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Abstract
The quality of medical images is a crucial factor that affects the performance of

several image analysis tasks. Low contrast and noise are among the widely in-

vestigated distortions in medical image enhancement problems. In this thesis, the

approaches to improve the contrast of medical images and reduce the noise have

been proposed by particularly investigating how the cross-modal guidance from

another medical image impacts the enhancement. We are particularly interested in

enhancing Computed Tomography (CT) and Magnetic Resonance Imaging (MRI)

which are widely used in both diagnosis and therapy planning. The first section

of the thesis focuses on contrast enhancement and the second section focuses on

denoising. This dissertation presents our research work supported by six original

publications (including five published papers and one accepted for publication).

First, in the context of cross-modality guided contrast enhancement, two tradi-

tional global enhancement approaches are proposed to improve the contrast of CT

images of the human liver using corresponding MR images. The first approach

uses context-aware two-dimensional histogram specification (HS) and morpholo-

gical operations. The objective of this scheme is to improve the visibility of the

organ’s anatomy to facilitate the tasks of surgeons and radiologists. The second

uses 2D-HS followed by an optimization scheme to minimize the artifacts associ-

ated with histogram-based methods and simultaneously preserves the structure of

the image during enhancement. In this approach, the enhanced images are ana-

lyzed from two perspectives (contrast enhancement and improvement in tumor

segmentation). Both techniques have been validated on multi-modal data acquired

from a hospital in Norway. Furthermore, an acceleration scheme was proposed

by parallelizing the steps involved in the proposed CE approach which drastically

reduced the execution time of the algorithm. The third method uses deep learn-

ing to improve the contrast of medical images using guidance from multi-modal

MR images. Cycle-GAN (Generative Adversarial Network) was applied for this

purpose where the corresponding high-contrast image from another modality was

used as ground truth as opposed to using manually enhanced ground truth/ refer-

ence image.

Secondly, noise is another artifact that affects the visual quality of medical im-

ages. It not only hampers the visibility of structures for clinicians who inspect

these images to thoroughly understand the organ’s morphology; but it also affects

the subsequent image analysis tasks. It is therefore imperative to remove noise

and improve the perceptual quality of medical images. Different kinds of noise

contaminate medical images. In this thesis, we proposed a method to denoise T1-

weighted (T1-w) MR images contaminated with Rician noise. We exploited the
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complementarity-aware information in better perceptual quality multi-modal med-

ical images for denoising purpose. In particular, the role of deep learning approach

was investigated in this regard. The features from dual images were combined in

a hierarchical manner to extract rich features, which are later combined in a sys-

tematic way as opposed to simple feature concatenation. The performance was

validated on two public datasets both from a qualitative and quantitative perspect-

ive. Moreover, the comparison was done with single image denoising schemes on

varying levels of noise.
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Chapter 1

Introduction

In this chapter, we present an overview of our research project describing the mo-

tivation and context, research questions addressed, list of the published papers and

the organization of the thesis.

1.1 Motivation and Context
The incidence of liver cancer is rising globally, making it fifth most frequent can-

cer and second deadliest in the world [11]. The most common type of primary

liver cancer is Hepatocellular carcinoma (Hepatocellular Carcinoma (HCC)) and

the potential curative procedure is its surgical resection. During surgical resec-

tion, the cancerous liver area need to be completely removed while simultaneously

preserving maximum residual healthy tissue. Due to limited hepatic regenerative

capability, cancer prognosis is generally poor; therefore, surgical resection of tu-

mor can only be performed for nearly 15% patients even in the initial stages [12].

With advancements in medical imaging and laparoscopic devices, liver tumor re-

section is progressively being done via laparoscopy. Laparoscopic surgery offers

several benefits over open surgery thanks to its minimally invasive nature [13],

[14], [15]. During laparoscopic surgery, few small incisions are made into pa-

tient’s abdomen to pass the surgical instruments and camera. Reduced blood loss,

less pain and faster post operative recovery are some of the benefits associated

with laparoscopic surgeries. A study [16] compared open surgery versus laparo-

scopic surgery and reported significantly less post-operative complications in case

of latter. Despite several benefits, few challenges also need to be addressed while

performing these surgeries, which include poor visualization of the field of view,

absence of tactile sense and lack of depth information. In this context, using image

3
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Figure 1.1: Illustration of a typical Image Guided Surgery, Image: courtesy of HiPerNav

partners from Oslo University Hospital

guidance techniques can significantly streamline the smoothness of laparoscopic

surgeries.

Image guided surgery employs computer based techniques that enable surgeons

to correlate the operative field with pre-operative images. This configuration im-

proves the overall surgical safety and precision when incorporated with the laparo-

scopic interventions. The setup of image guided surgery is demonstrated in figure

1.1. Image guided surgery has witnessed several developments owing to devel-

opment of efficient imaging systems and computing technologies [17]. Initially

developed for neurosurgery, this setup was later incorporated with the spine sur-

gery [18]; however, its adaption to soft tissue surgery is in the early stage. The

challenges posed to soft tissue surgery navigation include efficient pre-operative

modeling and planning coupled with intra-operative navigation guidance [19].

Pre-operative planning is heavily dependent on the quality of diagnostic images

acquired before surgery based on which intra-operative planning is done [20]. Pre-

operative diagnostic imaging encompasses various non-invasive techniques that

allow clinicians to analyze the anatomy of certain organs and determine the un-

derlying cause of abnormality. It also aids in determining the response of patients

to certain treatments. In the context of cancer treatment, Computed Tomography

(Computed Tomography (CT)) imaging remains widely accepted as a primary pre-

operative evaluation tool. Magnetic Resonance Imaging (Magnetic Resonance

Imaging (MRI)) is influential in characterizing indeterministic lesions due to its

higher sensitivity in comparison with CT [21]. It is a usual practice to acquire both

CT and MRI during therapeutic procedures. During image acquisition, noise and

artifacts are introduced making image analysis difficult both for doctors as well as
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for the computer vision algorithms. While CT image acquisition system is inex-

pensive and has faster acquisition, it is not safe for specific patients. MRI is prone

to contain motion artefacts and has acquisition time as long as 1.5 hours. Never-

theless, the concordance of MRI and CT findings also becomes essential in case of

suspicion.

This thesis aims at investigating and developing computational methods to improve

the quality of medical images such as CT and MRI. This enhancement improves

the visibility of the internal anatomy of the organs; furthermore, it makes the med-

ical images suitable for subsequent image processing tasks and analysis such as

segmentation, registration, feature extraction and classification. This work is im-

plemented under the auspices of European Union funded project High Perform-

ance Soft Tissue Navigation (HiPerNav). The objective of HiPerNav is to address

the existing bottlenecks associated with laparoscopic surgery of liver tumors. In

order to achieve this substantial goal, the project consists of several procedures

such as image enhancement, segmentation of structures in the images followed by

bio-mechanical modeling, quality assessment of the intermediate procedures and

clinical validation of results. The first milestone in the project is medical image

enhancement. This thesis is an attempt to particularly investigate the role of in-

corporating cross-modal guidance information in the enhancement process. The

applied research work proposing new and effective solutions to meet this need is

presented to fulfill the requirement of the doctoral degree at the Department of

Computer Science, NTNU Gjøvik.

1.2 Research Aims
The main objective of this research is to investigate and develop efficient solutions

to improve the quality of medical images. Medical images are often degraded

by undesirable phenomena such as noise, low contrast and other modality spe-

cific artifacts. Therefore, it is imperative to enhance the images before using them

in diagnosis and further processing. Techniques that leverage complementary in-

formation in the better perceptual quality multi-modal images can play significant

role in achieving this objective. Multi-modal images such as CT, T1-weighted

(T1-weighted (T1-w)) and T2-weighted (T2-w) MRI have been used in this work.

We have investigated the following kinds of enhancement in this thesis:

• Contrast Enhancement: In the context of image guided surgeries, the role

of image enhancement is even more valuable since it is the first operation be-

fore any subsequent process is applied. Therefore, all the subsequent tasks

rely on the outcomes of enhancement. CT images are often the first choice

to detect existence of any structural abnormality in most cases. Usually,
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MR images are also acquired in the later stages of diagnosis and therapy

planning. This work particularly focuses on exploiting the better percep-

tual quality of MR images to improve the contrast of CT images. In case

of medical images, contrast enhancement (Contrast Enhancement (CE)) is

usually done to achieve different objectives from natural images. The main

objective of this project is to develop contrast enhancement solutions and to

prove its importance in different tasks in the context of liver cancer diagnosis

and treatment. The tasks directly dependent on image quality and targeted

through this study are:

1. Visibility of organ’s anatomy

2. Segmentation of tumors

• Denoising: Medical images are often contaminated with various kinds of

noise during acquisition. This includes Gaussian noise, Poisson noise, Ri-

cian noise etc. The noise affects the visibility of important structures in

medical images and also pose challenge for the computer vision algorithms.

Indeed, any denoising operation using conventional low-pass filtering meth-

ods tends to affect other important fine structures in the image as well. The

denoising problem is therefore very delicate and it is necessary to think of

solutions that can guide this process and thus avoid negative effects on the

useful signal. Image denoising then becomes indispensable to get rid of the

noise while simultaneously preserving the significant details in medical im-

ages. We will investigate image denoising in this thesis by particularly using

the concept of guided filtering given the availability of complementary ima-

ging modalities such as CT and MRI.

1.3 Research Questions
The above mentioned objectives raise the following research questions stated be-

low. This project was undertaken to address these challenging research problems

and presented through the papers listed below..

Part 1: Research Questions related to contrast enhancement

Q1.1 Does incorporating guidance information from a different modality image

improve the contrast of a medical image for improved visibility ? (addressed

in Papers A, E).

Q1.2 Investigate if tumor segmentation methods work better on images enhanced

using proposed CE method ? (addressed in Paper B)
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Q1.3 Can the proposed contrast enhancement method be optimized ? (addressed

in Papers C, D)

Part 2: Research Questions related to denoising

Q2.1 How multi-modal guidance information could be employed for denoising

medical images using deep learning ? (addressed in Paper F)

1.4 List of Published Papers
This research work produced the following articles. Five of these articles are pub-

lished and one is accepted for publication.

Paper A Rabia Naseem, Faouzi Alaya Cheikh, Azeddine Beghdadi, Ole Jakob

Elle, and Frank Lindseth. "Cross modality guided liver image enhancement

of CT using MRI." In 2019 8th European Workshop on Visual Information

Processing (EUVIP), pp. 46-51. IEEE, 2019.

Paper B Rabia Naseem, Zohaib Amjad Khan, Nitin Satpute, Azeddine Beghdadi,

Faouzi Alaya Cheikh, Joaquín Olivares, "Cross-modality guided contrast

enhancement for improved liver tumor image segmentation", IEEE Access,

9(2021), 118154-118167.

Paper C Nitin Satpute, Rabia Naseem, Rafael Palomar, Orestis Zachariadis, Juan

Gómez-Luna, Faouzi Alaya Cheikh, and Joaquín Olivares. "Fast parallel

vessel segmentation." Computer methods and programs in biomedicine 192

(2020): 105430.

Paper D Nitin Satpute, Rabia Naseem, Egidijus Pelanis, Juan Gómez-Luna,

Faouzi Alaya Cheikh, Ole Jakob Elle, and Joaquín Olivares. "GPU acceler-

ation of liver enhancement for tumor segmentation." Computer methods and

programs in biomedicine 184 (2020): 105285.

Paper E Rabia Naseem, Akib Jayed Islam, Faouzi Alaya Cheikh, Azeddine

Beghdadi. "Contrast Enhancement: Cross-modal Learning Approach for

Medical Images", Electronic Imaging 2022 (Accepted as Oral)

Paper F Rabia Naseem, Faouzi Alaya Cheikh, Azeddine Beghdadi, Khan

Muhammad, Muhammad Sajjad, "Cross-Modal Guidance assisted Hierarch-

ical Learning based Siamese Network for MR Image Denoising", Electron-

ics, 10(10):2855, 2021
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Figure 1.2: Overview of research articles and their relationship with research questions

1.5 Dissertation Structure
This dissertation is organized as a collection of papers combined with the descrip-

tion of how each paper addresses the research question listed in Sec. 1.3. The

relationship between research questions and the corresponding papers is demon-

strated in figure 1.2. The dissertation is divided into two parts: Part I and Part
II. Part I consists of five chapters. The organization of Part I of the thesis is as

follows:

• Chapter 1 (current chapter) introduces the thesis, describes the research aims

and questions addressed in the thesis and lists the original published/ sub-

mitted articles.

• Chapter 2 elaborates the background of the research work that will help the

readers in understanding the overall context and motivation of carrying out

this work. Information regarding laparoscopic liver resection is presented

followed by navigation of laparoscopic resection.

• Chapter 3 provides summary of all the articles that constitute the thesis. The

objective, proposed methodology, results and contributions are briefly docu-

mented. Paper A proposes a method to enhance contrast of medical images

using cross-modal guidance to emphasize the visibility of the organ details

using traditional method. Paper E does this task by making use of deep

learning approaches. Paper B proposes a method to improve contrast of CT

images; furthermore, we investigate if tumor segmentation algorithm works
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better on contrast enhanced images and addresses research question Q1.2.

Papers C and D address research question Q1.3. Finally, Paper F pro-

poses deep learning based denoising approach using cross-modal guidance

and addresses Q2.1.

• Chapter 4 highlights the contributions and limitations of the thesis, few sug-

gestions for future work are given.

• Conclusion is presented in chapter 5.

Original articles produced during the course of this project are appended in the end

of dissertation and constitute Part II of the thesis.
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Chapter 2

Background and Context

This chapter presents the broader context of the problem addressed in this thesis.

Brief background knowledge regarding the topic is elaborated. The articles in-

cluded in this dissertation are closely related to the topics elaborated in this chapter

and the link is pointed explicitly. The chapter is structured as follows.

First, introduction to laparoscopic tumor resection is presented in Sec. 2.1 fol-

lowed by the description of the general workflow of surgical navigation in Sec.

2.2; it consists of pre-operative and intra-operative phases. The most widely used

medical imaging modalities are described in Sec. 2.3. Few traditional approaches

for contrast enhancement and denoising are explained respectively in Sec. 2.4

and 2.5. The motivation of using cross-modal guidance in image processing is

discussed in Sec. 2.6.2. Few neural network architectures used in this work are

briefly described (Sec. 2.7.1) which concludes the chapter.

2.1 Laparoscopic Liver Tumor Resection
Liver cancer ranks fifth frequent cancer globally among men with a high death rate

[11]. It can be either primary (developed in the liver) or secondary (originated in

another organ and later spread to the liver). Liver resection is a high-risk procedure

to remove part of the liver containing tumor by adept surgeons and is deemed as

an effective remedy for liver cancer patients [22]. The resection is recommended

for patients even in the later stages of liver cancer to prevent further progress of the

disease. With improved apprehension of liver anatomy, technological advances in

curative surgery, the survival rate among liver cancer patients continue to improve

during the last few years [23]. Liver resection, also called hepatic resection can be

performed as either open surgery or laparoscopic surgery. Figure 2.1 demonstrates

11



12 Background and Context

Figure 2.1: Demonstration of (a) laparoscopic surgery and (b) open surgery, Images:

courtesy of HiPerNav partners from Oslo University Hospital

the generic setup of open surgery and laparoscopic surgery. The traditional open

surgery is undertaken by making a wide incision into the patient’s body; the whole

surgery is then performed with direct access of the surgeon to the surgical field. In

the latter approach, also regarded as minimally invasive surgery, the surgery takes

place by using surgical instruments that are inserted into the patient’s abdomen via

small incisions. While the traditional option for resection has been open surgery,

laparoscopy surgery is replacing its open surgery counterpart.

Laparoscopic surgery begins with the creation of pneumoperitoneum when car-

bon dioxide gas is insufflated into the abdomen. Pneumoperitoneum establishes

adequate space to visualize the target organ using a laparoscopic camera. The sur-

gical instruments are then passed into the abdomen. Laparoscopic surgery has

been substantially applied to various abdominal organs including the liver and

colon during recent years [24] accompanied by reduced blood loss, shorter hos-

pital stay, and less post-operative care [25]. However, these benefits also bring

some challenges associated with laparoscopic surgery. As opposed to open sur-

gery, laparoscopic surgery prevents a direct view of the organ. The camera in-

serted through the abdomen captures a smaller field of view of the organ being

operated. Moreover, tissue manipulation using instruments without tactile feed-

back and strenuous hand-eye coordination are some challenges that necessitate

substantial experience for surgeons performing these surgeries [26].

Commercial systems for liver surgery navigation also exist. IQQA �Liver (EDDA

Technology, Inc.) provides comprehensive toolset to evaluate the automatic volu-

metric quantification of liver, liver segments, hepatic lesions, and vascular struc-

tures from CT data. CAS-ONE Surgery and CAS-ONE IR (CAScination, Bern,
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Figure 2.2: Generic workflow of surgical navigation: pre-opearative and intra-operative

planning, Images: courtesy of HiPerNav partners from Oslo University Hospital

Switzerland), the navigation systems designed for ablation of tumors found in

liver, lung etc. Furthermore, many open-source platforms have been developed

such as CustusX [27]; it can localize tumor via navigated Ultrasound during sur-

gery. NorMIT (a collaboration between two hospitals of Norway) offers another

platform for image-guided interventions.

The above-stated challenges posed to laparoscopic surgery prompt the develop-

ment and improvement of computer-assisted systems to facilitate surgical planning

and operating environment. In the subsequent section, we present an overview of

the surgical navigation systems.

2.2 Treatment Planning and Surgical Navigation
Surgical navigation is a means of using diagnostic images together with positional

tracking devices to guide surgeons in carrying out surgical interventions effect-

ively. This setup tracks the location of the surgical equipment through cross-

sectional medical images or Three dimensional (3D) anatomical models recon-

structed from these images [28].

The first attempt of exploiting imaging techniques in the guidance of surgical in-

terventions dates back to 1985 when x-ray imaging was utilized to identify the

location of a sewing needle in a woman’s hand [29]. Further advancements in dia-

gnostic imaging methods and allied computer-based technologies are paving the

way for the rapid development of surgical navigation systems. This development

in navigation has also benefited laparoscopic liver resection. The generic work-
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Figure 2.3: Demonstration of intra-operative navigation (a) intra-operative imaging data

acquisition using robotic cone-beam CT [1], (b) alignment of pre-operative CT data (left),

intra-operative US (middle) and 3D model (right) (CAScination, Bern, Switzerland)

flow of a surgical navigation system can be divided into two phases: pre-operative

phase and intra-operative phase. The details of each phase are shown in figure 2.2.

The pre-operative phase consists of all the procedures done before the commence-

ment of surgery. This phase starts with image acquisition; CT and MRI are the two

modalities commonly acquired during this stage. Different anatomical structures

in the liver including liver parenchyma, hepatic and portal veins, and tumors are

segmented afterward. 3D modeling techniques combined with segmented struc-

tures contain all the information required to do surgical planning where a virtual

resection is defined [30]. The virtual resection helps surgeons in visualizing the

path that separates the cancerous tissues from the residual healthy liver paren-

chyma. Intuitively, the geometric information contained in the 3D models and

resection plan serves as crucial information helping surgeons prior to and during

surgery. During the intra-operative stage, surgeons use the pre-operative models

as reference during surgery. In this framework, surgeons have to cognitively align

the intra-operative surgical reality with the pre-operative models. However, the

liver is a complicated organ comparatively prone to tissue deformations and organ

shift once surgery starts. Pneumoperitoneum (insufflation of the abdomen) and sur-
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gical treatment can cause the organ shift of up to 28 mm [31] and is, therefore, li-

able to create inconsistency between pre-operative and intro-operative fields. This

challenging scenario necessitates intra-operative imaging. Teatini et al. [32] con-

ducted a study to analyze the impact of intra-operative imaging in surgical navig-

ation when displayed as Augmented Reality. It was experimentally validated that

intra-operative imaging plays a significant role in compensating the deformations.

Therefore, navigation during the intra-operative stage is crucial and several studies

have been conducted to further advance in this field.

Intra-operative navigation relies on intra-operative data to update the pre-operative

models; furthermore, this data guides surgeons throughout the surgery. This guid-

ance can possibly be a) information regarding tracking instruments and overlaying

them on the 3D model. b) delivering accurate localization information of the or-

gan’s anatomy obtained by intra-operative imaging corresponding to the 3D model

and c) making use of augmented reality during the intervention.

It is pertinent to note that the role of imaging techniques becomes critically im-

portant at this stage since intra-operative imaging data is an important source of

information for the subsequent processes of navigation. Figure 2.3 shows the pre-

operative CT registered with intra-operative ultrasound to locate the tumor being

resected. It should be noted that during all these phases the quality of the images

and videos is of paramount importance and should be given full attention for the

success of the whole workflow. This thesis focuses on the initial phase of the nav-

igation, that is pre-operative planning phases. Next, we describe most commonly

used medical imaging modalities.

2.3 Cross-modal Imaging for Treatment Planning
Diagnostic imaging can be generally categorized into two branches: structural and

functional imaging. The former is used to determine the morphology of organ

and to analyze changes in the structure. Computed Tomography, Magnetic Reson-

ance Imaging and Ultrasound are among the most widely used structural imaging

techniques, while Positron emission tomography is the most popular functional

imaging method, particularly used in cancer treatment.

2.3.1 Computed Tomography

Computed Tomography combines the Two dimensional (2D) projection imaging

of radiography and fluoroscopy to generate a cross-sectional view of the human

body. CT acquires multiple projections from arbitrary orientations to reconstruct

the object of interest, which facilitates volumetric measurements. CT enables dis-

crimination among tissues having similar density. The first CT scanner was used

at a hospital in London in 1971 developed by Hounsfield and Cormack [33]. Ex-
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Figure 2.4: CT - liver

tensive research by the medical community has led to the development of variants

of CT scanners such as helical CT, cone-beam CT. C-arm Cone-Beam CT (CBCT)

is an innovative technology that does not require relocation of a patient and can

be integrated into the intervention suite. It is capable of acquiring the whole volu-

metric data covering a large anatomical area of interest in a single gantry rotation

exploiting a 2D detector system, unlike conventional CT. The acquisition time of

CT scanners is fairly short; however, since CT scans use x-rays and carry ionizing

radiation, they can be potentially harmful to certain patients such as pregnant wo-

men. Moreover, there are some limitations such as low contrast which necessitates

the use of other modalities such as MRI in certain cases. CT scan of liver is shown

in figure 2.4; it can be noticed that the tumor inside liver cannot be seen clearly

due to low contrast of the image.

2.3.2 Magnetic Resonance Imaging

MRI is widely used in diagnosis concerned with the organs such as heart, brain,

and liver. Several imaging protocols render MRI to highlight and therefore visu-

alize a variety of tissue types. By varying image sequence parameters, soft tissue

contrast can be altered, which eventually aids in examining the margin of tumors.

MRI is based on Nuclear Magnetic Resonance. It uses magnetization properties

of certain atomic nuclei in the human body (the most common is hydrogen) [34].

These nuclei spin in a randomly aligned axis. MRI scanner creates a strong ex-

ternal magnetic field, which forces nuclei in the human body to align themselves

with this field. Radio Frequency (RF) pulse is then brought orthogonal with the

magnetic field to excite the nuclei, which induces another magnetic field. The nuc-

lei start oscillating longitudinally to the external magnetic field, which is termed



2.3. Cross-modal Imaging for Treatment Planning 17

Figure 2.5: MRI - liver

‘relaxation’. During this realignment, RF waves are emitted that can be detected

by sensors. The amount of energy released and the time it takes for nuclei to re-

align with magnetic field depends on the static magnetic field, applied excitation,

and nature of molecules. Faster proton realignment will create a brighter image.

Magnetic properties can be used to tell difference between various types of tissues

in the human organ, which establish contrast in MR images. Liver MRI is shown

in figure 2.5. Two kinds of relaxation can be distinguished: T1-Relaxation and

T2-Relaxation, which are briefly explained below:

Magnetic Resonance Imaging-T1

T1-Relaxation also called longitudinal relaxation is the procedure of restoring

magnetization longitudinal to the external magnetic field after RF pulse is applied

[34]. This restoration is described by an exponential function that is subject to

time constant T1. This constant quantifies the time needed to recover 63% of

initial magnetization; besides, this time is distinct for each kind of tissue. This

process is termed ‘spin lattice relaxation’. Figure 2.6 shows T1-w MR images of

the human brain (axial view); blood and fat appear bright whereas Cerebral Spinal

Fluid (CSF) is dark.

Magnetic Resonance Imaging-T2

T2 Relaxation, also called transverse relaxation or spin-spin relaxation quantifies

the decay of transversal magnetization since RF pulse is applied. Quantified by

time constant T2, it represents the time until the initial signal caused by the trans-

verse magnetization drops to 37% of its primary magnitude [34]. T2 values also

depend on the tissue type akin to T1. The clinical use of T2 relaxation is in T2-
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Figure 2.6: Brain MRI a) T1-w b) T2-w

weighted MRI. Body tissues higher in water content appear bright on T2-w MRI.

T2-w MRI of human brain is shown in figure 2.6.

2.3.3 Ultrasound Imaging

Ultrasound (US) is used in the clinical suite for several decades. Dr. Karl Theo

Dussik applied it for the first time in diagnosis of brain related disorder [35].

US is preferred over other imaging modalities primarily due to its portable and

non-ionizing nature, rendering it favorable as an effective intra-operative imaging

tool. Furthermore, US also enables doctors to examine the cross-section of an or-

gan. The ultrasound operating frequency in the context of medical imaging ranges

between 2 MHz and 40 MHz [36]. The basic principle of medical US image ac-

quisition is based on the pulse-echo technique. The transducer transmits pulses

of ultrasound echo to the human body. Meanwhile, few pulses penetrate farther

into the body tissues of various acoustic impedances and few are reflected from

the tissues back to the transducer. The combination of signals returned from the

series of pulses forms an image. US is frequently used in the examination of soft

tissues, vessels, and fluids accumulated in organs. Figure 2.7 shows ultrasound of

human liver.

After describing the various types of commonly used imaging modalities in sur-

gical navigation, we describe in Sec. 2.6 the basics of guided filtering and how

it is related to this thesis. However, we restricted our focus on CT and MRI in

this thesis; the role of ultrasound in CE and denoising was not explored due to the
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Figure 2.7: Ultrasound - liver

unavailability of US data.

2.4 Contrast Enhancement
Images are subject to several kinds of degradation during acquisition due to vary-

ing lighting conditions, sensor resolution, the noise inherent to specific acquisi-

tion systems, and some specific physical factors that impact the performance of

the available imaging modalities. Considering medical images, other factors such

as patient movement could also lead to artifacts that necessitate image enhance-

ment. Generally, enhancement is done to improve contrast and brightness, min-

imize noise, and improve resolution. The ultimate goal of this process is to make

these degraded images visually better for perception. Image enhancement is a

broad topic; we summarize in the figure 2.8 the widely researched subdivisions of

image enhancement. Among different areas of image enhancement, contrast en-

hancement is the process of amplifying the intensity difference among pixels in an

image to make its interpretation easier and meaningful for humans and computer

algorithms. Human eyes are more sensitive in detecting large intensity variations

in an image than small variations and thus well perceive the details correspond-

ing to greater intensity differences. The visibility of details also depends on the

context in which the structures are observed and in particular their relative spa-

tial frequency sensitivity. Indeed, the visual system acts roughly as a directional

bandpass filter. It is therefore important to take this into account implicitly or ex-

plicitly in the development of image processing tools and particularly in contrast

enhancement.

Contrast enhancement is a fundamental problem in image processing and is a sub-

jective process since the quality of enhanced images is determined distinctly by

the human visual system. In medical images, the objective of CE is generally to

improve the visibility of low contrast images to facilitate the radiologists in the

interpretation of the diagnostic images. Secondly, the medical images are used as
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Figure 2.8: Subdivision of Image Enhancement

input to several tasks such as segmentation, classification, registration; therefore,

contrast enhancement is an important pre-processing step applied to improve the

performance of the underlying algorithms. In this thesis, the contrast of CT images

is improved to primarily achieve these twofold objectives.

2.4.1 Histogram-based Approaches

Numerous techniques have been presented to enhance the contrast of images

[6, 37, 38, 39]. Contrast enhancement can be done globally or locally, where

global techniques consider the whole image (statistics) as opposed to local ap-

proaches that operate in a small neighborhood of an underlying pixel [6]. Histo-

gram Equalization (Histogram Equalization (HE)) is one of the most extensively

used approaches for image enhancement. It remaps intensity values in the im-

age so the enhanced image has a uniform pixel distribution. Similarly, Histogram

Specification (Histogram Specification (HS)) is another approach widely used for

contrast enhancement that takes an image of better perceptual quality/ rich con-

trast where the goal is to remap the pixel values in the input image to that of target

image using its histogram as reference [40].

HE suffers from an intrinsic limitation, it tends to over-enhance the image, lead-

ing to unnatural appearance and artifacts. These visual flaws were investigated

by various researchers and numerous methods were presented to rectify these ar-

tifacts [41, 42]. Brightness preserving bi-histogram equalization (BBHE) is one

such method that applies HE independently on two sub-images after dividing the

original image based on its mean intensity value, one in the range of minimum gray
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value to mean and the other from mean to maximum gray value [43]. The proposed

method preserves the brightness of the image during enhancement. This idea was

followed by another approach Equal Area Dualistic Sub-Image Histogram Equal-

ization [44], that bifurcates the histogram based on the gray level with cumulative

distribution function (Cumulative Distribution Function (CDF)) equal to 0.5. Both

the approaches produce visually pleasing images compared to HE when applied to

very bright or dark images. However, the issue of artifacts somehow still prevails

when spikes exist in the histogram.

Adaptive Histogram Equalization (AHE) divides an image into small distinct

blocks and then histogram equalization is applied to each block separately. How-

ever, it is prone to amplify noise particularly in rather homogeneous areas of the

image. Contrast-limited adaptive histogram equalization (Contrast-limited adapt-

ive histogram equalization (CLAHE)) [45] is a variant of AHE and a method to

counter the over-amplification phenomenon in the AHE. It does so by limiting the

amplification. Bilinear interpolation is applied at the edges of tiles to combine the

results.

2.4.2 Context-Aware Histogram-based Approaches

The inherent saturation and over-enhancement phenomenon associated with

histogram-based approaches have been improved by several schemes including

the ones mentioned above. However, one aspect that should be highlighted here is

that mere use of first-order statistics, namely, one-dimensional histogram does not

provide adequate information regarding the spatial structural information in the

image. This essential issue prevents these approaches to eradicate artifacts. One

potential solution in this perspective is to incorporate second-order statistics, i.e.,

the spatial information of an image, in devising a more robust image enhancement

technique. The 2D histogram is one of the ways to incorporate contextual inform-

ation as well while applying histogram-based operations. Let us consider an input

image [Z] = {Z(m,n)|1 ≤ m ≤ M, 1 ≤ n ≤ N}, where Z(m,n) is the grey-

level of pixel (m,n) taking its values within the dynamic range [Zmin, Zmax] and

M×N is its size in pixels. One of the ways to express 2D histogram is in terms of

Gray-level Co-occurrence Matrix. Its mathematical expression is given as:

CZ(i, j) =
K−1∑
i=0

K−1∑
j=0

δij(Z(m,n), Z(p, q)), (2.1)

Here, i and j represent the pixel values and (m,n) and (p, q) represent the image

coordinates, K is the total number of grey levels, and 0 ≤ i, j ≤ K − 1,
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δij(a, b) =

{
1, if i = a and j = b

0, otherwise

The transition probability of grey-levels, i.e. the 2D normalized histogram, is de-

rived from the GLCM as follows:

hZ(i, j) =
CZ(i, j)∑K−1

i=0

∑K−1
j=0 CZ(i, j)

(2.2)

The 2D-histogram is then used in the pixel grey-level mapping process using the

histogram specification method (Paper A). This mapping process is based on the

two-dimensional CDF of the input and reference images (Papers A and B). Since

Two-dimensional Histogram Specification (2D-HS) works in context-aware fash-

ion, it performs better than its context-free (1D) counterpart.

Applying 2D-HS enhances the image contrast but the resultant image loses struc-

tural similarity with the original image. This limitation phenomenon can be con-

trolled by including some criteria to maintain this structural similarity with the

original image. The strategy proposed in this thesis to counter this effect is the use

of structural affinity related measure, namely Structural Similarity Index (Struc-

tural Similarity Index (SSIM)) gradient [46] (the mathematical expression is given

in Paper B). SSIM is a well established index to compute the degree of similarity

between two images [47]. Considering one image as reference, the index provides

the quality of underlying image in comparison with a reference. SSIM index is cal-

culated between corresponding local blocks in images [Z] and its enhanced variant

[Z ′], after which the average of the values is taken to obtain a single value of SSIM

as the overall similarity index. Let us assume that zx and z′x represent correspond-

ing block x in both images; the SSIM between the two blocks zx and z′x is then

expressed as:

SSIM(zx, z
′
x) =

(
2μzxμz′x + C1

) (
2σzxz′x + C2

)(
μ2
zx + μ2

z′x
+ C1

)(
σ2
zx + σ2

z′x
+ C2

) (2.3)

μzx and μz′x represent the mean intensity values of zx and z′x and σzx and σz′x are

the corresponding standard deviations. C1 and C2 are small numbers greater than

0 to ensure denominator is not zero. The key terms in equation 2.3 are described

mathematically as:
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μzx = w ∗ zx,
σzxz′x = w ∗ (zxz′x)− μzxμz′x , (2.4)

σ2
zx = w ∗ z2x − μ2

zx

where w is 11× 11 Gaussian kernel and ∗ indicates convolution.

Contrast enhancement is a highly subjective process. However, it is important to

determine the extent of desired enhancement. A goal-oriented contrast enhance-

ment scheme is proposed in the Paper B, where the goal is to enhance the CT

image so that tumors in the image are discriminated from the rest of the organ, and

segmentation algorithms, therefore, work better. An approach proposed in Paper
B formulates one such criteria.

2.5 Noise in Medical Images
Noise can be conceived as a random variation of the actual pixel value. Noise is

introduced in the images as a consequence of several physical procedures occur-

ring during image acquisition. It not only affects the image quality but also the

results of several analysis tasks such as feature extraction, segmentation, detection

[48, 49]. Several studies report that the results of segmentation and edge detection

in medical images show noticeable improvements when the algorithm is applied

to denoised images as opposed to noisy image [50, 51].

Image denoising is therefore an essential operation that make images suitable for

analysis and further processing. Image denoising entails estimating an unknown

noise-free image Z given a noisy observation Y. Using the classic additive image

degradation model:

Y = Z +N (2.5)

where image Z is contaminated by additive white gaussian noise N having a vari-

ance σ2. Gaussian is considered as one of the common noise models, where the

noise is normally distributed over a range of values. Modeling gaussian noise is

important since it is a nice approximation to various kinds of noise. Gaussian

additive noise can be described through normal distribution as:

p(z) =
1

σ
√
2π
· e−(z−μ)2

2σ2 (2.6)
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Figure 2.9: Noise in MRI: (a) Noisy (b) Non-noisy

where p(z) is a probability density function, z indicates image’s gray level, μ in-

dicates mean, while σ and σ2 are the standard deviation and variance respectively.

Note that MR images are subject to Rician noise [52, 53]. This noise associated

with the motion of charged particles in the radio-frequency coils is introduced

during MRI acquisition. Assuming noise in Z is Rician distributed, we can express

its PDF as:

p (N | Z, σ) = N

σ2
exp−

(N2+Z2)
2σ2 J0

(
ZN

σ2

)
ε(N) (2.7)

In the above equation, J0 represents the 0th order Bessel function, N is a Rician

distributed random variable. ε(.) is the unit step Heaviside step function implying

that the PDF expression is valid for non-negative values of N . The Rician noise is

signal-dependent and shows Gaussian distribution if Signal-to-Noise Ratio (SNR)

is high and Rayleigh distribution if SNR is low [54]. Figure 2.9 shows T1-w brain

MRI contaminated by Rician noise and the corresponding image without noise. It

is certain that noise impacts the visibility of important information in the image.

Confiscating Rician noise is a difficult task because of its signal-dependent char-

acteristic. However, there exist several denoising approaches in the literature

[55, 56]. Few denoising approaches are briefly summarized below.
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2.5.1 Denoising

A considerable number of spatial filters have been presented in the past to denoise

images, which can roughly be categorized as linear and non-linear filters. Primar-

ily, linear filters such as mean filter [57] based on local averaging were designed

to eradicate noise, however, they over-smooth the image. Several non-linear filters

were proposed to better preserve the edges while denoising [58, 59]. Anisotropic

filter [60, 61], for instance, was able to bypass the blur implicit to mean filter; it

smoothes the image in a direction orthogonal to the gradient direction. Bilateral

filter [62] is another edge-preserving smoothing filter that replaces each pixel by

the weighted average of nearby pixels but based on their geometric proximity and

variation of intensities to preserve edges. Unlike local smoothing filters, non-local

means filter [7, 63] performs particularly well in denoising images when the image

contains various regions of different types of textures. They compute the weighted

average of not only the local neighborhood but also all the pixels in an image; this

weightage depends on the similarity between the target pixel and other pixels in

the image. Other approaches to noise filtering by analysing the signal in a multi-

dimensional space have been proposed in [64, 65].

Wavelet denoising schemes generally decompose the image into various wave-

let coefficients using the discrete wavelet transform followed by the application

of hard thresholding and soft thresholding [66] on the detail coefficients. Hard

thresholding methods shrink the wavelet coefficient to zero lying in a certain

range, while those beyond the specified range remain unaltered. Contrarily, in

soft thresholding, the coefficients in the specified range are contracted to zero like

hard thresholding but those beyond the specified range are contracted down by a

constant value. The wavelet-based denoising methods preserve sharp edges better

compared to spatial domain methods. The latest trend in denoising approaches is

based on deep learning methods which are briefly summarized in Sec. 2.7.

2.6 Guided Filtering
Guided filter was introduced a decade ago as an edge-preserving smoothing filter

[67]. The filter was proposed to address some of the limitations such as over-

smoothing of edges associated with filters such as bilateral filter [64]. The filter

uses the same image or another image to transfer the characteristics of guidance

image to the input image. In many approaches presented later, the guidance image

is an image of better perceptual quality while the input image is either a noisy, low-

contrast or an image containing some artefacts. Let us consider an input image Z
and a guidance image G, image F is the filtered image. The pixel value at index i
in image F is then calculated as:
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Fi =
∑
j

Wij(G)Zj (2.8)

i and j in above equation represent pixel indices. The filter kernel Wij is a function

of G. It is assumed that F is a linear transform of G in a window ωc centered at

pixel c. The value of output pixel at location i depends on the value of guidance

image’s pixel at i and two constants p and q (whose value is assumed to be constant

over the entire window ωc) and is expressed as:

Fi = pcGi + qc, ∀i ∈ ωc (2.9)

A constraint is introduced to force the filtered output image to be close to the input

image Z. Another regularization term is included to enforce the degree to which

the characteristics of guidance image G should be embedded into the output image

F. The following equation represents this constraint:

E (pc, qc) =
∑
i∈ωc

(
(pcGi + qc − Zi)

2 + εp2c

)
(2.10)

The value of constants p and q is calculated based on both G and Z as follows:

pc =

1
|ω|

∑
i∈ωc

GiZi − μcZ̄c

σ2
c + ε

(2.11)

where μc and σ2
c represent the mean and variance of G enclosed in ωc, and ε is the

parameter selected for regularization. Z̄c is mean of Z in ωc). The constant q is

simple to calculate and essentially depends on the mean of input image values and

guidance image values contained in ωc.

qc = Z̄c − pcμc (2.12)

The basic assumption of a guided filter is a local linear model between the guidance

image and the filtered image. The model assumes that the input and guidance

images are accurately registered (aligned). Guided filter became very popular and

has been applied to problems such as denoising, dehazing, super-resolution [68]

and contrast enhancement [69].
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Figure 2.10: Cross-modal denoising [2]: (a) RGB (b) NIR (c) Scale map

2.6.1 Cross-modality guided enhancement - Natural Images

Inspired by the idea of exploiting supplementary information in another image to

enhance the image with some sort of artifacts (similar to guided filtering), image

enhancement has been applied to a variety of sub-tasks such as denoising [2],

contrast enhancement [70], super-resolution [71] and de-blurring [72] to name

a few. The idea was also extended to multi-modal images. Information from a

cross-modal image carrying complementary information (and or better perceptual

quality) was integrated in the cross-modality guided denoising and enhancement

approaches [2, 73]. These approaches in general outperformed similar approaches

that do not include the cross-modal information.

The cross-modality guided enhancement techniques applied to natural images in-

clude spatial domain, wavelet domain [70], and variational methods [2]. One such

work exploited the rich details in the Near Infra-Red (NIR) image to enhance the

corresponding RGB images by transferring contrast and detail using Haar wavelet

[74]. Similarly, using a pair of NIR flash images and noisy RGB image, denoising

and detail enhancement of the RGB images was done using an edge-preserving

based weighted least square optimization approach [70]. Yan et al. [2] presented a

denoising approach to improve some limitations of the traditional cross-modal de-

noising methods [70, 74], such as the failure to handle gradient divergence between

the two modalities and the inability to retain sharp edges during restoration. They

constructed the scale-map, obtained from the corresponding gradients in guidance

and input images. An objective function was then formulated to update the initial

scale map which was then used to denoise the RGB image until the convergence

is achieved (in about 4 to 6 iterations). NIR image was used as guidance image in

their approach. The input and guidance image along with the scale-map produced

during restoration in the approach of [2] are shown in figure 2.10.
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Conventionally, the cross-modal denoising or enhancement schemes apply regis-

tration to align the input and guidance images [2]. This step significantly eases

further processing making the application of sophisticated local operations pos-

sible. Since these approaches incorporate additional information via cross-modal

guidance in the enhancement process, they can retain smaller details in the re-

stored image and better handle the gradient reversal effects. For instance, Yan et

al. [2] report the comparison between a well-known single image denoising al-

gorithm BM3D [9] and their proposed cross-modal denoising scheme, where it

was demonstrated that [2] yields sharp edges and improved restoration in compar-

ison with BM3D. However, these methods sometimes fail when the guidance im-

age contains shadow or highlight effects that leads to transfer of wrong structures

in the restored image. In this scenario, deep learning provides much more robust

solutions due to efficient feature learning. The deep learning-based methods are

discussed in Sec. 2.7.

2.6.2 Cross modality guided Medical Image Enhancement

Multimodal medical images are being heavily acquired in the clinical suite since

each imaging modality brings distinct value to medical image analysis. Computed

Tomography (CT) imaging is preferred by radiologists for analyzing hard struc-

tures in the human body, for instance, bone fractures and bone tumors [75]. MRI

is considered ideal for showing different kinds of soft structures such as tumors and

lesions [76]. Ultrasound is widely preferred as an intra-operative imaging modal-

ity because of its non-ionizing nature and quick acquisition [77]. Motivated by the

performance of cross-modality guided techniques in the context of natural images,

similar approaches can be applied to medical image analysis as well. However,

very limited research has been done in this area such as the approaches presented

by [56] and [78]. This leaves a huge gap for further exploration of this area.

In the next subsections, we elaborate the motivation of employing cross-modal

guidance approaches in medical image analysis as well as challenges associated

with this area.

Motivation

The trend of using multiple medical imaging modalities for the same target prob-

lem is growing, thanks to the availability of multiple imaging methods and tech-

nical progress. CT-PET and MRI-PET scans are acquired simultaneously during

oncology procedures [79, 80]. PET scans show metabolic changes in tissues, while

CT and MRI carry anatomical information; both play a significant role in analyz-

ing tumor profile and therapy planning. Similarly, CT and MRI are acquired for

the detection and prognosis of certain disorders. Multiple pulse sequences allow
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Figure 2.11: Brain MRI a) T1-w b) T2-w

MRI to show several tissues in varying contrasts. T1-w MRI is preferred in the

quantification of atrophy [81], an irrevocable loss of neurons linked with multiple

sclerosis. T2-w MRI manifests ‘substantia nigra’, (a portion of the brain affected

due to Parkinson’s disease) clearly compared to T1-w MRI [82]. The existence of

specific pathologies characterized by miscellaneous topography needs to be con-

firmed using dual modalities. The accurate characterization of ‘Craniopharyngio-

mas (CPs)’, a certain type of brain tumor aids surgeons in analyzing surgical risks

linked with a specific type. A cohort study including 200 surgically treated CPs in-

ferred that the radiological variables found on both T1 and T2-w MRI anticipated

the topography accurately in 86% instances [83]. This correlation was confirmed

between the radiological findings and the actual CP topography discerned during

surgery. Another study endorses analysis of both modalities to avoid ambiguous

hypotheses regarding brain structures [84]. Comparison of T1-w and T2-w brain

MRI is shown in figure 2.11 which shows several common structures.

It is important to point out that diverse imaging modalities encompass comple-

mentary information that can be particularly influential in computer-assisted dia-

gnosis. This complementarity-aware redundant information has proven its ef-

ficiency in tasks such as segmentation, classification, and denoising [85]. The

concept of ‘weak learnability’ also encourages its application in medical imaging.

In the context of ensemble learning, the notion of ‘weak learnability’ states that a

learner can be incorporated into the learning system to augment its performance

if it can perform slightly better than random guessing [86]. Based on this notion,
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a study compared the segmentation outcomes achieved using a single MR image

against multi-modal MRI. The segmentation accuracy increased significantly when

multi-modal MR images were used. Another study combined PET, MRI, and CT

in medical image segmentation [86], it was concluded that combining multiple

modalities yielded better performance compared to that obtained using a single

modality. A similar deep learning-based approach segmented tumor volume in

multi-modal PET/ CT images for head and neck cancer patients [87]. This method

outperformed methods that use either PET or CT but not both.

Challenges

Health care sector is a highly sensitive sector where the services and solutions

are expected to be accurate irrespective of the cost incurred. The medical images

are analyzed and interpreted by medical specialists; this interpretation is subject

to subjectivity. Inspired by the success of deep learning in several sectors, the

medical sector is also benefiting from the strength of this field. However, deep

learning faces certain challenges when applied to medical applications [88], some

of which are listed:

• Dataset: Deep learning algorithms need a huge amount of data to train the

network in order to achieve accurate results. Developing a large number

of medical imaging datasets is challenging, especially keeping in view that

tasks such as classification and segmentation need annotations by experts.

The involvement of multiple experts also becomes critical to minimize the

likelihood of human error. Besides, unbalanced data is also an obstacle in

applying deep learning to medicine, since it is not easy to acquire data of

rare diseases which ensues class imbalance issues. The availability of multi-

modal medical imaging data is even challenging. There are very few pub-

licly available databases containing multi-modal medical data [89, 90]; they

contain data of few organs such as the brain, while data of several organs is

difficult to find.

• Privacy and Legality: Data privacy is a significant concern in the med-

ical imaging domain, which is not associated with other kinds of real-world

data. Health Insurance Probability and Accountability Act of 1996 legalize

patients to protect their personally identifiable data [88]. It restricts health

care professionals to disclose patient-related information. Restricted access

to data and discarding valuable information could also impact the data util-

ity.

• Data Interoperability and Data Standards: The data acquired using dif-

ferent sensors and hardware sufficiently varies. Moreover, deep learning
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Figure 2.12: Network architecture of Joint Image Filter [3]

methods require a drastic amount of data to yield reliable outcomes. Inter-

operability of data then becomes indispensable.

• Deep Learning as Black Box: Deep Learning opened new avenues of ap-

plied research and has solved several challenging problems that were con-

sidered unsolvable before. Although, neural networks are based on math-

ematical models of the functioning of some stages of the cortex of the brain

of certain mammals, where the algorithms accepts data, finds patterns and

makes the decision, it is still deemed as a black-box and it is difficult to com-

prehend how a model actually works or performs better [91]. Furthermore,

the architectures describing the interconnections between the different lay-

ers are not convincingly justified and are often evaluated using more or less

blind test approaches based on heuristics.

2.7 Deep Learning applied to Image Enhancement
Similar to other areas of image processing such as object recognition [92], object

tracking [93] and semantic segmentation [94], image enhancement [95] has also

benefited from deep learning. These approaches include single image enhance-

ment and cross-modal enhancement approaches. Most approaches in this regard

formulate image enhancement as a supervised learning problem, where the net-

work is trained end-to-end using low contrast image as input and high contrast

image as ground truth [96]. Cross-modal enhancement approaches use a supple-

mentary modality to augment the deep learning model with additional learning

capability. One such primary approach denoises depth images using correspond-

ing RGB images [97]. The proposed method was simple, which consisted of ex-
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Figure 2.13: Image Denoising: a) Noisy CT (b) Denoised CT

tracting features from the dual images using two separate networks. The networks

are three-layer CNNs, CNNI and CNNG. These features are concatenated to be fed

to the third Convolutional Neural Network (CNN), CNNF which outputs restored

image. This work was further extended by inserting a skip connection between the

noisy input image and the network output [3]. It enables the network to predict

residuals between the noisy input image and the output. Therefore, the network

learns to selectively transfer structures common in images and suppresses the in-

consistent structures. Figure 2.12 shows its network architecture.

Next, we explain the deep learning approaches applied to medical image enhance-

ment.

2.7.1 Deep Learning based Medical Image Enhancement

Medical images are susceptible to various kinds of noises introduced during ac-

quisition. CT images, for instance, are subject to a combination of Poisson and

Gaussian noise [51]. MRI is usually known to contain Rician noise, while speckle

noise is dominant in ultrasound images. Denoising methods aid in removing this

undesired noise from the medical images. Denoising techniques discussed in this

thesis are the post-processing techniques applied in the image space. Medical

imaging benefits from denoising for several reasons. In addition to improving the

image quality to facilitate diagnosis for clinicians, denoised images also facilitate

feature extraction task for machine learning algorithms. A noisy CT image and its

corresponding denoised image are shown in figure 2.13.

Deep learning-based denoising methods can be broadly grouped as single image

denoising methods and cross-modal denoising methods. In the context of super-

vised single image denoising methods, various methods have been proposed. One

of the earliest methods proposed for medical images was applied to correct the

uneven illumination in dermoscopy images [98]; a fully convolutional neural net-
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work(FCN) was used for this purpose. A method applied to CT image denois-

ing includes a Residual Encoder-Decoder CNN (REN-CNN) [99]. The authors

used low-dose CT images as input to the network and normal-dose CT as ground

truth to demonstrate the learning capability of their network. The majority de-

noising networks including REN-CNN only use Mean Squared Error (MSE) as a

loss function, which makes the resultant images appear blurred. Generative Ad-

versarial Network (GAN) based on generative modeling was introduced to minim-

ize the undesired smoothness introduced due to sole usage of MSE [100]. Further-

more, MSE was combined with structural similarity index loss for better results

[101]. Several variants of GANs emerged offering improvements over their pre-

vious counterparts in retaining the quality of images during denoising [51]. The

generic structure of GANs is explained in the next subsection. The deep learning

models are trained to learn the mapping from noisy image Y to the noise-free im-

age Z. In cross-modality guided denoising approaches, the models are trained to

consider another image G from a different modality as well during this learning

process.

Ẑ = f(G, Y ) (2.13)

The deep learning model is then trained to minimize the loss function L:

f∗ = argminL(f(G, Y ), Z) (2.14)

Very few cross-modality guided denoising schemes targeted to medical images ex-

ist in the literature [56, 102]. One such work consolidated information from PET

and MRI (T1 and T2 FLAIR) to denoise ultra low-dose (very low-dose) PET im-

ages [78]. The proposed method was a fully convolutional network implemented

as a multi-scale encoder-decoder structure (U-Net [102] with residual learning).

The proposed denoising scheme offers the prospect to curtail the radiation dose

given to certain patients without compromising on the quality of acquired images.

Another similar approach used T1-w and T2-w brain images for denoising. The

proposed method [56] combined a guided filter with the guidance map generator,

which was realized as U-Net [102] with two branches in the encoding path. Each

branch encodes features of each modality individually which are concatenated in

the end. The guidance filter combines the output of the network with the input

image to yield a denoised image.

The above-mentioned methods do not fully realize the potential of cross-modal

guidance, as they extract features individually from each modality and concaten-

ate in the last layer of encoding path. This approach does not fully exploit the
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Figure 2.14: Generative Adversarial Network

essence of cross-modal guidance, which leaves a huge gap for further research.

A method incorporating hierarchical cross-modal feature manipulation using Sia-

mese network is proposed for denoising brain MRI using cross-modal information

(Paper F). An overview of Siamese networks is provided in Sec. 2.7.3.

2.7.2 Generative Adversarial Networks

Goodfellow [100] introduced a novel architecture, GAN, to estimate generative

models in an adversarial manner. GAN consists of two components: generator

and discriminator, that are competing against each other to solve the underlying

problem. Both components are neural networks, where the generator learns to

generate data that resembles the real data; these generated samples are deemed as

negative training instances for the discriminator. Conversely, the discriminator is

trained to determine what is the probability of the generated data belonging to a

training class, i.e., being real or generated (fake). The generic architecture of GAN

is demonstrated in figure 2.14.

When training of GAN begins, the generator starts creating fake samples, that are

not good enough to fool the discriminator. However, when the generator is well-

trained, the discriminator classifies fake samples as real. The discriminator in this

scenario is trained in a supervised manner. It acts as a binary classifier trained on

the fake data received from the generator and the real training data. It outputs the

probability of the data fed to it based on which the training continues. The training

resumes until the discriminator can no longer distinguish the fake data from the

real one. The discriminator-generator role in GAN can be explained using the

min-max game analogy. In a two-person zero-sum game, a person is a winner

only if his competitor loses. Both compete against each other and improve their

performance by learning from mistakes until one person outplays.
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The loss function in GAN is defined for discriminator and generator both. GAN

attempts to mimic the probability distribution of real samples and thus generates

fake samples. The loss function is therefore formulated to capture the distance

between the data distribution of generated data and that of the genuine training

instances. The minimax loss does this. Discriminator minimizes negative log-

likelihood, whereas generator maximizes it. Formally, the GAN objective function

can be expressed as follows:

min
G

max
D

Ex∼Pr [log(D(x))] + Ex̃∼Pg [log(1−D(x̃))] (2.15)

where Pg and Pr represent model distribution and actual data distribution respect-

ively. In the original GAN paper [100], the objective function is stated as min-

imization of Jensen Shannon Divergence. GANs have been used in a variety of

applications, including image enhancement [103, 104], image-to-image transla-

tion [105], super-resolution [106], segmentation [107], denoising [108]. Wolterink

et al. [108] used GAN to denoise the low-dose cardiac CT images using normal

dose CT as ground truth. Although the proposed method outperforms other similar

deep learning approaches, they used Mean Squared Error (MSE) [109] as a loss

function in their framework which leads to blurred images and loss of detail. This

effect was improved by [51]; a Wasserstein distance-based GAN that calculates the

difference between the generated image and ground truth in feature space instead

of image space as done when MSE is used.

Several variants of GANs have been proposed for medical images including cycle-

GAN [110] and conditional GAN [111] to improve their performance. Besides,

most approaches mentioned above use paired input-ground truth data to train the

network, which is even more challenging in the context of medical images. Cycle-

GANs bypass this barrier and allow the use of unpaired data. They incorporate

several losses in the architecture such as cycle consistency loss and identity loss,

which enables the network to learn embedding of input data and generate samples

in the same space [103]. In our thesis, we used cycle-GAN to enable the proposed

method in Paper E learn global contrast characteristics from high contrast T1-w

images in order to improve the contrast of T2-w images.

2.7.3 Siamese Neural Networks

Siamese Neural Networks (SNNs) are the neural networks that consist of two or

more similar subnetworks, also called twin networks. The subnetworks not only

have the same architecture but also identical parameters and weights. SNNs com-

pare the feature vectors of the paired input data to identify similarities between

them. A simple Siamese Neural Network (SNN) is shown in the figure 2.15. Sia-
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Figure 2.15: Siamese Network

mese networks have been applied to a multitude of applications including clas-

sification, segmentation [94], object tracking [93] etc. In medical images, they

have been employed to real-time tracking of knee cartilage in temporal and spatio-

temporal sequences of 2D ultrasound images [112]. The proposed method ‘Siam-

U-Net’ combines U-Net with Siamese network to give cartilage segmentation in

US images.

Multi-modal MRI constituting T2-w and Diffusion-Weighted Imaging (DWI)

along with their multi-view representation (Axial and sagittal) were used to re-

trieve similarly diagnosed lesions in a content-based image retrieval system [113].

The method was presented to aid the radiological interpretation of images in ul-

timately diagnosing prostate cancer. Utilizing Siamese networks for multi-modal

medical image processing is motivated by the notion that these images acquired

from the same patient possess a similar structure, therefore, the correlated inform-

ation they contain can be manipulated in a sophisticated way to accomplish the

underlying tasks. SNNs were applied recently to image restoration where dense

siamese networks remove the undesired flash effect in images via flash/ no-flash

image pairs [114]. A denoising method proposed in Paper F combines siamese

network with hierarchical feature manipulation strategy.
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Papers Summary

Image contrast enhancement and denoising are the two pre-cursors applied to im-

prove the perceptual quality of images. In this thesis, traditional methods and deep

learning methods have been proposed and applied to multi-modal medial images

of different organs including the liver and brain using complementary information

in the corresponding image. This chapter provides an overview of all the papers

produced during this tenure of research.

Overall, the papers provided here can be grouped into two types: traditional meth-

ods and deep learning-based methods. Papers A - D are based on traditional meth-

ods, while Papers E, F are deep learning-based. All the papers cover two broad

areas of image enhancement, that is, contrast enhancement and denoising that are

the focus of this work. A summary of all the papers is presented highlighting the

objective, main idea and contributions.

Papers A and B (Sec. 3.1 and 3.2) respectively suggest the methods for contrast

enhancement of liver CT images to improve visibility of structures and enable seg-

mentation algorithms to work better. Paper D (Sec. 3.3) proposed a parallelization

strategy to first accelerate the approach presented in Paper A, and then accelerate

the gradient-driven seeded Region growing algorithm. Consequently, the execu-

tion time for both tasks is drastically reduced. Paper C (Sec. 3.4) proposes an

efficient parallelization strategy to improve the execution time of the parallel gradi-

ent driven SRG algorithm. The core idea behind the technique is to accelerate the

segmentation implementation and was tested on vessel segmentation; however,

the input CT images were pre-processed using the approach presented in Paper A
(Sec. 3.1) to improve the contrast of images and particularly highlight vessels. The

focus of Papers E and F is deep learning; Paper E applies deep learning to im-

37



38 Papers Summary

prove the contrast of T2-w brain images using information from the corresponding

T1-w MR images. Paper F exploits cross-modal guidance by combining features

from multi-modal images to denoise the medical images.

3.1 Summary of Paper A
Paper A proposed a contrast enhancement method applied to liver CT images

using cross-modal guidance from the corresponding MR images [115]. The pro-

posed method is the first application of cross-modal guided enhancement applied

to medical images to the best of our knowledge. CT images suffer from low con-

trast, whereas MR images have good contrast. In this scenario, the information in

MR image can be exploited to enhance the contrast of CT image.

The proposed method improves the contrast to facilitate the visibility of import-

ant structures in the CT images, such as tumors and vessels. (Cross-modality

Guided Enhancement (CMGE)) approach thus presented was a combination of

two-dimensional histogram specification (2D-HS) and morphological operations.

2D-HS is a traditional contrast enhancement approach that not only considers the

individual pixel values while calculating the PDF, rather it is a context-aware tech-

nique that also considers the spatial pixel correlation while applying the HS op-

eration. It exploits the neighboring pixels as well while computing the PDF and

calculates 2D CDF instead. Morphological operations such as top hat and bot-

tom hat transform are also used in the medical images due to their capability of

highlighting dark and brighter areas than their surrounding.

The data for the proposed study was acquired from Intervention Center, Oslo Uni-

versity Hospital, Norway. The flowchart of the proposed method is shown in fig-

ure 3.1. The method was compared with other single-image contrast enhancement

methods; quantitative assessment of the results validated the better performance of

the proposed technique in improving the contrast of liver CT images. The main

contributions of the proposed research work are as follows:

1. The proposed technique CMGE is the first attempt to apply the idea of cross-

modal guidance to medical images for contrast enhancement to our know-

ledge.

2. The method was validated for improvement in contrast on real human liver

data (CT and corresponding MR images).

3.2 Summary of Paper B
A goal-oriented contrast enhancement approach was proposed for CT images in

Paper B. It uses a combination of cross-modal guidance information and optim-
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Figure 3.1: Flowchart of proposed approach (CMGE)

ization schemes. The main steps involved in the proposed method OPTimized

Guided Contrast Enhancement (OPTGCE) are shown in figure 3.2. The underlying

objective was to improve the contrast of images so the tumor edges in CT images

are discriminated enabling segmentation algorithms to work well. The motivation

of incorporating SSIM based metric was to retain structural similarity between the

enhanced image and original CT image during enhancement. A segmentation al-

gorithm was later applied to determine if the algorithm works better on images

enhanced using the proposed method in comparison with those enhanced using

similar histogram-based optimization schemes.

The data for the study constituting CT-MRI pairs (99 samples) along with tu-

mor segmentation ground truth was provided by Intervention Center, Oslo Uni-

versity Hospital, Norway. The assessment of the proposed method was done using

contrast assessment metrics including mutual information-based metric MIGLCM

[116], Multi-Criteria Contrast Enhancement Evaluation Metric (Multi-Criteria

Contrast Enhancement Evaluation (MCCEE)) [117], and entropy as well as seg-

mentation assessment metrics such as dice score, positive predictive value, and

Hausdorff distance. It was concluded that the proposed method performs better

than similar optimization-based approaches that do not incorporate cross-modal

guidance information both in enhancing the image contrast as well as in terms
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Figure 3.2: Flowchart of proposed approach (OPTGCE)

of segmentation applied post-enhancement. The main contributions of the paper

[118] are listed below:

1. The two-dimensional histogram specification-based contrast enhancement

process is formulated as an optimization problem in the context of medical

images.

2. The image contrast enhancement is controlled using an optimization scheme

based on SSIM gradient.

3. Goal-oriented performance evaluation of the proposed method is done

through objective quality metrics and through segmentation results.

3.3 Summary of Paper C
Paper C proposed an efficient parallel implementation of gradient-based seeded

region growing algorithm applied to vessel segmentation [119]. The fastest al-

gorithms executed on are those where blocks responsible for carrying out each
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Figure 3.3: Vessel segmentation using parallel SRG

task in the algorithm are not dependent on each other and synchronization among

them is minimal. Because of the iterative nature of the seeded region growing al-

gorithm, it is implemented as kernel termination and relaunch (KTRL) on GPU,

which involves intermediate memory transfers between CPU and GPU. This pro-

cess is time-consuming indeed. Therefore, a persistence and grid-stride loop-based

parallel approach was proposed in the paper that is executed entirely on GPU. This

mechanism prevents intermediate data transfers between GPU and CPU.

The ground truth for the proposed work was provided by clinicians in the Interven-

tion Centre, Oslo University Hospital, Norway. The liver CT images used in this

work were enhanced using the technique proposed in Paper A to enhance import-

ant structures in the CT images such as vessels. Some results of the parallel SRG

are shown in figure 3.3. Figure 3.3 a - c show the input CT, gradient of image a

and ground truth respectively, whereas figures d-f show the vessels segmented us-

ing proposed approach. Intel (R) Core(TM) i7-7700HQ CPU @ 2.80 GHz RAM

24 GB, NVIDIA GPU 1050 (RAM 4 GB), OpenCL1.2 and CUDA Toolkit 10.1

was used to carry out this work.

The proposed method is able to accelerate the parallel mechanism by attaining

a speedup of 1.9 times compared to KTRL. Moreover, the parallel seeded region

growing yields more accurate results than Chan-Vese [120] and Snake model [121]

in segmenting vessels in the liver CT images when assessed using quantitative

measures such as dice score.
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3.4 Summary of Paper D
Paper D proposes a parallel implementation of Paper A, that is cross-modality

guided image enhancement [122]. Furthermore, the dynamic region of interest

(RoI) based SRG method is presented for tumor segmentation in the enhanced liver

CT images. The accelerated performance on GPU is achieved by dividing the tasks

into several active threads. Furthermore, experiments were conducted to determine

if SRG works better on enhanced images compared to original images. With the

help of quantitative measures like sensitivity and accuracy, it was concluded that

the algorithm works better on enhanced images. Data and segmentation ground

truth for the work was provided by Intervention Center, Oslo University Hospital,

Norway.

Figure 3.4 shows all the steps involved in parallelized contrast enhancement and

tumor segmentation. After CT and MR images are transferred from CPU to GPU,

GPU performs cross-modal contrast enhancement on the low contrast CT image.

For the next task, that is, tumor segmentation, the gradient of contrast-enhanced

image is calculated and is transferred to the subsequent module in GPU through

Interblock GPU synchronization (IBS). SRG is applied on the gradient of the en-

hanced image afterwards. Based on the value of the initial seed, region growing

starts. New seeds are formed from initial seeds depending on the threshold cri-

terion selected. The region grows iteratively until the criteria are fulfilled. The

region does not grow further when new seeds cannot be formed. The threshold

criterion adopted here is inspired by the work of Rai [123]. It is based on the ho-

mogeneity of the region and region aggregation considering pixel values and their

gradient direction and magnitude.

The proposed GPU-based implementation was able to achieve a drastic speed-up

of around 100 times compared to its corresponding sequential implementation (on

CPU) of contrast enhancement and tumor segmentation.

The following contributions in this work are listed:

1. This is the first work addressing high-performance multi-modality guided

liver contrast enhancement applied to tumor segmentation to the best of our

knowledge.

2. Speed up achieved in case of parallel implementation (GPU-based) of CE

and segmentation is more than 100 times compared to its CPU equivalent

implementation.

3. It is experimentally validated that the segmentation works better on en-

hanced images compared to original unenhanced CT images of liver.
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Figure 3.4: GPU implementation of SRG based tumor segmentation

3.5 Summary of Paper E
A deep learning-based contrast enhancement approach is proposed in Paper E. In

this approach, contrast enhancement is accomplished by using a Generative Ad-

versarial Network (GAN). Since contrast enhancement is highly subjective, it is

challenging to find ground truth for it, particularly for medical images. In this

scenario, corresponding multi-modal medical images of better perceptual quality

could be employed in the enhancement process, thanks to the complementary re-

dundant medical imaging data acquired during certain therapies. The structural

similarity between multi-modal MR images can be particularly advantageous in

the feature extraction and learning process. Cycle-GANs [110] are considered

ideal for learning in the presence of unpaired data. We employed cycle-GANs to

solve our cross-modal contrast enhancement problem. Cycle-GANs were applied

by Chen et al. [124] for contrast improvement of natural images in case of paired

high-contrast ground truth as well as unpaired ground truth (high contrast images

with entirely different contents). Inspired by this idea, the proposed method uses

U-Net with global features augmented to learn the global contrast from corres-

ponding multi-modal images.

Multi-modal MR data of human brains from IXI database (Hammersmith Hos-

pital, United Kingdom) was used in this work [89]. The contrast of actual T2-

w images (input images here) was degraded by applying a combination of mor-

phological operations. The original T1-w images of good contrast were used as

reference or ground truth. Comparison of the proposed method was done with

existing CE approaches using well-accepted quality assessment metrics Feature

Similarity Index (FSIM) and Blind/Referenceless Image Spatial Quality Evaluator
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Figure 3.5: Comparison of proposed method with recent CE methods (a) Input (b) Ground

Truth (c) CMGE [4] (d) Zohair et al. [5] (e) CLAHE [6] (f) proposed

(Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)). Results from

Paper E are shown in figure 3.5.

The following contributions of the paper are listed:

1. The CE method proposed in this paper is the first deep learning assisted

cross-modality guided CE approach applied to MR images, to our know-

ledge.

2. Comparison of the proposed method with existing CE approaches showed

that the proposed method improves contrast without introducing artifacts in

the enhanced image.

3.6 Summary of Paper F
Paper F proposed a deep learning-based denoising approach that exploits the bet-

ter perceptual quality of T2-weighted images (noise-free) to restore its corres-

ponding noisy T1-w MR images. The proposed method Cross-modality Guided
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Denoising Network (CMGDNet) combines Siamese networks with hierarchical

feature learning in a supervised manner. CMGDNet consists of two main modules

which are further decomposed into two parts. The first module Paired Hierarchical

Learning (Paired Hierarchical Learning (PHL)) is responsible for feature extrac-

tion in a hierarchical fashion; it acts as an encoder in our model. ResNet-101 was

used to extract features [125]. The second module Cross-modal Assisted Recon-

struction (Cross-modal Assisted Reconstruction (CMAR)) combines these features

in a systematic way from dual modalities. This operation entails combining fea-

tures from both images using a complementarity-aware mechanism followed by

upsampling. CMAR acts as a decoder and is implemented as a dense network us-

ing the Inception module. The block diagram of the proposed technique is shown

in the figure 2.15. The complete structure of the modules is explained in paper

[126].

Figure 3.6: Denoising Results: (a) Ground Truth (b) Input (c) NLM [7] (d) SURE

[8] (e) BM3D [9] (f) MCDN [10] (g) proposed

Two public datasets constituting T1-w and T2-w MRI of healthy patients (from

Hammersmith Hospital and Guy’s Hospital), a subset of [89] were used in the

study. All the volumes were resampled to have a dimension of 256×256×150.

Rician noise was added to T1-w images that were fed to the proposed model as
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input along with noiseless T2-w images while original T1-w images were taken as

ground truth. Several experiments were conducted to analyze the performance of

the proposed method in denoising the images contaminated by varying levels of

Ricain noise. Besides, the role of image registration in improving denoising was

also inspected. The proposed method was compared with state-of-the-art methods

such as BM3D [9] and MCDN [10]. The denoising results were qualitatively and

quantitatively evaluated using Peak Signal-to-Noise Ratio (), SSIM and Feature

Similarity Index (Feature Similarity Index (FSIM)). The qualitative comparison is

shown in figure 3.6.

Following contributions are made in the paper:

1. A new architecture based on cross-modal guidance is proposed to denoise

T1-w brain MR images. Siamese network combined with hierarchical fea-

ture learning was used for effective feature learning. The proposed frame-

work employs supplementary information from the better perceptual quality

T2-w image in the denoising process.

2. Cross-modal feature synthesis is not well explored in the context of cross-

modal denoising. An effective cross-modal information synthesis policy is

devised. The results demonstrate that this strategy of feature combination

works well.

3. CMGDNet exhibits an average gain of 4.7% and 2.3% respectively in terms

of SSIM and FSIM compared to state-of-the-art denoising methods.

4. Our experiments show that registration between multi-modal medical im-

ages aids in retaining structural similarity with the original image when both

images were fed to the denoising framework, however, improvement in MSE

values was not observed.
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Papers Discussion

In this chapter, contributions to cross-modality-guided contrast enhancement and

denoising in the context of medical images are presented. Afterward, we discuss

the limitations of the research work reported here along with future work sugges-

tions.

4.1 Contributions of the Thesis
This dissertation addresses two essential components of medical image enhance-

ment, that is, contrast enhancement and denoising. Subsection 4.1.1 discusses the

contributions in contrast enhancement using traditional methods and deep learning

approaches, whereas section 4.1.2 discusses the contributions in denoising task

using deep learning.

4.1.1 Contributions to contrast enhancement

Papers A - B and Paper E included in this dissertation focus on cross-modality

guided medical image contrast enhancement. Papers A - B contribute to the en-

hancement of liver CT images which are usually preferred for initial diagnosis of

liver cancer. MRI is another modality used for liver cancer screening. Both are

clinically significant and can be found predominantly in the clinical surgery suite.

CT intrinsically has low contrast, while MRI offers better perceptual quality. We

used this redundant information of superior quality in the cross-modal CE frame-

work. Existing medical image contrast enhancement methods do not take advant-

age of this redundant information to our knowledge, and our approaches in Paper
A - B are an attempt to investigate this notion. The approaches proposed in both

papers enhance the contrast of CT images; however, the objective of Paper A is to
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improve visibility, whereas approach in paper Paper B aims to improve contrast

to aid tumor segmentation algorithms. Since accurate registration is a challen-

ging problem for multi-modal medical images [127], particularly liver images, a

global contrast enhancement approach was adopted. It was proved that extracting

complementary information from another image via a context-sensitive approach

produces superior results to single image enhancement methods. Our proposed

approach investigates the following research question:

Q1.1 "Does incorporating guidance information from a different modality image
improve the contrast of a medical image for improved visibility ?"

In Paper B, contrast enhancement is accomplished using cross-modal guidance

information to provide better-contrast CT images as input to the segmentation al-

gorithm. Although histogram-based techniques are prone to introduce artifacts

that can possibly affect the appearance of critical structures in medical images, we

incorporate an effective optimization strategy to retain the structural affinity of the

enhanced image with the original image. Consequently, the proposed technique

retains the structure of tumors as well while simultaneously enhancing the con-

trast. The enhanced images thus obtained possess better-highlighted edges, which

leads to improved performance of segmentation. Therefore, Paper B addresses

the following research question:

Q1.2: "Investigate if tumor segmentation methods work better on images enhanced
using proposed CE method ?"

As far as quality assessment (QA) of the medical images is concerned, it is not as

straightforward as it is for natural images. It is due to the absence of dedicated QA

metrics specifically developed for medical images [128]. Therefore, to thoroughly

evaluate our proposed goal-oriented CE method, the quality assessment was done

from two perspectives. First, the main task that is contrast enhancement was eval-

uated using quality assessment metrics. One of the comprehensive metrics, which

is Multi-Criteria Contrast Enhancement Evaluation (MCCEE) considers the im-

provement in contrast along with over-enhancement to systemically evaluate the

improvement achieved in contrast. Moreover, it considers the correlation between

CE criteria and subjective quality scores in a learning-based quality assessment ap-

proach. Dice scores calculated from the results of subsequent segmentation were

therefore used in the MCCEE score computation. Besides, the results of tumor

segmentation applied to enhanced images were also quantitatively evaluated. The

experiments were conducted on real liver CT-MR data obtained from the Interven-

tion Centre, Oslo University Hospital, Norway. The quantitative assessment of the

performance of proposed method along with a comparison with other single image

enhancement approaches is summarized in table 4.1.
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Table 4.1: Quantitative assessment of different enhancement methods

Dataset #
Entropy MIGLCM

HEMIC [129] AVHEQ [130] CMGE[4] OPTGCE HEMIC [129] AVHEQ [130] CMGE [4] OPTGCE

1 2.32 2.21 2.76 3.13 1.1 1.07 0.95 1.1

2 1.58 1.7 1.74 2.4 0.93 0.9 0.86 1.12

3 1.7 1.6 1.7 1.9 0.93 0.92 0.91 1.06

4 2.03 1.95 2.72 3.00 1.22 1.21 1.27 1.4

5 2.51 2.45 3.43 3.62 1.16 1.12 1.07 1.31

6 1.54 1.51 1.92 2.12 0.86 0.85 0.82 0.98

7 2.61 2.52 3.23 3.64 1.28 1.24 1.14 1.42

8 1.52 1.46 1.94 2.1 0.82 0.81 0.75 0.94

9 1.43 1.36 1.67 1.88 0.78 0.77 0.75 0.81

10 1.11 1.11 1.32 1.41 0.64 0.62 0.63 0.76

The quick acquisition time associated with CT images makes them favorable to be

integrated with the intra-operative navigation. Ultrasound is also used in the intra-

operative setting, but, it is difficult to find the multi-modal liver data where one

of the dual modalities is ultrasound; therefore, we resorted to the problem of CT

image enhancement using cross-modal guidance from MRI. By using contrast-

enhanced CT as an intra-operative imaging modality, the performance of sub-

sequent phases of surgical navigation can be streamlined. These phases include

segmentation of critical structures such as liver, tumors, hepatic, and portal veins

in the liver CT image followed by bio-mechanical modeling of these structures. In

this context, the execution time of the contrast enhancement algorithm is one of

the factors that determine its feasibility in real-time implementation.

Paper D proposed a strategy to accelerate the contrast enhancement method pro-

posed in Paper A, so image enhancement could be realized in the intra-operative

phase as well. The acceleration on GPU is achieved by dividing the intermediate

tasks of the algorithm into several active threads, where each thread is responsible

for carrying out a specific task. Thus, several tasks are accomplished in parallel.

Furthermore, experiments were conducted to determine if gradient-driven seeded

region growing algorithm [123] works better on enhanced images compared to

original images. With the help of quantitative measures like sensitivity and accur-

acy, it was concluded that the algorithm works better on enhanced images. This

method was the first parallel implementation of the cross-modality-guided contrast

enhancement method presented in Paper A. The method achieved a speed-up of

around 100 times on NVIDIA GPU 1050 compared to its corresponding sequential

implementation.

Paper C presented an efficient parallel implementation of gradient-based seeded
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region growing algorithm, which was applied to vessel segmentation. The focus of

this work was GPU-based optimization of segmentation method, however, the in-

put CT images were pre-processed using the method proposed in Paper A, before

SRG was applied to them. The vessel segmentation ground truth was provided by

the Intervention Centre, Oslo University Hospital, Norway.

In this thesis, the potential of deep learning was also analyzed in solving CE and

denoising problems. Deep learning has revolutionized the digital image processing

domain [131, 132]. Deep learning-based methods predominantly outperformed

the existing techniques [133]. Medical imaging also benefited from deep learning.

Deep learning was applied to cross-modal medical image contrast enhancement in

Paper E. It is challenging to obtain ground truth for contrast enhancement par-

ticularly in medical images, moreover, it varies subjectively as well. Paper E
presented an idea to learn the contrast enhancement using the corresponding high

contrast multi-modal medical images. To this end, dark (low-contrast) T2-w MR

images were enhanced using the corresponding T1-w MR images. Since both

share a structural similarity; however, they come from different domains, there-

fore we used cycle-GAN to learn the global contrast characteristics. Cycle-GANs

offer a promising way of learning from unpaired ground truth and generally per-

form superior to similar DL-based methods. The proposed approach was the first

deep learning-based method applied to cross-modal contrast enhancement in the

medical imaging domain to the best of our knowledge.

4.1.2 Contributions to Denoising

Cross-modal denoising in the medical imaging context is a relatively less-explored

area. Few deep learning approaches proposed recently extract features from the

multi-modal input images and merely concatenate them in the later encoding layer

of the encoder-decoder network [56, 78]. These approaches do not combine the

features extracted from both modalities in an efficient manner and therefore do not

fully exploit the complementary information. In Paper F, we propose a cross-

modal denoising approach that first extracts hierarchical features and combines

them, thereby providing a better feature combination strategy. Furthermore, the

impact of registration on denoising performance is particularly investigated.

Brain Magnetic Resonance images (T1-w and T2-w) from a publicly available

database were used for this study. One of the objectives of particularly exper-

imenting with brain image data was that there are several open-source software

providing tools for multi-modal brain image registration [134]. However, it is

comparatively difficult to register multi-modal liver images. This paper attempts

to investigate the following research question:
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Q2.1: "How multi-modal guidance information could be employed for denoising
medical images using deep learning ?"

4.2 Limitations and Future Perspectives
This section discusses the limitations of our research work followed by some sug-

gested directions in which the work can be extended in the future.

Paper A improves the contrast of CT images using a combination of histogram-

based approaches in conjunction with morphological operations. Although the

proposed techniques incorporates contextual information, however, approaches

such as wavelet domain methods and other sophisticated approaches could be in-

vestigated in the future to address some of the limitations associated with histo-

gram approaches. The results in the paper were quantitatively evaluated, however,

since the work focuses on medical data, it would be valuable to involve clinicians

particularly radiologists in the subjective assessment and viability of such meth-

ods.

Paper B also proposed a contrast enhancement approach that uses histogram com-

bined with a structural similarity based measure to retain the similarity of the en-

hanced image with the original image. Both the methods are traditional (i.e. non

DL-based methods); however, in the future, deep learning methods can be explored

to solve the underlying problem. Moreover, the 2D histogram-based optimization

methods can be applied to the multi-modal medical images of other organs such as

lungs, kidneys, etc. Since cross-modality guided CE methods have shown prom-

ising results for natural images, we believe that cross-modal CE for medical im-

ages is an interesting and promising future work direction that has the potential to

provide significant improvements.

The comparison of traditional methods and deep learning methods would enable

to analyze the results obtained using both contemporary approaches. Multi-modal

medical imaging data of a few organs can be found on public databases [90], which

could be utilized for this purpose.

Contrast enhancement is a subjective process. Paper E proposed a deep learning-

based approach, specifically cycle-GAN that learns the rich contrast characteristics

from the corresponding multi-modal MR image (unpaired). However, in the future,

unsupervised learning approaches would be an interesting direction to investigate

this problem. EnlightenGAN [95] is one of the unsupervised learning methods

that eradicates the need for paired ground truth in the problem of low light image

enhancement. It proposed to minimize perceptual loss between the feature maps

of input images captured under low-light illumination and its enhanced variant.

EnlightenGAN employs pre-trained VGG [135] to extract features from network
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input and output. This loss was termed ‘self feature preserving loss’. The unsu-

pervised approaches in this framework differ from their supervised counterparts

where ground truth is a manually enhanced image. A similar unsupervised mech-

anism can be employed to enhance a low-contrast medical image provided paired

multi-modal images are fed to the enhancement model, where the other image is

a guidance image of better perceptual quality. Moreover, the proposed network

in Paper E was trained using T1 T2-w paired MR images of the human brain.

Other paired modalities such as CT -MRI and or CT-ultrasound, MRI-ultrasound

can be used in an unsupervised learning configuration. Furthermore, other organs

can also be experimented with.

The objective assessment of medical image enhancement methods is done using

the quality assessment metrics proposed for natural images. Quality assessment

in the case of natural images is a widely investigated area; several full-reference,

reduced-reference, and no-reference metrics have been presented. The objectives

of medical image enhancement differ from those of natural images. For instance,

the objective of contrast enhancement in Paper B was to discriminate tumor bor-

ders so the segmentation methods could better segment based on the intensity value

of the tumor pixel and its neighborhood. In this case, the QA metrics need not con-

sider over-enhancement effects as an important quantifiable factor/ parameter. In

such a scenario, there is a need for quality assessment metrics specifically designed

for medical images specially for CT, MRI, and Ultrasound images. It should be

highlighted here that an approach similar to MCCEE (used for evaluation of goal-

oriented CE in Paper B) that takes into account subjective assessment as well can

be further explored [117]. Methodologies proposed for natural image quality eval-

uation can be adopted to investigate QA methods for medical images as a future

research direction.

Cross-modal denoising in the medical imaging context is a relatively less-explored

area. Besides, the existing techniques do not fully exploit the complementary in-

formation. Paper F proposed a method to denoise T1-w MR images using the

corresponding better perceptual quality / non-noisy T2-w MR images. Although,

the scheme extracted features from the dual input images and combined them by

addition and multiplication of the features at respective encoding layers, however,

more sophisticated ways of combining features can be explored in the future that

does not merely rely on simple mathematical operations. Second, the noise was

introduced into images synthetically, both for training and testing. However, in the

future, it would be interesting to analyze how the proposed method performs on

real noisy MR images. Another interesting observation is that both images were

fed to the network and features were extracted from the whole images. Since the

proposed method also aimed to investigate the impact of registration on the denois-
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ing performance of the network, patch-based paired input could be provided to the

network to thoroughly investigate the impact of the image to image registration on

cross-modal denoising.

As mentioned earlier, unsupervised learning approaches [136] can also be explored

and applied to cross-modal denoising. The deployment of these approaches in the

clinical setup is a more practical approach. Similarly, other combinations of multi-

modal imaging data can be provided to the supervised and unsupervised learning

models to thoroughly interpret their behavior.

The discussion provided in this section points towards few future perspectives re-

garding the modules specifically presented in this research work. Now, we provide

an overview of the future work in the context of vision-based surgical navigation

in general.

The artifacts encountered at the medical image acquisition stage can impact the

performance of the intermediate steps carried out during the pre-operative plan-

ning and surgical navigation, may it be segmentation of critical structures, bio-

mechanical modeling in addition to visibility of organ’s pathology.

Intra-operative imaging particularly CT and ultrasound imaging (because of quick

acquisition time and provision of adequate information) is deployed nowadays in

the surgical suite to update the initially formulated navigation plan as well as to

convey precise updated representation of the actual organ anatomy. In this scen-

ario, image enhancement and denoising mechanisms need to be incorporated in

the real-time setting. Although there is no study focused on the requirements and

constraints in connection with the speed of the navigation system, real-time imple-

mentation is the need of the hour and would be beneficial indeed.

The above-stated challenges are difficult to address. However, with the advance-

ments in technologies, hardware and imaging techniques, intra-operative informa-

tion can be acquired efficiently. New CT imaging techniques such as Dyna-CT are

being used at some hospitals. Moreover, the potential of combining the informa-

tion from images such as CT or ultrasound with intra-operative imaging captured

in real-time such as laparoscopic video can be explored. The success of computer

vision and deep learning is already being witnessed in applications such as track-

ing, augmented reality. Inspired by this promising performance, deep learning

techniques can be introduced into surgery planning and navigation.

With the advancement in hardware such as robotics, HoloLens, imaging tech-

niques, and modern computer vision algorithms, the integration of image enhance-

ment techniques with laparoscopic navigation system can address the existing bot-

tlenecks in the implementation of these systems.
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Chapter 5

Conclusion

The goal of this dissertation is cross-modality guided contrast enhancement and

denoising of medical images in the context of surgical planning and navigation in

image guided laparoscopic liver resection (described in Sec. 1.2 and 1.3 respect-

ively). The six articles published during this research tenure cover our contribu-

tions to addressing these tasks.

The first part of our work presented in Sec. 2.4 addressed the research questions

related to cross-modal contrast enhancement. The ultimate objective of this task

is twofold, i.e., improving the visibility of structures in the organ and improving

tumor segmentation, as pointed in figure 2.8.

We proposed a traditional cross-modality guided global contrast enhancement

method in Paper A. The results showed that the proposed method improves con-

trast of CT images and visibility of critical structures in the liver. One of the chal-

lenges posed to tumor segmentation algorithms is discriminating the vague edges

of the tumors owing to meager contrast between tumors and the liver parenchyma.

We proposed a CE technique (in Paper B) that not only discriminates the tumor

border from the rest of the organ but also maintains the uniformity of the tumor

area. Consequently, the segmentation algorithm works well on the enhanced im-

ages using the proposed approach compared to other similar single image enhance-

ment approaches. Quantitative assessment from both perspectives (enhancement

and segmentation) validate the superior performance of our proposed algorithm,

this is further supported by qualitative assessment. Moreover, the execution time

of the CE technique proposed in Paper A was accelerated using GPU (paralleliz-

ation of the tasks in Paper D).

Deep learning was also exploited in this dissertation to achieve contrast enhance-
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ment (using cross-modal guidance information) in the absence of paired ground

truth (Paper E). It is important to mention here that cross-modal information was

exploited for the first time in this work to improve the contrast of medical images

(using both traditional and deep learning approaches), to the best of our know-

ledge.

In the second part of the thesis, our research work was directed towards eliminating

noise in T1-w MR images using guidance from the corresponding T2-w images.

In particular, a sophisticated mechanism of combining information from both im-

ages at a hierarchical feature-level was proposed. Our results outperformed some

traditional as well as deep learning methods that do not incorporate cross-modal

information. The results of this research study were reported in the form of a

journal paper (Paper F).

To conclude, we implemented contrast enhancement and denoising methods in this

thesis; these two pre-processing tasks play a significant role in surgical planning

and navigation. As the proposed contrast enhancement exploiting redundancy and

complementary information in multi-modal medical images is implemented for

the first time, it is anticipated that the idea can be further extended and improved.

Several open questions could not be investigated in this work due to constrained

time. Some of these unaddressed aspects of this research are discussed in Sec.

4.2 that can be investigated in the future. We believe that this Ph.D. work can

provide a good basis for the comprehensive study of cross-modal medical image

contrast enhancement and denoising in the framework of pre-operative planning

and surgical navigation.
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ABSTRACT Tumor segmentation in Computed Tomography (CT) images is a crucial step in image-guided
surgery. However, low-contrast CT images impede the performance of subsequent segmentation tasks.
Contrast enhancement is then used as a preprocessing step to highlight the relevant structures, thus facilitating
not only medical diagnosis but also image segmentation with higher accuracy. In this paper, we propose a
goal-oriented contrast enhancement method to improve tumor segmentation performance. The proposed
method is based on two concepts, namely guided image enhancement and image quality control through
an optimization scheme. The proposed OPTimized Guided Contrast Enhancement (OPTGCE) scheme
exploits both contextual information from the guidance image and structural information from the input
image in a two-step process. The first step consists of applying a two-dimensional histogram specification
exploiting contextual information in the corresponding guidance image, i.e. Magnetic Resonance Image
(MRI). In the second step, an optimization scheme using a structural similarity measure to preserve the
structural information of the original image is performed. To the best of our knowledge, this kind of contrast
enhancement optimization scheme using cross-modal guidance is proposed for the first time in the medical
imaging context. The experimental results obtained on real data demonstrate the effectiveness of the method
in terms of enhancement and segmentation quality in comparison to some state-of-the-art methods based on
the histogram.

INDEX TERMS Guided enhancement, cross-modality, contrast enhancement, 2D histogram specification
(HS), SSIM gradient, tumor segmentation.

I. INTRODUCTION
Liver cancer is the fifth most prevalent cancer in the world,
carrying a low survival rate [1]. Nevertheless, timely detec-
tion of cancerous tumors and effective treatment strategies
can improve the overall survival rate. Diagnostic imaging
techniques such as CT facilitate timely diagnosis of can-
cer; however, low contrast and noise limit their utility [2].
Moreover, such low-contrast images make segmentation and

The associate editor coordinating the review of this manuscript and

approving it for publication was Humaira Nisar .

tumor detection challenging problems that can be overcome
by applying a contrast enhancement beforehand.

It is also worth mentioning here that a single medical
imaging modality is unable to capture all the relevant struc-
tural information from the organs. For this reason, it is now
becoming more common to acquire both CT and MR images
periodically during liver cancer diagnosis and treatment [3].
Therefore, it would be interesting to use the additional cap-
tured information from one imaging modality (e.g. MRI)
to enhance the other (e.g. CT). The concept of enhanc-
ing the image from one modality using cross-modal image
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information is not novel; similar ideas have been successfully
applied to natural images [4]–[6]. One such approach for liver
CT image enhancement using the corresponding MR images
was proposed to improve the visibility of tumors and
vessels [7]. In general, the cross-modality guided enhance-
ment methods have shown better performance in comparison
with the classic single image enhancement methods [8], [9].

Currently, there are two main challenges related to image
enhancement in the medical context. Firstly, most recent
enhancement techniques are tailored to only specific types
of images. Secondly, it is not easy to find a well-established
benchmark for evaluating the existing enhancement meth-
ods. For these reasons, the effectiveness of the enhancement
approaches is often assessed based on their impact on the
underlying application. For medical imaging, the motiva-
tion of CE, in general, is to improve the visual appear-
ance of relevant organ structures for better diagnosis and
intervention [10]. However, limited research has been done on
image quality enhancement to improve the segmentation of
such organ structures [4], [11]–[14]. By using CE as prepro-
cessing step, improved segmentation of relevant structures in
CT images could be achieved as concluded in [13]. Therefore,
there is a dire need for efficient CE algorithms for such
images.

Traditional enhancement methods suffer from limitations
such as saturation, over-enhancement, and uneven contrast
spatial distribution, that may result from the uncontrolled
CE process. One way to overcome such limitations is to
combine the contrast enhancement approach with a quality
control scheme. Inspired by the guided filtering approach and
the simplicity of context-aware histogram-based image qual-
ity enhancement, we propose in this paper a cross-modality
guided histogram specification technique to improve the con-
trast of liver CT images using MRI images as guiding input
data. Furthermore, optimization is incorporated to prevent
the saturation artifacts inherent to histogram-based methods.
A similar idea was proposed for enhancing natural images
in [15]. It consists of mapping the histogram of the input
image to that of a reference image combined with an opti-
mization technique to preserve the structures of the input
image. In this work, we propose a similar approach for
medical images using cross-modal information. The new
CE approach is hence based on two concepts, namely, cross-
modality-guided medical image enhancement to improve
the global contrast, and quality control to preserve the
local structures during enhancement. Here, we formulate
the cross-modal CE as an optimization problem, where the
gradient of structural similarity index measure (SSIM) is
used for local structure preservation and minimizing artifacts
introduced during enhancement [16]. Later, the role of CE is
analyzed in facilitating tumor segmentation. The overall pro-
cessing scheme is evaluated on a real dataset containing CT
and MRI of the human liver with segmentation ground truth.
The main contributions of this paper are:

• The two-dimensional histogram specification-based
CE process is formulated as an optimization problem

and extended to multi-modal medical imaging data for
the first time.

• SSIM gradient is incorporated in the optimized
cross-modality guided 2D-HS framework to preserve
structural fidelity of the enhanced image with the origi-
nal image while applying enhancement.

• In order to obtain the objective of contrast enhance-
ment without affecting the important structures of
the image, the algorithm achieves a nice balance
between retaining structural similarity with input image
(by integrating SSIM gradient) and enhancing contrast
by employing 2D entropy. The suggested combination of
cross-modal guidance and quality control enhances the
CT image exploiting contextual information, as opposed
to context-unaware schemes.

• A new goal-oriented performance evaluation of the
proposed approach is done utilizing objective quality
metrics and through segmentation results applied on
real multi-modal liver data. Comparison with single
enhancement techniques validate the superior perfor-
mance of the proposed method.

The rest of the paper is organized as follows. Section II pro-
vides a brief review of relevant contrast enhancement meth-
ods. Section III describes the proposed Optimized guided
CE method. Experimental results of CE are discussed in
section IV. The results of applying segmentation on the
enhanced images are described in section V, followed by
conclusion in section VI.

II. RELATED WORK
Among the methods for image quality enhancement, CE is
themost intuitive andwidely used solution in various fields of
application, especially inmedical imaging. Contrast enhance-
ment methods can be broadly classified into two main cate-
gories: direct methods and indirect methods [17]. In the first
category, the contrast is first defined and amplified to then
deduce the modified value associated with the pixel to be
treated. In the second category, the pixel value is transformed
by means of an operation defined from global characteristics,
such as the distribution of pixel values, or local characteristics
such as the intensity gradient of the pixel. These operations
can be performed in the spatial or transform domain or even
in the joint spatial/spatial-frequency domain. It is well known
that methods that operate in the transform domain and more
particularly those that exploit multi-scale aspects and direc-
tional selectivity are more efficient but at the cost of increased
complexity and prohibitive computation time in the case of
large volumes of image data. It is therefore natural to turn to
global methods and more specifically those that exploit the
distribution of pixel values in the case of medical images.
Among these methods, those based on histograms developed
in general for natural images constitute an interesting alterna-
tive to other complex and time-consuming methods. Indeed,
histogram-based CE approaches are well investigated both
for natural as well asmedical images, thanks to their low com-
plexity and acceptable performance [18], [19]. For instance,
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histogram equalization (HE) is one of the conventional
histogram-based CEmethods that map the global Cumulative
Distribution Function (CDF) of the input image to that of
a uniform distribution. Other histogram-based methods like
Adaptive Histogram Equalization (AHE) and Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE) operate on
a small region around each pixel of the image to improve
local contrast [20]. Besides these, another histogram-based
approach, Histogram Specification (HS), uses CDF of the
reference image with better perceptual quality to improve
the visual appearance of a low contrast image [21], [22].
Similarly, another interesting histogram-based approach
proposed for natural images uses contextual information
through the 2D-CDF of the target image to exploit the
inter-pixel correlation [23], [24]. This approach [23] has
been shown to outperform other histogram-based approaches
including minimum within-class variance multi-histogram
equalization [25].

Among these histogram-based methods, some have also
been used for medical image enhancement such as AHE
and CLAHE for CE of FLuid Attenuated Inversion Recov-
ery (FLAIR) MR images of brain [18]. In this method,
the authors first performed contrast stretching before apply-
ing AHE/CLAHE. Eventually, to highlight abnormal hyper-
intense regions they have detected regional maxima followed
by performing a local averaging of pixel values. However,
their method is strictly application-specific and they have
only used PSNR and average gradient for comparison, both
of which are not suitable for performance evaluation of
CE methods. Similarly, another histogram-based method
to enhance CT images has combined normalized gamma
correction with CLAHE to reduce the excessive brightness
introduced by CLAHE [19]. In this work as well, the simi-
larity metrics like SSIM [16] are inefficient for performance
evaluation of CE methods, since there is no reference image
in the CE task that can be used for similarity comparison.
Few enhancement techniques [2], [26], [27] decompose the
low-contrast image into detail and base layer separating high
frequency and low-frequency contents in the image and apply
histogram modification to enhance the base layer. The his-
togram is modified to prevent over-enhancement of the image
by ensuring that the minimum gray level of the enhanced
image approximates zero.

Despite the promising results of histogram-based meth-
ods in many applications, they sometimes introduce arti-
facts in the resulting image. Optimization strategies could
be then used to reduce these side effects [28]. For instance,
a HE-variant approach [29] finds an optimal threshold gray
level value that separates the histogram into four sub-
histogram. Histogram clipping is then applied to adjust
the threshold according to the distribution of the origi-
nal histogram. The proposed approach preserves natural-
ness of the image while minimizing over-enhancement.
MedGA [30], another optimization-based technique was pro-
posed to enhance the MR images. It is a combination of
histogram-based method and genetic algorithm; however,

only specific Region of Interest was enhanced in this way.
Similarly, Lin et al. [31] achieved a nice balance between
image brightness and contrast using a histogram averaging
and remapping scheme. CE is conditioned by minimizing
the average brightness difference between the input and
enhanced images while maximizing the entropy in the pro-
cessed image. However, this method is not well suited to dark
images because of its inherent and fundamental brightness
preserving property. Another method that maximizes infor-
mation content and minimizes the artifacts has been proposed
in [32]. The intermediate histogram equalized image and
the original image are combined using a weighting factor
computed by using a golden section search algorithm to attain
uniform distribution. However, the local details are lost in
case the image contains unevenly illuminated regions.

A breakthrough in the field of image enhancement was
achieved when He et al. [33] introduced the idea to exploit
information in a similar image to enhance the underlying
image. This concept was further extended to cross-modality
guided natural image enhancement [9]. The majority of
cross-modality guided natural image enhancement meth-
ods process input images emanating from both modali-
ties with the same contents and an accurate pixel to pixel
correspondence, which largely simplifies the enhancement
process [8]. Based on this strategy, Near Infrared (NIR)
images were enhanced using photographs [34]. This method
used gradient-based histogrammatching to embed contrast of
NIR images in photos. Moreover, wavelet domain processing
was done to improve texture information. A similar idea was
applied to medical images recently, where 2DHSwas applied
to map histogram of liver CT image to that of corresponding
MR image [7]. However, optimization to control CE was not
done in this work.

III. METHODOLOGY: OPTimized GUIDED CONTRAST
ENHANCEMENT (OPTGCE)
Generally, classical Contrast Enhancement (CE) methods
do not optimize an objective function or contrast-related
measure; instead, they manipulate the pixel values accord-
ing to a predefined distribution. Besides, these approaches
amplify the contrast without objectively controlling the pos-
sible artifacts that may arise from the CE process. To the
best of our knowledge, there are very few works where
the contrast enhancement effect is controlled according to
a well-defined framework. The proposed method OPTGCE
operates according to this strategy. It applies HS-based CE
to the low-contrast CT image based on the second-order
distribution of an image of a complementary modality, that
is MRI. The motivations behind the use of histogram-based
methods are essentially their simplicity, reduced computa-
tional load, and the fact of exploiting a global statistical
quantity that contains essential information on the distribu-
tion of pixel values. This is especially advantageous in the
case of a large size of medical imaging data. Therefore, the
2D histogram effectively exploits the inter-pixel interactions,
i.e. second-order statistics, in the design of the CE scheme.
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This treatment enhances the overall contrast well but may
suffer from some side effects. Indeed, the locally relevant
structures of the image can be negatively affected, leading
the processed image to be divergent from the original. There-
fore, it is necessary to control the critical parameters of the
CE process to amplify local contrast while simultaneously
preserving the intrinsic structures of the image. One strategy
to prevent the CE from side effects is to control the enhance-
ment by using a local similarity measure between the input
and enhanced image or some stopping criteria. Here, we per-
form the optimization using a measure that is directly related
to the structural information in the image and carries contrast
information. Furthermore, the extent of contrast is quantified
through the two-dimensional entropy. The flowchart of the
proposed technique is shown in Fig. 1. The three essential
components of the proposed method, namely the 2D his-
togram specification-based CE, the structural gradient-based
similarity measure, and 2D entropy are described below.

FIGURE 1. Flowchart of the proposed method.

A. 2D HISTOGRAM SPECIFICATION
Most image processing methods based on the distribution of
pixel values involve only one-dimensional histogram. This
has the disadvantage of not taking into account the strong
spatial correlation of pixels and exploiting it in order to
avoid side effects associated with histogram approaches.
These limitations have led to the use of higher-order statis-
tics of pixel values and characteristics to develop more

efficient methods. The two-dimensional grayscale histogram
is the simplest higher-order distribution. A two-dimensional
histogram was then introduced in order to exploit the pixel
inter-correlation in various image processing tasks such as
image classification and grey-level thresholding [35], [36].
Later, this idea was also applied to 2D-HS and 2D-HE [23].
Indeed, it has been shown that the 2D HS clearly out-
performs its one-dimensional HE and HS counterparts in
terms of visual quality [23]. The approach in [23] is driven
by the principle that the local and global contrast of the
image could be enhanced by amplifying the grey-level tran-
sitions of neighboring pixels. One way to accentuate such
transitions is to exploit the grey-level transition probability,
i.e. 2D grey-level histogram. In recent work, 2D-HS based
approach was applied to improve the contrast of liver
CT images using MR images [7]. Although this method
produces an acceptable enhancement, it is accompanied by a
darkening or brightening effect in certain areas of the image
due to the use of top hat and bottom hat transforms [37].

For the sake of completeness of the article, we recall here
the basic notions and concepts introduced in the methods
of 2D histogram specification. Let us consider an input image
[f ] = {f (m, n)|1 ≤ m ≤ M , 1 ≤ n ≤ N }, where f (m, n) is
the grey-level of pixel located at (m, n); the dynamic range
of image is [fmin, fmax] and M × N is its height and width
respectively. The principle of guided contrast enhancement is
to transform an input image [f ] into an output image [fe] to
improve its contrast. The guide or reference image used in
this process is represented by [g], that is an image of better
perceptual quality. One way to achieve this objective is to
use the traditional Histogram Modification Framework and
map the 1D-CDF of [f ] to that of [g]. However, as pointed
out before, it is more efficient to consider pixel context,
use higher-order statistics and compute the 2D-CDF instead
when using the HS approach. Therefore, two-dimensional
histograms of both guidance and input images, hg and hf
respectively are derived from the Grey Level Co-occurrence
Matrix (GLCM) computed from the two images. GLCM is a
square matrix containing the number of occurrences of pair-
wise combinations of grey levels when exploring the whole
image using a sliding window and a defined neighborhood.
For the sake of simplicity, the neighborhood is generally
restricted to the two nearest neighbors of the current pixel,
i.e. left and above pixels. Let f (m, n) denote the input image
pixel’s grey level. The GLCM is then computed as follows:

Cf (i, j) =
K−1∑
i=0

K−1∑
j=0

δij(f (m, n), f (p, q)), (1)

Here, i and j represent the pixel values and (m, n) and (p, q)
represent the image coordinates,K is the total number of grey
levels, and 0 ≤ i, j ≤ K − 1,

δij(a, b) =
{
1, if i = a and j = b
0, otherwise
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The transition probability of grey-levels, i.e. the 2D nor-
malized histogram, is derived from the GLCM as follows:

hf (i, j) = Cf (i, j)∑K−1
i=0

∑K−1
j=0 Cf (i, j)

(2)

The 2D-histogram is then used in the pixel grey-level
mapping process using the histogram specification method
as described below. This mapping process is based on the
two-dimensional Cumulative Distribution Function (CDF) of
the input and guidance images computed as follows.

Hf (i, j) =
K−1∑
i=0

K−1∑
j=0

hf (i, j) (3)

The expression of the 2D-CDF of the guidance image
is computed similarly and is represented as Hg. Once the
2D-CDF of both images is computed, the transformation T
allowing the mapping between the input signal and the
desired signal is obtained as follows:
T (i, j) = argmin

[k,l]
|Hf (i, j)−Hg(k, l)|+η(|i− k| + |j− l|)

(4)

The mapping is accomplished by searching the target
pixel values, T (i, j)1 and T (i, j)2 corresponding to pixel
values i and j in [f ]. The second term in Eq. 4, i.e. |i −
k| + |j − l| ensures to select a nearby pixel pair for which
the difference between both CDFs among the candidate pixel
values is minimized. η represents a very small number and its
value = 10−4.

The final step in 2D-HS consists of mapping the intensity
values in [f ] to new values. To this end, each pixel and its
immediate neighbor are considered. The intensity values for
the enhanced image [fe] are therefore calculated using the
equation below:

fe(m, n) = T (f (m, n), f (m, n+ 1)) (5)

From Eq. 5, it can be inferred that transformation of
each value in the original image [f ] to a new value in the
enhanced image [fe] also depends on its neighboring element.
Therefore, unlike the 1D histogram specification which only
considers individual pixel values for calculating the CDFs and
ultimately mapping these values, this approach also exploits
the contextual information among the pixels. Next, we look
at the SSIM gradient approach.

B. GRADIENT BASED STRUCTURAL SIMILARITY MEASURE
As mentioned above, histogram specification is widely
applied to enhance image contrast. However, like many
transformation-based CE methods relying on global statis-
tical descriptors, it affects local and global image structures.
One way to control processing distortions is to integrate into
the CE process a stopping criteria or an objective function and
formulate the whole problem in a constrained optimization
framework. The method proposed by Avanaki [15] belongs
to this kind of solution. The idea is to apply global HS to

a low-contrast image driven by an SSIM-based measure
to control the enhancement through structural similarity
changes between the original image and its enhanced variant.
SSIM is a well-established measure to calculate the extent of
similarity between two images [16]. Considering one image
as a reference, the index provides the quality of the image
under analysis in comparison with a reference. SSIM index
is calculated between corresponding local blocks in
images [A] and [B], after which the average of the values is
taken to obtain a single value of SSIM as the overall similarity
index. Let us assume that ax and bx represent corresponding
blocks x in both images; μax and μbx represent the mean
intensity values of ax and bx and the standard deviations are
given by σax and σbx . C1 and C2 are small numbers greater
than 0 to ensure the denominator is not zero. The SSIM
between the two blocks ax and bx is then expressed as:

SSIM(ax , bx)=
(
2μaxμbx +C1

) (
2σaxbx + C2

)
(
μ2
ax +μ2

bx +C1

) (
σ 2
ax +σ 2

bx +C2

) (6)

Few terms in Eq. 6 are described mathematically as:
μax = w ∗ ax ,

σaxbx = w ∗ (axbx) − μaxμbx ,

σ 2
ax = w ∗ a2x − μ2

ax (7)

where w is 11 × 11 Gaussian kernel and ∗ indicates convo-
lution. Eq. 6 could be regarded as expression for SSIM index
map, SSIMmap calculated via element wise addition and mul-
tiplication using parameters expressed in Eq. 7. Then, at all
points, SSIMmap indicates local similarity between images
[A] and [B]. The global SSIM index for the overall images
can then be expressed as:

SSIM(A,B) = 1
Z

∑
∀x

SSIMmap(ax , bx; x) (8)

where Z denotes the number of pixels in either image.
SSIMmap(ax , bx; x) is SSIM index value corresponding to the
window x of size c × c in images [A] and [B], starting from
the upper left corner of images and proceeding to the bottom
right. For the local SSIM measures in Eq. 6, we define the
following terms for compactness:

α1(ax , bx) = 2μaxμbx + C1,

α2(ax , bx) = 2σaxbx + C2 (9a)

β1(ax , bx) = μ2
ax + μ2

bx + C1,

β2(ax , bx) = σ 2
ax + σ 2

bx + C2 (9b)

As discussed earlier, the SSIMgradient-based optimization
method [15] is applied to the cross-modal medical image
enhancement in this work. Here, 2D-HS is applied to enhance
CT images by exploiting the better quality of MR images.
When applied in the framework of optimization, the SSIM
gradient refines the enhancement process incrementally.

The integration of SSIM ultimately preserves the overall
morphology of the original image with minimal information
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TABLE 1. Description of important notations used in the paper.

loss during enhancement. Here, we denote the input image
as [f ] and the image whose structural similarity is being
compared with [f ] as [fe]; [fe] is obtained after applying
2D-HS. Now, to adapt the notion of SSIM gradient to our
scenario, let us replace [A] by [fe] and [B] by [f ] and rewrite
Eq. 8 as:

SSIM(fe, f ) = 1
Z

∑
∀x

SSIMmap(fex , fx; x) (10)

Calculating the derivative of Eq. 10 with reference to [fe]
gives the SSIM gradient expression as follows:
∂fe SSIM(fe, f )

= 2
Z

[(
w ∗ α1

β1β2

)
f
]

+
(
w ∗ −SSIMmap

β2

)
fe

×
[
+w ∗ μfe (α2−α1)−μf (β2 − β1) SSIMmap

β1β2

]
(11)

where α1, α2, β1 and β2 have been described in Eq. 9a
and 9b. Eq. 11 is a closed form solution and simple expres-
sion for SSIM gradient obtained by decomposing SSIM in
linear terms. For thorough understanding of the mathematical
computations, the reader is referred to [15]. The important
notations used in this paper are listed in Table 1.

C. CONTRAST ENHANCEMENT WITH QUALITY CONTROL
After briefly introducing 2D-HS and SSIM gradient methods,
the OPTGCEmethod is described in this subsection. Initially,
we set the input CT image [f ] equal to [f ′] and guidance
MRI as [g]. The CDFs of [f ] and [g] are calculated using
Eq. 3. Eq. 4 mathematically defines how to calculate the
transformation matrix T . The pixel values in [f ′] are mapped

to new values using Eq. 5 to get enhanced image [fe] in
the manner explained in the section III-A. The proposed
algorithm then calculates the structural similarity between
[fe] and [f ] using Eq. 6 followed by SSIMgradient calculation
with respect to image [fe], represented by ∂fe . Afterwards,
[f ′] is updated as mentioned in step 5 of the algorithm 1.
Images [f ′] and [fe] are updated in every iteration, while [g]
remains unchanged. Since SSIM computes the quality over
the local neighborhood, it is capable of capturing local dis-
similarities better than global approaches. Hence, optimizing
the enhancement process using SSIM gradient offers better
outcomes in terms of retaining the structure of the original
image [f ]. Algorithm 1 describes the steps of our proposed
approach:

In the above algorithm, α represents the step size or the
factor by which [fe] is updated in every iteration. Next,
we describe a method to calculate the optimal value of α.

1) CALCULATION OF SUITABLE STEP SIZE
In this subsection, we elaborate the empirical approach simi-
lar to [15] for calculating an optimal step size α, so the algo-
rithm attains higher SSIM in fewer iterations. The estimated
increase in SSIM at iteration t is mathematically described
as:

�SSIM(t) = αZ
∑
∀x

(
∂fe SSIM(f , fe(t))

)2 (12)

Based on the behavior of SSIM (t) at several iterations,
�SSIM(t) can be modeled by αrst [15]. The final value of
SSIM (after several iterations) can be expressed as:

SSIMf = SSIM′ + rαZ
1 − s

(13)
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Algorithm 1 OPTimized Guided Contrast Enhancement
Algorithm (OPTGCE)

input CT image = f and guidance image = g
Calculate 2D-CDF of guidance image as Hg and that of
input image as Hf .
Set f ′ = f , threshold = 0.05 and t = 1
while �E>=threshold do
1) Apply 2D histogram specification to f ′ to match

2D histogram of image g and generate enhanced
image fe.

2) Calculate structural similarity between fe and f ,
SSIM(f , fe) and SSIM gradient ∂feSSIM(f , fe)

3) Calculate Et and �E .
4) Increment t as t = t + 1
5) Update f ′ contents using SSIM gradient driven

factor as: f ′ = fe + αZ∂feSSIM(f , fe).
end while
Output enhanced image fe

where r = ∑
∀x

(
∂fe SSIM(f , fe(1))

)2
, s = �SSIM(2)/

�SSIM(1), �SSIM(2) and �SSIM(1) denote the incre-
ase in SSIM values at t = 2 and t = 1 respectively.
SSIM′ denotes the initial value of SSIM computed after first
iteration. Our experiments show that SSIM value changes
faster in earlier iterations, therefore the algorithm is executed
three times to calculate the quantities in Eq. 13. Replacing
SSIMf value by 1 (the ideal value) and substituting the above
values in Eq. 13, the approximated upper bound on α can be
calculated as:

α = 1 − s
rZ

(
1 − SSIM′) (14)

In our experiments, the value of α was calculated for the
middle slice of each volume; the same value was used for
all the slices in that volume, since SSIM values between
original image and corresponding enhanced images among
all the slices of specific volume were very close. The range
of α found for our dataset was [20, 60]. Furthermore, it is
important to mention that for any value of α in the spec-
ified range, the SSIM index value improves compared to
that obtained in the first iteration, i.e. without incorporating
SSIM gradient.

As stated in the previous sections, the objective of this work
is to improve contrast while maintaining structural similarity
with the input image to facilitate tumor segmentation. There-
fore, along with ensuring this structural similarity (via SSIM
gradient), we incorporate another criterion in our proposed
method to measure the contrast enhanced at each iteration by
applying 2D-HS. Therefore, 2D entropy is used to control the
level of enhancement. The stopping criterion for the enhance-
ment process is determined by the gain in two-dimensional
entropy achieved for the enhanced image. The rationale of our
methodology is to exploit inter-pixel correlation; therefore,

we have used 2D entropy to formulate this criterion as:

Et = −
K−1∑
i=0

K−1∑
j=0

hfe(t) (i, j)ln(hfe(t) (i, j)) (15)

In Eq. 15, Et represents the value of the 2D entropy for an
image fe at iteration t , where t varies from 1 to 10. hfe(t) (i, j)
is the value of transition probability of gray level pairs.
The change in entropy of the enhanced image gained with
every iteration is calculated as follows:

�E = Et − Et−1 (16)

Moreover, the change in entropy values (normalized to lie
in the range [0,1]) across all the iterations is shown in Fig. 2
when the algorithm is applied to our dataset. Since the entropy
values of all the images in a particular volume were very
similar, entropy value of the middle slice from each volume
is plotted for the sake of compactness. At a specific point
in the optimization process, when �E becomes negligible
(close to zero) or when the �E value starts oscillating,
the enhancement process is stopped. Both these scenarios
imply that further application of the enhancement process
either will not further enhance the image or will likely intro-
duce artifacts in the image. We observe an obvious increase
in entropy when applying the proposed method for the
first iteration. Subsequent applications bring a slow entropy
increase; however, we show in section V that the segmen-
tation accuracy is higher when segmentation is applied on
images enhanced using the proposed algorithm. The result
of applying the OPTGCE method and comparison with other
methods is presented in the following section.

FIGURE 2. Variation in entropy values with iterations.

IV. ASSESSMENT OF CONTRAST ENHANCEMENT
In this section, we describe the dataset used in the experi-
ment and the results obtained using different methods [7],
[31], [32]. The qualitative and quantitative assessments are
elaborated below.

A. DATASET
The data used in this research work is provided by the
Intervention Center, Oslo University Hospital in Norway.
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FIGURE 3. Comparison of proposed method with state of the art methods and their corresponding histograms.

FIGURE 4. Comparison of proposed method with state of the art methods and their corresponding GLCM plots.

Liver CT and MR data of the same patient are used; how-
ever, CT-MRI data is not registered since registration is not
required for global enhancement methods. We tested our
method on 10 patients’ data constituting 99 CT-MR image
pairs (containing tumors). The images from different vol-
umes are of different spatial sizes (such as 512 × 512,
360×240) with pixel values in the range [0, 255]. In medical
image processing tasks such as segmentation and enhance-
ment, the processing is often restricted to a particular
organ and the nearby organs are removed from the medical
images [38], [39]. The liver area in the images is there-
fore separated and processing is applied only to this
region.

1) QUALITATIVE ANALYSIS
In this subsection, few enhanced images alongwith their
corresponding histograms and GLCM plots are presented
in Fig. 3 and 4 respectively. To ensure a fair compari-
son, we selected all histogram based methods where [31]
and [32] employ optimization based histogram processing
and [7] applies cross-modality guided HS. We denote these
methods as Averaging Histogram Equalization (AVHEQ)
[31], Histogram Equalization with Maximum Intensity Cov-
erage (HEMIC) [32] and Cross-Modality Guidance-based
enhancement (CMGE) [7].

The input image in Fig. 3a2 has low contrast as validated
by its histogram. Similarly, the input image in Fig. 4a2 is
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TABLE 2. Quantitative assessment of different enhancement methods.

low-contrast CT image. The images enhanced using HEMIC
(Fig. 3a3 and 4a3) do not show noticeable contrast improve-
ment. Although CMGE (Fig. 3a5) expands the dynamic
range of the image (Fig. 3a5), it darkens the image. AVHEQ
(Fig. 4a4) stretches the dynamic range of enhanced images,
however, its GLCM plot (Fig. 4b4) shows significant gaps
among the pixel pairs and consequently the compactness
of the plot is lost. The plot of OPTGCE enhanced image
(Fig. 4b6) reflects the uniform distribution of the pixel pairs.
Furthermore, it approximates the plot of the guidance image
(Fig.4b1) in evenly distributing the pixel pairs; this similarity
is also verified in their histograms (Fig. 3b1 and Fig. 3b6).

2) QUANTITATIVE ANALYSIS
Image Quality Assessment (IQA) is a well-investigated
research field especially in the case of natural images [40].
However, the use of existing IQA metrics has serious limi-
tations in the medical context [41]. The objectives of CE in
the medical context are quite different [42], [43]. While in the
case of natural images the objective is to measure the effect of
various distortions on the perceptual quality of the image; in
the medical context even if some degradation may disturb the
radiologists the focus is rather on the diagnosis. Therefore,
the existing IQA metrics must be used with special care.
Another challenging topic is how to evaluate the performance
of a given image quality enhancement algorithm in terms of
perceptual quality [44]. In the present study, we focus on
some contrast enhancement evaluation (CEE) metrics.

Themotivation of theOPTGCE is to emphasize the appear-
ance of specific structures in the image and convey the maxi-
mum structural information to facilitate tumor segmentation.
To this end, we have chosen three different CEE metrics to
evaluate the quality of enhanced images. The first metric
is a mutual information-based no reference metric called
MIGLCM [45]. This metric offers quantitative criteria that
examines the changes in the statistical features, joint entropy,
andmutual information, acquired from theGLCMof the orig-
inal and the enhanced images. Besides MIGLCM, we have
used a recent metric Multi-Criteria Contrast Enhancement

TABLE 3. Median MCCEE values for different methods.

Evaluation (MCCEE) found to be effective for the evaluation
of CE in CT images that have been enhanced to improve
tumor segmentation [46]. It is a comprehensive metric as
it not only measures improvement in contrast but also con-
siders other evaluation criteria like over-enhancement. For
MCCEE, four features are evaluated for each image cor-
responding to four different criteria. These criteria include
contrast enhancement, structure preservation, lightness order
preservation, and brightness preservation. Two of the four
features corresponding to the structure and lightness order
preservation are evaluated from the subband images after
wavelet decomposition. MCCEE is finally evaluated using
a trained Support Vector Regressor (SVR) with subjective
quality scores or DICE from the subsequent segmentation.
MCCEE here is applied on data of three patients only since
the rest of the data from seven patients is used for training.

For the last metric, we have used entropy, which is often
used in QA of medical image enhancement [31]. Table 2 lists
the median values of MIGLCM and entropy, whereas Table 3
shows the MCCEE values. It is pertinent to mention that
the higher the MCCEE score, the better enhancement result
is; the range of MCCEE is [0,1]. Similarly, a higher value
of MIGLCM reflects better performance of CE algorithms.
Besides, higher entropy values also correspond to superior
CE performance; however, there is no specified range for
this metric. From the tabular results, we can observe that
OPTGCE demonstrates the best performance. For MCCEE
and entropy, CMGE, HEMIC, and AVHEQ are ranked low
overall by the two QA metrics. In the case of MIGLCM,
HEMIC is ranked as the second-best and CMGE gives the
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FIGURE 5. Comparison of tumor segmentation results with the ground truth.

poorest results. All in all, we observe that OPTGCE shows
the best performance for all the quantitative metrics chosen.
In this section, we compared the performance of our proposed
method individually without looking at its effect on the sub-
sequent segmentation task. In the following section, the appli-
cation of the gradient-driven Seeded Region Growing (SRG)
method on the enhanced images will be discussed.

V. TOWARDS AN OPTIMAL SEGMENTATION
PRESERVING LOCAL STRUCTURES
Segmentation in low contrast medical images, particularly
CT images is a delicate operation. The segmentation pro-
cess is often accompanied by miss-classification errors that
negatively impact high-level tasks, for instance, diagnosis
in the medical context. Similar to several fields of sci-
entific research, deep learning-based image segmentation
approaches seem to dominate the state of the art [47]. How-
ever, DL-based techniques require an extensive amount of
data to train the networks, which is difficult to acquire in the
medical context due to confidentiality and ethical considera-
tions. This work entails the segmentation of liver tumors from
a rather limited volume of data consisting of only 99 liver
tumor images (out of 10 patients’ data). We, therefore, resort
to the traditional approach, SRG. Several studies report the

use of SRG for segmenting medical images compared to
more sophisticated approaches [48]–[50]. However, as has
been pointed out, classical segmentation, whether stochastic
or deterministic, inevitably induces pixel classification errors,
which could be fatal in the case under study here. One solu-
tion to minimize these errors is to apply pre-processing so
as to amplify the inter-pixel gradient to facilitate the dis-
crimination of local structures. Contrast enhancement is the
most intuitive solution. In this work, one of the segmentation
methods that seems to us the most adequate is the region
growing technique based on the gradient of pixel values [51].
Indeed, the fact of first carrying out CE amplifies the gradient,
which results in putting the gradient-based region growing
method in the most favorable conditions. A constraint that
may limit the utility of this approach is the execution time;
therefore, we use its parallel implementation as proposed
in [13]. In this section, we present the results of applying
segmentation on enhanced images along with its quantitative
assessment.

A. QUANTITATIVE ASSESSMENT OF SEGMENTATION
The results of applying gradient-driven SRG algorithm
on enhanced as well as input images are demonstrated
in Fig. 5 and 6. It can be noticed that the tumor in the
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FIGURE 6. Comparison of tumor segmentation results with the ground truth.

TABLE 4. Comparison of different segmentation assessment method for enhancement results.

input image can hardly be seen in Fig. 5a1 and 6a1 with-
out applying CE. In general, application of the CE methods
improve the contrast of the input image, which ultimately
enables SRG to locate tumor contours favorably. How-
ever, OPTGCE well preserves uniformity in the structure of
tumors in the enhanced image together with yielding sharp
tumor edges. Therefore, Seeded Region Growing (SRG)
algorithm is better able to locate the tumor contours in the
OPTGCE-enhanced images. This property enables OPTGCE
to outperform other CEmethods in facilitating tumor segmen-
tation. The quantitative segmentation assessment as well as
qualitative comparison with ground truth also supports our
claim.

It should be noted here that the segmentation results are
demonstrated without applying any kind of post-processing
such as morphological region filling. We believe that bet-
ter results could be obtained if appropriate post-processing
was applied to the segmented images. For further validation,
we quantitatively evaluate the segmentation results using

three assessment metrics, i.e., Positive Predictive Value
(PPV), Dice and Hausdorff distance (with Euclidean dis-
tance). The average values of these metrics obtained for each
volume are shown in Table 4. In the past, several metrics
have been proposed to evaluate the performance of seg-
mentation algorithms such as intensity-based, shape-based,
and or distance-based. One of the challenges in medical
image segmentation assessment is that the object of interest
constitutes a small part of the image, therefore the assess-
ment methods are biased to yield more weightage to speci-
ficity compared to sensitivity. Distance-based metrics such
as Hausdorff distance are capable of detecting data outliers in
such cases where intensity-based approaches may often fail.
There is no standard range for the hausdorff distance values,
however, the lower value indicates superior segmentation
outcomes.

Among the numeric results in Table 4, PPV values in
general are greater than 0.8 for all the segmentations.
Since PPV computes the ratio between the number of pixels
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correctly classified as tumors to the number of pixels cor-
rectly classified and the non-tumor pixels wrongly classified
as tumors, this metric gives similar values to all the methods.
It should be noted that the range of PPVmetric is [0,1]; where
1 implies accurate segmentation. It can also be observed
that all the segmentations in Fig. 5 and 6 do not include
many non tumor pixels in the resultant segmentation when
compared to the ground truth. Although Dice yields better
scores for segmentation applied on images enhanced using
the proposed method, the overall dice scores are low. Dice
similarity metric gives higher value to the terms that compute
the intersection between true positives in segmentation under
test and ground truth. The range of dice score lies between
0 and 1, where 1 corresponds to the perfect segmentation.
In the proposed CE approach, the segmented area does not
completely overlap with the GT, contributing to lower dice
scores; moreover, not applying any kind of post-processing
to segmentation also introduces discontinuities and non uni-
formity in segmented tumors. It is worth mentioning here that
the Dice scores are lowest when SRG algorithm is applied on
the input images without any kind of enhancement, whereas
Hausdorff distance shows highest value. The segmentation in
the case of the OPTGCE method consistently achieves lower
Hausdorff distance values for all three volumes. CMGE is the
second-best while HEMIC ranks lowest in all the three cases
tested.

VI. CONCLUSION
This study proposes an optimization-based guided con-
trast enhancement approach OPTGCE for low contrast
CT images. The proposed technique adopts a context-aware
2D histogram-based scheme of exploiting information in
the better perceptual quality guidance image for global
contrast enhancement, while local image structures are
enhanced through SSIM based measure in an optimization
framework. This combination effectively improves the con-
trast while minimizing the artifacts associated with typical
histogram-based enhancement methods to preserve the mor-
phological information of the image during enhancement.
The qualitative and quantitative analysis usingmetrics includ-
ing entropy, MCCEE, andMIGLCM shows the superiority of
the proposedmethod in comparisonwith the existingmethods
that do not include guidance mechanism. Finally, a tumor
segmentation algorithm is applied on the enhanced images
to analyze the performance of the proposed method in facili-
tating tumor segmentation. The comparison with the ground
truth and quantitative assessment using Hausdorff distance,
dice, and PPV metrics validate the superior performance of
OPTGCE. With the availability of more data, goal-oriented
contrast enhancement can be implemented using deep neural
networks to facilitate tumor segmentation in different organs.
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a b s t r a c t 

Background and Objective: Accurate and fast vessel segmentation from liver slices remain challenging and 

important tasks for clinicians. The algorithms from the literature are slow and less accurate. We pro- 

pose fast parallel gradient based seeded region growing for vessel segmentation. Seeded region growing 

is tedious when the inter connectivity between the elements is unavoidable. Parallelizing region grow- 

ing algorithms are essential towards achieving real time performance for the overall process of accurate 

vessel segmentation. 

Methods: The parallel implementation of seeded region growing for vessel segmentation is iterative and 

hence time consuming process. Seeded region growing is implemented as kernel termination and re- 

launch on GPU due to its iterative mechanism. The iterative or recursive process in region growing is 

time consuming due to intermediate memory transfers between CPU and GPU. We propose persistent 

and grid-stride loop based parallel approach for region growing on GPU. We analyze static region of in- 

terest of tiles on GPU for the acceleration of seeded region growing. 

Results: We aim fast parallel gradient based seeded region growing for vessel segmentation from CT liver 

slices. The proposed parallel approach is 1.9x faster compared to the state-of-the-art. 

Conclusion: We discuss gradient based seeded region growing and its parallel implementation on GPU. 

The proposed parallel seeded region growing is fast compared to kernel termination and relaunch and 

accurate in comparison to Chan-Vese and Snake model for vessel segmentation. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

In medical imaging, vessel segmentation from liver slices is 

one of the challenging tasks. Seeded region growing (SRG) is a 

widely used approach for semi automatic vessel segmentation 

[1,2] . Delibasis et. al. [3] have proposed a tool based on a modi- 

fied version of SRG algorithm, combined with a priori knowledge 

of the required shape. SRG starts with a set of pixels called seeds 

and grows a uniform, connected region from each seed. Key steps 

to SRG are to define seed(s) and a classifying criterion that relies 

on the image properties and user interaction [4] . SRG starts from a 

seed and finds the similar neighboring points based on the thresh- 

old criteria using 4 or 8 connectivity. Region is grown if the thresh- 

∗ Corresponding author. 

E-mail address: el2sasan@uco.es (N. Satpute). 

old criteria is satisfied. Similar neighbors are new seed points for 

the next iteration. This process is repeated until the region can not 

be grown further. In practice, it demands high computational cost 

to the large amount of dependent data to be processed in SRG es- 

pecially in the medical image analysis and still requires efficient 

solutions [5] . 

SRG is an iterative process. SRG is invoked continuously until 

region can not be grown further. Iterative process in SRG, when 

implemented on GPU requires terminating kernel and relaunch- 

ing from CPU (Kernel Termination and Relaunch (KTRL)) and data 

transfers between CPU and GPU [1,4] . So our main objective is to 

reduce these data transfers using different inter block GPU syn- 

chronization (IBS) methods resulting in an efficient parallel imple- 

mentation of SRG. IBS provides flexibility to move all the computa- 

tions on GPU by providing visibility to updated intermediate data 

without any intervention from CPU. 

https://doi.org/10.1016/j.cmpb.2020.105430 

0169-2607/© 2020 Elsevier B.V. All rights reserved. 
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Table 1 

List of abbreviations with full forms. 

List Full Forms 

SRG Seeded Region Growing 

GPU Graphics Processing Unit 

CPU Central Processing Unit 

RoI Region of Interest 

KTRL Kernel Termination and Relaunch 

IBS Inter Block GPU Synchronization 

CT Computed Tomography 

PT Persistent Threads 

SM Streaming Multiprocessor 

CUDA Compute Unified Device Architecture 

DS Dice Score 

In this paper, we propose persistent, grid-stride loop and IBS 

based GPU approach for SRG to avoid intermediate memory trans- 

fers between CPU and GPU. This also reduces processing over un- 

necessary image voxels providing significant speedup. Persistent 

thread block (PT) approach is basically dependent on number of 

active thread blocks and grid-stride loop becomes essential when 

the number of threads in the grid are not enough to process the 

image voxels independently [6,7] . 

We implement parallel image gradient using grid-stride loop 

and propose gradient and shared memory based fast parallel SRG 

implemented entirely on GPU without any intermediate transfers 

between CPU and GPU. This is inspired by parallel processing on 

static region of interest (RoI) of tiles on GPU. We compare the pro- 

posed persistent based parallel SRG with KTRL for accurate vessel 

segmentation. The gradient based fast parallel SRG for 2D vessel 

segmentation is 1.9 × faster compared to the state-of-the-art. 

The rest of the paper is structured as follows. Section 2 briefs 

relevant works and state-of-the-art with respect to SRG. 

Section 3 explains GPU approaches (KTRL and Static) for SRG 

implementation using persistence and grid-stride loop. The appli- 

cation of parallel SRG to vessel segmentation is discussed in the 

Section 4 . Performance results and comparison of persistent and 

grid-stride loop based parallel SRG for vessel segmentation are 

mentioned in the Section 5 . Section 6 concludes summarizing the 

main conclusions of this paper and indicating future directions. 

List of abbreviations with explanations are mentioned in Table 1 . 

2. Background and motivation 

There are many works done on image segmentation recently 

which are based on snake based model [8] , gradient vector flow 

[9,10] , and level set based Chan-Vese model [11] . Scientists have 

explored the snake model for segmentation. Snakes are defined 

as a set of points around a contour [8] . But the problem with 

the snake model is that the contour never sees the strong edges 

that are far away and the snake gets hung up due to many small 

noises in the image [8] . Hence researchers came up with the so- 

lution called gradient vector flow (GVF). In GVF, instead of using 

image gradient, a new vector field is created over the image plane 

[9,10] . Cost of GVF includes smoothness and edge map but it re- 

quires keeping track of the number of points and point distribu- 

tion. Hence researchers came up with another solution called as 

level sets based Chan-Vese model for image segmentation [11] . In 

the absence of strong edges, a region based formulation for image 

segmentation is proposed by Chan-Vese model. Chan-Vese model 

for active contours is a powerful and flexible method which is able 

to segment many types of images. But amongst all, SRG is the sim- 

plest algorithm and plays a vital role in medical image segmenta- 

tion [1,12] . 

Smistad et. al. [13,14] have discussed parallel SRG for image seg- 

mentation. The reference implementation is shown in Fig. 1 . Medi- 

cal image dataset is cropped before processing. Then the CPU allo- 

cates the memory equivalent to the cropped size to copy the data 

to the cropped image on the GPU. Further SRG is performed for im- 

age segmentation. This is the simplistic representation of the work 

by Smistad et. al. [14] . We have not considered pre-processing 

stage in this work assuming the images are pre-processed. Smistad 

et. al. [14] have proposed non persistent thread (non-PT) approach 

for SRG based vessel segmentation. 

Smistad et al. [4] have proposed parallel region growing with 

double buffering algorithm based on the parallel breadth first 

search algorithm by Harish and Narayanan [15] . They have sug- 

gested a dynamic queue for SRG and mentioned that changing the 

number of threads (due to border expansion of the region) typ- 

ically involves restarting the kernel, and this requires reading all 

the values from global memory again. But they have not recom- 

mended probable solution for this problem. Smistad et al. [14] have 

presented a data parallel version of the SRG based Inverse Gradi- 

ent Flow Tracking Segmentation algorithm using KTRL. Zhang et al. 

[16] have implemented bidirectional region growing where they 

have used a dynamic queue (stack). Jiang et al. [17] have proposed 

improved branch based region growing vessel segmentation algo- 

rithm using stack. 

GPU based implementation of SRG needs a dynamic queue 

(stack). CPUs provide hardware support for stacks but GPUs do not 

[7] . Any queuing system has a large number of pieces of work 

to do and a fixed number of workers corresponding to the fixed 

number of computing units. Pieces are then assigned dynamically 

to the workers. The problem is deciding the maximum number of 

pieces of work in the queuing system. If decided, persistent blocks 

iterate through these pieces of work in the queuing system. 

GPU implementation of a stack requires continuous changes in 

memory allocations which in turn requires iterative GPU kernel in- 

vocation from CPU in other words kernel termination and relaunch 

as discussed in the algorithms IVM backtracking and work stealing 

phase by Pessoa et al. [18] . Task-parallel run-time system, called 

TREES, that is designed for high performance on CPU/GPU plat- 

forms by Hechtman et al. [19] have shown the invocation of GPU 

kernels from CPU iteratively for updating task mask stack (TMS) 

in TREES execution. The loop involved while implementing data 

flow through the stream kernels of the rendering system (involv- 

ing stack) on GPU controlled by CPU (that is KTRL) is proposed by 

Ernst et al. [20] . 

Nevertheless, there is an alternate GPU implementation of 

queuing system (stack) using dynamic kernel launching. Chen et. 

al. [7] have proposed free launch based dynamic kernel launches 

through thread reuse technique [7] . This technique requires no 

hardware extensions, immediately deployable on existing GPUs. By 

turning subkernel launch into a programming feature independent 

of hardware support, free launch provides alternate approach for 

subkernel launch which can be used beneficially on GPUs. 

KTRL includes terminating a GPU kernel and invoking it from 

the CPU if the region can be grown further [4,14] . GPU kernel SRG 

is called from CPU. Region grows from a seed based on the thresh- 

old criteria. SRG kernel is terminated and relaunched from CPU if 

region is not grown completely. This process continues until re- 

gion can not be grown further. The process involves transfer of 

data to and fro from CPU and GPU. In KTRL, SRG kernel operates 

on each voxel of whole image data in all the iterations. It includes 

redundant memory transfers and unnecessary computations over 

complete image. Hence the main contributions of this paper are 

the implementation of persistence based approaches to improve 

the performance of SRG by reducing unwanted computations and 

avoiding intermediate memory transfers between CPU and GPU. 

Memory on the GPU is limited and may not be enough for process- 

ing large medical datasets. However, most medical datasets contain 

a lot of data that is not part of the RoI. 
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Fig. 1. Reference approach derived from Smistad et. al. [14] 

The process of KTRL which involves iterative calling of the ker- 

nel is not efficient when implemented on GPU. Hence, as an opti- 

mized solution to KTRL, we propose persistent and grid-stride loop 

based GPU approaches. These approaches are based on processing 

over static RoI of tiles and dynamic RoI of tiles. We discuss the 

further details in the upcoming sections. 

3. Parallel SRG 

GPU is a grid of block of threads. Thread is the smallest com- 

putational unit mapped on the cores and block of threads are 

mapped on the streaming multiprocessors (SMs). Each SM can oc- 

cupy more than one block. The threads from independent blocks 

can access data via shared memory in the SM [21] . In order 

to communicate valid data between the blocks, these persistent 

blocks need to be synchronized via IBS through device memory. 

Persistence implies maximum number thread blocks that can be 

active at the time of computation depending upon the GPU re- 

sources available [6,22] . 

We use PT and shared memory based approaches for SRG im- 

plementations. Shared memory and grid-stride loop based SRG re- 

duces total memory transfers and computations. Grid-stride is in- 

spired when the grid is not large enough to occupy all the data el- 

ements [23,24] . Rather than assuming that the thread grid is large 

enough to cover the entire image elements, the kernel loops over 

the image one grid-size at a time. The stride of the loop is the to- 

tal number of threads on the grid [23] . These threads (or block of 

threads) iterate over the image until the process of SRG terminates. 

For each thread in parallel on GPU, SRG starts from the seed 

thread and finds similar neighbours surrounding it Region is grown 

by making similar neighbouring elements as new seeds. The pro- 

cess of SRG is repeated until similar neighbours can not be found. 

Normally SRG can be implemented on the GPU as a recursive or 

iterative kernel calling (KTRL) as shown in Fig. 2 a. Kernel calling 

involves invocation of a grid of block of threads. The blocks are ex- 

ecuted on streaming multiprocessors and threads are executed on 

cores. Park et el. [25] and Smistad et al. [4] have given brief intro- 

duction about CUDA (Compute Unified Device Architecture) archi- 

tecture and GPU computing. They have detailed the information on 

grid, blocks, threads and memory hierarchy of CUDA architecture. 

SRG can be recursive or iterative process. Recursive kernel call- 

ing can not utilize GPU cores efficiently due to hardware limita- 

Fig. 2. GPU implementations of seeded region growing (SRG). 
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Fig. 3. SRG using persistence and grid-stride loop through complete image. 

tions [26] . Iterative GPU kernel call from CPU is costlier due to 

memory transfers between CPU and GPU and it involves all the 

image elements to be considered in each step of SRG. GPU imple- 

mentation of SRG using KTRL is shown in the Fig. 2 a. It shows that, 

the kernel SRG is called on GPU continuously from the host CPU 

until the region can not be grown further. It starts from the seed, 

finds similar neighbours and grows the region. This process contin- 

ues until the region can not be grown further. The process of the 

KTRL causes unnecessary image elements to be part of computa- 

tions and intermediate memory transfers between CPU and GPU. 

Hence in order to avoid these problems, we propose grid-stride 

loop through complete image based GPU approach as shown in 

the Fig. 2 b. SRG starts from the seed and the control goes to GPU. 

The SRG kernel is launched if the region is not grown completely. 

IBS is needed in order to transfer valid data in between the active 

thread blocks. The number of active thread blocks on SMs are lim- 

ited due to resource constraints. These maximum number of active 

blocks are persistent blocks [6,21,22] . The looping i.e. grid-stride 

loop terminate when the region can not be grown further and con- 

trol returns to the host CPU as shown in the Fig. 2 b. We have 

discussed KTRL based GPU approach for SRG implementation and 

its disadvantages. Now, we are going to analyze PT based GPU ap- 

proaches for high performance SRG implementation. Proposed ap- 

proaches exploit parallelism using persistence and IBS as detailed 

in the static and dynamic approaches. 

3.1. Static approach 

In the proposed approach, we apply grid-stride loop through 

static RoI (complete image) using persistence and IBS [6,22] . The 

complete liver image is mapped on the GPU as grid of block of 

threads as shown in the Fig. 3 b. CPU invokes SRG kernel on GPU. 

Persistent blocks iterate through complete image and grow region 

from the seed in each and every iteration on GPU. This iteration 

of persistent blocks over the tiles of the image and the grid-stride 

loop based SRG is shown in Fig. 2 b. Steps of SRG in Figs. 3 c–f show 

the grown region of the liver. SRG kernel terminates when the re- 

gion is grown completely. We copy the data from the device mem- 

ory to the shared memory. This data is shared by all the threads 

inside the blocks. This is necessary to share the neighbouring el- 

ements between different voxels of the image. For each parallel 

thread in the block, if seed is found and is not the boundary el- 

ement of the block, we calculate similar neighbouring elements. 

Region is grown by making similar neighbouring elements as new 

seeds. 

There are four persistent blocks shown in Fig. 3 . These four per- 

sistent blocks are iterated through liver elements. Tiles with the 

same color are iterated by same persistent block. In KTRL, these 

tiles are processed by the thread blocks randomly. Grid-stride loop 

by persistent blocks is applied on the tiles over complete liver im- 

age (Step 1 in Fig. 3 c). Region grows around the seed containing 

similar elements. IBS is applied to communicate valid data in be- 

tween the blocks for the next step of SRG as shown in Fig. 2 b. 

Persistent blocks iterate over the liver image and the region is 

grown again in step 2 as shown in Fig. 3 d. IBS is applied and valid 

data is communicated in between the blocks so that the region 

can be grown further as shown in Fig. 3 e and f. After step 4 in 

Fig. 3 f, SRG stops as region can not be grown further. Each step 

contain many iterations where region starts growing when persis- 

tent blocks iterate through tiles of the image. This iterative process 

continues until region can not be grown further. Code snapshot of 

the complete process is provided in the Algorithm 1 . 

Algorithm 1: Grid-stride loop through complete image. 

1: unfinished=1; 

2: while unfinished==1 do 

3: unfinished=0; 

4: for int i=blockIdx.x;i < = 

width/ (blockDim.x − 2) ;i=i+gridDim.x do 

5: for int j=blockIdx.y;j < = 

height/ (blockDim.y − 2) ;j=j+gridDim.y do 

6: for int k=blockIdx.z;k < = 

depth/ (blockDim.z − 2) ;k=k+gridDim.z do 

7: Region_Growing(arguments, unfinished); 

8: end for 

9: end for 

10: end for 

11: Inter_Block_GPU_Sync(); 

12: end while 
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Global variable “unfinished” is 1 if region has to be grown fur- 

ther else it is 0. Persistent blocks in x, y and z directions iter- 

ate through complete image. Two is subtracted from block dimen- 

sions to avoid computations around boundary voxels (from left 

and right in each dimensions) from shared memory as region can 

not be grown further in the block. After each step of SRG, when 

the processing on complete image is done then all the persistent 

blocks are globally synchronized via “Inter_Block_GPU_Sync()” bar- 

rier. This ensures that valid data is communicated for the next 

step of SRG. This barrier can be Atomic(), Quasi(), LockFree() or 

can be implemented using NVIDIA CUDA API Cooperative-groups 

[22,27,28] . We use quasi based IBS because of its efficicient imple- 

mentation [27] . 

The difference between static and dynamic approach by Nitin 

et. al. [1] can be explained in terms of static and dynamic RoI of 

tiles. In static approach, RoI remains constant and SRG happens 

within the constant RoI until the region can not be grown fur- 

ther. Whereas in dynamic approach, SRG starts within the initial 

RoI. RoI increases and includes more elements uniformly in all the 

directions for the next step of SRG. SRG takes place, RoI increases 

and the region is grown further. Hence RoI changes in each step 

of SRG until the region can not be grown further in a dynamic ap- 

proach. In the next section, we present 2D vessel segmentation as 

an application to static RoI based SRG. 

4. Application to 2D vessel segmentation 

The 2D segmentation algorithm is inspired by the gradient 

based SRG algorithm developed by Rai and Nair [29] . We proposed 

the fast parallel SRG based segmentation algorithm on GPU for ves- 

sel segmentation. We discuss the two important modules i.e. image 

gradient and SRG for the fast parallel 2D segmentation of vessels 

from CT liver images. 

4.1. Parallel image gradient 

Rai and Nair [29] have presented homogeneity criterion selec- 

tion and its impact on the quality of segmentation using SRG. 

In general, the threshold criteria include object contrast, region 

boundary, homogeneity of the region, intensities values and tex- 

ture features like shape and color. But we include cost functions 

mainly based on intensity values and their gradient direction and 

magnitude. 

The cost function exploits certain features of the image around 

the seed. Gradient based cost function requires gradient of the im- 

age, largest gradient magnitude (max_g) and minimum gradient 

(min_g) present in the image. The cost functions are: 

cost1 = g/ (k ∗max _ g) 0 < cost1 < 1 (1) 

cost2 = ( max _ g − g) / ( max _ g −min _ g) 0 < cost2 < 1 (2) 

where g is gradient magnitude of the pixel under consideration 

and k is the constant parameter which controls the region growth. 

The pixel under consideration is added in the growing region if 

it matches with the seed elements i.e. cost functions specified by 

Eqs. (1) and (2) are satisfied otherwise it is excluded from consid- 

eration. 

We propose grid-stride loop based parallel image gradient 

method in Algorithm 2 . For each pixel in parallel, we calculate 

its gradient magnitude ( g ) with respect to neighbouring element. 

Horizontal and vertical gradient components are given by gx and 

gy . The magnitude of maximum and minimum gradients are up- 

dated simultaneously. The gradient of the image is desired input 

for SRG based segmentation along with the seed. This is discussed 

in the next section. 

Algorithm 2: Parallel image gradient using grid-stride loop. 

1: voxel.x = blockIdx.x * blockDim.x + threadIdx.x; 

2: voxel.y = blockIdx.y * blockDim.y + threadIdx.y; 

3: stridex = blockDim.x * gridDim.x; 

4: stridey = blockDim.y * gridDim.y; 

5: for int k=voxel.x; k < rows ; k=k+stridex do 

6: for int l=voxel.y; l < cols ; l=l+stridey do 

7: candidate.x = k + 1; candidate.y = l + 1; 

8: check if neighbour candidate is within image dimensions; 

9: gx = 0.5*(data[candidate.x*cols + l] - data[k*cols + l]); 

10: gy = 0.5*(data[k*cols + candidate.y] - data[k*cols + l]); 

11: g = sqrt(gx*gx + gy*gy); 

12: data_g[k*cols + l]=g; 

13: if( max _ g < g) atomicMax(&max_g, g); 

14: if( min _ g > g) atomicMin(&min_g, g); 

15: end for 

16: end for 

4.2. Parallel vessel segmentation 

We propose fast parallel vessel segmentation as shown in Fig. 4 . 

The algorithm is inspired from gradient based segmentation algo- 

rithm by Rai and Nair [29] . Fig. 4 shows parallel implementation of 

vessel segmentation where the user selects seed(s). These seed(s) 

along with the image are transferred to the GPU. Device kernel cal- 

culates the image gradient in parallel as discussed in the earlier 

section. The IBS is necessary to reflect the updated image gradi- 

ents in the device memory. 

Further we apply SRG algorithm. The cost functions based on 

gradient are shown in Eqs. (1) and (2) . For each pixel in parallel, 

the pixel under consideration invokes SRG kernel if it satisfies the 

cost functions. The seeds are updated after IBS and the gradient 

based cost functions are verified again for new pixels. This process 

continues until no new seeds are formed i.e. no new pixels are 

added to the growing region. 

The kernel is terminated and the control returns to the CPU 

when the region is grown completely. The segmented image is 

transferred to the CPU. The process of segmentation stops. This 

GPU implementation avoids iterative call of SRG kernel from CPU. 

We use gradient and persistent based parallel SRG for vessel seg- 

mentation. 

5. Performance evaluation 

We propose persistent and grid-stride based GPU approaches 

for fast parallel 2D vessel segmentation. The performance results 

are obtained from KTRL and proposed persistent based GPU ap- 

proach. We compare proposed approaches with KTRL. We use In- 

tel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz RAM 24 GB, NVIDIA 

GPU 1050 (RAM 4GB), OpenCL 1.2 (ref. [30] ) and CUDA Toolkit 10.1 

for the implementation. 

5.1. Liver dataset and ground truth 

Liver data for the research work has been acquired from The 

Intervention Center, University of Oslo, Norway [31] . The ground 

truths for vessel segmentation are provided by the clinician. The 

modality used is Computed tomography (CT). For the ground truth, 

images are pre-processed through locally developed application 

with 3D Slicer to enhance vessels [32] . In some cases, the same 

application is used for vessel segmentation and separation of por- 

tal and hepatic vessels although another possibility is to use active 

contour tool using ITK-SNAP and manual correction [1,31] . Table 2 

shows information about images of different sizes including total 
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Fig. 4. Proposed parallel vessel segmentation. 

Table 2 

Liver dataset with vessels. 

Volume # Total # of Slices Image Size ( w × h ) # of Slices with Vessels 

10504 59 460 × 306 7 

18152 139 512 × 512 5 

23186 87 405 × 346 6 

28059 59 462 × 321 6 

number of vessel slices used for experimentation from a particular 

volume. 

5.2. Parallel 2D vessel segmentation 

We propose persistent and grid-stride based GPU approaches 

for fast parallel 2D vessel segmentation. Variations in vessel seg- 

mentation with parameter ‘ k ’ using parallel SRG is shown in Fig. 5 . 

Input to parallel SRG is CT liver slice as shown in Fig. 5 a. Gradient 

of input CT image and the ground truth for the segmentation are 

shown in Fig. 5 b and c respectively. Dice similarity coefficient (DS) 

and Precision [33,34] are used to assess the quality of vessel seg- 

mentation. Dice similarity coefficient measures the similarity be- 

tween ground truth and the segmented output. If they are identical 

(i.e. they contain the same elements), the coefficient is equal to 1.0, 

while if they have no elements in common, it is equal to 0.0. Oth- 

erwise it is somewhere in between 0 to 1. Precision describes the 

number of positive detections with respect to the ground truth. Of 

all of the elements that are segmented in a given liver vessel im- 

age, the number of these elements actually had a matching ground 

truth annotation can be called as precision. 

We show the two segmented vessels with change in parameter 

k i.e. 0.04, 0.05, and 0.06. The first segmented vessel as shown in 

Fig. 5 d, e, f is accurate at 0.04 with high dice score i.e. DS = 0 . 77 . 

Similarly we show the segmentation of second vessel from the 

same slice. The variations in the quality segmentation due to k 

are shown in Fig. 5 g, h, i. The more accurate segmentation is ob- 

tained at 0.05 as the dice similarity coefficient value is higher i.e. 

DS = 0 . 60 . 

Further we show the quality of segmentation on another CT 

Slice as shown in Fig. 6 a and calculate the gradient ( Fig. 6 b) of the 

input CT image. GPU computes parallel SRG using gradient based 

thresholding criteria giving more accurate results with high dice 

score at k = 0 . 05 for two vessels inside the CT slice as shown in 

Fig. 6 c and d. The ground truth for the segmentation is shown in 

Fig. 6 e. We analyze that the vessels are more accurately segmented 

due to better value of dice similarity coefficient when the parame- 

ter k takes the value 0.05 as shown in Fig. 6 . 

The speedup obtained by proposed parallel static approach over 

KTRL on first two CT liver slices are shown in the Table 3 . The 

maximum speedup for vessel segmentation by proposed parallel 

static SRG is 1.67 × in comparison to KTRL on the first liver slice. 

But the average speedup obtained by proposed parallel static ap- 

proach for all the vessels (in 6 slices tested) is 1.9 × compared to 

KTRL. We evaluate the speedup of the vessel segmentation when 

the vessel segmentation is more accurate with better Dice score 

value ( Fig. 5 ). 

Further we analyze the effect of parallel SRG on different slices 

for multiple vessel segmentation using multiple seeds as shown in 

Figs. 7–10 . Segmentation of the long vessel as shown in Fig. 8 d is 

slightly extended compared to the ground truth shown in Fig. 8 e. It 

can be seen from input CT image and gradient image ( Figs. 8 a and 

b), long vessel has extension which is not shown in the ground 

truth. We show the thick vessel segmentation in Figs. 7 d, 9 c, 8 c 

and thin vessel segmentation in Figs. 7 c, 8 c and d. The results of 

segmentation in terms of Dice Score and Precision are provided in 

Table 4 . The highest and lowest value of precision for these slices 

are 0.94 and 0.79 respectively. This implies the number of posi- 

tive detections in the segmented images are higher. It is possible to 

use multiple seeds for the same vessel in the proposed vessel seg- 

mentation approach. We have the flexibility to provide two seeds 

on the same vessel and then the proposed approach can create a 

curve or a line of initial seeds (if needed) as an input for SRG. It is 

useful in order to increase the quality of vessel segmentation. 

There are many works done on image segmentation recently 

which are based on snake based model [8] , gradient vector flow 

[9,10] , and level set based Chan-Vese model [11] . We validate the 

performance on 72 vessels from 24 vessel slices obtained from 4 

different volumes in Table 5 . Table shows the comparison of the 

vessel segmentation accuracy between three different models i.e. 

Snake model [8] , Chan-Vese [11] , and proposed SRG in terms of 

dice score and precision. Average dice score value and precision 

obtained by proposed SRG is outperforming the Chan-Vese and 

Snake based vessel segmentation. 

Our proposed parallel implementations of SRG is not only fast 

but also accurate for vessel segmentation. The accuracy of the seg- 

mentation depends on the parameter ‘ k ’. Clinicians get the flex- 

ibility to decide which segmentation is more accurate. The pro- 

cess takes very less time (few ms). Hence this reduces the over- 

all time for segmentation for various values of parameter ‘ k ’ if the 
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Fig. 5. Variations in fast parallel vessel segmentation with constant parameter ‘ k ’ using parallel SRG on first liver slice. 

Fig. 6. Vessel segmentation (for k = 0 . 05 ) using parallel SRG on second liver slice. 

Table 3 

Time and speedup for vessel segmentation. 

Data → Vessel Segmentation 

GPU Approaches → Metrics ↓ KTRL Static (Speedup) 

Time in ms for kernel SRG - 1st Slice ( k = 0 . 05 ) 1st vessel 5.7 3.4 (1.67 × ) 

Time in ms for kernel SRG - 1st Slice ( k = 0 . 05 ) 2nd vessel 2.1 1.5 (1.4 × ) 

Time in ms for kernel SRG - 2nd Slice ( k = 0 . 05 ) 1st vessel 1.5 1 (1.5 × ) 

Time in ms for kernel SRG - 2nd Slice ( k = 0 . 05 ) 2nd vessel 3.5 2.4 (1.45 × ) 

Fig. 7. Fast parallel vessel segmentation using parallel SRG on 3rd liver slice using multiple seeds ( n ). 
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Fig. 8. Fast parallel vessel segmentation using parallel SRG on 4th liver slice using multiple seeds ( n ). 

Fig. 9. Fast parallel vessel segmentation using parallel SRG on 5th liver slice using multiple seeds ( n ). 

Fig. 10. Fast parallel vessel segmentation using parallel SRG on 6th liver slice using multiple seeds ( n ). 

Table 4 

Quality of vessel segmentation in terms of dice score and precision for Figs. 5–10 . 

Sr. No. Ground Truth Figure Segmented Image Figure Value of ‘ k ’ Dice Score Precision 

1 Fig. 5 c Fig. 5 d 0.04 0.77 0.86 

2 Fig. 5 e 0.05 0.73 0.94 

3 Fig. 5 f 0.06 0.67 0.94 

4 Fig. 5 c Fig. 5 g 0.04 0.54 0.86 

5 Fig. 5 h 0.05 0.60 0.83 

6 Fig. 5 i 0.06 0.37 0.86 

7 Fig. 6 e Fig. 6 c 0.05 0.88 0.86 

8 Fig. 6 d 0.05 0.89 0.85 

9 Fig. 7 e Fig. 7 c 0.05 0.70 0.91 

10 Fig. 7 d 0.05 0.88 0.91 

11 Fig. 8 e Fig. 8 c 0.05 0.71 0.79 

12 Fig. 8 d 0.05 0.72 0.90 

13 Fig. 9 e Fig. 9 c 0.05 0.67 0.82 

14 Fig. 9 d 0.05 0.88 0.88 

15 Fig. 10 e Fig. 10 c 0.05 0.89 0.94 

16 Fig. 10 d 0.05 0.67 0.91 

Table 5 

Segmentation accuracy comparison for 4 volumes, 24 vessel slices and 72 vessels. 

Volume # 

Image Size 

( w × h ) 

# of Vessel 

Slices 

Total # of 

Vessels 

Chan-Vese [11] Snake model [8] Proposed SRG 

Average 

Dice 

Average 

Precision 

Average 

Dice 

Average 

Precision 

Average 

Dice 

Average 

Precision 

10504 460 × 306 7 21 0.78 0.82 0.77 0.81 0.85 0.83 

18152 512 × 512 5 15 0.75 0.85 0.78 0.83 0.82 0.87 

23186 405 × 346 6 18 0.77 0.83 0.81 0.82 0.84 0.86 

28059 462 × 321 6 18 0.72 0.81 0.76 0.78 0.81 0.84 

clinician wants to have more accuracy. The advantage of k is, by 

adjusting the value of k from the threshold criteria, clinicians have 

the flexibility to fine tune the accuracy of the vessel segmenta- 

tion. But, vessels vary in shapes, sizes, texture features etc not 

only in different CT slices but also in the same CT slice. Even if 

the authors propose k = 0 . 05 provides better accuracy for the pro- 

vided CT images, sometimes finding the same value of k for dif- 

ferent vessels in the same CT slice becomes difficult. The range 

of k lies between 0.03 to 0.12 for the better accuracy of vessel 

segmentation. 
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5.3. Discussion 

In this paper, we propose persistence and grid-stride loop based 

SRG implementation. In order to obtain significant speedup, we 

need to exploit parallelism by using persistence and IBS. It involves 

change in the large body of SRG algorithm. We want algorithms 

that require as less synchronization as possible. In general if algo- 

rithm requires IBS, it is probably not going to be particularly fast. 

The fastest algorithms on GPUs are ones that fit nicely into the 

GPU programming model, where blocks are independent from each 

other and do not require synchronization [35] . 

But the problem arises when iterative calling of the kernel 

can not be avoided. It incurs memory transfers from CPU to GPU 

when KTRL is used for global synchronizations. Hence it has to go 

through synchronizations as the next step of SRG which is depen- 

dent on the current step. Terminating a kernel and relaunching in- 

curs data transfers from CPU to GPU and vice versa. It is time con- 

suming. 

If we use IBS method along with persistence, then we can map 

whole algorithm on GPU with synchronization. Control comes back 

to CPU only if the kernel task is over. CPU launches a kernel on 

GPU, GPU executes it and final results are copied to CPU. No in- 

termediate data communication occurs in the proposed approach 

(unlikely in KTRL). 

6. Conclusion 

In this paper, we discuss SRG based vessel segmentation and 

its parallel implementation on GPU. We propose persistence and 

grid-stride loop based GPU approach for SRG providing significant 

speedup. Normally recursion/iterative calling of a kernel is gener- 

ally a bad idea on GPUs. We use persistence and grid-stride ap- 

proach as an alternate implementation for KTRL. We compare pro- 

posed GPU optimization strategy for SRG implementation. The pro- 

posed persistent and gradient based parallel SRG for 2D vessel seg- 

mentation is accurate with high dice scores and 1.9 × faster com- 

pared to the KTRL. 
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[2] R. Palomar , F.A. Cheikh , B. Edwin , Å. Fretland , A. Beghdadi , O.J. Elle , A novel 
method for planning liver resections using deformable Bézier surfaces and dis- 

tance maps, Comput. Methods Programs Biomed. 144 (2017) 135–145 . 
[3] K.K. Delibasis, A. Kechriniotis, I. Maglogiannis, A novel tool for segmenting 3d 

medical images based on generalized cylinders and active surfaces, Comput. 
Methods Programs Biomed. 111 (1) (2013) 148–165, doi: 10.1016/j.cmpb.2013. 

03.009 . 
[4] E. Smistad , T.L. Falch , M. Bozorgi , A.C. Elster , F. Lindseth , Medical image seg- 

mentation on GPUs–a comprehensive review, Med. Image Anal. 20 (1) (2015) 

1–18 . 
[5] J. Wassenberg , W. Middelmann , P. Sanders , An efficient parallel algorithm for 

graph-based image segmentation, in: International Conference on Computer 
Analysis of Images and Patterns, Springer, 2009, pp. 1003–1010 . 

[6] K. Gupta , J.A. Stuart , J.D. Owens , A study of persistent threads style GPU pro- 
gramming for GPGPU workloads, in: Innovative Parallel Computing-Founda- 

tions & Applications of GPU, Manycore, and Heterogeneous Systems (INPAR 

2012), IEEE, 2012, pp. 1–14 . 
[7] G. Chen , X. Shen , Free launch: optimizing GPU dynamic kernel launches 

through thread reuse, in: Proceedings of the 48th International Symposium on 
Microarchitecture, ACM, 2015, pp. 407–419 . 

[8] S. Roy , S. Mukhopadhyay , M.K. Mishra , Enhancement of morphological snake 
based segmentation by imparting image attachment through scale-space con- 

tinuity, Pattern Recognit. 48 (7) (2015) 2254–2268 . 

[9] H. Zhou , X. Li , G. Schaefer , M.E. Celebi , P. Miller , Mean shift based gradient vec- 
tor flow for image segmentation, Comput. Vis. Image Underst. 117 (9) (2013) 

1004–1016 . 
[10] E. Smistad , A.C. Elster , F. Lindseth , Real-time gradient vector flow on GPUs us- 

ing OpenCL, J. Real-Time Image Process. 10 (1) (2015) 67–74 . 
[11] S.K. Siri , M.V. Latte , Combined endeavor of neutrosophic set and Chan-Vese 

model to extract accurate liver image from ct scan, Comput. Methods Programs 

Biomed. 151 (2017) 101–109 . 
[12] R.P. Kumar , F. Albregtsen , M. Reimers , B. Edwin , T. Langø, O.J. Elle , Three- 

-dimensional blood vessel segmentation and centerline extraction based on 
two-dimensional cross-section analysis, Ann. Biomed. Eng. 43 (5) (2015) 

1223–1234 . 
[13] E. Smistad, Seeded region growing, 2015, ( https://github.com/smistad/FAST/ 

tree/master/source/FAST/Algorithms/ ). 

[14] E. Smistad , A.C. Elster , F. Lindseth , GPU accelerated segmentation and center- 
line extraction of tubular structures from medical images, Int. J. Comput. As- 

sisted Radiol. Surg. 9 (4) (2014) 561–575 . 
[15] P. Harish , P.J. Narayanan , Accelerating large graph algorithms on the GPU using 

CUDA, in: S. Aluru, M. Parashar, R. Badrinath, V.K. Prasanna (Eds.), High Perfor- 
mance Computing – HiPC 2007, Springer Berlin Heidelberg, Berlin, Heidelberg, 

2007, pp. 197–208 . 

[16] X. Zhang , X. Li , Y. Feng , A medical image segmentation algorithm based on 
bi-directional region growing, Optik 126 (20) (2015) 2398–2404 . 

[17] H. Jiang , B. He , D. Fang , Z. Ma , B. Yang , L. Zhang , A region growing vessel seg- 
mentation algorithm based on spectrum information, Comput. Math. Methods 

Med. 2013 (2013) . 
[18] T.C. Pessoa , J. Gmys , N. Melab , F.H. de Carvalho Junior , D. Tuyttens , A 

GPU-based backtracking algorithm for permutation combinatorial problems, 
in: J. Carretero, J. Garcia-Blas, R.K. Ko, P. Mueller, K. Nakano (Eds.), Algo- 

rithms and Architectures for Parallel Processing, Springer International Pub- 

lishing, Cham, 2016, pp. 310–324 . 
[19] B.A . Hechtman, A .D. Hilton, D.J. Sorin, TREES: a CPU/GPU task-parallel runtime 

with explicit epoch synchronization, arXiv: 1608.00571 . (2016). 
[20] M. Greiner , Stack implementation on programmable graphics hardware, in: Vi- 

sion, Modeling, and Visualization 2004: Proceedings, 2004, p. 255 . 
[21] V. Vineet, P.J. Narayanan, CUDA cuts: Fast graph cuts on the GPU, in: 2008 

IEEE Computer Society Conference on Computer Vision and Pattern Recogni- 

tion Workshops, 2008, pp. 1–8, doi: 10.1109/CVPRW.2008.4563095 . 
[22] S. Xiao, W.C. Feng, Inter-block GPU communication via fast barrier synchro- 

nization, in: 2010 IEEE International Symposium on Parallel Distributed Pro- 
cessing (IPDPS), 2010, pp. 1–12, doi: 10.1109/IPDPS.2010.5470477 . 

[23] M. Harris, Cuda pro tip:write flexible kernels with grid-stride loops, 2015. 
[24] M. Sourouri , S.B. Baden , X. Cai , Panda: a compiler framework for concurrent 

CPU+GPU execution of 3d stencil computations on GPU-accelerated supercom- 

puters, Int. J. Parallel Program. 45 (3) (2017) 711–729 . 
[25] S. Park , J. Lee , H. Lee , J. Shin , J. Seo , K.H. Lee , Y.-G. Shin , B. Kim , Parallelized 

seeded region growing using CUDA, Comput. Math. Methods Med. 2014 (2014) . 
[26] X. Tang, A. Pattnaik, H. Jiang, O. Kayiran, A. Jog, S. Pai, M. Ibrahim, M.T. Kan- 

demir, C.R. Das, Controlled kernel launch for dynamic parallelism in GPUs, in: 
2017 IEEE International Symposium on High Performance Computer Architec- 

ture (HPCA), 2017, pp. 649–660, doi: 10.1109/HPCA.2017.14 . 

[27] Y. Komura , Y. Okabe , GPU-based single-cluster algorithm for the simulation of 
the ising model, J. Comput. Phys. 231 (4) (2012) 1209–1215 . 

[28] T. Sorensen , H. Evrard , A.F. Donaldson , Cooperative kernels: GPU multitasking 
for blocking algorithms, in: Proceedings of the 2017 11th Joint Meeting on 

Foundations of Software Engineering, ACM, 2017, pp. 431–441 . 
[29] G. Rai, T. Nair, Gradient based seeded region grow method for ct angiographic 

image segmentation, arXiv: 1001.3735 . (2010). 

[30] J.E. Stone, D. Gohara, G. Shi, OpenCL: a parallel programming standard for het- 
erogeneous computing systems, IEEE Des. Test 12 (3) (2010) 66–73, doi: 10. 

1109/MCSE.2010.69 . 



10 N. Satpute, R. Naseem and R. Palomar et al. / Computer Methods and Programs in Biomedicine 192 (2020) 105430 
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a b s t r a c t 

Background and objective: Medical image segmentation plays a vital role in medical image analysis. There 

are many algorithms developed for medical image segmentation which are based on edge or region char- 

acteristics. These are dependent on the quality of the image. The contrast of a CT or MRI image plays an 

important role in identifying region of interest i.e. lesion(s). In order to enhance the contrast of image, 

clinicians generally use manual histogram adjustment technique which is based on 1D histogram specifi- 

cation. This is time consuming and results in poor distribution of pixels over the image. Cross modality 

based contrast enhancement is 2D histogram specification technique. This is robust and provides a more 

uniform distribution of pixels over CT image by exploiting the inner structure information from MRI im- 

age. This helps in increasing the sensitivity and accuracy of lesion segmentation from enhanced CT image. 

The sequential implementation of cross modality based contrast enhancement is slow. Hence we propose 

GPU acceleration of cross modality based contrast enhancement for tumor segmentation. 

Methods: The aim of this study is fast parallel cross modality based contrast enhancement for CT liver 

images. This includes pairwise 2D histogram, histogram equalization and histogram matching. The se- 

quential implementation of the cross modality based contrast enhancement is computationally expensive 

and hence time consuming. We propose persistence and grid-stride loop based fast parallel contrast en- 

hancement for CT liver images. We use enhanced CT liver image for the lesion or tumor segmentation. 

We implement the fast parallel gradient based dynamic seeded region growing for lesion segmentation. 

Results: The proposed parallel approach is 104.416 ( ± 5.166) times faster compared to the sequential 

implementation and increases the sensitivity and specificity of tumor segmentation. 

Conclusion: The cross modality approach is inspired by 2D histogram specification which incorporates 

spatial information existing in both guidance and input images for remapping the input image intensity 

values. The cross modality based liver contrast enhancement improves the quality of tumor segmentation. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

Computed tomography (CT) images of abdomen often possess 

low contrast [1,2] . Radiologists often manually delineate lesions 

during segmentation of medical images, which can be difficult, 

time-consuming and prone to observer variability [3] . Some seg- 

mentation algorithms do not perform well when applied on the 

CT images and are time consuming [4,5] . However, their perfor- 

∗ Corresponding author. 

E-mail address: el2sasan@uco.es (N. Satpute). 

mance can be made better once the CT images are preprocessed 

[6,7] . Therefore, preprocessed CT images help in refining the le- 

sions. One possible preprocessing step is image enhancement for 

the better visualization of tumors in undertaking surgical proce- 

dures [8–10] . 

Efficient preprocessing can certainly help to attain accurate seg- 

mentation of the critical structures in medical images [7,11] . High 

sensitivity and specificity indicates the improved quality of the 

segmentation [5,12] . The liver images obtained from the CT scans 

are sometimes noisy, low in contrast and contains high amounts of 

details. We consider contrast as the important feature. If the image 

is high contrast then it becomes easier to identify and segment the 

https://doi.org/10.1016/j.cmpb.2019.105285 

0169-2607/© 2020 Elsevier B.V. All rights reserved. 
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object of interest [2,13] . In our case, lesion is necessary to be seg- 

mented. 

There are many methods proposed to improve the contrast of 

the image. Histogram equalization, histogram specification and his- 

togram matching are some of the ways to improve the contrast in 

the image as discussed by [1,14,15] . We apply 2D histogram match- 

ing where CT liver is the target image and the magnetic resonance 

imaging (MRI) liver slice is the guided image [16,17] . Cross modal- 

ity based contrast enhancement exploits 2D histogram matching 

for liver enhancement. Once the image is enhanced then the task 

is to segment tumor from enhanced image. Seeded region growing 

for tumor segmentation is an easy and effective process. But the 

task of cross modality based liver enhancement is computationally 

expensive and time consuming [18] . Hence it becomes necessary to 

use GPU for real time performance of liver contrast enhancement 

and tumor segmentation. We propose accelerated cross modality 

guided liver enhancement scheme in this paper and demonstrate 

that our technique improves tumor segmentation on enhanced im- 

age. 

The aim of this study is cross modality based liver enhance- 

ment to improve the contrast of CT liver image for tumor segmen- 

tation. We propose parallel implementation of liver contrast en- 

hancement. This is accomplished by 2D histogram matching using 

CT and MRI liver images. We propose dynamic region of interest 

(RoI) based seeded region growing (SRG) for tumor segmentation 

from enhanced CT image. The overall average speedup obtained by 

parallel implementation is 104.416 ± 5.166 times compared to 

the sequential CPU implementation of the contrast enhancement 

and tumor segmentation. The enhanced liver image improves the 

sensitivity and specificity of the lesion segmentation. This is the 

first work targeted towards the high performance multi-modality 

guided liver enhancement for tumor segmentation to the best of 

our knowledge. 

The rest of the paper is organized as follows. Section 2 briefs 

the related works, background and motivation with respect to the 

liver image enhancement. Section 3 explains the proposed method- 

ology for liver contrast enhancement and its parallel implementa- 

tion on the GPU. Further, we discuss dynamic RoI based fast par- 

allel SRG for tumor segmentation in Section 4 . Performance re- 

sults and comparison of contrast enhancement and seeded region 

growing for tumor segmentation are mentioned in the Section 5 . 

Section 6 concludes summarizing the main results related to the 

cross modality based contrast enhancement and tumor segmenta- 

tion. 

2. Background and motivation 

Segmentation of lesions is a challenging problem in medical im- 

ages because of the similar intensity values of structures of inter- 

est and the nearby regions in image. Research works are targeting 

various methods for the segmentation [19–21] . The results of the 

segmentation are subsequently used in patient specific model for 

diagnostics, surgery planning and navigation. One such approach 

using gradient based SRG has been presented to segment the aorta 

and rib bones in thorax images by Rai and Nair [21] . Inspired by 

this idea, we propose parallel SRG to segment tumors from CT liver 

images. 

Image enhancement is regarded as a precursor to the accurate 

segmentation. CT scans are commonly used due to the availability 

and quicker imaging time compared to MRI. CT scans often suffer 

from low contrast which limit their utility [1,2] . In this work, we 

show through our experiments that corresponding MR image can 

be employed to improve the contrast of CT. The idea to enhance 

an image using another cross modal image has been witnessed in 

the literature for natural images [6–9] . The motivation to use cross 

modality guided image enhancement is to use the additional in- 

formation contained in the other image having similar contents in 

different imaging times or position but better contrast or minimal 

noise. Ultimately, the details in the enhanced image can be im- 

proved from the perceptual perspective. In the context of liver im- 

ages, tumors can be easily seen in the enhanced CT image. 

In this regard, the contrast of photographs was improved using 

the corresponding near infra red images [6,14] . Histogram specifi- 

cation in combination with wavelet domain processing was used 

in this work. Yan et. al proposed a variational approach using 

anisotropic filter to eliminate noise in color images using infrared 

images [9] . The authors calculated cross correlation between input 

images and then used joint filtering for denoising in another ap- 

proach [7,11] . 

Deep learning is applied to multimodal image denoising re- 

cently [8] . A deep learning method consisting of three convolu- 

tional neural networks has been applied to denoise natural im- 

ages. Various deep learning based approaches for CT denoising 

have been presented in the last few years, however, they do not in- 

corporate the multimodality guidance and use the CT image alone 

for supervised learning [16,17,22] . Histogram based methods are 

useful to enhance the global contrast of image [14] , however, they 

introduce bad artifacts in the processed images. Since it does not 

consider the neighborhood of the pixels while remapping, it does 

not necessarily gives the desired contrast [2,14,23] . Two dimen- 

sional histogram specification is presented recently to improve the 

1D histogram specification [18] . It uses 2D cumulative distribution 

function of the input and target images for remapping intensity 

values in the original image. 

We apply same notion to CT liver images by applying 2D his- 

togram matching based cross modality approach for liver contrast 

enhancement in the following section. 

3. Methodology: liver contrast enhancement 

We aim to improve the contrast of CT liver image consider- 

ing MRI liver image as the guidance image to increase the qual- 

ity of lesion segmentation. The methodology includes 2D contrast 

enhancement, gradient of enhanced image and segment the lesion 

using gradient based SRG. The parallel approach for liver enhance- 

ment and lesion segmentation makes the process faster in order to 

achieve real time implementation. In this section, we discuss paral- 

lel implementation of the cross modality based liver enhancement. 

The flow of proposed GPU implementation of cross modality 

based contrast enhancement is shown in Fig. 1 . We load CT and 

MRI images of liver on CPU and transfer it to the GPU. The first 

step of contrast enhancement of CT liver image is 2D (or pairwise) 

histogram calculation (Hist_2d). We calculate parallel 2D histogram 

of both CT (hist_CT) and MRI (hist_MRI) images. A 2D histogram 

is a plot of pixel and its neighbouring element which allows us 

to discover, and show, the underlying 2D frequency distribution 

(shape) of image. This shows how often each set of values (pixel 

and neighbour) in the image occurs. Instead of just considering 

the individual pixel values, it considers every possible pixel pair 

in the input and guidance image and calculate 2D CDF accordingly 

[18,24] . 

Further the calculation of cumulative distributive function 

(CDF_2d) of CT (CDF_CT) and MRI (CDF_MRI) images on GPU cre- 

ates the input for the next step i.e. histogram equalization. 2D CDF 

is a function that describes the probability of a possible pixel pair 

in the input and guidance image. This helps in finding most fre- 

quent pairwise intensity values for histogram equalization [18] . 

Then we perform parallel histogram equalization (HE_2d). This 

step spreads out the most frequent pairwise intensity values in- 

creasing the global contrast of image. Hence it improves lower con- 

trast areas to gain a higher contrast [18,24] . 
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Fig. 1. GPU implementation of the cross modality based contrast enhancement. 

The mapping (Map_2d) of histogram equalization onto the CT 

image gives the enhanced image. It maps the modified intensity 

values obtained from 2D histogram equalization to the correspond- 

ing pixels [18] . 

Inter block GPU synchronization (IBS) makes sure the updated 

values are sent to the next modules in GPU computing blocks. 

These parallel implementations of sub-modules of contrast en- 

hancement are explained in following sections. 

3.1. 2D Histogram 

In this section, we discuss the 2D histogram implementation 

on GPU as the first step of the contrast enhancement of CT liver 

image. The histogram length (HL) is 256. We launch HLxHL par- 

allel threads and find the histogram of neighboring elements in 

pairs. Hence it is called as pairwise histogram. Pairwise histogram 

is stored in an array of size HLxHL. 

For each thread in parallel, it takes the pixel (x,y) and neigh- 

bouring pixel (x+1,y) value. This represents one of the indices in 

the range of (0-HLxHL-1) in histogram array given by variable 

temp as shown in Algorithm 1 . We increment corresponding value 

Algorithm 1: 2D Histogram of CT and MRI Image (Hist_2d). 

1: HL=256 and launch HL x HL parallel threads 

2: ti and tj can be any thread id between 0–255 

3: while x < width_of_image do 

4: while y < height_of_image do 

5: if ti == I[ x ][ y ] and t j == I[ x + 1][ y ] then 

6: temp=ti*HL+tj; 

7: atomicAdd(histogram[temp], 1); 

8: end if 

9: end while 

10: end while 

in the index position in histogram array as shown in Fig. 2 . This 

function hist_2d for CT and MRI images gives hist_CT and hist_MRI 

histograms respectively. These 2D histograms are the input to the 

cumulative distributive function which is the next step of contrast 

enhancement. 

3.2. Cumulative distributive function (CDF) 

In this step of contrast enhancement, we calculate CDF of 2D 

histograms of CT and MRI liver images. The maximum number of 

Fig. 2. 2D Histogram. 

histogram pairs can be (w −1) ×(h) where w and h are width and 

height of the image. 

We launch HL × HL threads in parallel as shown in Algorithm 2 . 

Each thread calculates its CDF from respective 2D histogram val- 

Algorithm 2: Calculate CDF of CT and MRI Image (CDF_2d). 

1: count= (width-1)*height i.e. maximum number of pairs 

2: HL=256 and launch HL x HL parallel threads 

3: ti and tj can be any thread id between 0–255 

4: temp=ti*HL+tj; 

5: while temp < HL*HL do 

6: for int j=0; j < = temp; j++ do 

7: cdf [ temp]+ = histogram [ j] /count;
8: end for 

9: end while 

ues. These CDF values for CT (CDF_CT) and MRI (CDF_MRI) images 

are the input to the next step of contrast enhancement which is 

2D histogram equalization. 

3.3. 2D Histogram equalization (HE_2d) 

2D Histogram Equalization technique improves the contrast of 

image. It spreads out the most frequent intensity values. This 

method increases the global contrast of image. This improves the 

lower contrast areas to gain higher contrast. The pseudocode for 

2D histogram equalization is shown in the Algorithm 3 . We launch 
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Algorithm 3: Calculate 2D Histogram Equalization (HE_2d). 

1: HL=256 and launch HL x HL parallel threads 

2: ti and tj can be any thread id between 0–255 

3: index=ti*HL+tj; 

4: for k=0; k < HL; k++ do 

5: for l=0; l < HL; l++ do 

6: temp8=k*HL+l; 

7: temp = cdf1[index]-cdf2[temp8] 

8: if temp is minimum then 

9: x = k 

10: end if 

11: if multiple minimum values found then 

12: temp2 = absolute((ti-k) + (tj-l)) 

13: if temp2 is minimum then 

14: x = k 

15: end if 

16: if multiple minimum temp2 are found then 

17: temp3 = absolute((ti-tj) - (k-l)) 

18: if temp3 is maximum then 

19: x = k 

20: end if 

21: end if 

22: end if 

23: end for 

24: end for 

25: HE[index]=x; 

HLxHL threads in parallel. Each thread calculates the corresponding 

histogram equalization by taking the minimum difference between 

two CDFs (cdf1 for CDF_CT and cdf2 for CDF_MRI). It takes into 

the account the first minimum euclidean distance value between 

the indices when multiple minimum difference in CDFs are found. 

Again when multiple solutions are available, it further computes 

and find out the equalized value saved in array HE. This array is 

ready to get mapped for enhanced image which is the final step of 

contrast enhancement. 

3.4. Mapping 

The mapping of 2D histogram equalization is essential for ob- 

taining enhanced CT image as an output. We launch wxh threads 

where w and h are width and height of the image respectively. 

This is reverse process of 2D histogram calculation as explained 

in the psuedocode given by the Algorithm 4 . The index value is 

Algorithm 4: Mapping for Enhanced Image (Map_2d). 

1: launch (width)*(height) parallel threads 

2: HL=256 

3: tw can be any thread id between 0 to width-1 

4: th can be any thread id between 0 to height-1 

5: temp1 = I[ tw ][ th ] ;
6: temp2 = I[ tw + 1][ th ] ;
7: index = temp1 ∗ HL + temp2 ;
8: I[ tw ][ th ] = HE [ index ] ; //E nhancedImage 

generated from the neighbouring pixel values of the CT image. The 

pixel value in the CT image is changed by the corresponding value 

in the location (index) given by the 2D histogram equalization ar- 

ray. When all the threads are finished processing corresponding 

pixels, the enhanced image is sent back to the CPU. 

4. Application to the tumor segmentation 

Seeded Region Growing is an easy approach to segment the var- 

ious objects in an image. The result of the region growing relies 

mainly on the initial seed(s) and the criteria defined to end re- 

cursive or iterative region growing process [4,19,25,26] . The paral- 

lel implementation of SRG based tumor segmentation is shown in 

Fig. 3 . 

We load CT and MRI images and transfer it to the GPU. GPU 

performs cross modality based contrast enhancement and stores 

the enhanced CT image in GPU memory. The control comes back to 

the CPU. This is essential for the selection of seed(s) and to change 

the number of persistent blocks. These persistent blocks (i.e. num- 

ber of available computing resources on the GPU) differ depending 

on the application. The next task is tumor segmentation. GPU com- 

putes the gradient of enhanced CT liver image. The gradient of en- 

hanced liver image is communicated through IBS to the next mod- 

ule for tumor segmentation. We apply SRG on the gradient of en- 

hanced liver image. Region grows and new seeds are formed from 

initial seed(s) based on the threshold criteria. This process is itera- 

tive until the threshold criteria is satisfied. The process stops when 

new seed(s) can not be formed and region can not be grown fur- 

ther. 

In this work, we use threshold criteria defined by the homo- 

geneity of region and region aggregation considering the pixel val- 

ues and their gradient direction and magnitude. The criteria is 

defined via a cost function that uses few features of the image 

around seed. Value of the cost function is compared with homo- 

geneity criteria specified to check if the value is smaller than 1. 

The pixel becomes part of the region if there is a match; other- 

wise it is excluded from the region. The cost functions for thresh- 

old criteria are given by Rai and Nair [21] . They select homogeneity 

criterion using gradient based cost function which are dependent 

upon object contrast, texture features like shape and color, inten- 

sities values, gradient direction and magnitude. The cost function 

exploits features of image around the seed. 

We apply parallel gradient based SRG algorithm on both en- 

hanced images and original CT liver images. We propose dynamic 

RoI based parallel SRG. 

4.1. Dynamic SRG 

Dynamic SRG as the name suggests, it increases the region of 

interest (RoI) in each iteration of SRG. The initial RoI is decided by 

number of active computing blocks or persistent blocks that can 

be launched on GPU. This represents the phenomenon of persis- 

tence. In order to communicate valid data in between the blocks, 

inter block GPU synchronization (IBS) is necessary. Persistence and 

IBS provide flexibility to exploit parallelism using grid-stride loop 

through constant increase in RoI. One grid-stride is number of ac- 

tive computing threads that can be launched on GPU device. 

Gupta et al. [27] have explored persistent thread based GPU 

programming. The idea behind this is once the SRG kernel 

launched from CPU, the control returns from GPU when the region 

is grown completely. Intermediate data transfers between CPU and 

GPU are avoided in this approach. SRG kernel on GPU is launched 

from the host CPU. Region is grown on GPU. Image elements are 

updated and communicated to the blocks via IBS. The region is 

grown again on GPU, if new similar neighbouring elements are 

found. This process continues until no similar neighbouring ele- 

ments are available. The kernel terminates when the region can 

not be grown further and control returns to the CPU. Redundant 

data computations and communications are optimized on GPU us- 

ing proposed approach. This process is explained in the Fig. 4 . 

There are four persistent blocks processing grid of blocks using 

grid-stride loop as shown in Fig. 4 a. We map 3D liver on grid of 
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Fig. 3. GPU implementation of SRG based tumor segmentation. 

Fig. 4. SRG using dynamic RoI of tiles. 

blocks as shown in Fig. 4 b and initialize RoI of tiles around the 

seed as shown in Fig. 4 c. Persistent blocks operate within RoI. First 

step of SRG takes place. Region is grown and RoI is incremented 

in all directions. This process makes necessary neighbouring vox- 

els available for the second step of SRG as shown in Fig. 4 d. New 

neighbouring voxels perform same function and RoI is incremented 

again. This flow is repeated until region can not be grown further 

as shown in Fig. 4 e and f. This approach reduces compute and 

memory operations resulting in the increased performance. It is 

needed to ensure that the increase in RoI lies within the image 

dimensions. 

Complete process is defined in the Algorithm 5 . RoI should be 

initialized in such a way that all threads are busy performing SRG. 

Variable “blockgrow” is essential to check the increase the RoI. In- 

crease RoI of tiles if value of “blockgrow” is ”1”, otherwise stop 

SRG as region is grown completely. This variable “blockgrow” along 

with the variable “unfinished” are updated in the SRG segmenta- 

tion step. Lower and upper values of RoI (in x , y , and z directions) 

are calculated when “blockgrow” is “1”. It has to be made sure that 

the RoI should not increase beyond image dimensions in the suc- 

cessive steps of SRG. 

Persistent blocks operate inside the RoI. Kernel SRG is called for 

the voxels within the RoI. IBS makes sure only updated values are 

communicated to the persistent blocks in each step of SRG. IBS can 

be atomic, quasi, lock free or based on cooperative groups from 

NVIDIA toolkit CUDA 10.1 [28–30] . We use quasi IBS for our ap- 

proach due to its efficient implementation [28] . 

5. Results and discussion 

We discuss performance analysis of proposed parallel cross 

modality based liver enhancement for tumor segmentation. The 

enhanced liver images and segmented tumors are shown and the 

performance analysis of tumor segmentation is discussed based on 

quality assessment. We use Intel(R) Core(TM) i7-7700HQ CPU @ 

2.80GHz RAM 24 GB, NVIDIA GPU GeForce GTX 1050 (RAM 4GB), 

and CUDA Toolkit 10.1 to compare the proposed parallel GPU ap- 

proach with CPU implementation. 
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Algorithm 5: Grid-stride Loop through Dynamic RoI. 

1: blockgrow=1; 

2: while blockgrow==1 do 

3: blockgrow=0; 

4: unfinished=1; 

5: Increase RoI of Tiles; 

6: To Increase RoI of Tiles 

w=w+1; h=h+1; d=d+1; 

7: Ensure RoI within image dimensions; 

8: while unfinished==1 do 

9: unfinished=0; 

10: for int i=blockIdx.x;i < = w/blockDim.x ;i+=gridDim.x do 

11: for int j=blockIdx.y;j < = h/blockDim.y ;j+=gridDim.y do 

12: for int k=blockIdx.z;k < = d/blockDim.z;k+=gridDim.z 

do 

13: Region_Growing(arguments, unfinished, 

blockgrow); 

14: end for 

15: end for 

16: end for 

17: Inter_Block_GPU_Sync(); 

18: end while 

19: end while 

5.1. Liver enhancement 

We propose fast parallel cross modality based contrast en- 

hancement. 2D histogram of CT image is mapped to 2D histogram 

of guidance or MR image to get a better contrast image. 

Fig. 5 shows input CT, MRI and enhanced CT liver images with- 

out any tumors. Fig. 6 shows enhanced CT liver images with tu- 

mors. Figures show the contrast is enhanced significantly to ob- 

serve tumors clearly. Enhanced image is further processed for tu- 

mor segmentation using SRG. Average time taken by NVIDIA GPU 

GeForce GTX 1050 is 1.976 s ± 0.43 s providing the average 

speedup of 104.416 ± 5.166 times over CPU implementation 

Fig. 5. CT, MR and enhanced CT images. 

(208.082s ± 55.799s) for tumor segmentation using 2D cross 

modality based contrast enhancement. 

In order to enhance the contrast in CT images, we investigate 

quality improvements by fusing the information that is available in 

one modality (e.g. liver inner structures in MRI) to guide the adap- 

tive enhancement in other image modality (e.g. CT in our case). 

This provides better control over the enhancement and is more ef- 

fective and efficient than the state of the art technique used by 

clinicians. Clinicians generally use manual histogram adjustment 

technique based on 1D histogram specification on CT or MRI scans. 

This process does not provide efficient distribution of pixels for 

contrast enhancement of CT or MRI image. There are more chances 

of artifacts in 1D enhancement as it results in random histogram 

and is also a time consuming process. 

However, 2D histogram specification incorporates spatial infor- 

mation while calculating 2D CDFs of both the guidance and input 

Fig. 6. CT, MR and enhanced CT images showing tumors. 



N. Satpute, R. Naseem and E. Pelanis et al. / Computer Methods and Programs in Biomedicine 184 (2020) 105285 7 

Fig. 7. CT, MR and enhanced CT (Enh) with GLCM plots. 

images and for remapping the input image intensity values. Instead 

of just considering the individual pixel values, it considers every 

possible pixel pair in the input and guidance image and calculate 

2D CDF accordingly. Looking at the Gray Level Co-Occurrence Ma- 

trix (GLCM) plots in Fig. 7 , it can be observed that the distribu- 

tion of pixel pairs in GLCM plot of the resulting enhanced image 

( Fig. 7 f) is expanded but concentrated along the diagonal in com- 

parison to GLCM plots of CT and MR image ( Fig. 7 d and e), which 

means it does not introduce artificial artifacts unlike 1D histogram 

specification or histogram equalization. 

We provide the histogram comparison of images using 1D and 

proposed 2D technique as shown in Fig. 8 . The proposed 2D cross 

modality approach provides a proper distribution of pixel elements 

using guided MRI compared to 1D approach applied on CT or MRI 

image. 1D approach introduces unpleasant effects in the enhanced 

image. The histogram of enhanced CT using cross modality ap- 

proach is similar to guided MRI image. There are more chances of 

artifacts in enhanced image using 1D approach as clinicians use 

manual adjustment which may result in any random histogram of 

the enhanced image. In the next section, we discuss the impact of 

cross modality based contrast enhancement for tumor segmenta- 

tion. 

5.2. Tumor segmentation 

We propose fast parallel gradient based dynamic SRG for tumor 

segmentation. Our proposed parallel SRG is implemented on GPU. 

It does not involve transfer of data between CPU and GPU. The data 

for the research work have been acquired from The Intervention 

Center, University of Oslo, Norway [31] . The ground truths for tu- 

mor segmentation are provided by the clinician. We present the 

visual comparison of tumor segmentation on both enhanced and 

original CT liver images. The results in Figs. 9–11 show the tumor 

segmentation from original and enhanced liver images. Fig. 9 a1 

represents the original CT liver image. The gradient of input CT 

image is shown in Fig. 9 a2. The tumor segmentation (Seg) and 

the ground truth (GT) for the original CT liver slice are shown in 

Fig. 9 a3 and a4 respectively. 

We enhance original CT liver image ( Fig. 9 a1) using cross 

modality based liver enhancement and the enhanced image 

(Enh_CT) is shown in Fig. 9 b3. The tumor segmentation is per- 

formed on the enhanced CT liver image ( Fig. 9 b3) and segmented 

tumor from enhanced CT image is shown in Fig. 9 b5. The quality 

of tumor segmentation is validated in our clinical validation sec- 

tion using Table 1 . Tumor segmentation for other CT liver slices are 

shown in Figs. 10 , and 11 and the segmentation quality is improved 

when the image is enhanced. Hence the cross modality based con- 

trast enhancement on CT liver images improves the quality of tu- 

mor segmentation and it is faster. The proposed fast parallel liver 

enhancement based tumor segmentation is 104.416 ± 5.166 times 

faster compared to the sequential implementation. We include 

Table 2 showing experimental evaluation on 10 different datasets 

(including 107 tumor slices) obtained from The Intervention Cen- 

tre, Oslo University Hospital, Oslo, Norway. It can be observed from 

the table that the cross modality based liver enhancement helps in 

improving the sensitivity, specificity (denoted by ‘Sensi’ and ‘Speci’ 

respectively in Table 2 ) and accuracy of tumor segmentation and 

GPU implementation of proposed approach is around 100 times 

faster compared to the CPU implementation. P value from ANOVA 

(analysis of variance) for the ten datasets is 3 . 31 × 10 −14 which is 
less than 0.05. We reject the null hypothesis and conclude that not 

all means are equal which confirms the means are statistically sig- 

nificant for the concerned experiments. 

5.3. Clinical validation 

Tables 1 and 2 show the analysis of tumor segmentation before 

and after enhancement of CT liver images. Table 1 includes 5 liver 

slices with tumors from different datasets and Table 2 shows per- 

formance evaluation on 10 different datasets including 107 tumor 
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Fig. 8. Comparison between 2D cross modality and 1D histogram approach. 

Fig. 9. Tumor segmentation from original and enhanced CT image 1. 
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Fig. 10. Tumor segmentation original and enhanced CT image 2. 

Fig. 11. Tumor segmentation from original and enhanced CT image 3. 

Table 1 

Tumor segmentation analysis on five slices. 

Tumor Without any Enhancement With Enhancement Time-Enh + SRG(s) Speedup 

Slice # Sensitivity, Specificity Accuracy Sensitivity, Specificity Accuracy CPU GPU 

1 0.55 0.99899 0.82 0.99906 272.07 2.48 109.706 

2 0.38 0.99918 0.81 0.99898 265.98 2.41 110.365 

3 0.47 0.99769 0.58 0.9968 167.81 1.68 99.887 

4 0.83 0.87091 0.50 0.99765 162.03 1.61 100.64 

5 0.47 0.99786 0.74 0.99823 172.52 1.70 101.482 

Average 0.54 0.973 0.69 0.998 208.082s 1.976s 104.416 

Std. Dev. 0.173 0.057 0.143 0.001 55.799s 0.43s 5.166 

slices. We chose sensitivity (true positive rate or recall) and speci- 

ficity (true negative rate) as performance metrics for the evalua- 

tion of tumor segmentation [5,12] . It is observed that, the sensi- 

tivity and specificity are increased when the accuracy is nearly 1 

on the enhanced image. This implies that when the tumor is actu- 

ally present, then it is predicted more accurately when the image 

is enhanced. 

5.4. Discussion 

In this paper, we propose fast parallel cross modality based con- 

trast enhancement for CT liver images. Further GPU performs dy- 

namic RoI based tumor segmentation on enhanced CT liver image. 

These fast parallel implementations are based on persistence, grid- 

stride loop and IBS. The process of cross modality based contrast 



10 N. Satpute, R. Naseem and E. Pelanis et al. / Computer Methods and Programs in Biomedicine 184 (2020) 105285 

Table 2 

Tumor segmentation analysis on ten different datasets. 

Dataset # 

Size of each 

Slice (wxh) 

Total # of 

Slices 

# of Tumor 

Slices Without any Enh (Average) With Enh - Average (Avg.) Enh + SRG Avg. Time (s) Avg. Speedup 

Sensi, Speci Model accuracy Sensi, Speci Model accuracy CPU GPU 

1 406 × 299 73 10 0.28 0.99132 0.36 0.99517 141.07 1.41 100.054 

2 512 × 512 139 7 0.41 0.99213 0.52 0.99796 252.22 2.29 109.901 

3 381 × 304 67 10 0.48 0.99412 0.65 0.99689 131.89 1.32 99.916 

4 405 × 346 87 8 0.39 0.99325 0.47 0.99717 158.56 1.56 101.641 

5 462 × 321 59 14 0.32 0.99173 0.50 0.99823 167.01 1.63 102.460 

6 380 × 512 58 9 0.49 0.99112 0.64 0.99421 202.02 1.89 106.89 

7 443 × 437 63 6 0.51 0.99201 0.71 0.99501 193.17 1.83 105.55 

8 361 × 249 63 7 0.37 0.99312 0.57 0.99427 126.60 1.26 100.47 

9 483 × 386 80 6 0.31 0.99415 0.59 0.99612 185.78 1.80 103.21 

10 456 × 400 216 30 0.42 0.99178 0.62 0.99324 189.93 1.82 104.35 

enhancement is computationally expensive and hence time con- 

suming. This involves 2D histogram calculation, equalization and 

histogram matching [22] . They require several light weight tasks. 

The performance on GPU is improved compared to the CPU by di- 

viding the tasks on several active threads. 

The second part of the process is tumor segmentation. We pro- 

pose gradient and dynamic RoI based SRG inspired from the works 

of Rai and Nair [21] . Initially, the process needs small part of the 

region to be accessed instead of whole image (as implemented 

previously on GPU). As soon as region grows, RoI should be in- 

creased to access more neighbouring elements. GPU implementa- 

tion of SRG involves kernel termination and relaunch continuously 

from CPU. This is time consuming. We avoid this by using persis- 

tence and grid-stride loop and obtain the significant speedup i.e. 

104.416 ± 5.166 times compared to the sequential implementa- 

tion of liver enhancement and tumor segmentation. 

6. Conclusion 

In this paper, we discuss cross modality based contrast en- 

hancement for CT liver images, application to tumor segmenta- 

tion and their fast parallel implementation on GPU. Cross modality 

based liver enhancement includes CT liver image as an input and 

MRI liver image as a guided image. Pairwise 2D histogram imple- 

mentation and histogram equalization spreads the intensity values 

across the image producing contrast enhanced CT image. We pro- 

pose persistence and grid-stride loop based fast parallel implemen- 

tation on GPU. The enhanced image then used for segmentation 

of tumors from enhanced CT liver images effectively. We propose 

gradient and dynamic RoI based seeded region growing for tumor 

segmentation. The parallel approach for liver enhancement and tu- 

mor segmentation is 104.416 ± 5.166 times faster compared to 

the CPU implementation. 
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Abstract
Contrast is an imperative perceptible attribute embodying

the image quality. In medical images, the poor quality specifically
low contrast inhibits precise interpretation of the image. Contrast
enhancement is, therefore, applied not merely to improve the vi-
sual quality of images but also enabling them to facilitate further
processing tasks. We propose a contrast enhancement approach
based on cross-modal learning in this paper. Cycle-GAN (Gen-
erative Adversarial Network) is used for this purpose, where U-
Net augmented with global features acts as a generator. Besides,
individual batch normalization has been used to make genera-
tors adapt specifically to their input distributions. The proposed
method accepts low contrast T2-weighted (T2-w) Magnetic Res-
onance images (MRI) and uses the corresponding high contrast
T1-w MRI to learn the global contrast characteristics. The ex-
periments were conducted on a publicly available IXI dataset.
Comparison with recent CE methods and quantitative assessment
using two prevalent metrics FSIM and BRISQUE validate the su-
perior performance of the proposed method.

Introduction
Different degradations are introduced during the image ac-

quisition phase that reduces the lucidity of important details and

ultimately affect the extraction of valuable information [26, 13].

Contrast Enhancement (CE) is a primary operation that allows

the digital images to be visually perceptible. In the context of

medical images, one of the objectives of CE is to improve the

perceptual quality for superior visualization of specific structures

[15]. Another objective is to facilitate feature extraction and other

subsequent tasks such as detection and segmentation of critical

structures [20, 21]. It has been reported that the performance of

segmentation and detection in medical images can be augmented

by employing effective pre-processing techniques on low-contrast

images [16, 25].

It is important to mention that a single medical image does

not carry complete structural information of the organ under in-

spection. Multi-modal image acquisition is therefore becoming

a standard clinical practice [17]. It not only endorses the initial

diagnosis, moreover, it also provides complementary information

that can play an influential role in several stages of diagnosis and

treatment. The multi-modal image information has been utilized

to solve various problems in medical imaging such as segmenta-

tion, detection and denoising [24, 6]. The complementary infor-

mation equips the image analysis tasks with additional capability

enabling these methods to outperform those that rely on single

images for these tasks [7, 18].

Cross-modal guidance-based enhancement has been applied

to natural images [27, 23], where the cross-modality-guided CE

methods generally perform well in preventing saturation and over-

enhancement phenomena since they exploit the redundant com-

plementary information in the corresponding better quality image

[14]. A similar concept was applied to multi-modal medical im-

age enhancement for better visualization of structures [15] and to

facilitate tumor segmentation in liver CT images [16].

In this paper, a contrast enhancement method is proposed by

learning from corresponding high-contrast multi-modal medical

images. The multi-modal images employed in this work possess

a better perceptual quality that can ameliorate the learning capa-

bility of the model. Since image enhancement is a subjective task

and it is challenging to acquire the paired data for the supervised

learning approaches targeted to contrast enhancement, we formu-

late the CE problem as an image to image translation problem.

The low contrast T2-w brain MR image is transformed into an

enhanced image inheriting the contrast of the corresponding T1-

w image. A two-way GAN analogous to CycleGAN [32] is used

for this purpose. The proposed method is inspired by the work of

Chen et al. [4] where CycleGAN was used to embed the charac-

teristics of high contrast natural images into low-contrast images

under both paired and unpaired data configurations. In this work,

the generator is basically a U-Net augmented with global features.

The global features carry global contrast information to improve

the low-contrast images specifically when acquiring high contrast

paired ground truth is not feasible.

The paper is structured as follows. First, a review of related

work regarding contrast enhancement and GANs is presented.

Then, we elaborate on the proposed method followed by exper-

iment results and discussion. The conclusion is drawn in the end

of the paper.

Related Work
Contrast enhancement (CE) is one of the most instinctive and

commonly applied solutions in medical image applications. There

exist several contrast enhancement approaches, that improve the

perceptual quality of the images, however, the need for controlled

CE that does not over-enhance the images is a challenging prob-

lem. CE methods can be categorized as spatial or transform do-

main methods [3]. Among spatial domain approaches, histogram-

based methods are widely researched for medical as well as nat-

ural image enhancement because of low complexity and reason-

able performance [10], [2]. Transform domain methods are also

widely investigated [22].

Followed by the idea of utilizing the information in a similar



image to enhance the original image [8], several cross-modality

guided image enhancement approaches were proposed for natural

images [27, 23]. For instance, Near-infrared (NIR) images were

enhanced utilizing photographs [33]. Gradient-based histogram

matching along with wavelet domain processing was performed

to embed the contrast of NIR images in photos and to enhance

texture information respectively. Recently, cross-modal guided

enhancement has been extended and applied to medical images

as well. A method using 2D histogram specification and morpho-

logical operations was employed to map the histogram of liver

CT image to that of MR image [15]. In an optimization approach,

2D-HS was combined with structural similarity index metric to

retain the structural information in the original image during en-

hancement [16].

Deep learning methods have been applied to contrast en-

hancement. These include Convolutional Neural Networks such

as the primary work of Yan et al. [28] to adjust the contrast

of photographs. [5] and another contrast enhancement approach

suitable for real-time. Generative Adversarial Networks (GANs)

were used by Ignatov et al. [9] to learn the mapping between

phone and DSLR cameras. GANs have drawn incredible attention

recently and are being applied to solve several difficult tasks in-

cluding an image to image translation [32], super-resolution [29]

enhancement [4] and many other problems.

All the approaches mentioned here require paired training

data for network training. Since contrast enhancement is a sub-

jective task, it is generally difficult to collect a huge amount of

paired data. Moreover, different users have different preferences

for contrast. To address this issue, cycle-GANs were introduced

which eradicate the necessity of paired ground truth; instead, the

network learns from the unpaired training data by incorporating

several loss functions.

The availability of paired training data for medical image

contrast enhancement is even challenging and it is difficult to ac-

quire ground truth. However, the redundant complementary infor-

mation acquired during clinical routine exams makes it possible

to enhance the low contrast images using corresponding high per-

ceptual quality multi-modal images. We exploit the capability of

cycleGAN in this work to extract global contrast information from

the corresponding multi-modal image to embed this information

in enhancing the contrast of its corresponding low-contrast medi-

cal image.

Method
In this section, we discuss our proposed methodology. First,

a general description of cycleGAN is provided, then we explain

the generator architecture followed by loss functions.

As mentioned earlier, cycleGAN is particularly suited in sce-

narios where acquisition of paired input-ground truth data is chal-

lenging. Our proposed method discovers and learns global con-

trast from the ground truth images to embed this information in

the generated images. The images enhanced as a result possess

those characteristics while simultaneously possessing the content

of the input image due to the loss functions used in cycleGAN.

This kind of framework has shown drastic performance in the im-

age to image translation domain due to its ability to learn the em-

bedding of input data and generating output samples in the space

spanned by training samples. This concept has been exploited for

natural image enhancement as well, where the cycleGANs were

used to learn the mapping between input and ground truth under

paired supervision and unpaired supervision. Under unpaired su-

pervision, the high contrast images, as well as HDR images with

entirely different content, were used for training. Inspired by this

work, we employ the corresponding high contrast multi-modal

images for this purpose as ground truth that share similar objects

contours as the input images.

In the proposed method, the source domain and target do-

main data are denoted by A and B respectively, the source domain

consists of low contrast T2-weighted (T2-w) MR images and the

target domain is a collection of high contrast T1-w images.

The general configuration of cycleGAN is depicted in the

figure 1. Considering a ∈ A, the generator GA converts a into

b′, where b′ = GA(a) ∈ B, The discriminator DB discriminates

between real samples (target domain) and generated data (fake

samples). CycleGAN imposes cycle consistency loss, where G′B
accepts GA-generated sample and applies backward mapping to

transform it to source domain A. CycleGANs employ forward

pass and backward pass represented as a GA−→b′
G′B−→a′′andb

GB−→
a′

G′A−→ b′′ to inspect the consistency between a and a′ and b and

b′ respectively.

Now, we explain the design of our generator. U-Net has been

used as generator in our work. Initially applied to medical image

segmentation, U-Net has shown promising performance on sev-

eral imaging problems. However, adapting the original U-Net as

our generator cannot guarantee efficient enhancement considering

the unpaired data. Therefore, global features have been added into

the U-Net, the conjecture is that the global features manipulation

works well in learning the global contrast of the corresponding

multi-modal data samples. Figure 2 elaborates the detailed archi-

tecture of generator and discriminator.

Several losses used in the method are expressed below. The

first that is Identity mapping loss I enforces the transformed image

b content to be analogous to that of input a:

I= E
a,b′

[MSE (a,b′)]+ E
b,a′

[MSE(b,a′)] (1)

C = E
a,a′′

[
MSE

(
a,a′′

)]
+ E

b,b′′

[
MSE

(
b,b′′

)]
(2)

The adversarial losses AD and AG are expressed as:

AD = E
a
[DA(a)]−E

a′

[
DA

(
a′
)]

+E
b
[DB(b)]−E

b′

[
DB

(
b′
)]

(3)

AG = E
a′

[
DA(a′)

]
+E

y′

[
DB

(
b′
)]

(4)

Conventionally, cycleGANs employ the same generator for

GA and G′A since both transform the input samples in domain A
to domain B (the same applies to GB and G′B). However, GA ac-

cepts input from the original distribution (real samples) whereas

G′A accepts the generated (or fake) samples; both possess different

distributions. Enabling the two to specifically adapt to their inputs

results in higher PSNR in enhancement problems [4], therefore,

individual batch normalization (iBN) layers were used for GA and

G′A. Except for BN layers, the rest of the layers and parameters

are shared between the two.



Figure 1: Network Architecture

Figure 2: Network Architecture of a) generator and b) discriminator

Experiment
This section explains the dataset used for the experiment,

pre-processing applied to data, and the methods selected for com-

parison.

Dataset
The public dataset of Hammersmith Hospital, United King-

dom accessible on the IXI database was used for analyzing the

performance of the proposed method in comparison with other

enhancement approaches. Total 3000 image pairs (T1-w, T2-w)

were used for training, whereas 400 were used for testing. Input

to our network (T2-w images) was darkened by applying mor-

phological operations, whereas original T1-w images were used

as reference or ground truth.

Implementation Details
The proposed method is implemented in PyTorch. The net-

work was trained for 100 epochs with the learning rate 1e-5.

Weight decay values was 0.5. All the images were 512×512. The

network was trained on RTX Twin Titan with a batch size of 8.

Experiment Results
The proposed method was compared with three contrast en-

hancement methods. The first method, Contrast Limited Adap-

tive Histogram Equalization (CLAHE) is one of the well-known

and widely accepted methods for CE. Cross-modality Guided En-

hancement (CMGE) was proposed recently to improve the con-

trast of medical images using cross-modal guidance information

in a 2D histogram-based approach. The third method is a modifi-

cation of single-scale retinex with the inclusion of sigmoid func-

tion presented for low contrast medical images. The results of

enhancement from all the methods are shown in figure 3. The in-

put image is a low-contrast dark T2-w brain image. The method

of zohair et al. [1] further darkens the image. CLAHE on the

other hand improves the contrast; CMGE also improves image

contrast in some regions, however qualitative analysis shows the

over-enhancement phenomena in case of both the enhanced im-

ages. The proposed method improves the contrast without over-

enhancing certain areas of the image. The quantitative assessment

done to compare all the approaches is discussed below.

Image Quality Assessment (IQA) metrics Feature Similarity

Index Metric (FSIM) [30] and Blind/Referenceless Image Spa-

tial Quality Evaluator (BRISQUE) [31] are well accepted for the

evaluation of medical imaging applications in addition to natural

images [11, 12, 19]. FSIM is a full-reference IQA metric whereas

BRISQUE is a reference-less metric. Both were used to evaluate

the performance of the enhancement methods considered in this

work. Table 1 presents the results of the quantitative assessment.

It is important to mention that higher FSIM scores while lower

BRISQUE scores imply superior contrast. Considering the quan-

titative results, we observe that the proposed method works best in

preserving the important features in the enhanced image as shown

by the highest FSIM values. Besides, it also prevents the artifacts

in the enhanced images as pointed by the BRISQUE results.



(a1) Input (a2) Ground Truth (a3) Zohair et al. [1]

(a4) CLAHE [34] (a5) CMGE [15] (a6) proposed

Figure 3: Enhancement Results: Comparison with recent methods

Table 1: Quantitative Assessment

Metric Zohair et al.
[1]

CLAHE [34] CMGE [34] proposed

FSIM 0.812 0.714 0.71518 0.984
BRISQUE 47.132 45.172 52.582 32.838



Discussion and Conclusion
A cross-modal learning approach for contrast enhancement

of medical images is proposed in this paper. The capability of

cycleGAN coupled with global features in U-Net bypasses the

need for paired ground truth. Instead, the complementary infor-

mation and structural similarity of redundant multi-modal medi-

cal images has been exploited and effectively utilized in the learn-

ing framework. The proposed method improves reasonable con-

trast without introducing artifacts. The experimental results on

the publicly available dataset prove that the method not only re-

tains the features but also maintains the structure and naturalness

of the original T2-w MR images as evaluated by the quality as-

sessment metrics. This concept can be further extended to other

multi-modal medical images including Computed Tomography

and Positron Emission Tomography images.
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Abstract: Cross-modal medical imaging techniques are predominantly being used in the clinical
suite. The ensemble learning methods using cross-modal medical imaging adds reliability to several
medical image analysis tasks. Motivated by the performance of deep learning in several medical
imaging tasks, a deep learning-based denoising method Cross-Modality Guided Denoising Network
CMGDNet for removing Rician noise in T1-weighted (T1-w) Magnetic Resonance Images (MRI) is
proposed in this paper. CMGDNet uses a guidance image, which is a cross-modal (T2-w) image of
better perceptual quality to guide the model in denoising its noisy T1-w counterpart. This cross-
modal combination allows the network to exploit complementary information existing in both images
and therefore improve the learning capability of the model. The proposed framework consists of two
components: Paired Hierarchical Learning (PHL) module and Cross-Modal Assisted Reconstruction
(CMAR) module. PHL module uses Siamese network to extract hierarchical features from dual
images, which are then combined in a densely connected manner in the CMAR module to finally
reconstruct the image. The impact of using registered guidance data is investigated in removing
noise as well as retaining structural similarity with the original image. Several experiments were
conducted on two publicly available brain imaging datasets available on the IXI database. The
quantitative assessment using Peak Signal to noise ratio (PSNR), Structural Similarity Index (SSIM),
and Feature Similarity Index (FSIM) demonstrates that the proposed method exhibits 4.7% and 2.3%
gain (average), respectively, in SSIM and FSIM values compared to other state-of-the-art denoising
methods that do not integrate cross-modal image information in removing various levels of noise.

Keywords: cross-modal; guided; denoising; MRI; machine learning; siamese network; deep learning

1. Introduction

Magnetic Resonance Imaging (MRI) is preferred for the structural and functional
analysis of several organs in the clinical setting thanks to its non-ionizing nature and
ability to highlight structures with high contrast. In particular, MR neuroimaging is widely
employed in the screening and diagnosis of brain cancers and neurodegenerative dys-
functions such as Alzheimer’s disease and multiple sclerosis [1]. MRI can highlight tissue
with various contrasts using different sequences of Radio-Frequency (RF) pulses. Specific
pathologies are accurately analyzed and interpreted when captured using a particular RF
pulse sequence. For instance, ‘substantia nigra’, a brain area affected due to Parkinson’s
disease can be visualized clearly on T2-w images compared to T1-w [2], whereas, T1-w
images are preferred in the quantification of atrophy, an irreversible loss of neurons associ-
ated with multiple sclerosis [3]. However, certain pathologies possess uncertain features
and assorted topography, whose existence needs to be validated by multiple modalities
especially if their surgical resection is essential. A cohort study comprising 200 surgically

Electronics 2021, 10, 2855. https://doi.org/10.3390/electronics10222855 https://www.mdpi.com/journal/electronics



Electronics 2021, 10, 2855 2 of 19

treated Craniopharyngiomas (CPs), an infiltrative brain tumor concluded that several key
radiological variables recognized on both T1-w and T2-w MR images correctly predicted
the CP topography in 86% of cases [4].

During MRI acquisition, noise is mainly introduced due to motion of charged particles
in the radio frequency coils. This noise affects the reliability of diagnosis and image analysis
tasks including feature extraction and segmentation [5,6]. Denoising of the images then
becomes indispensable to make them suitable for further analysis. Let X ∈ R

P×Q and
Y ∈ R

P×Q denote the ideal and observed MR images, respectively, and N ∈ R
P×Q is the

noise contained in the MRI signal. The noisy observation Y of X can be expressed in the
case of an additive model as:

Y = X + N (1)

The objective of denoising algorithms is to reduce the noise content N in Y to obtain
an estimate of the original image X. The noise in MR images follows Rician distribution
whose probability density function is expressed as:

p(N | X, σN) =
N
σ2N

exp
− (N2+X2)

2σ2N J0

(
XN
σ2N

)
ε(N) (2)

In the above equation, J0 represents the 0th order Bessel function, N is a Rician
distributed random variable. ε(.) is the unit step Heaviside step function indicating that
the pdf expression is valid for non-negative values of N. X is a non-noisy signal as stated
above and σN is the noise variance. The Rician noise is a signal dependant noise and
demonstrates gaussian distribution when Signal-to-Noise Ratio (SNR) is high and rayleigh
distribution when SNR is low.

Despite the considerable amount of work devoted to image denoising during the two
last decades, it is still a challenging problem particularly in the case of signal-dependant
and correlated noise [7,8]. This is the case in medical imaging. Most often simplifying
assumptions are made to make the denoising problem more or less tractable. This has led
to a variety of denoising methods applied to various imaging modalities. Several denoising
approaches have been proposed in the past that can be broadly grouped into two types:
conventional methods and deep learning-based approaches. The conventional denoising
methods include spatial domain methods such as bilateral filter [9], Non-Local Means
filter (NLM) [10] and anisotropic filter [11] to name a few. Among these filters, the NLM
filter specifically demonstrates superior performance when the image contains regions of
various types of textures. Wavelet domain approaches were also widely researched for
image quality enhancement [12–14]; one such approach applies thresholding on the detail
coefficients. The wavelet-based denoising methods well preserve sharp edges in the images
compared to spatial domain methods. Optimization-based denoising techniques including
total-variation denoising [15] provide more control over preserving details in the image
and the extent of noise reduction. Recently, data driven machine learning approaches,
particularly deep learning methods are gaining incredible attention due to their promising
performance in various areas such as biomedicine [16–19], video processing. Thesemethods
are able to mimic human cognition [20,21]. Similarly, these approaches clearly outperform
the conventional approaches in the area of denoising [22–24].

Indeed, acquisition of multi-modal medical imaging data during therapeutics is be-
coming increasingly common [25,26]. Since these diagnostic imaging techniques are one
of the largest sources of big data [27–31], their automated analysis is highly desirable to
facilitate the computer aided diagnosis of several diseases [32–35]. For instance, Computed
Tomography (CT) and positron emission tomography (PET) are concurrently acquired as a
standard treatment protocol in oncology. Similarly, T1 and T2-w MRI provides anatom-
ical and pathological information, respectively. The combination of this complementary
information plays a significant role in therapy and surgical planning. The concept of
‘weak learnability’ in ensemble learning further motivates to exploit the strength of this
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complimentarity. According to this concept, the learner (imaging modality here) can be
incorporated into the learning system to elevate its performance, provided it can perform
slightly better than random guessing [36].

With technical advancement and the availability of medical imaging techniques,
using multi-modal data for the underlying computer-aided tasks is attracting several
researchers. It has been exploited in segmentation, classification, super-resolution, and
denoising [36–38]. For instance, in the context of lung nodule detection, CT and PET images
were combined in a CNN-based approach [37]. Similarly, CT, PET, and MRI were also
combined for tumor segmentation [36]. It is worth mentioning here that multi-modal
information-based methods showed superior performance compared to those relying on a
single modality (either CT or PET) [39].

The use of multi-modal medical imaging methods in improving segmentation and
object detection motivates the researchers to employ the dual imaging in denoising as
well. Few research works presented for medical image denoising [23,40] show improved
performance over their single image denoising counterparts. Single image denoising
approaches have an intrinsic limitation where the corrupted information in the original
image is only hallucinated during the reconstruction process [41]. Consequently, these
approaches over smooth certain critical structures in the image at the expense of removing
noise [42]. It often leads to compromised performance of segmentation and object detection
algorithms [43]. In this context, techniques that rely on cross-modal guidance offer the
potential to overcome this limitation. Conventionally, cross-modal denoising methods use
an image of better perceptual quality to facilitate the restoration process. Cross-modality
guided medical image denoising is a relatively under-explored area; however, there exist a
few approaches for natural images. One of the traditional denoising methods attempted to
denoise depth maps using corresponding RGB images [44,45]. Deep learning-based cross-
modal denoising approaches include [46,47]. One of these methods uses RGB-depth data
pair to denoise depth images. Their proposed method consists of two CNNs; first to extract
features individually from the RGB (guidance) and depth (target) images; the features are
later concatenated to be fed to the third CNN, which selectively transfers the common
structures in both images to generate the denoised image [46]. This work was further
extended by adding a skip connection between the input image and the network prediction
to enforce residual learning [47]. This modification brought significant improvement in the
results by leveraging accurate details from the guidance to the target image.

A few cross-modal medical image denoising methods including [23,48,49] are found
in the literature. One such work consolidated information from PET and MRI (T1 and
T2 FLAIR) to denoise very low-dose PET images of the human brain [23]. The proposed
method ResUNet was a residual encoder-decoder network, where residual learning was
combined with U-Net. The PET, T1 and T2 FLAIR slices were stacked together and fed
to the network. Using 2.5D information offers a way to discriminate structural informa-
tion from noise. Compared to the ResUNet (PET without MRI), the combination of both
modalities not only resulted in improved denoising performance but also improved lesion
segmentation. In another similar CNN-based approach, amyloid PET images were concate-
nated with corresponding T1, T2, and T2 FLAIR images to learn denoising ultra-low-dose
PET images using standard dose PET as ground truth. U-Net with residual learning was
used in their approach. A similar idea was applied to T1 and T2 brain images [48]. The tra-
ditional guided filter was integrated with the deep learning framework, where guidance
map generator takes guidance and cross-modal noisy images as input (T1 and T2 MR
images). The guidance map generation component was realized using a modification of
popular architecture, U-Net; where the encoding path was extended to dual branches for
each modality followed by feature concatenation at the last encoding layer. The guidance
filter was then incorporated as a differential layer and implemented as a linear combination
of the guidance map and input image to yield the restored image. The method claimed
to outperform approaches that do not include the guidance information from input im-
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age directly in the restoration process and rather only rely on the network prediction as
final output.

The above-mentioned approaches are not very effective since simply concatenating
the images as network input as in [23] or combining features from all encoding layers [48]
does not fully exploit the potential of cross-modal complementarity. It leaves a huge space
to further explore the improvement of cross-modal denoising methods and advance in
this direction. Therefore, there is a need for a more efficient way of manipulating and
combining features. To address the denoising problem in MR images, we present a cross-
modality-guided denoising approach CMGDNet in this paper. The proposed model is
inspired by the work of Fu et al. [50], where a similar model was used to detect salient
objects in RGB-Depth images. Cross-modal image denoising for brain MR images was
earlier explored by Stimpel et al. [48]; however, simple feature concatenation at the last
encoding layer of their proposed method does not effectively exploit the information in the
non-noisy guidance image. Unlike the previous denoising approaches, CMGDNet extracts
hierarchical features from the input and guidance image using a siamese network (mirror
backbones) that are later combined in the complimentarity-aware mechanism. Although T1
and T2 images belong to different modalities; nonetheless, they capture similar structures
and analogous object contours. The guidance image (T2 in our case) has better perceptual
quality (noise-free), while T1 is of lower quality due to its sensitivity to acquisition noise.
This scenario renders cross-modal feature learning viable in the presence of a guidance
image. Our contributions in this work are listed as follows:

• A novel framework based on cross-modal guidance information is designed to de-
noise T1-w brain MR images. In particular, a siamese network is specifically modified
to train the denoising network using both T1 and T2 MR images. By exploiting
the diversity of information contained in the two modalities and in particular bet-
ter perceptual quality of T2 images and the structural information contained in T1
images, the proposed approach seeks additional guidance from these images in the
reconstruction process.

• Literature dictates that complementarity-aware cross-modal feature fusion is not well
explored in the context of denoising, hence in this work, an effective cross-modal
information fusion strategy is incorporated. The experimental results show that this
fusion mechanism works well in comparison to single image denoising approaches.

• Comprehensive experiments have been conducted to analyze the performance of the
proposed method on different noise levels both on registered as well as unregistered
data. Moreover, the role of different loss functions is inspected to analyze their impact
on denoising performance.

• In this work, two public datasets are customized keeping in view the requirement
of denoising in medical image analysis. The dataset consists of both T1 and T2 MR
images, meeting the requirement of learning models based on cross-modal guidance.

This paper consists of five sections. Section 1 gives an introduction to and motivations
for the work followed by background and related work. The dataset and proposed method-
ology are elaborated on in Section 2. Experiments, comparisons with different techniques,
and the results are discussed in Section 3. Section 4 summarizes the discussion of results.
The conclusion and suggested future work are presented in Section 5.

2. Materials and Methods

In this section, the dataset, experimental setup and proposed methodology are explained.

2.1. Dataset

The experiments in thiswork are conducted on two datasetswhich are subset of a publicly
available database IXI [51]. Both datasets are collections of T1, T2, and some other brain MR
imaging modalities of healthy patients. The detailed configuration and scanning parameters
can be found on the Brain IXI website: https://brain-development.org/ixi-dataset/. T1 and
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T2 MRI have been used in this work. Further details of both datasets and experimental
configuration are provided in the following subsections.

2.1.1. Dataset I: Hammersmith Hospital

The first experiment was done on the dataset acquired at Hammersmith Hospital,
United Kingdom using Philips 3T system. 70 T1 and T2 volume pairs were randomly
chosen, out of which 62 pairs were used for training and 8 for testing the denoising perfor-
mance. It is pertinent to mention here that the proposed method was tested on registered
as well as unregistered data and is explained in the following section. Furthermore, the role
of different loss functions with both configurations was also investigated.

2.1.2. Dataset II: Guy’s Hospital

The collection of T1 and T2 MRI acquired at Guy’s Hospital, UK using Philips 1.5T
system was also used in this work. Seventy T1 and 70 T2 volumes were randomly selected
for this purpose, out of which 62 pairs were used for training and eight for testing.

2.2. Preprocessing

All the volumes (T1 and T2) were resampled to 256× 256× 150. The proposed model
is trained and tested on two types of input-guidance image combinations. In the first case,
the model is trained on unregistered data, while in the second case, the corresponding T1
and T2 volumes are registered using 3D slicer, where T2 volume was moved/deformed
with reference to the T1 volume that is fixed. Rigid registration with 12 degrees of freedom
was used. Rician noise was added to the T1 slices. Min-max intensity normalization was
applied to the data. We conducted experiments on unregistered as well as registered data
at different levels of Rician noise. The detail of both configurations is elaborated in the
next subsection.

2.3. Implementation Details

The proposed method was implemented using the PyTorch library and trained on
NVIDIA TITAN RTX GPU with 24 GB RAM. The backbone was initialized using the pre-
trained parameters of DSS [52], while other layers were randomly initialized. The network
was fine-tuned through end-to-end paired learning. The learning rate and momentum val-
ues were 0.00005 and 0.99, respectively. Stochastic Gradient Descent learning was adopted
and the network was trained using the loss functions described in Equations (6) and (8) for
50 epochs.

2.4. Proposed Methodology

The conventional deep learning models for image denoising are trained to learn the
mapping from noisy image Y to non-noisy image X [41,53]. However, in cross-modality-
guided denoising methods, the model incorporates an additional multi-modal image G to
learn complementary information and facilitate the learning process.

X̂ = f (Y,G) (3)

Therefore, in the proposed method, the model is trained to minimize the loss function
L as:

f ∗ = argminL ( f (Y,G),X) (4)

The proposed framework PHL-CMAR (Paired Hierarchical Learning-Cross-Modal
Assisted Reconstruction) employs CNNs for extracting features as well as combining these
features efficiently in the restoration process. PHL-CMAR framework consists of two
modules: PHL module and CMAR module. The PHL module is responsible for extract-
ing the features from paired (T1 and T2) images using the Siamese network to conduct
joint learning. It discovers commonalities between the dual inputs from a model-based
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perspective, which is then incorporated in the model via back-propagation. The features
extracted are then fed to the CMAR module, where they are combined to ultimately recon-
struct the denoised image. Both components of the proposed model are explained in the
subsequent sections.

2.4.1. Paired Hierarchical Learning (PHL)

The PHL module accepts two images, noisy T1 image Y and guidance image G, that is
T2 as input. ResNet is used as a trunk architecture for feature extraction. For both images,
the single-channel is copied three times to correspond with the RGB images which the gen-
eral VGG or Resnet-like models accept. ResNet uses skip connections to address the issue
of vanishing gradients and learns the residuals instead of the function [54]. Pre-trained
ResNet-101 was used for feature extraction. Since ResNet’s first convolution layer has a
stride of 2, which gives the feature spatial size of 160 × 160 at the shallowest level, conv1_1
and conv1_2 layers from VGG-16 are used to obtain the full feature size of 320 × 320.
Therefore, each hierarchical branch (1 to 6) is then connected to conv1_2 (borrowed from
VGG-16), conv1, res2, res3(3), res4(22), and res5 layers of the ResNet-101, respectively.
Axial slices were used where each image has dimension of 256 × 256 × 3. The shared
Siamese backbone extracts features from the dual images in the hierarchical side-output
manner [52] and is briefly described below. Since feature extraction is accomplished using
short connections, the feature set at every hierarchy contains varying dimensions. Another
component Feature Pruning (FP) is therefore introduced in the PHL module [50], which
ensures that the feature set from each hierarchy is of uniform size. Let us represent the
feature set corresponding to guidance image and input image by Fg and Fy, respectively.
Figure 1 shows the structure of PHL module. It is worth mentioning here that directly con-
catenating the two images has not been found as effective in detection tasks as combining
features in a hierarchical way [50]. The combination of ResNet with hierarchical feature
manipulation strategy allows the model to combine the complimentary information from
both modalities that are later combined using densely connected FE module.

Short Connections

Generally, the feature maps at the shallow layers of CNNs are crude. As the DL
network delves deeper, the successive convolution layers refine the feature maps obtained
earlier. However, the deeper-level feature maps lack regularity. Using short-connection
from following convolution layers to the earlier layers offers learning model a way to
consolidate the information from multiple levels. Integrating features in this manner
provides deep learning networks with information-rich multi-scale feature maps and
therefore improves the results [52]. The idea of using short connections in the CNN to
exploit multi-scale information was initially applied to edge detection [55] and later to
salient object detection in RGB images [52]. This concept was further incorporated in
the saliency detection framework using RGB-depth pair images [50], where the Siamese
network was used for feature extraction.

Using short connections similar to [52] can be particularly beneficial in the denoising
problem. A reasonable denoising algorithm should also be able to recover the corrupted
information while simultaneously preserving the critical structures in the images. Con-
sidering medical images, the denoising problem becomes even more sensitive since the
results would be later used in diagnosis and image analysis tasks such as segmentation.
The capability of exploiting rich information at the feature extraction phase motivates us to
include this strategy in our proposed model.
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Figure 1. Paired Hierarchical Learning (PHL).

2.4.2. Cross-Modal Assisted Reconstruction (CMAR)

The CMAR module combines the hierarchical features extracted by the PHL module
to perform upsampling. CMAR acts as a decoder in our proposed method and consists of
two components, i.e., Cross-Modal feature Synthesis (CMS) and Feature Expansion (FE).
The detail of the interactions among various elements of the CMS and FE components along
with their relationship with the PHL module is depicted in Figure 2. Both components are
explained in the subsections below:

Figure 2. Cross-Modal Assisted Reconstruction (CMAR).
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Cross-Modal Feature Synthesis (CMS)

Let us denote the feature set provided by the FP module as {Fy, Fg}, where Fy and Fg
correspond to the features extracted from noisy image, and guidance image, respectively.
CMS does feature multiplication followed by feature addition of the corresponding multi-
scale features. This operation can be mathematically expressed as:

CMS({Fy, Fg}) = Fy ⊕ Fg ⊕ (Fy ⊗ Fg) (5)

⊕ and ⊗ symbols in Equation (5) represents addition and multiplication (element-wise).
The addition operation exploits complementary information between both modalities in
the feature space, while the multiplication operation combines common information in
the cross-modal feature set. The complementarity-aware feature fusion in this manner
genuinely exploits superior perceptual quality of guidance image and therefore embeds
additional learning capability into the model.

Feature Expansion (FE)

The feature maps from the CMS component are passed to the FE component, which
acts as a decoder in our framework and is embedded with dense connections. The dense
connections enable effective information flow from each decoder block to the next. Propa-
gating the multi-level features in a densely connected fashion has proven to improve the
learning capability of the network [56]. Inception module [57] is incorporated in the FE
module and is shown in Figure 3. Up-sampling in this module was done using simple
bilinear interpolation. Leveraging varying filter sizes such as 1× 1, 3× 3, and 5× 5 in Conv
layers, the inception module allows the network to learn spatial patterns at several scales.

Figure 3. Structure of Inception module.

The output from the last FE module, i.e., FE1 is fed to a 1 × 1 convolution layer to
acquire the reconstructed image in a supervised manner. The detail of the loss function is
given as follows.

2.5. Loss Function

Mean square error (MSE) is a standard objective function used in several image
processing problems including image super-resolution and denoising. Using MSE as a
loss function allows minimizing the residual error between pixels in the ground truth and
the network predicted image, which implies attaining a higher Peak Signal to Noise Ratio
(PSNR). MSE loss is expressed as follows:

LMSE(θ) = ‖X̂(θ)− X‖2 (6)
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However, it was observed that optimization using solely MSE sometimes generates
blurred images. In this context, an objective function motivated by structural information
can be integrated. SSIM is used to define the extent of local structural similarity between
two images and can be incorporated with MSE as a loss function to address the over-
smoothness phenomena associated with MSE. While the higher the SSIM value, the higher
is the structural similarity in images, the objective function is therefore expressed as follows:

LSSIM(θ) = 1− SSIM(X, X̂(θ)) (7)

The overall loss function of the proposed method is mathematically formulated as:

Ltotal(θ) = αLMSE + βLSSIM (8)

Equal values of α and β have been chosen for our experiment, that is 0.5.

3. Experiments and Results

The performance of the proposed method was validated by comparing it with five
state-of-the-art methods including Non-local means filter (NLM) [10], Stein’s unbiased
risk estimate (SURE) [58], Block-matching and 3D filtering (BM3D) [59], Multi-channel
Denoising convolutional neural network (MCDnCNN), referred as MCDN in the paper [24]
and FFD-Net [53]. Among the methods chosen, NLM [10] is a popular denoising method
that computes the weighted average of not only the local neighborhood but all pixels
in the image. Wavelet-based denoising approach SURE does not rely on prior statistical
modeling of wavelet coefficients [58]. Instead, it parametrizes denoising by computing
parameters that minimize this MSE estimate. BM3D is a popular approach based on
stacking similar 2D image patches followed by hard thresholding and Wiener filtering to
denoise 3D stacks [59]. Although BM3D was originally developed for removing Gaussian
noise in images; however, it has been applied to Rician noise removal as well [60]. MCDN
is a 10 convolution layer network embedded with residual learning taking multi-channel
input; however, we modified it to take identical slices. FFD-Net [53] is another CNN
architecture that is capable of handling a variable range of noise levels in a single model.

Moreover, the denoising performance was also evaluated by using different combi-
nations of loss functions on registered as well as unregistered data. Three metrics were
used to quantitatively evaluate the performance. The first metric peak signal-to-noise ratio
(PSNR) compares the root mean square error (RMSE) between the ground truth and de-
noised images. Another metric Structural Similarity Index (SSIM) was also included in the
assessment that measures the structural affinity between denoised images and the ground
truth. Feature Similarity Index (FSIM) [61] is a full reference image quality assessment
(IQA) metric that is often used to evaluate the performance of denoising methods [62].
It computes feature similarity between the two images based on the low-level features
including phase congruency and gradient magnitude.

In the following subsections, we describe in detail the experiments conducted on the
brain MR images using the proposed method and state-of-the-art methods.

3.1. Configurations

The performance of the proposed method CMGDNet was evaluated on unregistered
and registered data with different combinations of loss functions. Different configurations
of data and loss functions tested in the proposed method are mentioned in Table 1 and
briefly explained below:

3.1.1. CMGDNetrs

Under this configuration, registration was not performed between T1-w and T2-w
volumes. Using MSE as loss function, the model was trained and then tested on both
datasets. The results of this configuration are referred as ’CMGDNetrs’.
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3.1.2. CMGDNetss

The role of using an additional SSIM-based loss function was analyzed in case of
unregistered data under this configuration. Therefore, both SSIM and MSE were com-
bined here.

3.1.3. CMGDNetrg

In this case, registration was performed between T1 and T2 volumes. Registration was
done using 3D Slicer. Rigid Registration with 12 degrees of freedomwas applied in all cases
where T1 volume was fixed, while T2 was moved with reference to T1 in the registration
process. The effect of registration can be better comprehended by visually inspecting the
registered and unregistered T2 images with reference to T1 in Figure 4. It can be noticed
that T1 and unregistered T2 slices are structurally similar; however, careful insight points
to structural mismatches at various regions in the image. After applying registration,
the structural similarity in the registered T2 image can be seen in the highlighted areas.
In the following experimental sections, we further analyze the impact of registration on
denoising and structural preservation in the presence of cross-modal image T2. The loss
function used in this case is MSE.

(a) (b) (c)

Figure 4. Comparison of registered and unregistered images. (a) T1. (b) T2-Unregist. (c) T2-Regist.

3.1.4. CMGDNetsg

SSIM was combined with MSE for analyzing the performance of the proposed method
on the registered data in this configuration.

Next, we explain the experiments conducted to compare the performance ofCMGDNet
with other denoising methods.

3.2. Experiment I

The first set of experiments was conducted by comparing the proposed method
(‘CMGDNetsg’ configuration was used in this set of experiments) with state-of-the art
denoising methods. The experiments were conducted on the T1 images taken from two
datasets, HH and Guy’s, corrupted by Rician noise in the range 5% to 13%.

3.3. Experiment II

The second experiment was conducted to investigate the impact of registration on
the denoising performance; besides, the role of using different loss functions was also
evaluated. Therefore, the experiments were conducted using the four configurations
CMGDNetrs, CMGDNetss, CMGDNetrg, and CMGDNetsg, in Table 1.
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Table 1. Variants of CMGDNet.

Configuration Data Loss Function

CMGDNetrs Unregistered MSE

CMGDNetss Unregistered MSE + SSIM

CMGDNetrg Registered MSE

CMGDNetsg Registered MSE + SSIM

3.4. Experiment III

Another experiment was conducted to investigate the impact of integrating corre-
sponding cross-modal images in the proposed framework and analyze its impact in denois-
ing and preserving the structural information in the image. In order to do this, a noisy input
image (T1) was fed to both the branches of the PHL module instead of the combination of
noisy input and cross-modal (guidance) image. The model was then trained using MSE
and SSIM losses on Guy’s hospital dataset (contaminated with 13% noise).

4. Discussion

In this section, we summarize the discussion of our results. The results of Experiment
I are shown in Figures 5–7, where the denoising performance of the proposed method is
shown in comparison with state-of-the-art denoisingmethods. In Figure 5, the input images
were contaminated using 13% noise. All the images denoised using different approaches
suppress noise to some extent; however, NLM [10] removes important structural details in
the image and oversmoothes the contents of the denoised image during the restoration.
Wavelet-based technique SURE [58] and BM3D [59] preserve the structural details; however,
they do not eradicate noise to a reasonable extent. The deep learning methods clearly
show better performance compared to the traditional methods, both in removing noise and
maintaining the morphology of the image. Both MCDN [24] and FFD-Net [53] effectively
remove the noise. Similarly, CMGDNet also eradicates noise with reasonable preservation
of the structural information. The enlarged ROIs are also shown in the figure for careful
insight into the denoising performance of all the methods. Figure 6 shows the results
of denoising applied on images contaminated with 8% noise. A similar trend can be
observed in this case as well where the methods MCDN [24], FFD-Net [53], and CMGDNet
preserve important structures in the denoised images. However, NLM [10] produces
over-smoothing effects. The performance was quantitatively evaluated using PSNR, SSIM,
and FSIM. BM3D [59] works better compared to NLM and SURE [58]; this claim is also
supported by the higher PSNR value in Table 2. The performance of FFD-Net [53] and
MCDN is very similar when quantitatively evaluated. However, CMGDNet performs best
among all the techniques evaluated.

Table 2. PSNR(db)-SSIM values—HH Hospital Data.

Level Noisy NLM [10] SURE [58] BM3D [59] MCDN [24] FFD-Net [53] CMGNetsg

5% 25.71 28.84 28.89 29.45 36.32 36.15 36.87

8% 22.3 26.38 24.85 27.25 33.38 33.28 33.74

13% 19.8 23.224 22.821 24.671 31.116 30.81 31.77

Mean 22.6 26.148 25.52 27.12 33.61 33.41 34.126

5% 0.49 0.628 0.635 0.656 0.914 0.911 0.951

8% 0.413 0.565 0.532 0.628 0.834 0.822 0.885

13% 0.278 0.488 0.461 0.514 0.803 0.79 0.836

Mean 0.4 0.561 0.542 0.6 0.85 0.841 0.89
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(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

(b1) (b2) (b3) (b4)

(b5) (b6) (b7) (b8)

Figure 5. Comparison of proposed method with state-of-the-art denoising methods: (a1) Noisy. (a2) NLM [10].
(a3) SURE [58]. (a4) BM3D [59]. (a5) MCDN [24]. (a6) FFD-Net [53]. (a7) CMGDNetsg. (a8) GT, Corresponding en-
larged regions of the denoised images: (b1) Noisy. (b2) NLM [10]. (b3) SURE [58]. (b4) BM3D [59]. (b5) MCDN [24].
(b6) FFD-Net [53]. (b7) CMGDNetsg. (b8) GT

The visual comparison of the performance of the proposed method with other de-
noising methods conducted on the Guys dataset (13% noise) is shown in Figure 7. NLM
and SURE exhibit worse performance among all the methods tested. NLM eradicates
significant details from the image while SURE removes minimal noise. BM3D performs
slightly better than the two approaches. MCDN preserves structural information of the
image; however, it leaves some noticeable noise in the image. The performance of FFD-Net
visually in this case is comparable with CMGDNet. The quantitative assessment also
validates the visual observations, which are shown in Table 3. For instance, NLM and
SURE are ranked low at all the noise levels by PSNR and SSIM. BM3D performs better than
both NLM and SURE. It is pertinent to mention that even the more robust conventional
denoising methods such as BM3D leveraging the benefits of spatial and transform domains
rely on pre-defined assumptions that do not work well under several types and levels of
noise. On the other hand, deep learning approaches allow the underlying model to learn
various levels of feature representations from raw to the higher level. In the context of
denoising, the model thus learns the uncertain noise distributions from the input data.
Consequently, these techniques can adapt to several types of noise efficiently. The deep
learning methods in the proposed study perform better than the conventional methods
on all the metrics. However, the cross-modal image information further enhances the
network learning capability. Overall, the images denoised using all the methods still look



Electronics 2021, 10, 2855 13 of 19

blurry compared to the ground truth. It is because it is not possible to recover the image
contents completely that have been corrupted by noise without any loss of information.
However, it can be sensed that the denoising at level 8% introduces less blur compared
to the denoising applied to images containing 13% noise. Overall, the proposed method
achieves the best performance among all the methods both in PSNR and SSIM. CMGDNet
exhibits an average gain of 4.7% in SSIM value compared to the second-best MCDN (0.89
against 0.85).

(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

Figure 6. Denoising Results: Noise Level 8%. (a1) Noisy. (a2) NLM [10]. (a3) SURE [58]. (a4) BM3D [59]. (a5) MCDN [24].
(a6) FFD-Net [53]. (a7) CMGDNetsg. (a8) GT.

(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

Figure 7. Comparison of proposedmethodwith state of the art denoisingmethods. (a1) Noisy. (a2) NLM [10]. (a3) SURE [58].
(a4) BM3D [59]. (a5) MCDN [24]. (a6) FFD-Net. (a7) CMGDNetsg. (a8) GT.
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Table 3. PSNR(db)-SSIM values—Guys Hospital Data.

Level Noisy NLM [10] SURE [58] BM3D [59] MCDN [24] FFD-Net [53] CMGDNetsg

5% 23.45 26.96 28.07 30.41 31.67 33.14 33.12

8% 20.58 24.92 22.41 25.65 28.07 28.82 30.37

13% 17.37 22.74 21.33 23.28 25.68 27.56 28.81

Mean 20.46 24.87 23.93 26.44 28.47 29.84 30.76

5% 0.43 0.585 0.652 0.731 0.802 0.861 0.864

8% 0.367 0.519 0.481 0.543 0.782 0.794 0.81

13% 0.24 0.426 0.408 0.484 0.741 0.752 0.786

Mean 0.345 0.51 0.513 0.586 0.775 0.803 0.82

All the denoising methods included in this study bring improvement in preserving
low-level features in the restored images when compared to the input noisy image as can
be seen in terms of FSIM values (Tables 4 and 5). It is worth mentioning here that the FSIM
scores for all the methods are very close particularly at low noise levels (5%). However,
this difference is more pronounced at the higher noise levels (13%). For instance, at 13%
noise, the proposed CMGDNet method shows the best performance on both datasets.
The average gain in FSIM values in the case of CMGDNet (FSIM value 0.903) compared to
the second-best performing method FFD-Net [53] (FSIM value 0.883) was 2.3%.

Table 4. FSIM values—HH Hospital Data.

Level Noisy NLM [10] SURE [58] BM3D [59] MCDN [24] FFD-Net [53] CMGDNet

5% 0.868 0.9116 0.932 0.922 0.9414 0.946 0.954

8% 0.825 0.922 0.914 0.922 0.9385 0.936 0.946

13% 0.702 0.828 0.753 0.862 0.89 0.882 0.92

Mean 0.798 0.887 0.866 0.902 0.923 0.921 0.94

Table 5. FSIM values—Guys Hospital Data.

Level Noisy NLM [10] SURE [58] BM3D [59] MCDN [24] FFD-Net [53] CMGDNet

5% 0.824 0.89 0.85 0.896 0.91 0.918 0.925

8% 0.77 0.884 0.877 0.888 0.881 0.89 0.91

13% 0.66 0.758 0.715 0.813 0.822 0.841 0.874

Mean 0.751 0.844 0.814 0.865 0.871 0.883 0.903

Another experiment (Experiment II) was conducted on the HH dataset using 13%
noise. The denoising results are shown in Figure 8 along with enlarged regions for careful
inspection. Table 6 shows the quantitative assessment results on different variants of data
(i.e., registered and unregistered) using two different loss functions. Among the variants of
the proposed method, it is observed that registration between the corresponding T1 and T2
images together with employing SSIM as loss function with MSE facilitates in improving
the structural similarity between denoised image and ground truth as implied by the
higher SSIM values in the case of CMGDNetsg compared to its corresponding variants
CMGDNetrs and CMGDNetss; however, noticeable improvement in PSNR values was not
observed under this configuration.
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Table 6. PSNR-SSIM values—HH Hospital Data (Variants of CMGDNet).

Metric Noisy CMGDNetrs CMGDNetss CMGDNetrg CMGNetsg

PSNR 19.8 31.12 30.86 31.62 31.77

SSIM 0.278 0.787 0.764 0.811 0.836

Table 7. PSNR-SSIM values—Guys Hospital Data (Variants of CMGDNet).

Metric Noisy T1-T1 CMGDNetrs CMGDNetss CMGDNetrg CMGDNetsg

PSNR 17.37 26.52 28.44 28.21 28.63 28.81

SSIM 0.24 0.7 0.73 0.72 0.75 0.786

(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8) (a9)

(b1) (b2) (b3) (b4)

(b5) (b6) (b7)

Figure 8. Role of using cross-modal guidance information in denoising: Results of CMGDNet method (a1) Noisy. (a2) Un-
reg. T2. (a3) Reg. T2. (a4) T1-T1. (a5) CMGDNetrs. (a6) CMGDNetss. (a7) CMGDNetrg. (a8) CMGDNetsg. (a9) GT, Corre-
sponding enlarged ROI (b1) Noisy. (b2) T1-T1. (b3) CMGDNetrs. (b4) CMGDNetss. (b5) CMGDNetrg. (b6) CMGDNetsg.
(b7) GT.
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Role of Cross-Modal Guidance Information

To better understand the motivation of using cross-modal guidance information,
the guidance image was bypassed and a noisy T1 image was fed to both branches of the
PHL module as explained in Section 3.4. The results of this setup and its comparison with
other variants of the proposed method are shown in Figure 9. Visually, the denoised images
are similar on the whole; however, the enlarged ROI shows slight structural differences
among the results. The model trained using identical noisy images fed to both branches
(without guidance image) fails to recover various structures of the input image. Both
CMGDNetrs and CMGDNetss yield better results compared to the T1-T1 configuration;
however, they also lack in recovering some structural information. CMGDNetrg shows
better performance compared to the three variants in terms of retaining structural sim-
ilarity with the ground truth. Incorporating SSIM in the registered configuration, that
is CMGDNetsg configuration performs best. It not only retains structural similarity to a
considerable extent, moreover, it also gives sharp edges compared to all the other variants.
The PSNR-SSIM values for all the configurations tested are shown in Table 7.

(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

(b1) (b2) (b3) (b4) (b5) (b6)

Figure 9. Comparison of proposedmethod (different configurations). (a1) Noisy. (a2) Unreg. T2. (a3) Reg. T2. (a4) CMGDNetrs.
(a5) CMGDNetss. (a6) CMGDNetrg. (a7) CMGDNetsg. (a8) GT, Corresponding enlarged RoI: (b1) Noisy. (b2) CMGDNetrs.
(b3) CMGDNetss. (b4) CMGDNetrg. (b5) CMGDNetsg. (b6) GT.

5. Conclusions

In this paper, a deep cross-modal guided denoising approach CMGDNet was pre-
sented for brain MR images, where the complementary information from the cross-modal
image was exploited to embed the model with additional learning capability. Hierarchical
feature manipulation combined with densely connected upsampling was particularly used
to harness the additional guidance information effectively in image restoration process.
Our quantitative and qualitative experimental analysis shows that the cross-modal denois-
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ing shows superior results compared to single image denoising approaches. The capability
of combining cross-modal image features in a systematic way, rather than simple concate-
nation proved to be influential in denoising. Furthermore, the experiments show that
although the method works well on unregistered data; however, using registered data aids
in recovering the structural information of the image. The proposed denoising approach
can be used as an effective preprocessing step in various image analysis tasks.

In the future, it would be interesting to extend the research work to other organs such
as the liver, lungs, and other multi-modal medical imaging modalities.

Author Contributions: Conceptualization, R.N., F.A.C. and A.B.; methodology, R.N., F.A.C. andM.S.;
software, R.N.; validation, R.N. and A.B.; formal analysis, R.N. and M.S.; writing—original draft
preparation, R.N., F.A.C. and A.B.; writing—review and editing, R.N., K.M. and F.A.C.; supervision,
F.A.C. and A.B.; project administration and funding acquisition F.A.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is supported by H2020-MSCA-ITNMarie Skłodowska-Curie Actions, Innovative
Training Networks (ITN)-H2020 MSCA ITN 2016 GA EU project number 722068 High Performance
Soft Tissue Navigation (HiPerNav).

Data Availability Statement: Data available in a publicly accessible repository. The data used in this
study is openly available in IXI database at: https://brain-development.org/ixi-dataset/.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Struyfs, H.; Sima, D.M.; Wittens, M.; Ribbens, A.; de Barros, N.P.; Vân Phan, T.; Meyer, M.I.F.; Claes, L.; Niemantsverdriet,
E.; Engelborghs, S.; et al. Automated MRI volumetry as a diagnostic tool for Alzheimer’s disease: Validation of icobrain dm.
Neuroimage Clin. 2020, 26, 102243. [CrossRef]

2. Agosta, F.; Galantucci, S.; Filippi, M. Advanced magnetic resonance imaging of neurodegenerative diseases. Neurol. Sci. 2017,
38, 41–51. [CrossRef]

3. Rocca, M.A.; Battaglini, M.; Benedict, R.H.; De Stefano, N.; Geurts, J.J.; Henry, R.G.; Horsfield, M.A.; Jenkinson, M.; Pagani, E.;
Filippi, M. Brain MRI atrophy quantification in MS: From methods to clinical application. Neurology 2017, 88, 403–413. [CrossRef]

4. Prieto, R.; Pascual, J.; Barrios, L. Topographic diagnosis of craniopharyngiomas: The accuracy of MRI findings observed on
conventional T1 and T2 images. Am. J. Neuroradiol. 2017, 38, 2073–2080. [CrossRef]

5. Satpute, N.; Naseem, R.; Palomar, R.; Zachariadis, O.; Gómez-Luna, J.; Cheikh, F.A.; Olivares, J. Fast parallel vessel segmentation.
Comput. Methods Programs Biomed. 2020, 192, 105430. [CrossRef]

6. Survarachakan, S.; Pelanis, E.; Khan, Z.A.; Kumar, R.P.; Edwin, B.; Lindseth, F. Effects of Enhancement on Deep Learning Based
Hepatic Vessel Segmentation. Electronics 2021, 10, 1165. [CrossRef]

7. Gudbjartsson, H.; Patz, S. The Rician distribution of noisy MRI data. Magn. Reson. Med. 1995, 34, 910–914. [CrossRef] [PubMed]
8. Sagheer; Sameera, V.; George, S.N. A review on medical image denoising algorithms. Biomed. Signal Process. Control 2020,

61, 102036. [CrossRef]
9. Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on

Computer Vision (IEEE Cat. No. 98CH36271), Bombay, India, 7 January 1998; pp. 839–846.
10. Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 2, pp. 60–65.
11. Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990,

12, 629–639. [CrossRef]
12. Weaver, J.B.; Xu, Y.; Healy, D., Jr.; Cromwell, L. Filtering noise from images with wavelet transforms. Magn. Reson. Med. 1991,

21, 288–295. [CrossRef]
13. Souidene, W.; Beghdadi, A.; Abed-Meraim, K. Image denoising in the transformed domain using non local neighborhoods. In

Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal Processing Processing, Toulouse, France,
14–19 May 2006; Volume 2, p. II.

14. Sdiri, B.; Kaaniche, M.; Cheikh, F.A.; Beghdadi, A.; Elle, O.J. Efficient enhancement of stereo endoscopic images based on joint
wavelet decomposition and binocular combination. IEEE Trans. Med. Imaging 2018, 38, 33–45. [CrossRef] [PubMed]

15. Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992,
60, 259–268. [CrossRef]

16. Yang, S.; Wang, J.; Hao, X.; Li, H.; Wei, X.; Deng, B.; Loparo, K.A. BiCoSS: Toward large-scale cognition brain with multigranular
neuromorphic architecture. IEEE Trans. Neural Netw. Learn. Syst. 2021. [CrossRef]



Electronics 2021, 10, 2855 18 of 19

17. Yang, S.; Deng, B.; Wang, J.; Li, H.; Lu, M.; Che, Y.; Wei, X.; Loparo, K.A. Scalable digital neuromorphic architecture for large-scale
biophysically meaningful neural network with multi-compartment neurons. IEEE Trans. Neural Netw. Learn. Syst. 2019,
31, 148–162. [CrossRef] [PubMed]

18. Yang, S.; Wang, J.; Deng, B.; Azghadi, M.R.; Linares-Barranco, B. Neuromorphic Context-Dependent Learning Framework With
Fault-Tolerant Spike Routing. IEEE Trans. Neural Netw. Learn. Syst. 2021. [CrossRef]

19. Yang, S.; Wang, J.; Zhang, N.; Deng, B.; Pang, Y.; Azghadi, M.R. CerebelluMorphic: Large-scale neuromorphic model and
architecture for supervised motor learning. IEEE Trans. Neural Netw. Learn. Syst. 2021. [CrossRef] [PubMed]

20. Bolkar, S.; Wang, C.; Cheikh, F.A.; Yildirim, S. Deep smoke removal from minimally invasive surgery videos. In Proceedings of
the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3403–3407.

21. Wang, C.; Mohammed, A.K.; Cheikh, F.A.; Beghdadi, A.; Elle, O.J. Multiscale deep desmoking for laparoscopic surgery. In
Proceedings of the Medical Imaging 2019: Image Processing, International Society for Optics and Photonics, San Diego, CA, USA,
16–21 February 2019; Volume 10949, p. 109491Y.

22. Khan, S.; Sajjad, M.; Hussain, T.; Ullah, A.; Imran, A.S. A Review on Traditional Machine Learning and Deep Learning Models
for WBCs Classification in Blood Smear Images. IEEE Access 2020. [CrossRef]

23. Xu, J.; Gong, E.; Ouyang, J.; Pauly, J.; Zaharchuk, G. Ultra-low-dose 18F-FDG brain PET/MR denoising using deep learning and
multi-contrast information. In Proceedings of the Medical Imaging 2020: Image Processing, International Society for Optics and
Photonics, Houston, TX, USA, 17–20 February 2020; Volume 11313, p. 113131P.

24. Jiang, D.; Dou, W.; Vosters, L.; Xu, X.; Sun, Y.; Tan, T. Denoising of 3D magnetic resonance images with multi-channel residual
learning of convolutional neural network. Jpn. J. Radiol. 2018, 36, 566–574. [CrossRef]

25. Naseem, R.; Cheikh, F.A.; Beghdadi, A.; Elle, O.J.; Lindseth, F. Cross modality guided liver image enhancement of CT using MRI.
In Proceedings of the 2019 8th European Workshop on Visual Information Processing (EUVIP), Rome, Italy, 28–31 October 2019;
pp. 46–51.

26. Naseem, R.; Khan, Z.A.; Satpute, N.; Azeddine, B.; Cheikh, F.A.; Olivares, J. Cross-modality guided contrast enhancement for
improved liver tumor image segmentation. IEEE Access 2021, in press. [CrossRef]

27. Tahmassebi, A.; Ehtemami, A.; Mohebali, B.; Gandomi, A.H.; Pinker, K.; Meyer-Baese, A. Big data analytics in medical imaging
using deep learning. In Proceedings of the Big Data: Learning, Analytics, and Applications, Baltimore, MD, USA, 13 May 2019;
Volume 10989, p. 109890E.

28. Elhoseny, M.; Abdelaziz, A.; Salama, A.S.; Riad, A.M.; Muhammad, K.; Sangaiah, A.K. A hybrid model of internet of things and
cloud computing to manage big data in health services applications. Future Gener. Comput. Syst. 2018, 86, 1383–1394. [CrossRef]

29. Tahmassebi, A.; Gandomi, A.H.; McCann, I.; Schulte, M.H.; Goudriaan, A.E.; Meyer-Baese, A. Deep learning in medical imaging:
fMRI big data analysis via convolutional neural networks. In Proceedings of the Practice and Experience on Advanced Research
Computing, Pittsburgh, PA, USA, 22–26 July 2018; pp. 1–4.

30. Yang, S.; Gao, T.; Wang, J.; Deng, B.; Lansdell, B.; Linares-Barranco, B. Efficient spike-driven learning with dendritic event-based
processing. Front. Neurosci. 2021, 15, 97. [CrossRef]

31. Yang, S.; Wei, X.; Deng, B.; Liu, C.; Li, H.; Wang, J. Efficient digital implementation of a conductance-based globus pallidus
neuron and the dynamics analysis. Phys. A Stat. Mech. Its Appl. 2018, 494, 484–502. [CrossRef]

32. Kumar, A.; Ramachandran, M.; Gandomi, A.H.; Patan, R.; Lukasik, S.; Soundarapandian, R.K. A deep neural network based
classifier for brain tumor diagnosis. Appl. Soft Comput. 2019, 82, 105528. [CrossRef]

33. Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-grade brain tumor classification using deep CNN with
extensive data augmentation. J. Comput. Sci. 2019, 30, 174–182. [CrossRef]

34. Wang, C.; Cheikh, F.A.; Beghdadi, A.; Elle, O.J. Adaptive context encoding module for semantic segmentation. Electron. Imaging
2020, 2020, 27-1–27-7. [CrossRef]

35. Mohammed, A.; Wang, C.; Zhao, M.; Ullah, M.; Naseem, R.; Wang, H.; Pedersen, M.; Cheikh, F.A. Weakly-Supervised network
for detection of COVID-19 in chest CT scans. IEEE Access 2020, 8, 155987–156000. [CrossRef]

36. Guo, Z.; Li, X.; Huang, H.; Guo, N.; Li, Q. Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans.
Radiat. Plasma Med. Sci. 2019, 3, 162–169. [CrossRef]

37. Teramoto, A.; Fujita, H.; Yamamuro, O.; Tamaki, T. Automated detection of pulmonary nodules in PET/CT images: Ensemble
false-positive reduction using a convolutional neural network technique. Med. Phys. 2016, 43, 2821–2827. [CrossRef]

38. Guo, Z.; Guo, N.; Gong, K.; Li, Q. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense
multi-modality network. Phys. Med. Biol. 2019, 64, 205015. [CrossRef]

39. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation
from sparse annotation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 424–432.

40. Kang, S.K.; Yie, S.Y.; Lee, J.S. Noise2Noise Improved by Trainable Wavelet Coefficients for PET Denoising. Electronics 2021,
10, 1529. [CrossRef]

41. Wang, Y.; Song, X.; Gong, G.; Li, N. A Multi-Scale Feature Extraction-Based Normalized Attention Neural Network for Image
Denoising. Electronics 2021, 10, 319. [CrossRef]

42. Kang, E.; Min, J.; Ye, J.C. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
Med. Phys. 2017, 44, e360–e375. [CrossRef]



Electronics 2021, 10, 2855 19 of 19

43. Satpute, N.; Naseem, R.; Pelanis, E.; Gómez-Luna, J.; Cheikh, F.A.; Elle, O.J.; Olivares, J. GPU acceleration of liver enhancement
for tumor segmentation. Comput. Methods Programs Biomed. 2020, 184, 105285. [CrossRef]

44. Yan, Q.; Shen, X.; Xu, L.; Zhuo, S.; Zhang, X.; Shen, L.; Jia, J. Cross-field joint image restoration via scale map. In Proceedings of
the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1537–1544.

45. Shen, X.; Zhou, C.; Xu, L.; Jia, J. Mutual-structure for joint filtering. In Proceedings of the IEEE International Conference on
Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3406–3414.

46. Li, Y.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep joint image filtering. In European Conference on Computer Vision; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 154–169.

47. Li, Y.; Huang, J.B.; Ahuja, N.; Yang, M.H. Joint image filtering with deep convolutional networks. IEEE Trans. Pattern Anal. Mach.
Intell. 2019, 41, 1909–1923. [CrossRef] [PubMed]

48. Stimpel, B.; Syben, C.; Schirrmacher, F.; Hoelter, P.; Dörfler, A.; Maier, A. Multi-Modal Deep Guided Filtering for Comprehensible
Medical Image Processing. IEEE Trans. Med. Imaging 2019, 39, 1703–1711. [CrossRef] [PubMed]

49. Chen, K.T.; Toueg, T.N.; Koran, M.E.I.; Davidzon, G.; Zeineh, M.; Holley, D.; Gandhi, H.; Halbert, K.; Boumis, A.; Kennedy, G.;
et al. True ultra-low-dose amyloid PET/MRI enhanced with deep learning for clinical interpretation. Eur. J. Nucl. Med. Mol.
Imaging 2021, 48, 2416–2425. [CrossRef] [PubMed]

50. Fu, K.; Fan, D.P.; Ji, G.P.; Zhao, Q. Jl-dcf: Joint learning and densely-cooperative fusion framework for rgb-d salient object
detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 3052–3062.

51. Brain IXI. Brain IXI Database. Available online: https://brain-development.org/team/ (accessed on 8 April 2021).
52. Hou, Q.; Cheng, M.M.; Hu, X.; Borji, A.; Tu, Z.; Torr, P.H. Deeply supervised salient object detection with short connections.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 3203–3212.

53. Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image
Process. 2018, 27, 4608–4622. [CrossRef]

54. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

55. Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision,
Santiago, Chile, 7–13 December 2015; pp. 1395–1403.

56. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

57. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

58. Luisier, F.; Blu, T.; Unser, M. A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding. IEEE
Trans. Image Process. 2007, 16, 593–606. [CrossRef]

59. Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE
Trans. Image Process. 2007, 16, 2080–2095. [CrossRef]

60. Hanchate, V.; Joshi, K. MRI denoising using BM3D equipped with noise invalidation denoising technique and VST for improved
contrast. SN Appl. Sci. 2020, 2, 1–8. [CrossRef]

61. Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image
Process. 2011, 20, 2378–2386. [CrossRef] [PubMed]

62. Kaur, R.; Juneja, M.; Mandal, A.K. A comprehensive review of denoising techniques for abdominal CT images. Multimed. Tools
Appl. 2018, 77, 22735–22770. [CrossRef]



ISBN 978-82-326-6129-9 (printed ver.)
ISBN 978-82-326-5251-8 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2021:415

Rabia Naseem

Cross-modality Guided Image
Enhancement

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2021:415
Rabia N

aseem

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r S

ci
en

ce


	Blank Page


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




