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Abstract

Biometric authentication has been a vital method of human identification across a
wide range of applications. It is a quick and secure authorization process in applic-
ations such as border control and banking transactions. Recent advances in techno-
logy have triggered the use of embedded biometrics in smartphones and handheld
devices. For reliable authentication, biometrics perform better when compared
to traditional techniques such as passwords. Moreover, its advantages, such as
permanence and uniqueness, have increased the growth of biometrics in everyday
usage. However, there are certain limitations to biometric systems in providing op-
timal performance. These limitations play a crucial role in formulating artefacts to
conceal or recreate the identity of individuals. Therefore, this raises concerns about
the robustness of a biometric system and questions the accuracy of biometric re-
cognition. In a real-world scenario, an end-user biometric system is protected from
tampering by external sources. However, the only source of interaction is through
the data capturing sensor. Thus, external artefacts, namely presentation attacks,
have been a severe threat to biometric systems. On the other hand, the internal
dependencies typically come from the limitations of the hardware and software
deployed in the biometric verification workflow. Examples of internal dependen-
cies vary from noise in biometric data to dependencies of biometric algorithms.

In this thesis, we have focused on improving the generalization of biometrics by
working on some of the problems caused by presentation attacks and internal de-
pendencies in biometrics. The key challenges in audio-visual biometrics were
identified, and research objectives were designed for this thesis. The vulnerab-
ilities in audio-visual biometrics are observed with the help of a thorough review
of existing recognition and presentation attack detection methods. An exhaustive
and comprehensive study along with a comparison and categorization of state-
of-the-art methods have resulted in a novel dataset. The dataset includes different
attributes, which provide the scope to perform extensive experiments to understand
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dependencies and vulnerabilities. The thesis proposes a fusion of texture features
based iris presentation attack detection algorithm, with results showing superior
performance. Further, the cross-dataset experiments led to an empirical evaluation
of vulnerabilities in iris biometrics due to presentation attacks.

In speaker recognition research, voice impersonation, language dependency and
audio replay attacks cause high vulnerability. This thesis proposes a novel voice
impersonation dataset with three different languages. The impact of voice im-
personation as an attack is evaluated on the state-of-the-art speaker verification
methods. Further, the speaker’s language mismatch in the enrollment and testing
steps of speaker verification is examined. The recent progress in smartphone usage
is also reflected in high-quality speakers and microphones. A replay attack data-
set is created with multiple smartphones as playback and recording devices, and
vulnerability is examined.

The thesis examines the generalizability of biometric algorithms to improve the
robustness of biometric recognition. The results from the proposed methods are
evaluated with extensive experiments and detailed examinations of both publicly
available databases and new datasets created in this work. In conclusion, the thesis
proposes novel methods and approaches to examining the vulnerabilities in audio-
visual biometrics, presentation attack detection (PAD) in iris and voice biometrics,
the study of language dependency and audio replay attacks. The methods presen-
ted are valuable contributions to the research fields in developing robust smart-
phone biometric methods by addressing vulnerabilities from multiple sources.
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Chapter 1

Introduction

Automatic human identification has been a key process of authentication in mod-
ern day security systems. The use of biometrics is proved to be a quick and se-
cure process of authorization in applications such as border control and banking
transactions. The embedded biometrics have been used in smartphones and hand-
held devices due to the growth of technology [13]. Recognition algorithms utilize
advanced sensors for biometric data capture used in human identification. For ex-
ample, near-infrared cameras for capturing iris patterns and 3D dot projectors for
optimal face recognition. Similarly, the smartphone has evolved with embedded
biometric sensors to provide secure authentication in mobile applications. How-
ever, there are certain limitations to biometric systems in providing optimal per-
formance. These limitations play a crucial role in formulating artefacts to conceal
or recreate the identity of individuals. Therefore, this raises concerns about the
robustness of a biometric system and questions the accuracy of biometric recogni-
tion.

This thesis focuses on developing novel approaches to improve the robustness of
biometric systems in dealing with vulnerabilities and dependencies. The general
dependencies of biometric systems come from sample quality, sensor specificity,
behavior patterns. The use of a biometric system under different configurations in-
troduces dependencies. For example, in smartphone biometrics, the data capturing
process occurs under different lighting conditions, which adds unwanted noise. In
this situation, a generalizable biometric system should take care of the problem
of signal noise. A comprehensive survey of audio-visual biometrics is performed,
and a multi-attribute smartphone biometric dataset is created to examine the prob-
lem of generalizability. The key aim of this dataset is to investigate the advantages
of multimodal biometrics in dealing with the problem of robustness.
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Further, from external sources, artefacts such as presentation attacks (PAs) attempt
to hide or steal the identity of a target. A robust presentation attack detection
(PAD) algorithm should prevent attacks from unknown or unseen artefacts. There-
fore, a novel method for the detection of contact lens attacks in iris biometrics is
proposed. However, database dependency is observed, and an empirical evaluation
of texture-feature based iris PAD methods is carried out. In the same direction, the
challenge of detecting voice impersonation in speaker recognition is studied by
proposing a multilingual voice impersonation dataset. The language dependency
experimented with cross-lingual speaker verification in four languages. Along-
side this, smartphone audio replay attacks were created in ten different config-
urations, and vulnerability analysis performed. This thesis explores the different
factors that challenge the robustness of audio-visual biometric authentication and
proposes novel approaches/analyses to understand the problem of generalizability.

The thesis has been funded by the BATL and SWAN projects at Darmstadt Univer-
sity of Applied Sciences, Germany and the Norwegian University of Science and
Technology (NTNU).

1.1 Overview of projects

1.1.1 BATL project

Biometric Authentication with a Timeless Learner (BATL) is part of Odin’s Thor
program funded by the Intelligence Advanced Research Projects Activity (IARPA)
of the United States government to develop novel biometric technologies for present-
ation attack detection (PAD). The partners in this project are the Computer Sci-
ence department of the University of Southern California (USC), the Idiap Re-
search Institute (Switzerland), Darmstadt University of Applied Sciences (Ger-
many), TREX Enterprises and Northrop Grumman. The goal of this project is to
identify presentation attacks and ensure the subject is being correctly identified.

In cooperation with the Norwegian Biometrics Laboratory (NBL) at NTNU Gjøvik,
the biometric research group at Hochschule Darmstadt works on presentation at-
tack detection in iris biometrics. The team has developed a multimodal PAD at the
USC Information Sciences Institute (USC ISI) to detect presentation attacks (PAs)
in the face, iris and fingerprint modalities. The target of this PAD system is to
perform a robust, accurate and timely detection of known and unknown (PAs). A
set of novel sensors and machine learning techniques are employed to obtain PAD
features and obtain the interoperability and generalizability of PAD algorithms.
The PAD decisions from all three modules and unknown detectors are fused to
accurately discriminate PAs, impostors, and identity concealers.
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1.1.2 SWAN project

The Research Council of Norway funds the Secure Access Control over Wide
Area Network (SWAN) project. The objective of the SWAN project is to promote
research into and the development of a secure access control platform for mobile
devices. The research methodology of the SWAN project is divided into four parts:
Trustworthy biometrics, Privacy-preserving biometrics, Trustworthy transaction
protocols and information fusion.

The enormous growth of smartphone technology has triggered a severe necessity
for security protocols. Recent mobile devices come with expert hardware and ad-
aptive software for many kinds of applications. Banking applications and identity
verification systems have been using mobile devices given their high performance
capabilities. In parallel, the threats to mobile devices have become apparent in the
form of data hacks or illegal access. In these scenarios, biometrics can provide
secure access to the devices with quick and easy usage. However, current mobile
biometrics are prone to vulnerabilities such as presentation attacks. Therefore,
trustworthy biometrics are a significant focus in the SWAN investigation of differ-
ent sources of vulnerabilities. The biometric data contains sensitive information,
and such data becoming available for misuse can lead to psychological and fin-
ancial consequences. Novel privacy-preserving techniques are developed in the
SWAN project using template protection methods. The biometric data collected is
protected by following the privacy by design framework.

The trustworthy transaction protocols play a crucial role in financial transactions
over communication channels. Web-based technologies are prone to malicious
attacks originating from various devices connected to the network. In this regard,
the SWAN project’s advanced transaction protocols are developed to overcome the
problems of harmful malware in online transactions. The biometric tem plate is
stored on the client device to prevent data leakage thus dropping the disadvantages
of central storage. Further, the SWAN project is developing a multimodal system
employing more than one biometric characteristic for mobile banking applications.
Depending on the cost of the transaction, a single biometric characteristic may not
be enough in providing sufficient security. Therefore, a multimodal system is being
developed with efficient biometric fusion at the feature, score, or decision level in
the SWAN project.

1.2 Motivation and Problem Statement
The growth in technology and computational power has increased the amount of
data processing to an enormous level. The digitally processed data contains mul-
tiple types of sensitive information, which is crucial to privacy issues. The protec-
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tion of such data is a vital requirement in many applications. Therefore, a potential
authorization process is employed in sensitive data processing applications. In re-
cent decades, biometrics-based authentication has been an optimal way of person
authentication. Biometric systems use unique, permanent and stable characteristics
to authorize individuals to access sensitive information. The advantage of biomet-
rics over traditional passwords or key cards is that biometrics is very quick and
user friendly. However, the end-user biometric systems deployed come with mul-
tiple system dependencies and vulnerabilities that concern the robustness of human
authentication. The system dependencies are formed because of the use of biomet-
rics in a variety of environments. Different aspects such as capturing conditions,
background noise, or human behavior may alter the performance of authorization.
On the other hand, artefacts such as presentation attacks try to override the target
human’s identity with the help of manufactured biometric characteristics such as
printed face, or recorded audio.

The primary motivation of this thesis is to address the challenges from the various
factors that alter the consistent robustness of biometrics. The target of this work is
to achieve the generalizability of biometrics under several real-world conditions.
Generalizable biometrics should be able to display robustness under variable con-
ditions. Therefore, employing such biometric systems in applications like mobile
biometrics or smartphones would lead to trustworthy human authentication.

1.3 Research Objectives
The research objectives of this thesis are to study and propose the robustness of
biometrics in the audio-visual domain in the scope of general and smartphone bio-
metrics. The following research objectives are the target of this thesis.

1. To perform a comprehensive survey of audio-visual biometrics with an ex-
haustive study of all the aspects and support the development of an audio-
visual dataset considering different attributes.

2. To develop novel presentation attack detection algorithms in iris biometrics
using fusion of texture feature based information.

3. To study and experiment voice impersonation attack in speaker recognition
with the help of a novel dataset.

4. To investigate the impact of change in behavioral patterns in automatic speaker
verification.

5. To create a novel smartphone audio replay attacks dataset to examine differ-
ent attack configurations.
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1.4 Research Questions
The following research questions are framed upon the study of the background and
identifying the problem statement.

1. Can the problem of vulnerability be reduced by using a multimodal recog-
nition system? (Related chapters: 7, 6)

Multimodal biometric systems are used to provide more accurate authen-
tication than a single biometric cue [14]. Alongside this, research on anti-
spoofing or presentation attack detection (PAD) methods focused on creating
a special module in a biometric system [15]. Multimodal systems contain
more than two biometric characteristics. Thus, it is useful to counteract
spoofs by taking advantage of complementary information instead of creat-
ing an overhead through special modules. This could be achieved by study-
ing the available audio-visual multimodal systems by detailed categorization
and classification. This research question concerns anti-spoofing techniques
using multimodal recognition systems and examines the existing recognition
methods for multiple vulnerabilities.

2. Can PAD algorithms be generalized to unknown presentation attacks? (Re-
lated chapters: 8,9,10)

One of the challenging problems in PAD is obtaining a generalization of
the PAD algorithm. Given the dependencies of the developed PAD method
on various attributes (e.g. sensor), unknown attacks cause a severe prob-
lem. This problem could be addressed by novel PAD methods that are ro-
bust against new kinds of presentation attacks. The proposed PAD methods
should be tested for various real-world situations to examine their generaliz-
ability. The impact of presentation attacks and proposed PADs are evaluated
over unknown scenarios and multiple dependencies. Further, unknown or
least discussed presentation attacks are tested to impact biometric recogni-
tion and PAD performance.

3. Can the fusion of texture features be used in modelling generalizable PAD
algorithms? (Related chapters: 8)

The optimal fusion of different texture-based information obtained from
the biometric data samples can be used for implementing PAD methods.
Presentation attacks contain cues from the artefacts that are used to create
them. This depends on the type of attack, the sensor used and the condi-
tions of the data acquired. In the case of attacks where the artefact is highly
similar to a bona fide, combination of texture features would provide bet-
ter knowledge of attacks. This research question is about exploring quality
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and texture-based features in severe presentation attacks to propose a novel
PAD method. Contact lens attacks are prone to be challenging in detection.
Therefore, image quality and a texture feature of periocular regions can be
utilized here to identify the contact lens in an iris image. Further, the pro-
posed method can be examined for generalizability.

4. Can using multimodal PAD algorithms be beneficial in overcoming the prob-
lems with vulnerabilities? (Related chapters: 7)

A multimodal system comes with complementary biometric cues. The prob-
lem of presentation attacks can be addressed with the help of multimodal
systems. For example, in an audio-visual system, an attack on the audio
channel can be ignored with the help of a robust visual channel. Therefore,
in detecting presentation attacks, multiple modalities would import addi-
tional characteristics for bona fide and artefact samples. This research ques-
tion intends to examine the benefits of audio-visual systems by creating a
set of novel presentation attacks. Multimodal presentation attacks such as
synchronous replay attacks and synthesized attacks on individual cues are
created in audio-visual domain. The complexities involved in implement-
ing multimodal presentation attacks are investigated and, further, detecting
attacks using the complementary data from bona fide samples.

1.5 Research Methodology
The research methodology of this thesis correlates with the research questions
presented in the previous section. The following methodologies are planned to
fill some gaps in this research domain by addressing the research questions. The
key research topics of this thesis are presented in Figure 1.1.

Robust Audio-Visual
Biometrics

Algorithm
Dependencies

Presentation
Attacks

Language
Dependency

Device & Session
Dependency

Audio Replay
Attacks

Iris Contact Lens
Attacks

Voice
Impersonation

Attacks

Figure 1.1: Research topics in this PhD program.

• Comprehensive survey and novel audio-visual biometric dataset



1.5. Research Methodology 9

A comprehensive survey of audio-visual biometric recognition and present-
ation attack detection is performed. The key concepts of audio-visual bio-
metrics, terminology and standards are explained. A detailed study of the
datasets and benchmarking biometric algorithms is presented. The survey
includes a classification and comparison of recognition and presentation at-
tack detection (PAD) methods.

The drawbacks of the previous datasets in the audio-visual domain are iden-
tified. A novel dataset is created with 103 subjects in a smartphone environ-
ment, including multiple dimensions such as devices, sample noise and lan-
guages. The dataset is benchmarked with state-of-the-art biometric recog-
nition algorithms. Two types of presentation attack are created in physical
and logical access domains. The vulnerability of presentation attacks and
the performance of baseline PAD methods are evaluated through extensive
experiments.

• Presentation attacks

Iris contact lens attack detection is a challenging problem in iris biometrics.
A novel approach is proposed using an efficient fusion of image quality and
texture features. The proposed method is tested on publicly available iris
presentation attack databases. An empirical evaluation of existing state-of-
the-art texture feature based iris PAD methods is performed, and the results
are presented. The results show a consistent superiority compared to other
texture feature methods, but dependency on the dataset is observed.

Voice impersonation is the least discussed presentation attack in automatic
speaker verification systems. A novel dataset of voice impersonation is cre-
ated in three different languages using a crowd-sourcing approach. The im-
pact of voice impersonation as a presentation attack is tested on state-of-the-
art deep learning methods and baseline voice PAD methods. The dataset
created is used to test voice impersonation attacks and the dependency of
language.

• Robustness Generalizability of biometric algorithms

Language dependency is examined using cross-lingual speaker verification
where the language is different in training, enrollment and testing. Thor-
ough experiments are performed on a publicly available smartphone dataset
with four different cross-languages. The impact of language mismatch is
observed under different classifiers using two speaker verification methods.

A novel smartphone audio-visual dataset is examined for generalizability of
biometric methods in three different scenarios: Inter-device, inter-session
and inter-language. When the dependency arises, the biometric algorithms



10 Introduction

display a drop in performance. Further, the problem of presentation attacks
is also observed using two types of presentation attack.

A novel audio replay attack dataset across multiple smartphone configura-
tions is developed. The record-playback configurations are carefully chosen
to accommodate the impact of the bona fide data capture device. The at-
tack data also contains multiple languages to observe the language mismatch
problem in presentation attacks. The vulnerability of attacks is carried out
by two methods: A state-of-the-art and a commercial-off-the-shelf method.

RQ 2,3
Presentation attacks

Contact lens

Articles 3, 4

Voice impersonation
attacks

Articles 5

Audio replay
attacks

Article 7

RQ 1, 4
Generalizability

Audio-visual biometrics

Survey

Language dependency

Cross-language

Article 1 Article 2 Article 6

Contact lens

Presentation attacks

Audio replay
attacks

Voice impersonation
attacks

Article 5

Dataset

Figure 1.2: Research questions and corresponding published research articles.

1.5.1 Scope of the thesis

The scope of this thesis is to study and examine the dependencies from internal
and external factors that challenge the robustness of audio-visual biometric sys-
tems. Further, with the help of the study, the focus is to develop novel techniques
to address the problems caused by the dependencies, and presentation attacks in
audio-visual biometrics. We have identified different scenarios where the perform-
ance of a biometric system can be affected. The vulnerability caused by these
scenarios is examined with novel datasets over state-of-the-art biometric systems.
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A comprehensive survey of audio-visual biometrics is carried out, and a multidi-
mensional biometric dataset is created in a smartphone environment. The acquired
dataset is benchmarked under different scenarios and novel presentation attacks.
The next part of the thesis presents the challenging vulnerabilities caused by con-
tact lenses in iris biometrics and voice impersonation in speaker recognition. A
novel presentation attack detection method is proposed for contact lens detection,
and a crowdsourcing based voice impersonation dataset is created to examine the
problems of mimicry attacks. Further, the thesis presents the problem of language
dependency through tested cross-lingual speaker recognition. The impact of audio
replay attacks in smartphones under various configurations is observed in the last
part of this thesis. The scope of the thesis is to provide an insight into the vari-
ous challenges that impact the robustness of audio-visual biometrics. This thesis
would attract the biometrics research community in modelling novel generalizable
biometric systems.
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1.7 Thesis Outline
This thesis is divided into three parts. Part I contains an overview of the thesis,
which presents the introduction, background, a summary of published articles,
conclusion and future work. Chapter 1 describes the BATL and SWAN projects,
the motivation for this thesis, problem statement, research methodology and list
of research articles. Chapter 2 discusses the background and related work on the
key topics and terminology that is used in the other parts of this thesis. Chapter 3
summarizes the research articles which are part of this thesis. The conclusion and
future work are discussed in Chapter 4 and 5 respectively.

Part II presents the research articles that are related to the research methodology
of the thesis. Chapter 6 presents the paper on the comprehensive survey of audio-
visual biometric recognition and presentation attack detection. In Chapter 7, a
novel audio-visual biometric dataset created in a smartphone environment is de-
scribed along with benchmarking experiments and results. Chapter 8 presents the
paper on the novel approach to contact lens detection in iris biometrics with ex-
tensive experiments. In the this direction, an empirical evaluation of texture-based
iris presentation attack detection methods is presented in Chapter 9. Moving fur-
ther in the voice biometrics direction, Chapter 10 presents the voice impersona-
tion dataset collected to evaluate the impact of mimicry attacks on state-of-the-art
speaker recognition methods. Chapter 11 describes the cross-lingual speaker veri-
fication experiments on the X-vector method to observe the impact of language
dependency. Finally, the impact of audio replay attacks in smartphone biometrics
is examined, and the results are presented in Chapter 12.

Part III presents the appendix of the thesis with a discussion of mobile applications
in capturing smartphone biometric data in 7.



Chapter 2

Background and Related Work

In this chapter, we present the fundamental concepts of biometrics, including
physiological and behavioral biometrics in Section 2.1 with a discussion of the
modalities used in this thesis. Then, we explain the topic of multimodal biomet-
rics with emphasis on audio-visual biometrics in Section 2.2. The problem of
generalizable biometrics with the topics of presentation attacks and algorithm de-
pendencies is explained in Section 2.3.

2.1 Biometrics
Human identification has become a key feature of modern-day authorization. A
human can be identified in three different ways: what you have, what you know
and what you are. Key cards or identity cards come into the category of what you
have whereas passwords or PIN codes fall under what you know. The third cat-
egory what you are is the unique characteristics of which an individual consists.
This type of authentication does not require carrying any extra item or remem-
bering patterns. The unique characteristics every human possesses are biometrics.
Biometrics is defined as the “automatic recognition of individuals based on their
behavioral or biological characteristics” [16]. Biometric identification is more be-
neficial than the other two ways given properties such as uniqueness, permanence
and user-friendliness.

A biometric recognition system captures the unique characteristics of an individual
and performs signal processing to compare them with the registered signal in the
database [13]. Depending on the type of characteristics, a biometric system uses
different sensors in capturing. Similarly, various signal processing steps and com-
parison methodologies are employed in the biometric recognition process. Biomet-
ric cues are divided into two types: physiological and behavioral. The biometric
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cues used in the recognition methods can be more than one modality: Unimodal
and multimodal biometrics. More about the types of biometric characteristics and
systems is explained in the following sections.

2.1.1 Physiological Biometrics

Physiological biometrics are biometric characteristics, including biological or physiolo-
gical features of the human. Typical physiological biometrics are fingerprints, the
face and iris biometrics. In general, physiological biometrics are captured in a
single shot scenario. Therefore, physiological biometrics have become easy to use
and are deployed in a wide range of applications.

Face Recognition

Face recognition is the process of identifying a person with the unique properties
of a person’s face. Face recognition has evolved into an active biometrics research
domain given its advances in capturing devices. Over the years, advanced face
biometric methods have been proposed that display near-zero inaccuracy. Face
image representations use texture-based features, animation-based features and,
recently, deep learning features. Texture-based features are computed using filters
and used for comparing facial images. Local Binary Patterns (LBP) is one of the
popular texture features that display consistent performance in face recognition
[17]. Other texture features include the Histogram of Gradients (HOG) [18], Gabor
filters [19] and Haar filters [20]. Animation-based face features use the shape and
appearance of a facial region in an image with the help of active shape models
[21]. The animation features utilize high-level features such as the lip-contour
region and have the advantages of light sensitivity and rotation [1]. Typical face
animation features use a series of frames in a video to obtain optical flow, and
motion blur [22] [23]. Deep learning methods take over face recognition research
by allowing generalizable and robust biometric algorithms. FaceNet is a CNN that
outputs face embeddings using triplet loss and is efficient in identifying similar
faces [24]. ArcFace features are proposed for face biometrics with a higher level
of discrimination by emphasizing the loss function [25]. FaceNet and ArcFace
methods display consistent performance over different face biometrics databases.

Iris Recognition

The human iris has unique characteristics which are widely used for biometric re-
cognition. The benefits of the iris over the face fingerprints are that it is a more
protected organ and unique even in monozygotic twins [26]. Although state-of-
the-art iris recognition systems require special sensors such as near-infrared cam-
eras, it is submitted that iris biometrics is more robust and accurate than face- or
fingerprint-based biometrics [27] [28].
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However, iris recognition is also prone to vulnerabilities such presentation attacks
[3].

2.1.2 Behavioural Biometrics

Behavioral biometrics are characteristics of human behavior over a short period.
Popular behavioral biometrics are the voice, gait and keystroke dynamics. The
capturing process for behavioral biometrics happens over a short time, ranging
from a few seconds to minutes. Behavioral biometric recognition analyzes the
patterns in a person’s behavior and identifies the unique properties for recognizing
a person. Time-series data in human behavior also recognizes other properties
such as age, gender, and emotion.

2.1.3 Speaker Recognition

Automatic speaker verification (ASV) is a process of identifying a person based on
speech patterns. Speaker recognition has attracted attention given its ability to au-
thenticate remotely via telecommunication. The acoustic feature extraction from
speech reflects the uniqueness of a speaker and also contains behavioral patterns.
The cepstral features of an audio signal are widely used in speaker verification.
Mel-frequency cepstral coefficients (MFCC) are popular acoustic features that are
based on auditory perceptions [29]. It has been suggested that MFCCs represent
the human perception of voice more accurately by suppressing minor variations in
higher frequency bands. In ASV methods, MFCCs that are used along with Gaus-
sian mixture models (GMMs) show superior results across different applications.
I-vectors are low dimensional representations of a speech sample computed using
MFCCs using Joint factor analysis (JFA) [30]. I-vectors model channel effects and
information about the speakers in a vector representation. Probabilistic linear dis-
criminant analysis (PLDA) [31] displayed better performance in training speaker
models using i-vectors. The deep learning methods have evolved in representing a
voice sample using acoustic features or raw audio. X-vectors are fixed dimensional
deep neural network audio features used to differentiate speakers [32]. The deep
learning model used in this approach is a feed-forward neural network on cepstral
features [33].

2.2 Multimodal Biometrics
Biometric systems using only one biometric cue (unimodal system) have several
problems given their limited data. Although a unimodal system can use multiple
classifiers to perform biometric verification, the data obtained from the sensor can
be problematic. Therefore, multimodal biometrics has become a popular research
direction [14]. In general, multimodal biometric systems use more than one type
of biometrics and employ a fusion approach to make a decision on recognition.
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Multimodal systems have advantages such as additional information to overcome
the problem of noisy data in one biometrics. Biometric identification systems with
multiple cues are employed in many applications [34]. Many biometric databases
provide multimodal data to encourage research in biometric fusion approaches
[10], [8], [12].

2.2.1 Audio-Visual Biometrics

Audio-visual biometrics have attracted interest given their unique properties and
advantages over multimodal biometrics. Multimodal biometrics may contain dif-
ferent biometric data and use different classification approaches to identify a per-
son. Therefore, using multimodal systems introduces new problems such as cap-
turing time, processing overhead and design difficulties. Audio-visual biometrics
use a single capture system of a talking face and combine complementary cor-
related information, unlike multimodal systems. Alongside unimodal biometric
challenges, audio-visual speaker recognition challenges are also attracting research
[35]. In smartphones, audio-visual biometrics can be deployed as modern mobile
devices contain video cameras and microphones. Mobile biometric applications
like e-commerce and mobile payments can take advantage of audio-visual biomet-
rics to provide high-level authentication at less cost [36].

2.3 Generalization problem
The problem of generalization is the problem of the inconsistent performance of a
biometric system across different setups. Biometric systems are impacted by two
different types of factor, namely internal dependencies and external artefacts. The
internal dependencies are the factors included while developing a biometric system
and limit the performance in other scenarios, e.g. data noise, behavioral patterns,
capturing devices etc. On the other hand, external artefacts are attacks on deployed
biometric systems in order the alter their performance, e.g. presentation attacks.
The generalization problem challenges the robustness of biometric algorithms.

2.3.1 Algorithm Dependencies

The internal dependencies of a biometric system are accumulated from several
sources. Popular dependencies are the type of biometric data used in development,
the variance of capturing devices, and changes in the behavioral patterns of sub-
jects [21]. In smartphone biometrics, biometric data varies because the data cap-
ture is not under controlled situations. Also, the developed algorithm is deployed
in different devices, and the biometric sensor (camera) introduces new properties
to the data. Behavioral patterns like changes in language or text impact the per-
formance of voice-based biometrics.
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2.3.2 Presentation Attacks

There are several vulnerable points in a biometric system caused by external arte-
facts, as shown in Figure 2.1. According to ISO/IEC standards [5], presentation
attacks are defined as the presentation of a biometric capture subsystem to inter-
fere with the operation of the biometric system. The artefact used in this process is
called a Presentation Attack Instrument (PAI). There are two types of presentation
attack: An active impostor presentation attack where an attacker tries to be recog-
nized as a different subject, and a concealer presentation attack where the attacker
avoids being recognized as a subject in the system. The increase in vulnerability
caused by presentation attacks has given rise to a new module of presentation at-
tack detection (PAD) in biometric systems. Presentation Attack Detection (PAD) is
the identification of presentation attacks to be classified, particularized, and com-
municated for decision-making and performance analysis [37]. PAD is also termed
anti-spoofing, or liveness detection in the literature [15].

Figure 2.1: Presentaion Attacks on a biometric system [5].

In audio-visual biometrics, presentation attacks are generally performed on audio
or video capturing sensors or both. In audio channels, presentation attacks are
voice impersonation, audio replay, voice conversion, and speech synthesis [21]. In
video channels, printed images, display presentations, synthesized signals (Deep-
Fake or artificial face) and 3D masks [38], [28]. Alongside this, audio-visual replay
attacks and digital audio-visual attacks are created using display-speaker setup and
face-speech synthesis, respectively [39].
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Chapter 3

Summary of Published Articles

In this chapter, we summarize the research articles published throughout this PhD
program. The following sections present a brief overview of each article with an
introduction, motivation, and research findings. The topics shown in Figure 1.1
and research questions in Section 1.4 correspond to the papers discussed in this
chapter.

3.1 Article 1: Audio-visual biometric recognition and present-
ation attack detection: A comprehensive survey

Multimodal biometrics have attracted research attention given the scope for utiliz-
ing multiple sensors for biometric recognition. Among these, audio-visual biomet-
rics are discussed in many works for their advantages, such as complementary and
correlated biometric cues. The advantage of audio-visual biometrics over other
multimodal biometrics is that audio-visual biometrics can be acquired in a single
capture and contain additional correlated information. Therefore, the growth of
audio-visual biometrics has seen a constant growth in research.

A detailed survey on audio-visual (AV) biometrics and presentation attack detec
tion methods is carried out in this paper. The paper introduces the topic of mul-
timodal biometrics and the category of audio-visual biometrics with general con-
cepts and related work in the literature. The terminology is provided according
to the ISO/IEC standards [16]. The feature extraction methods in AV biometrics’
audio and visual domains are explained in detail with classifications. The next
section describes the fusion approaches used to combine efficiently the audio and
video domains for biometric recognition. AV biometric databases are created in
different domains such as smartphones, handheld devices and high-tech sensors.
A thorough study of the AV databases is performed in this paper with a description
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of databases and the best performing biometric method. Sample biometric images
are also presented to provide an insight into the databases.

One of the advantages of AV biometrics is the complementary information present
in the sample. This information is often utilized in identifying presentation attacks
or forgery attacks. In this study, we have presented the features used in attack
detection in AV biometrics with categorizations. The summary of the different
features, databases and performance of attack detection methods is presented in a
table. Further, the challenges and open questions in the field of AV biometrics are
discussed. The main challenges include databases, AV biometrics in smart devices
and performance evaluation protocols. The identified challenges would provide
scope for valuable research on AV biometrics in the future.

3.2 Article 2: Multilingual Audio-Visual Smartphone Dataset
And Evaluation

Smartphone biometrics has evolved into critical privacy and data security applica-
tions in daily life such as mobile banking and digital identity. Smartphone manu-
facturers embed additional sensors into devices to provide accurate authentication.
However, the biometric system dependencies and external vulnerabilities restrict
the robustness of biometric recognition. The well-known dependencies are signal
noise, changes in behavior and channel variability. The external vulnerabilities in-
clude presentation artefacts that can be used to attack or conceal the identity of the
target person. The wide range of devices, capturing conditions and growing arte-
facts impact the generalizable properties of biometric algorithms. In this regard,
multimodal biometrics have come into play to include complementary information
on different biometric cues. More importantly, audio-visual biometrics come with
correlated biometric information to deal with dependencies and attacks.

In this paper, we have created a novel multilingual audio-visual smartphone (MAVS)
dataset that accommodates the research scope for examining the generalizable
properties of biometrics in smartphones. The main focus of this paper is to evaluate
the impact of dependencies and attacks on the start-of-the-art algorithms on smart-
phone biometric data. Therefore, we created the dataset, which includes multiple
sessions with variable lighting and noise, multiple smartphone devices and mul-
tiple languages. Further, we have created presentation attacks in two directions,
namely physical and logical access.

Extensive experiments were performed in different scenarios observing the prob-
lems of biometric algorithms, and the results are presented in detail. The two
different types of experiment are designed to examine the robustness of biometric
algorithms. The first type of experiment includes internal dependencies such as



3.3. Article 3: Image Quality and Texture-Based Features for Reliable Textured Contact Lens
Detection. 21

signal noise, capture device and audio language. The second experiments verify
the impact of presentation attacks by checking vulnerability and attack detection
methods. The results are presented in ISO/IEC standards, and comparisons are
made to check the inter-device, inter-session and inter-language situations. The
presentation attack detection methods are taken from the baseline attack detection
challenges [40], [12].

The novel dataset proposed in this work can be utilized to address several chal-
lenges in audio-visual biometric research. Developing generalizable biometric
algorithms across a wide variety of smartphones requires a dataset with several
attributes discussed in this work. The key attributes in this dataset include the bio-
metric data with multiple languages, devices and sessions. The multidimensional
dataset has the capacity to research and propose robust biometric algorithms in a
smartphone environment. The drawbacks in current recognition systems can be
the subject of an experiment, and novel algorithms can be implemented with the
help of observations. Further, the protocols used in creating the dataset and mak-
ing presentation attacks can be used as benchmarks for creating a newly updated
dataset.

3.3 Article 3: Image Quality and Texture-Based Features for
Reliable Textured Contact Lens Detection.

Presentation attacks in iris biometrics cause a serious vulnerability despite being
a unique and stable biometric modality [26]. The vulnerability can be in the form
of concealing iris identity or an attack on an already enrolled iris. Artefacts such
as printed iris images, or electronic display attacks can be detected with advanced
censors such as near-infrared cameras. However, textured/patterned contact lens
attacks show a significant problem for iris-based recognition [3]. The difficulty in
manually detecting a contact lens is that it covers the iris region and moves along
with the eye movements. The existing methods in this direction dealt with contact
lens attacks passively, not taking into account different lens species and capturing
devices. Therefore, we have proposed in this paper a novel contact lens detection
method using a weighted fusion approach of image quality and a texture feature.
The proposed method is tested for generalizability, and the results are compared
with state-of-the-art algorithms.

The proposed method uses two features of a periocular image, namely BRISQUE
and BSIF. Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) fea-
tures are a statistic-based distortion-generic image quality assessment (IQA) model
that provides a measure of image quality [41]. This feature includes the qual-
ity of the bona fide iris and distinguishes it from contact lens attacks. Binarized
Statistical Image Features (BSIF) are texture-based features that are known to be
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more suitable for detecting patterned/textured contact lens [42]. The two features
are used to train two Spectral Regression Kernel Discriminant Analysis (SRKDA)
classifiers independently [43]. The obtained test scores from two classifiers are
combined using a weighted score-level fusion. The Fisher Discriminant Ratio
(FDR) [44] is employed to obtain the weights on two different features.

Experiments were performed on multiple datasets publicly available from the Liv-
DetIris 2017 challenge [45]. Results indicate superior performance over other tex-
ture feature-based attack detection methods. The results are consistent across dif-
ferent types of contact lens used in different datasets. However, testing for the
generalizability of cross-sensor experiments, the proposed method failed to dis-
play similar performance across all datasets. The cross-sensor experiments were
carried out by limiting the types of attack. The training data is taken from one of
the datasets and tested on all other datasets. This inconsistency in performance
leads to questioning the robustness of the presentation attack detection algorithms.

3.4 Article 4: Empirical Evaluation of Texture-Based Print and
Contact Lens Iris Presentation Attack Detection Methods.

The robustness of iris presentation attack detection algorithms is heavily affected
given the lack of generalizability. The state-of-the-art methods display optimal
performances in limited conditions. When tested for different varieties of real-
world scenarios, they often failed to perform optimally. Studies were performed
on the assessment of iris presentation attack detection methods with categorization
and taxonomy [46], [28]. In this paper, we empirically evaluated the well-known
texture feature based on iris PAD methods in multiple scenarios. Texture- based
features are one of the most popular categories of features used in iris PAD. The
motivation behind this paper is to understand the behavior of PAD methods to-
wards generalizability.

The experiments are designed to include different types of dependencies like un-
known attack, unknown device and all combined. We have chosen four different
types of dataset with two different types of attack. Five different texture feature-
based methods were carefully chosen for the evaluation. The two types of attack
used in this paper are two different presentation attack species: Print attacks and
contact lens attacks. The five PAD methods utilize features such as LBP, BSIF,
CAQP, BRISQUE and PHOG with the classifiers SVM and SRKDA.

The key observations from this paper are that no single method performs better
in all the different scenarios. However, it is important to note that the efficient
fusion of high performing texture features can deliver a better performing attack
detection method. The performed evaluations provide an insight into the impact
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of different scenarios that presentation attacks can be carried out in and how PAD
methods perform in such situations. Future work in this direction suggests that
robust biometric algorithms are required to consider various forms of vulnerability.
Thus, the consistent performance of biometric recognition can be assured.

3.5 Article 5: Multilingual voice impersonation dataset and eval-
uation.

Behavioral biometrics are unique traits of characteristics that are used to identify
humans. Unlike physiological biometrics, behavioral biometrics are an inform-
ation series over a period of time. The behavior of humans such as speaking,
walking are used as biometrics. Among these, speaker recognition has been prom-
inently used for biometrics. Along with the progress of behavioral biometrics, vul-
nerabilities due to presentation attacks have also evolved. In speaker recognition,
attacks on biometrics include voice impersonation, audio replay, voice conversion
and speech synthesis. Voice impersonation is a physical access attack that does
not include any equipment. Although voice impersonation is an obvious method
of presentation attack, it is the least discussed in the research domain.

We have identified the problems existing in examining voice impersonation as
a presentation attack. This paper created a voice impersonation dataset using a
publicly available source, namely YouTube. We chose three different languages
and accumulated popular impersonators through manual inspection. The speech
samples from YouTube videos were created in a way similar to VoxCeleb datasets
[47]. The audio samples with overlapped voices, background noise and dominat-
ing music were omitted. For each language, samples from fifteen different speak-
ers were acquired with both bona fide and impersonation data. The protocols for
creating this dataset are publicly available for research purposes.

We have examined the state-of-the-art biometric methods for the vulnerability of
voice impersonation. With the help of pre-trained models from Kaldi, we evaluated
I-Vector and X-vector based automatic speaker verification methods. The results
show the considerable impact of impersonation attacks in all three languages. Al-
though the vulnerability varies from language to language, the voice impersonation
attack samples can match with the bona fide samples. The observations show the
problem of impersonation attacks and trigger a need for subject-specific speaker
verification systems independent of languages.
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3.6 Article 6: Cross-lingual speaker verification: Evaluation on
x-vector method.

Biometric algorithms are used across the world in a wide variety of applications.
An end-user behavioral biometric system can be affected by a change in behavior
or the subject. In speaker recognition, the difference in the language of the audio
samples in enrollment and testing can alter the performance. In text-independent
speaker recognition, language dependency has emerged as one of the key prob-
lems. This dependency on language reduces the robustness of speaker recognition
systems [48]. Although many language-independent methods were proposed, the
dependency of language is not adequately studied [49].

In this paper, we performed experiments on cross-lingual speaker verification us-
ing a smartphone dataset. The state-of-the-art deep neural networks approach
called the x-vector method is tested for language dependency. Multiple language
audio data from different sessions are examined in the experiments. The mismatch
of languages during training, enrollment and testing were observed in different
experiments. We chose two pre-trained models trained on NIST-SREI6, and Vox-
Celeb [50] datasets. The NIST-SREI6 training model contains two types of classi-
fier 1. OOD PLDA is an out-of-domain model trained on data other than SRE16.
2. ADT PLDA is an in-domain PLDA that is adapted to the major partition of
SRE16. We used the SWAN dataset that contains four different languages and five
different sessions for enrollment and testing.

We carried out two experiments dependent on the training datasets. The first ex-
periment used two types of PLDAs in NIST-SREl6 models to check the cross-
lingual speaker verification of the X-Vector method. It was clearly observed that
the language mismatch impacted the performance indicated by the drop in EER.
The second experiment used the VoxCeleb model with only one PLDA. The de-
crease in performance due to language mismatch is high in this experiment. Also,
the speaker recognition accuracy is low compared to the SRE16 model. The main
reason for this behavior is the huge variance in data from the VoxCeleb datasets.
Although both the datasets contain multiple languages and the X-vector method
uses deep learning for training, the cross-lingual speaker recognition is limited.

3.7 Article 7: Smartphone audio replay attacks dataset.
Audio replay attacks are well-known presentation attacks on automatic speaker
verification systems. The advances in high-quality speakers enabled accuracy in
the replay of the voice in an audio sample. The replay attacks can be performed
with the help of a digital copy of the target speaker audio. The growth in smart-
phone usage has increased the vulnerability of biometric systems embedded in



3.7. Article 7: Smartphone audio replay attacks dataset. 25

smartphones towards replay presentation attacks. Alongside smartphones, speak-
ers have been growing to playback more frequencies present in human speech. The
dependencies introduced by the devices and languages are other key factors that
can add to replay attacks. From the discussion above, it is necessary to observe the
impact of replay attacks and the perspective of device and language dependencies.

In this paper, we examined multiple configurations of smartphones in creating
record-playback combinations and verified the vulnerability of two speaker veri-
fication systems: State-of-the-art and commercial-off-the-shelf. Further, we also
performed experiments on baseline attack detection methods and presented the res-
ults. The bona fide audio data is extracted from session 1 audio-visual biometric
data from the SWAN dataset [12]. The bona fide data was recorded using iPhone 6s
in four different languages from 50 subjects, each speaking four sentences. We op-
ted for five other smartphones to create ten different replay attack configurations.
We created protocols for evaluating smartphone replay attacks in four languages
and attack recording devices being the same or different from bona fide devices.
The SWAN dataset also provides replay attack data which is used as training data
in this paper.

The replay attack dataset created in this paper was tested over the X-vector-based
state-of-the-art and VeriSpeak commercial methods. All the attack configurations
display high vulnerability where most of the attacks are matched to the bona fide
samples. Although the commercial method displays slightly less vulnerability than
the state-of-the-art method, the high match rates are consistent. Similarly, when the
bona fide recording device and attack recording device are the same, the vulnerab-
ility caused by the attacks is slightly decreased. When it comes to dependencies by
languages and devices, there is no considerable difference in attack performance.
This shows the problem of replay attacks independent of languages and devices
among different record playback settings.

Further, the baseline attack detection methods of ASVSpoof 2019 [40] were ex-
amined for attack detection. It was observed that when the bona fide and attack
recording device is the same, the PAD performed better. Also, there is a correlation
between the device manufacturers in the PAD performance. When the devices in
playback and recording are from the same manufacturers, the PAD displays better
performance. This paper provided an insight into the audio replay attacks created
using smartphones and their impact on smartphone biometrics.
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Chapter 4

Conclusions

The main aim of this thesis is to develop state-of-the-art approaches to meet the
research objectives and answer the research questions mentioned in Sections 1.3,
1.4, respectively. The research topics investigated in this thesis are divided into
two parts, i.e. algorithm dependencies that affect generalizability and presentatin
attacks (see Figure 1.1). Various research problems are identified in these fields
and are used to frame four research questions. Seven research articles are included
in this thesis that attempt to address the research questions. The thesis starts with
a comprehensive review of audio-visual biometrics, including databases and fea-
ture extraction methods in recognition and presentation attack detection. The key
output of this paper is the challenges and open questions identified in the current
research.

Further, a novel audio-visual dataset was created in a smartphone environment that
accommodates multiple attributes such as three languages, five devices and three
ses sions with variable background noise and lighting. The dataset also created two
types of novel presentation attack in physical access and logical access domains.
We have evaluated the dependency of language in a cross-language speaker re-
cognition scenario on state-of-the-art methods. Thus, the thesis provides valuable
research on biometric algorithm dependencies and presentation attacks in audio-
visual biometrics.

The contact lens attacks in iris biometrics pose a challenging problem in the ro-
bustness of iris based human recognition. In this direction, a novel presentation
attack detection (PAD) algorithm is proposed to identify texture/patterned contact
lenses. However, the generalizability of the proposed methods is not achieved in
the case of cross-dataset evaluation. Therefore, an empirical evaluation is per-
formed to observe PAD performance in different scenarios. The results provided
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an insight into the behavior of PAD methods in real-world situations. Another least
discussed presentation attack is voice impersonation in speaker recognition. Thus,
this thesis chose the voice impersonation topic to answer our research question
about unknown/future presentation attacks. A novel voice impersonation dataset
was created in three languages and evaluated for vulnerability in automatic speaker
verification methods. In the direction of presentation attacks, the smartphone au-
dio replay attack dataset was created to observe the generalizability of attacks over
different playback-record configurations and languages. Extensive vulnerability
analysis and attack detection experiments demonstrated a replay attack’s impact
on speaker recognition performance.

The thesis achieves the research objectives through the collection of research art-
icles. The research questions are answered with novel approaches, datasets, and
experiments carried out throughout this thesis. The research methodologies, data-
sets and proposed approaches contribute to Robust Algorithms for Audio-Visual
Biometric Authentication.



Chapter 5

Future Work

The robustness of audio-visual biometrics has been examined, and novel methods
proposed in this thesis. The PAD method for iris contact lens attacks, the impact of
voice impersonation and audio replay attacks in smartphones have been evaluated
using novel datasets and detailed experiments. The following sections present the
scope for future work based on the research work for this thesis.

5.1 Generalizability of Biometrics
Generalizable biometrics is a major requirement given the growth of embedded
biometrics in many fields. In this thesis, we have examined the generalizability of
audio-visual biometrics under multiple dependencies and algorithms. The major
dependencies examined in the thesis are the type of dataset, capturing device, sig-
nal noise and language. Future research should identify other key problems and
propose protocols to evaluate them for a robust biometrics. In this direction, ad-
vanced methods can be proposed to overcome the problems caused by the depend-
encies. The embedded biometrics are tested in multiple scenarios for the problem
of generalizability. Alongside this, the presentation attacks have been evolving to
conceal or steal the identity of the target subjects. Robust PAD algorithms for un-
known and future presentation attacks are implemented in the future scope of this
thesis.

5.2 Audio-Visual Biometrics
The advantages of audio-visual biometrics have been discussed exclusively in this
thesis. The benchmarking experiments on the novel smartphone dataset will assist
in proposing state-of-the-art multimodal biometric systems. Therefore, in the fu-
ture scope of this thesis, complementary biometric cues in audio-visual biometrics
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could be utilized to propose robust biometric algorithms. PAD methods can make
use of audio-visual biometric synchrony and detect presentation attacks without
the need for a dedicated PAD module for each cue. The visual speech or talking
biometric face characterization would improve recognition robustness and prevent
presentation attacks.

5.3 Presentation Attack Detection
This thesis used fusion of texture features obtained from the periocular image to
propose an iris contact lens PAD method. The impact of voice impersonation and
smartphone audio replay attacks on automatic speaker verification were examined
through extensive experiments. Presentation attacks in unconstrained situations
and most vulnerable scenarios are the key attributes affecting biometric systems.
Deep learning approaches could model the liveness of a biometric sample and opt-
out artefacts. Therefore, by precise modelling of bona fide samples, a presentation
attack can be ruled out. In this direction, future work could investigate new ap-
proaches to create presentation attacks and propose PAD schemes to detect them.
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Article 1: Audio-visual biometric
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alli Sreenivasa Rao, Pabitra Mitra, SR Mahadeva Prasanna, and Christoph Busch.
Audio-visual biometric recognition and presentation attack detection: A compre-
hensive survey. IEEE Access, 9:37431–37455, 2021.

6.1 Abstract
Biometric recognition is a trending technology that uses unique characteristics data
to identify or verify/authenticate security applications. Amidst the classically used
biometrics, voice and face attributes are the most propitious for prevalent applic-
ations in day-to-day life because they are easy to obtain through restrained and
user-friendly procedures. The pervasiveness of low-cost audio and face capture
sensors in smartphones, laptops, and tablets has made the advantage of voice and
face biometrics more exceptional when compared to other biometrics. For many
years, acoustic information alone has been a great success in automatic speaker
verification applications. Meantime, the last decade or two has also witnessed a
remarkable ascent in face recognition technologies. Nonetheless, in adverse un-
constrained environments, neither of these techniques achieves optimal perform-
ance. Since audio-visual information carries correlated and complementary in-
formation, integrating them into one recognition system can increase the system’s
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performance. The vulnerability of biometrics towards presentation attacks and
audio-visual data usage for the detection of such attacks is also a hot topic of re-
search. This paper made a comprehensive survey on existing state-of-the-art audio-
visual recognition techniques, publicly available databases for benchmarking, and
Presentation Attack Detection (PAD) algorithms. Further, a detailed discussion on
challenges and open problems is presented in this field of biometrics.

6.2 Introduction
Biometric technology is swiftly gaining popularity and has become a crucial part
of day-to-day life. A biometric system aims to recognize a data subject based
on their physiological or behavioral characteristics [51]. Recognition systems are
based on biometric characteristics, such as DNA, face, iris, finger vein, fingerprint,
keystroke, voice, and gait. Several factors are considered while designing and
applying biometrics: accuracy to authentication, robustness to spoof or impostor
attacks, user acceptance, and cost of capture sensors. Amidst these factors, user
acceptance and sensor cost are the primary hindrances that thwart highly accurate
and robust biometrics.

The authentication system that uses a single biometric cue such as speech or face
is called a unimodal system. The biometric cue can use more than one classifier
and employ a fusion approach to perform recognition. Nonetheless, the captured
biometric cue may be of low quality due to variations in pose, illuminations, back-
ground noise, and low spatial and temporal resolution of the video. This problem is
addressed by using multiple biometric modalities for authentication [14]. Deploy-
ing multimodal data introduces other problems like multiple captures, processing
time, and design overhead. The vulnerabilities present by unimodal biometrics
may also exist in a multimodal system. The audio-visual biometrics took mul-
timodal biometrics to another better level by taking advantage of complimentary
biometric information present between voice and face cues. In analogy, voice and
face biometrics are most user-friendly and cost-effective as they allow capturing
the multi-biometrics in a single capture using low-cost sensors (e. g., smartphone
camera). These points made audio-visual biometrics an exciting topic of research
in field of multimodal biometrics.

Audio-visual biometrics has gained interest among biometric researchers both in
academics and in industry. As a result there are an ample amount of literature
available [51, 52, 53, 54], publicly available databases [55, 8, 56, 57, 58, 59, 60],
devoted books[61], open-source software [62, 63], mobile applications [64, 65],
speaker and recognition competitions [66, 35]. The National Institute of Standards
and Technology (NIST) conducted a challenge of Audio-Visual speaker recogni-
tion in 2019 (Audio-visual SRE19) [35]. The challenge provided baseline face
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recognition and speaker recognition and accepted two evaluation tracks, audio-
only and audio-visual, along with visual-only as an optional track. This compet-
ition submissions have indicated interesting results and started a new direction in
audio-visual biometrics in ongoing NIST SRE challenges. Further, there is an on-
going multimodal biometric project called RESPECT [67] which is on the verge
of producing a robust audio-visual biometric recognition system. As an applica-
tion, there are smartphones for performing financial transactions (e. g. banking
transactions, Google pay, e-government, e-commerce), border control [36] where
AV biometrics can be deployed because they provide an ideal choice for subdued
and low-cost automatic recognition. Although there are no commercial biometric
systems that use only audio-visual person authentication, there are domains where
multimodal biometrics are used. The dependency of the constrained environment
for audio-visual data capture limits the commercial use of AV biometrics. How-
ever, looking at smartphones usage growth, which is equipped with high-quality
cameras and microphones, there is a scope to use audio-visual biometrics in real-
world applications.

In this survey paper, we discuss audio-visual (AV) biometrics, where speech is
used along with stagnant video frames of the face or certain parts of the face [68,
69, 6, 70] or video frames of the face or mouth region (visual speech) [71, 72, 73,
74, 75] in order to improve the performance. The face and speech traits are fused
either at the feature level (i,e., features are fused and fed to the classifier) or at the
score level (i,e., an individual recognition system is built for each trait, and scores
from the system are fused). We have discussed different types of fusion schemes
used in AV biometrics. The main goal of audio-visual biometrics is to improve
the robustness of recognition towards unconstrained conditions and vulnerabilities.
Biometric attributes (face and speech) are prone to presentation attacks where a
unimodal system produces dubious recognition results. This paper also presents
several presentation attack detection (PAD) algorithms that used complimentary
audio-visual information (over a single cue) to obtain robust biometric systems
[76, 77, 2, 78, 79].

Few survey papers are available in the literature to provide a concise review of
audio-visual biometrics, including feature extraction, speaker recognition process,
fusion methods, and AV databases. Deravi [80] has reviewed the audio-visual
biometric systems in application to access control. Aleksic et al. [51] presented a
survey of audio-visual biometric methods, fusion approaches, and databases until
2006. Li has performed a survey on authentication methods based on audio-visual
biometrics [52] with brief reviews and presented a comparison of audio-visual
biometrics until 2012. The existing papers have also discussed some of the audio-
visual biometric systems [69, 81, 1, 82, 6, 83] that are vulnerable to replay attacks.



36 Article 1: Audio-visual biometric recognition and presentation attack detection: A
comprehensive survey

There are survey papers only on the fusion approaches used in AV biometric data
fusion [84, 53]. This survey paper presents a thorough review of all spearhead
efforts in AV biometrics and presentation attack detection (PAD) algorithms.

By considering the above survey papers and emerged technologies in AV biomet-
rics, this work contributes to the following:

1. A complete up to date review of existing AV biometric systems and detailed
discussion on audio-visual databases.

2. A detailed description of different audio and visual features, fusion ap-
proaches, and achieved performances are presented.

3. A thorough review of existing presentation attack detection (PAD) algorithms
for audio-visual biometrics is performed.

4. Challenges and drawbacks, emerging problems, and privacy-preserving tech-
niques in audio-visual biometrics are presented.

The rest of the paper is organized as follows: Section 6.3 presents the general con-
cepts of AV biometric recognition system, and section 6.4 presents the features in
AV biometrics. In section 6.5, we present different approaches used in audio-visual
fusion and classification. Section 6.6 discusses the existing audio-visual databases
and the comparison of benchmark AV algorithms on each database. Further, sec-
tion 6.7 describes PAD algorithms on AV based biometrics. Section 6.8 presents
challenges and open questions in this research domain and we conclude the report
in section 6.9 along with discussion of future works in this direction.

6.3 General concepts of AV biometric verification system
This section discusses different types of audio-visual biometric systems and ISO
Standard (ISO/IEC JTC1 SC37 Biometrics 2016)[85] biometric components. An
AV biometric recognition can be classified into two types: identification and veri-
fication. Identification is a process of finding out an individual’s identity by com-
paring the biometric sample collected from the subject with all the individuals
from the database. Verification is a process where the claimed identity is checked
against a single model where the biometric sample collected from an individual
is compared with the same individual’s sample from the database. The AV bio-
metric system can also be divided into two types based on audio and visual data
captured. Depending on the text uttered by the speaker, the AV biometric system
can be called a Text-dependent or a Text-independent system. If the AV biometric
system uses static visual information (e.g., an image of a face or static faces from
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Figure 6.1: Conceptual Biometric Model inspired from ISO/IEC JTC1 SC37.

video frames) is called Audio-Visual-Static biometric systems. In contrast, AV
systems using visual features containing temporal information from video frames
are called Audio-Visual-Dynamic biometric systems.

6.3.1 Biometric system components

Figure 6.1 shows a block diagram of ISO/IEC JTC1 SC37 biometrics recogni-
tion diagram [85] describing two main phases of a biometrics system namely, en-
rollment phase (red-colored lines) and verification or identification phase (blue
colored line). There are five major stages in this system: data capture, Signal pro-
cessing, Data storage, Matching, and Decision making, as indicated in [85]. Data
capture, signal processing, and Data Storage are used only in enrollment, and the
rest of the blocks are used in both enrollment and recognition phases. The first
stage is the data capture, where audio-visual biometric is captured using a sensor
and the second stage is the signal processing block, which includes multiple steps.
For example, segmentation and feature extraction are carried out in this step by
cropping out the biometric region and extracting optimal features.

Pre-processing is a part of the signal processing block where the biometric sample
is prepared for feature extraction. Pre-processing of an audio signal includes sig-
nal denoising [81], channel noise removal, smoothing [86], signal enhancement,
silence detection and removal. Pre-processing a video signal consists of steps like
detecting and tracking the face or any other important face regions. After fea-
ture extraction, the next sub-block in the signal processing stage is the biometric
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Figure 6.2: Vulnerability of AV biometric system (motivated by figure ISO/IEC 30107-1).

sample’s quality control. A biometric sample is of acceptable quality if it is suit-
able for person recognition. According to ISO/IEC 29794-1 standardization [87],
we have established three components of a biometric sample, namely Character:
implies the source’s built-in discriminative capability, Fidelity: the degree of re-
semblance between a sample and the source, and Utility: the samples’ impact on
biometric systems’ all-around performance.

The next sub-block is the Data Storage, where a biometric template is created. A
biometric template is a digital footnote of the peculiar characteristics of a biometric
sample. Created templates are stored in the database and are used at the time
of authentication. Once the sample biometric digital reference is stored in the
database in the enrollment phase, the digital footnote is matched with the person
seeking authentication or identification, and a binary decision, accept or reject, is
made based upon a threshold both in the identification and in verification.

6.3.2 Presentation Attack Detection (PAD)

A biometric recognition system is prone to multiple types of threats. Among
these, presentation attacks are considered to be one of the significant vulnerab-
ilities. Figure 6.2 shows the generic block diagram of the biometric recognition
system (in our case, audio-visual) with nine contrasting vulnerabilities, as illus-
trated in ISO/IEC 30107-1 [5]. The first vulnerability is at the sensor, where a
pre-recorded audio or face image artifact of a lawful client is presented as an input
to the sensor. An artifact as defined in ISO/IEC JTC1 SC37 Biometrics 2016 [5]
is a morphed object or depiction presenting a copy of biometric characteristics or
fabricated biometric patterns. This kind of attack is also known as a presentation
attack.
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Presentation attacks are defined as the presentation to a biometric capture subsys-
tem with the goal of interfering with the operation of the biometric system [5].
Presentation Attack Instrument (PAI) is the biometric characteristic or the object
used in a presentation attack. Presentation attacks can be divided into two types:
an active impostor presentation attack and a concealer presentation attack. The
active impostor attacks are a type of attack in which the attacker tends to be re-
cognized as a different subject. This type is again divided into two types. The first
type is that the intention is to get recognized as a subject known to the AV biomet-
ric system. The second type is to get recognized as the unknown person to the AV
biometric system. A concealer presentation attack is the type of attack where the
subject tries to avoid getting recognized as a subject in the system.

The popular presentation attacks in audio-visual biometrics are replay attacks and
forgery attacks. A replay attack is performed by replaying the audio-visual re-
cording sample in front of a biometric sensor. This can be performed either on
individual modality (face video replay or audio recording replay) or both modal-
ities at once (audio-visual replay). Forgery attack is carried out by altering the
audio-visual sample to make it look like a bona fide sample of the target speaker.
Audio-visual forgery includes two modal transformations. Speaker transforma-
tion, also known as voice transformation, voice conversion, or speaker forgery,
is a technique for altering an impostor’s utterance to make it sound like the tar-
get speaker (client). In the visual domain, face transformation aims at creating an
animated face synthetically from a still image of the target client.

Presentation Attack Detection (PAD) is a framework by which presentation attacks
can be identified to be classified, particularised, and communicated for decision-
making and performance analysis. In literature, PAD is also termed as anti-spoofing
techniques in the development of countermeasures to the biometric spoofs. In most
of the existing AV biometrics literature, PAD is referred to as liveness detection;
however, liveness detection is defined as the measurement and analysis of involun-
tary or voluntary reactions in order to detect and verify whether or not a biometric
modality presented is alive from a subject at the time of capture [5]. So, from the
standardization, we can infer that liveness detection is considered a subset of PAD
but not as a synonym for itself.

6.3.3 Performance Metrics

In this section, we discuss the performance metrics used in the field of audio-visual
biometric methods.

False Match Rate (FMR) is the percentage of impostors samples accepted by the
biometric algorithm, and False Non-Match Rate (FNMR) is the percentage of bona
fide samples rejected by the algorithm [85]. At a biometric system-level perform-
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ance, Fale Acceptance Rate (FAR) and False Rejection Rate (FRR) are reported in
the place of FMR and FNMR, respectively. Many research works used an equal
error rate (EER) to represent FMR and FNMR metrics in a single value. EER is a
single value at which FMR and FNMR are equal. Similarly, the Total Error Rate
(TER) is the sum of FAR and FRR, and half TER (HTER) is the average of the
FAR and FRR. Some algorithms mentioned the accuracy rate or error rate, which
is the percentage of samples being correctly classified or incorrectly classified,
respectively.

6.4 AV based Feature Extraction
This section presents a brief overview of the AV features widely employed in
designing the multimodal biometric system based on face and voice. Features
are the distinct properties of the input signal that helps in making a distinction
between biometric samples. Feature extraction can be defined as transforming the
input signal into a limited set of values. Further, feature extraction is useful to
discard extraneous information without losing relevant information. The majority
of the literature has treated AV biometrics as two unimodal biometrics based on
visual (or face) and audio (or voice) biometric characteristics. Thus, the feature
extraction techniques are carried out independently on audio and visual biometrics
that are briefly discussed below.

6.4.1 Audio Features

The Audio features used in audio-visual biometric methods are classified into four
categories, as depicted in Figure 6.3. The details of various types of audio features
are briefly discussed in the following subsections.

Audio	Features

Wavelet
Transforms

Fourier
Transforms

Linear	Predictive
Coefficients
	(LPC)

Dual	Tree	Complex
Wavelet	Transform

(DT-CWT)

Short	Time	Fourier
Transform	(STFT)

Cepstral
Coefficients

Mel-frequency
cepstral	coefficients

(MFCC)

Figure 6.3: Different types of audio features used for audio-visual biometric recognition.
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Cepstral coefficients

The cepstrum of a signal is obtained by applying an inverse Fourier transform of
the logarithm. The logarithm is calculated from the magnitude of the Fourier trans-
form. The advantages of cepstrum include its robustness and separation of excit-
ation source and vocal tract system features. Robert et al. [34] from dialog com-
munication systems developed a multimodal identification system where speech
utterance is divided into several overlapping frames, and cepstral coefficients are
extracted from these frames and used as features for AV biometric recognition.

Among cepstral coefficients, Mel-frequency cepstral coefficients (MFCC) rep-
resentation is an efficient speech feature based on human auditory perceptions.
MFCCs include series of operations, namely pre-emphasis (increasing magnitude
of higher frequencies), framing (speech signal is divided into chunks by a win-
dow), applying Fast Fourier Transform (FFT), Mel-filtering, followed by applying
DCT on log filter banks (where lower-order coefficients represent vocal tract in-
formation) to obtain the MFCCs. Mel-frequency banks approximate the human ear
response more accurately than any other system, and MFCCs suppress the minor
spectral variations in higher frequency bands.

MFCCs have been widely used AV for person recognition [88, 89, 1, 22, 90,
91, 81, 92, 83, 93, 94, 95, 96, 97]. Classification methods based on Gaussian
Mixture Models (GMMs), Vector Quantization (VQ) have displayed a consist-
ent speaker recognition performance using MFCCs. Experiments conducted on
XM2VTS database [10], AMP/CMU database [98], VidTIMIT [99], [57] have
displayed robustness of MFCCs in accurate person identification. Mobile applica-
tions [100], [101] have also used MFCCs as feature vectors. Neural network based
methods [102] have examined cepstral coefficients namely i) Real Cepstral Coef-
ficients (RCCs), ii) Linear Prediction Cepstral Coefficients (LPCC), iii) MFCCs,
iv) ∆MFCCs, and v) ∆∆MFCCs. It is observed that ∆MFCCs have performed
better than others. Alam et al. [103],[104] have explored the usage of MFCCs
in deep neural network based methods. Further, MFCCs are also used in creat-
ing i-vectors, which performed better with Linear Discriminant Analysis (LDA)
and Within Class Covariance Normalisation (WCCN) [105]. In the recent works,
MFCCs are used as a potential complementing feature in multimodal biometrics
[106], [107].

Wavelet Transforms

The popular wavelet transform approach used in speaker recognition methods is
the Dual tree complex wavelet transform (DTCWT). DTCWT uses two discrete
wavelet transforms (DWT) in parallel [108], one DTCWT generates a real part of
the signal other DTCWT generates the imaginary part. DTCWT is highly direc-
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tional, shift-invariant, offers perfect reconstruction, and computationally efficient.
Another variant of the wavelet transform is the Dual-Tree Complex Wavelet Packet
Transform (DT-CWPT) [109]. It is observed that using DT-CWPT has increased
the speaker identification rates in both unimodal and multimodal systems when
compared to MFCCs based methods.

Fourier Transforms

The Short-time Fourier transform (STFT) is a popular Fourier transform approach
used in the processing of voice as biometric data. The voice signal is a quasi-
stationary signal; therefore, STFT yields better representation over a Fourier trans-
form. In STFT, the speech utterance is segmented into frames of a smaller dura-
tion, approximately 20-30ms, and Hamming or Hanning window is superimposed
on these frames before computing the Fourier transforms. The window slides
throughout the signal with an overlap between the frames. Dieckmann et al. [75]
presented a Synergetic Computer-based biometric identification system where a
Hanning window covers the input signal, and STFT is applied. A power function
is applied to emphasize the lower frequencies and to compress the higher frequen-
cies.

Linear Prediction Coefficients(LPC)

The continuous-time speech signal is highly correlated. If we know the previous
sample, it is possible to predict the next sample. The linear predictor predicts
the next point as a linear combination of previous values. The transfer function
of a linear prediction filter is an all-pole model. Linear Prediction Coefficients
(LPC) model the human vocal tract as a source-filter model. Here the source is
the train of impulses generated by the vibration of vocal folds, which acts as an
excitation source. The filter represents the oral cavity, which models the vocal tract
system, and the resulting speech signal is the convolution of a train of impulses
and responses of the vocal tract system. LPCs are a compact representation of the
vocal tract system and can be used for synthesizing the speech. LPCs are used for
deriving the LP residual (equivalent to excitation source) with inverse filter (all-
zero filter) formulation. LPCs are used for speaker recognition in AV biometric
methods [110, 111, 112, 69] using Hidden Markov Models (HMMs) and Gaussian
Mixture Models (GMMs) for classification.

6.4.2 Visual Features

This section presents a brief overview of the visual (or facial) features that are
classified into four major types, as shown in figure 6.4.



6.4. AV based Feature Extraction 43

Visual	Features

Signal
processing Animation

Dual	Tree	Complex
Wavelet	Transform

(DT-CWT)

Facial	Animation
Parameters	(FAPs)

Convolutional
kernel

Haar-like	Filters

Texture

Discrete	Cosine
Transform	(DCT)

Fast	Fourier
Transform	(FFT)

Active	Shape
Models	(ASMs)

Optical	Flow
Histogram	of

Gradients	(HOGs)Gabor	Filters
Local	Binary
Patterns	(LBPs)

Figure 6.4: Different visual features used in audio-visual biometric recognition.

Signal Processing Based Feature Extraction

In signal processing based feature extraction, there are three different methods
used in AV speaker recognition, namely Discrete cosine transform (DCT), Discrete-
Time Complex Wavelet Transform (DT-CWT) iii) Fast Fourier Transform (FFT).

The discrete cosine transform (DCT) of an image represents the sum of sinusoids
of varying frequencies and magnitudes. DCT has an inherent property that con-
tains information about the image in the first few coefficients, and the rest can
be discarded. DCT contains AC and DC coefficients where DC coefficients are
prone to illumination changes, and hence they are discarded. However, first, few
AC coefficients act as a good representation of an image. Therefore, DCTs are
widely used in feature extraction and compression techniques. In the early works
on audio-visual fusion for biometrics, DCTs are computed on small blocks of the
image [90] and appended with the mean and variance of overlapping blocks [101].
Further, four variants of DCT methods namely DCT-delta, DCT-mod, DCT-mod-
delta and DCT-mod2 [113] are examined. DCT-mod2 is formed by replacing the
first three coefficients of 2D-DCT with their delta coefficients and used as feature
vectors [94].

Dual tree complex wavelet transforms (DTCWT) is another feature extraction ap-
proach used for face images similar to audio features described in Section 6.4.1.
DTCWT features are extracted at different depths and convolved to form a feature
vector by concatenating all the rows and columns [109]. To reduce these feature
vectors’ dimensionality, PCA is applied, and only 24 vectors are chosen from 6
directions. Using Fast Fourier Transform (FFT), an image can be transformed into
the frequency domain as a sum of complex sinusoids with varying magnitudes, fre-
quencies, and phases. The advantage of using FFT is that theN transformed points
can be expressed as a sum of N/2 points (divide and conquer), and thus, compu-
tations can be reused. Therefore, FFTs can be used for efficient feature extraction
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methods for texture analysis. Robert W et al. [34] developed a novel multimodal
identification system for face recognition from videos where 3D FFTs of 16 vector
fields are computed with unique identifiable points from lips and faces.

Animation Based Features

The animation based visual features used in AV biometrics are active shape models
(ASMs), facial animation parameters (FAPs), and optical flow features.

Active Shape Models (ASMs) are the statistical models of shape and appearance
used to represent the face region in an image. Human experts annotate face images,
and then a model is trained using a set of images. The ASM algorithm makes
few postulates about the objects being modeled other than what it learns from the
training set. ASMs not only give compact delineation of allowable variation but
also avoid the unacceptable shapes being generated. ASMs are used to detect faces
in images, and a neural network based AV speaker identification is employed in
[102]. After successful face detection, region of interest is segmented using robust
real-time skin color blob detection and radial scanline detection methods. Further,
the background noise is eliminated, and finally, appearance-based face features are
obtained [114]. Similarly, Bengio et al. [91] used point distribution models to
track and extract the visual information from each image. For each image, 12 lip
contour features and 12 intensity features, including their first-order derivatives,
are excerpted, making a total of 48 features. Brunelli et al. [97] used pixel-level
information from eyes, nose, and mouth regions to extract the features.

Facial animation parameters (FAPs) are a type of high-level features extracted from
the lip-contour region. These high-level features have several advantages over
low-level features like sensitivity to light and rotation. A 10-dimensional FAPs
describing lip contours are extracted in [1], projected onto eigenspace to use in
audio-visual person identification.

Optical flow is a probable motion of individual pixels on an image plane. The op-
tical flow of the pixels can be computed by assuming Spatio-temporal variations
in the image. Using a Charge Coupled Display (CCD) camera and infrared camera
[75], horizontal and vertical projections of an image are computed and concat-
enated to a resulting gray level image and optical flow of mouth region [23]. A
real-time face tracking and depth information is used to detect and recognize the
face under varying pose in [88]. A dense optical flow algorithm is used to calculate
the velocity of moving pixels and edges for AV person authentication in [22].

Convolution Kernel based features

Well-known object convolution kernel methods are Haar-like filters that can detect
edges and lines in an image effectively. Voila-Jones face detection algorithm [20]
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Table 6.1: Different audio and visual features used in AV biometric methods.

Types of visual
features

Types of audio
features

Cepstral Coefficients
(MFCC)

Wavelet Transforms
(DTCWT)

Fourier Transforms
(STFT)

Linear Prediction
Coefficients (LPC)

Signal Processing [90], [101], [94] [109] - [34]
Animation [102], [88], [22], [97] - [75], [91] [1]

Convolutional Kernel
[89], [92],

[81], [115], [95], [105]
- - -

Texture
[93], [96] , [103],
[104], [100], [107]

- - [110], [111],[112], [69]

used Haar wavelets to detect the most relevant features from a face such as eyes,
nose, lips, and forehead. Therefore, Haar-like features are extended for the applic-
ation of face recognition [89]. Visual speech features are derived from the mouth
region by cascaded algorithm portrayed in [116]. Similarly, the Viola-Jones al-
gorithm is also used for successful face recognition [92]. Asymboost is an another
efficient face detection algorithm that uses a multi-layer cascade classifier to detect
the face in multiple poses [117]. Under different illuminations and non-cooperative
situations like pose and occlusions, face recognition is a challenging task. There-
fore, histogram equalization is performed to normalize the images after the image
acquisition [81]. When the face is more occluded, Haar cascade classifiers are
used for detecting the eye portion of the image. An integral image representation
that reduces time complexity and uses Haar-based features to perform AV person
identification in [95]. Further, K-SVD (Single Value Decomposition) algorithm is
used to create a dictionary for every video sample [105] by taking advantage of
high redundancy between the video frames. K-SVD is an efficient algorithm for
adapting dictionaries to achieve sparse signal representations of faces detected in
each frame [118].

Texture based features

There are three types of texture-based features used in AV biometric methods,
namely, Gabor filters, Local Binary Patterns (LBP), and Histogram of Gradients
(HOG).

A Gabor filter is a sinusoidal signal with a given frequency and orientations mod-
ulated by Gaussians [119]. Since Gabor filters have orientation characteristics,
they are extensively used in texture analysis and feature extraction of face images.
Initial works in AV biometrics spotted face image by using best fitting the ellipse
followed by identifying eyes and mouth position by topographic grey relief [110].
After successful face recognition, Gabor filters are applied to extract the features,
and complex Gabor responses from filters with six orientation and three resolutions
are used as feature vectors [111]. Machine learning algorithms like Support Vector
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Machines (SVM) with Elastic Graph Matching (EGM) have displayed noticeable
results [112] [69]. Further, the Pyramidal Gabor-Eigenface algorithm (PGE) is
used to extract the Gabor features [83] [120].

Local Binary Pattern (LBP) is a textual operator that labels the pixels in an im-
age by considering the neighboring pixels’ values and assigns a binary number.
LBP for a center pixel is calculated first using the window and is binarised ac-
cording to whether pixels have high value than the center pixel. LBP histogram is
computed over the LBP output array. For a block, one of the 28 = 256 possible
patterns is possible. LBP’s advantages include high discriminate power, computa-
tional simplicity, and invariant to gray-scale changes. The use of LBPs has shown
a prominent advantage in face recognition approaches. LBPs features are used
for face recognition using a semi-supervised discriminant analysis as an extension
to linear discriminant analysis (LDA) [93]. Face regions in an image are detec-
ted by localizing lip and eye regions using Hough transforms [20] [121]. LBP
features are extracted on the detected faces for multimodal authentication in [96],
[115]. Deep neural network based AV recognition systems [103] employed LBPs
as visual features from face images that are photometrically normalized using the
Tan-Triggs algorithm [122]. In further research, a joint deep Boltzmann machine
(jDBM) model that uses LBPs is introduced with an improved performance [104].
The histograms of the face and non-face region using LBP features are extracted,
and a biometric classifier is implemented using pattern recognition in [100] [123].

Histogram of Gradients (HOG) is another popular texture feature descriptor used
to extract robust features from images [18]. HOG features are chosen over Local
Binary Patterns (LBP), Gabor filters, Scale Invariant Transform (SIFT) because of
the properties like robustness to scale and rotation variance, and global features.
The multimodal biometrics method used HOG via Discriminant Correlation Ana-
lysis (DCA) on mobile devices [107].

Table 6.1 shows how different audio-visual features are discussed in this survey.

6.5 AV based fusion and classification
Information fusion is used to assimilate two complementary modalities with an
eventual objective of attaining the best classification results. The audio-visual bio-
metric methods have utilized many fusion approaches to complement audio and
video characteristics to one another. The Figure 6.5 shows classification of audio-
visual fusion methods. Fusion methods are divided mainly into three types: Pre-
mapping (early fusion), Midst-mapping (intermediate fusion), and Post-mapping
(late fusion). In this section, different audio-visual biometric methods are de-
scribed with their corresponding performances. The methods described here in-
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clude the performance of recognition without presentation attacks, i.e., the impost-
ors are zero-effort impostors. The presentation attack detection algorithms used in
audio-visual biometrics are discussed in Section 6.7.

Fusion	Methods

Pre-mapping
(Early	Fusion)

Midst-mapping
(Intermediate	Fusion)

Post-mapping
(Late	Fusion)

Sensor	Data
Level

Feature
Level

Decision
Fusion

Opinion	Fusion
(score	level	fusion)

Figure 6.5: Audio-Visual fusion methods inspired from [6].

6.5.1 Pre-mapping or Early fusion

In the pre-mapping or early fusion approach, individual features from voice and
face are fused to make a single set of features.

The earliest methods to use the pre-mapping of AV biometrics used fusion of static
and dynamic features and used classifiers like a synergistic computer with MELT
1 algorithm [75]. The concept of synergistic computer SESAM 2 utilizes the com-
bination of static and dynamic biometric characteristics, thus making the recog-
nition system robust to imposters and criminal attacks. Further works explored
Hidden Markov Models (HMM), which are trained using fused audio and visual
features [1]. Gaussian mixture models (GMM) are also used as classifiers because
of their low memory and well suitability for text-dependent and text-independent
applications. GMM based classifications on concatenated features of audio and
visual domains have displayed better performance than the score-level fusion [22]
[90]. Some early fusion methods used clustering algorithms and PCA to reduce
the dimensionality of features for efficient fusion [109]. As the cluster size is in-
creased from 32 to 64, a higher identification rate is observed.

Laplacian projection matrix is another effective way of representing audio, and
video features used in early fusion technique [92]. Laplacian Eigenmap [124] is
an efficient nonlinear approach that can preserve inherent geometric data and local
structure. The Laplacian matrices from both traits are fused linearly to form a
single vector for audio-visual person recognition. Experiments conducted with
pose estimation show an error rate of 35%. Without pose estimation, the error

1MELT: the prototypes of one class are melted into one prototype
2Synergetische Erkennungmittels Standbild, Akustik und Motorik
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rate was 50%. The Laplacian Eigenmap fusion method outperforms the low-level
fusion latent semantic analysis.

Multi-view Semi-Supervised Discriminant Analysis (MSDA) is an extension to
Semi-supervised Discriminant Analysis (SDA) for feature level fusion [93]. The
MSDA is inspired by a multi-view semi-supervised learning method called co-
training [125]. A GMM mean adapted super vector and an LBP super vector
is fused and fed into MSDA, PCA, Locality preserving projection (LPP), Lin-
ear discrimination analysis (LDA), and SDA individually. However, MSDA out-
performs all other techniques because of local adjacency constraints, which can
be effectively learned in different views using the same data. The synchronous
measurement between audio and visual domains is examined in other works [83].
Synchronized feature vectors of size 21 are concatenated and fed to Probabilistic
Neural Network (PNN). Experiments are performed at different resolutions of the
face and different audio lengths (25s, 20s for training and 12.5s and 10s for test-
ing). It is observed that the PNN method overcomes the difficulty of different
frame rates for audio and visual signals and also the curse of dimensionality.

The time series vectors of face and speech provide unique characteristics of a
person. The distance between data with different vector lengths is obtained us-
ing Dynamic Time Warping (DTW) [96] using the time series information from
a video. The similarities between voice and face features are calculated using
DTW, and multiple classifiers are fed with the similarity measures. Experiments
show an authentication error of 0% for different kinds of clients. Feature-level fu-
sion methods employed Quadratic Discriminant Analysis (QDA) for minimizing
the misclassification rate, and an EER of 0.5% is obtained with the least memory
and time consumption [100]. A Joint Deep Boltzmann Machine (jDBM) with a
pre-training strategy and a joint restricted Boltzmann machine (jRBM) are used to
model speech and face separately [104]. Then fused features were evaluated with
JPEG compression and babble noise to degrade the face and speech files, respect-
ively. The jDBM method outperforms bimodal DBM in significantly degrading
conditions.

Decision voting is used for 39-dimensional audio, and video features [105]. Dur-
ing fusion, the standard sparsity concentration index was modified because face
and speech cues are two complementary modalities and a new classification rule
was derived called a joint sparse classifier. The proposed classifier outperforms the
sparse representation classifier, which was used for a single modality. Discrimin-
ant Co-relation Analysis (DCA) is used to perform an early fusion of MFCCs
and HOG features [107]. The DCA fused feature set is given to five different
classifiers, namely Support Vector Machine, Linear Discriminant Analysis, Quad-
ratic Discriminant Analysis, Random Forests, and K-Nearest Neighbours. SVM
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achieves the lowest EER of 20.59% among all classifiers mentioned, and SVM
requires 50.9818s for training and 0.6038s for testing, which is significantly less
when compared to other classifiers.

6.5.2 Midst-mapping or Intermediate fusion

The midst-mapping or intermediate fusion is a relatively complicated technique
compared to the early fusion technique. In this approach, several information
streams are processed while mapping from the feature space to the decision space.
The intermediate fusion technique exploits the temporal synchrony between the
video streams (e.g., speech signal and lip movements of videos) by which the curse
of dimensionality problems with feature level fusion technique can be avoided.
Examples of this type of fusion are HMMs, which can handle multiple streams of
data. Asynchronous HMMs are used for text-dependent multimodal authentication
in [91]. Training of AHMMs was performed using the Expectation Maximisation
(EM) algorithm with clean data. Experiments were conducted on AV samples
with various noise levels (0dB, 5dB, 10dB), and results display promising Half
Total Error Rate (HTER) compared to audio-only and face-only modalities. In the
next works, Coupled Hidden Markov Models (CHMM) are used for audio recog-
nition and Embedded Hidden Markov Models (EHMM) or Embedded Bayesian
networks for face recognition [89]. Experiments were carried out on the XM2VTS
database, which resulted in error rates of 0.5% and 0.3% at various Gaussian noise
levels.

6.5.3 Post-mapping or Late fusion

The post-mapping or late fusion based audio-visual fusion methods perform a data
fusion on the results obtained individually from the classifiers of audio and visual
domains. There are multiple ways of fusing the data in the late fusion approaches.
The following sections describe all the late fusion methods used in audio-visual
biometrics.

The popular methodologies considered combining the scores of audio and visual
biometrics modalities using traditional mathematical rules. The sum and product
rule are applied on face and voice recognition modalities built individually [126,
110]. Different face and voice recognition methods are examined, and the best
performance of 87.5% subject acceptance rate was achieved by sum rule. Simil-
arly, in [97], authors applied a weighted product approach for fusing scores from
three visual classifiers and one acoustic classifier yielding an identification result
of 98%. The Bayesian approach of decision fusion is another popular method used
for the late fusion approach [111]. For speaker recognition, LPCs were used, and
for face recognition, Gabor features are used. Experiments on the M2VTS data-
base [56] displayed a success rate of 99.46% biometric authentication using the
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Bayesian supervisor. In [112], the scores obtained from face and voice modalities
are efficiently fused to obtain a new optimal score that can be used for biomet-
ric recognition. Two individual (HMM for speech and EGM for face) recognition
systems are used for fusion. Experiments on the M2VTS database gave a false
alarm rate of 0.07% and a false rejection rate of 0% using linear SVM. The fur-
ther works focused on text-dependent and text-independent speaker recognition
[69]. Co-variance matrix on LPC feature vectors and arithmetic-harmony spher-
icity [127] measures are employed. Different fusion schemes are experimented
on the XM2VTS database for person identity verification and observed the SVM-
polynomial and the Bayesian classifiers displayed better results than other methods
[69].

Hidden Markov models (HMMs) provided higher accuracy in performing speaker
verification. In combination with GMMs, HMMs are used with the expectation-
maximization algorithm in [88]. For face recognition, Eigenvectors are employed
along with GMMs, and Bayes net is used to combine the confidence scores and
the conditional probability distribution. The verification experiment yields good
results for the combination of both modalities with a 99.5% success rate and 0.3%
rejection rate per image, and a 100% verification rate per session, and a 99.2%
recognition rate per image with 55.5% rejection rate per clip. The proposed text-
independent module is robust to noise variations, and the Bayesian fusion method
is a simple system that can select the most trustworthy images and audio clips from
each session based on confidence scores.

Cepstral coefficients have proved to be performing well by representing speaker
characteristics in automatic speaker verification. A late fusion based method with
three strategies is used with a matrix of the codebook of vector quantized cepstral
coefficients as speech features, and a synergic computer [34] for face recognition
[34]. Vector Quantization is an efficient method to characterize the speaker’s fea-
ture space and is used as a minimum distance classifier. The advantage of the
synergetic computer is that it can build its own features; data reduction capability
makes it suitable for face recognition. The three different fusion strategies defined
determines the security risk.

Gaussian mixture models (GMMs) are used over HMMs for audio-based speaker
recognition and Haar based face recognizer using regularised LDA (RLDA) and
Recursive FLD (RFLD) as classifiers [81]. During fusion, the probability scores
obtained from classifiers are combined to get the final audio-visual probability.
Experiments were performed on AVIRES corpus [128]. The RFLD classifier per-
forms better for face recognition on the AVIRES corpus when compared to RLDA
classifier with an error rate of less than 15%. GMM based methods are also used
along with a universal background model (UBM) for speaker recognition and LBP



6.5. AV based fusion and classification 51

for face recognition [115]. The likelihood score from GMM-UBM and weighted
distance metric on LBP are fused at the score-level. The fused method achieved
an EER of 22.7% for males, 19.3% for females, and an average of 21.6%, which
are far better than the EERs of individual cues. In [95], a novel Linear Regression
Gaussian Mixture Models along with Universal Background Model (LRC-GMM-
UBM) is used for speaker recognition. For complementing the voice utterance, a
Linear Regression-based Classifier (LRC) is used for face recognition. The scores
from the two classifiers are normalized and fused using the sum rule. Experi-
ments on AusTalk database [58] give an identification accuracy close to 100% and
outperforms the fusion method as shown in [129]. In another kind of late fusion
approach using the same recognition algorithms [129], a combination of a ranked
list, which is a subtype of decision level fusion, is used.

Session variability modeling techniques built on the GMM baseline are examined
in late fusion approach [94]. Inter Session Variability (ISV) [130], Joint Factor
Analysis (JFA) and Total Variability (TV) [30] are the modelling methods used in
this direction. DCT coefficients are used for face recognition to model Gaussian
Mixture Models (GMM) and a pre-trained Universal Background Model (UBM).
Session compensation techniques include Linear discriminant analysis [131] and
WCCN normalisation [132]. After session compensation cosine similarity scor-
ing [30] and Probabilistic Linear Discriminant Analysis (PLDA) [133] are used
as scoring techniques. For fusing the face and voice modalities, Linear Logistic
Regression (LLR) technique is used by combining the set of classifiers using the
sum rule. Experiments were performed on the MOBIO database [134] for dif-
ferent protocols, and results indicate that ISV performs better compared to other
compensation methods and the sum rule based fusion approach of all classifiers
(GMM, ISV, TV) outperforms the ISV method in all protocols.

GMM-UBM based approach is used for both face [135] and speech authentica-
tion [130, 101]. GMM-UBM uses MAP adaptation, which is prone to changes in
session variability and fewer enrollment data. These drawbacks were overcome
using ISV modeling proposed in [94]. A weighted sum approach is used to fuse
the scores from face and speech modalities. Initially, equal weights are assigned to
the two classifiers, and an LLR method is used to learn the weights on the develop-
ment set. Experiments on the MOBIO database [134] have resulted in an EER of
2.6% for males and 9.7% on female subjects. Similarly, Discrete Hidden Markov
Models (DHMM) are used for both audio and visual domains [102]. Experiments
were performed on VALID 3 audio-visual database and observed that the proposed
fusion method is very adaptable for audio-visual biometric recognition method and
can be used effectively in various authentication applications.

3The VALID database: http://ee.ucd.ie/validdb/

http://ee.ucd.ie/validdb/
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The deep learning approaches have paced into the biometrics research domain in
recent years. In the early research on audio-visual biometrics using deep neural
networks, two restricted Boltzmann machines are used to perform unsupervised
training using local binary patterns for face, and GMM super vector for voice
[103]. A squashing function called softmax layer is added on the top of DBM-
DNN before they are fine-tuned discriminatively using a small set of labeled train-
ing data. The authors do not mention the amount of labeled data used for fine-
tuning. The sum rule was used to fuse the scores from the outputs of DBM-DNN
for each cue. Experiments on MOBIO and VidTIMIT datasets resulted in EERs
of 0.66% and 0.84%, respectively. Hu et al. proposed a multimodal convolu-
tional neural network (CNN) architecture to perform an audio-visual speaker nam-
ing [136]. A learned face feature extractor and audio feature extractor are com-
bined with a unified multimodal classifier to recognize the speaker. Experiments
on audio-visual data extracted from famous TV shows display an improved accur-
acy of 90.5% over 80.8% from previous methods. Authors have also emphasized
that even without face tracking, facial landmark localization, or subtitle/transcript,
the proposed method achieved an accuracy of 82.9%. The latest method on a late
fusion technique used similarity matrix of MFCC voice features and SVM face
scores from personal devices [106]. The Lagrangian multiplier of SVM is used for
fusing the scores, and the accuracy of 73.8% is obtained.

Quality assessment based score-level fusion was performed by Antipov et al. [137]
for Audio-Visual speaker verification. For face recognition, four face embeddings,
namely ResNet-50, PyramidNet, ArcFace-50, ArcFace-100, are aggregated using a
Transformer aggregation model. For speaker recognition, six variants of X-vector
based methods are fused using Cllr-logistic regression. The audio-visual speaker
verification is performed by performing a score-level fusion of verification scores
and quality of enrolment and test sample in face and speech modalities. Experi-
ments were performed on different types of quality fusion methods compared to
the baseline of sum-rule based fusion. Results indicate that using all quality estim-
ates improve speaker verification performance.

An overview table 6.2 summarises the AV person biometric systems discussed in
this survey paper.

6.6 Audio-Visual Biometric Databases
Widely variety of audio-visual databases were created by capturing talking per-
sons’ videos focusing on face and voice modalities. Multimodal databases include
modalities like a fingerprint, face, iris, and biometric voice data. However, our
study focuses on audio-visual databases, which include only face and voice modal-
ities. This section presents a detailed study on both publicly available audio-visual
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Table 6.2: Overview table showing features used, classifier fusion method, database, num-
ber of subjects, performance achieved, recognition type starting from the year 1995 to
2018. *TD: text-dependent, *TI: text-independent, *SEP: Standard Evaluation Protocol,
*Dev: Development, *E: Evaluation, *F: Female, *M: Male

Authors Features used Classifier AV fusion
method

Database
used

No. of subjects
& sessions

Performance
achieved

Recognition
typeAudio Visual

Brunelli et al.
[97]

MFCC Animation
VQ

Comparision at
pixel level

Weighted
product

Self accquired
with

CCD camera

89
3 sessions

Recognition
rate: 98%

Identification

Kittler et al.
[110]

LPC Gabor
HMM

Gabor matching
grid

Sum rule M2VTS
37

16 users
21 imposters

Acceptance
rate: 87.5%

Verification

Duc et al.
[111]

LPC Gabor
HMM
EGM

Bayesian fusion M2VTS
5328

Both client
and imposter

Success rate:
99.46%

Verification

Dieckmann et al.
[75]

Fourier
transform

Optical
flow

MELT
algorithm

Sensor fusion
Self accquired

with
CCD camera

66
15 clients

26 common
25 test

Identification
rate: 93%

Verification
rate: 99.8%

Identification
Verification

Yacoub et al.
[112]

LPC
Gabor
filter

HMM
EGM

SVM XM2VTS

295
200 clients

25 evaluation
imposters

70 test
imposters

EER: 0.58% Verification

Choudhury et al.
[88]

MFCC
Optical

flow
HMM

Eigen vectors
Bayes net

Automated
teller machine

26

Verification
rate:99.5%

Recognition
rate: 99.2%

Verification
Identification

Robert et al.
[34]

Cepstral
coefficients

FFT
VQ

Synergetic
computer

Sensor fusion Self testing 150 FAR: < 1% Verification

Nefian et al.
[89]

MFCC Haar-like
CHMM
EHMM

Score level XM2VTS

348 files
(training)
320 files
(testing)

EER: 0.5% Identification

Bengio et al.
[91]

MFCC ASM AHMM
Midst

mapping
M2VTS

2 sessions
(client model)

3 sessions
(testing)

HTER: 15% Verification

Isaac et al.
[22]

MFCC
Optical

flow
GMM

Feature
level

XM2VTS

200
(training)

25
(test, evaluation

imposters)

EER:
Evaluation: 1%

Test:2%
Verification

Shah et al.
[90]

MFCC DCT GMM
Feature

level
VidTIMIT

43
35 clients

8 imposters

FAR: 1%
client

FAR: 0%
Imposters

Verification

Micheloni et al.
[81]

MFCC Haar-like
GMM
RFLD

Score
level

AVIRES 6
Classification

error: 15%
Verification

Sugiarta et al.
[109]

DTCWPT DTCWT PCA
Feature

level
VidTIMIT

Session1,2
(training)
session-3
(testing)

Identification:
rate: 90% (TD)

93.7% (TI)
Identification

Jiang et al.
[92]

MFCC Haar-like
Laplacian
Eigenmap

Feature
level

Open
web tv

10
8 (training)
2 (testing)

EER: 35%
EER

Verification

Shen et al.
[115]

MFCC LBP
GMM-UBM

LBPH
Score
level

MOBIO

160
session-1

(enrolment)
session 2-6

(testing)

EER:
M: 22.7%; F: 19.3%

Average: 21%
Verification
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Authors Features used Classifier AV fusion
method

Database
used

No. of subjects
& sessions

Performance
achieved

Recognition
typeAudio Visual

Chenxi et al.
[83]

MFCC
Pyramidal

Gabor
filter

PNN
Feature

level
Virtual
subjects

40
Recognition
rate: 100%

Identification

Motlicek et al.
[101]

MFCC DCT GMM
LLR

score level
MOBIO

Protocols:
mobile-0,
mobile-1,
laptop-1,

laptop-mobile-1

EER:
Dev: M:1.2%; F:2.3%
Test: M:2.6%; F:9.7%

Verification

Xuran et al.
[93]

MFCC LBP MSDA
Feature

level
MOBIO

session-1,2,3
training

session-8,9,10
testing

Recognition rates:
session-1: 90.6%
session-2: 96.7%
session-3: 97.4%

Verification

Alam et al.
[129]

MFCC Haar-like
LRC-GMM-UBM

LRC
Ranked list Austalk 88

Identification
accuracy: 31.3%

Identification

Khoury et al.
[94]

MFCC DCT-mod2 GMM+ISV+TV
LLR

score level
MOBIO

Protocols:
mobile-0 (m0),
mobile-1 (m1),
laptop-1 (l1),

laptop-mobile-1
(lm1)

EER: (Dev; Eval)
m0: F: (1.43%; 6.30%)

M: (0.92%; 1.89)
m1: F: (1.64%; 6.32%)

M: (0.75%; 2.06%)
l1: F: (2.91%; 6.83%)

M: (1.82%; 3.37%)
lm1: F: (1.11%;6.32%)

M: (0.64%;1.77%)

Verification

Alam et al.
[95]

MFCC Haar-like
LRC-GMM-UBM

LRC
Sum rule Austalk 88 Accuracy: 100% Identification

Tresadren et al.
[100]

MFCC LBP
Boosted

slice classiifier
QDA MoBio - EER: 0.5% Verification

Shi et al.
[96]

MFCC LBP
DTW
LBPH

Sum rule
Self

accquired
11

Authentication
Error: 0%

Verification

Islam et al.
[102]

MFCC ASM HMM BPN
Self

accquired
11

Authentication
Error: 0%

Verification

Alam et al.
[103]

MFCC LBP DBM-DNN
Feature

level
VidTIMIT
MOBIO

Protocol 1:
train:session-1+2

test: session-3
Protocol:2

train: session-1+3
test:session-2

SEP

EER:
Protocol1: 0.66%
Protocol: 0.84%

Verification
Identification

Primorac et al.
[105]

MFCC Haar-like
Joint

sparse
classifier

Feature
level

MOBIO SEP
Recognition
rate: 0.942

Verification

Alam et al.
[104]

MFCC LBP jDBM
Feature

level
MOBIO SEP

Identification:
rate: 99.70 (TD)

96.30 (TI)
Identification

Memon et al.
[106]

MFCC
SVM
scores

Similarity
matrix

Feature
level

Self
accquired

15 Accuracy :73.8% Verification

Gofman et al.
[107]

MFCC HOG SVM
Feature

level
CSUF-SG5 27 EER: 20.59% Verification

Antipov et al.
[137]

Four CNN
methods

Six X-vector
variants

Logistic
Regression

Score
level

NIST SRE19
M/F: 15/32 (Dev)

M/F: 47/102 (Test)

EER:
Dev: 2.78%
Test: 0.6%

Verification

biometric databases. A comparison of databases with each other can be found in
Table 6.4. Some databases, like DAVID [138] is mentioned in other works, but no
published work is found. Other databases like DaFEx [139] contain audio-visual
data but not recorded for the application of biometrics. Therefore, they are not
discussed in this report.

AMP/CMU dataset: The advance multimedia processing (AMP) lab of Carnegie
Melon University (CMU) has created an audio-visual speech dataset that contains
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ten subjects (seven male, three female) 4. Each subject speaks 78 isolated words,
and a digital camcorder with a tie-clip microphone is used to record [7]. The sound
file and extracted lip parameters are available to the public domain, and video data
is available upon request.

Figure 6.6: Example AMP/CMU dataset images [7].

Aleksic et al. [1] used 13 MFCC coefficients with first and second-order derivat-
ives, audio features, and a visual shape-based feature vector of ten Facial animation
parameters (FAPs) to develop an AV speaker recognition system. Fusion integra-
tion approach is employed with single-stream HMMs and speaker verification and
identification experiments performed on the AMP/CMU dataset. The results of
audio-only and audio-visual speaker recognition at different signal-to-noise ratios
(SNRs) are presented in Table 6.3.

Table 6.3: Comparison of audio-only (AU) and audio-visual (AV) speaker recognition
performance proposed in [1].

Identification Error (%) Verification Error (%)
SNR AU AV AU AV
30 5.13 5.13 2.56 1.71
20 19.51 7.69 3.99 2.28
10 38.03 10.26 4.99 2.71
0 53.10 12.82 8.26 3.13

The BANCA database: Biometrics Access Control for Networked and E-Commerce
Applications (BANCA)5 [8] is one of the earliest audio-visual datasets used for

4The AMP/CMU dataset: http://amp.ece.cmu.edu/
5The BANCA database: http://www.ee.surrey.ac.uk/CVSSP/banca/

http://amp.ece.cmu.edu/
http://www.ee.surrey.ac.uk/CVSSP/banca/
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E-Commerce applications. Two modalities of face and voice were captured in
four European languages with both high and low-quality microphones and cam-
eras. Throughout capturing, three different scenarios, controlled, degraded, and
adverse, are included in 12 different sessions for three months. The total number
of subjects was 208, with an equal number of men and women. Figure 6.7 shows
the example images of database captured in three different scenarios. The database
is benchmarked with a weighted sum rule score-level fusion technique. The fea-
tures used are DCT-mod2 for face and MFCCs for voice. The GMM models are
used to perform face and voice classification, and audio-visual speaker verification
obtained an equal error rate of 3.47% without impostors.

Figure 6.7: Example BANCA database images Up: Controlled, Middle: Degraded and
Down: Adverse scenarios [8].

The VALID database: The aim of the VALID database is to provide robust audio,
face, and multimodal person recognition systems. Therefore, the VALID database
was acquired in a realistic audio-visual noisy office scenario with no control over
lights or acoustics. This database is captured in five sessions with 106 subjects for
a period of one month. The performance degradation of the uncontrolled VALID
database is observed in comparison to that of the controlled XM2VTS database
[9]. The VALID database is publicly available to the research community through
the websites 6. Figure 6.8 shows the example images from the VALID database
captured in five different sessions.

6The VALID database: http://ee.ucd.ie/validdb/

http://ee.ucd.ie/validdb/
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The audio-visual experiments are performed on the VALID database to address
noise problems in a single modal speaker identification [102]. A new score fu-
sion approach is proposed using a back-propagation learning feed-forward neural
network (BPN). The verification results from appearance-shape based facial fea-
tures and MFCC based audio features are combined using BPN score fusion, and
a speaker identification of 98.67% is achieved at SNR of 30dB.

Figure 6.8: Three VALID database subject images from each of the five sessions [9].

The M2VTS database: The MultiModal Verification for Teleservices and Secur-
ity applications database has developed with the primary goal of issuing access to
secure regions using audio-visual person verification [140]. Five shots were taken
for each of the 37 subjects, with an interval of one week between each shot. The
camera used for shooting the face images is a Hi8 video camera. D1 digital re-
corder is utilized for recording and editing the voice. The voice recordings are
captured by speakers uttering the numbers from 0 to 9 in their native language
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(mostly French). The M2VTS database is available to any non-commercial user
on request to the European Language Resource Agency.

Multimodal data fusion using support vector machines (SVM) method used the
M2VTS database to perform audio-visual person identification [112]. The ex-
periments display a dominance of SVM performance over Bayesian conciliation,
speech only, and face only experts. This approach’s face features are based on
Elastic Graph Matching (EGM), and speech features are Linear Predictive Coefficients-
Cepstrum (LPC-C). The total error rate (TE), which is a sum of false acceptance
(FA) rate and false rejection (FR) rate, is computed, and Linear-SVM gave the
least TE of 0.07%.

The XM2VTS database: An extension to the M2VTS database with more sub-
jects and latest devices, XM2VTS (extended M2VTS) is focused on a large mul-
timodal database with high-quality samples [10]. This database contains four re-
cordings of 295 subjects taken during four months. Each recording contains a
speaking headshot and a rotating headshot. The data comprises high-quality color
images, 32 kHz 16-bit sound files, video sequences, and a 3D Model. XM2VTS
database is used in many research works for AV speaker verification. The database
is made publicly available at cost price only 7.

Different fusion approaches are experimented on XM2VTS database for person
identity verification [69]. The elastic graph matching (EGM) based face features
are computed, and two voice features, namely sphericity, and hidden Markov mod-
els (HMM), are used for six different fusion classifiers (SVM-polynomial, SVM-
Gaussian, C4.5, Multilayer perceptron, Fisher linear discriminant, Bayesian clas-
sifier). It is observed that the bayesian fusion method with different combinations
of face and voice features (with text-dependent and text-independent scenarios).

A coupled HMM (CHMM) is used as a classifier as audio-visual speech model-
ing for speaker identification. 2D discrete cosine transform (2D DCT) coefficients
are used as facial features and MFCCs as acoustic features. The visual speech
features are computed from the mouth region through a cascade algorithm. Fi-
nally, the audio features and visual features are combined using a CHMM. A two-
stage recognition process is performed by computing face likelihood using em-
bedded HMM and audio-visual speech likelihood using CHMM separately. The
face-audio-visual speaker identification system is created by combining face and
audio-visual speech likelihoods and has achieved an error rate of 0.3%.

VidTIMIT database: Video recordings of people reading sentences from Texas
Instruments and Massachusetts Institute of Technology (TIMIT) corpus (VidTIMID)

7The XM2VTS database: http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/

http://www. ee.surrey.ac.uk/CVSSP/xm2vtsdb/
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Figure 6.9: Front profile shots of a subject from four sessions of XM2VTS database [10].

8 is a publicly available dataset for research purposes [57]. The dataset is captured
in 3 sessions with a mean delay of 6-7 days. Each person reads ten sentences that
include alpha-numerical utterances, with the first two sentences the same for all
subjects. Along with the sentences, a head rotation sequence is recorded for each
person in each session [99]. VidTimit dataset is used in audio-visual person re-
cognition using deep neural network [103]. The local binary patterns (LBPs) as
visual features and gaussian mixture models (GMMs) built on MFCCs have used
speech features. The Deep Boltzmann Machines based deep neural network model
(DBM-DNN) is used to compute scores from extracted features fused using a sum
rule. The audio-visual based speaker recognition has improved the performance
over the single modal recognition with an EER of 0.84%.

Liveness detection is another prominent area where VidTIMIT is employed. Gaus-
sian mixture models [76] [2], Cross-modal fusion [141] and delay estimation meth-
ods [142] are experiments on VidTIMIT dataset to perform replay attack detection
using audio-visual complimentary data.

BioSecure database: BioSecure9 is another popular multimodal database contains
different biometric modalities and can be used as a audio-visual dataset [11]. The

8The VidTIMTI dataset: http://conradsanderson.id.au/vidtimit/
9BioSecure: https://biosecure.wp.tem-tsp.eu/

biosecure-database/

http://conradsanderson.id.au/vidtimit/
https://biosecure.wp.tem-tsp.eu/biosecure-database/
https://biosecure.wp.tem-tsp.eu/biosecure-database/
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database consists of data from 600 subjects recorded in three different scenarios.
The sample images from the database are shown in Figure 6.10.

Figure 6.10: Face samples acquired in BioSecure database in three different scenarios.
Left: indoor digital camera (from DS2), Middle: Webcam (from DS2), and Right: outdoor
Webcam (from DS3) [11].

AVICAR 10: AVICAR is a public audio-visual database captured in a car envir-
onment through multiple sensors consisting of eight microphones and four video
cameras [143]. The speech data consists of isolated digits, isolated letters, phone
numbers, and sentences in English with varying noise.

MOBIO database 11: The MOBIO database [134] is a bi-modal (audio and video)
data collected from 152 people with 100 males and 52 females. It is captured at six
different sites from five different countries in 2 phases (6 sessions in each phase).
This database’s important feature is that it was recorded using two mobile devices:
a mobile phone (NOKIA N93i) and a laptop computer (2008 MacBook).

MOBIO dataset helped in the study of person identification in a mobile phone en-
vironment. Session variability modeling is used to perform bi-modal authentica-
tion using the MOBIO database. Inter-session variance is exploited to compensate
for the drawbacks of GMM-UBM based methods, and a weighted sum rule based
fusion [101]. Using face features like DCT with GMM modeling and sum rule
based fusion displayed an improvement in person authentication [94]. Further,
deep learning methods have also used the MOBIO database for experiments on
AV person recognition. DBM-DNN [103] and jDBM [104] methods are utilised
on MOBIO dataset and displayed improved person identification.

MobBIO database: The MobBIO database consists of face, iris and voice biomet-
rics from 105 volunteers (29% females and 71% males) [144]. The data capturing
process took place in 2 different lights. The device used is the rear camera of the
Asus Transformer Pad TF 300T for capturing 16 faces and 16 iris images. Each
volunteer was asked to read 16 sentences in Portuguese for voice biometrics.

Hu et al. dataset: A new audio-visual dataset was recently captured by Hu et

10AVICAR database: http://www.ifp.uiuc.edu/speech/AVICAR/
11The MOBIO database: https://www.idiap.ch/dataset/mobio

http://www.ifp.uiuc.edu/speech/AVICAR/
https://www.idiap.ch/dataset/mobio
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al. [136], which is used in developing a deep learning-based feature fusion. The
database is acquired from three hours of videos of nine episodes from two popu-
lar television shows with annotated subjects. Face and audio of six people from
"Friends" and five from "The Big Bang Theory" are annotated and provided in
this dataset. Two initial experiments are used, namely, face only recognition and
identifying non-match face-audio pairs to improve audio-visual recognition per-
formance (speaker naming). In the speaker naming process, a neural network ap-
proach is used to identify the speaker in each frame using a matched face-audio
pair. This method has achieved an accuracy of 90.5%.

AusTalk database: Australian Speech Corpus (AusTalk)12 provides the data of
people reading predefined set of sentences in English [58]. The database is a
part of the Big Australian Speech Corpus project consisting of speech from 1000
geographically and socially diverse speakers and recorded using a uniform and
automated protocol with standardized hardware and software. A linear-regression
based classifier it used for audio-visual person identification on AusTalk database
achieving 100% accuracy [95].

SWAN database: The Smartphone Multimodal Biometric database was collected
to meet the real-life scenarios such as mobile banking [12]. The database was
captured in six different sessions and four locations using iPhone 6s and iPad Pro
cameras. The database consists of audio-visual data of 150 subjects with English
as a common language and Norwegian, French, and Hindi as secondary languages.
Figure 6.11 shows the sample images of subjects from six sessions.

Figure 6.11: Talking face samples from SWAN database one frame from each session
[12].

NIST SRE19 AV database: This database contains the videos from the VAST
portion of the SRE18 development set. This database’s development set is publicly
available for the 2019 NIST Audio-Visual Speaker Recognition Evaluation [35].
The videos are in interview-style and are similar to the VoxCeleb database. The
videos are incredibly diverse in quality and acoustics because they are recorded
mostly using personal handheld devices like smartphones. The videos contain
manually diarization labels as the videos may contain multiple speakers.

12AusTalk database: https://austalk.edu.au/

https://austalk.edu.au/
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Table 6.4: Details of Audio-visual Biometric Verification Databases.

Dataset Year Devices No. of subjects Best Performing AccuracyAlgorithm

AMP/CMU [7] 2001
Digital Camcorder, 10 MFCC +

EER = 3.13%
tie-clip microphone (7 M, 3 F) FAPs [1]

BANCA [8] 2003
Webcam and 208 DCT-mod2 +

EER = 3.47%
Digital Camera (104 M, 104 F) GMM [79]

VALID [9] 2005
Canon 3CCD XM1 106 BPN score Accuracy =

PAL (77 M, 29 F) fusion[102] 98.67%

M2VTS [140] 2005
Hi8 camera,

37
EGM + LPC Total error

D1 digital recorder [112] rate = 0.07%

XM2VTS [10] 2005
Sony VX1000E,

295
CHMM Error rate =

DHR1000UX [89] 0.3%

VidTIMIT [57] 2009
Digital video 43 FAPs + MFCC

EER = 1.71%
camera (24 M, 19 F) [1]

BioSecure [11] 2010

Samsung Q1, DS1: 971

- -
Philips SP900NC DS2: 667
HP iPAQ hx2790 DS3: 713
Webcam, PDA

AVICAR [143] 2010
Multiple, 100

- -
sensors (50 M, 50 F)

MOBIO [134] 2012
Nokia N93i

152
jDBM Accuracy =

Mac-book [104] 99.7%

MobBIO [144] 2014
Asus Transformer

105 - -
Pad TF 300T

Hu et al.[136] 2015 - 11
Deep Multimodal Accuracy =

Speaker Naming [136] 90.5%

AusTalk [58] 2016 Black Box 88
LRC-GMM-UBM Accuracy =

[95] 100%

SWAN database [12] 2019
iPhone 6

88
FaceNet+DRN EER =

iPad Pro [12] 3.1%
NIST SRE19 AV database

2019
Multiple 15, 37 Anonymous EER =

[35] devices (M, F) [35] 0.44%

The 2019 NIST Audio-Visual SRE challenge has releases results of the top-performing
submissions in AV recognition. The approach used by the top-performing method
is unknown. However, the results show that combining face and speaker recog-
nition systems have displayed an increase of 85% of minimum detection cost
compare to face or speaker recognition system alone. The EER for AV speaker
recognition achieved by the top-performing team is 0.44%.

6.7 Presentation Attack Detection (PAD) Algorithms
Audio-visual biometrics are vulnerable to various artifacts that can be generated
with less cost. So it is necessary to identify and mitigate these attacks to enhance
both the security and reliability of AV recognition systems. This section presents a
thorough review of existing presentation attack detection (PAD) algorithms against
replay attacks and forgery attacks for AV biometrics. Although there are many
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attack detection algorithms in single biometrics, like ASVSpoof [40], we have
only included the audio-visual PAD methods in this section. The main intention is
to take advantage of bimodal biometric characteristics to optimize attack detection
algorithms.

6.7.1 Audio-Visual features used for liveness detection

Many works in AV biometrics suggested the liveness detection technique, which
acts as a guard for possible replay attacks against the audio-visual recognition sys-
tem. The fig 6.12 shows different features used for PAD in audio-visual biometrics.

Audio-Visual
PAD	features

Audio	features Visual	Features

Mel-frequency
cepstral	coefficients

(MFCC)

Linear	Predictive
Coefficients
	(LPC)

Geometric	and
Eigen	lip
parameters

Discrete	Cosine
Transforms	(DCT)

Multi	Channel
Gradient	Model

(MCGM)

Space-time	Autio-
Correlation	of

Gradients	(STACOG)

Figure 6.12: Different Audio-Visual features used in PAD.

Mel-Frequency Cepstral Coefficients

MFCCs are popular feature vectors used for both speaker recognition and liveness
detection. There are different visual features used alongside MFCCs to perform
reliable liveness detection. They include Geometric lip parameters and Eigen lips,
Discrete cosine transforms (DCTs), Multi-Channel Gradient Model (MCGM), and
Space-Time Auto Correlation of Gradients (STACOG).

Geometric lip parameters used for AV liveness verification are heights and widths
of inner, outer, lower, and upper lip regions [76]. Also, Eigen lip representation is
used for complementing the MFCCs parameters in this method. The advantage of
this method is that the alternate color spaces in an image are exploited compared
to deformed images, and it can be extended to detect and extract multiple faces
and their features with different backgrounds. In further works of Chetty et al., a
multi-level liveness verification is proposed by exploiting correlation between the
cues using MFCCs, Eigen lip, 3D shape and textures features of the face with the
help of different fusion techniques [2].

DCT coefficients on lip regions are used as visual features complementing MFCCs
for liveness detection in [77]. Further, a client dependent synchronous measure is
introduced using the Voila-Jones algorithm [20] for detecting face region and ex-
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tracting first order DCTs [145]. DCT-mod2 [113] coefficients are another face
image representations computed on normalized faces for robust audio-visual bio-
metric systems against forgery attacks [79]. Another approach used DCT coef-
ficients extracted from mouth region with Least Residual Error Energy (LREE)
algorithm [146] and MFCCs as audio features [142].

Multi-Channel Gradient Model (MCGM) algorithm is a neurological and psycho-
logical algorithm used to build artificial vision systems [147]. MCGM uses gradi-
ent methods, which computes the motion as a ratio of partial derivatives of input
image brightness concerning space and time. MCGM is used in cross-modal fu-
sion method for biometric liveness verification using kernel Canonical Correlation
Analysis (kCCA) [141]. This method aims at extracting the non-linear correlation
between audio-lip articulators and lip motion features from MCGM. The audio-
visual cues are mutually exclusive; hence a statistical technique called Independ-
ent Component Analysis (ICA) is used. The advantages of cross-modal fusion
are that it exploits mutually independent components from face and voice cues in
Spatio-temporal couplings and extracts correlated information.

Space-Time Auto Correlation of Gradients (STACOG) is a motion feature extrac-
tion method that uses space-time gradients of three-dimensional moving objects
in a video. STACOGs are used for measuring audio-visual synchrony to discrim-
inate live and biometric artifact samples [78]. STACOG utilizes auto-correlation
to exploit the local-relationship, such as co-occurrence among space-time gradi-
ents. STACOG also exploits local geometric characteristics and possesses shift-
invariance, which is a useful property for biometric recognition.

Linear Predictor Coefficients

Linear prediction model predicts the next point as a linear combination of previous
values (see section 6.4.1). In complementing LPCs as audio features, geometric lip
parameters are extracted from the jumping snake algorithm [148], which achieves
lip segmentation. These parameters are used with a co-inertia analysis for the
liveness test in audio-visual biometrics [149]. Three video features are extracted
from the width, height, and area of the mouth region. The audio-visual features
used here exhibit a tight link between the lip contour and speech produced to detect
liveness effectively.

6.7.2 Liveness detection methods for replay attacks

This section discusses the liveness detection methods used for identifying replay
attacks. As the audio-visual biometrics contain complementary information, re-
search works used different approaches to make use of both modalities in effect-
ively detecting replay attacks.
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Gaussian Mixture Models (GMMs) comprise audio-visual feature vectors trained
for each client and used as a countermeasure for replay attacks [76]. For testing
clients, a log-likelihood is computed against the client model. Three experiments
were conducted for live and four replayed recordings, and performance is calcu-
lated. The results of liveness detection show that using Eigen lip projections, lip
contours with MFCCs gives an EER for less than 1% for all cases.

The Co-Inertia (CoIA) and Canonical Correlation Analysis (CANCOR) are statist-
ical methods used to measure the relationship between two multidimensional data.
They are computed using Pearson correlation projections are used for liveness de-
tection in AV biometrics [149]. Ordinary correlation analysis is dependent on
the coordinate system in which the variables are described, where CANCOR and
CoIA focus on finding the best coordinate system, which is optimal for correlation
analysis. CoIA method has numerical stability and does not suffer from collin-
earity. Experiments were conducted on the XM2VTS database with two kinds of
replay attacks created with the same and different sentences uttered. The result
shows that CoIA method gives EER values of 14.5% and 12.5%, where CANCOR
method shows 23.5% and 22.5% on replay attack 1 and replay attack 2, respect-
ively.

Multi-level liveness verification is proposed using three different fusion techniques,
namely Bi-modal feature fusion (BMF), Cross-Modal Fusion (CMF), and 3D mul-
timodal fusion (3MF) [2]. Experiments were performed on VidTIMIT, UCBN, and
AVOZES. A 10-mixture Gaussian mixture model for each client and each fusion
approach is trained by constructing a gender-specific UBM and then adapting each
UBM with MAP adaptation. While testing, the client’s live recordings were eval-
uated against the client’s model by calculating the log-likelihood of audio-visual
vectors. Three types of replay attacks were created for testing: photo replay at-
tack, video replay attack, and synthetic replay attack. It is observed that photo
replay attacks are easy to detect compared to the other two attacks and the 3MF
fusion method is more robust than other methods. The equal error rates of the three
proposed techniques on three types of replay attacks is shown in Table 6.5.

Table 6.5: Performance of liveness verification techniques proposed in [2] (EER%).

Approach Photo Video Synthetic
replay replay replay

BMF 2.4% 6.54% 9.23%
CMF 0.29% 2.25% 3.96%
3MF 0.0155% 0.611% 1.18%

The synchronous information between audio and visual cues is an advantageous
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detail that can be used in liveness detection. By measuring the asynchrony, a
presentation attack can be detected. The degree of synchrony between lips and
voice in a video sequence is used for liveness detection in [77]. The methods
used are co-inertia analysis (CoIA) and coupled hidden Markov models (CHMM).
Three different methods of CoIA were proposed, namely world training model,
self-training method, and piece-wise self-training method. A CHMM is a collec-
tion of HMM which uses the Baum-Welch algorithm for training. Further, the
Viterbi algorithm calculates the states for every stream and the frame likelihoods.
CoIA and CHMM methods are fused using Bayesian fusion [150]. Experiments
were performed on the BANCA database [8] using two protocols: controlled and
pooled. Only recordings from controlled conditions are used from the BANCA
database’s world model in the controlled protocol. In the Pooled protocol, three
conditions, such as controlled, adverse, and degraded, are used. The sum rule
fusion of CoIA and CHMM methods in controlled protocol resulted in lower er-
ror rates than individual methods. The CHMM method displayed the lowest error
rates in detecting replay attacks in the pooled protocol.

In similar fashion, a client dependent synchrony measure is introduced to thwart
the deliberate impostor attacks [145]. For the extracted acoustic and visual fea-
tures, CoIA is applied, which maximizes the covariance of AV features in the
enrollment phase. While testing for the AV features, a correlation measure based
on CoIA is computed. This method produces a weighted error rate (WER) of 7.7%
for random impostors and 6.9% for deliberate impostors. Since WER for Random
impostor attacks is on the higher side, three other fusion strategies are proposed.
The first fusion strategy is the weighted sum of scores of speech, face verification,
and synchrony which makes the method sensitive to deliberate impostor attacks.
The second fusion strategy aims to reduce the first strategy score with a low syn-
chrony verification score, making it robust to random impostor attacks. The third
fusion strategy is an adaptive weighted sum of normalized scores. More weight
is given to the synchrony verification module if the synchrony score is the least,
and weight is decreased if the synchrony score is high. The three fusion strategies
proposed makes the system robust to deliberate imposters.

The cross-modal fusion based on Bayesian Fusion is adapted for Liveness detec-
tion in [141]. The audio module, PCA Eigen lip module, kCCA module, and
ICA module are summed up as logarithmic class conditional probability and fused
under the reliability weighted summation (RWS) rule. Experiments were per-
formed on VidTIMIT and DaFEx databases [151] using 10-mixture GMMs and
log-likelihood scores. Two types of attacks were tested: static replay attack dis-
playing the still photo and dynamic attack where faces are synthesized from still
photos. The single-mode features such as MFCC, PCA, Eigen lips produce higher
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errors in detecting the attacks. However, when MFCC, PCA, Eigen lips, kCCA,
and ICA were fused, the method produced a promising performance.

A delay estimation method is a process of shifting audio features positively and
negatively to check for the liveness in audio-visual samples [142]. Experiments
are conducted on the VidTIMIT database using three types of inconsistent data
and time delay based scoring. Three types of attacks include audio-video from
the same subject but a different sentence, audio-video from different subject and
sentence, and finally, audio-video from a different subject but the same sentence.
When experimented on Co-Inertia Analysis (CoIA) and Canonical Correlation
Analysis (CCA), upon adding the delay estimation method, the performance of
liveness detection has improved.

The Space-Time Auto-Correlation of Gradients (STACOG) is used for measur-
ing the audio-visual synchrony in [78]. Two cross-modality mapping approaches
are used to estimate synchrony: Partial Least Square Analysis (PLS) and Canon-
ical Correlation Analysis (CCA). PLS method [152] models the input and output
onto a low-dimensional subspace. The projections are chosen such that covariance
between input and output scores are maximized. CCA is a statistical method used
to measure the relationship between two multidimensional data. The correlation
between the audio-visual feature vectors is obtained from either CCA or PLS, as
described in [145]. Experiments were performed on the BANCA and XM2VTS
database with four different kinds of replay attacks. The proposed method with
STACOG for visual speech features and CCA for acoustic features produced prom-
ising results proving the advantage of visual speech joint features.

6.7.3 Forgery attacks in AV Biometrics

Forgery attacks are performed by digitally transforming both voice and face cues.
There are no liveness detection approaches in the literature; however, in this sec-
tion, we discuss the impact of forgery attacks on AV biometrics.

The robustness of the audio-visual biometric systems against forgery attacks is ex-
amined in [79]. The forgery attacks are created using a mixture-structured bias
voice transformation technique called MixTrans. This method allows the trans-
formed signal to be estimated and reconstructed in the temporal domain. Once
the transformation is defined as bias, it makes the source client vectors resemble
a target client, and a maximum likelihood criterion is used to estimate the trans-
formation parameters. Finally, a synthesis step is used to replace the source char-
acteristics with those of the target speaker. Face transformation is performed by a
MPEG-4 face animation based approach using a thin-plate spline warping. Exper-
iments were performed on the BANCA database consisting of 7 distinct training
and testing configurations. The proposed forgery attack shows an increase in EER
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Table 6.6: Table showing summary of different features, methods for liveness detection,
databases used and EERs achieved. (Attack type: Replay attack)

Authors Audio-Visual features Method used
for liveness detection Database used EER(%)Audio Visual

Chetty et al. [76] MFCC
Geometric lip

parameters
Gaussian mixture

model
VidTIMIT 0.6

Eveno et al. [149] LPC
Geometric lip

parameters

Canonical
correlation analysis

Co-inertial
analysis

XM2VTS 12.5

Chetty et al. [2] MFCC
Geometric

lip parameters
GMM-UBM

VidTIMIT, UCBN,
AVOZES

0.61

Rua et al. [77] MFCC
Discrete

cosine transform

Co-Inertia analysis
Coupled Hidden
Markov Models

BANCA 2.61

Bredin et al. [145] MFCC
Discrete

cosine transform
Co-Inertia
analysis

BANCA 6.6

Chetty [141] MFCC
Multi channel
gradient model

Reliability Weighted
Summation

VidTIMIT 8.6

Zhu et al. [142] MFCC
Discrete

cosine transform
Co-Inertia

Analysis with time delay
VidTIMIT 14.6

Boutella et al. [78] MFCC
Space-time

auto-correlation
of gradients

Canonical correlation
analysis, Partial least

square analysis

BANCA,
XM2VTS

5.6

of the AV identity verification system when compared to the AV system with no
attacks. For two groups of the dataset, EER has increased from 4.22% to 11% and
from 3.47% to 16.1% with and without forgery attacks, respectively. The vulner-
ability of AV biometrics to forgery attacks is high, and there is a strong requirement
for forgery attack detection methods in AV systems.

Table 6.6 summarises the different AV features, PAD algorithms, different data-
bases, EERs achieved in the AV recognition system.

6.8 Challenges and Open questions
Audio-visual biometrics has gained intensive research efforts in terms of develop-
ing novel recognition systems and PAD algorithms to thwart the artifacts. Despite
all these, there are several challenges and open questions in AV biometric meth-
ods. In this section, we discuss some well-known challenges and open research
questions.

6.8.1 Databases and Evaluation

The publicly available databases [8, 9, 140, 10, 57, 11, 134, 144] are usually recor-
ded using limited number of devices and sessions. The lack of variance in biomet-
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ric data challenges the development of robust AV biometric algorithms. This gives
rise to the problem of generalization of a biometric algorithm. For example, in
smartphone biometrics, it is necessary to have an AV-based recognition algorithm
that is adaptable to changes in the recording device. Therefore the databases re-
corded using multiple devices and in different sessions help in improving the ro-
bustness of recognition systems. Further, the mismatches arise when the enrolled
sample is from one type of device and tested with another. The change in devices
also introduces the problem of cross-device recognition errors. There is a require-
ment of AV databases that includes different types of biometric dependencies like
device, lighting, background noise.

Presentation Attack Database for AV Biometrics

Available databases are also limited in terms of various kinds of presentation at-
tacks. Moreover, data for many attacks specified in the literature are not publicly
available. There are new kinds of attacks being generated that pose a huge threat to
biometric systems in both audio [40] and face [38]. For example, voice imperson-
ation has shown to be causing a considerable vulnerability to automatic speaker
recognition [153]. However, the databases or protocols to create such attacks are
not publicly available. Therefore, this is a hindrance for the researchers to develop
robust PAD algorithms. AV biometric systems can also be attacked in either of
the audio, visual, or combined audio-visual (bi-modal) domains. Depending on
the authentication algorithm, a good bi-modal attack can pose a severe threat to
the AV system. So there is a need to create a high-quality presentation attacks
database and make it available for research.

Face Recognition under Varying Illumination Conditions

Many researchers have used the XM2VTS [10], VidTIMIT [57] databases for im-
plementing AV recognition systems. These databases are recorded in different ses-
sions using different devices, but they do not contain biometric data with varying
illuminations. The effect of varying illumination is among several bottlenecks in
face recognition research. The proposed approaches using these databases might
not perform well when the lighting changes are introduced. This problem is dis-
cussed in MOBIO [134] database, which contains samples with varying illumina-
tions. So there is a need to include this dependency in AV biometric methods with
a wide variety of illumination changes.

Usage of Advanced Sensors in Data Capture

Advancements in sensor technology and computer vision have made it possible
to capture images at multiple wavelengths. Most of the visual sensors capture
visible wavelengths of light (e.g., RGB images). Multi-spectral sensors can capture
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wavelengths that spread at different wavelengths of the spectrum. Some advanced
sensors can even capture signals at near-infrared radiation, short-wave radiations,
and infrared radiation. The available literature and databases for traditional face
recognition methods are based on the visible spectrum and face problems like pose
variations and illumination changes. It has been proved that near-infrared image
capturing improves face recognition performance. Therefore, it will be beneficial
to use multi-spectral sensors in AV biometrics to overcome the problems in limited
visible spectrum wavelengths.

Multi-lingual Speaker Recognition

The dependency of speaker recognition on the speaker’s language has been ob-
served in the recent works [154]. The mismatch of languages of speech samples in
training, enrolling, and testing is a challenging problem in AV biometrics. There-
fore, a multi-lingual AV biometric system is required for active research on this
problem. A multi-lingual speaker recognition system aims to recognize a person
based on speech features independent of language. It is observed that there are no
previous works on AV biometrics performed the task of a multi-lingual speaker re-
cognition system. So there is a broad scope for including the language dependency
experiments in AV biometrics where the problem with language can be overcome
with the complementing visual part.

6.8.2 AV Biometrics in Smart devices

Smartphone usage has grown from essential communication to multipurpose us-
age in the past decade. The key features of recent smartphones include mobile
transactions, digital ID, and sensitive multimedia data transfer. The critical in-
formation involved in smartphone functionality requires more secure access than
passwords or key phrases. Biometrics have come in to play in order to provide
higher security in smartphone applications. Major smartphone vendors have de-
ployed biometric sensors and recognition systems into smartphones (e.g., Touch
ID, Face ID). Due to high security and easy to use, many third-party applications
use the in-built biometric technology (e.g., Apple Pay). Banking applications like
the iMobile app from ICICI bank uses fingerprint or face recognition for secure
login 13. However, the variance in devices and capturing situations in mobile en-
vironments restrict advanced biometric recognition. AV biometrics can solve some
of the problems faced by unimodal recognition systems and provide better security
in smartphones. There are multiple challenges around efficient utilization of AV
biometrics in smartphones. Smartphones comes with wide variety of cameras and
microphones to record the biometric characteristics. Therefore, the recognition

13https://www.icicibank.com/mobile-banking/imobile.page?
#toptitle

https://www.icicibank.com/mobile-banking/imobile.page?#toptitle
https://www.icicibank.com/mobile-banking/imobile.page?#toptitle
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algorithm should comprehend the huge variance in capturing channels and also
adaptable to new devices.

Biometrics have been used in Internet of Things (IoT) devices to provide easy and
secure control of the devices. The IoT devices contain sensitive information and
use biometric technologies to protect the privacy [155]. However, the biometrics
sensors embedded into IoT devices come with challenges like complex architecture
in IoT infrastructure. The diverse set of devices and applications in IoT requires
question the security provided by biometrics based authentication. Minute vulner-
ability in biometrics can pose a severe threat to the critical functionality of IoT. AV
biometrics can provide a solution to the problems by providing better security than
unimodal methods.

6.8.3 Privacy preserving techniques in AV biometrics

Biometric characteristics are unique to the person and cannot be changed. If the
biometric template is compromised, there is a breach in the privacy of the indi-
vidual. So the template security is the most crucial part of the biometric system.
For tackling privacy protection, template protection techniques can be classified
into three main categories: i) cancelable biometrics [156] consists of intentional,
repeatable distortions of the biometric signal which are irreversibly transformed,
ii) cryptobiometrics [157] where a key is generated from cryptographic algorithms,
iii) biometrics in the encrypted domain [158] where homomorphic encryption
techniques are applied to protect the biometric data. There are ample amount
of literature available for face images in cancelable biometrics and in cryptobi-
ometrics [159] also in homomorphic encryption [160, 161, 162]. And also there
are limited amount of literature available for speech in the cancelable biometrics
[163, 164, 165, 166, 167] and in homomorphic encryption [168, 169]. The privacy-
preserving techniques in AV biometrics have not received much attention in the
audio-visual domain equivalent to other biometrics. To the best of our knowledge,
the three above mentioned techniques are not addressed for AV biometrics. Hence
this an open problem that can be addressed in the AV domain.

De-identification in AV Biometric System

De-identification is defined as concealing or removing the identity of the person
or replacing it with a surrogate personal identity to prevent indirect or direct iden-
tification of the person. De-identification is an important tool to protect privacy,
one of the most important social and political issues of today’s information soci-
ety. Face de-identification in still images has a lot of literature available starting
from 2000 [170] and with the introduction of deep learning, GAN-based gener-
ative models have become the benchmark for learning faces. Similarly, face de-
identification in videos has also gained interest [171]. The other cue speech has
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also gained much interest in de-identification. Speech de-identification is mainly
based on voice transformation. Voice transformation refers to modifications of the
non-linguistic characteristics (voice quality, voice individuality) of a given utter-
ance without affecting its textual content. There are lot of literature available for
voice de-identification for both text-dependent [172] and text-independent case
[173]. The de-identification in AV biometrics has not received much heed when
compared to individual cues. Hence it is an open problem that can be addressed.

6.8.4 Deep Neural Network (DNN) based recognition

There are only two papers [103, 104] using DNN based methods for AV biometric
recognition system where [103] used two different databases, and the later used
only one database. The advantages of single capture bi-modal systems like AV
biometrics can be exploited with deep learning approaches by developing an intel-
ligent system using synchronous information. Using synchronous features makes
it easy to avoid the problems caused by lighting, channel noise, and some present-
ation attacks. Therefore, there is a open research scope for utilizing advanced
deep neural network based methods to develop efficient AV biometric recognition
systems.

6.8.5 Performance Evaluation for AV biometrics

The AV biometric research brings two types of biometric modalities into a single
system. There are performance evaluation standards for testing biometric sys-
tems by ISO/IEC [85]. The most common metrics used by AV systems are FAR,
FRR and EER. However, some research works on AV biometrics used different
performance evaluation methods. Similarly, there are standard metrics by NIST
namely False positive identification rate (FPIR) and False Negative identification
rate (FNIR) for biometric vendor technology evaluations like face (FRVT) [174],
iris (IREX) [175] and fingerprint (FpVTE) [176]. It is necessary to have a common
evaluation protocol used in all the works to compare and comment on various AV
biometric research works. In the case of vulnerability assessment, the impostor
attack presentation match rate (IAPMR) has been a standard metric from ISO/IEC
[5]. However, it is observed that EER has been used in most of the liveness de-
tection methods. Although it makes it easy to compare different works, the EER
values do not explicitly show the attacks’ vulnerability. Therefore, there is a strong
requirement of performance evaluation protocols to test the entire biometric sys-
tem and include the effect of each cue on the whole system.

6.9 Conclusions and Future works
Biometrics based person recognition has been used in multiple domains ranging
from smartphone access, mobile transactions to border control checks. The vulner-
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abilities in unimodal biometric systems (audio or face only) make authentication
systems prone to attacks questioning biometric recognition systems’ resilience.
The audio-visual biometric recognition systems have evolved to overcome these
problems. The AV biometric methods take advantage of the complementary in-
formation present in correlated biometric cues, face, and voice. Over the year,
multiple research works focused on AV biometrics and proposed efficient person
recognition approaches. This survey paper has discussed how two complementary
cues can provide critical information for AV biometric person recognition system.
At first, we have presented the introduction on AV biometrics, discussed how dif-
ferent they are from other multimodal systems, and concepts of an ISO standard
biometric recognition system and presentation attacks. Later, we have classified
the different types of features used in AV biometric systems in both audio and
visual domains, indicating their importance, advantages, and disadvantages. We
have described the different approaches of information fusion of the two modalit-
ies used in AV biometric systems. We reviewed several AV biometric recognition
systems that appeared in the literature and presented their experimental results.

We then shifted our focus onto the different databases used in the AV recognition
system and presented a detailed discussion of the devices and capturing methods
used in each of them. A comprehensive table is presented listing the best perform-
ing algorithm on each database. Further, we presented the PAD algorithms on AV
based biometric systems. We have studied different feature extraction methods
used for liveness detection and discussed the performance of detecting replay at-
tacks. AV biometrics is a hot topic of research, with many accomplishments and
exciting opportunities for further research and development. Keeping this in mind,
we have discussed the challenges with several open problems and mentioned pos-
sible future research directions. Overall, this article can serve as a quick reference
for AV biometric recognition systems and related PAD algorithms for beginners
and experts.

6.9.1 Future Works

The detailed study on AV biometrics pointed out the challenges and open problems
in this field. To overcome the challenges and solve open problems, the possible
future works in this direction are briefly mentioned as follows.

• A novel database of AV biometric data can be implemented, including mul-
tiple dimensions like multiple languages, sessions, devices, and presentation
attacks.

• State-of-the-art algorithms can be developed for defying the dependencies
and vulnerabilities in AV biometrics.
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• The advantages of AV biometrics like the correlation between face and voice
can be exploited exclusively to overcome the generalization problem. This
leads to new paths like visual speech or talking face biometrics.

• The growth of smartphone applications for sensitive usage can make use of
AV biometrics. This direction needs a research focus on implementing AV
based person recognition in a mobile environment.

• The multimodal biometrics requires special attention in protecting the stored
sensitive biometrics data.
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7.1 Abstract
Smartphones have been employed with biometric-based verification systems to
provide security in highly sensitive applications. Audio-visual biometrics are get-
ting popular due to their usability, and also it will be challenging to spoof because
of their multimodal nature. In this work, we present an audio-visual smartphone
dataset captured in five different recent smartphones. This new dataset contains
103 subjects captured in three different sessions considering the different real-
world scenarios. Three different languages are acquired in this dataset to include
the problem of language dependency of the speaker recognition systems. These
unique characteristics of this dataset will pave the way to implement novel state-
of-the-art unimodal or audio-visual speaker recognition systems. We also report
the performance of the bench-marked biometric verification systems on our data-
set. The robustness of biometric algorithms is evaluated towards multiple depend-
encies like signal noise, device, language and presentation attacks like replay and
synthesized signals with extensive experiments. The obtained results raised many
concerns about the generalization properties of state-of-the-art biometrics methods

75



76 Article 2: Multilingual Audio-Visual Smartphone Dataset And Evaluation

in smartphones.

7.2 Introduction
With the advances in biometrics, the usage of passwords and smart cards to gain
access into several control applications have been slowly depreciated. Henceforth
for reliable and secure access control, biometrics have been deployed in various
applications, including smartphone unlocking, banking transactions, financial ser-
vices, border control, etc. The biometrics in access control applications improve
trustworthiness and enhance user proficiency by verifying who they are. A biomet-
ric system aims to recognize the person based on their physiological or behavioural
characteristics based on ISO/IEC 2382-37. The physiological characteristics in-
clude the face, iris, fingerprint etc., and behavioural characteristics include speech,
keystroke, gait etc.

Smartphone biometrics has grown expeditiously over the years. The number of
smartphone users crossed 3 billion in 2020 and is expected to increase in millions
in the coming years. According to the Mercator Advisory Group report, 66% of
smartphone users are expected to use biometrics for authentication by the end of
2024. In 2020, 41% of smartphone users used biometrics which was 27% in 2019.
Among different biometric modalities, fingerprint-based authentication is at the
top. However, the amount of users for face and biometrics has been increasing.
Voice-based recognition increased to 20% in 2020, from 11% in 2019 and face
recognition jumped to 30% in 2020, from 20% in 2019. The application of smart-
phone biometrics has been widely used in mobile banking, e-commerce, remote
identification etc.

Different types of smartphones like Android, iPhone and blackberry provide uni-
modal applications based on either fingerprint, iris or face recognition, and re-
cently speech has been added as a biometric cue for authentication purposes. The
built-in biometrics are not fixed for all smartphones. For example, some smart-
phones come with fingerprint, and some include face recognition. The captured
uni-modal biometrics like face or iris comes with several problems like low qual-
ity, variations in pose, problem with illuminations, background noise, low spatial
and temporal resolutions of video [21]. Therefore, this problem is addressed in
multimodal biometrics by taking advantage of default sensors like cameras and
microphones. Multimodal systems like audio-visual biometrics utilize the com-
plementary information of face and speech and exploit the user-friendly capture of
face and voice in a single recording. Audio-visual biometric data capture is cost-
effective and can be carried out without additional sensors (e.g., fingerprint reader
or iris camera).
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The applications based on biometrics in smartphones has several advantages but
also exist several challenges. The key challenges are the robustness and gener-
alizability of a biometric system caused by algorithm dependencies and evolving
presentation attacks. The aforementioned challenges are the main problems that
circumscribe reliable and secure smartphone-based applications. The first chal-
lenge is the algorithm dependencies which limits the interoperability of a biomet-
ric algorithm across multiple types of smartphones. Interoperability is defined as
the ability of a biometric system to handle variations introduced in the biometric
data due to different capture devices. Due to different kinds of smartphone sensors,
capturing conditions and human behaviour. The dependency of the biometric al-
gorithm on particular data properties limits the robustness of optimal recognition.
Therefore, it is very challenging to develop a conventional biometric method for a
wide variety of smartphones.

The second challenge is from the presentation attacks or also called spoofing at-
tacks and indirect attacks, which are comprehensively explained in [38] for face
and in [21] for audio-visual. Presentation attacks are defined as the presentation
to a biometric capture subsystem with the goal of interfering with the operation
of the biometric system [5]. Presentation attacks have become easy to create and
use as a concealer or impostor towards the target subject. Growing presentation
attacks and limitations in smartphone sensors cause major problems questioning
the performance of smartphone biometrics.

The factors above motivated research on the study of smartphone biometrics to-
wards the key challenges. In this direction, to examine the challenges, we need a
smartphone biometrics database with different attributes. There are few biomet-
ric databases have been created using smartphones in both uni-modal [177] and
multimodal biometrics [134, 12]. However, the existing databases are limited with
several devices, languages and sessions. Therefore, we have created a multilin-
gual audio-visual smartphone (MAVS) dataset considering smartphone devices,
sessions, speech languages and presentation attacks. The novel dataset contains
audio-visual biometric data of 103 subjects (70 male, 33 female) captured in three
sessions with variable noise and illumination. Each subject utters six sentences,
each in three different languages and recorded in five different smartphones. We
have also created two types of presentation attacks in both audio, video and audio-
visual scenarios. The first type of attack is a physical access attack which is created
by replaying an audio-visual sample on a display-speaker setup and recorded using
a smartphone. The second attack is a synthesized attack where audio and video are
created separately via speech synthesis and face-swapping.

Further, we have benchmarked the dataset by performing extensive experiments in
two directions. The first direction is to observe the biometric algorithm dependen-
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cies concerning device, illumination, background noise and language. The second
direction is to examine the vulnerability towards presentation attacks. The baseline
presentation attack detection methods in both audio and visual domains are in-
cluded in this work. The biometric recognition algorithms are chosen from the
state-of-the-art methods from the literature. The experimental results are presen-
ted in ISO/IEC biometric standards [85] with pictorial representations and detailed
discussion.

The rest of the paper is organized as follows. Section 7.3 presents the related
work in audio-visual datasets with sample images and discussion of results. The
detailed description of the multilingual audio-visual smartphone (MAVS) dataset
created in this research is presented in Section 7.4. Section 7.5 describes the per-
formance evaluation protocols used in bench-marking the MAVS dataset. Section
7.6 presents the experiments performed and results obtained and Section 7.7 con-
cludes this paper with discussion on the future work.

7.3 Related Work
The sensitivity of data in smartphone utilization has made the usage of biometrics
a critical feature. Therefore, the research in smartphone biometrics has obtained
much attention in recent years. The built-in biometric sensors provide the neces-
sary authentication for many smartphones. However, the inconsistency of perform-
ance in these devices encouraged a new direction of biometric recognition using
the default sensors like camera and microphone. In this direction, few audio-visual
smartphone biometric datasets have been developed by capturing talking subjects’
videos. Multimodal biometric databases captured modalities like a finger photo,
face, iris photo, and speech data. However, considering the standard sensors in
all smartphones, we studied only audio-visual databases, including face and voice.
In this section, we present a comprehensive study on audio-visual biometric data-
bases. A detailed study on all audio-visual biometric databases is performed in
[21] by Mandalapu et al. along with a comparison of best-performing algorithms.
In this section, we present some audio-visual databases in detail.

Early audio-visual biometric datasets are created by the advanced multimedia pro-
cessing (AMP) lab of Carnegie Melon University (CMU) 1. With ten subjects,
each speaking 78 isolated words, the recording is taken by a digital camcorder
with a tie-clip microphone [7]. The dataset is made publicly available with sound
files and lip parameters. Although the number of subjects is low, this dataset as-
sisted in developing a visual shape-based feature vector for audio-visual speaker
recognition in [1]. Biometrics Access Control for Networked and E-Commerce

1The AMP/CMU dataset: http://amp.ece.cmu.edu/

http://amp.ece.cmu.edu/
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Applications (BANCA)2 [8] is developed for E-Commerce applications. Import-
ant features in this database are multiple European languages captured using both
high and low-quality devices under three different scenarios: controlled, degraded,
and adverse. Also, the total number of subjects was 208, with an equal number of
men and women. Figure 6.7 shows the sample images of this database from three
different scenarios.

Figure 7.1: Example BANCA database images Up: Controlled, Middle: Degraded and
Down: Adverse scenarios [8].

The goal of multimodal biometrics is to improve the robustness of the recogni-
tion/verification process. The VALID database was created in a realistic audio-
visual noisy office room under uncontrolled lighting and acoustic noise. The
VALID database is publicly available to research purposes 3. The MultiModal
Verification for Teleservices and Security (M2VTS) applications database has been
developed for granting access to secure regions using audio-visual person verifica-
tion [140]. An extension to the M2VTS database is XM2VTS (extended M2VTS)
with focus on high-quality biometric samples [10]. It contains high-quality face
images, 32 kHz 16-bit audio files, video sequences, and a 3D Model. The database
is publicly available at cost price 4.

Video recordings of people reading sentences from Texas Instruments and Mas-
2The BANCA database: http://www.ee.surrey.ac.uk/CVSSP/banca/
3The VALID database: http://ee.ucd.ie/validdb/
4The XM2VTS database: http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/

http://www.ee.surrey.ac.uk/CVSSP/banca/
http://ee.ucd.ie/validdb/
http://www. ee.surrey.ac.uk/CVSSP/xm2vtsdb/
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Figure 7.2: Front profile shots of a subject from four sessions of XM2VTS database [10].

sachusetts Institute of Technology (TIMIT) corpus (VidTIMID) 5 is a publicly
available dataset presented in [57]. A distinctive part of VidTIMIT dataset is that
it also contains head rotation sequence for each person in each session [99]. BioSe-
cure6 is a popular multimodal database that also comprises of audio-visual dataset
[11]. The database consists of data from 600 subjects recorded in three different
scenarios. The sample images from the database are shown in Figure 6.10.

Figure 7.3: Face samples acquired in BioSecure database in three different scenarios.
Left: indoor digital camera (from DS2), Middle: Webcam (from DS2), and Right: outdoor
Webcam (from DS3) [11].

The aforementioned audio-visual datasets are captured with different types of sensors.
In some cases, the audio and video capturing sensors are two different devices, and

5The VidTIMTI dataset: http://conradsanderson.id.au/vidtimit/
6BioSecure: https://biosecure.wp.tem-tsp.eu/

biosecure-database/

http://conradsanderson.id.au/vidtimit/
https://biosecure.wp.tem-tsp.eu/biosecure-database/
https://biosecure.wp.tem-tsp.eu/biosecure-database/
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the data is presented separately. However, in smartphones, the built-in camera and
microphone can be used to create audio-visual data. The MOBIO database 7 [134]
is a audio-visual data created using a mobile phone (NOKIA N93i) and a laptop
computer (2008 MacBook). MOBIO dataset helped in the study of person identi-
fication in a mobile phone environment [101]. In a similar fashion, the MobBIO
database is developed by Sequeira et al. in [144]. The sensors used in this work
are the rear camera of the Asus Transformer Pad TF 300T.

Figure 7.4: Talking face samples from SWAN database one frame from each session [12].

The Smartphone Multimodal Biometric database was collected for the application
of mobile banking [12]. The real-world scenarios are attributed in this database
with multiple sessions and languages using iPhone 6s and iPad Pro. Along with
audio-visual data, the SWAN database also contains face, eye region, finger photo
and voice data. Presentation attacks are also provided as a part of this database.
Figure 6.11 shows the sample images of subjects from six sessions.

The existing databases on audio-visual biometrics provide limited variance in ad-
dressing the problem of robustness—most databases on session variance but not
on device variance and language dependency. Alongside, presentation attacks are
growing widely and displaying a huge impact on the optimal performance of bio-
metric algorithms. We have formulated advanced protocols to create a multilingual
audio-visual smartphone (MAVS) database considering all these problems. In this
direction, the significant contributions of this paper are mentioned as follows.

1. A novel multilingual audio-visual smartphone dataset will be made available
for research purposes. The uniqueness of this dataset is described below.

• Biometric data from 70 male and 33 female subjects from various
backgrounds.

• Three language speeches and three sessions (variable illumination and
background noise) for all the subjects.

• Data recorded on multiple smartphone devices: iPhone 6s, iPhone 10,
iPhone 11, Samsung S7 and Samsung S8.

7The MOBIO database: https://www.idiap.ch/dataset/mobio

https://www.idiap.ch/dataset/mobio
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Table 7.1: Details of Audio-visual Biometric Verification Databases.

Dataset Year Devices No. of subjects Biometric Availability

AMP/CMU [7] 2001
Digital Camcorder, 10

Face, voice Free
tie-clip microphone (7 M, 3 F)

BANCA [8] 2003
Webcam and 208

Face, voice Free
Digital Camera (104 M, 104 F)

VALID [9] 2005
Canon 3CCD XM1 106

Face, voice Free
PAL (77 M, 29 F)

M2VTS [140] 2005
Hi8 camera,

37 Face, voice Free
D1 digital recorder

XM2VTS [10] 2005
Sony VX1000E,

295 Face, voice Free
DHR1000UX

VidTIMIT [57] 2009
Digital video 43

Face, voice Free
camera (24 M, 19 F)

BioSecure [11] 2010

Samsung Q1, DS1: 971
Face, Fingerprint

Paid
Philips SP900NC DS2: 667
HP iPAQ hx2790 DS3: 713 Voice, Signature
Webcam, PDA

MOBIO [134] 2012
Nokia N93i

152
Voice, Face

Free
Mac-book periocular

MobBIO [144] 2014
Asus Transformer

105 - -
Pad TF 300T

Hu et al.[136] 2015 - 11 Audio-Visual Free

SWAN database [12] 2019
iPhone 6

88
Face, Periocular, Multilingual Voice

Free
iPad Pro Presentation Attack dataset

MAVS databset 2021
iPhone 6, iPhone 10, iPhone 11 103 Face, Multilingual Voice

Free
Samsung S7 and Samsung S8 (70 M, 33 F) Presentation Attack dataset

• Three unique and three common sentences for each subject, each device,
each language and each session.

• Two types of presentation attacks are created, each in physical access
and logical access scenarios.

2. Benchmarking the dataset with state-of-the-art face recognition, speaker re-
cognition algorithms and score-level fusion biometric methods.

3. Evaluating the vulnerability of presentation attacks on state-of-the-art bio-
metric verification and testing baseline presentation attack detection meth-
ods.

7.4 Multilingual Audio-Visual Smartphone (MAVS) Dataset

7.4.1 Acquisition

In data acquisition, we have used five smartphone devices, namely iPhone 11,
iPhone10, iPhone 6s, Samsung S7 and Samsung S8. The data capturing is a self-
assisted process where the speaker handles the mobile device and records the bio-
metric data. For the process of data capturing, a mobile application has been used
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in both iOS and Android devices. The application provides a simple interface that
assists the speaker to provide audio-visual data, as shown in Figure 7.5. A pre-
defined text appears on the screen for a limited time for each sample. The speaker
reads the text while the data is being recorded.

Figure 7.5: Mobile application (iOS) interface for data capturing.

7.4.2 Participant details

We have obtained 70 male and 33 female participants for the data collection. The
average age of the participants is 27 years. All participants are of Indian origin with
medium to expert range fluency in speaking the three languages (English, Hindi
and Bengali). All participants are informed about the data acquisition protocol
and are instructed to use the mobile application by self-assisting the data capture.
Each session, the participant is given five mobile devices, one after the other, and
audio-visual data of 6 sentences in three languages is recorded.

7.4.3 Data details

Each participant records six sentences in each language. Three of the sentences are
the same for all subjects, and the other three sentences have a unique part for each
subject. The six sentences in the English language are mentioned below, and the
blank spaces are filled with unique fake text for each subject. Similarly, translated
sentences for the other two languages are presented in their corresponding script.
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Figure 7.6: Audio-visual data samples (1 frame of a talking face). Left to Right: iPhone
6s, iPhone 10, iPhone 11, Samsung S7 and Samsung S8. Top row: Session 1, middle:
Session2, bottom: Session3.

1. My full name is fake name.

2. I live at the address fake address.

3. I am working at IIT Kharagpur.

4. My bank account number is fake number.

5. The limit of my account is 10,000 rupees.

6. The code for my bank is 9876543210.

Data is captured in three sessions with three different lighting and noise envir-
onments. In session1, there is no noise, and uniform lighting is used. This data
can be used as clean data for enrollment purposes. Session2 has continuous con-
trolled noise from a portable fan intentionally put near the data capturing process
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Figure 7.7: Audio data sample for speaker recognition. Left to Right: iPhone 6s, iPhone
10, iPhone 11, Samsung S7 and Samsung S8. Top row: Session 1, middle: Session 2,
bottom: Session 3.

and different lighting than session1 but with uniform illuminance. Session3 has
uncontrolled noise from natural background and nonuniform lighting where cer-
tain parts of the participant’s face are dark. The order of sentences, languages, and
mobile devices used during data capture is kept the same for all the sessions. The
sample video data can be seen in Figure 7.6 (one frame per session, the device is
presented for convenience). The waveform of audio samples is presented in Figure
7.7. In Figure 7.8, the segmented face images (using MTCNN, see Section 7.5.2)
of each session and device are presented.

Figure 7.8: Detected face using MTCNN for face recognition. Left to Right: iPhone
6s, iPhone 10, iPhone 11, Samsung S7 and Samsung S8. Top row: Session 1, middle:
Session2, bottom: Session3.

7.4.4 Presentation Attacks

We have created two types of presentation attacks: replay attacks and synthesized
attacks.

Replay Attacks

The replay attacks are created by synchronized capture of audio-visual playback
using Dell office monitor and Logitech speakers recorded on Samsung S8 phone.
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Figure 7.9 show the replay attacks samples created in this work. The spectrograms
of audio replay attacks are presented in figure 7.10.

Figure 7.9: Replay attack data sample. Left: Bona fide, right: Replay attack.

Synthesized attacks

Deep learning has been successfully applied to solve complex problems ranging
from big data analysis to computer vision tasks and human level control. Ad-
vanced deep learning concepts have also been used to create threats to privacy,
democracy and national security. One such deep-learning based application that
loomed recently is "deepfake" (derived from ’deep learning’ and ’fake’). For cre-
ating synthesized attacks, we have used deepfake approaches in this work. One of
the approaches for creating face deepfakes is a technique where the face image of
a source person is superimposed onto a target person to create a video/image of
the target person. In this direction, the face-swapping model is proposed by Nirkin
et al. [178] where swapping of face images are done in three stages. Reenactment
and face segmentation is carried out in the first stage, followed by in-painting and
blending. Reenactment, face transfer, or puppeteering uses facial expressions and
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Figure 7.10: Spectrograms of bona fide and corresponding replay attack audio. Top: Bona
fide, bottom: Replay attack.

assists in transforming the face in one video to guide the motions and deformations
of the face appearing in another video or image. Face segmentation is performed
using U-Net [179] and reenactment is performed using generative model named
pix2pixHD [180]. In the second step, the occluded regions of the source face are
mitigated using the same in-painting generator [180]. In the last step, a Gaus-
sian Poisson Generative Adversarial Network (GP-GAN) [181] is used for high-
resolution image blending for combining the gradient and colour information.

In our work, we have utilized FSGAN for swapping similar faces 8. The face-
swapping approach preserves the context of the target video by digitally overlaying
the source’s face landmarks. Therefore, the target video contains the key biometric
characteristics of the source subject, which can efficiently be used as a presentation
attack for the source’s identity. Multiple deepfake datasets in the literature [182,
183, 184, 185] used a manual selection of faces for swapping. However, we have
employed an automatic way to find a pair of similar faces in this work. We used
cosine similarity of ArcFace embeddings to find a similar face for each of the male
and female subjects (more on ArcFace in section 7.5.2). We have generated 97
face swapped videos for sentence 6 of bona fide data from session1 data of the
Samsung S8 device.

WaveNet vocoder is used to generate high-quality raw speech samples condi-
tioned on acoustic features [186]. The WavNet-based vocoder is popularly used
in ASVSpoof 2019 challenge to create logical access presentation attacks [40]. In
our work, we have used MFCC features as acoustic features in synthesizing 16-bit
raw audio. We have adapted the implementation of WaveNet vocoder form the
github9 and pre-trained models from LJSpeech [187]. The figures 7.11 and 7.12

8FSGAN: https://github.com/YuvalNirkin/fsgan
9WaveNet Vocoder: https://github.com/r9y9/wavenet_vocoder

https://github.com/YuvalNirkin/fsgan
https://github.com/r9y9/wavenet_vocoder
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show the images samples and spectrograms of synthesized attacks respectively.

Figure 7.11: Face swap using FSGAN. Left: Source face, middle: Target face, right:
Swapped face.

Figure 7.12: Spectrograms of bonafide and corresponding wavenet-vocoder synthesized
audio. Top: Bona fide, bottom: Synthesized audio.

7.5 Performance Evaluation Protocols
The dataset is benchmarked with various face recognition, speaker verification
and presentation attack detection methods. In this section, we explain briefly the
baseline biometric systems employed along with evaluation metrics.
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7.5.1 Automatic speaker Verification

I-vector based speaker Verification

The I-vector based ASV method is a Joint Factor Analysis (JFA) approach pro-
posed in [188]. It models the channel effects and also speaker voice characterist-
ics. The speech sample is represented as a low-dimensional super vector called
i-vector. The i-vector represents the total factor in a speech utterance, including
channel compensation which is carried out in a low-dimensional total variability
space.

X-vector based speaker Verification

The deep neural networks (DNN) and end-to-end speaker verification approaches
are state-of-the-art research methods that overcome handcrafted methods’ draw-
backs. The x-vector based speaker verification is a recent approach showing prom-
ising results in automatic speaker verification [32]. This method uses deep neural
network (DNN) embeddings as features. The variable-length speech utterances
are mapped to a fixed low-dimensional embedding (called x-vectors), and a deep
network is trained to differentiate speakers. The training process requires a large
amount of training data. Therefore, data augmentation is used along with added
noise and reverberation to increase training data size. The implementations in
Kaldi are employed in our work, and the pre-trained Universal Background Mod-
els, i-vector extractor and x-vector extractor are adapted to our experiments 10.
Probabilistic linear discriminant analysis (PLDA) [189] is used as a classifier for
the i-vectors and x-vectors of enrollment and test samples. The log-likelihood
score is computed between the enrolled and test speech sample pair.

Dilated residual network (DltResNet)

Extended ResNet implementation from [190] named dilated residual network (DltRes-
Net) is used as the third speaker verification methods. The implementation is
publicly available11. The DltResNet model is one of the state-of-the-art systems
on the Voxceleb1 database evaluations achieving 4.8% EER on the dataset. The
Euclidean distance between the DltResNet features is used for obtaining scores
between enrolled and test samples.

10Kaldi GitHub: https://github.com/kaldi-asr/kaldi
11DltResNet: https://www.idiap.ch/software/bob/docs/bob/bob.

learn.pytorch/v0.0.4/guide_audio_extractor.html

https://github.com/kaldi-asr/kaldi
https://www.idiap.ch/software/bob/docs/bob/bob.learn.pytorch/v0.0.4/guide_audio_extractor.html
https://www.idiap.ch/software/bob/docs/bob/bob.learn.pytorch/v0.0.4/guide_audio_extractor.html
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7.5.2 Face recognition

Face Detection

Face detection is performed as a prepossessing step on the video frames to detect
and crop the face image. We have employed multitask cascaded convolutional
networks (MTCNN) approach from Zhang et al. [191] for efficient face detection.
The face recognition and face PAD methods used in this work used segmented face
images.

Local Binary Patterns (LBP)

Local Binary Patterns (LBP) are a textual operator that labels the pixels in a face
image according to neighbouring pixels’ values and assigns a binary number. LBP
for an image is calculated by assigning 0 or 1 to the pixel depending on the neigh-
bour’s pixel having high or low value. The resultant binary test is stored in an 8-bit
array and later converted to decimal. This thresholding process, accumulating bin-
ary strings, and storing the decimal value is repeated for every pixel in the input
image. Further, the LBP histogram is computed over the LBP output array. For a
block, one of the 28 = 256 possible patterns is possible. The advantage of LBP
features is high discriminative power, computational simplicity, and invariance to
grey-scale changes. LBPs have shown a prominent advantage in face recognition
approaches. We used LBP histograms as features for face images and cosine dis-
tance to compute the score between the enrolled and test samples.

FaceNet face embeddings

The deep learning approaches have evolved into image processing and pattern re-
cognition applications. In face recognition methods, FaceNet embeddings dis-
played an excellent image representation for facial features [24]. This is a deep
face recognition approach that adapted the ideas from [192]. In this work, we have
used the pretrained model on the VGGFace2 dataset using Inception ResNet v1.
This model displayed an accuracy of 99.65% on the Labeled Faces in the Wild
(LFW) dataset [193]. We have obtained FaceNet embeddings 12 for face detected
images in our dataset and used cosine distance between the samples to obtain the
verification scores.

ArcFace face descriptor

ArcFace face features are proposed in [25] for the large scale face recognition with
enhanced discriminative power. ArcFace features emphasize the loss function in
deep convolutional neural networks (DCNN) for clear geometric interpretation of

12FaceNet: https://github.com/davidsandberg/facenet

https://github.com/davidsandberg/facenet
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face images. The proposed descriptor is evaluated over ten face recognition bench-
marks, and results show consistent performance improvement. We have employed
the ArcFace implementation provided in Github 13. The training data contains
cleaned MS1M, VGG2 and CASIA-Web face datasets. ArcFace face descriptors
are computed over detected face images, and similar to other face recognition
methods, we have used cosine distance as a classifier.

In addition to the face recognition, we have used ArcFace face embeddings to ob-
tain similarity scores between subjects in creating attacks in FSGAN face swapped
videos (see section 7.4.4).

7.5.3 Presentation Attack Detection (PAD)

Voice PAD

The PAD methods used to evaluate the attacks created using speech are chosen
from the baseline methods in the ASVSpoof 2019 challenge [40]. The two baseline
methods are available in ASVSpoof 2019 evaluation protocols. Features used in
these two methods are based on cepstral coefficients in the front-end and Gaussian
Mixture Models (GMM) in the back-end. Linear Frequency Cepstral Coefficients
(LFCC) and Constant Q Cepstral Coefficients (CQCC) are two features used to
represent speech samples.

The LFCC features are similar to the Mel-frequency cepstral coefficients (MFCCs),
with filters placed linearly in the exact sizes. The initial approach of LFCCs is used
for the detection of synthetic speech in [194]. In this work, we used LFCC features
are extracted with a frame length of 25ms and a 20-channel linear filter bank. An
LFCC feature comprises 19 cepstral coefficients, a zeroth coefficient, static, delta,
and delta-delta coefficients. The CQCC features are extracted with the toolkit
provided in ASVSpoof 2019. The maximum frequency is set to fs/2, where fs is
the sampling frequency, and the minimum frequency is fixed at fs/2/29 15Hz
(where 9 is the number of octaves) [195]. The number of bins per octave is set to
96, and re-sampling is applied with a period of 16. The dimension of features is
29 coefficients along with zeroth, static, delta, and delta-delta coefficients.

The front-end provides the cepstral coefficients, which are used to train 2-class
GMMs in the back-end. The training process is carried out on the bonafide and at-
tack speech samples with 512-component GMM models. An expectation-maximization
(EM) algorithm is employed in training with random initialization. For testing, the
scores of samples are calculated from the log-likelihood ratio with the help of
trained bona fide and the attack speech models.

13ArcFace: https://github.com/deepinsight/insightface

https://github.com/deepinsight/insightface
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Face PAD

The face recognition PAD methods are chosen from the baseline methods used in
smartphone dataset evaluation in [12]. The two best-performing methods from five
baseline methods are taken for evaluation in this work. These methods utilize local
binary patterns (LBP) [196] and color texture features [197]. The support vector
machines (SVM) are trained for different attacks and test for attack detection.

The LBP features are experiments for PAD in [196] for face attacks in a full bio-
metrics verification system. In [38], the LBP features displayed a consistent per-
formance of detecting attacks in different protocols of smartphone biometric data.
Similarly, the experiments using colour texture features [197] resulted in the best-
performing face PAD on smartphone face images. Therefore, we have included
these methods in our evaluation of detection attacks.

7.5.4 Performance Metrics

The performance evaluation metrics from ISO/IEC [85] are utilized in our experi-
ments to present and compare the results of different methods.

Verification Metrics

• False Match Rate (FMR) is the proportion of the completed biometric non-
mated comparison trials that result in a false match.

• False Non-Match Rate (FNMR) is the proportion of the completed biometric
mated comparison trials that result in a false non-match.

In addition to ISO/IEC metrics mentioned above, we have also presented an equal
error rate (EER) to represent FMR and FNMR metrics in a single value. EER is
the error rate at the point where FMR and FNMR are equal.

Presentation Attack Detection Metrics

• Impostor-Attack Presentation Match Rate (IAPMR) is the proportion of im-
postor attack samples (replay attacks) that are matched with bona fide samples.
To compare ASV methods’ performance, we have fixed FMR at 0.1% and
presented FNMR and IAPMR for zero-effort impostors and attacks, respect-
ively.

• Attack Presentation Classification Error Rate (APCER) is the proportion of
attack presentations that are incorrectly classified as bona fide presentations,
and Bonafide Presentation Classification Error Rate (BPCER) is the ratio of
bona fide presentations incorrectly classified as attacks. This work presents
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the BPCER_5 and BPCER_10 of PAD methods: the BPCER values at AP-
CER are 5% and 10%, respectively.

Table 7.2: Inter-session speaker recognition evaluation (EER%).

Inter- i-Vector X-Vector DltResNet
session S1 S2 S3 S1 S2 S3 S1 S2 S3

S1 5.31 11.52 10.35 5.31 11.18 10.84 4.85 10.69 9.56
S2 11.70 4.13 10.51 11.20 3.51 9.96 10.63 4.32 9.50
S3 10.48 10.65 5.16 10.70 9.96 5.23 9.51 9.59 4.53
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Figure 7.13: DET curves of inter-session speaker recognition experiments. Left: i-vector,
middle: X-vector and right: DltResNet.

Also, we used Detection Equal Error Rate (D-EER) to present PAD methods’ per-
formance, a single value representation of APCER and BPCER. The score distri-
butions of bona fide, zero-effort impostors and attacks are plotted along with the
threshold of FMR = 0.1% to observe the impact of presentation attacks. Detec-
tion error trade-off (DET) curves plot the relationship between false match rate
(FMR) and false non-match rate (FNMR) for bona fide samples or impostor attack
presentation match rate (IAPMR) for attack samples, respectively.

7.6 Experimental Results
The main focus of this dataset is to provide scope for developing generalized bio-
metric algorithms in face and speech-based recognition. The generalizability of
a biometric algorithm can be achieved by considering multiple dependencies like
session variance, device dependency and language. Therefore, in our work, we
have performed experiments to demonstrate how these dependencies affect the
state-of-the-art face and speaker recognition algorithms mentioned in 7.5. The
benchmarking of the dataset is carried out by performing different experiments
and presenting the results.

7.6.1 Automatic Speaker Verification

Automatic Speaker Verification methods display variable performance depending
on the channel used to acquire and the noise present in the audio samples. In the



94 Article 2: Multilingual Audio-Visual Smartphone Dataset And Evaluation

following experiments, we have evaluated the performance of the ASV methods in
correspondence to the session, device and language.

Inter-session speaker recognition

The MAVS dataset contains data from three different sessions as explained in
section 7.4. We have examined the session dependency by performing the inter-
session speaker recognition. In this process, we have used the samples from one
session to enrol and each of the other sessions to test. Table 7.2 presents the EER
values displaying the comparison of three ASV methods on inter-session experi-
ments.

• Session 2 data contains an added noise in all data samples. Therefore, it is
seen that higher EER values are observed in all the results where session 2
data is used to enrol.

• However, when the same noise is present in test data, the ASV methods
tend to perform better than the session with clean data (session 1). This
concludes that ASV methods characterize the noise in the data and use it for
recognition.

• Similarly, session 3 contains natural noise, which is not consistent in all
samples, but it helps recognise the speaker better than the data with no noise.

• Alongside, DltResNet based ASV method displayed better performance com-
pared to other methods.

Inter-device speaker recognition

Table 7.3: Inter-device speaker recognition evaluation (EER%) on i-vector method.

Inter-device iPhone 6s iPhone 10 iPhone 11 Samsung S7 Samsung S8
iPhone 6s 1.86 5.76 6.67 15.46 14.37
iPhone 10 5.88 1.62 4.74 15.02 13.97
iPhone 11 6.73 4.67 1.47 15.90 14.76

Samsung S7 15.51 14.90 15.70 10.01 13.26
Samsung S8 14.51 13.98 14.78 13.34 8.77

The properties of the data capturing device are key attributes for speaker recog-
nition [188]. Although state-of-the-art ASV methods accommodate the channel
characteristics, the change in devices from enrollment to test can still affect the
speaker recognition performance. Our dataset used five different smartphones in
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Table 7.4: Inter-device speaker recognition evaluation (EER%) on x-vector method.

Inter-device iPhone 6s iPhone 10 iPhone 11 Samsung S7 Samsung S8
iPhone 6s 1.45 5.82 6.55 15.33 14.09
iPhone 10 5.85 1.81 4.37 13.56 12.37
iPhone 11 6.54 4.30 1.81 14.27 13.10

Samsung S7 15.50 13.69 14.13 8.55 12.97
Samsung S8 14.04 12.25 12.93 13.30 7.37

Table 7.5: Inter-device speaker recognition evaluation (EER%) on DltResNet method.

Inter-device iPhone 6s iPhone 10 iPhone 11 Samsung S7 Samsung S8
iPhone 6s 2.08 6.52 7.07 16.56 16.38
iPhone 10 6.62 2.03 4.09 15.00 15.66
iPhone 11 7.06 4.03 2.02 15.92 16.14

Samsung S7 16.68 15.07 15.83 7.04 10.44
Samsung S8 16.51 15.52 16.11 10.63 7.73

data collection to examine the dependency of the device on ASV methods. Tables
7.3, 7.4, 7.5 show the EERs of all device combinations of enrollment and testing
from the three ASV methods.

The results from inter-device experiments output some key points. These obser-
vations conclude the impact of channel dependency on state-of-the-art speaker re-
cognition methods.

• The DltResNet method gave out the highest EER in most of the combina-
tions even though it worked better with noisy data as shown in Section 7.6.1.

• The DNN based X-vector methods performed better than other methods.

• It is observed that the combinations of smartphones from the same manu-
facturer (Apple or Samsung) correlate with speaker recognition. When the
enrollment and testing data are from the same manufacturer, the speaker
recognition performs better than the cross-manufacturer combination.

Inter-language speaker recognition

The language difference in the audio sample for ASV has been a hot topic in recent
years. Although there are datasets with utterances of the same person in different
languages, the problem of language dependency is not benchmarked [12]. The de-
gradation of biometric recognition due to language mismatch is presented in some
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Table 7.6: Inter-language speaker recognition evaluation (EER%).

Inter-language i-vector x-vector DltResNet
English Hindi Bengali English Hindi Bengali English Hindi Bengali

English 5.47 5.50 6.72 4.98 5.55 6.93 4.88 5.26 6.27
Hindi 5.58 4.16 5.33 5.45 4.0 5.60 5.32 3.95 5.15

Bengali 6.78 5.92 5.08 6.93 5.67 5.21 6.34 5.19 4.87
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Figure 7.14: DET curves of inter-language speaker recognition experiments. Left: i-
vector, middle: X-vector and right: DltResNet.

previous works [198], [199], [154]. Our dataset comprises of the same subjects
speaking three different languages, therefore, providing scope for inter-language
speaker recognition evaluation. Table 7.6 shows the inter-language speaker recog-
nition evaluations.

• The problem of language mismatch from enrollment to testing is observed
in all three ASV methods.

• However, the drop in EER is not high, but it is consistent across all the
methods.

• It is important to notice that the training dataset contains multiple languages,
and we assume that the extracted features contain language factors.

• Therefore, in the scenario of a small subset of languages in training data, the
language mismatch problem would be considerable.

7.6.2 Face Recognition

The robustness of face recognition algorithms in smartphones is evaluated in this
section. Similar to speaker recognition, we have performed two dependency exper-
iments, namely inter-session and inter-device. The three face recognition systems
are examined in these experiments by taking 20 equally distributed frames in each
video.
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Table 7.7: Inter session face recognition evaluation EER(%).

Inter- LBP FaceNet Arcface
session S1 S2 S3 S1 S2 S3 S1 S2 S3

S1 5.39 24.28 44.73 0.26 0.89 2.22 3.42 6.68 5.60
S2 24.28 6.81 41.55 0.87 0.24 1.65 6.42 4.34 6.81
S3 44.67 41.43 4.43 2.21 1.63 0.21 5.59 6.81 1.43
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Figure 7.15: DET curves of inter-session face recognition experiments. Left: LBP,
middle: FaceNet and right: ArcFace.

Inter-session

The session variability in face recognition is observed in this experiment.

• Session 2 and session 3 data has non-uniform lighting on the face region.
Therefore, the cross-session face recognition displayed a clear drop in the
performance.

• FaceNet performed better in attributing the problem of session variability
among the three face recognition methods while displaying near-zero error
rates in the same session.

• Table 7.7 present the EER values for inter-session face recognition experi-
ments.

Table 7.8: LBP face recognition performance EER(%) in inter-device scenario.

Inter-device iPhone 6s iPhone 10 iPhone 11 Samsung S7 Samsung S8
iPhone 6s 6.96 19.50 19.60 22.94 31.21
iPhone 10 19.55 5.32 18.72 31.69 37.95
iPhone 11 19.70 18.76 5.09 25.67 32.60

Samsung S7 22.96 31.69 25.70 5.05 21.04
Samsung S8 31.13 37.87 32.65 21.10 5.04



98 Article 2: Multilingual Audio-Visual Smartphone Dataset And Evaluation

Table 7.9: FaceNet face recognition performance EER(%) in inter-device scenario.

Inter-device iPhone 6s iPhone 10 iPhone 11 Samsung S7 Samsung S8
iPhone 6s 0.20 0.44 0.64 0.66 0.48
iPhone 10 0.45 0.28 0.51 0.69 0.53
iPhone 11 0.64 0.51 0.3 0.92 0.71

Samsung S7 0.67 0.68 0.90 0.25 0.34
Samsung S8 0.49 0.54 0.71 0.33 0.16

Table 7.10: Arcface face recognition performance EER(%) in inter-device scenario.

Inter-device iPhone 6s iPhone 10 iPhone 11 Samsung S7 Samsung S8
iPhone 6s 3.30 4.14 4.03 4.79 4.36
iPhone 10 4.10 3.10 3.76 4.76 4.31
iPhone 11 4.04 3.79 3.01 4.60 4.03

Samsung S7 4.80 4.76 4.55 2.98 3.78
Samsung S8 4.39 4.30 4.03 3.78 2.72

Inter-device

The results from inter-device experiments on face recognition are shown in Tables
7.8, 7.9, 7.10.

• The LBP features based face recognition displayed a high dependency on
devices. When the device is the same in enrollment and testing, LBP fea-
tures performed better face recognition. However, the recognition error has
increased by three times when there is a miss-match in devices.

• Another observation is that the change in device manufacturer has also im-
pacted face recognition similar to speaker recognition.

• FaceNet has displayed better face recognition considering the problem of
device dependency. The drop in performance is observed, but it is not as
consistent as other methods.

• ArcFace performed similarly to FaceNet in an inter-device face recognition
scenario.

• Although the EER is higher in ArcFace than FaceNet; the device mismatch
has not impacted the performance very much.
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7.6.3 Audio-Visual Speaker Recognition

The audio-visual speaker recognition is performed by score-level fusion of best-
performing face recognition and speaker recognition methods, FaceNet and X-
vector methods, respectively. The score fusion approach used in this work is a
simple averaging of scores obtained in individual verification methods.

Inter-session variance

Table 7.11: Inter session Audio-Visual speaker recognition evaluation EER(%).

Inter-session S1 S2 S3
S1 4.99 10.73 10.46
S2 10.74 3.21 9.56
S3 10.34 9.55 4.90

• The combination of audio and visual data displayed similar results as that
of individual biometric algorithms. This is because of the simple score-level
fusion method employed in our work.

• We assume that an adaptive fusion approach would improve the perform-
ance.

• However, it introduces a new dependency on biometric algorithms in the
form of a fusion approach.

• Table 7.11 show the results of inter-session audio-visual fusion experiments.
Figure 7.16 present the corresponding DET curves.

Inter-device

The inter-device experiments on audio-visual biometric recognition are carried out
similar to the inter-session approach. The obtained results display the same obser-
vations as that of audio-visual inter-session biometric recognition. It is clear from
these experiments that an efficient fusion approach is required to take advantage
of bi-modal biometrics. Table 7.12 display the EER values of inter-device experi-
ments using audio-visual fusion.

7.6.4 Vulnerability from Presentation Attacks

The vulnerability of biometric recognition towards presentation attacks is examined
in this section. The two types of presentation attacks created in this work are ex-
plained in Section 7.4.4. The biometric recognition performance before and after
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Figure 7.16: DET curves of inter-session experiments on Audio-Visual fusion of FaceNet
and X-vector methods.

Table 7.12: Inter-device performance (EER%) of score-level fusion of FaceNet and X-
vector methods.

Inter-device iPhone 6s iPhone 10 iPhone 11 Samsung S7 Samsung S8
iPhone 6s 1.31 5.53 6.24 14.55 13.30
iPhone 10 5.57 1.65 4.18 12.82 11.74
iPhone 11 6.25 4.15 1.70 13.53 12.41

Samsung S7 14.75 12.93 13.34 7.92 12.30
Samsung S8 13.28 11.54 12.30 12.59 6.81

the attacks is compared to check the robustness. When a presentation attack is not
carried out, the performance is expressed in false non-match rate (FNMR) caused
by zero-effort impostors. In presentation attacks, the vulnerability is presented as
impostor attack presentation match rate (IAPMR).

Replay Attacks

The replay attacks are created by replaying an audio-visual biometric sample on a
display and loudspeaker combination. The playback sample is recorded on one of
the smartphones, namely the Samsung S8. The audio and face channels of replay
attacks are examined for vulnerability individually on the two best performed bio-
metric methods from the previous sections. For face recognition, FaceNet features
are used, and for speaker recognition, X-vector features are employed.

• The impact of replay attack is presented in Table 7.13 in FNMR and IAPMR
rates for zero-effort impostors and replay attacks, respectively.

• In face recognition, the vulnerability is observed as 96.87% IAPMR, repres-
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Table 7.13: Replay attack vulnerability on Face and Voice at FMR = 0.1%

Biometric Zero-Effort Replay
Algorithm impostors Attacks

FNMR IAPMR
FaceNet 0.09% 96.87%
X-vector 6.4% 25.93%

enting the number of attacks being matched with bonafide samples.

• The speaker recognition method displayed 25.93% IAPMR when compared
to 6.4% FNMR.

• The score distributions of bona fide, zero-effort impostors and replay present-
ation attacks are presented in Figures 7.17 and 7.18.
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Figure 7.17: Audio Replay attacks score distribution tested on X-vector method.

Synthesized Attacks

Synthesized attacks are logical access attacks where the attack sample is presented
digitally to the biometric system. Table 7.14 shows the vulnerability of synthesized
attacks on face and voice modalities.

• The vulnerability evaluation on FaceNet based face recognition shows a
38.77% IAPMR, and the score distributions are presented in Figure 7.19.
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Figure 7.18: Video Replay attacks score distribution tested on FaceNet method.

• The speech synthesis is carried out using wavenet-vocoder, and the attacks
displayed 99.68% IAPMR.

• The score distributions are presented in Figure 7.20.

Table 7.14: Synthesized attack vulnerability on Face and Voice at FMR = 0.1%

Biometric Zero-Effort Synthesized
Algorithm impostors Attacks

FNMR IAPMR
FaceNet 0.21% 38.77%
X-vector 5.59% 99.68%

Audio-Visual Presentation Attacks

The vulnerability of audio-visual presentation attacks is examined with the help
of fusion of presentation attacks on AV recognition methods explained in Section
7.6.3. The replay attacks and synthesized attacks are performed in individual bio-
metric modalities, and the attack scores are fused to calculate the final scores. The
impact of the audio-visual attacks is presented in Table 7.15 on two different at-
tacks. Unlike unimodal biometric matching, the results of audio-visual biometrics
are presented in False Rejection Rate (FRR) because it represents the system-level
performance. Similarly, the score distributions are shown in Figures 7.21, 7.22.

• The results indicate that audio-visual fusion is vulnerable to presentation
attacks.

• The problem of replay attacks is less compared to the synthesized attacks.
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Figure 7.19: Score distribution of face swap attacks.
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Figure 7.20: Score distributions of wavenet speech synthesized attacks.

• Although the replay attacks on face recognition displayed the highest vulner-
ability; the AV fusion approach appears to have the ability to overcome this
problem. However, a similar observation is not seen in synthesized attacks.

• Thus, the AV fusion recognition approach has the vulnerability due to com-
bined AV presentation attacks.

Table 7.15: Audio-Visual replay attacks vulnerability on AV fusion method at FMR =
0.1%

Attack Zero-Effort Presentation
Type impostors Attacks

FNMR IAPMR
Replay Attacks 5.29% 28.46%

Synthesized Attacks 4.64% 99.83%
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Figure 7.21: Audio-Visual replay attacks score distribution.

Figure 7.22: Audio-Visual synthesized attacks score distribution.

7.6.5 Presentation Attack Detection

The presentation attack detection experiments are performed using baseline PAD
methods. The attack data is partitioned into three sets: training, developing and
testing, with 35%, 35% and 30% of bona fide and attack samples, respectively.
Each partition includes data from a unique set of subjects. We have chosen the
baseline approaches used in Automatic Speaker Verification Spoofing and Coun-
termeasures Challenge (ASVSpoof) for speaker recognition PAD in 2019. See
Section 7.5.3. For face recognition, we opted the two best-performing methods
from the face PAD methods used in [12]. Tables 7.16 and 7.17 show the results

Table 7.16: Results of speaker recognition presentation attack detection.

Attack LFCC-GMM CQCC-GMM
type D-EER BPCER_5 BPCER_10 D-EER BPCER_5 BPCER_10

Replay Attacks 44.14% 100% 93.15% 20.49% 45.63% 36.89%
Speech Synthesis 14.00% 39.82% 20.38% 14.08% 40.77% 22.33%
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Table 7.17: Results of face recognition presentation attack detection.

Attack LBP-SVM Color texture-SVM
type D-EER BPCER_5 BPCER_10 D-EER BPCER_5 BPCER_10

Replay Attacks 4.96% 5.07% 1.28% 2.15% 1.35% 0.32%
FaceSwap 2.99% 1.74% 1.15% 2.54% 0.83% 0.26%

of the PAD methods in terms of D-EER, BPCER at APCER = 5% and BPCER at
APCER = 10%. The DET curves in figures 7.23 and 7.24 present the performance
of PAD methods.
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Figure 7.23: DET curves of voice PAD evaluation using baseline methods.
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Figure 7.24: DET curves of face PAD evaluation using baseline methods.

• The voice PAD results indicate that the baseline methods are not able to
detect the attacks.

• Alongside, replay attacks are difficult to detect when compared to synthes-
ized attacks. In contrast, both face PAD methods performed well in detecting
the attacks.
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• The voice PAD methods are tested on the whole speech sample, where the
face PAD methods are performed on detected face images in individual
frames.

• Therefore, it is reasonable to assume that this could be the reason for the
difference in performance.

Multimodal PAD

The presentation attacks on both modalities are possible with sophisticated equip-
ment. The PAD methods should be able to detect the attacks before the verification
process. In this experiment, we have fused the PAD scores from the CQCC-GMM
method and the Color texture-SVM method to compute multimodal PAD scores.
We have used a sum rule based fusion to combine two PAD methods. The table
7.18 shows the results of multimodal PAD approach and Figure 7.25 shows the
PAD performance on two different types of attacks.

Table 7.18: Results of audio-visual PAD methods.

Attack Fusion PAD
type D-EER BPCER_5 BPCER_10

Replay Attacks 16.99% 38.83% 30.10%
Synthesized 11.87% 32.04% 15.54%

Figure 7.25: DET curves of audio-visual PAD of CQCC and Color texture methods.

• The replay attacks are observed to be difficult to detect compared to synthes-
ized attacks. The performance of multimodal PAD is similar to individual
PAD in regards to the types of attacks.

• The multimodal PAD does not improve the attack detection performance.
The reason for this could be the usage of simple sum rule based fusion.
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• The co-related and complementary information between audio and visual
domains is not taken into account in this fusion approach. Therefore, mul-
timodal PAD does not show any promising improvement over individual
PAD approaches.

7.7 Conclusion
Smartphone biometrics have emerged into advanced security applications like bank-
ing transactions and identity verification. The built-in biometric systems by smart-
phone manufacturers can be utilized for this purpose. However, it is difficult to
entirely rely on the built-in systems due to the variance in sensors and unknown
algorithms embedded into smartphones. In this direction, it is possible to use the
default sensors in smartphones like cameras and microphones. Therefore, we have
developed a multidimensional smartphone audio-visual dataset that includes dif-
ferent languages, devices, sessions, and texts in this work. We have presented
in this paper some of the previous works on building an audio-visual dataset and
discussed our multi-lingual smartphone audio-visual (MAVS) dataset.

Further, we have performed experiments on examining the robustness of state-of-
the-art biometric algorithms in two directions. The first direction concerns the
problem of algorithm dependencies that include signal noise, capturing device and
speech language. We have prepared inter-session, inter-device and inter-language
experiments and presented the results. In the second direction, presentation attacks
are evaluated for the vulnerability of biometric algorithms and the performance
of baseline PAD algorithms. The results show the requirement of robust audio-
visual biometrics algorithms to deal with the problems of multiple dependencies
and presentation attacks. The proposed dataset would help the research community
in developing advanced biometric algorithms and presentation attack detection ap-
proaches.

7.7.1 Future work

The MAVS dataset is made publicly available for research purposes 14. The pro-
posed dataset can be used in multiple directions in smartphone audio-visual re-
search. The future work in this research direction using the dataset is as follows.

1. Novel biometric algorithms are modelled by identifying various problems
that question the robustness of smartphone authentication.

14MAVS dataset request form: https://docs.google.com/forms/d/e/
1FAIpQLSfTMqnQj8KNoUi1Ms1tx8Ewgil2l4wAAJVaKUJs6VkWfjAo4w/
viewform?usp=sf_link

https://docs.google.com/forms/d/e/1FAIpQLSfTMqnQj8KNoUi1Ms1tx8Ewgil2l4wAAJVaKUJs6VkWfjAo4w/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfTMqnQj8KNoUi1Ms1tx8Ewgil2l4wAAJVaKUJs6VkWfjAo4w/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfTMqnQj8KNoUi1Ms1tx8Ewgil2l4wAAJVaKUJs6VkWfjAo4w/viewform?usp=sf_link
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2. The authentication technology through biometrics can be improved via Audio-
visual person recognition through the efficient usage of complementary in-
formation between audio and visual modalities.

3. The dataset contains subjects of different ages ranging from 18 to 48 years
and gender labels (70 male and 33 female). Therefore, the dataset can be
used for studying gender classification and fairness. Further, the audio data
from three different languages can be used for language detection.

4. The correlated information between biometric cues are used to propose ad-
vanced presentation attack detection algorithms towards unknown and un-
seen attacks. E.g. lip-sync, correlated biometric data.

5. Generalizable biometric algorithms are developed in smartphone environ-
ments for real-world applications across different devices and capturing con-
ditions.
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8.1 Abstract
Textured contact-lens detection in iris biometrics has been a significant problem.
In this paper, we propose a novel approach based on image quality and texture-
based features for presentation attack detection for patterned/textured contact lens
detection. The proposed approach employs the image quality features computed
using Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and tex-
ture features computed from Binarized Statistical Image Features (BSIF) to de-
tect presentation attacks based on contact lenses. An efficient comparator using
Spectral Regression Kernel Discriminant Analysis (SRKDA) is used for comput-
ing sample scores. The Fischer Discriminant Ratio (FDR) weighted fusion is used
to perform score-level fusion from both models. The proposed method is tested
on LivDet-Iris 2017 Clarkson, Notre Dame, and IIITD dataset. The experiments
show noticeable results in detecting textured contact lens in iris samples for both
same-set evaluation and cross-set evaluation.

109
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8.2 Introduction
Iris is one of the unique and stable biometric characteristics and has been well
used in several applications like secure border control and token free access control
[26, 200]. The main advantage of the iris biometric characteristic is it’s uniqueness
and permanence when compared to other characteristics such face or fingerprint.
The uniqueness can be observed even for mono-zygotic twins making it a preferred
modality for robust biometrics. Further, unlike the face or fingerprint, iris is a
protected biometric characteristic covered by eye-lashes making it not prone to
environmental damages (for eg., cuts or abrasions in the fingerprint).

However, iris recognition systems are vulnerable due to several kinds of present-
ation attacks. Well-known presentation attacks against iris capture devices are
printed iris image attacks, electronic display attacks (images/videos presented on
screen), or textured-contact-lens attacks either to conceal iris identity or attack
pre-enrolled iris images. Among the wide range of attacks, the patterned/textured
contact lens attacks pose a severe threat to iris recognition [3] as it is difficult to be
noticed by a supervising operator (e.g. a border guard) in case of assisted biomet-
ric access control. Due to the reason that contact lens overlays the iris itself and
move along with eye ball, the patterns on the lens are difficult to distinguish from
the actual iris pattern.

Figure 8.1: Example iris images with no lens and textured contact lens.

8.3 Related Work
Vulnerabilities in iris biometrics have been rapidly growing due to the availability
of the technology to generate artefacts (i.e. presentation attack instruments) at
low-cost. Among the different presentation attack instrument species, the use of
textured/patterned contact lens can be considered as an efficient way to conceal
the identity of the subject when interacting with an iris recognition systems [3].
The availability of low-cost patterned contact lens further makes the attacks to be
carried out easily. It is therefore critical to detect the textured or patterned contact
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lenses to prevent the attacks on iris systems.

Table 8.1: Texture analysis based contact lens attack detection algorithms.

Author Feature extraction algorithm Dataset

Gragnaniello et al. [201] Scale-invariant image descriptor Notre Dame and IIITD

Yadav et al. [3]
Local Binary Patterns (LBP) and

IIITD and NDCLD
Pyramid Histogram of Oriented Gradients (PHOG)

He et al. [4] Gray level co-occurrence matrices (GLCM) SJTU iris database
Komulainen et al. [202] Binarized Statistical Image Features (BSIF) NDCLD’13

Raghavendra et al. [203]
Statistically independent filters for

IIITD and NDCLD’12
Binarized Statistical Image Features (BSIF)

Doyle and Bowyer [204] Binarized Statistical Image Features (BSIF) NDCLD’15

Kohli et al. [205]
Multi-order dense Zernike moments and

IIITD
Local Binary Patterns (LBP) with variance

Hu et al. [206]
Regional features via spatial pyramid and Clarkson, Warsaw, Notre Dame

relational measure and MobBIOfake

In the literature, a number of methods are proposed for classifying iris images into
bona fide (i.e. real) and contact lens images (i.e. presentation attack samples).
Xiaofu He et al. [4] used an statistical texture analysis based approach to detect
artefact iris samples. Wei et al. [207] proposed three methods to detect attack
iris images: using iris edge sharpness, iris texton-features and selected features
from the co-occurrence matrix. He et al. used local binary patterns (LBP) on sub-
divided images of the normalized iris image for iris presentation attack detection
[208]. Zhang et al. used scale-invariant feature transforms (SIFT) descriptors and
ranked local binary patterns (LBP) sequence, to compute weighted LBP map for
detecting contact lens [209]. A novel texture pattern called Hierarchical Visual
Codebook (HVC) was proposed by Sun et al. for sparse representation of the
iris texture to classify artefact and bona fide iris images [210]. Scale-invariant
descriptors on segmented iris images were used by Gragnaniello et al. to detect
contact lenses [201]. Recent works in this direction used Binarized Statistical
Image features (BSIF). In Komulainen et al., applied BSIF features from pre-
processed iris images were used to obtain more generalized results in detecting
textured contact lens [202]. Statistically independent filters were used by Raghav-
endra et al. [203] to extract BSIF features. Doyle and Bowyer [204] used BSIF
filters at multiple scales for detecting textured contact lenses. A brief overview of
the state-of-the-art texture feature based contact lens presentation attack detection
methods is presented in Table 8.1.

Despite the extensive state-of-the-art approaches targeted to detect patterned/textured
contact lens, the generalization across different species of patterned/textured con-
tact lenses and also across different capture devices is limited. In this work, we pro-
pose a novel method based on quality based features extracted using Blind/Referenceless
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Image Spatial Quality Evaluator (BRISQUE) features [41] and texture-based fea-
tures extracted using Binarized Statistical Image features (BSIF)[211]. In the next
step, we use the Spectral Regression Kernel Discriminant Analysis (SRKDA) [43]
independently on the BSIF and BRISQUE features to obtain the Presentation At-
tack Detection (PAD) scores. Finally, we employ the Fischer Discriminant Ratio
(FDR) method to combine the detector scores to spot the patterned/textured contact
lens attack reliably. The following are the main contributions of this paper:

• Novel approach for patterned/textured contact lens detection algorithm us-
ing image quality and texture-based features.

• Extensive experiments on three different publicly available datasets and com-
parison with state-of-the algorithms which have indicated the superiority of
the proposed method.

• When compared to state-of-the-art techniques, the proposed method uses
only the full image, corresponding to the ocular region, and thus the method
overcomes the need of iris region segmentation or the strip image used in
[203].

• New experiment protocol by dividing the whole dataset into three non-overlapping
groups corresponding to development, training and testing.

The rest of the paper is organized as follows: Section 8.3 presents the existing
texture-based presentation attack detection algorithms. Section 8.4 explains the
proposed method based on image quality and texture-based features. The dataset
used, experiments performed and results obtained during this work are presented
in Section 8.5. In Section 8.6, the conclusion of this paper is presented.

8.4 Proposed Method
The primary objective of the proposed method is to reliably detect patterned con-
tact lenses from iris images that are captured from different iris sensors. To this
extent, we propose a novel approach that explores both image quality and texture
features. The use of image quality features will play a vital role in achieving the
generalization across the iris capture device and the use of texture features con-
tribute in observing the texture information from the patterned contact lens man-
ufactured from different vendors. Therefore, the proposed method is expected to
achieve generalization capability across both captured devices and the patterned
contact lens vendors.
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Figure 8.2: Block diagram of the proposed method.

Figure 8.2 shows the block diagram of the proposed approach that can be struc-
tured into three main functional blocks: (1) feature extraction block (2) comparison
block (3) score level fusion block.

8.4.1 Feature Extraction

Given the input image I , the proposed method will extract both quality and texture
feature using BRISQUE and BSIF features respectively.

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) Features

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) is a natural scene
statistic-based distortion-generic image quality assessment (IQA) model that op-
erates in the spatial domain to provide the holistic measure of the image quality
[41]. In this work, the BRISQUE features are extracted starting by measuring loc-
ally normalized luminance measures that are computed with the help of local mean
subtraction and divisive normalization. Then, the spatial features are extracted by
calculating generalized Gaussian distribution characteristics. The shape and vari-
ance coefficients of the image are obtained by fitting Mean Subtracted Contrast
Normalization (MSCN) image to the Generalized Gaussian Distribution (GGD).
The correlation images are obtained from four directions - horizontal, vertical and
diagonal, in which the images are fitted using Asymmetric Generalized Gaussian
Distribution (AGGD). Thus, given the image I , the extracted BRISQUE feature
IBQ will be of dimension 18× 1. In this work, we used a feature vector of dimen-
sion 36 × 1 representing an image by concatenating two BRISQUE features, one
from the original image and one from the image that is obtained by downsizing the
original image to half of its original size.

Binarized Statistical Image Features (BSIF)

The texture-based features used in this work are computed using Binarized Statist-
ical Image Features (BSIF) [202]. The use of BSIF features is known to be more
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suitable for detecting patterned/textured contact lens [42]. The objective of BSIF
is to use a filter based on ICA unsupervised scheme and represent each pixel in
a binary code. The binary code is used as a local descriptor of the image. The
histogram of the pixel values is used to characterize the texture properties of the
image.

Given an image I and a filter Fi, the filter response is obtained as:

ri =
∑
m,n

I.Fi (8.1)

where Fi , ∀i = 1, 2, ..., n denotes the number of statistically independent filters
whose response can be computed together and binarized to obtain the binary string
as:

b =

{
1, if ri > 0

0, otherwise
(8.2)

The obtained BSIF features are used to calculate the histogram of pixel’s binary
codes that characterize the texture components in the image. In this work, we
have used the filters of size 7 × 7 with a length of 10 bits which extract a rich
set of information for presentation attack detection tasks. The choice has been
made by considering the performance [212] and accuracy of iris presentation attack
detection from the previous works [42].

8.4.2 Comparator: SRKDA

Spectral Regression Kernel Discriminant Analysis (SRKDA) was proposed in [43]
to overcome the computational problems due to Eigen decomposition. SRKDA
uses spectral graph analysis and casts discriminant analysis into a regression frame-
work. To solve the optimization problem, Eigen decomposition is replaced by re-
gression which results in significant improvement in speed compared to ordinary
kernel discriminant analysis (KDA) methods. SRKDA provides efficient compu-
tation and regularization techniques which fully utilize the computational results
of training samples. It has been proven that SRKDA has better performance than
Linear Discriminant Analysis (LDA), Kernel Discriminant Analysis (KDA) and
Support Vector Machines (SVM) [43]. In this work, we train the SRKDA classi-
fier independently on the BRISQUE and BSIF features from the training dataset
[213]. We have used the Gaussian RBF as a kernel function for SRKDA. Given
the testing dataset, we obtain the comparison score corresponding to BRISQUE
and BSIF and let these scores be represented as CBQ and CBS respectively.
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8.4.3 Score-Level Fusion

In this work, we employ the Fisher Discriminant Ratio (FDR) [44] based weighted
fusion algorithm to combine the comparison score corresponding to two different
features. The FDR of an algorithm can be calculated as:

FDRk =
(µGk ))− (µIk)

(σGk )2 + (σIk)2
(8.3)

where µGk and µIk represent the mean values of genuine and impostor scores of
algorithm k respectively and σGk and σIk are the standard deviations. The weight
wk of an algorithm k can be obtained as:

wk =
FDRk

ΣN
k=1FDRk

(8.4)

The weighted score (S) of a sample on two algorithms, namely BRISQUE and
BSIF, can be calculated as:

S = w1 × CBQ + w2 × CBS (8.5)

Where,w1 andw2 denotes the weights that are computed using the Fisher Discrim-
inant Ratio [44]. For more information on the Fisher Discriminant Ratio, readers
can refer to [44]. Note that, the weights are computed only on the development set
and applied on the testing set to evaluate the final performance.

8.5 Experiments and Results
In this work, extensive experiments were performed on the publicly available
LivDet-Iris 2017 dataset [45]. We carried out two different types of experiments,
to quantitatively evaluate and compare the performance of the proposed method
and the state-of-the-art methods. Experiment 1 evaluates the performance of the
proposed method with the same dataset used for development, training and test-
ing. Experiment 2 evaluates the performance of the proposed method with cross-
dataset scenario, such as one dataset is used for developing the PAD sub-system
and another dataset is used for training and testing.

8.5.1 LivDet-Iris 2017 datasets

The LivDet-Iris 2017 dataset includes Clarkson, Notredam and IIITD dataset. In
the following subsections, a brief description of each dataset is provided.
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Clarkson Contact Lens dataset

The Clarkson contact lens dataset is part of the Clarkson dataset, which contains
live, print and patterned contact lens images. The Clarkson dataset was acquired
using LG IrisAccess EOU2200 camera. The training set of Clarkson dataset con-
sists of 2469 live images and 1122 patterned contact lens images. The live iris
images were collected from 25 subjects and patterned contact lenses were collec-
ted from 5 subjects wearing 15 contact lens. The testing set consists of 1485 live
images from 25 subjects and 765 patterned contact lens images from 7 subjects.

Notre Dame Contact Lens dataset

The Notre Dame contact lens dataset was captured using two sensors LG 4000 and
AD 100. Unlike the LivDet-Iris competition, we kept the samples from different
sensors separately. Both the training and testing set of LG 4000 sensor data con-
tains 1000 live images and 400 textured contact lens each. The AD 100 sensor
data contains 200 live images and 100 textured contact lens images in each of the
training and testing tests. The textured contact lens used in this dataset were from
five different manufacturers: J&J, Ciba, Cooper, UCL and ClearLab. Figure 8.3
shows the example images of live and textured contact lens from two sensors in
Notre Dame dataset.

(a) LG 4000 sensor

(b) AD 100 sensor

Figure 8.3: Example images of bona fide samples and textured contact lens attack samples
stemming from two sensors of the Notre Dame dataset

IIITD Contact Lens Iris (CLI) dataset

The IIITD contact lens dataset also contains textured contact lenses from various
manufacturers: CIBA Vision Freshlook Dailies, Bausch and Lomb Lacelle, and
Aryan 3-Tone. Two sensors: Cogent and Vista were used in capturing the images.
The IIITD Cogent dataset contains 1143 live and 1138 textured contact lens im-
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Table 8.2: Amount of training, development (Dev) and testing data samples used in this
work. (B: bona fide, CL: contact lens)

Dataset Train set Dev set Test set
B CL B CL B CL

Clarkson 1646 748 823 374 1485 765
Notre Dame

133 133 67 67 100 100
AD 100

Notre Dame
666 666 334 344 400 400

LG 4000
IIITD Cogent 466 466 234 234 443 438
IIITD Vista 333 333 167 167 490 490

ages. 700 bona fide images and 700 textured contact lens images of the Cogent
dataset were taken for training, development and rest (443 bona fide and 438 tex-
tured contact lens) are used for testing. The IIITD vista dataset contains 990 bona
fide and 990 textured contact lens images. The vista dataset is divided into 500
bona fide images and 500 textured contact lens images for training, development
and rest of the samples (490 bona fide and 490 textured contact lens) are taken for
testing.

8.5.2 Performance Evaluation Protocol

To effectively evaluate the performance of the proposed method and the state-
of-the-art methods, we divided each dataset to have three non-overlapping sets
namely: development, training, and testing. The development dataset is used to
tune the parameters of the proposed method, training dataset is used to train the
PAD model, and also to set the operating threshold of the PAD systems at APCER
= 5% and 10%. The testing set is solely used to report the performance results of
both proposed PAD algorithm and the state-of-the-art PAD algorithms.

In this work, we present the results by following the International Standard ISO/IEC
30107-3 [37] in terms of Attack Presentation Classification Error Rate (APCER)
and Bona fide Presentation Classification Error Rate (BPCER). APCER and BP-
CER metrics are described as follows:

• Attack Presentation Classification Error Rate (APCER) is the proportion of
attack presentations that are incorrectly classified as bona fide presentations.

• Bona fide Presentation Classification Error Rate (BPCER) is the proportion
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Table 8.3: Experiment 1: Results comparison of proposed method with state-of-the-art
PAD methods [3] [4]. Training and testing on same dataset. D-EER(%), BPCER_5 is
BPCER(%) at APCER=5% and BPCER_10 is BPCER(%) at APCER=10%.

Dataset Error rate LBP+SVM [3] GLCM+SVM [4] LBP+PHOG+SVM [3] Proposed method

Clarkson
D-EER 42.75 33.10 32.40 1.55

BPCER_5 81.54 68.95 73.8 0.94
BPCER_10 74.34 58.51 61.21 0.6

Notre Dame
D-EER 8 10 2 0

AD100
BPCER_5 10 11 0 0
BPCER_10 8 10 0 0

Notre Dame
D-EER 27.25 4.25 2.75 0

LG 4000
BPCER_5 45 3.75 2 0
BPCER_10 40.25 3.5 1 0

IIITD Cogent
D-EER 39.72 41.99 18.72 11.69

BPCER_5 92.09 88.26 54.62 47.14
BPCER_10 79 73.81 33.86 19.4

IIITD Vista
D-EER 26.73 40.61 10 6.32

BPCER_5 80.8 89.59 23.26 10
BPCER_10 62.65 77.55 10.2 3.85

of bona fide presentations that are incorrectly classified as presentation at-
tacks.

We computed two BPCER values for each dataset, BPCER_5 and BPCER_10, by
fixing APCER at 5% and 10% respectively. In addition, we also include the results
in terms of Detection Equal Error Rate (D-EER%).

8.5.3 Results and Discussion

Experiment 1

Table 8.3 indicate the quantitative results of the proposed method in Experiment
1. The proposed method is compared to three state-of-the-art methods: (1) Local
Binary Patterns(LBP) + Support Vector Machine(SVM) [3], (2) Gray-level Co-
occurrence Matrix(GLCM) + Support Vector Machine(SVM) [4], (3) Local Bin-
ary Patterns(LBP) + Pyramid Histogram of Oriented Gradients(PHOG) + Support
Vector Machine(SVM) [3]. Based on the obtained results, following are the main
observations:

• The proposed method indicates an improved performance in accuracy across
all the individual dataset. More particularly, the proposed method has indic-
ated the best results on the Notre Dame AD100 and Notre Dame LG4000
datasets with D-EER (%) of 0%.
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(a) Clarkson (b) ND AD100 (Proposed
method D-EER = 0%)

(c) ND LG4000 (Proposed
method D-EER = 0%)

(d) IIITD Cogent (e) IIITD Vista

Figure 8.4: Detection Error Trade-off (DET) curves: Proposed method and the state-of-
the-art methods [3] [4] from Experiment 1

• The proposed method has indicated the superior performance, when com-
pared to that of the state-of-the-art techniques across all datasets. This will
indicate the efficacy of the proposed method across the different datasets for
patterned/textured contact lens detection.

• When compared to the performance of the proposed method across five dif-
ferent dataset, the degraded performance of the state-of-the-art together with
the proposed method is noted for the IIITD Cogent sensor. This fact can
be attributed to the quality of the images acquired using the Cogent sensor.
However, it is interesting to note that, the proposed method has indicated the
best performance across all datasets that can be attributed to the use of both
quality and texture-based features that can allow the generalization across
different types of patterned/textured contact lenses.

• Figure 8.4 shows the Detection Error Trade-off (DET) curves indicating the
performance of the proposed method together with the state-of-the-art meth-
ods across all five different dataset which indicate the superior performance
of the proposed method.
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Table 8.4: Experiment 2: Cross dataset validation by comparison of results from proposed
method with state-of-the-art PAD methods [3] [4]. Training on one dataset and testing on
all other datasets combined. D-EER(%), BPCER_5 is BPCER(%) at APCER=5% and
BPCER_10 is BPCER(%) at APCER=10%.

Training Error rate LBP+SVM [3] GLCM+SVM [4] LBP+PHOG+SVM [3] Proposed MethodDataset

Clarkson
D-EER 50 45.96 39.04 37.88

BPCER_5 95.88 94.39 90.50 91.34
BPCER_10 91.62 89.95 78.85 83.53

Notre Dame
D-EER 50 50 50 46.54

AD 100
BPCER_5 97.26 96.02 94.28 94.07
BPCER_10 92.93 92.08 91.87 89.78

Notre Dame
D-EER 43.26 50 50 48.50

LG 4000
BPCER_5 95.55 96.74 95.23 96.54
BPCER_10 90.03 93.20 91.89 90.98

IIITD Cogent
D-EER 50 44.84 50 50

BPCER_5 97.73 90.82 84.40 98.46
BPCER_10 94.18 82.82 81.37 97.13

IIITD Vista
D-EER 50 49.02 50 36.63

BPCER_5 97.28 96.08 97.15 83.03
BPCER_10 93.24 93.9 95.05 70.46

Experiment 2

In this experiment, we analyzed the performance of the proposed method on cross-
dataset validation and the results are presented in Table 8.4. The training set is
fixed to one subset of data and other dataset combined are set as testing set. In this
way, the generalization of the proposed method can be evaluated. The proposed
method is compared to the state-of-the-art methods [3, 4] similar to the Experiment
1. The important observations of this experiment are:

• The proposed method gives an improvement in results over Clarkson, Notre
Dame AD 100 and IIITD vista dataset. This shows that the proposed method
performs better than state-of-the-art methods in cross-dataset evaluation.

• For the two datasets - Notre Dame LG 4000 and IIITD cogent, the differ-
ence in D-EER% of the best method and the proposed method is just over
5%. This shows the robustness of the proposed method to cross-dataset pat-
terned/textured contact lens detection.

• In case of IIITD vista dataset, the proposed method display D-EER of 36.63%
whereas the best D-EER among state-of-the-art methods is 49.02%. This
shows that the proposed method gives a significant improvement of more
than 13% in cross dataset textured contact lens detection of IIITD vista data-
set.



8.6. Conclusion 121

8.6 Conclusion
Iris recognition is reported to be vulnerable to the textured contact lens present-
ation attacks that can be used for concealing the identity. The patterned contact
lens detection is a challenging problem because of the variability in lenses that
can be attributed to different manufacturers and different capture devices. In this
paper, we presented a novel approach using image quality and texture-based fea-
tures for the presentation attack detection algorithm of contact lens detection. The
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) features provide
image characteristics independent of the sensor and capturing conditions. The Bin-
arized statistical image features (BSIF) provide texture information of iris image.
We used a robust fusion of these features at score level that can lead to the reliable
patterned contact lens detection. The proposed method is based on using the ocular
image captured using the iris sensor and thus overcomes the computation of the iris
detection and segmentation. Experiments are carried out on the publicly available
dataset with sophisticated evaluation protocol that partition the dataset into three
non-overlapping sets namely: development, training and testing. The obtained
results have indicated the outstanding performance of the proposed PAD method
when it is trained and tested with the same dataset. Additional experiments on the
cross-datasets further demonstrate the limited robustness of all methods for gener-
alization tasks. In the future work of this direction, we compare the efficiency of
image quality feature BRISQUE with the standardized iris sample quality metrics
from ISO/IEC 29794-6 [214].
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of Texture-Based Print and
Contact Lens Iris Presentation
Attack Detection Methods

Mandalapu, Hareesh, Raghavendra Ramachandra, and Christoph Busch. "Em-
pirical evaluation of texture-based print and contact lens iris presentation attack
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9.1 Abstract
Iris-based identification methods have been popularly used in real-world applic-
ations due to the unique characteristics of iris when compared to other biomet-
ric characteristics like face and fingerprint. As technological advances and low-
cost artefacts are becoming more available, vulnerabilities to iris biometrics due to
presentation attacks (PAs) are becoming a challenging problem. Presentation at-
tack detection (PAD) algorithms have been employed in biometric capture devices
and it has been an active research topic in the past years. In this study, a de-
tailed survey and evaluation of state-of-the-art texture-based iris PAD methods are
performed. Five different PAD methods are tested on four different datasets con-
sisting of print and contact lens presentation attacks. Extensive experiments are
performed on four different scenarios of presentation attack and results are presen-
ted. The properties of PAD algorithms like the quality of the database, the gen-
eralization abilities are mainly discussed in this work. It has been observed that

123
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fusion-based PAD methods perform better than other methods.

9.2 Introduction
The iris biometric characteristic is considered to be unique even for identical twins
and it is a protected biometric characteristic covered by eyelids which makes it
not prone to external damages (e.g., cuts or abrasions that occur to fingerprints).
This makes the observation and recognition of iris patterns more robust than other
modalities like face and fingerprint. Iris recognition systems have been used in
real-world applications in many fields [26, 200]. Though computational power
has evolved rapidly, an iris recognition system cannot assure the security that it is
supposed to provide. The vulnerabilities of an iris capture device are becoming
a provision for attackers to have unwanted authorization. Presentation attacks are
one of the main reasons for vulnerabilities in biometrics. Recent growth in com-
putational abilities and availability of low-cost artefacts made it easy to develop
attacks which form a potential threat to biometric systems.

Well-known presentation attacks against iris capture devices are printed iris image
attacks, electronic display attacks (images/videos presented on screen), textured-
contact-lens attacks and synthetic /plastic eyes. Increasing development of iris
biometrics in daily usage is making presentation attack detection a popular topic
in research. The state-of-the-art PAD methods are highly restricted to the type
of attacks and biometric systems that were used. For example, change in single
attribute alters the performance of PAD (e.g. type of attacks, iris sensor and cap-
turing conditions). This leads to the problem of generalization of PAD in detecting
various kinds of presentation attacks in different scenarios. This paper focuses on
performing a survey and evaluation of popular texture-based PAD methods that
are developed in detecting two different kinds of attacks (print and contact lens) in
different real-world scenarios.

The rest of the report is organized as follows: Section 9.3 discusses the state-of-
the-art texture-based PAD algorithms. Section 9.4 presents the evaluation method-
ology used in this work which includes 5 PAD methods, 4 datasets and perform-
ance protocol. Section 9.5 explains the experiments performed during the evalu-
ation and presents the results with discussions. Finally, in Section 9.6, conclusion
of this work is given.

9.3 Related Work
There are multiple publications on the survey of the iris PAD algorithms. The iris
PAD methods were categorized based on the properties of iris biometric charac-
teristic in [215] [216]. Some other surveys include a brief overview of iris PADs
by Wei et al. [217] and textured contact lens PAD survey by Bowyer and Doyle
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Table 9.1: Texture analysis based iris presentation attack detection algorithms.

Author Type of Attack Feature extraction algorithm Dataset

Kohli et al. [205]
Print, Contact Multi-order dense Zernike moments and

IIITD
lens and Synthetic Local Binary Patterns (LBP) with variance

Hu et al. [206]
Print and Regional features via spatial pyramid and Clarkson, Warsaw, Notre Dame

Contact lens relational measure and MobBIOfake

Raja et al. [213]
Print and

Adaptive hybrid patterns (AHP)
Warsaw ’13, ATVS-Fir,

Display MobILive 2014, VSIA, PAVID
Gragnaniello et al. [201] Contact lens Scale-invariant image descriptor Notre Dame and IIITD

Yadav et al. [3] Contact lens
Local Binary Patterns (LBP) and

IIITD and NDCLD
Pyramid Histogram of Oriented Gradients (PHOG)

He et al. [4] Contact lens Gray level co-occurrence matrices (GLCM) SJTU iris database
Komulainen et al. [202] Contact lens Binarized Statistical Image Features (BSIF) NDCLD’13

Raghavendra et al. [203]
Contact lens Statistically independent filters for

IIITD and NDCLD’12
Binarized Statistical Image Features (BSIF)

Doyle and Bowyer [204] Contact lens Binarized Statistical Image Features (BSIF) NDCLD’15
Raghavendra et al. [219] Contact lens Deep CNN NDCLD’13 and IIITD

Mandalapu et al. [220] Contact lens
Blind Reference less Image Quality Evaluator Clarkson,

(BRISQUE) and BSIF Notre Dame and IIITD

[218]. In the recent work, an assessment of State of the Art PAD for iris recogni-
tion by Czajka and Bowyer [28] and in [46] authors have presented the summary
of popular attacks and taxonomy of PAD methods.

In the literature, a number of PAD methods on iris biometrics are proposed. Among
texture-based features, Local Binary Patterns (LBP) are popularly used in PAD. A
wide variety of LBPs has been used to improve the performance of the PAD. Boos-
ted Local binary patterns (LBP) are used on sub-divided images of the normalized
iris for iris PAD by He et al. in [208] and weighted LBPs by by Zhang et al.
in [209]. Yadav et al. proposed two methods based on LBP 1)modified LBP and
2)feature-level concatenation of local binary patterns and pyramid of the histogram
of oriented gradients (LBP + PHOG) in [3].

Gray level co-occurrence matrices are other texture-based features used by He et
al. for statistical texture analysis based approach to detect artefact iris samples
[4]. Scale-invariant image descriptors on segmented iris images were used by
Gragnaniello et al. to detect contact lenses [201]. A novel texture pattern called
Hierarchical Visual Codebook (HVC) was proposed by Sun et al. for sparse rep-
resentation of the iris texture to classify artefact and bona fide iris images [210].
Raja et al. [213] proposed color adaptive quantized hybrid patterns for texture
feature extraction to identify print and display attacks on ocular images.

Recent works in this direction focus on detecting contact lens using Binarized Stat-
istical Image features (BSIF). In Komulainen et al., BSIF features are applied from
pre-processed iris images to obtain more generalized results in detecting textured
contact lens [202]. Statistically independent filters were used by Raghavendra et
al. [203] to extract BSIF features. Doyle and Bowyer [204] used BSIF filters at
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multiple scales for detecting textured contact lenses. A blind referenceless im-
age quality based feature and BSIF features are used to detect contact lens in iris
images by Mandalapu et al. in [220].

Advanced methods use deep convolutional neural networks for improved contact
lens detection [219]. Multi-spectral sensors are developed in [221] for additional
iris information in multiple bands and are used to improve the iris verification and
more accurate PAD. A brief overview of the state-of-the-art texture feature based
contact lens presentation attack detection methods is presented in Table 9.1.

9.4 Evaluation Methodology
In this work, five presentation attack detection algorithms are selected for evalu-
ation. Four databases consisting of bona fide and 2 different kinds of presentation
attacks from different sensors are taken and experimented in 4 different scenarios.
The five PAD algorithms used in this work are discussed in the following subsec-
tion.

9.4.1 Presentation Attack Detection Methods

Method 1: LBP + SVM

The Local Binary Patterns (LBP) is popular descriptor used for texture classifica-
tion [222]. In this work, LBP features are used to train a support vector machine
(SVM) using a linear kernel. The training support vector machines are used to
compute the probability scores on the test samples. These scores are used to de-
cide whether the test sample is a bona fide or presentation attack sample.

Method 2: mBSIF + SVM

Multiscale Binarized Statistical Image Features (mBSIF) [42] is used to explore
both periocular (or eye region) and iris region to perform a presentation attack de-
tection. The Multi-Scale Binarized Statistical Image Feature Extraction is widely
used as a feasible alternative to the manual design filters as in Local Binary Pat-
terns (LBP). The use of M-BSIF filters is proved to exhibit the characteristics like
a generalization, statistical independence and robustness [42]. Four support vector
machines are trained on BSIF features: 3 machines each on each feature vector
from 3 filters and one on the concatenated feature vector of three features. The
kernel used in support vector machines is linear. The final score of a sample is
obtained by performing weighted scoring as presented.

Method 3: CAQP + SRKDA

This method is based on the framework on hybrid texture feature extraction tech-
nique that can be used for different ocular imaging systems in both NIR and visible
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spectrum imaging systems [213]. This method uses adaptive and quantized hybrid
texture patterns (AHP) obtained from local microfeatures and global spatial fea-
tures for different color channels in an image. AHPs are designed to obtain unique
features employing the concepts of angular quantization which is the main dif-
ference when compared to LBP. This method employs spectral regression kernel-
based discriminant analysis to decide real or artifact iris sample [43].

Method 4: LBP + PHOG + SVM

In this method, a feature-level fusion of two texture features is performed as men-
tioned in [3]. The first feature is local binary patterns which are discussed earlier
and the second feature is a pyramid of the histogram of oriented gradients (PHOG).
PHOG is used as a local shape descriptor and the spatial layout of an image [223].
In PHOG descriptors, local shape is obtained by distribution over edge orientations
within a region and spatial layout is computed by tiling the image into regions at
multiple resolutions. Finally, the histogram of oriented gradients over each image
sub-region at each resolution are concatenated to form PHOG. Linear SVM is used
to train the concatenated feature vector of iris images.

Method 5: BRISQUE + BSIF + SRKDA

A weighted score-level fusion of two features is used in this method as proposed in
[220]. The first feature is an image quality based feature called Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE). BRISQUE is a natural scene statistic-
based distortion-generic image quality assessment (IQA) model that operates in
the spatial domain to provide the holistic measure of the image quality [41]. The
Second feature is texture based feature using Binary Statistical Image Features
(BSIF) using only the filters of size 7× 7 with a length of 10 bits. The choice has
been made by considering the performance [212] and accuracy of iris presentation
attack detection from the previous works [42].

For computing the scores of the iris samples, Spectral Regression Kernel Discrim-
inant Analysis (SRKDA) [43] is trained on the individual features and test scores
are obtained. Further, a Fischer Discriminant Ratio (FDR) [44] based weighted
fusion is performed on the test scores. The protocol is the same as the proposed
method in [220].

9.4.2 Datasets

Four datasets from LivDet-Iris 2017 competition are used in this work. A brief
description of the datasets and the example images are presented in this subsection.
Table 9.2 presents types of samples and capturing devices used in each of the
datasets.
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Table 9.2: Description of LivDet-Iris 2017 datasets

Name Types of samples Capturing device
Warsaw Live and Print IrisGuard AD 100
Clarkson

Live and Print
LG IrisAccess

dataset EOU2200 camera
Notre Dame Live and LG 4000

dataset Textured Contact lens and AD 100
IIITD Live and Cogent
dataset Textured contact lens and Vista

Warsaw dataset

Warsaw dataset used in LivDet-Iris 2017 competition has been collected at the
Warsaw University of Technology in Poland. It consists of 1844 images acquired
for 322 distinct irises and 2669 images of the corresponding paper printouts. Iris-
Guard AD 100 sensor is used to capture all real and spoof samples. The liveness
detection in the sensor is intentionally deactivated to acquire printouts possible.
Each printout had a hole cut in a place of the pupil to generate a genuine reflection
from the cornea as expected by the sensor. The resolution of samples is 640 x
480 pixels and real images are compliant with ISO/IEC 19794-6. The training and
testing partitions are the same as LivDet-iris 2017. Training and testing subsets are
subject-disjoint. That is, subjects selected for training subset are not present in the
testing subset. The sample live and printout images of same subject are presented
in Figure 9.1.

Figure 9.1: Sample images from Warsaw dataset. Left: Live, Right: Printout

Clarkson dataset

The Clarkson dataset for LivDet-Iris 2017 was collected at Clarkson University
using an LG IrisAccess EOU2200 camera. The Clarkson dataset consisted of three
parts. The first part is live iris images collected from cooperative subjects. The
second is patterned contact lenses and the third part is printed iris images. In this
work, only live and print samples were taken to evaluation. Attack images were
printouts of NIR iris images of the eye. The training set consisted of 2469 live
images from 25 subjects and 1346 printed images from 13 subjects. Each image
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is 640 x 480 pixels. The testing set consists of 1485 live images from 25 subjects.
There are 908 printed images, 764 standards printed from 12 subjects as well as
144 visible light iris images from 24 subjects. Figure 9.2 shows sample images
from Clarkson dataset.

Figure 9.2: Sample images from Clarkson dataset. Left: Live, Right: Printout

Notre Dame Contact Lens dataset

The Notre Dame contact lens dataset was captured using two sensors LG 4000
and AD 100. The image resolution of all samples is 640 x 480 pixels. Both the
training and testing set of LG 4000 sensor data contains 1000 live images and 400
textured contact lens each. The AD 100 sensor data contains 200 live images and
100 textured contact lens images in each of the training and testing tests. All real
samples are compliant with ISO/IEC 19794-6 and only texture contact lens was
used. The soft (or transparent) contact lens was excluded from the data similar to
the procedure in LivDet-Iris 2017. The textured contact lens used in this dataset
were from five different manufacturers: J&J, Ciba, Cooper, UCL and ClearLab.
Figure 9.3 shows the example images of live and textured contact lens from two
sensors in Notre Dame dataset.

(a) LG 4000 sensor

(b) AD 100 sensor

Figure 9.3: Example images of bona fide samples and textured contact lens attack samples
from two sensors of the Notre Dame dataset
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IIITD Contact Lens Iris (CLI) dataset

The IIITD contact lens dataset also contains textured contact lenses from various
manufacturers: CIBA Vision Freshlook Dailies, Bausch and Lomb Lacelle, and
Aryan 3-Tone. Two sensors: Cogent and Vista were used in capturing the images.
The IIITD Cogent dataset contains 1143 live and 1138 textured contact lens im-
ages. 700 bona fide images and 700 textured contact lens images of the Cogent
dataset were taken for training, development and rest (443 bona fide and 438 tex-
tured contact lens) are used for testing. The IIITD vista dataset contains 990 bona
fide and 990 textured contact lens images. The vista dataset is divided into 500
bona fide images and 500 textured contact lens images for training, development
and rest of the samples (490 bona fide and 490 textured contact lens) are taken for
testing. The sample images from IIITD Contact lens dataset from two sensors are
shown in Figure 9.4.

(a) Cogent sensor

(b) Vista sensor

Figure 9.4: Example images of bona fide samples and textured contact lens attack samples
from two sensors of the IIITD dataset

9.4.3 Performance protocol

In this work, we present the results by following the International Standard ISO/IEC
30107-3 [37] in terms of Attack Presentation Classification Error Rate (APCER)
and Bona fide Presentation Classification Error Rate (BPCER). APCER and BP-
CER metrics are described as follows:
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• Attack Presentation Classification Error Rate (APCER) is the proportion of
attack presentations that are incorrectly classified as bona fide presentations.

• Bona fide Presentation Classification Error Rate (BPCER) is the proportion
of bona fide presentations that are incorrectly classified as presentation at-
tacks.

We computed two BPCER values for each dataset, B_5 and B_10, by fixing AP-
CER at 5% and 10% respectively. Also, we include the results in terms of Detec-
tion Equal Error Rate (D-EER%) and detection error trade-off curves are presented
for each case.

9.5 Experiments and Results
Four different types of scenarios are identified and experiments are designed to
evaluate the performances of different PAD methods towards two different kinds
of attacks on two different datasets each.

9.5.1 Experiment 1: Individual PAD evaluation

In this experiment, the detection performance of each PAD algorithm is evaluated
individually on each dataset. Two types of attacks are evaluated separately and
results are presented. The performance of print attack on Clarkson and Warsaw
dataset are compared in Table 9.3 and textured contact lens attack detection accur-
acy is presented in Table 9.4.

Case 1: Print-attack detection

Table 9.3: Performance of Print attack detection

Clarkson Warsaw
Dataset Dataset

D-EER B_5 B_10 D-EER B_5 B_10
LBP 0.1009 0 0 0.1007 0 0

CAQP 3.85 2.36 0.33 1.84 0.71 0.41
mBSIF 0.24 0 0 0.30 0 0
LBP +

2.72 1.41 1.14 0.50 0 0
PHOG
BSIF +

24.43 94.33 66.53 8.6 13.75 7.49
BRISQUE

The important observations made from this experiment are as follows.

1. The Local Binary Patterns (LBP) has performed with near zero error on print



132 Article 4: Empirical Evaluation of Texture-Based Print and Contact Lens Iris
Presentation Attack Detection Methods

(a) Clarkson dataset (b) Warsaw dataset

Figure 9.5: DET curves: PAD evaluation of Print attack

attacks on two different datasets.

2. Other PAD methods also display very low error rates which proves that the
problem of print attacks can be easily solved when tested samples are similar
to the ones the PAD method is trained on.

3. Hybrid methods like feature-level and score-level fusion algorithms (Method
3, 4 and 5) did not improve the performance of the PAD method.

4. The image quality and texture feature-based method (Method 5) display the
least accuracy in detection print attacks even though it performs better on
contact lens attacks [220].

5. The comparison of the error rates are presented in the Detection error tradeoff
(DET) curves of the five algorithms for two print attack datasets in Figure
9.5.

Case 2: Contact lens attack detection

The segmented and normalized iris is used to perform contact lens detection. The
results of the experiment are presented in Table 9.4

The key points observed from this experiment are mentioned below.

1. The mBSIF (Method 3) display the highest average accuracy on both data-
sets in detecting textured contact lens with a D-EER of 2.12%.
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Table 9.4: Performance of Contact-Lens attack detection

Notre Dame Dataset IIITD Dataset
D-EER B_5 B_10 D-EER B_5 B_10

LBP 5.2 5.6 2.4 11.34 44.10 14.04
CAQP 3 1 0.6 5.06 5.43 1.68
mBSIF 2 0 0 2.25 0.84 0.18
LBP +

1.2 0.6 0.4 4.77 4.02 2.05
PHOG
BSIF +

5.8 6 3.8 14.33 78.74 21.34
BRISQUE

2. Though LBP + PHOG (Method 4) show low error rates on Notre Dame
datasets, the error rates have increased in case of IIITD dataset. This might
support the statement in [3] that sample quality of IIITD dataset is lower
than Notre Dame dataset.

3. Using multiple texture filters based fusion method (Method 3 and 4) appears
to improves the overall performance of textured contact lens detection.

4. The Detection error tradeoff (DET) curves of the five algorithms for two
contact lens attack datasets are presented for comparison in Figure 9.6.

(a) Notre Dame dataset (b) IIITD dataset

Figure 9.6: DET curves: PAD evaluation of Contact Lens attack.
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9.5.2 Experiment 2: Cross-dataset evaluation

In this experiment, the cross-dataset evaluation of PAD methods is evaluated. For
this, one dataset is used for developing the PAD system and other dataset is used
for testing. Table 9.5 and 9.6 contains the error rates of cross-dataset evaluation.

Case 1: Print Attacks

Table 9.5: Cross-dataset Evaluation of Print attack

Train Clarkson dataset Warsaw dataset
Test Warsaw dataset Clarkson dataset

D-EER B_5 B_10 D-EER B_5 B_10
LBP 33.95 72.79 69.19 41.20 99.59 99.39

CAQP 46.5 94.35 90.45 35.68 70.04 59.51
mBSIF 6.05 6.26 4.51 18.19 41.7 27.8
LBP +

32.08 68.89 61.70 37.69 99.52 97.36
PHOG
BSIF +

2.44 0.92 0.82 43.32 92.10 85.96
BRISQUE

The main observations from the cross-dataset evaluation of PAD methods on print
attack detection are as follows.

1. The best performance is observed in the case of mBSIF method (Method 3)
with an average D-EER of 12.12%.

2. Method 5 shows the lowest error rates when the PAD system is developed
using Clarkson dataset and tested on Warsaw dataset. Similarly, Method 2
shows the lowest error when using Warsaw dataset for training and tested
on Clarkson dataset. However, in both cases, the error rates raised abruptly
considering other cases. This makes the generalization properties of PAD
methods highly questionable.

3. The comparison of APCER and BPCER error rates of cross-dataset evalu-
ation in case of print attacks is presented through Detection error tradeoff
(DET) curves in Figure 9.7.

Case 2: Contact Lens Attacks

The main observations from the cross-dataset evaluation of PAD methods on con-
tact lens attack detection are as follows.
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(a) Train:Clarskon, Test:Warsaw (b) Train:Warsaw, Test:Clarkson

Figure 9.7: DET curves: Cross-dataset evaluation of Print attack datasets

Table 9.6: Cross-dataset Evaluation of Contact-Lens attack

Train Noter Dame dataset IIITD dataset
Test IIITD dataset Notre Dame dataset

D-EER B_5 B_10 D-EER B_5 B_10
LBP 23.24 86.6 37.54 26 63.2 54.6

CAQP 33.78 96.62 90.54 10 19.6 10.2
mBSIF 8.8 17.04 6.64 4 3.2 2.6
LBP +

24.18 68.8 44.47 10.4 15.8 10.4
PHOG
BSIF +

8.66 27.80 7.11 6.8 7.4 6.2
BRISQUE
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1. Method 3 (mBSIF) perform better in the cross-dataset evaluation of contact
lens detection with error rates lower than 10%. This again proves that using
multiple texture filters improves the performance of contact lens detection
even in the cross-dataset evaluation.

2. Method 5 (BSIF + BRISQUE) shows a performance closer to the best per-
forming method. This can be attributed to usage of the fused method of im-
age quality and texture feature can improve the robustness of PAD method
to cross-dataset of evaluation.

3. Other methods show error rates more than 3 times the above two methods.
By this, we can say cross-dataset evaluation in case of contact lens detection
is a significant problem to consider.

4. The Detection error tradeoff (DET) curves of the cross-dataset evaluation of
the five algorithms on contact lens attack datasets are compared in Figure
9.8.

(a) Train:Notre Dame, Test:IIITD (b) Train:IIITD, Test:Notre Dame

Figure 9.8: DET Curves: Cross-dataset evaluation of Contact lens datasets

9.5.3 Experiment 3: Unknown attack detection

This experiment focuses on the scenario where the type of attacks is not known
in advance. That is, the PAD methods use one kind of attacks where the target
samples contain different attacks. For example, the training samples are only from
live and print attacks but the testing samples include live and contact lens attack
samples. This is a common situation in real-world application due to the growth of
new kind of presentation attacks which are unknown to the PAD development sys-
tem. This experiment examines the generalization abilities of the PAD algorithms.
The results of this experiment are presented in Table 9.7.
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Table 9.7: Cross-dataset Evaluation of Print attack

Train Print Contact lens
Test Contact lens Print

D-EER B_5 B_10 D-EER B_5 B_10
LBP 50 98.46 97.70 50 99.8 99

CAQP 48.72 95.08 90.88 31.39 74.71 61.64
mBSIF 41.19 90.11 83.03 22.30 63.27 45.19
LBP +

50 95.91 90.56 50 97.55 91.16
PHOG
BSIF +

25.94 92.66 74.74 6.6 23.94 1.5
BRISQUE

The main observations from the unknown attack detection evaluation of PAD
methods are as follows.

1. Method 5 (BSIF + BRISQUE) based on image quality and texture features
performed better when trained with print and tested on contact lens data and
the other way. This display the robustness of the method to new kind of
attacks.

2. All other methods show very high error rates in both cases of print and con-
tact lens detection. This indicates that unknown attacks are a challenging
problem.

3. The Detection error tradeoff (DET) curves of unknown attack detection also
indicates the deficient performance of the PAD methods as shown in Figure
9.9.

9.5.4 Experiment 4: Multi-Attack Multi-Sensor scenario

In Experiment 4, we considered a scenario where samples from multiple attacks
and multiple sensors are involved in the development of PAD systems. There-
fore, we combined the training data from all four datasets and two attacks and
prepared PAD methods. Similarly, for testing, we combined all testing samples
and performance score is computed. Table 9.8 shows the results obtained in this
experiment.

The main observations from the Multi-Attack Multi-Sensor evaluation of PAD
methods are as follows.

1. The CAQP method show very low errors in this experiment with D-EER of
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(a) Train:Print, Test:Contact Lens (b) Train:Contact lens, Test:Print

Figure 9.9: DET Curves: Unknown attack evaluation

Table 9.8: Multi Attack Multi Sensor evaluation

D-EER B_5 B_10
LBP 7.64 11.90 5.19

CAQP 2.83 1.01 0.47
mBSIF 13.67 32.03 18.86

LBP + PHOG 3.00 1.368 0.86
BSIF + BRISQUE 16.8 84.66 44.28
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2.83%.

2. Also LBP + PHOG method display performance very close to CAQP method
with D-EER of 3%. Thus, the usage of multiple-attacks and multi-sensors
for implementing a PAD method with multiple texture filters can improve
the performance of accuracy of presentation attack detection.

3. Other methods also shows error rates not higher than 15% when using data
from all types of attacks and all sensors to train PAD method.

4. It is also observed in Figure 9.10 that DET curves of best methods are dis-
played a similar change in error rates.

Figure 9.10: DET curves: Multi-Attack Multi-Sensor PAD evaluation

9.6 Conclusion
The human iris shows better properties of uniqueness when compared to other bio-
metric characterisitics (face and fingerprint). Several high-security applications
use Iris-based biometric identification. The vulnerabilities in iris recognition sys-
tems make their use highly questionable. More particularly, presentation attacks
cause severe threats to iris biometric systems. Due to the high availability of dif-
ferent kinds of artefacts and rising growth in technology, preparing presentation
attack instruments has becoming simple. This makes the development of high
performing presentation attack detection algorithms quite challenging.

In this work, a survey is performed on texture-based state-of-the-art presentation
attack detection (PAD) algorithms on iris. The survey presents the types of meth-
ods used in individual presentation attacks and discussions are provided. Four dif-
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ferent publicly available datasets from LivDet Iris 2017 namely, Warsaw, Clarkson,
Notre Dame and IIITD, are chosen for the evaluation of two important presentation
attacks namely, prints and contact lens. We choose 5 different texture-based state-
of-the-art PAD methods to evaluate and compare the performances. We followed
ISO/IEC performance evaluation protocols [37] to obtain error rates on 5 datasets
in 4 different scenarios of presentation attacks.

Table 9.9: Results of all experiments and evaluations

Type of Type of Attack Best performed
Experiment PAD method
Experiment 1 Print LBP

PAD Evaluation Contact Lens mBSIF
Experiment 2 Print

mBSIF
Cross-dataset Contact lens
Experiment 3 Print-Contact lens

BSIF+BRISQUE
Unknown attacks Contact lens-Print

Experiment 4
All combined CAQPMulti-attack

Multi-sensor

The experimental results and comparisons of the PAD algorithms are presented
in detail. It is clearly observed that the performance of PAD algorithms vary de-
pending on the scenario of presentation attacks. In Table 9.9, best performed PAD
algorithm in each scenario is presented. For direct print attack, a simple textured
based approach using local binary patterns is performing better than other meth-
ods with near-zero error rates. In the case of contact lens detection, the mBSIF
method shows very high accuracy. In the scenario of cross-dataset evaluation,
mBSIF method outperformed other methods in both print and contact lens attack
detection.

The scenario of unknown attacks is a challenging problem due to the evolving
new kinds of presentation attacks. The texture and image quality fusion method of
BSIF+BRISQUE shows high performance with error rates close to half of the next
best performing method. In the scenario of using data from all attacks and sensors
in developing PAD method, color adaptive quantized patterns(CAQP) method dis-
play high accuracy in detecting the attacks. Though no single method performs
better in all scenarios, the results show that the fusion of multiple high performing
texture features will deliver higher accuracy in detecting presentation attacks.
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10.1 Abstract
Well-known vulnerabilities of voice-based biometrics are impersonation, replay
attacks, artificial signals/speech synthesis, and voice conversion. Among these,
voice impersonation is the obvious and simplest way of attack that can be per-
formed. Though voice impersonation by amateurs is considered not a severe threat
to ASV systems, studies show that professional impersonators can successfully in-
fluence the performance of the voice-based biometrics system. In this work, we
have created a novel voice impersonation attack dataset and studied the impact of
voice impersonation on automatic speaker verification systems. The dataset con-
sisting of celebrity speeches from 3 different languages, and their impersonations
are acquired from YouTube. The vulnerability of speaker verification is observed
among all three languages on both the classical i-vector based method and the deep
neural network-based x-vector method.

10.2 Introduction
Biometric authentication for providing access to information, devices, and net-
works have been used in security applications for many years. Speaker recognition

141
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is one of the modalities that has been prominently used as biometrics for the last
few decades. Though computational intelligence has advanced, biometric systems
are still vulnerable in the authentication of individuals. In voice-based person veri-
fication, there are emerging new ways of attacks every day. The popular speaker
verification vulnerabilities are voice impersonation, audio replay attack, speech
synthesis, and voice conversion. Though speech synthesis and voice conversion
can cause severe impact, these attacks can only be performed with certain access
to the biometric system. The conventional physical access attacks can only be
performed by voice impersonation or replay attacks.

Voice impersonation is discussed to be having minimal impact on speaker recog-
nition systems when compared to other kinds of attacks [224]. However, studies
have shown that a professional impersonator having enough training on the tar-
get’s speech can perform a successful attack [225][226]. It is also a simple way of
attacking a voice-based biometric system. By adjusting the vocal cords, an imper-
sonator can mimic a target speaker’s voice. Though it has been observed that it is
difficult to impersonate untrained target’s voices, well-known impersonators after
multiple attempts can successfully attack a speaker recognition system. Automatic
speaker verification and the vulnerability evaluation have multiple dependencies
like text, language, and channel effects [227]. After considering the issues men-
tioned above, there is a requirement of research work in fully understanding the
effect of impersonation with all the dependencies.

In this work, two popular speaker recognition systems are evaluated over the ef-
fect of impersonation. We have included three different languages with no text-
dependency and various channel data to accommodate the previously mentioned
dependencies of automatic speaker verification. Further, this work is organized
as follows. A literature review on the previous studies on voice impersonation is
presented in Section 10.3. In Section 10.4, the impersonation dataset captured is
mentioned with details. The Automatic speaker Verification methods chosen for
our experiments and trained dataset used are discussed in Section 10.5. Section
10.6 explains the experiments performed and results obtained in impersonation
vulnerability evaluation. The conclusion of this work and future directions are
presented in Section 10.7.

10.3 Related Work
In the initial works, amateur impersonators were used in performing attacks. Lau
et al. [228] have performed experiments on the YOHO dataset, which contains
138 speakers. Two subjects acted as impersonators, and the vulnerability of the
speaker recognition system towards such mimicry attack was verified. Upon per-
forming multiple attempts, it was observed that an impostor could perform an at-
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tack if the impostor has the knowledge about enrolled speakers in the database
[229]. In [230], Mariéthoz et al. assessed the vulnerability of state-of-the-art
text-independent speaker verification system based on Gaussian mixture models
(GMMs) to attacks conducted by a professional imitator. It was observed that the
GMM based systems are robust to mimicry attacks.

Farrús et al. [225] performed experiments on prosodic features extracted from
voices of professional impersonators to perform mimicry attacks on speaker iden-
tification systems. The increase in acceptance rates was observed when imitated
voices are used for testing. Panjwani et al. [231] proposed a generic method
and used crowd-sourcing for identifying impersonators. The GMM-UBM based
method displays an increase in impostor attack presentation match rate (IAPMR)
when using professional impersonators. Hautamäki et al. [226] used three mod-
ern speaker identification systems to test the case of voice mimicry. It has been
observed that the EER values for GMM-UBM based method are decreased but
increased for two other i-vector based methods.

The ASVspoof (Automatic Speaker Verification spoof) challenges are a series of
evaluations focus on improving countermeasures to attacks on speaker verification
systems. Voice conversion and speech synthesis attacks are the primary focus in
the first ASVspoof challenge [224]. The Second ASVspoof challenge is evalu-
ated for countermeasures to different kinds of replay attacks [232]. The recent
challenge in this series includes both physical (replay attacks) and logical access
(voice conversion, speech synthesis) attacks [40]. Impersonation attacks are not
considered in any series of these competitions, mentioning that impersonation’s re-
lative severity is uncertain. However, the attacks discussed in these series assumed
to have access to the biometric system. For example, the audio sample’s digital
copy is necessary to perform replay attacks, and logical access attacks need access
into the system where the digitally manufactured copy of utterance is presented.
Impersonation is a physical access attack on voice-based biometrics that does not
require any access to the biometric system, which makes it an interesting research
topic for this study.

It was observed in most of these methods that voice impersonation has a consider-
able impact on speaker verification systems, but all these methods possess certain
challenges, which are observed as follows.

• There is no publicly available impersonation attack dataset similar to other
attacks like replay, voice conversion, and speech synthesis. Also, there is a
requirement of professional impersonators to compose a dataset.

• State-of-the-art speaker verification systems are not employed in the evalu-
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ation.

• The text-dependent methods are used to perform an attack, which is not a
generalized scenario.

• The impact of language and channels are not discussed in the previous eval-
uations.

• Standard protocols were not used to evaluate the impact of impersonation.

The following contributions are made in this paper to address the challenges men-
tioned above.

• A dataset of bona fide and impersonator samples is created from YouTube
videos for three different languages, which will be made publicly available
(similar to VoxCeleb dataset).

• Three different languages, text-independent speeches, and multiple channel
data are captured in the dataset.

• Extensive experiments are carried out on one classical and one state-of-the-
art speaker verification systems in three different languages.

• Results are presented following ISO/IEC standards for biometric system per-
formance evaluation and presentation attack detection.

10.4 Voice Impersonation Dataset
The dataset of bona fide speeches and corresponding impersonated speeches are
acquired in a process similar to that of the VoxCeleb database. The easiest way to
obtain this type of attack dataset is by looking for popular people and their imper-
sonators’ speeches that are uploaded to YouTube. In this work, three languages are
chosen as per the authors’ knowledge: English and two Indian languages: Hindi
and Telugu. Multi-lingual data samples also help us to understand the impact of
language used in training data on ASV systems. The bona fide speakers and their
well-known impersonators are carefully selected from different subjects in each
language. The speakers include political figures and actors.

The bona fide speeches are taken from the interview videos of the target speak-
ers. The impersonation speeches are obtained from YouTube videos of television
shows and performances by mimicry artists ranging from amateurs to profession-
als. The speeches are manually annotated and segmented to individual speakers
without any loss in the quality of audio. The speech samples with dominating



10.5. Vulnerability of ASV systems to Voice Impersonation 145

Table 10.1: Details of impersonation attack dataset.

Language
No. of Bona fide Impersonation

speakers utterances utterances
English 15 506 411

Hindi 15 768 449

Telugu 15 677 549

Table 10.2: Details of the verification split of VoxCeleb1 dataset

VoxCeleb1 Dev Set Test Set
No.of Speakers 1211 40

No.of Videos 21, 819 677

No.of Utterances 148, 642 4, 874

background noise like applause and music are ignored. The number of speakers
and utterances for each language in this dataset is presented in Table 10.1.

10.5 Vulnerability of ASV systems to Voice Impersonation
The impact of voice impersonation on automatic speaker verification (ASV) sys-
tems are verified by performing a presentation attack on the ASV methods using
impersonation samples. The initial step in this process is to acquire voice imper-
sonation samples for a set of speakers. Due to the lack of professional imperson-
ators for several speakers, and based on the authors’ knowledge of target speakers,
we have chosen an obvious way of obtaining impersonation samples from You-
Tube and included three different languages.

10.5.1 Training Dataset

In our work, we have used the pre-trained models 1 from Kaldi toolkit [63]. The
models are trained on verification split of the VoxCeleb1 and entire VoxCeleb2
dataset [233]. The training dataset is a part of the VoxCeleb dataset, which is
an audio-visual dataset consisting of short clips of human speech, extracted from
interview videos uploaded to YouTube. The main reasons for choosing VoxCeleb
trained model are a huge variety of speakers and samples in the dataset (more than
1 million samples and over 7200 speakers) and also the similarity to our dataset
of mimicry samples from YouTube. The training dataset contains speech from
speakers of a wide variety of cultures, accents, professions, and ages. The details
of dataset is presented in Table 10.2 and 10.3.

1VoxCeleb Models: http://kaldi-asr.org/models/m7
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Table 10.3: Details of VoxCeleb2 dataset

VoxCeleb2 Dev Set Test Set
No.of Speakers 5994 118

No.of Videos 145, 569 4911

No.of Utterances 1, 092, 009 36, 237

10.5.2 Automatic Speaker Verification (ASV) Systems

The next step is to obtain ASV systems to examine vulnerability due to voice
impersonation. We chose two different methods for this purpose 1. a classical i-
Vector based system and 2. a state-of-the-art deep neural network-based x-vector
method.

I-vector Method

The I-vector based automatic speaker verification method is the state-of-the-art
approach proposed in [188]. I-vectors are the low dimensional representation of a
speaker sample that is estimated using Joint Factor Analysis (JFA), which models
not only the channel effects but also information about speakers. With the help
of i-vector extraction, a given speech utterance can be represented by a vector,
which includes total factors. The channel compensation in i-vectors is carried out
in a low-dimensional total variability space. In this method, we have employed
probabilistic linear discriminant analysis (PLDA) [31] to train the speaker models.
The trained PLDA models are then used to compute the log-likelihood scores of
the target samples to verify the speaker.

X-Vector Method

The deep learning and end-to-end speaker verification approaches are the recent
popular methods replacing handcrafted methods. The x-vector based speaker veri-
fication is one of the latest approaches using deep neural network (DNN) embed-
dings [32]. This approach uses trained DNN to differentiate speakers by map-
ping their variable-length utterances to a fixed-dimensional embedding called as
x-vectors. A large amount of training data is one of the biggest challenges in this
approach. Therefore, data augmentation with added noise and reverberation is
used to increase the size of training data.

In the implementation of ASV methods, we have used the pre-trained Universal
Background Models, i-vector extractor, x-vector extractor, and speaker recognition
codes from Kaldi 2.

2Kaldi GitHub: https://github.com/kaldi-asr/kaldi
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Table 10.4: Performance of ASV methods on VoxCeleb1 test set

ASV method EER (%)
i-vector method 5.3

x-vector method 3.1

Table 10.5: Equal Error Rate (EER%) values of zero-effort impostors and impersonation
attacks for the ASV methods on each language

Language Scenario
i-vector x-vector
method method

English
zero-effort impostors 5.99 3.83
impersonation attacks 12.94 11.10

Hindi
zero-effort impostors 7.88 5.72
impersonation attacks 11.17 12.22

Telugu
zero-effort impostors 4.84 3.86
impersonation attacks 5.57 4.77

10.6 Experimental Results and Discussion
The test set of the VoxCeleb1 dataset is used to verify the performance of obtained
ASV methods using pre-trained models. The results of ASV methods on the Vox-
Celeb1 test set are in Table 10.4. The thresholds used for attack samples matching
bona fide samples are from this test set evaluation.

The performance of the speaker recognition systems is evaluated using the stand-
ardised metrics from ISO/IEC on biometric performance [234]. In addition the
Equal Error Rate is reported. The Equal Error Rate (EER) is the rate at which false
match rate (FMR) and false non-match rate (FNMR) are equal. The detection error
trade-off (DET) curve is used to plot the relationship between the false match rate
(FMR) and the false non-match rate (FNMR) for zero-effort impostors and imper-
sonation attacks. Further, the impostor attack presentation match rate (IAPMR) is
calculated for each language in two ASV methods. Impostor attack presentation
match rate (IAPMR) is the proportion of impostor attack presentations using the
same PAI species in which the target reference is matched [37]. In this case, it is
the percentage of impersonation attack samples when matched with target speakers
above the threshold, which is set by the test set for each ASV system.

10.6.1 Equal Error Rate (EER) comparison

The EERs (%) are presented in Table 10.5 for both zero-effort impostors and im-
personation presentation attacks in order to compare the vulnerability caused by
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voice impersonation on ASV methods. The zero-effort impostors’ evaluation is
performed with no targeting attacks, whereas the presentation attacks are evalu-
ated by presenting attack samples targeting corresponding speakers. It is import-
ant to remember that the zero-effort impostor scores are computed by targeting
one speaker on other speakers only in the same language. However, the imper-
sonation samples of one speaker are intended only to target that particular speaker.
The IAPMR values that are presented show how many attack samples are matched
with target speakers’ bona fide samples.

The results show that the increase in the EER (%) values when impersonation
attacks are performed. The vulnerability due to the voice impersonation can be
seen in both ASV methods. Although the x-vector method has better performance
without any attacks (in zero-effort impostors), it can be seen that the vulnerability
due to impersonation is similar to i-vector based method. This raises the point that
impersonation attacks have an impact even on an advanced deep neural network-
based approach similar to the classical method. The comparison of the impact of
impersonation attack among different languages deduces some important points.
It is interesting to see that the impact is high in the English language when com-
pared to other languages. The reason for this could be that the language in the
training dataset is English. This makes ASV methods to recognize the English
impersonators more efficiently than other languages.

10.6.2 FMR vs FNMR comparison

The False match rates versus false non-match rate comparisons show the perform-
ance of a biometric system by examining the rate of mismatches in both bona fide
and impostor samples. We have fixed the false match rate at 0.001 for each case
of zero-effort impostors and attacks, then obtained thresholds to compute the false
non-match rate. This shows the number of bona fide samples that are not allowed
into the system with a fixed allowance of impostors into the system.

The increase in the amount of bona fide samples that result in false match is ob-
served in all languages when attacks are performed. The highest number of mis-
matches can be seen in the English language in x-vector based method, where
more than 66% of FNMR is observed. Further, the DET curves in Figure 10.1
shows the FMR versus FNMR of two methods in different languages with and
without attacks. The increase in error rates can be seen among all systems when
the impersonation attack is carried out among all three languages.

10.6.3 IAPMR evaluation

The IAPMR values in Table 10.7 show the percentage of impersonation attack
samples that are matched with bona fide samples in each language. The classical i-
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Table 10.6: False non-match rate (FNMR %) of zero-effort impostors and impersonation
attacks when False match rate is at 0.001 (i.e. FMR = 0.1%) on each language.

Language Scenario
i-vector x-vector
method method

English
zero-effort impostors 18.23 16.36
impersonation attacks 51.93 66.22

Hindi
zero-effort impostors 27.43 22.63
impersonation attacks 37.29 44.74

Telugu
zero-effort impostors 15.34 12.04
impersonation attacks 18.31 14.55

(a) i-vector method (b) x-vector method

Figure 10.1: Detection Error Tradeoff (DET) curves of the ASV methods with and without
impersonation attacks..

Table 10.7: IAPMR (%) values of the impersonation attacks.

Language
i-vector x-vector
method method

English 62.87 58.14
Hindi 46.97 53.87
Telugu 33.43 41.90
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vector based method has 62.87% of attacks matched in English, which is a consid-
erable amount showing the reasonable impact of voice impersonation on the ASV
method. The state-of-the-art x-vector method accepts 58.14% of the samples. This
displays a high vulnerability of the ASV method towards impersonation even on
the state-of-the-art methods. For other languages Hindi and Telugu, IAPMR val-
ues are lower, which shows the language dependency of the speaker recognition.
It is interesting to see that the x-vector method has a higher impact than i-vector
method in Hindi and Telugu, unlike English. This impact can also be due to the
dependency on the language used in training, which is English.

10.7 Conclusion
Impersonation attack have been considered as an obvious way of attacking an auto-
matic speaker verification system. In this work, we have studied previous works
on voice impersonation evaluation, and a novel dataset of voice impersonation is
created. The dataset is captured in a similar way of the VoxCeleb data capturing
mechanism in three different languages. The vulnerability of voice impersonation
as an attack is examined on a classical and another state-of-the-art speaker recog-
nition systems. The state-of-the-art speaker recognition method is based on a deep
neural network-based method that resembles the current technology. Experiments
are performed, and evaluations are carried out using ISO/IEC standards with EER,
FMR/FNMR, and IAPMR metrics. The results show that the voice impersona-
tions make the ASV methods vulnerable, with many attacks being accepted by
the system. It is also interesting to see the vulnerability variation among different
languages. The future works on this topic will examine the specific characteristics
of the impersonator that are useful in making a successful attack on ASV meth-
ods. Also, choosing a training dataset with different languages to examine the
language dependency of ASV methods and working on speaker-specific features,
like residual phase, to avoid the vulnerability caused by impersonation.
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11.1 Abstract
Automatic Speaker Verification (ASV) systems accuracy is based on the spoken
language used in training and enrolling speakers. Language dependency makes
voice-based security systems less robust and generalizable to a wide range of ap-
plications. In this work, a study on language dependency of a speaker verification
system and experiments are performed to benchmark the robustness of the x-vector
based techniques to language dependency. Experiments are carried out on a smart-
phone multi-lingual dataset with 50 subjects containing utterances in four differ-
ent languages captured in five sessions. We have used two world training datasets,
one with only one language and one with multiple languages. Results show that
performance is degraded when there is a language mismatch in enrolling and test-
ing. Further, our experimental results indicate that the performance degradation
depends on the language present in the word training data.
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11.2 Introduction
Biometrics characteristics are used to recognize or verify the identity of a person
and to provide access to the security sensitive applications. The biometric charac-
teristics are of two different kinds: physical and behavioral. Face, fingerprint, iris
are popular physical characteristics that have been in research for many years. Be-
havioral biometrics are based on the way humans perform certain tasks like speak-
ing and walking. Speaking characteristics of humans are a well-known biometric
modality used to perform accurate recognition. Automatic Speaker Verification
has been a famous topic in biometric applications for many years now.

The advancement of computational abilities in the recent decades encouraged ap-
plications to use biometric algorithms in many fields. Due to he wide variety of
users, devices, and applications, many kinds of vulnerabilities and dependencies
are evolved in operational biometric systems. The popular vulnerabilities are an-
omalies in the samples and presentation attacks on the biometric devices. The
dependencies are caused due to data capturing methods, change in devices, aging
of the subject, and many more. There are more dependencies on behavioral bio-
metric modalities because the behavior of the subject changes often. In speaker
recognition, apart from the capturing conditions like microphone and transmis-
sion channel, background noise, the biometric algorithms also depend on the text,
language, and emotion which impact the voice sample [48].

Text-dependent speaker recognition has been in use for many years [235]. In these
kinds of approaches, the set of words used in testing is a subset of the words used
in enrolment. Further, text-independent speaker recognition methods using Gaus-
sian mixture models are introduced [236], and more algorithms were proposed to
exclude the dependency caused by the text [227]. Language dependency is another
challenging problem that emerged due to multilingual subjects and wide usage of
the same biometric algorithm across the world. Language-independent approaches
have been proposed on top of text-independent speaker recognition methods [49]
by including multiple languages in enrolment. The National Institute of Standards
and Technology Speaker Recognition Evaluation (SRE) series has been including
multiple languages in their evaluation protocols over the years 1.

In this work, cross-lingual speaker verification is evaluated on a smartphone based
dataset with different languages. The objective is to benchmark the performance of
the state-of-the-art algorithms when different languages are mismatched in train-
ing, enrolling, and testing phases of automatic speaker verification. Thus, the fol-
lowing are the main contributions of this paper:

1https://www.nist.gov/itl/iad/mig/speaker-recognition
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• Experiments on state-of-the-art methods that use advanced deep neural net-
works, like x-vector method, to check the language dependency.

• Experiments on multiple languages and multiple session datasets are in-
cluded in this work.

• The dependency of trained languages used in world training data is evalu-
ated.

• Results and discussions are presented using ISO/IEC standardized metrics
for biometric performance [234].

The rest of the paper is organised as follows: Section 11.2.1 discusses the previous
works on cross-lingual speaker recognition approaches and challenges. Section
11.3 describes the state-of-the-art approaches chosen for our experiments. In Sec-
tion 11.4, the multilingual dataset is described, and Section 11.5, the cross-lingual
experiments are presented with results and discussed. Finally, Section 11.6 con-
cludes the work with the presentation of future work.

11.2.1 Related Work

The Automatic speaker verification as a biometric modality has emerged into many
applications. The initial problems in speaker recognition have leaned over the text-
dependency of the speeches in different speaker verification modules. Later, the
language dependency has emerged into a challenging problem in text-independent
speaker verification [49]. The early works on language mismatch evaluation are
performed by comparing speaker verification with world models trained on only
one language and multiple languages. One could observe that when provided with
all languages and enough data for world model training, there is no degradation
of performance [49]. It is important to note that the enrolled and tested speaker’s
language are the same in these experiments. Further, the authors have also pointed
out the need for new databases from different languages.

Subsequently, the research work focused on bilingual speakers and performed
cross-lingual speaker verification. In the investigation of combining the resid-
ual phase cepstral coefficients (RPCC) with Mel-frequency cepstral coefficients
(MFCC) work from [237], it is observed that RPCC has improved the performance
of traditional speaker verification methods. The residual phase characterizes the
glottal closure instants better than the linear prediction models like MFCC. The
glottal closure instants are known to contain speaker-specific information [238]
[239]. Considering the advantages of residual phase and glottal flow, Wang et
al. [240] proposed a bilingual speaker identification with RPCC and glottal flow
cepstral coefficients (GLFCC) as features. The experiments on NIST SRE 2004
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corpus, RPCC features show the highest accuracy when compared to MFCC fea-
tures.

In [198], Mishra et al. examined the language mismatch in speaker verification
over i-vector system. When all the parameters are kept consistent, and by chan-
ging the language, there is performance degradation in EER by 135%. Also, in-
cluding a phoneme histogram normalization method using a GMM-UBM system
improves the EER by 16%. Li et al. [199] have proposed a deep feature learning
for cross-lingual speaker verification in comparison with i-vector based method.
Two deep neural networks (DNN) based approaches are proposed with the know-
ledge of phonemes, which is considered as a linguistic factor. The DNN feature
with linguistic factor and PLDA scoring shows better performance than i-vector
based method and DNN without linguistic factor.

11.3 X-vector based Speaker Verification system
The X-vector based speaker verification, which is a Deep Neural Network-based
approach, proposed by Snyder et al. in [33] has the improved performance from
data augmentation as suggested in [32]. The model is a feed-forward Deep Neural
Network (DNN) which works on cepstral features that are 24-dimensional filter
banks and has a frame length of 25 ms with mean-normalization over a sliding
window of up to 3 seconds. The model consists of eight layers. The first five lay-
ers work on the speech frames, with an added temporal context that is gradually
built on through the layers until the last of the five layers. A statistics pooling layer
aggregates the outputs and calculates the mean and standard deviation for each
input segment. The mean and standard deviation are concatenated and propag-
ated through two segment-level layers and through the last layer, a softmax output
layer. The block diagram of x-vector based automatic verification system is show
in Figure 11.1

Figure 11.1: Block diagram of X-vector based automatic speaker verification system

The x-vector method is used with two pre-trained variants, one trained on the com-
bined dataset of five Switchboard datasets, SRE datasets from 2004 to 2010, and
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the Mixer 6 dataset and the second one is trained on the VoxCeleb 1 and Vox-
Celeb 2 datasets. The two models are different in multiple directions including the
data capturing mechanism, languages spoken in data and variance in acquisition
channels. The pre-trained models have been obtained from the Kaldi webpages
namely the SRE16 model from http://kaldi-asr.org/models/m3, and the
VoxCeleb model from http://kaldi-asr.org/models/m7.

11.3.1 NIST-SRE16 trained model

The NIST-SRE16 pre-trained model uses a total of 15 different datasets, contain-
ing a total of 36 different languages. The combined amount of speakers from the
Switchboard, SRE, and Mixer datasets totals 91k recordings from over 7k speak-
ers. Data augmentation is done, adding noise and reverberation to the dataset, and
combining two augmented copies to the original clean training set. The augment-
ation of the recording was chosen randomly between four possible types, either
augmenting with babble, music, noise, or reverb. Augmenting with babble was
done by appending three to seven speakers from the MUSAN speech to the original
signal, augmenting with music was selecting a music file randomly from MUSAN,
trimmed or repeated to match the duration of the original signal. Noise augmenta-
tion was done by adding one-second intervals to the original signal, taken from the
MUSAN noises set. Reverb augmentation was done by artificially reverberating
via convolution with simulated RIRs.

The SRE16 x-vector model training is employed with with two PLDAs. The first
PLDA is trained on the same datasets as the x-vector model trained, but not fitted
to the evaluation dataset. As the PLDA is only trained on out-of-domain data, this
PLDA is called out-of-domain (OOD) PLDA. The second PLDA (ADT) is fitted to
the same datasets and has been adapted to SRE16 data by using the SRE16 major
dataset, containing utterances in Cantonese and Tagalog. Therefore, this PLDA is
in-domain adapted (ADT) PLDA. The evaluation set of SRE16 is used to test the
trained model. The performance of the x-vector method is observed as equal error
rate (EER) of 11.73% with OOD PLDA and 8.57% with ADT PLDA.

11.3.2 VoxCeleb trained model

The VoxCeleb model used has been trained on the datasets VoxCeleb 1 and Vox-
Celeb 2 created by Chung et al. in [47] and [50], respectively. The development
set of VoxCeleb 1 contains over 140k utterances for 1211 speakers, while the Vox-
Celeb 2 contains over a million utterances for 6112 speakers. All utterances in
VoxCeleb1 are in English but VoxCeleb2 contains multiple languages and have
been extracted from videos uploaded to YouTube. The training set size has been
increased by using Data Augmentation by adding noise and reverberation to the
datasets. In the same fashion as done in Section 11.3.1. The test set of VoxCeleb1

http://kaldi-asr.org/models/m3
http://kaldi-asr.org/models/m7
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Figure 11.2: A sample signal from SWAN dataset from each session.

with 40 speakers is used to evaluate the training process and the performance is
observed as EER of 3.128%.

11.4 Smartphone Multilingual Dataset
The SWAN (Secured access over Wide Area Network) dataset [12] is part of the
SWAN project funded by The Research Council of Norway. The data has been
gathered using an Apple iPhone6S and has been captured at five different sites.
Each site has enlisted 50 subjects in six sessions, where eight individual recordings
have been recorded. Depending on the capture site, four of the utterances are in
either Norwegian, Hindi, or French, while the remaining four are in English. The
utterances spoken are predetermined with alphanumerical speeches. The speakers
have pronounced the first utterances in English and then in a national language
depending on the site.

The six sessions of data capture are present at each site with a time interval of 1
week to 3 weeks between each session. Session 1 and 2 are captured in a controlled
environment with no noise. Session 1 is primarily used to create presentation at-
tack instruments. Therefore, we did not use session 1 data in our experiments.
Session 3,4 and 6 are captured in a natural noise environment, and session five is
captured in a crowded noise environment. In our experiments, we have enrolled
session 2 data in all languages, and other sessions data are used for testing. This
way, we can understand the session variance and the impact of noise on ASV meth-
ods. A sample of single utterance (sentence 2 in English with duration 14 seconds)
is presented in Figure 11.2 indicting the intra-subject variation between different
sessions. The Figure 11.2 shows the utterances of the sentence "My account num-
ber is fake account number" by the same subject in all sessions.
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Table 11.1: Results from SRE16-trained X-vector Model with two types of PLDAs and
different sessions.

Enrolment Test S3 S4 S5 S6
language language OOD ADT OOD ADT OOD ADT OOD ADT
English English 3.21 3.20 1.65 1.76 4.05 4.15 1.78 1.83
English Norwegian 6.45 6.65 5.89 5.61 8.60 8.32 6.16 6.11
English Hindi 6.83 6.37 5.68 4.96 7.48 7.27 6.33 6.13
English French 7.76 7.21 5.65 5.08 5.13 4.96 6.13 5.73

Norwegian Norwegian 3.12 3.21 1.28 1.44 4.98 4.42 1.70 1.77
Norwegian English 5.56 5.17 3.62 3.42 8.46 7.34 3.76 2.95

Hindi Hindi 5.26 4.39 5.01 4.23 4.35 4.46 4.77 4.58
Hindi English 7.50 7.51 6.18 5.73 5.45 5.49 5.23 4.72
French French 5.33 4.32 2.45 2.40 2.62 2.35 1.88 2.06
French English 6.13 6.10 3.41 3.18 6.44 5.22 4.63 4.64

11.5 Experiments and Results
We have four different sets of languages in our dataset, where English is the com-
mon language in all the sets. Experiments on four sets of different language com-
binations are performed. Also, we have five sessions of data capturing in each
of the sets. We have followed the same protocol among all the sets by enrolling
session two samples and using the rest of the sessions data for testing. To study
the cross-lingual speaker recognition results, we have enrolled each language sep-
arately and tested the other languages present in that set.

The results are presented using the ISO/IEC standardized metrics for biometric
performance [234]. Equal error rate (EER) is the error rate at which the false
match rate (FMR) and false non-match rate (FNMR) are equal. We have plotted
detection error trade-off (DET) curves, which represent the performance of the
recognition of the biometric system in terms of FNMR over FMR.

11.5.1 Experiment 1

The first experiment is carried out on NIST-SRE16 trained model for x-vector ex-
traction and PLDA scoring. This experiment includes two types of PLDA scoring
approaches. The first type (OOD PLDA) is an out-of-domain model trained on
combined data that contains the Switchboard database, all SREs prior to 2016, and
Mixer 6. The second type of PLDA (ADT PLDA) is an in-domain PLDA that is
adapted to the SRE16 major partition.
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(a) Enrolment: English (b) Enrolment: Norwegian

(c) Enrolment: Hindi (d) Enrolment: French

Figure 11.3: DET curves showing the performances of Session 3 with trained model on
NIST-SRE16 and out-of-domain adapted PLDA (OOD).

Table 11.1 represents the cross-lingual speaker recognition with English as the
enrolment language in all four sessions. The highest error is highlighted among
the block of same enrolled language in each PLDA method. It can be clearly seen
that the EER values are lower when the enroll language and test languages are the
same compared to different languages in test data. Similar results are obtained
with Norwegian, Hindi, and French. The highest difference can be observed in the
case of English-French combination with a degradation in performance of more
than 350% on Session 6 data.

Session 5 has displayed the least accuracy in recognizing speakers among all lan-
guage combinations. The main reason for this problem could be due to the crowded
environment of the data captured. The Figures 11.3 and 11.4 show the plots of DET
curves from different languages used in enrolment and testing from Session 3. The
error rates can be clearly seen increasing when cross-lingual speaker recognition
is performed.

PLDA adaptation

The adaptation of PLDA training does not show a regular trend among different
languages. Although the out-of-domain PLDA adaption (OOD) displays higher
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(a) Enrolment: English (b) Enrolment: Norwegian

(c) Enrolment: Hindi (d) Enrolment: French

Figure 11.4: DET curves showing the performances of Session 3 data and trained on
NIST-SRE16 with in-domain adapted PLDA (ADT).

error rates in many cases, in-domain adapted PLDA (ADT) does not improve the
performance for some same-language and cross-language evaluations. In the fu-
ture works, more experiments on different models of OOD and ADT will be stud-
ied along with multiple languages included in the data.

11.5.2 Experiment 2

VoxCeleb trained model is used in the second experiment. The PLDA used in this
model is trained on VoxCeleb1, and Voxceleb2 combined. A similar protocol from
Experiment 1 is followed here also but with only one type of PLDA model. Table
11.2 shows the EER values among different language combination with highest
EER value highlighted. The equal error rate is increased in all cases when there is
a language mismatch between enrolment and testing. However, it is interesting to
observe that the difference in the drop of EER is higher than for Experiment 1.

Figure 11.5 shows the comparison of DET curves between the same language and
cross-language speaker recognition from Session 3 of the dataset. It can be clearly
seen that the performance of the system has decreased when language mismatch
has happened. The difference between the same language and cross-language is
much higher in the VoxCeleb model than that of the NIST-SRE16 trained model.
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Table 11.2: Results from VoxCeleb X-vector Model from different sessions.

Enrolment Test
S3 S4 S5 S6

language language
English English 9.90 7.69 10.01 7.99
English Norwegian 11.83 10.31 15.01 10.48
English Hindi 13.84 13.12 12.75 12.05
English French 11.21 9.06 11.28 9.46

Norwegian Norwegian 8.04 6.44 10.91 6.74
Norwegian English 11.92 9.32 13.71 9.55

Hindi Hindi 12.16 10.68 11.88 10.66
Hindi English 14.77 11.70 13.11 12.72
French French 7.64 6.58 8.29 6.94
French English 11.83 9.71 8.57 9.41

The speaker recognition accuracy is consistently lower than for the NIST-SRE16
trained model in all the cases. The reason for this could be that the world training
dataset in the NIST-SRE16 model contains multiple languages which attributes for
cross-lingual speaker recognition robustness. On the other hand, the VoxCeleb2
dataset contains multiple languages, there is a huge variance in data and bias in
the number samples per subject which could be reason that limits the ability of the
system to recognize different languages in enrolling and testing.

11.6 Conclusion
Behavioral biometric recognition methods have multiple dependencies due to high
intra-class variation caused by environmental factors and the human factors im-
pacting the capture process. In the speaker recognition community, dependencies
of samples like the text used in the speech and language in which speech is de-
livered needs to be investigated. The dependency due to language has been a prob-
lem when there is a mismatch between enrolment and tested language. In this
work, we have focused on evaluating the problem of language mismatch on the
state-of-the-art speaker recognition method, namely the x-vector method, which
uses a deep neural network-based approach. We have chosen a multilingual data-
set with four different languages and four different sessions. For the world train-
ing dataset, we included two popular publicly available datasets NIST-SRE16 and
VoxCeleb.

The experiments on cross-lingual speaker recognition displayed the performance
degradation when there is a mismatch in languages in enrolment and testing. Fur-
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(a) Enrolment: English (b) Enrolment: Norwegian

(c) Enrolment: Hindi (d) Enrolment: French

Figure 11.5: DET curves showing the performances of Session 3 data and trained on
VoxCeleb data.

ther, the dependency on the languages included in the world training dataset is
observed. If there are multiple languages used in the world training dataset, which
is the case of NIST-SRE16, performance degradation is less compared to the one
language model VoxCeleb. In future works, a speaker recognition approach is
implemented to overcome the problem of language dependency.
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12.1 Abstract
Smartphone based biometric applications are increasing exponentially in recent
years. The challenges due to presentation attacks in biometrics have emerged
to cause a potential vulnerability, limiting the reliability of biometrics for secure
applications. In speaker recognition, audio replay attacks have demonstrated a
severe threat to automatic speaker verification (ASV) systems. Alongside, the
difference in language for enrolment and testing has displayed some impact on
speaker recognition. In this direction, we have created a novel audio replay attack
dataset for four different languages using smartphones as playback and record-
ing devices. We have collected data in two different scenarios where the attack
recording sensor and bona fide sensor are the same and different. The captured
dataset is used for testing the vulnerability on both state-of-the-art speaker recog-
nition method and commercial-off-the-shelf (COTS) method from VeriSpeak. The
baseline presentation attack detection methods are benchmarked on replay attacks
in a cross-smartphone scenario. The results show that the replay attacks indic-
ate a severe threat towards the ASV methods, especially in the cross-smartphone
scenario.
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12.2 Introduction
Smartphone applications have been growing enormously across different areas of
data processing. The usage of mobile data processing includes sensitive inform-
ation related to the user, and this requires security by authorization. Therefore,
biometric identification has come to play in most recent smartphones. Face, fin-
gerprint, and iris biometric recognition are prominently used to provide secure
access to smartphones. Also, banking applications use the device in-built biomet-
ric recognition for smooth banking transactions. However, the presentation attacks
cause a severe problem to the optimal performance of embedded biometric sys-
tems.

Presentation attacks are defined as the presentation of artefacts to a biometric cap-
ture device to interfere with the biometric recognition. In speaker recognition,
well-known presentation attacks are replay attacks, voice impersonation, voice
conversion, and speech synthesis. Among these, replay attacks are performed by
playing back an audio sample to the biometric capture device. A digital copy of
the speech sample is required for carrying out this attack. In a general scenario, a
speaker device is enough to perform this attack. The biometric methods embed-
ded into smartphone devices use the default microphone to record the speech data.
However, the speakers present in these devices can be used as playback devices to
play a speech sample to another biometric device.

In this work, we examine the situation where a smartphone based biometric system
is attacked using other smartphone speakers. We have used smartphone biometric
data and developed a set of audio replay attacks using smartphones as both play-
back and recording devices. The rest of the paper is described as follows: Section
12.3 provides a brief overview of the related works about the replay attack datasets.
Section 12.4.2 describes the smartphone audio replay attack dataset developed in
this work. In Section 12.5, we present the ASV methods and baseline attack de-
tection methods that are used to evaluate the vulnerability of speaker recognition
systems with regards to replay attacks. Section 12.6 discuss the experiments and
results on the developed replay attack dataset. Section 12.7 concludes this work.

12.3 Literature Review
Audio replay attacks are a trending way of interfering with the performance of
a speaker recognition system. With the availability of a digital copy of the tar-
get speaker’s speech, an audio sample can be played back in front of a biometric
system to perform a replay attack. Over the years, there are multiple approaches
to examine the impact of replay attacks and proposed countermeasures. In this
section, we discuss some of those approaches and show promising results.
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Janicki et al. examined the vulnerability on ASV methods caused by replay attack
in comparison to other attacks like voice conversion and speech synthesis [241].
The replay attacks captured in three different conditions are evaluated over six
ASV methods, and the results show an increase in EER, which is higher in the
case of replay attacks compared to other attacks. Countermeasures using far-field
FFD and local binary patterns were proposed, and it is observed that replay attacks
captured in the anechoic environment are challenging to detect.

The Automatic Speaker Verification Spoofing and Countermeasures Challenge
(ASVspoof) has provided an extensive dataset for research and development of
countermeasures for replay attacks. The 2017 ASVspoof challenge [232] released
a replay attack dataset with various attack configurations. The baseline ASV
method using Mel-frequency cepstral coefficient (MFCC) features and a 512-component
UBM model display vulnerability due to replay attacks. The dataset also provided
two baseline countermeasures based on CQCC features trained on GMM models.
The best performing submission to this challenge detected the attacks with an EER
of 6.73%. The authors have also published metadata analysis on ASVspoof 2017
replay attacks corpus version 2.0 [242]. A detailed discussion on the different re-
play configurations with their impact on ASV systems in this work and from the
results, the authors have concluded that the high-quality speakers and microphone
setups in a studio or anechoic rooms cause a major threat to the performance of
ASV methods.

A survey on the replay attack detection methods is discussed in [243]. This work
has evaluated the ASVspoof 2017 replay attacks on different countermeasures and
discussed the limitations and challenges. In the next series of ASVspoof chal-
lenges, replay attacks are evaluated separately, coining as physical access (PA)
attacks [40]. The baseline systems used in this work are LFCC and CQCC fea-
tures with a standard GMM back-end classifier. The best performing submission
to this challenge gives an output of EER = 0.39% on the PA scenario.

This work considers the replay attack configurations under three different scen-
arios:

1. Using widely available smartphones as both playback and attack devices.

2. Evaluating the impact of replay attacks on the language of the speech data.

3. Observing the impact of replay attack scenario when recording device in
bona fide and presentation attack is the same and different.

By pointing out these questions, this work has made the following contributions.
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1. A novel smartphone audio replay attack dataset with multiple latest smart-
phones in four different languages.

2. The evaluation of smartphone biometrics’ vulnerability based on speaker re-
cognition towards the replay attacks performed using different smartphones.

3. Benchmarked the audio replay attacks on the baseline presentation attack
detection methods used in the ASVspoof attack detection challenge.

4. Evaluation and comparison of attack impact and detection in two cases of
the same sensor in bona fide and PA capture.

12.4 Smartphone Replay attacks dataset
This section discusses the replay attack data capturing setup, playback-record con-
figurations, and the bona fide dataset.

12.4.1 Data Capturing Setup

Figure 12.1: Audio replay attack setup.

We have used six different smartphones in the process of creating audio replay
attacks. They include four Apple devices (iPhone 6S, iPad Pro, iPhone 10, iPhone
12) and two Samsung devices (S8 and S10). The data capturing setup is presented
in Figure 12.1 where a tripod holds a recording device in front of a playback device.
We have collected the replay data in an office room with no background noise. A
laptop is used to activate the microphone and speaker of the smartphones via USB
cables or Bluetooth. Thus, instructions are given to a smartphone from a laptop to
play the audio sample on one smartphone and simultaneously record it on another
smartphone. This way, the recorded audio samples are directly stored in the laptop.

The playback-record configurations are designed depending on the bona fide data
samples. The recording device is kept the same for the initial five configurations
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as iPhone 6S. The reason behind this is that the bona fide dataset is also captured
with the same device. Therefore, this will allow us to evaluate the performance of
different playback devices. In the next five configurations, the rest of the devices
are chosen as presented in Table 12.1. The dataset is made publicly available for
research purposes 1.

Table 12.1: Replay attack setups

ID Playback device Recording device
RP1 Samsung S8 iPhone 6S
RP2 Samsung S10 iPhone 6S
RP3 iPad Pro iPhone 6S
RP4 iPhone 10 iPhone 6S
RP5 iPhone 12 iPhone 6S
RP6 iPhone 10 iPhone 12
RP7 Samsung S10 iPhone 10
RP8 Samsung S10 iPad Pro
RP9 Samsung S8 iPhone 10
RP10 Samsung S8 iPad Pro

12.4.2 SWAN dataset

In our experiments, we used the SWAN (Secured access over Wide Area Network)
dataset [12]. The dataset contains smartphone audio-visual biometric data of 50
subjects captured using an iPhone6S at five different locations. There are six ses-
sions of data from each location. However, we have taken only audio data from
session 1, which is extracted from audio-visual samples. Each subject provided
eight recordings, among which the first four are in English, and the rest are in
either Norwegian, Hindi, or French, depending on the location. The utterances
are predetermined and consist of alphanumerical speeches. We have used English
audio data from one location and each other language data from corresponding
locations for convenience. Therefore, we have data on four different languages
with 50 subjects each and each subject speaking four utterances.

SWAN dataset also contains replay presentation attack data using Logitech high-
quality loudspeaker and recording using iPhone 6S (protocol PA.V.4 in [12]). This
data is used as training data for the PAD methods in our work.

1Access to dataset: https://forms.gle/EV5ur4jbw52RgM3v8

https://forms.gle/EV5ur4jbw52RgM3v8
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12.4.3 Replay Attack Data

The speech samples are played individually on the playback device and recor-
ded from the microphone on the recording device continuously. To cope with the
latency of the devices, two seconds pause is provided between the capture of each
sample. A similar procedure is followed using all the configurations mentioned
in Table 12.1. The spectrograms of a bona fide sample and corresponding replay
attack sample are presented in Fig. 12.2.

Figure 12.2: Spectrograms of the data samples. Top: Bona fide. Bottom: Replay attack.

12.5 Baseline Methods
The replay attacks are evaluated for the vulnerability towards the Automatic Speaker
Verification (ASV) systems and tested on Presentation Attack Detection (PAD)
methods. In this section, we present the baseline ASV systems and PAD methods
used in our experiments.

12.5.1 Automatic Speaker Verification Methods

We have chosen two ASV methods, including a state-of-the-art method and a
Commercial-Off-The-Shelf (COTS) method from VeriSpeak. A brief description
of these methods is presented below.

X-vector based Speaker Verification system

The X-vector speaker verification is a feed-forward Deep Neural Network (DNN)
approach proposed by Snyder et al. in [33]. This approach has proven to im-
prove the ASV system’s performance using data augmentation as suggested in
[32]. The model uses cepstral features with 24-dimensional filter banks and has
a frame length of 25 ms with mean-normalization over a sliding window of up to
3 seconds. The neural network model consists of eight layers, with the first five
layers work on the speech frames and an added temporal context that is gradually
built on through the layers until the last of the five layers. A statistics pooling layer
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aggregates the outputs and calculates the mean and standard deviation for each in-
put segment. The mean and standard deviation are concatenated and propagated
through two segment-level layers and the last layer, a softmax output layer.

The X-vectors of the enrol and test samples are compared using the Probabilistic
Linear Discriminant Analysis approach proposed in [133]. For the X-vector ex-
tractor and PLDA training models, the Kaldi automatic speech recognition toolkit2

pre-trained models are used which are trained on the VoxCeleb dataset [233].

VeriSpeak method

To examine an operationally deployed biometric system’s potential vulnerability
towards an attack, evaluating an up-to-date commercial method is required. There-
fore, in our work, a standalone speaker recognition approach called VeriSpeak2 is
used. VeriSpeak speaker verification technology is designed for biometric sys-
tem developers and integrators. The speaker recognition algorithm assures system
security by checking voice authenticity. The speaker modelling and recognition
methodology used in this method are unknown. The inbuilt liveness detection or
presentation attack detection algorithm used in this method is not specified in the
release document. The text-independent feature extraction is activated while using
the VeriSpeak SDK.

12.5.2 Presentation Attack Detection Methods

The baseline PAD methods provided in the ASVSpoof 2019 challenge are used
in our experiments [40]. There are two PAD methods provided by ASVSpoof
2019 evaluation kit. These methods are based on two cepstral coefficients in the
front-end, namely Linear Frequency Cepstral Coefficients (LFCC) and Constant Q
Cepstral Coefficients (CQCC). The back-end comprises Gaussian Mixture Models
(GMM).

The LFCC features are similar to the popular Mel-frequency cepstral coefficients
(MFCCs), but the filters are placed linearly in equal sizes. The LFCC features
were proposed for synthetic-detection in [194]. LFCC features are extracted on
speech signals with a frame length of 25ms and a 20-channel linear filter bank,
which includes 19 cepstral coefficients, a zeroth coefficient, the static, delta, and
delta-delta coefficients.

The CQCC features are created with a maximum frequency of fs/2, where fs =
16kHz is the sampling frequency. The minimum frequency is set to fs/2/29 15Hz
(9 being the number of octaves). [195]. The number of bins per octave is set to 96.

2Kaldi ASR toolkit: http://kaldi-asr.org/
2VeriSpeak: https://www.neurotechnology.com/verispeak.html

http://kaldi-asr.org/
https://www.neurotechnology.com/verispeak.html
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Re-sampling is applied with a sampling period of 16. CQCC features dimension
is set to 29 coefficients + 0th, with the static, delta, and delta-delta coefficients.

In the back-end, 2-class GMMs are trained on the bona fide and attack speech utter-
ances of the training dataset, respectively. We use 512-component models trained
with an expectation-maximization (EM) algorithm with random initialization. The
attack detection score is computed as the log-likelihood ratio for the test utterance
given bona fide and the replay attacks speech models.

12.6 Experiments and Results

12.6.1 Evaluation Metrics

The performance of speaker recognition systems and presentation attack detection
(PAD) methods are evaluated using ISO/IEC standard biometric metrics [244].

• False Match Rate (FMR) is the proportion of the completed biometric non-
mated comparison trials that result in a false match, and False Non-Match
Rate (FNMR) is the proportion of the completed biometric mated compar-
ison trials that result in a false non-match.

• Impostor-Attack Match Rate (IAMPR) is the proportion of impostor attack
samples (replay attacks) that are matched with bona fide samples. To com-
pare ASV methods’ performance, we have fixed FMR at 0.1% and presented
FNMR and IAPMR for zero-effort impostors and attacks, respectively.

• Attack Presentation Classification Error Rate (APCER) is the proportion of
attack presentations that are incorrectly classified as bona fide presentations,
and Bona fide Presentation Classification Error Rate (BPCER) is the ratio
of bona fide presentation incorrectly classified as attacks. In this work, we
have presented the BPCER of PAD methods by fixing APCER at 10%.

In addition to ISO/IEC metrics mentioned above, the Detection Equal Error Rate
(D-EER) is presented for PAD methods which is the attack detection rate at the
working point, when APCER and BPCER are equal.

12.6.2 Vulnerability analysis

The impact of replay attacks on the ASV systems is examined by computing veri-
fication scores of bona fide samples against replay attack samples. Protocols are
created for calculating verification scores of bona fide samples against zero-effort
impostors and replay attacks. In the case of zero-effort impostors, each speech
sample of a subject is paired with each of the other samples from the same subject
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(mated scores), and samples from other subjects (non-mated scores) are chosen
randomly. This results in bona fide scores and zero-impostors scores, respectively.
The replay attacks are paired with corresponding bona fide audio samples, and
verification scores are obtained. This protocol gives the attack scores.

The verification protocols are created for each of the replay attack configurations
and four different languages separately. To avoid the dependency of the language,
we enrolled and tested the biometric samples in sample language. Table 12.2
presents the ASV systems performance with no attacks i.e. Zero-Effort impost-
ors. The FMR is fixed at 0.1%, and FNMR values for each language and two ASV
methods are computed. For the X-vector method, the threshold for FMR at 0.1%
is computed on individual languages, where the VeriSpeaker method’s threshold is
obtained from the documentation provided by NeuroTechnology (which is 36 for
FAR=0.1%).

Table 12.2: FNMR% at FMR = 0.1% for Zero-effort impostors

ASV Language
method English Norwegian French Hindi

X-vector 9 15.33 21 11.48
VeriSpeak 36.66 22.66 25 7.78

The speaker verification results with zero-effort impostors show various levels of
performance for different languages and ASV methods. It is necessary to observe
that the state-of-the-art approach performed better than the commercial methods.
Also, the commercial VeriSpeak method displayed the least performance in the
English language, where FNMR is 36.66%. The possible reason for this result is
that the audio sample quality in the SWAN dataset. The VeriSpeak ASV method is
set up with default settings irrespective of data quality. We assume that this caused
the drop in speaker verification performance of data in the English language.

Tables 12.3 and 12.4 presents the IAPMR values with fixed FMR threshold similar
to zero-effort impostors. IAPMR determines the number of attack samples being
matched with the target bona fide samples. It is observed from results that replay
attacks show high vulnerability in both ASV methods. It is also interesting to
notice that languages have a minimum impact on the replay attacks. The first five
attack setups have the same recording device as the bona fide recording device,
the iPhone 6S. The last five have different recording devices but display similar
vulnerabilities due to attacks.

The X-vector ASV method allows most of the attack samples to match with bona
fide samples except the setup of RP10: playback device is Samsung S8 and record-
ing device is Apple iPad pro. It is noted that the sound of speech data in the RP10
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Table 12.3: IAPMR% at FMR = 0.1% for X-vector method

Attack Language
setup English Norwegian French Hindi
RP1 100 99.51 99.50 97.28
RP2 99.50 100 98.53 97.83
RP3 100 98.55 99 97.81
RP4 99.51 99.03 99.50 99.45
RP5 100 99.01 99.50 98.89
RP6 99.02 100 98.54 98.91
RP7 100 98.07 99.01 98.37
RP8 99.50 100 99 99.44
RP9 99.50 100 99.50 98.89
RP10 25.62 25.75 26.06 25.53

setup is comparatively low due to some technical problem. This resulted in the X-
vector system discarding many samples as speech data with no voice. Therefore,
only 25% of the replay attack data match with bona fide data in this configuration.

The VeriSpeak method displays slightly lower IAPMR rates when the same record-
ing device is used to capture attacks and bona fide samples (RP1 to RP5). This may
prove that the commercial ASV method is relatively better than the state-of-the-
art approach. However, the overall performance of the COTS method shows that
replay attacks cause high vulnerability.

Table 12.4: IAPMR% at FMR = 0.1% for VeriSpeak method

Attack Language
setup English Norwegian French Hindi
RP1 99.50 98.51 99.50 98.36
RP2 99 99.51 98.53 98.37
RP3 95.01 94.17 98.52 98.91
RP4 94.31 95.38 98.33 98
RP5 99.50 98.02 98.51 100
RP6 95.09 95.56 95.14 98.03
RP7 99.50 97.59 99.01 98.38
RP8 99.54 99.50 99.50 99.44
RP9 99.52 98.52 99.51 99.45
RP10 99 99 98.53 98.91

Figure 12.3 shows the distribution of bona fide, zero-effort impostors and replay



12.6. Experiments and Results 173

attack scores for the VeriSpeak method. The threshold at which the FMR = 0.1%
is also plotted, which displays the overlap of attack scores with bona fide scores.
In the X-vector methods, the threshold for FMR = 1.0% is obtained for each of
the attack setup and language. Therefore, we have not included the distributions
of various setups for the X-vector method in this paper.

Figure 12.3: Vulnerability Evaluation of VeriSpeak method.

12.6.3 Replay attack detection

The replay attack detection is performed using two baseline methods provided in
ASVSpoof 2019 evaluation plan. The GMM models are trained on the bona fide
and replay attack PA.V.4 data of the first 30 subjects from the SWAN dataset. For
testing the replay attacks captured in this work, the speech samples from the last
20 subjects are evaluated. The loglikelihood scores are calculated for each of the
bona fide and attack data for computing D-EER and BPCER at APCER = 10%.

Table 12.5 presents the results from the PAD methods on all the attack setup. The
attack setups from RP1 to RP5 have the same recording device as that of the attack
data used in training. The CQCC method detected replay attacks better than the
LFCC method. However, in the case of RP4 and RP5, CQCC is not able to detect
replay attacks. This behaviour is not unknown, and further conclusions can be
deduced with a detailed evaluation of the CQCC method of replay attacks. From
RP6 to RP10, the recording device in bona fide data and attack data are different.
Therefore, it is observed from the results that the same recording device in training
and testing displays better PAD performance.

It is also noticed that when the recording device and playback device are from the
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Table 12.5: D-EER% and BPCER_10% (BPCER @ APCER = 10%) for baseline PAD
methods

Attack LFCC CQCC
setup D-EER% BPCER_10% D-EER% BPCER_10%
RP1 39.92 49.05 10.23 10.23
RP2 35.42 86.93 15.34 20.45
RP3 0 0 0 0
RP4 5.25 2.38 48 68.45
RP5 4.55 1.71 50 90.15
RP6 0 0 0 0
RP7 38.06 79.17 31.06 56.63
RP8 14.58 21.59 23.10 36.93
RP9 43.56 73.48 43.18 78.41
RP10 38.82 67.99 41.29 78.98

same manufacturer (in the case of RP3, RP4, RP5, and RP6), the PAD methods
performed better. However, when the device manufacturer is not the same, the
performance is not consistent. For example, the RP8 and RP10 configurations
have the same recording device (iPad Pro) but different playback devices from the
same manufacturer. The attack detected methods performed better in RP8 than in
RP10. This observation also concludes that change in playback device can impact
the PAD methods.

12.7 Conclusion
Smartphone biometrics have emerged into daily usage of biometric-based authen-
tication for multiple purposes. The presentation attacks pose a major problem in
the proper functioning of biometric algorithms embedded in smartphones. Among
these, replay attacks are easy to perform and displayed high false match rates. In
this work, we have created a smartphone-based replay attack dataset in four dif-
ferent languages. Six different smartphones are used with two different scenarios
of the same and different recording devices to bona fide data. Two ASV methods
are evaluated for the impact of replay attacks, and results show high vulnerabil-
ity caused by the replay attacks. Further, we have performed presentation attack
detection using baseline countermeasures, and it is noted that the attacks are relat-
ively easy to detect when the recording device of replay attacks is the same as that
of bona fide data.
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Chapter 13

Appendix A

The MAVS data capturing application and details are explained in this section.

13.1 Mobile Application
The process of data capturing is carried out with the help of a mobile application
implemented on iOS and Android platforms. The application is a modified version
of the SWAN data capturing mobile application. The application is distributed
as a compiled file for iOS (.ipa) and Android (.apk) environments. The mobile
application is operated by data capturing subjects. Therefore, the application is
made easy and user-friendly.

13.1.1 Data Storage

The biometric data files are stored internally right after each recording. The file
names are created as shown below.

Filename: subjectid_devicename_session_langauge_textid.mp4

Example: 0910M_samsungs8_session1_english_4.mp4

The files can be transferred to other devices from the file storage of the mobile
devices.

13.2 Capturing GUI
The application starts with an information page to input the user details. The ap-
plication opens the front camera with instructions to start the recording as "RE-
CORD". A text is prompted on the top of the display for the subject to read dur-
ing the recording. The subject should stop the recording by pressing the "STOP"
button when the recording is finished. The recorded file is saved with a subject-
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specific file name right after the capturing. Further, the second sentence appears on
the screen, and the subject continues to record all sentences in different languages.
Figure 13.1 shows the interface of the android application for data capturing. The
iOS application is also made to appear as similar as possible for user-friendliness.

Figure 13.1: Android application interface
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