
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Jonathan Kom
ada Eriksen

Applying Tw
isted H

essian Curves to SID
H

Jonathan Komada Eriksen

Applying Twisted Hessian Curves to
Supersingular Isogeny Diffie-Hellman

Master’s thesis in Communication Technology
Supervisor: Bor de Kock, Colin Boyd

June 2021

M
as

te
r’s

 th
es

is

Jonathan Komada Eriksen

Applying Twisted Hessian Curves to
Supersingular Isogeny Diffie-Hellman

Master’s thesis in Communication Technology
Supervisor: Bor de Kock, Colin Boyd
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: Applying Twisted Hessian Curves to
Supersingular Isogeny Diffie-Hellman

Student: Jonathan Komada Eriksen

Problem description:

Isogeny-based cryptography is a relatively young field in modern cryptography, which
uses the theory of elliptic curves and specifically, special transformations between
elliptic curves called isogenies to create cryptographic schemes. Lately, isogeny-based
cryptography has gained a lot of attention, because of its resilience against the
cryptanalytic power of quantum computers. Compared to other quantum resistant
cryptographic schemes, those that arise from isogenies often have certain features
which make them promising candidates for replacing traditional Diffie-Hellman based
schemes in a world where quantum computers exist. However, a big challenge
for isogeny-based cryptography is the high computational costs, which limits the
performance of these schemes.

This thesis aims to evaluate the performance of isogeny-based cryptography when
using twisted Hessian curves, a specific model of elliptic curves. This will be done to
study how well suited twisted Hessian curves are for isogeny-based cryptography. In
particular, we will be interested in how we can apply these curves in an efficient way,
and to examine what factors limit their performance.

Supervisor: Bor de Kock, IIK
Responsible professor: Colin Boyd, IIK

Abstract

Most public-key cryptography relies on the hardness of one of two math-
ematical problems. While these problems seem intractable on classical
computers, there exists an algorithm for solving both of these problems,
which runs on a quantum computer. The result of this is that if a quan-
tum computer large enough to run this algorithm is ever built, it would
severely compromise the security of real-world digital communications,
such as on the internet. Because of this, new public-key cryptographic
standards are currently being developed, which necessarily rely on the
hardness of other problems. One example of such a scheme is the Su-
persingular Isogeny Diffie-Hellman (SIDH) key exchange, which relies on
hard problems from the theory of elliptic curves. The hard problems are
related to isogenies, which are special, structure-preserving maps between
elliptic curves.

In this thesis, we investigate a new way of instantiating the SIDH key-
exchange, by using twisted Hessian curves. A twisted Hessian curve
is a specific elliptic curve model, which has relatively fast formulae for
point doubling and point tripling. Further, direct formulae for isogenies
between these curves have recently been studied. We use these formulae
to implement the SIDH key exchange. Additionally, we discuss some of
the structural properties of twisted Hessian curves, in relation to SIDH.
These properties may suggest an alternative way of instantiating the SIDH
key exchange, where the requirements for the prime p are significantly
relaxed. This gives the possibility of using much smaller field sizes at no
loss in security, resulting in key sizes that are about half the size of those
used in SIDH today.

Sammendrag

Sikkerheten til nesten all offentlig nøkkelkryptografi er basert på vans-
keligheten til et av to matematiske problemer. Selvom disse problemene
virker vanskelige på klassiske datamskiner, eksisterer det en algoritme
for å løse begge disse problemene, som kun kjører på kvantemaskiner.
Resultatet av dette er at dersom det noen gang bygges en kvantemaskin
som er stor nok til å kjøre denne algoritmen, vil sikkerheten til digital
kommunikasjon, slik som på internett, være ansett som kompromittert.
På grunn av dette, utvikles det nå ny offentlig nøkkelkryptografi, som er
basert på vanskeligheten av andre matematiske problemer. Et eksempel
på et slikt system er Supersingulær Isogeni Diffie-Hellman (SIDH), som
baserer seg på vanskelige problemer fra teori om elliptiske kurver. Disse
problemene er relatert til isogenier, som er spesielle, struktur-bevarende
avbildninger mellom elliptiske kurver.

I denne oppgaven utforsker vi en ny måte å instansiere SIDH på, ved å
bruke vridde Hessianske kurver. En vridd Hessiansk kurve er en elliptisk
kurve modell, som har relativt raske formler for punkt dobling og tripling.
Videre er formler for isogenier mellom slike kurver nylig blitt studert. Vi
benytter disse formlene i en implementasjon av SIDH. I tillegg diskuterer
vi noen strukturelle egenskaper ved vridde Hessianske kurver, og deres
relasjon til SIDH. Disse egenskapene kan gi opphav til en alternativ måte
å instansiere SIDH på, hvor kravene til primtallet p er betydelig redusert.
Dette gir muligheten til å benytte mye mindre kropper, uten tap av sikker,
som igjen resulterer i nøkler som er rundt halvparten så store som de
som brukes i SIDH idag.

Preface

This Master’s thesis marks the conclusion of my 5 year Master of Science
degree in Communications Technology at the Department of Information
Security and Communication Technology at the Norwegian University of
Science and Technology (NTNU).

I would like to express my sincerest gratitude to my amazing supervisors,
Bor de Kock and Colin Boyd, for their invaluable guidance throughout
this project. Your expertise in cryptography is truly inspiring, matched
only by your brilliant wit. Working with you has been a really enjoyable
experience, and I look forward to many more collaborations in the future.

Next, I would like to thank my family. I have, in a way, been lucky enough
to have four parents, who have always supported me unconditionally, and
for that, I am forever grateful.

Finally, I would like to give many, many thanks to all the fantastic people
I have had the pleasure of getting to know here at my stay in Trondheim.
These years have been so much fun, and really, I owe it all to you!

Jonathan Komada Eriksen
Trondheim, 2021

Contents

List of Figures xi

List of Algorithms xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objective and Questions 2
1.3 Limitations . 4
1.4 Outline of Thesis . 4

2 Background 5
2.1 Fundamentals From Algebra . 5

2.1.1 Groups . 5
2.1.2 Rings . 8
2.1.3 Fields . 10

2.2 Projective Geometry . 14
2.2.1 Affine Space . 14
2.2.2 Projective Space . 15

2.3 Elliptic Curves . 18
2.3.1 Arithmetic . 20

2.4 Asymmetric Cryptography . 22
2.4.1 Symmetric and Asymmetric Cryptography 22
2.4.2 Diffie-Hellman Key Exchange 24
2.4.3 The RSA Cryptosystem . 27
2.4.4 Shor’s Algorithm and The Hidden Subgroup Problem 28
2.4.5 Key Encapsulation Mechanisms 29

3 Towards Isogeny-Based Cryptography 31
3.1 More Topics on Elliptic Curves . 31

3.1.1 Isogenies . 31
3.1.2 Supersingular Curves . 35

3.2 Elliptic Curve Models . 38

vii

3.2.1 Alternatives to Weierstrass Form 38
3.2.2 Twisted Hessian Curves . 41

3.3 Supersingular Isogeny Diffie-Hellman 44
3.3.1 The Protocol . 44
3.3.2 Random Walks in Isogeny-Graphs 46
3.3.3 Security and Cryptanalysis 48
3.3.4 Smooth-Degree Isogeny-Computation 50
3.3.5 Supersingular Isogeny Key Encapsulation 53

4 SIDH with Twisted Hessian Curves 55
4.1 Mathematical Aspects . 55

4.1.1 Computing in Fp2 . 55
4.1.2 The j-Invariant of a Twisted Hessian Curve 56
4.1.3 Degree 2 Isogenies . 59
4.1.4 Recovering Curve Parameter From Arbitrary Point 59

4.2 Algorithmic Aspects . 60
4.2.1 Square and Multiply . 60
4.2.2 Jao and De Feo’s Optimal Strategy 61

4.3 Implementation . 62
4.3.1 Generating Parameters . 63
4.3.2 Computing Secret Generator 65
4.3.3 Computing Isogeny . 66
4.3.4 Key Exchange . 70

5 Computing the 3n-Isogeny Without an Explicit Generator 73
5.1 Foundations . 73

5.1.1 Cube Roots in Finite Fields 73
5.1.2 Subgroups of Order 3 . 74

5.2 An Alternative Way of Computing 76
5.2.1 Recovering the Secret . 77
5.2.2 The Missing Piece . 78

5.3 Implementation . 79
5.3.1 Computing in Fp(ω) . 79
5.3.2 Generating Parameters . 79
5.3.3 Computing Secret Isogeny . 80
5.3.4 The Oracle . 82
5.3.5 Key Exchange . 83

6 Examples and Discussion 85
6.1 Examples . 85

6.1.1 Example from Chapter 4 . 85
6.1.2 Examples from Chapter 5 . 88

6.1.3 Performance Benchmarks . 92
6.2 Calculating the 2n-Isogeny . 93

6.2.1 Efficiency . 94
6.3 Calculating the 3n-Isogeny . 94

6.3.1 Motivation for Alternative Computation 95
6.3.2 No Need for an Fp2 -Rational 3eB -Torsion Group 96
6.3.3 Computational Cost . 96
6.3.4 The Field Size . 97
6.3.5 Mixing Property . 97
6.3.6 Petit’s Attacks on Unbalanced SIDH 98

7 Conclusion 99
7.1 Summary . 99
7.2 Research Questions . 100
7.3 Future Work . 101

References 103

List of Figures

2.1 Two affine sets over A2(R). 15
2.2 Two different affine charts of the projective set V : X2 + Y 2 = Z2. . . . 17
2.3 An illustration of the + operation on E : y2 = x3 +Ax+B. 21
2.4 The Diffie-Hellman key exchange . 25
2.5 The ElGamal encryption scheme . 26
2.6 The RSA cryptosystem . 28
2.7 RSA-KEM . 30

3.1 From left to right: The Montgomery curve y2 = x3 − x2 + x, the twisted
Edwards curve 3x2 + y2 = 1 + 2x2y2 and the Huff’s curve 2x

(
y2 − 1

)
=

y
(
x2 − 1

)
. 40

3.2 The twisted Hessian curve 2x3 + y3 + 1 = 6xy. 43
3.3 High level view of SIDH. Arrows are isogenies corresponding to the given

kernel. 45
3.4 The SIDH protocol. 46
3.5 Visual example of the claw-finding algorithm for solving the CSSI problem,

with `A = 2 and eA = 6. The graph is a subgraph of an isogeny graph
where the edges are isogenies of degree 2 49

3.6 A multiplication-focused strategy for computing an isogeny of degree `e. 51
3.7 An isogeny-focused strategy for computing an isogeny of degree `e. . . . 52
3.8 In general, one can choose any subset of the dashed arrows, such that

there is a path from the root node to all leaf nodes. 52

4.1 An optimal strategy S of size n > 2 always consists of two strictly smaller
optimal strategies S′ and S′′. 62

5.1 The structure of the required computation. 77
5.2 The oracle stores all values in red. Note that the oracle clearly needs the

knowledge of Alice’s secret and can easily recover Bob’s secret. 83

xi

List of Algorithms

3.1 Basic strategy for computing isogeny of degree `e 50
4.1 Square and multiply . 61
4.2 Compute optimal strategy of size n 63
4.3 Add Points . 65
4.4 Double Point . 66
4.5 Evaluate isogeny of degree 2 . 67
4.6 Evaluate isogeny of degree 2eB . 68
4.7 Triple Point . 69
4.8 Evaluate isogeny of degree 3, case 2 70
4.9 Evaluate isogeny of degree 3, case 3 70
5.1 Alternate computation of 3eB isogeny - stage I 81
5.2 Alternate computation of 3eB isogeny - stage II 82

xiii

Chapter1Introduction

Elliptic curves have a long track record in public-key cryptography and currently see
widespread usage in both key exchange and digital signatures in the real world. While
virtually all public-key schemes being used today would be broken by a sufficiently
large quantum computer, elliptic curves may continue to see usage, but in a different
form. In 2011, Jao and De Feo constructed the Supersingular Isogeny Diffie-Hellman
(SIDH) scheme [JD11], and since then the field of isogeny-based cryptography has
gained much attention. Informally, SIDH relies on the hardness of recovering isogenies,
which are special transformations between elliptic curves. Currently, there are no
known efficient algorithms for solving this problem, even on a quantum computer.

1.1 Motivation

Virtually all public-key cryptosystems which are being used today rely on the
hardness of either the discrete logarithm problem or the integer factorization problem.
While these problems seem very different, they can both be seen as special cases of
another algebraic problem called the abelian hidden subgroup problem. In 1994 Shor
created an algorithm, which effectively solved the abelian hidden subgroup problem
in polynomial time [Sho94]. The algorithm only runs on a quantum computer, a
machine that works fundamentally differently from classical computers. The result
of this is that if a quantum computer large enough to run Shor’s algorithm is ever
built, virtually all modern public-key cryptosystems would be rendered insecure.

To come up with new public-key cryptosystems which can withstand cryptanalytic
attacks by both classical and quantum computers, the United States National Institute
of Science and Technology (NIST) started the Post-Quantum Cryptography (PQC)
Standardization project [NIS16]. The project was started in 2016, and the stated
aim is to arrive at a draft of standards for quantum secure key encapsulation
mechanisms (KEMs) and digital signatures, two of the most prominent uses of
public-key cryptography today. KEMs are used to send and agree upon a shared

1

2 1. INTRODUCTION

secret-key over an insecure channel such as the internet, which can be further used to
protect communication. As of spring 2021, the project is currently in its third round
and the remaining candidates in the KEM category are all based on one of three
classes of problems: lattice problems, problems from coding theory and recovering
isogenies.

To arrive at a draft of new standards, a thorough performance analysis of the
candidates is required. Performance should be seen as a weighted sum of many
metrics. When assessing the performance with respect to real-world applications
such as the internet, at least two factors stand out as important:

– The computational cost of the scheme, which dictates how long it takes the
communicating parties to compute the necessary calculations.

– The sizes of public keys, which dictates how much memory or bandwidth is
needed to store or transmit the keys.

After two rounds of selection, the only candidate in the KEM category that relies
on the hardness of the problem of recovering isogenies is SIKE, a key-encapsulation
mechanism based on SIDH [JAC+20]. The performance analysis of SIKE is very
two-sided, as it has the shortest key-sizes of all remaining candidates while being
the computationally most expensive. This is reminiscent of classical elliptic curve
cryptography, which also started out as a computationally expensive counterpart to
Diffie-Hellman over finite fields that allowed for much smaller key-sizes [Mil85, Kob87].
Since then, classical elliptic curve cryptography has become much faster, and similarly,
much work is currently being done on increasing the performance of isogeny-based
cryptography. One approach which has already been successful for classical elliptic
curve cryptography, and which seems promising for isogeny-based cryptography, is
studying different elliptic curve models (see Section 3.2.2) and their applicability to
cryptography.

1.2 Research Objective and Questions

The primary research objective in this thesis is to study how suitable twisted Hessian
curves are for the SIDH protocol, and for isogeny-based cryptography in general. A
twisted Hessian curve is an elliptic curve model, which has relatively fast formulae
for point doubling and tripling [BCKL15]. Additionally, direct formulae for isogenies
between twisted Hessian curves have recently been studied [DM19, BF19], which
suggests that they may be suitable for isogeny-based cryptography.

More specifically, we wish to use properties of twisted Hessian curves to optimize
algorithms for computing chains of low degree isogenies in a cryptographic setting and

1.2. RESEARCH OBJECTIVE AND QUESTIONS 3

investigate in general how well twisted Hessian curves synergise with isogeny-based
cryptography, and specifically the SIDH key exchange. To achieve the research
objective, we aim to answer the following research questions:

(i) What techniques can be applied to optimize the performance of twisted Hessian
curves in the setting of isogeny-based cryptography?

(ii) What are the challenges when implementing an isogeny-based protocol with
twisted Hessian curves?

(iii) How can the structure of twisted Hessian curves be taken advantage of in the
SIDH setting?

We answer these research questions by providing two proof-of-concept imple-
mentations. The first implementation applies twisted Hessian curves to SIDH in a
straightforward manner, providing some insight to questions (i) and (ii). We highlight
one optimization technique, while we also comment on another technique which has
been used to speed up implementations on other elliptic curve models, but which
currently does not apply to twisted Hessian curves.

The second implementation is much more speculative but uses the twisted Hessian
curves in a more active way, providing some insight to questions (i) and (iii). We
discuss in detail the particularly simple structure of the 3-torsion group on twisted
Hessian curves (the group of points which has order dividing 3) and show how to take
advantage of this in the SIDH setting. This can possibly be used to tweak the SIDH
protocol, which may result in an altered scheme that has some appealing properties,
in exchange for a higher computational cost. Because of the simple structure of the
3-torsion group, the action of isogenies on subgroups of order 3 is predictable (see
Proposition 5.1.1 and Proposition 5.1.2), which suggests a way to do all computation
in Fp2 , even if the whole 3n-torsion group is only defined over some higher degree
extension field (here n is relative to the security level). The main benefit of this is
that the tweaked SIDH scheme is much less restrictive than the original SIDH scheme
when it comes to selecting field sizes. This results in the possibility of using much
smaller primes (around half the bit-length), at no loss in security level. However, as
mentioned, this approach is speculative, and more research is required to make the
tweaked protocol work.

Both implementations are available on GitHub1.

1https://github.com/Jonathke/SIDH-with-twisted-Hessian-curves

https://github.com/Jonathke/SIDH-with-twisted-Hessian-curves

4 1. INTRODUCTION

1.3 Limitations

While this thesis focuses on increasing the performance of a cryptographic protocol,
the aim is not to implement a cryptographic library suitable for real-world use.
Instead, the thesis focuses on applying a novel approach to isogeny-based cryptography
and aims to increase the theoretical performance. Specifically, when measuring
performance metrics related to computational speed, we focus on the number of
field-operations and asymptotic complexities, as opposed to measuring the number of
CPU clock cycles or the number of milliseconds, which are other common measures.
The rationale for this is that we aim to focus solely on isogeny-based cryptography,
ignoring low-level field-arithmetic optimizations.

1.4 Outline of Thesis

This thesis is sectioned into 7 chapters, including this introduction.

Chapter 2 presents the essential background theory, intended to prepare the reader
for Chapter 3 and the rest of the thesis. Starting at basic concepts from algebra,
the chapter works its way up to introducing elliptic curves. The second part of
this chapter provides an introduction to modern cryptography, with a focus on
public-key cryptography.

Chapter 3 presents the topic material for this thesis. The chapter goes more in-
depth on the theory of elliptic curves, including relevant theory for the SIDH
protocol as well as a discussion of different elliptic curve models, before covering
the SIDH protocol itself.

Chapter 4 presents an implementation of the SIDH protocol, using twisted Hessian
curves, and discusses all aspects and optimizations of this implementation.

Chapter 5 presents a different view on the SIDH protocol, enabled by twisted
Hessian curves. We present some novel results and discuss how to apply this
to the SIDH protocol, as well as the missing step to create a tweaked SIDH
protocol. This discussion includes a proof-of-concept implementation.

Chapter 6 provides examples based on both the protocol discussed in Chapter
4 and the protocol discussed in Chapter 5. After that, it summarizes and
discusses both implementations.

Chapter 7 concludes the thesis, before raising two open problems related to our
work.

Chapter2Background

This chapter contains general concepts necessary for understanding the rest of
the thesis. In Section 2.1 and Section 2.2 we focus on providing the necessary
mathematical background to understand Section 2.3, which covers the basic properties
of elliptic curves over finite fields, in a way that prepares the reader for Chapter
3. Finally, in Section 2.4, we cover general cryptographic concepts, focusing on
asymmetric cryptography, and the need for post-quantum cryptography.

2.1 Fundamentals From Algebra

We start by giving an overview of some of the most important definitions and
theorems from algebra, which we will rely on throughout this thesis. The proofs of
the theorems are omitted but can be found in any introductory book to the subject,
for instance, the one by Bhattacharya, Jain and Nagpaul [BJN94].

2.1.1 Groups

Definition 2.1.1. A non-empty set G together with a mapping ∗ : G × G → G

(called a binary operation) is called a group if the following axioms hold:

(i) (associativity) (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G,

(ii) there exists e ∈ G such that e ∗ a = a for all a ∈ G,

(iii) for every a ∈ G, there exists a′ ∈ G such that a ∗ a′ = e.

In the previous definition, we call the element e ∈ G the identity, and we call
a′ ∈ G the inverse of a. We may write a group as (G, ∗) or just G if the binary
operation is clear from context. The two main notations used in groups are the
multiplicative (G, ∗) and the additive (G,+). If we are using multiplicative notation,
we often abbreviate a ∗ b to ab. Further, we can abbreviate a ∗ a ∗ · · · ∗ a (n times) to

5

6 2. BACKGROUND

an. If we are using additive notation, we abbreviate a+ a+ · · ·+ a (m times) to ma.
The inverse of a is denoted as a−1 in a multiplicative group, and −a in an additive
group.

Definition 2.1.2. An abelian group is a group (G, ∗) with the added axiom:

(iv) (commutativity) ab = ba for all a, b ∈ G.

The general rule is that (G,+) is always an abelian group, while (G, ∗) may or
may not be abelian.

Definition 2.1.3. Given a group (G, ∗), a non-empty subset H ⊆ G is a subgroup
of G if (H, ∗) is a group. This is written as H < G.

We see that for any a ∈ G, we can define the subset 〈a〉 = {ak | k ∈ Z} (called
the subgroup generated by a). Then 〈a〉 is a subgroup of G. If there exists a ∈ G
such that 〈a〉 = G, then we say that G is cyclic, and further that a generates G.

Definition 2.1.4. The order of a group G is equal to the cardinality of G as a set,
and is written |G|. Similarly, the order of an element a ∈ G is equal to |〈a〉|.

Equivalently, we can think of the order of an element a ∈ G to be the smallest
non-zero natural number m such that am = e, where e is the identity in G. If such
an m does not exist a has infinite order. We say that a group G is finite if it has
finite order. Because of the following theorem, we can say a lot about the order of
elements in a finite group just from the order of the group itself.

Theorem 2.1.5. (Lagrange) Let G be a finite group and H < G. Then the order
of H divides the order of G.

Lagrange’s theorem implies a lot of results that we are used to. For instance, a
famous theorem of Fermat says that for p a prime, ap−1 ≡ 1 (mod p) for all a such
that p - a. This is simply because the order of the group of integers modulo p under
multiplication is p− 1. Then the order of a must divide p− 1, and subsequently ap−1

must equal 1.

Next, for any group G and subgroup H < G, and any element a ∈ G, we can
look at the set aH = {ah | h ∈ H} or similarly Hb = {hb | h ∈ H}. These sets are
called cosets of H.

Definition 2.1.6. Let G be a group, and let H < G be a subgroup. H is called a
normal subgroup of G (written as H CG) if aH = Ha for all a ∈ G.

2.1. FUNDAMENTALS FROM ALGEBRA 7

In general, the above distinction is very important. However, it is not hard to see
that for abelian groups, every subgroup is normal. When we have a normal subgroup
N C G we can look at the quotient group, written as G/N , which is the group of
all cosets of N in G. This set becomes a group by applying the binary operation
in G to the representants of the cosets, e.g. aH ∗ bH = (ab)H. An important
example of such a quotient group is the quotient group is Z/nZ, where n ∈ N and
nZ = {na | a ∈ Z} (here we consider the group Z under addition). This is the group
of integers quotiened out by the multiples of n, which form a normal subgroup. After
defining isomorphisms, we will see that Z/nZ is isomorphic to the group of elements
modulo n under addition, commonly written as Zn.

Definition 2.1.7. Let (G, ∗G) and (H, ∗H) be groups. A mapping φ : G→ H is a
group homomorphism if φ(a ∗G b) = φ(a) ∗H φ(b) for all a, b ∈ G.

Note that the binary operation between a and b is the operation in G, while
the binary operation between φ(a) and φ(b) is the operation in H. Related to a
homomorphism, we have the following two definitions

Definition 2.1.8. Let φ : G → H be a homomorphism between groups G
and H. We define the kernel of φ to be the set kerφ = {a ∈ G | φ(a) = eH},
where eH is the identity in H. Further, we define the image of φ to be the set
Imφ = {b ∈ H | b = φ(a) for some a ∈ G}.

If φ is injective, we call φ a group isomorphism. We know that φ is an isomorphism
if and only if kerφ = {eG}, where eG is the identity in G. If φ is a group isomorphism
and Imφ = H, then we say that G is isomorhpic to H (as groups), written as G ∼= H.
If two groups are isomorphic, they have the same group structure, meaning that
abstractly we can regard them as the same group.

If H = G (implying that φ is a homomorphism from G to itself), it is called an
endomorphism. If φ is an isomorphism and Imφ = G, it is called an automorphism.

Further, we know that kerφ is always a normal subgroup of G and that Imφ is
always a (not necessarily normal) subgroup of H. The next theorem connects this in
an important way.

Theorem 2.1.9. (Fundamental theorem of group homomorphisms) Let
φ : G→ H be a group homomorphism. Then G/ kerφ ∼= Imφ.

We give the example we mentioned before: define a group homomorphism
φ : Z→ Zp by φ(k) = k mod n. It is easily verified that this is a surjective group
homomorphism, and further that kerφ = nZ. By the fundamental theorem of group
homomorphisms, it follows immediately that Z/nZ ∼= Zn.

8 2. BACKGROUND

2.1.2 Rings

Next, we move on to discuss rings. Arguably the single most important example of a
ring is Z, the ring of integers. Towards the end of this section, we define polynomial
rings, which we will be working a lot within this thesis.

Definition 2.1.10. A non-empty set R together with two binary operations +
(called addition) and · (called multiplication) is called a ring if the following axioms
hold:

(i) (R,+) is an abelian group,

(ii) (Associativity) (a · b) · c = a · (b · c) for all a, b, c ∈ R,

(iii) There exists 1 ∈ R such that 1 · a = a for all a ∈ R,

(iv) (Distributive property) a · (b+ c) = a · b+ a · c, and (a+ b) · c = a · c+ b · c for
all a, b, c ∈ R.

Note that 1 is not necessarily the integer 1, but symbolizes the multiplicative
identity in R (indeed, in the ring of integers (Z,+, ·), the integer 1 is the multiplicative
identity). The identity of (R,+) is often denoted as 0 and called the additive identity.
If the operation · is commutative, we say that R is a commutative ring. As for
multiplicative groups, a · b is often abbreviated to ab.

We see that the definition of rings does not require a ∈ R to have a multiplicative
inverse. However, if it has a multiplicative inverse, i.e. there exists a−1 ∈ R such
that aa−1 = 1, then a is said to be invertible. The invertible elements of a ring are
called units, and the units of a ring form a group under multiplication.

We will see that a lot of definitions from Section 2.1.1 have natural analogues in
ring-theory.

Definition 2.1.11. Given a ring (R,+, ·), a non-empty subset S ⊆ R is a subring
of R if (S,+, ·) is a ring.

We will see that the following definition is somewhat analogous to normal sub-
groups (see definition 2.1.6).

Definition 2.1.12. A non-empty subset S of a ring R is called an ideal of R if
the following two conditions hold:

(i) (S,+) is a subgroup of (R,+),

2.1. FUNDAMENTALS FROM ALGEBRA 9

(ii) for any r ∈ R, s ∈ S, we have that rs ∈ S and sr ∈ S.

Every ring R has ideals A = {0} and B = R. These are called trivial ideals. If I is
an ideal of R, and I 6= A,B, then I is called a non-trivial ideal. If R is commutative1,
then for any element r ∈ R, we define the set 〈r〉 = {rs | s ∈ R}, called the ideal
generated by r. Sometimes, we will write 〈r〉 as rR.

Using a ring R and an ideal I of R, we can construct a quotient ring R/I. We
define it slightly differently than we did for groups. We let I define an equivalence
relation ≡ on the elements of R as follows. For a, b ∈ R, a ≡ b (mod I) if and only if
a − b ∈ I. Then we can define R/I to be the set of equivalence classes. We write
elements as a+ I for some representative a ∈ R, and turn it into a ring by applying
the binary operations from R to the representatives, e.g. (a+I)+(b+I) = (a+b)+I,
and (a+ I)(b+ I) = (ab) + I. An example of this construction is Z/nZ, equivalent
to the ring of integers modulo n (We already discussed the additive structure of this
construction, but after defining ring homomorphisms it should be clear that this is
actually a ring isomorphism).

Definition 2.1.13. Let R be a ring and I a non-trivial ideal of R. I is called a
maximal ideal if for any ideal B ⊇ I of R, either B = I or B = R.

Maximal ideals will become very useful when constructing fields (see Section
2.1.3). The following definition will be used when defining elliptic curves.

Definition 2.1.14. Let R be a commutative ring and I an ideal of R, with I 6= R.
I is called a prime ideal if ab ∈ I implies that either a ∈ I or b ∈ I for a, b ∈ R.

Note that all maximal ideals are prime ideals, but the converse is in general not
true2. Next, we move on to define homomorphisms in the setting of rings.

Definition 2.1.15. Let (R,+R, ·R) and (S,+S , ·S) be rings. A mapping φ : R→ S

is a ring homomorphism if φ(a+R b) = φ(a)+S φ(b), and φ(a ·R b) = φ(a) ·S φ(b)
for all a, b ∈ R.

Again, it is important to note the differences in binary operations on the left
and right-hand side of each equation. The results from group theory still hold. We
know that kerφ is always an ideal of R, and Imφ is always a subring of S. Further,

1This requirement is just to simplify things for us since most rings we will be talking about will
be commutative. Elements in non-commutative rings also generate so-called left and/or right ideals,
but in the commutative setting, these coincide.

2For a large class of rings called principal ideal domains, all non-trivial prime ideals are also
maximal ideals.

10 2. BACKGROUND

we call φ a ring isomorphism if it is injective (which again happens if and only if
kerφ = {0R}, where 0R is the additive identity in R). If φ is an isomorphism and
Imφ = S, we say that R and S are isomorphic (as rings). If R and S are isomorphic
as rings, we can regard R and S as the same ring in an abstract sense. We write this
as R ∼= S.

If φ is a ring homomorphism from R to itself, it is called a ring endomorphism.
If φ is an isomorphism and Imφ = R, it is called a ring automorphism.

We have now defined both group and ring morphisms of different kinds. Often,
we will just write homomorphism (or some other kind of morphism), if it is clear
from the context whether we are talking about a group homomorphism or ring
homomorphism.

Next, we restate Theorem 2.1.9 as a theorem of ring homomorphisms.

Theorem 2.1.16. (Fundamental theorem of ring homomorphisms) Let
φ : R→ S be a ring homomorphism. Then R/ kerφ ∼= Imφ.

Finally, as mentioned, we define polynomial rings, which are generic constructions
that we will be working with a lot.

Definition 2.1.17. Let R be a commutative ring. The polynomial ring with
coefficients in R is a ring, written as R[x], where x is called an indeterminate. An
element of R[x] is of the form a0 +a1x+ · · ·+anx

n, ai ∈ R, for some n ∈ N. Addition
and multiplication works as we are used to with polynomials.

We can see that R[x] contains R in the sense that there exists an isomorphism
ϕ : R → R[x] defined as ϕ(r) = r. Keeping this isomorphism in mind, we can say
that the units of R[x] are simply the units of R (although really we mean that the
units of R[x] are on the form ϕ(r) where r is a unit of R).

Note that since R is any commutative ring, and R[x] is itself a commutative
ring, we can construct polynomial rings recursively, e.g. R[x][y][z]. These rings are
typically specified as multivariate polynomial rings and written as R[x, y, z], where
elements are rewritten as finite sums of monomials in indeterminates x, y, z.

2.1.3 Fields

Next, we discuss fields, which are a particularly nice type of commutative rings,
where all non-zero elements are units.

Definition 2.1.18. Let R be a commutative ring. If the non-zero elements of R
(i.e. R \ {0}) form a group under multiplication, then R is called a field.

2.1. FUNDAMENTALS FROM ALGEBRA 11

The rational numbers Q, the real numbers R and the complex numbers C are all
common examples of infinite fields. Throughout the thesis be working mostly with
finite fields, which we discuss a lot in this section.

The following definition applies to all rings and not just fields. However, we will
mainly be talking about the characteristic of fields, so therefore we state it in this
section.

Definition 2.1.19. Let R be a ring. If there exists n ∈ N \ {0} such that na = 0
for all a ∈ R then the smallest such n is called the characteristic of R, denoted as
char(R). If no such n exists, then we say that R has characteristic 0.

Of course, all finite rings have non-zero characteristic. Infinite rings however may
or may not have characteristic equal to zero. As we will mostly be working with
finite fields, the following theorem is important.

Theorem 2.1.20. Let K be a field. Then either char(K) = 0 or char(K) = p,
where p is a prime number.

The result of the previous theorem and the preceding discussion is that all finite
fields have characteristic p, for some prime number p. To construct our finite fields,
we will rely on the following theorem.

Theorem 2.1.21. Let R be a commutative ring, and let I ⊆ R be an ideal. Then
the quotient ring R/I is a field if and only if I is maximal.

The basic example of a finite field is the ring of integers modulo p, where p is a
prime number. To see that this is in fact a field, we recall that as discussed, the ring
of integers modulo p can be constructed as Z/pZ. Further, pZ is a maximal ideal of
Z if and only if p is a prime number. Theorem 2.1.21 then states that the ring of
integers modulo p is a field if and only if p is a prime number.

After defining field extensions, we will see that the following theorem shows that
the field Zp and its extensions are in an abstract sense the only finite fields.

Theorem 2.1.22. Let K be a finite field with char(K) = p. Then K has pn
elements, for some positive integer n. Further, all other fields with pn elements are
isomorphic to K.

Because of the previous theorem, we will typically write all fields with q = pn

elements as Fq. The rest of this section will have two main goals. To define the
algebraic closure of a field, and to show how we can construct Fq from Fp. To do

12 2. BACKGROUND

this, we will rely a lot on the polynomial ring over a field K, denoted as K[x] (see
definition 2.1.17). Therefore, we will now state some basic properties of K[x]. An
element f ∈ K[x] is called irreducible if f = gh for elements g, h ∈ K[x] implies
that either g or h are units. The ideal generated by f is maximal if and only if f is
irreducible. For elements f ∈ K[x], f = a0 + a1x+ a2α

2 + · · ·+ anx
n, we define the

degree of f to be n, where n is the highest power of x appearing in f (unless f = 0,
then we say that f has degree −1). Further we can evaluate f in an element α as
the sum f(α) = a0 + a1α+ a2α

2 + · · ·+ anα
n.

Finally, when working with polynomial rings, we often prefer to use monic
polynomials, i.e elements of the form f = a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 + xn. If

we are working in a ring of polynomials over a field, then every element of degree > 1
can be transformed to a monic element by multiplying with the inverse of an.

Definition 2.1.23. Let K and E be fields. If K is a subring of E, then E is called
an extension field of K, or simply an extension of K.

Subrings of fields that are fields themselves are typically called subfields. An
example is Q ⊆ R ⊆ C, where Q is a subfield of R, which in turn is a subfield of C.

Definition 2.1.24. Let E be an extension of K. An element α ∈ E is said to be
algebraic over K if there exists f ∈ K[x], f 6= 0 such that f(α) = 0. If all elements
of E are algebraic over K, then E is said to be an algebraic extension of K.

If f(α) = 0, we call α a root of f . Every element β ∈ K is algebraic over K,
since it is a root of f = x− β ∈ K[x]. Examples of algebraic extensions are R ⊆ C.
Note that Q ⊆ R is not an algebraic extension, since no transcendental number (e.g.
π ∈ R) is algebraic.

Definition 2.1.25. We say that a field K is algebraically closed if for any
algebraic extension E of K, we have E = K, or equivalently that any irreducible
polynomial in K[x] is linear (i.e. has degree 1).

Clearly, if all (monic) irreducible element of K[X] are of the form x − α, then
every element that is algebraic over K is also in K. This is again equivalent to saying
that any element in K[X] has all its roots in K, as it factors into linear factors.
An example of an algebraically closed field is C (by the fundamental theorem of
algebra). Notice that a finite field Fq is never algebraically closed, as the polynomial
f = 1 +

∏
α∈Fq

(x− α) ∈ Fq[x] has no roots in Fq (since for all α ∈ Fq, f(α) = 1).

Definition 2.1.26. The algebraic closure of a field K is an algebraic extension
of K that is algebraically closed. We will denote the algebraic closure of K as K̄.

2.1. FUNDAMENTALS FROM ALGEBRA 13

The reason that we can write and talk about the algebraic closure of K is that
for any field K, an algebraic closure exists. Further, all algebraic closures of K are
isomorphic. For instance, the algebraic closure of R is R̄ ∼= C, since it is an algebraic
extension that is algebraically closed. Notice again that the closure of Q is not C,
since Q ⊆ C is not an algebraic extension. Throughout the thesis, we will mainly
be using the algebraic closure of a finite field Fq when dealing with elliptic curves
over Fq (see Section 2.3). Keep in mind that as discussed, finite fields are never
algebraically closed, hence Fq is itself not a finite field.

We move on to describe how to construct Fpn from Fp. To do this, we first need
to recall the definition of vector spaces and translate them to finite fields. A vector
space V over K is simply an additive group, which accepts scalar multiplication,
meaning an operation ∗ : K × V → V . Using this definition, it is easy to see that
any extension field E over K can be turned into a vector space over K by replacing
the multiplicative structure of E with scalar multiplication from K.

Definition 2.1.27. Let E be an extension of a field K. Then the degree of E
over K (written [E : K]) is the dimension of E as a vector space over K.

If Fq is an extension of a finite field Fp, then we have that the order of Fq must be
the order of Fp raised to its dimension over Fp as a vector space, showing that q = pn.
To construct a field extension of a given degree, we use the following theorem.

Theorem 2.1.28. Let E be an extension of a field K. Let f ∈ K[X] be an
irreducible polynomial of degree n, and let α ∈ E be a root of f . Then K(α) (meaning
the subfield of E generated by K and α) is a field extension of K, with [K(α) : K] = n.
Further, any element of K(α) can be written uniquely as c0 + c1α+ · · ·+ cn−1α

n−1

for elements ci ∈ K.

The last part of the previous theorem says that the set {1, α, α2, . . . , αn−1} forms a
basis ofK(α) overK. To construct a field extension ofK of degree n, we can therefore
start by finding an irreducible f ∈ K[X] of degree n, and look at the homomorphism
φ : K[X]→ K(α) defined by φ(a0 + a1x+ · · ·+ amx

m)→ a0 + a1α+ · · ·+ amα
m.

Clearly, Imφ = K(α), and further kerφ = 〈f〉. Therefore, from Theorem 2.1.16, we
see that K[X]/〈f〉 ∼= K(α), and using Theorem 2.1.21, K(α) is a field because f is
irreducible (hence generates a maximal ideal).

It is not guaranteed that there exist irreducible f ∈ K[X] of degree n for a field
K. However, if K is finite, then such an element always exists. Hence, as we will see,
when we want to construct a finite field Fpn , we simply start with Fp ∼= Z/pZ, find
an irreducible f ∈ Fp[X] of degree n, and construct Fpn ∼= Fp[X]/〈f〉.

14 2. BACKGROUND

2.2 Projective Geometry

In this section, we introduce projective space, which we will use in both the discussion
and implementation of elliptic curves. This section is self-contained and discusses
informal ideas to give the reader an intuition of the necessary definitions. For more
information and a more rigorous approach, we refer the reader to the literature, for
instance, the introductory book to computational algebraic geometry by Cox, Little
and O’Shea [CLO97].

For the remainder of this section, let K be a field.

2.2.1 Affine Space

Definition 2.2.1. The affine n-space over K is defined as all n-tuples of the
form An = {(a1, . . . , an) | ai ∈ K̄, 1 6 i 6 n}.

An is in a sense a set of all n-dimensional coordinates over K̄. Note that the
definition allows the coordinates of P ∈ An to be in K̄. Therefore, we will often
restrict ourselves to the following subset.

Definition 2.2.2. The set of K-rational points of An is the set of all n-tuples
of the form An(K) = {(a1, . . . , an) | ai ∈ K, 1 6 i 6 n}.

When we talk about an object in An, we usually mean a set of points in An,
i.e. a subset of An. We call these types of sets affine sets. We will be looking
at affine sets defined by a polynomial f ∈ K̄[x1, . . . , xn]. Such a set consists of
the points P ∈ An that are zeroes of f , where P is regarded as a zero of f if
P = (xp1 , . . . , xpn

) and f(xp1 , . . . , xpn
) = 0 (we write this as f(P) = 0). Equivalently,

this definition says that the set are the points whose coordinates are solutions to
the equation f(x1, . . . , xn) = 0. Similarly, we can define such sets by an equation
g(x1, . . . , xn) = h(x1, . . . , xn), where g, h ∈ K̄[x1, . . . , xn]. Note that defining a set
by such an equation, is no different than defining it by a single polynomial, as by
rewriting this to a new polynomial f ′ = g − h, we can define the same set as the
zeroes of f ′.

If we have a set V = {P ∈ An | f(P) = 0} (i.e. a set as described above), then V
contains any solution with coordinates in K̄. Therefore, we often restrict ourselves
to the subset denoted as V (K) = {P ∈ An(K) | f(P) = 0}, called the K-rational
points of V .

We describe V by its defining polynomial, or by a defining equation. In the latter
case, we typically write V : g(x1, . . . , xn) = h(x1, . . . , xn).

2.2. PROJECTIVE GEOMETRY 15

(a) V1(R) forms a circle in A2(R) when
V1 : x2 + y2 = 1.

(b) V2(R) forms a hyperbola in A2(R) when
V2 : x2 − y2 = 1.

Figure 2.1: Two affine sets over A2(R).

Note that the structure of V (K) depends not only on f , but also on the underlying
field K. For instance, we can take an n ∈ N, n > 3, and look at the affine set
V : xn1 + xn2 = 1 in A2. If K = R, then V (K) clearly has infinitely many points.
However, if K = Q, then Fermat’s last theorem, which was famously proven by
Andrew Wiles over 300 years after Fermat wrote it down [Wil95], asserts that
V (K) = {(1, 0), (0, 1)} if n is odd, or V (K) = {(±1, 0), (0,±1)} if n is even3.

Figure 2.1 shows how these affine sets that we have described, form geometric
objects. Keep these examples in mind, as in the next section, we will show that these
seemingly different affine sets are really just two sides of the same coin.

2.2.2 Projective Space

In this section, we define the projective space Pn. Intuitively, projective spaces are
seemingly very different from affine spaces, but we will see that Pn is in a sense
simply an extension of An, where we add certain “points at ∞”.

We give the following definition.

Definition 2.2.3. The projective n-space over K is defined as all n-tuples

Pn = {P ∈ An+1 | P 6= (0, . . . , 0)}/ ∼

where ∼ is the equivalent relation defined by (a0, a1 . . . , an) ∼ (b0, b1 . . . , bn) if there
exists some λ ∈ K̄, such that bi = λai for all i.

3Fermat’s last theorem states that for any n ∈ N, n > 3, the equation xn + yn = zn has
no non-trivial integer solutions. To see the relation to V (Q), let P = (a

b
, c

d
) ∈ V (Q), implying

(a
b

)n + (c
d

)n = 1. Assume that P is non-trivial (i.e. a and c are both non-zero). Multiplying on both
sides by (bd)n then gives the non-trivial integer solution to the Fermat equation (ad)n+(cb)n = (bd)n.

16 2. BACKGROUND

Informally, we may think of the above definition as saying that Pn is the set of
all directions in An+1. Elements of Pn are still called points, even if they really are
equivalence classes corresponding to lines through the origin of An+1. It is customary
to write a projective point P as (X0 : X1 : · · · : Xn).

As with the affine n-space, we define the following subset of Pn.

Definition 2.2.4. The set of K-rational points of Pn is the subset of Pn denoted
as Pn(K) = {(X0 : X1 : · · · : Xn) ∈ Pn | Xi ∈ K, 0 6 i 6 n}.

We will look be looking at subsets of Pn and Pn(K), similar to those discussed
in Section 2.2.1. These will be called projective sets. However, if we try to simply
define V = {P ∈ Pn | f(P) = 0} for any polynomial f ∈ K̄[X0, X1, . . . , Xn], we
quickly run into problems. To illustrate the problem, imagine the projective set
V (R) = {(X : Y) ∈ P1(R) | X2 − Y = 0}. Then it seems that the point P1 = (1 : 1)
is in the set, while P2 = (2 : 2) is clearly not. However, P1 ∼ P2, so they are really
the same projective point.

To fix this, we require that f is a homogenous polynomial. A homogenous
polynomial is a polynomial which, when written as a sum of monomials, has each
non-zero term of equal degree. This is enough, since if f is a homogenous polynomial
of degree d, then f(λP) = λdf(P).

To see that Pn is abstractly equivalent to An ∪ {points at ∞} (which was our
claim at the start of this subsection), we show that there exists an injective map
from An to Pn. We call the complement of this map, the “points at ∞”. This map is
defined by sending (x1, x2, . . . , xn) ∈ An to (x1 : x2 : · · · : xn : 1) ∈ Pn. This map
is clearly injective, and the complement consists of all points P ∈ Pn, whose last
coordinate is 0. These are the “points at ∞”.

However, note that there was no reason for us to select the last coordinate. By se-
lecting coordinate i, we could have created a different map by sending (x1, x2, . . . , xn) ∈
An to (x1 : · · · : xi−1 : 1 : xi : · · · : xn) ∈ Pn. This map has the same properties,
however the “points at∞” are now the set of all points P ∈ Pn whose i’th coordinate
is 0. In other words, what set we relate to the “points at ∞” is dependent upon the
map we choose.

The inverse of such a map is easily obtained by sending (x0 : x1 : · · · : xn) ∈ Pn

to
(
x0
xi
, . . . , xi−1

xi
, xi+1
xi

, . . . , xn

xi

)
∈ An. This map is clearly not defined for any point

with xi = 0, corresponding to the “points at ∞”. Intuitively, in P2 we can imagine
this as relating every projective point (recall that these projective points are really
lines through the origin in A3) with their intersection with the plane in A3 defined
by xi = 1. It is clear that this map is undefined for lines parallell to the plane.

2.2. PROJECTIVE GEOMETRY 17

Figure 2.2: Two different affine charts of the projective set V : X2 + Y 2 = Z2.

We can use this map on a projective set defined as V = {P ∈ Pn | f(P) = 0}.
This relates the projective set V , to the affine set V ′ = {P ∈ An | f̄(P) = 0}, where
f̄ is the polynomial in n variables, obtained by f̄ = f(X0, . . . , Xi−1, 1, Xi+1, . . . , Xn),
and rewriting coefficients. This process of creating f̄ from f is called de-homogenising
f . The opposite of this process is obtained by setting f = xdi f̄

(
x0
xi
, x0
xi
, . . . , xn

xi

)
,

where d is the degree of f̄ . This is called homogenising f̄ .

If V is defined by f , and V ′ is defined by the de-homogenisation of f , V ′ is called
the affine chart of V and written as V ∩ An. Note that as discussed, many such
maps exist, and the affine chart of V will generally vary a lot based on what map we
choose.

We end this section with an example which illustrates some of the concepts that
we have discussed in this section. Consider the projective set V : X2 + Y 2 = Z2,

18 2. BACKGROUND

defined over R. The affine chart of V at Z = 1 is the affine set V ′ = X2 + Y 2 = 1.
Related to this map, there are no “points at ∞”, as for (X : Y : Z) ∈ V , Z = 0
implies that X = Y = 0 (which is not a valid projective point). Next consider the
affine chart at Y = 1, which is the affine set V ′′ : X2 + 1 = Z2. This map however,
gives two “points at ∞”, as for (X : Y : Z) ∈ V , Y = 0 implies that X = ±Z, so the
“points at ∞” for V ′′ are the projective points {(1 : 0 : 1), (−1 : 0 : 1)}. This shows
that the circle and hyperbola from Figure 2.1 are really just affine charts of the same
projective set. This is illustrated in Figure 2.2.

2.3 Elliptic Curves

We now provide a thorough discussion of the basic properties of elliptic curves. Again,
we omit proofs, but informally, we try to give some intuition behind the ideas. For a
more rigorous approach, we again refer to the literature [Sil09].

Throughout this whole section, unless otherwise stated, K will refer to a field of
characteristic not equal to 2 or 3, and P2 to its 2-dimensional projective space.

Elliptic curves are properly defined as smooth projective varieties of dimension
1 and genus 1, with at least one rational point. To avoid introducing too many
mathematical concepts to elaborate on this definition, we instead define elliptic curves
as accurately as we can with the concepts we have developed thus far.

Definition 2.3.1. We define an elliptic curve as the following non-singular projective
set, with one inflection point O specified:

E = {(X : Y : Z) ∈ P2 | f(X,Y, Z) = 0}

where f ∈ K̄[x, y, z] is a homogeneous polynomial of degree 3 that generates a prime
ideal in K̄[x, y, z], with no multiple root.

We will not worry about proving that f generates a prime ideal when constructing
elliptic curves4; the reader can assume that any defining polynomial used from this
point on satisfies this particular property. If E is defined by an element f ∈ K̄[x, y, z],
that has coefficients in K (meaning that f ∈ K[x, y, z]) and the specified inflection
point is in P2(K), then we say that E is defined over K and write E as E/K to
signify this. This notation should not be confused with quotient structures.

If E contains a singular point, then we say that E is singular, otherwise, we say
that E is non-singular. In the geometric sense, this means that E as a curve does

4The fact that f has to generate a prime ideal, is to ensure that we can construct its function
field (Definition 3.1.1). The function field is a structure related to algebraic varieties. The reader is
referred to the literature for more information on general varieties [CLO97].

2.3. ELLIPTIC CURVES 19

not contain any cusps or intersections. To ensure that E is non-singular, we must
check that the partial derivatives of f never simultaneously vanishes for any point
in E, i.e. no P ∈ E satisfies ∂f

∂x (P) = ∂f
∂y (P) = ∂f

∂z (P) = 0. If f contains a multiple
root, then that root will be a singular point. When defining curves, we will typically
state a sufficient condition on the coefficients of the defining polynomial to satisfy
this property (see e.g. Theorem 2.3.2).

The need for a specified inflection point O will become clear in Section 2.3.1,
when we give the set E a group structure. The specified inflection point will serve as
the identity.

We now define the standard model of an elliptic curve, called the Weierstrass
normal form.

Proposition 2.3.2. Weierstrass normal form: Let E be a projective set, defined
as

E : Y 2Z = X3 +AXZ2 +BZ3

with a specified point O = (0 : 1 : 0) ∈ E. Then E is an elliptic curve if and only if
4A3 + 27B2 6= 0.

The corresponding polynomial that defines E in the theorem above can be
written as f = Y 2Z −X3 −AXZ2 −BZ3. This polynomial satisfies all properties
of definition 2.3.1. The restriction on A and B is to ensure that E is non-singular.

The following theorem shows why the Weierstrass normal form is the standard
model of elliptic curves. See Section 3.1.1 for more information on isomorphisms
between elliptic curves.

Theorem 2.3.3. Any elliptic curve defined over a field K is isomorphic to a curve
given by an equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (2.1)

where a1, a2, a3, a4, a5, a6 ∈ K. Further, if char(K) 6= 2, 3, then the above equation
can be further shortened to

Y 2Z = X3 +AXZ2 +BZ3 (2.2)

where A,B ∈ K.

The above theorem shows that any curve can be written in Weierstrass normal
form, as long as the characteristic of K is not 2 or 3. This makes the Weierstrass
normal form very well suited for discussing the general theory of elliptic curves,

20 2. BACKGROUND

and we will do so throughout this section, whenever we need a specific curve as an
example. Keep in mind that elliptic curves may still be defined by equations different
from the Weierstrass normal form; this is precisely the topic of Section 3.2 and a
large part of this thesis.

To ease notation, we will often de-homogenise equations, by looking at the affine
chart at Z = 1, and rewriting the coefficients to x = X, y = Y . This is just a notation
change, we are still considering E as a projective set, and not as the corresponding
affine chart. Specifically, this means that we should not forget potential “points at
∞”, which are not defined in the affine chart. For instance, any curve in Weierstrass
form has exactly one “point at ∞” (when looking at the affine chart at Z = 1),
namely the projective point (0 : 1 : 0). When using non-projective notation, we will
simply denote this point by O. This will be the specified point for any elliptic curve
in Weierstrass normal form.

2.3.1 Arithmetic

We now proceed to give E a group structure. Although it is defined purely al-
gebraically, it is easiest interpreted geometrically. The following is a somewhat
non-rigorous description of the addition law.

Let E/K be an elliptic curve, with the specified inflection point O. For a point
O ∈ E to be an inflection point, the tangent line ` of E at O must intersect E with
multiplicity 3 in O. A result of Bezout’s theorem, which implies that any line that
intersects E, intersects E exactly 3 times [Har77, Corollary 1.7.8], is that this is
equivalent to ` intersecting E only at O.

Let P and Q be two (not necessarily distinct) points in E. Let L be the line
through P and Q (if P = Q, L is the tangent line at P). Then, again by Bezout’s
theorem, L intersects E in a third point, say R. Following, define a line L′ through
O and R. Again L′ intersects E in a third point. Denote this point by P +Q. This
construction has the following properties:

(i) P +O = P for all P ∈ E,

(ii) for all P ∈ E, there exists −P ∈ E such that P + (−P) = O,

(iii) P +Q = Q+ P for all P,Q ∈ E,

(iv) (P +Q) +R = P + (Q+R) for all P,Q,R ∈ E.

All properties except (iv) are immediately clear from the description above. In other
words, the + operation turns (E,+) into an abelian group with O as the identity.
We refer the reader to the literature for a proof of (iv) [Sil09, Theorem III.3.4e].

2.3. ELLIPTIC CURVES 21

Figure 2.3: An illustration of the + operation on E : y2 = x3 +Ax+B.

Figure 2.3 shows how the addition law works on E : y2 = x3 +Ax+B defined
over R, when E/R is viewed in A2(R). Of course, O is not defined in this affine chart,
but we can imagine it being infinitely far up or down in the direction of the y-axis.

Our goal is to work with, and do computations on, elliptic curves defined over
finite fields, i.e. E/Fq. Since E/Fq includes all points of P2(Fq) that satisfy the
curve equation, we will usually restrict ourselves to the Fq-rational points of E. The
K-rational points of a projective set was discussed in Section 2.2.2, but we give a
formal definition here for elliptic curves. As we will see, this subset forms a subgroup
of E.

Definition 2.3.4. Let E be an elliptic curve defined over K, with specified point
O. The group of K-rational points in E is denoted as

E(K) = E ∩ P2(K) = {(X : Y : Z) ∈ E | (X,Y, Z) ∈ K3}.

Note that since E is defined over K, we have that O ∈ E(K).

As Fq is a finite field, E(Fq) contains only a finite number of points. Exactly
how many points are contained in E(Fq) is a difficult question, however, we do have
the following theorem which bounds |E(Fq)| from both above and below. Note that
|E(Fq)| is traditionally written as #E(Fq).

22 2. BACKGROUND

Theorem 2.3.5. Hasse’s theorem: Let E be an elliptic curve defined over Fq.
Then the order of E(Fq) (i.e. the number of points), denoted #E(Fq) is given by

#E(Fq) = q + 1− t

where |t| 6 2√q.

Further, in order to do computation on E(Fq), we need to give an algebraic formula
for point addition, i.e. a symbolic expression. These expressions are dependent on
the nature of the defining equation of E. We will come back to this in Section 3.2.
For now, we merely state the explicit addition laws for elliptic curves in Weierstrass
normal form for affine coordinates.

Proposition 2.3.6. Let E : y2 = x3 + Ax + B an elliptic curve defined over
a field K, and P,Q ∈ E(K) \ {O} with P = (xP , yP) and Q = (xQ, yQ). Then
−P = (xP ,−yP). Further:

(i) if xP = xQ and yP = −yQ, then P +Q = O,

(ii) P +Q = R = (xR, yR), with xR = λ2 − xP − xQ, and yR = λ(xP − xR)− yP
where

λ =
{
yQ−yP

xQ−xP
if xP 6= xQ

3x2
P +A

2yP
if xP = xQ

From the explicit addition laws, it is clear that E(K) is a subgroup of E/K.

2.4 Asymmetric Cryptography

The starting point of cryptography is centered around the following scenario: Two
honest parties, Alice and Bob, wish to communicate privately over an insecure
channel, where an eavesdropper, Eve, can intercept and read any message. To achieve
this, Alice and Bob must scramble (encrypt) their messages before sending them, in
such a way that only the other party can unscramble (decrypt) the message to make
sense of it.

2.4.1 Symmetric and Asymmetric Cryptography

The main difference between asymmetric cryptography (also called public-key cryp-
tography) and symmetric cryptography is the presence of a shared secret between
the communicating parties. In symmetric cryptography, Alice and Bob rely on their
knowledge of some shared secret (called a key) to encrypt and decrypt their messages,

2.4. ASYMMETRIC CRYPTOGRAPHY 23

and the goal is to ensure that decrypting an encrypted message without the key is
impossible, or at least computationally infeasible.

We formalize these concepts to define a generic symmetric cryptosystem

Definition 2.4.1. A symmetric cryptosystem consists of the following tuple
(K,P, C, E ,D), where

– K is the key-space, i.e. the set of all possible keys

– M is the message-space, i.e. the set of all possible messages

– C is the ciphtertext-space, i.e. the set of all possible ciphertexts

– E :M×K → C is the encryption algorithm, which takes in a key k ∈ K and a
message m ∈M and outputs a ciphertext c ∈ C

– D : C ×K →M ∪{⊥} is the decryption algorithm, which takes in a key k ∈ K
and a ciphertext c ∈ C and outputs either a message m ∈M, or a symbol ⊥,
indicating that decryption failed.

Further, the symmetric cryptosystem must satisfy the requirement thatD(E(m, k), k) =
m, i.e. that an encryption of m ∈M using a key k ∈ K decrypts to itself when using
k.

To encrypt a message m ∈ M, Alice and Bob must first agree on a secret
key k ∈ K. Next, Alice calculates c = E(m, k), and sends c to Bob. Bob finds
m′ = D(c, k), and since they agreed on the same key, m = m′.

Of course, as long as K is a finite set, it cannot be impossible for Eve to recover
m from c, as she can simply try to decrypt with all possible keys in K. However, if
K is large, this strategy becomes computationally infeasible, i.e. it would simply take
too much time for Eve to recover m.

Next, we move on to consider public-key encryption. In many real-world scenarios,
the requirement that Alice and Bob must have some shared secret key k is simply
not realistic, e.g. if they have never met before. Further, it scales very poorly, as
one needs to keep a separate secret key for each person one wishes to communicate
privately with.

Therefore, we would like to solve Alice’ and Bob’s everlasting communication
problems, without requiring them to agree on a secret beforehand. The solution to
this turns out to be public-key encryption, where Alice instead generates a public
key, which can be freely distributed to anyone wishing to send her a message, and a

24 2. BACKGROUND

corresponding private key, which she keeps secret, allowing her to decrypt messages
encrypted with her public key.

We formalize this to create a generic public-key encryption scheme.

Definition 2.4.2. A public-key encryption scheme is a tuple of three algorithms
(K, E ,D) where

– K is the key-generation algorithm, which takes only a security-parameter λ as
input, and outputs a public key pk and a secret key sk. Associated with the
keys, are a message-spaceM, and a ciphertext-space C

– E is the encryption algorithm, which takes in a message m ∈M and a public
key pk, and returns a ciphertext c ∈ C

– D is the decryption algorithm, which takes in a message c and a private key sk,
and returns either a message m ∈M, or a symbol ⊥, indicating that decryption
failed.

Further, given any output of the key-generation algorithm K(λ) = (pk, sk), the
public-key encryption scheme must satisfy satisfy D(E(m, pk), sk) = m for all m ∈M

Lastly, we should comment that we have not yet formulated any security require-
ments for either of our generic schemes. At a bare minimum, decrypting without the
secret key, and recovering the secret key from knowledge of the public key should
be computationally infeasible. However, there exist many more formal security
requirements in modern cryptography. Proving cryptosystems secure under these
formal security requirements is indeed a large part of modern cryptography, but not
the focus of this thesis.

2.4.2 Diffie-Hellman Key Exchange

The first public-key cryptosystem introduced by Diffie and Hellman in 1976 [DH76]
was in fact not a public-key encryption scheme, but a key exchange algorithm. The
idea was that the communicating parties would use the key exchange algorithm to
derive a shared secret, which could then be used to encrypt communication using a
symmetric cryptosystem. Still, towards the end of this section, we briefly mention
how to turn the Diffie-Hellman key exchange algorithm into a public-key encryption
scheme, called the ElGamal encryption scheme.

We formulate the Diffie-Hellman key exchange in a general group-theoretic setting.
The public parameters are a cyclic group G generated by g, i.e. G = 〈g〉, where
|G| = q. Now, Alice and Bob each pick a secret exponent, a and b respectively, such

2.4. ASYMMETRIC CRYPTOGRAPHY 25

Public parameters: G, g, q,
Alice Bob

a
$←− Zq b

$←− Zq

A← ga B ← gb

A

B

kA = Ba kB = Ab

Figure 2.4: The Diffie-Hellman key exchange

that a, b ∈ Zq, and compute A = ga and B = gb. Next, they exchange A and B, and
apply their secret exponent to each others value, i.e. Alice calculates Ba and Bob
calculates Ab. This is their shared secret, as Ba = (gb)a = gba = gab = (ga)b = Ab.
This is summarized in Figure 2.4.

Informally, to analyze the security of this scheme, we look at what information
Eve has available. Eve has access to g, A = ga and B = gb, and is trying to find
gab. Trivially, if Eve can reliably recover x from X(= gx) and g, then she breaks
the scheme. This problem of finding x from X = gx is called the discrete logarithm
problem, and because the security of Diffie-Hellman relies on it being hard, we say
that the Diffie-Hellman key exchange is based on the discrete logarithm problem.
Note that if one were to break the Diffie-Hellman key exchange, it is still an open
problem whether this leads to breaking the discrete logarithm problem. In other
words, breaking the Diffie-Hellman key exchange might be possible even if the discrete
logarithm problem is hard.

Originally, the Diffie-Hellman key exchange used the group (Fp)∗, i.e. the group of
units in Fp, but because of the existence of an algorithm which runs in subexponential
time called the index calculus algorithm [Adl79], p is required to be rather large for the
Diffie-Hellman key exchange to be considered secure when using G = (Fp)∗. Because
of this, modern Diffie-Hellman uses a cyclic group generated by an Fp-rational point
P on an elliptic curve, i.e. G = 〈P 〉 < E(Fp) for some P ∈ E(Fp). This was first
suggested, independently, by Miller [Mil85] and Koblitz [Kob87].

Finally, we turn the Diffie-Hellman key exchange into a public-key encryption
scheme (K, E ,D), to obtain the ElGamal encryption scheme [ElG85]. This is done as
follows:

26 2. BACKGROUND

Alice Bob

a
$←− Zq

sk = a

A← ga

pk = (G, g, q, A)

. Encryption .

b
$←− Zq

s← Ab

c1 ← gb

c2 ← m · s

c1, c2

. Decryption .

s← ca
1

m← c2 · s−1

Figure 2.5: The ElGamal encryption scheme

– Alice runs K which chooses a cyclic group G of order q generated by g. Then
it outputs a secret key sk = a corresponding to Alice’s secret in Diffie-Hellman,
and computes the group element A = ga, corresponding to the element which
Alice would have sent to Bob. K outputs the public key pk = (G, g, q, A)

– Bob runs E , which take in a message m ∈ G, and the public key pk. It selects
some random b ∈ {1, 2, . . . , n − 1}, computes a shared secret s = Ab = gab,
in addition to c1 = B = gb. Finally, it calculates c2 = m · s and outputs
c = (c1, c2)

– To decrypt, Alice runs D which take in a c = (c1, c2), and the private key
sk = a. Alice recovers the shared secret by s = ca1 = Ba = gba, and outputs
m′ = c2 · s−1 = m · s · s−1 = m

The public-key encryption scheme (K, E ,D) is summarized in Figure 2.5.

2.4. ASYMMETRIC CRYPTOGRAPHY 27

2.4.3 The RSA Cryptosystem

In 1978 Rivest, Shamir and Adleman introduced the first public-key encryption
scheme, later called the RSA cryptosystem [RSA78].

Unlike the Diffie-Hellman key exchange which works for any cyclic group, the
RSA cryptosystem is defined for a very specific group, namely (Zn)∗ (the group of
units in Zn), where n = pq and p and q are prime numbers. It relies on a well known
result from elementary number theory, which implies that the order of (Zn)∗ is φ(n),
where φ is the Euler-phi function. For n = pq, p and q distinct prime numbers, we
have φ(n) = (p − 1)(q − 1). We describe the RSA cryptosystem in our public-key
encryption scheme framework:

– Alice runs K which finds two big prime numbers p and q, and calculates n = pq

and φ(n) = (p− 1)(q − 1). Next, it selects an e ∈ (Zφ(n))∗ (i.e. 1 < e < φ(n),
with gcd(e, φ(n)) = 1), and computes d ≡ e−1 (mod φ(n)). K outputs sk = d

and pk = (n, e)

– Bob runs E , which take in a message m ∈ Zn, and the public key pk. It outputs
c ≡ me (mod n)

– To decrypt, Alice runs D which take in a c, and the private key sk = d. Alice
recovers the message by s ≡ cd ≡ (me)d ≡ med ≡ mkφ(n)+1 ≡ (mφ(n))km ≡ m
(mod n)

The last part of the protocol works because the order of (Zn)∗ is φ(n). The
encryption scheme is summarized in Figure 2.6.

From the protocol description, it is clear that factorizing n is sufficient to break
the encryption scheme. To see this, notice that when the factorization of n is known,
φ(n) can be calculated, which leads to recovering d from e (this is in fact how the
key-generation algorithm works to begin with). Factorizing integers is known as the
integer factorization problem, and since the RSA cryptosystem relies on it being
hard, we say that RSA is based on the integer factorization problem. The opposite
direction (whether breaking RSA implies the ability to solve the integer factorization
problem) is again an open problem.

RSA and Diffie-Hellman together form the basis of most of modern public-key
cryptosystems. Because of this, most modern public-key cryptosystems are based on
either the integer factorization problem or the discrete logarithm problem.

28 2. BACKGROUND

Alice Bob

pk = n, e

d← e−1 mod φ(n)
sk = d

. .Encryption. .

c← me mod n

c

. .Decryption .

m← cd mod n

Figure 2.6: The RSA cryptosystem

2.4.4 Shor’s Algorithm and The Hidden Subgroup Problem

In 1994 Shor gave a polynomial-time algorithm for solving both the integer factoriza-
tion problem and the discrete logarithm problem [Sho94]. The algorithm runs on a
special type of computer called a quantum computer, which works fundamentally
differently from classical computers. As far as we know, no one has yet successfully
built a quantum computer, but the implications of Shor’s algorithm are, as we have
seen in the previous sections, that if a quantum computer is ever built, modern
public-key cryptography will be broken.

It turns out that generalizing Shor’s algorithm shows that quantum computers can
solve the more general abelian hidden subgroup problem and that integer factorization
and discrete logarithms can be formulated as special cases of this problem [ME98].
In this section, we outline how this can be done. We start by defining the hidden
subgroup problem.

Definition 2.4.3. Hidden subgroup problem Given a finitely generated group
G, a finite set X and a function f : G→ X, where f is constant for all elements in
the same cosets of some subgroup H < G, and distinct for all elements in different
cosets of K (i.e. a, b ∈ G, f(a) = f(b) if and only if aH = bH), find a generating set
for H.

If the group G in the definition above is abelian, we refer to the problem as

2.4. ASYMMETRIC CRYPTOGRAPHY 29

the abelian hidden subgroup problem. Next, we outline how to solve the integer
factorization problem, given an algorithm that solves the abelian hidden subgroup
problem.

To factor N , we rely on a well known result, which states that factoring N is
computationally equivalent to calculating φ(N) [Mil76]. Because of this, we focus our
attention to recovering φ(N). To do this, instantiate the hidden subgroup problem
by selecting some a ∈ (Zn)∗, and setting G = (Z,+), X = Zn (as a set), and defining
f : (Z,+)→ Zn as f(k) = ak mod n. Then notice that f is constant on the cosets
of cZ, where c is the order of a in (Zn)∗, so the algorithm that solves the abelian
hidden subgroup problem recovers c. From the theorem of Lagrange 2.1.5, we know
that c | φ(n), so repeating the proceedure for different a ∈ (Zn)∗ eventually recovers
φ(n).

Similarly, we can reduce the discrete logarithm problem to the abelian hidden
subgroup problem. Given a cyclic group K = 〈g〉 of order q, and an element A ∈ K,
where A = ga, we are supposed to find a. We instantiate the hidden subgroup problem
as G = ((Zq,+)× (Zq,+)), X = K, and define f : G→ X as f(x, y) = gxA−y. Since
A = ga, we see that the hidden subgroup is H = {(ra, r) ∈ G | r = 0, 1, . . . , q − 1} =
〈(a, 1)〉, so an algorithm which solves the hidden subgroup problem will recover a.

2.4.5 Key Encapsulation Mechanisms

We end this chapter by briefly describing a class of public-key cryptosystems called key
encapsulation mechanisms (KEMs). A KEM is very close to a public-key encryption
scheme, but it is specifically designed to transport symmetric key material.

Public-key encryption often has limitations in the message length and is typically
much slower than symmetric encryption schemes. Therefore, public-key encryption is
often used to send the recipient a secret key which is used to encrypt the message itself
using symmetric encryption. Using a KEM instead of plain public-key encryption
then eliminates some of the potential security issues which may arise.

Figure 2.7 shows how to turn the RSA cryptosystem into RSA-KEM. The KDF-
function is a key-derivation function, which takes an input from some large set, and
maps it to a fixed-length output, which can be used as a key. RSA-KEM can also be
altered to transport some predefined symmetric key k, where the output of the KDF
is not the symmetric key k itself, but a key-encrypting key (KEK) used to encrypt k
[RKBT10].

Similar constructions exist for many other public-key encryption schemes.

30 2. BACKGROUND

Alice Bob

pk = n, e

d← e−1 mod φ(n)
sk = d

. .Encapsulation .

r
$←− (Zn)∗

k← KDF(r)
c← re mod n

c

. .Decapsulation .

r ← cd mod n
k← KDF(r)

Figure 2.7: RSA-KEM

Chapter3Towards Isogeny-Based
Cryptography

The goal of this chapter is to cover the specific background material this thesis is
based on. Section 3.1 extends on the discussion in Section 2.3, covering isogenies
and supersingular curves, two topics necessary for understanding the Supersingular
Isogeny Diffie-Hellman protocol. Section 3.2 importantly introduces the main elliptic
curve model used in this thesis. Finally, Section 3.3 covers the Supersingular Isogeny
Diffie-Hellman protocol.

3.1 More Topics on Elliptic Curves

Elliptic curves have seen many applications within cryptography (with isogeny-
based cryptography being one of the newer additions), many of which fall outside
of the scope of this thesis. We refer the reader to a few foundational examples
from the literature: Miller [Mil85] and Koblitz [Kob87] original papers on elliptic
curve cryptography, Lenstra’s integer factorization algorithm [LJ87] and Boneh and
Franklin’s realization of identity-based encryption [BF01].

Proofs of most theorems covered in this section are omitted but can be found in
the book by Silverman [Sil09].

3.1.1 Isogenies

In this section, we will be describing special maps between elliptic curves, called
isogenies. To do this, we first need the following definitions.

Definition 3.1.1. Let E be an elliptic curve, and let E′ = E∩A2 be an affine chart
of E, with corresponding de-homogenized polynomial f . The affine coordinate
ring of E′, denoted K[E′] is defined as

K[E′] = K[x, y]/〈f〉.

31

32 3. TOWARDS ISOGENY-BASED CRYPTOGRAPHY

Further, we can define the function field of E′, denoted K(E′) as the field of
fractions of K[E′], i.e.

K(E′) =
{
f

g

∣∣∣∣ f, g ∈ K[E′], g 6= 0
}
.

Recall from Definition 2.3.1, the requirement that f had to generate a prime ideal.
Notice that here we are relying on this fact, as field of fractions require an integral
domain, and a quotient ring is an integral domain if and only if the the modulus is a
prime ideal.

Note also that the definition above is only for some affine chart of E. We extend
the definition to K[E] and K(E) by saying that K[E] = K[E ∩ A2], and similarly
K(E) = K(E ∩A2), for some affine chart of A2. Note that in this case, the choice of
affine chart does not matter, as all choices lead to isomorphic structures. Although not
obvious, by homogenizing elements of K(E), we can create the following equivalent
definition of K(E), which may be easier to work with.

Proposition 3.1.2. Let E be an elliptic curve defined by h ∈ K[x, y, z]. The
function field of E can then equivalently be defined as

K(E) =
{
f

g

∣∣∣∣ f, g ∈ K[x, y, z], g /∈ 〈h〉, f and g are homogenous,deg f = deg g
}/
∼

where ∼ is the equaivalence relation on K(E) defined by f1
g1
∼ f2

g2
if f1g2−f2g1 ∈ 〈h〉.

The fact that we have defined elliptic curves as non-singular curves, makes the
following definition easy.

Definition 3.1.3. Let E be an elliptic curve defined over K. A morphism is then
a map φ : E → Pn defined by

φ(P)→ (f0(P) : f1(P) : · · · : fn(P))

where all fi ∈ K̄(E). We write φ as (f0 : f1 : · · · : fn). If all fi ∈ K(E), we say that
φ is defined over K.

Notice that in the above definition, φ is well defined regardless of choices of fi.
This is not obvious, but a result of the smoothness of E, and the structure of K̄(E).

If the image of a morphism lies within another curve, we get the following nice
theorem.

Theorem 3.1.4. Let E1 and E2 be elliptic curves defined over K. Then any
morphism φ : E1 → E2 is either constant or surjective.

3.1. MORE TOPICS ON ELLIPTIC CURVES 33

In the above theorem, a constant morphism means a morphism whose image is a
single point. From this, we are ready to define isogenies.

Definition 3.1.5. Let E1 and E2 be elliptic curves defined over K, with specified
points O1 and O2 respectively. A morphism φ : E1 → E2 is called an isogeny if
φ(O1) = O2.

From Theorem 3.1.4, we see that for any isogeny φ : E1 → E2, we have that
either Imφ = {O2} or Imφ = E2. If Imφ = {O2}, we call φ the zero isogeny.

Next, we will state multiple important theorems regarding isogenies and their
structure.

Theorem 3.1.6. Let φ : E1 → E2 be an isogeny. Then, for all P,Q ∈ E1, we have

φ(P +Q) = φ(P) + φ(Q).

In other words, φ induces a group homomorphism between E1 and E2.

As isogenies are morphisms, they are rational maps, hence it makes sense to
restrict ourselves to K-rational points, i.e to look at φ[E1(K)] = {φ(P) | P ∈ E1(K)}
if φ is defined over K. Cleary, φ[E1(K)] ⊆ E2(K) is still true. However, in general we
no longer have φ[E1(K)] = E2(K), and further, the whole kernel is not guaranteed
to lie inside E1(K).

Since isogenies automatically induce group homomorphisms, it makes sense to
look at their kernel. Let φ : E1 → E2 be an isogeny. If φ is the zero isogeny, then
clearly kerφ = E1. On the opposite side, if kerφ = {O1}, then φ is injective (and
already surjective by Theorem 3.1.4), and we say that φ is an isomorphism, and that
E1 and E2 are isomorphic. In general, we have the following theorem:

Theorem 3.1.7. Let φ : E1 → E2 be an non-zero isogeny. Then kerφ is a finite
subgroup of E1.

The previous theorem says something about the kernel, given an isogeny. However,
the following theorem turns this around and relates an isogeny to a given kernel.
This will be essential in the construction of isogeny-based cryptography.

Theorem 3.1.8. Given an elliptic curve E and a finite subgroup G, there exists a
unique elliptic curve E′ (up to isomorphism), and corresponding separable isogeny
φ : E → E′ satisfying kerφ = G.

Let φ,E,E′ and G be as in the previous theorem. To show that an elliptic curve
E′ is the image of φ derived from G, we will write E′ as E/G. This shows the group

34 3. TOWARDS ISOGENY-BASED CRYPTOGRAPHY

structure of E′. This should again not be confused with the notation E/K, where
K is a field.

In the previous theorem, we used the term separable isogeny. In general, isogenies
can be either separable, inseparable and purely inseparable isogenies. However, for
our purposes, we will always use isogenies computed from finite subgroups1, and
therefore we will only be dealing with separable isogenies. We refer the interested
reader to the literature for more discussion on non-separable isogenies [Sil09, Chapter
III §4]. We will in theorems use the word separable isogeny where it is accurate, but
as all isogenies used in this thesis will be separable, this should not be the focus of
the reader.

Informally, the degree of an isogeny is its degree as a rational map. However, in
the case of separable isogenies, we have the following proposition, which is very useful
in relation to isogeny-based cryptography. Therefore, we give only the proposition
and not the exact definition. The reader is welcome to think of the following as a
definition.

Proposition 3.1.9. The degree of a separable isogeny φ is equal to the order of
its kernel.

The following subgroups of E are important subgroups for many reasons. We
will be relying a lot on them later.

Definition 3.1.10. Let E be an elliptic curve defined over K, and let m ∈ N. The
m-torsion subgroup of E is the subgroup of E defined as

E[m] = {P ∈ E | [m]P = O}.

In other words, E[m] are the points in E of order dividing m.

There is an important isogeny, called the multiplication by m-map defined as
φ : E → E, where φ(P) = [m]P , which clearly has the m-torsion subgroup as its
kernel. If φ is the multiplication by m-map, it is usually denoted simply as [m]. It
can be shown that any isogeny ψ : E1 → E2 of degree d (abbreviated as a d-isogeny)
has a unique corresponding d-isogeny called the dual isogeny ψ̂ : E2 → E1, such that
ψ̂ ◦ ψ is the multiplication by d-map on E1. This turns the following definition into
an equivalence relation on the set of all elliptic curves over K̄.

Definition 3.1.11. Let E1 and E2 be elliptic curves defined over K̄. If there exists
a non-zero isogeny φ : E1 → E2, we say that E1 and E2 are isogenous.

1Theorem 3.1.8 merely states the existence of isogenies corresponding to finite subgroups, but
we will in Section 3.2.2 return to constructive theorems on this matter.

3.1. MORE TOPICS ON ELLIPTIC CURVES 35

If we consider the set of all elliptic curves over a field K, we now actually have
two equivalence relations, which partitions this set: curves that are isomorphic, and
the coarser partition of curves that are isogenous. We will return to this in Section
3.3.

Finally, we state the following theorem, which shows that the group structure of
E[m] is well known.

Theorem 3.1.12. Let E be an elliptic curve defined over K, and let m ∈ N, with
m 6= 0 in K (i.e. if char(K) = 0, then m 6= 0, while if char(K) = p > 0, then p - m).
Then

E[m] ∼= Z/mZ× Z/mZ.

Further, if char(K) = p > 0, then one of the following holds

E[pe] = {O}, for e = 1, 2, 3, . . .
E[pe] = Z/peZ, for e = 1, 2, 3, . . .

It turns out that in the last part of the previous theorem, E[pe] = Z/peZ for
almost all curves, and that E[pe] = {O} holds only for supersingular curves, which
we define in the next section.

3.1.2 Supersingular Curves

Supersingular curves are a certain class of elliptic curves which exist over fields K
with char(K) = p > 0. These curves turn out to exhibit a lot of different behaviour
than ordinary curves. Therefore they can be defined in several different equivalent
ways. At the end of the previous section, we already saw one possible definition, based
on the structure of the torsion subgroup E[pe], however, we choose to give another
definition, which will be the most relevant in section 3.3, when we discuss some
aspects of why supersingular curves are well suited for isogeny-based cryptography.

To give this definition, we must first define the following ring related to an elliptic
curve E

Definition 3.1.13. Let E be an elliptic curve defined overK. The endomorphism
ring of E is defined as

End(E) = {φ : E → E | φ is an isogeny}.

Endomorphism rings of abelian groups are common algebraic constructions,
which here is extended to elliptic curves as isogenies are the natural analogies of
homomorphisms for elliptic curves. To give End(E) a ring structure, we define

36 3. TOWARDS ISOGENY-BASED CRYPTOGRAPHY

addition of φ, ψ ∈ End(E) by (φ + ψ)(P) = φ(P) + ψ(P) and multiplication by
composition, i.e. (φ ◦ ψ)(P) = φ(ψ(P)).

Then we simply define supersingular curves as follows:

Definition 3.1.14. Let E be an elliptic curve defined over K. We say that E is
ordinary if End(E) is a commutative ring, and that E is supersingular if End(E)
is a non-commutative ring.

The above definition hides a lot of information about what we know about the
structure of End(E). The following paragraph briefly mentions this structure using
some definitions we have not introduced, however, we will not be using any more
than what was mentioned in the definition above.

In general, the structure of End(E) is restricted to one of three cases, and if we
know the characteristic of the field we are working over, it is further restricted to
two cases. If char(K) = 0, then End(E) is usually isomorphic to Z, but it may also
be isomorphic to an order in an imaginary quadratic field. In the latter case, E
is said to have complex multiplication, which has proven to be a very interesting
property. However both of these are commutative, and hence (trivially from our
definition) supersingular curves do not exist over fields of characteristic zero. If
char(K) = p > 0, End(E) is never isomorphic to Z, but is instead isomorphic to
an order in either an imaginary quadratic field or a quaternion algebra. Of these,
curves with End(E) isomorphic to an order in a quaternion algebra (which is a
non-commutative structure) are called supersingular.

As mentioned, the non-commutative nature of End(E) for supersingular curves
is an important feature which some isogeny-based cryptographic schemes benefit
from, such as SIDH which we cover in Section 3.3. However, many other properties
of supersingular curves are also used in isogeny-based cryptography. These next
theorems cover some of these properties. Recall Hasse’s theorem (Theorem 2.3.5),
which states that #E(Fq) = q + 1− t, where |t| 6 2√q.

Theorem 3.1.15. Let E be a supersingular elliptic curve defined over Fq where
q = pn for some prime p > 3, and let #E(Fq) = q + 1− t. Then t = 0 mod p.

From the theorem above, and the theorem of Hasse, we know that if E is defined
over Fp for some prime p > 3, then #E(Fp) = p+ 1. This makes it trivial to find the
number of points on a supersingular elliptic curve over prime fields, even though it is
difficult for ordinary curves2. Similarly, we can easily find it over extension fields.

2Although even for ordinary curves, there exist polynomial-time algorithms which find the
number of points, first discovered by Schoof in 1995 [Sch95].

3.1. MORE TOPICS ON ELLIPTIC CURVES 37

Theorem 3.1.16. Let E1 be a supersingular elliptic curve, and let φ : E1 → E2 be
a non-zero isogeny. Then E2 is supersingular.

The previous theorem, combined with the fact that all isogenies have a dual,
guarantees that an isogeny-class either contains no supersingular elliptic curves or
only supersingular elliptic curves. In fact, the next theorem shows that for any field
Fq, there exists only one such isogeny-class, i.e. all supersingular elliptic curves
belong to the same isogeny-class.

Theorem 3.1.17. Let Fq be a finite field of order q. Then all supersingular elliptic
curves over Fq are isogenous.

Finally, we will state two theorems which together state that the number of
supersingular curves over Fp is a finite number and that this number is well known.
To do so, we must first introduce the j-invariant. The j-invariant will also become
relevant in Section 3.3, where we introduce SIDH.

Associated with any elliptic curve E/K is an element in K called the j-invariant3.
The j-invariant depends on the equation that E is given by. As an example, we give
the following proposition for curves in Weierstrass normal form.

Proposition 3.1.18. Let E : y2 = x3 + Ax + B an elliptic curve. Then the
j-invariant of E is given by

j(E) = 1728 4A3

4A3 + 27B2 .

One of the main reasons we are interested in the j-invariant of an elliptic curve is
the following theorem.

Theorem 3.1.19. Let E1 and E2 be elliptic curves over K. Then j(E1) = j(E2)
if and only if E1 ∼= E2.

Note that the result above does not state that E1(K) ∼= E2(K), even if E1 and
E2 are defined over K. The isomorphism between E1 and E2 is considered over K̄,
i.e. E1(K̄) ∼= E2(K̄).

Now we are ready to state the theorems we wanted. The first theorem states
both that the total number of supersingular curves (up to isomorphism) over a field
Fp is finite, and further, that they all exist in Fp2 .

3The theory behind the j-invariant is related to complex elliptic functions and modular forms,
topics that are far beyond the material we intend to cover in this thesis. The reader is referred to
the literature for details [Kob93, Chapter III]

38 3. TOWARDS ISOGENY-BASED CRYPTOGRAPHY

Theorem 3.1.20. Let E be a supersingular elliptic curve defined over Fq for some
q = pn. Then j(E) ∈ Fp2 .

Note that as Fp ⊆ Fp2 , j(E) might also lie within Fp.

Since isomorphic curves have the same j-invariant, a j-invariant is either related
to supersingular or ordinary curves. Because of this, if a j-invariant is related
to a supersingular curve, we call it a supersingular j-invariant. The number of
different supersingular j-invariants in field Fp is equivalent to the number of different
isomorphism-classes of supersingular curves over Fp, and is given by the following
theorem.

Theorem 3.1.21. Let n be the number of distinct supersingular j-invariants in Fp,
where p 6= 2, 3. Then

n =
⌊ p

12

⌋
+

0 if p ≡ 1 (mod 12)
1 if p ≡ 5 (mod 12)
1 if p ≡ 7 (mod 12)
2 if p ≡ 11 (mod 12)

As we will see in Section 3.3, the shared secret that the communicating parties
end up with in SIDH is a secret j-invariant. Therefore, Theorem 3.1.21 can be used
to quickly calculate an upper bound on the size of the (shared) key-space.

3.2 Elliptic Curve Models

In this section, we present the elliptic curve model used in this thesis, the twisted
Hessian curve, after briefly mentioning various other elliptic curve models to provide
context. For this whole section, we will be working over a finite field Fq, with
char(Fq) 6= 2, 3. Any projective set is then understood to be contained in Pn, where
Pn is the n-dimensional projective space over Fq.

3.2.1 Alternatives to Weierstrass Form

Proposition 2.3.2 introduced the Weierstrass normal form of elliptic curves. While
the Weierstrass normal form is commonly used as a standard model of elliptic curves
because of their generality (recall Theorem 2.3.3), other models of elliptic curves
have been studied extensively because of their applications in implementations of
various algorithms in elliptic curve cryptography.

One example of this is the Montgomery form of elliptic curves

3.2. ELLIPTIC CURVE MODELS 39

Proposition 3.2.1. Montgomery form: Let E be a projective set, defined as

E : BY 2Z = X3 +AX2Z +XZ2 (3.1)

with a specified point O = (0 : 1 : 0) ∈ E. Then E is an elliptic curve if and only if
B
(
A2 − 4

)
6= 0.

The Montgomery form was introduced by Montgomery in 1987 [Mon87], mainly
to speed up algorithms relying heavily on point doubling on elliptic curves, such as
Lenstra’s factoring algorithm [LJ87]. Despite being introduced early in the history
of elliptic curve cryptography, it is still commonly used today. It was used in the
suit of algorithms proposed by Costello et al. to speed up SIDH [CLN16], and is still
used in the NIST PQC submitted implementation of SIKE [JAC+20].

As an elliptic curve, any Montgomery curve defined over Fq is isomorphic to
some curve in Weierstrass form defined over Fq by Theorem 2.3.3. However, not all
Weierstrass curves over Fq are isomorphic to a curve in Montgomery form over Fq.
One example of a restriction on Montgomery curves is that the Fq-rational points of
a curve in Montgomery form always has order divisible by 4.

Another model is the twisted Edwards curve. The Edwards curve model was
introduced by Edwards in 2007 [Edw07], and later generalized to the twisted Edwards
curve by Bernstein et al. [BBJ+08].

Definition 3.2.2. (Twisted) Edwards curves: Let E be a projective set, defined
as

E :
(
aX2 + Y 2)Z2 = Z4 + dX2Y 2 (3.2)

with a specified point O = (0 : 1 : 1) ∈ E. Then E is a twisted Edwards curve if and
only if ad(a− d) 6= 0. If a = 1, then E is simply called an Edwards curve.

We give the twisted Edwards curve as a separate definition, as it falls outside
our definition of elliptic curves, most importantly because it has singular points at
(1 : 0 : 0) and (0 : 1 : 0). Nevertheless, its use has been studied in elliptic curve
cryptography for many reasons. Similarly to Montgomery curves, the non-singular
group of Fq-rational points on twisted Edwards curves always has order divisible
by 4. In addition to speeding up arithmetic, twisted Edwards curves can achieve
so-called complete addition formula by appropriate choice of parameters, meaning
that one formula for addition works for all cases4. This has the benefit of simplifying
implementation and gives a natural resistance against side-channel attacks. In the
context of isogeny-based cryptography, twisted Edwards curves have been studied,

4Compare this with the addition formulae for Weierstrass curves (Proposition 2.3.6): Weierstrass
curves have different formulae based on whether P = Q or not and whenever O is involved.

40 3. TOWARDS ISOGENY-BASED CRYPTOGRAPHY

Figure 3.1: From left to right: The Montgomery curve y2 = x3 − x2 + x, the twisted
Edwards curve 3x2 + y2 = 1 + 2x2y2 and the Huff’s curve 2x

(
y2 − 1

)
= y

(
x2 − 1

)
.

for instance by Kim et al. who reported that twisted Edwards curves were as fast as
Montgomery curves for evaluating low-degree isogenies [KYK+18].

Another elliptic curve model that has been considered for isogeny-based cryptog-
raphy is Huff’s model.

Proposition 3.2.3. Huff’s model: Let E be a projective set, defined as

E : aX
(
Y 2 − Z2) = bY

(
X2 − Z2) (3.3)

with a specified point O = (0 : 0 : 1) ∈ E. Then E is an elliptic curve if and only if
ab
(
a2 − b2) 6= 0.

One property of Huff’s model of elliptic curves which makes them interesting
for elliptic curve cryptography is that it has an almost complete addition formula5

which is independent of its parameters a and b [JTV10]. The group of Fq-rational
points on an elliptic curve in Huff’s model always has order divisible by 8. Huff’s
model has been studied in the context of isogeny-based cryptography and shown to
be competitive with Montgomery and Edwards curves [DKW20].

Figure 3.1 shows the affine plane A2(R) at Z = 1 for examples of all three models
introduced in this section, defined over R. Keep in mind that for cryptographic
purposes, we consider elliptic curves defined over finite fields. However, plotting
curves over finite fields is not very helpful, since the curves look more like randomly
scattered points, so we choose to plot the curves over R.

5To be more precise, the formula is complete for all cyclic subgroups of odd order, when the
curve is defined over a field of odd characteristic.

3.2. ELLIPTIC CURVE MODELS 41

3.2.2 Twisted Hessian Curves

The elliptic curve model that we study in this thesis is the twisted Hessian curve,
which is a generalization of the Hessian curve. Twisted Hessian curves were first
introduced by Bernstein et al. [BCKL15].

Definition 3.2.4. (Twisted) Hessian curves: Let E be a projective set, defined
as

E : aX3 + Y 3 + Z3 = dXY Z (3.4)

With a specified point O = (0 : −1 : 1) ∈ E. Then E is an elliptic curve (called a
twisted Hessian curve) if and only if a

(
27a− d3) 6= 0. If a = 1, then E is simply

called a Hessian curve.

To simplify notation, we will often write a twisted Hessian curve E : aX3 +
Y 3 + Z3 = dXY Z as H(a, d). Any twisted Hessian curve H(a, d) is isomorphic to a
Hessian curve H

(
1, d

3√a

)
through the isomorphism ϕ(X : Y : Z) = (3

√
aX : Y : Z),

but keep in mind that the isomorphism may not be defined over Fq (however, it is
always defined over Fq (3

√
a)).

We present the two formulae for addition on H(a, d). Interestingly, Bernstein et
al. showed that if a is not a cube in Fq, then the rotated addition law is complete
[BCKL15, Chapter 3 and 4].

Theorem 3.2.5. The standard addition law Let H(a, d) be a twisted Hessian
curve, and let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be points on H(a, d).
Define

X3 = X2
1Y2Z2 −X2

2Y1Z1

Y3 = Z2
1X2Y2 − Z2

2X1Y1

Z3 = Y 2
1 X2Z2 − Y 2

2 X1Z1

If (X3 : Y3 : Z3) 6= (0 : 0 : 0), then P +Q = (X3 : Y3 : Z3).

Theorem 3.2.6. The rotated addition law Let H(a, d) be a twisted Hessian
curve, and let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be points on H(a, d).
Define

X ′3 = Z2
2X1Z1 − Y 2

1 X2Y2

Y ′3 = Y 2
2 Y1Z1 − aX2

1X2Z2

Z ′3 = aX2
2X1Y1 − Z2

1Y2Z2

If (X ′3 : Y ′3 : Z ′3) 6= (0 : 0 : 0), then P +Q = (X ′3 : Y ′3 : Z ′3).

42 3. TOWARDS ISOGENY-BASED CRYPTOGRAPHY

The rotated addition only law fails (i.e. it returns the zero coordinate) in cases
when (X2 : Y2 : Z2) = (Z1 : c2X1 : cY1), where c3 = a. Therefore, if c /∈ Fq, then the
rotated addition law is complete when working in the Fq rational part of H(a, d).
In general, the standard addition law always works in the cases where the rotated
addition law fails6, so together they always allow for calculating P +Q, even if a is a
cube.

The negative of a point on a twisted Hessian curve is found as follows.

Proposition 3.2.7. Let H(a, d) be a twisted Hessian curve, and let (X : Y : Z) =
P ∈ H(a, d). Then −P = (X : Z : Y).

From Proposition 3.2.7, it is easy to deduce that the points of order 2 are precisely
the points P = (X : Y : Z) where Y = Z. A similar result about points of order 3 is
stated in Theorem 3.2.11, which are particularly simple on a twisted Hessian curve.
We return to this in Chapter 5, where it will become very important.

Bernstein et al. also gave very fast tripling formulae for twisted Hessian curves
(i.e. a way of calculating [3]P directly as opposed to calculating P + P + P). See
Section 4.3.3 for more details.

Finally, we restate the isogeny formulae for twisted Hessian curves by Dang and
Moody [DM19]. The first formula works for any kernel subgroup G, with 3 - |G|,
while the two other formulae cover the cases for subgroups of size exactly 3. In
general, isogenies of arbitrary degree n can be calculated by writing n = 3rm where
3 - m, and decomposing the isogeny as r isogenies of degree 3 and an isogeny of
degree m. See Section 3.3.4 for more details on decomposition of isogenies.

Theorem 3.2.8. Case 1: Let G be a finite subgroup of H(a, d) of size m, with
3 - m. Then φ : H(a, d)→ H(am, D) is an isogeny with G as a kernel, given by

φ(P) =
(∏
R∈G

X(P +R) :
∏
R∈G

Y (P +R) :
∏
R∈G

Z(P +R)
)
,

where X(P) means the X-coordinate of the point P and similarily for Y (P) and
Z(P).

In Theorem 3.2.8, the parameter D of the image curve is given by a somewhat
convoluted formula. Instead of calculating D directly, it instead possible to recover
it by taking the image of a random point and recovering D from the curve equation,
which is what we do in our implementation. See Section 4.1.4 for details.

6However, it always fails when (X2 : Y2 : Z2) = (ω2X1 : ωY1 : Z1), where ω3 = 1, so for
instance it always fails for point doubling.

3.2. ELLIPTIC CURVE MODELS 43

Next, we give the two formulae for isogenies of degree 3.

Theorem 3.2.9. Case 2: Let S1 =
{

(0,−1, 1), (0,−ω, 1), (0,−ω2, 1)
}
be a sub-

group of H(a, d), where ω3 = 1, ω 6= 1. Then φ : H(a, d) → H(d3 − 27a, 3d) is an
isogeny with S1 as a kernel, given by

φ(X : Y : Z) = (XY Z : aX3 + ω2Y 3 + ωZ3 : aX3 + ωY 3 + ω2Z3).

Theorem 3.2.10. Case 3: Let S2 = {(0,−1, 1), (1,−c, 0), (1, 0,−c)} be a subgroup
of H(a, d), where c3 = a. Then φ : H(a, d)→ H(d2c+3dc2 +9a, d+6c) is an isogeny
with S2 as a kernel, given by

φ(X : Y : Z) = (XY Z : c2X2Z + cXY 2 + Y Z2 : c2X2Y + cXZ2 + Y 2Z).

The fact that S1 and S2 are subgroups is easily verified by looking at the addition
formula. Furthermore, from Theorem 3.1.12, we know that E[3] has |Z/3Z×Z/3Z| = 9
elements for any elliptic curve (recall, we assume char(Fq) 6= 3), so all subgroups of
order 3 are on the form of S1 or S2 (because there are 3 choices for c, with c3 = a).
Therefore, Theorem 3.2.9 and 3.2.10 covers all cases for subgroups of order 3.

It can also be verified that if (X : Y : Z) = P ∈ H(a, d) and one of X,Y, Z are 0,
then P ∈ S1 or P ∈ S2 [DM19]. This proves the following theorem.

Theorem 3.2.11. Let P = (X : Y : Z) 6= O be a point on Ha,d. Then P has order
3 if and only of XY Z = 0.

Figure 3.2: The twisted Hessian curve 2x3 + y3 + 1 = 6xy.

Figure 3.2 shows the affine plane A2(R) at Z = 1 for a twisted Hessian curve
defined over R. Again, we will only be working with curves over Fq, so the plot is of
no particular importance, but is given as a reference to the other affine planes that
were shown in Figure 3.1.

44 3. TOWARDS ISOGENY-BASED CRYPTOGRAPHY

3.3 Supersingular Isogeny Diffie-Hellman

Finally, we turn our attention to the Supersingular Isogeny Diffie-Hellman (SIDH)
protocol, which we focus on in this thesis.

Isogeny-based cryptography is yet another application of elliptic curves in cryp-
tography. Lately, a lot of work has been published in this area, as SIKE, a key-
encapsulation mechanism based on SIDH, was submitted to the National Institute
of Science and Technology’s Post-Quantum Cryptography (NIST PQC) standard-
ization contest [NIS16]. It is by spring 2021 among the reserves in the third round
[AASA+20].

There exist other isogeny-based cryptosystems, but we restrict our attention
to SIDH. We refer the reader to the literature for details on other isogeny-based
cryptosystems, e.g. the first published cryptosystem based on isogenies by Rostovtsev
and Stolbunov’s [RS06]7, or the more recently proposed Commutative SIDH (CSIDH)
[CLM+18], which works very similar to Rostovtsev and Stolbunov’s protocol, but
which uses supersingular elliptic curves to achieve a massive speed-up.

3.3.1 The Protocol

From a high-level perspective, SIDH looks very similar to regular Diffie-Hellman.
The protocol works because the diagram in Figure 3.3 commutes, at least up to
isomorphism. We recall Theorem 3.1.8, which states that for every finite subgroup G
of an elliptic curve E, all isogenies having G as a kernel has the same codomain (up
to isomorphism). This suggests the following key exchange scheme:

– The public parameter is some starting curve E,

– Alice and Bob both pick a secret subgroup (generated by RA and RB respec-
tively), apply the corresponding isogeny (φA and φB), and send the new curve
(E/〈RA〉 and E/〈RB〉) over to the other party,

– Alice and Bob next apply the isogeny corresponding to the image of their secret
subgroups (generated by φB(RA) and φA(RB) respectively), and since isogenies
can be composed together, the resulting curve corresponds to E/〈RA, RB〉,
which means they have a shared secret.

There is one central issue with the simplified explanation above. The difficulty
here is that Alice cannot give Bob RA to evaluate in φB , because RA is supposed to
be secret, and vice versa. We use the next paragraphs to show how Alice and Bob

7Unpublished work by Couveignes has since shown that he already had some of the key ideas
behind Rostovtsev and Stolbunov’s cryptosystem in 1997 [Cou06].

3.3. SUPERSINGULAR ISOGENY DIFFIE-HELLMAN 45

E E/〈RA〉

E/〈RB〉 E/〈RA, RB〉

kerφA=〈RA〉

ker
φ

B
=
〈R

B
〉

ker
φ
′B

=
〈φ

A
(R

B
)〉

kerφ′A=〈φB(RA)〉

Figure 3.3: High level view of SIDH. Arrows are isogenies corresponding to the given
kernel.

can recover their generators without revealing them to the other party. The main
idea is that Alice and Bob work in separate torsion subgroups of E and that Alice
and Bob evaluate generators of each other’s torsion subgroups instead of the secrets
RA and RB itself.

One key idea is to select some prime p = `ea

A `
eb

B f ± 1, where `A and `B are
two small, distinct primes (typically 2 and 3) and f is some small cofactor to
ensure that p is a prime. We fix the field that we are working over to be Fp2 .
Then, because of Theorem 3.1.15, any supersingular curve E over Fp2 has order
p2 + kp + 1, where k ∈ {−2,−1, 0, 1, 2}. We select a curve with k = ±2, such
that #E(Fp2) = (`ea

A `
eb

B f)2. The structure of a curve of that order is given as
E(Fp2) ∼= Z/(`eA`eBf)Z× Z/(`eA`eBf)Z. How to select k, and get the correct curve
was shown by Bröker [Brö09]. Further, recall Theorem 3.1.12, which states that the
structure of E[`e] ∼= Z/`eZ× Z/`eZ. From this, it is straight forward to derive the
following proposition:

Proposition 3.3.1.

Let E(Fp2) ∼= Z/(`eA`eBf)Z×Z/(`eA`eBf)Z. Then every point in E[`eA

A] and E[`eB

B]
is Fp2-rational.

The proposition is a direct result of the structure of E(Fp2), which contains (`eA

A)2

points of order dividing `eA

A . Since this is the same number of elements as there are
in E[`eA

A], every point in E[`eA

A] is also in E(Fp2). The same argument works for
E[`eB

B].

We are now ready to accurately describe the protocol. The protocol starts by
fixing p, Fp2 and a starting supersingular curve E as described above, in addition to
a basis {PA, QA} for E[`eA

A] and a basis {PB , QB} for E[`eB

B]. Alice samples random

46 3. TOWARDS ISOGENY-BASED CRYPTOGRAPHY

Public parameters:
E, {PA, QA}, {PB , QB}
Alice Bob

nA,mA
$←− Z`

eA
A

nB ,mB
$←− Z`

eB
B

RA ← [nA]PA + [mA]QA RB ← [nB]PB + [mB]QB

EA ← φA(E) EB ← φB(E)

EA,

φA(PB),
φA(QB)

EB ,

φB(PA),
φB(QA)

R′A ← [nA]φB(PA) + [mA]φB(QA) R′B ← [nB]φA(PB) + [mB]φA(QB)
EAB ← φ′A(EB) EAB ← φ′B(EA)
k← j(EAB) k← j(EAB)

Figure 3.4: The SIDH protocol.

m,n ∈ Z`eA
A
, and finds her secret RA = [m]PA + [n]QA. To ensure that RA has

order `eA

A , she requires that at least one of m and n are not divisible by `A. She
then computes her corresponding secret isogeny φA, and computes φA(E) = E/〈RA〉,
φA(PB) and φA(QB), and sends Bob (E/〈RA〉, φA(PB), φA(QB)). Bob does the
same, but for his parameters. To arrive at a shared secret, Alice finds φB(RA) by
computing [m]φB(PA)+ [n]φB(QA), which works because [m]φB(PA)+ [n]φB(QA) =
φB([m]PA+ [n]QA) = φB(RA). She then uses φB(RA) to compute the corresponding
isogeny φ′A, and finds φ′A(EB) = E/〈RA, RB〉. Again Bob does the same for his
parameters, arriving at E/〈RB , RA〉 ∼= E/〈RA, RB〉. Finally, since these curves are
the same up to only up to isomorphism, Alice and Bob both take the j-invariant of
their final curve to use as their shared secret. The protocol is summarized in Figure
3.4.

3.3.2 Random Walks in Isogeny-Graphs

We give a brief mention of another view of isogeny-based cryptography. The main
motivation for introducing this view is that in Chapter 5, we present a tweaked SIDH
scheme, where the random isogeny-walks are much closer to the diameter of the

3.3. SUPERSINGULAR ISOGENY DIFFIE-HELLMAN 47

supersingular isogeny-graph. Because of this, it can achieve the so-called mixing
property that regular SIDH fails to achieve.

In a general sense, all isogeny-based cryptography is based on random walks in
isogeny-graphs. We give an informal introduction to this view. For a more thorough
description, we refer to the literature [Feo17, Part III]. Since we focus on SIDH, we
restrict our attention to supersingular isogeny graphs.

For a fixed prime p, and another prime `, we can create a graph from an equivalence
class of isogenous curves over F̄p. Denote this graph G`(F̄p). In this graph, the vertices
are isomorphism classes of elliptic curves, while edges between vertices are isogenies
of degree `. Since all isogenies have a dual (see the discussion succeeding Theorem
3.1.10), this graph can be constructed as an undirected graph8. For SIDH, and many
other examples in isogeny-based cryptography, we can now think of the secret keys
as a secret path between two vertices in this graph.

Notice that in SIDH, the communicating parties do not work in the same isogeny-
graph. Both parties graphs have the same set of vertices, but the edges are different.
In particular, Alice works in G`A

(F̄p), while Bob works in G`B
(F̄p).

Supersingular isogeny graphs are what is called Ramanujan, which gives them
a lot of interesting properties. We avoid the definition of Ramanujan graphs but
instead focus on the interesting properties that are a result of this. For any primes p
and `, the supersingular isogeny graph G`(F̄p) has the following properties:

An exponential number of vertices in log p. By Theorem 3.1.21, the number
of vertices is ≈ p

12 .

It is ` + 1-regular. This simply means that all vertices have degree `+ 1.

A short diameter. The diameter of a graph is the longest distance between two
vertices, where the distance is calculated as the length of the shortest path
between two vertices. In G`(F̄p), the diameter is of size Θ(log p).

The graph is an expander graph. Informally, this leads to the fact that random
walks of length close to the diameter are almost the same as uniform samples
of the vertices.

The last point on expander graphs is called the mixing property. Notice that
in SIDH, the isogeny-walks are not long enough to achieve the mixing property in
general, because the isogeny-walks are of length ≈ 1

2 log p, while the diameter is of
8This is only partially true. There are some complicating details here regarding curves with

supersingular j-invariants 0 and 1728, which we have omitted.

48 3. TOWARDS ISOGENY-BASED CRYPTOGRAPHY

length ≈ log p. Therefore, informally, the public keys in SIDH cannot be seen as
uniform samples of the vertices in a supersingular isogeny graph. To fix this, we could
simply have opted to select a smaller prime p. The caveat then is that the torsion
groups that Alice and Bob are working in, are no longer necessarily Fp2-rational.
We will return to this in Chapter 5, where we show some ideas on how to do the
isogeny-calculation in SIDH without a Fp2-rational torsion group.

3.3.3 Security and Cryptanalysis

In this subsection, we briefly discuss aspects related to the security of the SIDH
protocol. A more thorough discussion, as well as security proofs, can be found in
[JD11, Chapter 5 and 6]. We start by defining a problem that recovers the secret
from the information the adversary has available. This problem is analogous to the
discrete logarithm problem for regular Diffie Hellman.

Throughout this section, let the public parameters p,E, {PA, QA}, {PB , QB}
be as before, i.e. p = `eA

A `eB

B f ± 1, and E a supersingular curve with E(Fp2) ∼=
(Z/(`eA`eBf)Z)2 and {PA, QA}, {PB , QB} generators for E[`eA

A] and E[`eB

B] respec-
tively.

Definition 3.3.2. Computational Supersingular Isogeny (CSSI) problem.
Let φA : E → EA be an isogeny with kerφA = 〈[n]PA + [m]QA〉, where m,n ∈ Z`eA

A
,

and not both divisible by `A. Given EA, φA(PA), φA(QA), find a generator RA of
kerφA.

A more general version of the CSSI problem is simply the following: Given E
and EA = E/〈RA〉, find a generator of 〈RA〉. However, this does problem does not
consider the additional potential advantage an adversary may gain from seeing the
images of the torsion points. Currently, the best known attacks against the CSSI
problem do not use the additional information at all. However, Petit has shown that
some related problems may benefit from the extra information [Pet17]. This suggests
that at least some information is leaked and that the CSSI problem may be strictly
easier than the more general version mentioned at the start of this paragraph.

There exists an algorithm which runs in quantum subexponential time (meaning
there is an algorithm which runs on a quantum computer that solves the problem
in subexponential time), which solves the analogue of the generic CSSI problem for
ordinary curves [CJS14]. This algorithm affects both the protocol by Rostovtsev
and Stoblunov, and CSIDH. However adapting the algorithm to solving CSSI in
quantum subexponential time does not seem possible, as the algorithm relies on the
commutative nature of the endomorphism ring of the curve, while as we have seen

3.3. SUPERSINGULAR ISOGENY DIFFIE-HELLMAN 49

Figure 3.5: Visual example of the claw-finding algorithm for solving the CSSI problem,
with `A = 2 and eA = 6. The graph is a subgraph of an isogeny graph where the
edges are isogenies of degree 2

the endomorphism ring of supersingular curves are non-commutative (by definition
3.1.14)9.

To assess the difficulity of bruteforcing a solution, one can ask about many choices
of secrets there are, which corresponds to asking about the size of the key-space. To
answer this, we must recall that E[`eA

A] ∼= (Z/`eA

A Z)2, and that E[`eA

A] ⊆ E(Fp2). It
can be shown using elementary group theory that (Z/`eA

A Z)2 contains `eA−1
A (`A + 1)

different cyclic subgroups of order `eA

A . Since E[`eA

A] ⊆ E(Fp2), all of these are possible
secret keys, so the key space has size `eA−1

A (`A + 1). In practice, what is often done
is to simply select a single secret number n and compute RA = PA + [n]QA, which
reduces the number of secrets to `eA

A . In any case, the key space is approximately
of size √p when `eA

A ≈ `eB

B , which quickly makes brute forcing computationally
infeasible. Still, notice that this is still much smaller than the total number of
supersingular j-invariants in SIDH, as given in Theorem 3.1.21.

To improve on the brute force strategy, we use the fact that to recover a secret
isogeny φ : E → EA, it is sufficient to recover the dual of the secret φ̂ : EA → E.
This suggests the following improvement: Build a tree of all possible isogenies from

9It might be surprising that the algorithm still affects CSIDH, even when CSIDH uses supersin-
gular curves. This comes from the fact that CSIDH uses the subring of End(E) of isogenies defined
over Fp, which is again commutative (hence the name).

50 3. TOWARDS ISOGENY-BASED CRYPTOGRAPHY

E of degree `eA/2
A . Next, try isogenies from EA of degree `eA/2

A until the image curve
collides with one of the leaf nodes in the tree from E. This then forms a path from
E to EA in the isogeny-graph corresponding to the secret isogeny of degree `eA

A . See
Figure 3.5.

This strategy suggests that the problem CSSI problem can be viewed as a special
case of the so-called claw finding problem. On a classical computer, this can be
solved (using the strategy discussed in the previous paragraph) in O

(
4
√
p
)
time and

O
(

4
√
p
)
memory. On a quantum computer, this can be improved to give a O

(
6
√
p
)

attack against SIDH [Tan09].

3.3.4 Smooth-Degree Isogeny-Computation

Mathematically, given a curve E and a subgroup G, one can compute the correspond-
ing isogeny φ, with kerφ = G, by using Vélu’s formula [Vél71]. The problem is that
the complexity of Vélu’s formula grows too quickly with the degree of the isogeny.
To speed up computation, Alice and Bob can compute their high-degree isogeny as a
composition of many low-degree isogenies instead. In this section, we focus on how
to do this in an efficient way. The goal of the section is to show the ideas which lead
to the optimal strategies, covered in Section 4.2.2. The strategies discussed in this
section were introduced by Jao and De Feo [JD11, Chapter 4.2].

Let E be a curve as in the previous sections, and let R be a point of order `e. To
compute the isogeny φ with kerφ = 〈R〉, we decompose φ as e isogenies of degree `,
such that φ = φe−1 ◦ φe−2 ◦ · · · ◦ φ0. To do this, we can use the natural strategy in
Algorithm 3.1. Here, IsoFromKer(P) returns the isogeny with kernel 〈P 〉 (which can
for instance be computed with Vélu’s formula, or in our case, one of Theorem 3.2.8,
Theorem 3.2.9 or Theorem 3.2.10).

Algorithm 3.1 Basic strategy for computing isogeny of degree `e

Input: An elliptic curve E, a point R ∈ E of order `e
Output: The curve E/〈R〉
1: R0 ← R,E0 ← E
2: for i← 0, e− 1 do
3: φi ← IsoFromKer([`e−i−1]Ri)
4: Ei+1 ← φi(Ei)
5: Ri+1 ← φi(Ri)
6: end for
7: return Ee

Notice that for each i, the point [`e−i−1]Ri is a point of order `, which implies
that φi is a degree ` isogeny by proposition 3.1.9. From this, we see that the strategy
works. Clearly, since R is in kerφ, we have 〈R〉 ⊆ kerφ. Further, because φ has

3.3. SUPERSINGULAR ISOGENY DIFFIE-HELLMAN 51

R0

[`]R0 R1

[`2]R0 [`]R1 R2

[`3]R0 [`2]R1 [`]R2 R3

[`4]R0 [`3]R1 [`2]R2 [`]R3 R4

[`5]R0 [`4]R1 [`3]R2 [`2]R3 [`]R4 R5

[`] φ0

[`] [`] φ1

[`] [`] [`] φ2

[`] [`] [`] [`] φ3

[`] [`] [`] [`] [`] φ4

Figure 3.6: A multiplication-focused strategy for computing an isogeny of degree `e.

degree `e, and R is a point of order `e, we have that | kerφ| = |〈R〉|, from which it
follows that kerφ = 〈R〉. We visualize this calculation as shown in Figure 3.6 for
a small example of e = 6. Every φi has kernel [`5−i]Ri, so in order to evaluate get
φi, we must first compute the corresponding leaf-node [`5−i]Ri. To get the whole
isogeny φ, corresponds to calculating every leaf-node in the tree in Figure 3.6.

However, Jao and De Feo showed that this is far from the optimal strategy. The
improved strategies rely on Theorem 3.1.6, which states that isogenies are also group
homomorphisms. This gives a lot of flexibility, since calculating [`k]φi(Ri) is the
same as calculating φi([`k]Ri). So, for instance, we can do the previous calculation
in a similarily trivial (although, slightly less intuitive way), as seen in Figure 3.7.

This strategy might give a slight speed up if evaluating isogenies is faster than
multiplying by [`], but in terms of operations, it is similar to the first strategy.
However, in general, we can “mix” these strategies, and select a subset of all dashed
arrows in Figure 3.8 to reach all leaf nodes in as few arrows (which corresponds to
calculations) as possible.

By selecting the lowest number of arrows needed to reach all leaf nodes, we
improve the calculations needed from O

(
e2) to O(e log(e)). Interestingly, because

the cost of multiplying by [`] and evaluating l-isogenies may be different, a slightly
unbalanced strategy will sometimes be faster than just calculating the fewest number
of arrows needed. Jao and De Feo have already shown how to create an algorithm,
which given weights p, q corresponding to costs of multiplying by [`] and evaluating

52 3. TOWARDS ISOGENY-BASED CRYPTOGRAPHY

R0

[`]R0 R1

[`2]R0 [`]R1 R2

[`3]R0 [`2]R1 [`]R2 R3

[`4]R0 [`3]R1 [`2]R2 [`]R3 R4

[`5]R0 [`4]R1 [`3]R2 [`2]R3 [`]R4 R5

[`] φ0

[`] φ0 φ1

[`] φ0 φ1 φ2

[`] φ0 φ1 φ2 φ3

[`] φ0 φ1 φ2 φ3 φ4

Figure 3.7: An isogeny-focused strategy for computing an isogeny of degree `e.

R0

[`]R0 R1

[`2]R0 [`]R1 R2

[`3]R0 [`2]R1 [`]R2 R3

[`4]R0 [`3]R1 [`2]R2 [`]R3 R4

[`5]R0 [`4]R1 [`3]R2 [`2]R3 [`]R4 R5

[`] φ0

[`] φ0 [`] φ1

[`] φ0 [`] φ1 [`] φ2

[`] φ0 [`] φ1 [`] φ2 [`] φ3

[`] φ0 [`] φ1 [`] φ2 [`] φ3 [`] φ4

Figure 3.8: In general, one can choose any subset of the dashed arrows, such that
there is a path from the root node to all leaf nodes.

3.3. SUPERSINGULAR ISOGENY DIFFIE-HELLMAN 53

l-isogenies, returns the subset of arrows, which corresponds to the lowest total cost
when p and q is regarded as weights of left and right arrows respectively. See Section
4.2.2 for more details.

3.3.5 Supersingular Isogeny Key Encapsulation

We end this chapter with a brief mention of the Supersingular Isogeny Key Encap-
sulation (SIKE) protocol. Since this thesis focuses on the more generic SIDH key
exchange, we avoid the details, but refer to the reference specification for details
[JAC+20].

The goal of the NIST Post-Quantum Cryptography contest is to standardize
KEMs and digital signatures which can withstand attacks by quantum computers as
well as classical computers. SIKE is a key encapsulation protocol based on SIDH,
submitted to the standardization contest.

The basic idea behind the construction of SIKE is fairly straightforward. Since
SIDH works very similar to the classic Diffie Hellman key exchange, one can turn
SIDH into a public-key encryption scheme, almost exactly the same way that one turns
Diffie Hellman into ElGamal (see Section 2.4.2), and from there turn this construction
into a key encapsulation mechanism. However, one has to be a bit careful in doing
this. Galbraith et al. showed that without countermeasures, SIDH is not secure when
using static private keys [GPST16]. Because of this, directly translating ElGamal to
the SIDH setting results in an insecure cryptosystem. Therefore, SIKE employs a
variant of a generic construction called the HHK transform [HHK17], which turns
SIDH into a secure KEM.

Chapter4SIDH with Twisted Hessian Curves

This chapter outlines how to directly apply twisted Hessian curves to the SIDH
protocol. First, we provide some necessary results about twisted Hessian curves.
Section 4.2 covers two algorithms required for an efficient implementation, while
Section 4.3 covers all essential aspects of an implementation of SIDH using twisted
Hessian curves.

4.1 Mathematical Aspects

In this section, we will go through some results, useful for working with twisted
Hessian curves in a cryptographic setting.

4.1.1 Computing in Fp2

Arithmetic in the field we are working in lies at the heart of the implementation, and
the run-time will be dominated by these operations. Still, the goal of the thesis is
not to provide a fast implementation in this sense; we base our calculations on the
number of field operations, so the efficiency of the field operations is not important.

Nevertheless, in addition to providing a generic framework, which allows instantiat-
ing a finite field as a quotient of any irreducible polynomial, we also provide a simpler
and much faster implementation of arithmetic specialized for Fp2 ∼= Fp[X]/〈X2 + 1〉.
The polynomial X2 + 1 is irreducible if and only if p ≡ 3 (mod 4). This is a direct
result of a well known observation from number theory that −1 is not a square
mod p if and only if p ≡ 3 (mod 4). This is then a requirement for any p that
we choose. For obvious reasons, we denote the roots of X2 + 1 as ±i, and have a
basis for our finite field as {1, i}, which means that our field is really instantiated as

55

56 4. SIDH WITH TWISTED HESSIAN CURVES

Fp2 = Fp(i) =
{
a+ bi | a, b ∈ Fp, i2 = −1

}
. Now, we can define field operations as

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,
(a+ bi)− (c+ di) = (a− c) + (b− d)i,

(a+ bi)(c+ di) = (ac) + (ad+ bc)i+ (bd)i2 = (ac− bd) + (ad+ bc)i,
(a+ bi)−1 = a(a2 + b2)−1 − b(a2 + b2)−1i,

where of course operations between elements a, b, c, d happens in Fp (i.e. modulo p).
For exponentiation, see 4.2.1.

We also provide a much more flexible and mathematically rigorous framework,
which allows for instantiating a finite field as a quotient of Fp[X] over any irreducible
polynomial. While in general, this framework is easier to test and to work with, it is
also much slower, as addition, subtraction and multiplication are simply implemented
as operations in Fp[X] followed by taking the remainder modulo the quotient poly-
nomial by using the euclidean algorithm, and inversions are done by the extended
euclidean algorithm. As it is easier to follow the optimized implementation, we focus
on this in this chapter.

Finally, there is also a case to be made for considering instantiating the field
as Fp2 = Fp(ω), where ω is a root of the irreducible polynomial X2 + X + 1, or
equivalently ω 6= 1, ω3 = 1. While Fp(i) is recommended in the SIKE specification
[JAC+20], Bernstein et al. showed that tripling points on twisted Hessian curves is
faster in Fp(ω) [BCKL15]. We look more at this field in Section 5.3.1.

4.1.2 The j-Invariant of a Twisted Hessian Curve

From Theorem 2.3.2, we know that any elliptic curve can be written in Weierstrass
normal form over any field of characteristic not equal to 2 or 3. To rely on theory for
curves on Weierstrass normal form, we wish to find a curve on Weierstrass normal
form which corresponds to a given curve on twisted Hessian form. Bernstein et al.
already showed that any curve given by an equation of the form y2 + a1xy + a2y =
x3 (called a triangular curve) is isomorphic to a twisted Hessian curve on form
(a3

1 − 33a2)x3 + y3 + 1 = 3a1xy [BCKL15, Theorem 5.3]. We use the inverse of this
map to make the following observation.

Lemma 4.1.1. Let K be a field with char(K) 6= 2, 3. Let E : ax3 + y3 + 1 = dxy

be a twisted Hessian curve defined over K. Then there exists an isomorphism from
E to an elliptic curve in Weierstrass normal form E′ : y2 = x3 + Ax + B where
A = −d

(
8a+

(
d
3
)3) and B = 16a2 + 40a

(
d
3
)3 − 2

(
d
3
)6.

Proof. Notice that the triangular curve, is just a curve in Weierstrass long form with
certain coefficients set to zero. Therefore, we can compose the inverse of the map

4.1. MATHEMATICAL ASPECTS 57

from a triangular curve to a twisted Hessian curves with the map from Weierstrass
long form to Weierstrass normal form, and get the result above. To find the inverse
map, we solve the set of equations

a = a3
1 − 33a2,

d = 3a1,

which gives

a1 = d

3 ,

a2 = a− 1
33

(
d

3

)3
.

This means that the curve E : ax3 + y3 + 1 = dxy is isomorphic to the curve

y2 +
(
d

3

)
xy + 1

33

(
d3

33 − a
)
y = x3

which is a curve in Weierstrass long form with a1 = d
3 , a2 = 1

33

(
d3

33 − a
)

and
a2 = a4 = a6 = 0. We use the isomorphism from Weierstrass long form to Weierstrass
normal form [Sil09, p.42-43] to calculate

A = −33
((
a2

1 + 4a2
)2 − 24 (2a4 + a1a3)

)
= −33

((
a2

1
)2 − 24(a1a3)

)
= −33

((
d

3

)4
− 24

(
d

3

)(
1
33

(
d3

33 − a
)))

= −33
(
d4

34 −
8
33 d

(
d3

33 − a
))

= −d
4

3 + 8d
4

33 − 8ad

= −9d4 − 8d4

33 − 8ad

= −d
(

8a+
(
d

3

)3
)
.

58 4. SIDH WITH TWISTED HESSIAN CURVES

and similarly, we find

B = −54
(
−
(
a2

1 + 4a2
)3 + 36

(
(a2

1 + 4a2)(2a4 + a1a3)
)
− 216

(
a2

3 + 4a6
))

= −54
(
−
(
a2

1
)3 + 36

(
(a3

1a3)
)
− 216

(
a2

3
))

= −54
(
−
(
d

3

)6
+ 36

((
d

3

)3(1
33

(
d3

33 − a
)))

− 216
(

1
33

(
d3

33 − a
))2)

= −54
(
−d

6

36 + 4
81

(
d3
(
d3

33 − a
))
− 8

33

(
d3

33 − a
)2)

= 2d6

27 −
8
(
d6 − 33ad3)

34 + 16
(
d6

36 −
2ad3

33 + a2
)

= 16a2 + 40ad3

27 − 2d6

36

= 16a2 + 40a
(
d

3

)3
− 2

(
d

3

)6

which completes the proof.

Immediately from this, we get the result we need.

Proposition 4.1.2. Let K be a field with char(K) 6= 2, 3. Let E : ax3+y3+1 = dxy

be a twisted Hessian curve defined over K. The j-invariant is of E is then given by:

j(E) =
(
216ad+ d4)3

a (d3 − 27a)3 .

Proof. This is simply the j-invariant of the isomorphic Weierstrass curve from Lemma
4.1.1 after cancelling out terms. The j-invariant of a curve in Weierstrass normal
form was given in Proposition 3.1.18.

Another generalization of the Hessian curve of form x3 + y3 + c = dxy was
studied by Farashahi and Joye [FJ10]. They presented an equivalent formula for the
j-invariant their curve. The fact that these formulas are the same is not surprising,
as there exists an easy isomorphism between these curves and the twisted Hessian
curves leaving the parameters fixed; simply permute the projective coordinates
(X : Y : Z) → (Z : Y : X). Such an isomorphism, given by simply relabeling the
coordinates, actually means that the curves are equal, as projective sets (see Section
2.2.2). To see this, notice that the generalization studied by Farashahi and Joye is
really just the affine plane taken at X = 1 of a projective twisted Hessian curve,
followed by rewriting coefficients as given by the isomorphism.

4.1. MATHEMATICAL ASPECTS 59

4.1.3 Degree 2 isogenies

We base the calculation of isogenies of degree 2 on the generic formula for isogenies
of degree not divisible by 3 given by Dang and Moody [DM19], the standard addition
law (Theorem 3.2.5) and the fact that for points of order 2 on a twisted Hessian
curve, we have Y = Z (see Proposition 3.2.7).

Let E : aX3 + Y 3 + Z3 = dXY Z be a twisted Hessian curve. Combining
the mentioned theory, we find that for a given point (a : b : b) ∈ E, the isogeny
φ : E → E′ having {(0 : −1 : 1), (a : b : b)} as kernel is given by

φ(X : Y : Z) = (X(X2b2 − a2Y Z) : Y (Z2ab− b2XY) : Z(Y 2ab− b2XZ)), (4.1)

where E′ = a2X3 + Y 3 + Z3 = DXY Z. As mentioned in Section 3.2.2, the curve
parameter D is in general given by the slightly convoluted formula

D =
(1− 2n)d+ 6

∑n
i=1

1
siti∏n

i=1 si

for a kernel {(0 : −1 : 1) ∪ (si : ti : 1)}ni=1. In the degree 2-case, this turns into

D =
−d+ 6

a
b

a
b

= b(6b− ad)
a2 . (4.2)

While this might not seem too bad, it still involves an inversion, and in the next
section, we show how to avoid this when calculating 2n-isogenies, for 2 6 n ∈ N.

4.1.4 Recovering Curve Parameter From Arbitrary Point

In general, we would like to avoid inversions, as it is by far the slowest field-operation.
Similar to how we avoid inversions in elliptic curve addition laws by using projective
coordinates, one can use projective curve parameters as well. This was for instance
done by Costello et al. [CLN16], in an optimization of SIDH using Montgomery
curves. However, we choose a different approach which has the added benefit of
ignoring the calculation of the d-coordinate, at the cost of a single inversion at the
end of the smooth degree isogeny computation.

When looking at the image curve under an isogeny discussed in the previous
section, the curve parameter a2 is independent of d. Further, both the standard
addition law and rotated addition law are also independent of the parameter d. The
result of this is that we can do the whole 2e-isogeny calculation while simply ignoring
the parameter d throughout the whole calculation, and only recover it right at the
end.

60 4. SIDH WITH TWISTED HESSIAN CURVES

Given a twisted Hessian curve E : aX3 + Y 3 +Z3 = dXY Z, where d is unknown,
we can easily recover d if we have a and a point (U, V,W) = P ∈ E, where [3]P 6= O,
i.e. P is not a point of order dividing 3. We can do this, since as long as UVW 6= 0
(Theorem 3.2.11), d is can easily be recovered by

dUVW = aU3 + V 3 +W 3,

d = aU3 + V 3 +W 3

UVW
, (4.3)

which of course requires one inversion.

To apply this to SIDH, let Alice be the one working in the 2eA-torsion. For
the first part of the key exchange, she can calculate φA = φeA−1 ◦ · · · ◦ φ0, with
φA : E → EA, always ignoring the d parameter. At the end, Alice knows only the
parameter a on the curve EA, but she also has φA(PB) and φA(QB). Of course, none
of these points have order dividing 3 (they are the basis for Bob’s 3eB -torsion), so
she can recover d with equation 4.3. This way, she manages the whole calculation
with a single inversion.

Alice is slightly worse off in the second part of the key exchange, as she no longer
has any arbitrary points at the very end to recover d from. Therefore, she instead
only ignores d when calculating φ′eA−2 ◦ · · · ◦ φ′0, because on the second to last curve,
she still has a kernel point she can use to recover d (this is what she uses to calculate
φ′eA−1), which by construction is of order 2. So on the second to last curve, she
recovers the parameter d of that curve, finds φ′eA−1 as usual, and calculates the
parameter D on the image curve as given in equation 4.2. In other words, for part II
of the key exchange, she requires 2 inversions, which is still much better than the eA
inversions that would be required when calculating the parameter d every step.

4.2 Algorithmic Aspects

In this section, we briefly present two algorithms which our implementation relies a
lot on.

4.2.1 Square and Multiply

This first algorithm is a simple but effective algorithm which does exponentiation
by n in any in a multiplicative group (or multiplication by n in an additive group)
in O(logn) time1. We present it here using multiplicative notation, but in our
implementation, it is also used for scalar-multiplication on elliptic curves. In the
case of additive groups, the algorithm is typically called double and add.

1It is actually even more general as it works for any semi-group.

4.2. ALGORITHMIC ASPECTS 61

To compute xn, start by writing n in binary form as (bkbk−1 . . . b0). Rewriting
using elementary exponent laws gives

xn = xbk2k+bk−12k−1+···+b0 =
(
x2k
)bk

(
x2k−1

)bk−1
. . .
(
x21
)b1 (

x20
)b0

,

where the right-hand side above clearly requires at k squarings and at most k
multiplications. There exist multiple ways of calculating this in an efficient manner.
A simple and intuitive algorithm is shown in Algorithm 4.1, which starts with the
rightmost binary digit of n. To avoid division and calculating the logarithm, we use
a slightly different approach in our implementation, starting from the left-most digit
of n, but it is based on the same principle.

Algorithm 4.1 Square and multiply
Input: An element x ∈ (G, ·), an exponent n ∈ N+

Output: xn
1: k ← blog2 nc
2: y ← 1
3: for i← 0, k do
4: if n ≡ 1 (mod 2) then
5: y ← y · x
6: end if
7: x← x2

8: n←
⌊
n
2
⌋

9: end for
10: return y

4.2.2 Jao and De Feo’s Optimal Strategy

In Section 3.3.4, we looked at the basic idea behind calculating smooth-degree
isogenies in an efficient way. In this section, we show how we find an optimal strategy
for computing `e-degree isogenies, given weights p and q, corresponding to cost of
multiplication and isogeny-evaluation respectively. This was originally done by Jao
and De Feo in their original supersingular isogeny Diffie-Hellman paper [JD11].

Let the size n of a strategy be the number of leaf nodes in the tree corresponding
to the isogeny-calculation (see Section 3.3.4). We call a connected subset of the edges
in such a tree that reaches all leaf nodes a valid strategy. Any valid strategy can be
used to compute the isogeny, but we are after a strategy with the lowest total weight,
where p is the weight of edges going down-left, and q is the weight of edges going
down-right. Such a strategy is called an optimal strategy.

62 4. SIDH WITH TWISTED HESSIAN CURVES

S ′
S ′′

Figure 4.1: An optimal strategy S of size n > 2 always consists of two strictly smaller
optimal strategies S′ and S′′.

There exists only one strategy of size n = 1 (since that corresponds to a single
node and no edges). For all other strategies, we have the following lemma.

Lemma 4.2.1. Let S be an optimal strategy of size n > 2. Then S consists of
an optimal strategy S′ of size i, and an optimal strategy S′′ of size n− i for some
1 6 i 6 n− 1, along with straight paths from the root of S to the roots of S′ and S′′.

Intuitively, the lemma makes sense, but for a rigorous proof see [JD11, Section
4.2.2]. The lemma is illustrated in Figure 4.1. A result of Lemma 4.2.1 is that given
p, q, the cost Cp,q of all optimal strategies of size n is given by

Cp,q(n) = min
16i6n−1

(Cp,q(n− i) + Cp,q(i) + ip+ (n− i)q)

which gives an easy O
(
n2) algorithm for calculating the optimal strategy of size

n. Note that the run time of this algorithm is not important as the output can be
pre-computed or even hard-coded into the implementation. The algorithm is given
in Algorithm 4.2

Using the output of an optimal strategy calculation, we upgrade the simple O
(
n2)

algorithm given in Algorithm 3.1 to a O(n logn) algorithm. See Section 4.3.3 for
details.

4.3 Implementation

In this section, we cover all essential parts of the implementation provided in
the package optimizedImplementation. All arithmetic happens in Fp2 , which
is implemented in fpsquare.jl as explained in Section 4.1.1.

4.3. IMPLEMENTATION 63

Algorithm 4.2 Compute optimal strategy of size n
Input: Costs p, q, a size n ∈ N+ with n > 2
Output: Optimal strategy S of size n
1: S ← [1 : ε]
2: C = [1 : 0]
3: for k ← 2, n do
4: b = arg min16i6k−1 (Cp,q(k − i) + Cp,q(i) + ip+ (k − i)q)
5: S[k]← [b] || S[k − b] || S[b] . The sign || concatenates the arrays
6: C[k]← Cp,q(k − b) + Cp,q(b) + bp+ (k − b)q
7: end for
8: return S[n]

4.3.1 Generating Parameters

In total, we provide 5 different sets of parameters. The first set, given in p132.jl
is not considered to be cryptographically secure, but is rather meant as an easy-to-
handle example set of parameters. Further, we provide the parameter sets p434.jl,
p503.jl, p610.jl and p751.jl, corresponding to security estimates of 128, 152, 189
and 256 bits respectively, as argued in [JAC+20]. For more details on the security
levels of these parameters, we refer to the literature [ACC+19, CLN+20, JS19]. Note
that while the referenced literature is all on the security of SIKE, the underlying
hard problem of SIKE is the same as for SIDH.

Each parameter set contains the following parameters.

The prime p, the field Fp2 : Defined parameters `A = 2, eA, `B = 3, eB , f , such
that p = `eA

A `eB

B f − 1 is a prime number with p ≡ 3 (mod 4) Additionally, it
instantiates the field Fp2 .

A non-trivial cuberoot of one ω: The parameter ω, with ω 6= 1, ω3 = 1.

Curve parameters a and d Curve parameters a = 1 and d such that the twisted
Hessian curve E : aX3+Y 3+Z3 = dXY Z is supersingular with j-invariant 6= 0.

The points {PA, QA} and {PB, QB}: The torsion basis {PA, QA}, defined such
that 〈PA, QA〉 = E[`eA

A], and the torsion basis {PA, QA}, defined such that
〈PB , QB〉 = E[`eB

B].

Optimal strategies SA and SB: Optimal strategies for both `eA

A -isogenies and
`eB

B -isogenies computed by Algorithm 4.2.

All parameter sets start by creating a prime of bit-length as stated in the name
of the file, on the form 2eA3eBf − 1, where 2eA ≈ 3eB and f is as small as possible.

64 4. SIDH WITH TWISTED HESSIAN CURVES

We fix our field to be Fp2 ∼= Fp[X]/〈X2 + 1〉. Further, it precomputes a non-trivial
cube root of one, i.e. ω 6= 1 with ω3 = 1. The reason for this will become clear in
Section 4.3.3

Next, we find the starting curve. We select some random supersingular j-invariant
not equal to 0. This is obtained by selecting the supersinular twisted Hessian
curve E0 : X3 + Y 3 + Z3 = 0, which clearly has j-invariant 0 and further has
#E0(Fp2) = (2eA3eBf)2. From E0, we do a random isogeny-walk (By simply taking
random isogenies). The resulting curve is by Theorem 3.1.16 supersingular, so we
use its j-invariant (In the miniscule chance that j-invariant still is equal to 0, simply
take a new random walk). From this, we simply use Proposition 4.1.2, with the
selected j-invariant and a = 1 and solve for d. If the equation has no solutions
in Fp2 , we select a new j-invariant, until a d is found, and a nice starting curve
E : X3 + Y 3 + Z3 = dXY Z is selected.

Once we have a curve, we generate a torsion basis for E[2eA] and E[3eB]. Start
by generating random points P and Q on E, and calculate PA = [3eBf]P and
QA = [3eBf]Q. By Lagrange’s theorem (2.1.5), both PA and QA has order dividing
2eA , so by checking that [2eA−1]PA 6= O, [2eA−1]QA 6= O, we ensure that their
orders are equal to 2eA (if they are not, then select new P,Q). Finally, we must
ensure that the points are linearly independent, so that they form a basis for
E[2eA] ∼= Z/2eAZ × Z/2eAZ. This can be done by using a bilinear pairing, for
instance the Weil-pairing [Sil09, Chapter III, §8], as described in the original SIDH
paper [JD11, Chapter 4.1]. Another easy check, not involving any pairings, is simply
to check that [2eA−1]PA and [2eA−1]QA are linearly independent2. Since the points
in this case have order 2, this consists simply of checking that they are not equal
(for the points of order 3 case, one must simply check that the points are not
equal, and that [2][3e3−1]PB 6= [3eB−1]QB). Once a basis for E[2eA] is found, we
repeat the proceedure for E[3eB] (of course instead calculating PB = [2eAf]P and
QB = [2eAf]Q).

Finally, the last part of the parameter generation is to select some weights p, q
corresponding to the cost of doubling a point and evaluating a 2-isogeny respectively,
and run Algorithm 4.2 with n = eA, to find the optimal strategy to be used in the
2eA -isogeny calculation. Then repeat the procedure with n = eB , where the weights
p, q correspond to the cost of tripling a point and evaluating a 3-isogeny respectively,
to find the optimal strategy to be used in the 3eB -isogeny calculation

2This approach was actually pointed out to us by De Feo at a public forum [29].

4.3. IMPLEMENTATION 65

4.3.2 Computing Secret Generator

We describe the procedure for Alice who works in the group E[2eA]. Of course, Bob
does the same but replacing the group with E[3eB].

Generating the secret generator amounts to sampling random n1, n2 ∈ Z2eA , with
either n1 - 3 or n2 - 3, and then computing RA = [n1]PA + [n2]QA. Of course, the
secret is really 〈RA〉, and not just RA itself, so we should note that any generator
of 〈RA〉 is the same secret. Then, assuming that n1 - 3, we could have just as well3
have calculated the secret 〈PA + [n2 · n−1

1]QA〉, so this justifies simply sampling a
single n ∈ Z2eA , and calculating RA = PA + [n]QA.

Therefore, we need to implement a generic addition procedure and a procedure
for scalar multiplication. We implement addition based on the rotated addition law
(see Theorem 3.2.6). Note that it is only almost complete since a = 1 is of course a
cube, but because of the cryptographic size of the parameters, the algorithm will fail
with only negligible probability.

We use the procedure for addition given by Bernstein et al. [BCKL15], which
requires 11 multiplications (note that here we take advantage of the fact that a = 1
when calculating the cost). The algorithm is given in Algorithm 4.3.

Algorithm 4.3 Add Points
Input: Points P,Q ∈ E for some twisted Hessian curve E with parameters a and d.

P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2)
Output: P +Q
1: A← X1Z2
2: B ← Z1Z2
3: C ← Y1X2
4: D ← Y1Y2
5: E ← Z1Y2
6: F ← aX1X2
7: G← (D +B)(A− C)
8: H ← (D −B)(A+ C)
9: J ← (D + F)(A− E)
10: K ← (D − F)(A+ E)
11: X ← G−H
12: Y ← K − J
13: L← B − F
14: Z ← J +K −G−H − (L+ L)(C + E)
15: return (X : Y : Z)

3Although note that now the number of choices of secrets is now reduced from 3 · 2eA−1 to 2eA .

66 4. SIDH WITH TWISTED HESSIAN CURVES

The same algorithm can be used for doubling a point (note that the rotated
addition law never fails when doubling a point, regardless of a), but again Bernstein
et al. showed that it was possible to do better with a dedicated doubling formula,
requiring only 7 multiplications (or 6 when a = 1) and 3 squarings4. We implement
this procedure, as shown in Algorithm 4.4.

Algorithm 4.4 Double Point
Input: A point P ∈ E for some twisted Hessian curve E with parameters a and d.

P = (X1 : Y1 : Z1)
Output: [2]P
1: A← X2

1X1
2: B ← Y 2

1 Y1
3: C ← Z2

1Z1
4: D ← aA
5: X ← (C −B)X1
6: Y ← (B −D)Z1
7: Z ← (D − C)Y1
8: return (X : Y : Z)

Scalar multiplication is now easily done by using the additive version of Algorithm
4.1, where point addition is calculated using Algorithm 4.3, and doubling is calculated
using Algorithm 4.4.

4.3.3 Computing Isogeny

As this computation is slightly different for the 2eA -degree isogenies and 3eB -degree
isogenies, we describe them both in this section, starting with the 2eA -degree isogenies.

The implementation is based on the discussion in Section 4.1.3 and Section
4.1.4, in addition to Section 4.2.2. When we evaluate a point P in an isogeny of
degree 2 with kernel given by R = (U : V : V), the values U2, UV, V 2 stay the
same regardless of P . Therefore, we can pre-computing these values to save 3
multiplications when evaluating a point. We give the algorithm in Algorithm 4.5,
which uses 15 multiplications for evaluating a point.

Next, we combine Algorithm 4.4 and 4.5, together with an optimal strategy to give
a fast calculation of 2eA -degree isogenies. Given a curve E, a kernel point RA ∈ E of
order 2eA , and a set of points P = {P1, P2, . . . , Pk | Pi ∈ E, for 1 6 i 6 k} where at
least one point does not have order dividing 3, algorithm finds EA = E/〈RA〉 and
the set {φ(P1), φ(P2), . . . , φ(Pk) | φ : E → EA}. The algorithm uses a datastructure

4Bernstein et al. also gave an even faster doubling formula, requiring 7 multiplications and
only 2 squarings, however, this formula is not independent of d, which is a feature we require as
discussed in Section 4.1.3.

4.3. IMPLEMENTATION 67

Algorithm 4.5 Evaluate isogeny of degree 2
Input: A point P ∈ E, and precomputed values U2, UV, V 2 where U, V are coordi-

nates of the kernel point R = (U : V : V). P = (X1, Y1, Z1)
Output: φ(P), where φ : E → E/〈R〉
1: A← X1X1
2: B ← Y1Y1
3: C ← Z1Z1
4: D ← X1Y1
5: E ← X1Z1
6: F ← Y1Z1
7: X ← X1

(
A
(
V 2)− (U2)E)

8: Y ← Y1
(
C(UV)−

(
V 2)D)

9: Z ← Z1
(
B(UV)−

(
V 2)A)

10: return (X : Y : Z)

called a dequeue (double-ended queue), which is a stack with an additional function,
PopFirst, which returns and removes the bottom of the stack. The logic of the
algorithm is simply to traverse the isogeny-calculation tree as given by the optimal
strategy. It also uses precompute2, which given a point K = (a : b : b), returns the
values U2, UV, V 2. The pseudo-code is given in Algorithm 4.6.

Notice that as argued, we need an arbitrary point P , with [3]P 6= O to re-
cover the curve parameter d given an a. In the case that the input list P =
{P1, P2, . . . , Pk | Pi ∈ E, for 1 6 i 6 k} does not contain such a point, Algorithm 4.6
fails. However, this is easy to fix. We can, as argued in Section 4.1.4, use the kernel
point on the second last curve, to recover d one step earlier. This slightly altered
algorithm is also provided in the implementation.

Next, we move on to describing how the implementation works for calculating
isogenies of degree 3eB . Logically the algorithms for calculating isogenies of degree
3eB is the same as Algorithm 4.6, except relying on triplings, and degree 3-isogenies.
We now go through procedures for tripling points and evaluating degree 3-isogenies,
but leave it to the reader to alter Algorithm 4.6 to fit the degree 3eB calculation.
Alternatively, it is provided in the implementation. The main reason that we choose
not to discuss it in detail, is that we discuss a completely different approach to the
3eB -isogeny calculation in Chapter 5.

Tripling a point P can be done in 11+6 = 17 multiplications and 3 squarings using
Algorithm 4.4 to find [2]P , followed by Algorithm 4.3 which gives [2]P + P = [3]P .
But again, Bernstein et al. showed that triplings could be done more efficiently,
assuming that d 6= 0. While the requirement d 6= 0 is not ideal in the isogeny-case
as we jump from curve to curve, we argue that this is not much of a problem. The

68 4. SIDH WITH TWISTED HESSIAN CURVES

Algorithm 4.6 Evaluate isogeny of degree 2eB

Input: the parameter a of a twisted Hessian curve E, A point R ∈ E of order 2eA ,
a set of points P = {P1, P2, . . . , Pk | Pi ∈ E, for 1 6 i 6 k} containing at least
one point not in E[3], and an optimal strategy S of size eA

Output: parameters a, d of the curve EA = E/〈R〉 and the set
{φ(P1), φ(P2), . . . , φ(Pk) | φ : E → EA}

1: D ← empty dequeue
2: Push(D, (eA, R))
3: i← 1
4: while D not empty do
5: (h,Ki)← Pop(D)
6: if h = 1 then
7: a← a2

8: U2, UV, V 2 ← precompute2(Ki)
9: D′ ← empty dequeue
10: while D not empty do
11: (h,Ki)← Popfirst(D)
12: Li ← iso2eval(Ki, U

2, UV, V 2))
13: Push(D′, (h− i, Li) . alg. 4.5
14: end while
15: D ← D′

16: P ←
{

iso2eval(P,U2, UV, V 2)) | P ∈ P
}

17: else
18: si ← S[i]
19: Push(D, (h,Ki))
20: Push(D, (h− si, [2si]Ki)) . Use alg. 4.4 si times
21: end if
22: end while
23: P

$←− P
24: while [3]P = O do
25: P

$←− P
26: end while
27: d← recover_d(a, P) . See Section 4.1.4
28: return a, d,P

4.3. IMPLEMENTATION 69

reader need only note that the only curves with d = 0 are the ones with j-invariant
0. This is precisely why we did not want to start with j-invariant 0. By starting
with a random supersingular j-invariant, hitting a curve with j-invariant 0 during an
isogeny-calculation happens only with negligible probability. The tripling algorithm
is given in Algorithm 4.7. It triples a point P on a curve E with d 6= 0 in 11
multiplications (10 if a = 1) and 6 squarings.

Algorithm 4.7 Triple Point
Input: A point P ∈ E for some twisted Hessian curve E with parameters a and

d 6= 0. P = (X1 : Y1 : Z1)
Output: [3]P
1: W ← X2

1X1
2: V ← Y 2

1 Y1
3: S ← Z2

1Z1
4: R← aA
5: A← (R− V)2

6: B ← (R− S)2

7: C ← (V − S)2

8: D ← (A+ C)
9: E ← (A+B)
10: F ← RC
11: G← V B
12: X ← (R+ V + S)(B +D)
13: Y ← d(F + F − V (C − E))
14: Z ← d(G+G−R(B −D))
15: return (X : Y : Z)

Recall, Theorem 3.2.9 and Theorem 3.2.10, which together cover all cases for
isogenies of degree 3. Notice that given a kernel point R = (X : Y : Z) of order
3, we can easily check which theorem we should use by checking whether X = 0.
An algorithm for case 2 is given in Algorithm 4.8. Using a precomputed non-trivial
cuberoot of one ω, it requires 6 multiplications (5 if a = 1), 3 squarings, and 4
multiplications by ω.

Next, an algorithm for case 3 is given in Algorithm 4.9. Recall that these isogenies
are generated by a point R = (1 : −c : 0) or R = (1 : 0 : −c), with c3 = a. However,
the point is using projective coordinates, so we might not know what c is (the point
is only on the form (b : −bc : 0) or (b : 0 : −bc) for some b ∈ Fp2). Therefore, to
avoid inversions, we change the formula in Theorem 3.2.10, by scaling it with b2. We
precompute the values b2, cb2, c2b2 and give them as input to the algorithm. The
algorithm uses 11 multiplications and 3 squarings after precomputation.

Finally, we have all elements required for the 3eB -degree isogeny calculation. As

70 4. SIDH WITH TWISTED HESSIAN CURVES

Algorithm 4.8 Evaluate isogeny of degree 3, case 2
Input: A point P ∈ E, the curve parameter a of E, and an element ω ∈ Fp2 with

ω3 = 1, ω 6= 1. P = (X1 : Y1 : Z1)
Output: φ(P), where φ : E → E/〈(0 : −ω : 1)〉
1: A← X2

1X1
2: B ← Y 2

1 Y1
3: C ← Z2

1Z1
4: D ← aA
5: X ← X1Y1Z1
6: Y ← D + ω(ωB + C)
7: Z ← D + ω(B + ωC)
8: return (X : Y : Z)

Algorithm 4.9 Evaluate isogeny of degree 3, case 3
Input: A point P ∈ E, where E is some curve with parameters a, d and precomputed

elements c2b2, cb2, b2, cb, b, where c3 = a and b ∈ Fp2

Output: φ(P), where φ : E → E/〈(1 : −c : 0)〉
1: A← X2

1
2: B ← Y 2

1
3: C ← Z2

1
4: D ← Y1Z1
5: E ←

(
b2)D

6: F ←
(
c2b2)A

7: G←
(
cb2)X1

8: X ← EX1
9: Y ← FZ1 +GB + EZ1
10: Z ← FY1 +GC + EY1
11: return (X : Y : Z)

mentioned, the algorithm runs like Algorithm 4.6, with a few minor modifications.
The modifications include using the tripling formula and degree 3 isogeny formulae
instead of the doubling and degree 2 isogeny formulae, and the fact that we calculate
a and d in every step as given in Theorem 3.2.9 and Theorem 3.2.10 (in other words,
there is no need to recover d at the end).

4.3.4 Key Exchange

With all the hard work in Sections 4.3.1 - 4.3.3, the SIDH key exchange itself becomes
easy to summarize, which we do in this final section of this chapter. We describe
Alice’s calculation (who does degree 2eA-isogenies). Of course, Bob’s calculation
looks exactly the same, only using corresponding E[3eB]-algorithms. An example
can be found in Section 6.1.1.

4.3. IMPLEMENTATION 71

Setup: All parameters are set up as described in Section 4.3.1. These parameters
are persistent and are generated before the key exchange takes place. Typically,
they will be hard-coded into the implementation.

Computing Stage I: Once Alice and Bob wish to initialize the key exchange, Alice
samples a random n ∈ ZeA

2 , calculates her secret RA = PA + [n]QA using
addition and scalar multiplication algorithms described in Section 4.3.2. Next,
she runs Algorithm 4.6 with RA as generator, her optimal strategy SA and the
set of points P = {PB , QB} to be consisting of Bob’s basis points evaluated
in the isogeny. She then sends Bob the output consisting of curve-parameters
aA, dA and Bob’s new torsion basis φA(PB), φA(QB).

Computing Stage II: Once Alice receives the output of Bob’s stage I calculation,
say aB , dB , P ′A, Q′A, she runs Algorithm 4.6 again, but this time with the secret
as R′A = P ′A + [n]Q′A, and P = ∅. She uses the output parameters a, d to
calculate the j-invariant using the formula given in Proposition 4.1.2, which is
the shared secret.

Chapter5Computing the 3n-Isogeny Without
an Explicit Generator

In this section, we discuss a new approach to calculating in the 3eB -torsion using
the particularly simple structure of points of order 3 on a twisted Hessian curve.
The new approach greatly simplifies computing 3eB -isogenies without a Fp2 -rational
3eB -torsion group. Although ultimately, we fail to make the key exchange work by
using this approach, we show that there is only one step missing. This is discussed
more thoroughly in Section 5.2.2. Empirically, the implementation also supports this
claim.

For the whole chapter, we assume that `A = 2, `B = 3. Further, when referring to
Alice, we mean the participant working in the 2eA -torsion group and when referring
to Bob, we mean the participant working in the 3eB -torsion group.

5.1 Foundations

The alternate approach to computing 3eB -degree isogenies we present in this section
heavily relies on the structure of points of order 3 on twisted Hessian curves. We start
by describing an easy way to calculate cube roots in multiplicative groups of a certain
order, before discussing points of order 3. Proposition 5.1.1 and Proposition 5.1.2
are essential to this chapter, as they provide the basis for the alternative calculation.

5.1.1 Cube Roots in Finite Fields

The difficulity of taking cube roots in a finite field Fq is dependent on the order of
the field. This is analogous to the situation for square roots. Recall that if q ≡ 3
(mod 4), we can easily calculate the square root of a ∈ Fq. If a is a square, then
generalizing Eulers criterion to cyclic groups says that a

q−1
2 = 1. If this is the case,

we can find a square root of a by calculating b = a
q+1

4 . To see that this works, notice
that

b2 =
(
a

q+1
4

)2
= a

q+1
2 = a

q−1
2 a = a.

73

74 5. COMPUTING THE 3N -ISOGENY WITHOUT AN EXPLICIT GENERATOR

This exponentiation takes O(log q) time by using Algorithm 4.1. However, this
approach fails for q 6≡ 3 (mod 4), in which case one must use more complicated
algorithms, such as the Tonelli-Shanks algorithm [Sha73].

We show similar techniques for cube roots. While e.g. the Tonelli-Shanks
algorithm generalizes to n-th roots [AMM77], we would like a simpler way. By
generalizing Eulers criterion, we find that a is a cube if and only if a

q−1
3 = 1 (any

cube root of a must have order dividing q − 1, and further (Fq)∗ is cyclic, so this is
clear). Taking a similar approach as we did for square roots, it is easy to see that
if q ≡ 7 (mod 9), then a cube root of a can be obtained by calculating c = a

q+2
9 ,

because
c3 =

(
a

q+2
9

)3
= a

q+2
3 = a

q−1
3 a = a.

Of course, keep in mind that this approach requires q + 2 | 9, so it only works for
q ≡ 7 (mod 9).

5.1.2 Subgroups of Order 3

From this point forward, we assume that Fq is a field with q ≡ 7 (mod 9), and for
any cube a ∈ Fq, we set c = a

p+2
9 . Recall the fact that for a twisted Hessian curve

E/K : aX3 + Y 3 + Z3 = dXY Z, there exist four different subgroups of order 3
(Section 3.2.2). If we now fix an ω 6= 1, ω3 = 1, we can index the subgroups as:

– SE1 = {(0 : −ω : 1), (0 : −ω2 : 1), (0 : −1 : 1)},

– SE2 = {(1 : −c : 0), (1 : 0 : −c), (0 : −1 : 1)},

– SE3 = {(1 : −ωc : 0), (1 : 0 : −ωc), (0 : −1 : 1)},

– SE4 = {(1 : −ω2c : 0), (1 : 0 : −ω2c), (0 : −1 : 1)}.

We prove two propositions regarding these subgroups and degree 2 and 3 isogenies.
We start by saying something about these subgroups under degree 3 isogenies.

Proposition 5.1.1. Let φ : E1 → E2 be one of the two isogenies from Theorem
3.2.9 and 3.2.10, and let P ∈ E1. Then φ(P) ∈ SE2

1 if and only if P is a point of
order 3.

Proof. If P ∈ kerφ, we are done. So assume P 6∈ kerφ, and assume φ(P) ∈ SE2
1 .

Then, since P 6∈ kerφ, we have φ(P) ∈ SE2
1 \ {O}, which means that X(φ(P)) (the

X-coordinate of φ(P)) is 0. By looking at the formulas in Theorem 3.2.9 and 3.2.10,
we see that this implies that XY Z = 0, which again implies that P has order 3 by
Theorem 3.2.11. Conversely, if P has order 3, then X(φ(P)) = 0, which from the
classification of points of order 3 shows that φ(P) ∈ SE2

1 .

5.1. FOUNDATIONS 75

Next, we show a proposition regarding the images of the subgroups of order 3
under degree 2 isogenies.

Proposition 5.1.2. Let φ : E1 → E2 be one an isogeny of degree 2 on the form
given in Equation 4.1. Then:

(i) φ
[
SE1

1

]
= SE2

1 ,

(ii) φ
[
SE1

2

]
= SE2

2 ,

(iii) φ
[
SE1

3

]
= SE2

4 ,

(iv) φ
[
SE1

4

]
= SE2

3 .

Proof. Since isogenies are group homomorphisms, they preserve subgroups. Further,
since the isogeny is of degree 2, no element of order 3 can be in the kernel, and
subgroups of order 3 go to subgroups of order 3. Therefore, it is enough to see what
happens to a single point O 6= P ∈ SE1

i for 1 6 i 6 4 under the isogeny. We simply
do this case by case:

(i) (0 : −w : 1) = P ∈ SE1
1 . Then

φ(P) =
(
0 : −w(ab) : (−w)2(ab)

)
=
(
0 : −w2 : 1

)
∈ SE2

1 ,

(ii)
(

1 : −a
q+2

9 : 0
)

= P ∈ SE1
2 . Then

φ(P) =
(
b2 : −

(
a

q+2
9

)2
b2 : 0

)
=
(

1 : −
(
a2) q+2

9 : 0
)
∈ SE2

2 ,

(iii)
(

1 : −ωa
q+2

9 : 0
)

= P ∈ SE1
3 . Then

φ(P) =
(
b2 : −

(
ωa

q+2
9

)2
b2 : 0

)
=
(

1 : −ω2 (a2) q+2
9 : 0

)
∈ SE2

4 ,

(iv)
(

1 : −ω2a
q+2

9 : 0
)

= P ∈ SE1
4 . Then

φ(P) =
(
b2 : −

(
ω2a

q+2
9

)2
b2 : 0

)
=
(

1 : −ω
(
a2) q+2

9 : 0
)
∈ SE2

4 ,

which completes the proof.

76 5. COMPUTING THE 3N -ISOGENY WITHOUT AN EXPLICIT GENERATOR

5.2 An Alternative Way of Computing

We start by recalling the 3eB -torsion calculation as it is usually done. Bob selects a
random point RB of order 3eB , and sets R0 ← RB . First, he calculates the kernel of
φ0, which is

〈
[3eB−1]R0

〉
= Si for some 1 6 i 6 4. The next step is to calculate the

kernel of φ1, which is equal to
〈
φ0
(
[3eB−2]R0

)〉
(even though Bob may calculate it

in a different way). This shows that the preimage of the kernel generator is a point
of order 9. From Proposition 5.1.1, we know that the kernel of φ1 corresponds to
one of the subgroups Si, 2 6 i 6 4. Continuing like this, we see that when Bob is
done, he has really computed a series of subsets

SE0
i0
→ SE1

i1
→ · · · → SEeB−1

ieB−1
(5.1)

where i0 ∈ {1, 2, 3, 4}, and ij ∈ {2, 3, 4} for j > 1.

Combinatorically, it is not difficult to see that there exist 4 · 3eB−1 different such
chains, and since there are exactly 4 · 3eB−1 different choices of 〈RB〉 for Bob (see
Section 3.3.3) which each correspond to a unique chain, we see that there is a nice
one-to-one correspondence between chains of the type given in 5.1 and the choices of
secret for Bob.

This gives rise to the alternate idea for computing the degree 3eB isogeny, which
uses less elliptic curve arithmetic in exchange for many cube root calculations.
Bob can simply pick a random chain of indexes i0 → i1 → · · · → ieB−1, with
i0 ∈ {1, 2, 3, 4}, and ij ∈ {2, 3, 4} for j > 1. In practice, we do not lose much
security1 from just picking all ik ∈ {2, 3, 4} for 0 6 k 6 eB − 1. This has the
advantage of only needing to rely on Theorem 3.2.10. Bob computes his isogeny as
the chain of isogenies corresponding to the chain of subgroups SEk

ik
for 0 6 k 6 eB−1.

From the discussion above, we have shown that this is completely equivalent to
selecting a random generator point RB of order 3eB and doing the usual calculations
as explained in Chapter 4.

Relying on Proposition 5.1.2, we use the next section to show some steps towards
how Bob can re-do the same isogeny calculation from Alice’s curve EA to complete the
key exchange. However, we also discuss the step that is missing in order to complete
the scheme. Chapter 6 provides more insight into the potential advantages of this
way of calculating, but notice already that Bob no longer does any computation with
the 3eB -torsion basis, and hence does no longer require E[3eB] to be Fp2-rational.
More discussion on this can be found in Section 6.3.

1The reduced security comes from a reduction in the size of the key-space by 1
4 , corresponding

to a security loss of 2 bits against exhaustive search and the claw-finding algorithm from Section
3.3.3. To see that it also affects the claw-search, notice that the attacker can ignore 1 out of the 4
branches from E0.

5.2. AN ALTERNATIVE WAY OF COMPUTING 77

5.2.1 Recovering the Secret

Set m = eB − 1. Assume that Bob has done his calculation as described in the
previous section with the chain i0 → · · · → im, while Alice has done her 2eA-degree
isogeny calculation of ψA the usual way, using the secret RA ∈ E0. Set ψ(0)

A = ψA.
Then we say that ψ(n)

A is the isogeny with [2eA−n−1](φn−1 ◦ · · · ◦ φ0)(RA) as kernel.
For Bob to recalculate his part of the key exchange from Alice’s curve EA, he has
to find all subgroups of the form ψ

(k)
A

[
SEk
ik

]
for 0 6 k 6 m. This is illustrated in

Figure 5.1. Keep in mind that Alice only actually calculates ψ(0)
A and ψ(eB)

A .

E0 E1 · · · EeB

EA,0 EA,1 · · · EA,eB

φ0

kerφ0=SE0
i0

ψ
(0)
A

φ1

kerφ1=SE1
i1

ψ
(1)
A

φm

kerφm=SEm
im

ψ
(eB)
A

φA
0

kerφA
0 =ψ(0)

A

[
SE0

i0

] φA
1

kerφA
1 =ψ(1)

A

[
SE1

i1

] φA
m

kerφA
m=ψ(m)

A [SEm
im

]

Figure 5.1: The structure of the required computation.

By Proposition 5.1.2, Bob can easily find the first step, ψ(0)
A

[
SE0
i0

]
. By repeatedly

using Proposition 5.1.2 eA times, we see that if eA ≡ 0 (mod 2), then we simply have
SEA
i0

= ψ
(0)
A

[
SE0
i0

]
. On the other hand, if eA ≡ 1 (mod 2), we must simply swap

index 3 and 4, while leaving 1 and 2. This show that the key exchange actually works
in the trivial case eB = 1. However, the caveat is that the final curve Alice and Bob
each arrive at need not be the exact same curve, even though they are isomorphic
and have the same j-invariant.

We now show why this is important. Assume that in the trivial case eB = 1,
Bob and Alice can reach the exact same final curve by using the above approach.
Then the same approach also works for any eB ∈ N. This can easily be proven by
induction.

Base case: By assumption this holds for eB = 1, i.e. φA0 ◦ ψ
(0)
A = ψ

(1)
A ◦ φ0.

Induction step: Assume this for eB = n, i.e.

(φAn−1 ◦ · · · ◦ φA0) ◦ ψ(0)
A = ψ

(n)
A ◦ (φn−1 ◦ · · · ◦ φ0).

78 5. COMPUTING THE 3N -ISOGENY WITHOUT AN EXPLICIT GENERATOR

Then for eB = n+ 1 we can show that

(φAn ◦ φAn−1 ◦ · · · ◦ φA0) ◦ ψ(0)
A = ψ

(n+1)
A ◦ (φn ◦ φn−1 ◦ · · · ◦ φ0),

φAn ◦ ((φAn−1 ◦ · · · ◦ φA0) ◦ ψ(0)
A) = ψ

(n+1)
A ◦ (φn ◦ φn−1 ◦ · · · ◦ φ0),

φAn ◦ (ψ(n)
A ◦ (φn−1 ◦ · · · ◦ φ0)) = ψ

(n+1)
A ◦ (φn ◦ φn−1 ◦ · · · ◦ φ0),

φAn ◦ ψ
(n)
A ◦ (φn−1 ◦ · · · ◦ φ0) = ψ

(n+1)
A ◦ φn ◦ (φn−1 ◦ · · · ◦ φ0),

φAn ◦ ψ
(n)
A = ψ

(n+1)
A ◦ φn

which follow from the base case.

We argue that achieving this equality in the base case should not be unrealistic;
by using curves in Weierstrass form together with Vélu’s formula, one already gets it
for free [Leo20]. However, as we discuss in the next section, the closest we get using
twisted Hessian curves is within a factor of ω.

5.2.2 The Missing Piece

Recall that all twisted Hessian curves H(a, d) are isomorphic to a Hessian curve of the
form H

(
1, d

3√a

)
. If φ : H1 → H2 is an isogeny of degree 3 as given in Theorem 3.2.9

or Theorem 3.2.10, it is not entirely clear that even if all four SH1
i are Fp2-rational,

then so should all four SH2
i be. But note that this is the same situation as for

the usual SIDH calculation. A consequence of this is that the parameter a on the
curve H2 must be a cube, and subsequently, the isomorphism taking H2 to the
corresponding Hessian curve is defined over Fp2 . Denote this isomorphism by ϕ.

Note that ϕ is not unique, as there exist three different choices for 3
√
a. However,

we conjecture that if E0 is a Hessian curve, and further by always composing the
3-isogenies with the correct isomorphism ϕ, we get the situation discussed in Section
5.2.1 (i.e. Alice and Bob end up with the exact same curve, and not just isomorphic
curves, which is what we need to make the key exchange work). Note that this is
not trivial, as there exist up to 12 different values for d for a given j-invariant (and a
given value a), and the conjecture says that we can get within 3 different values of d.
Finding the right value d is, in other words, a matter of choosing the correct cube
root of a.

To show that the key exchange works, up to a matter of choosing the correct
cube root of a, we implement the calculation with an oracle. Note that if c = a

q+2
9 ,

then the all cube roots of a are given by cωi for i ∈ {0, 1, 2}. To restrict the power of
the oracle, we only allow it to return the correct number i ∈ {0, 1, 2} as given above,
in order to show that this is the only missing step. We stress that we implement the
oracle by using Alice’s secret, so this renders the key exchange completely insecure,

5.3. IMPLEMENTATION 79

but as explained this is only meant to show that if one can somehow select the correct
cube root of a in each step, the calculation works.

5.3 Implementation

In this section, we cover all parts of the implementation of the alternative strategy for
computation. Because the implementation uses many multiplications by a non-trivial
cube root of one, we would like this to be as simple as possible. By implementing
the field Fp2 as Fp[X]/〈X2 +X + 1〉, multiplications by ω become almost trivial.

5.3.1 Computing in Fp(ω)

We implement the field Fp(ω) ∼= Fp[X]/〈X2 + X + 1〉 in addition to Fp(i) ∼=
Fp[X]/〈X2 + 1〉 (which was discussed in Section 4.1.1). The roots of the poly-
nomial X2 +X + 1 ∈ Fp[X] are non-trivial cube roots of 1. It is irreducible if and
only if p ≡ 2 (mod 3). To see this, notice that if p ≡ 2 (mod 3), then |(Fp)∗| ≡ 1
(mod 3), so by Lagrange’s theorem (Theorem 2.1.5), no element of order 3 can exist
in Fp, and subsequently ω 6∈ Fp. Conversely, if p ≡ 1 (mod 3), then for any generator
α of (Fp)∗, we have

(
αk
)3 =

(
α2k)3 = 1 for k = p−1

3 , so αk and α2k are roots of
X2 + X + 1. Finally, if p = 3, then it is obviously reducible. We fix a root ω of
X2 +X + 1, and set {1, ω} as a basis for Fp(ω). Notice that ω2 = −1− ω. Now, the
field operations become

(a+ bω) + (c+ dω) = (a+ c) + (b+ d)ω,
(a+ bω)− (c+ dω) = (a− c) + (b− d)ω,

(a+ bω)(c+ dω) = (ac) + (ad+ bc)ω + (bd)ω2 = (ac− bd) + (ad+ b(c− d))i,
(a+ bi)−1 = (a−1 − b2(a3 + a2b+ ab2)−1)− (ab(a3 + a2b+ ab2)−1)ω,

where again, operations between elements a, b, d, c happens in Fp.

The main reason we implement Fp(ω) for this alternative calculation, is that
multiplication by ω happens frequently. The advantage here is that in Fp(ω), the
multiplication (a+ bω) · ω = −b+ (a− b)ω is very fast.

5.3.2 Generating Parameters

The parameter generation is done similarly as in Section 4.3.1, except from a few
notable differences which we summarize here. Each parameter set contains the
following:

80 5. COMPUTING THE 3N -ISOGENY WITHOUT AN EXPLICIT GENERATOR

Parameters for the prime p, the field Fp2 : Defines parameters eA and f with
3 | f , such that p = 2eAf − 1 is a prime number with p ≡ 5 (mod 9). Addition-
ally, it defines a parameter eB , and instantiates the field Fp2 .

A non-trivial cube root of one ω: Precomputes ω 6= 1 with ω3 = 1.

Curve parameter d: Curve parameter d such that the Hessian curve E : X3 +
Y 3 + Z3 = dXY Z is supersingular with j-invariant 6= 0.

The points {PA, QA}: The single torsion basis {PA, QA}, with 〈PA, QA〉 = E[`eA

A].

Optimal strategy SA: Optimal strategy for computing 2eA -isogenies obtained by
Algorithm 4.2.

We need 3 | f , because we need the whole 3-torsion group to be rational for some
supersingular curve E ∼= Z/`eA

A fZ× Z/`eA

A fZ. This is equivalent to saying that we
want all SEi groups to be Fp2-rational. Note that this is much less strict than the
usual requirement `eB

B | p+ 1. Further, we need `A = 2 (although typically, we would
want to do this in the usual case for Section 4.3.1 as well), because we rely on Alice
using Theorem 3.2.8 to calculate her isogenies. Separately, we define the security
parameter eB corresponding to the length of Bob’s isogeny-walk. Finally, we require
p ≡ ±5 (mod 9), to ensure that q = p2 ≡ 7 (mod 9).

Another difference with Section 4.3.1, is that if the field Fp2 is implemented as
Fp[X]/〈X2 +X + 1〉, then as discussed in Section 5.3.1 the parameter ω is simply
X + 〈X2 +X + 1〉. Further, notice that this time we must start with a Hessian curve
(but again, this has advantages in the usual setting as well). Finally, only Alice needs
a torsion basis and an optimal strategy.

5.3.3 Computing Secret Isogeny

We only consider Bob (the participant working in the 3eB -torsion) for this alternative
way of computing, as Alice’s part of the key exchange works exactly as in Chapter 4,
i.e. she uses Algorithm 4.6, together with an optimal strategy.

Implementing Bob’s alternate way of computing actually results in a much easier
algorithm than Algorithm 4.6 (or the 3eB version of it). However, for the second
part of the key exchange, we need the oracle as we have argued. Therefore, to be
precise we now describe two different algorithms.

To make the first algorithm easily readable, we use two high level functions. The
function IsoFromKer takes in a kernel of the form SEi , 2 > i > 4 returns another
function φ representing to the isogeny with kernel SEi . If φ takes in a point, it
returns the point evaluated in the isogeny, for instance using Algorithm 4.9, while if

5.3. IMPLEMENTATION 81

it takes in a curve, it returns the image curve with the parameters given in Theorem
3.2.10. We also use the function Hessian, which takes in a curve, and returns another
function ϕ representing the isomorphism taking the curve H(a, d) to H(1, d/(a

q+2
9)).

Again, ϕ can take in a point, and return the point evaluated in the isomorphism
(recall that the isomorphism is defined as ϕ(X : Y : Z) = ((a

q+2
9)X : Y : Z)), or it

can take in a curve H(a, d), and return the image curve H(1, d/(a
q+2

9)).

Algorithm 5.1 Alternate computation of 3eB isogeny - stage I
Input: Alice torsion points PA, QA ∈ H1,d, and precomputed values ω 6= 1, ω3 = 1,

Bob’s secret sB = (s0, s1, . . . , seB−1) ∈ {2, 3, 4}eB−1

Output: Bobs curve EB , φ(PA), φ(QA) where φ : E → EB .
1: P0 ← PA
2: Q0 ← QA
3: for i← 0, eB − 1 do
4: φi ← IsoFromKer(SEi

si
)

5: E′i+1 ← φ(Ei)
6: ϕi ← Hessian(E′i+1)
7: Ei+1 ← ϕ(E′i+1)
8: Pi+1 ← ϕ(φ(Pi))
9: Qi+1 ← ϕ(φ(Qi))
10: end for
11: return EeB

, PeB
, QeB

For part two of the key exchange, the algorithm becomes even easier, as Bob has
no points he needs to evaluate. This time we write it without using the high-level
functions. We assume that if Alice’s parameter eA ≡ 1 (mod 2), Bob has changed
his secret according to the discussion in 5.2.1. The only special function we use is S,
which takes in an integer k ∈ {2, 3, 4}, and returns the parameter ωk−2 (Recall that
all curves E we are dealing with are Hessian curves. Then the output represents the
parameter c of the non-identity points in SEi). Further, we use the Oracle O(d, i),
which takes in the current step i and current curve parameter d, and returns an
integer k ∈ {0, 1, 2} such that a

q+2
9 ωk is the correct cube root (as discussed in Section

5.2.2).

Note that Algorithm 5.2 does not need to query the oracle in the final iteration,
since we are only after the j-invariant of the final curve.

While both Algorithm 5.1 and Algorithm 5.2 are easy in the sense that they
clearly have linear run time the parameter eB, and that we completely avoid any
elliptic curve additions, it should be noted that they do require an inversion and an
exponentiation by q+2

9 in each step to find the isomorphic curve on Hessian form.
This is further discussed in Section 6.3.3

82 5. COMPUTING THE 3N -ISOGENY WITHOUT AN EXPLICIT GENERATOR

Algorithm 5.2 Alternate computation of 3eB isogeny - stage II
Input: Parameter d of Alice’s curve EA = H(1, d), a precomputed value ω 6= 1,

ω3 = 1, Bob’s secret sB = (s0, s1, . . . , seB−1) ∈ {2, 3, 4}eB

Output: The shared secret j(EAB).
1: for i← 0, eB − 2 do
2: c← S(si)
3: a← d2c+ 3dc2 + 9 . See Theorem 3.2.10
4: d← d+ 6c
5: d← d

(
a

q+2
9

)−1
. Isomorphism to Hessian form

6: d← dωO(d,i) . Needs Oracle to return correct cube root
7: end for
8: c← S(seB−1)
9: a← d2c+ 3dc2 + 9
10: d← d+ 6c
11: ss← (216ad+d4)3

a(d3−27a)3 . See Proposition 4.1.2
12: return ss

5.3.4 The Oracle

Finally, we explain how we have implemented the oracle. As mentioned, this runs
during Bob’s calculation while requiring Alice’s secret, which of course compromises
security. The oracle is simply implemented as part of a proof-of-concept to show that
if one can find the correct cube root in each step, the key exchange works.

As discussed in Section 5.2.1, Bob needs to make his degree 3 isogenies commute
with Alice’s degree 2eA isogeny. Therefore, we give the oracle the knowledge of which
value d Alice would have reached to help Bob succeed in selecting the correct cube
root. Note though that as explained, the oracle is limited in power, and does not
give Bob the parameter d, but only a k ∈ {0, 1, 2} corresponding to the factor of
ωk that Bob is off. To do this, during stage I, Bob gives the oracle his curve Ei in
each step, and the oracle calculates the isogeny ψ(i)

A , and then saves the parameter d
of the image curve EA,i As mentioned, the oracle does not need to be queried for
the final curve EA,eB

, so it does not need to do this calculation either. The oracle’s
precalculation is illustrated in Figure 5.2.

Then, for stage II, once the oracle has this list of d values, it is trivial to let Bob
query the oracle and return the correct k ∈ {0, 1, 2} for the current step, assuming
the conjecture from Section 5.2.2 is true.

5.3. IMPLEMENTATION 83

E0 E1 E2 · · · EeB−1 EeB

EA,1 EA,2 · · · EA,eB−1

φ0 φ1

ψ
(1)
A

φ2

ψ
(2)
A

φeB−2 φeB−1

ψ
(eB−1)
A

Figure 5.2: The oracle stores all values in red. Note that the oracle clearly needs the
knowledge of Alice’s secret and can easily recover Bob’s secret.

5.3.5 Key Exchange

Finally, we summarize the key exchange for Bob. Alice does exactly the same
calculation as in Section 4.3.4, except from the fact that Bob no longer has any
torsion basis that Alice needs to evaluate in stage I.

Setup: The parameters are set up as described in Section 4.3.1. Again, these param-
eters are persistent, and will typically be hard-coded into the implementation.

Computing Stage I: Bob no longer needs to calculate a secret generator point. In-
stead, he samples a random secret sB = {s0, . . . , seB−1} ∈ {2, 3, 4}eB , and runs
Algorithm 5.1, with the starting curve H(1, d), Alice’s torsion points PA, QA,
a precomputed ω and his secret sB . He then sends Alice the output consisting
of curve-parameters aB , dB and Alice’s new torsion basis φB(PA), φB(QA).

Computing Stage II: If eA ≡ 1 (mod 2), Bob calculates his new secret as

s′
B = {s′i | s′i = ρ(s′i)}

where

ρ(si) =

2, if si = 2
4, if si = 3
3, if si = 4

while if eA ≡ 0 (mod 2), he simply sets s′
B = sB . Once Bob receives the curve

H(1, dA) from Alice, he runs Algorithm 5.2, with the curve H(1, dA), ω and
his secret s′

B, which outputs the shared secret.

Chapter6Examples and Discussion

Our work shows that twisted Hessian curves may have certain use cases in isogeny-
based cryptography, but that more work is required. This chapter will start by provide
examples from the implementations in Chapters 4 and 5. The rest of this chapter will
summarize and discuss the advantages and disadvantages of our implementations.

6.1 Examples

We provide three examples calculated by our implementations, one example corre-
sponding to Chapter 4, and two examples from Chapter 5.

6.1.1 Example from Chapter 4

This section contains an example from of the implementation sidh.jl, from the
folder optimizedImplementation, using real-world parameter sizes. The example
uses a 434-bit prime, which corresponds to a NIST-security level of 128-bit quantum
security. The prime is the same as the corresponding prime in the SIKE specification
[JAC+20].

Setup: We set `A = 2, `B = 3, eA = 216, eB = 137 and f = 1. This gives

p=24439423661345221551909145011457493619085780243761596511325807336
205221239331976725970216671828618445898719026692884939342314733567.

We find a non-trivial cube root of 1 in Fp(i) ∼= Fp[X]/〈X2 + 1〉 as

ω=122197118306726107759545725057287468095428901218807982556629036681
02610619665988362985108335914309222949359513346442469671157366783+
135386734010422587503378390191196800823739277475761521929144500224i.

85

86 6. EXAMPLES AND DISCUSSION

For a starting curve, we start at the supersingular curve X3 +Y 3 +Z3 = 0, and
do a random isogeny-walk and end up with a Hessian curve E : X3 +Y 3 +Z3 =
d0XY Z with

d0=21938592274131414269195126158626966830222340260013189371100661864
3854082018527224312489320097711699701534967947124705531888751377+
224554752264866562421933351177644545140296865788315782851609350792
77915330382014917805219451047037349751164063364002803448384614447i.

For torsion bases, we use the points

PA=(181207408233620968593030222052887554276296428713272278824059665758
47984558387539928052290360431866048570707122929174094517137127572+
136762723551604131775126461548117364316956443400400420940500100671
76409653388087128120102323997289146129711682804709234422631809119i:
123478600471055028680842749773143654697022672527740951724140751861
01054801003847427792176551646962029279251209888143858809504355093+
207160613791258635181993161078041490632235106712523508148992103074
7709391778468079745195668064250034085976851041888789302550148156i:
1+0i),

QA=(23202928880667368292705641856318630011159095426475373469772240438
46449740633660012646461203110779384145783689336541634935753842822+
104691521398866550099463624248283818358983982790576512111173860641
00774342594793495861882628163091637486910375506746363436039071109i:
70918135356727291125686221095280794669676390324264889061110486203
11882228457530155621470712065031549369312852429800747733556376766+
182003712934905759287093535298471175593731420520631720849517953729
82551849580948084001707063718810634285157084332058660485760511778i:
1+0i),

PB=(89044616928706808036919238702192519229891121107608753435818097448
60505443788176344272038761246235980368457028058840724327476219856+
215777275068529710522576406898606150588129043598312668531758619502
67359126456535381151649829621629627069385114655752083305850464103i:
237187303387687212359319987113091578513521867904498747151814273641
71710302346990961730088749387588227717752954555294200151036775564+
243287215067351808871804947676207895309197120677853566404937160063
53591383090300885043442096437195245154340484810096738076559281702i:
1+0i),

QB=(97461091314654474635818675446635354564915801843347288662827357877
60679089038882615206080358267808785890102963701145440075323701334+
893517947633210701220863528795709266686296635762915473523052459472
7977866409670623950280129988192237642010640224604971362378223303i:
21367130630746287799258063878103315772545000692518053365900639684
48166593700525134397181780949799794696001609656679944445533733804+
214483602749462757400456514317741798963128061475233166333371378839
54265149150075996544596747345081907803659209328622346347725569232i:
1+0i).

Finally, optimal strategies are precomputed.

Computing Stage 1: Alice and Bob now select their secrets, respectively sA and
sB , as

sA=12023122357027694014056032263113082352582982089602671950165060394

sB=47582554898287393242254523665118895593562487670882357426393350853

6.1. EXAMPLES 87

Alice then calculates her secret generator as RA = PA + [sA]QA, and calculates
the isogeny φA : E → EA having 〈RA〉 as a kernel. This way she finds the
curve EA : aAX3 + Y 3 + Z3 = dAXY Z, with

aA=1+0i

dA=216774494131743582114756942907659817419907906300818835377685625286
77487247332917809222555153604166233123583704701936318982189628180+
95949546982634345795971973662264485350406479360339392905470523213
92871200461639558024298263162109645974538017134948822298516273927i

Additionally, Alice calculates the image of Bob’s torsion basis, which become

φA(PB)=(155917432849464586281372824446337190084943219538430717283985800506
53960010124734245630228005928197961738923959727409646490854268030+
110778640453208163383456472934669044682137463612039360296490160077
21781657630948095524721334682102801646015755713275064230255393790i:
45404981531611258135438329045534589602048747004497400128260881817
23161897333806392490460412514973159921078389165183906416164919027+
188438913591908827591416133172742866564327498759453027700224869004
24286780110756403605663314735856633495717793363678597744149370621i:
24551545822597449188796641512191162048931922350863750624427119482
99200100008751059367296157304841470158856313298136551092889812100+
39426679119270019095896791898520060149233587874557773392724999504
90655872887563229259581538765208529547073931227091572486819632209i)

φA(QB)=(138260114459551563905718696531292828775427443055817420612532327445
00847434549393297616705455910757221588567803910422834714835239107+
54931354650703174386094391619472066533916742480687095901561820998
1677110729981461914092960536642971182294978144376279459176025157i:
193990353629832002838669575815836083496555162977911744615222592607
76230210129304384072547976623839700851711143346424779351606119152+
136869690762816780389461731231283158126344976548556979629568545846
0893693566958680853501255923749019694175080195689647183309908378i:
190898143513586064915814168360275140561409471113972353365026645146
68773396935456155595807206738179342267959575634350548710281086649+
136392364994005714927401734426380185034436955624991205354191965942
15821014670934218296555473249013327759955863854576872855379564498i)

In a similar fashion, Bob calculates his secret RB = PB + [sB]QB, and finds
φB : E → EB , φB(PA) and φB(QA). His public curve, EB : aBX3 +Y 3 +Z3 =
dBXY Z, has parameters

aB=45898057719423745658836698742390396836029037692301728878303984781
37532797177936931217478298352960196187478613372060195477425211947+
71042515039875438207444487828749687464683562097921351054497779218
75854403475070182171506673853183473039699478825147082613762290788i

dB=112457583554619689494956430072975019054229326892579562734737972654
59243565921876092755339423128440199400621759275877525647858880690+
191922731454595378064402770989979675798294890205374858868001342193
09802788848009081809665659940574973986196433987206522464452697335i

88 6. EXAMPLES AND DISCUSSION

while the image of Alice’s torsion basis is

φB(PA)=(115216401460293170069316587567579805115986163423438053994960894018
24256800998328624400943933737513097318980391418866457605906927982+
210322602519619733993519088524848354625278776881303704956984640568
71919190092076660100083898989874649093214688946864318024221578755i:
151662697181818574437829798313810523839848549542599487971861308362
83225844048676401486150047827433582023303445367786408151699012126+
131479564773656483249945104340829501130371810006584275155706151051
45971081294138265966601636850104279643059898237976154839296891064i:
80746068552703593024426486912826140693124843415109481484953923706
62395326336299735720670194828416912039534462809894407061434678034+
40742071393890878430863817674936374402189875556113049719572064951
45451728736573309197643443292790592136964685538145402229036664982i)

φB(QA)=(46528781554807707803681500221758816925744040423135604602085345198
41520240500791124308834193182766932628959353924855707032805763897+
148980602762568462727102474403341108112615926237560195621687637556
44264074930029931426856687167933513019277058431209146756005906806i:
224543207551379642723671272344513368282596065023928927386600298891
55643187872260057843112019389622838066110628434325818464953921325+
153695694517839487059098512506637280231388156895971641924643085066
78866136998971306376261300441961957090081646464876656921428682783i:
35907918011416943988301013025806941387281982053134308944942931303
40833121405725457763892134110499136746547715036992346391308402981+
20232960293227569396213025970834825979157919036497025447357150049
02987586259041081371068648898050661258158368347832763177119720130i)

Computing stage II: Once Alice receives EB , φB(PA) and φB(QA), she recovers
her kernel as φB(RA) = φB(PA) + [sA]φB(QA), and calculates the isogeny φ′A :
EB → EBA as the isogeny having φB(RA) as kernel. Bob proceeds similarily,
and ends up with the curve EAB . Finally, the j-invariant of EAB ∼= EBA is

j(EAB)=j(EBA)=50354154695947312077142804149239395066948787462807726978261811683
99043208109136611457853596051991205272167857877700544284555708594+
124318675580995564813967878634492708489641793621967383390258268990
43859091844610425405795351292443426978425410601331479674528451521i

which becomes their shared secret.

This concludes the example from Chapter 4. The example used parameters from
p434.jl, corresponding to a NIST security level of 128-bit quantum security. We
note that the ephemeral parameters, aA, aB , dA, dB , φA(PB), φA(QB), φB(PA) and
φB(QB), may depend on the implementation. However, using the same starting
parameters and selecting the same secrets will result in the same shared secret
regardless.

6.1.2 Examples from Chapter 5

To help understand the computation from Chapter 5, we first provide a detailed
example of the calculation, using tiny parameters, before showing a less detailed
example with cryptographically secure parameters.

6.1. EXAMPLES 89

Setup: We start by selecting a suitable prime. We see that `A = 2, eA = 11, f = 3
gives the prime p = 211 · 3 − 1 = 6143, which satisfies the requirements of
the prime. Further, we set eB = 7, which gives 3eB = 2187 ≈ 2048 = 2eA .
Then we instantiate the field as Fp(ω) ∼= F [X]/〈X2 + X + 1〉. The element
ω = X + 〈X2 +X + 1〉 ∈ F [X]/〈X2 +X + 1〉, satisfies ω3 = 1. From this point
on, all arithmetic happens in Fp(ω).

Next, we do a random isogeny-walk from the curve H(1, 6 + 6ω) (which has
j-invariant 0), and end up with the starting curve H(1, 535 + 1621ω) (which
has j-invariant 5736 + 2534ω). At this point, Bob has all the parameters he
needs, but we must still generate a torsion basis and optimal strategy for Alice.

We simply select two random points on this curve, multiply them by f and
assert that the resulting points provide a valid torsion basis for Alice. This
gives

PA = (3862 + 22ω : 394 + 5264ω : 1),
QA = (1196 + 1524ω : 3245 + 3484ω : 1).

Finally, we generate the optimal strategy for Alice, with estimated weights
p = 23358 and q = 32132. The optimal strategy is computed by using Algorithm
4.2.

Computing Stage I: Bob samples the random secret sB = (2, 3, 2, 4, 3, 2, 4). He
then does his isogeny-walk, starting at E0 = H(1, 535 + 1621ω), and with
P0 = PA, Q0 = QA. Step by step, he finds the isogeny with the kernel given by
his secret, composed with the isomorphism taking the curve to Hessian form.

(i) φ0 : E0 → E0/SE0
2 = E1, where E1 = H(1, 1053 + 2208ω),

P1 = φ0(P0) = (4400 + 4252ω : 3501 + 698ω : 3125 + 736ω),
Q1 = φ0(Q0) = (4668 + 1685ω : 4606 + 5754ω : 46 + 4390ω).

(ii) φ1 : E1 → E1/SE1
3 = E2, where E2 = H(1, 943 + 4623ω),

P2 = φ1(P1) = (4685 + 1448ω : 4816 + 47ω : 1344 + 639ω),
Q2 = φ1(Q1) = (2924 + 3718ω : 1147 + 2533ω : 3765 + 4179ω).
. . .

(vii) φ6 : E6 → E6/SE6
4 = E7, where E7 = H(1, 4689 + 4720ω),

P7 = φ6(P6) = (4668 + 3272ω : 2527 + 3371ω : 1083 + 1648ω),
Q7 = φ6(Q6) = (742 + 3622ω : 5414 + 5037ω : 3586 + 3275ω).

Bob is now done with his calculation, and sends Alice the parameter dB =
4689 + 4720ω of his curve, in addition to the image of Alice’s torsion basis,
P7, Q7.

90 6. EXAMPLES AND DISCUSSION

Alice has done her calculation as described in Chapter 4 (except that Bob does
not have any torsion basis), with her secret n = 1859. She simply sends Bob
the parameter of her curve dA = 969 + 1389ω.

Computing Stage II: Alice does the exact same computation as in stage I, except
starting at the curve H(1, dA), and with torsion basis P7, Q7, and ends up with
the curve H(1, 2216 + 364ω). Alice then finds her secret key as the j-invariant
of this curve, which is 2643 + 314ω. This becomes her shared key.
Bob, however, must change his secret before starting the stage II computation,
since eA = 11 ≡ 1 (mod 2). Bob stores his new secret s′

B = (2, 4, 2, 3, 4, 2, 3).
This time, in each step he must query the oracle to figure out which cube root
to choose when sending the curve to Hessian form.

(i) Bob finds the isogeny with kernel equal to SEA,0
2 = 〈(1 : −1 : 0)〉. The

image of this isogeny is H(1579 + 4996ω, 975 + 1389ω). He queries the
oracle and finds that the “correct” cube root is (1579 + 4996ω)kωO(·) =
(1579 + 4996ω)kω2 = 2715 + 5503ω. This gives him the first step
φA0 : EA,0 → EA,1, where E1 = H(1, (975 + 1389ω)/(2715 + 5503ω)) =
H(1, 2890 + 3723ω).

(ii) In the next step, the kernel is SEA,1
4 = 〈(1 : −ω2 : 0)〉. The image of this

isogeny is the curve H(3517 + 2002ω, 2884 + 3717ω). Bob queries the
oracle again, and gets akωO(·) = akω0 = 3381 + 2025ω. This completes
step 2 as
φA1 : EA,1 → EA,2, where EA,2 = H(1, (2884 + 3717ω)/(3381 + 2025ω)) =
H(1, 771 + 4641ω)
. . .

(vii) The final isogeny gives EA,7 = H(99 + 4409, 5893 + 4643ω). Unlike in the
previous steps, since this is the last curve, Bob does not need to query
the oracle to find the corresponding Hessian curve.

Finally, Bob calculates the j-invariant of the curve H(99 + 4409, 5893 + 4643ω),
which gives the shared key 2643 + 314ω, same as Alice ended up with.

This concludes the detailed example. In this example, Alice worked in the E[211]-
torsion, which was Fp2-rational, while Bob implicitly worked in the E[37]-torsion,
even though it was not Fp2-rational, by using the alternative calculation. From the
choices of public-keys, it seems like both Bob and Alice had ≈ 2000 different choices
of secrets. However, notice that since p = 6143, there only existed b p12c+ 2 = 513
different supersingular j-invariants. This means that there only existed 513 different
possible shared keys for Alice and Bob to end up with. In other words, the security
level here was bounded by the number of j-invariants, and not the length of their

6.1. EXAMPLES 91

isogeny-walks. This is in contrast to traditional SIDH. This will be further discussed
in Section 6.3.

Next, we provide an example, using a 256-bit prime. The security level of this
prime corresponds to the security level of the 434-bit prime used in Section 6.1.1.

Setup: We set `A = 2, eA = 216, eB = 137 and f = 879. This gives

p=92569504376661767107469946333946310008308788857082668792539349254143.

Since we use the field Fp(ω) ∼= Fp[X]/〈X2 +X + 1〉, precomputing ω is trivial.
Next, we find our starting curve. Again, we start at the supersingular curve
X3 + Y 3 + Z3 = (6 + 6ω)XY Z, and do a random isogeny-walk to end up with
a supersingular curve E : X3 + Y 3 + Z3 = d0XY Z with

d0=5665111991120050123568530467102258261631047525019366209577379756934+
82574505981473371002562942499396087965969775358884069554980223902745ω.

For Alice’s torsion basis, we use the points

PA=(80688760787762445901542266177232284214254309177320915381419714336548+
32337205480749456754565353563076240595776808766763190715201279433291ω:
65352292466146515189292147346535155416026979696475993340802784014906+
1427484992821599862895224959051257713188981232038994750392497764123ω:
1+0ω),

QA=(26933582349313129346992030939025106346144152421552560337036631338648+
78801036083640836099057856713777644273475452420778728247146237412696ω:
71787261617380092825103444820374042162460157337969907529928505703032+
8219895227764873515160858594720440787102071173753630866090558290298ω:
1+0ω).

Additionally, Alice’s optimal strategy is precomputed.

Computing Stage 1: Alice and Bob now select their secrets. Alice selects the
secret

sA=24977314604014664086101644993156626987090949695850726634173073983343,

while bob selects the secret chain of indexes

sB=3,2,3,3,2,3,2,4,2,3,2,3,3,2,3,3,3,3,2,3,2,3,2,2,2,4,2,3,2,4,3,4,3,3,2,2,2,2,3,3,4,4,2,4,2,3,
4,2,3,2,3,2,4,4,4,2,4,2,3,4,2,2,2,2,4,4,2,2,3,3,3,4,2,4,4,2,4,4,4,3,3,2,4,2,2,2,3,3,3,3,2,4,
2,3,3,4,2,4,4,3,3,4,4,2,4,2,4,3,4,2,3,3,2,2,2,4,3,4,3,4,4,3,2,4,3,3,4,3,4,2,4,3,3,4,2,2,4.

Alice then does as before. She calculates her secret generator as RA = PA +
[sA]QA, and uses it to calculate the isogeny φA : E → EA having 〈RA〉 as a
kernel. This way she finds the curve EA : X3 + Y 3 + Z3 = dAXY Z, with

dA=4350894275290870794653050687568454125789972293447934365787984317275+
50513365856571436286331209026668740142583402064906686702202007708240ω.

92 6. EXAMPLES AND DISCUSSION

Since Bob has no torsion points, this is all Alice needs to send to Bob. Bob,
however, does his isogeny-walk by picking a chain of subgroups of order 3
corresponding to his secret, as described in Chapter 5. In the end, he has
calculated the isogeny φB : E → EB, where EB : X3 + Y 3 + Z3 = dBXY Z

has parameter

dB=62764449010311398612358515857921410043560200633576995037360036267379+
50846026931259595269194271286741488796743620794950281364690313612836ω.

Since Alice still does the calculation as usual, Bob also need to calculate the
image of Alice’s torsion basis. This becomes

PA=(6652277278074378856094468682901541084613976827222350513402185128619+
22898215976670871505767743689016757456791067304698972231829586961149ω:
11409478609295578147552631801536191410400493162674516072159308442853+
57666643701333953443246063573111773642089053084995171129617926697774ω:
39152050218291569417463191468483661821013397703310549314588930543528+
46522085584294521858948422076729593053143084053837945489100210276973ω),

QA=(88629102184428504251220357950828231109111080634693322638497140828625+
72604014406152004629573898718943570959145580121608606858306939429767ω:
2441827544972886996588261356507784349449880237413306366957850433549+
1844682403855906236605100112697142461895769333176394290828533275875ω:
65810147502726016658083050280268669728922223538427305167421123445711+
41993424036352430187759440268613007997754210623648794958478577300610ω).

Computing stage II: Alice does her calculation exactly as in Section 6.1.1 and
ends up with EBA.
Unlike the previous example, Bob does not need to change his secret since Since
eA ≡ 0 (mod 2). Once Bob receives EA, he calculates a new isogeny, similar
to how he did in stage I, except that this time he uses the oracle to select the
correct cube root in each step. He ends up with the curve EAB . Again, since
EAB ∼= EBA, they both take the j-invariant of their final curve, to arrive at
the shared secret.

j(EAB)=j(EBA)=25157855285865111676453989324662184328857480084904057272199553615035+
48912636812629598051879707267227117213577634726358208706962789564980ω.

This concludes the example of the alternative calculation, using real-world pa-
rameter sizes. The main takeaway should be that while this example had the same
security level as the example in Section 6.1.1, all parameters are only ≈ 1

2 as long (i.e.
half the bit-length). Additionally, the size of Alice’s public key is greatly reduced, as
she no longer needs to send the image of a torsion basis for Bob.

6.1.3 Performance Benchmarks

Table 6.1 shows some benchmarks for the calculation of stage II of the key exchange
for both Alice and Bob. As mentioned in the introduction, the focus of the thesis

6.2. CALCULATING THE 2n-ISOGENY 93

Implementation
Chapter NIST sec. lvl Field Size of prime Alice Bob

Chp 4

N/A Fp(i) 132-bit 8.572 ms 11.443 ms
128-bit Fp(i) 434-bit 53.019 ms 80.583 ms
152-bit Fp(i) 503-bit 72.666 ms 90.220 ms
189-bit Fp(i) 610-bit 84.599 ms 107.982 ms
256-bit Fp(i) 751-bit 103.350 ms 156.870 ms

Chp 5

N/A Fp(i) 71-bit 8.071 ms 11.605 ms
N/A Fp(ω) 71-bit 8.699 ms 12.919 ms

128-bit Fp(i) 226-bit 70.389 ms 259.152 ms
128-bit Fp(ω) 226-bit 95.981 ms 283.145 ms
152-bit Fp(i) 259-bit 95.465 ms 360.223 ms
152-bit Fp(ω) 259-bit 98.583 ms 382.018 ms
189-bit Fp(i) 315-bit 106.838 ms 556.323 ms
189-bit Fp(ω) 315-bit 112.162 ms 633.556 ms
256-bit Fp(i) 382-bit 129.416 ms 832.607 ms
256-bit Fp(ω) 382-bit 134.379 ms 899.399 ms

Table 6.1: Performance benchmarks of the implementations for different parameters.

has not been the absolute speed of the implementation, however, we provide a
summary here as an example. The run times were calculated as the median of
multiple evaluations using the package BenchmarkTools.jl1. The implementations
were run on a computer with a 2.0 GHz Intel Core i5-1038NG7 processor, with four
cores.

As expected, Bob’s computation is significantly slower in the implementation from
Chapter 5 than in the implementation from Chapter 4. More surprisingly, Alice’s
computation is measured as slower in the implementation from Chapter 5 as well,
despite being logically the same as in Chapter 4, but with smaller parameters. We
return to the theoretical discussion of these costs in Section 6.3.3. However, possible
sources of errors for this estimate might be that the heavy oracle computation causes
some performance leak, or simply because of differences in the implementations.

6.2 Calculating the 2n-Isogeny

In Chapter 4, we described a working implementation of SIDH using twisted Hessian
curves. The work is mainly done by combining three different earlier works in the

1https://juliaci.github.io/BenchmarkTools.jl/dev/manual/

94 6. EXAMPLES AND DISCUSSION

literature: Jao and De Feo’s original SIDH (which used Montgomery curves) [JD11], a
paper by Bernstein et al. introducing twisted Hessian curves, and addition, doubling
and tripling formulae on these curves [BCKL15], and a paper by Dang and Moody
providing isogeny-formulae for twisted Hessian curves [DM19].

In addition to combining these papers, the section presented novel observations.
In particular, Proposition 4.1.2 presented a closed formula for the j-invariant of a
twisted Hessian curve, and Section 4.1.4 discussed ideas which showed that one can
ignore one of the curve coefficients when calculating 2n-isogenies for n ∈ N.

6.2.1 Efficiency

Since we simply applied the formulae for isogenies from Section 3.2.2, the costs
remain the same as can be found in the literature. A comparison of the formulae
with isogeny-formulae for other curve types can be found in the paper by Dang and
Moody [DM19]. The same goes for doubling and tripling formulae which can be
found in the original paper on twisted Hessian curves by Bernstein et al. [BCKL15].

While both isogeny formulae, and especially tripling formulae on twisted Hessian
curves, are nearly competitive (i.e. only slightly worse) compared to other elliptic
curve models, so-called differential addition formula for twisted Hessian curves does
not yet exist in the literature to our knowledge. This allows for computation using
only two projective coordinates, which significantly decreases the computational
cost of SIDH in schemes that enjoy differential addition formulae (e.g. Montgomery
curves [CLN16] and general Huff’s curves [DKW20]).

Although a differential addition formula was not found in this work, we showed
that calculating in 2n-isogenies was possible while ignoring one of the curve param-
eters. Compared to directly applying Theorem 3.2.8, this saves 1 inversion and 4
multiplications by Equation 4.2 (recall that we have to square a anyway, unless
a = 1), at the cost of 9 multiplications and 1 inversion at the end of the calculation.
This is a significant performance gain, as we typically require n ≈ 1

2 log2 p steps.
While this is a step in the right direction, it is highly unlikely to be enough to bridge
the gap to other curve types with differential addition formulae.

6.3 Calculating the 3n-Isogeny

In Chapter 5, we presented a new approach to calculating 3n-isogenies in SIDH, when
using twisted Hessian curves. The approach was mainly enabled by two propositions.
Proposition 5.1.1 made it possible to ignore generator points, and simply compute a
chain of length eB, consisting of 3-isogenies, while Proposition 5.1.2 gives a trivial
way to recover the subgroups of order 3, between two curves that are connected by

6.3. CALCULATING THE 3n-ISOGENY 95

a degree 2n isogeny2 for some n ∈ N. However, composition of isogenies based on
Proposition 5.1.2, only allows degree 3 and degree 2n isogenies to commute up to
the same j-invariant, meaning that image curves may not be exactly the same, even
though they are isomorphic. To provide motivation, we showed that if they were
exactly the same, this would lead to degree 3n and degree 2m isogenies commuting for
arbitrary n,m ∈ N, which would be enough to make the tweaked SIDH scheme work.
However, the requirement that they commute exactly is necessary, since isomorphisms
may permute the subgroups of order 3.

6.3.1 Motivation for Alternative Computation

The main motivation for our tweaked SIDH scheme comes from the fact that in
traditional SIDH, there is a mismatch between the security gained from the size of
the prime, and the security gained from the length of the isogeny-walk. Recall that
in SIDH, the prime p has the form `eA

A `eB

B f ± 1, where `eA

A ≈ `
eB

B , and that Alice does
an `A-isogeny walk of length eA, while Bob does an `B-isogeny walk of length eB . A
consequence of this is that the CSSI-problem (discussed in Section 3.3.3) instantiated
with the starting curve and a public-key curve in the graph G`A

(F̄p) (see Section
3.3.2) is much easier than it is for two arbitrary curves (the best known attack in the
general case is an algorithm by Delfs and Galbraith [DG16] which uses O

(
2
√
p
)
, while

the claw-finding algorithm discussed in Section 3.3.3 uses O
(

4
√
p
)
). This means that

potentially, one can use another prime p′, with p′ � p, without affecting the security
level, as long as the isogeny walks are of the same length, and that the number of
supersingular curves over F̄p′ is greater than (`A + 1)`eA−1

A and (`B + 1)`eB−1
B . A

prime p′ as low as p′ ≈ √p can be selected.

However, in the usual case, reducing the size of the prime comes at a great cost.
Recall that the prime has the specific restriction, to ensure that both the `eA

A -torsion
group and `eB

B -torsion group are Fp2-rational (see Section 3.3.1). Therefore, if we
select p′ ≈ √p, this will generally no longer be the case, which means that we need to
go to a larger field-extension Fpn , n > 2, to find a torsion-basis, and arithmetic has to
happen in Fpn . Not only is this much slower than arithmetic in Fp2 , but a potential
reduction in the size of the public keys is also forfeit as the images of the torsion
points (recall that in SIDH, Alice’s public key consists of EA, φA(PB), φA(QB)) are
generally only defined over the Fpn , where elements require an n-dimensional vector
to be represented.

Another approach to solving this problem was given in a recent paper by Costello
[Cos19]. While the techniques used by Costello are completely different from what
we discussed in Chapter 5, some of the advantages of the resulting scheme are similar
to what we potentially could achieve.

2When the 2n-isogenies are computed as a chain of 2 isogenies as given in Theorem 3.2.8.

96 6. EXAMPLES AND DISCUSSION

6.3.2 No Need for an Fp2-Rational 3eB -Torsion Group

We now summarize how our calculation from Chapter 5 approaches the problem
in 6.3.1. Recall Section 5.2, which showed that picking a point R of order 3eB to
generate the kernel of a 3eB -isogeny was equivalent to simply picking a chain of
indexes, and using the corresponding subgroups of order 3 as classified in Section
5.1.2. Using the equivalent approach, it should be clear that, in practice, we do not
do any computation with the torsion points, we simply pick subgroups of order 3.
Therefore, whether the whole 3e-torsion is Fp2 -rational is no longer relevant.

Alice still requires an Fp2 -rational 2eA -torsion group, since her calculation is the
same as explained in Chapter 4. Further, Bob requires that all subgroups of order 3 are
Fp2 -rational, i.e. that the 3-torsion group is Fp2 -rational (as was discussed in Section
5.3.2). And finally, to allow easy cube roots, we require p2 ≡ 7 (mod 9), as discussed
in Section 5.1.1. Using a prime of the form p = 2eAf ± 1, with 3 | f , and p ≡ ±5
(mod 9), we can find supersingular curves E with E(Fp2) ∼= Z/(2eAf)Z×Z/(2eAf)Z,
which satisfies all these properties (by the same method as mentioned in Section
3.3.1).

6.3.3 Computational Cost

As in Chapter 5, let Alice be the one working in the 2eA -torsion, and let Bob be the
one working in the 3eB -torsion. Alice uses the same methods described in Chapter 4.
In other words, Alice’ computational cost in terms of the number of field-operations
is exactly the same as discussed in the previous section. However, the size of the
field we are working over is much smaller (we return to this in Section 6.3.4), which
means that the field-operations themselves are cheaper.

Bob’s computation, however, is likely more expensive, even without counting the
cost of the oracle. In each step, Bob has to calculate a cube root and an inversion,
which dominates the computational cost. These operations are to get the curve on
Hessian form, which may or may not be necessary, depending on if and how the
oracle is replaced. However, even if it turns out to be unnecessary to get the curve
on Hessian form, Bob must always do a cube root calculation to find the subgroups
of order 3. Even though we have set up the field in a way to make cube roots easier,
it still requires an exponentiation by k = q+2

9 = p2+2
9 , which takes log2 k ≈ 2 log2 p

squarings by the square and multiply algorithm (Algorithm 4.1). The number of
multiplications varies based on the Hamming weight of k, but on average, it is around
log2 p multiplications. In total, counting squarings as multiplications, the cost of the
alternative computation is about 3 log2 p multiplications in each step. It is difficult to
compare it with the cost of the usual SIDH calculation, but if we compare it with the
most basic strategy, the purely multiplication focused isogeny calculation (Algorithm
3.1), we see that it has about the same cost. The basic strategy uses one average

6.3. CALCULATING THE 3n-ISOGENY 97

≈ 1
4 log3 p curve triplings in each step, which each takes 17 multiplications and 3

squarings by Algorithm 4.7. Counting squarings as multiplications, this gives a total
of

20 · 1
4 ·

log2 p

log2 3 ≈ 3.155 log2 p

multiplications per step. Therefore, we can compare the cost of the tweaked SIDH
scheme to the cost of using the purely multiplication focused strategy. This is much
slower than regular SIDH, which has access to the speedup gained from using optimal
strategies, so the speed of the alternative calculation has to be regarded as quite
slow.

6.3.4 The Field Size

Most of the performance gain in the tweaked SIDH scheme is a result of the fact that
we avoid the need for a Fp2 -rational 3eB -torsion. Recall that regular SIDH requires a
prime p of the form p = 2eA3eBf ± 1, where f is as small as possible (in practice,
often f = 1) and 2eA ≈ 3eB . For isogeny-walks of equal length, the alternative
calculation only requires the prime to be on the form p′ = 2eAf ′ ± 1, where 3 | f ′ to
ensure that the 3-torsion group is Fp2 -rational. This gives that p′ ≈ 3 · √p, assuming
f = 1 and f ′ = 3. However, to avoid lowering the security level, one should choose
f > 12, because the total number of supersingular isomorphism classes is “only” ≈ p

12
(Theorem 3.1.21), but either way, the bit-length of the field is only slightly larger
than half of what is required in regular SIDH.

Furthermore, recall the example in Section 6.1.2. Alice’s public key only consists
of the curve parameter of her public curve, compared to regular SIDH, where her
public key also consists of images of Bob’s torsion points. This has the advantage
of further reducing the key-sizes in the alternative computation. Additionally, it is
still unknown whether the torsion points affect the security of SIDH, so avoiding the
need for them is an advantage in itself. We return to this in Section 6.3.6

6.3.5 Mixing Property

Another interesting benefit from the reduced field sizes is that the isogeny-walks
that Bob and Alice do are now of length ≈ log p in their respective supersingular
graphs. This is much closer to the diameter of the graph, and in many cases, it may
be possible to select parameters, so that the isogeny-walks indeed are longer than
the diameter of the graph, which means that the random-walks actually achieve the
mixing property mentioned in Section 3.3.2.

98 6. EXAMPLES AND DISCUSSION

6.3.6 Petit’s Attacks on Unbalanced SIDH

As mentioned in Section 3.3.3, Petit has shown that revealing the images of torsion
points under the secret isogeny may impact security. In the paper by Petit, it is
stressed that the attacks do not impact regular SIDH. However, without going into
the details of the attacks, it affects so-called unbalanced variants, where `eA

A � `eB

B .
While at first glance, this may seem to affect our tweaked scheme, we argue that it
does not. The significance of `eA

A � `eB

B is that Petit’s attacks rely on one isogeny-
walk being much longer than the other3 (among other things), which is not the case
in our tweaked SIDH scheme. In a sense, we regard the torsion groups that Alice
and Bob are working over as the roughly same size in both the original SIDH scheme
and our tweaked variant, the difference being that in the original SIDH scheme, they
are both Fp2-rational, while in our tweaked variant, we have to go to some larger
field-extension of Fp to see Bob’s whole torsion group (but, as explained, we ignore
this when doing the calculation).

Although this is quite far from what we have done in this thesis, if one could
generalize our tweaked variant in such a way that neither Alice nor Bob require an
explicit torsion basis, then of course this would be a benefit of the tweaked SIDH
variant, as we would not have to worry about potential security problems such as
Petit’s attack related to images of torsion points.

3Let N1 and N2 denote the length of the isogeny walks. Then one attack requires N1 > N4
2

[Pet17, Section 4.4], while another requires log N2 ∈ O(log log N1) [Pet17, Section 4.5].

Chapter7Conclusion

In this thesis, we have studied how suitable twisted Hessian curves are in the context
of the supersingular isogeny Diffie-Hellman (SIDH) key exchange. Formulae for
isogenies between twisted Hessian curves enable them to be used in the SIDH
protocol, and additionally, they have fast doubling and tripling formulae, which
may potentially lead to efficient implementations, given more work. What is more,
subgroups of order 3 have a particularly simple structure on twisted Hessian curves.
This simple structure relates nicely to 3-isogenies (recall that separable 3-isogenies
have subgroups of order 3 as kernels), which may be possible to exploit to create
new SIDH-like schemes with certain appealing properties.

7.1 Summary

The first part of the thesis outlined how one can use twisted Hessian curves when
implementing SIDH. We showed that one advantage of using twisted Hessian curves
when calculating a composition of n degree 2-isogenies is that calculating the image
curves of 2-isogenies is very cheap. We showed that this only requires a single
squaring, since one can ignore one of the curve coefficients, at the cost of recovering
the curve coefficient at the end of the chain. However, this optimization is not
enough to close the gap in computing cost, when comparing with curves that have a
differential-addition formula.

The second part of the thesis presented a novel view on the 3n-isogeny calculation
in SIDH. We showed that when using twisted Hessian curves, there is a one-to-one
correspondence between 3n-isogenies, and chains of specific subgroups of length n.
This one-to-one correspondence was a consequence of a result we showed, which
roughly stated that the dual-isogeny of a 3-isogeny is always generated by a specific
subgroup of order 3 when using twisted Hessian curves. This, combined with another
result which showed how the subgroups of order 3 permute under 2-isogenies, suggests
a different way to calculate 3n-isogenies in SIDH which does not require an Fp2-

99

100 7. CONCLUSION

rational 3n-torsion group. Although we did not manage to make it fully functional,
we showed that there is only a single step missing.

Although our tweaked SIDH scheme seems to be slower than regular SIDH, it has
a lot of interesting properties. The relaxed requirement on the prime p means that
it is possible to select primes that are only slightly larger than half the bit-length
of the primes used in regular SIDH, without a loss in security level. Additionally,
even though we showed that the tweaked SIDH is likely quite slow, there is a lot of
room for improvement. The run-time is dominated by repeated exponentiation by a
large k. The significance here is that k is always fixed, which allows for much better
algorithms than the simple square-and-multiply which we used. Still, we consider the
primary performance gain of the tweaked SIDH scheme to be the reduced key-sizes.

Our work shows that twisted Hessian curves may have some usen cases in isogeny-
based cryptography and that more work is warranted. As it currently stands,
twisted Hessian curves offer no particular benefits over implementations using e.g.
Montgomery curves. However, with more research, twisted Hessian curves could
be used in both standard implementations of SIDH and other SIDH-like schemes
with relaxed requirements on the prime used to define the field. We have given an
example of such a scheme, which potentially uses primes which are around half the
bit length of those that are used in SIDH today.

7.2 Research Questions

In the introduction, we stated that our primary research objective was to study
how suitable twisted Hessian curves are for the SIDH protocol, and for isogeny-based
cryptography in general. To do this, we presented three research questions, which we
aimed to answer throughout the thesis. Here, we briefly summarize these answers.

(i) What techniques can be applied to optimize the performance of twisted Hessian
curves in the setting of isogeny-based cryptography?

For SIDH-based schemes, we have primarily presented two optimization tech-
niques. The computational cost of SIDH is dominated by the cost of calculating
long chains of low-degree isogenies. Chains of 2-isogenies can be computed
faster by ignoring one of the curve-coefficients, as both the point doubling
formula and the isogeny formula is independent of this parameter. Further,
key-sizes can be significantly reduced by closing the gap in security gained by
the length of the isogeny-walks and the size of the prime. This gap can be
reduced since the 3eB -isogeny computation can be done without an Fp2 -rational
3eB -torsion group as shown in Chapter 5.

7.3. FUTURE WORK 101

(ii) What are the challenges when implementing an isogeny-based protocol with
twisted Hessian curves?

One challenge, which limits the computational speed, when applying twisted
Hessian curves to isogeny-based cryptography is the lack of a formula for
differential addition. Other challenges were discussed in Chapter 4. One
notable example is the fact that the tripling formula (Algorithm 4.7) does not
work for twisted Hessian curves of the form H(a, 0), which are supersingular
whenever 0 is a supersingular j-invariant.

(iii) How can the structure of twisted Hessian curves be taken advantage of in the
SIDH setting?

One interesting structural aspect of these curves are their particularly simple 3-
torsion group. How to take advantage of this in the SIDH setting was discussed
thoroughly in Chapter 5, and could lead to the optimization mentioned in the
answer to research question (i) regarding the 3eB -isogeny computation.

7.3 Future Work

Our work leaves room for more research on twisted Hessian curves in the setting of
isogeny-based cryptography. Specifically, related to the work we have done, we give
two open problems which, if solved, could make twisted Hessian curves an interesting
candidate for implementations of SIDH. The first open problem is the most general,
while the second is related to our tweaked SIDH-scheme.

Open problem 1: Find a differential addition formula for twisted Hessian curves.

Differential addition formulae have been used to speed up SIDH and elliptic
curve cryptography in general on curve models such as the Montgomery curve,
and would likely benefit twisted Hessian curves as well.

Open problem 2: Make isogenies computed from Theorem 3.2.8 and Theorem
3.2.10 commute exactly.

As we have shown, solving this problem would lead to our tweaked SIDH scheme
working, which enables SIDH without a Fp2 -rational 3eB -torsion group. There
may be other approaches as well, but we believe this is the best approach, as
empirical evidence shows that they already commute exactly up to a factor of
ω, where ω is a non-trivial cube root of one.

References

[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al. Status re-
port on the second round of the NIST post-quantum cryptography standardization
process. US Department of Commerce, NIST, 2020.

[ACC+19] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred
Menezes, and Francisco Rodríguez-Henríquez. On the cost of computing isogenies
between supersingular elliptic curves. In Carlos Cid and Michael J. Jacobson Jr:,
editors, SAC 2018: 25th Annual International Workshop on Selected Areas in
Cryptography, volume 11349 of Lecture Notes in Computer Science, pages 322–343,
Calgary, AB, Canada, August 15–17, 2019. Springer, Heidelberg, Germany.

[Adl79] Leonard M. Adleman. A subexponential algorithm for the discrete logarithm
problem with applications to cryptography (abstract). In 20th Annual Symposium
on Foundations of Computer Science, San Juan, Puerto Rico, 29-31 October
1979, pages 55–60. IEEE Computer Society, 1979.

[AMM77] Leonard M. Adleman, Kenneth L. Manders, and Gary L. Miller. On taking roots
in finite fields. In 18th Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 175–178.
IEEE Computer Society, 1977.

[BBJ+08] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters.
Twisted edwards curves. In Serge Vaudenay, editor, Progress in Cryptology -
AFRICACRYPT 2008, First International Conference on Cryptology in Africa,
Casablanca, Morocco, June 11-14, 2008. Proceedings, volume 5023 of Lecture
Notes in Computer Science, pages 389–405. Springer, 2008.

[BCKL15] Daniel J. Bernstein, Chitchanok Chuengsatiansup, David Kohel, and Tanja Lange.
Twisted Hessian curves. In Kristin E. Lauter and Francisco Rodríguez-Henríquez,
editors, Progress in Cryptology - LATINCRYPT 2015: 4th International Con-
ference on Cryptology and Information Security in Latin America, volume 9230
of Lecture Notes in Computer Science, pages 269–294, Guadalajara, Mexico,
August 23–26, 2015. Springer, Heidelberg, Germany.

103

104 REFERENCES

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 213–229, Santa Barbara, CA,
USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[BF19] Fouazou Lontouo Perez Broon and Emmanuel Fouotsa. Analogue of Vélu’s
formulas for computing isogenies over Hessian model of elliptic curves. IACR
Cryptol. ePrint Arch., 2019:1480, 2019.

[BJN94] Phani Bhushan Bhattacharya, Surender Kumar Jain, and SR Nagpaul. Basic
Abstract Algebra. Cambridge University Press, 1994.

[Brö09] Reinier Bröker. Constructing supersingular elliptic curves. J. Comb. Number
Theory, 1(3):269–273, 2009.

[CJS14] Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic
curve isogenies in quantum subexponential time. J. Math. Cryptol., 8(1):1–29,
2014.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: An efficient post-quantum commutative group action. In Thomas Peyrin
and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018,
Part III, volume 11274 of Lecture Notes in Computer Science, pages 395–427,
Brisbane, Queensland, Australia, December 2–6, 2018. Springer, Heidelberg,
Germany.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for
supersingular isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture
Notes in Computer Science, pages 572–601, Santa Barbara, CA, USA, August 14–
18, 2016. Springer, Heidelberg, Germany.

[CLN+20] Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando
Virdia. Improved classical cryptanalysis of SIKE in practice. In Aggelos Kiayias,
Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020: 23rd
International Conference on Theory and Practice of Public Key Cryptography,
Part II, volume 12111 of Lecture Notes in Computer Science, pages 505–534,
Edinburgh, UK, May 4–7, 2020. Springer, Heidelberg, Germany.

[CLO97] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms -
an Introduction to Computational Algebraic Geometry and Commutative Algebra.
Undergraduate Texts in Mathematics. Springer, 1997.

[Cos19] Craig Costello. B-SIDH: supersingular isogeny Diffie-Hellman using twisted
torsion. Cryptology ePrint Archive, Report 2019/1145, 2019. https://eprint.iacr.
org/2019/1145.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive,
Report 2006/291, 2006. http://eprint.iacr.org/2006/291.

https://eprint.iacr.org/2019/1145
https://eprint.iacr.org/2019/1145
http://eprint.iacr.org/2006/291

REFERENCES 105

[DG16] Christina Delfs and Steven D. Galbraith. Computing isogenies between supersin-
gular elliptic curves over Fp. Des. Codes Cryptogr., 78(2):425–440, 2016.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[DKW20] Robert Dryło, Tomasz Kijko, and Michał Wroński. Efficient montgomery-like
formulas for general huff’s and huff’s elliptic curves and their applications to the
isogeny-based cryptography. Cryptology ePrint Archive, Report 2020/526, 2020.
https://eprint.iacr.org/2020/526.

[DM19] Thinh Dang and Dustin Moody. Twisted Hessian isogenies. Cryptology ePrint
Archive, Report 2019/1003, 2019. https://eprint.iacr.org/2019/1003.

[Edw07] Harold Edwards. A normal form for elliptic curves. Bulletin of the American
mathematical society, 44(3):393–422, 2007.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

[Feo17] Luca De Feo. Mathematics of isogeny based cryptography. CoRR, abs/1711.04062,
2017.

[FJ10] Reza Rezaeian Farashahi and Marc Joye. Efficient arithmetic on Hessian curves. In
Phong Q. Nguyen and David Pointcheval, editors, PKC 2010: 13th International
Conference on Theory and Practice of Public Key Cryptography, volume 6056 of
Lecture Notes in Computer Science, pages 243–260, Paris, France, May 26–28,
2010. Springer, Heidelberg, Germany.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the
security of supersingular isogeny cryptosystems. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, Part I, volume
10031 of Lecture Notes in Computer Science, pages 63–91, Hanoi, Vietnam,
December 4–8, 2016. Springer, Heidelberg, Germany.

[Har77] Robin Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathe-
matics. Springer, 1977.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017: 15th Theory of Cryptography Conference, Part I, volume 10677
of Lecture Notes in Computer Science, pages 341–371, Baltimore, MD, USA,
November 12–15, 2017. Springer, Heidelberg, Germany.

[29] Luca De Feo (https://crypto.stackexchange.com/users/40730/luca-
de-feo). Independent parameters basis for torsion-groups in SIDH:
Is the Weil-pairing necessary? Cryptography Stack Exchange.
URL:https://crypto.stackexchange.com/questions/89671 (version: 2021-05-06).

https://eprint.iacr.org/2020/526
https://eprint.iacr.org/2019/1003

106 REFERENCES

[JAC+20] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess,
A. Hutchinson, A. Jalali, K. Karabina, B. Koziel, B. LaMacchia, P. Longa,
M. Naehrig, G. Pereira, J. Renes, V. Soukharev, and D. Urbanik. Supersingu-
lar Isogeny Key Encapsulation. Technical report, October 2020. Available at
https://sike.org/files/SIDH-spec.pdf.

[JD11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, pages 19–34, Tapei,
Taiwan, November 29 – December 2 2011. Springer, Heidelberg, Germany.

[JS19] Samuel Jaques and John M. Schanck. Quantum cryptanalysis in the RAM model:
Claw-finding attacks on SIKE. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, Part I, volume 11692 of Lecture
Notes in Computer Science, pages 32–61, Santa Barbara, CA, USA, August 18–22,
2019. Springer, Heidelberg, Germany.

[JTV10] Marc Joye, Mehdi Tibouchi, and Damien Vergnaud. Huff’s model for elliptic
curves. Cryptology ePrint Archive, Report 2010/383, 2010. http://eprint.iacr.
org/2010/383.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[Kob93] Neal I. Koblitz. Introduction to Elliptic Curves and Modular Forms, volume 97
of Graduate Texts in Mathematics. Springer, 1993.

[KYK+18] Suhri Kim, Kisoon Yoon, Jihoon Kwon, Seokhie Hong, and Young-Ho Park.
Efficient isogeny computations on twisted edwards curves. Secur. Commun.
Networks, 2018:5747642:1–5747642:11, 2018.

[Leo20] Christopher Leonardi. A note on the ending elliptic curve in SIDH. Cryptology
ePrint Archive, Report 2020/262, 2020. https://eprint.iacr.org/2020/262.

[LJ87] Hendrik W Lenstra Jr. Factoring integers with elliptic curves. Annals of mathe-
matics, pages 649–673, 1987.

[ME98] Michele Mosca and Artur Ekert. The hidden subgroup problem and eigenvalue
estimation on a quantum computer. In Colin P. Williams, editor, Quantum
Computing and Quantum Communications, First NASA International Conference,
QCQC’98, Palm Springs, California, USA, February 17-20, 1998, Selected Papers,
volume 1509 of Lecture Notes in Computer Science, pages 174–188. Springer,
1998.

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Syst.
Sci., 13(3):300–317, 1976.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In CRYPTO, volume 218
of Lecture Notes in Computer Science, pages 417–426. Springer, 1985.

http://eprint.iacr.org/2010/383
http://eprint.iacr.org/2010/383
https://eprint.iacr.org/2020/262

REFERENCES 107

[Mon87] Peter L Montgomery. Speeding the Pollard and elliptic curve methods of factor-
ization. Mathematics of Computation, 48(177):243–264, 1987.

[NIS16] NIST. Announcing request for nominations for public-key post-
quantum cryptographic algorithms. https://csrc.nist.gov/news/2016/
public-key-post-quantum-cryptographic-algorithms, 2016. Accessed: 2020-09-24.

[Pet17] Christophe Petit. Faster algorithms for isogeny problems using torsion point
images. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017, Part II, volume 10625 of Lecture Notes in Computer Science,
pages 330–353, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg,
Germany.

[RKBT10] J. Randall, B. Kaliski, J. Brainard, and S. Turner. Use of the RSA-KEM Key
Transport Algorithm in the Cryptographic Message Syntax (CMS). RFC 5990,
RFC Editor, September 2010.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based
On Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006. http://eprint.
iacr.org/2006/145.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications of the
Association for Computing Machinery, 21(2):120–126, 1978.

[Sch95] René Schoof. Counting points on elliptic curves over finite fields. Journal de
théorie des nombres de Bordeaux, 7(1):219–254, 1995.

[Sha73] Daniel Shanks. Five number-theoretic algorithms. In Proceedings of the Second
Manitoba Conference on Numerical Mathematics (Winnipeg), 1973, 1973.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science, pages
124–134, Santa Fe, NM, USA, November 20–22, 1994. IEEE Computer Society
Press.

[Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate
Texts in Mathematics. Springer, 2009.

[Tan09] Seiichiro Tani. Claw finding algorithms using quantum walk. Theor. Comput.
Sci., 410(50):5285–5297, 2009.

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A,
273:305–347, 1971.

[Wil95] Andrew Wiles. Modular elliptic curves and Fermat’s last theorem. Annals of
mathematics, pages 443–551, 1995.

https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Jonathan Kom
ada Eriksen

Applying Tw
isted H

essian Curves to SID
H

Jonathan Komada Eriksen

Applying Twisted Hessian Curves to
Supersingular Isogeny Diffie-Hellman

Master’s thesis in Communication Technology
Supervisor: Bor de Kock, Colin Boyd

June 2021

M
as

te
r’s

 th
es

is

	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Research Objective and Questions
	Limitations
	Outline of Thesis

	Background
	Fundamentals From Algebra
	Groups
	Rings
	Fields

	Projective Geometry
	Affine Space
	Projective Space

	Elliptic Curves
	Arithmetic

	Asymmetric Cryptography
	Symmetric and Asymmetric Cryptography
	Diffie-Hellman Key Exchange
	The RSA Cryptosystem
	Shor's Algorithm and The Hidden Subgroup Problem
	Key Encapsulation Mechanisms

	Towards Isogeny-Based Cryptography
	More Topics on Elliptic Curves
	Isogenies
	Supersingular Curves

	Elliptic Curve Models
	Alternatives to Weierstrass Form
	Twisted Hessian Curves

	Supersingular Isogeny Diffie-Hellman
	The Protocol
	Random Walks in Isogeny-Graphs
	Security and Cryptanalysis
	Smooth-Degree Isogeny-Computation
	Supersingular Isogeny Key Encapsulation

	SIDH with Twisted Hessian Curves
	Mathematical Aspects
	Computing in Fp2
	The j-Invariant of a Twisted Hessian Curve
	Degree 2 Isogenies
	Recovering Curve Parameter From Arbitrary Point

	Algorithmic Aspects
	Square and Multiply
	Jao and De Feo's Optimal Strategy

	Implementation
	Generating Parameters
	Computing Secret Generator
	Computing Isogeny
	Key Exchange

	Computing the 3n-Isogeny Without an Explicit Generator
	Foundations
	Cube Roots in Finite Fields
	Subgroups of Order 3

	An Alternative Way of Computing
	Recovering the Secret
	The Missing Piece

	Implementation
	Computing in Fp()
	Generating Parameters
	Computing Secret Isogeny
	The Oracle
	Key Exchange

	Examples and Discussion
	Examples
	Example from Chapter 4
	Examples from Chapter 5
	Performance Benchmarks

	Calculating the 2n-Isogeny
	Efficiency

	Calculating the 3n-Isogeny
	Motivation for Alternative Computation
	No Need for an Fp2-Rational 3eB-Torsion Group
	Computational Cost
	The Field Size
	Mixing Property
	Petit's Attacks on Unbalanced SIDH

	Conclusion
	Summary
	Research Questions
	Future Work

	References

