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Abstract

In Emergency Medical Services (EMS), time is of the essence. It is crucial to distribute available
resources strategically so that they can reach the scene of an incident quickly and ensure timely
life-saving assistance to people in need. In order to do that, we need to have good estimates of
when and where incidents are likely to occur. This thesis investigates how to best forecast the
EMS demand in and around the capital of Norway based on historical EMS data and, to some
lesser extent, weather data. We use a fine spatio-temporal resolution of 1x1km spatial regions
and 1-hr time intervals. The EMS demand is forecast directly and using a split approach that
looks at the volume and distribution of the demand separately. We use Multi Layer Perceptron
(MLP) and Long Short-Term Memory (LSTM) models to forecast the EMS demand, in addition
to some simple aggregation methods. The neural network models are trained with di↵erent input
sets consisting of simple temporal data and weather data to investigate how the forecast quality
varies with varying input feature sets. We conclude from our experiments that the split approach
is better suited for modeling EMS demand as the complete methods tend to underestimate the
demand volume. We also show how online learning tends to improve the performance of the
models. Among the models tested in this study, we find that a split model consisting of a simple
aggregation distribution model and an MLP volume model with simple temporal input features
produces the best forecasts. This split model produces better volume, distribution, and complete
forecasts than a common industry practice method and the complete MLP model proposed by
Setzler et al. [2009].
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Sammendrag

I akuttmedisinen opererer man ofte i en kamp mot klokken. Man må fordele tilgjengelige ressurser
strategisk slik at man kan n̊a mennesker i nød p̊a kortest mulig tid og redde liv. For å kunne po-
sisjonere ambulanser strategisk må vi vite hvor og n̊ar det er stor sannsynlighet for at hendelser
skjer. Denne oppgaven tar for seg predikering av den timesvise akuttmedisinske etterspørselen i
1x1km geografiske omr̊ader i Oslo og Akershus. Vi sammenlikner komplette og splittede mod-
eller. De splittede modellene predikerer det totale antallet hendelser og distribusjonen av hen-
delsene hver for seg, mens de komplette modellene predikerer antallet hendelser i hvert omr̊ade
direkte. Vi bruker hovedsaklig nevrale nettverk for å predikere etterspørselen, samt noen en-
kle aggregeringsmodeller. Vi undersøker om været p̊avirker den akuttmedisinske etterspørselen
ved å inkludere værdata i noen av input-settene til de nevrale nettene. Resultatene v̊are tyder
p̊a at de splittede modellene er bedre egnet til å predikere den akuttmedisinske etterspørselen
enn de komplette modellene, ettersom de komplette modellene har en tendens til å underes-
timere volumet av hendelser. Vi viser ogs̊a at online trening er et godt verktøy som forbedrer
prediksjonene til modellene. Blant modellene vi tester sl̊ar vi fast at en splittet modell med en
enkel distributisjonsmodell basert p̊a aggregering og en flerlags perceptron (MLP) volummod-
ell med enkle temporale inputter har mest nytteverdi i v̊art tilfelle. Denne modellen produserer
bedre komplette, volum og distribusjons prediksjoner enn en standard industrimodell samt MLP-
modellen foresl̊att i Setzler et al. [2009].
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Chapter 1

Introduction

Emergency Medical Services (EMS) are a crucial part of modern health care systems. They
respond to emergency calls and are responsible for the pre-hospital care and transportation of
patients.

Many strategic, tactical, and operational decisions a↵ect the quality of an EMS system, such
as the fleet size, personnel management, location of ambulance stations and hospitals, equipment
investment, and location, dispatching, and routing of ambulance units. EMS systems are shaped
by the high level of uncertainty they operate in. There is uncertainty in the volume, severity,
and location of incidents, the availability of ambulances, and ambulance travel times. Further,
the trade-o↵ between cost, e↵ect, and equity is a substantial concern for policymakers. Extra
resources are necessary for being able to handle high workloads, but resources that are never used
pose a high and unnecessary cost. It is more cost-e↵ective to focus resources around locations
with high demand, but that means people living outside of these areas will have less access to
those critical resources. However, providing equal access to resources when the cost of doing so
is higher in some areas implies that people are valued higher in those areas, as noted in Erkut
et al. [2008].

This thesis is focused on modeling the EMS demand in Oslo and Akershus, Norway. Doing so
involves several challenges. In addition to the challenges mentioned above, demand forecasts are
only useful for positioning resources if the forecasts have high resolutions on a spatio-temporal
scale. However, high resolutions result in very sparse data which is di�cult to model accurately.

1.1 EMS Timeline

EMS systems are implemented di↵erently throughout the world, but most of them include the
steps illustrated in Figure 1.1. When an incident occurs it might take some time before the
public calls the emergency number. After a (usually) short amount of time, an operator from
the Emergency Medical Dispatch (EMD) center answers the call. The emergency operator is
responsible for determining the location and priority of the incident (triage) and providing guid-
ance to the caller. Next, an operator has to decide precisely which ambulance unit to dispatch
to the incident and to which facility the patient should be transported. The selected unit is
notified and then has to gather all needed equipment and get in the ambulance. It then travels
to the scene. At the scene of the incident, the unit might take some time to locate and reach the
patient. When the patient is located, the unit will perform medical care before transporting the
patient to the appropriate health care facility. At the destination, the ambulance personnel has

1



2 CHAPTER 1. INTRODUCTION

to hand the patient over to the facility sta↵. Once the patient has been safely transferred, the
ambulance might need cleaning or replenishing equipment before it is ready for another mission.

Figure 1.1: A general EMS timeline with named time points and intervals, adapted from Olsen
et al. [2019].

1.2 Response Time

Receiving e�cient treatment quickly is paramount for survival in certain acute incidents such
as cardiac arrest, stroke, and serious trauma [The Norwegian Directory of Health, 2018; Haga
et al., 1998]. In the case of out-of-hospital cardiac arrest (OHCA), studies have found that
patient survival is inversely related to the time to defibrillation [Haga et al., 1998; Nolan et al.,
2010; Larsen et al., 1993; O’Kee↵e et al., 2011]. Nolan et al. [2010] found that each minute of
delay before defibrillation reduces the likelihood of survival by 10-12%. Similarly, O’Kee↵e et al.
[2011] found that a one-minute reduction in time to treatment improves the odds of survival by
24%. In addition to the medical aspects, receiving treatment quickly is also important for the
public’s feeling of safety.

The response time in an EMS context is defined as the time between the notification of an
incident and the arrival of an ambulance at the scene of the incidents, as illustrated in Figure
1.1. The response time as such consists of three independent parts: the EMD reaction time,
the unit reaction time, and the travel time. All of these can be influenced by the EMS provider
through e�cient digital communication systems and triage protocols, and strategic location and
dispatching of ambulance units. Note that the response time does not include the reaction time
or delay of the public, nor the time it takes for the unit to reach the patient at the scene of
the incident. Hence, the response time is a proxy for the time to treatment consisting of time
intervals that we can measure and a↵ect.

The most common system-wide performance indicator of an EMS system is response time
statistics, such as the percentage of incidents that achieved a response time below some threshold.
These percentages and thresholds are somewhat arbitrary and not directly connected to the
medical outcomes of the patients. The fitness of such quality measures is questioned in Erkut
et al. [2008] and Price [2006]. They emphasize the disparity between the fraction of missions
reached within some threshold and the medical outcomes for the patients. The statistics, however,
are easy to obtain and understand and are therefore still most widely used.
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1.3 The Ambulance Location Problem

The ambulance location problem is about strategically choosing a set of standby sites and the
number of ambulances that should be stationed at each of them to achieve some goal, such as
minimizing the response time. Over the years, many mathematical models have been proposed
to model this problem with varying assumptions and constraints. All such models need three
things as input: 1) the demand that the ambulances should respond to (i.e. the emergency calls),
2) the time it takes to travel between di↵erent locations, and 3) the workload or busy time of the
ambulances [Ingolfsson, 2013]. In a real-world application, we do not have access to the exact
demand, travel times, or workload of the system, so we have to make do with forecasts. The
location problem is computationally complex, so heuristics typically have to be used in practice
to find a solution.

There is some variation in exactly what the di↵erent ambulance location models aim to
optimize. Most of them involve the notion of coverage, in which an area is said to be covered
if an ambulance is positioned such that it can travel to the area in question in less than some
threshold time. Some models look at the minimum number of resources needed to provide some
specified service level (typically coverage), such as the location set covering problem (LSCP)
[Toregas et al., 1971] and the probabilistic model described by Ingolfsson et al. [2008]. Other
models try to maximize the coverage given a certain amount of resources, such as the maximal
covering location problem (MCLP) [Church and ReVelle, 1974]. In close relation to this, other
models look at maximizing the coverage multiple times, such as the double standard model
(DSM) [Gendreau et al., 1997] and the hierarchical objective set covering problem (HOSC)
[Daskin and Stern, 1981]. Erkut et al. [2008] try to maximize survivability directly instead
of focusing on the response/travel time. A di↵erent approach is presented by Chanta et al.
[2011], which tries to minimize customer dissatisfaction or envy in their p-envy location problem
formulation. Although the selection of a cost function has implications on the optimal locations
of ambulances, di↵erent approaches can result in similar outcomes. McLay and Mayorga [2010]
found that in the case of Hanover County, Virginia, locating ambulances to optimize seven and
eight-minute response time thresholds were equivalent to optimizing patient survival, while nine
and ten-minute thresholds improved survivability in rural areas, thus improving equity.

The models handle uncertainty in di↵erent ways. Most of the early models were determin-
istic, meaning they assumed that ambulances were always available and that the demand and
travel times were constant. These unreasonable assumptions were relaxed in models such as the
hypercube model [Larson, 1974] which uses a queueing theory approach to model ambulance
unavailability. Daskin [1983] introduces a single ”busy-factor,” meaning the probability that an
ambulance is available. Ingolfsson et al. [2008] address uncertainty in pre-travel delays and travel
times as well as ambulance availability.

The models can also be characterized by how dynamic they are. Static models assume that
when an ambulance is assigned to a site, it will always return to this once it has completed a
mission. Such models do not account for the variability of travel time and demand over time.
Multi-period models address such variations by dividing the problem into smaller time slots
and solving a static model in each of them, such as the multi-period double standard model
(mDSM) [Schmid and Doerner, 2010]. Dynamic models consider the state of the model, like how
many ambulances are available and where they are located. This allows for dynamic relocation
where units are moved in response to other units becoming unavailable/available. The relocation
problem (RPt) [Gendreau et al., 2001] is an example of such a dynamic model. It is built on top
of the double standard model hence it maximizes the double coverage and minimizes relocation
cost. Frequent relocation poses human resource problems as it is hard to satisfy the ambulance
personnel’s physical and social needs when they are in the ambulance for extended time periods.
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For this reason, continuous relocation is rarely seen in practice.
For more thorough reviews and greater details of ambulance location models, we refer the

reader to several good reviews on the topic. Bélanger et al. [2019] focus on models based on
integer, stochastic, and dynamic programming. The paper includes mathematical formulations
of many of the problems, and a handy taxonomy of the models can be found in the appendix.
Another taxonomy with models from 57 papers can be found in Başar et al. [2012]. Aringhieri
et al. [2017] discuss how the di↵erent ambulance location models handle uncertainty and eq-
uity. This review also includes models based on queueing theory, goal programming, and fuzzy
programming.

Simulations have also been used widely to model EMS systems. Such simulations imitate the
behavior of the system in question and serve as a natural way of validating solutions and testing
the consequences of di↵erent strategies. They can handle many sources of uncertainty without
being overwhelmed by time complexity because they are focused on evaluating a solution rather
than finding a solution. The interested reader can find a review of the use of simulations in the
EMS domain in Aboueljinane et al. [2013].

1.4 Goal and Research Questions

A minimal response time will benefit the medical outcome of a patient. We want to utilize the
available resources more e�ciently so that we can reduce the response time without incurring
large expenses. More specifically, we focus on minimizing the travel time part of the response
time by locating ambulances strategically. Hence the overall goal of this thesis is the following:

Goal To minimize the EMS response time in Oslo and Akershus through strategic placement of
ambulances.

In order to position ambulances strategically, we need to forecast when and where incidents
are likely to occur. In this thesis, we focus on such forecasting of EMS demand. We have defined
three specific research questions that we try to answer in our work, as detailed below.

1.4.1 Research Question 1

We want to forecast the demand �(t) = ut 2 RN
+ such that ut

k is the forecast number of incidents
at time step t in region k for k 2 {1, 2, ..., N} where N is the number of spatial regions. The higher
the spatio-temporal resolution of the EMS demand forecasts, i.e. the larger N is and the smaller
each time step is, the more information we have for positioning ambulances strategically. The
disadvantage of using such high resolutions is that the data becomes more sparse and stochastic,
making forecasting the demand more di�cult. This leads us to our first and most central research
question:

Research question 1 How can the EMS demand in Oslo and Akershus be forecast accurately
at a fine spatio-temporal scale?

In this thesis, we use a spatial resolution of 1x1km regions, which is the highest possible
granularity in our case because of the limitations of our dataset. Our temporal resolution of 1
hour is the highest temporal granularity used in the literature.

We test various approaches, models, and input features to investigate how we can model the
EMS demand as accurately as possible at these spatio-temporal resolutions.
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1.4.2 Research Question 2

Most of the studies on EMS demand forecasting have tried to forecast the complete demand
�(t) directly. However, it is also possible to use split approach that looks at the volume and the
distribution of the demand separately. Let �(t) 2 R+ be the aggregated volume of incidents at

time step t such that �(t) =
PN

k=1 u
t
k. Let f(t) = vt 2 RN

+ be the spatial distribution of the
incidents at time step t such that vtk is the fraction of the events in time step t that occurs in

region k and
PN

k=1 v
t
k = 1. A complete forecast at time step t can be obtained by combining a

volume and distribution forecast: �(t) = �(t)f(t).
Almost all previous research has been on complete models, with the notable exception of Zhou

and Matteson [2015]. We are interested in how the di↵erent approaches influence the forecasts
and which is better for predicting EMS demand:

Research question 2 Is a split model or a complete model better at forecasting EMS demand
in Oslo and Akershus?

We believe that the split approach can produce better results because it aggregates the data,
which can combat data sparseness. It might also improve the interpretability of the forecasts.

1.4.3 Research Question 3

Weather has been shown to be related to the daily EMS demand volume in large cities [Wong
and Lai, 2010, 2013; Thornes et al., 2014; Wong and Lin, 2020]. However, to the author’s
knowledge, no one has investigated whether the weather influences the EMS demand at a fine
spatio-temporal scale.

Research question 3 Does weather influence the spatial distribution of EMS demand in Oslo
and Akershus?

The EMS demand is often assumed to follow a non-homogeneous Poisson process in which the
probability of an EMS incident occurring increases with the number of people gathered in one
place [Channouf et al., 2007; Zhou, 2015; Steins et al., 2019; Huang et al., 2019; Matteson et al.,
2011]. Because the weather influences what people do and where they are, the weather should,
by extension, a↵ect the spatial distribution of the EMS demand. However, this relationship
between weather and EMS demand might be too weak to improve EMS demand forecasts.

1.4.4 Research Question 4

Online learning is a machine learning method commonly used when the data is constantly gen-
erated in time. When a machine learning model learns online, it is presented with a sample xi

at a time and makes its prediction ŷi before knowing the correct output yi. Then, the model
learns from its error before being presented with the next sample xi+1. The models continue
learning like this one sample at a time without revisiting old samples. Online learning has, to
the author’s knowledge, not been used to forecast the EMS demand.

Research question 4 Can online learning be used to improve EMS demand forecasts in Oslo
and Akershus?

Online learning makes a model capable of adapting to changes in the underlying function that
the model is trying to estimate. Therefore, EMS demand forecasting models using online learning
should perform better in the long run because populations change over time. For example, the
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population volume can increase or decrease over time as people reproduce more or less and people
move to or from the area in question. The spatial density of the population can also change as
the use of di↵erent areas changes. For example, suppose an old industrial complex is transformed
into a large new o�ce building. We could then see an increase in population density in this area,
which again could a↵ect the spatial distribution of the EMS demand. In addition, online learning
leverages all of the available data, while o✏ine learning only uses the data available at the start
of the learning process.

1.5 Report Structure

The specifics of Oslo University Hospital (OUH)’s EMS system and dataset is described in
Chapter 2. Chapter 3 details the underlying theory of the methods used in our experiments,
while Chapter 4 reviews literature on EMS demand forecasting. In Chapter 5, we describe the
scientific method used in our experiments. This chapter also provides implementation details of
our models. The results of those experiments are presented in Chapter 6. Finally, in Chapter 7,
we discuss our results and identify possible areas of future work.



Chapter 2

Background and Motivation

The Norwegian Ministry of Health and Care Services [2000] proposed response time goals for
the Norwegian EMS; 90% of acute incidents should have a response time less than 12 minutes
in densely populated areas and 25 minutes in sparsely populated areas. Further, 90% of urgent
incidents should have a response time of less than 30 minutes in densely populated areas and 40
minutes in sparsely populated areas. As mentioned in Section 1.2, such performance indicators
are somewhat arbitrary and not directly related to patient outcomes. However, the time goals
were meant to serve as guidelines to give some idea about what the response times should be.
Indeed, they were first proposed by Haga et al. [1998] because the lack of national guidelines had
resulted in di↵erent practices across the country with varying standards and quality. Reaching
those goals in Norwegian districts with few inhabitants, large distances, and varying weather and
road conditions is impossible without a huge budget increase. Johansen et al. [2002] estimated
that it would cost 224 million NOK yearly to fulfill the requirements proposed in Norwegian
Ministry of Health and Care Services [2000] across Norway.

OUH has not been able to meet the response time goals and is looking to improve its response
times by utilizing its limited resources more e↵ectively. In particular, they are interested in
dynamically distributing units based on factors such as time, weather, and historic caseload.

2.1 EMS at Oslo University Hospital

The Division of Prehospital Services at OUH is responsible for the prehospital critical care and
transportation of patients in Oslo and what was previously Akershus and Østfold (now part of
Viken). The Emergency Medical Communication Centre (EMCC) department answers calls to
the emergency medical number and manages the ambulance fleet in Oslo, Akershus, and Østfold.
This area is approximately 10,000 square kilometers and has around 1.5 million inhabitants. The
medical operators at OUH are nurses or paramedics with additional training. They use a national
triage system to classify a reported incident as acute, urgent, or regular. Regular incidents can
be planned ahead of time, for example in the case of a patient transfer between two hospitals. A
resource coordinator prioritizes between the EMCC’s active missions and chooses which operative
units to dispatch to which incident. The resource coordinator controls the fleet actively and can
order a unit to relocate to cover temporarily unavailable units.

OUH’s Ambulance Department is responsible for both emergency missions and regular patient
transport in Oslo and Akershus. The department covers the area with 45 day units and 29
night units, sta↵ed by ambulance workers or paramedics. In addition to the ambulances, the
department has specialized resources such as physician-, paramedic- or supervisor-sta↵ed vehicles,

7
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Figure 2.1: An EMS timeline with time points colored to indicate how they are tracked in
OUH’s systems. Red points are tracked manually by the ambulance personell, while blue points
are tracked automatically in the EMCC’s systems.

and rapid response units that utilize motorbikes, bicycles, and cars. These special resources
generally do not have the capacity to transport patients. A newly introduced resource is the
medical transport vehicles made for patients who need transport but no medical attention. Note
that Østfold, although covered by the same EMCC as Oslo and Akershus, has its own ambulance
fleet managed by Østfold Hospital.

Figure 2.1 illustrates the time points in the EMS timeline that are tracked in OUH’s systems.
The blue time points in the figure are tracked automatically in the EMCC systems, while the
red time points are reported manually through a system in the ambulances.

OUH’s ambulances are distributed over 15 ambulance stations. In 2013 a paramedic vehicle
station was introduced at Nesodden to reduce the response time to this highly populated area.
Between 2016 and 2017, the ambulance department gradually introduced strategic ambulance
standby sites to further reduce the response time. These standby sites were predetermined
strategic geographic locations near areas that had unsatisfactory response times. A standby site
was typically a gas station parking lot near an intersection that could house one ambulance. The
introduction of the Grorud standby site in 2016 resulted in a 20% increase in response time goal
achievement in the nearby city boroughs Grorud, Alna and Stovner [Oftedahl, 2016]. No extra
resources were introduced in this time period; only the distribution of resources was modified.
These early standby sites decreased both the time-to-scene and the unit reaction time as the
ambulance personnel waited inside the ambulances with the engines running, ready to leave at
a moment’s notice.

The introduction and use of the standby sites were somewhat problematic, as described
in Kohlstrunk [2018]. There were issues around the working environment of the ambulance
personnel, such as the lack of restroom and dining facilities. The number of standby sites peaked
at a total of 10 in 2017. In 2019 the Norwegian labor inspection authority investigated the case
and came to an agreement with OUH in which the use of standby sites without adequate facilities
was to be terminated. In two standby sites (Grorud and Skedsmokorset), the necessary facilities
were procured, and two other sites (Strand and Abildsø) had already been moved to locations
with adequate facilities. Figure 2.2 shows the location of ambulance stations and active standby
sites, as well as the standby sites that were closed in 2019.

Now, OUH is interested in knowing whether they can further reduce the response time by



2.1. EMS AT OSLO UNIVERSITY HOSPITAL 9

Figure 2.2: Illustration of the geographical areas of Oslo (blue grid) and Akershus (red grid)
and the location of OUH’s ambulance stations and standby sites. The dark areas are fjords,
lakes, and rivers; the rest is land. The city center of Oslo is close to the Oslofjord, where the
concentration of ambulance stations and standby sites is the highest. This area also has the
highest population density.
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positioning their ambulances strategically on a daily basis based on forecasts of the ambulance
demand. They would like a complete system that makes daily recommendations for the number
and location of ambulances for each hour of the following day. Such a system would need daily
forecasts of the hourly ambulance demand in small geographical regions. The demand forecast
can determine the number of ambulances needed and, together with a travel time and workload
forecast, the optimal positioning of the ambulances. In this thesis, we focus on making such
forecasts.

2.2 Datasets

The EMS incident dataset used in this thesis was provided by the EMCC department of OUH
and the Norwegian National Advisory Unit for Prehospital Emergency Medicine (NAKOS). It
includes the location and timestamps of missions completed by the ambulance department be-
tween January 1st, 2015, and February 11th, 2019. The timestamps recorded in the dataset are
the red and blue time points depicted in Figure 2.1. The timestamps registered manually in the
ambulances during a mission (red points in the figure) are often missing, especially for acute
missions.

Because of privacy concerns, we only have access to an anonymized version of the data in
which the exact incident locations have been mapped to a standard 1x1km grid as defined by
Statistics Norway.1 The grid map over Oslo and Akershus is illustrated in Figure 2.2.

Three main observations can be made from the statistics of the incident dataset presented
in Table 2.1. Firstly, the number of incidents increases with each passing year. Secondly, there
are more acute than urgent incidents and more urgent than regular incidents. Thirdly, that the
ambulances are the most used units; they respond to 96% of the incidents in the dataset. In
addition, we see that there are some incidents with unknown priority and some that occurred
outside of the time range of the dataset. There are also a lot of incidents in the unfiltered incident
dataset that lies outside of the geographical areas of Oslo and Akershus. These incidents are
removed from the dataset before we use them for training forecasting models, as described in
Section 5.1.1.

In addition to the incident dataset, we collect a weather dataset with precipitation and tem-
perature data from the most central grid cell in Oslo at 3-hour intervals. The collection of this
data is detailed in Section 5.1.2.

2.3 Initial Analysis of Dataset

In this section, we explore the filtered incident dataset to give ourselves and the reader an idea
of how the EMS demand in Oslo and Akershus behaves in time and space. Refer to Section 5.1.1
for details on the filtered incident dataset.

There is a high degree of weekly seasonality in the EMS demand in Oslo and Akershus, as can
be seen in Figure 2.3 and the autocorrelation plot in Figure 2.4. The demand is generally high
during the day and low during the night. The demand is slightly shifted on weekends compared
to weekdays as people sleep longer and stay up later. The planned regular incidents occur mostly
in regular working hours, with almost no incident on evenings and few during weekends. From
Figure 2.5 it seems like there is some annual seasonality as well. This becomes more apparent in
the autocorrelation plot in Figure 2.6. Similar weekly and annual seasonality have been seen in

1More information about the grid can be found in Stand and Bloch [2009]. The grid can be downloaded from
Statistics Norway at www.ssb.no/natur-og-miljo/geodata.

www.ssb.no/natur-og-miljo/geodata
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Number of incidents
Total 754 811
In year: 2015 147 880
In year: 2016 185 976
In year: 2017 193 086
In year: 2018 201 675
In year: 2019 26 190
In year: other 4
Priority: acute 313 285
Priority: urgent 285 530
Priority: regular 155 987
Priority: unknown 9
Unit: ambulance 723 482
Unit: ambulance supervisor 19 718
Unit: physician-sta↵ed vehicle 8 800
Unit: rapid response vehicle 2 251
Unit: medical transport 560

Table 2.1: Statistics of the original incident dataset.

multiple other case studies [Channouf et al., 2007; Steins et al., 2019; Zhou and Matteson, 2015;
Matteson et al., 2011; Jones et al., 2002; Rezaei and Ingolfsson, 2021].

The EMS demand also exhibits an increasing trend, as can be seen in Figure 2.5, probably
due to population growth or aging. A similar trend was present in Channouf et al. [2007].

There is a high degree of geographical locality of the demand, as can be seen in Figure 2.8.
The most central grids have significantly more incidents than more rural areas. We can see from
Figure 2.9 that the planned regular incidents constitute most of the incidents occurring in the
cells with the highest EMS demand (the black cells in Figure 2.8). These high concentrations of
regular events are connected to the transport of patients from hospitals.

Figure 2.7 illustrates the intense locality in a di↵erent way. The figure shows that over half
of the grid cells in Oslo and Akershus have not had a single incident for over four years. Over
the same period, only 581 of the 5569 grid cells have experienced 100 incidents or more.

In Figure 2.10 we illustrate the average distribution at di↵erent times of the day during
weekdays. We are unable to see any apparent di↵erences in the distributions, but it might seem
like the day-distribution is slightly more spread out than the other two.

From Figure 2.9 and 2.3, it is clear that the planned regular incidents have a very di↵erent
spatio-temporal distribution compared to the urgent and acute incidents, and to some lesser
degree compared to the unplanned regular incidents. The planned regular incidents are concen-
trated temporally in regular working hours and spatially in grid cells with hospitals. The urgent
and acute incidents have very similar spatial distributions. Their temporal distributions are also
quite similar, but there are slightly more acute incidents. In addition, it seems like there are
slightly more incidents during regular working hours relative to non-working hours for urgent
and unplanned regular incidents. This pattern is not observed for acute incidents.
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Figure 2.3: Average EMS demand per priority level for each hour of the week. The regular
incidents are similar in volume, as are the acute and urgent incidents. The planned regular
incidents have a distinct shape, while the volumes of the other priority incidents are more similar.

Figure 2.4: Autocorrelation plot of the hourly filtered demand, limited to one week. The highest
autocorrelation is at one week lag.
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Figure 2.5: Number of incidents registered per day of the filtered incident dataset. The data
appears to have an increasing trend and annual seasonality.

Figure 2.6: Autocorrelation plot of the daily demand of the filtered incident dataset. The plot
indicates that the data has a trend and annual seasonality.
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Figure 2.7: Distribution of grid cells in Oslo and Akershus on the total number of incidents they
have in the filtered incident dataset. The data is skewed towards zero; 2963 of the 5569 grid cells
have not experienced a single incidents over more than four years.
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Figure 2.8: Illustration of the total number of incidents per grid cell in the filtered incident
dataset. The demand exhibits extreme locality. See Figure 2.2 for a reference of the grid map of
Oslo and Akershus.
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(a) Acute (b) Unplanned regular

(c) Urgent (d) Planned regular

Figure 2.9: Illustration of the number of incidents per grid cell for each level of priority in the
filtered incident dataset. The number of incidents indicated by the colors are of logarithmic
scale, identical to the one showed in Figure 2.8
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Figure 2.10: The average distribution of weekday incidents at di↵erent time periods, excluding
planned regular incidents. Night: 0-8, Day: 8-16, evening: 16-24. The distributions are strikingly
similar.
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Chapter 3

Theory

We propose a variety of models for predicting the EMS demand. This chapter is dedicated to
explaining the fundamentals of time series and the models we propose for making forecasts of the
EMS demand. We define time series and the simple moving average forecasting model in Section
3.1. Then we describe the fundamentals of neural networks and how they learn in Section 3.2.
This section also details the architecture of the two types of neural networks used in this thesis.
Finally, we define the metrics used to evaluate and compare the EMS demand forecasts of our
proposed models in Section 3.3.

3.1 Time Series

A time series is a sequence of observations in time; y = [y1, y2, ..., yn]. Typically, the observations
are made at regular periods of time, in which case the time interval between observations is the
resolution of the time series. A time series can be univariate or multivariate. Univariate means
that the time series consist of a single value, i.e. that yt 2 R. An example of a univariate time
series is the hourly number of EMS incidents in a spatial region. A multivariate time series on
the other hand contains multiple variables in each time step, i.e. yt 2 Rm for some m > 1.
An example of a multivariate time series is the hourly number of EMS incidents in three spatial
regions, in which case m = 3.

3.1.1 Patterns

A time series can exhibit several common patterns. A trend in a time series means that the values
are generally increasing or decreasing in the long term. EMS demand can exhibit an increasing
trend if the area experiences an increase in population, as we saw in Figure 2.5. Seasonality in a
time series means that there is a pattern in the series with a fixed period. We saw an example of
weekly seasonality in Figure 2.3, where the EMS demand volume fluctuated regularly with the
day and hour of the week.

3.1.2 Autocorrelation

Autocorrelation is the correlation between lagged values of a time series. There is one autocor-
relation value for each level of lag k; rk is the autocorrelation between yt and yt�k. The value of

19
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rk can be calculated according to Equation 3.1, where ȳ is the average of the time series.

rk =

Pn
t=k+1(yt � ȳ)(yt�k � ȳ)

Pn
t=1(yt � ȳ)2

(3.1)

Plots of the autocorrelations of a time series can illustrate the potential trend and season-
ality of the series. A trend will result in decreasing autocorrelation with increased lag, while
seasonality will result in peaks in the autocorrelation at multiples of the seasonal frequency. The
autocorrelation plot in Figure 2.4 showed that the hourly EMs demand volume had daily season-
ality, but an even stronger weekly seasonality since r168 > r24. Meanwhile, the autocorrelation
plot in Figure 2.6 showed that the daily EMS volume had some trend and annual seasonality
because we found peaks with each year and a generally decreasing autocorrelation.

3.1.3 Forecasting

Forecasting is about predicting the future as accurately as possible given all the information
available, according to Hyndman and Athanasopoulos [2018]. The time horizon of a forecast
specifies how many time steps into the future we want to predict. We denote the forecast of time
series with horizon t as ŷn+t. Hence, the forecast of some hourly EMS demand two hours into
the future will be ŷn+2. If we want to forecast every hour for the next 24 hours, we must make
24 separate forecasts with time horizons beginning at one and incrementally increasing up to 24.

We can make point forecasts or prediction interval forecasts. A point forecast ŷn+t is expected
future value of the relevant variable; ŷn+t = E[yn+t]. A prediction interval forecast [l̂n+t, r̂n+t],
on the other hand, is a range of values that contain the future value with some predetermined
probability p such that P(l̂n+t < yn+t < r̂n+t) = p.

3.1.4 Moving Average

A moving average is a simple time series forecasting model that makes point forecasts by av-
eraging a number of the previous values of the time series. There are several variations of the
moving average model.

Simple Moving Average

A simple moving average (SMA) model uses the last k values to make forecasts. The forecast of
an SMAk model for all time horizons t > 1 can be calculated with Equation 3.2.

ŷn+t =
1

k

nX

i=(n�k+1)

yi (3.2)

Cumulative Moving Average

A cumulative moving average (CMA) model uses all the available data when it forecasts. It is
essentially a simple moving average where k = n. A CMA can be updated e�ciently with a new
sample yt+1, as shown in Equation 3.3.

ŷt+1 =
yt+1 + t · ŷt

t+ 1
. (3.3)
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3.2 Artificial Neural Network

Artificial neural networks (ANNs) are learning systems inspired by biological brains. An artificial
neural network consists of artificial neurons connected by directed links. A link from neuron a to
neuron b serves to propagate the activation from neuron a to neuron b. Each link has a weight
associated with it that determines the strength and sign of the connection. A neuron’s activation
is a function of its inputs. If the weighted sum of the inputs is above some (soft) threshold, the
neuron “fires” by outputting a high activation value. Let wij be the weight of the link from node
j to node i. Then the combination of the inputs and corresponding weights to node i is given by
Equation 3.4.

zi =
X

j

wijxi + bi. (3.4)

Note that this is a simple linear function. A neural networks ability to capture non-linear
functions comes from its activation function. A neuron’s output or activation yi is given by
Equation 3.5, where � is an activation function. [Russell and Norvig, 2009].

yi = �(zi). (3.5)

Neurons are often structured in layers in which the neurons in one layer are connected to
the neurons of another layer. In this case, we can concisely represent the weights between the
neurons of the two layers in a matrix W 2 Rmxn, where n and m are the numbers of neurons in
the first and second layer, respectively. The biases of the neurons in a layer can be represented by
a vector b. Then we can express the output of the entire layer with matrix and vector operations
as shown in Equation 3.6.

y = �(Wx+ b). (3.6)

3.2.1 Supervised Learning

A neural network can be used to implement some function ŷ = f(x;⇥), where x = [x1, x2, ..., xn]T

are the values of the n input neurons, ŷ = [ŷ1, ŷ2, ..., ŷm]T are the values of the m output neurons
of network after a forward pass, and ⇥ represents the weights and biases of the network. In a
supervised learning setting, the desired output to a set of inputs are known, so we can compute
the error of the network’s outputs and use that to adjust the network’s weights and biases. This
can be formulated as an optimization problem. Let L(ŷ,y) be a loss function that measures the
“distance” between an output ŷ and a target y, and let D be the set of available input data.
Then neural learning seeks to minimize the expected di↵erence between the network’s output
and the target value by adjusting the network parameters, as described in Equation 3.7.

min
⇥

E(⇥) = min
⇥

E[L(f(x;⇥),y)]x2D (3.7)

The tuning of the network’s weights is usually done through some variation of gradient descent
learning - a simple optimization method. By calculating the gradient of the loss function r⇥

and taking a step in the opposite direction of the gradient, the function will be optimized to a
local minimum. The backpropagation algorithm is used to e�ciently propagate the error to the
di↵erent weights and biases of the neural network.

Neural networks are usually implemented with some non-deterministic features. This causes
di↵erent instances of a network to (usually) converge to di↵erent local minimums, resulting in
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the models having di↵erent performances. Examples of sources of randomness in neural networks
are random initialization of weights and stochastic gradient descent optimization methods.

3.2.2 Online and O✏ine Learning

Supervised learning can be performed either o✏ine or online.
In an o✏ine learning setting, a training data set is collected and prepared in advance of the

training. A machine learning model can train on the dataset for as long as it likes to extract as
much information as possible from the data. When the model is finished with its training, it can
make predictions, but it no longer learns; it will always produce the same output to the same
input.

It is possible to retrain machine learning models o✏ine periodically to leverage more data
as it becomes available. This gives the o✏ine models increasingly large datasets, which usually
improves performance but can lead to storage and runtime issues. Each time the machine
learning method is retrained, it estimates a single static function and weights all samples equally.
Therefore, such a model will not be able to e�ciently capture changes in the underlying function,
even though it is presented with new samples.

In an online learning setting, the machine learning model does not have access to a complete
training set with examples of inputs and outputs. Instead, it is presented with some inputs xt at a
time and has to predict the corresponding outputs ŷt before knowing the target values yt. When
the target values are revealed, the model can calculate its errors and learn from them before
being presented with the next sample xt+1. This is a natural setting for forecasting systems as
they are made to make predictions without knowing the answer, but the answer is often known
in hindsight. Online learning makes the model dynamic; the same input can result in di↵erent
outputs at di↵erent times, even for a deterministic model. Sometimes, an online model is so
eager to adapt to new information that it abruptly forgets previously learned information. This
is know as the catastrophic forgetting problem [Losing et al., 2018].

It is possible to combine online and o✏ine training. Typically, a data set is available that can
be used for initial o✏ine training of the model. Then, when the model is deployed in a real-world
setting, it can continue learning using online learning.

3.2.3 Hyperparameter Tuning

Many parameters must be decided when implementing a neural network. Some choices, such as
the activation function of the output layer and the number of output neurons, can be determined
by the nature of the problem at hand. For example, if we try to solve a classification problem with
ten potential classes, we would want to have ten output neurons and use the softmax activation
function. Other parameters, such as the network architecture, are challenging to determine from
the problem description. One of the best practices for making such decisions is to try out many
di↵erent combinations using cross-validation and choose the one that works best.

We can evaluate the performance of a model without peeking on the test set by using a cross-
validation method. A cross-validation method seeks to determine how well a model generalizes
to an independent data set.

Holdout Cross-Validation

The simple holdout cross-validation technique splits the training data in two and uses one part
for training and one part for validation. It is nontrivial to determine the sizes of the two sets.
We want to use as much of the data as possible for training, but if the validation set is small,
we will get a poor estimate of the model’s accuracy. We denote the percentages used for the two
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sets as X/Y, where X is the percentage of the data in the training set, and Y is the percentage
of the data used for the validation set. For example, 80/20 holdout means we use 80 percent of
the data for training and 20 percent for validation.

K-Fold Cross-Validation

In k-fold cross-validation, we split the data into k subsets of equal size and use k � 1 of them
for training and the remaining subset for validation. We do this k times so that every subset is
used for validation. This cross-validation technique utilizes more of the data to better estimate
the accuracy at the cost of longer computation time.

3.2.4 Overfitting

Overfitting is a common problem in machine learning. It occurs when the model learns too
much about the training data at the cost of generalization. This frequently happens when the
model is complex and the amount of training data is relatively small. We can mitigate overfitting
through di↵erent regularization techniques. Early stopping is a regularization technique based
on monitoring the validation error and stop the learning process when the validation error stops
improving. Sometimes, the validation error can go up temporarily before decreasing again.
Patience can be used to avoid stopping the learning process prematurely. The patience number
specifies how many learning iterations we allow with no improvement in validation error before
we stop learning.

3.2.5 Classes of Artificial Neural Networks

Artificial neural networks come in many variations with di↵erent characteristics and capabilities.
We can distinguish between di↵erent types of ANN models by looking at their topology. We
describe the two types used in this study: the MLP and the LSTM.

MLP

A multilayered perceptron (MLP) is a fully connected feed-forward neural network structured
in layers. An MLP has three or more layers: an input layer, one or more hidden layers, and
an output layer. Each node in one layer is connected to every node in the next layer. The
flow of information in an MLP is unidirectional; there are no loops in the connections of the
neurons. An example of a simple MLP with one hidden layer is shown in Figure 3.1. According
to the universal approximation theorem, an MLP can represent any continuous function within
a specific range. We use MLPs to forecast the hourly volume, distribution, and complete EMS
demand in Chapter 5.

LSTM

A Long Short-Term Memory (LSTM) is a recurrent neural network (RNN), meaning it connects
its outputs to its inputs, allowing it to persist information over time. However, most RNNs
struggle to persist information over extended periods because of vanishing or exploding gradients,
as described in Bengio et al. [1994]. The LSTM was proposed in Hochreiter and Schmidhuber
[1997] to combat these learning issues. Figure 3.2 shows the architecture of an LSTM. At time
step t, the LSTM takes in inputs xt 2 Rn and produces outputs ht 2 Rm. It uses its previous
output ht�1 and the state of its memory cell ct�1 in addition to the new inputs to determine
its next state and output. The squares in the figure represent neural network layers, while the
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Figure 3.1: Topological illustration of an MLP with three input nodes, three nodes in the hidden
layer and two output nodes.

circles represent element-wise operations. Each of these neural network layers has m + n input
nodes and m output nodes. The layer’s activation function is either the sigmoid (�) or tanh
function, as illustrated in the figure. The memory cell ct can persist through time which enables
the LSTM network to capture long-term dependencies.

The LSTM has three specific “gates” for modifying its state. The forget gate determines
which parts of the memory cell to remember. It is calculated according to Equation 3.8, where
Wf and bf are the weights and biases of the forget gate neural network layer, and [x,h] denotes
the concatenation of the two vectors.

ft = �(Wf [xt,ht�1] + bf ) (3.8)

The input gate layer determines which parts of the new input are allowed to update the
memory cell c. It is calculated according to Equation 3.9, where Wi and bi are the weights and
biases of the input gate layer.

it = �(Wi[xt,ht�1] + bi). (3.9)

The value to (possibly) update the memory cell with is given by another neural network layer
with a tanh activation function, as described in Equation 3.10.

c̃t = tanh (Wc[xt,ht�1] + bc). (3.10)

Together, the input gate and the forget gate determine how the memory cell is updated, as
described by Equation 3.11.

ct = ft � ct�1 + it � c̃t. (3.11)

Finally, the output gate determines which parts of the memory cell ct to output. It is calcu-
lated similarly to the input and forget gate, as described in 3.12.

ot = �(Wo[xt,ht�1] + bo). (3.12)

The final output ht of the LSTM is given by Equation 3.13.

ht = ot � tanh ct. (3.13)
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Figure 3.2: The architecture of an LSTM, adapted from Olah [2017].
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The LSTM has been used with success as a time series forecasting model in many applications.
We employ LSTM in our research to investigate whether there are patterns in time that can
improve the forecasting of our EMS demand.

3.3 Error Metrics

Error metrics are used to quantitatively evaluate the performance of prediction models.

3.3.1 Mean Absolute Error

The mean absolute error (MAE) is a popular metric for regression problems. It avoids the
cancellation of negative and positive errors by taking the absolute value of each error. For
predictions ŷ 2 Rm and targets y 2 Rm, the mean absolute error is defined as:

MAE (ŷ,y) =
1

m

mX

i=1

|ŷi � yi|. (3.14)

3.3.2 Mean Squared Error

The mean squared error (MSE) is also a popular metric for regression problems. Similarly to
the MAE, it avoids cancellation of negative and positive errors. It squares the error instead of
taking the absolute value, which makes it emphasize large errors. For predictions ŷ 2 Rm and
targets y 2 Rm, the mean squared error is defined as:

MSE (ŷ,y) =
1

m

mX

i=1

(ŷi � yi)
2. (3.15)

.
MSE is often used as a loss function for neural networks because of the e�cient calculation

of its gradient.

3.3.3 Categorical Cross-Entropy

Categorical cross-entropy (CCE) is a measure of the distance between two probability distri-
butions. It is based on cross entropy which is a measure of the distance between two vec-
tors in information theory. For a prediction ŷ 2 Rm,

Pm
i=1 ŷi = 1 and a target distribution

y 2 Rm,
Pm

i=1 yi = 1, the categorical cross-entropy is calculated according to Equation 3.16.

CCE(ŷ,y) = �
mX

i=1

yi log ŷi. (3.16)

For many predictions and targets, we take the average of the cross-entropies between each
prediction-target pair.



Chapter 4

Related Work

EMS demand forecasting is a crucial part of any ambulance location model. A variety of technical
approaches have been proposed to forecast the EMS demand in previous research. One of the
many choices an analyst must make when creating such a forecasting model is their forecasts’
time and space granularity. Larger granularity makes the data less sparse, making it easier
to train models. On the other hand, smaller granularity conveys more useful information for
optimal unit location but is prone to being highly skewed towards zero demand. Forecasting the
exact time and location of future events is impossible as the incidents are stochastic. This raises
the question of how well we can estimate the demand and how much gain there is in trying to
supersede rudimentary predictors.

In this chapter, we will discuss how others have modeled EMS demand in previous case
studies. We group these cases by their spatial and temporal granularity, starting with the low
resolution methods in Section 4.1 and ending with the high resolution methods in Section 4.4.
Daily forecasts are considered a low temporal resolution, while a time interval of one or a few
hours is considered as high resolution. For the spatial resolutions, we consider entire cities to
be low resolution while spatial regions of a few square kilometers are considered high resolution.
The work concerned with the highest spatio-temporal resolutions, discussed in Section 4.4, is
given more attention as they are most relevant for this study.

4.1 Low Spatial and Temporal Resolution

The research detailed here study the daily EMS demand in large cities.

4.1.1 Wong et al.’s Research

Wong and Lai [2010] used regression analysis to determine the correlation between weather and
daily ambulance demand in Hong Kong using EMS data from 2006-2009. The e↵ects were studied
for di↵erent target groups based on triage level, age, gender, and hospital admission status. They
found a statically significant relation between the weather and the EMS demand among older
people and people with pre-existing conditions. Further, they tested di↵erent amounts of time-
lag to ascertain when the weather a↵ects the EMS demand the most. They found that a time lag
of four days produces the best results, meaning that the weather today a↵ects the EMS demand
in four days the most.

In Wong and Lai [2013], they show a significant relationship between weather forecasts and
the daily ambulance demand using an ARIMA model. Their findings indicate that weather
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forecasts can improve demand forecasts, though to a lesser degree than historical weather data.
Both Wong and Lai [2010] and Wong and Lai [2013] found the average temperature to be the
most influential weather parameter.

Wong and Lin [2020] looked at the daily EMS demand of Taipei City, Taiwan, using EMS
data from 2010-2012. They used multivariate regression with average, minimum, and maximum
temperature, cloud amount, relative humidity, wind speed, barometric pressure, precipitation,
and visibility inputs to model the demand. Also here, they found that a time lag of four days
produced the best results and that older people and those with pre-existing conditions are most
sensitive to the weather.

4.1.2 Thornes et al.’s Research

Thornes et al. [2014] study the e↵ect of air temperatures on the daily EMS demand in Birming-
ham, UK, using data from 2007-2011. They found that the demand is a↵ected by extremely hot
and cold weather. Although they did not implement any forecasting models, they indicate that
weather forecasting models should be used in EMS planning.

4.1.3 Huang et al.’s Research

Huang et al. [2019] use a Poisson Neural Network (PNN) to estimate the daily number of emer-
gency calls in Ningbo, China. The result of the PNN is adjusted by fitting a multiple linear re-
gression (MLR), an autoregressive integrated moving average (ARIMA), and a multi-gray model
(GM) to the residual error of the PNN and adding this to the PNN’s forecast. The model uses
temporal features, weather, and incidents from the six previous days as inputs. The proposed
combined model outperforms the other models tested, including an ANN, Poisson regression,
GM, ARIMA, and MLR.

4.2 Low Spatial and High Temporal Resolution

The methods described in this section forecast the hourly demand in large cities, though the
work described in Section 4.2.2 includes daily forecasts as well.

4.2.1 Matteson et al.’s Research

Matteson et al. [2011] combined a time series model with a dynamic latent factor model to
forecast hourly emergency calls in Toronto, Canada. The factor model includes day-of-week
and week-of-year e↵ects via constraints on the factor loadings. Smoothing splines were used to
enforcing a smooth evolution of factor loadings and levels. EMS data from 2007-2008 was used
to train and validate the models. The authors found that the proposed model outperformed a
moving average model.

4.2.2 Channouf et al.’s Research

Channouf et al. [2007] look at both daily and hourly forecasts of emergency calls in Calgary,
Canada. They compare five di↵erent time series models for daily forecasts where three of the
models build upon their predecessor. The basis for these improved models is a linear regression
model with temporal inputs and special-day e↵ects. The first extended model adds an autore-
gressive process for the errors to the basic model. The next extended model adds interaction
between day-of-week and month-of-year of the first extended model. The third extended model
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is a stripped-down version of the second extended model. The last model is a doubly seasonal
ARIMA model with special-day e↵ects. They find that the third extended model (the stripped-
down linear model with special-day e↵ects, day-month interactions, and autoregressive residual
estimation) makes the best daily forecasts for their data.

For hourly forecasts, the authors extend the best daily model in two ways: hourly conditional
distribution of the daily call volume and an autoregressive hour-of-day e↵ect. The first of these
two models produce the best forecasts. In addition to this, the authors show that it is possible
to improve the hourly forecast with a kind of online learning approach in which they update the
hourly forecast for the later hours of a day with correct data for the early parts of the day.

4.3 High Spatial and Low Temporal Resolution

This section describes two studies that forecast the daily demand in small spatial regions of some
square kilometers or on a continuous spatial domain.

4.3.1 Lin et al.’s Research

In Lin et al. [2020], six di↵erent models are trained on nine years worth of data to forecast the
daily EMS demand in each of Singapore’s regions. The six models tested are moving average,
linear regression, support vector regression (SVR), MLP, radial basis function network (RBFN),
and light gradient boosting machine (LightGBM). Among these, the LightGBM was chosen as
the most appropriate model. The LightGMB model was then trained on two other datasets, one
with more demographic data and one with composite spatio-temporal features. They found that
the additional data did not improve the forecasts; the composite features made the forecasts
worse.

4.3.2 Grekousis and Liu’s Research

Grekousis and Liu [2019] try to forecast the exact location of EMS events on a weekly basis
in Athens, Greece. They use a novel notion of “poly events” in which they match incidents in
successive time steps (weeks) to form paths in time. To make forecasts based on the poly events,
they use an artificial neural network (ANN) which is tuned with evolutionary hyper-parameter
optimization. They use 23 weeks of data to calibrate the model and test it by forecasting the
24th week. They find that they reduce the total distance between ambulances and incidents by
over 1km when distributing the units according to a location-allocation model with their forecast
demand as input, compared to the current location of ambulances in Athens.

4.4 High Spatial and Temporal Resolution

This Section is focused on research done on hourly forecasts in either small spatial regions of
some square kilometers or on a continuous spatial domain. Using such high spatio-temporal
scales is one of the main challenges of our work; therefore, this research is reviewed in greater
detail than previous sections.

4.4.1 Steins et al.’s Research

Steins et al. [2019] use Zero-Inflated Poisson (ZIP) regression to model the hourly EMS call
volume in 6x6km, 4x4km, and 3x3km spatial regions of three di↵erent Swedish counties. The
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ZIP regression combines two models: one that generates zeroes and a Poisson process that
generates counts. This makes it suitable for modeling point processes with excess zero-count
data. Steins et al. [2019] create one model for each county, with socioeconomic, geographic,
and temporal features as independent factors. The ZIP model performs slightly better than the
existing model, which calculates the total average demand in the county per hour of the week
using data from the previous year and then assigning a fraction of this demand to each grid
based on their day and night population.

4.4.2 Setzler et al.’s Research

In Setzler et al. [2009], the authors propose an MLP to forecast the emergency call volumes in
Charlotte-Mecklenburg, North Carolina (USA) for a variety of grid cell sizes and time intervals.
The provided EMS data from 2002-2004 was mapped to di↵erent combinations of grid cell sizes
(2x2mile and 4x4mile) and time intervals (1hr and 3hrs). The MLP has four temporal inputs
(hour, day of week, month, and season), a hidden layer with four nodes, and one output value
for each grid cell. Setzler et al. compared their proposed MLP model to the MEDIC forecasting
method used by the EMS agency in Charlotte-Mecklenburg.

The MEDIC method is a simple moving average model, which makes forecasts by averaging
the call volumes at the same time point for the previous four weeks over the past five years. Let
Ah,d,w,y be the actual call number for a given hour, day, week, and year. Let Y = 5 be the
number of years and W = 4 be the number of weeks to average over. Then the MEDIC forecast
Fh,d,w,y for a given hour, day, week, and year is given by Equation 4.1.

Fh,d,w,y =

PY
i=1

PW
j=1 Ah,d,w�j,y�(i�1)

YW
(4.1)

The authors found that the new model performs slightly better than MEDIC for 4x4mile
grids (both 1hr and 3hr time intervals). For the 2x2mile grid with 3hr intervals configuration,
there is no statistical di↵erence between the two methods. Interestingly, MEDIC was better
for the 2x2mile grid with 1hr time intervals. Upon further inspection, the authors found that
forecasting only zeros outperformed the two other approaches for this configuration.

4.4.3 Chen et al.’s Research

Chen and Lu have studied the EMS demand in 3x3km spatial regions in New Taipei City,
Taiwan using data from 2010 to 2012. Chen and Lu [2014] forecast the daily demand using
moving average, neural network, linear regression, and support vector machine models. They
train one model for each of the spatial regions for each of the four model types. The SVM and
ANN models are trained with month, day of the week, season, hour, and year inputs. They
retrain their models with increased data after each forecast they make on the test set. They
found that the ANN model was best overall but that the SVM models were better for regions
with high EMS demand. They propose a model selection phase in which the best of the four
proposed models is selected for each region.

In the follow-up study, Chen et al. [2016] adapt this two-phased model-selection approach
to make 3hr forecasts in 3x3km spatial regions of three districts in New Taipei City. In the
first phase, they use cross-validation to select the best input parameters and potential hyper-
parameters for the four di↵erent models. Then, in the second phase, the best of the four proposed
models is selected for each grid. The authors tested seven di↵erent input sets for the SVM and
ANN models. The features included in the input sets are described in Table 4.1. Many di↵erent
models with di↵erent input sets were chosen for the regions. The district with the highest EMS
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Input set Input Features

Input set 1
Month, day, day of week, time bucket, weekend, rush hour,
year

Input set 2 Month, day, day of week, time bucket, weekend, rush hour
Input set 3 EMS demand of previous time bucket, weekend
Input set 4 EMS demand of previous time bucket, rush hour
Input set 5 EMS demand of previous time bucket, weekend, rush hour

Input set 6
EMS demand of previous time bucket, weekend, rush hour,
year, month, day of week

Input set 7 Season, month, day of week, time bucket

Table 4.1: The input sets tested in Chen et al. [2016], adapted from the original paper. Note
that input set 7 is identical to the one used in Setzler et al. [2009].

demand chose the ANN model in 4 out of 7 regions, while the districts with low demand preferred
the linear regression models, choosing those in 16 out of 27 regions. All of the input sets were
chosen one to three times each.

The paper also includes a smaller study on forecasting the daily demand in 2x2km regions
in Banqiao. Daily rainfall data was included in the inputs of the ANN and SVR models, but
the initial input set used is unspecified in the paper. During the validation phase for this
configuration, the following models were chosen: 5 ANN models, 5 SVR models, and 4 MA
models, where 4 of the SVR and 2 of the ANN models used the additional rainfall data.

In the 2016 study, Chen et al. found that the two-fold model selection approach produced
better results than the single model approach of Chen and Lu [2014].

4.4.4 Zhou’s Research

In her PhD thesis [Zhou, 2015] and related publications [Zhou et al., 2015; Zhou and Matteson,
2015, 2016; Zhou, 2016], Zhou proposes several novel approaches for forecasting the ambulance
demand on a discrete time and continuous space domain. She assumes that the ambulance de-
mand in each 1- or 2-hr time period independently follows a non-homogeneous Poisson process
whose expected value can be represented as a positive intensity function �t(s), where s 2 S ✓ R2

is a spatial location in the relevant geographic area S. The intensity function can be decom-
posed into an aggregate demand intensity �t =

R
s �t(s) ds and spatial density ft(s) such thatR

S ft(s) ds = 1. Then, �t(s) = �tft(s). The aggregate demand intensity �t is simply the total
demand of the entire geographic area of interest in time interval t, which has been well studied
by others. Hence, Zhou focuses on forecasting the spatial density ft(s). We call this approach
of forecasting the aggregated demand and its spatial density separately as a “split” approach.

Zhou [2015] includes case studies from Toronto, Canada, and Melbourne, Australia, with
data from 2007-2008 and 2011-2012, respectively. The Toronto study is described in Zhou and
Matteson [2015] and Zhou et al. [2015], while Zhou and Matteson [2016] describes the Melbourne
case, and Zhou [2016] contains a summary and comparison of the methods of both case studies.
Three main models are proposed for modeling the spatial density ft(s):

1. A Gaussian Mixture Model (GMM) with weekly seasonality constraints and conditional
autoregressive (CAR) priors to capture daily seasonality.

2. A spatio-temporal kernel density estimation (stKDE) approach.

3. An extended stKDE with kernel warping.



32 CHAPTER 4. RELATED WORK

These methods are compared against each other and the benchmark MEDIC approach adapted
from Setzler et al. [2009] using the Average Logarithmic Score (ALS).

The stKDEs are found to produce equally accurate forecasts as the GMM while having
considerably lower time complexity. The warped stKDE model outperforms the other models
in the Melbourne case as the warping adapts the stKDE to Melbourne’s complex geographical
boundaries.

4.5 Discussion

We are inspired by the work of Zhou and want to investigate how her split approach performs
compared to the more common complete method. We are also inspired by Setzler et al. [2009]’s
use of neural networks. We believe neural networks have a lot of potential in modeling the EMS
demand, and we will make an e↵ort to find the best possible architecture for such a model. In
addition, we test the LSTM model, which, to our knowledge, has not been tested in this domain
before. We use the MEDIC benchmark and the neural network model proposed in Setzler et al.
[2009] as benchmarks. Channouf et al. [2007] showed that the use of special day e↵ect flags for
New Year’s Eve and a local festival improved demand volume forecasts. We try to capture such
special days implicitly by adding a day of the month variable to our input set. Combined with
the month of the year, this should make it possible for a neural network to capture relevant
special day e↵ects. We also use weather inputs as suggested by Setzler et al. [2009] and Zhou
[2015]. Our study in Chapters 5, 6, and 7 is an extension of the work done by Wong and Lai
as we use a much higher spatio-temporal resolution. We also employ an online learning regime
as suggested in Chen and Lu [2014] and Chen et al. [2016] and compare it to traditional batch
learning.



Chapter 5

Experimental Method

We want to make accurate hourly forecasts of the EMS demand in 1x1km spatial regions in Oslo
and Akershus. Such a forecasting model must be able to produce forecasts for the next 24 hours
in a reasonable time.

We propose and implement a variety of forecasting models and compare them against each
other and the MEDIC, MLP, and All 0s methods discussed in Setzler et al. [2009].

Section 5.1 details how we preprocess the incident dataset and transform it to a time series,
how we collect weather data for our weather dataset, and what the di↵erent input sets for our
neural network models contain.

We explain how we divide our proposed models into three main categories (distribution,
volume, and complete) in Section 5.2. In Subsection 5.3, we describe how we structure our
experiments in three main phases and how the di↵erent models are trained and compared against
each other in each phase.

Section 5.4 describes the implementation details of our proposed and benchmark o✏ine meth-
ods. Finally, in Section 5.5 we detail how we augment our proposed models to use online learning.

All the programs created in this thesis are run on a 2016 MacBook Pro with a 2.9GHz Intel
Core i5-6267U processor and 8GB memory. We have not comprehensively timed the training or
testing of the di↵erent models as none of the models have had any issues producing 24 forecasts
in a matter of seconds.

5.1 Data Collection and Preprocessing

Before training our models, we preprocess the dataset. This includes removing incorrect and
uninteresting data and structuring it as a time series. We also collect weather data to be used
as inputs to our proposed neural networks.

5.1.1 Preprocessing

The original incident dataset described in Section 2.2 contained many missions outside of the area
o�cially covered by the ambulance department of OUH, most prominently in Østfold because
OUH’s EMCC department covers this area. These incidents were filtered out by doing an inner
merge on the id of the incident grid with those of Oslo and Akershus (collected from SSB),
reducing the dataset by 169 436 incidents. A total of 27 201 duplicate rows were also removed.
In addition, nine incidents with invalid priority levels and four with invalid time points were
filtered out. Some statistics on the resulting filtered incident dataset can be found in Table
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5.1. We see that the filtered dataset has the same characteristics as the unfiltered dataset, as
described in Section 2.2.

Number of incidents
Total 558 161
In year: 2015 118 385
In year: 2016 135 751
In year: 2017 139 081
In year: 2018 146 424
In year: 2019 18 520
Priority: acute 237 732
Priority: urgent 213 520
Priority: unplanned regular 56 505
Priority: planned regular 50 404
Unit: ambulance 532 925
Unit: ambulance supervisor 17 179
Unit: physician-sta↵ed vehicle 7 435
Unit: rapid response vehicle 93
Unit: medical transport 529

Table 5.1: Statistics of the filtered incident dataset.

To create the incident time series to be used in model fitting and testing, we first remove the
planned regular events from the filtered incident dataset. We do not need to forecast the planned
regular incidents because they will be known in advance. Then, we sort the remaining incidents
by grid cell id and resample them into hourly intervals starting at 00:00 on the 1st of January
2015 up to and including 23:00 on the 11th of February 2019. The result is a multivariate time
series of hourly resolution with N = 5569 variables - one for each spatial region. We denote this
time series as y, such that yt 2 RM is a vector with the incidents in the M = 5569 regions at
time step t, and (yt)k 2 R is the number of incidents in region k at time step t.

5.1.2 Weather Data Collection

Weather data has been collected through the Grid Time Series Data API provided by The
Norwegian Water Resources and Energy Directorate (NVE).1. The API provides access to time
series of weather data for grid cells. Several time series are available, such as daily temperature,
precipitation, snow depth, and wind speed. We collected temperature and precipitation data
at 3-hour intervals from 01.01.2015 00:00 up to and including 11.02.2019 21:00 for the grid cell
with the most incidents (SSB id 22620006649000). We then normalize the temperature and
precipitation data using Kera’s MinMaxScaler fitted on the data belonging to the training set.

5.1.3 Input Sets

The neural networks are trained and tested with four di↵erent sets of inputs. The basic input
set includes the hour of the day, day of the week, and month. These features are all one-hot
encoded, making a total of 24 + 7 + 12 = 43 input neurons. The other input sets are extensions
of this basic set.

1The API is available at http://api.nve.no/doc/gridtimeseries-data-gts There is also an interactive ap-
plication built on top of the API, which can be used to explore the data more intuitively at http://www.xgeo.no/.

http://api.nve.no/doc/gridtimeseries-data-gts
http://www.xgeo.no/
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Input set name Identifier Features Nodes
Basic b Hour, day of week, month 43

Weather w
Hour, day of week, month,
precipitation, temperature

59

Date d Hour, day of week, month, day 74

Weather and date w&d
Hour, day of week, month, day,
precipitation, temperature

90

Table 5.2: Overview of the four di↵erent input sets. The identifier of the input set is used in
the tables in the results (Chapter 6). The nodes column states the number of input nodes each
input set has.

The weather input set includes rainfall and temperature measurements in addition to the
basic inputs. For each hourly forecast, the entire day’s worth of weather data is included. As
mentioned in Section 5.1.2, the weather data is collected at 3-hour intervals, meaning each day
has eight measurements of each weather type. Hence, the weather set has a total of 43+8 ·2 = 59
input nodes.

The date input set includes the day of the month, in addition to the basic set. The day of
the month is one-hot encoded with 31 classes, making a total of 43 + 31 = 74 input nodes. We
hope that the inclusion of the day of the month will allow the neural network to leverage special
day e↵ects.

We also test a combined weather and date input set, which has 43 + 8 · 2 + 31 = 90 input
nodes.

An overview of the inputs and their identifiers used in the result tables can be found in Table
5.2.

5.2 Forecasting Model Categories

Our proposed models are split into three main categories: distribution, volume, and complete
models. The volume models forecast the aggregated hourly demand, while the distribution
models forecast how this demand is distributed spatially across the grid cells. The forecasts of
the volume and distribution models can be combined into a complete forecast which predicts the
number of incidents in each grid cell. The complete models make such complete forecasts directly.
We evaluate the volume and complete models using MSE and MAE, while the distribution models
are evaluated using categorical cross-entropy.

The complete models have 5569 positive output values - one for each grid cell. The target
values for the complete models are simply the number of incidents in each of the M regions at
each time step t; yt 2 RM .

The volume models have a single positive output. The target values for the volume models
are the sum of all events across all grid cells in a time step; ytvol = �t =

PM
i=1 (yt)i.

The distribution models have M = 5569 output values - one for each grid cell. The output
values must be positive and sum to one. The distribution target values are calculated by normal-
izing the number of incidents across a time step; yt

dist = 1
�t
yt. If there are no incidents (�t = 0)

in a time step, an even distribution is used as the target; yt
dist = [ 1

M , 1
M , ..., 1

M ].
For example, suppose we have only 5 grid cells with the following number of incidents at time

step t: yt = [1, 2, 0, 0, 1]. Then, the target distribution will be: yt
dist = [0.25, 0.5, 0, 0, 0.25], the

target volume will be ytvol = 4, and the complete target will be yt
comp = [1, 2, 0, 0, 1].
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Figure 5.1: Illustration of how the data set is split into a training, validation and test set.

Next, suppose that for a di↵erent time step t+ k there are no incidents: yt+k = [0, 0, 0, 0, 0].
Then the target distribution will be yt+k

dist = [0.2, 0.2, 0.2, 0.2, 0.2], the target volume is yt+k
vol =

0, and the complete target will be yt+1
comp = [0, 0, 0, 0, 0]. Note that 8t (ytvol ·yt

dist = yt
comp =

yt).

5.3 Experimental Phases

The forecasting models are trained, validated, and tested in di↵erent phases with di↵erent data.
Common for all phases is the use of early stopping with patience 5 in the training of the neural
network models. The maximum number of iterations is set to 100, but this limit is never reached.

First, in the architecture selection phase, we select the best architecture for each of our pro-
posed neural networks by using cross-validation on the training set. We use 5-fold cross-validation
for the MLP models and hold-out 80/20 hold-out cross-validation for the LSTM models, as they
are sensitive to the sequential order of the time series. We test 14 di↵erent architectures for each
model, varying between 2 and 3 hidden layers with 2, 4, 8, 16, 32, 64, or 128 nodes in each layer.

Next, in the validation phase, we train each of the proposed models on the training set and
evaluate them on the validation set, with and without online training. Because neural networks
have random initialization, we create five instances of each neural network model and train
them 80/20 hold-out cross-validation error. The instance with the lowest cross-validation error
is selected for the model, and only this instance is evaluated on the validation set. We select the
two best models within each category to proceed to the testing phase based on their performance
on the validation set.

Finally, in the testing phase, the six models selected in the validation phase and the three
benchmark models (MEDIC, MLP, and All 0s from Setzler et al. [2009]) are trained anew on the
combined training and validation set and tested on the test set, producing our final results. Also
here, each neural network model is trained five times with 80/20 hold-out cross-validation, and
only the instance with the best cross-validation error is evaluated on the test set.

Figure 5.1 shows how the incident time series is split into the training, validation, and test
set. The training set is the largest, with just over 2.5 years of data (1st of January 2015 - 1st of
July 2017). The validation set is the smallest, with just over 0.5 years of data (2nd of July 2017
- 10th of February 2018). The test set consists of 1 year’s worth of data (11th of February 2018
- 11th of February 2019).

5.4 O✏ine Forecasting Methods

We implement a variety of o✏ine forecasting methods for forecasting the hourly EMS demand
in Oslo and Akershus. These include several neural network models and some simple baseline
models based on averages of the historical EMS demand. The implementations of these models
are detailed in Section 5.4.1. We also implement 3 benchmark models adapted from Setzler et al.
[2009], as described in Section 5.4.2



5.4. OFFLINE FORECASTING METHODS 37

The models were implemented in Python 3.6.7 with the Keras 2.4.3, Pandas 1.1.2, GeoPandas
0.8.1, and Numpy 1.19.2 libraries. Default values have been used unless otherwise specified.

5.4.1 Proposed models

We choose neural networks because of their ability to identify and leverage complex and non-
linear patterns in data. The LSTM model can also leverage the sequential nature of the problem
and may be able to pick up patterns over time. The baseline models are created to capture the
simple patterns in time and space we saw in Section 2.3.

Neural Networks

We propose both MLP and LSTM neural networks (discussed in Chapter 3) to forecast EMS
demand. We use Keras to implement a total of 24 neural di↵erent network models: one MLP
and LSTM model for each of the four input sets for each of the three categories. As mentioned
in Section 5.3, we test each neural network model with 2-3 hidden layers and 2, 4, 8, 16, 32, 64,
and 128 nodes in each layer during the architecture selection phase.

We the RMSProp optimizer for all of the ANNs and the ReLU activation function in the
hidden layers of the MLPs. For the LSTM volume and complete models, we normalize the
output values of the training set using Keras’ MinMaxScaler to ensure e�cient training.

The distribution models are optimized using categorical cross-entropy loss and use the softmax
activation function in the output layer to ensure that the sum of the outputs is one. Meanwhile,
the volume and complete models are optimized using the MSE loss and have no activation
function in the output layer.

Volume Baseline

The volume baseline, ↵1hr, makes forecasts based on the average number of incidents in each
hour of the week. Thus it captures the weekly seasonality of the demand found in the initial
analysis (Section 2.3). It calculates these averages by grouping the incidents in the training
data by day of week and hour of the day and then averaging the number of events within each
group. Table 5.3 shows some of the forecast values created by ↵1hr after it has “trained” on the
training set. When making forecasts for the validation data, ↵1hr outputs the forecast value of
the row corresponding to the weekday and hour of the time point for each of the time steps in
the validation set. For example, if we want to forecast the number of incidents at some Monday
at 1 am, ↵1hr forecasts 8.52. We can easily interpret this forecast; there was an average of 8.52
incidents occurring on Mondays at 1 am in the training data.

Weekday Hour Forecast
1 0 8.94
1 1 8.52
1 2 7.00
... ... ...
4 16 17.44
4 17 16.76
... ... ...
7 23 11.21

Table 5.3: Example of a lookup table representing the volume baseline ↵1hr. These values
correspond to the forecasting values of ↵1hr after being “trained” on the training set.
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The pseudo-code below shows how we create the volume baseline and how it makes predici-
tons.

1 def c r e a t e vo l ume ba s e l i n e ( i n c i d e n t s ) :
2 # Group i n c i d en t s on day o f week and hour .
3 groups = i n c i d en t s . groupby (
4 [ i n c i d en t s . dayofweek , i n c i d en t s . hour ]
5 )
6 # Ca l cu l a t e average w i th in each group .
7 groups = groups .sum( ) / groups . count ( )
8 return groups
9

10 def b a s e l i n e f o r e c a s t ( ba s e l i n e , i n c i d e n t s ) :
11 f o r e c a s t s = [ ]
12 for i n c i d en t in i n c i d e n t s :
13 pred = ba s e l i n e [ i n c i d en t . dayofweek , i n c i d en t . hour ]
14 f o r e c a s t s . append ( pred )
15 return f o r e c a s t s

Distribution Baseline 1

The first distribution baseline, �total, makes forecasts based on the spatial distribution of the
incidents in the training set across all time steps. It calculates this distribution by summing the
number of events that have occurred in each grid cell and then dividing by the total number of
events. This calculation is expressed mathematically in Equation 5.1, where n is the last time
point in the training set, and t > 0 is the time horizon of forecast. As usual, we let yt 2 RM be
a vector of the number of incidents occurring in the M spatial regions at time point t.

�total(n+ t) =
1

Pn
⌧=1

PM
i=1 (y⌧ )i

nX

⌧=1

y⌧ . (5.1)

Note that the forecast of �total(n+ t) does not depend on the time horizon t; �total forecasts
the same distribution vector for all time steps.

Distribution Baseline 2

The second distribution baseline, �8hr, creates 21 di↵erent distribution predictions: one for each
8hr bucket of the week. These are created much in the same way as �total, but we group the
training set by day of the week and 8hr bucket before averaging within each group. Similarly to
↵1hr, it makes forecasts by referring its “lookup”-table of distributions based on the time bucket
of the time step to forecast.

Distribution Baseline 3

The third distribution baseline, �1hr, creates a distribution forecast for each hour of the week,
similarly to �8hr but with 168 di↵erent values.

5.4.2 Benchmarks

We use the MEDIC, All 0s, and MLP methods discussed in Setzler et al. [2009] as forecasting
model benchmarks. All of these models are in the complete category.



5.5. ONLINE FORECASTING METHODS 39

MEDIC

We implement the MEDIC method as described in Equation 4.1. However, we only have over
four years’ worth of data available, while the original MEDIC method uses five years of data.
We adapt the method by reducing the number of points included in the model to what we have
available. For the test set, this means that the forecasts before 07.01.2019 are made with 16
data points, while the forecasts for the next three weeks are made with 17, 18, and 19 points,
respectively. The remaining forecasts are made with the complete MEDIC method with 20 data
points. For simplicity, we subtract 52 weeks to go one year back.

All Zeroes

The All 0s model forecasts zeros for all grid cells at all times.

Setzler

We implement the complete MLP model proposed in Setzler et al. [2009] and dub it the Setzler
model. It has a single hidden layer with four neurons that use the sigmoid activation function.
The inputs consist of the one-hot encoded hour (0-23), day of the week (1-7), month (1-12),
and season (0-3), making a total of 47 binary input nodes. The output layer has no activation
function.

5.5 Online Forecasting Methods

We create online versions of our proposed o✏ine forecasting methods to make the models dynamic
and get the most out of the available data. In practice, we use a hybrid approach for the online
models by first training them o✏ine on the training set and then continue with online learning
on the validation/test set. Our online models are direct extensions of their o✏ine counterparts:
we perform online learning after their initial o✏ine learning.

5.5.1 Neural Networks

For our online neural network models, we start o↵ with the trained o✏ine version of the models.
Then, we lower the learning rate of the optimizer (from 0.001 to 0.0001) to mitigate the catas-
trophic forgetting problem mentioned in Section 3.2.2 by avoiding putting too much weight on
new samples. Then we make forecasts for each hour of the first day of the validation or test set
and store those forecasts in a vector. Then we train the model one epoch on those 24 samples.
We continue forecasting and training one day at a time until we have made forecasts for the
entire validation set. The pseudo-code below details this online forecasting process.

1 def f o r e c a s t o n l i n e (model , inputs , t a r g e t s ) :
2 a l l f o r e c a s t s = [ ]
3 # Loop over 24 inpu t s at a time .
4 for i in range (0 , len ( inputs ) , 2 4 ) :
5 x = inputs [ i : i +24]
6 y = ta r g e t s [ i : i +24]
7 f o r e c a s t s = model . p r ed i c t ( x )
8 a l l f o r e c a s t s . append a l l ( f o r e c a s t )
9 model . t r a i n (x , y ) # Train on new samples .

10 return a l l f o r e c a s t s
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Because the LSTM volume and distribution models are trained on normalized outputs, we
have to normalize the validation/test targets before feeding them into the online forecasting
function. We also have to inverse the normalization on the returned forecasts to transform the
raw forecasts back to the original scale.

5.5.2 Baselines

The online versions of our baseline methods are essentially cumulative moving averages versions of
the o✏ine average baselines. The resulting learning approach produces outputs as if we “retrain”
the models from scratch with each new data received, but the computations e�cient as described
in Section 3.1.4. Hence, these methods are safe from the catastrophic forgetting problem and
storage or runtime issues. However, because all samples are weighted equally, these models are
not good at adapting to changes over time.

The pseudo-code below shows how we implement online learning for our baselines. The
update baseline function implements the CMA update calculation described in Equation 3.3.

1 # T i s an index r ep r e s en t i n g the s t a r t o f the t e s t s e t .
2 # t i s the number o f time s t e p s to p r e d i c t a t a time .
3 def b a s e l i n e f o r e c a s t o n l i n e ( ba s e l i n e , i n c i d en t s , T, t ) :
4 # Create i n i t i a l b a s e l i n e based on t r a i n i n g data .
5 t r a i n i n g = i n c i d en t s [ :T]
6 b a s e l i n e = c r e a t e b a s e l i n e ( t r a i n i n g )
7 a l l f o r e c a s t s = [ ]
8 for T in range ( t e s t s t a r t , len ( i n c i d e n t s ) , t ) :
9 # Make f o r e c a s t s f o r time per iod .

10 t a r g e t s = i n c i d e n t s [T:T+t ]
11 f o r e c a s t s = b a s e l i n e p r e d i c t ( ba s e l i n e , t a r g e t s )
12 a l l f o r e c a s t s . append a l l ( f o r e c a s t s )
13 # Updated b a s e l i n e .
14 ba s e l i n e = updat e ba s e l i n e ( ba s e l i n e , t a rge t s , T, t )
15 return a l l f o r e c a s t s
16
17 def updat e ba s e l i n e ( ba s e l i n e , new samples ,T, t ) :
18 updated base l i ne = ( new samples + T∗ ba s e l i n e )/ (T+t )
19 return updated base l i ne

The online version of the simplest distribution baseline, �total, is implemented as shown by
the pseudo-code above, with t = 24. Our “grouped” baselines (�1hr, �8hr and ↵1hr) has to
maintain one CMA for each group which leads to slightly more logic than what shown in the
pseudo-code above, but the fundamentals are the same.



Chapter 6

Experimental Results

The results from the architecture selection, validation, and test phases are presented in this
chapter.

6.1 Architecture Selection Results

The purpose of the architecture selection phase is to find the best architecture for each neural
network model. The results of the architecture selection phase for the distribution, volume, and
complete models are shown in Tables 6.1, 6.2, and 6.3 respectively. The selected architecture is
denoted as LxN , where L is the number of layers and N is the number of neurons in each layer.
The postfix of the method names specifies what input set of the model as specified in Table 5.2.

Note that the training errors of the MLP and LSTM models are not directly comparable
because they use di↵erent cross-validation approaches (the MLP models use 5-fold while the
LSTM models use 80/20 hold-out cross-validation, as explained in Section 5.3). In addition, the
training errors of the volume and complete LSTM models are on a di↵erent scale because the
models are trained with normalized outputs. We are not interested in comparing the di↵erent
models in this phase because our focus is on selecting the best architecture for each model.

From the results of the distribution models in Table 6.1, we make three observations. Firstly,
we see that all of the models chose three hidden layers. Secondly, we observe that the LSTM
models prefer considerably more neurons in each layer compared to the MLP models. Indeed, the
LSTM models consistently chose the most complex architecture possible (3x128 neurons), while
the MLP models chose only 16 or 32 neurons in each layer. Lastly, we note that the weather set
achieved the best training error among both the MLP and LSTM models.

The architectures chosen for the volume models are more mixed. We note two matters of
interest from the results presented in 6.2. Firstly, it might seem like the input sets a↵ect the
architecture more than the model type. For example, the models with the date input set chose
128 neurons in each layer, while the models with combined weather and date inputs had relatively
simple architectures with 3x16 and 2x32 neurons. Secondly, we see that the weather input set
achieved the lowest training error for both model types, similarly to the distribution models.

The architectures chosen for the complete models are presented in Table 6.3. We make three
main observations from these results. Firstly, we note that the complete models generally chose
simpler architectures than the models of the two other categories. All of the complete models
chose two hidden layers with 4-64 neurons. Secondly, we see that the LSTM models prefer more
complex architectures than the MLP models, with 32-64 versus 4-8 neurons in each layer. This
is similar to what we saw in the results of the distribution models. Lastly, we note that the basic

41
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input set achieved the lowest training error among the MLP models, while the weather set did
the same among the LSTM models.

Method Nodes Average training CCE
MLPb 3x16 5.8054
MLPd 3x8 5.8052
MLPw 3x16 5.8037
MLPw&d 3x8 5.8047
LSTMb 3x128 5.8494
LSTMd 3x128 5.8495
LSTMw 3x128 5.8490
LSTMw&d 3x128 5.8495

Table 6.1: The best architecture for each proposed distribution neural network model and its
average training error during the architecture selection phase.

Method Nodes Average training MSE
MLPb 2x32 22.3580
MLPd 3x128 22.4657
MLPw 3x64 22.0083
MLPw&d 3x16 22.2789
LSTMb 3x64 0.009466
LSTMd 2x128 0.009753
LSTMw 3x64 0.009444
LSTMw&d 2x32 0.009663

Table 6.2: The selected architecture for each proposed neural network volume model and its
average training error during the architecture selection phase.

Method Nodes Average training MSE
MLPb 2x8 0.003633
MLPd 2x4 0.003636
MLPw 2x8 0.003635
MLPw&d 2x8 0.003638
LSTMb 2x32 1.43318e-05
LSTMd 2x64 1.43303e-05
LSTMw 2x64 1.43299e-05
LSTMw&d 2x64 1.44027e-05

Table 6.3: The best architecture and its average training error of the complete models during
the architecture selection phase.



6.2. VALIDATION RESULTS 43

6.2 Validation Results

The validation results determine which methods are selected to proceed to the test phase. We
choose the methods with the lowest error in each category. We use the MSE to select the volume
and complete models, but we list the MAE in the results as well. We select distribution models
based on their categorical cross-entropy. The validation results of all the proposed distribution,
volume, and complete models, with and without online learning, can be found in Tables 6.4, 6.5,
and 6.6 respectively. We highlight the best o✏ine and online results in each category.

We make four observations on the validation results of the distribution models shown in
Table 6.4. Firstly, we see that the simplest distribution model, �total, has the lowest categorical
cross-entropy both online and o✏ine. In contrast, the other two distribution baselines, �8hr and
�1hr, are considerably worse. Secondly, we observe that all of the LSTM models perform better
than all of the MLP models. Thirdly, it seems like the input sets of the neural network models
do not a↵ect the performance much; the results within the MLP or LSTM models are very close.
Finally, we see that all of the models improve with online learning.

From the validation results of the volume models shown in Table 6.5, we make three remarks.
Firstly we see that all of the models improve with online learning, just like the distribution
models. Secondly, we note that the input sets have more influence among the volume models
than the distribution models. For example, the date input set results in high errors for both
the MLP and LSTM models, while the weather and basic input sets produce good forecasts for
both model types. Finally, we see that all of the neural network models outperform the volume
baseline ↵1hr.

The validation results of the complete models presented in Table 6.6 also show three inter-
esting patterns. Firstly, we see that all of the models improve with online learning, just like
the distribution and volume models. Secondly, we observe that the model type influences the
performance more than the input sets and that the MLP models are generally better than the
LSTM models. Thirdly, we see that the LSTM models improve more with online learning than
the MLP methods, reducing the performance gap between the two model types.

We select the two best models from each category to proceed to the testing phase. The chosen
distribution models are the online �total and online LSTMw models, while the selected volume
models are the online MLPb and online LSTMw. The two best complete are the online MLPd

and online MLPw.

Method CCE Online CCE
�total 5.8518 5.8479
�8hr 6.0776 6.0337
�1hr 7.1632 6.8343
MLPb 5.8607 5.8597
MLPd 5.8594 5.8586
MLPw 5.8611 5.8595
MLPw&d 5.8590 5.8578
LSTMb 5.8545 5.8527
LSTMd 5.8552 5.8528
LSTMw 5.8548 5.8525
LSTMw&d 5.8558 5.8533

Table 6.4: Validation errors of the proposed distribution methods.
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Method MSE Online MSE MAE Online MAE
↵1hr 24.8293 24.4766 3.7546 3.7319
MLPb 23.6448 22.7188 3.6935 3.6528
MLPd 24.2637 23.8844 3.8229 3.7842
MLPw 23.6387 23.0511 3.7661 3.6954
MLPw&d 23.4240 23.1589 3.7387 3.7223
LSTMb 23.4473 23.0577 3.7291 3.6957
LSTMd 24.3394 23.5889 3.8800 3.7703
LSTMw 23.1635 22.7410 3.7052 3.6752
LSTMw&d 23.5593 23.2741 3.7417 3.7179

Table 6.5: Validation errors of the proposed volume methods.

Method MSE Online MSE MAE Online MAE
MLPb 0.0037455 0.0037428 0.0047374 0.0043507
MLPd 0.0037461 0.0037432 0.0045820 0.0043154
MLPw 0.0037448 0.0037414 0.0045455 0.0043318
MLPw&d 0.0037485 0.0037452 0.0046975 0.0043414
LSTMb 0.0037822 0.0037498 0.0074629 0.0052450
LSTMd 0.0037802 0.0037478 0.0076093 0.0053806
LSTMw 0.0037818 0.0037495 0.0078251 0.0054976
LSTMw&d 0.0037811 0.0037492 0.0074902 0.0054961

Table 6.6: Validation errors of the proposed complete methods.

6.3 Test Results

We select the two best distribution, volume, and complete models from the validation phase to
retrain and run on the test set according to the method outlined in Section 5.3. Next, the two
distribution models are combined with each of the two volume models, making a total of four
split models that are tested. As only online models were selected, we omit the online prefix of
the model names for the rest of this chapter for brevity.

The final complete test results can be found in Table 6.7. We see that the complete MLPw

model achieves the lowest MSE, closely followed by the two split models with the internal LSTMw

distribution model. The All 0s model has the lowest MAE.
It is also worth mentioning that the Setzler method achieves a better MSE than the MEDIC

method in our case, in contrast to the original study [Setzler et al., 2009]. In the original study,
the MEDIC method outperformed their proposed ANN method at their smallest spatial and
temporal levels of granularity (grid-size of 2x2 miles ⇡ 3.2x3.2 km and 1-hr time buckets).

In addition to calculating the MSE and MAE of the complete forecasts of the models, we also
calculate the errors of their volume and distribution forecasts as described in Section 5.2.

The errors of the volume forecasts can be found in Table 6.8. We see that the dedicated volume
models produce the best volume forecasts, followed by MEDIC, the complete neural networks,
and finally, All 0s. The volume forecasts made by the models on the first and last week of the test
set are illustrated in Figure 6.1 and Figure 6.2. We see that the dedicated volume models and
the MEDIC models produce better volume forecasts than the complete neural network models,
which tend to be too conservative. The complete neural networks do not capture the weekly
seasonality well; their volume predictions look very similar every day and do not capture the
increase in incidents during working hours or Friday and Saturday nights.
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Method MSE MAE
All 0s 0.0043334 0.0027283
MEDIC 0.0040064 0.0046825
Setzler 0.0038105 0.0049510
dist �total + vol MLPb 0.0038172 0.0048571
dist �total + vol LSTMw 0.0038179 0.0048555
dist LSTMw + vol LSTMw 0.0037996 0.0048874
dist LSTMw + vol MLPb 0.0037995 0.0048889
complete MLPb 0.0038011 0.0044522
complete MLPw 0.0037983 0.0044777

Table 6.7: Test errors of the complete forecasts of the proposed and benchmark methods. Note
that all models except All 0s, MEDIC and Setzler use online learning.

Method MSE MAE
All 0s 280.6049 15.1939
MEDIC 25.2394 3.8183
Setzler 33.8975 4.3933
complete MLPb 34.5490 4.4373
complete MLPw 35.2900 4.5135
volume LSTMw 22.9890 3.7027
volume MLPb 22.9108 3.6988

Table 6.8: Test errors of the volume forecasts of the proposed and benchmark methods. Note
that all models except All 0s, MEDIC and Setzler use online learning.

The errors of the distribution forecasts are shown in Table 6.8. We see that the dedicated
distribution models produce the best forecasts, followed by the complete neural network models,
the All 0s method, and finally the MEDIC method. Illustrations of the distribution forecasts
at 12pm on the first day of the test set and 9pm on the last day of the test set can be found
in Figures 6.3 and 6.4 and Figures 6.5 and 6.6 respectively. We see that the forecasts of the
neural network models are very similar, while the MEDIC model has a significantly wider spatial
spread. All the forecasts of the models (except for the All 0s model) are concentrated around
the city center of Oslo.

Method CCE
All 0s (even dist) 8.6249930
MEDIC 10.487533
Setzler 6.2471037
complete MLPb 6.0354133
complete MLPw 6.0745206
dist �total 5.8713098
dist LSTMw 5.8967190

Table 6.9: Categorical cross-entropy errors of the distribution forecasts on the test set. A lower
error is favorable. Note that all models except All 0s, MEDIC and Setzler use online learning.
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Figure 6.1: Volume forecasts on the first week of the test set, starting on Sunday the 11th
of February 2018. The complete neural network methods tend to underestimate the demand
volume, especially during working hours and Friday and Saturday night.

Figure 6.2: Volume forecasts on the last week of the test set, starting on Tuesday the 5th
of February 2019. The complete neural network methods tend to underestimate the demand
volume, especially during working hours and Friday and Saturday night.
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Figure 6.3: The actual EMS demand distribution and the distribution forecasts of the benchmark
models for Sunday 11th of February 2018 (the first day of the test set) at 12pm. Refer Figure
2.2 for a geographical reference of the grid.
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Figure 6.4: The distribution forecasts of the proposed models for Sunday 11th of February 2018
(the first day of the test set) at 12pm. Refer Figure 2.2 for a geographical reference of the grid.
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Figure 6.5: The actual EMS demand distribution and the distribution forecasts of the baseline
models for Monday 11th of Febrary 2019 (the last day of the test set) at 9pm. Refer Figure 2.2
for a geographical reference of the grid.
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Figure 6.6: The distribution forecasts of the proposed models for Monday 11th of Febrary 2019
(the last day of the test set) at 9pm. Refer Figure 2.2 for a geographical reference of the grid.



Chapter 7

Discussion and Conclusion

In Section 1.4 we defined our research goal and questions. Now, in Section 7.1, we revisit those
research questions and discuss them in light of our results from Chapter 6. We conclude our
research in Section 7.2 and identify possible areas of future work in Section 7.3.

7.1 Discussion

7.1.1 How can the EMS demand in Oslo and Akershus be Forecast
Accurately at a Fine Spatio-Temporal Scale?

We have tested a variety of input sets, model types, and training regimes for predicting the EMS
demand in Oslo and Akershus at a fine spatial and temporal scale of 1x1km spatial regions and
1-hr time intervals. In this section, we discuss what we have found to be the best approaches for
making accurate forecasts of the EMS demand.

Model Type

The �total model made the best distribution forecasts in all the phases, as evident in Tables 6.4
and 6.9. All of the neural network models also made fairly good spatial forecasts, as evident
in Table 6.9. We can see from Figures 6.3, 6.4, 6.5, and 6.6, that the neural network models
make forecasts almost identical to those of �total. MEDIC, on the other hand, makes terrible
distribution forecasts. This is caused by the fact that MEDIC makes forecasts as if an incident
occurring increases the likelihood that an incident will occur at the same area again at the same
time point in later weeks. However, the EMS incidents are mostly independent and stochastic,
which means MEDIC often forecasts incidents that are unlikely to occur.

We find it surprising that �total, being the most stationery and the simplest of the distribu-
tion models tested, made the most accurate distribution forecasts. Intuitively, we expected the
distribution of demand to show some pattern in time. For example, there might have been a
more centralized distribution in working hours, while people might be drawn toward the fjord
when on warm and sunny Sunday. However, we saw few hints of such di↵erences in the distri-
butions in Figure 2.10, which show the distribution of the EMS demand in Oslo and Akershus
at di↵erent times on weekdays. Seeing how our best distribution model has captured no such
variations, there must either be no variations in our available data, or our proposed models are
unable to detect and leverage them.
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In contrast, Zhou [2015] found significant variations in the density of ambulance demand with
patterns in time and space for both Toronto and Melbourne, despite having half of the amount
of data that we do (four years vs. two years). This might be due to Melbourne and Toronto
having a higher population density than Oslo and Akershus (Toronto, Melbourne, and Oslo and
Akershus have population densities of approximately 5 000 people/km2, 500 people/km2, and
200 people/km respectively). Indeed, Zhou noted that the patterns were most prominent in the
most densely populated areas of the cities. Another possible explanation is that Zhou [2015]
uses a continuous spatial domain, while we only have access to the anonymized grid-mapped
location of events. This might make it harder to detect subtle di↵erences in the underlying
density function. Either way, it might be interesting to focus on the more densely populated
areas of Oslo and Akershus to see if we can detect some patterns. It might be worthwhile using
di↵erent models for di↵erent grid cells as they did in Chen et al. [2016]. An LSTM model should
be tested in such a case, as it seemed like the LSTM models were slightly better than the MLP
models at forecasting EMS distributions.

The online volume MLPb model made the best volume forecasts in the validation and test
phase, as seen in Tables 6.5 and 6.8. The volume MLP and LSTMmodels had similar architecture
complexity and validation errors. However, since the LSTM model is significantly more complex
than the MLP models without producing better results, we think an MLP model is more suited
for modeling the EMS demand volume. All of the neural network models outperformed the simple
↵1hr model, which indicates that there are patterns in time other than the weekly seasonality
that the neural networks manage to leverage.

The complete MLP models outperformed the complete LSTM models as seen in Table 6.6.
The table also shows that the performance gap between the MLP and LSTM models shrunk
considerably with online learning. It might be that the LSTM models can improve further and
possibly supersede the performance of the MLP models if we have more training data. Indeed,
the LSTM models chosen from the architecture selection phase have more complex architectures
than the MLP models, which means they can capture more intricate patterns in the demand.

Input Data

In Figures 6.1 and 6.2, we saw that the volume MLPb model was able to capture the weekly
seasonality. This shows that the basic inputs are enough to capture the large-scale patterns of
the EMS demand. The neural network models also seem to have leveraged some of the annual
seasonality of the EMS demand since they outperformed the ↵1hr, which naively models the
weekly seasonality. In Section 6.2, we saw that the performance of the distribution and complete
models were not a↵ected much by the di↵erent input sets. This indicates that the neural networks
were unable to find much useful information in the extra input variables.

Our validation results in Tables 6.4, 6.5, and 6.6 show that the inclusion of the day of the
month input did not improve model performance. On the contrary, it resulted in higher MSE
for both volume and distribution neural network models. The date input set resulted in the best
performance among the LSTM complete models but was outperformed by the complete MLP
models; thus, the date set never made it past the validation phase. We hoped that the date input
would let the models identify special day e↵ects, such as New Year’s Eve, and thus make better
forecasts. Figure 7.1 shows the actual EMS demand and the forecasts made by the proposed
and baseline models on New Year’s Eve 2018. We see that the models are unable to capture
this regular increase in incidents. A special-day input flag might yield better results but requires
manual selection of the days to include. Such a scheme was used with success in Channouf et al.
[2007] with flags for New Year’s Eve and a local festival.

The models with the weather input set performed well in the validation and testing phase, as
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Figure 7.1: The actual demand volume on New Years Eve 2018, and the forecasts of the proposed
and baseline models.

shown in Tables 6.4, 6.5, and 6.6 and 6.7, 6.9, and 6.8. The complete MLPw model was the best
of the complete models and LSTMw was the second-best volume and distribution model. This
indicates that the weather have the potential of improving forecasts. We discuss this further in
Section 7.1.3.

The Setzler model uses the season of the year as an input variable in addition to our basic
input set. We chose not to include the season variable in any of our input sets because it is
implicitly covered by the month inputs and seemed redundant. The Setzler model makes slightly
better volume forecasts and worse distribution and complete forecasts compared to our proposed
complete MLP models. The fact that the Setzler model makes better volume forecasts than our
complete models indicates that the inclusion of the season variable might make it easier for the
neural network to capture the annual seasonality found in Section 2.3.

Metrics

We can see how much the choice of performance metric influences the performance of di↵erent
methods in Table 6.7, where the All 0s method achieves the lowest MAE although it has no
practical value. This happens because our data is very skewed towards zero, so most of the zeros
“forecast” by All 0s are on target. However, when All 0s do make mistakes, they can be quite
large, but these are not punished harshly by MAE. The MSE punishes deviations more than
MAE, which makes it a better metric in our case as we are most interested in the deviations,
with zero incidents being the base case in most regions. However, we saw that the complete and,
to a lesser degree, volume models tend to underestimate the EMS demand volume in Figures 6.1
and 6.2 even though they are optimized for MSE. It might seem like a di↵erent metric might be
even more appropriate than MSE for our case. We could, for example, implement a metric that
punishes positive errors more than negative errors, like the one described in Equation 7.1.

L(ŷ, y) =

(
(ŷ � y)2, if ŷ > y

2(ŷ � y)2, otherwise
(7.1)
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Such a metric might be appropriate in the EMS field because it is vital that there are enough
resources to respond to the demand. This should be investigated further.

7.1.2 Is a Split Model or a Complete Model Better for Modeling EMS
Demand?

The complete models achieved lower MSE on their complete forecasts than the split models,
as seen in Table 6.7. However, the specialized volume and distribution models produced better
volume and distribution forecasts as seen in Tables 6.9 and 6.8. This is not surprising, as
the models have been optimized for making either volume, distribution, or complete forecasts.
However, it raises the question of which approach has the most practical value.

The complete models are essentially trying to solve a more di�cult problem than the split
models by forecasting the number and location of incidents simultaneously. Intuitively, it is a
lot easier to forecast that there will occur ten incidents than to forecast that there will occur ten
incidents at these exact locations. Because of the stochastic nature of the EMS demand, it is
very hard to make accurate forecasts in both volume and location, causing the complete models
to only forecast incidents that are very likely to happen. This makes them underestimate the
number of incidents, as apparent in Figures 6.1 and 6.2. This could be remedied by using a
di↵erent metric as discussed in 7.1.1, but the nature of the complete problem would probably
still cause the complete models to produce worse volume forecasts than split methods.

The distribution forecasts of the specialized distribution models are also significantly better
than those of the other models, as evident in Table 6.9, although it is not so easily recognizable
in the distribution illustrations in Figures 6.4 and 6.6.

The MEDIC model, although a complete model, makes pretty good volume forecasts. It does
not su↵er from the underestimation problem of the neural networks because it simply averages
previous incidents instead of trying to minimize its MSE. While this tactic works well for the
demand volume, it makes poor distribution forecasts.

We conclude that a split model produces more useful information for EMS providers than
complete models in our case because they make better volume and distribution forecasts.

7.1.3 Does Weather Influence the Spatial Distribution of EMS De-
mand in Oslo and Akershus?

As mentioned in section 7.1.1, the weather inputs looked promising for the distribution models.
The LSTMw model was the best distribution neural network model but was outperformed by
the basic �total model.

Note that we used historical weather data in our weather input set. In a real-world applica-
tion, we will have to use weather forecasts instead, which are naturally less accurate. Wong and
Lai [2013] showed that also the use of weather forecasts can improve the EMS demand forecasts,
but to a lesser degree than historical weather data. The previous work that found increased
performance with the inclusion of weather data has been on a much larger spatial and temporal
scale (daily forecasts for entire cities)[Wong and Lai, 2010, 2013; Wong and Lin, 2020; Thornes
et al., 2014], which might make the pattern more pronounced. We could try to include more
types of weather data such as wind speed or cloud coverage, but since the previously mentioned
related work has found that temperature is the most useful parameter, we do not think this will
improve the results noticeably. With this in mind, we think that there might be some patterns
in our dataset distribution of the EMS demand related to the weather, but that these are too
slight to improve the distribution forecasts significantly and thus have little practical value at
the moment.
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7.1.4 Can Online Learning Be Used to Improve EMS Demand Fore-
casts in Oslo and Akershus?

In the validation phase, we found that every single model improved with online learning, as
shown in Tables 6.4, 6.5, and 6.6. This is not surprising, seeing how online learning leverages
more of the available data and makes the models capable of adapting to possible changes in the
underlying function, such as an increase in population.

Although online learning is an excellent tool for improving performance, it is susceptible to
normalization and diminishing update problems.

For example, the normalization of the outputs of the volume LSTM models can become
outdated. The normalization is fitted on the training data, and as such, the normalization can
produce unwanted outputs for test values not represented in the training data. This can happen
if the underlying function changes substantially, such as a significant increase in population. In
such a case, the normalized output values can become so large that they will cause problems for
the training of the model. This potential issue can be mitigated by re-fitting the normalization
periodically and retraining the network from scratch. The same problem could occur with the
normalization of the weather data, if the weather was to change significantly over time.

The �total might struggle with adapting to changes in the underlying model as all the incidents
are weighted equally, meaning that each update will a↵ect the model less with time. This can
be mitigated by using a simple moving average that takes the mean of the last k data points.

7.2 Conclusion

We proposed and tested a variety of models for forecasting the hourly EMS demand in 1x1km
spatial regions in Oslo and Akershus. This problem is challenging because of the sparsity of
EMS data at such a fine spatio-temporal resolution. We propose two di↵erent approaches for
forecasting the EMS demand; a complete approach that directly forecasts the incidents in each
of the N spatial region y 2 RN , and a split approach that forecasts the volume � =

PN
i=1 yi

and distribution f = 1
� y of the demand separately. We proposed two di↵erent types of neural

networks (MLP and LSTM) with four di↵erent input sets for forecasting the complete, volume
and distribution of the EMS demand. In addition, we proposed some simple aggregation methods
for forecasting the EMS demand volume and distribution.

We conclude that split models are better suited for modeling EMS demand than complete
models.

Among the models tested, we find that a simple aggregation model is the best at modeling
the spatial distribution of the EMS demand in Oslo and Akershus. The demand volume is best
captured by an MLP with two hidden layers of 32 nodes each, and hour, day of the week, and
month input features.

We find that all models improve with online learning, which indicates that this is an excellent
tool for improving forecast accuracy.

We also find indications of the weather influencing the spatial distribution of EMS demand.
However, the relationship seems too weak to have practical value.

7.3 Future Work

We believe that the forecasting of the EMS demand volume might be improved by including
flags for special days such as New Year’s Eve. There might be similar spikes in incidents related
to concerts or other special events, which might also a↵ect the spatial distribution of events. For
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example, the area in which a festival or concert is taking place might experience more incidents
than usual. Gathering data on such events and feeding their location into the models is nontrivial
but seems an interesting approach that, to the author’s knowledge, has not been studied before.

In the EMS field, there should always be enough resources to respond to the demand of the
public. Therefore the volume models cannot be followed blindly as they often underestimate the
demand, as evident in Figures 6.1 and 6.2. In future research, the researchers should consider
adopting a di↵erent metric that penalizes underestimates harder than overestimates, as we dis-
cussed in Section 7.1.1. Another approach that could provide even more useful information to the
EMS providers is to make prediction intervals forecasts instead of point forecasts, as described
in Section 3.1.3.

The spatial forecasts might be improved by looking at the most populous regions separately.
One might be able to detect patterns between time or weather and the distribution of the
demand in regions with many incidents. However, the practical value of leveraging such patterns
is uncertain as the regions in question are spatially close to each other, and therefore probably
will not a↵ect the optimal location of the ambulances much. It might also be interesting to
look for patterns in demand distribution linked to population movement data, which could be
gathered from mobile providers or similar. One should also test variations of the spatial �total

model, such as a simple or weighted moving average model, when more data becomes available.
There is a lot of work remaining related to our research goal of positioning the ambulances in

Oslo and Akershus optimally. Firstly, we have to choose an optimization model for solving the
ambulance location problem. There exists a variety of such models with di↵erent assumptions
and objectives, as mentioned in Section 1.3. Secondly, we need a model for the travel times
between the spatial regions. There are many di↵erent approaches for this, including models
based on trip distance [Budge et al., 2010; Westgate et al., 2013] or GPS data and individual
road segments [Westgate et al., 2016; Li et al., 2015]. Lastly, one has to remember to add the
planned regular incidents to the forecast incidents in order to get correct estimates of the total
EMS demand.
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