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Abstract

In Norway, beverage sales with over 4.75 % alcohol are monopolized by Vinmonopolet and
controlled by strict laws prohibiting advertisement. Vinmonopolet changes its product line
every two months, launching new products and removing the least popular products from
basisutvalget, the small selection not only available through orders but also available in
stores. The products are imported by importers, whose aim for some of the products is to get
them into basisutvalget, guaranteeing higher sales numbers. Which products that manage
to claim a spot in basisutvalget is decided through a ranking system based on sales numbers.

In this thesis, we analyze red wine sales and attempt to forecast the ranking lists to eval-
uate which products risk leaving basisutvalget and which products might sell well enough
to enter basisutvalget. The ranking lists are mapped from one-, two-, and three-month fore-
casts using Long Short-Term Memory (LSTM), Seasonal Autoregressive Integrated Moving
Average (SARIMA), and persistence forecasting on sales numbers. Additional features are
tested on the LSTM and SARIMA models, and various combinations of price groups are used
to train the LSTM model.

None of the attempted features improved the models significantly, but training the LSTM
model on all price groups improved the Mean Absolute Error (MAE) by 25 %. The final
models produced an average MAE of 158, 205, and 291 for a one-month LSTM, SARIMA,
and persistence forecast consecutively. The MAE increased with 105 %, 150 %, and 158 %
for the same models for three-month forecasts.

Attempting to identify products whose rank shifts over or below the ranking limit, we
find that the results are poor and fluctuate; these events occur too seldom to function as an
accurate performance measure. The stability of these ranks imply that the most important
factors influencing entry and exit of basisutvalget are the number of new products launched
directly into basisutvalget and products shifting price range.

We discuss alternative methods to better utilize the forecasts for knowledge gain. Rank-
ing the forecasts resulted in unnecessary information loss, and the performance measures
we chose all had different weaknesses. We also discuss which features outside the data set
that are expected to increase performance and some factors that might limit the obtainable
performance.
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Sammendrag

I Norge blir salg av drikkevarer med over 4,75 % alkohol monopolisert av Vinmonopolet og
kontrollert av strenge lover som forbyr reklame. Vinmonopolet bytter produktutvalg annen-
hver måned, der de lanserer nye produkter og fjerner de minst populære produktene fra
basisutvalget, utvalget som er garantert en plass i butikkene. Disse produktene og noen av
de nye ender opp i bestillingsutvalget. Produktene importeres av importører som for noen
av produktene har som mål å få disse i basisutvalget, noe som garanterer høyere salgstall.
Hvilke produkter som får en plass i basisutvalget avgjøres gjennom et rangeringssystem
basert på salgstall.

I denne oppgaven analyserer vi salg av rødviner og prøver å lage en prognose av ran-
geringslistene for å evaluere hvilke produkter som risikerer å forlate basisutvalget og hvilke
produkter som kan selge godt nok til å gå inn i basisutvalget. Rangeringslistene er laget av
en-, to- og tremånedersprognoser ved bruk av Long Short-Term Memory (LSTM), Seasonal
Autoregressive Integrated Moving Average (SARIMA) og persistence forecast på salgstall.
Ytterligere kovariater er testet på LSTM- og SARIMA-modellene, og forskjellige kombinas-
joner av prisgruppene ble brukt til å trene LSTM-modellen.

Ingen kovariater forbedret modellene betydelig, men å trene LSTM-modellen på alle
prisgrupper forbedrer gjennomsnittlig absolutt avvik (MAE) med 25 %. De endelige model-
lene produserte en gjennomsnittlig MAE på 158, 205 og 291 for én måneds prognose med
henholdsvis LSTM, SARIMA og persistence forecast. MAE økte med 105 %, 150 % og 158
% for de samme modellene for tremånedersprognoser.

Ved forsøk på å identifisere produkter med en rangering som flytter seg over eller under
styringstallet, finner vi at resultatene er dårlige og svinger mye; disse hendelsene forekom-
mer for sjelden til å kunne brukes til å evaluere modellen. Stabiliteten i disse rangeringene
tyder på at de viktigste faktorene som påvirker inngang og utgang av basisutvalget er antal-
let nye produkter som lanseres direkte i basisutvalget og produktene som skifter prisklasse.

Vi diskuterer alternative metoder for å bedre kunne utnytte resultatene fra prognosene.
Rangeringen av disse resulterte i unødvendig informasjonstap og evalueringsmetodene vi
brukte hadde alle sine svakheter. Vi diskuterer også hvilke kovariater utenfor datasettet
som forventer å kunne øke ytelsen til modellen og noen elementer som kan begrense mulig
ytelse.
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Chapter 1

Introduction

1.1 Wine Sales

In 2018, Norwegians over 15 years of age bought an average of 6.77 liters of pure alco-
hol [1]. In comparison, the Swedish bought 8.83 [2], and the Danish bought 9.29 liters of
pure alcohol[3]. Despite the slightly lower sales numbers in Norway, this still amounts to
large quantities of alcoholic beverages. A total of 2 677008 000 liters of beer, 88029 000
liters of wine, and 15 783000 liters of liquor were sold that year, counting registered and
unregistered sales. Registered sales are sales through Vinmonopolet, restaurants, bars, and
shops, while unregistered sales are through duty-free shops and importation from other
countries. While 93.6 % of beer sales were made through local stores, restaurants, or bars,
76.1 % of wine sales and 71.1 % of liquor sales were made through Vinmonopolet [1].

Vinmonopolet is a Norwegian state-owned retailer that sells alcoholic beverages with an
alcoholic percentage above 4.75 %, which registered importers import. The company was
formed in 1922, a period after the first world war when liquor was banned, and certain
parties were trying to ban wine and beers with over 2.5 % alcohol. This ban forced the Nor-
wegian alcohol consumption to an all-time registered low in 1918, 0.61 liters of pure alcohol
per adult [4]. Vinmonopolet could guarantee equal access to alcohol countrywide, and the
promise of steady importation of alcohol helped facilitate new trade treaties between Nor-
way and countries exporting alcohol, especially France [5]. Though the ban was removed
in 1927 and political changes have been made in the following years, Vinmonopolet has
remained the primary provider of stronger alcoholic beverages in Norway since then.

Vinmonopolet sells only four different red wines produced in Norway per 2021; most
wines are imported from countries with warmer climates more suitable for growing grapes.
Italy, Spain, and France alone produced approximately 74 % of the red wines imported and
sold at Vinmonopolet in 2018. These three countries are also the largest wine exporters;
they alone exported 6.12 billion liters of wine in 2018, 56.7 % of the total amounts of wine
exported in the world [6]. Chile, Australia, Argentina, the USA, South Africa, and New Zeal-
and were among the top 10 selling countries, showing how popular red wines are produced
on multiple continents. The relatively small selection of wines sold on the Norwegian mar-
ket is decided by consumers’ demand, fashions Vinmonopolet wishes to explore, and what
deals importers make with wineries. The primary factor in deciding which wines remain in
the selection is the sales numbers.
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1.2 Machine Learning

Machine learning is a popular tool in present-day technological developments. Not in the
typical cinematic sense, where artificial intelligence takes over the world, leaving human-
ity fighting technology with analog weapons, but rather more discretely, analyzing large
amounts of data quicker and in many cases more accurately than humans are capable of.

For each day that passes, machine efficiency is taken more and more for granted. Not
only in terms of speed, how often do you visit page two or three during a Google search
these days? Not too long ago, checking these pages was standard procedure during thorough
investigations. Those days human-defined algorithms and rules decided which query result
would appear in your search engine. Nowadays, artificial intelligence and machine learning
are not only using search history to learn how to improve its query ranking, but it is also
capable of picking up the nuances in web page content, picking up key moments in videos,
or returning direct statistics and responses to your query.

Where traditional analysis by humans and computers would be based on limited but
long-established experience or rules, these methods could be overwhelmed by the amounts
of data collected worldwide. Machine learning uses these masses of data to its advantage,
sometimes surpassing traditional methods and sometimes not.

1.3 Motivation

Norwegian law forbids any advertisement for alcoholic drinks. Employees at Vinmonopo-
let are not supposed to be influenced by importers, and they attempt to convey objective
rather than subjective advice to customers. Product placement in the stores is strictly sorted
by country, district, and price to avoid influencing the customers. Combining this with the
monopolistic market, we have a unique opportunity to analyze a sales market with reduced
external factors.

Vinmonopolet has a system where the highest-ranked products by sales numbers in each
product group are placed in basisutvalget. The products in basisutvalget are guaranteed a
spot on the store shelves, getting a considerable advantage over other products that might
only be available in certain stores and otherwise have to be ordered by the consumers. While
some importers are pleased to sell their products on a small scale, others aim to get some
their products into basisutvalget, as this increases the chances of a robust market for their
product, giving a stable income/profit. To do this, they need to make an educated guess on
what products the Norwegian market will embrace. If they believe a product would do well,
they can apply to have it added to testutvalget, which functions as a trial period where the
product is available in the stores, but at the risk and cost of the importer if the products are
not sold.

Wines evolve with age, wineries have varying weather from year to year, and the taste
changes drastically depending on what dish they are served with. For an average person, the
different flavors of wine are difficult to describe and even more challenging to remember for
future references; this leads to consumers using different tactics when buying wine. These
include buying the same wines year after year, asking the staff for recommendations based
on previous preferences, checking the latest recommendations in the paper, buying from the
nearly empty shelves, choosing fancy bottles or labels, or simply aiming for a high alcoholic
percentage for the lowest possible price. With such a wide range of consumers, it leads us
to the motivation behind this thesis, whether these sales trends can be forecasted in such
a fashion that importers can benefit from the results. With the very limited influence an
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importer has on the sales performance of their investments, a significant advantage for an
importer would be to know which wines they should invest in and which wines that have a
large risk leaving basisutvalget.

1.4 Research Questions

For this thesis we will study our data from a data science perspective, both analyzing the
data for trends and connections, and using machine learning to exploit the predictiveness of
time series and search for important features. From a business standpoint, the main question
we wish to answer is:

• Can red wine rankings be forecasted with enough "precision" to be a beneficial ref-
erence when making decisions on which wines to invest in and which wines to stop
investing in?

From a scientific standpoint the same question can be formulated into:

• How successfully can we forecast whether products will enter or leave basisutvalget?

To answer this and to get a wider perspective on the results, we have multiple smaller
research questions we wish to answer as well:

• Can machine learning surpass traditional methods such as forward filling and SAR-
IMAX?

• Which features improve machine learning forecasts the most?
• Does a model trained upon multiple price groups give better forecasts than a model

trained on its specific price group?
• Which price groups are easiest to forecast?
• What is a reasonable way to evaluate performance of the ranking?

1.5 Contributions

This thesis contributes mainly to two research fields. The first is the field of wine stud-
ies. Few studies are made on alcohol sales data in the Norwegian market, and those focus
mainly on total amounts of alcohol consumption with regards to the societal issues of over-
consumption of alcohol. This is to our knowledge the first study of red wine trends in the
time period 2007 to 2018. Though the red wine trends themselves are not the main focus of
this thesis, a large part of chapter 2 is designated to analyzing these trends to compensate
for lack of relevant background data.

The second research field we will contribute to is the field of forecasting ranks. Most
ranking research is associated with information retrieval, where ranking algorithms decide
which results answer best the given query. Little background information is found on this
topic as well, and we hope that some of the results in this thesis will contribute to further
research in this field.

We will be using LSTM networks in our work, but all of the methods we use are stand-
ard models that have been thoroughly researched before, none of our work will add new
knowledge to this field.





Chapter 2

Data

The data for this thesis is collected by Grapespot and presented in three files, called Sales,
Rankings, and Products for our purposes. Sales contains consecutive sales data for each
product for each month in the time period January 2007 to October 2019, with a total of
3,251,078 rows. Rankings contains monthly rankings of products based on sales amounts, in
the time period January 2007 to September 2019, with a total of 1,435,424 rows. Products
contains qualitative data for each product, with 183,764 rows. The most descriptive data in
Products, such as taste, color, and smell, is scarce.

2.1 Ranking Lists

The most relevant data for this thesis is stored in Rankings. An initial study of the ranking
lists shows no proper identifier for each list; thereby, there is no simple method to extract a
relevant list for each month. The lists are separated by product group, and the most common
products are additionally separated by price group. The top 10 product groups are shown
in Table 2.1, where we identify two product groups of red wine that have a large number
of products, Rødvin < 75 g sukker and Rødvin < 9 g sukker.

Product Group Translation Nr. of rows
Rødvin <75 g sukker per liter Red wine <75 g sugar per liter 377266
Hvitvin <15 g sukker per liter White wine <75 g sugar per liter 189230
Rødvin <9 g sukker per liter Red wine <9 g sugar per liter 169685
Hvitvin <9 g sukker per liter White wine <9 g sugar per liter 93029
Øl, overgjæret Ale 64423
Musserende vin og champagne Sparkling wine and champagne 49288
<75 g sukker per liter <75 g sugar per liter
Cognac Cognac 39108
Rosévin Rosé wine 34386
Skotsk Whisky Scotch whiskey 28022
Musserende vin <12 g sukker per liter Sparkling wine <12 g sugar per liter 24365

Table 2.1: The ten most common product groups out of the 117 listed in Rankings.

Extracting these two red wine product groups, we see that the first group stopped being
used in February 2016. The second group starts being used in March 2016, implying a
change in product groups’ categorization. An analysis of the red wine categorization changes
is presented in Table 2.2, where we see how the sugar limit is changed, and new product

5
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groups and ranking lists are made for large and small bottles. Except for the two most
common product groups, the other groups all have less than 4200 rows. We choose to only
focus on the two largest groups together, and will simply call this group Rødvin. All mentions
of red wine after this section are only the products in Rødvin.

Product Groups in Rankings Changing over Time
01.2007-02.2016 03.2016-12.2017 01.2018-09.2019
< 75 g sugar < 9 g sugar < 9 g sugar
≥ 75 g sugar ≥ 9 g sugar, < 45 g sugar ≥ 9 g sugar, < 45 g sugar

≥ 45 g sugar ≥ 45 g sugar
< 45 g sugar, > 100 cl
< 45 g sugar, < 75 cl
≥ 45 g sugar, < 75 cl

Table 2.2: Product groups for bottled red wine as they change over time, originally only
sorted by sugar amounts per liter, then new rankings are set up for above average and below
average sized bottles.

Despite lowering the upper sugar limit from 75 g to 9 g, on average there are more
wines in the ranking lists per month under the new category. The liquidity of which wines
go in and out of the market on a monthly basis should to some degree neutralize the effect
of removing the wines with sugar levels between 9 g and 75 g per liter from our data.
Rødvin<75 g sukker per liter is split into the price groups [0, 60), [60,70), [70, 80), [80,90),
[90, 100), [100,125), [125,150), [150,175), [175,200), [200,250), [250,300), [300, 400),
[400, 500), and [500, 100000). Rødvin <9 g sukker per liter is split into the price groups
[0, 100), [100,125), [125,150), [150, 175), [175, 200), [200, 250), [250, 300), [300, 400),
and [400, 100000). We will only study the price groups that overlap with both product
groups. All prices mentioned in this thesis are Norwegian krone.

2.2 Product Selection

Vinmonopolet has five main sales categories1:

• basisutvalget - products that sell well enough to establish set procurement deals that
guarantee a spot on the shop shelves. Products that are added to this sales category
are guaranteed a minimum of 12 months of sales.

• partiutvalget - products that sell well enough to establish set procurement deals that
guarantee a spot on the shop shelves. Unlike basisutvalget, these are procured in a
limited quantity, and sales only last until the final product is sold.

• bestillingsutvalget - products that are in stock in Norway and available by order. Some
of these products may be available in certain shops, based on local preferences.

• tilleggsutvalget - products that are available by order but are not guaranteed in stock.
The wholesaler can deny delivering orders smaller than a certain quantity. Some of
these products may be available in certain shops, based on local preferences.

• testutvalget - importers can pay to have their product available in testutvalget. The
products that are tested in the shops for 6 months, and if they sell well, they increase
chances of becoming a part of basisutvalget. If they are not sold, Vinmonopolet can
return them to the importer, with risk and costs laying on the importer.

1https://www.vinmonopolet.no/innkjopsprosess
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The products that have the highest sales are placed in basisutvalget, and the products in
basisutvalget sell better due to their availability in the stores, therefore getting a product into
basisutvalget is often the goal of importers. Products in partiutvalget and tilleggsutvalget are
excluded from the ranking lists, and will therefore not be further analyzed. The remaining
products need to have registered sales to be included in the ranking lists. Per September
2019, the 1410 products in Rødvin are distributed with 74.2 % in bestillingsutvalget, 24.6 %
in basisutvalget, and 1.2 % in testutvalget.

Six times a year, new products are launched. Summing up the products first registered in
Rødvin in 2018, we find that 1530 products are launched in bestillingsutvalget, 41 products
are launched in basisutvalget, and 10 products are launched in testutvalget. The number
of products launched in 2018 versus the number of products available in September 2019
show how many products that are tested but never become popular, getting them removed
from the market.

2.3 Ranking Limit

Discussing high and low rankings can lead to confusion, as a low ranking could be inter-
preted as a low value and good score, but could also be interpreted as a bad score and
therefore a high value. For clarity’s sake, we will be using the expression ranking value,
where a low value is a good score, and a high value is a bad score.

For each separate ranking there is a value, styringstall, which sets a ranking limit where
products with ranking values below this limit (i.e. better score) are placed in basisutvalget.
Products with a worse score than the ranking limit are usually placed in bestillingsutvalget.
An exception to this are products that were first placed in basisutvalget less than 12 months
previous, they are protected and stay in basisutvalget even with a high ranking value. As
we can see in Figure 2.1, the ranking limit is frequently changed to adapt to what is cur-
rently considered an ideal distribution of number of wines in the various price groups. The
change in product group conditions in 2016 is marked, but only the lowest price group has
a significant change in ranking limit.

2.4 Trends

Sales

In Figure 2.2 we see the sales trend of article 4176601, an average popular wine, compared
to the sum of all red wines in the category we are analyzing. Clear yearly seasonal trends
are visible in both time series. They both show the same tendencies, a spike in sales every
December, a slight dip every January, and in general low sales numbers in the summer half
of the year. A likely cause for these spikes are various Christmas celebrations, many of which
include alcohol in the Norwegian culture. The dips in January could be repercussions of the
large alcohol intake in December, where people feel that they have had enough to drink for a
while or have the common New Year’s resolution to start a healthier life. Low sales numbers
in the summer half of the year could be caused by a preference towards white wine or beer
in warmer weather.

To get an impression of how the sales are distributed between the price groups, the sum
of wines sold in each price group are shown in Table 2.3. Here we observe that the cheaper
the wine, the more is bought.
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Figure 2.1: Plot of the ranking limit per price group that a wine has to surpass to be guar-
anteed a spot on the shelves. The vertical line marks the date when the main product group
changed from Rødvin < 75 g sukker to Rødvin < 9 g sukker.

Figure 2.2: Clear seasonal trends are visible for both article 4176601 and the total sales of
all red wines.

Rankings

To get an impression of how the ranking value changes for individual wines, we plot the time
series of the top five wines in price group 100-125 in January 2007 and September 2019
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Price group 100 125 150 175 200 250 300
1000 liters sold 63437 40986 14974 7706 5707 2498 1490

Table 2.3: Total liters of red wine sold per price group at Vinmonopolet in the time period
January 2007 - September 2019.

in Figure 2.3 and Figure 2.4 respectively. One of the first things we notice is that the wines
don’t necessarily stay in their price range, in the 12 year time period many of the wines go
up one or two price groups. Secondly, we observe that the ranking value tends to be slightly
lowered when going up a price group. The reason for this could be that the product price
is among the lower in its price group, and presumably a large portion of consumers prefer
cheaper products. Another reason could be that its previous popularity is unaffected by a
slight increase in price, and consumers stick to wines they know that they like. Thirdly, we
notice that the lower the rank value is, the more stable the values seem to stay. This makes
sense intuitively, as the more popular a wine is, the harder it is for a competing wine to
surpass in sales amounts.

Figure 2.3: Time series of the ranking of top 5 wines in January 2007 in price group 100-125
until September 2019. The dashed and dotted lines represent the same wine after it shifted
into a new price group, competing for lowest ranking on a new basis of wines.

Prices

As we observed in Figures 2.3 and 2.4, and also from the changing of price groups in 2016
as discussed in section 2.1, we see that red wine prices seem to increase over time. This
is confirmed by following the average price of the wines that were ranked among the top
50 per price group in 2007, as shown in Figure 2.5. The increase in these prices is faster
than the increase of the consumer price index and does not show any obvious correlation
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Figure 2.4: Time series of the ranking of top 5 wines in September 2019 in price group 100-
125 dating back to January 2007. The dashed lines represent the same wine when it was in a
lower price group. Before March 2016, there were multiple price groups below 100, making
it possible for multiple dashed lines to have the same ranking.

Figure 2.5: An average of the prices of the 50 highest ranked wines in January 2007 for all
of the price groups. The price ranges are separated by the black dotted lines. Many of the
wines dropped off market, especially in the two highest price groups, therefore the averages
are based on less data towards the end of the time period.
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to the Gross Domestic Product per capita. Despite a near linear trend visible in Figure 2.5,
this does not accurately reflect the individual wine prices, which are continuously adapted
to the market.

2.5 Calculating Rankings

Vinmonopolet’s website states that the ranking lists are made every other month, based
on the last six months’ sales. Figures 2.3 and 2.4 show that ranking lists are updated every
month, though this might be done automatically and does not mean that Vinmonopolet acts
on the results monthly.

An attempt to reconstruct a ranking list using six months of sales data from Sales returns
a similar but not identical list. The ranking lists’ sales values are based on Netto Salg (net sale)
in Rankings. Comparing this value to the calculated six-month sum for article nr 137201,
we observe that the calculated value is approximately twice the size of the net sales value.
The data collector at Grapespot reveals upon inquiry that net sales is calculated from the
last six months of sales in the 60 largest stores in the country, not from total sales, which
is what the sales data in Sales represents. Vinmonopolet has, per January 2021, 337 stores,
split into categories 1 to 6 depending on size. Category 1 stores have approximately 200
products, while the 60 category 6 stores have at least 1700 products. Only the 60 largest
stores guarantee to sell all products from basisutvalget and testutvalget, as the rest do not
have enough shelf space for all products.

Figure 2.6 compares the total sales and sales from the top 60 stores for five popular
products. In general, the two time series seem to follow each other closely, but article 684801

Figure 2.6: Six month rolling sum of the ranking of top 5 wines in January 2007 in price
group 100-125 until September 2019. The solid lines are total sales and the dashed lines are
sales in the top 60 stores. The ranking lists are based on the dashed lines, net sales.

shows an example of how the ranking basis does not correctly reflect the total sales for all
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months. Figure 2.7 is a scatter plot of the percent change for these two measurement forms.
The scatter plot shows a strong positive linear association with a few outliers. The average
correlation is 0.958.

Figure 2.7: Scatter plot of the percent change in net sales and the six month rolling sum of
liter for the five top ranked products in PG100 in January 2007.

By comparing Figure 2.3 and Figure 2.1, we know that all of these products remain in
basisutvalget throughout the observed time period. A selection of five popular wines cannot
be assumed to be representative of all red wines, but one can presume that the less common
products are even more likely to be sold in one of the 60 largest stores than in the small
stores or online compared to the popular products. If a higher proportion of a product is sold
in one of the 60 largest stores rather than elsewhere, this will increase correlation, as these
sales numbers will be accounted for in both net sales and liter. This theory is strengthened
by the analysis of a less popular red wine in Figure 2.8, where net sales and the rolling sum
of liter follow each other closely.

This presents a couple of options on how to forecast and how to evaluate rank. One
option is to focus on the total sales, as a forecast of this represents the actual sales numbers
a wholesaler can expect. Ranking based on these values would result in similar, but not
exactly correct results, even with training data. Option two is to only forecast the sales in
the top 60 stores, as this value defines the rankings that decide which sales category the
products are in. A third option is to forecast using total sales and use the correlation of the
percent change to transform into expected sales for the top 60 stores before ranking.

From net sales, we can either use the values as they are or extract the sales for individual
months by taking the difference from month to month. Doing this gives us a slightly shorter
training set, but gives a similar basis for forecasting as the total sales data, removing any
benefits of option one and three.

The importance for a product to be put in basisutvalget is shown in Figure 2.8. The
article in question is the red wine that switches sales category most often when disregarding
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Figure 2.8: Sales compared to the sales category of article 5518101. The wine is guaranteed
a spot on the store shelves when in basisutvalget or testutvalget, causing increased sales in
these periods. The rolling sum of total sales is added to compare to net sales which will be
forecasted. Raw total sale is added to show the immediate effect of shifting sales category.

changes to NaN and back. Three times it was put in testutvalget, but only two times did it
manage to sell enough to enter basisutvalget, and then only for a limited period before
returning to bestillingsutvalget. It is clearly visible from the figure that being available in the
store increases sales numbers considerably. The difference between the total sales and net
sales is small, showing that most of the sales for this product were made in the 60 largest
stores.

Of the 2406 products analyzed in PG100-PG300, the number of times each product
switched sales category is shown in Table 2.4. These numbers do not distinguish between
Nan or actual changes, meaning that the actual occurrences of change are lower. This shows
that most products seldom switch sales category.

Changes of sales category 0 1 2 3 4 5 6 7 8 9 10 11 12
Occurrences 527 429 1062 200 123 38 13 5 6 1 0 1 1

Table 2.4: Number of times a product switches between basisutvalget, bestillingsutval-
get,testutvalget, tilleggsutvalget, partiuvalget, or NaN in the time period January 2007 -
September 2019.
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Theory

3.1 Background

Wine Studies

Very few studies have been submitted on Norwegian wine sales, but a new study on the
effect of temperature and holidays on alcoholic beverages in the USA show similar trends
to the ones observed in our data. Here, large spikes appear for thanksgiving and Christmas
holidays, with a clear dip in January. As thanksgiving is not celebrated in Norway, the lack of
this spike in our data is expected. The study shows that both red and white wine are sensitive
to temperatures throughout the year, red wine sales have a dip in the warmer season, while
white wine is more popular in the warmer seasons. The temperature sensitivity was highest
for the coolest regions [7]. The cooler regions in the USA have a climate more similar to the
Norwegian climate, making these temperature sensitivities probable for Norway as well.

A study on the buyer-seller relation in Norwegian wine imports shows that most rela-
tionships between importers and exporters are short-lived. More than 75 % end after less
than two years. They find that wines with high quality, as assumed by high costs, tend to
increase the duration of these relationships. They also reported that the size of the initial
trade and a weakening of the currency in exporting country positively impacts duration. A
discussion on the exporter-importer ratio highlights the that the limited shelf space due to
the monopoly causes a large competition among the importers to sell the products known
to sell among the Norwegian consumers [8]. This competition is confirmed in a news article
from 2016 which writes about a culture of tough and dirty competition between importers
who steal exporters from each other with promises of improved sales. A theory behind this is
the availability of the sales data at Vinmonopolet and declining sales from bestillingsutvalget
after 2010 [9].

A study from 2013 analyzes the Norwegian wine monopoly and the effects on the mar-
ket. A high tax rate per unit of alcohol means that cheap wines become relatively expensive
in Norway, while the expensive products cost similar to abroad. These taxes also make the
prices in Norway higher than in neighboring countries, therefore Norwegians have a tend-
ency to buy alcohol abroad, especially in Sweden. The study revealed through interviews
that strategic tasting sessions for journalists and supply chain observers are used as market-
ing strategies [10]. The effect of such strategies are confirmed by a study which finds that
a 10 % increase in newspapers’ scores lead to a 16-18 % increase in sales of wines [11].

15
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Forecasting Time Series

Machine learning is becoming increasingly popular and is proving very successful for tasks
such as speech recognition, translations, law usage, and autonomous vehicles [12]. Future
competitive advantages of utilizing "big" data are expected to be large, and the benefits
of widespread usage of Artificial Intelligence are expected to be increasingly exploited by
people and organizations in the future [13].

The success of machine learning in forecasting is a topic of disagreement. A comparison
of ARIMA and LSTM for forecasting time series showed that deep learning methods are
superior to traditional methods. The empirical study showed that LSTM models obtained
84-87 % reduction in error rates compared to ARIMA [14]. On the other hand, it is suggested
in another paper that the papers that claim machine learning superiority in forecasting are
limited by conclusions based on too few time series, that the forecasts are mainly short-term,
and they are not sufficiently compared to benchmarks. Another concern about machine
learning methods, is their lack of capability to specify uncertainty, finding the confidence
intervals of forecasts can be just as important as the forecasts themselves [12].

In the M4 competition, where forecasting models were tested on 100000 time series,
the best performing models were hybrids, specifically combinations using statistical and/or
machine learning methods. The pure machine learning models had surprisingly poor per-
formance; this is assumed to be caused by overfitting. The top three models used inform-
ation from multiple time series to predict individual time series [15]. The winning model
used a Dynamic Computational Graph Neural Network that mixes a standard exponential
smoothing model with an advanced LSTM network into a common framework [16].

Ranking Time Series

Learning to rank is an emerging topic, but so far it has mainly been focused on information
retrieval. Few studies have attempted to forecast ranking for time-series data, this is nor-
mally predicted by experts or survey. A single paper was found on this topic, using a learn-
ing to rank algorithm to rank top mobile games. They concluded that using LambdaMART,
a combination of Multiple Additive Regression Tree (MART) and LambdaRank, a gradient
function, was the best algorithm, and that time attributes improved the performance meas-
ure [17].

3.2 Performance Measures

3.2.1 Ranking Order

To evaluate the results of our ranking forecasts, we need a method to compare two rank-
ings. A common method to measure rank correlation, is Spearman’s ρ, which measures
monotonic relationships between two variables,

ρR1,R2
=

cov(R1, R2)
σR1
σR2

. (3.1)

When all of the ranking values are n distinct integers, this can be shortened to

ρR1,R2
=

6
∑n

i=1 d2
i

n(n2 − 1)
, (3.2)



Chapter 3: Theory 17

where di is the difference between the pairwise ranking values. A couple of issues make
this metric inadequate for our purposes. We are not necessarily interested in evaluating the
correlation or monotonic relationship between the rankings; we know that these exist and
want a method to measure how good one ranking compares to the correct ranking. We also
wish to limit the evaluation to a section of the ranking; the integer values will therefore not
be limited to [1, n] and di can get too large to correctly limit ρ between [−1, 1].

In addition to Spearman’s ρ, we wish to use a score that is more straightforward. This
score, S, penalizes distance from correct position, but limits the penalty, to avoid letting
single large mistakes destroy the score of otherwise good rankings. This score is defined as

S = 1−

∑RL
i=1 max{|di|, l}

RL · l
, (3.3)

where di is the distance from correct ranking value for product i, RL is the ranking
limit, and l is a chosen limit. This gives us S ∈ [0, 1] where 0 is a scenario where every
ranking value is more than l places off target and 1 is a perfect ranking. We will use l = 10
throughout this thesis.

To compare these metrics, we will look at three different rankings, RA = [1, 2,3, 4,5, 6,7,
8, 9,20], RB = [1,2, 10,3, 4,5, 6,7, 8,9], and RC = [2,1, 3,6, 5,7, 4,9, 10,8], where R∗ =
[1, 2,3, 4,5, 6,7, 8,9, 10] is the correct order they are compared to.

RA shows a ranking where the evaluated values’ order is correct. However, a less popular
product has a too high score, pushing the tenth most popular product out of the evaluated
list. RB shows a correct ranking except for one product that is given a too high score and
shifts all succeeding products one rank lower. RC has all of the correct products, but the
order is quite mixed up.

Table 3.1 shows these rankings score using Spearman’s ρ and S-score. We observe that
Spearman’s ρ gives a perfect score to RA , while the S-score penalizes the mistake in the
10th spot. The shift in RB has a much higher consequence for Spearman’s ρ than the S-
score, while RC is similar with both metrics.

RA RB RC

ρ 1.00 0.66 0.87
S 0.90 0.86 0.88

Table 3.1: Metrics of three different ranking examples, RA = [1,2, 3,4, 5,6, 7,8, 9,20], RB =
[1, 2,10, 3,4, 5,6, 7,8, 9], and RC = [2,1, 3,6, 5,7, 4,9, 10,8], compared to a correct ranking
R∗ = [1,2, 3,4, 5,6, 7,8, 9,10]. l is set to 10 for S.

For these short examples, Spearman’s ρ varies greatly, but for larger lists, Spearman’s ρ
gives higher and more stable results. As Spearman’s ρ is a tested method, we will be using
both measurements to evaluate the ranking results.

3.2.2 Classification

To evaluate whether the forecasted rankings fulfill their purpose of forecasting which product
selection a product will be placed in, we will classify products by their status change. The
classes are defined as

• in - product entering basisutvalget
• stay - product staying in basisutvalget or bestillingsutvalget
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• out - product leaving basisutvalget.

The confusion matrix for this multi-class classification is shown in Table 3.2, where tpi is
true positive, tni is true negative, fpi is false positive, and fni is false negative for their class
i ∈ {in, stay, out}.

True
in stay out

in tpin/tnstay/tnout fpin/fnstay fpin/fnout

Predicted stay fnin/fpstay tnin/tpstay/tnout fpstay/fnout

out fnin/fpout fnstay/fpout tnin/tnstay/tpout

Table 3.2: Confusion matrix with three classes.

From this, we can calculate the most common performance measures in classification,
precision, recall, and the Fβ score, given by

PRCi =
tpi

tpi + fpi
, (3.4)

RCLi =
tpi

tpi + fni
, (3.5)

and

Fβ scorei =
(β2 + 1)PrecisioniRecalli
β2Precisioni +Recalli

, (3.6)

where β = 1 gives the harmonic mean of precision and recall. Precision is also called the
positive predictive value and is the fraction of predictions which are correct out of all pre-
dictions for that specific class. Recall can be called the positivity rate or sensitivity, and gives
us the fraction of correct predictions out of all occurrences of that specific class.

For this project, RCLin and RCLout are considered the most relevant classification metrics,
as we wish to have the highest probability of picking up which products that risk heading
out of basisutvalget and which products that have a chance of entering basisutvalget. PRCout

and PRCout gives us insight on how often predictions of in or out are correct and is worth
optimizing to give credibility to predictions of these two least common classes. The stay
class is strongly represented and least interesting. Studying PRCstay and PRCstay can reveal
whether the models are too stable and would reveal majority class classification for a direct
classification problem. However, a performance measure evaluating ranking can reveal the
first issue, and the second issue is irrelevant for our models; we will therefore drop these
performance measures. Precision and recall both give valuable information separately, but
F1 score is good for comparing results between models, therefore all three performance
measures will be used.

3.2.3 Degree of Change

To measure the amount of change in the ranking lists, we will present a metric called
Shift. This metric shows the relative amount of forecasted ranking change to actual ranking
change, defined by

Shifth
t =

∑RLt

i=1 |R
t+h
i − Rt

i |
∑RLt

i=1 |R
t+h∗
i − Rt∗

i |
, (3.7)



Chapter 3: Theory 19

where RLt is the ranking limit at time t, h is the number of time steps forecasted, Rt
i is the

forecasted ranking value at time t for product i, and Rt∗
i is the actual ranking value. This

metric assumes that the ranking limit stays fixed during forecasted period.
This metric does not say anything about whether changes to rankings are correct, but

shows whether a model’s sales forecasts in general are more or less stable than the actual
changes in sales.

3.3 Time Series

Time series are series of observations with equal time between each observation. These can
be discrete or continuous, infinite or finite, but each observation needs to be associated
with a time t. The most common are discrete, finite time series, such as those studied in this
thesis. Time series are described differently in many papers and books in this field, but we
shall mainly use the mathematical terminology as presented in [18].

We will be using the stochastic process {Yt} for t = 1, 2, . . . , where each Yt is a random
variable, as an example time series. A random walk for t = 1,2, . . . can be written as Yt =
Yt−1+ et = e1+ . . . et−1+ et where {et} are unobserved, independent, identically distributed
(iid) random variables with mean zero and variance σ2

e , called white noise.
Important properties for {Yt} are the mean, autocovariance, and autocorrelation func-

tions. The mean at time t is described by

µt = E(Yt). (3.8)

The autocovariance function between observations at time t and s is given by

γt,s = Cov(Yt , Ys) = E[(Yt −µt)(Ys −µs)]. (3.9)

The autocorrelation function between observations at time t and s is given by

ρt,s = Corr(Yt , Ys) =
γt,s

p

γt,tγs,s
. (3.10)

Time series are defined as weakly stationary if µt is constant for all t and γt,t−k = γ0,k

for all t and k. {Yt} is strictly stationary if the joint distribution is the same for Y1, Y2, . . . , Yn

as for Y1+k, Y2+k, . . . , Yn+k for all k and n> 0.

Backward Shift Operator

To express time series in an orderly fashion, we will be introducing the backward shift
operator B, defined by

BYt = Yt−1. (3.11)

Applying the backward shift operator twice gives

B(BYt) = B2Yt = Yt−2. (3.12)

Taking the first difference in a time series, we get

Yt − Yt−1 = Yt − BYt = (1− B)Yt , (3.13)
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while taking the second difference, we get

Yt − Yt−1 − (Yt−1 − Yt−2) = Yt − 2Yt−1 + Yt−2 = (1− 2B + B2)Yt = (1− B)2Yt . (3.14)

Continuing this pattern we get the d th difference by (1− B)d Yt .
To express this, we will be introducing the backward shift operator B, defined by

BYt = Yt−1, (3.15)

which applied twice gives

B(BYt) = B2Yt = Yt−2. (3.16)

Taking the first difference in a time series, we get

Yt − Yt−1 = Yt − BYt = (1− B)Yt , (3.17)

while taking the second difference, we get

Yt − Yt−1 − (Yt−1 − Yt−2) = Yt − 2Yt−1 + Yt−2 = (1− 2B + B2)Yt = (1− B)2Yt . (3.18)

Continuing this pattern we get the d th difference by (1− B)d Yt .

3.3.1 ARMA

Assuming weak stationarity, we will look at the most common traditional models. When
the white noise can describe a time series for each previous time step and corresponding
weights,

Yt = et + θ1et−1 + θ2et−2 + · · ·= (1+ θ1B + θ2B2 + . . . )et , (3.19)

where

∞
∑

i=1

θ 2
i <∞, (3.20)

we have a general linear process. When this process can be modeled with only the last q
white noise terms and the remaining weights are zero, this becomes a moving average of
order q, MA(q),

Yt = (1+ θ1B + θ2B2 + · · ·+ θqBq)et . (3.21)

When a time series can be modeled by regression on the p previous observed values and
current white noise, it can be modeled by an autoregressive model AR(p),

Yt = (φ1B +φ2B2 + · · ·+φpBp)Yt + et . (3.22)

Combining these two methods gives us the autoregressive moving average, ARMA(p, q)
model

(1−φ1B −φ2B2 − · · · −φpBp)Yt = (1+ θ1B + θ2B2 + · · ·+ θqBq)et . (3.23)
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3.3.2 ARIMA

Non-stationary time series are time series that can be expressed by

Yt = X t +µt (3.24)

where X t is the stationary function and µt is a non-stationary function expressing the mean
of Yt . For non-stationary time series, we wish to look at the change between consecutive
observations to get a stationary time series. If this is not enough, we could also study the
change of the change and so forth. If taking the d th difference of {Yt} gives a weakly sta-
tionary time series that can be fitted with an ARMA(p, q) model, we can fit {Yt} with an
Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA(p, d, q) model is
then given by

(1−φ1B − · · · −φpBp)(1− B)d Yt = c + (1+ θ1B + · · ·+ θqBq)et , (3.25)

where c is the average change between observations. A positive c means that the time series
has a positive trend, while a negative c means that it tends to have a negative trend. A
random walk with no drift would require an ARIMA(0,1,0) model with c = 0, while a
random walk with drift would require an ARIMA(0,1,0) with c 6= 0.

3.3.3 SARIMA

Time series can also have seasonal trends, such as daily temperature variations, sales spikes
on weekends or yearly seasons. Removing such a seasonal trend is done by taking a lag-s
difference,

Yt − Yt−s = (1− Bs)Yt , (3.26)

where s is the number of seasons. An example of this with lag 12 is given in Figure 3.1, where
we also take a regular difference with lag 1 after the seasonal differencing. In this example,
we see a large spike every December, which is removed by the seasonal differencing. The
second differencing stabilizes the stationarity, but at the expense of an increased standard
deviation of the white noise, σ2

e .
Similar to above, if X t = (1− B)d(1− Bs)DYt can be modeled by an ARMA(p, q) model,

then Yt can be modeled by the seasonal ARIMA model, SARIMA(p, d, q)(P, D,Q)s, where
P, D, and Q are the seasonal equivalents of p, d, and q. For this model we will introduce the
polynomials Φ(B) and Θ(B), which are the seasonal equivalents of the polynomials φ(B)
and θ (B) we have seen before. They are defined as

φ(B) = 1−φ1B −φ2B2 − · · · −φpBp

Φ(B) = 1−Φ1Bs −Φ2B2s − · · · −ΦP BPs

θ (B) = 1− θ1B − θ2B2 − · · · − θqBq

Θ(B) = 1−Θ1Bs −Θ2B2s − · · · −ΘQBQs.

(3.27)

Using these, the SARIMA(p, d, q)(P, D,Q)s model is given by

φ(B)Φ(Bs)(1− B)d(1− Bs)DYt = θ (B)Θ(B
s)et . (3.28)
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Figure 3.1: The top plot is the raw series of sales of article number 137201. The middle plot
is the same time series differenced with lag 12. The bottom plot is the time series differenced
with lag 12 and once again with lag 1.

The SARIMAX model is a SARIMA model with exogenous factors. The SARIMAX model
is given by

φ(B)Φ(Bs)(1− B)d(1− Bs)DUt =θ (B)Θ(B
s)et

Yt =βt X t + Ut ,
(3.29)

where X t are the exogenous variables and βt the coefficients in a linear regression. Exogen-
ous variables are variables that are determined outside of the model before they are imposed
on the model. These affect the model without being affected back.

3.3.4 Forecasting

Forecasting with ARIMA models is a recursive process starting with calculating Ŷt+1,Ŷt+2,. . . .
To forecast Ŷt+h, Yt is isolated on left hand side, all time-steps are shifted by h, future ob-
servations Yt+1,Yt+2. . . Yt+h−1 are replaced with previous forecasts Ŷt+1,Ŷt+2. . . Ŷt+h−1, future
errors are replaced with zero, and the past errors are replaced with the corresponding re-
siduals. We will present an example with ARIMA(1,1,2),

(1−φ1B)(1− B)Yt = (1+ θ1B + θ2B2)et , (3.30)

which expands to
(1− B −φ1B +φ1B2)Yt = (1+ θ1B + θ2B2)et . (3.31)

Applying the backshift operators,



Chapter 3: Theory 23

Yt − Yt−1 −φ1Yt−1 +φ1Yt−2 = et + θ1et−1 + θ2et−2, (3.32)

and isolating Yt we get,

Yt = Yt−1 +φ1Yt−1 −φ1Yt−2 + et + θ1et−1 + θ2et−2, (3.33)

which we shift by a single time-step

Yt+1 = Yt +φ1Yt −φ1Yt−1 + et+1 + θ1et + θ2et−1. (3.34)

Assuming that Equation 3.30 is fitted with φ̂1, θ̂1, and θ̂2, we replace et+1 with zero, while
et and et−1 are replaced with the observed residuals êt and êt−1. This gives us the forecast

Ŷt+1|t = Yt + φ̂1Yt − φ̂1Yt−1 + θ̂1 êt + θ̂2 êt−1. (3.35)

Forecasting Ŷt+2|t , is done similarly to Equation 3.35, but by shifting two time-steps, repla-
cing Yt+1 with Ŷt+1|t , and setting both et+2 and et+1 to zero. This gives us

Ŷt+2|t = Ŷt+1|t + φ̂1Ŷt+1|t − φ̂1Yt + θ̂2 êt . (3.36)

3.4 Machine Learning

Machine learning problems are most commonly split into supervised, unsupervised, and re-
inforcement learning. Supervised learning is used for classification and regression problems
where the target is known. Classification problems predict class labels, while regression
problems predict numerical values. Unsupervised learning is used for clustering or dens-
ity estimation problems where the target is unknown or not used for training. Clustering
problems aim to separate data into groups that share similar traits, while density estima-
tion problems estimate the parameters of density functions for the samples. Reinforcement
learning is used in environments where the model maps a situation to an action trying to
achieve a given goal, using feedback to learn, not fixed data set. Reinforcement problems
could be chess games or monitoring sensors and adjusting valves to stabilize systems. We
will only be using supervised learning for this thesis.

3.4.1 Neural Networks

Neural networks were named by their inspiration from neurons in the human brain, which
has approximately 100 billion neurons, linked by an average of 1000 synapses[19]. We are
far away from managing to construct such complex networks at this moment, but a smaller
example of a neural network is shown in Figure 3.2 to highlight the principles. Each dot is an
artificial neuron and the lines between are connections equivalent to synapses. The three
neurons on the left represent the input layer, the three columns in the middle represent
three hidden layers with six neurons each, and the three neurons on the right represent the
output layer. The edges connecting each neuron to all neurons in the closest preceding and
succeeding layers make this a fully connected neural network.

The number of hidden layers plus the output layer give the depth of a model, and with
increasing depth comes increasing complexity. There is no clear definition, but networks
with two or more hidden layers are considered deep learning.
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Figure 3.2: Example of a fully connected neural network with three hidden layers, each with
six neurons.

Hidden Units

In a feedforward network, each neuron takes input from the preceding layer, calculates a
new value, and passes this on to each neuron in the next layer. An example of a neuron
in the first hidden layer of Figure 3.2 is shown in Figure 3.3. The neurons in the hidden
layers, normally called hidden units, have gates that transform their input with an affine
transformation zzz =WWW T xxx + bbb before applying an activation function g(zzz). Each layer l has
a weight matrix WWW l of size (# input × # neurons in l) and bias bbbl , a vector of length (#
neurons in l). These are updated when the network is training. An example for a single
neuron is given in Figure 3.3, where www[i] is the vector of weights from WWW for neuron i and
b[i] is the ith bias.

Figure 3.3: Example of a neuron with a single gate in the first hidden layer in Figure 3.2,
with three input values, weights and bias. Layers with a single gate per neuron are the most
common layers, called dense layers.

The other hidden layers function similarly, but use input from the previous layer instead
of x . The activation functions g(z) are applied element-wise to squash the linear transform-
ation with various methods. Three of the most common activation functions are rectified
linear unit, ReLU,

ReLU(z) =max{0, z}, (3.37)
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the logistic sigmoid activation function,

σ(z) =
1

1+ e−z
, (3.38)

and the hyperbolic tangent activation function,

tanh(z) =
ez − e−z

ez + e−z
, (3.39)

which are shown in figure 3.4. The functions differ in linearity, continuity, negativity,
and behavior around z = 0.

Figure 3.4: Three common activation functions in hidden units.

Optimization

Models are optimized by minimizing the cost function during training. The cost function is
the same as the loss function, but the loss function is calculated for each training sample,
while the cost function is calculated for the whole training set and can also contain regu-
larization terms. Two standard loss functions for regression models are Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE). These are given by

RMSE=

√

√

√1
n

n
∑

i=1

(yi − ŷi)2 (3.40)

and

MAE=
1
n

n
∑

i=1

|yi − ŷi|, (3.41)

where ŷi = f (x i,θθθ ) is the predicted value of yi and θθθ consists of all weights and biases
in the model. RMSE penalizes large errors more than MAE and has the benefit of being
differentiable. MAE is easier to interpret and is more robust with outliers. Considering the
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instability of the market we will be analyzing, outliers are to be expected and MAE is the
preferred loss function.

When using the loss function over all samples, it is often referred to as the cost function
and denoted by J(θθθ ). The negative gradient of the cost function,−∇J(θθθ), gives the direction
the parameters need to be adjusted to decrease the cost function the most. Backpropagation
is used to calculate the gradient in a time-efficient manner. It calculates the gradients of the
last layer first and uses these results and the chain rule to calculate the preceding layers in
a backward iterative manner.

In addition to finding which direction the parameters need to be shifted to optimize
the cost function, we also need to take into account local minima and the learning rate,
how large steps to take, as shown in Figure 3.5. The red arrows indicate a case where the
learning rate is set too low; this causes slow progress, as the updates to the parameters are
very small. The opposite case is shown with the yellow arrows where the learning rate is
set too high, and the cost function can end up diverging instead of converging towards the
minimum. The green arrows show a better adaptive learning rate but highlight the risk of
getting stuck local minima.

How the weights and biases are initialized impact the occurrences of local minima. The
parameters are commonly initialized to small random values. The randomness helps avoid-
ing symmetry, which could lead to similar functions in nodes [20]. The parameters are set
to small values to avoid nodes being too active or not active enough, which would make
them insensitive to training [21].

Figure 3.5: Plot of the cost function for a parameter in one dimension. The learning rate is
too low for the red arrows, too large for the yellow arrows, and good for the green arrows.
Without a stochastic element, the function risks getting stuck in local minima, as shown by
the green arrows.

A common optimization algorithm is Stochastic Gradient Descent (SGD). Where regular
gradient descent calculates the gradient of the cost function on the whole training set, SGD
calculates an estimate of the gradient on random batches of training samples [22]. SGD
works iteratively, calculatingθθθ i+1 = θθθ i−η∇J(θθθ i) for i = 1, ...n where n fulfills some stopping
criteria andη is the learning rate. As shown in Figure 3.5, the learning rate can be adaptive. A
common stopping criterion is monitoring the validation loss and stopping after a set number
of iterations without improvement, called early stopping. Early stopping is a regularization
method that can help prevent overfitting. Overfitting is a phenomenon that occurs when
noise and peculiarities are fit into the model, which increases the training accuracy but can
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lead to a less general model which performs worse on new data[23].
A popular stochastic optimization method Adam was suggested by Kingma and Ba in

201[24]. Adam is based upon two extensions of SGD, AdaGrad[25] and RMSProp[26], both
of which benefit from per-parameter learning rates, giving an advantage on noisy problems
and sparse gradients. Adam uses only first-order gradients with small memory requirements,
is computationally efficient, is easy to implement, and handles large problems well.

Recurrent Neural Networks

The earliest and most "straightforward" neural networks are feedforward neural networks.
These are networks where information only flows in one direction, without any cycles form-
ing between or within the neurons. Recurrent Neural networks (RNNs) are networks with
internal memory. This memory is constructed by feeding the output back into the cell to
evaluate both the new input and the previous output for each computation. Feeding a single
time series x= [x0, x1, ..., xT ] into a simple RNN, as shown in Figure 3.6, the first sample x0

has no internal memory, while the last sample will have memory from all previous samples
influencing the internal input hT−1. This can be denoted by

ht = g(b+WWW T x t +UUU T ht−1) (3.42)

where UUU is a matrix of the recurrent weights.
A simple model such as this can have a poor long-term memory, as the first hidden

outputs are gradually overloaded by the newer input. This issue is handled by the long short-
term memory (LSTM) network, suggested by Hochreiter and Schmidhuber in 1997[27].

An advantage to RNNs is their ability to operate over sequences of vectors and their
flexibility regarding input and output shape, one-to-one, one-to-many, many-to-one, many-
to-many. Allowing the use of sequences as input lets the model assume ordered dependency
among samples in the same sequence, making analyzing time series possible. Some of the
disadvantages to RNNs are that they are difficult to train, the recurrent nature can cause
slow computation, and they are prone to the vanishing or exploding gradient problem.

Figure 3.6: Example of a recurrent neural network, in folded form on the left and unfolded
form on the right.

Vanishing Gradient Problem

The vanishing gradient problem is an issue that can occur when using gradient-based optim-
ization methods and backpropagation. Vanishing gradients are gradients that become too
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small for weights and biases to know which direction they should move. This effect occurs
as new gradients are calculated by multiplying multiple previous gradients using the chain
rule from backpropagation. For an RNN, this can be shown by

∂ J
∂ θθθ
=

T
∑

t=1

∂ Jt

∂ θθθ
(3.43)

where
∂ Jt

∂ θθθ
=
∂ Jt

∂ ht

∂ ht

∂ hk

∂ hk

∂ θθθ
, (3.44)

and ∂ ht
∂ hk

is a product of varying length, dependent on t and k,

∂ ht

∂ hk
=

t
∏

i=k+1

∂ hi

∂ hi−1
=

t
∏

i=k+1

∂ hi

∂ zi

∂ zi

∂ hi−1
=

t
∏

i=k+1

g ′(zi)UUU
T . (3.45)

For the last term we have used Equation 3.42 such that hi = g(zi) and ∂ (b+WWW T x t+UUU T ht−1)
∂ ht−1

= UUU T .
The derivative of the σ and hyperbolic tangent functions g ′(zi) are

dσ(z)
dz

= σ(z) · (1−σ(z)) (3.46)

and
d tanh(z)

dz
=

cosh2(z)− sinh2(z)
cosh2(z)

, (3.47)

both of which are limited to [0,1], as opposed to ReLU, which has the derivative

dReLU(z)
dz

=

¨

0 for z < 0

1 for z ≥ 0.
(3.48)

The product ofσ and hyperbolic tangent activation functions will therefore have an increas-
ing minimizing effect with increasing width of an RNN.

Given the eigendecomposition UUU T = VVVdiag(λλλ)VVV−1, we have after t steps

UUU T t
= (VVVdiag(λλλ)VVV−1)t = VVVdiag(λλλ)tVVV−1. (3.49)

If any of the eigenvalues λi have an absolute value that is not close to 1, they will either van-
ish if they are smaller than 1 or explode if they are greater[28]. The second case introduces
an alternative problem, called the exploding gradient problem, where exploding gradients
make learning unstable.

Vanishing and exploding gradients are not only an issue for wide RNNs, deep feedfor-
ward neural networks can also face this problem. One proposition to overcome this problem
was made by Schmidhuber in 1992, suggesting to divide and conquer by using a multi-level
hierarchy of recurrent networks, pretraining each level separately with unsupervised learn-
ing before final tuning through backpropagation [29]. The most common technique to avoid
the vanishing gradient problem is to use an LSTM network.
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3.4.2 LSTM

The neural networks we will use in this thesis are all LSTM networks. LSTMs are a form
of RNNs which handle long-term memory better than traditional RNNs. In addition to the
normal hidden state ht , LSTMs pass on a cell state ct which is only slightly adjusted per cell,
preserving training from old input. A diagram of an LSTM cell is shown in Figure 3.7, where
we can observe how four gates interact to update the cell state and hidden state. Each of
these gates have their own bias b, input weights WWW , and recurrent weights UUU .

Figure 3.7: Diagram of an LSTM cell. It differs from the traditional RNN cell in Figure 3.6
by the additional cell state ct and internal gates.

The four gates are the forget gate

ft = σ
�

b f +WWW f T xxx t +UUU f Thhht−1

�

, (3.50)

the input gate
it = σ

�

bi +WWW iT xxx t +UUU iThhht−1

�

, (3.51)

the cell update gate
c̃t = tanh

�

b c̃ +WWW c̃T xxx t +UUU c̃Thhht−1

�

, (3.52)

and the output gate
ot = σ

�

bo +WWW oT xxx t +UUU oThhht−1

�

. (3.53)

The forget-, input-, and output gates start out the same with random bias and weights,
but their weights and biases are adjusted differently as the model is trained, giving them
functions fitting their names.

The cell state is given by
ct = ft ct−1 + it c̃t . (3.54)

The forget gate has a σ activation function giving values in the range [0,1], therefore mul-
tiplying this with the input cell state ct−1 lowers the values, having a "forgetting" effect.
Adding to this the product of a σ activation function and a tanh activation function with
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ranges [0,1] and [-1,1] adds new memory to the cell state without overbearing the previous
memories.

One copy of the cell state is passed on to the next recursion, while the other is squashed
by a tanh function before it is multiplied with the output gate to construct the hidden state

ht = tanh
�

ct

�

ot , (3.55)

which is passed on to the next recursion and the next layer. As the hidden state is in the
range [-1,1], LSTM networks normally have a dense output layer with an activation function
fit for the problem in hand.
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Experimental Setup

The experiments for this thesis will only be executed on the largest group of red wines. The
principles behind the analysis and the bulk of the code could be used on any product sold
by Vinmonopolet, though smaller sales numbers and fewer products are assumed to give a
poorer basis for machine learning.

The red wines are grouped by price before ranking, as described in section 2.1. The price
groups we will analyze are named PG100, PG125, PG150, PG175, PG200, PG250, PG300.
The number in each name expresses the lower limit of the price range, while the upper limit
is given by the next price group, with the exception of PG300 which has the price range
[300, 400).

All models are tested on targets in the time period August 2017 to September 2019,
with training data size and input selected as needed for each model. Only one price group
is evaluated at a time, and only products that are in the evaluated price group at month t
are kept in the test set. The size of the tests sets are presented in Table 4.1.

Price group 100 125 150 175 200 250 300
Test samples 3480 4675 2282 2101 2307 2723 1585

Table 4.1: Number of samples that each price group is tested on.

No data in the time period January 2007 to December 2007 was used in any of the
experiments presented in this thesis. This data was kept available for taking the 12 month
difference of net sales without large changes to the code. Initial experiments showed little
or no improvement upon using differenced data, and no further experimentation was done
on this topic.

4.1 Data Processing

A large part of the time spent on this project was spent handling the data, shaping it into a
format that could be fed into the LSTM, making the code easily adaptable to varying types
and amounts of features and input sizes, and setting the results up in ranking systems. We
will give a simplified walk-through of the process below, specifically for the LSTM model.
The setup for the SARIMA model and persistence forecasts are based on the same process
but with a few variations. A link to the Github repository is given in Appendix C.

31
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Merging Data

One of the challenges with the data is that it is presented in three files. These files have some
overlapping features, but not all of these are guaranteed to have the same values from file to
file. An example of this is the alcohol percentage feature in Sales and Products. In Products, a
product can have multiple rows, one for each vintage, all with separate alcohol percentages.
Sales has only one row for each product for each month, with a single value for alcohol
percentage and a single value for vintage, despite multiple vintages of this product being sold
simultaneously. Merging these columns we observe that the vintage-alcohol combinations
are not consistent with the two files.

Not all of the rows in Sales are included in Ranks. By first left merging Ranks and Sales,
then left merging this with Products, we produced a single data frame which only includes
products with a ranking value. The merging process can produce rows which are near du-
plicates, with only one or few columns differing. Cases like these can occur when the same
products are delivered by multiple importers. The duplicates were removed by aggregat-
ing the liters sold and applying this value to the first occurring case while removing the
rest. Removing all unnecessary columns, we have a single dataframe with rows containing
date, article number, and all features specific for that product at that date, such as ranking,
ranking limit, price, etc..

Sorting Data

The ranking lists are divided by price groups, therefore, to analyze each ranking list separ-
ately, the data frame needs to be split into separate data frames for each price group. The
downside to doing this, is that these data frames only have rows for their products as long
as they are in that specific price group, losing historic data.

The solution to this issue was to identify all products that ever appear in the price
group(s) we are training on, gather all rows on these products, and later remove excess
data from the test set. By excess data, we mean all samples that are not in the price group
of the ranking list we are evaluating at time t.

To make all features easily callable, separate data frames were constructed for each
feature, using article numbers as columns, dates as indices, and filling them with that specific
feature’s values.

Constructing Samples

The samples were constructed as arrays. These arrays contain one-hot encoded features,
time dependent features, article number, and date, in that specific order. Each one hot
encoded feature had a width equivalent of the number of options for that feature, i.e.
bestillingsutvalget was coded with [0,1,0,0], giving this feature a width of four. A sample
containing only a single one-hot encoded feature of width four and net sales with 20 months
input and three months output would have the shape S[i] = [o1, o2, o3, o4, nt−19, nt−18, . . . ,
nt , nt+1, nt+2, nt+3, article nr., t], where i = 0,1, . . . , I where I is the total number of samples,
t ∈{August 2009 - June 2019}, and the article numbers are given by the ranking lists at time
t. By gathering all the information about a sample into a single array, we can keep track of
the samples and extract necessary information using indexing when necessary. A separate
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function takes the input X and output y from the samples, giving them the shapes

X [i] =









o1 o2 o3 o4 nt−19

o1 o2 o3 o4 nt−18
...

...
...

...
...

o1 o2 o3 o4 nt









and y[i] =
�

nt+1 nt+2 nt+3

�

,

and feeding them into the LSTM.

Ranking

By adding the forecasted values of the test set to the end of S[k], where k ∈ test samples,
and removing the values used as input, we get Ŝ[k] = [article nr., t, n̂t+1, n̂t+2, n̂t+3]. This
set of forecasts is made into a data frame with article number and date as indices.

A subset of the original data frame containing ranking is merged with the forecasts to
get this feature at time t. Shifting the subset with one month and merging again, we get the
same feature for time t +1. Repeating this two more times, we get a data frame containing
the ranking values for each product at times t, t + 1, t + 2, and t + 3. By also adding the
ranking limit to the data frame, it is possible to rank the forecasts and compare them to
the actual ranking values and extract all necessary information to evaluate the results using
various performance measures.

4.2 Models

4.2.1 Persistence Forecast

For a simple baseline, we will use persistence forecasts on net sales for t + 1, t + 2, and
t + 3 before ranking the wines for all three months. By assuming persistent sales instead
of persistent ranking values, we have the possibility to compare sales MAE with the other
models as well as the ranking results. In addition, this method avoids missing and duplicated
ranking values when products shift between price groups.

The MAE is expected to be high for the persistence forecast, as the sales values have
high seasonal variations. The ranking scores are not expected to be impacted as highly by
the seasonal variations, as all products are within the same product group and should have
somewhat parallel sales trends.

4.2.2 SARIMAX

Finding separate SARIMA coefficients for each time series is a highly time consuming pro-
cess, therefore multiple time series were analyzed and the combination of coefficients which
most often gave the best model were chosen for a global model. This was a SARIMA(1, 1,0)
(1,0, 1)12 model. The coefficients and residuals are found for each time series for each
product. The input for fitting each model is from January 2008 to t, where t is in the range
July 2017 to June 2019.

For the few time series that did not manage to use the SARIMA model, a persistence
forecast was filled in instead. Two exogenous features were tested on the SARIMA model,
Top sales and Price, both described further down.
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4.2.3 LSTM

After extensive testing, the model which gave the most consistent good results and had
a reasonable runtime was a model consisting of 2 LSTM layers and 1 dense output layer
without activation function, each with 64 neurons. The Adam optimizer with learning rate
0.001 was used, with MAE as loss function and accuracy as metric. The models had 20
months input and 3 months output. The training and validation sets were resampled enough
to be split into batches of size 64. Weights from the model were copied to an identical model
with batch size 1 for online forecasting, making the number of test samples unaffected by
batch size. Epochs were set to 100, but an early stopping function with patience=4 on
validation loss stopped the learning after the model stopped improving, usually between 15
and 40 epochs.

The models were trained on data from the time period August 2009 to November 2015
and validated on data from December 2015 to December 2016. These dates t do not include
the 19 preceding months used in the input [x t−19, x t−18 . . . , x t] or 3 succeeding months used
as targets [yt+1,yt+2, yt+3]. A quarantine period between the validation set and test set of 6
months was added to lower time dependent bias on the test results.

To avoid flooding the training and validation sets with data from unpopular wines, only
products that have at some point had a ranking value R≤ 1.2×max{RLpg} were used. The
max{RLpg} is the highest ranking limit that has been in use per evaluated price group; these
are visible in Figure 2.1. By training on some products that never reached basisutvalget, we
hope that the model will better recognize these bad trends in new products.

4.3 Features

The targets we are forecasting are net sales, but in addition to using net sales as input, we
will be testing different features to see if they contain data that improve the LSTM learning.
Appendix B gives a full overview of the columns in Sales, Rankings, and Products containing
data and metadata. Many of the available metadata classes are interesting to analyze and
use as features, but only a few with specific qualities are used. These qualities are lack of
scarcity, assumed relevance, and that the values are quantifiable or can be one-hot encoded
with limited variables.

The features that are one-hot encoded are:

• Price group - whether a product is in price group [0,100),[100,125), [125, 150), [150,
175), [175, 200), [200, 250), [250, 300), [300,400), or [400, 100000), width=9

• Selection - whether a product is in basisutvalget, bestillingsutvalget, Testutvalget, or
other, width=4

• Newness - whether a product was first sold within 12 months, width=1

These features are only added for month t. The features that are time dependent and added
for [t − 19, t − 18, . . . , t] are:

• Price - Segmentpris
• Top sales - Net sales for the wine currently ranking as number one in the evaluated

price group

These features, along with net sales are scaled using a Min-Max scaler.
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4.4 Ranking

Despite the focus on time series forecasting of liters sold per wine, the main goal is to forecast
whether a product is likely to leave basisutvalget or enter it the next three months. To do
this, we need to rank the products correctly, in the same fashion Vinmonopolet does. Three
different variables need to be decided for our task: net sales for all products, price for all
products, and ranking limit for the specific price group. The product prices are set by the
importers and the ranking limit is set by Vinmonopolet, both of these variables are relatively
stable with mainly small changes. To focus our work on the predictability of sales, we will
therefore assume that prices stay constant for the next three months and that the ranking
limits are known.

Assuming that the prices are constant rather than that they are known, leads to products
appearing in the correct ranking lists for [t+1, t+2, t+3], that are not evaluated in the fore-
casted ranking lists. Likewise products will disappear from the correct ranking lists when
their new price is out of the boundary of the price group. These occurrences will both negat-
ively impact the performance measures, but this is considered more realistic than knowing
the true prices and less problematic than forecasting the prices and having a combination
of this issue and forecasting errors.

From the ranking lists we can classify the products as defined in subsection 3.2.2. The
number of occurrences of each class in each price group during the testing period is shown
in Table 4.2.

Price Group 100 125 150 175 200 250 300
in 14 33 13 9 16 6 11

stay 2835 1904 1173 990 1024 513 558
out 31 31 14 9 16 9 7

Table 4.2: Nr of occurences of each class at time t+1 for each price group in the time period
August 2017 - September 2019. In is the class of products entering basisutvalget, stay is the
class of products staying in basisutvalget or bestillingsutvalget, and out is the class of products
leaving basisutvalget.

4.5 Experiments

The experiments are split into five groups, this lets us focus separately on the different price
groups, features, and input size. The experiments are:

• Experiment 1: Testing simple models on each price group to see whether some price
groups are easier to forecast than others

• Experiment 2: Testing different features on PG175 with only PG175 as input to see if
these can improve forecasts

• Experiment 3: Testing different price groups as input on PG175 to see if diversity and
a larger training set improves forecasts

• Experiment 4: Combining the best results of the two previous bullet points to search
for an optimal model for PG175

• Final model: The resulting model from experiment 4 is tested on all price groups.

All experiments using LSTM models are run three times due to their stochastic nature,
only the averages are presented in chapter 5. Ideally we would have more than three runs
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per model and do experiments 2,3, and 4 on all price groups, but time limits our testing
capacity.



Chapter 5

Results and Discussion

5.1 Results

The complete results are presented in Appendix A. Except for the final model, we will only
be presenting the forecasts for t+1 in this section. This is because the analytic gain is small
compared to the disadvantage to presenting similar results three times over.

5.1.1 Experiment 1: Price Groups

A comparison of how well the different price groups are forecasted with a persistence fore-
cast, SARIMA model, and a simple LSTM model trained on the same price group it forecasts.
The results for t +1, t +2, and t +3 are presented in Tables A.1,A.2, and A.3 consecutively
and the most important results for t + 1 are presented in Figures 5.1 and 5.2.

Figure 5.1: A comparison of the predictability of which products will enter or leave basisutval-
get for different price groups of red wine at month t + 1. No additional features are used in
any of the models and the LSTM is only trained on the relevant price group. An F1 score of
1 is best.

37
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(a) Mean Absolute Error of forecast of net sales.
Low MAE is best.

(b) Relative shifts in ranks produced from fore-
casts of net sales compared to actual shifts.
Shift=1 is best.

(c) Measure of disorder between forecasted and
actual ranks, l=10. Score=1 is best.

(d) Measure of rank correlation between forecas-
ted and actual ranks. ρ = 1 is best.

Figure 5.2: A comparison of the predictability of the different price groups of red wine at
month t + 1. No additional features are used in any of the models and the LSTM is only
trained on the relevant price group.
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5.1.2 Experiment 2: Features

Various features are tested on both the SARIMA and LSTM models for price group 175. The
complete results are presented in Table A.4 and the most important results are presented in
Figures 5.3 and 5.4.

Figure 5.3: A comparison of features for the SARIMAX and LSTM models for price group
175 (175-199.99 NOK) at month t +1. The LSTM is only trained on price group price group
175. The F1 score for In is for the products classified as entering basisutvalget and Out is for
the products classified as leaving basisutvalget. An F1 score of 1 is best.
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(a) Mean Absolute Error of forecast of net sales.
Low MAE is best.

(b) Relative shifts in ranks produced from fore-
casts of net sales compared to actual shifts.
Shift=1 is best.

(c) Measure of disorder between forecasted and
actual ranks, l=10. Score=1 is best.

(d) Measure of rank correlation between forecas-
ted and actual ranks. ρ = 1 is best.

Figure 5.4: A comparison of features for the SARIMAX and LSTM models for price group
175 (175-199.99 NOK). The LSTM is only trained on price group price group 175.
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5.1.3 Experiment 3: Input Size

Testing various combinations of consecutive price groups to train the LSTM model on. The
complete results are presented in Table A.5 and the most important results are presented in
Figures 5.5 and 5.6. Be aware that the numbers are price groups not prices, therefore 100-
300 is 100-399.99 NOK, 125-250 is 125-299.99 NOK, 150-200 is 150-249.99 NOK, 100-175
is 100-199.99 NOK and 175-300 is 175-399.99 NOK.

Figure 5.5: LSTM models with no features. Comparing combinations of price groups to use
for training and validation sets for price group 175 (175-199.99 NOK) at month t+1. The F1
score for In is for the products classified as entering basisutvalget and Out is for the products
classified as leaving basisutvalget. An F1 score of 1 is best.
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(a) Mean Absolute Error of forecast of net sales.
Low MAE is best.

(b) Relative shifts in ranks produced from fore-
casts of net sales compared to actual shifts.
Shift=1 is best.

(c) Measure of disorder between forecasted and
actual ranks, l=10. Score=1 is best.

(d) Measure of rank correlation between forecas-
ted and actual ranks. ρ = 1 is best.

Figure 5.6: LSTM models with no features. Comparing combinations of price groups to use
for training and validation sets for price group 175 (175-199.99 NOK) at month t + 1.
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5.1.4 Experiment 4: Optimizing Model

Experiment 2 shows that the features only slightly impact the performance of the models.
Top sales scores slightly better than the other features on score and ρ. Studying Table A.4,
we also observe that this feature performs slightly better than the other features for some
of the performance measures for times t +2 and t +3 as well. This feature is dependent on
which price group is tested, as it contains net sales of the best ranked product in that price
group.

The PG feature does not show any improved performance in Figures 5.1 or 5.4. This is
not surprising, considering it is only trained on one price group, PG175, and the feature does
not vary from sample to sample. As this feature is more interesting when trained on multiple
price groups, we will also look further at this feature. By studying these two features, we
can compare the benefits of looking at a feature specialized on a single price group vs a
feature specialized for multiple price groups.

Figures 5.5 and 5.6 show that training on all price groups give the highest F1 score and
the lowest MAE. We will therefore try to optimize the model using all price groups with
combinations of the features discussed above, all features and no features. The complete
results are presented in Table A.6 and the most important results are presented in Figures
5.7 and 5.8.

Figure 5.7: LSTM models with no features. Comparing combinations of price groups to use
for training and validation sets for price group 175 (175-199.99 NOK) at month t+1. The F1
score for In is for the products classified as entering basisutvalget and Out is for the products
classified as leaving basisutvalget. An F1 score of 1 is best. må oppdateres
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(a) Mean Absolute Error of forecast of net sales.
Low MAE is best.

(b) Relative shifts in ranks produced from fore-
casts of net sales compared to actual shifts.
Shift=1 is best.

(c) Measure of disorder between forecasted and
actual ranks, l=10. score=1 is best.

(d) Measure of rank correlation between forecas-
ted and actual ranks. ρ = 1 is best.

Figure 5.8: LSTM models with no features. Comparing combinations of price groups to use
for training and validation sets for price group 175 (175-199.99 NOK) at month t + 1. må
oppdateres
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5.1.5 Final Model

Experiment 4 shows that the model trained on all price groups with no features performs
slightly better with regards to the F1 score and MAE. The F1 score can be considered the
most important performance measure since our main research question is a question about
classification. Using the model without features can help avoid overfitting, and a single
model can be fitted for use on all of the price groups. This model is therefore chosen and
tested on all price groups. The complete results for the final LSTM model are presented
in Table A.7 and the most important results are presented in Table 5.1. Tables 5.2 and 5.3
present the results of the SARIMA and persistence forecasts for comparison.

PG Time MAE Score ρ Shift PRCin PRCout RCLin RCLout

t+1 298.08 0.798 0.965 1.021 0.263 0.296 0.548 0.280
100 t+2 411.88 0.695 0.927 0.890 0.324 0.371 0.430 0.262

t+3 615.68 0.612 0.886 0.833 0.292 0.334 0.333 0.211
t+1 241.16 0.787 0.975 0.938 0.519 0.228 0.465 0.215

125 t+2 355.05 0.689 0.945 0.775 0.684 0.352 0.565 0.340
t+3 512.02 0.600 0.909 0.711 0.645 0.308 0.492 0.281
t+1 204.69 0.878 0.969 0.799 0.250 0.143 0.410 0.143

150 t+2 276.48 0.805 0.939 0.738 0.329 0.192 0.476 0.203
t+3 410.07 0.742 0.905 0.716 0.317 0.220 0.452 0.253
t+1 111.67 0.887 0.968 0.901 0.357 0.197 0.780 0.367

175 t+2 161.00 0.832 0.939 0.807 0.448 0.253 0.630 0.303
t+3 242.00 0.770 0.892 0.774 0.457 0.232 0.531 0.275
t+1 65.85 0.901 0.943 0.922 0.230 0.556 0.444 0.148

200 t+2 109.26 0.839 0.881 0.871 0.201 0.581 0.375 0.216
t+3 150.99 0.788 0.842 0.778 0.196 0.667 0.300 0.160
t+1 127.55 0.879 0.922 0.941 0.240 0.668 0.284 0.518

250 t+2 167.13 0.822 0.857 0.937 0.274 0.633 0.444 0.190
t+3 221.92 0.767 0.807 0.863 0.348 0.283 0.394 0.130
t+1 57.16 0.884 0.919 0.849 0.421 0.116 0.394 0.143

300 t+2 83.84 0.832 0.875 0.766 0.639 0.163 0.333 0.139
t+3 112.41 0.780 0.829 0.750 0.605 0.277 0.310 0.244

Table 5.1: Results from the final LSTM model for all price groups. Trained on all price groups
with no additional features.

5.2 Discussion

5.2.1 Expectations

This research topic engages easily conversation and is mainly met by skepticism. This skep-
ticism is often based on personal experience as consumers, feeling that their choices are
made by random recommendations, random eye-catching bottles, or good experience with
specific products that they once discovered by random. If their choices feel this random,
why should the market as whole be systematic enough to forecast?

An argument as to why this would not work is that critics’ reviews in books, newspapers
and on TV have a large, sudden, and possibly short lived impact on the sales numbers which
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PG Time MAE Score ρ Shift PRCin PRCout RCLin RCLout

t+1 300.93 0.720 0.955 1.326 0.226 0.343 0.500 0.343
100 t+2 548.45 0.566 0.891 1.378 0.169 0.338 0.500 0.355

t+3 811.26 0.474 0.824 1.437 0.323 0.304 0.262 0.310
t+1 339.00 0.739 0.963 0.998 0.482 0.241 0.424 0.225

125 t+2 605.00 0.609 0.911 0.960 0.458 0.326 0.373 0.313
t+3 882.00 0.509 0.851 0.971 0.373 0.250 0.305 0.254
t+1 305.00 0.848 0.959 1.096 0.250 0.133 0.462 0.143

150 t+2 492.00 0.757 0.920 0.916 0.323 0.227 0.476 0.217
t+3 703.00 0.671 0.864 0.961 0.359 0.276 0.500 0.276
t+1 180.00 0.852 0.951 1.040 0.200 0.105 0.444 0.222

175 t+2 322.00 0.765 0.887 1.050 0.259 0.125 0.389 0.188
t+3 463.00 0.698 0.827 1.070 0.270 0.091 0.370 0.136
t+1 148.00 0.814 0.952 1.063 0.265 0.563 0.555 0.313

200 t+2 246.00 0.728 0.897 0.915 0.351 0.438 0.565 0.259
t+3 341.00 0.661 0.840 0.873 0.463 0.333 0.594 0.189
t+1 105.00 0.881 0.930 1.107 0.231 0.667 0.500 0.222

250 t+2 183.00 0.813 0.851 1.000 0.235 0.667 0.500 0.250
t+3 255.00 0.753 0.787 0.968 0.217 0.636 0.454 0.304
t+1 59.00 0.864 0.894 0.840 0.438 0.071 0.636 0.143

300 t+2 100.00 0.794 0.824 0.882 0.478 0.091 0.524 0.167
t+3 138.00 0.734 0.750 0.851 0.481 0.038 0.464 0.067

Table 5.2: Results from the SARIMA ranks for all price groups.

can not be forecasted. These reviews might not be possible to forecast beforehand, but the
aftereffects of such spikes could have long-term forecastable tendencies that an LSTM model
could pick up. The actual influence from reviews could also be lower than expected. Many
recommended products are only available to a certain quantity or have to be ordered, which
could put off customers who are interested in getting their products straight away. These
customers could end up buying other products instead, possibly products recommended as
a good alternative with similar qualities by the employees at Vinmonopolet.

Just as wine trends change over time, food trends change as well. As wines are often
recommended on the basis of which meal they are planned to be served with, we can sur-
mise that food trends will have some influence on the wine trends. Employees are trained
to know which wines go well with which dishes based on characters such as acidity, bold-
ness, dryness, and tastes such as oak, chocolate or leather. Some of these characteristics are
available in Products, but this information was too scarce to be used effectively by the LSTM
model. Whether they would have improved the accuracy of the model or just introduced
more noise is unsure. Some might say that wines are too individual in taste and that prefer-
ences vary too much from person to person, from setting to setting, and from meal to meal,
for them to be viewed in an objective manner as this thesis does. There are wines priced
at 200 NOK which connoisseurs would value at 600 NOK, and wines priced at 600 NOK
which an average person would value at 200 NOK. There are also white wines which could
be mistaken for red wines, which says a lot about how much wine can vary in taste and how
difficult they are to describe.

The high sales numbers for the most popular wines and the large number of products
available imply that while people are creatures of habit, they are also willing to explore a
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PG Time MAE Score ρ Shift PRCin PRCout RCLin RCLout

t+1 420.78 0.787 0.963 0.046 0.375 0.000 0.375 0.000
100 t+2 778.96 0.669 0.918 0.028 0.250 0.063 0.429 0.000

t+3 1096.05 0.592 0.876 0.021 0.194 0.000 0.095 0.014
t+1 499.00 0.763 0.964 0.012 0.444 0.111 0.121 0.033

125 t+2 923.00 0.630 0.920 0.007 0.444 0.286 0.067 0.042
t+3 1304.00 0.538 0.874 0.005 0.555 0.286 0.061 0.032
t+1 446.00 0.863 0.965 0.034 0.400 0.000 0.461 0.000

150 t+2 824.00 0.775 0.927 0.020 0.533 0.000 0.381 0.000
t+3 1151.00 0.712 0.890 0.015 0.500 0.000 0.250 0.000
t+1 233.00 0.871 0.955 0.044 0.167 0.083 0.222 0.111

175 t+2 425.00 0.784 0.907 0.026 0.333 0.000 0.222 0.000
t+3 598.00 0.725 0.858 0.020 0.417 0.000 0.185 0.000
t+1 222.00 0.826 0.958 0.359 0.313 0.250 0.625 0.125

200 t+2 402.00 0.737 0.908 0.210 0.250 0.200 0.304 0.074
t+3 564.00 0.666 0.850 0.160 0.259 0.250 0.219 0.081
t+1 140.00 0.899 0.942 0.115 0.285 0.000 0.333 0.000

250 t+2 256.00 0.827 0.876 0.064 0.333 0.000 0.250 0.000
t+3 356.00 0.770 0.811 0.049 0.333 0.000 0.182 0.000
t+1 78.00 0.882 0.912 0.028 0.714 0.167 0.455 0.143

300 t+2 141.00 0.817 0.849 0.018 0.857 0.143 0.286 0.083
t+3 194.00 0.759 0.786 0.014 0.833 0.000 0.179 0.000

Table 5.3: Results from the persistence forecast ranks for all price groups.

wide variety of new wine. This willingness to test different wines could partly be an effect of
the difficulty to describe wine and define personal preferences, but could also be an effect
of curiosity and availability.

Some products are more recognizable than others. Most employees and many consumers
will know which product you refer to if you mention "pinnevinen", meaning "the stick wine",
which is characterized by a piece of grape vine hung on the bottle, or the bottle with a hand-
print indentation in the glass. Wine labels could also have motifs that seem fitting for special
occasions or holidays. Characterizations like these highly influence the choices of consumers
and is a feature that this project probably would have benefited from. Vinmonopolet has pic-
tures of most products available on their website. Collecting these and using a Convolutional
Neural Network could be an interesting development within this research field.

Another factor we did not take into consideration is vintage. Wineries, districts, and
even countries can have good and bad seasons, which could affect both taste and quantities
produced. Weather and climate change could also affect prices, which could move products
between price groups or make the products undesirable for the importers whom therefore
stop importing them to Norway.

An important aspect with regards to external influence is that the Norwegian law forbids
commercials for alcoholic drinks. This puts this market in a distinctive position compared to
other products and compared to other countries. Lack of advertisement and product place-
ment significantly reduce the influence towards specific products, leveling the playing field
and removing the variance in sales trends that would occur if products went on and off sale
and were sporadically advertised.
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5.2.2 Price groups

To answer the research question about which price groups are easier to analyze, we look at
Figure 5.2a from experiment 1 and observe that the MAE of the forecasted time series are
lower for the more expensive products. As shown in Table 2.3, the sales numbers decrease
as prices increase. The lower MAE is presumably caused by the small sales, not because the
trends are more predictable. On the contrary, one would expect more expensive wines to
be especially dependent on critics reviews, quality of the harvest, batch orders, and other
variables we can not take into account in our forecasts. The results from the forecasted
ranking lists shown in Figures 5.1 and 5.2 show little preference towards any price group.
PG100, PG200, and PG250 have higher F1in scores than the other price groups, and PG125
and PG300 have slightly higher F1out scores than the other price groups.

5.2.3 Features

In experiment 2 we study the impact of adding features to the SARIMA and LSTM models.
Looking at the SARIMA model first, we observe in Figure 5.3 that price slightly improves the
F1 score in, while top sales has lower F1 scores than without a feature. In Figure 5.4a we
observe that the model with no features gives a slightly smaller MAE and in Figures 5.4c and
5.4d top sales gives slightly better ordered ranking lists. If there are any benefits to using a
SARIMAX model instead of a SARIMA model, they are too small to observe. Going for the
motto "less is more", we would suggest not to use these exogenous variables for these time
series.

Figure 5.3 shows for the LSTM models that the features have most impact on F1out which
is especially high for price and top sales, F1in is relatively stable for all features. Figure 5.4
shows that all of the models have relatively stable performance measures, only top sales
stands a bit out, with lower shift and higher score and ρ. Top sales and price are further
examined in experiment 4, where the models are trained on all price groups. Looking at
Figure 5.7, we observe that the model with no features performs better than all of the other
combinations of features. It is not clear whether this is due to overfitting or if the features
are not correlated enough to net sales. Since the model with all features has a relatively high
F1 score and the highest score in Figure 5.8c, overfitting is less likely to be the cause.

That newness did not improve the LSTM model can imply that not all new products
behave in a similar fashion. It can also imply that they do not behave differently enough
to products that have been on the market for a while for the feature to make difference. If
there had been a clear difference between old and new products, this feature would have
been interesting to use for analysis when adding new products to the market.

Selection was feature that was expected to have an impact on the results after observing
the clear differences when changing sales category in Figure 2.8, products in basisutvalget
or testutvalget have high sales numbers and the others have small sales numbers. By only
feeding the status at time t instead of for times [t − 19, t − 18, . . . , t], the feature lost the
possibility to observe recent changes in sales category, which could have been highly relev-
ant, but it could also be that the increase or decrease in net sales is instantaneous enough
when changing sales category that the feature still would be superfluous.

Price group as a feature would seem beneficial when training on multiple price groups, as
the consumer profiles for the different price groups are expected to have various purchasing
behaviors. As we observe in section 2.1 and Figure 2.5, general inflation in prices makes
what once would be considered a medium expensive price group, a cheap price group today.
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By training on old data and testing on new data, the purchasing trends for each price group
could have changed, giving a possible downside to this feature.

Top sales was expected to work well when training on a single price group and when
training on multiple price groups, as the most popular wine in a product group is assumed to
be representative of purchasing behavior within that price group. The lack of improvement
could be due to many reasons. Sales trends for the most popular products could be different
from the less popular products, which are the products most relevant for the F1 score and
the thesis. Most sales trends could be so similar that top sales is superfluous. The feature
could also lead to overfitting.

Price was expected to perform well for the same reasons as price group, but with the
benefit of including historic as well as current data and comparing the prices of products
within the same price group. Products with prices near the lower limit of the price range
could be expected to sell more than the more expensive products in that price group, as
Table 2.3 shows that less expensive products are more popular.

That none of the features manage to improve the model, and that the performance meas-
ures disagree on which models perform slightly better than the others, could mean that there
are too many unknown factors influencing the sales numbers for us to forecast them with
any success. Some features that would have been interesting to test but were rejected due
to scarcity or too many classes were country, district, taste, smell, and quality. Features that
would have been interesting to add but were not part of the data, are critics reviews, articles
related to wines available online, and bottle appearance.

5.2.4 Input Size

In experiment 3 we try to answer whether training on a single price group or multiple
price groups gives the best performance. If training on a single product group performed
best, we could have assumed that the difference in consumer behavior between the price
groups outweighed the positive effect on increasing sample size for a machine learning
model. As seen in Figure 5.5, using multiple price groups for training clearly improves the
LSTM model. Comparing the results from Tables A.1, A.2, A.2, and 5.1, and taking the MAE
average over all price groups, we find that the average is lowered by 25.5 %, 25.7 %, and
23.4 % for times t + 1, t + 2, and t + 3 when using all price groups as input instead of a
single price group. The more samples used for training, the better the F1 score becomes.
Using price groups 100-175 show better results than using price group 175-300. This could
be caused by the larger number of samples in the cheaper price groups, that trends in the
cheaper price groups are more similar to the trends in PG175, or a combination of these two
reasons. Figure 5.6a confirms that using more samples improve the forecasts, and the other
figures in Figure 5.6 show varying results. The results in experiment 3 are not surprising,
with machine learning more data is often useful as long as the quality of the data is good.
A possible method to obtain more data would be to train on more product groups, such as
white wine, rosé wine, and sparkling wines. More data is not necessarily good, training on
these products could have a negative impact on the model. These products could be more
common in the summer half of the year, customers might be more or less attached to specific
products, and each product group could have different fashions. Using product group as a
feature could lower the negative effect of such differences, but an improved model is not
guaranteed.
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5.2.5 Final Models

Forecasts

Studying the results in Tables 5.1, 5.2, and 5.3, we find that for all price groups the LSTM
model has an average MAE of 158, 224, and 324 for t+1, t+2, and t+3, the SARIMA model
has an average MAE of 205, 357, and 513 for t + 1, t + 2, and t + 3, and the persistence
forecast has an average MAE of 291, 536, and 752 for t + 1, t + 2, and t + 3. The LSTM
model has the lowest MAE and it only increases with 105 % from t+1 to t+3 versus the 150
% and 158 % increase for the SARIMA and persistence forecasts consecutively. The higher
MAE for the persistence forecast is expected for time series with such dramatic seasonal
changes as shown in Figure 2.2. Since the values we are forecasting, net sales, are a rolling
sum of six months, the time series are split into high season and low season, where high
seasons are the six months that contain the spike in December and low seasons are the six
months that don’t. This is visible in Figure 2.6. These plateaus cause an effect where for 10
out of 12 months the persistence forecast of t+1 will be close to the real value, for 8 out of
12 months the persistence forecast of t + 2 will be close to the real value, and for 6 out of
12 months the persistence forecast of t + 3 will be close to the real value.

Ranking

For score and ρ the differences between the three models are small. The LSTM ranking is
on average best, while the persistence ranking is second best. This implies that the LSTM
forecasts are better than assuming that no changes are made to the ranks. This could also
imply that the SARIMA forecasts are worse than assuming no change, but this is disputed
by some of the other performance measures.

The shift measure does not directly measure the accuracy of the forecasted ranks, but
gives an impression of whether the forecasted ranks in general change more or less than
the actual ranks change. The SARIMA ranks’ shift is closer to one than than the LSTM ranks’
lower shift, implying that the SARIMA forecasts are not as parallel as the LSTM forecasts. By
parallel forecasts we mean time series that do not cross each other, the higher selling product
does not sell less than the lower selling product for any month. Shift for the persistence
ranks should in theory be zero, as it forecasts no change in sales from month to month.
The deviation from zero is a product of the assumptions we made and the way the code
works. The code is written so that the forecast assumes that the price is stable, therefore
no products are forecasted to leave because of a change in price. When products actually
change price groups, they get a new rank in the new price group, which is the rank that is
compared to the forecasted "old" rank. This fault could be fixed by removing these products
from the evaluation, but these changes impact all of the performance measures on the ranks.
Removing these products would cause unrealistic good scores, as unexpected price changes
are expected to occur when competing importers decide the sales prices of their products.

Classification

Precisionin is the fraction of predictions that a product will enter basisutvalget that are cor-
rect. The final results show that the precisionin is low for all models. The LSTM ranks have
highest results, managing correct guesses over half of the times for PG125 and PG300. The
SARIMA ranks have also better precision in these two price groups than the other price
groups, but never manages a score above 0.5. The persistence ranks have a slightly higher
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precisionin than the SARIMA ranks, except for PG300 which has unusually high results. The
precisionin for the persistence ranks would have been zero if no changes were made to prices
or ranking limit. Whenever the ranking limit is increased, products that have a ranking value
just above the ranking limit would enter basisutvalget. Assuming that the ranking lists stayed
somewhat stable during this period, this would be caught up by the persistence ranks. Look-
ing at Figure 2.1, we see that the ranking limit is increased at various occasions for PG125,
PG150, PG200, PG250, and PG300 throughout the test period August 2017 - September
2019. The ranking limit for PG175 stays the same and for PG100 only decreases. This con-
firms the theory that increasing the ranking limit accounts for part of the high precision, as
PG100 and PG175 have the lowest precisionin. That the precision is not zero for these two
price groups is accounted for by price changes. Whenever a product leaves the evaluated
price group, the products with a higher ranking value have their ranking lowered by one
and a new product enters basisutvalget. The LSTM ranks for PG100 and PG175 do not have
the lowest precisionin, which shows us that these forecasts are better than assuming parallel
trends. The precisionin for the SARIMA ranks is lower for PG100, PG175, and PG250 (whose
ranking limit increases the least), which could imply that these ranks stay more stable than
for the LSTM, but this is contradicted by the higher shift measures.

Precisionout is the fraction of predictions that a product will leave basisutvalget that are
correct. Also precisionout is low for all models. The LSTM ranks manage to correctly guess
over half of the times for PG200 and PG250. The SARIMA ranks are slightly lower, only
predicting correctly over half of the times for PG250. Similarly to precisionin, precisionout

is expected to be impacted by changing prices and ranking limits, but here the precision is
closer to zero for the persistence ranks, and the highest scores do not coincide with the price
groups where the ranking limit is lowered. Why there is no correlation between the ranking
limit being lowered and the precision, is unclear. It could be because the ranking limits are
assumed the same for t + 1, t + 2, and t + 3 as t, but this should only delay this effect, not
remove it.

The code for calculating rankings is set up in such a way that it only looks at products
that are in its price group at time t. Products that are removed from the price group are
evaluated until the time they disappear. Products that enter the price group at time t + 1,
t + 2, or t + 3 are not evaluated for the ranking lists at these times, only when they appear
at time t are they evaluated for times t + 1, t + 2, and t + 3. This fault in the code means
that new products are appearing in basisutvalget to push other products out of basisutvalget
without being picked up in the forecasted ranking list, as is done when products disappear
and precisionin gets a higher value. This is one of the reasons why F1in is consistently higher
than F1out; this impacts all models, but is only clearly visible when studying the persistence
model.

Recallin is the amount of cases where a product enters basisutvalget that are forecasted
out of the actual amount of cases. Also here the scores are low for all models. The SARIMA
ranks score slightly better with recallin than the LSTM ranks, managing to score over 0.5
on average for PG200 and PG300, while the LSTM ranks only manage this for PG175. This
relatively high score for PG175 could be a consequence of the LSTM model being tuned on
this price group.

The LSTM ranks score slightly better than the SARIMA ranks for recallout, but neither of
them manage an average of 0.5 for any of the price groups. Another way of saying this is
that out of the products that leave basisutvalget, only a few of them are predicted by our
models. This can probably in large part be due to new products entering the price group,
pushing the products near the ranking limit out of basisutvalget. As discussed above, the
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code does not evaluate products that will appear in the future, therefore cases like this will
not be picked up, resulting in low recallout for all models. For the persistence ranks, the same
argument goes for recallin and recallout as for precisionin and precisionout.

Stability in Rankings

To analyze why the classification performance measures are this low, we look at Table 4.2.
Very few products are classified as in or out, telling us that the ranking lists are stable,
even near the ranking limit. The symmetry between the occurrences of classes in and out
is expected, when one product goes in, another must go out. The imbalance for PG100 can
probably be explained by the steep decline in ranking limit for that price group in the test
period, pushing products out of basisutvalget.

We expect the most popular products to have somewhat stable trends, as is shown in
Figure 2.6, but new products or products with few sporadic sales would be hard to fit to a
model. The lack of improvement in the models when adding features could mean that the
stable products are already fitted, but that there is too much noise that can not be fitted by
the features at hand without overfitting. When we only forecast three months ahead, it is not
surprising that the changes in sales are too small to affect the ranking order of the products.
Products would have to sell almost equal amounts at time t and have a clear differences in
trends for the models to forecast that the products would switch places.

The stability in the ranking lists tell us that the most important factors in deciding who
enters or leaves basisutvalget are not shifts in sales, but rather how many products that are
launched directly into basisutvalget and products changing price groups. These are factors
that our simplified model did not take into consideration. In section 2.2 we observed that
41 products were launched in basisutvalget and 10 in testutvalget in 2018. To make space for
these products in basisutvalget, the products with highest ranking value within basisutvalget
are pushed over the ranking limit and moved to bestillingsutvalget. Expanding the model to
take this into account, we should be able to better predict which products are at risk to leave
basisutvalget. To do this, we could forecast the n products that will be nearest the threshold,
assuming that n products are launched into basisutvalget. This would make it even harder
to predict which products that will sell well enough to enter basisutvalget, as they would not
only have to perform better than the worst ranking product in basisutvalget, they would have
to perform better than n+ 1 products if n products are launched directly into basisutvalget.

Traditional vs Modern Methods

Overall the LSTM model performed better than the SARIMA model and the persistence
model. The LSTM model could probably benefit from being tested and tuned for each price
group separately, and the SARIMA model could probably be improved by having paramet-
ers selected uniquely for each time series, but this would probably not change the results
dramatically. The persistence forecast works well as a benchmark to analyze results with, as
it is predictable, easy to analyze, and uncovers flaws in the code. The SARIMA model works
well as a "model to beat" and did in some cases surpass the LSTM model. Considering how
evenly they often scored, for quick work where the products are analyzed separately, a SAR-
IMA model would be recommended, as it requires far less data handling, data processing,
and tuning than an LSTM.

The models all perform relatively well forecasting net sales, but these results are not
reflected in the precision, recall or F1 score. Looking at Table 2.4, we observe that most
products seldom switch between the sales categories, even over a 12 year time period. This
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is confirmed in Table 4.2 where we observe that the classes in and out constitute a very small
proportion of events in the test period, causing large variability in the results and making
them difficult to forecast. It would seem that the ranks are too stable around the ranking
limit for us to forecast this with any reliability. Changes in ranking limit and changes in prices
that lead to a change in price group seem to account for a large part of the true positive
cases of products entering basisutvalget, making the actual predictability even lower than
they appear in the results.

5.2.6 Performance Measures

We have looked at performance measures that evaluate the forecasts, the ranking lists, the
shifts in ranks, and the classification of products leaving and entering basisutvalget.

Forecasts

The MAE was a necessary metric for tuning the LSTM model. This metric gave interpretable
results that were essential for deciding which models that could forecast net sales best.

Ranking

The shift measure provides information that is difficult to interpret and often disputes what
the other performance measures present. As shift does not specify whether the relative rank-
ing changes actually occur for the products that are supposed to shift rank, this performance
measure seems to be more misguiding than beneficial.

Both the score and ρ measure how ordered the forecasted ranking lists are to the true
ranking lists. Only the products within the ranking limit are evaluated using these methods
and none of the methods weigh any products higher than others. Normally rank evaluation
weighs the lowest valued ranks the highest, as most ranking problems require finding the top
ranked products. For our case, we are more interested in the worst products, the ones that
are closest to the ranking limit and most at risk to be removed from basisutvalget. Despite
being most interested in the worst ranked products, we do not train our models on this
performance measure and chose therefore to weigh all products equally to get an impression
of how well all forecasts perform. The small changes in these performance measures imply
that a ranking measure that weighs the products near the ranking limit higher could be
beneficial.

Comparing score and ρ over the price groups for SARIMA ranking in Table 5.2 and per-
sistence ranking in Table 5.3, we notice that the difference of score between the two models
varies the most for the price groups with a higher ranking limit and the difference of ρ
between the two models varies the most for the price groups with few lower ranking limit.
In Figures 5.2c and 5.2d we observe that the price groups with higher ranking limit have a
higher ρ and that the price groups with lower ranking limit have higher score. These per-
formance measures are not used on all test samples, they are only used on the products
with an actual ranking value within the ranking limit, which varies strongly between price
groups, as shown in Figure 2.1. We discover, therefore, that both of these performance meas-
ures are dependent on sample length. As long as the test samples are the same, we can use
ρ and score to compare results, but these measures will shift slightly with the ranking limits
and can not be used to compare one price group with another, as can be seen again in Tables
5.1, 5.2, and 5.3.
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In Figures 5.4c and 5.4d, 5.6c and 5.6d, and 5.8c and 5.8d, we observe that there is a
high correlation between ρ and score when used on the same test set, therefore only one of
the metrics are needed. Score has the advantage of simplicity and that the upper limit for
distance penalty is set at need. Spearman’s rank correlation coefficient has the advantage
of being a known and tried method, making it more relatable and reliable. Looking at the
LSTM results for the largest and smallest price groups, PG125 and PG300, at time t + 1
in Figure 5.2c and Figure 5.2d, we see that the absolute difference between the values for
score are 0.101 and the absolute difference between the values for ρ are 0.062. Score seems
to be more impacted by sample size than ρ, putting it at a disadvantage. For further work
ρ would be the preferred performance measure for rank evaluation where all products are
equally weighted.

Classification

Precision and recall were the two most interesting metrics with regards to our main research
topic. The metrics themselves were not the problem behind our varying results, rather the
distribution of the classes. The products we evaluated were classified by when their ranking
value became lower or equal to the ranking limit, we did not use the classes they were origin-
ally categorized with in the database, as these categories were decided by more factors than
only ranking. Manually looking through the ranking lists, multiple cases emerged where
products were classified as being in basisutvalget despite having a slightly too high ranking
value. If-cases that would take into account additional rules could have been added, i.e. that
new products in basisutvalget are guaranteed a spot for 12 months, but this would move the
focus away from what we wished to discover, which is whether we could forecast trends
accurately enough to predict whether a product would sell enough to rise in rank above the
ranking limit, or sell too little and fall below the limit.

Alternatives

For this thesis we constructed absolute ranking lists from the forecasts. This means that the
ranking lists do not differentiate between when the products with consecutive ranking val-
ues perform similarly or are separated by thousands of liters. By finding the confidence inter-
vals for the forecasts of each product, it would be possible to use the overlap between these
intervals to assign a range of probable ranking values per product. As found in chapter 3,
machine learning models are not specifically built for finding confidence intervals. There
are methods that can be used to circumvent this, but considering the reasonable results of
the SARIMA model, using the readily available confidence intervals of the SARIMA forecasts
could be a better suggestion. By using this suggested method, we could make the results of
a forecast more applicable than the method used in this project.

Score and ρ could to our advantage be switched with a ranking measure that weighs the
products near the ranking limit higher. A possible method to do this would be to flip around
the ranking list and use a standard ranking measure which prioritizes the highest ranks.



Chapter 6

Conclusion

The monopolistic alcohol market and law against advertisement for alcoholic drinks should
make sales data from this market ideal for forecasting. Without advertising and with a
product taste that is hard for the average person to describe, consumers have to look some-
where for advice or innovation. Advice is often given by critics’ reviews or employees at Vin-
monopolet, and innovation can be found in fancy bottles or previous successful purchases.
Consumers seem to be both creatures of habit and neophile, willing to try new products. If
all of the consumers were creatures of habit, the sales data would be easy to forecast, but
the research question’s necessity would also disappear. As it is, new products are launched
every other month, pushing the least sold products out of basisutvalget and off the shelves
in the stores. This gives the consumers a steady stream of new products to try, and gives the
importers a hard fight to keep their products in sale.

Net sales, the six-month rolling sum of sales in the top 60 stores, was forecasted for three
months using LSTM, SARIMAX, and persistence forecasts. A significant spike in sales every
December for most red wines gives net sales a high season and low season of 6 months each
with relatively stable values. These plateaus cause the forecasts to get a relatively small MAE,
even when using traditional methods. The final LSTM, SARIMA, and persistence one-month
forecasts had an average MAE of 158, 205, and 291 consecutively. The MAE of the three-
month forecasts for the same models increased with 105 %, 150 %, and 158 %, proving that
the LSTM model works best for long-term forecasts and performs better than the traditional
models overall.

No apparent improvement was made to the SARIMA model when price and shifted sales
numbers of the top-ranked product were added as exogenous values. Price, price group,
selection, newness, or sales numbers of the top-ranked product showed no clear improve-
ment to the LSTM model when added as features. We can therefore conclude that none of
the evaluated features manage to improve the forecasts, but we can not exclude possible
improvements from other features.

The average MAE for all price groups was lowered by 25 % when training the LSTM
model on all price groups instead of individual price groups, concluding that training the
model on all of the price groups is best.

The MAE was lower for the more expensive price groups, which was expected as these
price groups have lower sales numbers and, therefore, lower variation. The other perform-
ance measures implied that most price groups performed similarly, but these performance
measures were dependent on sample size and could not be used for comparison between
price groups. We can therefore not conclude whether any price groups were easier to fore-
cast than the others, especially with regards to predicting which products will enter and

55



56 Stephanie Jebsen Fagerås: Forecasting Red Wine Rankings

which products will leave basisutvalget.
A reasonable way to evaluate performance of the ranking would be to avoid absolute

ranking and evaluate the forecasts with other methods. Ranking forecasted sales turned out
to be a flawed method for recognizing products on the verge of changing product selection.
Only significant differences in trends for products with similar sales numbers at time t would
lead to a change in ranking order when we are only forecasting three months. Too much
information is lost by analyzing ranks instead of sales numbers, information about spacing
between the products, and whether the trends are increasing or decreasing for the individual
products. The performance measures we used weighed all ranks equally, a performance
measure weighing the products with higher ranking value heavier could with benefit have
been used, if sticking to absolute ranking. The best performance measures were MAE and
F1 score, but the classes were not distributed evenly enough for the F1 score to give clear
results.

To focus the analysis on the predictability of changes in ranks, not look at the complete
market model straight away, we simplified the model to only look for products that would
leave or enter basisutvalget on the basis of ranking value. The ranking values around the
ranking limit proved to be quite stable, and the few changes in product selection that did
occur were seldom forecasted. It seems as if the stable products are forecasted well, but
there are too many unknown variables to forecast the unstable products with the current
model.

The stability of the ranks imply that the most important factors influencing entry and
exit of basisutvalget are the number of new products launched directly into basisutvalget
and products shifting price range. Therefore, our model does not manage to forecast which
products that will leave or enter basisutvalget with any precision as it is today. Expanding the
model to include these factors, in addition to analyzing forecasts directly or with ranking
intervals instead of absolute ranks, it could be possible to construct a model that could define
risk levels for products near the ranking level. Producing a model that identifies products
that are likely to enter basisutvalget would be difficult with the current performance of the
forecasts.

6.1 Future Work

Using other methods to compare the forecasts could improve the usefulness and perform-
ance of the model. One example would be to find the confidence intervals for each forecast,
which would make it possible to use the overlapping intervals to define sets of ranking inter-
vals for each product; fewer ranks per product interval would mean increased confidence
in the forecast. The forecasts could presumably be improved by using Natural Language
Processing to analyze online reviews of the articles and taking in reviews from wine apps
such as Vivino, which contain ratings and reviews from thousands of users. Bottle and label
appearance could be used as a feature with image processing using Convolutional Neural
Networks.

Expanding the model to take all contingencies into account, to simulate the real market,
would make it more valuable to importers. The factors that would need to be taken into con-
sideration are products entering at product launches, shifts in price ranges, and products
that are protected for the first 12 months. Expanding the work to incorporate more products
could improve performance and applicability for importers. Analysis on the effect of delib-
erate price changes could also be relevant in the business aspect, if lowering or raising
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prices could shift products between price groups and impact sales numbers enough to enter
basisutvalget.
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Appendix A

Results

Results of the experiments described in chapter 4 and presented in chapter 5. Abbreviations
and functions helpful for interpreting the results:

• PG - price group, intervals in NOK listed in section 2.1
• Model -

◦ SARIMAX - Seasonal Autoregressive Integrated Moving Average with exogenous
variable, Equation 3.29

◦ Persistence - forecasting the same sales value for t + 1,t + 2, and t + 3 as was
given for t

◦ LSTM - Long Short-Term Memory, described in subsection 3.4.2

• Features - additional input to LSTM or SARIMAX models, listed in section 4.3
• MAE - Mean Absolute Error, Equation 3.41
• Score - a new method of measuring disorder between two ranking lists, Equation 3.3,

l = 10
• ρ - Spearman’s ρ, a measure of rank correlation, Equation 3.1
• Shift - relative shifts in ranks produced from forecasts compared to actual shifts, Equa-

tion 3.7
• PRC - precision, Equation 3.4
• RCL - recall, Equation 3.5
• F1 - F1-score, Equation 3.6
• in - product entering basisutvalget
• stay - product staying in basisutvalget or bestillingsutvalget
• out - product leaving basisutvalget
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Appendix B

Metadata Classes

This table is similar to a table presented in my specialization project. It presents a list of all
of the columns of data and metadata available in the three data sets, Sales (S), Products (P),
and Rankings (R). The first column is the original name in Norwegian, the second column
is which file contained that name, S, P, or R, and the third column is the English translation
and explanation for certain names. Many of these features were at some point analyzed or
evaluated, but the ones presented in this thesis are marked by * after the name. Some of
the columns are scarce, i.e. sugar, seal type, taste, etc., making them difficult to use for this
type of analysis. Validity of the data is not guaranteed, the column "Liters this month last
year" proves to be full of flaws when compared to "Liters this month this year" shifted one
year.
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Names Data Set Definition
År* S,R Year of sale, parsed with month
Måned* S,R Month of sale, parsed with year
Land S,P Country
Distrikt S,P District
Hovedvaretype S,P Main product group
Varetype* S,P Product group
Subvaretype S,P Sub product group
Artikkelnr* S,R Article number
Artikkelnavn S,P Article name
Årgang S,P Vintage
Volum S,P Volume
Alkoholprosent S,P Percentage alcohol
Emballasjetype S,P Type of packaging
Miljøsmart S Environmentally friendly packaging
Økologisk S Organic
Utvalg* S Selection
Kategori S,P Category
Grossist S,R Wholesaler
Distributør S,P Distributor
Liter denne måned i år* S Liters this month this year (Liter)
Liter denne måned i fjor S Liters this month last year
Liter hittil i år S Liters so far this year
Liter hittil i fjor S Liters so far last year
Liter siste 12 måneder S Liters last 12 months
Salgspris S Sales price
Kvalitet P Quality
Produsent P Producer
Importør P Importer
Vårt varenr P Our article number
VMP ID* P Vinmonopolet ID/Article number
VMP lanseringsdato P VMP launch date
VMP utgåttdato P VMP expired date
Status P,R Status
Innhold Sukker P Sugar contents
Syre P Acid
Tilsatt sulfitt P Added sulfite
Sertifikater P Certificates
Produksjonsvolum P Production volume
FPAK P Consumer packaging
DPAK P Distribution packaging
Produktutvalg P Form of availability
Korktype P Seal type
Enheter i forpakning P Units in packaging
Emballasjevekt (g) P Packaging weight
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Names Data Set Definition
Vinmarker P Wine field
Vinifikasjon P Vinification
Farge P Color
Lukt P Smell
Smak P Taste
Annet P Other
Utsalgspris P Sales price
DDP pris P Delivered Duty Paid price
Horeca pris P Hotel, restaurant and catering price
Grossistpris P Wholesaler price
Innkjøpskostnad P Purchase cost
Innfraktkostnad P Freight cost
Vårt segment R Our segment
Produktgruppe R Product group
VMP segment R VMP segment
Rangering* R Rank
Styringstall* R Control number
Fredet R Protected
Segmentpris* R Segment price
Minimum R Minimum price
Maksimum R Maximum price
Netto Salg* R Net sales
Prosentandel sør R Percentage of sales south
Prosentandel øst R Percentage of sales east
Prosentandel vest R Percentage of sales west
Prosentandel nord R Percentage of sales north





Appendix C

Code

A repository with the code for this project is found at:
https://github.com/SteffiJF/ForecastingRedWineRankings
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