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Summary

The petroleum drilling process involves an array of complicated operations
necessary to create circular wellbores to allow the exploration and recovery
of hydrocarbons. Examples of these are overcoming the resistance, crushing,
and removal of rock, maintaining wellbore stability, and avoiding fracture
and influx of formation fluids. As wellbores can extend for several kilomet-
ers underground, much of the operation is hidden from the driller, which
must rely on topside and downhole sensor measurements for indications of
which actions are preferable, and also to understand the state of the pro-
cess. The amount of available measurements has increased gradually, and it
is of interest to convert these measurements to value. However, analysis of
large amounts of data is challenging and time-consuming for humans, and
too much information could even be counterproductive.

This Ph.D. thesis is concerned with the use of machine learning (ML) meth-
ods to make use of the data available during drilling. A deep reinforcement
learning agent is trained to control bottomhole pressure during pipe con-
nection in a simulated study. Also, a streaming learning method using deep
neural networks (DNNs) is presented in order to both estimate logging while
drilling (LWD) sensor readings, as well as classifying lithology. This method
uses drilling parameters as inputs, and learns continuously from the avail-
able data stream to adapt to case-specific and changing conditions during
operation. This approach is applied to real drilling data from the reservoir
section of a field operated by Equinor. The results herein presented indicate
that such a configuration can be used to provide preliminary at-bit indica-
tions of lithology characteristics, which can be used by the driller as a tool
in the decision-making process. Such predictions can contribute to a better
foundation for selection of suitable drilling parameters, leading to a safer
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and more efficient drilling operation.
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Chapter 1

Introduction

1.1 Motivation

The term automation dates back to around 1946, and is attributed to an
engineering manager at the Ford Motor Company [2]. At the time, it was
used to describe the use of automatic devices and controls in mechanized
production lines, i.e., replacing physical human labor in dull, repetitive and
dangerous tasks in the context of manufacturing. Since then, the definition
has broadened to include a wider range of processes, as well as inclusion of
mental labor and cognition [3]. Data processing, analysis and decision mak-
ing all fall under this more modern definition of automation, both in full and
partial replacement of human labor [4]. New technologies have gradually
allowed more computational power, while sensors are installed everywhere,
monitoring both private households and industrial processes. At this time,
many companies find themselves gathering more data from sensors than can
possibly be converted to business value by humans.

Machine learning (ML) is a branch of artificial intelligence (AI) that has
recently resurged due to the aforementioned technical advancements, and
has been defined as ”[...] the study of computer algorithms that allow
computer programs to automatically improve through experience” [5]. ML
is typically divided into three main subcategories: supervised learning -
predict outputs y from inputs x for regression and classification problems,
unsupervised learning - clustering, dimension reduction and feature extrac-

1



2 Introduction

tion, and reinforcement learning - learning of optimal behavior to maximize
some notion of reward. These methods all learn directly from observations
without explicit programming, and can in different ways extract knowledge
and create value from the data. Lately, the development of deep learning
has been receiving attention due to remarkable ability to extract latent fea-
tures from input data through multiple layers of neurons in deep neural
networks (DNNs), allowing learning of representations with no theoretical
limitations of complexity [6]. Exciting research results include deep convo-
lutional neural networks (CNNs) for image classification over 1000 classes
[7] and self-driving cars [8], deep reinforcement learning (RL) agents sur-
passing or performing comparably to professional human game testers at 49
Atari games [9], and solving simulated physics tasks [10].

Also in various industrial sectors, data-driven approaches are subject to ex-
tensive research [11], aiming to make use of available data. Among them is
the petroleum drilling industry, which is inherently expensive due to high
capital and operating expenditures. The commercial viability of hydro-
carbon reserves are thus dependent on both these costs, as well as hydro-
carbon prices. Due to recent decline in price, it is vital to cut operating
costs. Automation has been predicted to contribute significantly in this re-
gard1, although critics claim that automation will inhibit crews’ ability to
respond manually due to loss of competence [12]. Over time, several drilling
tasks have been successfully automated, although wider adoption may be
described as slow, where heterogeneity between wells and rigs, data in-
tegration between multiple stakeholders such as operator, service provider,
drilling contractor and equipment manufacturer, as well as acceptance of
automation in the drilling crew are among contributing factors to this trend
[13]. The identification of areas where automation can benefit the drilling
industry, as well as determining which level of automation is most appro-
priate, are not trivial tasks. The long-term goal is to reverse the roles so
that machines take over the majority of the work load, while humans pos-
sess more of an advisory role. However, it has been found that while higher
levels of automation can improve process efficiency, it also leads to an in-
creased risk of operator error [14]. These findings suggest that a gradual
transition to fully autonomous drilling systems, along with additional train-

1DNV Technology Outlook 2030 document available online at https://www.dnv.co
m/to2030/impact/impact-on-oil-and-gas.html, (accessed July 12, 2021)
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ing of personnel in parallel with these advancements are key for the success
of broader adoption of automation in drilling.

The focus of this Ph.D. project has been to explore the use of ML meth-
ods in the drilling operation. Primarily, efforts have been targeted at the
development of data analysis systems, which pose low operational risk with
regards to safety and efficiency, and as such may serve as stepping stones in
the transition towards higher autonomy levels. These systems aim to relieve
the driller of certain data analyses tasks during drilling, and provide valuable
insight into bottomhole conditions. At the same time, decision making re-
sponsibility is currently left entirely to the driller. Motivations behind such
a human/machine division of labor are to obtain acceptance among crews,
to preserve competence, and to allow crews to focus on other tasks. In the
future, when such systems have been further validated, increasing levels of
advising and autonomy can be layered on top, for example by alerting the
driller of events or changes in downhole conditions, suggestions of favorable
actions or even automatic updates of drilling parameters.

1.2 Contributions

The research conducted is a contribution to the petroleum drilling industry.
The majority of the work herein presented contributes to the at-bit estim-
ation of formation properties and classification of drilled lithology. To this
end, a novel streaming learning approach was developed. For these contri-
butions, real surface drilling data and logging while drilling (LWD) meas-
urements from the reservoir section of a field operated by Equinor were
used. These contributions, with references to papers in Section 1.3, can be
summarized as:

• Development of a divided and prioritized experience replay approach
for streaming regression in Paper B, comparing the developed ap-
proach to the standard sliding window for density log estimation using
a DNN.

• A case study of the developed streaming learning approach for at-bit
density log estimation from drilling parameters in Paper A. This pa-
per motivates a streaming learning approach by use of a t-distributed
stochastic neighbor embedding (t-SNE) dimension reduction, and com-
pares results to a standard deep learning approach.
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• An application of the developed approach to at-bit neutron log estim-
ation from drilling parameters in Paper C.

• An extension of the LWD estimation method to classify at-bit litho-
logy by layering a DNN lithology classifier on top of the LWD models
in Paper D. This work was initially covered in the conference paper,
Paper E, which was invited for peer-review in the SPE Drilling &
Completion journal.

Also, one instance of deep reinforcement learning has been applied in a
simulated study for bottomhole pressure control:

• A deep reinforcement learning agent was embedded in a managed
pressure drilling (MPD) system to control the bottomhole pressure
using a topside choke valve with nonlinear characteristics during pipe
connection in a simulated study in Paper F.

1.3 List of publications

This thesis is based on the papers listed below. Paper B has been accepted
at the MethodsX journal. Papers C and D are accepted at the SPE/IADC
International Drilling Conference and Exhibition, Galveston, Texas, 2022,
and the SPE Drilling & Completion journal, respectively, but are yet to
be published. In addition to these papers, the work on LWD estimation
and lithology classification has resulted in the incipient development of a
prototype application aimed for use internally at Equinor.

Paper A

Arnø ML, Godhavn J-M, Aamo OM. At-bit estimation of rock dens-
ity from real-time drilling data using deep learning with online calibra-
tion. In Journal of Petroleum Science and Engineering, page 1009006,
2021 https://doi.org/10.1016/j.petrol.2021.109006 [1]

Paper B

Arnø ML, Godhavn J-M, Aamo OM. A divided and prioritized exper-
ience replay approach for streaming regression. MethodsX (Accepted)
[15]
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Paper C

Arnø ML, Godhavn J-M, Aamo OM. At-bit virtual neutron log es-
timated from real-time drilling data. SPE/IADC International Drilling
Conference and Exhibition, Galveston, Texas (Accepted). March 8-10,
2022. [16]

Paper D

Arnø ML, Godhavn J-M, Aamo OM. Classification of drilled litho-
logy in real-time using deep learning with online calibration. SPE
Drilling & Completion (Accepted) [17]

Paper E

Arnø ML, Godhavn J-M, Aamo OM. Real-time classification of drilled
lithology from drilling data using deep learning with online calibra-
tion. In proceedings of the SPE/IADC International Drilling Con-
ference and Exhibition, Virtual. March 8-12, 2021. SPE-204093-MS
https://doi.org/10.2118/204093-MS [18]

Paper F

Arnø ML, Godhavn J-M, Aamo OM. Deep reinforcement learn-
ing applied to managed pressure drilling. In proceedings of the SPE
Norway Subsurface Conference, Virtual. November 2-3, 2020. SPE-
200757-MS https://doi.org/10.2118/200757-MS [19]

1.4 Outline of thesis

The remainder of this thesis is structured as follows: Chapter 2 provides
background on the areas to which the methods are applied, along with
existing work in literature. Also, preliminaries for the methods used are
given. Chapters 3 - 8 contain the papers on which this thesis is based.
Finally, chapter 9 offers concluding remarks and suggestions for further
work.
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Chapter 2

Background

This chapter provides background on the areas of the drilling process that
are the foci of this thesis. Previous work and methodology used are given
as well. The aim is to put these into context and expand on them beyond
what is done in the publications.

2.1 Lithology characterization

Lithology refers to the physical characteristics of rocks, including their min-
eral composition and texture. As downhole lithology is a central part of
the environment that the drilling system is in interaction with, it is of great
interest to answer the question of drilled lithology. Evaluation of well place-
ment and reservoir structure, for example, depend on this. Also, selection of
suitable drilling parameters are dependent on lithology [20], both in terms
of safety and efficiency. For example, in transitions from soft to hard litho-
logy, the risk of buckling, washout, severe doglegs and unwanted vibrations
is increased if proper actions are not taken. Another common dysfunction
is loss of circulation which could leak to pipe sticking [21]. The risk of loss
of circulation is increased in inherently fractured and cavernous lithologies,
and thus, correct classification of these lithologies is of importance to allow
the driller to take proper actions to reduce this risk.

Traditionally, determining lithology has been done manually by geologists
through interpretation of logging while drilling (LWD) logs [22]. LWD tools

7
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are a family of downhole sensors that communicate to the rig via mudpulse
telemetry at a sampling period of ∼ 20 s. Each log provides insight into
the physical properties of lithology, and examples of these are the density
log, neutron porosity log, gamma ray log, resistivity log, and the caliper
log. The density log measures the bulk density of rock, which can separate
softer lithologies from stringers, while the neutron porosity log measures
the porosity, which can be used to detect oil and gas. The gamma ray log
measures gamma radiation, which can be used to separate claystones from
other sedimentary rocks. Resistivity is used to determine water saturation.
Lastly, the caliper log provides a measure of the borehole quality. Alone,
each of these provide valuable downhole information, and in combination,
they can be used to obtain an accurate understanding of lithology. However,
as illustrated in Figure 2.1, they are typically installed some distance behind
the bit, the rotary steerable system (RSS) and the mud motor. This distance
could be 0.5-30 meters, typically 7-30 meters, which, depending on rate of
penetration (ROP) can amount to delays of approximately 20-120 minutes.

Figure 2.1: Illustration showing where the LWD sensors are placed compared to
the bit.

Supervised learning in the context of LWD tools has been the focus of
several previous publications. As LWD tools are expensive, several pub-
lications have focused on the estimation of one log from other logs, both
to cut cost of equipment, and in case of log failure. Examples include the
use of DNNs [23], long short-term memory models (LSTM) [24], conditional
variational autoencoders (CVAE) [25], and Bayesian neural networks [26].
Studies to classify lithology from drilling data have also been conducted.
Since LWD measurements are established as good predictors for lithology,
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many of these studies rely on LWD data as inputs to their models. Scal-
able gradient boosted decision trees [27], support vector machines (SVMs)
[28], and bi-directional gated recurrent units (GRUs) [29, 30] are among the
methods applied to this end. Since these publications all use LWD data
as input, they do not solve the problem of the delay due to log placement.
Due to this, a driller making decisions based on estimates or predictions
produced by such systems, might in fact act on outdated information, as
drilled lithology could very well have changed in the last 20-120 minutes.

Mechanical drilling parameters, unlike LWDs, are measured on the rig, and
provide information at the bit. These are typically obtained at a sampling
period of ∼ 2 s. Examples of these are ROP, weight on bit (WOB), drill-
string rotation (RPM), and torque (T). These measurements are the earliest
indicators of downhole changes. It is known that different lithologies result
in different bit-rock interactions [20], meaning that the ROP resulting from
a set of mechanical inputs depends on rock type. As RPM is directly con-
trolled by the driller, and autodrillers can be set to maintain constant ROP
or WOB, combinations of drilling parameters are influenced by the actions
of the driller in addition to lithology. For this reason, mechanical specific
energy (MSE) is of interest. MSE defines the input energy necessary to
remove a unit volume of rock [31], and removes the driller’s actions from
the ”equation” by relating ROP to input parameters RPM, WOB and T in
the following manner:

MSE =
WOB

Ab
+

120π · RPM · T
Ab · ROP

, (2.1)

where Ab is the bit area (in2), and other units are WOB (lb), T (lb-ft), and
ROP (ft/hr). Still, the drilling parameters are highly dependent on equip-
ment used, well trajectory and uncertain parameters such as bit wear. The
fact that no two wells are the same make direct classification of lithology
from these measurements difficult for humans. Also a fixed model trained
to perform this task will likely not perform well on a wide range of cases
due to non-constant dependencies between drilling parameters and lithology.

Estimation of logs and classification of lithology from drilling parameters
seems to be a less researched area. There are some examples in literature,
such as estimation of gamma ray log [32], and density log [33] from drilling
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parameters. However, both of these publications are based on data from
a single wellbore, and no indications of the models’ ability to generalize
to other wellbores are given. Another publication [34] classifies lithology
directly from drilling parameters. While this work utilizes data from sev-
eral different wells, the data is split randomly into training, validation and
test sets, meaning that observations from each well are likely in all three
data sets. Also, case specific parameters like depth and bit type are used
as inputs. If the wells are located at different depths, or use different bits,
the model could possibly have learned a mapping from depth or bit type
to lithology, and may therefore not be applicable to other wellbores. The
ability to give accurate predictions on unseen wellbores is the key criterion
speaking to the business value of such models, and the experimental setup
is paramount to obtain results that accurately reflect this. To facilitate such
results, the test set should contain observations from a separate wellbore,
from which no observations are seen during the training and validation pro-
cess.

Among the several model types previously used to characterize lithology and
its properties is the DNN, which has been utilized also for the works presen-
ted in this thesis. DNNs are a class of very flexible model architectures that
through multiple layers of neurons containing nonlinear activation functions
are able to approximate any continuous function to an arbitrary accuracy
[35]. The multiple layers allow extraction of latent features from the inputs,
and the activation functions allow learning of nonlinear representations. The
following notation is used for DNNs:
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L : number of layers in the DNN

mb : size of batch

f : number of features

x : features

y : target variable

sl : number of neurons in layer l ∈ 1, ..., L

(xi, yi) : i-th observation, i ∈ 1, ...,mb

w[l] : trainable weight matrix for layer l

b[l] : trainable bias vector for layer l

where

x =

⎡⎢⎢⎣
...

...
...

x1 x2 . . . xmb

...
...

...

⎤⎥⎥⎦ ∈ R
f x mb , (2.2)

w[l] =

⎡⎢⎢⎢⎢⎣
. . . w

[l]�
1 . . .

. . . w
[l]�
2 . . .
...

. . . w
[l]�
sl−1 . . .

⎤⎥⎥⎥⎥⎦ ∈ R
sl−1 x sl , (2.3)

b[l] =

⎡⎢⎢⎢⎢⎣
b
[l]
1

b
[l]
2
...

b
[l]
sl

⎤⎥⎥⎥⎥⎦ ∈ R
sl x 1. (2.4)

The learning process of DNNs is referred to as deep learning and involves
three main steps: forward propagation, computation of loss, and backpropaga-
tion. Before the learning process, the weightsw and biases b of the DNN are
randomly initialized to provide a starting point for the optimization. Sev-
eral initialization schemes are available, though a popular method is the He
normal random initialization [36], which pulls weights w from a truncated
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normal distribution with mean μ = 0 and standard deviation σ =
√

1
s[l−1]

,

resulting in the following weight initialization for layer l:

w[l] ∈ R
sl−1 x sl ∼ N ([

0, (s[l−1])
−1

])
. (2.5)

The biases, b, are initialized as zeroes. The aim of this initialization is to
avoid vanishing and exploding gradients by managing the variance of the
activations in the DNN.

The forward propagation involves a sequence of mathematical operations
to propagate the inputs x through the layers of the network to obtain an
output ŷ. During training, mini-batches (xb,yb) of size mb are used, for
which the forward propagation through each layer l is described by:

z[l] = w[l]�a[l−1] + b[l]1 l = 1, ..., L, (2.6)

a[l] = g[l](z[l]) l = 1, ..., L, (2.7)

where Equation (2.6) describes the linear component of the forward propaga-
tion, starting at a[0] = xb, and Equation (2.7) describes the nonlinear com-
ponent where the linear combinations from the previous layer are passed
through each layer’s nonlinear activation function g[l]. 1 ∈ R

1 x mb is a row
vector of ones broadcasting the bias term to each observation of the mini-
batch. For layers l = 1, ..., L − 1, activation functions g[l] can be selected
from a range of often used functions, such as sigmoid, tanh, rectified lin-
ear units (ReLU) and leaky ReLU. For the output layer L, the activation
function is determined by the type of problem being solved. For regression
problems, such as LWD estimation, the outputs yb are given by:

yb =
[
y1 y2 . . . ymb

] ∈ R
1 x mb , (2.8)

and the output activation is linear, i.e.:

ŷb = a[L] = z[L], (2.9)

whereas in the multiclass classification problem, which is the case for litho-
logy classification, the outputs yb are given by:
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yb =

⎡⎢⎢⎣
...

...
...

y1 y2 . . . ymb

...
...

...

⎤⎥⎥⎦ ∈ R
C x mb , (2.10)

where each yi ∈ 1, ...,mb is a one hot vector encoding, and C is the number
of classes. The output activation in this case is the softmax:

ŷb = g[L](z[L]) =
ez

[L]∑C
j=1 e

z
[L]
j

, (2.11)

Now that the output of the DNN is calculated, it can be compared to the
labels yb to compute the loss. As for the output activations, the loss is also
determined by the type of problem the DNN is aimed at. For the regression
problem, the mean squared error is typically used, which is defined by:

Lb =
1

2mb

mb∑
i=1

(ŷb,i − yb,i)
2, (2.12)

while for the multiclass classification problem, the categorical cross-entropy
is used:

Lb = − 1

mb

mb∑
i=1

C∑
j=1

yb,j,i log ŷb,j,i. (2.13)

Lastly, the gradients of the loss Lb w.r.t. the trainable weights w and
biases b can be calculated through backpropagation. This procedure starts
by calculating the gradient of the loss w.r.t the output activations, ∂Lb

∂a[L] .
Furthermore, the gradients backward in the network can be found by the
chain rule, so that

∂Lb

∂z[L]
=

∂Lb

∂a[L]
∂a[L]

∂z[L]
, (2.14)

∂Lb

∂w[L]
=

∂Lb

∂a[L]
∂a[L]

∂z[L]
∂z[L]

∂w[L]
, (2.15)
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∂Lb

∂b[L]
=

∂Lb

∂a[L]
∂a[L]

∂z[L]
∂z[L]

∂b[L]
, (2.16)

where Equations (2.15) and (2.16) are calculations of the gradients for the
weights and biases of the output layer L. This procedure can be further
extended throughout layers L − 1, ..., 1. Finally, the trainable parameters
can be updated so that

w[l] = w[l] − α
∂Lb

∂w[l]
(2.17)

b[l] = b[l] − α
∂Lb

∂b[l]
, (2.18)

where α is the learning rate. When the updates described in Equations
(2.17) and (2.18) are used, the procedure is called gradient descent, which
is the standard (and simplest) parameter update rule. However, several ex-
tensions exist [37], including Momentum, RMSProp, Nesterov accelerated
gradients, AdaMax, Adagrad, and Adam optimization. Adam optimization
[38] is one of the most commonly used optimizers, which adaptively estim-
ates appropriate momentum for the gradient updates. Using Adam optim-
ization, biased first moment estimates Vdw and Vdb, and biased second raw
moment estimates, Sdw and Sdb are initialized as 0 before optimization
begins. Exponential decay rates for the first and second moment estimates,
β1 = 0.9 and β2 = 0.999, along with a small number to avoid division with
zero, ε = 10−8 are also initialized, where the presented values for these are
default values suggested by the authors of the Adam paper. On every iter-
ation i, after the gradients of the weights and biases have been calculated,
the following equations describe the gradient update steps:
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Vdw = β1Vdw + (1− β1)
∂Lb

∂w
, (2.19)

Vdb = β1Vdb + (1− β1)
∂Lb

∂b
, (2.20)

Sdw = β2Sdw + (1− β2)
∂Lb

∂w

2

, (2.21)

Sdb = β2Sdb + (1− β2)
∂Lb

∂b

2

, (2.22)

V c
dw =

Vdw

1− βi
1

, (2.23)

V c
db =

Vdb

1− βi
1

, (2.24)

Sc
dw =

Sdw

1− βi
2

, (2.25)

Sc
db =

Sdb

1− βi
2

, (2.26)

w = w − α
V c
dw√

Sc
dw + ε

, (2.27)

b = b− α
V c
db√

Sc
db + ε

, (2.28)

where superscript c denotes the bias-corrected counterparts of the moment
estimates.

In a supervised learning setting, a model is typically trained and validated
in order to converge towards a model that performs well on a test set. The
labels of the training data are used to supervise the updates made to the
model, while the labels of the validation set are used by the developer in
the tuning process. Finally, the labels of the test set, previously unseen
by the model, are used to give an unbiased estimate of model performance.
Test set performance is the most important metric to evaluate a model,
as it speaks to the generalizability of the model, i.e. if the representations
learned during training are transferable to unseen observations. This prop-
erty relies heavily on the assumption that the unseen observations that the
model is tested on, come from the same distribution as the training data,
which is an assumption that often fails for real-world problems. Generally,
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when shifts in independent or dependent variables occur, or the underlying
process that links the variables evolves, it is called nonstationarity. This
phenomenon can occur for a variety of reasons, such as seasonality, aging
effects in sensors, or thermal drifts, all of which are harmful to the predictive
power of a data-driven model [39]. This fact, along with the growing avail-
ability of labeled data, has motivated the paradigm of streaming learning,
where a model learns from a data stream in an online fashion. This allows
the model to adapt to new available data. However, such a learning scheme
introduces new problems. One example is that of retaining existing, still
relevant knowledge, while at the same time being capable of learning new
relationships. These two objectives could very well be conflicting, giving rise
to the stability-plasticity dilemma [40]. If no measures are taken to retain
old knowledge, adaption to new data can lead to catastrophic forgetting [41]
of old knowledge, which is a common problem in streaming learning.

Multiple previous publications have aimed to handle catastrophic forget-
ting in different ways. One method is through regularization, which aims
to protect weights important for retaining previous knowledge. This can be
done in several ways, such as selective constraining of certain weights [42],
or configurations with both shared and task-specific layers, in which shared
layers are trained on several tasks [43], which has a regularizing effect. En-
semble methods [44, 45] are also used to overcome catastrophic forgetting,
such as the Learn++.NSE algorithm [40], which trains a new model for each
batch of data it receives, and combines these using a dynamically weighted
majority voting. Different experience replays also exist, which play a role in
deciding which examples to retain or train on. The prioritized experience
replay [46] selects observations for training based on model error, while the
ExStream algorithm [47] is a stream clustering method to retain valuable
information in the replay buffers. There are several ways to characterize
algorithms designed to handle concept drift, one of which is to separate
them into active and passive approaches. Active approaches include a drift
detection mechanism, which leads to learning only when drift is detected.
This mechanism aims to identify the occurrence and severity of the drift,
which is exposed to the risk of imperfect detection, leading to false reports.
Passive methods on the other hand, make no assumption of the drift, ac-
knowledging that drift may occur at any time. This leads to a continuous
learning as new data is presented to the model [40].
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2.2 Managed pressure drilling

During drilling, the annular pressure in the wellbore should be controlled
to be within pressure margins, i.e. between the pore pressure and fracture
pressure of the surrounding formation. Pressures below pore pressure lead
to influx of formation fluid, also called a kick, which if not handled correctly,
could lead to a blowout. Blowouts are severe incidents which could lead to
loss of lives, damage to equipment, and significant environmental damage.
One well-known example is the Deepwater Horizon accident1. Pressures
exceeding the fracture pressure, on the other hand, will lead to fracturing
in the formation, and subsequently loss of drilling fluid. This in itself is
expensive, due to necessary replacement of drilling fluid, but also because
loss of circulation fluid, as mentioned previously, could lead to pipe sticking.

Several measures are available to avoid these scenarios. Casings can be ce-
mented throughout the wellbore to isolate various zones which may have dif-
ferent pore and fracture pressures. However, the lower part of the wellbore
is open to the surrounding formation, and in these areas, annular pressure
must be accurately controlled. One way is by changing the density of the
drilling fluid, which is a slow process, and not well suited to handle sudden
events. Managed pressure drilling (MPD) is more suitable in this respect,
and is a technology commonly employed for more accurate pressure control,
which is important especially in areas with tight pressure margins. Differ-
ent versions of MPD exist, although a common configuration is to close off
the annulus topside, and restricting the returning drilling fluid through a
topside choke valve, which controls the annular pressure. Also, a backpres-
sure pump is used to ensure flow through the choke valve, and maintain
pressure in the event of loss of fluids. The schematics for this configuration
is illustrated in Figure 2.2.

Traditionally, managed pressure systems were operated manually by the
crew, until this process became automated. Currently, PID control is widely
accepted as the standard common practice for bottomhole pressure control,
although research has been conducted on alternatives, such as nonlinear
model predictive control (NMPC) [48]. Efforts have also been made to de-

1National Geographic article available online at https://www.nationalgeograph
ic.com/science/article/bp-oil-spill-still-dont-know-effects-decade
-later (accessed July 15, 2021)
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Figure 2.2: Schematics of a managed pressure system using a topside choke valve
and backpressure pump.

velop hydraulics models to estimate the bottomhole pressure, on which the
choke pressure controller relies. Both advanced [49] and simplified [50] mod-
els have been developed from these endeavours.

In this thesis, the utilization of deep Q learning is explored for bottomhole
pressure control during pipe connection. Deep Q learning is a model-free,
off-policy temporal difference learning algorithm in which an agent through
interaction with an environment learns an optimal behavioral policy in or-
der to maximize reward. At time step t, the agent starts from state st,
interacts with the environment by performing an action at, receives a scalar
reward rt, and observes the subsequent state st+1. The reward is an essen-
tial parameter in reinforcement learning, as it is the metric the agent uses
to evaluate its performance. This is provided by a reward function, which is
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designed by the developer. Reward function design is a determining factor
for the behavior of the agent, and rewards can be both positive to reinforce
wanted behavior, or negative (penalty) to discourage unwanted behavior. In
a process control setting, the reward function typically penalizes deviation
from setpoint. To avoid excessive actuation, a penalty on controller output
can also be added. This kind of formulation is common within the field of
optimal control, and is standard for controllers such as the linear quadratic
regulator (LQR) and MPC.

In reinforcement learning it is assumed that the environment is a Markov
Decision Process (MDP), meaning that the process is defined by its state-
action pair, and the one-step dynamics of the environment [51]. In this
context, model-free refers to the fact that the agent does not rely on any
prior knowledge of how the environment will change in response to an action.
In other words, the agent starts with a clean slate, or tabula rasa. The goal
is to estimate the optimal action value function Q∗(s, a), which represents
the expected return of starting in state s, taking action a, and then following
an optimal behavior policy. The optimal action value function is defined as

Q∗(s, a) = maxπ E[rt + γrt+1 + γ2rt+2 + ...|st = s, at = a, π], (2.29)

which is the maximum expected discounted cumulative reward. Here, γ is
the discount factor which determines the present value of future rewards.
This parameter can be tuned in order to change the ”patience” of the agent,
i.e. whether to prefer short-term or long-term reward. The optimal action
value function obeys the Bellman equation, which allows a re-phrasing of
Equation (2.29). Bellman’s principle of optimality states that ”an optimal
policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision” [52]. Here, the intuition is to
consider the first decision first, and set aside all future decisions, so that

Q∗(s, a) = Es′ [r + γmax
a′

Q∗(s′, a′)|s, a], (2.30)

where it can be seen that the optimal action value is the sum of the reward
obtained in the current step, r, and the discounted sum of all future rewards.
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To find the optimal policy π∗, the action maximizing the Q function can be
selected at every time step. This can be expressed as

π∗(s) = argmax
a

Q∗(s, a). (2.31)

This policy is greedy, as it always exploits current knowledge to maximize
reward. During training of the agent, such a policy is often undesirable, as
it never explores alternative actions. As the goal of the agent is to maximize
cumulative reward, exploration of alternatives is of importance, since they
may in fact lead to higher reward in the long run. The typical way to bal-
ance exploration and exploitation is to employ an ε−greedy policy, which
behaves greedily most of the time, but with a small probability ε selects an
action at uniform random. This exploration rate can either be constant or
exponentially decaying.

In deep Q learning, the Q function is approximated by a DNN, often re-
ferred to as the Q network, which is parameterized by weights Ψ, denoted
Q(s, a; Ψ), and the goal is to converge to the optimal action value func-
tion through iterative updates, so that Q(s, a; Ψ) ≈ Q∗(s, a). The optimal
target values r + γmaxa′ Q

∗(s′, a′) are approximated by a target network,
r+γmaxa′ Q

∗(s′, a′; Ψtarg). The use of a separate target network is a meas-
ure to avoid unstable optimization due to correlations between action values
Q and target values r+γmaxa′ Q(s′, a′). The iterative update of the Q func-
tion when using these two networks becomes

Q(s, a; Ψ) ← Q(s, a; Ψ) + α

Temporal difference︷ ︸︸ ︷
[r + γmax

a′
Q(s′, a′; Ψtarg)︸ ︷︷ ︸
Target

− Q(s, a; Ψ)]︸ ︷︷ ︸
Current estimate

,

(2.32)
where α is the learning rate. From Equation (2.32), it can be seen that the Q
function is updated by use of the estimated Q value for the next state s′ and
the greedy action a′, rather than an estimate following the behavior policy.
This is what makes Q learning an off-policy method. To avoid instability due
to correlations in sequences of observations, an experience replay is used.
The experience replay is typically a fixed-size window, where the agent’s
experiences at each time step, et = [st, at, rt, st+1], are stored. Mini-batches
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are sampled for training either at a uniform random distribution, or by
prioritization [46]. One last measure is taken to avoid instability. To avoid
”chasing moving targets”, a slow-updating mechanism for the parameters
of the target network, Ψtarg is implemented. In the original DQN algorithm
[9], these parameters are updated every C iterations to be equal to those
of the Q network, Ψ, and are held constant in between. However, gradual
updates, such as

Ψtarg ← φΨ+ (1− φ)Ψtarg, (2.33)

have been utilized [10] as well. In this update rule, φ is a very small number
between 0 and 1.

2.3 Overview

In the previous sections, two focus areas within the drilling process have
been presented, along with machine learning methodology to automate
them. At-bit LWD estimation and lithology classification are helpful to the
driller to allow more informed decision making at an earlier stage, which
is a central focus of this thesis. While this is a pure data analysis task,
such systems can be further built upon to facilitate higher autonomy modes
in the future. Examples of added features could be alarms for changing
downhole conditions, suggestions for suitable actions and adjustments to
drilling parameters, or even fully autonomous setpoint changes. Through
incremental increases in autonomy level along with field trials at each stage,
confidence in such a system can be built over time. Bottomhole pressure
control can be achieved by a reinforcement learning agent, which, if trained
on enough scenarios, could be applicable to a wider range of cases, such as
varying well depths, drilling fluids, flow rates and friction effects (such as
during pipe connection), thus requiring less tuning. Schematics of a pos-
sible future drilling rig including these autonomous subsystems are given in
Figure 2.3.



22 Background

Figure 2.3: Schematics of possible future autonomous subsystems on a drilling
rig enabled by machine learning.
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Abstract

We present a novel streaming learning approach, utilizing a deep neural
network (DNN) to learn from data available during operation to estimate
at-bit density using drilling parameters. Since every wellbore is different,
the relationship between drilling parameters and at-bit density varies.
Equipment used, well trajectory, friction and bit wear are examples of
conditions that affect this relationship and makes a pre-trained model
unable to represent an accurate input/output mapping applicable to all
wells. However, using delayed density log measurements, continuously
supervising updates to the model is possible during operation. The
algorithm has been tested on drilling data from wells on a field operated
by Equinor and compared to a standard deep learning approach, where
results show that a streaming learning approach outperforms the
traditional method. Statistical analyses have been performed to verify the
statistical significance and effect size on the data sets. Data visualizations
using a t-distributed Stochastic Neighbor Embedding (t-SNE) indicate
that the relationship between drilling parameters and density log indeed
vary between wellbores, making generalizability an issue for a traditional
supervised learning approach to this problem, and motivating a streaming
learning approach. Using the proposed method, more accurate at-bit
estimates can be made, providing preliminary indications ahead of the tool
placed 20-30 m behind the bit, which, dependent on rate of penetration
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(ROP), will be available 20 - 120 minutes later.

3.1 Introduction

The drilling operation is complex. It is also subject to significant
uncertainty, which needs to be managed in order to ensure a safe and
efficient drilling operation. One such source of uncertainty is at-bit
lithology, which is a central part of the environment the drilling system is
in interaction with. Lithology evaluation is relevant for best-practice
selection of suitable drilling parameters, evaluation of reservoir structure
and evaluation of well placement, to mention a few. Logging while drilling
(LWD) tools [22] are typically used by experts to classify lithology.
However, they are placed some distance behind the bit, making at-bit
lithology evaluation directly from LWD tools impossible. The density log
is an LWD tool that can be used to separate harder lithologies such as
stringers from softer lithologies. Although not a conclusive lithology
indicator on its own, it provides valuable information on downhole
conditions, and in combination with other LWD logs an accurate
understanding of downhole lithology can be achieved. This tool is
typically mounted 20-30 m behind the bit. Due to the placement of these
tools, drilling parameters are the earliest indicators for changes in at-bit
lithology, although they are difficult for humans to interpret manually.
Deep learning specializes in finding patterns in data, and can be used to
find a mapping from drilling parameters to density log, although every
wellbore is different with case-specific conditions such as equipment used,
well trajectory, friction and bit wear. Bit wear, for example, is very
difficult to estimate due to vast uncertainty. During drilling, as the bit is
gradually worn, the bit-rock interaction will change [53]. A static model
might misinterpret the dulled bit as a harder lithology, and thus
overestimate bulk density.

LWD tools and deep neural networks (DNNs) have been combined before
in [23], where a DNN takes as input a set of LWD logs and outputs an
estimate for another logging tool. They present the results for three
different input/output combinations, in which the estimated logs are:
resistivity, density and neutron. As LWD tools are expensive, companies
do not always use all of them, resulting in a less complete image of
lithology properties, and [23] was motivated by reducing these costs, and
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to estimate logs when missing. In [24] a long short-term memory (LSTM)
model is used for virtual log generation. They present an experiment
where the neutron porosity, delta-time shear, and array induction two-foot
resistivity are estimated based on gamma ray and delta-time
compressional. Results include comparisons between the LSTM and DNN,
where they found the LSTM to be superior for their study. Another study
[32] simulates missing data in a wellbore, and presents results for several
machine learning algorithms attempting to estimate gamma ray log from
drilling parameters. In [25], a conditional variational autoencoder (CVAE)
is used to estimate shear-slowness (DTS) from other logs such as gamma
ray, neutron porosity, bulk density and compressional-slowness (DTC).
Their results are compared to that of an LSTM and a bi-directional
LSTM. [33] presents experiments using both a DNN and an adaptive
network-based fuzzy inference system (ANFIS) for estimation of density
log using drilling parameters as input. The models in this study are
trained and tested on 2400 observations from the same well, where missing
data is simulated for a section of the well, on which the trained models
perform with high accuracy. If a well has available log data for only
certain sections, these standard deep learning methods could be applied to
fill in sections of missing log data. A novel Bayesian neural network
approach, using neutron porosity, gamma ray, deep resistivity,
photoelectric factor and density logs to estimate sonic log, is presented in
[26]. Their results are comparable to that of traditional neural networks,
and in addition offers quantification of uncertainty in the predictions.
Lithology classification based on LWD logs using data-driven methods has
been presented in several previous publications. Examples of methods
include scalable gradient boosted decision trees [27], support vector
machines (SVMs) [28] and bidirectional gated recurrent units (GRUs) [29],
[30]. Evaluation studies [54] have also been presented. Other downhole
characteristics have also been addressed using machine learning. In [55], a
streaming learning system for inclination prediction in directional drilling
using a GRU is presented. This work is motivated by avoiding delayed
corrective actions, thus improving well placement. It is also argued that
standard machine learning approaches without online retraining fail to
generalize well to different wellbores. In [56], a Bayesian approach is
applied to fault detection using a convolutional neural network (CNN),
allowing risk evaluation through uncertainty quantification.
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The contribution of this work is two-fold. First, we present a novel
streaming learning approach, using a DNN to solve the problem of
estimating at-bit density log from drilling parameters. A pre-trained
model continuously learns from the data stream available during
operation, allowing the model to adapt to case specific conditions. The
method is applied to data from several wellbores on a field operated by
Equinor to demonstrate performance, and compared to the performance of
a baseline model, which represents the traditional approach to log
estimation. Next, an unsupervised learning data analysis is performed,
which visualizes how data from different wellbores are structured
differently. This analysis indicates the weakness in using a pre-trained and
static model to estimate at-bit density using drilling parameters,
motivating the streaming learning approach.

The paper is structured as follows: Section 3.2 presents the data used,
along with the different methods and algorithms used in this study,
including our own n-bin experience replay buffer. Section 3.3 presents
results for data visualizations and at-bit density estimates versus
measurements. Lastly, section 3.4 offers conclusions and suggestions for
further work.

3.2 Data and methodology

3.2.1 Data

Data from the reservoir sections of 9 different wells on a homogeneous field
operated by Equinor were gathered for this work, for a total of 1.75 million
observations. The training set contained 5 wells, for a total of
approximately 740 000 observations, and the validation set consisted of 1
well with approximately 365 000 observations. The test set contained 3
wells, with a total of 645 000 observations. Data cleaning was performed
by visual inspection. Obviously erroneous measurements were removed by
logic specifying reasonable values. Next, data was centered and scaled to
have zero mean and unit variance before training commenced.

3.2.2 Measurements description

The drilling system is composed of several subsystems, where data
acquisition is different for different subsystems. For the purpose of this
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work, we divide measurements into two groups: surface measurements and
downhole measurements. Surface measurements are taken on the rig, and
examples are drilling parameters like hook load (HKLD), surface torque
(T), surface drillstring rotation (RPM), flow (Q) and hook height. Weight
on bit (WOB) is closely related to, and derived from HKLD, while bit
depth, hole depth and rate of penetration (ROP) are derived from hook
height. In this work, downhole measurements refers to the density log.
The density logging tool measures density of lithology perpendicular to
the drill string by emitting gamma rays and detecting backscatter, giving
a measure of average electron density in the lithology, which is strongly
correlated with bulk density. In other words, it gives an indirect
measurement of the bulk density. These measurements are communicated
to the rig by mudpulse telemetry.

It is established [20] that lithologies with different properties yield different
bit-rock interactions, meaning that ROP is dependent on rock properties
and input actuation like WOB, T and RPM. This means that information
regarding at-bit conditions like density should be latently available in
real-time through these surface measurements. The density logging tool on
the other hand is installed in the bottomhole assembly (BHA), 20 - 30 m
behind the bit. Dependent on ROP, this amounts to significant time delays
on logs in ranges of typically 20 - 120 minutes. To eliminate this delay, we
propose to estimate the at-bit density from surface measurements.

3.2.3 Depth correction & resampling

Surface measurements are sampled with a sampling period of typically 2-3
s, while the density log is sampled at a lower rate, typically every 10-15 s.
Also, surface measurements and downhole measurements recorded at a
given time provide information at different depths. For these reasons, a
method to correct for depth and differing sampling rates was required.
This was done using a holding buffer that stored incomplete observations.
As Figure 3.1 illustrates, an observation can be completed once the
distance between bit and tool has been drilled, and the label corresponding
to some set of surface measurements is obtained. We start by denoting the
sampling periods for surface measurements x, and the density log y, as Ts

and Td, respectively. The i-th surface measurements are taken at time iTs,
so that xi = x(iTs). Similarly, the i-th density log measurement is taken at
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time iTd, so that yi = y(iTs). xi provides information at the bit, at depth
ds,i = ds(iTs), while yi, measured at a known distance behind the bit,
dtool, provides information at depth dd,i = ds(iTd)− dtool. Once we obtain
the first density log measurement yk, where dd,k > ds,j for any indices j in
the holding buffer, we can pair observations so that each xj in the holding
buffer is paired with the previous density log measurement, yk−1, where
dd,k−1 ≤ ds,j . In addition to correcting for depth, this procedure is
equivalent to resampling the y’s using the forward fill method.

Figure 3.1: Schematics illustrating the drilling operation and the availability of
measurements.

3.2.4 Variable selection

The variables used as input to the DNN were selected based on domain
knowledge and availability. To eliminate the density log delay, we limit
ourselves to measurements providing at-bit information, which eliminates
other LWD tools. In addition to using drilling parameters, we can perform
some feature engineering. Mechanical specific energy (MSE) quantifies the
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amount of energy required to remove a unit volume of rock. It is a
function of ROP, WOB, T and RPM, and known to be different for
different lithologies [31]. MSE is given by:

MSE =
WOB

Ab
+

120π · RPM · T
Ab · ROP

, (3.1)

where units are WOB (lb), T (lb-ft), ROP (ft/hr), and Ab is bit area (in2).
Another parameter of interest is the hydro-mechanical specific energy
(HMSE), which also accounts for the weakening of the rock ahead of the
bit due to flow. HMSE is given by:

HMSE =
WOB

Ab
+

120π · RPM · T
Ab · ROP

+
1154η ·ΔPb ·Q

Ab · ROP
, (3.2)

where η is the hydraulic energy reduction factor, ΔPb is the bit pressure
drop at the nozzle (psi), and Q is the flow rate (gpm). Some parameters
related to the bit and mud were not available to compute the hydraulic
contribution of HMSE [32]. Default parameter values were set for these, as
described in Table 3.1.

Table 3.1: Default values set for unknown parameters.

Parameter Default value

Bit type Polycrystalline Diamond Compact (PDC)
Junk slot area 14 (in2)
Flow area 0.12 (in2)
Mud weight 20 (ppg)

From the default parameters, we can compute HMSE, and further define
the input vector of predictors for the DNN, x, as:

x = [ROP, RPM, WOB, T, MSE, HMSE]�. (3.3)

The output of the DNN, ŷ, is simply at-bit density. As a sanity check, we
wish to investigate the correlations between the density log and the inputs
to the model, which are illustrated in Figure 3.2. The correlations are
presented separately for each wellbore, and it can be seen that the strength
of the linear relationships varies between wellbores. Correlations between
density and ROP are the most consistent. MSE and HMSE are also quite
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strongly correlated with density for most wellbores, although the strength
varies more. Especially for training wells 3 and 5, these relationships are
weaker. RPM, WOB and T correlations vary more, although for some
wells, these can be seen to be strongly correlated with density. Several of
the drilling parameters are controlled by the driller. Autodrillers can be
set to maintain constant WOB or ROP. When the driller suspects that a
stringer is being drilled, the WOB is routinely increased while RPM is
reduced. This will typically lead to a reduction in T as well. For training
wells 2 - 5, the correlations for RPM, WOB and T in Figure 3.2 support
this. For training well 1, however, the signs of the correlations for these
parameters are inverted. For the validation well, the sign of the correlation
for T is inverted. Since these parameters are controlled by the driller,
correlations with density will be highly affected by the driller’s choices. As
an example, if the drilling strategy is to increase both WOB and RPM for
stringers, the resulting ROP might increase as well. Isolated, increased
ROP for stringers might seem counterintuitive, but would be explained by
the overall drilling strategy and the actions performed by the driller. MSE
and HMSE on the other hand, eliminate the driller’s actions, and define
the input energy required to drill through the rock. The correlations
between density and these parameters are consistently positive, indicating
that more energy is required to drill denser lithology.
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Densit
y -0.3 0.038 -0.21 0.077 0.56 0.55

Training Well 1

Densit
y -0.44 -0.46 0.1 -0.096 0.42 0.4

Training Well 2

Densit
y -0.44 -0.61 0.27 -0.46 0.12 0.2

Training Well 3

Densit
y -0.63 -0.3 0.35 -0.0063 0.53 0.53

Training Well 4

Densit
y -0.4 -0.2 0.14 -0.26 0.28 0.19

Training Well 5
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Figure 3.2: Correlations between density log and drilling parameters for training
wells and validation well.

3.2.5 Deep neural networks

The specifics of the DNN used in this work are outlined in this section.
First, we provide notation for the DNN:
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L : number of layers in the DNN

m : number of observations

f : number of features

x : drilling parameters / features

y : density log / target variable

sl : number of neurons in layer l ∈ 1, ...L

(xi, yi) : i-th training example, i ∈ 1, ...m

w[l] : trainable weight matrix for layer l

b[l] : trainable bias vector for layer l

and

x =

⎡⎢⎢⎣
...

...
...

x1 x2 . . . xm
...

...
...

⎤⎥⎥⎦ ∈ R
f x m, (3.4)

y =
[
y1 y2 . . . ym

] ∈ R
1 x m, (3.5)

w[l] =

⎡⎢⎢⎢⎢⎣
. . . w

[l]�
1 . . .

. . . w
[l]�
2 . . .
...

. . . w
[l]�
sl−1 . . .

⎤⎥⎥⎥⎥⎦ ∈ R
sl−1 x sl , (3.6)

b[l] =

⎡⎢⎢⎢⎢⎣
b
[l]
1

b
[l]
2
...

b
[l]
sl

⎤⎥⎥⎥⎥⎦ ∈ R
sl x 1. (3.7)

For a given layer l, z[l] denotes the linear combination of activations from
the previous layer, a[l−1], determined by the trainable weights w[l] and
biases b[l]:
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z[l] = w[l]�a[l−1] + b[l]1, (3.8)

where 1 is a row vector of ones. Equation (3.8) describes the linear
component of the forward propagation. Next, z[l] is passed through the
layer activation function g[l], which is the nonlinear component of the
forward propagation:

a[l] = g[l](z[l]). (3.9)

The leaky ReLU activation function is utilized for every hidden layer, so
that

a[l] = max{γz[l], z[l]}, l = 1, ..., L− 1. (3.10)

γ is the slope in the left half plane. Note that a[0] = x. Finally, the DNN
outputs the estimated density at-bit, which is a quantitative output,
resulting in a regression layer:

ŷ = a[L] = z[L]. (3.11)

Equations (3.8) - (3.11) describe the forward propagation of the DNN. The
model can be visualized by a layered model with connected nodes, as
shown in Figure 3.3. The weight initialization is He normal [36], which
mitigates exploding and vanishing gradients by managing the variance of
the activations throughout the layers of the network. This is done by
pulling the weights in each layer from a truncated normal distribution

with mean μ = 0 and standard deviation σ =
√

1
s[l−1]

. The weight

initialization for layer l is then given by:

w[l] ∈ R
sl−1 x sl ∼ N

([
0, (s[l−1])

−1
])
. (3.12)

The biases, b[l], are initialized as zeros. The optimizer used was Adam
optimization [38], which adaptively estimates appropriate momentum for
the gradient updates. The Adam optimization algorithm is given by
Algorithm 1.
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Algorithm 1 Adam Optimization

1: Vdw = 0, Sdw = 0, Vdb = 0, Sdb = 0,
2: for each sampled mini-batch do
3: Forward prop on x:

4: z[1] = w[1]�x+ b[1]1
5: a[1] = g[1](z[1])
6: z[2] = w[2]�a[1] + b[2]1
7: a[2] = g[2](z[2])

8:
...

9: a[L] = z[L]

10: ŷ = a[L]

11: Compute cost J
12: Backpropagate using the chain rule to compute gradients dw and
13: db
14: Vdw = β1Vdw + (1− β1)dw
15: Vdb = β1Vdb + (1− β1)db
16: Sdw = β2Sdw + (1− β2)dw

2

17: Sdb = β2Sdb + (1− β2)db
2

18: V c
dw =

V c
dw

1−βr
1

19: V c
db =

V c
db

1−βr
1

20: Sc
dw =

Sc
dw

1−βr
2

21: Sc
db =

Sc
db

1−βr
2

22: w = w − α
V c
dw√

Sc
dw+ε

23: b = b− α
V c
db√

Sc
db+ε

24: end for

β1, β2 and ε are tunable hyperparameters for Adam optimization, and r is
the current iteration number. Vdw and Vdb are biased first moment
estimates. Sdw and Sdb are biased second raw moment estimates.
Superscript c denotes their bias-corrected counterparts. dw and db are
∂J
∂w and ∂J

∂b , respectively. α is the learning rate. Cost J is defined as

J =
1

2mb

∣∣∣ŷ − y
∣∣∣2, (3.13)

where mb denotes the number of observations in a mini-batch.
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Figure 3.3: Deep neural network. Input: x. Output: ŷ.

3.2.6 n-bin prioritized experience replay

In conventional supervised learning, a model is typically trained on a fixed
dataset for multiple passes, aiming to converge towards a well-performing
model for unseen data assumed to come from the same distribution.
However, this simple assumption breaks down in many cases due to a
variety of factors, such as shift in the independent or dependent variables,
or due to an evolving underlying process. This phenomenon is commonly
known as nonstationarity or concept drift, and is harmful to the predictive
power of such models [39], [40]. The aim of streaming learning is to
continuously update the model to correct for these effects. However, a
common problem in streaming learning is catastrophic forgetting [41],
where old representations are forgotten due to adaptation to the
non-stationary environment. In our attempt to adapt to drifting concepts
while mitigating catastrophic forgetting, an n-bin prioritized experience
replay D ∈ R

n x N buffer was developed. The prediction space
y ∈ [ymin, ymax] is divided into n bins, and each bin in the buffer contains
N observations. This configuration ensures that the replay buffer always
contains observations covering the span of the prediction space, and thus
that the model is better equipped to give accurate estimates overall, and
not be biased by the distribution of the latest available observations. A
similar configuration has been used for multi-class classification, with one
buffer for each class [47]. When learning from a data stream, an
observation (xi, yi) is allocated to a bin in the experience replay buffer
based on the value of yi, and consequently, the oldest observation of that
bin is discarded. The mini-batch used for backpropagation is sampled
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from the experience replay by prioritization using the softmax function.
At every update of the model, the observations are given a probability of
being sampled for the next update by:

pi =
e(yi−ŷi)

2∑C
c=1 e

(yc−ŷc)2
, (3.14)

where C = nN is the total number of observations in the buffer. It can be
seen that a higher model error on an observation results in a higher
probability of being sampled for the next training step. This method is
well known in the reinforcement learning field, and has shown to be an
improvement over sampling observations from a uniform distribution [46],
due to added focus on areas where the model performs poorly. The n-bin
prioritized experience replay algorithm is given formally as:

Algorithm 2 n-Bin Prioritized Experience Replay

1: Load n-bin replay buffer D filled with historical data
2: while learning do
3: if new observations (x, y) available then
4: Enqueue observations (x, y) in appropriate bin in D
5: Dequeue appropriate bin
6: Calculate pi, i = 1, ..., C
7: Randomly sample K observations by probabilities pi from D
8: Backpropagate on sampled observations
9: end if

10: end while

Retention of observations from the entire range of the prediction space in
this fashion allows smaller replay buffers. Rather than retaining all
previous observations for further training, a small subset is kept, making
this method memory efficient. In addition, dividing the prediction space
into bins ensures that historical observations in one bin are available as
long as no new observations stream into that bin. Thus, the algorithm can
take into account older representations while making updates during
operation.
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3.2.7 Streaming learning system

The streaming learning system is based on a pre-trained and validated
model, which is loaded as the baseline model, on which to iteratively
perform updates during operation. As surface measurements become
available during operation, they are first fed to the DNN to estimate at-bit
density. Subsequently, they are stored in the holding buffer until its
corresponding label, the density log measurement, is available. At this
point, the completed observation is moved from the holding buffer to the
experience replay buffer, and then used for further training. Note that the
learning phase begins at time τ when dd,τ ≥ ds,0, meaning that we are not
interested in the density log measurements above the first available drilling
parameter measurements. Algorithm 3 summarizes the method.

Algorithm 3 System Overview

1: Pre-train and validate model on historical data
2: Load model as baseline model
3: Load experience replay buffer filled with historical data
4: while learning do
5: Receive xi, estimate ŷi
6: Store xi along with ds,i in holding buffer
7: if yk available then
8: for all observations in holding buffer do
9: Find indices j for all observations satisfying dd,k > ds,j

10: Pair xj with yk−1, ∀j
11: end for
12: Remove these observations from holding buffer, and update ex-

perience replay buffer
13: Backpropagate on observations sampled from experience replay

buffer
14: end if
15: end while
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3.3 Results

3.3.1 Pre-training and validation

Pre-training and validation of the baseline model was an iterative
approach. Hyperparameters such as DNN architecture (neurons and
layers), learning rate, mini-batch size and number of epochs were tuned in
an informal search based on validation set performance. Upon arrival on a
satisfactory model, the streaming learning hyperparameters were tuned on
the same data set. Table 3.2 shows the hyperparameter settings. The
resulting baseline model from pre-training and validation had 3 hidden
layers, each with 12 neurons. Streaming learning hyperparameters refers
to the settings for streaming learning during operation. It can be seen that
here, the learning rate and mini-batches sampled from the experience
replay are smaller than during pre-training. Experience replay bin limits
refers to the limits on the density log used in Algorithm 2 to select the
appropriate bin. Density log for the data used in this study was in the
range 2.0 - 2.7 (g/cm3), so that observations below the first bin limit
would belong to the low bin, observations between the two limits belonged
to the mid bin, and lastly, observations above the second bin limit
belonged to the high bin. The hyperparameter values presented in Table
3.2 should make decent initial values for similar problems. However, note
that the experience replay bin limits in particular will be very
case-dependent. The bin limits ensure retention of observations in
different parts of the prediction space, making an understanding of the
dependent variable key. We suggest consideration of important areas in
the prediction space when tuning these parameters. If several areas are
important, the number of bins could also be increased.
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Table 3.2: Summary of hyperparameters for the density log model.

Pre-Training Hyperparameter Value

Learning rate 7.5 · 10−5

Hidden layers 3
Neurons in hidden layers 12
Mini-batch size 128
Epochs 25
Optimizer Adam

Streaming Learning Hyperparameter Value

Learning rate 7.5 · 10−6

Experience replay bins 3
Experience replay bin sizes 256
Experience replay bin limits [2.115, 2.535]
Mini-batch size 16
Epochs 1
Optimizer Adam

3.3.2 Streaming learning results

This subsection is dedicated to the presentation and evaluation of the
performance of the streaming learning approach compared to the baseline
model. We provide results for the validation well, along with the 3 test
wells. Along with each plot, the mean absolute error (MAE) is presented.
MAE is given by:

MAE =
1

m

m∑
i=1

|yi − ŷi|. (3.15)

Although the raw data used for the algorithm was time data, the results
are converted into depth data with equidistant points at a resolution of 1
m by downsampling. At every integer depth, data points within 0.5 m are
averaged. Figure 3.4 shows the comparison between the baseline and
streaming learning approach on the validation well. For the baseline
model, one can see that the model suffers from bias on low-density
observations throughout the wellbore, and that the model gradually
overestimates density from 6000 m and towards the end. An inspection of
the raw data revealed that for this wellbore, the torque gradually
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increased which indicates concept drift. The streaming learning approach
can be seen to mitigate both the bias and the drift, resulting in an MAE
decrease from 0.1087 g/cm3 to 0.0615 g/cm3. This is a relative decrease of
approximately 43%.

Figure 3.4: Measured and estimates on the validation set. Top: Baseline model
performance. Middle: Streaming learning performance. Bottom: Absolute er-
rors (AE).

Figures 3.5 and 3.6 show the same comparisons for test wells 1 and 2. On
these wellbores, the baseline model performs quite well. Still, on test set 1
at approximately 5000 - 5500 m depth, the baseline model is visibly off
measurements. On test set 2, the baseline model overestimates low density
observations. For test wells 1 and 2, the streaming learning approach
reduces these errors, resulting in 21% and 7% decreases in MAE,
respectively. For test well 2, the resulting improvement from the streaming
learning algorithm is incremental, and the added complexity of method
implementation compared to the baseline model counterpart may not be
worthwhile. For wellbores with similar input/output relationships to those
of the training wells, the baseline model will perform well without the need
for continuous updates. However, in many cases it is not known in
advance whether or not this will be the case. Such considerations should
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be a part of the validation process. If it is found that a static model
performs well during validation, a traditional supervised learning approach
might be sufficient. If, however, heterogeneity between wellbores is found
during this process, a streaming learning approach might be warranted to
correct for drifts and shifts in concepts.

Figure 3.5: Measured and estimates on test set 1. Top: Baseline model perform-
ance. Middle: Streaming learning performance. Bottom: Absolute errors (AE).

Lastly, Figure 3.7 shows the results for test well 3. It can be seen that the
baseline model is very flat, and unable to capture any trends in the at-bit
density. This indicates that the mapping from drilling parameters to at-bit
density is significantly different from that of the wellbores in the training
set. We can call this a shift in concepts. Although the streaming learning
approach is not as good as for the previous wells, it is to a much larger
degree able to capture the trends by adapting to the concept shift,
resulting in an MAE decrease of 36%. Even though the maximum
recorded density for these wellbores is 2.7 g/cm3, it can be seen that the
online models estimates densities above this value at depths 5030 m and
5110 m. At depth 5030 m, an unusually low value for RPM was measured,
along with a high WOB. At 5110 m, an unusually high MSE was recorded,
indicating an unusual combination of drilling parameters. As neural
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Figure 3.6: Measured and estimates on test set 2. Top: Baseline model perform-
ance. Middle: Streaming learning performance. Bottom: Absolute errors (AE).

networks do not extrapolate well, these events result in erroneously high
density estimates. The flattening effect apparent for this wellbore can also
to some extent be observed in the other wellbores. In the other wellbores
this takes the form of a cut-off effect, so that low-density observations are
not estimated well by the baseline model. This is likely due to
heterogeneity between the training wellbores. Since the input/output
relationships in the wells differ, the baseline model is trained to fit an
”average” of these, resulting in a compressive effect on the predictions.

The rate of adaption to newly available data can be seen to differ for the
different data sets. For the validation, test 1 and test 2 sets, we can see
that the baseline model overestimates the low-density observations in the
beginning of the drilling operation. For the streaming learning approach,
we can see that this is quickly mitigated by the online retraining. Also for
test set 3, the performance is improved, although the corrections are not
as fast. From the poor baseline model performance, we could argue that
this wellbore is the most different from the training sets, and that the
speed of the online retraining is dependent on how much the model must
be corrected to fit well to the newly available data. The learning rate of
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Figure 3.7: Measured and estimates on test set 3. Top: Baseline model perform-
ance. Middle: Streaming learning performance. Bottom: Absolute errors (AE).

the system determines the size of the gradient descent updates, however,
setting this hyperparameter too high can lead to unstable optimization.
Thus, the online retraining rate must be a trade-off between speed and
stability.

From the absolute errors on the depth converted datasets, we can
investigate the statistical significance of the difference in performance
between the two approaches, along with effect size and statistical power.
We can perform paired, two-tailed t-tests for each wellbore to determine
statistical significance. The null hypothesis is H0 : μ1 = μ2, where μ1 is
the population mean absolute error for the baseline model, and μ2 is the
population mean absolute error for the streaming learning approach. We
also determine Cohen’s d, which is a measure of standardized effect size.
The proposed interpretation of d is along a continuum, with conventional
small, medium and large effect sizes at approximately 0.2, 0.5 and 0.8,
respectively. Combined with a statistical significance level α0 = 0.05,
which is the accepted probability that we are failing to reject a false null
hypothesis (type I error), we can find the statistical power, 1− β, where β
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quantifies the probability of rejecting the null hypothesis given that it is
actually correct (type II error) [57]. In Table 3.3 we present m, the
number of observations in each depth converted dataset, MAEb, the mean
absolute error using the baseline model, MAEs the mean absolute error
using the streaming learning approach, ΔMAE = MAEb −MAEs, Cohen’s
d, p-values and statistical power, 1− β. We can see from the p-values that
the difference in performance are statistically significant for all wellbores.
Thus, we reject H0. From Cohen’s d, we see that the effect size on the
validation and test 3 wellbores are medium to large. The effect size for the
test 1 wellbore is medium, and small for the test 2 wellbore. For all
wellbores, the probability of committing a type II error, is ≈ 0.

Table 3.3: Results of power analysis.

Data m MAEb MAEs ΔMAE d p 1− β
set [g/cm3] [g/cm3] [g/cm3]
Val 5556 0.1087 0.0615 0.0472 0.61 1.2 · 10−206 ≈ 1
Test 1 4296 0.0840 0.0666 0.0174 0.42 9.1 · 10−82 ≈ 1
Test 2 3780 0.0762 0.0712 0.005 0.14 9.3 · 10−10 ≈ 1
Test 3 2698 0.1223 0.0780 0.0443 0.58 3.4 · 10−92 ≈ 1

3.3.3 Data visualization with t-SNE

Data visualizations with t-SNE in two dimensions are provided to
complement the results in Figures 3.4 - 3.7 (see Appendix A for a brief
summary of the t-SNE method). From these plots, we have observed
several different scenarios: drift, minor offsets and significant concept shift.
We wish to visualize the data to better understand these effects. In the
t-SNE analyses, a set of data points in 7 dimensions, taken as:

θi = [ROPi,RPMi,WOBi,Ti,MSEi,HMSEi,Density logi], (3.16)

is reduced to the set of data points [φ1, φ2] in two dimensions. Using this
setup, we can identify the structures of the data in the wellbores, for
example if similar drilling parameters result in similar or different density
log measurements for different wellbores. Figure 3.8 illustrates the
two-dimensional mapping for 3 random subsets from the same training
well, each containing one third of the observations. As expected, these
subsets occupy similar spaces in the plot. This indicates that a model
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trained on one of these subsets could perform well on the other two.
Figure 3.9 illustrates the same analysis on training well 1, and test sets 1
and 2. The baseline model was found to perform quite well for these test
sets, and from this t-SNE analysis, we can see that the observations from
these wellbores indeed overlap reasonably well with the training well in the
two-dimensional mapping. Lastly, we inspect Figure 3.10, which shows the
two-dimensional mapping for training well 1, along with the validation
well and test well 3. The validation well and test well 3 exhibited concept
drift and shift respectively, and the baseline model performed poorly on
them. From the plot, we can observe natural clustering within each
wellbore, which might be attributed to the fact that low-density and
high-density observations should be different. However, it can be seen that
several clusters from the validation well and test well are isolated from
each other and from the training well. As they form separate clusters, this
indicates that all 3 wellbores belong to their own natural grouping.
Because of this, any baseline model regardless of model type and
architecture, cannot be trained on this training well and be expected to
generalize well to the others. In other words, streaming learning is
essential for obtaining acceptable performance in this case.

Figure 3.8: t-SNE plot for 3 random subsets from training set 1.
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Figure 3.9: t-SNE plot for 3 random subsets from training set 1, test set 1 and
test set 2.

Figure 3.10: t-SNE plot for 3 random subsets from training set 1, validation set
and test set 3.
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3.4 Conclusions & further work

Since the density log is typically mounted 20-30 m behind the bit, the
driller is rendered blind to at-bit conditions. In the current work, a DNN
is used to estimate at-bit density from drilling parameters to eliminate this
delay. The DNN is pre-trained on historical data from wells on a field
operated by Equinor, serving as a baseline model. Using delayed density
log measurements, the model is continuously updated during operation.
This streaming learning approach allows adjustments to changing
conditions that are not explicitly included in the model as variables.
Comparisons of the results for the baseline model and the streaming
learning approach indeed show that performance in terms of mean absolute
error can be greatly improved using a streaming learning approach. This is
especially true for wellbores where the relationships between drilling
parameters and density log are significantly different from what the model
has seen before during training. The method gives preliminary at-bit
density log estimates that are available in real-time, while adapting to
change, thus increasing generalizability so that the model is applicable to a
wider range of cases. t-SNE is used to visualize the data from different
wellbores and shows that the datasets are structurally different. This
indicates that a pre-trained model, regardless of model architecture, will
be unable to generalize to all the wellbores used in the analysis. It also
serves as motivation for a streaming learning approach.

For further work, attempts should be made at a streaming learning
approach for other LWD tools, as having several at-bit logs would further
nuance the bottomhole information.
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Appendix A. t-distributed stochastic neighbor em-
bedding

t-distributed Stochastic Neighbor Embedding (t-SNE) [58] falls within the
category of unsupervised learning algorithms. It is typically used for
visualization of high-dimensional data by dimensionality reduction. It is a
nonlinear method capable of preserving the local structure of
high-dimensional data while revealing global structures such as clusters.
When converting the high-dimensional data ϑ = {θ1, θ2, ...θm} to a
low-dimensional mapping ϕ = {φ1, φ2, ..., φm}, t-SNE starts by converting
the high-dimensional Euclidean distances between datapoints to
similarities pi|j , quantifying the conditional probability that θi would pick
θj as its neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at θi. This similarity is
given as:

pi|j =
exp (−||θi − θj ||2/2σ2

i )∑
k �=i exp (−||θi − θk||2/2σ2

i )
. (3.17)

From these, the joint probabilities are defined to be symmetrized
conditional probabilities, that is:

pij =
pj|i + pi|j

2n
. (3.18)

σi is the variance of the Gaussian centered at θi. This parameter can be
indirectly tuned by the user through the perplexity hyperparameter. For a
user-specified perplexity, t-SNE performs a binary search for the value of
σi that produces a probability distribution Pi over all the other data
points with the same perplexity Perp(Pi). This is defined as:

Perp(Pi) = 2H(Pi), (3.19)

where H(Pi) is the Shannon entropy measured in bits:

H(Pi) = −
∑
j

pj|i log2 pi|j . (3.20)

Perplexity can be viewed as a smoothing measure for the number of
effective neighbors, and t-SNE is robust to changes in this parameter. For
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the low-dimensional mappings, the similarities qij are computed using a
Student t-distribution with one degree of freedom, resulting in:

qij =
(1 + ||φi − φj ||2)−1∑
k �=l(1 + ||φk − φl||2)−1

. (3.21)

Note that pii and qii are set to 0 since t-SNE is only interested in modeling
pairwise similarities. Next, t-SNE minimizes the Kullback-Leibler
divergence between the two probability distributions P and Q through
gradient descent. The Kullback-Leibler divergence is given by:

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

, (3.22)

from which the gradient w.r.t the low-dimensional map can found to be:

∂C

∂φi
= 4

∑
j

(pij − qij)(1 + ||φi − φj ||2)−1(φi − φj), (3.23)

which can be used to update the low-dimensional mapping ϕ from an
initial value.
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Abstract

In the streaming learning setting, an agent is presented with a data stream
on which to learn from in an online fashion. A common problem is
catastrophic forgetting of old knowledge due to updates to the model.
Mitigating catastrophic forgetting has received a lot of attention, and a
variety of methods exist to solve this problem. In this paper, we present a
divided and prioritized experience replay approach for streaming
regression, in which relevant observations are retained in the replay, and
extra focus is added to poorly estimated observations through
prioritization. Using a real-world dataset, the method is compared to the
standard sliding window approach. A statistical power analysis is
performed, showing how our approach improves performance on rare,
important events at a trade-off in performance for more common
observations. Close inspections of the dataset are provided, with emphasis
on areas where the standard approach fails. A rephrasing of the problem
to a binary classification problem is performed to separate common and
rare, important events. These results provide an added perspective
regarding the improvement made on rare events.

4.1 Introduction

In supervised learning, generalizability is a primary focus during the
development of a model. During training, the labels are available, and are
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used to supervise the learning of a function that maps from inputs to an
output. The goal is for the model to learn a function that gives accurate
predictions for unseen observations, for which labels are not available.
This is the essence of generalization, and relies on the assumption that the
unseen observations come from the same distribution as the training
observations. However, this assumption fails for many real-word problems.
Shifts in independent or dependent variables, an evolving underlying
process, and dependence on variables not included in the model are all
examples of nonstationarity, which is harmful to the predictive power of
such models [39], [40]. Nonstationarity occurs to some extent in most real
world data sets, and has been a motivating factor for the paradigm of
streaming learning, where a model is presented with a stream of data on
which to continuously learn from in an online fashion. This allows
adaptation to changing data distribution, although the approach is prone
to catastrophic forgetting [41]. In the setting of streaming learning, the
goal is to leverage newly available data to adapt to changing environments
while still performing well on previous observations [59]. These two
objectives might be conflicting, giving rise to the stability-plasticity
dilemma [60], asking how one can stay stable to irrelevant events, while
plastic to new information. This problem has been addressed in several
ways, perhaps most commonly by use of experience replay, where new
observations from the data stream are mixed with older observations as
they become available [9].

Streaming data can occur in many situations, and several problems can be
solved by learning from these streams. Classification with dynamic
selection of appropriate window [61], and classification using a streaming
random forest [62] have been investigated. Clustering of data streams [63],
multi-task learning with a global loss function [64], and multiple output
linear regression [65] are other examples. The challenges of streaming
learning have been discussed in many earlier publications, with emphasis
on managing catastrophic forgetting. Reducing the risk of catastrophic
forgetting has been approached in several ways, among them
regularization, [42], [43], where weight updates are constrained so
previously learned relationships are not erased, and ensembling methods,
where multiple models are trained, and their outputs are combined with
some form of majority voting [40], [44], [45]. Various experience replay
configurations have also been developed for this purpose, among them
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stream clustering methods to retain valuable information [47], and
prioritization of samples to train on [46], where the former has with benefit
been applied to streaming classification, and the latter to reinforcement
learning. These differ from the aforementioned methods, as they focus on
which observations to retain and train on rather than on the model itself.

In the current work, a divided and prioritized experience replay approach
for streaming regression is presented to mitigate the effects of catastrophic
forgetting while allowing adaptation to nonstationarity. We adopt both
the philosophy of retaining relevant knowledge in the replay, along with
that of prioritization. A deep neural network (DNN) is trained and
validated on historical data. This model serves as a baseline model which
is deployed for streaming learning during operation, using this approach.
To demonstrate its effect, the method is applied to a real-world dataset,
and benchmarked against a standard sliding window approach. The
method was first presented in [1] as a case study. In the current work,
however, a thorough comparison to the standard sliding window approach
for streaming regression is given, with focus on rare, important events, and
discussions of areas where the standard sliding window fails.

The paper is structured as follows: section 4.2 presents the methods used
in this work, and section 4.3 presents our results in a case study,
comparing our method with a standard sliding window. Lastly, section 4.4
offers conclusions.

4.2 Method

The selected model architecture for this work was a DNN. DNNs consist of
multiple layers of interconnected neurons with nonlinear activation
functions. This allows extraction of latent, possibly nonlinear features
within the data. First, we provide notation for the DNN:
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L : number of layers in the DNN

m : number of observations

f : number of features

x : features

y : target variable

sl : number of neurons in layer l ∈ 1, ..., L

(xi, yi) : i-th observation, i ∈ 1, ...,m

w[l] : trainable weight matrix for layer l

b[l] : trainable bias vector for layer l

and

x =

⎡⎢⎢⎣
...

...
...

x1 x2 . . . xm
...

...
...

⎤⎥⎥⎦ ∈ R
f x m, (4.1)

y =
[
y1 y2 . . . ym

] ∈ R
1 x m, (4.2)

w[l] =

⎡⎢⎢⎢⎢⎣
. . . w

[l]�
1 . . .

. . . w
[l]�
2 . . .
...

. . . w
[l]�
sl−1 . . .

⎤⎥⎥⎥⎥⎦ ∈ R
sl−1 x sl , (4.3)

b[l] =

⎡⎢⎢⎢⎢⎣
b
[l]
1

b
[l]
2
...

b
[l]
sl

⎤⎥⎥⎥⎥⎦ ∈ R
sl x 1. (4.4)

To make a prediction on a single observation of inputs xi, the input is
mapped to ŷi by forward propagation through the DNN:

z
[l]
i = w[l]�a[l−1]

i + b[l] l = 1, ..., L, (4.5)
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a
[l]
i = g[l](z

[l]
i ) l = 1, ..., L− 1, (4.6)

a
[l]
i = max{γz[l]i , z

[l]
i } l = 1, ..., L− 1, (4.7)

ŷi = a
[L]
i = z

[L]
i . (4.8)

Equation (4.5) describes the linear part of the forward propagation,
mapping from one layer to the next throughout the DNN. This starts at

a
[0]
i = xi. At each hidden layer, these linear combinations are passed

through nonlinear activation functions g[l], as described in Equation (4.6).
In this work, the leaky ReLU activation functions given in Equation (4.7)
are used, where γ is the slope in the left half plane. Lastly, the output
layer outputs the prediction, which for this work is a real number,
resulting in a regression layer. This is described in Equation (4.8).

For learning on a mini-batch of size mb, inputs xb and outputs yb are used.
The forward propagation for the mini-batch is given by:

z[l] = w[l]�a[l−1] + b[l]1 l = 1, ..., L, (4.9)

a[l] = g[l](z[l]) l = 1, ..., L− 1, (4.10)

a[l] = max{γz[l], z[l]} l = 1, ..., L− 1. (4.11)

ŷb = a[L] = z[L], (4.12)

where 1 ∈ R
1 x mb is a row vector of ones broadcasting the bias term to

each observation of the mini-batch.

The weight initialization is He normal [36], which pulls the weights in each
layer from a truncated normal distribution with mean μ = 0 and standard

deviation σ =
√

1
s[l−1]

. The weight initialization for layer l is then given by:

w[l] ∈ R
sl−1 x sl ∼ N

([
0, (s[l−1])

−1
])
. (4.13)

The biases, b[l], are initialized as zeros. The optimizer used was Adam
optimization [38] , which adaptively estimates appropriate momentum for
the gradient updates.



60 Paper B: A divided and prioritized experience replay approach for
streaming regression

The parameters w[l] and b[l] are iteratively updated by means of a
gradient-based optimizer to minimize some cost function describing a
distance between true labels and predictions. This is done by finding the
gradients of the cost function J , w.r.t the trainable parameters, ∂J

∂w and
∂J
∂b . For this work the cost is the mean squared error between the true
labels and the predictions, defined by:

J =
1

2mb

∣∣∣ŷ − y
∣∣∣2. (4.14)

For supervised learning, the procedure of iteratively updating the
trainable parameters, along with other hyperparameters such as model
architecture, is typically done repeatedly in a validation process to assess
the model’s ability to generalize to unseen observations. However, the
ability to generalize relies on the assumption that the unseen observations
come from the same distribution as the training data, which for many
real-world datasets is an invalid assumption. The target variable may
depend on features not included in the model, shifts may occur in the
independent or dependent variables, or the underlying process may evolve.
These can all be contributors to poor generalization, and are called
nonstationarity. In streaming learning, the goal is to bridge the gap
between data distributions by adapting to new available observations. For
this to work, labels must be available so that supervision of the updates
can be achieved. In addition to adaption to changing distributions, it is of
interest to ”remember” older, relevant observations.

To stay stable to older observations while being plastic to new ones, the
prioritized n−bin experience replay was developed. This experience replay
configuration allows retention of observations spanning the prediction
space y ∈ [ymin, ymax] by splitting it into bins. We denote the buffer as
D ∈ R

n x N , where n is the number of bins, and N is the capacity of each
bin. When observation (xi, yi) becomes available from the data stream, it
will be placed in a bin after assessment of which bin in the prediction
space yi belongs to. Subsequently, the oldest observation in the same bin
is discarded. Using this configuration, observations spanning the
prediction space are retained, eliminating bias towards the distribution of
the latest available observations, which occurs in the standard sliding
window. Additionally, the mini-batch sampled from the experience replay
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for further learning is sampled by prioritization using the softmax
function, so that each observation is assigned a probability of being
sampled for training by:

pj =
e(yj−ŷj)

2∑C
c=1 e

(yc−ŷc)2
, j = 1, ..., C, (4.15)

where C = nN is the total number of observations in the replay. Assigning
the probabilities based on the softmax of the model’s mean squared error
on the observations results in added focus on observations for which the
model performs poorly, as they are more likely to be sampled. By
combining the prioritized n−bin with the DNN using the Adam optimizer,
we obtain our streaming learning algorithm, given in Algorithm 4.
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Algorithm 4 Streaming Learning Using Prioritized n−bin Experience Re-
play & Adam Optimization

1: Load baseline model
2: Load prioritized n−bin replay (pre-filled with historical data)
3: Vdw = 0, Sdw = 0, Vdb = 0, Sdb = 0,
4: while learning (on iteration i) do
5: Receive xi
6: Forward prop on xi to estimate ŷi:

7: z
[1]
i = w[1]�xi + b[1]

8: a
[1]
i = g[1](z

[1]
i )

9: z
[2]
i = w[2]�a[1]i + b[2]

10: a
[2]
i = g[2](z

[2]
i )

11:
...

12: a
[L]
i = z

[L]
i

13: ŷi = a
[L]
i

14: if new (xi, yi) pair available then
15: Enqueue (xi, yi) in appropriate bin
16: Dequeue appropriate bin
17: Calculate pj , j = 1, ..., C
18: Sample observations by probabilities
19: pj to obtain mini-batch xb

20: Forward prop on xb:
21: z[1] = w[1]�xb + b[1]1
22: a[1] = g[1](z[1])
23: z[2] = w[2]�a[1] + b[2]1
24: a[2] = g[2](z[2])

25:
...

26: a[L] = z[L]

27: ŷb = a[L]

28: Compute cost J

Prediction
when input xi
is available.

Prioritized
n−bin

experience
replay.

Adam
optimization.
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29: Backpropagate using the chain rule
30: to compute gradients ∂J

∂w and ∂J
∂b

31: Vdw = β1Vdw + (1− β1)
∂J
∂w

32: Vdb = β1Vdb + (1− β1)
∂J
∂b

33: Sdw = β2Sdw + (1− β2)
∂J
∂w

2

34: Sdb = β2Sdb + (1− β2)
∂J
∂b

2

35: V c
dw = Vdw

1−βi
1

36: V c
db = Vdb

1−βi
1

37: Sc
dw = Sdw

1−βi
2

38: Sc
db = Sdb

1−βi
2

39: w = w − α
V c
dw√

Sc
dw+ε

40: b = b− α
V c
db√

Sc
db+ε

41: end if
42: end while

Adam
optimization.

β1, β2 and ε are tunable hyperparameters for Adam optimization, Vdw

and Vdb are biased first moment estimates, and Sdw and Sdb are biased
second raw moment estimates. Superscript c denotes their bias-corrected
counterparts. α is the learning rate.

4.3 Case study

4.3.1 Problem description

The method presented in this work was developed in order to estimate the
density of drilled lithology. This is traditionally measured using the
density logging tool, which is a specialized logging while drilling (LWD)
tool. Determining the density of the drilled lithology is of interest for
several reasons, among them best-practice selection of drilling parameters
to ensure a safe and efficient operation. Especially, accurate separation of
high-density and low-density lithology can reduce the risk of dysfunctions
like buckling, severe doglegs, washout and vibrations, resulting in lost
time. However, the density log is delayed due to its placement behind the
bit, making mechanical drilling parameters the earliest indicators of
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change in drilled lithology, although it is very difficult for humans to
directly interpret density from these.

To eliminate the density log delay, we propose to estimate a virtual
density log using parameters available at the bit, i.e. mechanical drilling
parameters. Since the true label of the density log is available after the
distance from the log to the bit is drilled, we can pair the delayed density
log with drilling parameters measured earlier at the same depth to obtain
complete input/output observations that can be used to further supervise
updates to our model during operation. This turns the problem into a
streaming regression problem with delayed labels. Drilling data from wells
on a field operated by Equinor was used for this work. After data cleaning
and removal of irrelevant observations, the training set contained
approximately 740 000 observations from 5 different wellbores, while the
validation set contained 365 000 observations from one wellbore. Lastly,
the test set contained 227 000 observations from one wellbore. As per
standard convention for deep learning, the data was normalized and scaled
so that each feature had zero mean and unit variance.

Several mechanical drilling parameters are available during drilling. v is
the drilling velocity (ft/hr), w is the weight on bit (lb), T is the torque
(lb-ft), φ is the drillstring rotation (rpm). The driller may directly control
v, w, and φ, while T is dependent on a variety of factors, among them rock
properties, w, and φ. A metric commonly monitored during drilling is the
mechanical specific energy, Ums, which quantifies the energy required to
remove a unit volume of rock. It is independent of the driller’s actions, is
different for different lithologies [31], and is given by:

Ums =
w

ab
+

120π · φ · T
ab · v , (4.16)

where ab is the bit area (in2). To account for weakening of the rock ahead
of the bit due to flow through the nozzles, the hydraulic mechanical
specific energy [32], Uhms, can be defined by:

Uhms =
w

ab
+

120π · φ · T
ab · v +

1154η ·Δpb · q
ab · v , (4.17)
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where η is the hydraulig energy reduction factor, Δpb is the bit pressure
drop at the nozzle (psi), and q is the flow rate of drilling fluid (gpm).
From the available mechanical parameters, we define the input vector of
predictors for the DNN, x, as:

x = [v, φ, w, T, Ums, Uhms]
�. (4.18)

4.3.2 Pre-training and validation

Pre-training and validation of the baseline model was performed in an
informal search. Training was performed using Adam optimization, where
the training set was randomly shuffled, and divided into mini-batches of
size mb. The calculated gradients for each mini-batch are noisy estimates
of the true gradients of the entire data set, and this additive noise is useful
for avoiding getting stuck in poor local minima or saddle points early in
training, and for improving generalization [66]. Neural network
architecture and training configuration hyperparameters were iteratively
tuned on the training and validation set split. Upon completion of this
process, the streaming hyperparameters were tuned iteratively on the
validation set. These hyperparameters are related to the streaming
learning during operation. The density log limits on this field lies in the
range 2.0 - 2.7 (g/cm3). Tuning of the experience replay parameters
resulted in 3 bins with limits at 2.115 (g/cm3) and 2.535 (g/cm3),
effectively dividing the prediction space so that one bin retains
observations below 2.115 (g/cm3), the second between 2.115 (g/cm3) and
2.535 (g/cm3), and the last retains observations above 2.535 (g/cm3).
These parameters can be seen in Table 4.1, which summarizes the
hyperparameters. We can also see that the learning rate is decreased by
one order of magnitude for the streaming learning, which was necessary in
order to facilitate stability.
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Table 4.1: Summary of hyperparameters for the model.

Pre-Training Hyperparameter Value

Learning rate 7.5 · 10−5

Hidden layers 3
Neurons in hidden layers 12
Mini-batch size 128
Epochs 25
Optimizer Adam

Streaming Learning Hyperparameter Value

Learning rate 7.5 · 10−6

Experience replay bins 3
Experience replay bin sizes 256
Experience replay bin limits [2.115, 2.535]
Mini-batch size 16
Epochs 1
Optimizer Adam

4.3.3 Test set results

After pre-training and validation of the baseline model, it was deployed for
streaming regression during operation on the test set, where the density
logging tool is placed 20 meters behind the bit. This was done using both
the prioritized n-bin experience replay, and a standard sliding window for
comparison. As summarized in Table 4.1, the prioritized n-bin replay
consisted of 3 bins, each containing 256 observations at all times. The
standard sliding window used for comparison contained the same amount
of observations in total, 768. Although the algorithm is run on data in time
domain, the density log (along with other LWD tools) are most interesting
in depth domain. For this reason, the presented results are converted to
depth domain with equidistant points at 1 meter resolution by
downsampling. At every integer depth, observations within 0.5 meters are
averaged. Since detection of the hard stringers is important, we evaluate
both approaches in terms of mean absolute error (MAE) separately for low
density (< 2.35 (g/cm3)) and high density (≥ 2.35 (g/cm3)) observations.

Figure 4.1 illustrates measured and estimated at-bit density vs depth on
the entire test set for both methods. We define a false high density
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estimate a low risk error. If the driller takes action, lowering T and
increasing w based on such an estimate, the drilling will simply be
sub-optimal. Conversely, we define a false low density estimate as a high
risk error. If hard stringers are not detected, and action is not taken, risk
of dysfunctions such as buckling, severe doglegs, washout and vibrations
are increased. On the test set as a whole, the prioritized n-bin experience
replay leads to a 22% increase in MAE for true low density observations
and a 22% decrease in MAE for true high density observations, compared
to the standard sliding window.
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Figure 4.1: Top: Measured and estimated density log using the standard sliding
window. Bottom: Measured and estimated density log using the prioritized n-bin
sliding window.

We wish to investigate these results in more detail to provide some insight
into the effect of applying the prioritized n− replay, both on low density
and high density observations. First, we perform paired, two-tailed t-tests
to investigate the statistical significance of the changes in MAE, through
obtaining p−values. The null hypothesis becomes H0 : μ1 = μ2, where μ1
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is the population mean absolute error for the standard sliding window
approach, and μ2 is the population mean absolute error for our method.
For this test, we select a significance level of α0 = 0.05. To quantify a
standardized effect size, we also calculate Cohen’s d. This value, in
combination with α0, can in turn be used to calculate the statistical
power, 1 - β, where β is the probability of a type II error. Table 4.2
summarizes the results of our statistical analysis, where m is number of
observations, MAEs is the mean absolute error using a sliding window,
MAEn is the mean absolute error using our method, and
ΔMAE = MAEs −MAEn. Through the t-tests, we confirm the statistical
significance at our chosen significance level. Observing Cohen’s d show
that for true low density observations, our method leads to a standardized
effect size of d = −0.3021 (where the negative sign signifies worsening),
while for the true high density observations, d = 0.4578. Interpreting these
along a continuum, as proposed in literature [57], where 0.2, 0.5, and 0.8
are low, medium and high effect sizes, we see that our approach leads to a
small to medium worsening on low density observations, and a medium to
large improvement on high density observations.

Table 4.2: Results of power analysis.

True
value

m MAEs

[g/cm3]
MAEn

[g/cm3]
ΔMAE
[g/cm3]

d p 1−β

< 2.35 3422 0.0544 0.0662 -0.01175 -0.3021 4.63 · 10−35 ≈ 1
≥ 2.35 358 0.1528 0.1192 0.03359 0.4578 2.51 · 10−9 ≈ 1

Figures 4.2 - 4.5 are zoomed plots on the test set. In Figure 4.2, at 2755
m, a hard stringer occurs. Using the standard sliding window, this event is
completely undetected. We can see at 2779 m that the model accurately
detects the next stringer. Here, 24 m further down, high density
observations from the missed stringer has been passed by the density
logging tool (20 m behind), and these observations are available for
training in the sliding window. We can assume that the model misses the
first stringer since the sliding window only contains observations from the
earlier low density observations, resulting in catastrophic forgetting. Using
our approach, we can see that also the stringer missed by the standard
sliding window is detected.
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Figure 4.2: Zoom 1. Top: Measured and estimated density log using the standard
sliding window. Bottom: Measured and estimated density log using the prioritized
n-bin sliding window.

In Figure 4.3, we can see that the sliding window misses the stringer at
3157 - 3170 m, along with the one at 3250 m. Our approach accurately
detects these events. At the same time, we observe that some observations
at approximately 3050 m and 3285 are overestimated. In Figure 4.4,
stringers at 3500 m and 3523 - 3536 m are missed by the sliding window,
but detected by our approach. Lastly, Figure 4.5 shows missed stringers
by the sliding window at 4450 - 4530 m, along with a poor transition to
low density observations at approximately 4850 m. These are all improved
using our approach. However, we observe some false high estimates at
4650 - 4700 m.
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Figure 4.3: Zoom 2. Top: Measured and estimated density log using the standard
sliding window. Bottom: Measured and estimated density log using the prioritized
n-bin sliding window.
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Figure 4.4: Zoom 3 Top: Measured and estimated density log using the standard
sliding window. Bottom: Measured and estimated density log using the prioritized
n-bin sliding window.
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Figure 4.5: Zoom 4 Top: Measured and estimated density log using the standard
sliding window. Bottom: Measured and estimated density log using the prioritized
n-bin sliding window.

Since the density log is naturally divided into low- and high density
observations, we rephrase the problem into a binary classification problem.
Although this is an oversimplification, it adds to the previous analysis in
terms of detection of hard stringers, and high risk/low risk errors, as
defined previously. As can be seen from m in Table 4.2, less than 10% of
the observations in the test set are stringers, which makes this an
unbalanced data set. Figure 4.6 shows the resulting confusion matrices for
both approaches, dividing the observations into low density and high
density observations as previously. We see that the sliding window is very
accurate in prediction of low density observations, with an accuracy rate
of 0.97. However, only an accuracy of 0.55 is achieved for high density
observations. Using the prioritized n−bin, the accuracy on low density
observations is slightly decreased, to 0.92, while detection of high density
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observations is greatly improved, scoring an accuracy of 0.8. The balanced
accuracies for the sliding window and the prioritized n− bin are 0.76 and
0.86, respectively. Due to drillstring compression and elongation,
measurement error on depth can occur. To account for this, a 1 m
acceptance was implemented, meaning that if a prediction is within 1 m of
the correct label, it is accepted as correct. The confusion matrices using
the 1 m acceptance are shown in Figure 4.7. We observe that the results
for both approaches are improved. Here, the balanced accuracies are 0.89
for the sliding window and 0.95 for our approach.
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Figure 4.6: Confusion matrices. Left: Standard sliding window. Right: Prior-
itized n-bin method.
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Figure 4.7: Confusion matrices applying a 1 m acceptance. Left: Standard
sliding window. Right: Prioritized n-bin method.

4.4 Conclusions

A divided and prioritized experience replay suited for streaming regression
has been presented, making use of known ideas such as retention of
relevant observations along with prioritization. This makes the model less
biased to the distribution of the latest available observations, and results in
more frequent sampling of observations where the model performs poorly.

Comparison to a standard sliding window has been made on real-world
data. From our results, we can deduce that the standard sliding window
results in forgetting of old, rare events, leading to failure to detect them.
Especially in cases where exclusively common events have been observed,
the model becomes biased towards these observations, failing to detect
new, important events. The presented n−bin method, on the other hand,
retains observations from the entire range of the prediction space,
resulting in more accurate estimates for these observations at a small cost
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in accuracy on the common events. Also, some false detections are
observed. In addition to analyses on the regression formulation, a
simplified rephrasing to a binary classification problem has been
performed. These results divide the observations into two classes to
provide added insight into the improved performance on the rare events.
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Chapter 9

Conclusions & further work

In this thesis, one instance of deep reinforcement learning to control bot-
tomhole pressure during pipe connection has been presented in a simulation
study. It is demonstrated that the agent capably controls bottomhole pres-
sure for different well depths under the challenging conditions present during
pipe connection. However, this work is a simplified case, and several areas
for future work and improvements can be identified. One example is the
simple hydraulics model used to simulate flow and pressure in the wellbore.
A natural extension would be the use of more advanced models, such as
partial differential equations (PDEs). Also, no noise is added to the meas-
urements, and no theoretical stability guarantees are provided. As pressure
control during drilling is critical, future endeavours to add to this work are
necessary for its viability in the real world. Still, the presented work ex-
emplifies how reinforcement learning can be applied to tackle this problem,
and could serve as a starting point to build on.

A series of contributions towards LWD estimation and lithology classifica-
tion using deep neural networks in a streaming learning configuration have
also been presented. These focus on at-bit estimation and classification
using drilling parameters as inputs, which has not been devoted much at-
tention in existing literature. For this purpose, the prioritized n−bin ex-
perience replay was developed to learn from delayed LWD measurements to
continuously adapt to changing relationships between drilling parameters
and LWDs, which has not been done before. Real drilling data provided
by Equinor has been used in the training, validation and testing of these

141
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models, which show promise in making useful predictions that the driller
can use to make informed decisions in real-time, rather than waiting for
LWD measurements, which due to their placement could be 20-120 minutes
delayed, depending on ROP. As these systems neither control any aspect of
the drilling, nor make any suggestions in this regard, decision-making is left
to the driller, meaning that these systems pose low risk implementation-
wise. To facilitate further validation of these contributions, a real-time
implementation on data streams available from drilling rigs would be an
obvious next step. Another suggestion for future work relates to the data
used. On real-time data streams, data cannot be cleaned in the same manner
as in fixed datasets, and since a streaming learning system learns continu-
ously from these streams, the models are susceptible to bad updates due to
bad data. Further efforts to identify bad data could have a sizeable effect
on the performance of these models. One possibility could be to use other
logs, such as the delta rho log, to identify these observations.
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