
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Rolv-Arild Braaten
August Bobakk Indal

Exploring the Viability of Multilingual
Zero-shot Neural Document Retrieval

Master’s thesis in Computer Science
Supervisor: Björn Gambäck

June 2021

M
as

te
r’s

 th
es

is

Rolv-Arild Braaten
August Bobakk Indal

Exploring the Viability of Multilingual
Zero-shot Neural Document Retrieval

Master’s thesis in Computer Science
Supervisor: Björn Gambäck
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract
With the fast progress of deep learning, major strides have been made in many fields
of computer science. However, until recently, neural retrieval methods have struggled
to see success beyond that of methods developed in the 1990s. Large search companies
have recently started applying neural retrieval to their search, but they currently have a
monopoly on datasets containing large amounts of non-English labeled data. This makes
it necessary to develop retrieval methods that can perform well without seeing labeled
data (zero-shot) regardless of language, to elevate retrieval performance for everyone.
This Thesis explores the field of neural information retrieval (IR), and the potential for
application of these neural models in multilingual and zero-shot settings. Select models
are tested on the Text REtrieval Conference (TREC) Spanish dataset in a zero-shot
fashion to evaluate their potential.

Results show that for multilingual zero-shot retrieval, the most important aspect is
pre-training as much as possible on data with labeled relevance and getting good at the
ranking task before transferring to new languages. Using a multilingual model provides a
boost in performance, and increasing input length also has positive effects for document-
level retrieval. The best model tested uses a multilingual BERT (Bidirectional Encoder
Representations from Transformers) model trained on the Microsoft Machine Reading
Comprehension (MS MARCO) passage retrieval dataset, and displays an 11% increase over
previous state-of-the-art results on TREC Spanish by achieving an nDCG@20 (Normalized
Discounted Cumulative Gain of the top 20 retrieved documents) of 0.739.

A limitation of typical Transformers such as BERT is their inability to view the entire
document at once due to length restrictions. In neural IR, the use of efficient Transformers,
designed specifically for handling longer sequences, has thus far remained unexplored. In
this Thesis, two efficient Transformer architectures (BigBird and Longformer) are tested,
with comparable results to the previous state-of-the-art.

i

Sammendrag
Med den raske framgangen som har vært i dyp læring har man sett store steg innen
flere informatikkfelt. Til tross for dette har man ikke før nylig sett vellykket bruk av dyp
læring innen informasjonsgjennfinning (IR). De store søkemotorselskapene har begynt å
ta i bruk nevrale metoder til søk, men problemet er at de sitter med et monopol på store
datasett med ikke-engelsk annotert data. Dette gjør det nødvendig å utvikle metoder
innenfor IR som kan gjøre det bra uten annotert data (zero-shot) og uansett språk, slik
at man kan heve nivået på IR-systemer for alle. Denne oppgaven utforsker feltet nevral
informasjonsgjenfinning og potensialet til flerspråklige nevrale modeller for søk, uten
bruk av annotert data. Utvalgte modeller er testet på Text REtrieval Conference (TREC)
Spanish datasettet for å evaluere deres potensial.

Resultatene viser at for flerspråklig zero-shot informasjonsgjennfinning er det viktigste
å trene på så mye engelsk annotert data som mulig, og bli god på informasjonsgjen-
nfinningsdelen før man overfører det man har lært til nye språk. Bruk av flerspråklige
modeller øker ytelsen i forhold til engelskpråklige modeller. Å gi modeller mulighet til å
se på større deler av dokumentet om gangen er også en fordel. Den beste modellen som
er testet bruker en flerspråklig versjon av BERT (Bidirectional Encoder Representations
from Transformers) trent på Microsoft Machine Reading Comprehension (MS MARCO)
passage retrieval datasettet. Den får et resultat som er 11% bedre enn tidligere state-of-
the-art på TREC Spanish, med en nDCG@20 (Normalized Discounted Cumulative Gain
på topp 20 hentede dokumenter) score på 0.739.

En begrensning med vanlige Transformer-modeller slik som BERT er deres manglede
evne til å se på hele dokumentet på en gang fordi de har restriksjoner på sekvenslengden.
Innenfor nevral IR har effektive Transformere laget spesielt for å håndtere lengre sekvenser,
til nå ikke vært utforsket. I denne rapporten utforskes to effektive Transformer-arkitekturer
(BigBird og Longformer), med resultat som er sammenlignbart med tidligere state-of-the-
art.

ii

Preface
This Thesis was written as the final assignment to complete the degree of Master of
Science in Computer Science at the Norwegian University of Science and Technology
(NTNU). It was written in collaboration with Norconsult AS and supervised by Björn
Gambäck.

We want to thank Björn for his invaluable guidance for the duration of the Thesis, as
well as the preceding specialization project. Thanks to Norconsult and Thomas Hjelde
Thoresen for offering the project and inspiring its direction. Also, a big thanks the
NTNU HPC group for providing IDUN to use for model training. Thanks to Mostafa
Dehghani and Andrew Yates for allowing the use of their diagrams. Finally, a big thanks
to Joakim Sæther for his support, help, and friendship throughout the entire Bachelor’s
and Master’s degree.

Braaten, Rolv-Arild
Indal, August Bobakk Trondheim, 10th June 2021

iii

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Research Method . 3
1.4 Contributions . 3
1.5 Thesis Structure . 3

2 Background Theory 5
2.1 Text processing . 5
2.2 Retrieval . 6

2.2.1 Evaluation . 6
2.2.2 TF-IDF . 8
2.2.3 BM25 . 8
2.2.4 Embeddings . 9

2.3 Machine Learning . 11
2.3.1 Perceptron . 11
2.3.2 Loss . 12
2.3.3 Convolutions . 12
2.3.4 Recurrent Networks . 13
2.3.5 Attention . 14
2.3.6 Transformers . 15

Reducing complexity . 16
BERT . 17

3 Related Work 19
3.1 Traditional neural retrieval models . 19

3.1.1 Representation . 19
Adjacent tasks . 20
DSSM . 21
ANCE . 21

3.1.2 Interaction . 21
ARC-II . 22
DRMM . 22
K-NRM . 23
PACRR . 23

v

Contents

3.1.3 Transformer-based . 23
Re-ranking with BERT . 24
ColBERT . 25
CEDR . 25
PARADE . 25
MonoT5 . 25

3.1.4 Criticism . 26
3.2 Zero-shot . 26
3.3 Datasets . 27

3.3.1 MS MARCO . 27
3.3.2 TREC 2004 Robust track . 28
3.3.3 TREC Spanish . 28

4 Architecture 29
4.1 Strengths and weaknesses of different models 29

4.1.1 Representation . 29
Non-specific training . 29
Iterative improvement . 29
Performance limits . 30

4.1.2 Interaction . 30
Pre-trained potential . 30
Performance limits . 30

4.1.3 Transformer-based . 31
Direct transfer limitations . 31
Computational cost . 31
Length limitations . 31
Diversity . 31

4.1.4 Takeaways . 32
4.2 Tools and Libraries . 32

4.2.1 Python . 32
4.2.2 Jupyter notebook . 32
4.2.3 Pyserini . 33
4.2.4 PyTorch . 33
4.2.5 Huggingface . 33
4.2.6 h5py . 33
4.2.7 TrecTools . 34
4.2.8 Matplotlib . 34

5 Experiments and Results 35
5.1 Experimental Plan . 35

5.1.1 Creating work environment . 35
Datasets . 35
Training models . 36

vi

Contents

5.1.2 Experimental approach . 36
Reproducing results from related work 36
Zero-shot learning between English and foreign languages 37
Tune parameters . 37

5.2 Experimental Setup . 37
5.2.1 Corpus setup . 37

Robust 04 and MS MARCO Document and Passage 37
TREC Spanish . 38

5.2.2 Training models . 38
Creating training data . 39
Initial testing . 41
HPC trained models . 41

5.2.3 Evaluate models . 41
5.3 Experimental Results . 42

5.3.1 Models list . 42
5.3.2 Initial training . 44
5.3.3 Increasing batch size . 45
5.3.4 Increasing max length . 45
5.3.5 Comparison with other models . 46

6 Evaluation and Discussion 49
6.1 Evaluation . 49

6.1.1 Results . 49
Initial training . 50
Increasing batch size . 51
Increasing max length . 51
Comparison with other models. 52

6.1.2 Research Question and Goals . 53
6.2 Discussion . 54

6.2.1 Input length . 54
6.2.2 Multilingual models . 54
6.2.3 Retrieval specific training . 55
6.2.4 Limitations . 56
6.2.5 Additional considerations . 56

7 Conclusion and Future Work 57
7.1 Contributions . 57
7.2 Future Work . 58

More data . 58
Smarter solutions . 58
Custom architecture . 58
Dense retrieval . 59

Bibliography 61

vii

List of Figures

2.1 A visualization of distances between two points. 10
2.2 A 2D convolution. 13
2.3 A recurrent neural network. 14
2.4 The Transformer architecture . 15
2.5 A plot of positional encodings. 16
2.6 Taxonomy of efficient Transformer architectures. 17

3.1 A representation model. 20
3.2 An interaction model. 22
3.3 A Transformer-based re-ranking model. 24

5.1 Histograms of number of tokens per document for relevant datasets. . . . 40
5.2 Diagram explaining a multi-stage retrieval system. 42
5.3 Taxonomy of models tested. 44

ix

List of Tables

5.1 Hyperparameters for initial training . 41
5.2 Hyperparameters for HPC training with IDUN. 41
5.3 TREC Spanish initial testing. 44
5.4 TREC Spanish, increase batch size. 45
5.5 TREC Spanish, different max lengths. 46
5.6 TREC Spanish evaluation results. 47

xi

1 Introduction

Search is one of the most ubiquitous technologies in the world today. Google is the most
visited website in the world, with billions of searches every day (Nayak, 2019). Many of
the world’s most popular websites, as well as devices like smartphones and computers,
include search bars for more straightforward navigation. Organizations use search to
manage internal documents.

Recent advances in natural language processing (NLP), most notably Transformers
(Vaswani et al., 2017), have also enabled advances in search technology, with Google using
Transformers to improve 7% of their search results globally (Raghavan, 2020). A better
understanding of the contents of both documents and queries is critical to improving
search results by enabling human-like comprehension of text.

Despite these advances, a significant drawback of many techniques using deep learning
is that it requires training with labeled data. For this reason, neural-augmented search
is only available to a select few companies with the data to support it. Overcoming
this obstacle is a critical aspect of applying these new techniques effectively for varying
domains and languages.

This Master’s Thesis will explore the field of neural information retrieval, or neural IR
for short. The main objective is obtaining relevant documents from large collections by
searching with keywords, taking advantage of deep language understanding enabled by
neural networks. A lacking area of research is the use of these methods for languages
other than English where there is a lack of labeled data. This will be the main focus of
the Thesis.

1.1 Background and Motivation

This Master’s Thesis is done in cooperation with Norconsult AS, looking to improve
their in-house document search solution. Their current solution is a prototype using
TF-IDF+LSI (detailed in subsection 2.2.2 and subsection 2.2.4). It is only used by a
small pilot group, making it difficult to collect enough labeled data. Motivated by this, a
few restrictions are intentionally placed on our solution, directing our research:

• Because of a lack of labeled training data, the solution should work with very
few, and preferably zero, labeled training samples. This is challenging since many
modern solutions depend on deep learning, which relies on massive amounts of data

1

1 Introduction

to function optimally. Using a model without training on labeled examples from
the relevant dataset is known as zero-shot learning. In the case of retrieval this
means not training with labels of whether or not documents are relevant or not.

• The data contains a mix of primarily Norwegian and English, meaning a solution
should be designed to work across different languages. This is also an obstacle,
as most datasets and architectures are designed with only the English language
in mind. The term multilingual is used for models and datasets designed with
multiple languages in mind.

Beyond this, there are no restrictions regarding the choice of model or dataset. During the
pre-study to this Thesis, a distinct lack of research within both zero-shot and multilingual
neural retrieval was noticed, further driving the decision to make this the focus.

1.2 Goals and Research Questions

Due to the aforementioned lack of labels in conjunction with multilingual data, this
Thesis has one main goal, which is further divided into two research questions:

Goal Find a document ranking model that gives good results across languages using
zero-shot learning.

The aim is to find or construct a model that requires little to no training examples on
the target dataset, but maintains good performance. Breaking this down, there are two
main steps constructed to achieve this.

Research question 1 What are the zero-shot capabilities of neural document ranking
models?

Zero-shot models combat the problem of not having labeled data. In particular, exploring
the current neural document ranking models for zero-shot learning is essential in order to
not only measure them against each other, but also to outline the properties each model
possesses and draw inspiration from them. Based on a literature review outlining the
methods used in neural IR today, testing will be performed to achieve this.

Research question 2 How can neural document ranking models be adapted to work for
new languages?

Most of the available datasets with labels for information retrieval are in English, how
well can models trained on English perform on non-English datasets. We wish to explore
the cross-lingual capabilities of these models. Specifically, how they can be modified to
support new languages apart from the obvious solution of throwing more data at the
problem. By using English datasets for training and then the TREC-Spanish dataset for
evaluation, we can simulate zero-shot transfer learning and then measure the results.

2

1.3 Research Method

1.3 Research Method
Due to the nature of neural IR, with multiple labeled datasets available, this Thesis
will use an experimental approach. Since the focus is on zero-shot performance across
languages, models will be tested by transferring models between training datasets, and
without specific training on the evaluation dataset in a different language.

1.4 Contributions
List of main contributions, ordered by estimated importance.

C1 Testing of various pre-trained language models, fine-tuned on MS MARCO or Ro-
bust04, on the TREC Spanish dataset, including the first use of Efficient Transformer
architectures on the retrieval task.

C2 A comparison of these models and their properties in light of test results, showing
that zero-shot multilingual neural retrieval is feasible, but with room for future
improvements.

C3 Arguments for selecting Transformer-based retrieval models as the main focus of
research rather than dense- or interaction-based models.

1.5 Thesis Structure
This Thesis is constructed as such:

Chapter 2 is an overview of the theoretical background required to understand the
current state of neural IR. It covers classic IR terminology, as well as the machine
learning models that make up the most modern models.

Chapter 3 covers the specifics of these modern neural ranking models, categorized by
model type, as well as the role of zero-shot transfer. It also describes the datasets
used by previous researchers to evaluate performance.

Chapter 4 describes the architecture used, as well as the reasoning behind the choices
made. It also covers the tools and libraries which were used to conduct experiments.

Chapter 5 presents the experimental plan, setup and the results.

Chapter 6 is an evaluation of the research questions an discussion of these results and
what went right/wrong and why.

Chapter 7 concludes the Thesis, mentions contributions and proposes directions for
future research.

3

2 Background Theory

To understand neural IR, fundamental knowledge of both traditional retrieval systems
and machine learning is required. This chapter will give an introduction to the most
important terminology and components used in today’s research. First, basic text
processing concepts are covered. Second, relevant classical retrieval methods and metrics.
And lastly, some fundamental machine learning architectures, including the recently
successful Transformer, and some loss functions which are often used for training of
retrieval models.

2.1 Text processing

With any computer system dealing with text, it is essential to process it somehow so that
the system gets the most useful information possible. These are a couple of the most
common ways.

Stop words
In most languages, many words serve as “filler” words and contribute little to the
meaning of the text by themselves. In English, these are words like ‘the’, ‘and’,
‘an’. These words are often filtered out to reduce noise, data usage, and processing,
although with the obvious downside of potential information loss.

Bag-of-words
Instead of using the entire text as input, it is common instead to count up the
number of occurrences of each word and store it as a multiset (bag). This removes
all contextual and grammatical information but is useful for shallow comparisons
of texts or as features for a model. For example, the text ‘it was the best of times,
it was the worst of times’ would become {’it’: 2, ’was’: 2, ’the’: 2, ’of’: 2, ’times’:
2, ’best’: 1, ’worst’: 1}

N-grams
An extension to bag-of-words, which is common for reducing the vocabulary size
is n-grams. Instead of regarding each word as a token, each set of n consecutive
characters, or words, is the token. This is typically done using an n of 1 (unigram),
2 (bigram) or 3 (trigram). For instance, with character trigrams, the word ‘banana’
will be converted into {‘ban’: 1, ‘ana’: 2, ‘nan’: 2}.

Textpiece

5

2 Background Theory

Additional methods exist as an extension to the idea of n-grams. Instead of picking
sequences of a given length, one could imagine picking whichever sequences occur
the most often. A word like ‘the’ could have its own token, while words like
‘parking’ might be split into ‘park’ and ‘ing’, potentially conserving linguistic
nuances like morphemes. This is what methods like WordPiece (Wu et al., 2016)
and SentencePiece (Kudo and Richardson, 2018) do, tokenizing the text based on
common substrings, with their main difference being the length of text it uses as
its basis. For the most powerful machine learning models, this is typically what is
used.

2.2 Retrieval
In broad terms, text retrieval is about finding documents containing relevant information.
Each document consists of several terms, typically a word or a group of consecutive words
which represent some potentially relevant information. To find the relevant documents,
the user issues a query, which states the information needs in some way. In addition,
the word passage is common. It refers to a shorter document, often a small extract such
as a sentence or paragraph from a larger document, for which the information content is
more specific. The set of all terms is called the vocabulary, and the set of all documents
is called the corpus.

2.2.1 Evaluation

Pertinent to any retrieval task is measuring the effectiveness of a model, which can be
done in several different ways. Typically one wants all the most relevant documents near
the top of a ranking, which the measurement should reflect. These are some of the most
common measures:

Precision measures the proportion of retrieved documents that are relevant.

P = |relevant ∩ retrieved|
|retrieved|

(2.1)

It is common to use this along with some threshold, fixing the number of retrieved
items. This is called precision at n, or P@n for short. For instance, measuring the
precision at 20 documents retrieved would be P@20.

Recall is similar to precision but gives the proportion of all relevant documents that are
retrieved.

R = |relevant ∩ retrieved|
|relevant|

(2.2)

Average Precision (AveP) measures the average precision at each relevant document.

AveP =
∑n

k=1 P (k)× rel(k)
|relevant|

(2.3)

6

2.2 Retrieval

Where P (k) is the precision at rank k, n is the number of documents in the
collection, and rel(k) is a function indicating whether the k-th item is relevant (1
if relevant, 0 if not). An extension to average precision is Mean Average Precision
(MAP), which averages AveP across several queries.

Mean Reciprocal Rank (MRR) is the multiplicative inverse of the position of the first
relevant document, averaged over a set of queries. This can also be viewed as the
harmonic mean of the positions of the first relevant document.

MRR = 1
|Q|

∑
q∈Q

1
FirstRelq

(2.4)

Where Q is the set of queries, q is a query and FirstRelq is the position of the
first relevant document in the ranking for q. Like precision, a cutoff value n can
be included (denoted as MRR@n), meaning if the position of the first relevant
document is larger than n, then the reciprocal rank would be zero (equivalent to
FirstRel approaching infinity).

nDCG , short for Normalized Discounted Cumulative Gain, is a more intricate retrieval
measure for graded relevance. Its basis is Cumulative Gain (CG@p), which is
defined as the sum of relevance gradings up to item p:

CG@p =
p∑

i=1
reli (2.5)

Since documents higher up in the ranking are generally more important than those
lower down, one can use Discounted Cumulative Gain (DCG@p).

DCG@p =
p∑

i=1

reli
log2(i+ 1) (2.6)

or alternately, a more commonly used version which places higher weight on relevant
documents:

DCG@p =
p∑

i=1

2reli − 1
log2(i+ 1) (2.7)

Since DCG can be hard to interpret across different queries and corpuses, a way
to normalize is useful. To do this, one first needs to calculate the best possible
result, Ideal Discounted Cumulative Gain (IDCG@p). This uses the sorted list of
documents by relevance up to position p, RELp:

IDCG@p =
|RELp|∑

i=1

2reli − 1
log2 (i+ 1) (2.8)

Which leads into the final measure of nDCG:

nDCG@p = DCG@p
IDCG@p (2.9)

7

2 Background Theory

2.2.2 TF-IDF

TF-IDF (Sparck Jones, 1972) is a classical bag-of-words method for weighting of terms.
It consists of two parts:

Term Frequency (TF) is supposed to weight words based on how often they occur in
a document. There are different ways of doing this, including binary (1 if the
term is in the document and 0 otherwise), the raw number of occurrences, relative
frequency in the document, or more advanced formulas like the log of the raw count.

Inverse Document Frequency (IDF) is supposed to discount terms that appear in many
documents. For example, since words like ‘the’ will occur in almost every English
document, its signal should be negligible in a bag-of-words setting. As with TF,
there are multiple ways of achieving this, most of which including some variation
of log N

nt
, with N being the total number of documents, and nt the number of

documents in which the term appears.

For retrieval, the TF and IDF are multiplied together and summed for each query term
to produce a final relevance score. Additional latency reduction is gained from storing
these values in an inverted index, where each term has a list of document it appears in,
making this a very fast and easy retrieval mechanism.

2.2.3 BM25

BM25, short for (Best Matching 25) is another classical term weighting method based
on TF-IDF. While several variations exist (Kamphuis et al., 2020), the original formula
proposed by Robertson et al. (1995) was:

BM25(q, d) =
∑
t∈q

log
(
N − dft + 0.5
dft + 0.5

)
· tftd

k1 ·
(
1− b+ b ·

(
Ld

Lavg

))
+ tftd

(2.10)

where d is the document, q is the query, t is the term, N is the number of documents in
the corpus, dft is the number of documents containing t, tftd is the frequency of t in the
document, Ld and Lavg are the number of terms in the current document and average
document respectively, and k1 and b are tunable parameters.

Although BM25 was originally introduced in the 90s, it has stood the test of time due
to its high speed, accuracy, and simplicity, still being used as baselines for ranking
algorithms to beat and as initial retrieval into more advanced and computationally
intensive re-rankers.

BM25 is also commonly used in conjunction with a relevance model, particularly RM3.
RM3 improves search results by doing an initial BM25 ranking, analyzing top documents
to find terms which are estimated to be likely to occur in relevant documents, and doing
a second round of retrieval using an expanded query including these terms.

8

2.2 Retrieval

2.2.4 Embeddings

Although bag-of-words methods seem to be effective and have low latency due to methods
like inverted indexing, some critical pieces are missing. The ability to detect similar
words is one of them. If a query contains ‘dog’, and a relevant document only contains
‘chihuahua’, then a bag-of-words method will discard that document as irrelevant for not
containing any query terms. This is where embeddings come in.

Embeddings are vector representations of an item that contain some relevant information.
In NLP, these are often words where the embedding is some fixed-size dense vector that
contains useful knowledge about the meaning of the word. This means that words like
‘dog’ and ‘chihuahua’ will have similar embeddings (typically measured by cosine or
euclidean distance), while a word like ‘finances’ will be far away. One can also extend
the idea to entire documents, which has proven to be quite difficult. Here is a rundown
of a few prominent methods:

Latent Semantic Indexing (LSI, Deerwester et al. 1990) is a method for detecting “topics”
in a collection of documents by performing singular value decomposition (matrix
factorization), or SVD, on a term-document matrix to produce fixed-size vector
representation for both terms and documents. For a more nuanced signal, it is
common to use TF-IDF values for the term-document matrix. By manipulating
these matrices one can compare both documents and terms.

Word2Vec (Le and Mikolov, 2014) is a framework for creating word vectors. It uses a
simple two-layer neural network, which either predicts surrounding words based on
a single word (skip-gram), or predicts a single word based on surrounding words
(continuous bag-of-words, or CBOW). This enables representations to be created
which contain some information about the context in which words are generally
used. The assumption is that words that occur in similar contexts have similar
meanings.

Doc2Vec (Mikolov et al., 2013) is an extension to Word2Vec, which introduces an
additional vector for each paragraph or document to the training. This can either
be added as additional information along with the word vectors to inform the
prediction of a single next word (distributed memory) or by using the paragraph
vector alone to predict all the words in the paragraph.

GloVe (Pennington et al., 2014) is short for Global Vectors for Word Representation,
a more mathematically rigorous approach to the word vector task. It trains a
model by optimizing such that the dot product of two word-vectors gives the log of
their probability of co-occurrence. This achieved better results compared to both
Word2Vec and SVD on a variety of tasks.

Additionally, for very large embedding collections, exact or approximate nearest-neighbor
or inner-product search methods can be used to find the best matches for any embedding
efficiently. Similarity is typically measured using either cosine distance/similarity (−1, 1),
euclidean distance (0,∞), or dot/inner product (−∞,∞). Specifically:

9

2 Background Theory

DotProduct(A,B) =
d∑

i=1
AiBi

EuclideanDist(A,B) =

√√√√ d∑
i=1

(Ai −Bi)2

CosineSim(A,B) = cos θ =
∑d

i=1√∑d
i=1A

2
i

√∑d
i=1B

2
i

CosineDist(A,B) = 1− CosineSim(A,B)

(2.11)

Where A and B are the two vectors (embeddings) being compared and d is their shared
dimensionality. θ is the angle between the vectors. Figure 2.1 shows a visualization of
these distances.

Figure 2.1: A visualization of distances between two points. The dot product has no
visual representation, but would be 10. Figure created with GeoGebra.

10

2.3 Machine Learning

2.3 Machine Learning

In recent years, there has been a resurgence of machine learning, and particularly deep
learning, due to increased computational power and more research. With this comes
new opportunities for many fields, including document retrieval. With more and more
powerful text-understanding models, the potential is hard to overstate. This section
serves as a build-up and introduction to the techniques used for retrieval in modern
research.

2.3.1 Perceptron

The most basic type of neural network is a perceptron, also known as linear, dense, or
fully connected. If the input is a vector xn×1, then the output ym×1 is simply a linear
combination of these values, using a weight matrix Wm×n, as well as a bias bn. The
subscript here denotes their dimensionality.

ym×1 = Wm×n · xn×1 + bn×1 (2.12)

These models can be stacked several times, allowing for more complex operations. The
model learns by adjusting W and b by taking small steps in the direction of the model’s
gradient as determined by the loss function (subsection 2.3.2) with backpropagation
through all the layers.

In addition, it is common to use activation functions to modify the outputs. Some of the
most common ones include:

ReLU is short for Rectified Linear Unit, which turns any negative values into zeros.
Commonly used in the hidden layers of the network due to proven performance
improvements.

ReLU(x) = max(0, x) (2.13)

Sigmoid is a function that restricts the output to a value between 0 and 1, commonly
used for binary classification.

Sigmoid(x) = 1
1 + e−x

(2.14)

Softmax is a generalization of sigmoid for any number of classes which restricts the sum
of the entire result to 1. This is often used to get probabilities for each class.

Softmax(x) = exi∑k
j=1 e

xj
(2.15)

11

2 Background Theory

2.3.2 Loss

In machine learning, the loss is a measure of the performance of a model. Typically, this
is some real value that one seeks to minimize. For instance, a simple loss function could
be the mean absolute error (MAE):

MAE = 1
n

n∑
i=0
|ŷ − y| (2.16)

With ŷ being the model prediction and y the correct value.

A good loss function is essential for machine learning, as it will determine what the model
will be good at. For the field of neural IR, there are several popular loss functions:

Cross-entropy is typically used for classification, which in the case of ranking comes
down to picking the relevant document out of a selection.

CE = −
∑
x∈X

p(x) log q(x) (2.17)

Where X is all the class outputs, p(x) is the probability of the class being correct
(typically just 1 or 0), and q(x) is the model’s predicted probability that the class is
correct. For one-hot labels, this is simply the negated log probability of the correct
answer.

Ranking loss is used to change embeddings based on some distance metric. Generally,
one can give a model some input to compare with, called the anchor. The anchor is
then compared with positive (somehow related) samples and negative (not related)
samples. The model is tuned to place positive samples closer and negative samples
further away in the embedding space. This is commonly used for facial recognition,
where doing extensive training for each face is unfeasible. For the case of one
anchor, one positive and one negative, this is commonly called triplet loss:

TL(a, p, n) = max(0,m+ dist(a, p)− dist(a, n)) (2.18)

Where m is a margin to separate the positives and negatives by, and the dist
function is typically cosine or euclidean distance. One problem to tackle with
ranking loss is hard negative mining - finding samples that are hard for the model
to guess since separating between random samples and relevant samples is fairly
easy in most cases after little training.

2.3.3 Convolutions

Convolutional neural networks (CNNs) are a type of network commonly used in image
processing. It bases itself on the assumption that local interactions are more important
than distant interactions, meaning that connections between every neuron is not necessary.
Instead, CNNs use a mathematical operation called convolutions, sliding a so-called

12

2.3 Machine Learning

kernel (a weighting of values for each region) across the input. Typically, there are many
kernels for each layer, each producing a different view of the input.

0 -1 0

-1 5 -1

0 -1 0

0 1 0 1 0

0 0 0 0 0

1 0 0 0 1

0 1 1 1 0

0 0 0 0 0

-1 5 -2 5 -1

-1 -1 0 -1 -1

5 -2 -1 -2 5

-2 4 3 4 -2

0 -1 -1 -1 0

Figure 2.2: A 2D convolution. Every element in the current selection is multiplied with
its corresponding value in the kernel, then all these values are added up. This
specific kernel is designed to sharpen the image, but in neural networks it is
free to do whichever operation is most useful to the end task. Note that the
image is padded so its size remains the same.

2.3.4 Recurrent Networks

A recurrent neural network (RNN) is a type of neural network designed to work on
sequential data. It does this by feeding the result of previous computations into itself along
with the next data point in the sequence. There are multiple different kinds of RNN, like
LSTM (Long Short-Term Memory) or GRU (Gated Recurrent Unit). RNNs are commonly
used for time series data and were for a long time the best choice for Natural Language
Processing (NLP) tasks, but have recently been surpassed by Transformers.

13

2 Background Theory

x

h

o

U

V

W
Unfold

xt-1

ht-1

ot-1

U

W

xt

ht

ot

U

W

xt+1

ht+1

ot+1

U

W

VV V V... . . .

Figure 2.3: A recurrent neural network. U, V, and W are different operations,
and x, h, and o are the input, hidden state, and output sequences
respectively. Taken from https://commons.wikimedia.org/wiki/File:
Recurrent_neural_network_unfold.svg, licensed under the Creative Com-
mons Attribution-Share Alike 4.0 International license.

2.3.5 Attention

A significant drawback with recurrent networks is their poor long-term recollection. While
this is fine for tasks where the importance of previous inputs decreases over time, for
many language tasks that rely on these long-range dependencies, such as translation, this
gives poor performance.

To mitigate this, a mechanism called attention was proposed. Instead of simply feeding
the hidden state from the last recurrent output at every step, the hidden state is run
through an attention mechanism, which “asks” every element in the input sequence for
relevance. This means that the recurrent part of the network is free to remember more
high-level information, rather than needing to compress all the words that have appeared
so far into a single vector.

A common way to do attention is the so-called scaled dot-product attention:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V (2.19)

Where Q, K, V are known as the query, key, and value vectors, respectively, and dk is
the dimensionality of the vectors. In essence, queries are supposed to represent what
information it wishes to receive, the key tells us what information the value contains,
and the value is the information content itself. In the case of RNNs, the queries typically
come from the outputs of the decoder, while keys and values come from hidden states of
the input sequence.

14

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

2.3 Machine Learning

2.3.6 Transformers

While attention mechanisms helped RNN performance by mitigating long-term depend-
encies, a big drawback was still the need to feed RNN outputs into themselves recursively.
By doing away with the RNN part completely and using only attention, Vaswani et al.
(2017) were able to get state-of-the-art performance on various NLP tasks, owing mostly
to the speedup acquired by increased parallelization as well as the aforementioned atten-
tion mechanism reducing path lengths for the embeddings. In addition, since attention
contains no information about the order of the sequence, they introduce a positional
encoding which is added to the initial word embedding.

Multi-Head
Self-Attention

inputs

Add & Norm

Add & Norm

Feed Forward

N×

Positional
Embedding

Input Embedding

Masked
Multi-Head

Self-Attention

Add & Norm

×N

Positional
Embedding

Add & Norm

Feed Forward

Multi-Head
Cross-Attention

Add & Norm

Linear

Softmax

Output
Probabilities

inputs

Input Embedding

K V Q K V Q

K V Q

K V Q

Scaled Dot-Product Attention

Linear Linear Linear

Concatenate

Linear

Q K V

MatMul

Scale

Softmax

MatMul

Computational
and Memory
Complexity

Figure 2.4: The Transformer architecture. Figure from Tay et al. (2020), with permission
from Mostafa Dehghani, with modifications.

The architecture as presented by Vaswani et al. consists of an encoder and a decoder.
The encoder is meant to “read” the text and produce contextual embeddings for each
token, while the decoder “asks” the embeddings produced by the encoder about relevant
information. To generate text, the decoder reads the current output embeddings - shifted
right and masked to prevent reading ahead - and produces queries which it can use on the
keys and values of the encoder’s embeddings. The positional encoding is a special vector
that uses sin and cos to contain a binary-like representation of where in the sequence the
token is, which is added to the token embedding.

15

2 Background Theory

PE(pos,2i) = sin(pos/100002i/dmodel)
PE(pos,2i+1) = cos(pos/100002i/dmodel)

(2.20)

0 200 400 600 800 1000
Sequence position

0

100

200

300

400

500

600

700

Em
be

dd
in

g
di

m
en

sio
n

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 2.5: A plot of the positional encoding up to 1024 tokens, using a typical Trans-
former embedding size of 768. Figure created with Matplotlib.

As the name implies, multi-head attention uses multiple stacked “heads” of attention with
separate weights. In the Transformer, each token’s embedding is split into h different
keys, values, and queries via dense layers, each of size d

h . These are then fed into the
attention heads, concatenated to keep the same dimensionality, and fed into a linear layer
to produce a new contextual representation of the token.

Reducing complexity

A big obstacle with Transformers is their O(n2) space and memory complexity for the
sequence length. Reducing this is a big area of research, and many methods have been
proposed with lower complexity, as shown in Figure 2.6. These are known as efficient
Transformers. Efforts have been made to compare them directly (Tay et al., 2021), but
there is no conclusive best solution as of yet. This is particularly relevant for document
retrieval, as most documents are longer than the typical max length of around 256 tokens
used in many solutions.

16

2.3 Machine Learning

Performer
(Choromanski et al., 2020)

Linformer
(Wang et al., 2020b)

Linear
Transformer

(Katharopoulos et al., 2020)

Set Transformer
(Lee et al., 2019)

Transformer-XL
(Dai et al., 2019)

Memory
Compressed

(Liu et al., 2018)

ETC
(Ainslie et al., 2020)

Sparse Transformer
(Child et al., 2019)Image Transformer

(Parmar et al., 2018)

Routing
Transformer

(Roy et al., 2020)
Synthesizer

(Tay et al., 2020a)

Longformer
(Beltagy et al., 2020)

Big Bird
(Zaheer et al., 2020)

Axial Transformer
(Ho et al., 2019)

Blockwise Transformer
(Qiu et al., 2019)

Sinkhorn
Transformer

(Tay et al., 2020b)
Reformer

(Kitaev et al., 2020)

Compressive
Transformer

(Rae et al., 2018)

Figure 2.6: Taxonomy of efficient Transformer architectures. Taken from Tay et al. (2020),
with permission from Mostafa Dehghani.

BERT

BERT (Bidirectional Encoder Representations from Transformers, Devlin et al. 2019) is a
very popular Transformer architecture. Instead of training the language model to predict
next words, they introduced two new unsupervised training methods in the pre-training,
removing the decoder part of the Transformer entirely:

• Masked LM, in which a random token embedding is replaced, and the model is
supposed to predict the missing word. They replace around 15% of tokens, of which
80% are replaced with a [MASK] token, 10% with a random token, and 10% remain
unchanged but still need to be predicted.

• Next sentence prediction, in which two sentences are used as input, separated by a
special [SEP] character. The model uses a [CLS] token, which captures information
across the entire input sequence to predict whether or not the two sentences follow
each other in the text.

These simple methods have proven to be a massive benefit, enabling BERT to be trained
in a self-supervised manner, learning the “basics” of language, and later fine-tuned to do
specific tasks such as classification, translation or question answering. Many different

17

2 Background Theory

pre-trained models are available, including multilingual BERT (mBERT), trained on
many languages. In addition, BERT spawned a plethora of Transformer architectures
trained in similar manners. For the purposes of this Thesis, the most important are:

RoBERTa (Robustly optimized BERT approach, Liu et al. 2019), which is a refinement
of the BERT pre-training approach that significantly improves performance and
consistency. Specifically, they use a different tokenizer which is less prone to OOV
tokens, gradient accumulation to simulate larger batch sizes and thus enabling
training on longer sequences, training on more data, changing the word masks
dynamically during training, as well as removing the next sentence prediction
objective.

BigBird (Zaheer et al., 2020) is a modified Transformer for long sequences which instead
of the normal attention uses different variations and combinations of: random
attention, where each token attends to a set number of random tokens in the
sequence; window attention, where each token attends to the local context around
itself; and global attention, where some tokens attends to all the tokens in the
sequence.

Longformer (Beltagy et al., 2020) is similar to BigBird, but without random attention,
and with dilated sliding window attention, which attends to every n-th word in an
area around the token. Following the findings of RoBERTa, it also foregoes the
NSP task.

18

3 Related Work

This chapter covers past work that is relevant to neural IR. It is split into three parts.
The first part provides an overview of typical approaches to neural retrieval models in
recent years. The second part covers the specific research area of zero-shot retrieval.
Finally, the third part describes some commonly used datasets used for retrieval.

3.1 Traditional neural retrieval models

Within neural IR, there are three main ways of producing relevance scores, as outlined by
Yates et al. (2021): representation-, interaction- and Transformer-based. In this
section, a few of the most relevant methods within each area and their techniques are
presented.

3.1.1 Representation

Representation-based models produce a single vector to represent the entire query or
document, as opposed to their constituent term vectors. These can then be compared
directly to produce a relevance score. Representation models are generally faster than the
other types at retrieval time, and traditional IR models like TF-IDF (subsection 2.2.2)
and BM25 (subsection 2.2.3) can be thought of as representation models using sparse
vectors, and LSI and Doc2Vec (subsection 2.2.4) with dense. Due to the improved speed,
representation-based models can be used for initial retrieval instead of only re-ranking
top documents, which is typical for interaction and Transformer-based models.

19

3 Related Work

E1

q1

E2

q2

E3

q3

F1

d1

F2

d2

Fm

dm…

s

Figure 3.1: A representation model. Taken from Yates et al. (2021), with permission
from Andrew Yates.

Adjacent tasks

Although the main concern for this Thesis is document ranking, it is useful to see the
techniques used in related areas.

Sentence similarity is one of the pre-training tasks used for models like BERT and
RoBERTa (section 2.3.6), for which they set state-of-the-art results. A clear bottleneck
in using these models is that both sentences need to be input into the model every
time, slowing down inference. To improve upon this, Sentence-BERT (Reimers and
Gurevych, 2019) is instead trained to produce an embedding for each sentence, which can
be compared much faster. In their paper, they measure the time to find the two most
similar sentences in a corpus, reducing the inference time from 65 hours to 5 seconds, with
similar accuracy. In addition, their findings show that BERT’s [CLS] embedding output
performs poorly with common similarity metrics like dot product or cosine similarity
without specific training.

Question answering is another related task, where the query is replaced with a natural
language question, and the model is supposed to find documents or passages in a
knowledge corpus. Models like Dense Passage Retriever (DPR, Karpukhin et al. 2020)
show that encoding the question and passage with two separate BERT models, and
comparing using dot product can work well (beating BM25) with as little as 1000 training
examples. A recent study by Ma et al. (2021c) replicating the results from the DPR
paper has shown that BM25 is better than the original paper suggests, and using them
in conjunction boosts the results even further. Retrieval-Augmented Language Model
Pre-Training (REALM, Guu et al. 2020) uses an integrated retrieval system to improve
language model results, concatenating the text with an automatically retrieved passage
through latent search, aiding the model through additional concrete information, all done

20

3.1 Traditional neural retrieval models

in an unsupervised fashion with end-to-end training.

DSSM

One of the earliest application of deep neural nets in neural IR was DSSM, or Deep
Semantic Similarity Model (Huang et al., 2013). To reduce input dimensionality, they used
a bag-of-n-grams (as opposed to bag-of-words) array as input into a simple fully connected
network, producing document vectors of size 128, which could then be compared using
cosine similarity to produce a relevance score. Instead of basing themselves on text
data alone, like earlier approaches, they used click-through data to train their model to
recognize relevance as determined by humans. This was later built upon by methods like
C-DSSM (Shen et al., 2014a) or CLSM (Shen et al., 2014b), which are quite similar with
small adjustments to the architecture.

ANCE

A problem with representation based systems, as identified by Xiong et al. (2021), is
that negative samples (documents) used for training are often uninformative later on in
the training process, due to being too easy to identify as negatives. For example, DPR
(section 3.1.1) uses negatives sampled from random, BM25 or positive passages from other
questions to train the model. To make negatives harder to identify, ANCE (Approximate
nearest neighbor Negative Contrastive Learning) was proposed, which samples negatives
using ANN (subsection 2.2.4) to find documents that are close to the query (rated more
relevant by the model), providing a more difficult challenge for the model. The ANN
index is refreshed regularly, such that samples are not based on outdated embeddings.
They use a fairly simple BERT-Siamese model, and show that using their ANN sampled
negatives boosts performance compared to other sampling methods, including that of
DPR.

3.1.2 Interaction

Interaction based models use interactions between query terms and document terms as
basis. For a query of size q, and document of size d, a q × d matrix is produced, usually
by computing similarities between term vectors. This matrix is then further processed to
produce a final relevance score. A key advantage of this type of model is that any type
of term vector can be used, potentially enabling more unsupervised learning.

21

3 Related Work

E
1q1

E
2q2

E
3q3

F1

d1

F2

d2

Fm

dm…

s

…

…

…

Figure 3.2: An interaction model. Taken from Yates et al. (2021), with permission from
Andrew Yates.

ARC-II

The interaction based approach was originally proposed by Hu et al. (2014), presenting
two different convolutional models for sentence matching: ARC-I, using a traditional
representation based approach, and ARC-II, using an interaction based approach. Instead
of simply calculating similarity between individual words in the sentences, ARC-II uses a
sliding window, concatenating the word vectors from the windows of each sentence, and
using 1D convolutions on these concatenations to produce values in a 2D matrix, which
is then run through multiple layers of 2D pooling and convolution. For their objective
function, they used a ranking-based triplet loss to train the network such that negative
samples (non-similar sentences) are ranked as less similar than positive samples (similar
sentences).

Building upon this idea, and taking inspiration from image recognition, Pang et al. (2016)
used word-word interactions (i.e. cosine similarity or dot product) on two sentences
to create an ‘image’ of their interactions. The model, called MatchPyramid, then uses
traditional image processing techniques like pooling and convolution to process the image
to produce a matching score for the two sentences.

DRMM

Building further on the ideas that ARC-II and MatchPyramid introduced, Guo et al.
(2016) presented a different way of handling the matching, with more focus on the
ad-hoc retrieval task. For their Deep Relevance Matching Model (DRMM), instead
of using convolutions across the entire similarity matrix, they produce a histogram of
document similarity values for each query term using pre-trained Word2Vec vectors.
These histograms are used as input to a model individually, producing a similarity score

22

3.1 Traditional neural retrieval models

for each query term. The scores are aggregated using a term gating network to place
more importance on certain terms. Different methods for producing the histograms are
compared, including count-based, normalized and log-count. The term gating network can
either be trained or use IDF to weight the query terms. Their best results are obtained
using log-counts for histograms, and IDF for term gating. A potential disadvantage
of using histograms specifically is that they are non-differentiable, meaning end-to-end
training of the model is made difficult. This is addressed by later models.

K-NRM

To counter the problem of histograms being non-differentiable, Xiong et al. (2017)
introduced K-NRM (Kernel based Neural Ranking Model). The main innovation they
made was replacing the histograms with a special kernel called the RBF kernel. The
formula for the RBF kernel is:

Kk(Mi) =
∑

j

exp
(
−(Mij − µk)2

2σ2
k

)

where k represents the index of the kernel, and µk and σk are adjustable weights, while
Mi is the row of the i-th query term from the similarity matrix. The kernel enables the
model to ‘count’ the number of occurences within in a certain similarity region, akin to
the histogram of DRMM (section 3.1.2), but in a differentiable way. These kernels are
aggregated, and a sum of logs for each kernel is computed, then weighted to produce the
matching score.

PACRR

PACRR (Position-Aware Convolutional-Recurrent Relevance Matching, Hui et al. 2017)
is another interaction model, whose main innovation was to use a recurrent layer at
the end of the processing, and using varying kernel sizes to capture interactions. This
enables the network to account for the position of query terms when producing the final
relevance score. They also introduced Co-PACRR (Hui et al., 2018), which uses a sliding
window of the query over the document to add additional context information to the
network.

3.1.3 Transformer-based

Due to the way Transformers are constructed, a new way of comparing queries and
document was made possible. By inputting the query and document, separated by a
[SEP] token, the Transformer alone can produce an advanced relevance score informed
by complex contextual interactions between every term in each.

23

3 Related Work

E[CLS]

T[CLS]

[CLS]

E1

U1

q1

E2

U2

q2

E3

U3

q3

E[SEP1]

T[SEP1]

[SEP]

F1

V1

d1

F2

V2

d2

Fm

Vm

dm

E[SEP2]

T[SEP2]

[SEP]

…

…

s

… … … … … … … …… …

…

Figure 3.3: A Transformer-based re-ranking model. Taken from Yates et al. (2021), with
permission from Andrew Yates.

Re-ranking with BERT

The seminal paper on Transformer-based retrieval models came from Nogueira and Cho
(2019). They built a Transformer (BERT) based passage re-ranking architecture, basing
itself on BERT’s ability to identify question answer pairs, as shown in the original BERT
paper. They analyzed performance on MS MARCO as a function of the number of
training examples (question-passage pairs), and showed that the performance improved
up to around 10 million samples.

Further developments came from Yang et al. (2019b), later built upon by Birch
(Akkalyoncu Yilmaz et al., 2019), which extended the passage re-ranking concept to
ad-hoc document retrieval. This was done by simply performing the relevance judgement
on each sentence, then aggregating the results by weighting scores for a set number of
top sentences, along with the ranking score from initial retrieval as such:

sfinal = a · sinitial + (1− a) ·
n∑

i=1
wi · si (3.1)

Where a is a tunable parameters, si is the score of the i-th highest scoring sentence and
wi its associated weighting, also tunable.

In an effort to further improve ad-hoc ranking performance, Nogueira et al. (2019)
introduced a new stage to the re-ranking procedure: duoBERT (while also retroactively
dubbing the regular Transformer re-ranker monoBERT). Their architecture uses BM25
for initial retrieval, passing each document along with the query into monoBERT for a
deeper ranking score, then finally passing each pair of two documents (still along with

24

3.1 Traditional neural retrieval models

the query) into duoBERT to determine which one is most relevant, sorting the final list
produced by monoBERT.

ColBERT

Due to the high computational cost of running both query and document in large
Transformer models, a new method dubbed ColBERT was proposed by Khattab and
Zaharia (2020). ColBERT’s innovation comes mainly from replacing early interactions -
sending both query and document into the model - with late interactions, where the query
and document are processed by a Transformer model separately, then compared using
a maximum similarity (MaxSim) operation for each query term across the document,
summed to produce a final relevance score. Since the document embeddings can be pre-
computed and stored, latency is substantially reduced (by around an order of magnitude
in their testing), and their results show that the accuracy is similar to using early
interaction.

CEDR

Taking inspiration from both representation models and Transformer models, CEDR
(MacAvaney et al., 2019b) used a Transformer (BERT) to produce contextual embeddings
for both query and document terms, and compared them using different interaction
models like DRMM, K-NRM and PACRR. They introduced a way to aggregate outputs
of multiple chunks of text by averaging their relevance score, as well as averaging [CLS]
embeddings from the BERT output of the text chunks to use as additional input when
calculating the final relevance score. They studied the effect of limiting the number of
attention layers on speed and accuracy, finding that using more than five layers offered
very little additional accuracy, but with a big slowdown. Their best results were obtained
using BERT embeddings and K-NRM with [CLS] vector incorporation.

PARADE

Most Transformer models do their passage aggregation by traditional methods such as
averaging [CLS] embeddings, or evaluating each passage for relevance individually and
taking the max or mean. Instead of this, PARADE (Passage Representation Aggregation
for Document Reranking, Li et al. 2020) places a Transformer or attention layer at the
end, which looks at the [CLS] token embedding of all the passages in order to produce
the final relevance score. They tested both using BERT and another language model
called ELECTRA (Clark et al., 2020) as their passage models.

MonoT5

As seen with PARADE, the choice of pre-trained model can have significant impact on
the performance of the final architecture. Whenever newer models show promise on other

25

3 Related Work

NLP tasks, one can expect that they will be tried on the retrieval/re-ranking task. This
is exactly what Nogueira et al. (2020) did, replacing the BERT model of monoBERT
with a model called T5 (Raffel et al., 2019), designed for sequence-to-sequence outputs.
T5 differs from other models in that during its pre-training, it is given “commands” of
what to do. This can look something like ‘translate English to German: That is good.’,
for which the model would generate ‘Das ist gut.’. In fact, the T5 model is also trained
on sentence similarity, paraphrasing and question answering during pre-training, likely
providing a boost for retrieval/re-ranking tasks. In monoT5’s case, they feed the model
with the following template: ‘Query: q Document: d Relevant: ’, for which the model
will outputs some probability of generating tokens ‘true’ and ‘false’, which are used as the
ranking score. Interestingly, they evaluated their model in a zero-shot transfer setting,
training on MS MARCO and evaluating on Robust04, obtaining very good results. Like
monoBERT to duoBERT, monoT5 has also been used in a pairwise ranking fashion
(Zhang et al., 2020), aptly named duoT5.

3.1.4 Criticism

In spite of seemingly good results, many neural ranking systems have come under scrutiny
for using weak baselines to support their results. Yang et al. (2019a) tested several neural
models and showed that most neural re-rankers do not significantly improve results from a
strong BM25+RM3 initial retriever. In fact, only DRMM showed statistically significant
improvement.

More recent results by Yates et al. (2020) have confirmed these results, although they
also found that Birch (section 3.1.3) and CEDR (section 3.1.3) - both Transformer-based
models which were not tested by Yang et al. - show significant improvements. They
theorize that the small size of the Robust04 dataset (subsection 3.3.2) - only 250 queries
- could be preventing models from generalizing. Birch and CEDR, by virtue of using
Transformers, could be benefitting from their general NLP pre-training, only requiring a
small amount of fine-tuning on Robust04.

3.2 Zero-shot
In terms of the zero-shot retrieval setting in particular, there is limited research.

MacAvaney et al. (2019a) tested the performance of different modern methods on
Arabic, Mandarin and Spanish datasets, showing that multilingual BERT performed
well on the zero-shot re-ranking task (top 100 documents from BM25). Providing a
few labeled samples from the target language seemed to slightly improve the results
overall, particularly on the Spanish dataset. They also tested PACRR and KNRM using
mBERT’s word embedding outputs with less success, performing substantially worse
than the BM25 baseline in some cases.

Some solutions have been proposed for zero-shot between English datasets by generating

26

3.3 Datasets

queries to train on (Ma et al., 2021a; Liang et al., 2020). This requires a language specific
model trained to generate queries, which is not available for most languages.

As mentioned in section 3.1.3, monoT5 exhibits zero-shot capabilities when trained on
MS MARCO and transferred to other English datasets. Birch (section 3.1.3) showed
similar results with the standard BERT model, training on tweets and evaluating on
newswire articles.

REALM (section 3.1.1) has proven potential on zero-shot tasks, as it uses unsupervised
information to train a retrieval model, however adapting the model to document retrieval
instead of question answering could prove difficult. Other unsupervised pre-training
approaches designed to improve retrieval exist, such as PROP (Ma et al., 2021b), or ICT,
BFS, WLP described by Chang et al. (2020), though none seem to have been applied to
other languages as of yet.

Litschko et al. (2021) performed a systematic evaluation of multilingual encoders, e.g.
multilingual BERT and Facebook’s XLM (Lample and Conneau, 2019) as applied to
cross-language information retrieval (CLIR). They show that these encoders fail to
outperform systems based on cross-language word embeddings for documents, although
for sentence-level retrieval the results are more promising. CLIR is a slightly different
task in that it attempts to find documents in different languages than the query, but the
results are notable nonetheless.

3.3 Datasets
This section will showcase the most used datasets from the research field and datasets
relevant for this project. All of the datasets have advantages and disadvantages because
they differ widely in size, how they are made and the language of the documents and
queries. Choosing a correct dataset for the Thesis relies on considering those factors in
relation to the experiments conducted. It does not exist many freely available non-English
datasets for ad-hoc retrieval. Most of them are either behind a pay wall or they are to
small to be useful.

3.3.1 MS MARCO

MS MARCO (short for Microsoft MAchine Reading COmprehension) is a collection of
datasets introduced by Nguyen et al. (2016) in an effort to create a common benchmark
for retrieval and question answering tasks. It consists of anonymized questions from
Bing’s search logs, split into multiple tasks. Namely, they have tasks for document
and passage ranking, both full ranking and re-ranking. There are 1,010,916 queries in
the form of questions from anonymized Bing users. The questions were put through
filters and human editing to only leave answerable questions in the dataset. For each
question there exists on average 10 relevant passages and every question has zero or
more answers. The passages are collected from Bing search engine top results and each

27

3 Related Work

passage is labeled relevant or not relevant by humans. Each passage is extracted from a
document, those documents are the document collection where documents with relevant
passages are considered relevant. In total there is 8.8 million passages and 3.2 million
documents.

3.3.2 TREC 2004 Robust track

TREC 2004 Robust is a dataset created for the Text Retrieval Conferences (TRECs)
in 2004, organized by the U.S. National Institute for Standards and Technology(NIST).
Robust 04 is one most researched datasets for ad-hoc retrieval, due being over a decade
old with and having high quality labels. Yates et al. (2021) The corpus of documents
comes from TREC disk 4 & 5 excluding the congressional documents. Disk 4 & 5 consists
of news articles from the Financial Times Limited, the Foreign Broadcast Information
Service, and the Los Angeles Times with 528K documents. There are 249 topics and
each topic have relevant documents, these topics are used as queries. Compared to MS
MARCOs 1 million queries, 249 topics is not that much. What Robust 04 can offer
though is a lot of good relevance feedback. When the dataset was labeled, all documents
in the corpus was considired. This is reduces false negatives in the training dataset.

3.3.3 TREC Spanish

TREC Spanish was created by the Linguistic Data Consortium and consists of Spanish
newswire data from Agence France Presse and El Norte. The corpus, same as Robust
04 was used for TREC in their Spanish task. The topics for this corpus is split in two,
one for TREC 3 with 25 topics and topic descriptions and TREC 4 with only 25 topic
descriptions. In this dataset there is only 58K documents, not a lot compared to the
others.

28

4 Architecture

As there is no specific new architecture being introduced, this section will instead reason
about why different approaches are good/bad for the task at hand. It also covers tools
and libraries used to implement the solutions.

4.1 Strengths and weaknesses of different models
When choosing which model to use, it is important to consider many facets of performance.
Latency, effectiveness, ease of use, ease of training, as well as knowledge and language
transfer all have to be considered and tested in a final retrieval system. This section will
outline the advantages and disadvantages of choosing each particular type of model.

4.1.1 Representation

In an ideal world, representation models are the obvious choice due to their simplicity and
speed. Unfortunately, we do not live in an ideal world, and thus representation models
still face a number of challenges, particularly in the zero-/few-shot retrieval setting.

Non-specific training

Training from the ground up is undesirable in the zero-shot setting, which means some
sort of pre-training or unsupervised solution is required. Multilingual word vectors are
an alternative, but requires a robust aggregation method to produce document-level
embeddings. Fortunately, pre-trained multilingual Transformers like mBERT exist,
meaning a solution similar to DPR (section 3.1.1) - simply using the [CLS] embedding
output of the BERT model as the dense representation - could be viable. This is not
ideal, since it has been shown that BERT’s [CLS] embedding has poor performance “out
of the box” (Yates et al., 2021, p. 114). The DPR authors do however show that it does
not need many samples to start performing.

Iterative improvement

Since all the document vectors need to be pre-computed and stored to be effective,
updating the model as new data comes through can be tedious. ANCE (section 3.1.1)
uses an asynchronous update to keep the index refreshed during training, always retrieving

29

4 Architecture

with an outdated document vector. Re-rankers have the benefit that further training
of the model is simple, since updating vectors for every document in the corpus is not
needed.

Performance limits

It is unclear how far representation models can take the retrieval performance. Most of
the best results are currently obtained using multi-stage rankers, spending more time
and computing power on evaluating the most relevant documents. This means that
even if a good representation model solution is found, it might not be enough to beat a
simple BM25+Reranker architecture. It could quite simply be that any reasonable vector
dimensionality is insufficient to convey the entire information content of the document.
Initial retrieval is still worth improving as it would boost the overall performance of the
system, and is a good target for dense retrieval systems since their latency is comparable
to classical retrieval methods.

4.1.2 Interaction

For transfer in the zero-shot setting, interaction models are seemingly promising due to
their simplicity and ability to detect nuanced similarity interactions. However in practice
they also have some significant drawbacks. The following text will outline these.

Pre-trained potential

Since the neural net part of the system can be detached from the term embeddings and
only look at their similarities, training term embeddings in an unsupervised manner on a
relevant corpus and using a pre-trained interaction model to get the relevance score could
be viable with minimal training. The key question here is whether or not languages are
different enough in their structure that it makes a significant impact on the retrieval
performance. In theory, English and Norwegian are both Germanic languages, and should
therefore share much of the same structure.

Performance limits

The fact that term embeddings are detached can also be a detriment to the performance.
A simple term-to-term similarity matrix may not be adequate to capture the relevance
of a document, and more context and language understanding may be required. As
mentioned in subsection 3.1.4, interaction based methods were shown to have weaker
results against BM25 than originally presented. This isn’t to say they don’t work, but
they might require more (pre-)training before transfer.

30

4.1 Strengths and weaknesses of different models

4.1.3 Transformer-based

With such promising results in most other NLP fields, it is tempting to start using
Transformers as soon as possible for retrieval as well. However one has to be careful to
avoid a few pitfalls for retrieval applications.

Direct transfer limitations

Despite the existence of pre-trained models on general cross-language corpora, these
models are not designed with query-document input in mind, and therefore need to be
trained further. Since these models are trained end-to-end, it seems that training them
on the right language and domain is a requirement for optimal results, and that zero-shot
transfer across language and domain could prove difficult.

Computational cost

While accuracy is high, inference time is generally much higher on Transformers than
for simpler neural net alternatives, or traditional IR methods. In part due to the large
inference time, and the fact that Transformer-based models don’t produce a single dense
representation for every document, Transformer-based models are generally only viable
for re-ranking the top documents after some initial retrieval.

Length limitations

Long documents are a big obstacle for Transformers since there is a quadratic dependency
(O(n2)) on the document length. In practice, this means that there is a max length
restriction of around 256 tokens. This means an aggregation solution is required, or an
alternative to Transformers with lower complexity (see subsection 2.3.6). For instance,
monoT5 (section 3.1.3) uses passage aggregation with a width of 10 sentences and a
stride of 5 - which has been shown to improve performance (Wang et al., 2019) - and
PARADE uses an additional Transformer on top to handle passage aggregation.

Diversity

Transformers are incredibly diverse. In retrieval applications alone, they have been used
to produce dense representations, produce term embeddings for interaction models, for
direct relevance scoring as well as for choosing which of two documents is more relevant.
It is not unthinkable that a single model could aid every step of the retrieval process.
Although it has yet to come into fruition, there is potential for specialized Transformers
(presumably with a lot of training) to dominate nearly all text retrieval tasks.

31

4 Architecture

4.1.4 Takeaways

Due to the lack of pre-trained models and unsupervised methods without significant time
and resource investment, along with a lack of good results on even English datasets, it
seems fruitless to pursue dense and interaction models much further for the purposes of
this Thesis. Taking a pre-trained interaction model and using new embeddings could
be an interesting test, though it seems doubtful it would lead to noteworthy results.
Dense models seem to have potential, but struggle to outperform a decent BM25 baseline
consistently. There is a large number of pre-trained Transformer models available trained
on many languages, as well as proven zero-shot multilingual transfer performance. For
this reason the focus will mainly be on these.

4.2 Tools and Libraries

Creating tools to work with are time consuming tasks. Thanks to open source libraries a
lot of the work is already done by others. This section outlines the tools used to obtain
the results in this Thesis.

4.2.1 Python

Python is one of the most used programming languages and is widely used for machine
learning. It is an object oriented programming language with a design philosophy focused
on readability. With a large standard and third-party library developed by the community.
Pytorch and Tensorflow, the most used deep learning libraries created by Facebook and
Google respectively, is made on python. All the programming for this Thesis is done in
Python, with pure Python and libraries for Python.

4.2.2 Jupyter notebook

Jupyter notebook is an open source web application which makes it possible to run code
in the web browser. It is created and maintained by Project Jupyter a community driven
project, it is availible for Python, Julia and R. It is a relatively new tool created in 2014
and it has become one of the most used tools for data exploration by data scientists.
Advantages of using the notebook is being able to easily explore data and new libraries
by having code cells to work in. Each code cell is a part of the code and can be ran
in any order the user wants. This allows for a lot of trial and error as it is possible to
just run the crashed code again after do small tweaks, without having to run the whole
program over again. The notebook also allows you to easily and fast visualise data. All
of the experimentation will be done in the notebooks as it allows exploration of new
libraries and easy manipulation of the data used for the project.

32

4.2 Tools and Libraries

4.2.3 Pyserini

Pyserini is a python toolkit created to recreate information retrieval research. It gives an
interface to easily search through the most used datasets in information retrieval. The
library uses Lucene to search and requires Java, which can create some issues. This is an
important tool as preparing and indexing the large datasets can take a lot of time. The
creators are researchers in the field which makes the library easy to use for experimenting.
Their research is also implemented for easy reproduction and the basic search engine uses
BM25 (subsection 2.2.3) with optimal settings, which gives good baselines. New datasets
like the multilingual ones are not implemented, but it is easy to index new datasets for
search.

4.2.4 PyTorch

PyTorch is an open source machine learning library created by Facebook AI research lab.
It is one of the most used deep learning libraries along with Tensorflow. PyTorch offers
efficient computing for machine learning models and an easy to use interface. Most of
the research with neural networks in information retrieval is either made with PyTorch
or TensorFlow. In this project PyTorch is used because of familiarity and most of the
relevant research have used it.

4.2.5 Huggingface

Huggingface is an organization that offers open source libraries for Transformers and
NLP. They also offer a model hub, a place where everyone can upload and share their
trained models. This makes it easy to build and continue on other researchers work. The
most used architectures of Transformers are implemented, newly published researched is
also usually quickly added. Thanks to their implementation of Transformers, most of
the PyTorch code is abstracted. In this project only the data loading and some model
tweaking has to be written in native PyTorch.

4.2.6 h5py

H5py is a Pythonic interface to the HDF5 data format. This library is used because of
the large datasets in information retrieval. With this library large files can be stored on
disk, and quickly retrieved while training models. The datasets used for this Thesis is
large and requires a lot of preprocessing for training, this makes reading and tokenizing
the data a bottleneck for training. To remove the bottleneck the data is preprocessed
once and saved to disk, because the data is to large to hold in memory and takes a lot of
time to preprocess. Reading the data from disk is faster than processing it while training.
h5py is used to save the data to disk and then retrieving it while training, which removes
data processing as a bottleneck while training.

33

4 Architecture

4.2.7 TrecTools

TrecTools is an open-source Python library used for TREC evaluation. TREC has its
own evaluation tool, but it is written in c++ and can be difficult to use. The advantage
of using TrecTools is having an interface to use while working in Python. Results from
reranking are written to file when doing inference on the evaluation dataset. The file
is then read by TrecTools and compared with the query-relevance file to calculate the
metrics used for the results chapter.

4.2.8 Matplotlib

Matplotlib is an open source library for creating visualizations in Python. The library is
easy to use and has many tools to visualize data. Exploring and plotting data can be
an important step in developing models for different tasks. It is also great for creating
figures for the report.

34

5 Experiments and Results

In this chapter the most interesting results of the research will be displayed, as well
as how the research has been conducted. The setup and specific settings, needed to
reproduce the results can also be found here.

5.1 Experimental Plan

The experimental plan is split in two parts. Firstly, the plan for the work environment,
which explains what is needed to start the exploring of different methods. Secondly, the
experimental approach, which goes through the main ideas behind the experiments.

5.1.1 Creating work environment

When experimenting with different methods on different datasets, it is important to
create a code environment where it is easy to explore and evaluate new ideas. Having
datasets with different properties prepared and easily available for testing will be crucial
for fast experimenting. Changing models, parameters, training data and other variables
needs to be easy and safe to make sure that when different aspects are evaluated nothing
else than what is intentionally changed affect results. To do this the code needs to be
clean, modular and easy to read.

Datasets

When selecting datasets to experiment on it is advantageous to use the same datasets
as other researchers since it allows direct comparisons of results on data with known
properties and good quality. Datasets in neural IR can be very large and time consuming
to work with. For initial testing a small and widely used dataset will be sufficient, because
this will allow baselines to be established quickly which can be compared to past results.
Robust04 (see section subsection 3.3.2) is a relatively small dataset with only 250 queries,
widely used by other researchers and supported by most libraries. Creating a baseline
with BM25 (subsection 2.2.3) on this dataset and comparing it with others will show
that the setup is correct.

After initial setup and testing, a dataset from a different language is needed. TREC-
Spanish(subsection 3.3.3) is a dataset consisting of Spanish news articles and queries.

35

5 Experiments and Results

This is a dataset used by other researchers in the field to test zero-shot learning, and will
be used for comparison. The datasets need to be easy to use for training and evaluation.
This requires a good interface to the datasets, and the the data retrieval needs to be
consistent for reliable comparisons. By using Pyserini (see subsection 4.2.3) the initial
retrieval from BM25 will be done with correct configurations. To ensure the evaluation
of the models is done in a correct way TrecTools (see subsection 4.2.7) library will be
used by writing results from testing to files and using TrecTools to read the results and
evaluate them.

Training models

Transformers are large and usually require many hours of training. IDUN (Själander
et al. (2019)) from the High Performance Computing lab at NTNU offers a large amount
of computing power. To share the computing power between users a queue system is
used, where users can create a program job to be executed once resources are available.
There are many users and the queue time can be from days to hours. The HPC lab will
be very useful for training because they offer GPUs with a large amount of memory,
which is necessary for the memory hungry Transformers, particularly when training on
long documents where input length is important. Due to the queue time on IDUN early
experimenting will be performed on personal computers with GPUs (Nvidia RTX2080).
Using home computers to experiment will make it easier to find promising methods which
can be scaled up and used on IDUN.

5.1.2 Experimental approach

The experimental approach will be split in three parts. Firstly, reproducing the results
from related work on the most relevant datasets. Secondly, using the most common
methods for zero-shot and few-show learning between English and foreign (Spanish)
language datasets. Thirdly, iterative training of models with different parameters to find
optimal settings.

Reproducing results from related work

Implementing and using the code of related work will be helpful to learn about their
methods and serve as an inspiration for making improvements or new methods. By
replicating results from their papers, one can ensure that the implementation works as
intended. Additionally, this gives an opportunity to confirm their results.

Some libraries include the most common methods and are easy to use, which is helpful
when implementing. Trying to save time will be important and using the path of
least resistance will be prioritized when replicating results. When choosing methods to
reproduce, the ones with available code and pre-trained models, as well as potential for
few-shot and zero-shot learning will be preferred.

36

5.2 Experimental Setup

Zero-shot learning between English and foreign languages

Because the original Norconsult dataset does not have labels, the experimental approach
needs to simulate transferring a model without training on any labels from the testing
dataset, only using labels for evaluation. The evaluation dataset is TREC Spanish and
will be used to compare the different experiments. If there is time to test, an extra
evaluation dataset will be in English to confirm that the performance of the model is
still acceptable after trying to implement it for other languages.

With zero-shot learning, data from the evaluation dataset can not be used for training.
This means all the training has to be done on different datasets, preferably as similar to
the evaluation dataset as possible. One of the most promising methods here is training a
multilingual Transformer for relevance classification on one of the large English relevance
datasets, then using that model on the evaluation datasets. The intuition here is that
the model “learns” about relevance scores in English, but can transfer that knowledge to
other languages it is trained on as well.

Tune parameters

After finding models that work for zero-shot learning, tuning them with the correct
parameters is important to reach their full potential. Different models may need different
tuning depending on their architecture. Parameters which may affect performance include
learning rate, batch size and input lengths. To get the most out of the models, they will
be tested with different parameters and compared with each other.

5.2 Experimental Setup

The setup is important to make exploring new ideas easy, as well as getting consistent
results. In this section everything needed to reproduce the results can be found.

5.2.1 Corpus setup

The first step when dealing with a new project is taking a look at the data. For this project
Pyserini was used for indexing and search of all datasets, see section 4.2.3. The most used
datasets have available indexes for search, but not TREC Spanish. In this subsection,
how to find the indexes and creating the index for TREC Spanish is explained.

Robust 04 and MS MARCO Document and Passage

For TREC Robust 04 and MS MARCO Document and MS MARCO Passage pre-built
indexes from Pyserini were used. The indexes are found at the University of Waterloo’s

37

5 Experiments and Results

Gitlab1. Queries/Topics and relevance assessments is also available directly from the
library.

TREC Spanish

The TREC Spanish corpus is not freely available to use and has to be requested from the
Linguistic Data Consortium.2 The queries and relevance assessments can be downloaded
from TREC’s website. 3 4

The corpus is saved as XML an has to be parsed. Each document can be parsed by
splitting to full document, ID, Article number, headline and document text like shown
below.

<DOC>Full document</DOC>
<DOCNO>ID</DOCNO>
<ARTNUM>Article number</ARTNUM>
<HEADLINE>Headline</HEADLINE>
<TEXT>Document text</TEXT>

For topics it is also XML and it can be parsed by splitting into Number, description,
topic, narr. The topic file is a bit harder to parse. See below for regex expressions.

First split each topic with: </top>
<num>\s*Number: ([\s\S]*)<title>
<desc> Description:([\s\S]*)<narr>
<title> Topic:([\s\S]*)<desc>
<narr>([\s\S]*)

The documents then indexed with the following setting:

!python -m pyserini.index -collection JsonCollection \
-generator DefaultLuceneDocumentGenerator \
-threads 4 -input <input_file> \
-index <output_folder> -storePositions -storeDocvectors -storeRaw

5.2.2 Training models

Transformers requires large amounts of data, and they usually scale well with more
data. MS MARCO Documents, shown in subsection 3.3.1, is the largest dataset with
3.2 million documents and is probably the best dataset to train with. Working with too
large datasets requires more time for training and pre-processing of data. MS MARCO
Passage is smaller than Documents, but the token size of its documents is around 100 in

1Waterloo Gitlab: https://git.uwaterloo.ca/jimmylin/anserini-indexes
2LDC:https://catalog.ldc.upenn.edu/LDC2000T51
3Queries: https://trec.nist.gov/data/topics_noneng/index.html
4Relevance assessments: https://trec.nist.gov/data/qrels_noneng/index.html

38

https://git.uwaterloo.ca/jimmylin/anserini-indexes
 https://catalog.ldc.upenn.edu/LDC2000T51
https://trec.nist.gov/data/topics_noneng/index.html
https://trec.nist.gov/data/qrels_noneng/index.html

5.2 Experimental Setup

average as can be seen in Figure 5.1. Due to the problems working with large datasets
and the token sizes of MS MARCO Passage, Robust 04(subsection 3.3.2) was used for
initial training.

Creating training data

All that is available is a indexed corpus with documents and a list of queries and their
relevant document. To use that for training the data has to be transformed to be used
for Transformer classification tasks. Each query has relevant label for every document,
because that is impractal for training only a subset of documents is used for every query.
For each of the 250 queries in Robust 04 the top 100 relevant documents are retrieved
with BM25 and RM3 subsection 2.2.3. The hyperparamets used for BM25 and RM3
are k1=0.9 and b=0.4 and for RM3 it is terms=10, docs=10 and query weight=0.5 as
recommended by Yates et al. (2021).

For each training sample a query and document are paired together and tokenized with
a [CLS] and [SEP] token as shown here.

[CLS]query text[sep] document text

It is tokenized with Huggingface tokenizer with varying max lengths and with a stride of
half of the max length. If the document and query together are longer than max length,
then the query is kept in full and the document is split up. Retrieving the documents
and tokenizing the document and query takes a lot of time and is a huge bottleneck while
training. To reduce the time the training samples are pre-computed and saved to disk.
Reading from disk can also be a bottleneck and to improve the retrieving of training
samples from disk H5py is used, explained in chapter subsection 4.2.6.

For Robust04 a 90/10 split is used on the queries, of the 250 topics 225 are used for
training and 25 for validation. The high ratio of training versus validation, and not doing
five fold or similar validation is done because the evaluation is done mainly on other
datasets. Metrics used for validation of test set are Validation Loss, F1 Score, Precision,
Accuracy and Recall.

In figure Figure 5.1 a histogram showing number of tokens per document in the different
datasets is shown. As seen, most documents contain less than 4000 tokens. For MS
MARCO Passage almost all documents contains less than 250 tokens, but for Robust04
and TREC Spanish most documents are longer. When creating a model for these
documents, max length of input tokens needs to be considered. Shorter max length is
more practical for training, but could reduce the performance of the models. Tokens
were created by Huggingface BERT multilingual uncased tokenizer and represent the
amount of tokens used for training with BERT multilingual. Different models use different
tokenizers and number of tokens per document may vary, depending on tokenization
method.

39

5 Experiments and Results

0 50 100 150 200 250 300
Number of tokens

0

200000

400000

600000

800000
Nu

m
be

r o
f d

oc
um

en
ts

MSMARCO Passage

(a) MS MARCO Passage, contains 8.8 million passages/documents.

0 500 1000 1500 2000 2500 3000 3500 4000
Number of tokens

0

10000

20000

30000

40000

Nu
m

be
r o

f d
oc

um
en

ts

TREC Robust04

(b) TREC Robust04, contains 528K documents

0 500 1000 1500 2000 2500 3000 3500 4000
Number of tokens

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f d
oc

um
en

ts

TREC Spanish

(c) TREC Spanish, contains 58K documents

Figure 5.1: Histograms of number of tokens per document for relevant datasets. Tokens
created with Huggingface BERT multilingual uncased tokenizer. Figure
created with Matplotlib

40

5.2 Experimental Setup

Initial testing

For initial testing, relatively inexpensive hardware from home is used for training, an
NVIDIA RTX 2080 with 8GB of VRAM. Four different models were tested: BERT mul-
tilingual, XLM Roberta, Longformer and Big Bird. They were trained using Huggingface
Transformers and PyTorch dataset module. Hyperparameters for the models shown in
Table 5.1

Model Epochs Batch size Warmup steps Learning rate

mBERT 3 12 500 2e-5
XLM-RoBERTa 3 8 500 2e-5
Longformer 3 4 500 2e-5
Big bird 3 4 500 2e-5

Table 5.1: Hyperparameters for initial training

HPC trained models

Continued testing was performed on IDUN (Själander et al. (2019)). Due to the better
hardware, max length of input could be increased, training could be done faster and
the batch sizes increased. For training different GPUs were used depending on what
was available on the cluster, they differed from NVIDIA V100 with 16GB or 32GB and
NVIDIA P100 16GB. To simulate consistent batch sizes for the efficient Transformers,
accumulated gradients was used.

Model Max length Epochs Batch size Learning rate Gradient accumulation

mBERT 256 5 32 2e-5 1
mBERT 512 10 12 3e-6 4
XLM-RoBERTa 256 5 32 2e-5 1
XLM-RoBERTa 512 10 8 3e-6 4
BigBird 1024 5 4 3e-6 4
BigBird 2048 5 4 3e-6 4
Longformer 2048 5 4 3e-6 4
Longformer 4096 5 2 3e-6 8

Table 5.2: Hyperparameters for HPC training with IDUN.

5.2.3 Evaluate models

The evaluation is done on the TREC-Spanish Dataset, a dataset the trained Transformers
never have seen before. Metrics used are, Precision@30, Precision@20, mean average

41

5 Experiments and Results

precision, Reciprocal rank 100/10 and nDCG@20 (see subsection 2.2.1 for metrics). To
calculate the metrics, the Trec Tools library is used.

For each query in the dataset BM25 is used to retrieve the top 100 documents. Then each
document is tokenized together with the query and sent to the relevance Transformer
models. Each document gets a relevance score to the document. The scores, document
ids and query ids are then written to file.

Inverted
Index

Initial
Retrieval

Texts Ranked List
Candidate

Texts

Queries

Reranker

Inverted
Index

Initial
Retrieval

Texts

Candidate
Texts

Queries

Reranker
Reranked

Candidates

Reranker Reranker…

Ranked List

Figure 5.2: Diagram explaining a multi-stage retrieval system. In this Thesis, the initial
retrieval is done using BM25, which retrieves the top 100 candidates for each
query. Reranker is the model being tested. Diagram from Yates et al. (2021),
with permission from Andrew Yates.

With Trec Tools, the query relevance file which contains the labels and file with reranked
score is read. The library then compares the files and calculated the metrics. This is
done with all the different Transformers to compare results.

5.3 Experimental Results

This section contains the interesting results from the research, which will be discussed
later in the report. The results are split into different tables, and the sections with tables
are ordered from the progression of the experiments.

5.3.1 Models list

The results shows different models, with long names and different features. Here is a list
of the different models and their key features.

BM25 This is the baseline model. It uses BM25 + RM3, see subsection 2.2.3, this is a
light weight model and uses a fraction of the time compared to the Transformer
based models. This is also the model which is used as initial retrieval for all the
other models. Models scoring worse than BM25 have actually just made the initial
retrieval worse.

42

5.3 Experimental Results

mBERT Cased multilingual BERT, same architecture as regular BERT (section 2.3.6)
except it is pre-trained on a multilingual corpus. The different versions are trained
on Robust04 for this task.

XLM-RoBERTa XLM-RoBERTa is the multilingual version of the RoBERTa Trans-
former architecture (section 2.3.6). The different versions of this model are trained
on Robust04 for this task.

BigBird BigBird is a Transformer architecture created for longer input lengths then
regular Transformers. This model is not multilingual as the pre-training is done
only on English documents. The different versions of this model are trained on
Robust04 for this task.

Longformer As BigBird, longformer is also created for longer inputs, and is not multi-
lingual. It uses a different approach and uses generally less GPU memory than
BigBird. The different versions of this model are trained on Robust04 for this task.

New Dog Results from Teaching a New Dog Old Tricks: Resurrecting Multilingual
Retrieval Using Zero-shot Learning by MacAvaney et al. (2019a). It uses a multi-
lingual BERT and is trained on Robust04. This is the only model which was made
for testing on the same dataset as this paper, TREC Spanish. The scores are taken
from their paper and not reproduced by us.

Rethink A reranker created by Gao et al. (2021). Their model uses regular BERT which
is not multilingual. The model is trained on the MS MARCO Document dataset
(subsection 3.3.1).

Passage uncased This model uses uncased BERT for reranking. It is created for NBoost,
a search engine library, by Thienes and Pertschuk (2021). MS MARCO Passage
(subsection 3.3.1) is used for training.

Passage large Same as Passage uncased, except it uses a larger version of BERT, which
requires more GPU memory.

Passage mBERT Similar to the other Passage models, except it uses Multilingual BERT.
The model is trained on MS MARCO Passage (subsection 3.3.1) by Reissel and
Manaj (2021) and uses the approach explained in Nogueira and Cho (2019).

43

5 Experiments and Results

BigBird
Longformer

New Dog
mBERT
XLM-RoBERTa

Robust 04

Passage mBERT

Passage uncased
Passage large

MS MARCO
Passage

Multilingual
Pre-training

RethinkMS MARCO
Documents

Efficient
Transformer

Figure 5.3: Taxonomy of models tested. Outlines which dataset the models were trained
for ranking, and marks special properties.

5.3.2 Initial training

In Table 5.3 the results from the initial training is shown. This is done on a home
computer with limited hardware. The models are trained with batch sizes which uses
highest possible amount of GPU memory, without getting an out of memory error. The
setup for the training can be found in Table 5.2.2.

Model Train Parameters Metrics

Max len Batch size MAP P@20 MRR@100 nDCG@20

BM25 Baseline 0.208 0.650 0.782 0.658

mBERT 256 12 0.211 0.584 0.752 0.589
XLM-RoBERTa 256 8 0.203 0.562 0.682 0.570
Longformer 512 4 0.205 0.554 0.638 0.550
BigBird 512 4 0.208 0.566 0.719 0.583

Table 5.3: TREC Spanish initial testing.

As seen in Table 5.3, no model performs better than the BM25 baseline. The best
performing model in all metrics is mBERT, with a max length for tokens half of what
Longformer and BigBird has. The batch size of mBERT is larger than the other ones,
3 times larger than Longformer and BigBird. Of the models with larger max length,
BigBird outperformed Longformer by a substantial margin on nDCG@20 and MRR@100.
XLM RoBERTa scored lower than mBERT on all metrics, batch size being the only
difference in parameters.

44

5.3 Experimental Results

5.3.3 Increasing batch size

In Table 5.4 mBERT and XLM RoBERTA is compared with different batch sizes. The
models with larger batch sizes are trained on the HPC IDUN.

Model Train Parameters Metrics
Max len Batch size MAP P@20 MRR@100 nDCG@20

BM25 Baseline 0.208 0.650 0.782 0.658
mBERT 256 12 0.211 0.584 0.752 0.589
mBERT 256 32 0.213 0.578 0.675 0.581
XLM-RoBERTa 256 8 0.203 0.562 0.682 0.570
XLM-RoBERTa 256 32 0.209 0.580 0.612 0.563

Table 5.4: TREC Spanish, increase batch size.

As can be seen in 5.4 mBERT with a batch size of 12 scores highest in all metrics except
for MAP. Both mBERT and XLM-RoBERTa does not score any better with larger
batch sizes. In the end though, no model outperforms the BM25 Baseline, except for in
MAP.

5.3.4 Increasing max length

In Table 5.5 the effects of increasing max length of input tokens is presented. The table
is split in two parts, first mBERT and XLM RoBERTA are shown. Those Transformers
are not viable with max lengths over 512. In the second part, BigBird and Longformer
are shown, they can have considerably longer input lengths. Longformer is shown with
up to 4096 in input length, BigBird is only up to 2048 due to memory constraints.

45

5 Experiments and Results

Model Train Parameters Metrics

Max len Batch size MAP P@20 MRR@100 nDCG@20

BM25 Baseline 0.208 0.650 0.782 0.658

mBERT 256 12 0.211 0.584 0.752 0.589
mBERT 512 12 0.226 0.654 0.830 0.669
XLM-RoBERTa 256 8 0.203 0.562 0.682 0.570
XLM-RoBERTa 512 12 0.209 0.576 0.764 0.608
XLM-RoBERTa * 512 48 0.211 0.578 0.764 0.591

BigBird 512 4 0.208 0.566 0.719 0.583
BigBird * 1024 16 0.211 0.600 0.645 0.596
BigBird * 2048 16 0.217 0.618 0.870 0.645
Longformer 512 4 0.205 0.554 0.638 0.550
Longformer * 2048 16 0.208 0.570 0.721 0.581
Longformer * 4096 16 0.207 0.576 0.667 0.572

Table 5.5: TREC Spanish, different max lengths. For models marked with *, accumulated
gradients is used to reach batch size. The multilingual models are split from
the models with English training data only and best performing metrics in
each section is bolded.

As shown in Table 5.5, mBERT with a max length for input tokens of 512, is the best
scoring model in all metrics by a large margin. XLM-RoBERTa with and max lenght of
512 also scores better than the one with length of 256. For the models with longer input
lengths, BigBird with input length of 2048 is the best performing one. All the models
improve their metric scores for every increase in max length, except for Longformer with
max length of 4096, which performs slightly worse than the 2048 one.

5.3.5 Comparison with other models

In Table 5.6 the models trained for this paper are compared with other publicly available
models from Huggingface model zoo. All models are tested by us on the dataset, except
for the New Dog model, where the metrics are taken from the paper MacAvaney et al.
(2019a). In the first part of the table, models trained by us are shown. The second
part of the table contains models found from Huggingface model zoo and the New Dog
model. These models use BERT or Multilingual BERT with an input length of 512, with
the main difference between them being training methods. Passage models use a larger
amount of training data from MS MARCO. New Dog uses Robust04 for training, see
subsection 5.3.1 for more information about each model.

46

5.3 Experimental Results

Model Max length Metrics

MAP P@20 MRR@100 nDCG@20

BM25 Baseline 0.208 0.650 0.782 0.658

mBERT 512 0.226 0.654 0.830 0.669
BigBird 2048 0.217 0.618 0.870 0.645

New Dog 512 0.262 0.640 0.667
Rethink 512 0.226 0.622 0.763 0.640
Passage uncased 512 0.231 0.676 0.774 0.690
Passage large 512 0.236 0.686 0.842 0.710
Passage mBERT 512 0.247 0.724 0.841 0.739

Table 5.6: TREC Spanish evaluation results. Models in the first section are trained for
this Thesis, models in the other section are trained by others. All results are
evaluated for this paper, except for New Dog which are taken from their paper
(MacAvaney et al. (2019a))

As can be seen in table Table 5.6, Passage mBERT is the best scoring model in nDCG@20
and P@20 by substantial amount. For MRR@100 BigBird is the best and in MAP
New Dog is performing a lot better than all the other models. Passage large sees some
improvement over its smaller counterpart Passage uncased. mBERT and New Dog which
are trained similarly are performing almost equally, except for in MAP, where New Dog
outperforms greatly.

47

6 Evaluation and Discussion

Results do not speak for themselves, they need to be evaluated and discussed to give any
value. This chapter is split in two sections, evaluation and discussion. In the evaluation
section, the results from chapter 5 are discussed in depth, and then evaluated with
consideration for the goal and research questions. Further down in the discussion section
a more general analysis about the work, results and what is learned is presented.

6.1 Evaluation

This section contains the evaluation of the results and the goals and research questions
for this Thesis. First the results are evaluated in depth for each table presented in
the previous chapter, the progression of the subsections follows the progression of the
experiments done for the Thesis. Later in this chapter the goal and research questions
are answered with considerations of the results.

6.1.1 Results

The results discussed here can be found in section 5.3. Before evaluating the results, here
is a short explanation of the metrics to give some intuition about what they measure.
Mean average precision, or MAP for short, is a metric that considers the average precision
on all relevant documents, even those not retrieved by the initial retriever. The metric
is primarily a test of the initial retriever as there is no top n cut-off for the calculation.
Precision at 20 (P@20) is the precision of the top 20 documents from the initial retriever.
Mean reciprocal rank (MRR@100) shows how high up the first relevant document appears
on average; if the first document always is relevant, the score is 1. Normalized Discounted
Cumulative Gain (nDCG@20) considers the top 20 documents; the amount of relevant
documents is balanced with how high the relevant documents are. For this evaluation,
nDCG@20 is used as the preferred metric for comparisons.

Robust 04 was used to train the models, a relatively small dataset compared to MS
Marco Passage. This was done to save time to increase the number of different models
and methods explored. Not training on as much data probably reduces the performance
compared to models trained on datasets that are orders of magnitude larger, as can be
seen in the results. The models trained on smaller datasets did not perform as well, but
the results are still valid for comparing methods, which can be used for training models

49

6 Evaluation and Discussion

when scaling up the training data. Although it is not a given that the best methods for
small and big datasets are the same, it should be a good indication.

The models are evaluated on the TREC Spanish dataset, a dataset with Spanish news
articles. This is a dataset with a decent amount of documents but only contains 25
queries. In the Spanish dataset, most of the documents’ token length was under 4000
tokens, with the bulk of them being no more than 1000 tokens long. Ideally, there should
have been another dataset with another non-English language. CLEF (Cross-Language
Evaluation Forum) had an ad-hoc dataset with different languages, but it was hard to
get and was behind a paywall. There was an attempt to get a dataset, but it was not
available in time for evaluation as hoped. Not having another dataset to validate reduces
the validity of the experiments for zero-shot transferability between languages. The
results only show how much is transferred between English and Spanish. Many European
languages are similar, and without going in-depth about the similarities between different
European languages, one can assume that if it is possible between English and Spanish,
English and, for example, Norwegian should not be considerably harder.

Initial training

The initial tests were done with home equipment with sub-optimal hardware because it
was easier to use than High-Performance Computing systems (HPC). Two different multi-
lingual models and Transformers designed for long input lengths (Efficient Transformers)
were tested. As there are no available multilingual Transformers for long length input,
it was interesting to see if input length was more important than having a multilingual
model.

As the results showed in Table 5.3, mBERT had the best performance for all metrics,
even though the input length of tokens was only half compared to the non-multilingual
models. BigBird, an efficient Transformer made for longer input lengths, performed
slightly worse than mBERT, which has multilingual pre-training. XLM-RoBERTa and
Longformer underperformed slightly, but it is hard to say how much was because of
randomness from training. XLM-RoBERTa also had a smaller batch size which could
have changed the performance. Another reason why they underperformed could be their
pre-training. Neither XLM-RoBERTA or Longformer had next sentence prediction in
their pre-training. Next sentence prediction could be a vital step to relevance prediction,
as predicting the chance of the following sentence is not too different from predicting the
chance of a query and document being relevant.

For continued exploration, it was decided that all models should be investigated further.
The Efficient Transformers were only tested with input lengths of 512 due to hardware
restrictions, but both were explicitly created for input lengths over 512, which is the soft
limit of BERT. The Efficient Transformers had proved work for re-ranking, and even
shown performance similar to the multilingual models, which was not a given. It would
be interesting to see how they would perform with higher input lengths. The multilingual

50

6.1 Evaluation

models did not differ that much, and it would be interesting to see how they would
perform with longer input lengths and larger batch sizes.

Increasing batch size

Before increasing max input length, it was interesting to see if increasing the batch size
of the multilingual models would change the performance. In the initial testing, mBERT
performed better than XLM-RoBERTa, but mBERT was trained with larger batch sizes.
To test this, both models were trained with a batch size of 32, four times larger than the
initial testing.

The results from Table 5.4 show that both XLM-RoBERTa and mBERT perform worse
in all metrics when using larger batch sizes, except for mBERT in MAP. The drop-off
in performance is high for mBERT’s MRR@100, but it is not considerably lower for
everything else. It is hard to say with minor differences if the batch size impacted or
just randomness from training. Also, in the following table (Table 5.5), XLM-RoBERTa
was trained with a batch size of 12 and a batch size of 48 (using accumulated gradients).
The one with 12 performed slightly better.

Another advantage of a larger batch size can be faster training, depending on what the
limitation is. If the limitation is the compute time for the GPU, computing more samples
at once will speed up training considerably. This proved to be the case for the setup
used for the experiments here, without having data to prove it. This meant that it was
probably safe to use as large a batch size as possible without reducing the scores of the
results too much, which shortened the time to train models and meant more time for
different experiments.

Increasing max length

When looking at the token count for different datasets as shown in Figure 5.1, it can
be seen that most documents (not passages) contain more than 256 tokens. For TREC
Spanish, the average is over 1000 tokens per document. The question is then, how much
does the amount of tokens the Transformer can compute at once affect the metrics?

In Table 5.5 models are compared with different input lengths. The multilingual models,
mBERT and XLM-RoBERTa are tested with max lengths of 256 and 512. Going higher
is not viable due to memory constraints with these models. BigBird is tested with
a max length of 512, 1024, and 2048. Going higher was not possible without GPU
memory issues. The Longformer was tested with a max length of 512, 2048, and 4096
and generally required less memory to train than BigBird. Of the multilingual models,
mBERT clearly had the best performance beating all models in all metrics except for
BigBird in MRR@100. BigBird did the best of the efficient Transformers, beating the
Longformer by a considerable amount. The smallest model BigBird 512 had similar
results to the best performing Longformer 2048.

51

6 Evaluation and Discussion

The mBERT model with an input length of 512 was the best performing model, with
BigBird not far behind. The mBERT model has the advantage of having full attention
and being multilingual, but the input length is only a fourth of what BigBird uses. The
increase in nDCG@20 between BigBird 512 and BigBird 2048 is a decent amount, and
for mBERT, from 256 to 512, it is even greater. Increasing the input length of mBERT
is impossible without using a tremendous amount of memory, but it is possible to train
the BigBird model on a multilingual dataset. It seems like nDCG@20 increases when
using longer input lengths for all models, except for Longformer when using 4096. The
data shows longer input lengths are good until at least 2048, but having a multilingual
BERT with a longer input length is still better than going for long input lengths with
English models.

Comparison with other models.

All the models trained for this paper are trained with the Robust04 dataset, this is
because it is a relatively small dataset, which makes it easy to try different models and
methods because the training time is reduced. Huggingface provides a public model
library with pre-trained models, which is trained by the community. There are some
models for re-ranking trained on MS MARCO Passage in the model library, a huge
dataset with a large number of queries, and short documents called passages. It is
considerably larger than Robust04, but the passages are shorter, about 100 tokens long
per document. Compared to TREC Spanish and Robust 04, which is about 500-1500 on
average. Robust 04 has 250 queries, while there are just over 1 million queries for MS
MARCO Passage. Increasing training data is a standard method to increase performance
for models, in Table 5.6 public available models are compared to the models trained for
this paper, as well as results taken from the MacAvaney et al. (2019a) paper. This paper
uses a multilingual BERT model (New Dog in the table) on the same dataset of TREC
Spanish.

The New Dog model, which is the best model found for the TREC Spanish dataset, was
outperformed by the models trained on MS MARCO Passage and barely by mBERT,
which is trained similarly, except for MAP where New Dog had the best result. In
the New Dog paper MacAvaney et al. (2019a) it is not mentioned how they calculated
MAP. When calculating MAP, all the relevant documents are considered, and how many
documents used for initial retrieval changes the MAP score a lot. For this Thesis, 100
documents were used for initial retrieval, which leaves some of the relevant documents
out. Their paper also reports a considerably higher MAP for their BM25 baseline than
this paper reports, but when tested with 1000 documents for initial retrieval instead, a
similar MAP was achieved. The difference in MAP can probably be attributed to the
number of documents used in initial retrieval for re-ranking.

All the Passage models performed great on the TREC Spanish dataset, even those which
were not multilingual. This shows that having a large amount of training data is crucial
for performance, more important than training on long documents and using multilingual

52

6.1 Evaluation

pre-trained models. The Passage large model performs a bit better than its counterpart
Passage uncased, which has fewer parameters. When comparing Passage uncased to
Passage mBERT, its multilingual counterpart, the results improve a lot. This implies
that scaling up the model parameters is not as important as using a multilingual model.
The Rethink model, which is trained on MS MARCO document ranking dataset instead
of MS MARCO Passage, scores worse than all the other models. This may imply that MS
MARCO Passage is a better dataset to train on than MS MARCO Documents. Further
testing on the MS MARCO document dataset would need to be done.

BigBird has the best MRR@100, which is unusual considering it lacks far behind in the
other metrics. MRR@100 is a score that measures how high up in the ranking the first
relevant documents are on average. This means the BigBird model is better at putting a
relevant document at the top of the results but does not have as many relevant documents
at the top 20 as the models with high nDCG@20. This can be because BigBird considers
more text at once than the other models, but from Table 5.5 the models with longer
input length do not have any higher MRR@100. Except for the models with 2048 as
input length. There could be something about that exact input length and the TREC
Spanish dataset, which is unique. It is hard to say anything conclusive about it without
testing on another dataset.

6.1.2 Research Question and Goals

When evaluating results, it is important to return to the original objectives of the Master’s
Thesis so that one can put them in terms of the goal and research questions.

Research question 1 What are the zero-shot capabilities of neural document ranking
models?

Most neural models have not shown much in the way of zero-shot performance until very
recently with the introduction of Transformer models. Research has shown that many
Transformer-based models like monoT5 perform well when transferring between English
datasets, and our results show that with enough training specifically on the retrieval
task, even English-only models can also be used for zero-shot retrieval on multilingual
datasets.

Research question 2 How can neural document ranking models be adapted to work for
new languages?

There are a few ways to adapt models for new languages. Particularly, the choice of
pre-trained model seems to be very important, with models trained on multiple languages
providing a boost in performance, although it seems language is less important than
being good at the retrieval task in general. Getting the initial word embedding correct
might be the most important part, which could also be tried on interaction models,
although it was not tested in this Thesis. Dense retrieval seems to be a harder nut to
crack, though there is potential for a smarter solution using unsupervised/self-supervised
training.

53

6 Evaluation and Discussion

Goal Find a document ranking model that gives good results across languages using
zero-shot learning.

Although “good results” is quite a vague aim, it seems this has been accomplished
under most definitions. The best models tested have outperformed a strong BM25+RM3
baseline on datasets with absolutely no labeled examples. These models are also easy to
obtain and use, requiring no training before being implemented, although it is an option
for potential further improvement of performance.

6.2 Discussion

Central to scientific research is being able to interpret results, and explain their importance
and relevance. Specifically, this section will explore and deduce the role of input length,
multilingual models and retrieval-specific training, as well as discuss limitations with the
research and other things to consider.

6.2.1 Input length

The length restriction of Transformers is brought up several times in this Thesis, so it is
interesting to see whether or not it has any effect. The results show that generally, it
seems that increasing max length does improve performance, with the increase from 256
to 512 being quite noticeable. Since the tests are run with strided windows, one might
think the effect is mitigated, but it seems looking at as much of the document as possible
at once is beneficial. The documents in our datasets are almost always shorter than
2048 tokens, at which the effect of adding to the max length tapers off (Longformer).
Computing power limitations meant that testing a standard Transformer like BERT with
a reasonable batch size at lengths longer than 512 was infeasible, and IDUN was required
to even push it above 256.

Interestingly, models trained on MS MARCO Passage, for which each passage is generally
around 100 tokens, are the best performers in testing. This could be because the passage
dataset is more specific in its relevance judgement. Passages are shorter and are therefore
more clear in their information content, as opposed to documents for which there might
only be a small part of the document that is relevant, with the rest adding noise. This
is further evidenced by the fact that the Rethink model, which is trained in a similar
manner on MS MARCO Documents instead, performs worse than those trained on MS
MARCO Passage. It also seems that using the models trained on passages with larger
max lengths than they are trained on is not a detriment to their performance.

6.2.2 Multilingual models

The effect of using multilingual models instead of English-only is positive, although
smaller than one might expect. Presumably, the most important part of multilingual

54

6.2 Discussion

models is getting the initial word embedding (meaning) right, since the relationships
between words later on are quite similar between languages in the same family. Spanish
and English are not all that different, and the massive pre-training involved with these
Transformer models likely already contains some Spanish just by chance from the web-
crawls used to create training data, making Spanish not entirely unfamiliar. Fine-tuning
with semi-supervised pre-training objectives on the retrieval corpus (without relevance
labels) could have a similar effect to using a multilingual, but was not tested.

A big problem with training multilingual retrieval models is the lack of standard datasets.
Experiments in this Thesis were performed on only the TREC Spanish dataset, which as
the name implies only contains a single language. It was used mainly due to its inclusion
in MacAvaney et al. (2019a). There are also Arabic and Mandarin equivalents, but these
are separate datasets, and as such the actual multilingual capabilities are somewhat of an
assumption based on good results when transferring from English to Spanish. The CLEF
(Cross-Language Evaluation Forum) Initiative aims to improve access to multilingual
datasets, although their datasets also seem to be separated by language. There were
plans to include their datasets in testing, but due to unforeseen delays this fell through.
Like TREC Spanish, CLEF datasets are behind a paywall, which is a notable barrier to
entry and might discourage usage.

Different datasets are also produced in different ways, with some being very thoroughly
scanned for relevant documents (Robust04, TREC Spanish) and some take shortcuts by
having humans label data from an existing retrieval model (MS MARCO). None of the
most popular datasets have graded relevance, which could add some needed nuance to
the ranking quality. The datasets used can have significant implications for training as
well as for evaluation.

6.2.3 Retrieval specific training

While multilingual training did have a measurable impact, having a model specifically
trained for the retrieval task seemed to make the biggest difference. The relevance scoring
itself is a more specific task, although the BERT pre-training does also involve next
sentence prediction, which is similar. The fact that RoBERTa and Longformer, which
have removed the next sentence prediction task from pre-traning, perform worse than
their counterparts which include it, indicates that this is an important task to include
if one wants a good model for retrieval. Some even more specific retrieval pre-training,
such as REALM or PROP (section 3.2) might be the most promising direction for future
research, as there are limits to the amount of labeled data one can produce.

There are also many opportunities to try different training procedures. Currently, the
training just uses top 100 documents from BM25 for training, however many relevant
documents that is. Balancing the number of relevant documents and irrelevant documents
in different ways, or sampling from different sources could have performance effects for the
final re-ranker. The availability of relevant samples is also affected by how the dataset is

55

6 Evaluation and Discussion

made. From experience, another pitfall to avoid is using accuracy/loss to validate, leading
to not stopping soon enough and performance degrading on the retrieval metrics.

Another aspect is that the entire document is labeled as relevant instead of specific
sections, adding noise. In question answering datasets, answers are often labeled using
spans, which could be an (albeit time consuming to create) alternative, which might
also be used to produce text extracts for results. There are also different methods
for aggregating results for smaller sequences into full document results which could be
tried.

6.2.4 Limitations

Although the results shown are interesting, they are in no way conclusive. As there was
limited time, care was used when choosing models to test. Although speeding up training,
needing to use IDUN slowed down the iteration process considerably, as the queue system
delayed initial startup. Testing more models, on more datasets, several times would
have to be done to determine performance conclusively. Constructing ablation studies
determining the effect of individual components in model performance would be ideal,
instead of inferring them from serendipitous differences/similarities between different
models. Another factor is that the improved results compared to MacAvaney et al.
(2019a) may be partly due to a slightly improved initial retriever, although there is a
large enough difference that this is probably not a significant factor.

6.2.5 Additional considerations

Latency is an aspect of retrieval with re-rankers which is rarely discussed or tested.
On inference, the slowest model (BigBird) used up to 20 seconds to re-rank top 100
documents. This is unacceptable in any practical application, and likely invalidates any
ranking accuracy benefit if it can not be sped up significantly.

Furthermore, the hardware requirements for large language models are a big obstacle.
Having a GPU cluster to train/run on is very rare, and these GPUs consume a lot of
electricity, meaning there is an environmental impact as well. Weighing all this up,
the slight improvement in ranking performance provided by increasing max length may
not be worth it. Finding lighter alternatives to language models should definitely be
considered.

Bias in search engines could be a large problem, especially when queries are political or
about disputed topics. How the models rank controversial documents is difficult, if not
impossible to predict. The results would be affected by the labels from the training data,
first from any language model pre-training, then by the retrieval specific training data.
This problem is not considered in this Thesis but should be examined by everyone who
provides a public search engine.

56

7 Conclusion and Future Work

Neural retrieval seems to be going through a transition, with new models showing
substantial improvements for the first time in years. Promising results are sure to drive
and inspire further research with renewed optimism. Zero-shot and multilingual retrieval
are important aspects of this that warrant further examination. It is clear that this is
just the beginning of the neural retrieval success story, and that the coming years will
have lots of new and interesting solutions.

Currently, neural retrieval in practice is only available to a select few organizations with
the resources to support it. Going forward, work on multilingual, zero-shot, low-resource
and publicly available models can make neural retrieval freely available to the masses.
Hopefully, this Thesis serves as a step towards the democratization of neural retrieval
models and their application to diverse datasets with multiple languages.

Following is an overview of this Thesis’s contributions to the field, as well as proposed
directions for future work.

7.1 Contributions

This Master’s Thesis provides an overview and evaluation of different methods for
multilingual zero-shot neural retrieval. Several pre-trained Transformer models are
tested on the TREC Spanish dataset, with the best results showing state-of-the-art
performance.

Traditional neural retrieval methods are explained and discussed, providing a rationale
for focusing on Transformer-based re-rankers; BM25 is a sufficient initial retriever, and
interaction-based re-rankers do not seem to be good enough.

It is shown that for multilingual retrieval using transferred Transformer-based models,
training more on the retrieval task even with English-only datasets has a larger impact
than using a multilingual model. Using both in conjunction provided the best performance.
Increasing max length also leads to improvements, and models pre-trained with the next
sentence prediction objective seemed to have an advantage.

In addition, this Thesis seems to be the first application of efficient Transformer architec-
tures (Longformer and BigBird) on the document re-ranking task. However performance
on more common English datasets are not examined.

57

7 Conclusion and Future Work

7.2 Future Work

It is quite clear that there is massive potential for neural retrieval methods. Evidently,
the largest obstacle is getting enough labeled training data, although clever engineering
could mitigate this. There are several avenues for future research.

More data

This might be the most obvious solution, but the availability of labeled data is likely what
puts large search companies ahead when it comes to applying neural models to retrieval.
The largest available dataset currently is MS MARCO, which is English-only and contains
3.2M documents, only a tiny fraction of Bing’s total data quantity. Constructing larger
datasets, with more diversity in both language and domain, and higher quality (perhaps
through graded relevance judgments) would enable higher quality models which can
handle more use-cases.

Relatedly, the lack of test datasets in different languages is a detriment. This Thesis only
tested on TREC Spanish due to its availability and similarity to Norwegian (compared to
the other TREC alternatives of Mandarin and Arabic). Obtaining and making available
similar datasets for additional languages would enable development of more robust
methods and ensure that models can perform consistently. The CLEF (Cross-Language
Evaluation Forum) Initiative is a step in this direction, but like TREC Spanish, it has a
barrier of entry in the form of a pay-wall.

Smarter solutions

Methods like REALM and PROP (section 3.2) seem to be the kind of solutions that are
needed more of in the future. Creating self-supervised pre-training tasks which transfer
to retrieval - beyond the already useful language modeling in Transformer models - could
be exactly what is needed to push retrieval performance to the next level. Another
alternative is augmenting the data by translating documents and queries using another
language model, a task which they excel at.

Going “back to the roots” of IR, a more mathematically grounded formulation of the
document ranking task may be possible. It seems this has been to some extent lost in
recent research, focusing on getting some working model by just feeding it data, rather
than building it up from first principles.

Custom architecture

Transformer-based models are ill-suited to the retrieval task in many ways, with length
restrictions, speed limitations and possibly excessive model size for the retrieval task.
A custom architecture along with a good training methodology tailored for retrieval
could overcome these limitations. It does not have to be revolutionary, perhaps as simple

58

7.2 Future Work

as multilingual pre-training on an efficient Transformer with global attention on the
query.

As an example, using an architecture similar to the Perceiver (Jaegle et al., 2021) one
could use the query text to generate query vectors for attention, and all the document
text to produce keys and values. This could be done multiple times over to create
a contextualized representation of the query with minimal compute, as complexity is
reduced from O((q + d)2) to O(q d). At the end one could use the embeddings to create
a relevance score.

Dense retrieval

While this Thesis did not explore dense retrieval much due to BM25’s already good
performance, it is still an interesting direction which is worth further exploration. Being
able to beat the performance of a strong BM25 initial ranker using a dense retriever -
particularly without supervised training - would be a big step forward, especially since
there has been little progress in performance since BM25 was introduced in the 90s. A
better initial ranker may even be able to boost the performance of the re-ranker beyond
the sum of their parts.

59

Bibliography

Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian Zhang, and Jimmy Lin. Cross-domain
modeling of sentence-level evidence for document retrieval. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 3490–3496, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1352. URL https://www.aclweb.org/anthology/
D19-1352.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
transformer, 2020. URL https://arxiv.org/abs/2004.05150.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar. Pre-
training tasks for embedding-based large-scale retrieval. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=rkg-mA4FDr.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA:
Pre-training text encoders as discriminators rather than generators. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=r1xMH1BtvB.

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Land-
auer, and Richard Harshman. Indexing by latent semantic analysis.
Journal of the American Society for Information Science, 41(6):391–407, 1990.
doi: https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-
9. URL https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%
291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguist-
ics. doi: 10.18653/v1/N19-1423. URL https://www.aclweb.org/anthology/N19-
1423.

Luyu Gao, Zhuyun Dai, and Jamie Callan. Rethink training of BERT rerankers in
multi-stage retrieval pipeline, 2021. URL https://arxiv.org/abs/2101.08751.

61

https://www.aclweb.org/anthology/D19-1352
https://www.aclweb.org/anthology/D19-1352
https://arxiv.org/abs/2004.05150
https://openreview.net/forum?id=rkg-mA4FDr
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://arxiv.org/abs/2101.08751

Bibliography

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. A deep relevance matching
model for ad-hoc retrieval. Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, Oct 2016. doi: 10.1145/2983323.2983769.
URL http://dx.doi.org/10.1145/2983323.2983769.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. REALM:
retrieval-augmented language model pre-training. CoRR, abs/2002.08909, 2020. URL
https://arxiv.org/abs/2002.08909.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural network
architectures for matching natural language sentences. In Zoubin Ghahramani, Max
Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 2042–2050, 2014. URL https://proceedings.neurips.cc/paper/2014/hash/
b9d487a30398d42ecff55c228ed5652b-Abstract.html.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.
Learning deep structured semantic models for web search using clickthrough data. In
Proceedings of the 22nd ACM International Conference on Information & Knowledge
Management, CIKM ’13, page 2333–2338, New York, NY, USA, 2013. Association for
Computing Machinery. ISBN 9781450322638. doi: 10.1145/2505515.2505665. URL
https://doi.org/10.1145/2505515.2505665.

Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. PACRR: A position-aware
neural IR model for relevance matching. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 1049–1058, Copenhagen,
Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/
v1/D17-1110. URL https://www.aclweb.org/anthology/D17-1110.

Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. Co-PACRR: A context-
aware neural IR model for ad-hoc retrieval. In Yi Chang, Chengxiang Zhai, Yan
Liu, and Yoelle Maarek, editors, Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA,
February 5-9, 2018, pages 279–287. ACM, 2018. doi: 10.1145/3159652.3159689. URL
https://doi.org/10.1145/3159652.3159689.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and João
Carreira. Perceiver: General perception with iterative attention. CoRR, abs/2103.03206,
2021. URL https://arxiv.org/abs/2103.03206.

Chris Kamphuis, Arjen P. de Vries, Leonid Boytsov, and Jimmy Lin. Which BM25 do
you mean? A large-scale reproducibility study of scoring variants. In Joemon M. Jose,
Emine Yilmaz, João Magalhães, Pablo Castells, Nicola Ferro, Mário J. Silva, and Flávio
Martins, editors, Advances in Information Retrieval - 42nd European Conference on
IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, Proceedings, Part II,
volume 12036 of Lecture Notes in Computer Science, pages 28–34. Springer, 2020. doi:

62

http://dx.doi.org/10.1145/2983323.2983769
https://arxiv.org/abs/2002.08909
https://proceedings.neurips.cc/paper/2014/hash/b9d487a30398d42ecff55c228ed5652b-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/b9d487a30398d42ecff55c228ed5652b-Abstract.html
https://doi.org/10.1145/2505515.2505665
https://www.aclweb.org/anthology/D17-1110
https://doi.org/10.1145/3159652.3159689
https://arxiv.org/abs/2103.03206

Bibliography

10.1007/978-3-030-45442-5_4. URL https://doi.org/10.1007/978-3-030-45442-
5_4.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. Dense passage retrieval for open-domain question answering. CoRR,
abs/2004.04906, 2020. URL https://arxiv.org/abs/2004.04906.

Omar Khattab and Matei Zaharia. ColBERT: Efficient and effective passage search
via contextualized late interaction over BERT. CoRR, abs/2004.12832, 2020. URL
https://arxiv.org/abs/2004.12832.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium, November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/D18-2012. URL https://www.aclweb.
org/anthology/D18-2012.

Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. CoRR,
abs/1901.07291, 2019. URL http://arxiv.org/abs/1901.07291.

Quoc V. Le and Tomás Mikolov. Distributed representations of sentences and documents.
CoRR, abs/1405.4053, 2014. URL http://arxiv.org/abs/1405.4053.

Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and Yingfei Sun. PARADE: passage
representation aggregation for document reranking. CoRR, abs/2008.09093, 2020. URL
https://arxiv.org/abs/2008.09093.

Davis Liang, Peng Xu, Siamak Shakeri, Cícero Nogueira dos Santos, Ramesh Nallapati,
Zhiheng Huang, and Bing Xiang. Embedding-based zero-shot retrieval through query
generation. CoRR, abs/2009.10270, 2020. URL https://arxiv.org/abs/2009.10270.

Robert Litschko, Ivan Vulic, Simone Paolo Ponzetto, and Goran Glavas. Evaluating mul-
tilingual text encoders for unsupervised cross-lingual retrieval. CoRR, abs/2101.08370,
2021. URL https://arxiv.org/abs/2101.08370.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019. URL http:
//arxiv.org/abs/1907.11692.

Ji Ma, Ivan Korotkov, Yinfei Yang, Keith Hall, and Ryan McDonald. Zero-shot neural
passage retrieval via domain-targeted synthetic question generation. In Proceedings
of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, pages 1075–1088, Online, April 2021a. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2021.eacl-
main.92.

63

https://doi.org/10.1007/978-3-030-45442-5_4
https://doi.org/10.1007/978-3-030-45442-5_4
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.12832
https://www.aclweb.org/anthology/D18-2012
https://www.aclweb.org/anthology/D18-2012
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1405.4053
https://arxiv.org/abs/2008.09093
https://arxiv.org/abs/2009.10270
https://arxiv.org/abs/2101.08370
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/2021.eacl-main.92
https://www.aclweb.org/anthology/2021.eacl-main.92

Bibliography

Xinyu Ma, Jiafeng Guo, Ruqing Zhang, Yixing Fan, Xiang Ji, and Xueqi Cheng. Prop:
Pre-training with representative words prediction for ad-hoc retrieval. Proceedings of the
14th ACM International Conference on Web Search and Data Mining, Mar 2021b. doi:
10.1145/3437963.3441777. URL http://dx.doi.org/10.1145/3437963.3441777.

Xueguang Ma, Kai Sun, Ronak Pradeep, and Jimmy Lin. A replication study of dense
passage retriever. CoRR, abs/2104.05740, 2021c. URL https://arxiv.org/abs/2104.
05740.

Sean MacAvaney, Luca Soldaini, and Nazli Goharian. Teaching a new dog old tricks:
Resurrecting multilingual retrieval using zero-shot learning. CoRR, abs/1912.13080,
2019a. URL http://arxiv.org/abs/1912.13080.

Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. CEDR: contex-
tualized embeddings for document ranking. CoRR, abs/1904.07094, 2019b. URL
http://arxiv.org/abs/1904.07094.

Tomás Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. CoRR, abs/1310.4546,
2013. URL http://arxiv.org/abs/1310.4546.

Pandu Nayak. Understanding searches better than ever before. https://www.blog.
google/products/search/search-language-understanding-bert/, Oct 2019. (Ac-
cessed on 05/31/2021).

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder,
and Li Deng. MS MARCO: A human generated machine reading comprehension
dataset. In Tarek Richard Besold, Antoine Bordes, Artur S. d’Avila Garcez, and Greg
Wayne, editors, Proceedings of the Workshop on Cognitive Computation: Integrating
neural and symbolic approaches 2016 co-located with the 30th Annual Conference on
Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, December
9, 2016, volume 1773 of CEUR Workshop Proceedings. CEUR-WS.org, 2016. URL
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with BERT. CoRR,
abs/1901.04085, 2019. URL http://arxiv.org/abs/1901.04085.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. Multi-stage document
ranking with BERT. CoRR, abs/1910.14424, 2019. URL http://arxiv.org/abs/
1910.14424.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. Document ranking
with a pretrained sequence-to-sequence model. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 708–718, Online, November 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.63.
URL https://www.aclweb.org/anthology/2020.findings-emnlp.63.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.

64

http://dx.doi.org/10.1145/3437963.3441777
https://arxiv.org/abs/2104.05740
https://arxiv.org/abs/2104.05740
http://arxiv.org/abs/1912.13080
http://arxiv.org/abs/1904.07094
http://arxiv.org/abs/1310.4546
https://www.blog.google/products/search/search-language-understanding-bert/
https://www.blog.google/products/search/search-language-understanding-bert/
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1910.14424
http://arxiv.org/abs/1910.14424
https://www.aclweb.org/anthology/2020.findings-emnlp.63

Bibliography

Text matching as image recognition. CoRR, abs/1602.06359, 2016. URL http:
//arxiv.org/abs/1602.06359.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans, editors, Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the ACL, pages 1532–1543. ACL, 2014.
doi: 10.3115/v1/d14-1162. URL https://doi.org/10.3115/v1/d14-1162.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. CoRR, abs/1910.10683, 2019. URL
http://arxiv.org/abs/1910.10683.

Prabhakar Raghavan. How AI is powering a more helpful google. https://blog.google/
products/search/search-on/, Oct 2020. (Accessed on 06/03/2021).

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using siamese
BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 11 2019. URL
https://arxiv.org/abs/1908.10084.

Philipp X Reissel and Igli Manaj. amberoad. https://huggingface.co/amberoad/bert-
multilingual-passage-reranking-msmarco, 2021. (Accessed on 06/10/2021).

Stephen Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford. Okapi
at trec-3. In Overview of the Third Text REtrieval Conference (TREC-3), pages 109–
126. Gaithersburg, MD: NIST, January 1995. URL https://www.microsoft.com/en-
us/research/publication/okapi-at-trec-3/.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. A latent
semantic model with convolutional-pooling structure for information retrieval. In
Jianzhong Li, Xiaoyang Sean Wang, Minos N. Garofalakis, Ian Soboroff, Torsten Suel,
and Min Wang, editors, Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China,
November 3-7, 2014, pages 101–110. ACM, 2014a. doi: 10.1145/2661829.2661935. URL
https://doi.org/10.1145/2661829.2661935.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. A latent
semantic model with convolutional-pooling structure for information retrieval. CIKM
2014 - Proceedings of the 2014 ACM International Conference on Information and
Knowledge Management, pages 101–110, 11 2014b. doi: 10.1145/2661829.2661935.

Magnus Själander, Magnus Jahre, Gunnar Tufte, and Nico Reissmann. EPIC: An
energy-efficient, high-performance GPGPU computing research infrastructure, 2019.

Karen Sparck Jones. A statistical interpretation of term specificity and its application

65

http://arxiv.org/abs/1602.06359
http://arxiv.org/abs/1602.06359
https://doi.org/10.3115/v1/d14-1162
http://arxiv.org/abs/1910.10683
https://blog.google/products/search/search-on/
https://blog.google/products/search/search-on/
https://arxiv.org/abs/1908.10084
https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco
https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
https://doi.org/10.1145/2661829.2661935

Bibliography

in retrieval. Journal of Documentation, 28(1):11–21, Jan 1972. ISSN 0022-0418. doi:
10.1108/eb026526. URL https://doi.org/10.1108/eb026526.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A
survey. CoRR, abs/2009.06732, 2020. URL https://arxiv.org/abs/2009.06732.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Philip Pham Dara Bahri, Jinfeng
Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark
for efficient transformers. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=qVyeW-grC2k.

Cole Thienes and Jack Pertschuk. Nboost: Neural boosting search results. https:
//github.com/koursaros-ai/nboost, 2021. (Accessed on 06/10/2021).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. Multi-passage
BERT: A globally normalized BERT model for open-domain question answering. CoRR,
abs/1908.08167, 2019. URL http://arxiv.org/abs/1908.08167.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. Google’s neural machine translation system:
Bridging the gap between human and machine translation. CoRR, abs/1609.08144,
2016. URL http://arxiv.org/abs/1609.08144.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. End-to-
end neural ad-hoc ranking with kernel pooling. CoRR, abs/1706.06613, 2017. URL
http://arxiv.org/abs/1706.06613.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett, Junaid
Ahmed, and Arnold Overwijk. Approximate nearest neighbor negative contrastive learn-
ing for dense text retrieval. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=zeFrfgyZln.

Wei Yang, Kuang Lu, Peilin Yang, and Jimmy Lin. Critically examining the "neural
hype": Weak baselines and the additivity of effectiveness gains from neural ranking
models. CoRR, abs/1904.09171, 2019a. URL http://arxiv.org/abs/1904.09171.

66

https://doi.org/10.1108/eb026526
https://arxiv.org/abs/2009.06732
https://openreview.net/forum?id=qVyeW-grC2k
https://github.com/koursaros-ai/nboost
https://github.com/koursaros-ai/nboost
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/1908.08167
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1706.06613
https://openreview.net/forum?id=zeFrfgyZln
http://arxiv.org/abs/1904.09171

Bibliography

Wei Yang, Haotian Zhang, and Jimmy Lin. Simple applications of BERT for ad hoc
document retrieval. CoRR, abs/1903.10972, 2019b. URL http://arxiv.org/abs/
1903.10972.

Andrew Yates, Siddhant Arora, Xinyu Zhang, Wei Yang, Kevin Martin Jose, and Jimmy
Lin. Capreolus: A toolkit for end-to-end neural ad hoc retrieval. In Proceedings of
the 13th International Conference on Web Search and Data Mining, WSDM ’20, page
861–864, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450368223. doi: 10.1145/3336191.3371868. URL https://doi.org/10.1145/
3336191.3371868.

Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. Pretrained transformers for text
ranking: BERT and beyond. In Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, WSDM ’21, page 1154–1156, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450382977. doi: 10.1145/
3437963.3441667. URL https://doi.org/10.1145/3437963.3441667.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Al-
berti, Santiago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and
Amr Ahmed. Big bird: Transformers for longer sequences. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
c8512d142a2d849725f31a9a7a361ab9-Abstract.html.

Edwin Zhang, Nikhil Gupta, Raphael Tang, Xiao Han, Ronak Pradeep, Kuang Lu, Yue
Zhang, Rodrigo Nogueira, Kyunghyun Cho, Hui Fang, and Jimmy Lin. Covidex: Neural
ranking models and keyword search infrastructure for the COVID-19 open research
dataset. In Proceedings of the First Workshop on Scholarly Document Processing, pages
31–41, Online, November 2020. Association for Computational Linguistics. doi: 10.
18653/v1/2020.sdp-1.5. URL https://www.aclweb.org/anthology/2020.sdp-1.5.

67

http://arxiv.org/abs/1903.10972
http://arxiv.org/abs/1903.10972
https://doi.org/10.1145/3336191.3371868
https://doi.org/10.1145/3336191.3371868
https://doi.org/10.1145/3437963.3441667
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://www.aclweb.org/anthology/2020.sdp-1.5

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Rolv-Arild Braaten
August Bobakk Indal

Exploring the Viability of Multilingual
Zero-shot Neural Document Retrieval

Master’s thesis in Computer Science
Supervisor: Björn Gambäck

June 2021

M
as

te
r’s

 th
es

is

	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory
	Text processing
	Retrieval
	Evaluation
	TF-IDF
	BM25
	Embeddings

	Machine Learning
	Perceptron
	Loss
	Convolutions
	Recurrent Networks
	Attention
	Transformers
	Reducing complexity
	BERT

	Related Work
	Traditional neural retrieval models
	Representation
	Adjacent tasks
	DSSM
	ANCE

	Interaction
	ARC-II
	DRMM
	K-NRM
	PACRR

	Transformer-based
	Re-ranking with BERT
	ColBERT
	CEDR
	PARADE
	MonoT5

	Criticism

	Zero-shot
	Datasets
	MS MARCO
	TREC 2004 Robust track
	TREC Spanish

	Architecture
	Strengths and weaknesses of different models
	Representation
	Non-specific training
	Iterative improvement
	Performance limits

	Interaction
	Pre-trained potential
	Performance limits

	Transformer-based
	Direct transfer limitations
	Computational cost
	Length limitations
	Diversity

	Takeaways

	Tools and Libraries
	Python
	Jupyter notebook
	Pyserini
	PyTorch
	Huggingface
	h5py
	TrecTools
	Matplotlib

	Experiments and Results
	Experimental Plan
	Creating work environment
	Datasets
	Training models

	Experimental approach
	Reproducing results from related work
	Zero-shot learning between English and foreign languages
	Tune parameters

	Experimental Setup
	Corpus setup
	Robust 04 and MS MARCO Document and Passage
	TREC Spanish

	Training models
	Creating training data
	Initial testing
	HPC trained models

	Evaluate models

	Experimental Results
	Models list
	Initial training
	Increasing batch size
	Increasing max length
	Comparison with other models

	Evaluation and Discussion
	Evaluation
	Results
	Initial training
	Increasing batch size
	Increasing max length
	Comparison with other models.

	Research Question and Goals

	Discussion
	Input length
	Multilingual models
	Retrieval specific training
	Limitations
	Additional considerations

	Conclusion and Future Work
	Contributions
	Future Work
	More data
	Smarter solutions
	Custom architecture
	Dense retrieval

	Bibliography

