmission latency, upper bound
m Mass
n Number of points in a sequence, located along the diagonal of a bound-

ing rectangle
o Per-rank communication overhead
p Point along the diagonal of a rectangle
P Number of ranks participating in a given communication
Pneigh Number of domains adjacent to a given domain
ρ Fluid density
R Bounding rectangle of a diagonal rectangulation
s Transmitted data size in bytes
S Speedup
T Time
u Velocity in the x dimension
v Velocity in the y dimension

Table 8.2: Symbols and definitions

55

Chapter 8. Conclusion

8.3 Other software
Notable software in the program and production of this work:

Netgauge 2.4.6 A network performance measurement toolkit
Libnetpbm 10.73.33 A Library for reading pbm and pgm files.
gnuplot 5.4.1-1 An interactive plotting program
Gimp 2.10.24 Open source image manipulation software

56

Glossary

floorplan A decomposition of a 2D domain into rectangular tiles and the spatial relation
between the tiles. 9

ideal fluid An inviscid fluid, characterized exclusively by its isotropic pressure, density
and the shape of its surroundings. 3, 4

mosaic floorplan A floorplan where every part of the domain is covered by tiles. 9

node An independent computing unit, composed of a CPU, memory and an interconnect,
which is part of an HPC platform. 14

rank A single-process instance of an MPI program. 21

rectangulation degree The number of partitions produced by rectangulating a rectangle.
9

shallow water flow Fluid flow where the width and length of the flow far exceeds its
height. 3

57

Acronyms

BML BTL Management Layer. 22

BSP Bulk Synchronous Parallel. 15, 17, 23, 30

BTL Byte Transfer Layer. 22

CFD Computational Fluid Dynamics. 3, 7

CFL Courant-Friedrich-Lewy. 7

CPU Central Processing Unit. 14, 18

FDM Finite Difference Method. 5, 6

FLOP Floating Point Operation. 25

HPC High Performance Computing. 3, 14, 23

MA Memory Access. 25

MCA Modular Component Architecture. 21

MPI Message Programming Interface. 21, 29, 31

P2P Point-to-Point. 21

PDEs Partial Differential Equations. 4, 5, 6

PML Point-to-Point Messaging Layer. 22, 47

PRTT Parameterized Round Trip Time. 19

RDMA Remote Direct Memory Access. 22, 44

58

RTT Round Trip Time. 19, 22

SLSQP Sequential Least Squares Programming. 12, 13

SQP Sequential Quadratic Programming. 12, 13

TOPO Process Topology. 22

59

Bibliography

[1] P. Parna, K. Meyer, and R. Falconer. “GPU driven finite difference WENO scheme
for real time solution of the shallow water equations”. In: Computers and Fluids
161 (2018).

[2] Guiseppina Colicchio et al. “Towards a fully 3D domain-decomposition strategy for
water-on-deck phenomena”. In: Journal of Hydrodynamics, Ser. B 22.5, Supplement
1 (2010).

[3] Alfonso Sánchez-Beato. How to share your video-conference window among at-
tendees or, the many ways of splitting a rectangle in many. https://www.
alfonsobeato.net/math/the- many- ways- of- splitting- a-
rectangle-in-many/. [Online; accessed 23-May-2021].

[4] Abdessamad Qaddouri et al. “Optimized Schwarz methods with an overset grid for
the shallow-water equations: preliminary results”. In: Applied Numerical Mathe-
matics 58.4 (2008), pp. 459–471.

[5] Alfio Maria Quarteroni and Alberto Valli. Domain decomposition methods for par-
tial differential equations. Oxford University Press, 1999.

[6] Steven R. Hannah et al. “Detailed Simulations of Atmospheric Flow and Dispension
in Downtown Manhattan: An Application of Five Computational Fluid Dynamics
Models”. In: Bulletin of the American Meteorological Society 87.12 (2006).

[7] Chaojun Ouyang et al. “A MacCormack-TVD finite difference method to simu-
late the mass flow in mountainous terrain with variable computational domain”. In:
Computers & Geosciences 52 (2013).

[8] Yuqi Wu and Xiao-Chuan Cai. “A fully implicit domain decomposition based ALE
framework for three-dimensional fluid-structure interaction with application in blod
flow computation”. In: Journal of Computational Physics 258 (2014).

[9] Reinaldo Garcia and Rene A. Kahawita. “Numerical solution of the St. Venant equa-
tions with the MacCormack finite-difference scheme”. In: International Journal for
Numerical Methods in Fluids 6.5 (1986).

[10] Robert J. Fennema and M. Hanif Chaudhry. “Explicit Methods For 2-D Transient
Free-Surface Flows”. In: Journal of Hydraulic Engineering 116.8 (1990).

60

https://www.alfonsobeato.net/math/the-many-ways-of-splitting-a-rectangle-in-many/
https://www.alfonsobeato.net/math/the-many-ways-of-splitting-a-rectangle-in-many/
https://www.alfonsobeato.net/math/the-many-ways-of-splitting-a-rectangle-in-many/

[11] Patrick J. Roache. Computational Fluid Dynamics. Albuquerque, New Mexico:
Hermosa Publishers, 1972.

[12] Hseng Tseng Ming and Chia R Chu. “Two-dimensional shallow water flows simu-
lation using TVD-MacCormack scheme”. In: Journal of Hydraulic Research 38.2
(2000), pp. 123–131.

[13] Eric Ngondiep, Alqahtani T Rubayyi, and Jean C Ntonga. “A MacCormack Method
for Complete Shallow Water Equations with Source Terms”. In: arXiv preprint
arXiv:1903.11104 (2019).

[14] Eyal Ackerman, Gill Barequet, and Ron Y Pinter. “On the number of rectangula-
tions of a planar point set”. In: Journal of Combinatorial Theory, Series A 113.6
(2006), pp. 1072–1091.

[15] Xianlong Hong et al. “Corner block list: An effective and efficient topological
representation of non-slicing floorplan”. In: IEEE/ACM International Conference
on Computer Aided Design. ICCAD-2000. IEEE/ACM Digest of Technical Papers
(Cat. No. 00CH37140). IEEE. 2000, pp. 8–12.

[16] Geoffrey C Fox. “A graphical approach to load balancing and sparse matrix vector
multiplication on the hypercube”. In: Numerical Algorithms for Modern Parallel
Computer Architectures. Springer, 1988, pp. 37–61.

[17] Nathan Reading. “Generic rectangulations”. In: European Journal of Combina-
torics 33.4 (2012), pp. 610–623.

[18] Glen Baxter. “On fixed points of the composite of commuting functions”. In: Pro-
ceedings of the American Mathematical Society 15.6 (1964), pp. 851–855.

[19] Zion Cien Shen and Chris CN Chu. “Bounds on the number of slicing, mosaic, and
general floorplans”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 22.10 (2003), pp. 1354–1361.

[20] Sean S. Plott. “Functions of the Binomial Coefficient”. PhD thesis. Harvey Mudd
College, 2008.

[21] Dieter Kraft. A software package for sequential quadratic programming. Tech. rep.
Institut fuer Dynamik der Flugsysteme, DFVLR Obersfaffeuhofen, Germany, 1988.

[22] Leslie G. Valiant. “A bridging Model for Parallel Computation”. In: Commun. ACM
33.8 (1990).

[23] Allan Hartstein and Thomas R Puzak. “The optimum pipeline depth for a micro-
processor”. In: ACM Sigarch Computer Architecture News 30.2 (2002), pp. 7–13.

[24] Alan Jay Smith. “Line (block) size choice for CPU cache memories”. In: IEEE
transactions on computers 100.9 (1987), pp. 1063–1075.

[25] Alan Jay Smith. “Sequential program prefetching in memory hierarchies”. In: Com-
puter 11.12 (1978), pp. 7–21.

[26] G.M Shipman et al. “Infiniband scalability in Open MPI”. In: Proceedings 20th
IEEE International Parallel Distributed Processing Symposium. 2006.

[27] Jingwei Sun et al. “Automated Performance Modeling of HPC Applications Using
Machine Learning”. In: IEEE Transactions on Computers 69.5 (2020).

61

[28] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: an insightful
visual performance model for multicore architectures”. In: Communications of the
ACM 52.4 (2009), pp. 65–76.

[29] Kevin Barker et al. “Using Performance Modeling to Design Large-Scale Systems”.
In: IEEE Computer 42 (Nov. 2009), pp. 42–49. DOI: 10.1109/MC.2009.372.

[30] I.M. Navon and Y. Cai. “Domain decomposition and parallel processing of a finite
element model of the shallow water equations”. In: Computer Methods in Applied
Mechanics and Engineering 106.1 (1993).

[31] Albert Alexandrov et al. “LogGP: Incorporating Long Messages into the LogGP
Model-One Step Closer towards a Realistic Model for Parallel Computation”. In:
Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and
Architectures. Association for Computing Machinery, 1995.

[32] David Culler et al. “LogP: Towards a realistic model of parallel computation”. In:
Proceedings of the fourth ACM SIGPLAN symposium on Principles and practice of
parallel programming. 1993, pp. 1–12.

[33] Torsten Hoefler, Andre Lichei, and Wolfgang Rehm. “Low-Overhead LogGP Pa-
rameter Assessment for Modern Interconnection Networks”. In: 2007 IEEE In-
ternational Parallel and Distributed Processing Symposium. 2007, pp. 1–8. DOI:
10.1109/IPDPS.2007.370593.

[34] Torsten Hoefler et al. “Netgauge: A Network Performance Measurement Frame-
work”. In: High Performance Computing and Communications. Ed. by Ronald Per-
rott et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 659–671. ISBN:
978-3-540-75444-2.

[35] OpenMP ARB. OpenMP web description. https://www.openmp.org/
about/openmp-faq/. [Online; accessed 02-December-2020].

[36] L. Dagum and R. Menon. “OpenMP: an industry standard API for shared-memory
programming”. In: IEEE Computational Science and Engineering 5.1 (1998).

[37] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
https://wwww.mpi-forum.org/docs/mpi-3.1/mpi31-report.
pdf. [Online; accessed 07-June-2021].

[38] Richard L. Graham, Timothy S. Woodall, and Jeffrey M. Squyres. “Open MPI: A
Flexible High Performance MPI”. In: Parallel Processing and Applied Mathemat-
ics. Springer Berlin Heidelberg, 2006.

[39] Sayantan Sur et al. “RDMA read based rendezvous protocol for MPI over In-
finiBand: design alternatives and benefits”. In: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming. 2006,
pp. 32–39.

[40] Kartverket. Kartdata fra Kartverket. https://www.kartverket.no. [On-
line; accessed 21-May-2021].

[41] Marsha J Berger and Phillips Colella. “Local adaptive mesh refinement for shock
hydrodynamics”. In: Journal of computational Physics 82.1 (1989).

62

https://doi.org/10.1109/MC.2009.372
https://doi.org/10.1109/IPDPS.2007.370593
https://www.openmp.org/about/openmp-faq/
https://www.openmp.org/about/openmp-faq/
https://wwww.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://wwww.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.kartverket.no

[42] Marsha J Berger and Joseph Oliger. “Adaptive mesh refinement for hyperbolic par-
tial differential equations”. In: Journal of computational Physics 53.3 (1984).

[43] Ola Toft and Jan Christian Meyer. “Parallel Scalability of Adaptive Mesh Refine-
ment in a Finite Difference Solution to the Shallow Water Equations”. In: Norwe-
gian conference for ICT-research and education 1.1 (2020).

[44] Randall J LeVeque. Finite-Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2004. Chap. 7.

[45] Torsten Hoefler et al. “The scalable process topology interface of MPI 2.2”. In:
Concurrency and Computation: Practice and Experience 23.4 (2011), pp. 293–310.

[46] Magnus Själander et al. EPIC: An Energy-Efficient, High-Performance GPGPU
Computing Research Infrastructure. 2019. arXiv: 1912.05848 [cs.DC].

[47] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A Scalable, Com-
modity Data Center Network Architecture”. In: SIGCOMM Comput. Commun. Rev.
38.4 (2008).

[48] Alexander Shpiner et al. “Dragonfly+: Low Cost Topology for Scaling Datacen-
ters”. In: 2017 IEEE 3rd International Workshop on High-Performance Intercon-
nection Networks in the Exascale and Big-Data Era (HiPINEB). 2017, pp. 1–8.

[49] Fumihiko Ino, Noriyuki Fujimoto, and Kenichi Hagihara. “LogGPS: a parallel com-
putational model for synchronization analysis”. In: Proceedings of the eighth ACM
SIGPLAN symposium on Principlesand practices of parallel programming. 2001,
pp. 133–142.

[50] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. “LogGOPSim: simulat-
ing large-scale applications in the LogGOPS model”. In: Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing. 2010,
pp. 597–604.

63

https://arxiv.org/abs/1912.05848

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Richard Bachmann

Performance Modeling of Finite
Difference Shallow Water Equation
Solvers with Variable Domain
Geometry

Master’s thesis in Computer Science
Supervisor: Jan Christian Meyer

June 2021

M
as

te
r’s

 th
es

is

	Problem Description
	Abstract
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Scope
	Related work
	Structure

	Computational Fluid Dynamics
	The Simulated Fluid
	The Shallow Water Equations
	Numerical Methods
	Finite Differences
	The MacCormack Method
	Stability

	Boundary Conditions

	Domain Decomposition
	Rectangulations
	Scanning Decomposition
	Diagonal Rectangulation

	Parallel Programming and Models
	Approaches to Parallelism
	Performance Modelling
	Domain Decomposition
	Communication Models
	The LogGP Model

	Parallel Programming APIs
	OpenMP
	MPI
	Open MPI

	The Proxy Application
	Goal
	The Grid
	Load Balance
	Semi-static Map Parsing

	Parallelism
	Chunking

	Ghosts Points and Interfaces
	Collision Handling

	A Model for the Application
	Initialization Cost
	Computation Cost and Overlap
	Communication Model

	Application Structure

	Methodology
	Experiments
	Decomposition
	Communication

	Computation Platform
	Idun
	Fram
	Betzy
	LogGP Communication Performance

	Parameter Space
	Domain Dimensions and Geography
	Domain Decomposition
	Rank Distribution and Resource Availability
	Initial condition
	Step Size
	Number of Iterations

	Results and Discussion
	Rectangulations
	Decompositions and Scalability
	Reduction of Load Imbalance

	Communication
	LogGP Benchmarks
	Verification of Stable Communication Cost
	Strong Scaling Comparison of Rectangulation

	Conclusion
	Future Work

	Acknowledgements
	Appendix
	Supplementary Tables
	Symbols
	Other software

	Glossary
	Acronyms
	Bibliography

