Ole Kildehaug Furseth and Anders Ottersland
Granas

Real-time Sheep Detection

Improving Retrieval of Free-ranging Sheep Using
Deep Learning-based Detection on Drone
Imagery Running on Mobile Devices

Master’s thesis in Computer Science
Supervisor: Svein-Olaf Hvasshovd

June 2021

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke

Bo
:
o

zZ

0y
£e
o Y
[Te]
£wun
DOL
c g
w S
= a
SE
S O
oo
D«
w2
T C
ca
=
85
S g
80)
_CD
o}
|_
c
o
=1
©
€
_
L
£
Y
S)
=]
o
©
[N

@ NTNU

Norwegian University of
Science and Technology

Ole Kildehaug Furseth and Anders Ottersland Granas

Real-time Sheep Detection

Improving Retrieval of Free-ranging Sheep Using
Deep Learning-based Detection on Drone Imagery
Running on Mobile Devices

Master’s thesis in Computer Science
Supervisor: Svein-Olaf Hvasshovd
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Norwegian University of
Science and Technology

Real-time Sheep Detection

Abstract

In Norway, more than 2 million sheep are grazing freely during the summer. The pastures in which
they graze are often large, covered in vegetation or rough terrain, and lay some distance from the
sheep’s home farm. All of these factors make retrieval of the herd a difficult and time-consuming
task for the farmer. This thesis aims at developing and proposing a system to assist in this retrieval
by automatically detecting sheep in images captured by drones.

To this end, several deep learning models based on the YOLOv5 architecture were developed
and evaluated. Models were developed using differently sized pre-trained checkpoints and further
trained on images of different image types and resolutions. The models are evaluated on their
ability to detect sheep in real-time while running on mobile devices. Earlier work has shown that
a fusion of models using images from the visual and thermal spectrums leads to improved results.
An important aspect of this thesis was investigating whether the use of images captured with
MSX-technology would yield similar results.

Performance of MSX-based models turned out to be lacking, mostly due to lack of quality in the
images themselves. Models trained on regular high-resolution images performed well, with a top
retrieval rate of 98% running on mobile hardware with an inference time of 851ms per image.

These results show that deep learning models are able to quickly and reliably detect sheep in
drone images running on mobile hardware. This suggests that, with further development, such
technology can be used to greatly effectivize sheep retrieval.

Real-time Sheep Detection

Sammendrag

P4 landsbasis slippes over 2 million sau p4 sommerbeite hvert ar. Beiteomradene er ofte store, i
ulendt terreng og et stykke unna selve garden. Disse faktorene gjor det vanskelig og tidkrevene for
bonden & drive sauene hjem nar hgsten kommer. Denne masteroppgaven har som mal & utvikle og
foresla et system som kan bista i dette arbeidet ved & automatisk detektere sau i dronebilder.

For & oppna dette ble flere dyp leeringsmodeller basert pa YOLOv5-arkitekturen utviklet og eval-
uert. Modellene tok utgangspunkt i forhandstrente modeller av forskjellig stgrrelse. De ble sa
trent videre pa bilder av varierende type og opplgsning. Evaluering av modellene ble gjort basert
pé evnen deres til & detektere sau i sanntid mens de kjgrer pa mobile enheter. Tidligere arbeid
har vist at en sammenslaing av to separate modeller basert pa bilder fra det synlige og termiske
spektrumet fgrer til bedre resultater. Et viktig aspekt ved denne oppgaven var derfor & undersgke
om bilder tatt med MSX-teknologi gir lignende resultater.

Ytelsen til de MSX-baserte modellene viste seg & veere mindre gode — i hovedsak grunnet manglende
kvalitet pa selve bildene. Resultatene fra modellene trent pa ordingere visuelle bilder i hgy opplgs-
ning var gode: Den beste modellen gjenfinner hele 98% av sauene med en inferenstid pd 851ms per
bilde pa mobil maskinvare.

Disse resultatene viser at dype leeringsmodeller er i stand til & detektere sau i dronebilder bade
hurtig og palitelig. Med videre utvikling kan denne teknologien brukes til & effektivisere arbeidet
med sauegjenfinning.

ii

Real-time Sheep Detection

Preface

This is a master thesis written for the Department of Computer Science at the Norwegian University
of Science and Technology (NTNU) in Trondheim, Norway. The authors of this thesis are part of
the study program Computer Science, with specialization in Databases and Search.

We would like to thank our supervisor, Svein-Olaf Hvasshovd for the weekly assistance and encour-
agement during our work on this thesis. We would also like to thank friends and family for valuable
input and discussions throughout the project — especially Even, who has spent hours proofreading
and providing tons of constructive feedback. A special thanks must also be given to Jesper, whose
stressed nature has provided comic relief as well as frequent coffee breaks. We would also be remiss
not to mention the Kanelbolleonsdag provided by Sit — a highlight of every working week!

iii

Real-time Sheep Detection

Contents
Abstract i
Sammendrag ii
Preface iii
Contents v
List of Figures vi
List of Tables viii
1 Introduction 1
1.1 Background and Motivation oL oo 1
1.2 Goal and Research Questions L. 2
1.3 Research Method 3
1.4 Thesis Structure 3
2 State of the Art 4
2.1 Sheep Grazing and Roundupo o 4
2.2 Existing Technologies 5
2.3 Growth of the Drone Industry o o 6
2.4 Object Detection e 7
2.4.1 The Cutting Edge 7
2.4.2 Object Detection Metrics L 8
2.4.3 YOLO - You Only Look Once 9
2.4.4 Detection of Small Objects L. 11
2.5 Deep Learning on Mobile Devices L 0oL 12
2.6 MSX — Multi-Spectral Dynamic Imaging 12
2.7 Related Thesis Work o 13
2.7.1 Previously Collected Data 13
2.7.2 Combining RGB and IR-models to Improve Performance 13
2.8 Experimental Results from Specialization Project 15
2.8.1 Summary of Results 17
2.9 SOTA Summary vttt e 18
3 Project Description 19
3.1 Requirements L 19
3.2 Hardware Constraints 21
4 Method 24
4.1 Data Collection e 24

iv

Real-time Sheep Detection

4.2 Data Preprocessingo 25
4.3 Deep Learning Model Training oo 27
4.3.1 Training with YOLOvV5S 28

4.4 Making the Model Mobile 30
4.5 Training Models for Smartphone Performance Evaluation 32
4.6 Experimental Variables oo oo 33
4.6.1 Performance Metrics Lo 33

4.6.2 Independent Variables 35

4.6.3 Control Variables L 36

4.7 SUMIATY . . .« o o e e 37

5 Results 38
5.1 Data Collection 38
5.2 Data Preprocessing Lo 39
5.3 Model Performances 40
5.4 TImpact of Converting to Mobile-friendly Format 44

6 Discussion 47
6.1 The Data Set e 47
6.2 The MSX-models 47
6.3 RGB-models 48
6.3.1 Regular Models 48

6.3.2 Tiled Models e 48

6.4 The Impact of Running on Mobile Hardware 49

7 Conclusion and Future Work 51
7.1 Conclusion e 51

7.2 Future Worko 51
Appendix 54
A Data Set Sample Images 54
A.1 Sample of Labelled Images in Training Data Set 54

A.2 Sample of Images and Prediction on the Validation Data Set 55

A.3 Sample of Images and Prediction on the Test Data Set 56

B Python code scriptso o7
B.1 Converting Pascal VOC to YOLO-format 57

B.2 Tiling images and transform labels 57

C Resultsof All Models. 59

Real-time Sheep Detection

List of Figures

10
11
12

13

14

15
16

17
18

19
20

21
22
23
24

25

The three phases of sheep roundup.
Example of radio bells. Findmy [9], Telespor [10] and Smartbjella [11] respectively.
An object detection model at work. Lo
Development of SOTA object detection models the last five years [16].
All detections are evaluated and categorized in prediction classes using IoU.

YOLOwS5 architecture illustrating the backbone layers, the network neck and the de-
tection output. L L L L

Pretrained checkpoints’ performance for different sizes of the YOLOvS5 architecture
on the COCO data set. Also includes the performance of a competing architecture

EfficientDet. Image origin: [20]

Pretrained checkpoints’ performance for different sizes of the YOLOvS5 architecture
on the COCO data set. Image origin: [20]

An example image with its labels displayed, and the corresponding text label file on
YOLO-format. e

Example of normal thermal image versus the same image using MSX.
Envisioned system from previous work by K. Johannessen [4]

Example of predictions on the test data set by MSX, downscaled 1024p RGB and
full resolution 4064p RGB-models.

Precision-recall graphs for a MSX and the two RGB models. The resulting numerical
AP can be seen in Table &

An overview of the envisioned solution using a mobile application for processing
drone video and perform sheep detection.

DJI Mavic 2 Enterprise Dual

Corresponding RGB and MSX-images captured with the M2ED drone. Note the
smaller frame and lower resolution of the MSX-image.

Marked in yellow are areas covered by UAV during data collection in Storlidalen.

Sample of an image in the data set, the original size and the tiled image files of this
image. The generated tiled image size is 640x640p.

An example of the breakdown of a model’s performance after training is completed.

Screenshot of a wandb-report. The report highlights the model’s performance and
losses during training.o e e e e

The process of making a sheep detection model specialized for smartphones.
Screenshots from the application used to test detection models on smartphone. . . .
Image where 2 out of 8 sheep are detected.,

Sample image-cuts showing sheep in different grazing environments. Images were
captured in Storlidalen September 2020.o

Average precision for MSX-models grouped by image resolution and model size. The
results are from the test data set using computer hardware.

o

10

10

11

11
13
14

16

16

19
21

22
24

27
28

29
30
31
33

38

vi

Real-time Sheep Detection

26

27

28

29

30

31

32

33
34

Inference time and average precision of MSX models grouped by image resolution
and model size. The results are from the test data set using smartphone hardware.

Average precision for all s-sized RGB-models grouped by image resolution and whether
they are trained using tiled or downscaled images.

Average precision grouped by image resolution and model size. All models are trained
using tiled images and AP is based on test set results. The tiled bar represents AP
for models on the tiled test set while the rest are complete images resized to the given
TeSOlUtION. L

Inference time and average precision of RGB-models grouped by image resolution
and model size. L

Detection performance of corresponding models trained and tested using MSX and
RGB images. Both are s-sized models and tested on computer hardware.

Average precision performance for MSX and RGB models on the validation and test
data sets. e e e

The difference in inference time and average precision grouped by detection model
and hardware devices. oL e

Precision, recall and sheep retrieval for four different models.

Predictions made by the tiled 640 s-model on a complete image downscaled to
1920p vs a tiled 4K-image o e e

41

42

43

43

44

45
46

vii

Real-time Sheep Detection

List of Tables

11

Price and features of existing radio bells.
Summary of the existing data set of images

Summarized performance of experimental models on the test set. Best values for
each column marked in bold.

An overview of the hardware units used in this project and what they are used for.
DJI M2ED specifications o v i i e e
Distribution of images used across data sets.
Distribution of tiled images across data sets.
Mobile performance of rgb 1280 s and rgb 1280 s6
Mobile performance of tiled 640 s on downscaled 1920p and tiled 4K-images.

All results are from the test data set of MSX images. The model name describes
the model’s image input type, image resolution and size of the model. The confid-
ence threshold is either 0.01 or 0.5 to maximise AP or balance precision and recall
respectively. SR is the model’s sheep retrieval.

All results are from the test data set of RGB images. The model name describes
the model’s image input type, image resolution and size of the model. The confid-
ence threshold is either 0.01 or 0.5 to maximise AP or balance precision and recall
respectively. SR is the model’s sheep retrieval.

17
21
21
39
39
48
49

60

viii

Real-time Sheep Detection

1 Introduction

This chapter gives a brief introduction to the problem and the motivation for this thesis as well
as the main goal and research questions. This is followed by a short explanation of the research
method and the thesis structure.

1.1 Background and Motivation

The grazing season for sheep in Norway is an important aspect of sheep welfare and provides a
use for the vast outlying fields which are hard to cultivate [1]. The sheep live on vegetation that
is found naturally in these environments and help maintain the mountainous areas.

In 2019, more than 2 million sheep were released to outlying fields throughout Norway. Of these,
approximately 100 000 sheep were lost during the summer season [2]. The losses are caused by a
combination of natural predators, disease, accidents, etc. Additionally, rounding up all the sheep
at the end of the grazing season is challenging for sheep farmers, who might spend hundreds of
hours in the field — and still not find everyone. The retrieval process is made difficult by the sheer
size of the pasture area, often in rugged terrain.

The Digital Revolution has been partially embraced by the agricultural sector and there are several
tools to assist sheep farmers in their work. For instance the use of radio-bells and UAVs to supervise
the herd. Ever improving UAVs can enable farmers to survey even the most challenging terrain to
find sheep. With their ability to cover large areas they can be used to search for stragglers during
the roundup.

While today drones are mainly for manual supervision [3], this project aims to research the pos-
sibilities for UAVs to scan large areas from above and automatically search for sheep using deep
learning networks. With the recent rapid development in deep learning-based object detection and
computer vision, there is reason to believe automatic detection of sheep in these UAV images could
be a viable alternative to conventional roundup methods.

Real-time Sheep Detection

1.2 Goal and Research Questions

Goal Develop a deep learning model that automatically detects sheep in UAV images in a
real-time detection application.

The main goal of this thesis is to develop deep learning models for finding sheep in visual and
thermal drone images. The main focus is to develop and test real-time detection models to be used
on a mobile device or directly on the drone itself. This kind of application would enable farmers
to quickly and effectively search for missing sheep in the field. For the model to be suitable in
a real-world scenario, the total processing time per image must be brief, and the number of false
detections must not be prohibitively high.

RQ1 How does running on mobile devices affect inference time and detection performance of
a deep learning sheep detection model?

A mobile device such as a smartphone or a drone has limited hardware capacity and normally
sports reduced processing power compared, to a computer. Image detection and deep learning, in
general, require a lot of processing power, as a great number of operations are required for a deep
learning network to work properly. It is key to examine how the hardware constraints affect the
time usage and quality of the detection operation.

Some deep learning architectures offer smaller versions that are less memory intensive, to make
them better suited for a mobile environment. The smaller models generally perform slightly worse,
but this might be a reasonable trade-off that should be studied.

RQ2 How does a reduction in the degree of localization affect detection performance of a deep
learning sheep detector?

In practice, the detector does not need to detect every sheep in an image for every sheep to be found
by the farmer — only detecting one in a herd of many should be sufficient; despite the potential
poor scores this could give using traditional methods of evaluation. By evaluating the detector on
what in practice is a binary classification task, i.e. «does this image contain at least one sheep?»,
we can make a more precise judgment of the detector’s performance in a real scenario.

RQ3 How does the use of combined visual and thermal images affect inference time and de-
tection performance of a deep learning sheep detector?

Some UAVs with both visual and thermal cameras provide images where both visual and thermal
features are combined into a single image. These images provide features from both spectrums to
the deep learning sheep detector without needing multiple input images and may contribute to a
better basis for detections.

Real-time Sheep Detection

1.3 Research Method

The steps carried out to realize the thesis’ goal are described below. Steps 3-5 are executed as more
of an iterative process where new models are trained based on knowledge from previous results.

1. Collect and preprocess visual data of sheep. This includes expanding the already existing
data set with visual and thermal images. Additionally, making sure the data is suitable and
has the correct metadata.

2. Explore state-of-the-art deep learning models and choose the best suited for the project’s
data and detection requirements. Customize and adapt this model to use case if needed.

3. Train the deep learning model using images of sheep.
4. Develop an Android application with the ability to test different sheep detection models.

5. Test the model by exposing it to unseen images and evaluate it based on precision, recall,
sheep retrieval, average precision and inference time.

1.4 Thesis Structure

Chapter 1: Introduction introduces the problem and motivation that form the basis of this
thesis. It gives a short introduction to the research method and includes the research goal and
questions.

Chapter 2: State of the Art covers the state-of-the-art technologies for both sheep roundup and
object detection, as well as summarizing earlier thesis work related to the field — mainly focusing
on the work of K. M. Johannessen [4] and our specialization project.

Chapter 3: Project Description covers the project requirements and hardware restrictions.
Chapter 4: Method describes the methods used to answer the research questions — showing
how data was collected and pre-processed, the training of object detection models, and how they
were compared.

Chapter 5: Results presents the results from our work.

Chapter 6: Discussion covers an analysis of our results and their implications.

Chapter 7: Conclusion attempts to summarize the thesis in one, relatively short section, as
well as suggest possibilities for future related work.

Real-time Sheep Detection

2 State of the Art

This section covers the state of sheep grazing and retrieval, an overview of deep learning object
detection models with an emphasis on the YOLOv5 architecture, followed by a summary of earlier
work under supervisor Hvasshovd.

This thesis is a continuation of our specialization project [5] which in turn learned a lot from the
specialization project[6] and master’s thesis of K. M. Johannesen [4]. Johannesen explored the
combination of RGB and IR-images in object detection as well as providing a detailed overview of
several ResNet and ResNeXt architecture’s performance.

2.1 Sheep Grazing and Roundup

2 million sheep and lambs were released to grazing pastures in 2019 [2]. Of these, 100 000 were
never retrieved. Of the losses with a documented cause, most can be attributed to predators,
accidents and illness. More than half of the losses, however, were never found and do not have a
documented cause.

By law, farmers are required to supervise their grazing sheep every week. This is a task made
difficult by the herd being spread over a large area in difficult terrain, often obscured by vegetation.
Some measures are in place to mitigate this, such as strategically placed salt blocks and fences, in
an attempt to encourage sheep to stay within a more limited area.

Bringing the sheep in from their pastures is a difficult task, usually carried out over three main
phases [7] as illustrated in Figure 1.

A A A

el
] - !
a us a = - »
‘@ a a Lgetd g “uw
a e e
) o a ®
Y <,
(a) Phase 1: Main roundup (b) Phase 2: Second roundup (c) Phase 3: Search for stragglers

Figure 1: The three phases of sheep roundup.

Roundup phase 1: Carried out over several weekends, usually with the help of extra farmhands.
Most sheep — about 90% — are found during this phase.

Roundup phase 2: Carried out over several weekends, usually by only the farmer or with limited
manpower.

Roundup phase 3: Carrier out after the main roundup phases. The farmer now tries to retrieve
the stragglers that have not been located. This is also done with limited manpower and is often
extra physically demanding, since the sheep have left the main grazing area and moved into more
difficult terrain.

Real-time Sheep Detection

2.2 Existing Technologies

Farmers already employ several solutions to assist in the supervision and roundup of their sheep.
However, these are limiting in either their cost or efficiency.

Bells

Tried and tested, the metal bell has been in use worldwide for millennia. It is cheap, easy to use
and low-maintenance. Its efficiency is limited by the farmer having to be in relative proximity to
the bell in order to hear it — a problem often made worse by the rugged terrain in the Norwegian
mountains. Despite this, they remain the most widely used solution to the sheep tracking problem,
simply because its competitors are prohibitively expensive.

Recently there have also been questions raised regarding the welfare of the sheep having to carry
around a loud bell all summer long [8] — suggesting a less noisy solution could be needed.

Radio Bells

A modern version of the traditional bell, the radio bells produce no sound and allows for remote
tracking of the sheep. The main Norwegian radio bell providers are Findmy[9], Telespor[10] and
Smartbjella[11]. In addition to being quiet, the radio bells include nifty features such as movement
alerts and geofencing.

The bells, however, are pricey and dependent on signal coverage. Telespor and Smartbjella use
NarrowBand IoT to communicate, which in turn is dependent on network coverage from either
Telenor or Telia. Findmy is connected to low-orbit satellites and GPS which is more expensive,
but also more reliable.

Figure 2: Ezxample of radio bells. Findmy [9], Telespor [10] and Smartbjella [11] respectively.

Drones

Some farmers already employ unmanned aerial vehicles (UAV) in their work. UAVs can be used
for manual monitoring as well as scouting for predators. Their start cost is relatively high, but
they are cheap to use and can be used for several years with proper maintenance.

Summary

Despite the emergence of more modern solutions, the basic bell is still the most widespread, often
mixed with the more technologically advanced solutions. Equipping large herds of sheep with radio
bells is prohibitively expensive. Instead, a select few sheep are fitted with them to make general
monitoring easier. The radio bells do relatively little to help with the retrieval of stragglers during

Real-time Sheep Detection

Findmy (model 2) Telespor (4. gen) Smartbjella 2
Price per unit (NOK) 1890,- 1124,- 899.-
Yearly subscription cost 229,- 186,- 238,-
Seasonal subscription cost Not an option 124 - 99,-
Communication strategy low-orbit satellite, GPS NB-IoT, GPS NB-IoT, GPS
Battery life (years) 2-3 1 2-17
Geofencing v’ v’ v’
Movement alert v’ v’ v’
Stress warning v’
Approx. number of bells in use 40000 - 24000

Table 1: Price and features of existing radio bells.

phase 3 of the roundup, seeing as it is unlikely that the sheep that go missing are equipped with
radio bells.

The same can be said about drones — they are a useful tool in maintaining a general overview of
the herd, but without anything but the raw images from the drones, they are not very useful in
retrieving stragglers either. Reviewing hours of UAV footage is time-consuming, prone to human
error and several hours, if not days, out of date when the review is complete, rendering the process
useless as the sheep has likely moved on.

2.3 Growth of the Drone Industry

Formerly being limited to military use, usage of drones in civilian industries has exploded over the
past decade — a growth that is presumed to continue in the coming years. PwC predicts drone use
in construction and mining could eventually become a $28.3 billion global market [12], and The
European Commission predicts that by 2035 the European drone sector will directly employ more
than 100,000 people and have an economic impact exceeding 10 billion euros per year, mainly in
services [13].

Providers such as DJI offer their drone services to all fields of industry ranging from industrial
surveying and inspection, to agriculture mapping and real estate media [14]. Their state-of-the-art
UAVs allow for carrying heavy cinema-grade cameras. They are, however relatively limited by an
airtime of 30—60 minutes per battery depending on the payload.

While enterprise is the fastest growing drone market, more inexpensive drones are becoming in-
creasingly popular for recreational use as well. Flaring competition among drone providers is
pushing down costs for these types of consumer drones — particularly among higher-end models
that can shoot photos and live stream video. For example, in 2019 Parrot launched the Anafi
Thermal in response to DJI’s 2018 Mavic 2 Enterprise Dual — but $700 cheaper. Both devices are
portable thermal imaging drones that incorporate FLIR’s Lepton 3.5 miniature thermal imaging
unit[15].

Real-time Sheep Detection

2.4 Object Detection

A deep learning network attempting to solve an object detection problem focuses on detecting
and classifying objects in an image. Objects detected by the network are identified by a bounding
box — a square surrounding the object. The bounding box is accompanied by the type of object
the network believes it has detected as well as a numerical confidence value, which indicates how
confident the network is that its prediction is correct. Figure 3 shows an example of the results
after an object detector is applied to an image.

Figure 3: An object detection model at work.

2.4.1 The Cutting Edge

The field of computer vision is at the cutting edge of computer technology research. Established
methods and models are constantly being improved upon while new ones are emerging monthly(!).
An overview of the recent developments and their performance is illustrated in Figure 4.

@ DetectoRS (ResNeXt-101-64x4d, multi-scale)

AC-FPN Cascade R-CNN (X-152-32x8d-FN; INSK Sl scale; oy CEM]

* D-RFCN + SNIP (DPN-38 with flip, multi-scale)

Mask R-CNN (ResNeXt-101-FPN)

Faster R-CNN [box refinement, context, multi-sealejtesting)
N —

r—
550512
¢

20

Jan'16 ul'6 Jan'17 'z Jan'18 s Jan'19 "9 Jan'20 ul'20 Jan'21

Other models -~ Models with highest box AP

Figure 4: Development of SOTA object detection models the last five years [16].

When tens of papers are published yearly, alongside several models that are made available without
official research papers (such as YOLOvV5), it is nigh on impossible to determine which model
provides the best starting point for a thesis such as this. Intuitively one might expect simply

Real-time Sheep Detection

picking the model with the highest performance as displayed in Figure 4, but it should be noted
that these performances are based on the COCO data set (Common Objects in Context)[17].
This data set provides a broad and general testing ground for object detection models, but great
performance on COCO does not necessarily equate to great performance in a specialized use case
such as sheep detection in the field — especially when one considers inference time and suitability
for mobile hardware.

2.4.2 Object Detection Metrics

Several metrics are used to evaluate the performance of object detection models. Precision, recall
and average precision are the most widely used. For these metrics to be used, one needs a way to
determine whether the model’s predictions are correct.

For this, intersection over union (IoU) is used. IoU compares the model’s bounding box to the
ground truth — a <«true» bounding box as set by a human, as illustrated in Figure 5a. If a
certain overlapping threshold is met between the predicted bounding box and the ground truth,
the prediction is counted as correct, or a true positive (TP). If the threshold for a ground truth fails
to be met, the model fails to identify an object, this is a false negative (FN). If the model predicts
a bounding box where there is none, it is counted as a false positive (FP). Finally, if the model
predicts nothing where there is no ground truth, we have a true negative (TN). The prediction
classes are illustrated in Figure 5b.

Ground Truth

Positive Negative

Positive . S
Area of intersection
iovs e o<t
D Ground Truth
O Predictions
L=
i Negative N ™
Area of union
-1 missed detection
(a) Intersection over union (IoU) (b) The prediction classes TP, FP, FN and TN

Figure 5: All detections are evaluated and categorized in prediction classes using loU.

The precision metric is a measure of the accuracy of the predictions made by the model. It is
calculated as shown in Equation 1. A high-precision model rarely gives false positives, but the
metric does not consider missed detections. A model that correctly predicts one sheep in a herd
of one hundred will have a precision of 100% despite its poor performance.

The recall metric measures how many of the ground truths the model is able to find. It is calculated
as shown in Equation 2. A high recall model can find most objects in an image, but the metric
does not consider false positives. A model that predicts 1000 sheep in a herd of 100 will have a
recall of 100% despite its poor performance.

Precisi TP correct predictions (1)
recision = =
TP+ FP all predictions

Recall TP correct predictions @)
ecall = =
TP+ FN all ground truths

As such, there is a trade-off between precision and recall, often visualized by a precision-recall
graph. Which of these metrics are to be maximized depends on the use case. If every single object
must be correctly identified one might opt to maximize recall, despite the false positive noise that

Real-time Sheep Detection

must be handled. On the other side, if false positives are too expensive to handle, one might want
to prioritize precision despite missing out on some of the harder-to-spot objects in the images.

Average Precision (AP) takes both precision and recall into account by averaging precision over a
range of recall values — in practice calculating the area below the precision-recall curve. This makes
AP a good metric to evaluate the overall performance as well as the potential of a detector.The
AP is often used with an additional number like AP.5/AP@0.5, which means the ToU threshold of
a detection is 50%.

A model with a high AP-value can still be lacking in precision. This suggests that the model has
high confidence in its correct predictions and low confidence in its wrong ones — meaning that its
confidence threshold can be increased to boost precision without a significant loss in recall.

Conversely, if precision is high and AP relatively low, the confidence threshold may be lowered to
increase recall and AP. Hopefully without too much of a hit to precision.

2.4.3 YOLO - You Only Look Once

The first version of the You Only Look Once (YOLO) object detection algorithm was introduced
by Josh Redmond in 2015 [18]. It demonstrated competitive results thanks to its new approach
with its single convolutional neural network (CNN) used to predict both bounding boxes and
class probabilities. Its name is derived from the fact that each image only has to pass through
the network once for a prediction to be made. The single-stage approach to detection has several
advantages, the greatest being that it is very fast, which allows for real-time analysis. Additionally,
it learns generalized representations of objects very well. Compared to other multistage detectors,
YOLO «sees» and considers the entire image which allows it to reason globally and use contextual
information about objects. The architecture of YOLO has been gradually improved and released
in new versions since the first in 2015.

YOLOv5

The latest version of the algorithm is YOLOv5 [19], and is today considered state-of-the-art for
real-time object detection — still based on the single stage-network principle of the first publicized
version. An overview of the YOLOv5S architecture layers is shown in Figure 6.

YOLOv5’s performance on the COCO dataset [17] can be seen in Figure 8. This data set contains
330,000 images with varying objects in a 640x480 resolution, and is widely used to evaluate the
performance of object detection models.

The YOLOv5 architecture is primarily available in four different sized models (s/m/1/x) which
contain increasingly more parameters. Because of this, the larger models tend to produce better
results, but require more memory and are slower to run. The checkpoints’ statistics and perform-
ance can be seen in Figures 7 and 8.

YOLO uses its own format for ground truth labeling. Every image file is paired with a text file
where each of the image’s ground truth bounding boxes are represented with five numerical values:
Object class index, center x-value, center y-value, bounding box width and bounding box height.
A labeled image with its corresponding label file can be seen in Figure 9.

Real-time Sheep Detection

Backbone 1 Output

Focus (3,64,1,1)

CONV (64,128,3,2)

Concat(512) Conv2d (256,na * (nc + 5),1,1)

Upsample(256)

CONV (256,512,3,2) CONV (512,256,1,1)

Conv2d (512,na * (nc + 5),1,1)

€3(512,512) x9 €3(1024,512) x3 —'—»

I
I
|
SPP (1024) |

|
C3(1024,1024) x3 CONV (1024,512,1,1) m—:b

Figure 6: YOLOv5 architecture illustrating the backbone layers, the network neck and the detection
output.

Better
50 YOL! =
N{OLO V/SI/,/~ OLOv5x
. V7
—_ YOLOvV5mM “
g >
2 40 -
S /
SYOLOv5s f —e— YOLOV5s
35 e —e— YOLOvV5m
—eo— YOLOV5I
—eo— YOLOvV5x
30 o EfficientDet |
|
0 15 20 25 30

5 10
Faster <@ GPU Speed (ms/img)

Figure 7: Pretrained checkpoints’ performance for different sizes of the YOLOvS architecture on
the COCO data set. Also includes the performance of a competing architecture EfficientDet. Image
origin: [20]

10

Real-time Sheep Detection

Model Apval aptest Ap.. Speedgpy FPScpu params FLOPS
YOLOvEs 37.0 37.0 56.2 24ms 416 7.5M 13.2B
YOLOvEm 443 443 63.2 34ms 294 21.8M 39.4B
YOLOVEI 477 477 66.5 4.4ms 227 47.8M 88.1B
YOLOvEX 49.2 49.2 67.7 6.9ms 145 89.0M 166.4B
YOLOvEx + TTA 50.8 50.8 68.9 25.5ms 39 89.0M 354.3B
YOLOv3-SPP 156 455 65.2 4.5ms 222 63.0M 118.0B

Figure 8: Pretrained checkpoints’ performance for different sizes of the YOLOvS architecture on
the COCO data set. Image origin: [20]

DJI_0423Ne=p

sheerp

open ~ M DJI_0427.txt

079122 0.403073 0.027926 0.063830
045878 0.381797 0.033245 0.049645

- o

0 0.
0 0.
0 0.200133 0.068558 0.035904 0.085106
0 0.399601 0.583924 0.033245 0.047281]

PlainText > Tab Width:8 ~ Ln 4, Col 38 ¥ INs

Figure 9: An example image with its labels displayed, and the corresponding text label file on
YOLO-format.

2.4.4 Detection of Small Objects

COCO evaluation results for recent SOTA algorithms show models struggling when it comes to
detecting small objects compared to the larger ones. In some instances, the AP for small objects
is a fifth of that of the larger objects [21].

Sheep in drone images will in most cases be relatively small objects to detect, depending on the
flight height. Some measures that can help to detect small objects are maximizing the capture
resolution of images and increasing the detection model’s input resolution. This will increase the
richness of features the object detector may form for small objects.

Image Tiling

Tiling an image means dividing it into equal-sized tiles, with each tile keeping its original resolution
and detail. Tiling can be done as a preprocessing step and will effectively zoom in on small objects
while maintaining small input resolution for the detection model. The small resolution will help
its ability to run fast inference.

In theory, tiling allows for the processing of a high-resolution image without having to handle it
in its entirety all at once. This might make a smaller model with fewer parameters sufficient to
handle all the information in a 4K-image. In addition, the lower resolution of each image speeds
up training, even though there are more images in total.

Tiling might lead to increased inference times, depending on how the inference is performed. While
the information that needs to be processed is the same, a single 4K-image only needs to be loaded

11

Real-time Sheep Detection

and unloaded to and from the model a single time. A tiled image might load 50, albeit smaller,
images in 50 separate operations. This overhead might lead to a prohibitively expensive time loss.
It is possible to remove this added time by performing inference on non-tiled images, but this will
likely negatively impact prediction scores, as the model has trained on smaller, tiled images [22]
[23].

2.5 Deep Learning on Mobile Devices

Deep learning strongly depends on and thrives with a lot of processing power, memory and storage
capacity. The drive to maximize the accuracy of deep learning models has led to an increase in
model size and a reduction in power efficiency [24]. This section covers some measures and tools
to help make a deep learning model suitable and able to work on smaller devices.

The TensorFlow Lite Framework

Many deep learning frameworks come with tools for mobile deployment of machine learning models.

TensorFlow Lite [25] (TFLite) is a well-known and documented framework specialized for mobile
devices or IoT gadgets. TFLite is part of the TensorFlow framework developed and maintained by
Google. The key points of TFLite are converting and interpreting models to optimize for speed.
The conversion focuses on reducing the model’s size to enable storage while the interpretation
optimizes the processing speed.

Model Quantization

Quantization of deep learning models is done by reducing the precision of the numbers used to
represent the parameters — by default a 32-bit floating number. A reduction to 16-bit floating
numbers, which only yields a small reduction in precision, will reduce the model size by 50% [26].

GPU Delegation

Graphical processing units (GPUs) are typically more efficient than CPUs on highly parallelizable
tasks like deep learning. The reason is that deep learning models consist of a huge number of
operators, each working on an input tensor that can easily be divided into smaller workloads and
carried out in parallel [27]. Most new smartphones have a dedicated GPU that can be used to
speed up detection tasks. In addition, the GPU carries out computations efficiently and consumes
less power than if the same task were to be performed on a CPU.

2.6 MSX — Multi-Spectral Dynamic Imaging

MSX is a FLIR-patented technology that processes digital features in real-time [28]. In this use case,
it enhances the UAV’s infrared images by using features from the onboard digital camera, while
retaining the same resolution as the original IR image. MSX allows for easier target acquisition
without compromising the thermal data and makes outlined details easier to see by superimposing
high contrast features from the RGB images onto the thermal images [29]. An example of a regular
thermal image versus MSX is shown in Figure 10.

Performing detection on a single image with both visual and thermal features has the potential
of saving time on mobile devices where each detection is slower. Although inference time could
improve due to the low-resolution, the loss of information compared to a high-resolution visual
image is significant.

12

Real-time Sheep Detection

(a) Regular thermal image (b) Thermal image using MSX-technology

Figure 10: Ezample of normal thermal image versus the same image using MSX.

2.7 Related Thesis Work

Svein-Olaf Hvasshovd [30] at NTNU has supervised several theses that have tackled problems
related to sheep retrieval — often focused on object detection using deep learning — over the past
few years. This work makes the foundation for this project.

2.7.1 Previously Collected Data

Since the autumn of 2018, students working on related theses have been collecting images for a
dataset to be used by themselves as well as future projects to come. In this thesis we only make
use of images taken from August 2019 until today, all captured with the same UAV as described
in Section 3.2.

An overview of the dataset as of August 2020 is given in Table 2. Note that the UAV always captures
images in pairs — one with its regular RGB-camera and one with its thermal camera, but not
necessarily using MSX-technology on the thermal image. The column named MSX-images indicates
the number of thermal images that were captured using the UAV’s MSX-mode as described in 2.6.

When Where Total images MSX images
May 2019 unknown 170 47
Aug 2019 Storlidalen 1476 432
Sep 2019 Storlidalen 800
Oct 2019 Storlidalen 309
May 2020 Klaebu and Orkanger 222
Total 2977 484

Table 2: Summary of the existing data set of images

2.7.2 Combining RGB and IR-models to Improve Performance

K. Johannessen’s thesis Towards Improved Sheep Roundup [4] provides the theoretical backbone of
our work. Where earlier theses only utilized RGB-images and by now outdated methods of object
detection, Johannessen uses both RGB and IR-images in deep neural network models. It is shown
that a fusion of two separate models — each fitted to one of the image types — yields better results
than using the two independently. This strategy exploits both the information of body heat in the
IR-images as well as the texture and color in the RGB-images to great effect.

13

Real-time Sheep Detection

Johannessen provides a detailed study of the impact of fusion depth, model complexity and image
resolution on the precision and inference time metrics.

Real-Time Module:

2) Light weight, real-time onboard 3) User interface to visualise
automatic sheep detection detected sheep in real time

1) Capture Aerial Images

2) Accurate remote 3) User Interface to visualise
automatic Sheep detection detected sheep !
s

- ——
’

Figure 11: Envisioned system from previous work by K. Johannessen [/]

As part of the study, an effort was made to expand the size of the dataset of relevant drone
images, increasing the amount of data tenfold. The majority of images used in training the models
presented in this thesis come from this dataset.

Based on their findings, Johannessen suggests several approaches for future work.

Alternative network architectures should be explored. Deep learning evolves at a rapid pace, and
the ResNeXt-architecture — the newest architecture presented in Johannessen’s thesis — had already
been around for four years at the time.

Alternative approaches to object detection should also be explored. Johannessen’s solution outputs
grid probabilities — an approach that reduces processing time at the expense of precise position
location, when compared to bounding boxes. Further studies should investigate whether this
trade-off is justified.

Finally, the more external factors that might impact the system’s performance should be studied.
The altitude at which images are captured and the use of MSX-images are seen as the main ones.

14

Real-time Sheep Detection

2.8 Experimental Results from Specialization Project

The training results from our specialization project form the basis for the method and final mobile
models presented later in this thesis.

The training resulted in several models which were deemed suitable for further experimentation
and to improve upon. Following is a summary of the results and a short discussion around them.
A complete presentation of training results was presented in our specialization project [5].

MSX-model

This MSX-model was trained using separate training (334 images) and validation (43 images) sets
— the same ones used for training the finalized models presented later. The image resolution was
set to 640p, which is the native resolution for the MSX-images. The model was trained for 400
epochs.

The model was then tested on the same independent test set as the RGB-models, with the cor-
responding MSX-images. Some example predictions are shown in Figure 12a, accompanied by the
model’s prediction-recall curve from the test set in Figure 13a.

Downscaled 1024p RGB-model

This RGB-model was trained using separate training (334 images) and validation (43 images) set.
The image resolution was set to 1024 (downscaled from the original 4056). The model was trained
for 200 epochs.

Samples of its test predictions are shown in Figure 12b.

We can see that the 1024p-model provides results comparable to that of the full-resolution model.
The model is able to pick up most sheep in the open while it struggles more with partially covered
sheep. Notably, this model seems more prone to marking small, white details as sheep than the
4064p-model. The false positives tend to have lower confidence than that of the correct ones.
Figure 13b shows the precision-recall graph of the model.

Full Resolution 4064p RGB-model

The model was trained for 200 epochs using identical training and validation sets as the previous
downscaled model. Due to the high native resolution of the visual images and limited memory of
the hardware used for training, this model uses a batch size of 8 instead of the default 16. Other
control variables are the same as the RGB-model trained with downscaled images.

When exposed to the test set, the model is able to detect sheep as demonstrated in Figure 12c. It
is not as prone to false positives as the model using a lower resolution.

15

Real-time Sheep Detection

(a) Full resolution 640p MSX-model

S

(¢) Full resolution 4064p RGB-model

Figure 12: Ezample of predictions on the test data set by MSX, downscaled 1024p RGB and full
resolution 4064p RGB-models.

°
>
°
&
°
>

Precision
Precision
Precision

°
=
°
=
°
=

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 06 0.8 1.0 “0.0 0.2 0.4 0.6 0.8 10
Recall Recall Recall

(a) 640p MSX-model (b) 1024p RGB-model (¢) 4064p RGB-model

Figure 13: Precision-recall graphs for a MSX and the two RGB models. The resulting numerical
AP can be seen in Table 3

16

Real-time Sheep Detection

2.8.1 Summary of Results

Table 3 contains the models’ detection performance metrics on the test set — all tests were run on
computer hardware.

Image

] L Average Inference

Model name resolution Precision Recall o)
Precision time (s)

(px)
MSX 640 0.774 0.627 0.546 0.032
RGB_ 1024 1024 0.367 0.521 0.389 0.079
RGB_ 4064 4064 0.531 0.683 0.510 1.112

Table 3: Summarized performance of experimental models on the test set. Best values for each
column marked in bold.

We expected the full resolution 4064p-model to outperform the 1024p-model, and this did end up
being the case for all detection metrics. There is a notable difference in inference time between the
two RGB-models, as to be expected when the image resolution is different. This tells us that the
input resolution of images is an important factor when it comes to inference time, and it might
also impact the model’s performance.

The MSX-model had the highest precision and average precision, but did not beat the 4064p RGB-
model’s recall. This seems to be caused by the MSX-model relying on contours around objects
in contrast to their surrounding. As such, its predictions are mostly correct, but it struggles in
detecting darker sheep with a less distinct outline. This was somewhat contrary to our expectations
regarding the MSX-images, as we believed they should rely more on thermal signatures rather than
visual features transposed onto the thermal image by the MSX-software.

17

Real-time Sheep Detection

2.9 SOTA Summary

The traditional bell is still the most widely used tool in tracking grazing sheep, but farmers have
started experimenting with more technological solutions such as radio bells and UAVs.

Earlier work under supervisor Hvasshovd has shown that deep learning models can be trained
to spot sheep in images captured from relatively cheap UAVs, utilizing both regular and thermal
images. This work has also produced a data set of images for use in further work.

The drone industry itself is growing — service providers make use of drones in most industries by
now, and competition between drone manufacturers lowers the prices to the point where industrial
purpose drones are affordable to small business owners.

Object detection using deep neural networks has seen a significant boost in power over the past
years, with new and improved models emerging constantly. This, combined with the growing power
of mobile devices makes it possible to run relatively high-performing object detection on mobile
devices.

18

Real-time Sheep Detection

3 Project Description

A finalized product would be a mobile application able to connect to a UAV, perform sheep
detection analysis on its image feed, and provide instant feedback to the user, as illustrated in
Figure 14.

The first step towards this goal, and the practical purpose of this thesis, is to develop and evaluate
detection models able to run on a mobile device. We will develop a testing environment for such
models in an Android application able to connect to a UAV, and evaluate the models based on
their performance running in the application.

Earlier work has shown that models from deep neural networks can be used to detect sheep in
images captured by UAVs, but real-time feedback and hardware restrictions of mobile devices have
not been taken into consideration. These factors will be key points in this thesis.

2. Transfer data in real time

P

. " " 0
. .,
. "

/Mobile Application)

3. Sheep detection

m —

4. Show results

- i
T
o e
o o, e R
"""?'*7:-’:?:20 LS

'O.Q-' 24,
Tt
LR

1. Capture aerial photos

- J

Figure 14: An overview of the envisioned solution using a mobile application for processing drone
video and perform sheep detection.

3.1 Requirements

The following requirements must be met for the MVP to be successful.

R1: Real-time Feedback

The user should be given real-time feedback while the UAV is scanning the pasture area. This
requires the images to be processed by the object detection model at least at the same speed at
which they are captured by the camera. It is difficult to pinpoint the exact rate at which a drone
in a finalized product would be capturing images. The rate is mostly dependent on the speed
at which the drone travels. Naturally, a slow-moving drone allows for a longer processing time.
Increasing the altitude of the drone also allows for longer processing time, but this requires the
model to be able to detect sheep from higher up.

As such, we believe a processing time of below 1 second will be fast enough for a real-time mobile
object detection MVP.

Instant feedback is a necessity, as the alternative would be a post-flight analysis which — depending
on the pasture size — might be several hours after the image was captured, at which point the sheep

19

Real-time Sheep Detection

might have moved.

R2: Precision and Number of False Positives

The sheep detection model’s precision and recall performances should be good enough to show
potential to be used in a finalized product. These metrics are described in section 2.4. There is
always a trade-off to be made, and we believe precision is the most important of the two — or
rather, avoiding false positives is of utmost importance. If we imagine an image processing rate of
0.5 seconds, one false positive per 20 images would mean one false notification to the user every
10 seconds. This might be acceptable in short intervals, but during hour-long searches this would
quickly become too tiresome to handle, and should the false positive rate be any higher, the system
would lose a lot of effectiveness. Ideally, false positives are avoided altogether, but realistically the
goal is to keep the rate at which they appear low enough for the user to comfortably be able to
filter through them.

R3: Recall vs Actual Sheep Retrieval

Keeping the FP-rate low means sacrificing recall. This might seem counter-intuitive as the system’s
main purpose is to help farmers find all their sheep. There are, however, a couple of key points
to consider: Firstly, sheep, even the stragglers, rarely venture alone. As such, when flying over a
group of wayward sheep, it is sufficient to detect only one of the sheep for the whole group to be
found by the user. Furthermore, a single sheep is likely to be present in several images, as there
will be a certain overlap between images. It is sufficient for the model to detect the sheep in only
one of them for the sheep to be found. Depending on the altitude and speed of the UAV, the
angles from which the sheep is seen might change, or the sheep might be triggered to move — both
of which might improve the chances of the sheep being detected at least once.

As such, determining a target recall value is difficult. Imagine the drone flying over a small herd
of five sheep, capturing three images. If the model only detects two separate sheep in total, the
recall value is only a measly 13%, yet all of the «fifteen» sheep end up being found in the end.

For the MVP to be successful, it should be able to realistically retrieve a large portion of the sheep
it is presented. A metric for measuring the fulfillment of this is proposed in Section 4.6.1.

R4: The Model Should Run on Mobile Devices

For the MVP to be usable in the field, it must be able to run on mobile devices. The most taxing
part of the system is running the object detection model. As such, the model to be used must
be light enough to not require specialized GPUs to run effectively, but rather should run on a
smartphone or a portable computer. For the MVP to be successful it should run on a smartphone
without hampering the performance too much.

20

Real-time Sheep Detection

3.2 Hardware Constraints

This project is dependent on a lot of hardware used for different purposes. The image quality,
computing processing power for training and testing are two examples limited by hardware con-
straints. This section includes the hardware and its specifications used throughout this project.
An overview of this is shown in Table 4.

Hardware Unit

Primarily used for

DJI M2ED-drone
The Idun cluster
Dell XPS 9560
Huawei P30 Pro

Capture IR and RGB images of sheep
Training deep learning sheep detection models
Testing sheep detection models using computer hardware

Testing sheep detection models using smartphone hardware

Table 4: An overview of the hardware units used in this project and what they are used for.

The Drone

The Mavic 2 Enterprise Dual (M2ED)[31], seen in Figure 15, is the UAV used to expand the data
set. The drone’s key specifications are outlined in Table 5.

Takeoff weight: 899 g

Dimensions (1 x w x h):

Folded: 214x91x81 mm
Unfolded: 322x242x84 mm

Max flight time: 31 min

Max speed: 71 km/h
Visual camera

Image size: 4056 x 3040 px
Thermal camera

Model: FLIR longwave
Image size: 640 x 480 px

Table 5: DJI M2ED specifications

Figure 15: DJI Mavic 2 Enterprise Dual

The drone is suitable for use in an MVP due to its relatively low price while still providing a
high-resolution camera as well as access to FLIR thermal imaging. When capturing images both

21

Real-time Sheep Detection

cameras capture images immediately after each other. This allows for the creation of two separate
models using virtually identical images. It must be noted that since there is a physical offset and
resolution difference between the two cameras, the resulting images are not exact RGB/IR-copies
of each other. This can be seen in Figure 16.

(a) RGB-image

(b) MSX-image

Figure 16: Corresponding RGB and MSX-images captured with the M2ED drone. Note the
smaller frame and lower resolution of the MSX-image.

While the drone is good for the relatively small-scale experimentation done in this thesis, it is
lacking on several points which makes large-scale solutions difficult. A single battery is only
enough for roughly 30 minutes of airtime — even less while recording or capturing images. If one
factors in take-off time, camera adjustments and flight distance to the area to be surveyed, the
effective flight time can be significantly less than 30 minutes.

The M2ED-drone is also limited by a 125-meter altitude restriction in relation to its launch point.
In the highly undulating mountainous terrain, such an elevation limit makes covering large areas
challenging, and creating a realistic testing scenario for a final industrial product is difficult. Ideally,
such a product would use a larger UAV flying at a higher consistent altitude over varied terrain to
cover the large areas.

The Idun Cluster

The Idun cluster [32] is used to train every sheep detection model. Idun is an NTNU project
that aims at providing a high-availability and professionally administrated computing platform for
NTNU, allowing for rapid testing and prototyping of HPC-software.

22

Real-time Sheep Detection

The cluster provides both CPU and GPU power, but only GPUs were used in the work presented
here. The GPU power required for a training session is dependent on several factors — batch size
and model size being the most impactful ones. Depending on the memory requirements, training

was performed on 1-4 NVIDIA Tesla V100 16GB/32GB GPUs [33].

Idun uses the Slurm Workload Manager [34] to manage the provided resources and to schedule jobs
on these resources. This means that if one wants a lot of resources for a relatively long training
job, one must wait longer for those resources to be reserved than if the job was shorter or less
demanding of resources. As such, it is sensible to start with shorter, experimental model training
runs to get a feel for how the model will perform, rather than committing to a several days-long
wait before a week-long job from the get-go. This strategy for training is reflected in the results
presented later.

Personal Computer

All computer inference tests of sheep detection models were run on a personal computer: A Dell
XPS model 9560 laptop, with an Intel® Core™ i7-7700HQ CPU @ 2.80GHz and a dedicated
NVIDIA GP107M (GeForce GTX 1050 Mobile) GPU.

Smartphone

The device used for smartphone inference tests is the Huawei P30 Pro. This smartphone, though
a couple of years old, can be characterized as a well-performing phone from the normal consumer
market. It sports 6 GB of RAM and a Kirin 980 chipset with an eight-core CPU and the ARM
Mali-G76 MP10 GPU [35].

23

Real-time Sheep Detection

4 Method

This section describes our approach to answer the research questions as presented in Section 1.2.
We describe the collection and preprocessing of data, the development of the Android application,
the training of the detection models and the metrics they are evaluated by.

4.1 Data Collection

In general, deep learning models are dependent and based on large amounts of data, and expanding
the data set will expose the model to new environments and situations. A larger data set will,
in almost all cases, contribute to a better performing deep learning model. We expanded on the
existing data set by capturing more images, using the UAV provided by supervisor Hvasshovd,

described in Section 3.2.

Data Collection Field Trip

Data collection was carried out in Storlidalen, Oppdal over two days in early September 2020.
During this period, some sheep were still grazing freely and some had been retrieved and returned

to fenced areas around the local farms.

The timing was ideal to guarantee images of the fenced sheep, while also giving a possibility to
search for and capture images of free-ranging sheep. Images of free-ranging sheep are preferable
because they better represent the challenging conditions, vegetation and background terrain that
the sheep detector model would face in real applications. Weather conditions were partly cloudy

at about 5-10 degrees centigrade.

Approximate areas in which the drone captured images can be seen in Figure 17.

e S 2 y =~
N YRR dssahalgen ! Langmyray
\ NN agsn) X \
L : Raghies N
= Romfosztra 0o e
2 B - X2 cidhagen s
gt - as t & rahau =
27 {.skomakertjonna Plassfallet 259, S
tjonna
Tovhaugan
b 10225 1481 =
‘) 1261
Bardsgardskamben’ "~ Okla
\ 1150° 2 N
$2"BArdsgarden == ooy
Vassli
ok s@augen >
@
6514 x
..... 1519 Angardsvatnet = c
\ Nonshga ~Engarden < S
N — Bardsgardssaetra ¢ \Nausl 3 17—
\ Sandoya SLhAdden o5} @
b 1 Liat Sandoys-tre 3 =
\ 1379 ANdoySElrEs \ Haugen . >
\ Gruggus — T
3jorn= X 1172 =, ~ . f
\ skaret .., Sl
hjellan \
\,
\\
\/ 1458 Lorthoa. {34,]
\Indre 7O ===
\ o
h)
; 1470 N\,
‘]/Q] \\ 4
- Grynnmgshua\\ * < =
Kartverket' ‘ 0m

\

Figure 17: Marked in yellow are areas covered by UAV during data collection in Storlidalen.

The focus of the first day was sheep grazing in fenced areas close to the farms and cabins in and
around Storlia. The fenced areas mostly consist of relatively flat terrain or fields. This would
guarantee some images of sheep, as well as allowing for adjustment of camera settings, before
heading into the mountains the following day. The second day we followed the river Sandaa from
its mouth at Angardsvatnet some kilometers up the mountainside. This area featured varying

terrain with different degrees of vegetation.

24

Real-time Sheep Detection

In total, images were captured in 7 separate batches. Five containing sheep in fenced areas and
two containing free-ranging sheep in a more realistic testing environment further away from the
farm.

The M2ED drone features an MSX-mode where visual and thermal images are combined, as de-
scribed in section 2.6. As suggested by Johannessen, further experimentation with the use of
MSX-images would likely be a worthwhile endeavor [4]. Expanding the set of MSX-images was
therefore prioritized during the field trip.

The MSX-images were captured using MSX-mode, grey thermal palette and minimum and max-
imum temperature limits were set to 0 and 45 degrees centigrade respectively.

4.2 Data Preprocessing

Both new and existing data had to be preprocessed to best make use of the YOLOv5 architecture.

Data Selection

In order to make use of and properly evaluate the models using MSX-images, we deemed it suitable
to compare them to «identical» models using RGB-images. Meaning a model trained with the cor-
responding RGB-images (as described in Section 3.2 the drone captures images in pairs). As such,
RGB-images that did not have corresponding MSX-images (recall Table 2) were not considered for
use in the training of the model.

Earlier work has also shown that object detection is most effective and precise when images are
taken from roughly the same altitude [4]. This led to the exclusion of images captured from a
significantly higher or lower altitude than the average. No formal height thresholds were decided
upon, and pruning was done manually by simply removing images that obviously differed from the
average.

The pruned data set was then divided into training, validation and test data sets. There is no
definitive best ratio of images, but a commonly used distribution is 80%, 10% and 10% for training,
validation and test respectively was decided to be used [36].

Images were chosen so that similarity between the sets was minimized. This meant making sure
images of the same herd were not present in more than one set, as well as making the sets as
geographically independent from each other as possible. Low similarity between the sets should
help in creating a model which is able to generalize well and recognize objects that differ from the
ones it has seen during training. This independence is particularly important in the test set, as it
should expose whether the detector can fulfill its purpose on a real data set.

Data Annotation

Data annotation, or labeling, is the process of marking the images with tags for the object de-
tector to train and evaluate against. Different object detection algorithms use different annotation
formats. The old pictures utilized the Pascal visual object classes-format(VOC), which represent
bounding boxes by two pixel values indicating opposite corners of the box. As described in Section
2.4.3, YOLO uses a different format.

Thus, the old images needed to be converted from VOC to YOLO. This was done by calculating
the width, height and center of the bounding box. Then, each value is normalized from pixel
coordinates to an absolute value between 0 and 1.

The new images were labeled using the open-source tool MakeSense [37]. MakeSense generates
labels in both YOLO and Pascal VOC formats, allowing for both to be used in future work.

25

Real-time Sheep Detection

Image Tiling

As described in Section 2.4.4, tiling images as a preprocessing step might increase the model’s
ability to help detect small objects. The 4056x2280p original images were divided into 28 smaller
images, most of them 640x640p in size. The edge-tiles on the right and lower sides of the original
image are slightly lower and thinner. An example of tiling an image can be seen in Figure 18.

The process of tiling images will result in many tiles not containing any sheep. The training set
was first pruned to only include images containing sheep. Then, a set of empty tiles (roughly 10%
of the set size) was added to give a basis for empty images. For the validation and test sets, all
images are used and the sets therefore contain many empty tiles.

Even though the sets consist of the same images, the non-tiled sets are in practice much smaller
than the tiled ones, because the models will be exposed to significantly fewer unique training and
validation image instances. By including the empty tiles in the validation set, we hope the model
will learn to avoid terrain, thus lowering the number of false positives. The script used to tile
images and transform the labels to correct tiles is described in Appendix B.2

26

Real-time Sheep Detection

(a) Original image

DJI_0416_0 DJI_0416_1 DJI_D416_2 DJI_0416_3 DJL0416_4 DJIL0416_5 DIL0416.6

DJI_0416_7 DJI_0416_8 DJI_0416_8 DJIL0416_10 DILO416_11 DIL0416_12 DJI0416_13

DJI_0416_14 DJI_0416_15 DJI_0416_16 DJ_0416_17 DJI_0416_18 DJI_0416_19 DJI_0416_20

DJI_0416_21 DJIL0416_22 DJIL0416_23 DJIL0416_24 DJIL0416_25 DJIL0416_26 DII_0416_27

(b) Overview of tiled image files

Figure 18: Sample of an image in the data set, the original size and the tiled image files of this
image. The generated tiled image size is 640x640p.

4.3 Deep Learning Model Training

This section covers the methods used to train several object detection models, which hardware and
software were used, which data was used, and which training parameters were used.

Real-time Sheep Detection

4.3.1 Training with YOLOv5

The YOLOV5 repo [20] offers a wide variety of object detection accessories based on the YOLOv5
architecture.

To train a YOLOv5 model one has to run the #rain.py script, which can be configured with
customizable training parameters depending on the desired model. The most impactful parameters
include number of training epochs, batch size and image size. Configuration of these is discussed
further in Section 4.6.

Other parameters the script requires to be correctly defined are weights, data and device. The
weights parameter defines the path to a pre-trained set of weights to use as a starting point for
training the model — if left empty, the weights are randomly initialized. Every trained model
presented later will have used one of these pre-trained checkpoints provided by YOLOv5. Their
details can be seen in Figure 7.

Using pre-trained checkpoints is considered sensible for several reasons. Firstly, the checkpoints
have already demonstrated state-of-the-art performance. While they have not been directly trained
in detecting sheep in UAV-images, their results indicate an inherent ability to generalize and learn
to recognize objects well. Secondly, the size of the available data set, as well as time limitations,
make it unrealistic to train a well-performing model from scratch. The pre-trained checkpoints
have had hundreds of thousands of images available to them, while we have only a fraction of that.

Furthermore, the YOLOvV5 framework allows for the configuration and evolution of hyperparamet-
ers. All hyperparameters were kept at their default values for the models presented here.

After a training run has been completed YOLOvV5 provides a breakdown of the models’ performance
during training. This breakdown includes graphs showing the development of recall and precision
for each epoch as well as showing the model’s predictions on a subset of the validation images. An
example of a breakdown such as this is seen in Figure 19. Alongside statistics, two sets of model
weights: best and last. The last is intuitively the model weights as a result of the final epoch. The
best weights are determined by a customizable function set to reward the epochs with the highest
reported recall, precision and mean average precision.

Box Objectness Classification Precision Recall
1.0
0.10 0.025 —e— results 0.04
0.6 0.8
0.08 0.020 0.02
0.6
0.06 0.015 0.00 0.4
0.4
0.04 0.010 =0.02 0.2
0.2
0.02 0.005 -0.04
0.0 0.0
0 200 0 200 —-0.05 0.00 0.05 0 200 0 200
val Box val Objectness val Classification mAP@0.5 mAP@0.5:0.95
0.040 0.008
0.04 0.8 0.4
0.035
0.006 0.02 06 0.3
0.030
0.00
0.025 0.004 0.4 0.2
—0.02 o1
0.2 .
0.020 0.002
—0.04
0.015 0.0 0.0
0 200 0 200 —0.05 0.00 0.05 0 200 0 200

Figure 19: An example of the breakdown of a model’s performance after training is completed.

The model weights from the training run are then tested on a set of images it has not been
exposed to before. It is possible that the model simply has learned the images in the training set —
showing very good results during training — but will fail when exposed to an independent test set.
This testing does not require a high-performance GPU to carry out and can be run on personal
computers. The tests using computer hardware were run on the computer described in Section 3.2.

28

Real-time Sheep Detection

Models that show workable results are then converted to a format better suited for mobile devices
for further testing on mobile hardware, as described in Subsection 4.4.

More Data Visualization with Weights & Biases

To easier evaluate how different models performed against each other, the online tool Weights &

Biases (wandb) was used [38].

Weights & Biases helps in keeping track of machine learning projects — with tools to log hyper-
parameters and output metrics from runs, then visualize and compare results and quickly share
findings. Training output is logged to wandb (in addition to the default logging by YOLOv5 —
which is stored locally) where it is cleanly visualized — allowing for performance evaluation of
several models at a glance. An example of this can be seen in Figure 20.

matrics 4

metrics/recall

L
Iy W
(i |

.‘IFI‘. II‘Y (|

waljbox_loss

Figure 20: Screenshot of a wandb-report.

losses during training.

N
WA [

The report highlights

| |
|

‘ Al a e
Wi 1 '”n

the model’s performance and

29

Real-time Sheep Detection

4.4 Making the Model Mobile

The constraints of a mobile device compared to a computer requires some adaptations of the deep
learning model and how the detection is performed. Handling the reduced availability of memory
and processing power is a key factor when dealing with mobile detection models. Due to hardware
constraints as described in Section 3.2, the focus is solely on an Android implementation. An
illustration of the process can be seen in Figure 21.

Smartphone detection results

1. Convert to TFlite

Converted model

2. Run model on test set
Trained sheep detector

Figure 21: The process of making a sheep detection model specialized for smartphones.

Converting Models to TensorFlow Lite

As mentioned, YOLOV5 is natively using the PyTorch framework. To enable faster detection
on mobile devices the trained models are converted to TFLite. Conversion to a TFLite model
is recommended by the developers of YOLOvV) for detection on Android. In simple terms, a new
YOLOvV5 TF model is created, then the PyTorch weights of the trained model are transferred. The
final TFLite model is exported using built-in methods in the framework. The code for converting
the model is currently an addition to the official repository and includes guides and descriptions
on how it is done [39]. In addition to conversion, it includes implementation of the model in an
Android application for object detection. This implementation is based on examples in the official
guides of TFLite [40].

Developing the Smartphone Application

The MVP Android application should primarily enable the testing of different sheep detection
models with pre-captured images of sheep. The tests are performed by loading a trained model
into a YOLOvV5 detector. This detector is then used on the given images and information about
the performance is shown to the user. The detection is performed on the same test set of images
as described in Section 4.2, to make sure images are independent and equal to the test set used on
computer hardware. The key features of the application are highlighted in Figure 22.

To run a test a user has to complete four steps:

1. Select a sheep detector from all converted models in the dropdown menu
2. Only available for tiled models: choose inference on tiled or non-tiled images

3. Check box to run inference using the smartphone’s GPU (requires the device to have a GPU).
The device’s CPU will be used if not checked.

4. Run the test

30

Real-time Sheep Detection

These steps are shown in Figure 22a.

Figure 22b shows key statistics after a complete test run. The most important metrics are inference
time (per image), precision, recall and sheep retrieval. In addition to the detection performance
metrics, images with their respective ground truths and sheep predictions are included. All model
performance results for smartphone presented later in this section have all been tested using this

application.
= @ © $10:78% =) 10:57
///7 7\\
(1)
Choose detection model*/ v
¢ [JerPu RUN TEST
N\ 7\ N\
(2) (3) (a4)
_ /',/ N // \\) /’

R

m alE @ © %10t100% = 12:02
tiled_rgb_1920_s-fp16.tflite v
non-tiled v GPU RUN TEST

Objects

Average inference time: 844ms
Sheep found: 117/142

predictions not sheep (FP): 24
sheep not found (FN): 25
Total predictions: 141

Precision: 0.8298

Recall: 0.8239

AP: 0.8167

Images

Images with sheep: 29/35
Image metrics TP, FP and FN: 28 2 1
Sheep retrieval (TPimage:139): 0.979

TP - DJI_0262.JPG

(a) The steps to select a detection model and other (b) Detection performance is provided on comple-

options prior to running an inference test.

tion. The test images, including labels and predic-
tions, are shown below the statistics.

Figure 22: Screenshots from the application used to test detection models on smartphone.

31

Real-time Sheep Detection

4.5 Training Models for Smartphone Performance Evaluation

Initial trials on smartphones showed, not unexpectedly, significantly slower inference times than
those of computer hardware. To better evaluate what factors into this inference time, and whether
it can be shortened while still maintaining performance, it was decided to train several models
covering large parts of the spectrums of model size and image resolution for both MSX and RGB-
images.

MSX-models were trained with downscaled image resolutions of 160p, 320p and 640p. Additionally,
upscaled image resolutions from the original 640p to 960p and 1280p were tested. Each resolution
was trained with three of YOLOvV5’s model sizes: s, m and z.

RGB-models were trained with resolutions 320p, 640p, 1024p, 1280p and 4064p with model sizes
s and m. We do not believe the smartphone hardware will be able to achieve close to real-time
inference time on the 1920p images, let alone the 4064 ones. However, it will still be useful to see
whether the predictive performance will be better at these high resolutions, as it will indicate to
what degree the smartphone hardware is a bottleneck in realizing mobile real-time detection as a
product.

32

Real-time Sheep Detection

4.6 Experimental Variables

The performance of the models is dependent on several variables. To investigate how the variables
affect performance, they are divided into two sets: control variables and independent variables. The
control variables are kept constant for all models. The independent variables, on the other hand,
are varied between each model. Finally, the models were evaluated based on a set of performance
metrics.

4.6.1 Performance Metrics
Precision

Precision, as described in Section 2.4.2, measures the share of correct predictions.

Recall

Recall, also described in Section 2.4.2, measures the portion of sheep detected by the model.

Average Precision

A model’s average precision (AP) is found by calculating the area under the curve of the interpol-
ated precision-recall curve, as described in Section 2.4.2.

Sheep Retrieval Measure

As described in Section 3.1, a 100% recall is not needed to actually retrieve every sheep. To better
put a numerical value on the portion of retrieved sheep, we propose a sheep retrieval measure.

Instead of a sheep having to be detected in order to be retrieved, it is sufficient for any sheep in
a given image to indirectly detect them all. The sheep retrieval metric includes these indirectly
detected sheep.

Sheep retrieval for a set of images is determined by summarizing all retrieved, divided by the total
amount of sheep. Figure 23 shows an example of an image with some detections. In this example
the recall and sheep retrieval score would be 0.32 and 1 respectively.

Figure 23: Image where 2 out of 8 sheep are detected.

33

Real-time Sheep Detection

Inference Time

We define inference time as the time in seconds a model needs to return a list of predictions given
an image. The inference time only includes computing the prediction(s) for each image.

A low inference time is necessary for the application to be used in real-time as stated in Section
(3.1).

Confidence Threshold

While not strictly a performance metric, nor an independent variable, the confidence threshold
can be changed to better evaluate a model’s performance. Predictions made by the model are
accompanied by a confidence value between 0 and 1, which indicates how certain the model is that
the prediction is correct.

In general, true positives tend to have a higher confidence than that of false positives. Ideally, this
means that by ignoring predictions below a certain confidence threshold, one will raise the model’s
precision metric. Of course, not every true positive is likely to have a high confidence value, so by
increasing the threshold, the recall value may drop.

By default we will test the models with a confidence threshold of 0.01, meaning virtually every
prediction will be counted. This may lead to a prohibitively large number of false positives, with
regards to deployment in a real scenario. If this is the case, the threshold will be increased to a
value that gives a better indication of the models’ potential precision and recall.

34

Real-time Sheep Detection

4.6.2 Independent Variables
Image Type

The primary input types are RGB and MSX-images. Both have different strengths and weaknesses
which might cause different results when trying to detect sheep. The standard RGB-images contain
the most information due to the highest possible image resolution. In addition, the visual color and
texture of sheep will hopefully provide the network with information to make good predictions.

MSX-images contain certain visual features combined with temperature information. The low
resolution of MSX images limits the amount of information which might make it challenging to
distinguish sheep from other warm objects or noise. Additionally, the inclusion of high contrast
visual features may cause too much noise for the model to only detect sheep.

Image Resolution

Intuitively a lower image resolution has fewer details and downscaling of images should cause
models to perform worse due to this information loss. The main motivation for reduced resolution
is the reduction in inference time. The most interesting factor to investigate is how much the
images can be downscaled without causing too large of a reduction in performance metrics.

A series of different resolutions will be tried out to better measure the trade-off between inference
time and the other performance metrics. As image types have different native resolutions, the
scaling of models is different between the two. MSX-images are resized to the resolutions: 1280,
960, 640, 320 and 160p. This is a range of 25 to 200 % of the original resolution. RGB-models are
tested with the following resizes: 4064, 3200, 2560, 1920, 1280, 1024 and 640p. This is a range of
16 to 100 % original resolution.

Tiled vs. Non-tiled Images

In addition to different resolution scales of 4K-images, RGB-models will be trained using tiles of
4K-images as their training and validation sets as described in Section 4.2. This decreases training
time and zooms in on objects to hopefully make the sheep detector learn features better.

Model Size

All models are based on one of YOLOvV5’s pre-trained checkpoints, instead of randomly initialized
weights. The size of our available data set makes it unrealistic to train a well-performing model
from scratch. The small (s) and medium (m) sized models are the main focus because they have
the best potential to perform at a reasonable speed on a mobile device, however, larger models (z)
will also be tested. An overview of some pre-trained checkpoints can be seen in Figure 7.

35

Real-time Sheep Detection

4.6.3 Control Variables
Batch Size

The default batch size of 16 was used for training all models except rgb_ 4064 s. Due to memory
and time constraints, this model was trained with a batch size of 4.

Number of Training Epochs

In the early stages, epochs ranging from 50 to 500 were tried out. The first 100 epochs sported
the most impactful change in the models’ performance, although in most cases performance slowly
increased for the entirety of the 500 epochs without seeming to overfit. 300 epochs was deemed
to be a suitable middle ground between training time and representative results, and all models
presented in Section 5 were trained with 300 epochs.

Other Hyperparameters

Models use the default hyperparameters as provided by the YOLOv5 developers. It is possible to
perform a evolution of these parameters but this was not seen as impactful enough to be worth
spending effort on.

36

Real-time Sheep Detection

4.7 Summary

Data collection will be carried out over two days in Storlidalen, with an emphasis on creating a
distinct test set and capturing MSX images. A DJI Mavic 2 Enterprise Dual drone will be used
for this purpose (3.2).

Collected data will be filtered and processed in preparation for training the deep learning models.

The models will be trained using the YOLOv5 architecture. Training hardware is provided by the
IDUN HPC cluster at NTNU. Several models will be trained using different pre-trained YOLOv5
checkpoints and image resolutions.

Models will then be converted to a less memory-intensive format — TFLite — using the PyTorch
framework and tested using a simple Android application.

37

Real-time Sheep Detection

5 Results

This section presents the results of the work done; the data that was collected and preprocessed,
the models that were trained and their performance running detection on computer hardware as
well as the converted models tested on smartphone hardware.

5.1 Data Collection

After filtering the existing images, the data set was reduced in size. Selecting images with RGB-
MSX-pairs and of suitable elevation led to a total of 321 images, primarily from the August 2019
sessions in Storlidalen.

The field trip to Storlidalen in September 2020 resulted in images of both fenced and free-ranging
sheep. 166 image pairs were captured using the M2ED drone — 95 of which were later deemed ideal
for further use. Most of the images were captured in fenced areas. Images in these environments
often contain larger herds of sheep. Additionally, sheep tend to be more visible and easier to spot,
as the fields are often clear of other background elements and distractions like vegetation and rocks.
An example of sheep in a fenced environment can be seen in Figure 24a.

The free-ranging sessions focused on capturing images for a more realistic test set than existed
earlier. A set of images were captured along the river Sandéa in an attempt to create a consecutive
image series of challenging terrain and sheep. These images make up the majority of the test set
and an example of sheep in this environment can be seen in Figure 24b. Images of free-ranging
environments are often more diverse and have more distractions than the fenced images. This
results in images where sheep are harder to spot, even for a human.

(a) Fenced environment (b) Free ranging environment

Figure 24: Sample image-cuts showing sheep in different grazing environments. Images were
captured in Storlidalen September 2020.

38

Real-time Sheep Detection

5.2 Data Preprocessing

Existing data annotations were converted to the YOLO format. To do this, a script to transform
Pascal VOC labels to YOLO labels was created. This script can be seen in Appendix B.1.

Data Sampling

The final distribution of training, validation and test images is shown in Table 6. The columns
show where and when images were captured. Note that the numbers indicate RGB-IR pairs of
images. Sample images from the different data sets can be found in appendixes A.1, A.2 and A.3.

Data set Storlidalen - Aug. 2019 Storlidalen - Sep. 2020 Data set total

Training 307 27 334
Validation 14 29 43
Test 0 35 35

Table 6: Distribution of images used across data sets.
In order to test the models’ ability to generalize over a wide range of inputs, we ensured that

the test set was significantly different from the other images. This was done by making sure that
images in the test set were geographically distinct from the other sets.

Tiling Images

The tiling of images as described in Section 4.2 resulted in the distribution of images shown in
Table 7.

Images containing at . Percentage
Data set Total sheep Total images

least one sheep containing sheep
Training 1585 877 1002 88 %
Validation 176 74 1302 6 %
Test 159 7 980 8 %

Table 7: Distribution of tiled images across data sets.

39

Real-time Sheep Detection

5.3 Model Performances
MSX-models

This section covers the performance of the MSX sheep detection models. Firstly, performance on
computer hardware, secondly, converted models on smartphone hardware.

The average precision of the models can be observed in Figure 25. As described in Section 4.6.2,
640p is the native resolution of MSX-images. At this resolution, there is little to separate the
three model sizes with the s-model scoring 0.654, the m-model 0.624 and the x-model 0.682. The
960p resolution models notably sport a wider spread between the model sizes. A spread that
continues at the 1280p resolution, where the smaller models drop, while the largest model retains
its performance. A complete overview of the test results can be reviewed in Appendix C.

Ws Bm Wx

1.00

0.78

Average Precision

0.00

640

Image resolution

Figure 25: Average precision for MSX-models grouped by image resolution and model size. The
results are from the test data set using computer hardware.

The x-sized models are the largest and consequently have the longest inference time. Further
converting and testing on mobile devices will not be conducted with the x-sized models. They did
not show significant improvement to the detection performance to warrant the longer inference
time compared to smaller model sizes.

Figure 26 shows inference time and AP when running tests using the converted models on a
smartphone. The inference time shows, as expected, a time increase in tandem with both image
resolution and larger model size. Figure 26b shows a rather large drop in AP compared to what
the corresponding, non-converted, models’ performance on computer hardware in Figure 25. All
models have relatively high precision, but many sheep remain undetected.

The best model judging by these results is the msz_m_ 640, i.e the m-sized model trained on image
resolution 640p. It sports the highest AP at 0.29 with a low inference time of just 219ms.

40

Real-time Sheep Detection

Ws Em W Enm
00 750 1.00

&00 075

400 0.50

0.29 0.30

Inference time {ms)
[
o
w

Average Precision

200 149 025 017 019 020

0.00
320 640 960 1280 320 640 60 1280
Image Resolution Image Resolution
(a) Inference time (b) Average Precision

Figure 26: Inference time and average precision of MSX models grouped by image resolution and
model size. The results are from the test data set using smartphone hardware.

RGB-models

Figure 27 shows an overview of the models using RGB images and their average precision.

W Non-tiled model [l Tiled model

1.00

075

0.50

Average Precision

025

0.00

320 640 1024 1280 1920 2560 3200 4064

Image Resolution

Figure 27: Average precision for all s-sized RGB-models grouped by image resolution and whether
they are trained using tiled or downscaled images.

It quickly became apparent that training models with tiled 4K-images is the way to go, as opposed
to training using downscaled images. As can be seen in Figure 27, the tiled model outperforms the
non-tiled models significantly on resolutions above 1024p.

The tiled model is trained on tiled 4K-images, but as shown in Figure 27 there is only a minor
AP-loss by downscaling before going below 1920p. Below this point, the differences between the
tiled model and the specialized lower resolution models begin to even out. From 1024p and below

41

Real-time Sheep Detection

the tiled model is incapable of making good predictions.

Despite the relatively good results on lower resolutions, the non-tiled models do not compete with
the tiled model. As we shall see shortly, this holds true even when performance on mobile devices
is considered. Because of this, the following results will mainly focus on the tiled models. The
complete test results for both tiled and non-tiled models can be seen in Appendix C.

Tiled models were trained in both model size s and m. Running inference on resolutions 1920p
and up, the two model sizes are nigh on inseparable, with the larger model m winning out on lower
resolutions, as seen in Figure 28.

Bs EBm

1.00

075

050

Average Precision

025

0.00

tiled 1280 1920 2624 3200 4064

Image Resolution

Figure 28: Average precision grouped by image resolution and model size. All models are trained
using tiled images and AP is based on test set results. The tiled bar represents AP for models on
the tiled test set while the rest are complete images resized to the given resolution.

While there is some increase in predictive performance, the inference time increases dramatically
with the increase in model size. A comparison of the models’ performance on mobile devices can
be seen in Figure 29. Note that due to memory constraints on the device used, the highest possible
m-sized resolution is 1920p. Similarly, the highest s-sized resolution is 2560p.

Recall that the project requirements state that inference time should be below 1 second (Section
3.1). Given this requirement, we evaluate the best performing model to be the s-model running in-
ference on images downscaled to 1920p. The s-model scores higher AP than its m-model competitor
at 1280p, with an increase of 100ms in inference time, for a total of 851ms.

42

Real-time Sheep Detection

ms Em Bs EBm
1571
1600 1.00
1420 0.89 092 _
0.85 0.85

1200 075 064

851

743

800 0.50

Inference Time

0.31
435

Average Precision

400 247 0.25
142 0.09

640 1280 1920 2560 ' 640 1280 1920 2560
Image Resolution Image Resolution
(a) Inference time (b) Average Precision

Figure 29: Inference time and average precision of RGB-models grouped by image resolution and
model size.

Comparison of Corresponding MSX and RGB-Models

The difference in detection performance with corresponding models trained on MSX and RGB-
images can be seen in Figure 30. At its native resolution of 640p, the MSX-model outperforms the
RGB-model in both AP, precision and recall.

B msX W RGB W msxX W RGB
1.00 1.00
0.75 0.758
=
(=)
a
a
g 030 0.50
a
L=
m
§ 0.25
= 0 0.25
0.00
640 n.oo
Precision Recall
Image Resolution
(b) Precision and recall obtained with a confidence threshold of
(a) Average Precision 0.5.

Figure 30: Detection performance of corresponding models trained and tested using MSX and
RGB images. Both are s-sized models and tested on computer hardware.

43

Real-time Sheep Detection

5.4 Impact of Converting to Mobile-friendly Format

Figure 31 shows the AP results after training (validation), tests on computer hardware and tests
on smartphone hardware for the best MSX and RGB-models.

During training, the models’ AP is relatively similar, but when tested on unseen images, the MSX-
model struggles, especially when converted to a mobile-friendly format. The tiled RGB-model
actually shows the opposite, with a slight gain in AP when on a smartphone.

B Validation [Testi{computer) [Test(smartphone)

1.00

0.75

0.50

Average Precision

0.25

0.00

msx_640_m tiled_rgb_1920_s

Model Mame

Figure 31: Awverage precision performance for MSX and RGB models on the validation and test
data sets.

44

Real-time Sheep Detection

Performance on Smartphone Versus Computer

Figure 32 shows selected models’ inference time and AP grouped by image resolution and type of
hardware. There is a distinct increase in inference time of the converted models on a smartphone.
The AP measurements as shown in Figure 32b has no obvious trend when comparing computer to
smartphone hardware. The MSX-model shows a significant drop in AP using the converted model
while the RGB-models perform at the same level — even slightly better.

W Computer [l Smartphone W Computer W Smarphone
1000 1.00
750 0.75
g 5
o w
E so0 2 a0
8 LY
g g
- 240 0.25

55

0.00
msy¥_G640_m rab_1024_s ftiled_rgb_1820_s msyx_G640_m rgh_1024_s tiled_rgh_1920_s
Model Name Model Name
(a) Inference time (b) Average Precision

Figure 32: The difference in inference time and average precision grouped by detection model and
hardware devices.

45

Real-time Sheep Detection

Sheep Retrieval

Sheep retrieval, as described in Section 4.6.1, is an alternative metric to evaluate the detection of
sheep. By this measure, a sheep is detected if it is present in an image where at least one other
sheep is detected.

Figure 33 shows the precision, recall and sheep retrieval scores for some models, including the
best performer tiled rgb 1920 s. Note that the model rgb 1024 s is actually able to «retrieve»
slightly more sheep than the tiled model, despite its lower precision and recall.

B Precision [Recall [Sheep retrigval

075

05

0.25

msx_320_s msx_640_m rgb_1024_s tiled_rgb_1920_s

Figure 33: Precision, recall and sheep retrieval for four different models.

46

Real-time Sheep Detection

6 Discussion

This section discusses the results; why we ended up with these them, what do they imply, and
what could have been done better.

6.1 The Data Set

Most state-of-the-art models present their performance based on having trained on thousands, if
not tens of thousands of images — an unrealistic amount for a thesis such as this. YOLOv5’s
built-in image augmentation alleviates some of this problem by slightly changing and tweaking the
images during training. Still, it is difficult to judge the potential of models trained on data sets,
say, a hundred times bigger. Surely, there would be at least some increase in performance, and an
expansion of the data set should certainly be a focus for potential future work.

Despite its relatively small size, we believe the test set serves its purpose well and the images
therein to be of high quality. The areas in which the images are captured do not overlap with
either the training or validation set images, and it properly tests the models’ ability to detect
sheep in new environments. Many of the images in the test set contain heavy vegetation and some
darker sheep. When annotating these images we ourselves had problems identifying every sheep
and separating them from small white details in the images. The fact that the models are able to
retrieve almost every sheep from this difficult set of images speaks loudly of the potential for use
in the field.

The biggest downside with the test set is the fact that almost every image contains a sheep. As
such, it does not properly measure the effect false positives would have in a real-life scenario. To
this end, a large, realistic test set should be created, possibly simulating a video stream in which
only a small portion of the images actually contain sheep. To some extent, this happens when
testing the tiled models on tiled images, where we see the precision score drops significantly.

6.2 The MSX-models

The MSX-models sport high precision values across the board, beating its RGB equivalents signi-
ficantly and competing with the tiled models. Their recall and sheep retrieval measures are lacking,
with values between 20 and 40% of those of the RGB-models — showing an inability to detect sheep
without a distinct outline. This is contrary to the motivation behind using MSX-imaging, as they
should, in theory, be more able to detect darker or partially obscured sheep much better, thanks
to their thermal signature. In practice, though, this did not end up being the case — mostly as a
result of the quality (or, rather, lack thereof) of the MSX-images.

The Difficulties of Thermal Imaging

When the images were to be captured we had relatively little experience using the thermal imaging
hardware and software, which likely prevented us from extracting all its potential. When practicing
tweaking the camera, we used people on a soccer field on a warm and sunny day as «thermal hot-
spots». The settings for detecting human heat signatures under those conditions turned out to be
a lot easier to find than those for detecting small, woolly, partially obscured sheep in a hillside
where elevation and temperatures can change quickly.

Ideally, we would have spotted sheep in the field, made on-the-fly adjustments to the camera
settings for the given weather conditions to find the optimal thresholds to strengthen the sheep’s
heat signature.

With limited time in the field, we decided that many not-great images would have to suffice, lest
we spend the entire day tweaking the camera. This resulted in the MSX-images as shown in this
thesis. While they are able to show some of the strength of this technology — namely the outlining

47

Real-time Sheep Detection

of distinct objects against their background — thermal signatures are virtually non-existing.

When comparing to models with similar inference time, things are less bleak. No model of the same
speed comes close to the same precision level, meaning the model is relatively noise-resistant for its
speed. This makes us inclined to believe that given images with more distinct thermal signatures
(red sheep against a blue environment), could be able to outperform even the tiled RGB-models.

Its focus on outline against background seems to lead to fewer false positives in areas of heavy
foliage. Johannessen showed that a synergy effect between RGB and thermal images could be
achieved [4]. Our results support this, and we consider it a promising lead for further research.

Aside from combining the models with an RGB-model, we believe the most fruitful work to improve
results from thermal images would be to perform an in-depth study of thermal image settings in
the field to discover which thresholds to be used to best pick out sheep under different weather
conditions.

6.3 RGB-models
6.3.1 Regular Models

The regular RGB-models are the middle of the bunch. Their AP, precision and recall performance
peaks around the 1024p resolution before dropping rapidly. It is somewhat surprising that down-
scaling the images from 4056p down to 1024p would yield the best result, especially considering
the tiled model results indicate that higher resolution is better.

Impact of Image Resolution and Model Size

Interestingly, simply increasing image resolution does not necessarily yield better performance,
especially when one considers the additional inference time. The rgb_ 4064 s-model performs very
similarly to the rgb_ 1024 s-model despite a 14 times increase in inference time. The convolutional
scaling method presented by the EfficientNet paper [41], suggests that when increasing image
resolution, one should also upscale the model width and depth accordingly to better exploit the
increased details of higher resolution images. This was tried out during experimental phases as
well as our specialization project, but the larger models did not demonstrate better performance
on full resolution images — often performing worse! This can also be seen by comparing the results
of the rgb_ 1024 s, rgb_ 1280 s, and the rgb_ 1280 s6 models, the latter being based on a larger
checkpoint, pre-trained on 1280p images.

Model AP@O0.5 Precision Recall Sheep Retrieval Inference Time (ms)
rgb 1024 s 0.695 0.693 0.747 0.97 297
rgb 1280 s 0.497 0.624 0.620 0.83 447
rgb_1280_s6 0.510 0.525 0.585 0.86 435

Table 8: Mobile performance of rgb 1280 s and rgb 1280 s6

As we can see in Table 8, the model trained on the lowest resolution images clearly wins out.
Increasing the model size to accommodate the higher resolution images only has negligible effects.

It is difficult to say why performance seems to peak at 1024p for the non-tiled models, while it
increases with resolution in the tiled models. This is discussed further below.

6.3.2 Tiled Models

It is clear that tiling the 4K-images before using them for training yields improved results, but
why? The images are not altered in any way except being split into several parts, and yet, the

48

Real-time Sheep Detection

models trained on tiled 4k-images perform better than their counterparts even on non-tiled test
images.

The Effectiveness of Tiling

The immediate practical effects of tiling images are described in Section 4.2.

As expected, a trade-off when using tiled models was the increased time spent during inference,
when several smaller tiles have to be processed individually, rather than a single large frame.
Observing both the s and m-model, the total inference time when processing 28 smaller individual
tiles is roughly 30% higher than that of processing a single complete image.

What we did not expect, however, was the tiled model’s performance on non-tiled images. Related
literature [22][23] suggests images also need to be tiled during inference, but our results demonstrate
otherwise. In fact, the model’s performance running inference on tiled images seems to be worse
than running on complete images — let’s take a closer look at the tiled 640 s-model’s performance
on tiled images compared to complete images downscaled to 1920p.

As we can see in Figure 34, in both cases the model is able to spot every sheep in the area, and in
both cases, the model mistakenly predicts a stone in the lower left area to be a sheep. The correct
predictions are mostly within the 0.7-0.8 confidence range.

The major difference lies in the false positives in the tiled images. In the 1920p-image, the model
only predicts one sheep among the large white rocks, with a relatively low confidence of 0.3, meaning
the prediction could easily be removed by increasing the confidence threshold to a more suitable
level. On the tiled image, however, more wrong predictions are made with higher confidence levels.

By looking at Table 9, it is clear that this is not restricted to just one example.
Image Type AP@OQ.5 Precision Recall Inference Time (ms)

1920p 0.817 0.830 0.824 851
Tiled 4K 0.423 0.157 0.757 225(x28)

Table 9: Mobile performance of tiled 640 s on downscaled 1920p and tiled 4K-images.

When running inference on tiled images, the model is clearly more prone to predicting false posit-
ives.

Or — the Weakness of the Data Set

It is possible that the comparatively good scores of the tiled models are not just a result of the
effectiveness of tiling, but also the weakness of the training and validation sets the non-tiled models
use. As described in Section 4.2, the original sets does not provide the model with as many instances
to learn from.

During training, the tiled models are validated on 1300 images, only 6% of which containing sheep
— it is likely this gives the tiled model an edge in separating sheep-ish terrain features compared
to their non-tiled competitors. Perhaps, if the non-tiled data sets contained a similar quantity of
unique instances, their models’ performance would also improve.

6.4 The Impact of Running on Mobile Hardware

As expected, the use of smartphone hardware leads to higher inference time compared to computer
hardware. Ideally, inference time should be the only performance difference when running on a
mobile device while the number of detected sheep stays the same.

49

Real-time Sheep Detection

D08 14505

mplete 1920p-image.

3

DG4 TIPS T

(b) Tiled /K-image. Note that the model made predictions on each tile individually. This image
was stitched together after the test was run.

Figure 34: Predictions made by the tiled 640 _s-model on a complete image downscaled to 1920p
vs a tiled 4K-image

As we have demonstrated, the performance of converted models does differ from the original
YOLOvV5 models — the MSX-models in particular.

While the MSX-models suffer from conversion to the mobile format, the best RGB-models see a
minor increase in AP performance. This is surprising, considering the model quantization of the
converted models leads to less accurate parameters using 16-bit floating-point numbers instead of
32-bit. Judging by this, low-resolution images with relatively little information suffers the most
when the model is reduced in this manner, while the models using high-resolution images are
relatively unaffected.

50

Real-time Sheep Detection

7 Conclusion and Future Work

7.1 Conclusion

In this thesis, we have proposed several deep learning models able to detect sheep in UAV images,
real-time, while running on a mobile application. In an effort to find the best performing models,
model development was done using different image types, image resolution, architecture sizes and
pre-processing methods with the YOLOv5 architecture. The models were evaluated by average
precision, sheep retrieval, precision, recall and inference time on a test set of independent images.
This gives a solid measure of the models’ ability to generalize and adapt to unseen environments. An
Android application has been developed as an environment for the models to run in — demonstrating
the models are able to perform sheep detection in real-time on smartphone hardware.

The proposed sheep retrieval metric provides a solid measurement of a model’s performance at a
glance by counting sheep as retrieved if another sheep in their image is correctly identified.

Our findings show that tiling the high-resolution RGB-images during training greatly boosts the
predictive performance of models, even if the images used during inference are not tiled themselves.

Earlier work has shown that a fusion of models using both visual and infrared images as input
yields improved results compared to using them separately. The use of MSX-images did not end
up showing this same improvement — mostly due to the lack of clear thermal signatures in the
captured images. Nonetheless, the high precision of the MSX-models shows that this type of
imagery is resistant to false positives. If the images were of higher quality, we believe MSX-based
models would compete with RGB-models.

The best performing model — tiled s — has proven to be a robust model. The model’s predictive
power is retained even after converting to a mobile format. The inference time is higher at 851ms,
however, this is still within the realms of what we consider to be real-time.

All things considered, the results presented in this thesis show that deep learning object detection
models are very capable of detecting sheep in drone images both quickly and accurately — even
when running on budget smartphone hardware. Such a model has the potential to be integrated
with a mobile application as part of a fully-fledged commercial solution, and could be of great help
to farmers who would rather let technology handle the tiresome sheep retrieval process.

7.2 Future Work

An expansion of the data set would be worthwhile. Both to provide more training and validation
data, but also to create a large, realistic test set, to even better evaluate the FP-rate in a real
scenario.

Should work on this field continue, we believe properly utilizing and optimizing the sheep retrieval
metric alongside precision should be the main focus. In this thesis, the metric counts a sheep as
retrieved if any other sheep in its image is correctly detected. This was done due to the relatively
small size of the test set. Realistically a sheep should be counted as retrieved if any sheep in its
herd is correctly detected in any image.

It is possible utilizing a dedicated mobile CNN would yield better results than converting a heavier
model to a lighter format. Architectures such as PeeleNet sport good results, with a significantly
reduced size [42].

Last, but not least: To fully realize the potential of MSX-images, an in-depth study should be
carried out, examining the optimal thresholds for maximum and minimum temperature settings of
the thermal camera under different weather conditions. Properly defined thresholds are necessary
for the thermal signatures of sheep to be properly visible in the MSX-images. We believe that if
this potential is realized, models trained on MSX-images will be able to outperform RGB-models
with regards to both predictive power and inference time.

o1

Real-time Sheep Detection

References

1]
2]
13l
4]
5]
[6]
7]

18]

19]
[10]

[11]
[12]
[13]

[14]
[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

Dyrebeskyttelsen Norge. Tap av sau pd beite. URL: https://www.dyrebeskyttelsen.no/tap-sau-
pa-beite/.

Mattilsynet. Arsrapport 2019. 2020. URL: https:/ /www . mattilsynet.no/om _ mattilsynet /
aarsrapport_ 2019 mattilsynet.38708/binary/%C3%85rsrapport%202019%20- %20Mattilsynet.

Anne-Cath. Grimstad. Tilsyn med drone: Rimelig og effektivt. 2017. URL: https://www.fag.
nsg.no/artikkel vedlegg serve.cfm?artikkel id=327.

Kari Meling Johannessen. ‘Towards Improved Sheep Roundup’. Using Deep Learning-Based
Detection on Multi-Channel RGB and Infrared UAV Imagery. MA thesis. NTNU, July 2020.

Anders Ottersland Granas and Ole Kildehaug Furseth. ‘Real Time Detection of Sheep in
Drone Images’. Specialization project. Dec. 2020.

Kari Meling Johannessen. ‘Detecting Sheep in Drone Images by Deep Learning’. Specializa-
tion project. Dec. 2019.

Svein-Olaf Hvasshovd. HerdIT Elektronisk oppfolging av sau pd beite. 2017. URL: https://
www . fylkesmannen . no / contentassets / cbf122460efa4e37a051c17c07fade0d / droner- buskerud -
2017.pdf.

Nina Kristiansen. Hvor plagsomt er det for sauen d gd med ei bjelle rundt halsen hele
sommeren. July 2019. URL: https://forskning.no/dyreverden-husdyr-landbruk/hvor-plagsomt-
er-det-for-sauen-a-ga-med-ei-bjelle-rundt-halsen-hele-sommeren /1360767.

Findmy. Findmy | GPS sporing av husdyr pd utmarksbeite - uten mobildekning. URL: https:
//www.findmy.no/.

Telespor. Telespor AS — Produkter og tjenester for elektronisk overvikning av husdyr pa beite.
URL: http://telespor.no/.

Telespor. Hjem - Smartbjella Sporing. URL: http://smartbjella.no/.

A. Wisniewski M. Mazur and J. McMillan et.al. ‘Clarity from above’. In: (2016).

EU council. Drones: reform of EU aviation safety. URL: https://www.consilium.europa.eu/
en/policies/drones/.

DJM Aerial Solutions. Drone Services. URL: https://djm-aerial.com/drone-services/.

Insider Intelligence. Drone market outlook in 2021: industry growth trends, market stats and

forecast. URL: https://www.businessinsider.com/drone-industry-analysis-market-trends-growth-
forecasts?r=US&IR=T.

Paperswithcode. Object detection on COCO test-dev dataset. Jan. 2021. URL: https://
paperswithcode.com/sota/object-detection-on-coco.

T. Y Lin et al. ‘Microsoft COCO: Common Objects in Context’. In: (2015).

Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection. 2016. arXiv:
1506.02640 [cs.CV].

Glenn Jocher et al. ultralytics/yolovs: v4.0 - nn.SiLU() activations, Weights & Biases logging,
PyTorch Hub integration. Version v4.0. Jan. 2021. DoL: 10.5281/zenodo.4418161. URL: https:
//doi.org/10.5281/zenodo.4418161.

Ultralytics. wltralytics/yolovs: YOLOvS in PyTorch > ONNX > CoreML > TFLite. URL:
https://github.com/ultralytics/yolov5.

Jakob Solawetz | Roboflow. Tackling the Small Object Problem in Object Detection. Aug.
2020. URL: https:/ /towardsdatascience.com /tackling- the- small- object- problem-in- object-
detection-6e1c9976ee69.

B Ozkalayc: F. Ozge Unel and C. Cigla. ‘The Power of Tiling for Small Object Detection’.
In: (2019).

Jacob Solawetz. Tackling the Small Object Problem in Object Detection. Aug. 2020. URL:
https://blog.roboflow.com/detect-small-objects/ .

52

https://www.dyrebeskyttelsen.no/tap-sau-pa-beite/
https://www.dyrebeskyttelsen.no/tap-sau-pa-beite/
https://www.mattilsynet.no/om_mattilsynet/aarsrapport_2019__mattilsynet.38708/binary/%C3%85rsrapport%202019%20-%20Mattilsynet
https://www.mattilsynet.no/om_mattilsynet/aarsrapport_2019__mattilsynet.38708/binary/%C3%85rsrapport%202019%20-%20Mattilsynet
https://www.fag.nsg.no/artikkel_vedlegg_serve.cfm?artikkel_id=327
https://www.fag.nsg.no/artikkel_vedlegg_serve.cfm?artikkel_id=327
https://www.fylkesmannen.no/contentassets/cbf122460efa4e37a051c17c07fade0d/droner-buskerud-2017.pdf
https://www.fylkesmannen.no/contentassets/cbf122460efa4e37a051c17c07fade0d/droner-buskerud-2017.pdf
https://www.fylkesmannen.no/contentassets/cbf122460efa4e37a051c17c07fade0d/droner-buskerud-2017.pdf
https://forskning.no/dyreverden-husdyr-landbruk/hvor-plagsomt-er-det-for-sauen-a-ga-med-ei-bjelle-rundt-halsen-hele-sommeren/1360767
https://forskning.no/dyreverden-husdyr-landbruk/hvor-plagsomt-er-det-for-sauen-a-ga-med-ei-bjelle-rundt-halsen-hele-sommeren/1360767
https://www.findmy.no/
https://www.findmy.no/
http://telespor.no/
http://smartbjella.no/
https://www.consilium.europa.eu/en/policies/drones/
https://www.consilium.europa.eu/en/policies/drones/
https://djm-aerial.com/drone-services/
https://www.businessinsider.com/drone-industry-analysis-market-trends-growth-forecasts?r=US&IR=T
https://www.businessinsider.com/drone-industry-analysis-market-trends-growth-forecasts?r=US&IR=T
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
https://arxiv.org/abs/1506.02640
https://doi.org/10.5281/zenodo.4418161
https://doi.org/10.5281/zenodo.4418161
https://doi.org/10.5281/zenodo.4418161
https://github.com/ultralytics/yolov5
https://towardsdatascience.com/tackling-the-small-object-problem-in-object-detection-6e1c9976ee69
https://towardsdatascience.com/tackling-the-small-object-problem-in-object-detection-6e1c9976ee69
https://blog.roboflow.com/detect-small-objects/

Real-time Sheep Detection

[24] Heartbeat - Fritz AT Jameson Toole. Deep learning has a size problem. URL: https://heartbeat.
fritz.ai/deep-learning-has-a-size-problem-ea601304cd8.

[25] TensorFlow. TensorFlow Lite | ML for Mobile and Edge Devices. URL: https:/ / www .
tensorflow.org/lite.

[26] TensorFlow. Model Optimization | TensorFlow Lite. Jan. 2021. URL: https://www.tensorflow.
org/lite/performance/model _optimizationF#quantization.

[27] TensorFlow. TensorFlow Lite GPU delegation. Jan. 2021. URL: https://www.tensorflow.org/
lite/performance/gpu.

[28] FLIR. Multi-Spectral Dynamic Imaging | FLIR Systems. 2020. URL: https://www.flir.eu/
instruments/multi-spectral-dynamic-imaging/.

[29] FLIR. flir-msa-tech-note.pdf. 2019. URL: https://www.flir.eu/globalassets/instruments /flir-
msx-tech-note.pdf.

[30] NTNU. Svein-Olaf Hvasshovd - NTNU. URL: https://www.ntnu.no/ansatte/sophus.
[31] DJI. Mavic 2 Enterprise Series. Apr. 2021. URL: https://www.dji.com/no/mavic-2-enterprise.

[32] Magnus Sjdlander et al. EPIC: An Energy-FEfficient, High-Performance GPGPU Computing
Research Infrastructure. 2019. arXiv: 1912.05848 [cs.DC].

[33] Nvidia. NVIDIA V100 | NVIDIA. URL: https://www.nvidia.com/en-us/data-center/v100/.
[34] SchedMD. Slurm Workload Manager - Documentation. URL: https://slurm.schedmd.com/.

[35] Huawai. HUAWAI P30 Pro Specifications. 2021. URL: https: / /consumer.huawei.com /en/
phones/p30-pro/specs/.

[36] Preparing your training data | Cloud AutoML Vision Documentation. URL: https://cloud.
google.com /vision /automl/object-detection /docs/prepare#manual _and automatic dataset
splits.

[37] Piotr Skalski. Make Sense. 2019. URL: https://github.com/SkalskiP/make-sense/.

[38] Lukas Biewald. Ezperiment Tracking with Weights and Biases. Software available from wandb.com.
2020. URL: https://www.wandb.com/.

[39] =zldrobit. Add TensorFlow and TFLite export. URL: https://github.com /ultralytics/yolov5 /
pull /1127.

[40] TensorFlow. Object detection | TensorFlow Lite. URL: https://www.tensorflow.org/ lite /
examples/object detection/overview.

[41] M. Tan and Q. V. Le. ‘EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks’. In: (2020).

[42] C. X Ling R. J. Wang X. Li. ‘Peele: A Real-Time Object Detection System on Mobile
Devices’. In: (2019).

53

https://heartbeat.fritz.ai/deep-learning-has-a-size-problem-ea601304cd8
https://heartbeat.fritz.ai/deep-learning-has-a-size-problem-ea601304cd8
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/performance/model_optimization#quantization
https://www.tensorflow.org/lite/performance/model_optimization#quantization
https://www.tensorflow.org/lite/performance/gpu
https://www.tensorflow.org/lite/performance/gpu
https://www.flir.eu/instruments/multi-spectral-dynamic-imaging/
https://www.flir.eu/instruments/multi-spectral-dynamic-imaging/
https://www.flir.eu/globalassets/instruments/flir-msx-tech-note.pdf
https://www.flir.eu/globalassets/instruments/flir-msx-tech-note.pdf
https://www.ntnu.no/ansatte/sophus
https://www.dji.com/no/mavic-2-enterprise
https://arxiv.org/abs/1912.05848
https://www.nvidia.com/en-us/data-center/v100/
https://slurm.schedmd.com/
https://consumer.huawei.com/en/phones/p30-pro/specs/
https://consumer.huawei.com/en/phones/p30-pro/specs/
https://cloud.google.com/vision/automl/object-detection/docs/prepare#manual_and_automatic_dataset_splits
https://cloud.google.com/vision/automl/object-detection/docs/prepare#manual_and_automatic_dataset_splits
https://cloud.google.com/vision/automl/object-detection/docs/prepare#manual_and_automatic_dataset_splits
https://github.com/SkalskiP/make-sense/
https://www.wandb.com/
https://github.com/ultralytics/yolov5/pull/1127
https://github.com/ultralytics/yolov5/pull/1127
https://www.tensorflow.org/lite/examples/object_detection/overview
https://www.tensorflow.org/lite/examples/object_detection/overview

Real-time Sheep Detection

Appendix

A Data Set Sample Images

A.1 Sample of Labelled Images in Training Data Set

54

Real-time Sheep Detection

A.2 Sample of Images and Prediction on the Validation Data Set

55

Real-time Sheep Detection

A.3 Sample of Images and Prediction on the Test Data Set

56

Real-time Sheep Detection

B Python code scripts
B.1 Converting Pascal VOC to YOLO-format

def format_geometry_to_yolo(geometry):
IMG_WIDTH = 640 # Change according to image sizes
IMG_HEIGHT = 480
min_x = geometry[0] [0]
min_y = geometry[0] [1]
max_x = geometry[1] [0]
max_y = geometry[1][1]

obj_class = 0 # Only used single class (sheep)

x_center = (min_x + max_x) / (2 * IMG_WIDTH)

y_center = (min_y + max_y) / (2 * IMG_HEIGHT)

width = (max_x - min_x) / IMG_WIDTH

height = (max_y - min_y) / IMG_HEIGHT

return f'{obj_class} {round(x_center, 6)} {round(y_center, 6)}' + \
f'{round(width, 6)} {round(height, 6)}\n'

B.2 Tiling images and transform labels

class Label():

def transform(self, new_height, new_width, y_cord, x_cord, tile_size):
self .width = float(self.width) * (self.img_width / new_width)
self .height = float(self.height) * (self.img_height / new_height)
self .x_center = (self.get_x_pixels() -

(tile_size * x_cord)) / new_width

(self.get_y_pixels() -

(tile_size * y_cord)) / new_height

self.img_height = new_height

self.img_width = new_width

self.y_center

def check_and_correct_horizontal(self):
right_edge = self.x_center + (self.width / 2)
left_edge = self.x_center - (self.width / 2)
if left_edge < O:
self.width = right_edge
self .x_center = self.width / 2
left_edge = O
print("Cutting box left edge")
if right_edge > 1:
self .width = 1 - left_edge
self.x_center = 1 - (self.width / 2)
print ("Cutting box right edge")

def check_and_correct_vertical(self):

top_edge = self.y_center - (self.height / 2)
bottom_edge = self.y_center + (self.height / 2)
if top_edge < 0:

self .height = bottom_edge

self.y_center = self.height / 2

top_edge = 0

print ("Cutting box top edge")

o7

Real-time Sheep Detection

if bottom_edge > 1:
self .height = 1 - top_edge
self.y_center = 1 - (self.height / 2)
print ("Cutting box bottom edge")

Crop/Splitting single image into the desired sizes
def split_and_save(image, new_size, labels, filename):
im = np.array(image)
tiles = [im[x:x + new_size, y:y + new_size]
for x in range(O, im.shape[0], new_size)
for y in range(O, im.shape[1], new_size)]

width, height = image.size
number_horizontal = (width // new_size) + 1
number_vertical = (height // new_size) + 1

image and labels out folders
IMG_OUT = "./assets/rgb-tiled/training/images/"
LABEL_OUT = "./assets/rgb-tiled/training/labels/"

for i, tile in enumerate(tiles):
tile_contain_sheep = False
tiled_img = Image.fromarray(tile)
new_width, new_height = tiled_img.size
y_pos = i // number_horizontal J, number_vertical
x_pos = i 7 number_horizontal
for label in labels:
label_in_correct_tile = (
label.get_y_pixels() // new_size) == y_pos and (
label.get_x_pixels() // new_size) == x_pos
if label_in_correct_tile:
1abe1.transform(new_height, new_width, y_pos, x_pos, new_size)
label.check_and_correct_horizontal()
label.check_and_correct_vertical()
with open(f'{LABEL_OUT}{filenamel}_{i}.txt', 'a') as f:
f.write(f'{label}\n")
tiled_img.save(f'{IMG_OUT}{filename}_{i}.JPG', 'JPEG')
tile_contain_sheep = True
if not tile_contain_sheep:
tiled_img.save(f'{IMG_0UT}{filename}_{i}.JPG', 'JPEG')

58

Real-time Sheep Detection

C Results of All Models

Table 10 and 11 contain results from all trained MSX and RGB models respectively. All results
are from the test data set.

59

Real-time Sheep Detection

‘0aatigal daoys s,jopout a3 st S fippargoadsal)pias pup U01S1994d 22UDIDQ L0 J ISIWATDUL 0F G°() LO [()°() LoYLD SL PJOYSALY] 20UIPYU0D Y],
“japous 91y Jo az1s pup uonjosaL abvwr ‘adfiy yndur abvwr S, 1oPoUL Y] §IQLIDSIP JULDU JOPOUL Y [, SaBDWL Y G JO 195 DIDP 1597 9Y] Wo.Lf 24D SYNSaL 1Y 0T el

- - - - - - - - | 68470 689°0 8¥C0 GGLO ¢0eC | X (08¢l Xsw
LEV0 €350 036°0 6050 | €€2°0 8280 810 0SL | 82L0 €LC°0 €ee’0 819°0 GeLT | W 08zl Xsw
9570 1620 606°0 1820 | 10€0 8e8°0 9650 ISV | T¥9°0 G910 Y0 06570 €'¢8 | S 08I Xsw

- - - - - - - - | 87L°0 66570 €520 €GL°0 €10€ X (096 Xsw
LEVO 2950 V6L0 8VT0 | ©LE0 LIVO CST0 LAV | 29L°0 0390 0L5°0 6€L°0 PP0T | W (96 Xsw
LTIV0 $03°0 €16'0 ¥61°0 | ¥120 98L°0 T0T'0 68 | 859°0 GLS0 8ET0 LV9°0 V6 S 096 xsw

- - - - - - - - | 6890 8650 962°0 289°0 ada X (Op9 Xsuw
9570 10€°0 988°0 ¥65°0 | 10€0 8eL0 ¥65°0 61 | T¥9°0 609°0 03¢0 ¥29°0 PG | W op9 xsu
LTV0 S8T0 7980 9LT°0 | 7020 000 T6T'0 6FI | 6690 670 P8I0 ¥99°0 67C S (p9 xsw

- - - - - - - - | €L9°0 €1€°0 0g1'0 9€7°0 gL X (gg xsw
6160 9F1°0 06L°0 F¥ET°0 | 9¥1°0 0060 ¥ET°0 96 | T1€9°0 Al LET0 06F°0 Voo | W0z xsw
6460 CG9T°0 0S8°0 ¥CT'0 | G8T°0 L8V0 69T°0 LG | €9S°0 75e 0 9810 €950 €el S (gg xsw

- - - - - - - - | Lgv0 992°0 180°0 ¥€€0 vae X (09T Xsw

- - - - - - - - | 9g¥0 1820 90T'0 €¥€0 ¢el w Q9T Xsu

- - - - - - - - | 86¢°0 06T°0 960'0 TTg'0 7’8 S 09T Xsw

- - - - - - - - | 8L00 10T°0 €000 %200 8°C S 96 Xsw

YS [eooy uwolsmarg JV | [0y Uolsmard JV Ju | [[B09Y uolsmold 66 G'DdY JV (Sw) Jup | eureN [9poJy
"0 JO PIoysaIy “Juoy) 10°0 JO PoysaIyy “Juoy) 10°0 JO P[oysaaty “juoy)
ouoydyrewg Tonduwo))

60

Real-time Sheep Detection

‘0d1gas daays s,jopows 9y s1 S “fijonroadsal 0oL puD U01§199.4d 9IUDIDQ 4O JT 2SIURTDUL 0 G°() 4O [()°() 4dYJD SI PIOYSALY) 2UIPYU0D YT,
“Jopows 2yy Jo 2218 puUD U01YNJ0sIL 26D ‘9dfiy Indur 96D S,JoPOUL DY) SIQUIISIP IWDU JIPOUL DY T “SabDULL DI fO 195 DIDP 1597 Y} WOL[24D §YNSAL] 1T OIqel,

- - - - - - | 64670 61€°0 Gga'0 8060 ¥90¥ 0891

- - - - - - | 64670 €9¢°0 2990 ¢c6'0 00c€ V0T

B B B - B - | ¢L6°0 L6€°0 7690 T¢6°0 ¥29¢ 60L
L16°0 | 000'T 0€6°0 €9L°0 L1680 TLST | 996°0 Ger'0 8G7°0 €160 0c6T L8¢ | w q31 por
G¥8'0 | 000°T 9610 06L°0 060 €¥L | 0880 0740 €VeE0 8I80 08¢T 8LT
0T€0 | 9970 691°0 060 9€1°0 L¥g | 89¢°0 66€°0 6900 SG¥¢0 079 89
8EV'0 | Gc6'0 8980 0¥1T°'0 GE€¥'0 €9¢ | 9L6°0 96¢°0 1260 9980 port} L.

- - - - - - | GL60 69€°0 Geg¢’0 0160 P90¥ LLL

- - - - - -1 9960 ¢6¢€°0 ¥€9°0 0260 00c€ 87

-] 6260 9980 9¢8°0 T1G80 O¢vl | #9670 070 L67°0 €160 ¥¢9¢ 9¢e
188°0 | 6,60 ¥¢80 0€8°0 LI80 168 | €¢6°0 ¥ar o 1¢'0 6.8°0 0261 8LT | s qS81 por
179°0 | ¢8L°0 €190 96L°0 9.9°0 ¥EV | <0L°0 ¢Lv0 ¥62'0 1990 08¢T a8
L1800 | 06T°0 6¥70°0 6€6°0 L¥0°0 ¢vI | €IT0 08¢0 800°0 G500 079 6¢
cro | 1880 9G9L°0 L8T°0 0€v'0 ¥PI | T€6°0 L8¢°0 G670 9180 Poll 28

- - - - - -1 6990 6940 ¢01'0 6990 00c€ €87 — —

- - - - - - | €890 ¥849°0 GIT°'0 8290 7907 L9L S 0T
8€G°0 | 8G6°0 G890 Gca’0 0190 G€¥ | 0L9°0 Geeo €80°0 ¢¥v0 08¢T 98 | 95 08¢l qs1
6¢G°0 | €480 0290 ¥c9'0 L6V'0 L¥P | 9890 G9¢°0 €L0°0 00¥°0 08¢T 18 S 08gT q31
Lcl’0 | €66°0 LPLO €69°0 9690 L6¢ | ¥0L°0 €1¢0 wIro €¥9°0 ¥coT qg S pg0T 931
08¢0 | 8660 TcS0 8140 %S¢0 G¥I | SL9°0 vero yT'0 7L9°0 079 1'7¢ s 09 qsT
0G€0 | L&9°0 ¥¢€0 894°0 T.Lc0 G¢ | ¢9¢€0 V110 €600 ¢0c0 0ce 8 s 0ge gs1

dv S [[29Y uolshald dV JUl | [[®99Y Uolsheld §6-G'0dV dv sergsel (swr) juy oureN [PpoIN
10°0 Ju0D G0 Juop 1070 ProysoIq) 9ouapyuoy)

auoydjrewig

Tomdwo))

61

@ NTNU

Norwegian University of
Science and Technology

	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Goal and Research Questions
	Research Method
	Thesis Structure

	State of the Art
	Sheep Grazing and Roundup
	Existing Technologies
	Growth of the Drone Industry
	Object Detection
	The Cutting Edge
	Object Detection Metrics
	YOLO – You Only Look Once
	Detection of Small Objects

	Deep Learning on Mobile Devices
	MSX – Multi-Spectral Dynamic Imaging
	Related Thesis Work
	Previously Collected Data
	Combining RGB and IR-models to Improve Performance

	Experimental Results from Specialization Project
	Summary of Results

	SOTA Summary

	Project Description
	Requirements
	Hardware Constraints

	Method
	Data Collection
	Data Preprocessing
	Deep Learning Model Training
	Training with YOLOv5

	Making the Model Mobile
	Training Models for Smartphone Performance Evaluation
	Experimental Variables
	Performance Metrics
	Independent Variables
	Control Variables

	Summary

	Results
	Data Collection
	Data Preprocessing
	Model Performances
	Impact of Converting to Mobile-friendly Format

	Discussion
	The Data Set
	The MSX-models
	RGB-models
	Regular Models
	Tiled Models

	The Impact of Running on Mobile Hardware

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Data Set Sample Images
	Sample of Labelled Images in Training Data Set
	Sample of Images and Prediction on the Validation Data Set
	Sample of Images and Prediction on the Test Data Set

	Python code scripts
	Converting Pascal VOC to YOLO-format
	Tiling images and transform labels

	Results of All Models

