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Statistical Analysis of Interaction Effects Between
Environmental and Genetic Factors

Can physical activity reduce the effects of genetic predisposition to cardiovascular
disease?

Lisa Erfjord

Abstract

The primary focus of this thesis is to investigate the interaction effects of genetic factors
and physical activity on the future risk of developing cardiovascular heart diseases. This
includes getting familiar with the data and the theory of both the medical and
statistical aspects. It also includes investigating different approaches to analyzing the
interaction effect by using several statistical models.

We use the HUNT data set from the Trøndelag Health Study and data on hospital
admission from Helse Nord-Trøndelag. Our final data set consists of 41 005 individuals,
where 1 303 individuals developed cardiovascular heart disease within nine years. We
have eight environmental covariates, including self-reported physical activity.
Additionally, we add four principal components as covariates to address population
stratification. The genetic factors are 50 different genetic markers that are known to
increase the risk of cardiovascular heart disease. The outcome is whether the participant
has suffered from cardiovascular heart disease or not.

In this analysis, the interaction effect is modeled using two different approaches for two
different types of models. First, we fit two tree ensemble models, namely random forest
and extreme gradient boosting. For the tree ensemble models, we investigate the
interaction effect by using partial dependence plots. We also fit a logistic regression
model, where we investigate the interaction effect in a model with both the main effects
and the interaction effects. In the logistic regression, we use information from the tree
ensemble model fits to specify the functional relationships between the covariates and
the outcome.

From fitting the models, we conclude that being inactive increases the predictive
probability of developing cardiovascular heart disease. Furthermore, some of the genetic
markers affect the predictive probability of developing cardiovascular heart disease.
However, the physical activity-genetic marker interaction effect does not appear to affect
the predictive probability of developing CHD for any of the genetic markers. Hence, we
cannot conclude that physical activity can reduce the effects of genetic predisposition to
cardiovascular disease based on this analysis. Finally, we discuss the strengths and
weaknesses of our analysis and present possible future work.
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Statistisk analyse av interaksjonseffekt mellom miljø og
genetiske faktorer

Kan fysisk aktivitet redusere effekten av genetisk risiko for å utvikle hjerte- og
karsykdommer?

Lisa Erfjord

Sammendrag

I denne oppgaven analyseres interaksjonseffekten mellom genetiske faktorer og fysisk
aktivitet n̊ar det kommer til risiko for å utvikle hjerte- og karsykdommer. Dette
inkluderer å lage datasett, bli kjent med teorien fra en medisinsk og statistisk synsvinkel
og å undersøke flere mulige metoder for å analysere interaksjonseffekten ved bruk av
statistiske modeller.

Vi bruker et datasett fra HUNT, som er en helseundersøkelse fra Nord-Trøndelag, og
sykehusdata fra Helse Nord-Trøndelag. Datasettet som brukes i denne analysen
inneholder informasjon om 41 005 deltagere, der 1 303 deltagere utvikler en form for
hjerte- og karsykdommer i løpet av ni år. Vi bruker åtte miljø-kovariater, inkludert
selvrapportert fysisk aktivitet. De fire første prinsipale komponentene er ogs̊a inkludert
som kovariater for å korrigere for genetisk og miljøbasert korrelasjon mellom deltagerne.
De genetiske kovariatene er 50 genetiske markører som har vist seg å øke risikoen for å
utvikle hjerte- og karsykdommer. Responsen er om deltagerne har utviklet en form for
hjerte- og karsykdom eller ikke.

I denne analysen brukes to typer statistiske modeller. Først brukes random forest og
extreme gradient boosting, som er tre-ensemble modeller. For disse modellene kan delvis
avhengige plot bli brukt for å analysere interaksjonseffekten. Vi bruker ogs̊a logistisk
regresjon, der b̊ade hovedeffekten og interaksjonseffekten blir estimert. I logistisk
regresjon vil informasjon fra de tilpassede tre-ensemblemodellene bli brukt til å
spesifisere den funksjonelle relasjonen mellom variablene og responsen.

Basert p̊a resultatene fra de ulike statistiske modellene konkluderer vi med at fysisk
aktivitet reduserer risikoen for å utvikle hjerte- og karsykdommer. Noen av de genetiske
markørene hadde ogs̊a en signifikant effekt p̊a sannsynligheten for å utvikle hjerte- og
karsykdommer. Men interaksjonseffekten mellom de genetiske markørene og fysisk
aktivitet viste seg å ikke være signifikant. Vi kan derfor ikke konkludere med at fysisk
aktivitet reduserer genetisk risiko for å utvikle hjerte- og karsykdommer. Til slutt
diskuteres styrker og svakheter ved denne analysen, og vi presenterer muligheter for
videre arbeid.
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular disease (CVD) has emerged to be the leading cause of death worldwide. In
2015 CVD caused 45% of deaths in Europe and 31% of all deaths worldwide (Townsend
et al., 2015; WHO, 2017). In the next decade, we will most likely have a further increase
of people at risk due to the expected increase of diabetes, inactivity, obesity, and an aging
population (WHO, 2020a,b, 2018a,b). Hence, there is an urgent need for new prevention
strategies to handle the increasing population at risk.

Daily physical activity (PA) has been highlighted as such a prevention strategy for CVD,
as it is a cost-effective strategy that improves maximal oxygen uptake (VO2max). VO2max
has shown to be inversely associated with CVD in population-based studies (Andersen
et al., 2015). However, the amount of exercise an individual performs has been challeng-
ing to measure accurately and consistently on a large scale. The impact of sedentariness
on CVD may be partly determined by a person’s genetic constitution. That is, the ex-
tent to which the genetic risk for CVD can be compensated with exercise is still not known.

In order to identify whether PA can modify the genetic risk of CVD, we will perform inter-
action analyses between self-reported PA levels and genetic markers previously associated
with CVD. In other words, we are interested in the interaction effect between a genetic
factor G and an environmental factor E. The interaction term is often denoted G × E.
Analyzing G× E is a research area within statistical genomics. Statistical genomics is a
scientific field concerned with developing statistical methods for drawing inferences from
genetic data.

Several models can be used to analyze G × E. We consider different approaches to
model the interaction effect of PA and the genetic factors so that it can be used to give
information on whether PA can be a good prevention strategy for people with a genetic
risk for CVD.
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Chapter 1. Introduction 1.2. Outline

1.2 Outline

In Chapter 2, we will give an introduction to the genetic factor G. Further, we will present
the HUNT Data, which is the data set we use in the analysis.

In Chapter 3, we present how we will evaluate the statistical model fits.

In Chapter 4, we will give an overview of the theory behind logistic regression. The theory
regarding model evaluation for this specific model will also be included.

In Chapter 5, we present the theory behind the tree ensemble methods we will use in
this analysis. We start by giving an overview of classification trees. Then the theory be-
hind random forest and extreme gradient boosting is presented. Additionally, we include
theory regarding interpreting the models. We also include the theory on hyperparameter
tuning, which is relevant for random forest and extreme gradient boosting.

In Chapter 6, we begin by introducing how we may model the genetic effects. Then we
present how we will analyze the interaction effects between the genetic factors and phys-
ical activity, first for the logistic regression model and then for tree ensemble models.

In Chapter 7, we present our data analysis. We begin by exploring the data used in our
models. Next, a random forest model is fitted, and we present the hyperparameters tuning
and the model fit. The second model we fit is the extreme gradient boosting model. For
this model, we present the hyperparameter tuning, the model fit, and interaction analysis.
The last model presented is logistic regression. We first present how we choose to specify
the functional relationship between the covariates and the outcome for this model. Then
we present the model fit and the interaction analysis.

Lastly, in Chapter 8, we discuss our results from both a statistical and medical perspec-
tive. We also discuss possibilities for further work.

A detailed description of how we construct our data set can be found in Appendix A.
Additional tables and figures of results from the models fitted in the data analysis in
Chapter 7 can be found in Appendix B.

7



Chapter 2

Background

2.1 GWAS and SNPs

There is strong evidence of a genetic contribution to the risk of developing CVD. A
genome-wide association study (GWAS) is an approach used in genetic research to as-
sociate genetic variations with a particular disease (NIH, 2019). The approach involves
genotyping and investigating genomes, which is the complete set of genes, from a large
number of people. This data can be used to look for genetic markers in the form of
single-nucleotide polymorphisms (SNPs), which may be associated with an increased risk
of a disease.

SNPs are the most common type of genetic variation among people. Each SNP represents
a difference in a single DNA building block at a specific locus, which is a position on a
chromosome (NIH, 2020). A DNA building block is called a nucleotide and can be any
of the four bases adenine (A), cytosine (C), guanine (G), and thymine (T). More specifi-
cally, if there is a single nucleotide substitution at a specific locus in the genome, which
is present in more than 1% of the population, there is a SNP at this specific locus. The
possible nucleotide variations for a position are called alleles. Most human SNPs are what
we call biallelic, which means that two allelic variants are segregated in the population.
Additionally, the minor allele frequency (MAF) is the frequency at which the minor allele
occurs in a population.

Multiple SNPs have been identified to have an association with CVD (Nikpay et al.,
2015). We will investigate whether physical activity influences the SNPs of interest and
contributes to a significant reduction change in the genetic risk of CVD.

2.2 HUNT Data

The data set we will analyze in this thesis is from the HUNT study (The Nord-Trøndelag
Healthy Study). HUNT is a large population-based cohort including 125 000 Norwegian
participants (NTNU, 2020a). The study was carried out in the Nord-Trøndelag county
of Norway, and every citizen over 20 years was invited. Four waves of the study have
been conducted, namely HUNT1 (1984-1986), HUNT2 (1995-1997), HUNT3 (2006-2008),

8



Chapter 2. Background 2.2. HUNT Data

and HUNT4 (2017-2019). The study includes data from surveys, interviews, clinical
measurements, and biological samples. For all participants where this was feasible, DNA
was extracted from blood samples, and GWAS analyses were performed (Krokstad et al.,
2013). The data we will analyze is from the third survey (HUNT3), where there are
around 50 000 genotyped participants.

Baseline Data

The environmental covariates are chosen from a medical perspective and are collected
from the HUNT Databank. The environmental covariates are sex, age, smoking status,
body mass index, serum cholesterol level, serum high-density lipoprotein cholesterol level,
systolic blood pressure and physical activity. The physical activity level is self-reported
based on three questions with response options:

Question 1: ”How frequently do you exercise?” ”Never” (0), ”Less than once a week” (0),
”Once a week” (1), ”2-3 times a week” (2.5), and ”Almost every day” (5).

Question 2: ”If you exercise as frequently as once or more times a week: How hard do
you push yourself?” ”I take it easy without breaking a sweat or losing my breath” (1), ”I
push myself so hard that I lose my breath and break into sweat” (2), and ”I push myself
to near exhaustion” (3).

Question 3: ”How long does each session last?” ”Less than 15 minutes” (0.1), ”16-20
minutes” (0.38), ”30-60 minutes” (0.75) and ”More than an hour” (1.0).

The physical activity level is categorized using a physical activity index score called the
Kurtze score, defined by Rangul et al. (2008). Each participant’s response to the three
questions is multiplied using the score in the parenthesis. As the second and third ques-
tions only address people who exercise at least once a week, both ”Never” and ”Less than
once a week” yield a score of zero. A descriptive analysis of the Kurtze score in the HUNT
data is presented in Appendix A.1.

Another way of categorizing physical activity is categorizing the participants as either
active or inactive, where a score under a certain value is categorized as inactive, and a
higher score is categorized as active. We will however use the Kurtze score in this analysis.

Additionally, we add the first four principal components (PC) as covariates. We do
this because GWAS studies are susceptible to bias due to population stratification and
participants may be related to eachother. Adding principal components as covariates
is a standard method to correct this bias (Zhao et al., 2018). There may also be a
correlation between the participants due to environmental similarities. Hence this will
also be corrected for, to some degree, when using PCs as covariates. The PCs in HUNT
are a projection in the Human Genome Diversity Project (HGDP) implemented by Taliun
et al. (2017). Based on the eigenvalues from HGDP, the four first PCs explain 45.8% of
the HGDP variability.

9



Chapter 2. Background 2.2. HUNT Data

SNPs

A study by Holmen et al. (2014) investigated whether rare SNPs affect the risk of devel-
oping cardiovascular heart disease (CHD). The result from the study was that none of the
rare SNPs had a significant effect on the risk of developing CHD. However, to do quality
control of the methods, 54 known GWAS SNPs that increase the risk of developing CHD
were also analyzed. Holmen et al. (2014) selected 54 SNPs from Deloukas et al. (2013),
Kathiresan (2008), and Schunkert et al. (2011). We found 50 of the 54 SNPs in the HUNT
Databank for HUNT3. These 50 SNPs are the SNPs we choose to use as genetic covariates
in this analysis. An overview of the 50 SNPs can be found in Table A.2 in Appendix A.2.
The genetic position, the rs number, the risk allele, and the results from GWAS studies
and the HUNT study for each SNP can also be found in Table A.2. The table is copied
from the supplementary of the HUNT study by Holmen et al. (2014).

Cardiovascular Heart Disease

This analysis will use cardiovascular heart disease (CHD) as the outcome since this is what
our genetic factors are associated with. CHD is a particular case of CVD, and occurs if
a participant has suffered from acute myocardial infarction or subsequent myocardial
infarction. International classification of diseases (ICD) codes are a system created by
WHO, where diagnoses are coded and used for statistics of diseases (ehelse, 2021). Acute
myocardial infarction has ICD code I21, and subsequent myocardial infarction has ICD
code I22 (WHO, 2016). We will exclude the participants with angina pectoris, which has
ICD code I20, as this is a less severe variant of CHD. This definition of CHD is identical
to the one used by Holmen et al. (2014).

We identify the participants that have suffered from CHD within the following ten years
using Hospital Data from Helse Nord-Trøndelag (HNT). Furthermore, the participants
will be categorized as a case if they have suffered from CHD or control if they have not.
For more details see Appendix A.3. We will further denote the outcome as CHD in this
analysis.

HUNT Cloud

All medical and genetic data are available to us through the HUNT cloud (NTNU, 2020b).
The HUNT cloud delivers a digital infrastructure that enables researchers to analyze
sensitive data in controlled environments. For this analysis, we require the genetic data
of the participants. However, it is possible to identify a participant from the SNP data.
Thus, in order to follow the guidelines on handling patient data, see for example NTNU
(2020c), we do not download the data we are using. For this reason, we do all the coding
and analysis on a virtual machine in the HUNT cloud.

10



Chapter 3

Model Evaluation

In order to measure the performance of the statistical models, we need tools for model
assessment and evaluation. This section will therefore introduce performance measures
used in this analysis.

3.1 Training, Validation and Test Set

When measuring the performance of a statistical method on a given data set, we are in-
terested in how well the model performs on new data. A common practice is to randomly
divide the data set into a training set and a test set. The training set is used to fit the
model, while the test set is used to evaluate the performance of the fitted model (Ch.7 by
Hastie et al. (2001)).

Since we are interested in measuring how the statistical model performs on new data, we
will not use the test sample until we do the final evaluation. In other words, we will treat
the test error as if it was an error on unexplored data. Hence, the goal is to minimize the
test error. As we have a classification problem, one choice of error is the misclassification
rate, which is the proportion of mistakes made by the predictor.

An ideal predictor will capture the patterns in the data while ignoring the noise. In order
to capture the general patterns, the model has to be complex enough. When the model
becomes more complex, the training error decreases, and hence we get a decrease in bias.
However, this also gives an increase in the variance. In other words, the training error
consistently decreases when the model gets more complex, but it may lead to overfitting.
Overfitting the training data will capture noise instead of actual patterns in the data. It
will typically give a minimal training error but a considerable test error. Thus, by using
a test set, we can choose a model that is not too complex in order to prevent overfitting
the training data.

11



Chapter 3. Model Evaluation 3.2. Sensitivity, Specificity, and AUC

3.2 Sensitivity, Specificity, and AUC

In our analysis, we have a binary outcome given by

Y =

{
0 for participants who do not suffer from CHD,

1 for participants who suffer from CHD.

The participants classified as 0 are denoted controls, while participants classified as 1 are
denoted cases. Based on the predicted outcome from some fitted model and the actual
outcome, it is common to define a confusion matrix as in Table 3.1.

Predicted 0 Predicted 1 Total
True 0 True Negative (TN) False Positive (FP) N
True 1 False Negative (FN) True Positive (TP) P
Total N* P*

Table 3.1: Confusion matrix

Here 0 denotes individuals not suffered from CHD and 1 denotes suffered from CHD.
Moreover, let the sensitivity, also called the true positive rate (TPR), and specificity,
which is 1 minus the false positive rate (FPR), be given as

sensitivity = TPR =
TP

P
,

specificity = 1− FPR =
TN

N
.

Then, the goal for the classification rule is to have both high sensitivity and specificity.

A graphical display of the sensitivity against specificity as a function of the possible cut-
off values on the probability of disease is called a ROC curve. A straight line as a ROC
curve will then represent a model that classifies the outcome randomly. As the goal is
to have high sensitivity and specificity, the ideal ROC curve hugs the top left corner.
A visualization of the ROC curve for a random and a perfect classifier, inspired by the
figures made by Saito and Rehmsmeier (2015), is presented in Figure 3.1.

Furthermore, the AUC score is the area under the ROC curve, ranging from 0 to 1. It
is a measure of how well the model performs. AUC is a helpful score for comparing the
performance of different classification models, where a higher score indicates a better clas-
sifier. The AUC score and ROC curve should be estimated using the test set, where the
model we evaluate is fitted using the training set.

12
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Figure 3.1: A graphical display of the ROC curve for a perfect and a random classifier.

3.2.1 DeLong Test

If two ROC curves are constructed from the same data set, we denote the two curves
as paired. Two paired ROC curves can be compared by using a method called DeLong.
The method was developed by DeLong et al. (1988) and tests whether one model has a
statistically significantly different AUC score from an alternative model. The test is based
on U statistics theory and asymptotic normality.

Denote the empirical AUC score of a model to be θ̂(A), and the empirical AUC score of
an alternative model to be θ̂(B). The null hypothesis is then H0 : θ̂(A)− θ̂(B) = 0. In order
to test whether model A is better than model B in terms of the AUC score, we calculate
the z score as follows

z =
θ̂(A) − θ̂(B)√

Var
[
θ̂(A) − θ̂(B)

] =
θ̂(A) − θ̂(B)√

Var
[
θ̂(A)

]
− Var

[
θ̂(B)

]
− 2Cov

[
θ̂(A), θ̂(B)

] .
Here Var[·] denotes the variance and Cov[·, ·] denotes the covariance. To find the z score,
we have to calculate the empirical AUC scores, the variances, and the covariance. Under
H0, the z score can be approximated by the standard normal distribution. Thus, if the
z score deviates significantly from zero, we can conclude that θ̂(A) 6= θ̂(B) at a certain
significance level. The DeLong method can also be used to construct confidence intervals
for the AUC.

3.2.2 Precision Recall AUC

In our data set, only a few participants are categorized as a case. That is, only a few
participants have suffered from CHD, and we will therefore refer to the data as imbalanced.
In a strongly imbalanced data set, where the number of controls outweighs the number of
cases significantly, it may be misleading to look at the specificity. Another version of the
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Chapter 3. Model Evaluation 3.2. Sensitivity, Specificity, and AUC

AUC can be used instead, called the precision-recall AUC score (PR AUC) (Saito and
Rehmsmeier, 2015). PR AUC looks at the positive predictive value (PPV) instead of the
false positive rate (FPR). With notation from Table (3.1) the PPV is given as

PPV =
TP

TP + FP
.

A graphical display of sensitivity, also referred to as recall, against PPV, also referred to
as precision, is called the precision-recall (PR) curve. A classifier with a random perfor-
mance level will have a horizontal line at P

P+N
. Then the area above that line will be the

area of good performance levels, and the area below will be the area of poor performance
levels. Thus, a perfect PR curve will hug the upper right corner. Visualization of two PR
curves for a random and a perfect classifier, inspired by the figures made by Saito and
Rehmsmeier (2015), are presented in Figure 3.2.
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Figure 3.2: A graphical display of the PR curve for two perfect and two random classifiers.
The horizontal line is given as P

P+N
.

The PR AUC score is the area under the PR curve and ranges from 0 to 1. The PR
AUC score and PR curve are estimated using the training or test set, where the model
we evaluate is fitted using the training set.
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Chapter 4

Logistic Regression

This chapter presents a statistical model where the interaction effects between physical
activity and the genetic covariates can be modeled and analyzed, namely logistic regres-
sion. Logistic regression is a frequently used statistical method for analyzing binary data
in biostatistics and statistical genomics. For this reason, logistic regression is one of the
statistical models used in the analysis. The logistic regression model is a special case of
a generalized linear model (GLM), and an introduction to GLM will thus be presented
first. Additionally, tools for evaluating the model are also presented.

4.1 Generalized Linear Models

The GLM consists of two elements, a random component and a systematic component
described below (Ch.5 by Dunn and Smyth (2018)).

The Random Component

Assume that the probability distribution belongs to a family of distributions called the
exponential dispersion model family. Consider n independent observations y1, y2, ..., yn,
where yi is a realization of a random variable Yi when i = 1, 2, ..., n. Assume that Yi
follows a distribution in this family with a probability function of the form

Yi ∼ fYi(yi|θi, φ),

where θi is a vector of parameters and

f(yi|θi, φ) = a(yi, φ) exp

{
yiθi − κ(θi)

φ

}
. (4.1)

Here κ(θi) <∞ is a known function called the cumulant function, φ > 0 is the dispersion
parameter and a(y, φ) is a normalizing function.

Systematic component

We also assume a specific form for the systematic component. Namely, a linear predictor
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Chapter 4. Logistic Regression 4.2. Logistic Regression Models

ηi = β0 +

p∑
j=1

βjxij = βTxi,

where β = {β0, β1, ..., βp} is a vector of unknown coefficients and xi = {1, xi1, , xi2, ..., xip}
is a vector of p predictors for observation i. The linear predictor is linked to the mean µ
through a link function g(·), so that

g(µ) = η. (4.2)

The link function is a known monotonic, differentiable function that ensures that the
function is one-to-one and can be estimated.

4.2 Logistic Regression Models

Since we have a binary response variable in our dataset, a logistic regression model can
be used to fit the data (Ch.4 by Hastie et al. (2001)). Denote the probability for an
observation to come from the class Yi = 1 to be πi(xi) and Yi = 0 to be 1− πi(xi). That
is,

Y =

{
0 with probability P(Yi = 0|Xi = xi) = 1− πi(xi),
1 with probability P(Yi = 1|Xi = xi) = πi(xi).

The Random component

Now assume {y1, y2, ..., yn} are independent observations. Then the probability mass
function for Yi, i = 1, 2, ..., n is binomially distributed with one trial. This can be expressed
as

f
i
(yi|πi) =

(
1
yi

)
πyii (1− πi)1−yi .

The binomial distribution is an exponential family since it can be rewritten as

f
i
(yi|πi) =

(
1

yi

)
exp

(
yilog

(
πi

1− πi

)
+ log

(
1− πi

))
,

which is in the form of Equation (4.1) with θ = log π
1−π , κ(θ) = − log(1 − π), φ = 1 and

a(y, φ) =
(

1
y

)
.

The Systematic Component

For logistic regression, the link function given by (4.2) is chosen to be the logit function,
expressed as

g(πi) = ηi = logit(πi) = log
πi

1− πi
= βTxi. (4.3)
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4.3 Interpretation

In order to interpret the probability πi, observe that

πi = logit−1(βTxi) =
eβ

Txi

1− eβTxi
.

Hence, the probability of Yi can be directly found in logistic regression.

Odds Ratio

In order to interpret the change in the response variable when a predictor xij, j = 0, 1, ..., p
changes, it is useful to look at the odds ratio. The odds for an individual i is the ratio of
Yi = 1 to Yi = 0, given by

πi
1− πi

= eβ
Txi = eβ0eβ1xi1eβ2xi2 · · · eβpxip

The interpretation of a one-unit increase in xij is that the odds are multiplied by eβj .

4.4 Parameter Estimation

Maximum Likelihood

The parameters β can be estimated by maximizing the likelihood of our model correctly
predicting any yi given xi, which is equal to maximizing the likelihood function L(β).
This again can easier be estimated by maximizing the log-likelihood function given by

l(β) = logL(β) =
n∑
i=1

(
yilogπi + (1− yi)log(1− πi)

)
=

n∑
i=1

(
yilog

(
πi

1− πi

)
+ log(1− πi)

)
=

n∑
i=1

(
yiβ

Txi − log
(
1 + eβ

Txi
))

In order to maximize this, we can find the derivative of each βj and set it equal to zero.

∂l(β)

∂βj
=

n∑
i=1

xi

(
yi −

eβ
Txi

1 + eβ
Txi

)
= 0

To solve this, we can use the Newton-Raphson algorithm, at iteration k+ 1 β is updated
in the following way

βk+1 = βk −H−1∂l(β
k)

∂βk
(4.4)
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Chapter 4. Logistic Regression 4.4. Parameter Estimation

where H is the Hessian of β given by

Hj,l =
∂2l(β)

∂βj∂βl
= −

n∑
i=1

xix
T
i

eβ
Txi

1 + eβ
Txi

(
1− eβ

Txi

1 + eβ
Txi

)
, j, l = 0, 1, ..., p.

Iteratively Re-Weighted Least Squares

Furthermore, this can be calculated using a method called iteratively re-weighted least
squares (IWLS). For that, we need Equation (4.4) in matrix form, which we get by
rewriting it as follows

βk+1 = βk + (XTWX)−1XT (y − π) = (XTWX)−1XTWz.

Here y is a n-dimensional column vector of observations, π is a n-dimensional column
vector of fitted probabilities πi, X is the n × (p + 1) matrix with xi as column, W is a
diagonal n× n matrix of weights given by

W =
eβ

Txi

1 + eβ
Txi

(
1− eβ

Txi

1 + eβ
Txi

)
and

z = Xβk +W−1(y − π),

∂l(β)

∂β
= XT (y − π),

∂2l(β)

∂β∂βT
= −XTWX.

Using this, we find the estimate of β.

Distribution of Parameter Estimates

It is useful to understand which covariates influence the outcome. For this, we can con-
struct confidence intervals for the βs and test whether the parameters are significantly
different from zero or not. This can be done by assuming that all the estimated βj are

approximately normally distributed with a mean β̂j and a variance V̂ar(β̂j), which follows
from the fact that the MLE follows an approximately multivariate normal distribution
for large sample sizes. That is,

β̂ ∼ Np(β,Cov(β̂)).

Further Cov(β̂) can be replaced by Ĉov(β̂), where Ĉov(β̂) = I−1(β̂) = (XTŴX)−1 and
I(β̂) is the Fisher information. Then, with significance level 1 − α and zα

2
being the

critical value in the standard normal distribution, the confidence interval for a parameter
β̂j can the be expressed as

[
β̂j − zα

2

√
V̂ar(β̂j), β̂j + zα

2

√
V̂ar(β̂j)

]
.
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Here V̂ar(β̂j) are the diagonal elements of Ĉov(β̂). An interpretation of this can be that
the confidence interval is a range of values which is likely to include the parameter βj
with a certain degree of confidence.

4.5 Deviance and AIC

Maximizing the likelihood is equivalent to minimizing the deviance. The deviance is a
measure of how much unexplained variation there is in the model. Hence, it is helpful
to look at the deviance to ascertain how well our model performs (Ch.5 Fahrmeir et al.
(2013)).

When assessing the fit of an estimated model, we can compare the estimated model with
the best fit of the data. When the data have been maximally grouped, the group-specific
parameter πi can be estimated by using the mean value ȳi. This corresponds to the best
fit of the data, called the saturated model. The saturated model will then serve as a
benchmark when evaluating the fit of estimated models. Hence, we can formally test the
significance of the departure between the estimated model and the saturated model using
deviance.

Now denote p to be the number of predictors for the estimated model and G to be the
number of groups. The deviance is then defined by

D = −2
G∑
i=1

(
li(π̂i)− li(ȳi)

)
, (4.5)

where li(π̂i) and li(ȳi) are the log-likelihood of group i for the estimated and the saturated
model respectively. The deviance compares the log-likelihood of the estimated model with
the largest value of the log-likelihood that can be attained. If the number of participants
is sufficiently large in each group, the approximate distribution of the deviance is

D ∼ χ2
G−p. (4.6)

Based on this approximate distribution, the model fit can be evaluated by comparing the
observed value of the test statistic to the corresponding quantile of the χ2

G−p-distribution.
A lower value of the deviance indicates a better model. However, notice that the deviance
does not penalize the number of predictors p in the estimated model. A strategy where
we only minimize the deviance will usually result in an overfit model choice. Thus, it is
helpful to consider the model complexity in order to avoid overfitting.

Akaike’s Information Criterion

A goodness of fit measure which penalizes the number of predictors is Akaike’s information
criterion (AIC). AIC is defined as

AIC = −2l(β̂) + 2p.
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Chapter 4. Logistic Regression 4.6. Likelihood Ratio Test

This can also compare models where the data distribution is from the same exponential
family and use the same link function. A low AIC value is desirable.

4.6 Likelihood Ratio Test

In order to assess the goodness of fit of different models and hence choose the final model,
the likelihood ratio test (LRT) can be used. For instance, in the case where we are inter-
ested in which and how many explanatory variables are sufficient.

Consider the case where we are interested in comparing model A with p predictors with
model B with q predictors, where A is nested in B. Let the hypothesis be of the form

H0 : β = βA = (β1, ..., βq)
T vs. H1 : β = βB = (β1, ..., βp)

T ,

where q < p < n and n is the total number of observations. This hypothesis can be tested
based on the likelihood ratio given by

λ =
L(β̂B|y)

L(β̂A|y)
.

Then letting β̂Ω denote the saturated model and using Equation (4.5), we get the following

2 log λ = 2(logL(β̂B)− logL(β̂A))

= 2(logL(β̂Ω)− logL(β̂A))− 2(logL(β̂Ω)− logL(β̂B))

= D0 −D1 = ∆D.

According to Equation (4.6), DA ∼ χ2(n− q) and DB ∼ χ2(n− p) if both models fit the
data well. Hence, ∆D ∼ χ2(p− q).

Moreover, this can be used to compute a deviance table. For instance, let q = 1 and
p = 2, then the deviance table would be given as

Model H0 H1 ∆D
A β0 + β1 β0 D0 −D1

B β0 + β1 + β2 β0 + β1 D1 −D2

Table 4.1: Deviance table

Here, the LRT statistic is ∆D, which tests the goodness of the fit.

4.7 R2 McFadden

For logistic regression, McFadden’s R2 is one of several possible measures of explained
variation by the model (McFadden, 1973). It is a measure based on the ratio between the
log-likelihood of the fitted model and the intercept-only model, defined as
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R2
MF = 1− logL(β̂)

logL(β̂0)
.

It follows that R2
MF increases when the likelihood of the fitted model increases. Hence

R2
MF is a measure of how well the fit of the model is compared to the intercept-only model.

R2
MF ranges from 0 to 1, where a higher measure implies that the model explains more of

the variance. Hence, a high value signifies a better model. However, R2
MF increases when

adding more predictors to the model. The number of predictors must therefore be taken
into consideration.

4.8 Generalized Additive Models

For a logistic regression model we assume a linear relationship between the predictors and
the log-odds of the outcome, such as presented in Equation (4.3). However, this assump-
tion is not always valid. Generalized additive models (GAMs) are an extended framework
of a standard linear model by also allowing non-linear function of each variable while still
maintaining additivity (Ch.7 by Efron and Hastie (2016)).

In order to avoid the assumption of a linear relationship, we can replace the linear com-
ponent with a non-linear function. The model can then be written as

g(πi) = ηi = logit(πi) = β0 +

p∑
j=1

fj(xij). (4.7)

An advantage of GAMs is that we can automatically model non-linear relationships for
the log-odds, giving potentially more accurate predictions for the outcome. Additionally,
we can still easily examine the effect of each covariate on the outcome while holding all
other variables fixed since the model is additive.
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Chapter 5

Tree Ensembles

Other statistical models where the interaction effects between physical activity and the
genetic covariates can be modeled and analyzed are tree ensembles. When having a large
amount of data and a need for fitting a rich class of functions, tree-based methods are a
good solution. Popular tree-based methods are random forests and boosting, which rep-
resent the fitted model by a sum of trees. They often have good predictive performance,
where interaction terms are included automatically. Furthermore, a popular version of
boosting is extreme gradient boosting. As we have a large amount of data and are in-
terested in good predictive performance and interaction terms, the tree ensemble models
fit well with this analysis. We will use both the random forest and the extreme gradient
boosting model to analyze the interaction effect. Both models use an ensemble of classi-
fication trees.

In this chapter, classification trees, random forests, and extreme gradient boosting will
therefore be presented. Partial dependence plots and accumulated local effects plots are
helpful tools to evaluate covariates and will also be included in the chapter. Lastly, we will
discuss how tuning the hyperparameters for the different tree models can be performed
using cross-validation.

5.1 Classification Trees

For all tree-based methods, the feature space is partitioned into a set of non-overlapping
regions. Every observation that falls into the same region is assigned the same prediction,
which is a class for classification trees (Ch. 9 by Hastie et al. (2001)).

For instance, for a two-dimensional case with two covariates, as shown in Figure 5.1, the
feature space will be partitioned into a set of rectangles. The predictors in the feature
space are translated into a schematic figure in the form of a tree, also shown in Figure
5.1. We use a binary-splitting approach, where we begin at the top of the tree denoted
the root node. The split is chosen such that we achieve the best fit. There are now two
new nodes, one for each rectangle, which can be either a terminal node or an internal
node. If there are no more partitions in the rectangle, this is a terminal node. If more
partitions are left, it is an internal node, and we have more binary splits. We then create
new branches and nodes until all our nodes are terminal nodes. A classification tree is
a model where each internal node represents a ”decision”, each branch represents the
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Chapter 5. Tree Ensembles 5.1. Classification Trees

outcome of the decision, and each terminal node represents a class label. Hence the paths
from the root to the terminal nodes represent classification rules.

TextX2

X1

t1

t2

R2

R3

R1

(a) Partition of a two-dimensional fea-
ture space, where Rm,m ∈ {1, 2, 3}
represent the regions.

R3

X1 ≤ t1 X1 > t1

X2 ≤ t2 X2 > t2

R1

R2

(b) Tree model corresponding to the feature space,
where the colored nodes are terminal nodes and the
white nodes are internal nodes.

Figure 5.1

The algorithm for creating trees is a greedy algorithm since testing all possible trees is
too computationally expensive. Thus, what is considered the best split for the tree at
a specific step is determined in that step. That is, the algorithm searches for the local
optimum and does not consider future splits. A possible stopping criterion is to perform
binary splitting until each region Rm, corresponding to the terminal node m, has fewer
than a minimum number of observations Nmin.

Suppose we have partitioned the space into M regions R1, R2, ..., RM , where each region
corresponds to a terminal node in the tree, and we have Nm observations in each region.
Consider a binary response, where k = {0, 1} is the outcome Y , and define the proportion
of class k observations in node m to be

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k).

The tree-model classifies the observation in node m to class k(m) = arg max
k
p̂mk, which

is the most common class in node m.

Gini index

In order to determine the best split, we use the Gini index. Starting with all of the data,
consider a splitting variable j and splitting point t, and define the half-planes

R1(j, t) = {X|Xj ≤ t} and R2(j, t) = {X|Xj > t}.

We then solve
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min
j,t

[
min
c1

∑
xi∈R1(j,t)

(yi − c1)2 + min
c2

∑
xi∈R2(j,t)

(yi − c2)2

]
,

where cm = 1
Nm

∑
xi∈Rm yi. When we find the best split, the data is partitioned into two

resulting regions. We then repeat this process on all the resulting regions until we have
the optimal tree.

The tree size is a tuning parameter governing the model’s complexity. If the aim is
to construct a single tree, the strategy is to grow a large tree T0, stopping when some
minimum node size is reached. We then prune this large tree using cost-complexity
pruning. Pruning is performed by first defining a subtree T ⊂ T0 to be any tree obtained
pruning T0. Recall that the terminal nodes are indexed by m representing region Rm and
that M denotes the number of terminal nodes in T . Then define the cost complexity
criterion to be

Cα(T ) =
M∑
m=1

NmQm(T ) + αM,

where α is the tuning parameter and Q is the Gini index given as

Qm(T ) =
K∑
k=1

p̂mk(1− p̂mk).

For each α we find the subtree Tα ⊆ T0 that minimizes Cα(T ). This is done by weakest
link pruning, which successively collapse the internal node that produces the smallest
per-node increase in

∑
mNmQm(T ). Lastly α is estimated by cross-validation such that

α̂ minimizes the cross-validated misclassification rate. The final tree is then Tα̂.

5.2 Random Forests

Random forests are ensemble methods that provide a classifier from several classification
trees. That is, a committee of trees each cast a vote for the predicted class. The essential
idea in random forests is to build an extensive collection of de-correlated and unbiased
trees from bootstrap samples, then average the trees in order to reduce the variance (Ch.15
by Hastie et al. (2001)).

Each tree in random forests is identically distributed. Let an average of K random
variables have variance σ2, and hence a total variance of 1

K
σ2. For variables that are

identically distributed with positive pairwise correlation ρ, the variance of the average
can be expressed as

ρσ2 +
1− ρ
K

σ2.

Notice that as K increases, the second term decreases, while the first term remains con-
stant. In order to improve the variance reduction, the idea of random forests is to reduce
the correlation between the trees without a large increase in the variance. The solution
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to this is to make a random selection of the input variables in the tree-growing process.
That is, before each split in a tree, select m ≤ p of the input variables at random as
candidates for splitting. Furthermore, a classification random forest model obtains a class
vote from each tree and classifies using a majority vote.

Some tunable hyperparameters for random forests are the number of predictors as can-
didates for the splits, the minimum node size, and the number of trees to fit. A popular
choice for the number of predictors as candidates for the splits denoted m is

√
p. The

minimum node size is often set to one for classification. The number of trees has to be
sufficiently large, but a larger number is more computationally expensive. Nonetheless,
these parameters depend on the data and are often treated as tuning hyperparameters.

Algorithm 1: Random Forest Algorithm for Classification by Hastie et al. (2001)

Input:

• A training set

• Tuning parameters:

- number of predictors as candidates for split

- minimum node size

- number of trees

for k = 1 to K do

1. Draw a bootstrap sample from the training set.

2. Grow a random forest tree fk(x) to the bootstrapped data by recursively
repeating the following steps for each terminal node of the tree. Stop when a
minimum node size nmin is reached.

(a) From the p variables, select m variables at random.

(b) Select the best variable among the m variables.

(c) Split the node based on that variable.

end
Output: Ensemble of trees {fk(x)}K1 .
Classification: Let f̂k(x) be the predicted class from the kth random forest tree.
Then f̂K(x) is the majority vote from {f̂k(x)}K1 .

Variable importance

In order to measure how important a predictor is for the predictions of a random forest
model, we can look at the variable importance. Variable importance is a measure that
calculates the total decrease in node impurities from splitting on the variable, averaged
over all trees. For classification, the node impurity is measured by the Gini index. A
predictor is considered important if it has a high mean decrease in Gini.
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5.3 Extreme Gradient Boosting

The algorithm for extreme gradient boosting (XGBoost) was first implemented by Chen
and Guestrin (2016). XGBoost is an implementation of gradient boosted decision trees,
which is designed for speed and performance (Lunde et al., 2020).

Similarly to random forests, boosting is an ensemble method that provides a classifier
from several classification trees. However, the ensemble in boosting is done by repeatedly
growing shallow trees to the residuals and building an additive model. More specifically,
we first fit a model from the training data and then create a second model that attempts
to correct the errors from the first model. Adding more models to correct the errors is
repeated until the training error is sufficiently low or until a maximum number of models
are added.

As the name suggests, extreme gradient boosting is a special case of boosting. Let f be
an ensemble model with classification trees fk(x) as ensemble members. Furthermore,
the loss is a function that measures the difference between a prediction ŷi = f(xi) and its
target yi. We determine f(x) by minimizing the expected loss function. Minimizing this
can be viewed as a numerical optimization given as

f̂ = arg min
f
Ex,y

[
l(y, f(x))

]
.

Now assume that l(·, ·) is both differentiable and convex. A prediction from f can be
expressed as follows

ŷi = f (K)(xi) =
K∑
k=1

fk(xi),

where fk(xi) = wqk(xi),k. Denote Lk to be the set of leaf nodes and Mk to be the number of
leaf nodes in the k’th tree. Then qk : Rm → Lk is the feature mapping of the k’th tree that
assigns every feature vector to a unique leaf node. Moreover, wk = {wm,k,m ∈ Lk} ∈ RMk

is the vector of predictions associated with each leaf node.

Now suppose a model f (k−1) with k − 1 trees has been selected. We add another tree to
improve the prediction, which allows the expectation to be rewritten as

Ex,y

[
l
(
y, f (k)(x)

)]
= Ex,y

[
l
(
y, f (k−1)(x) + fk(x)

)]
. (5.1)

This should be minimized with respect to qk and wk associated with the model fk. Next
we perform a second order Taylor expansion around ŷ = f (k−1)(x). This can be expressed
as

l̂(y, ŷ + fk(x)) = l(y, ŷ) + g(y, ŷ)fk(x) +
1

2
h(y, ŷ)f 2

k (x),

where g(y, ŷ) = ∂
∂ŷ
l(y, ŷ) and h(y, ŷ) = ∂2

∂2ŷ
l(y, ŷ).
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Since the joint distribution of (x, y) is unknown, Equation (5.1) can be approximated
using the Taylor expansion as follows

1

n

n∑
i=1

l
(
yi, ŷ

(k−1)
i + fk(xi)

)
≈ 1

n

n∑
i=1

[
l
(
yi, ŷi

(k−1)
)

+ gikfk(xi) +
1

2
hikfk(xi)

2

]
=

1

n

n∑
i=1

l
(
yi, ŷi

(k−1)
)

+
1

n

∑
m∈Lk

[ ∑
i∈Imk

gikwmk +
1

2
hikw

2
mk

]
=: `k(qk,wk).

Here

gik = g(yi, f
(k−1)(xi)) and hik = h(yi, f

(k−1)(xi)). (5.2)

Furthermore, Imk is the instance set of leaf m : Imk = {i : qk(xi) = m}. Thus, `k(qk,wk)
is the training loss approximation of Equation (5.1), which we optimize by using k’th
boosting iteration.

When we have a feature mapping qk we can find the weight estimates ŵk minimizing
wk → `k(qk,wk), which are given by

ŵmk = −Gmk

Hmk

, where Gmk =
∑
i∈Imk

gik, Hmk =
∑
i∈Imk

hik. (5.3)

By using these weights, we can further improve the training loss such that

`k(qk, ŵ)− 1

n

n∑
i=1

l(yi, ŷ
(k−1)
i ) =

1

2n

Mk∑
m=1

G2
mk

Htk

. (5.4)

When we have explicit expression for Equation (5.3) and (5.4) we can compare a large
number of candidate feature maps qk. However, to consider every possible tree structure
is too computationally expensive. Instead, it is common to do recursive binary splitting
greedily, which can be performed by doing to following

1. Calculate a constant prediction for all features: ŵ = −
∑n
i=1 gik∑n
i=1 hik

.

2. Choose a leaf node m. For each feature j, calculate the training loss reduction

Rm(j, tj) =
1

2n

[(∑
i∈IL(j,tj)

gik
)2∑

i∈IL(j,tj)
hik

+

(∑
i∈IR(j,tj)

gik
)2∑

i∈IR(j,tj)
hik

−
(∑

i∈IL(j,tj)
gik
)2∑

i∈IL(j,tj)
hik

]
,

where tj are different split points, IL(j, tj) = {i ∈ Imk : xij ≤ tj} and IR(j, tj) =
{i ∈ Imk : xij > tj}. The next split from the old leaf m is chosen such that j and tj
maximize Rm(j, tj)

3. Repeat step 2 iteratively until a tree complexity threshold is reached.
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The tree complexity in step 3 can be maximum depth, maximum terminal nodes, mini-
mum number of observations in a node, or a regularized objective. A common strategy to
choose m is to build a large tree and then prune it using cost complexity pruning. Another
parameter that needs to be determined for extreme gradient boosting is a learning rate
δ ∈ (0, 1]. The learning rate shrinks the effect of each new tree added, which improves
the predictive power of the boosting. The algorithm for extreme gradient boosting is
presented in Algorithm 2.

Algorithm 2: Extreme Gradient Boosting Algorithm by Chen and Guestrin
(2016)

Input:

• A training set {(xi, yi)}ni=1

• A Differentiable loss l(·, ·)

• Tuning parameters:

– Number of trees

– Maximum tree depth

– Learning rate (shrinkage)

– Minimum loss reduction

– Column sampling

– Minimum sum of instance weight

– Row sampling

Initialize f (0)(x) = arg minη
∑n

i=1 l(yi, η)
for k = 1 to K do

1. Compute derivatives from Equation (5.2)

2. Determine qk by iteratively selecting the binary split that maximizes Equation (2)
until a tree complexity criterion is reached

3. Determine leaf weights from Equation (5.3) given qk

4. Use the learning rate to scale the tree fk(x) = δwqk(x)

5. Update f (k)(x) = f (k−1)(x) + fk(x)

end

Output: Model f (K)

Some hyperparameters for extreme gradient boosting are the number of trees, maximum
tree depth, learning rate, minimum loss reduction, column sampling, minimum sum of
instance weight, and row sampling. All of these parameters depend on the data and are
often treated as tuning hyperparameters.
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Variable importance

To measure how important a predictor is for the predictions of an xgboost model, we
can use measures denoted gain or frequency. Gain is the relative contribution of the
corresponding predictor to the model, calculated by taking each predictor’s contribution
for each classification tree in the model. More specifically, when making a split on a
new predictor on a certain branch in the classification tree, each new branch is more
accurate than the previous branch. Gain then represents the fractional contribution of
each predictor to the model, based on the total gain of the splits performed on this
predictor. The frequency represents the relative number of times a predictor has been used
in all the model trees. For both measures, a higher percentage means a more important
predictive variable.

5.4 Partial Dependence Plot

When interpreting the tree ensemble models, it is helpful to investigate the functional
relationship between the variables and the predictions. A partial dependence (PD) plot
can display this with a small number of variables (Ch. 10 by Hastie et al. (2001)).

Consider a subvector xS of l < p of the predictor variables. Let xC be the vector of
predictors that is not in xS. In principle the general function f(x) will depend on all of
the input variables, f(x) = f(xS,xC). The partial dependence of f(x) on xS is given as

fS(xS) = EXCf(xS,xC) =

∫
f(xS,xC)g(xC)dxC .

This can give a helpful description of the effect of the chosen subset on f(x) when,
for instance, the variables in xS do not have strong interactions with those in xC . These
partial dependence functions can be used to interpret the results of any black-box learning
method, such as random forests and extreme gradient boosting. They can be estimated
by

fS(xS) =
1

N

N∑
i=1

f(xS, xiC),

where {x1C , x2C , ..., xNC} are the values of xC that occur in the training data.

In other words, the partial dependence represent the effect of xS on f(x) after accounting
for the effects of the other variables xC on f(x).

5.5 Accumulated Local Effects Plot

PD plots build on the assumption of independent predictor variables. However, if the
variables are correlated, the PD plot can be misleading. This is because the computation
of a partial dependence function for a variable correlated with other variables involves
averaging predictions of artificial data instances that are unlikely. This again can give
bias in the estimated predictor variable. A solution to this is to use Accumulated Local
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Effects (ALE) plots instead (Apley and Zhu, 2020).

ALE plots are an alternative way of visualizing variable effects which do not require
unreliable extrapolation with correlated variables. The main effect of variable j at x, in
a multivariate case, is then given as

fj,ALE(xj) =

∫ xj

xmin,j

∫
p(x\j|zj)

δf(zj,x\j)

δz1

dx\jdz1 − constant

= gj,ALE(xj)−
∫
p(zj)gj,ALE(zj)dzj.

Here
δf(zj ,x\j)

δz1
is the local effect of xj on f at x. Moreover, xmin,j is a value just below

min{xi,j; i = 1, ..., n}.

An approximation of the uncentered ALE can be expressed as

ĝj,ALE(x) =

kj(x)∑
k=1

1

nj(k)

∑
{i:xi,j∈Nj(k)}

[
f(zk,j,xi\j)− f(zk−1,j,xi\j)

]
,

where nj(k) is the number of training observations that falls into the kth interval Nj(k).
Furthermore, kj(x) is the index of the interval where x falls and the sample range of
xi,j i = 1, ..., n is split into K intervals with split points z0,j, ..., zK,j.

The centered approximation is then obtained by subtracting the estimate of E[gj,ALE(xj)]
from the uncentered approximation, that is

f̂j,ALE(x) = ĝj,ALE(x)− 1

n

n∑
i=1

ĝj,ALE(xi,j) = ĝj,ALE(x)− 1

n

K∑
k=1

nj(k)ĝj,ALE(zk,j).

An interpretation of this is that f̂j,ALE(x) is the main effect of the variable j at value x,
compared to the average prediction of the data.

5.6 Cross-Validation

Both random forests and extreme gradient boosting have tunable hyperparameters. A
popular approach to select the optimal hyperparameters is to perform cross-validation
(CV). The approach is a method where the misclassification rate is estimated by holding
out a subset of the training observations from the fitting process and then evaluate the
model to those held out observations (Ch. 5 James et al. (2014)).

A special case of CV is k-fold CV, which involves randomly dividing the set of observations
into k equally sized folds. Then the first fold is treated as a test set, while the remaining
k − 1 folds are used as a training set to fit the model. Typical values for the number of
folds are k = 5 or k = 10. For classification, the misclassification rate is computed on
the first fold to evaluate the model. The approach is repeated k times, where each fold is
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treated as a test set once. This results in k estimates of the misclassification rate denoted
Err. Then the k-fold CV estimate is the average of the estimates for each fold, given as

CV(k) =
1

k

k∑
i=1

Erri.

Thus, CV can give an estimate of how well a statistical model will perform on independent
data. CV can therefore be used to evaluate the model fit for a range of hyperparameters.
The optimal set of hyperparameters that minimizes CV(k) can then be chosen, as this
model is expected to have the best performance on an independent data set.
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Chapter 6

Modeling Genetic Interaction Effects

In our analysis, we are interested in measuring the interaction effects between physical
activity (PA) and the genetic predisposition of CHD. In this chapter, we will present our
different approaches. Two different types of models will be used, namely logistic regres-
sion and tree ensembles.

Logistic regression requires that we specify the functional relationship between the covari-
ates and the outcome, in contrast to tree ensemble models. If we fit a tree ensemble to our
data, we can next estimate the functional relationship from partial dependence (PD) plots
or accumulated local effects (ALE) plots. If the tree ensemble model performs well on our
data, we can use the information to fit a logistic regression model. We will first look at
the functional relationship of the genetic main effects. There are several possible genetic
models, and we will therefore begin the chapter by describing the different alternatives
and how we determine which to choose for each SNP in our analysis. Then we will use
this information to investigate the interaction effects.

6.1 Genetic Main Effects

The SNPs are the genetic covariates of interest. A person may have 0, 1, or 2 copies of a
risk allele of a SNP, which increases the risk of developing diseases. However, the number
of risk alleles affects the risk of developing diseases differently depending on the SNP. We
will now look at four different genetic models for SNPs: recessive, dominant, additive, or
codominant.

If the risk allele is recessive, then the risk allele will only affect the outcome if two risk al-
leles are present. In contrast, if the risk allele is dominant, then one copy of the risk allele
will be enough to affect the outcome. Thus for a recessive or dominant case, the SNP is a
binary covariate. An allele is additive if the effect of having two risk alleles is twice as large
as the effect of having one risk allele. Finally, the genetic model can also be codominant,
which means that 0, 1, or 2 copies of the risk allele affect the outcome in three different
ways. Thus, when an allele is additive or codominant, the coded genetic covariate has
three levels. An illustration of the four different genetic models can be found in Figure 6.1.
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Figure 6.1: The plots represent the behavior of a recessive, dominant, additive, and
codominant genetic model as a function of the number of risk alleles for genotypes 0, 1,
and 2. The codominant model can be any function of the number of risk alleles. The risk
is given on the log-odds scale, as this is the functional relationship the logistic regression
requires that we specify.

In order to measure the effects of the SNPs for logistic regression, a genetic model must
be chosen for each SNP. According to the literature in statistical genomics, some SNPs
have a known relationship with CHD. However, in general the relationship between most
SNPs and CHD is unknown. The codominant model makes no assumptions of the genetic
relationship between the number of risk alleles. Hence, we can use a codominant coding
for every SNP in a tree ensemble model and then plot the functional relationships given by
the fit in PD plots. That is, we make PD plots with one variable, explained in Section 5.4.
This is feasible since the tree ensemble models require no specification on the functional
relationship between the covariates and the outcome. By investigating the PD plots, we
can choose which genetic model is the best fit for each SNP. Hence, for logistic regression,
we can code the genetic covariates according to the tree ensemble fit.

6.2 Genetic Interaction Effects for Logistic Regres-

sion

For logistic regression, we will use an approach where the main and interaction effects are
modeled and a stratified approach. Both approaches will be described below.
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6.2.1 Modeling the Main and Interaction Effects

The interaction effect can be modeled as an addition to the main effects. Then we can
investigate whether the model with the main effects and the interaction effect is signifi-
cantly different from the model with only the main effects. This method will have different
interaction terms depending on the chosen genetic model.

If the SNP is coded as recessive, dominant, or additive, we fit a model for each SNP with
the main effects and the interaction effect as follows

β0 + βPA + βsnp + βPA·snp.

Here, the effect of the other covariates are measured in the intercept. Furthermore, the
main effects are measured in the terms βPA + βsnp and the interaction effect in βPA·snp.
In this case, we only have one interaction parameter which needs to be estimated.

If the SNP is measured as codominant, we fit a model for each SNP as follows

β0 + βPA + βsnp(1) + βsnp(2) + βPA·snp(1) + βPA·snp(2).

The effect of the other covariates are measured in the intercept, and snp(·) indicates the
number of risk alleles. Then the main effects are measured in the terms βPA + βsnp(1) +
βsnp(2) and the interaction effect in βPA·snp(1) + βPA·snp(2). Here the interaction effect is
measured in two parameters.

In the approach of measuring the interaction effect as an addition to the main effects, we
multiply the effects of PA and the SNPs. This results in only measuring the interaction
effect when PA and the number of risk alleles both are different from zero.

A likelihood ratio test with the model with both the main effects and the interaction
effects and a model with just the main effects can be used to test if an interaction effect
should be present. That is, we investigate whether adding the interaction term improves
the performance of the model. By looking at the test statistic, we can evaluate whether
the interaction term between the genetic covariates and PA is significant.

6.2.2 Stratified Analysis

Another approach to investigate the interaction effects is by stratifying the data set. The
idea behind stratified analysis is to stratify the data set on one of the predictors in the
interaction effect, which is physical activity or the genetic covariates in our case. We then
fit a logistic regression model for each data set and compare the estimated covariates of
the predictor in the interaction effect that we do not stratify on. If the estimated covari-
ates are different for each fit, this can indicate an interaction effect.

In order to do the stratified analysis, we have to decide whether to stratify on PA or
the SNPs. This choice is based on how we model the main effects, which are PA and
the SNPs. We can choose which genetic model to use for each SNP from the information
described in the last section. However, we also need to specify the functional relationships
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between PA and CVD. Two options for measuring PA that we will consider are treating
the covariate as dichotomous or continuous. How we measure the interaction effects in
the stratified analysis will depend on this choice.

First, consider the case where we let PA be a dichotomous covariate. Denote the PA
covariate to be 0 if a participant is inactive and 1 if a participant is active, based on some
criteria. In a dichotomous case, we can stratify the data set based on PA and model the
genetic effects in each data set. In order to analyze the interaction effects, it is helpful
to compare the SNP covariates and their confidence level in each data set. Denote β0

and β1 the coefficients in the data set with PA being 0 and 1, respectively. What we are
interested in testing is

H0 : β0
snp = β1

snp vs. H1 : β0
snp 6= β1

snp,

where βsnp are the coefficients for a genetic model for a SNP. If the estimated parameters
are significantly different in each data set, it indicates that PA affects the SNP’s effect on
CHD. In other words, if the βsnp are different in the two data sets, it can indicate that
the effect of the SNP is different for the two levels of PA. In practice, we will prefer to
present a confidence interval for the β0

snp − β1
snp difference instead of the hypothesis test,

as this gives a better visualization of the effects. Then, if the confidence interval does not
contain zero, this is equivalent to rejecting H0.

If we prefer to measure PA as a continuous covariate, we cannot stratify the data sets
in the manner explained above. A solution to this can be to stratify the data set on
the genetic factors instead. This is feasible unless the genetic effect is additive since the
genetic covariate will then be continuous. When stratifying on the genetic factor, we per-
form the stratification for each SNP, fit a logistic regression model for each data set and
then compare the PA effect in those model fits. However, the genetic covariates can have
two or three categorical levels, depending on the genetic model. If the genetic effect is
measured as recessive or dominant, we will divide the data set into two separate data sets.
When the genetic effect is codominant, we have to separate the data set into three separate
data sets. Hence, how we stratify the data sets depend on the genetic model for the SNPs.

If the genetic covariate is dichotomous, which is in the recessive or dominant case, then
we can follow a similar procedure for the stratification on PA and divide the data set
in two. We stratify the data sets on whether the participants have an increased risk of
developing CVD from a specific SNP or not and fit a logistic regression model on each
data set. Then we can compare the PA covariates in each data set by investigating the
confidence level for the β0

PA − β1
PA difference. If the confidence interval does not contain

zero, it can indicate an interaction between that SNP and PA. However, suppose the
genetic covariate has three levels. In that case, we have to stratify the data set into three
separate data sets, fit three different models and compare the three PA covariates to in-
vestigate whether there is an interaction effect. We can then use ANOVA or pairwise tests.

A disadvantage of the stratified approach is that we divide the data into smaller data sets.
As more extensive data sets give more reliable results than smaller ones, this is a weakness
of the stratified approach. This loss of power is especially the case when stratifying the
data on a codominant SNP. On the other hand, an advantage of the stratifying approach
is that there is no specification of the interaction term.
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6.3 Interaction Effect for Tree Ensembles

PD plots with two predictors are used to visualize the interaction among those predictors.
Thus, for the tree ensemble models, we will investigate the interaction effect by examining
the PD plots with two variables, explained in Section 5.4.

That is, for each SNP, we make a PD plot with that SNP and PA, which yields a visual-
ization of the interaction effect. Based on the plots, we can get more information on the
interaction effect. However, it can be challenging to visualize whether there, in fact, is an
interaction effect from only visualizing the plots. Therefore, we also perform an informal
test on the significance of the interaction effect. That is, we test whether the interaction
affects the log-odds of the predicted probability of developing CHD. In order to test this,
we can extract the values used to plot the PD plot and create a surrogate data set. The
variables are PA and the SNP, and the outcome is the predicted log-odds of developing
CHD. Using this surrogate data, we can fit a linear regression with PA, the SNP, and
the multiplication of PA and the SNP, which will be the interaction effect, as covariates.
That is, we can fit a model for each SNP as follows

β0 + βPA + βSNP + βPA·SNP .

Here, the SNP covariate is coded according to the genetic model that best fits each SNP.
From the model, we can get information on the strength of the interaction term by looking
at the coefficient estimate and the test statistics of βPA·SNP . It is important to mention
that the surrogate data set does not have independent observations. This is an informal
test to get an improved understanding of the PD plots with two predictors.
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Chapter 7

Data Analysis

In this chapter, the results from our analysis are presented. First, we present the data set
used. Next, we fit a random forest model and extreme gradient boosting (xgboost) model.
With the xgboost model fit, we investigate the interaction effect by partial dependence
(PD) plots. Lastly, we evaluate the functional relationship between the covariates and
the outcome and use this to fit a logistic regression model. The interaction effects are
then analyzed by fitting a logistic regression.

7.1 Descriptive Statistics

In the data set from HUNT3, we are only interested in the participants who had not
already suffered from CVD when they participated in HUNT3. Hence, we exclude the
participants who previously suffered from CVD. Moreover, we only include the covariates
given in Table 7.1, which are chosen from a medical point of view. This process is
explained in a flow diagram in Figure 7.1. A more detailed description of how we extract
the covariates from HUNT can be found in Appendix A.1.

Covariate label Variable in HUNT Description Type
id PID 106474 Unique id for each participant
sex Sex Biological sex (Female:0, Male:1) binary
age PartAg NT3BLQ1 Age of participant continuous

smoking SmoStatNT3 recoded
Smoking status of the participant
(1:Not smoking, 2:Smoking)

binary

bmi BMI NT3BLM Body mass index continuous
seChol SeChol NT3BLM Serum Cholesterol continuous
seHDLChol SeHDLChol NT3BLM Serum High-density lipoprotein Cholesterol continuous
bpSyst BPSystMn23 NT3BLM Mean systolic pressure measurement 2 and 3 continuous

kurtze PA H3 index K
Kurtze score which measures
self reported physical activity

continuous

Table 7.1: The environmental covariates extracted from HUNT and used in the analysis.

Logistic regression requires independent observations. However, we may have correlated
observations due to participants being related or due to participants having the same
environmental conditions. In order to correct for this, we add principal components as
covariates in our data set. The principal components are found in a separate file from
HUNT.
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HUNT 
#106 429

Initial Data
#48904

Participated in HUNT3
#50 656

Not previously suffered
from CVD

#48904

Part_NT3BLQ1 = 1
Part_NT3BLM = 1

CarInfEv_NT1BLQ1 = 1
CarInfEv_NT2BLQ1 = 1
CarInfEv_NT3BLQ1 = 1
CarInfEv_NT3CVDQ = 1

Extract 8 covariates

Figure 7.1: Flow diagram: from the HUNT data set to Initial Data. Here # denotes
number of participants in sequence of data sets.

Next, we add the genetic covariates, which are the 50 SNPs given in Table A.2 in the
Appendix. In our case, the covariates are coded such that the number of minor alleles is
counted. A more detailed description of the genetic variables is in Section 2.2. In addition,
a description of how we prepare the SNP files from HUNT can be found in Appendix A.2.

Lastly, we add the outcome to our data set, given in Table A.1 in the Appendix. We
use CHD as the outcome variable in this project since this is the variable known to be
associated with the 50 chosen SNPs. Participants with ICD diagnose code I21 or I22 are
coded as CHD cases. The ICD codes are explained in Section 2.2. A description of how
we extract the outcome from hospital data from Helse Nord-Trøndelag can be found in
Appendix A.3.

Figure 7.2: Flow diagram: from initial data to training and test set. Here # denotes
number of participants in sequence of data sets.
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Now we have all our variables of interest. However, before we have our final data set, we
remove participants with the ICD code I20. The ICD code I20 represents chest pain, also
called angina. Angina is not associated with the 50 chosen SNPs, so we remove those
cases from our data set. We also remove participants with missing values for any of the
variables. Finally, we subset the data set into a training and test set stratified by the
outcome. As explained in Section 3.1, we will use the training set to fit the models and
the test set to evaluate the models. The process of constructing the training and test data
set is described in a flow diagram in Figure 7.2.

Summary statistics for the environmental covariates for the training and test set can be
found in Figure 7.3. From the table, observe that the percentage of participants who
suffered from CHD is 3.2%. We have a severely imbalanced data set, which means that
the number of cases is significantly lower than the number of controls. Observe that CHD
is evenly distributed in the training and test set since we stratify on CHD. Furthermore,
the environmental covariates also have similar distributions in the two data sets, which
is desirable since each data set should represent the data distribution in the whole data set.

(a) Training set (b) Test set

Figure 7.3: Summary statistics for covariates for the training and test set. See Table 7.1
for the description of each covariate label.
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A visualization of the association of the continuous environmental covariates with the
outcome in the training set is presented in boxplots in Figure 7.4. Observe that age is
associated with CHD, where a participant with a higher age is more likely to get CHD.
The same holds for BMI, serum cholesterol level, and systolic blood pressure, but with a
weaker association. In contrast, the serum high-density lipoprotein cholesterol level has
a weak association with CHD in the opposite direction. Lastly, and of importance, self-
reported physical activity does not appear to have an association with CHD. Moreover,
BMI, serum cholesterol level, serum high-density lipoprotein cholesterol level, and systolic
blood pressure have many outliers, especially for the group of controls.

Figure 7.4: Boxplots of all continuous environmental covariates stratified by the outcome
on the training set. See Table 7.1 for the description of each covariate label.

A visualization of the association of the categorical environmental covariates with the
outcome in the training set is presented in barplots in Figure 7.5. From this figure, we
can observe that there are slightly more females than males, around 55% females and
45% males. However, the percentage of males who suffered from CHD is higher than for
females. Additionally, around 18% of the participants are smokers, and the percentage of
participants who suffered from CHD does not look higher in the smoking group than the
non-smoking group.

A Pearson correlation plot of all the environmental covariates can be found in Figure 7.6.
Observe that physical activity is correlated with many of the variables. Consequently,
some of the effects of being active are measured by the other covariates. This again can
lead to an estimated smaller effect of the main effects of physical activity and the inter-
action effects between physical activity and the genetic factors.
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Figure 7.5: Percentage of CHD grouped by the categorical environmental covariates in
training set. See Table 7.1 for the description of each covariate. Here Sex = 0 is females
and Sex = 1 is males.

Figure 7.6: Pearson correlation plot of all environmental covariates in the training set.
See Table 7.1 for the description of each covariate label.
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A correlation plot between the ten first PCs is plotted in Figure 7.7. As mentioned above,
the principal components are added to address population stratification and relatedness.
We observe some outliers in the PC plots, which indicates that some participants are
unlike the others genetically. We choose to use principal components 1 to 4 since this is
a standard procedure in statistical genomics. Another visualization of the first four PCs
plotted against each other can be seen in Figure 7.8. In this figure, we can also see that
the cases and controls are evenly spread out in the population, which is our assumption
for the models.

Figure 7.7: The ten first principal components plotted against each other.
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Figure 7.8: The four first principal components plotted against each other, with color
based on outcome.

Lastly, we modify the physical activity score. The measure of physical activity is the
Kurtze score, defined by Rangul et al. (2008) and explained in Section 2.2. Based on data
exploration of physical activity and its functional relationship with CHD, we observe a
trend where a higher physical activity decreases the risk of developing CHD. The trend
is as hypothesized and an assumption of this analysis of the interaction effect between
physical activity and genetic factors. However, for the small number of participants with
a Kurtze score higher than five, the functional relationship is more volatile. A Kurtze
score of around 5 is the minimum amount of recommended physical activity, based on
national guidelines by Helsedirektoratet (2019). Around 11% of the participants have a
Kurtze score higher than 5 in our data set. To avoid spurious due to possible noise or
because Kurtze is self-reported, we choose to set a score of five for every participant with
a Kurtze score higher than 5.
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7.2 Random Forests

The first model we fit is the random forest model, which is fitted by using the random-
Forest package in R (Liaw and Wiener, 2002).

7.2.1 Hyperparameter Tuning

Before fitting the random forest model, some hyperparameters have to be tuned. They are
tuned by performing a 5-fold CV and chosen based on the highest AUC score. Since the
tuning is a computationally expensive process and the fact that there may be interactions
between the hyperparameters, marginal tuning is not optimal. Hence, we first perform
separate wide grid searches for each hyperparameter to find the range of optimal values.
Then we perform tuning on all the hyperparameters simultaneously with a narrower grid
to find the optimal values.

The most important hyperparameter to tune is the number of variables randomly sampled
as candidates at each split in the trees, called mtry in the R package. For classification,
the default is the square root of the number of variables. Our data set has 62 variables,
so we tune this parameter with a wide grid, including [5, 15]. A plot of the results from
the tuning can be found in Figure 7.9, where the optimal value for the parameter is 12
according to the AUC score from the 5-fold CV.

Figure 7.9: Hyperparameter tuning of mtry, the number of variables randomly sampled
as candidates at each split in the trees. According to the tuning, the optimal value for
mtry is 12 as this gave the highest AUC score.

Another hyperparameter that can be tuned is the node size. Node size has a default
value of 1 for classification. Using a 5-fold CV based on the AUC score with a wide grid
including the values [1, 15], the optimal value of the node size according to the tuning is 9.
The last hyperparameter to tune is the number of trees to be fitted. This hyperparameter
has to be sufficiently large, but a larger number is more computationally expensive. The
default value is 500, and this is also what we use in our model.

Finally, to find the optimal combination of the values for the hyperparameters, we also
perform a 5-fold CV with a bivariate grid search with both node size and the number
of variables randomly sampled as candidates at each split in the trees. The ranges of
optimal values found from the wide grid searches are [6, 10] and [10, 15] respectively, as
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they contain the optimal values found from the separate marginal grid searches. Based
on the AUC score, the final value for the node size is still 9, while the final value for the
number of variables randomly sampled as candidates at each split in the trees is changed
to 13. Our final values for our hyperparameters are then 13 for the number of variables
randomly sampled as candidates at each split, 9 for the node size, and 500 for the number
of trees.

7.2.2 Model Fit

Now that we have our hyperparameters, we fit the random forest model using the training
set. In Figure 7.10 there are two density plots of the predicted probability of develop-
ing CHD, using the training and test set. From these plots, we see that the predicted
probability of developing CHD is low. This is expected, as we observed a low number of
cases compared to controls in our data set. Furthermore, the distribution of the predicted
probability is larger when the prediction is made using the training set than the test set.

(a) Training set (b) Test set (c) Training set (d) Test set

Figure 7.10: Model fit on training and test set. The two left plots are density plots of
the predicted probability of developing CHD. The two right plots are boxplots of the
predicted probability of developing CHD stratified by CHD.

In Figure 7.10 there are also two boxplots of the predicted probability of developing CHD
stratified by the outcome for the training and test set. Observe that the predicted prob-
ability is higher for the cases than the controls, indicating that the random forest model
captures some data set patterns. Similarly to the density plots, the distribution of the
predicted probability has a lower central trend on the test set than on the training set.
Additionally, the difference of the average predicted probability for the two groups of
CHD is large when using the training set, with almost 40 percentage points. On the other
hand, for the prediction on the test set, the difference is less than 5 percentage points.
This difference in the predictions in the data sets can indicate that the model may overfit
the training data.

Another indication that the model may have overfitted the training data can be observed
by investigating the AUC score for the two data sets. Specifically, the AUC score is
1.00 for the training set, meaning that the model classifies perfectly when predicting the
training set. However, the AUC score is 0.78 for the test set. Another measure that high-
lights a possible overfit even more is the PR AUC score. The prediction using the training

45



Chapter 7. Data Analysis 7.3. Extreme Gradient Boosting

set yields a PR AUC score of 1.00 while using the test set yields a much lower value of 0.10.

The random forest model also gives an overview of which predictors are considered the
most important when predicting the outcome. A predictor is considered important if it
has a high mean decrease in Gini. A variable importance plot of the 20 most important
variables is presented in Figure 7.11. Age is considered the most important variable, which
is expected. Moreover, the random forest model considers all the PCs to be important.
Also, observe that physical activity is in the top 10 most important variables. Lastly, the
genetic predictors are generally the least important variables, according to the random
forest model.

Figure 7.11: Variable importance plot of the 20 most important variables, based on the
mean decrease in Gini. See Table 7.1 for the description of the environmental covariate
labels and Table A.2 for the genetic covariate labels.

7.3 Extreme Gradient Boosting

The next model we fit is the extreme gradient boosting model, which is fitted using the
xgboost package in R (Chen and Guestrin, 2016).

7.3.1 Hyperparameter Tuning

The hyperparameters we tune for extreme gradient boosting can be found in Table 7.2.
The table also contains the tuning grids, the default values, and what the tuning suggests
as the optimal value for each hyperparameter. The hyperparameters are tuned by per-
forming a 5-fold CV based on the AUC score, using the caret package in R (Kuhn, 2008).
Since the computational complexity of tuning all the hyperparameters at the same time
is high, we break down the tuning into five consequential steps:

1. Shrinkage (learning rate), maximum tree depth and number of trees

2. Minimum sum of instance weight and number of trees
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3. Column and row sampling and number of trees

4. Minimum loss reduction and number of trees

5. Reducing the learning rate and number of trees

We use a higher learning rate to tune the hyperparameters due to this being a compu-
tationally heavy process. That is, we fit a model for each configuration of the different
hyperparameters with a higher learning rate and then use those hyperparameters to tune
the final model with a lower learning rate grid. Furthermore, a smaller grid for the hy-
perparameter with the number of trees with values [100, 1000] by 100 is included in every
step. The optimal value for that hyperparameter is not selected until the final step. A
plot of the final step is presented in Figure 7.12, while the plots for the previous steps can
be found in Appendix B.1.1.

Hyperparameter
in xgboost

Description
Default
value

Grid
Optimal
value

nrounds Number of trees 100
[100, 1 000] by 100,
[100, 5 000] by 100

900

max depth Maximum tree depth 6 [2, 3, 4, 5, 6] 2

eta
Shrinkage
(learning rate)

0.3
[0.025, 0.05, 0.1, 0.3],
[0.01, 0.015, 0.025, 0.05, 0.1]

0.015

gamma
Minimum loss
reduction

0 [0, 0.05, 0.1, 0.5, 0.7, 0.9, 1.0] 0.1

colsample bytree Column sampling 1 [0.4, 0.6, 0.8, 1.0] 0.8

min child weight
Minimum sum of
instance weight

1 [1, 2, 3] 3

subsample Row sampling 1 [0.5, 0.75, 1.0] 0.5

Table 7.2: The hyperparameters used in tuning the xgboost model. The grid is the values
used for tuning. The default values are the defaults for classification in the xgboost
package. The optimal values are the results from hyperparameter tuning.

Figure 7.12: Step 5 of hyperparameter tuning, with shrinkage (eta) and number of trees
(nrounds), suggesting eta = 0.015 and nrounds = 900 as optimal values based on AUC.
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7.3.2 Model Fit

The xgboost model with the optimal values from the tuning is fitted using the training
set. In Figure 7.13 there are two density plots of the predicted probability of developing
CHD, using the training and test set. As for the random forest model fit, we observe that
the predicted probability of developing CHD is low because of the observed low number
of cases in our data set. However, the predicted probability density is similar when the
prediction is performed using the training and test set.

(a) Training set (b) Test set (c) Training set (d) Test set

Figure 7.13: Xgboost model fit on training and test set. The two left plots are density
plots of the predicted probability of developing CHD. The two right plots are boxplots of
the predicted probability of developing CHD stratified by the outcome the outcome.

Boxplots of the predicted probability of developing CHD stratified by the outcome for the
training and test set are also presented in Figure 7.13. For both boxplots, the predicted
probability is higher for the case group than the group of controls. As for the random
forest model, this indicates that the xgboost model captures some patterns in the data
set. The difference of the average predicted probability for the two groups of CHD when
using the training set is slightly more than 5%, while the difference of the prediction on
the test set is slightly less than 5%. In contrast to the random forest model, the xgboost
model has a more comparable average predicted probability for the two groups of the
outcome on the training and test set.

For extreme gradient boosting, we will use the variable importance measure denoted gain.
The variable importance plot of the 20 most important variables according to the xgboost
model is presented in Figure 7.14. Observe that the order of the importance of the pre-
dictors is similar to the order of the random forest variable importance plot. However, a
difference is that the xgboost model considers the PCs to be less important than what
the random forest model did.

The predictions from the xgboost model using the training set yield an AUC score of 0.85
and a PR AUC score of 0.16. The predictions from using the test set yield an AUC score
of 0.80 and a PR AUC score of 0.10. The ROC and PR curves from the test set are plotted
in Figure 7.15. Based on the AUC and PR AUC scores from the test set, and from the
boxplots, the random forest model and the xgboost model appear to perform similarly.
However, the results from the predictions on the training set differ in the two models.
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Figure 7.14: Variable importance plot of the 20 most important variables, based on gain
in the xgboost model. See Table 7.1 for the description of the environmental covariate
labels and Table A.2 for the genetic covariate labels.

Figure 7.15: The plot to the left is the ROC curve and to the right is the PR curve, both
from using the test set. The color scales on the right side of the plots give an indication
which classification threshold results in a certain point on the curve.

Since it appears like the random forest model has overfitted the training data, and since
the xgboost model is less computationally expensive, we choose to use the xgboost model
fit in the further analysis of the genetic predictors and the interaction between physical
activity and the genetic predictors.

7.3.3 The Interaction Effects

In order to evaluate the interaction effects between the genetic covariates and physical
activity (PA), it is helpful to investigate the functional relationship between the genetic
covariates and CHD. That is, we are interested in investigating the genetic models for
each SNP, which is described in Section 6.1. The genetic effect can be visualized by
partial dependence (PD) plots or accumulated local effects (ALE) plots with one variable,
explained in Section 5.4. PD and ALE plots give similar results, which is why only the
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PD plots are shown. The PD plots of the three most important SNPs, according to the
xgboost model, are presented in Figure 7.16. From this figure, we observe that the genetic
effect of the first SNP behaves dominantly, the second SNP behaves additively, and the
third SNP behaves recessively.

Figure 7.16: To the left are partial dependence plots of the three most important genetic
predictors, according to the xgboost model. To the right are partial dependence plots of
the same genetic predictors with physical activity. See Table A.2 for the covariate labels.

We have 50 SNPs in our data set, but we choose to investigate a subset of these that
appear to have the most considerable effect on the probability of developing CHD. We
use two different estimates of how important the SNPs are, which we get from the vari-
able importance plot and the PD plots. We can look at the difference in the log-odds of
developing CHD when the participants have 0 and 2 risk alleles from the PD plots. The
subset of SNPs is chosen by taking the union of the ten most important SNPs according
to these two estimates, which results in 11 SNPs. The PD plots of the rest of the SNPs
in this subset can be found in the Appendix, in Figure B.5 and B.6.

The functional relationship between the SNPs, PA, and CHD can also be visualized in
a PD plot. That is, we can visualize the interaction effect between PA and the SNPs
in a PD plot with two variables. Such plots are included in Figure 7.16, B.5 and B.6.
We are interested in whether there is an interaction effect between the genetic covariates
and PA. However, observe that the difference of the log-odds of developing CHD is small
in the interaction PD plots. Thus, it is challenging to observe whether there is a large
interaction effect from visualizing the PD plots.

In order to investigate the PD plots of the interaction effect further, we fit a linear
regression based on the values from the plot, as described in Section 6.3. The covariates in
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the linear regression are PA, the SNP, and the interaction, which is added by multiplying
the two covariates. The SNP covariate is coded according to the genetic model that
fits best. The response variable is the log-odds values extracted from the plot. It is
worth mentioning that the test is an informal way of investigating the PD plots beyond
visualizing. According to the linear regression, the interaction effect between PA and each
SNP is not significant for any of the SNPs. That is, from the tree ensemble approach
of investigating the interaction effect, it appears like there is not a significant interaction
effect between PA and the SNPs. In other words, we cannot reject the null hypothesis
that there is no interaction effect between PA and the SNPs.

7.4 Logistic Regression

The last model we fit is a logistic regression model. In order to fit the model, we will
first investigate the functional relationship between the covariates and the outcome from
the xgboost model fit. Then we will present the model fit and investigate the interaction
effects.

7.4.1 Functional Relationship Between Covariates and Outcome

For simplicity, we will only investigate the subset of the 11 most important SNPs accord-
ing to the xgboost model for logistic regression as well. We model the genetic effects for
logistic regression according to the genetic model that fits best based on the PD plots
from the xgboost model fit.

For the environmental covariates, we find the functional relationship by investigating ac-
cumulated local effects (ALE) plots and GAM plots, explained in Section 5.5 and 4.8
respectively. In Figure 7.17, 7.18, and 7.19 are ALE plots from the random forest and
xgboost model fits as well as GAM plots for all the environmental covariates. To see the
variability of the data or the functional relationship in the probability scale instead of the
log-odds scale, see the ICE plots shown in Appendix B.2.

First, we investigate age, BMI, and serum cholesterol based on the plots in Figure 7.17.
Age appears to behave linearly between the ages of 40 and 80. However, to measure the
non-linearity for ages larger than 80, we choose to add a second-order term with a center
at 80 as an addition to the linear term. Furthermore, we assume that a linear covariate
is sufficient for BMI and serum cholesterol when measuring the patterns we observe from
the plots.

Next we investigate Figure 7.18. From the ALE plot based on the xgboost model fit, we
observe that serum high-density lipoprotein cholesterol behaves linearly for values up to
two. For values larger than two, the log-odds are constant. Hence, for this covariate, we
set all values over two to be equal to two. For blood pressure and physical activity, we
decide that a linear covariate is sufficient in order to measure the patterns.
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Figure 7.17: Plots for estimating the functional relationship between age, BMI, and serum
cholesterol with CHD. To the left and middle are ALE plots made from the random forest
model fit and the xgboost model fit, respectively. The y-axis represents the outcome given
on the log-odds scale, as this is the functional relationship the logistic regression requires
that we specify. To the right are GAM plots, where the relationship with the outcome is
also given in the log-odds scale. However, for the GAM plots, the y-axis is the function
of the variable in addition to the intercept, given in Equation (4.7).

Figure 7.18: Plots for estimating the functional relationship between serum high-density
lipoprotein cholesterol, blood pressure, and physical activity with CHD. To the left and
middle are ALE plots made from the random forest model fit and the xgboost model fit,
respectively. The y-axis represents the outcome given on the log-odds scale, as this is the
functional relationship the logistic regression requires that we specify. To the right are
GAM plots, where the relationship with the outcome is also given in the log-odds scale.
However, for the GAM plots, the y-axis is the function of the variable in addition to the
intercept, given in Equation (4.7).
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Figure 7.19: Plots for estimating the functional relationship between the PC and CHD.
To the left and middle are ALE plots made from the random forest model fit and the
xgboost model fit, respectively. The y-axis represents the outcome given on the log-odds
scale, as this is the functional relationship the logistic regression requires that we specify.
To the right are GAM plots, where the relationship with the outcome is also given in the
log-odds scale. However, for the GAM plots, the y-axis is the function of the variable in
addition to the intercept, given in Equation (4.7).

Lastly, we investigate the functional relationship between the PC covariates and CHD in
Figure 7.19. We do not observe any particular patterns and will therefore measure the PCs
as linear covariates. Observe from the ALE plots that the random forest model estimates a
much larger effect for all PCs than what the xgboost model does. Recall from the variable
importance plot that the PCs were considered some of the most important variables for
the random forest model, in contrast to the results from the variable importance plot from
the xgboost model. These results can indicate that the random forest model overestimates
the effects of the PCs, which leads to some of the overfitting of the training set.
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7.4.2 Model Fit with Main and Interaction Effects

Now that we know how to model each covariate, we can fit the logistic regression model.
We fit the model using glm() in R with the training set. One model is fitted for each
SNP. Moreover, to model the interaction effect, an interaction covariate between physical
activity and the SNP is added by multiplying those covariates. What we are interested
in is whether adding the interaction covariate improves the performance of the model
significantly. We follow the approach where we model the main effects in addition to the
interaction effects, explained in Section 6.2.1. We will not perform the stratified analysis
since we see it is as sufficient to do the other approach.

A summary of the covariate statistics for the model with the most important SNP, ac-
cording to the xgboost model, is presented in Table 7.3. Notice that all covariates are
significant at a significance level of 0.05, except the PCs and the interaction between
physical activity and the genetic covariate. The covariate estimates for physical activity
and the SNP indicate that the main effects significantly affect the probability of develop-
ing CHD. However, the covariate estimate for the interaction indicates that there is no
interaction effect. In other words, based on this we cannot reject the null hypothesis that
the interaction effect between physical activity and the SNP is zero.

Estimate Std. Error z value p-value
(Intercept) -8.6612 1.4959 -5.79 7.04·10–9

sex 0.7886 0.0732 10.78 2.00·10–16

age 0.0284 0.0068 4.20 2.62·10–5

I((age - 80)2) -0.0010 0.0002 -5.70 1.19·10–8

smoking 0.6858 0.0780 8.79 2.00·10–16

bmi 0.0214 0.0084 2.53 0.0113
seChol 0.2120 0.0298 7.11 1.13·10–12

seHDLChol -1.1262 0.1220 -9.23 2.00·10–16

bpSyst 0.0095 0.0017 5.56 2.74·10–8

kurtze -0.0682 0.0193 -3.54 0.0004
PC1 50.4379 44.4013 1.14 0.2560
PC2 59.9710 46.6413 1.29 0.1985
PC3 -40.9468 31.9572 -1.28 0.2001
PC4 -17.6199 25.8973 -0.68 0.4963
SLC22A3 LPAL2 LPA 2 0.5796 0.2037 2.85 0.0044
kurtze:SLC22A3 LPAL2 LPA 2 -0.0103 0.0816 -0.13 0.8999

Table 7.3: Summary statistics of logistic regression model fit with interaction covariate
between physical activity and a genetic covariate. The genetic covariate is the most
important SNP according to the xgboost model, which is SLC22A3 LPAL2 LPA 2. See
Table 7.1 for the description of the environmental covariate labels.

In Figure 7.20 there are two density plots of the predicted probability of developing CHD,
using the training and test set for the model with the same SNP. The predicted proba-
bility of developing CHD is low since we observed a low number of cases in our data set.
Boxplots of the predicted probability of developing CHD stratified by the outcome for the
training and test set are also presented in Figure 7.20. For both boxplots, the predicted
probability is higher for the case group than for the group of controls. As for the tree
ensemble models, this indicates that the logistic regression model captures some of the
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patterns in the data set.

(a) Training set (b) Test set (c) Training set (d) Test set

Figure 7.20: Logistic regression model fit on training and test set. The two left plots
are density plots of the predicted probability of developing CHD. The two right plots are
boxplots of the predicted probability of developing CHD stratified by the outcome. The
fit is from the model with the most important SNP, according to the xgboost model.

We are interested in how well the logistic regression models perform. For the model with
the most important SNP, the predictions using the training set yield an AUC score of
0.82 and a PR AUC score of 0.12. The predictions from using the test set yield an AUC
score of 0.80 and a PR AUC score of 0.10. The ROC and PR curves from the test set are
plotted in Figure 7.21. Additionally, the R2

MF score for the model fit is 0.16.

Figure 7.21: The plot to the left is the ROC curve and to the right is the PR curve,
both from using the test set. The fit is from the model with the most important SNP,
according to the xgboost model. The color scales on the right side of the plots give an
indication which classification threshold results in a certain point on the curve.

In order to compare the model performance for logistic regression and xgboost, we can
compare the AUC scores as explained in Section 3.2.1. We perform a DeLong test by
using the R package pROC (Robin et al., 2011). From the test, we cannot reject H0,
which suggests that the difference of the AUC scores is not different from zero. In other
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words, the test indicates that the models perform similarly in regards to the AUC score.
The models also appear to perform similarly according to the density and boxplots in
Figure 7.13 and 7.20. It is worth mentioning that the xgboost model has all the 50 SNPs
as covariates in one model, whereas the logistic regression model only has one SNP as the
genetic covariate.

The results from fitting the logistic regression model with the other 10 SNPs as the genetic
covariate give similar results. The value for the genetic covariate varies, but the interac-
tion covariate is not significant, at a significance level of 0.05, for any of the models. A
plot of the 95% confidence intervals of the genetic covariate and the interaction covariate
for the models with the three most important SNPs according to the xgboost model is
presented in Figure 7.22. Observe that the confidence intervals for the genetic covariates
do not contain zero, indicating that they are significant with a significance level of 0.05.
In contrast, the confidence intervals for the interaction covariates all contain zero. As
a result, we cannot reject the null hypothesis that the interaction effect is insignificant
based on these results.

Figure 7.22: 95% confidence interval plots of genetic covariates and interaction covariates.
Kurtze is the measure of physical activity. The genetic covariates are the SNPs that are
considered the most important, according to the xgboost model. For description of the
genetic covariate labels see Table A.2.

Another approach for investigating whether the interaction effect is significant is to per-
form a likelihood ratio test with the model with only the main effects and the model
with both the main effects and the interaction effect. The results from the three tests
for the models with the three most important SNPs, according to the xgboost model,
is presented in a deviance table in Table 7.4. According to the tests, the models with
the interaction covariate do not perform significantly better than the models without the
interaction covariate, at significance level 0.05. These results indicate that there are no
interaction effects between physical activity and the SNPs. The LRT is also performed
on the models with the other SNPs, yielding the same results.
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Model Residuals
Residual
Deviance

Df Deviance Pr(>Chi)

SLC22A3 LPAL2 LPA 2 32804 7896.6
kurtze:SLC22A3 LPAL2 LPA 2 32803 7896.5 1 0.033844 0.854

CDKN2BAS1 32804 7889.8
kurtze:CDKN2BAS1 32803 7888.6 1 1.2328 0.2669

SH2B3 32804 7900.7
kurtze:SH2B3 32803 7900.6 1 0.0087375 0.9255

Table 7.4: Results from three Likelihood Ratio Tests, which is the deviance table from
comparing fit with only main effects and fit with main effects and interaction effects. The
three models have the three most important SNPs as genetic covariates according to the
xgboost model. See Table A.2 for description of the genetic covariate labels.
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Chapter 8

Discussion and Future Work

In this chapter, we discuss the results from the data analysis in the previous chapter. We
also discuss the strengths and limitations and present possibilities for future work.

8.1 The Interaction Effect

The main result from the data analysis in Chapter 7 was that there was no significant or
important effect of the interaction between physical activity and genetic factors. How-
ever, the main effect of physical activity had a significant effect on CHD according to
the logistic regression model and was considered an important predictor according to the
extreme gradient boosting model. The main effect for some of the SNPs also affected the
outcome. There are several possible reasons why the interaction effects did not affect the
outcome, which will be presented next.

Firstly, the physical activity level was self-reported, which may not be the most accurate
measure of the actual physical activity level. Secondly, from the correlation plot of the
environmental covariates, we observed that physical activity was correlated with many
of the other environmental covariates. Consequently, some of the effects of being physi-
cally active may be measured in other covariates, such as BMI or blood pressure. When
we investigated the interaction effect between physical activity and the SNPs, we may
have gotten a more negligible effect since the estimated effect of physical activity may be
smaller than the actual effect.

Moreover, we had a highly imbalanced data set where only 3% was classified as cases. The
small proportion of cases can have led to poorer prediction performance by the models,
which again can have led to a smaller measured interaction effect. Additionally, we had
as little as 251 cases in the test set. The small number of cases made it challenging to
perform a proper evaluation of the performance of the models and even more challenging to
evaluate the interaction effects between physical activity and the SNPs. The imbalanced
data set was especially challenging when fitting the random forest model, as this model
appeared to overfit the training data.
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8.2 Strengths

Even though the interaction effect between physical activity and the SNPs did not ap-
pear to affect the outcome, both the xgboost model and the logistic regression model had
predictive power. Both models had an AUC score of around 0.8 on the test set. All of the
environmental covariates and some of the genetic covariates were important or significant
according to the models.

Extreme gradient boosting has empirically proven to be a highly effective approach to pre-
dictive modeling and wins ”every” machine learning competition, as explained by Nielsen
(2016). One of the reasons for this is that the functional relationship between the covari-
ates and the outcome does not need to be specified for tree ensemble models, in contrast
to the logistic regression model. Additionally, in xgboost the interaction effects are in-
cluded automatically, whereas it has to be specified to be included for logistic regression.
For this reason, we chose to use the xgboost model in our analysis. However, the logistic
regression model is a lot more interpretable than xgboost. Especially those from a medical
background prefer to interpret a logistic regression model over a black box tree ensemble
model. Thus, we also chose to use a logistic regression model. We used a block box model,
namely xgboost, to estimate the functional relationship between the covariates and the
outcome by partial dependence plots and accumulated local effects plots. The informa-
tion from the plots was again used to fit a logistic regression model. Consequently, we
got some of the benefits from the xgboost model while still having interpretability. The
approach was performed on both the environmental and genetic covariates and gave a
logistic regression model that predicted almost as well as the xgboost model. From the
DeLong test performed, the AUC scores from the two models were not significantly dif-
ferent, indicating that the models performed similarly. Thus, a strength of this analysis
was that we used explainable AI on medical data.

Another strength is the large sample of cohort data available from the HUNT data set.
We had extensive information about each participant’s genetics, lifestyle habits, family
history, and medical condition. The information about both the genetic and environmen-
tal variables was collected at HUNT test stations, except for the physical activity level,
which was self-reported. Most of the information used in this analysis is therefore highly
reliable.

8.3 Limitations

One of the main limitations of this analysis was that we used the training data to fit the
tree ensemble models, which we again used to fit the logistic regression model. That is,
we used the training data to fit the logistic regression model, but we have already used
this data to find the functional relationships between the covariates and the outcome. In
other words, we performed selective inference, which is a weakness when it comes to repli-
cability as explained by Benjamini (2020). Consequently, we cannot trust the p-values
from the logistic regression. However, we still fitted the logistic regression model due to
the advantage of the interpretability.

Logistic regression requires that we have independent observations. However, there may
be positive correlation between the feature vectors of some participants due to genetic
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relations or environmental similarities in our data set. We adjusted for genetic relation
and environmental similarities by adding the four first principal components (PC), as
this is a common approach. We did that without testing whether it resulted in a less
dependent data set, and this is therefore a weakness with our analysis. It can be helpful
to investigate whether adding four PCs is the optimal approach to correct the correlation
between participants. An alternative approach that can correct for the correlation is to
remove the participants that are closely related. Another alternative is to reduce bias
due to the relation between participants and environmental similarities by using genomic
control or using a generalized linear mixed model (Zhou et al., 2018). This is a statistical
method commonly used to control for the confounding effects of population stratification
in genetic association studies. However, it requires that we have a large set of SNPs.

8.4 Future work

There are multiple possible directions for future work. One of the limitations of this
analysis was the highly imbalanced data set. A possibility for handling this is to perform
oversampling or undersampling, which are techniques used to adjust the ratio between
the cases and controls. Oversampling is the most relevant approach in our case, which
is when the size of the minority class is increased by making copies of observations from
the minority class and adding them to the data set. Oversampling could lead to better
predictions and may give a better insight into the interaction effect between physical ac-
tivity and the SNPs.

Another option to handle the imbalanced data set can be to remove the related partic-
ipants as long as they are controls. That is, if two participants are related and one of
them developed CHD, we remove the other participant. Consequently, we both correct
the correlation between participants due to genetic relations and get a less imbalanced
data set.

We performed a complete case analysis in this thesis, which means that we removed par-
ticipants that had missing values from the data set. However, a third alternative to handle
the imbalanced data set can be to perform imputation on the cases. Imputation preserves
the observations with missing data by estimating the missing values based on the rest of
the data set. This will lead to a higher number of cases in our data set.

Another direction for future work can be to analyze more SNPs. We only analyzed 11 out
of the 50 SNPs in our data set. Hence, for further work, it can be interesting to investigate
the rest of these SNPs. It would also be interesting to analyze other SNPs associated with
CVD. It has previously been hypothesized that SNPs with the strongest associations with
the outcome variable in GWAS may be the least sensitive to environmental and lifestyle
influences (Scott et al., 2012). For this reason, it would be interesting to study SNPs
previously found to have a modest association with CVD as well.

Investigating the interaction effect with other null models could also gain insight into
the significance of the interaction between physical activity and the SNPs. We selected
variables for the null model based on medical advice, but there may be better alterna-
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tives. For instance, adding other variables and interaction terms could be an option. As
explained in Section 8.1, some of the effects of being physically active can have been
measured by other variables in the null model due to the correlation between these vari-
ables. Hence, substituting or removing the variables that were associated with physical
activity could lead to other results. Substituting the self-reported physical activity mea-
sure with another variable that measures the physical condition can also lead to other
results. For instance, maximal oxygen uptake, often denoted VO2max, has shown to be
inversely associated with CVD in population-based studies (Andersen et al., 2015) and is
not self-reported. Thus, it may lead to a more reliable measure of how physically active
a participant is.

Finally, men and women respond differently to diseases and pharmaceuticals used to treat
it (Brazil, 2020). For this reason, it may increase the predictive power to analyze men
and women separately. Both physical activity and the SNPs may have different effects
depending on whether the participant is male or female. Consequently, analyzing men
and women separately may lead to a different result of the interaction effect between
physical activity and the SNPs. For this reason it is another interesting possibility for
future work.
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Appendix A

Dataset Construction

This appendix shows how we constructed our data set based on data from HUNT3 and
Helse Nord-Trøndelag. The data set was analyzed in the HUNT Cloud.

A.1 Environmental Covariates

In the data set from HUNT we are only interested in the participants who participated in
HUNT3, and we exclude the participants who have previously suffered from CVD. Using
the variable names from HUNT, that is

Part NT3BLQ1 = 1,

Part NT3BLM = 1,

CarInfEv NT3BLQ1 = 1,

CarInfEv NT1BLQ1 = 1,

CarInfEv NT2BLQ1 = 1,

CarInfEv NT3CVDQ = 1.

In addition, since we are only interested in a subset of the variables, we only included the
variables

variables variables from HUNT
id PID 106474
sex Sex
age PartAg NT3BLQ1
smoking SmoStatNT3 recoded
bmi BMI NT3BLM
seChol SeChol NT3BLM
seHDLChol SeHDLChol NT3BLM
bpSyst BPSystMn23NT3BLM
kurtze PA H3 index K

where the Kurtze score is calculated as described in Section 2.2.
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A.2 Genetic Covariates

Holmen et al. (2014) analyzed 54 SNPs that were found to be associated with CHD
in previously published GWAS studies (Deloukas et al. (2013), Kathiresan (2008), and
Schunkert et al. (2011)). We extract these 54 SNPs, which can be found in the supple-
mentary of the article. From the GWAS summary statistics presented in Holmen et al.
(2014), the genomic position (GrCh37) of each SNP is retrieved. An overview of the 50
of the 54 SNPs we found in HUNT is presented in Table A.2.

First, we check for the existence of the SNPs in the HUNT Databank and record the
position for each SNP. This is done using the genomic position (GrCh37), as this is what
the HUNT databank uses to identify the SNPs. The software PLINK (Purcell, 2007) is
used for this purpose. The input file is the PLINK .bed file together with the .bim and
.fam files. The location of the PLINK files is in the CERG lab within the HUNT Cloud,
in the directory archive/genotype/plink.

We check for existence of the SNPs and record the position by making a file for each
chromosome denoted ”i” ∈ {1 : 21}, which is done by running the following command in
R

system(paste("plink1.9 --bfile

../../archive/genotypes/plink/genotyped_PID106474

--chr ",i, " --freq --out chr", i, "freq",sep=""))

If information about a SNP is in HUNT, this commando will give a file with information
on what the minor allele is in addition to the MAF. The output is in the form

CHR SNP A1 A2 MAF NCHROBS

1 1:762320:C:T T C 0.0003241 138844

1 1:798959:G:A A G 0.2016 138844

1 1:846808:C:T T C 0.1805 138838

1 1:861349:C:T T C 0.000108 138844

If a SNP is in the HUNT database, the information needed is stored in an output matrix,
where each row represents a SNP. In our case, the information we need is the name of
the SNP, the location, and the minor and major alleles. We find 50 out of the 51 SNPs
in the HUNT Databank.

Once the SNPs are identified in the HUNT Databank, and we use PLINK to recode the
SNPs at each chromosome i. The following code is executed in R

system(paste("plink1.9 --bfile

../../archive/genotypes/plink/genotyped_PID106474

--chr ",i," --recode A --out thischr",sep=""))

The commando – recode A is a modifier that gives an additive (0/1/2) component file,
suitable for loading from R, to be generated. – recode A creates a file with SNP genotypes
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coded as a single dosage number. For each SNP, each individual has 0, 1, or 2 of Allele
1 (A1). By default, the A1 alleles are counted. In PLINK, the coding 0-1-2 refers to the
number of A1. Furthermore, from the executed code, the information we extract will be
stored in a file called thischr, and one file is made per chromosome.

Moreover, we only extract the columns where our SNPs are located. Denote these columns
colids, which are the row numbers in the matrix +6. We save the wanted information in
files called snpfile1.txt, snpfile2.txt, ..., snpfile21.txt, by executing

dollars=paste("$2,", paste("$",colids,sep="",collapse=" , "))

system(paste("cat thischr.raw | awk ’{print ",dollars,"}’

>snpfile",i,".txt",sep=""))

The final files contain the genotype data in the recoded form: 0 1 2. The rows are PIDs,
and then each SNP has its column. Lastly, we read in those files created above and remove
observations not used by merging with existing data.

A.3 Outcome

The outcome is extracted from Hospital data from Helse Nord-Trøndelag. Furthermore,
the outcome is categorized as 1 if the participant has suffered from Coronary heart disease
(CHD). We only categorize the outcome as 1 if the participant suffered from CHD within
the time interval where the HUNT3 study was relevant, which is after the HUNT3 study
and before the HUNT4 study. That is between 31.12.2008 and 31.07.2017.

Outcome Variable in Helse Nord-Trøndelag Description Type
chd ICD 10[I21, I22] Coronary heart disease binary
st ICD 10[I60, I61, I62, I63] Stroke binary
hf ICD 10[I50] Heart failure binary
af ICD 10[I48] Atrial fibrillation binary
all Suffered from chd, st, hf or af binary

Table A.1: The outcome variables extracted from Helse Nord-Trøndelag, where chd is
used as outcome in the models.
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GWAS HUNT

Gene
Position:
GrCh37

SNP:
rsID

Effect/
Non-
effect
allele

Effect
allele
freq

OR p-value
Effect
allele
freq

OR p-value

SORT1b 1:109821511 rs602633 G/T 0.77 1.12 1.47·10−25 0.78 1.03 0.42

IL6R 1:154422067 rs4845625 T/C 0.47 1.04 3.64·10−10 0.43 1.05 0.16

MIA3 1:222762709 rs17464857 T/G 0.87 1.05 6.06·10−5 0.87 1.15 6.3·10−3

PCSK9 1:55496039 rs11206510 T/C 0.84 1.06 1.79·10−5 0.86 1.08 0.12

PCSK9 1:55505647 rs11591147 T/G 0.017 0.40 2.00·10−5 0.009 0.71 0.05

PPAP2B 1:56962821 rs17114036 A/G 0.91 1.11 5.80·10−12 0.93 1.16 0.02

ZEB2-AC074093.1 2:145801461 rs2252641 C/T 0.46 1.04 5.30·10−8 0.42 1.01 0.71

WDR12* 2:203880992 rs2351524 T/C 0.15 1.14 1.12·10−9 0.13 1.17 1.5·10−3

APOB 2:21286057 rs515135 C/T 0.83 1.08 2.56·10−10 0.86 1.05 0.30

ABCG5-ABCG8 2:44073881 rs6544713 T/C 0.30 1.06 2.12·10−9 0.27 1.06 0.11

VAMP5-VAMP8-GGCX 2:85809989 rs1561198 T/C 0.45 1.05 1.22·10−10 0.47 1.07 0.048

MRAS 3:138122122 rs9818870 T/C 0.14 1.07 2.62·10−9 0.15 1.02 0.73

COLQ/HACL1/
BTD/ANKRD28

3:15648004 rs7651039 C/T 0.54 1.06 1.64·10−6 0.48 1.09 0.01

EDNRA 4: 148393664 rs1878406 T/C 0.15 1.09 2.54·10−8 – – –

GUCY1A3 4:156635309 rs7692387 G/A 0.81 1.06 2.65·10−11 0.81 0.99 0.83

SLC22A4-SLC22A5 5:131667353 rs273909 G/A 0.14 1.09 9.62·10−10 0.14 1.10 0.04

PHACTR1 6:12901441 rs9369640 A/C 0.65 1.09 7.53·10−22 0.68 1.04 0.25

TCF21 6:134210947 rs12190287 C/G 0.59 1.07 4.94·10−13 – – –

SLC22A3-LPAL2-LPA 6:160863532 rs2048327 C/T 0.35 1.06 6.86·10−11 0.40 1.10 0.004

SLC22A3-LPAL2-LPA 6:160961137 rs3798220 C/T 0.10 1.28 4.90·10−5 0.019 1.67 7.9·10−6

PLG 6:161143608 rs4252120 T/C 0.73 1.06 4.88·10−10 0.71 1.09 0.02

ANKS1A 6:34898455 rs12205331 C/T 0.81 1.04 4.18·10−5 0.76 1.05 0.25

KCNK5 6:39174922 rs10947789 T/C 0.76 1.06 9.81·10−9 0.76 1.02 0.58

7q22 7:106938420 rs3815148 C/A 0.19 1.08 5.33·10−4 0.23 0.97 0.444

ZC3HC1 7:129663496 rs11556924 C/T 0.65 1.09 6.74·10−17 0.64 1.00 0.99

HDAC9 7:19036775 rs2023938 C/T 0.10 1.07 4.94·10−8 0.099 1.05 0.37

TRIB1 8:126490972 rs2954029 A/T 0.55 1.04 4.75·10−9 0.47 1.05 0.12

LPL 8:19813180 rs264 G/A 0.86 1.05 2.88·10−9 0.87 1.01 0.92

ABO 9:136154168 rs579459 C/T 0.21 1.07 2.66·10−8 0.23 1.08 0.048

CDKN2BAS2 9:22003223 rs3217992 T/C 0.38 1.16 7.75·10−57 0.34 1.15 6.4·10−5

CDKN2BAS1 9:22125503 rs1333049 C/G 0.47 1.23 1.39·10−52 0.48 1.20 6.0·10−8

CYP17A1-CNNM2-NT5C2 10:104719096 rs12413409 G/A 0.89 1.10 6.26·10−8 0.92 1.06 0.30

KIAA1462 10:30335122 rs2505083 C/T 0.42 1.06 1.35·10−11 0.41 1.07 0.04

CXCL12 10:44753867 rs501120 T/C 0.83 1.07 1.79·10−9 0.87 1.15 4.9·10−3

LIPA 10:90989109 rs11203042 T/C 0.44 1.04 6.08·10−6 0.44 1.08 0.02

LIPA* 10:91004886 rs2246942 G/A 0.38 1.06 9.49·10−6 0.37 1.10 6.2·10−3

PDGFD 11:103660567 rs974819 T/C 0.29 1.07 3.55·10−11 0.23 1.06 0.15

ZNF259-APOA5-APOA1 11:116611733 rs9326246 C/G 0.1 1.09 1.51·10−7 0.074 1.05 0.49

SH2B3 12:111884608 rs3184504 T/C 0.40 1.07 5.44·10−11 0.48 1.08 0.02

COL4A1-COL4A2 13:110960712 rs4773144 G/A 0.42 1.07 1.43·10−11 0.43 1.10 4.0·10−3

FLT1 13:28973621 rs9319428 A/G 0.32 1.05 7.32·10−11 0.33 1.06 0.11

HHIPL1 14:100133942 rs2895811 C/T 0.43 1.06 4.08·10−10 0.42 1.06 0.08

ADAMTS7 15:79141784 rs7173743 T/C 0.58 1.07 6.74·10−13 – – –

FURIN-FES 15:91416550 rs17514846 A/C 0.44 1.05 9.33·10−11 0.44 1.04 0.27

RAI1-PEMT-RASD1 17:17543722 rs12936587 G/A 0.59 1.06 1.24·10−9 0.51 0.99 0.85

SMG6 17:2117945 rs2281727 G/A 0.36 1.05 7.83·10−9 0.39 1.08 0.02

UBE2Z 17:47005193 rs15563 G/A 0.52 1.04 9.37·10−6 0.54 1.04 0.28

LDLR 19:11163601 rs1122608 G/T 0.76 1.10 6.33·10−14 0.77 1.04 0.37

ApoE-ApoC1 19:45395619 rs2075650 G/A 0.14 1.11 5.86·10−11 0.15 1.07 0.13

ApoE-ApoC2 19:45415640 rs445925 G/A 0.90 1.13 8.76·10−9 0.88 1.10 0.07

Gene desert (KCNE2) 21:35599128 rs9982601 T/C 0.13 1.13 7.67·10−17 0.14 1.09 0.07

Table A.2: The 50 SNPs which are used as genetic covariates. All the information in this
table is copied from the supplementary material of 54 SNP ids in the article by Holmen
et al. (2014), with GWAS SNPs from Deloukas et al. (2013), Kathiresan (2008), and
Schunkert et al. (2011). 4 of the 54 SNPs were not present in HUNT, which is why we
investigate 50 SNPs.
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Appendix B

Additional Figures and Tables

This appendix includes additional figures and tables from the data analysis presented in
Chapter 7.

B.1 Extreme Gradient boosting

B.1.1 Hyperparameter Tuning

The hyperparameter tuning for extreme gradient boosting is explained in Section 7.3. In
Figure B.1 there is a visualization of the first step of the tuning process. The hyperpa-
rameters tuned in step 1 is the learning rate and maximum tree depth. Step 2 is tuning
the minimum sum of instance weight hyperparameter, which is plotted in Figure B.2.
Furthermore, step 3 tunes the column and row samples, plotted in Figure B.3. Next, step
4 is visualized in Figure B.4 and tunes the minimum loss reduction. The fifth and final
step can be seen in Section 7.3 and tunes the learning rate and the number of trees.

Figure B.1: Step 1 of hyperparameter tuning, with learning rate (eta) in the sub plots,
maximum tree depth (max depth) and number of trees (nrounds).

70



Appendix B. Additional Figures and Tables B.1. Extreme Gradient boosting

Figure B.2: Step 2 of hyperparameter tuning, with minimum sum of instance weight
(min child weight) and number of trees (nrounds).

Figure B.3: Step 3 of hyperparameter tuning, with subsample ratio of columns (also
denoted column sampling, colsample bytree), row sampling (subsample) in the sub plots
and number of trees (nrounds).

Figure B.4: Step 4 of hyperparameter tuning, with minimum loss reduction (gamma) and
number of trees (nrounds).
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B.1.2 Genetic Covariates and the Interaction Term

In Figure B.5 and B.6 are PD plots of the rest of the 11 SNPs we investigate in this
analysis. There are PD plots of the SNP and PD plots of the interaction between the
SNPs and physical activity. From the PD plots of the SNPs we choose a genetic model
that is the best fit for measuring the genetic effect. The chosen genetic model for each
SNP is presented in Table B.1.

Figure B.5: To the left are partial dependence plots of four of the genetic predictors.
To the right are partial dependence plots of the same genetic predictors with physical
activity. See Table A.2 for description of the genetic covariate labels.
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Figure B.6: To the left are partial dependence plots of four of the genetic predictors.
To the right are partial dependence plots of the same genetic predictors with physical
activity. See Table A.2 for description of the genetic covariate labels.

SNP Genetic effect

SLC22A3 LPAL2 LPA 2 dominant

CDKN2BAS1 additive

SH2B3 recessive

EDNRA dominant

WDR12 dominant

PDGFD recessive

CDKN2BAS2 dominant

COL4A1 COL4A2 additive

SMG6 codominant

FURIN FES codominant

ANKS1A codominant

Table B.1: The genetic model for each SNP, based on the PD plots of the SNPs. See
Table A.2 for description of the genetic covariate labels.
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B.2 ICE plots

In Figure B.7, B.8, and B.9 are ICE plots of the environmental and PC covariates. They
are made by using 5% of the training data on the xgboost model fit. ICE plots show
the functional relationship between covariates and the outcome. ICE plots also show the
variability of the data. Hence, in this case, it shows the relationship and variability on
5% of the data. There are plots with both log-odds and probability scales.

Figure B.7: ICE plots of age, BMI and serum cholesterol, made using 5% of the training
data on the xgboost model fit. The top figures show the ICE plots on a log-odds scale,
while the bottom figures show the ICE plots on a probability scale. See Table 7.1 for the
description of the environmental covariate labels.
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Figure B.8: ICE plots of serum high-density lipoprotein cholesterol, blood pressure, and
physical activity, made using 5% of the training data on the xgboost model fit. The
top figures show the ICE plots on a log-odds scale, while the bottom figures show the
ICE plots on a probability scale. See Table 7.1 for the description of the environmental
covariate labels.

Figure B.9: ICE plots of PCs, made using 5% of the training data on the xgboost model
fit. The top figures show the ICE plots on a log-odds scale, while the bottom figures show
the ICE plots on a probability scale. See Table 7.1 for the description of the environmental
covariate labels.
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