BNTNU

Project Thesis
Department of Mathematical Sciences
Norwegian University of Science and Technology

Candidate: Axel Henges Ronold
Supervisor: Elisabeth Anna Sophia Kobis

Fall 2020



Abstract

In this paper we first discuss concepts of efficiency for uncertain
multi-objective optimization problems by using different set order relations.
In all we discuss four different relations: the upper set less order relation
introduced by Kuroiwa [1], the lower set less order relation introduced by
Kuroiwa [1], the set less order relation introduced by Young [2] and the strict
set less order relation which was introduced as alternative set less order
relation by Ide et al. [3]. We then discuss the different characteristics of these
order relations and the differences between them. Secondly, we look at two
methods that can be used to solve multi-objective optimization problems
where the feasible set is nonconvex and even disconnected,
Weighted-constraint method introduced by Burachik et al. [4] and
Pascoletti-Serafini method introduced by Pascoletti et al. [5]. In further
work, we want to see if these two methods can be used to find all efficient
solutions associated with the different set order relations we have
introduced in this paper even when the feasible sets is set in such a way that
methods such as Weighted sum scalarization and e-constraint method,
approaches discussed in this paper, fails to obtain them all.
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Chapter 1

Introduction

The main topic we are setting our focus on in this paper is uncertain
multi-objective optimization. Uncertainty is something that is common in
the real-world when we have optimization problems. When we are making
decision between the different solutions we are not always certain about
how the future will unfold, but it still has influence on the decision we are
making. Other reasons for uncertainty in the problem can be faulty data due
to errors. When we are faced with uncertainty, the literature have suggested
two main approaches - either stochastic optimization where the uncertain
parameter(s) is assumed to posses a probability distribution. We then
optimize the expected value of our cost functions which are defined by the
objectives while we have other solutions which are still possible with some
probability. The other approach is the one we are going to focus on, namely
robust optimization. In this scenario, we consider the case where no
stochastic information about the uncertain parameter(s) is given. There is
different variations of what a robust solution is. One of the concepts that
have been discussed is minmax robustness which was firstly introduced by
Soyster [6]. With this approach, the goal is to find solutions which are
feasible for every future scenario. Hence, the objective becomes to optimize
on the worst-case scenario for each solution. What we want to accomplish
with finding robust solutions is to have solutions that are less sensitive to
perturbations in the data. If we for instance as a company choose a solution
which earns the company a lot of money if everything goes according to
plan but makes the company go bankrupt if something suddenly goes a bit
wrong, then this is a very sensitive solution and is hence not a very robust
solution as it becomes non-feasible for some scenarios. This type of choices
are the ones we try to eliminate with optimizing on the worst-case scenario.




This becomes a set-based method because we then assume that the
uncertain parameter(s) belong to an uncertainty set that is known prior to
the solving of the optimization problem.

In this paper we are going to discuss this further, namely to use a set order
relation to define the robust solutions of uncertain multi-objective
optimization problems. In the example when we optimize on the worst-case
scenario it can be said that this is a set order relation, named in the literature
as upper set less order relation [1], with a pessimistic approach as we hedge
against the scenarios with the worst outcomes. In addition to this one, we
are going to discuss other set order relations to better define different
approaches a decision-maker can have, for instance an optimistic approach.
Throughout the discussions on these set order relations, we are going to
look at uncertain multi-objective problems where only the objective
functions are affected by uncertain data which is given by an arbitrary
uncertainty set /. Within this set, all possible scenarios of the uncertain
input data is represented. With this, we want to show that by using the
different definitions of set order relations we introduce it is able to end up
with different set of efficient solutions for the same wuncertain
multi-objective optimization problem. For each set order relation, we will
discuss how it affects the set of efficient solutions and also show methods
that can be used to find the different efficient solutions.

It is however easy to construct uncertain multi-objective optimization
problems that has characteristics which can make it impossible for methods
such as Weighted sum scalarization and e-constraint method to obtain all
the different efficient solutions given the different set order relations.
Examples of this is non-convexity or discontinuity in the feasible sets which
we are going to look at in Chapter 3. To deal with this, we are going to look at
two other methods which have been used in multi-objective optimization to
solve problems where the sets have these characteristics, namely
Weighted-constraint method [4] and Pascoletti-Serafini method [5].




Chapter 2

Preliminaries

Firstly we need to define some notation on multi-objective optimization.
Given a feasible set X < R" defined by some constraints, we want to
minimize a function f : X — R¥. We can write it more formally as

min f(x)

P
s.t. xelX.

Due to the fact that we are comparing solutions in R, it is necessary to
define relations to compare them as we lack total order. To do this, we use
the relations {<, <, <}, referred to in Ehrgott [7]. Let {y, y»} € R¥, then we say
that

Ny = yielyl,oo)Viel,..,k

NSV = NSV 72
Y1<) = yie(l,oo)Viel,..,k.

Furthermore, we define the ordering cones {IR’;, RE, Rf} as

(2,z>] "

Rk = {x € RF: x[§,2,>]0}.

With this ordering, we want to find all feasible solutions x € X" to (P) that are
[strictly/ - | weakly] efficient, which means that its function value, f(x), is not




dominated by any other function value, f (%), from a point X € X'\ {x}. We can
write this as

x is [strictly/ - /weakly] efficient < Axe X'\ {x}: f(X) € f(x) — R{;,zﬂ.
Remark 2.1. A strictly efficient point is also an efficient point. An efficient
point is also a weakly efficient point, hence

strictly efficient = efficient = weakly efficient.

Given the tools already presented, we want to define the uncertain
counterpart for multi-objective optimization. Given a set of scenarios
U < R™, also referred to as the uncertainty set, an uncertain multi-objective
optimization problem is given as the family (P (&), ¢ € U) of multi-objective
optimization problems

min  f(x,¢) PO
s.t. xe X,

with objective function f : R” x{ — R¥, a feasible set X € R" and ¢ € U to
represent one particular scenario of the uncertainty set. From this
framework, it is clear that we need to extend our definitions in order to
define what an efficient solution is. The reason for this is that uncertain
optimization by our definition is a family of problems where the object
changes by each scenario ¢ € /.

This gives motivation for defining the set

fu(x):={f(x,&) : e} < RF

which is the set of all possible objective values for a point x € X’ given each
¢ € UU. We now need to find out how to turn the family of uncertain values for
each feasible point into a deterministic optimization formulation. One way
to do this is to define different set order relations to define what property
a feasible set fi;(x) needs to have in order to dominate another feasible set
fu (%) given all feasible points from x € X and X € A"\ {x}.




Chapter 3

Definitions of efficiency based on set order
relations

In this section, we want to introduce different set order relations as a way of
defining efficient solutions in uncertain multi-objective optimization
problems based on various approaches. We will also discuss how this affects
the properties affiliated with the solutions that the different relations give
us. To guide us through the different set order relations in the chapter, we
use Example 3.1.

Example 3.1. Figure 3.1 illustrates an uncertain multi-objective optimization

problem for k = 2, hence with R? as ordering cone.

E f.(x3)

fufxﬂ

fulxq)

fufk’z}

f1

Figure 3.1: Uncertain multi-objective optimization problem with feasible set X' = {x1, x2, X3, X4, X5}.
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3.1 Upper set less order relation

3.1.1 Description and problem formulation

The first set order relation we want to define, introduced by Kuroiwa [1], is
the upper set less order relation:

Definition 3.1. A set A< R* dominates a set B < R* with respect to the upper

set less order relation, denoted A=<, _ _, B, with respect to RX S i
A= B < AcB-Rf

—[>>>] [=,2,>]"

__,

Remark 3.1. The relation can be equivalently written as

A<22> B < Yae Adbe B:alS,<,<]b.

The way to frame P(¢) to mirror this property is to take the supremum of the
uncertainty set

min su (x,6). u
xeX {eLI{) f 5 P(é)

3.1.2 Efficiency and interpretation

Definition 3.2. Given an uncertain multi-objective optimization problem
P(&), a solution x € X to P(&) is upper set less ordered [strictly! - | weakly]
efficient if there is no x € X' \ {x} s.t. [y (%) 5[”2 > 5] fu(x) with respect to

IRk> - Or equivalently written

aXEX\{X} fL[(x)ch(x) [>>>]

The way to interpret this set order relation is that a solution set f;;(x) is
efficient if there does not exist another solution set f;,(x) such that the worst
case scenario for x is better than the worst case scenario for x for the given
problem. We can look at this set ordering as pessimistic as the efficient
solutions to the problem given the feasible sets f;,(x), x € X will be chosen
on the grounds of which ones have the greatest worst case scenario. Hence
this approach can be used to find risk averse solutions. In our example, we
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can see that only f;,(x,) and f;,(x4) fulfill the criteria. Looking at Figure 3.3
we observe that f;,(x;) — R[Z%EM, foi(x3) — IRE[Z%Z?] and fi;(xs) — RE,ZN contains
fu(x2). Hence, only x, and x, are upper set less ordered strictly efficient.

f2

f SUP fix3,§) fixs, ) -7 o )
\ 1 §) —#ta x5y
sup . E)—mi L =
SUP fixs. £) See, ) fxs, &) iz = 2
ft.i____________ e

ﬂXq,{}—:‘?%:. = =]

s ﬂxh \
SUP flx4. )

fi

fi

. . Figure 3.3: All five sets when we subtract
Figure 3.2: Supremum of every feasible set. R2
(2,2,>]"

3.1.3 Computing upper set less ordered efficient solutions

We can use approaches from deterministic multi-objective optimization to
compute upper set less ordered efficient solutions by extending their
framework from deterministic to uncertain.

Weighted sum scalarization

The idea with this method is to form a single objective optimization problem
by multiplying each of the objective functions by some non-negative weight

A; and sum them together. So with a weight vector A € IRE{CZN, we consider

k
min Y A;f;(x) P

xeX i-1

The way we extend the framework to use this method to compute upper set
less ordered efficient solutions is to insert the problem formulation obtained
in3.1.1, P(&)":

k
min sup Y A;fi(x,&) P}

xXeX cell i-1

Theorem 3.1. (Theorem 4.3. Ehrgott et al. [8]) Given an uncertain multi-
objective optimization problem P ({), the following statements hold.




8 3.1. Upper set less order relation

1. If X € X is the unique optimal solution to P({)} for some A € RE, then % is
upper set less ordered strictly efficient solution to P ().

k

=2} and

2. If X € X is an optimal solution to P (¢)} for some A € R

k
/ll' i [}
rggxgl fi(x,8)

exists for all x € X, then X is upper set less ordered [-/weakly] efficient
solution to P (&).

Proof. 1. Assume X is not upper set less ordered [strictly/-/weakly] efficient
for P(¢). Then there exists an x’ € X such that

fux) € fu® -RE L) = YEeUTneld: fIX, OIS, <, <If(2,m)

k
Now choose A € IR{Z%Z}

arbitrary but fixed.

k k
= VéeUInell: ) Lif(, OIS, <, <) Aif(&m)
i=1

i=1

k k
= Véel: Y Aif(X, OIS, <,<Isup ) Aif(%,1)

i=1 n'eld i=1
k k
= sup) A f(, &N, <, <Isup ) Aif(%,1)
f,EZ/[ i=1 77,€Z/[ i=1

The last equivalence holds because for 2. because
k
/1 i I’ !
Ig,l:gc; i f (&)

exists. However, this means that X is not [the unique/an/an] optimal solution
to P (&)} for 1 € RE O

{=,>=}"

Given a set of scalarization vectors A, we can now compute upper set less
ordered efficient solutions by solving P($)} for every A € A. One challenge
with the method is the choice of A. On the other hand, the technique does
not add any additional constraints to the problem formulation and thus
preserves the problem structure.
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fa f2

ﬂX3r§}—JT-'%-=_-_-_-,} ﬂXBrﬂ_F—'%:.:_s}

fix1,8) =Rz =, 51 fx1 §) -2l =

foes, £) =X, 2 5) fxs §) - =L . 5

ﬂXng}—i'z-;.\Qn ﬂXng}_;"z';.'_-_s

. <! _—-'F_{_.__:-\}‘_ ______ f_____.
fixe £) =2 o 5y ]2 fixs, §) =Btz = 5y
fi ' ' ' ' ' fi

Figure 3.4: Examples of weights to find x; Figure 3.5: Examples of weights to find x4
as upper set less strictly efficient. Here A = as upper set less strictly efficient. Here A =
[1/2,1/2]. [3/73,70/73].

e-constraint scalarization

This approach uses the idea of minimizing one of the objective functions, the
i"" objective function, while the others are less than a valuee;, j # i. By doing
this for every value from i € {1,...,k} and € € IR’;, we consider the problem
formulation -

min f;(x)

s.t. filx)=e;Vj#I.

Pee,i)

The way we extend the framework to use this method to compute upper less
ordered efficient solutions is to insert the problem formulation obtained in

3.1.1, P(O)":

min sup fi(x,¢)

xeX ey u
o P
s.t.sup fi(x,8) <¢;Vj#I. ’
celd

Theorem 3.2. (Theorem 4.7. Ehrgott et al. [8]) Given an uncertain multi-
objective optimization problem P (¢), the following statements hold.

1. If X € X' is the unique optimal solution to P(¢) , for some ¢ € R* and

somei€{l,..,k}, then X is upper set less strictly efficient solution to P (S).

2. If X € X is an optimal solution to P (¢), ,, for somee € R* and some i €
{1,.., k} and
max f; (x, )
Eeld
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exists for all x € X, then X is upper set less weakly efficient solution to
P().

Proof. 1. Assume X is not upper set less ordered strictly efficient for P(¢).
Then there exists an x’' € X’ such that

fulx) € fu®) -RE = VeeUTIneld: f(x,&) £ f&,n)
= sup f(x,¢&") Ssup f(x,7n') and
Eeld n'eld

VieUdnel: fi(x,O) S fix,n) Sej,j#i.

In this scenario, x' is feasible for P(¢)[, ;, and has an equal of better objective
value than x. This is a contradiction to the assumption that X is the unique

optimal solution to P (¢)

@
2. Assume X is not upper set less ordered weakly efficient for P(¢). Then there
exists an x’ € X such that

() S fu®) -RE = véeUaneld: f(X,8) < f(&,n)

— max f(x',¢') <max f(&,n) and
&'eld n'eld

VéeUdnel: fj(x, &) < fi(x,n) Se€j,j#1.

In this scenario, x' is feasible for P(¢)[, ; and has an equal of better objective
value than x. This is a contradiction to the assumption that X is an optimal
solution to P (&) O]

(6,0)°

Given a set £ of vectors € € R¥, we can now compute upper set less ordered
efficient solutions by solving 75(6 )‘é, i foreachie{l,... k} andeverye € £. One
challenge with the method is to choose the set £ correctly. If the elements in
& are chosen too small, then the set of feasible solutions may be empty, but
if the elements in £ are chosen too large, then the optimality of the functions

representing the constraints decreases.

Remark 3.2. e-constraint method is able to find all the efficient solutions to a
deterministic multi-objective optimization problem, but this is not
necessarily the case for uncertain multi-objective optimization problems -
even when the sets are convex. To illustrate this, we can look at Example 3.2.
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Another problem with this approach lies in the altered problem structure.
Since the problem structure of the original problem is not preserved as
constraints are added to the problem, it may further complicate the decision
process.

Example 3.2. Figure 3.6 shows an uncertain multi-objective optimization
problem for k = 2 with both x; and x, as upper set less strictly efficient
solutions.

qz

wlx1)
! gulxz)

AN
N

o

Figure 3.6: Uncertain multi-objective optimization problem with feasible set X' = {x1, x}.

From what we have learned, we observe in Figure 3.6 that both x; and x;, are
upper set less strictly efficient. However, since x, has a lower supremum in
both objective functions individually and is therefore feasible for whenever
x; is. As shown in Figure 3.7, we can therefore not obtain x; as an upper set
less strictly efficient solution with this method even though it is.

92 gz
g(xl,g}—i-{z.:_.___,} i gﬁxl,g}—i{zz_.___,}

gtxzrg}_;-'f:.'_-_s} gtxlrg}_;-'f:.'_-.s}

ey T T T T T T s

Figure 3.7: Illustration of how x; is always feasible for every value ¢ € £ where x; is feasible for both
objective functions. Hence it is not possible to obtain x; as an upper set less strictly efficient solution
by using the e-constraint scalarization in this example.
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3.2 Lower set less order relation

3.2.1 Description and problem formulation

The second set order relation we are looking at is the lower set less order
relation, first introduced by Kuroiwa [1].

Definition 3.3. A set A < R* dominates a set B < R with respect to the lower

set less order relation, denoted A </ B, with respect to Rk if
(=,2,>] (2,2,>]
! k
A 5[2,2,>] B A+ R[z,z,ﬂ 2 B.

Remark 3.3. The relation can be equivalently be written as

A=(... B <> VbeBlac A:al<,<,<]b.

This time, the way to frame the problem to obtain this property is to take the
infimum on the uncertainty set

min inf f(x,$). P

xeX el

3.2.2 Efficiency and interpretation

Definition 3.4. Given an uncertain multi-objective optimization problem
P(), a solution x € X to P is lower set less ordered [strictlyl - |weakly
efficient if there is no x € X' \ {x} s.t. [ (%) 5{2 - fu(x) with respect to

k
IR[>,>

> 55 OF equivalently written

A e X\ (x): fu(R) +RE L 2 fux).

When we examine the solution sets f;(x) for this set order relation we
observe that in order for a solution to be efficient, there can not exist
another solution set f;,(xX) such that the best case scenario for x is better
than the best case scenario for x. Hence, we can interpret this ordering as
optimistic as the efficient solutions to the problem given the feasible sets
fu(x), x € X will be evaluated based on greatest best case scenario. Because
of this, it is possible to obtain solutions for situations where we are looking




CHAPTER 3. Definitions of efficiency based on set order relations 13

to be risk seeking. For our example, the risk seeking solutions are therefore
fu(x1) and fi;(x). Conversely, as seen in Figure 3.9, fi,(x3) and fy(xs) is
contained in fj(x;) + R? while f,(x3) and f;(x,) is contained in

(2,2,>]

2 .

Ju(xz) + R _ - Hence, only x; and x, are lower set less ordered strictly
efficient.
f f
3 ",

infec, fixs. £) o . bk R TN

infz ey flx, flxs ) + B o oy

inffm‘-‘-‘-" mffl:d w8 ﬂx1,£}+;_vf.=_.___,}

N \_ fxs, §) +7%s o >
infeey fixa, §) infee, flxa. £) ﬂXz,E}-I—:F:%.:_.___.,}
fi ' ' ' ' ' ' ' fi

Figure 3.8: Infimum of every feasible set. Figure 3.9: All five sets when we add R[zz,z,>]'

3.2.3 Computing lower set less ordered efficient solutions

To compute lower set less ordered efficient solutions we can use the same
extension of framework as for upper set less ordered efficient solutions in
3.1.3.

Weighted sum scalarization

The way we extend the framework from P, to use this method for computing
lower set less ordered efficient solutions is to insert the problem formulation
obtained in 3.2.1, 77(6)1:

k
min inf Y A fi(x,&) PE);

xeX &eU i-1

As for the upper set less relation, if we are given a set of scalarization vectors
A, we can now compute lower set less ordered efficient solutions by solving
P (&)}, for every A € A.

Theorem 3.3. (Theorem 11 Ide et al. [9]) Given an uncertain multi-objective
optimization problem P (¢), the following statements hold.

1. If% € X is the unique optimal solution to P ()" for some A € RE, then % is
lower set less ordered strictly efficient solution to P (¢).
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2. Ifk € X is an optimal solution to P (&), for some A € Rf, ., and

k
rggl;?tifi(x, ¢)
exists for all x € X, then X is lower set less ordered [-/weakly] efficient

solution to P (¢).

Remark 3.4. To prove Theorem 3.3, we can use a proof with similar reasoning
as for Theorem 3.1, only with the assumption that X is lower set less ordered
[strictly/-/weakly] efficient.

fa fa

\\\ ﬂxer}"'-’?%-;.-_-_s} ﬂXsré;'}-I-:?%-:_-_._,}

N fixs. E)+ R, . .y flxs, £) + 1. . .y

\\\) ﬂxlrg}"';-'fz.;-_s} "-u_z ﬂX1r£}+-‘rT-'f-:_-_-_-,}

\\ \ Axa, )+ Rz o » b “u“\'\ fxa, £) + Bz o s

h ﬂerE}‘FJT-'%-;_-_._-,} 5““‘&,“ ﬂX2,£}+£'%-=_-_._-,}

— ' ' ' ' fi ' ' ' T ' ' fi
Figure 3.10: Examples of weights to find x; Figure 3.11: Examples of weights to find x
as lower set less strictly efficient. Here A = as lower set less strictly efficient. Here A =
[2/5,3/5]. (5/8,3/8].

e-constraint scalarization

The way we extend the framework from P ;) to use this method in order for
computing lower set less ordered efficient solutions is to insert the problem
formulation obtained in 3.2.1, P(&)":

wip nf fited

s.t. 3{25 filx,8) <e;Vj#£i.

P ie.s

Given a set of vectors £, we can now compute lower set less ordered efficient

solutions by solving P(é)l(eyi) foreachie{l,..., k} andeveryee&.

Theorem 3.4. Theorem 26 Kobis [10] Given an uncertain multi-objective
optimization problem P (¢), the following statements hold.

1. If X € X is the unique optimal solution to P(¢) fe,l.) for some € € RF and

somei€{l,.., k}, then X is lower set less strictly efficient solution to P (¢).
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2. If X € X is an optimal solution to P (¢)!, , for some e € R* and some i €
{1,.., k} and
min fi(x,¢)

exists forall x € X, then X is lower set less weakly efficient solution to P (£).

Remark 3.5. To prove Theorem 3.4, we can use a proof that will look similar
to the one used for Theorem 3.2, only with the assumption that X is lower set
less ordered [strictly/-/weakly] efficient.
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3.3 Setless order relation

3.3.1 Description and problem formulation

As our first two set order relations were pessimistic and optimistic
respectively, it is then natural to define set order relations where we
combine the two in order to obtain a sort of compromise between the two
opposites. The first one is the less restrictive, namely the set less order
relation which Young [2] introduced

Definition 3.5. A set A € R* dominates a set B < RF with respect to the set less
order relation, denoted A 5[S> - B, with respect to [Rif2 . if

==

u
B < A 5[2,2,>] BAA 5[2,2,>] B.

Remark 3.6. The relation can be equivalently be written as

A<. __ B <> (YbeBlacA:al<,s,<Ib)A(Vae ATbe B al<, <, <]b).

This time, the way to frame the problem to obtain this property is to take both
the infimum and the supremum respectively of the uncertainty set

min (inf‘teu f(x,¢) ) P&)°

xeX \SUpge, [f(x,¢)

3.3.2 Efficiency and interpretation

Definition 3.6. Given an uncertain multi-objective optimization problem
P (&), asolution x € X to P(S) is set less ordered [strictlyl - | weakly] efficient if
there is no ¥ € X'\ {x} s.t. fy(%) = | | fu(x) with respect to R{CZ,E,M’ or
equivalently written

A e XN (x}: fy (R +RE L 2 fu(X) A fu(R) € fu(0) —RE ..

We can look at this ordering as a middle ground compared to the relations it
is a mixture of, as the efficient solutions for the previous two is a subset of
the efficient solutions in this relation. So if the solution is either upper or
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lower set less ordered efficient it is efficient for this relation as well. It is
however important to notice that in this relation a solution is efficient if not
any other solution dominates it in both the worst and best case. Therefore it
might be possible that a solution is efficient for this relation without being
efficient for the two other relations. This is actually shown in Example 3.1.
As a result of the relationship between this relation and the other two
mentioned, we know that since x, and x, is upper set less ordered strictly
efficient and x; and x; is lower set less ordered strictly efficient these three
are also automatically set less ordered strictly efficient. However, we also
have another feasible solution that is neither but still set less ordered strictly
efficient. If we look more closely at Figures 3.3 and 3.9, we observe that only
X, dominate x5's worst case scenario while only x; dominate x5’s best case
scenario respectively. That said, none of the solutions dominate in both
relations. Hence, x5 is set less ordered strictly efficient even though it is
neither upper set less ordered strictly efficient nor lower set less ordered
strictly efficient.

3.3.3 Computing set less ordered efficient solutions

To compute set less ordered efficient solutions we can use the same extension
of framework as for the former two ordered efficient solutions in 3.1.3 and
3.2.3.

Weighted sum scalarization

The way we extend the framework from P, to use this method to compute set
less ordered strictly efficient solutions is to insert the problem formulation
obtained in 3.3.1, P(¢)®:

min infeeyy Z%l Aifi(x,¢) PE)S
xeX  \SUPgeyy  2iog Ai fi(x,€) A
Given a set of scalarization vectors A, we can now compute set less ordered
efficient solutions by solving P(¢)j for every A € A. As discussed in 3.3.2, x5
is a set less ordered strictly efficient solution even though it is neither upper
nor lower set ordered strictly efficient.

Theorem 3.5. (Theorem 23 Ide et al. [9]) Given an uncertain multi-objective
optimization problem P (¢), the following statements hold.
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1. If % € X is strictly efficient to P (E)5 for some A € RE, then % is set less
ordered strictly efficient solution to P (¢).

2. If x € X is weakly efficient to P (S); for some A € [R{f and

> >}
k k
min Y A;fi(x,é) and max) A;f;(x,
éeu; i fi(x, &) &u; ifi(x,&)

exists for all x € X, then X is set less ordered [-/weakly] efficient solution to
P().

Remark 3.7. To prove Theorem 3.5, we use a similar proof as for Theorem
3.1, but with the assumption that X is both lower set less ordered
[strictly/-/weakly] efficient and upper set less ordered [strictly/-/weakly]
efficient and then use both these two facts in the proof.

f

fi

Figure 3.12: Examples of weights to find x5 as set less strictly efficient. Here A = [1/6,5/6].

As we can observe in Figure 3.12 that there exist weights where only x; is
better than x5 for the best case, and only x; that is better than x5 in the worst
case. Hence, since none of the solutions are better than x5 in both cases given
the weights, x5 is here found to be set less ordered strictly efficient using the
weighted sum scalarization method.

e-constraint scalarization

The way we extend the framework from P ;) to use this method to compute
set less ordered efficient solutions is to insert the problem formulation
obtained in 3.3.1, P(¢)®:
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e infeeyy  Aifi(x,8)
xeX SUP¢eyy Aifi(x,¢)
s.t. ;}215 filx, &) =eiVj#i P©)ei

sup fi(x,§) <¢€;Vj#I.
Eeld

Given a set of vectors £, we can now compute lower set less ordered efficient

solutions by solving P(‘f)?e,i) foreachie({l,..., k} and everye e £.

Theorem 3.6. Given an uncertain multi-objective optimization problem P (£),
the following statements hold.

1. (@) If X € X is strictly efficient to P (), ;, for some € € R* and some i €

(e,i
{1,.., k}, then X is set less strictly efficient solution toP(¢).
2. (b) If X € X is weakly efficient to P(cf)fe,i) for some e € R* and some i €
{1,..,k} and maxg¢y fi(x,§) exists for all x € X, then X is set less weakly
efficient solution to P ().

Remark 3.8. The proof we use to prove Theorem 3.6 is similar as the one we
use to prove Theorem 3.2, but instead with the assumption that X is both
lower set less ordered [strictly/-/weakly] efficient and upper set less ordered
[strictly/-/weakly] efficient and then combine those two.
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3.4 Strict set less order relation

3.4.1 Description

The other combination of the first two relations is the more restrictive,
namely the strict set less order relation which was first introduced in Ide et
al. [3] as alternative set less order relation.

Definition 3.7. A set A € R* dominates a set B < R with respect to the strict

set less order relation, denoted A < B, with respect to R¥ if

—[>>>] >>>]

A< B < A< Bv A< ”22 ]B.

—[>>>] —[>>>

Remark 3.9. The relation can be equivalently be written as

A= B < (VbeB3ac A:alS,<,<]b)v (Vae AAbe B: alS,<,<]b)

—[>>>]

3.4.2 Efficiency and interpretation

Definition 3.8. Given an uncertain multi-objective optimization problem
P(&), a solution x € X to P(&) is strict set less ordered [strictlyl - | weakly]
efficient if there is no x € X' \ {x} s.t. [y (X) 5‘[@ 2 5] fu(x) with respect to

R{CZ o5 OF equivalently written

A€ X\ fy (D) +RE L 2 fu(0)V fu(R) € fu(0) -RE .

For a solution set f;;(x) to be efficient in this relation there can not exist
another solution set f;;(x) such that neither the best or worst case scenario
for X is lower than the best or worst case scenario for x. This is a really strict
property and therefore this solution set might be sparse or even empty for
some problems. To see this, we notice that in order to be efficient in this
relation, the solution needs to be both upper and lower set less ordered
efficient. Hence, this solution set can be seen as extremely good as it is in the
top in both the worst case and the best case compared to the other feasible
solutions. If we look at Example 3.1, we actually have such a solution, x;. Itis
both upper and lower set less ordered strictly efficient and hence also strict
set less ordered strictly efficient.




CHAPTER 3. Definitions of efficiency based on set order relations 21

3.4.3 Computing strict set less ordered efficient solutions

To obtain strict set less ordered efficient solutions we use the efficient
solutions computed in 3.1.3 and 3.2.3 and find the intersection of the two
solution sets. The resulting set is the set of strict set less ordered efficient
solutions.
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3.5 Relationship between the solutions in the different
relations

In this chapter we have introduced different set order relations. During the
different sections it has been discussed relationship between some of the
relations. In this section, we want to illustrate with a picture how the
different relations are related to each other.

<" —efficient

<* —efficient

Figure 3.13: Venn diagram of the different set order relations introduced in the chapter.

First of all we have the least strict relation, set less order relation. The
solution set of this relation is the union of the lower and upper set less
ordered efficient solutions. In addition to this, as discussed in 3.3.1, it it
possible for a solution to be neither lower nor upper set ordered strictly
efficient but still be set less ordered strictly efficient solution. Next, we have
the solutions that are lower and upper set less ordered efficient. These are
both a subset, but not necessarily equal to the set less ordered efficient
solutions. Lastly, we have the strict set less ordered efficient solutions. These
solutions are the intersection of the lower and upper set less ordered
efficient solutions. To be precise, a strict set less ordered efficient solution
needs to be both a lower and upper set less ordered efficient solution as well.




Chapter I

Non-convex feasible sets

We want to have methods that are able to find all [upper/lower/-/strict] set
less ordered solutions given any uncertain multi-objective optimization
problem. As we saw with Example 3.2, e-constraint method is not able to
fulfill this. It is also well known that for problems where the feasible set is
non-convex, the weighted sum scalarization method is not always able to
find all efficient solutions. This will be illustrated by several examples which
we are going to look at throughout this chapter. Therefore, we want to
introduce methods we can use to solve problems when the feasible set is not
convex. These frameworks can also solve problems with disconnected
feasible sets as well. In this chapter, we are going to focus on introducing
two methods. These approaches have been primarily been used in
multi-objective optimization problems, not uncertain. Hence we are going
to look at the deterministic version while we get to know the methods. In
further work we want to see if they are able to be used in order to obtain all
efficient solutions for our different set order relations for uncertain
multi-objective optimization. So given our already introduced problem
formulation (P), we introduce the first example of the chapter

Example 4.1. Let X = {x € RZ : x{ + x; -1 < 0,1 - x{ —x; < 0} and fi(x) =

x1, f2(x) = xp. Then the efficient solutions is given by X = {x € X' : 1-x§ — x5 =
0}.
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f2]

e —

Figure 4.1: Feasible set and Pareto set for Example 4.1 visualized. Feasible set is black while Pareto
set is red. The points that are obtainable using weighted sum approach, {(1,0), (0, 1)}, is highlighted in
green.

For Example 4.1, the only points which are possible to obtain as efficient
solutions with the weighted sum scalarization approach, Py, is {(1,0), (0, 1)}.
The rest of X% is unobtainable using this method.

We also want to discuss an example where the feasible set is disconnected.
We already know that the weighted sum methods are not necessarily able to
find the whole Pareto set, the efficient solutions, for all problems but it is a
nice illustration of how powerful the methods we are going to introduce in
this chapter are.

Example4.2. Let X = {x € RZ : (x,-0.5)°+ (x,—0.5)° —1 < 0, X7 + x5 -2 < 0, x{ +
xg —2x1X2, —0.05 = 0} and f;(x) = x1, f2(x) = x,. Then the efficient solutions is
given by Xg = {xe X : x?+x5-2=0}.
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f2]

—~yy

. . . E

Figure 4.2: Illustration of both the feasible set and Pareto set for Example 4.2. Feasible set is shown

as black while Pareto set is in red. The two points that are obtainable using weighted sum approach,
(BT, 3T (YT 3Ty
4 -4 o b

is setin green.

For Example 4.2, the only points which are possible to obtain as efficient
solutions with the weighted sum method P, is {(3+4\/7,3_4‘/7),(3_4‘/7,3+4‘/7)}.
The rest of X% is unobtainable using this method.

To deal with both these examples and find the whole Pareto set for both of
them, we finally introduce the two methods.
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4.1 Weighted-Constraint Method
This method was first introduced by Burachik et al. [4].

4.1.1 Description

Given the different objective functions f;, i = 1,...,k and some positive
weights we W :=we R w; >0, Zle w; =1, we consider the problem

min  wy f;(x)
st. w;fix)=wafax),i=1,.,ki#d Paw,ay
xe X,

which we refer to as the d™-objective weighted constraint problem. Then for
a fixed d and w we define the feasible set as

X = (xe X|w;fi(x) < wafa(x),Vi # d}

and the solution set of (P(,,4)) as

S = {x € X|x solves (P,a)}-

For each of the fixed w € W**, we have that

k
xq=Jad (4.1)
d=1

Which means that the feasible set is the union of the feasible set for each of
the different d’s given a w. We also define

W) :={we W xeS?% vd=1,.., k.

It is possible that W(x) = @ for some x € X. To now generate an
approximation of the Pareto front, we just solve P, 4 forall d € {1,..., k} over
a grid of values w. Then for all w' € W**, we have
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k
N S% < WEP).
d=1

Where we have denoted WE(P) as the weak efficient solutions of P. This
relationship thus shows a way to compute weak efficient solutions by solving
Pw,a forall d = 1,...,k for some w' € W**. If ﬂ’;:le‘fj, # ¢ then we have
obtained at least one weak efficient solution.

Theorem 4.1. (Theorem 3.1. Burachik et al. [4]) X € X is a weak efficient
solution of P <= there exist some w € W' such that X solves P, q) for all
dell,... k}.

Proof. = Assume X € X is a weak efficient solution to P. Without loss of
generality we say that f;(x) >0,i =1,...,kVx € X. Then we define

1/ f;(%)
wi:ﬁ.
Sk f()

For this choice, w € W and X satisfies all constraints as equalities, or in
other words

wlﬁ()%) = wdfd(ja)y I = ]-)--)k; I # d (1)

If X is not a solution of P, 4 for some d, then there exist X € & such that

Wafa(X) < wgfa(X) 2)

and

wifi(X)<wgfa(x),i=1,...k,i#d.

Hence, we can write

wifi(ic) < wdfd()'c) < wdfd(fc), i = 1,...,k, I # d.
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Then, by (1), we can write

wlﬁ(x) = wdfd(x) < wlﬁ()%)) i = 1;---’k) I # d; (3)

and since w; > 0, if we combine (2) with (3) we get

fiX)<fi(®),i=1,..,k.

This contradicts the weak efficiency of X.

<= Assume that w € W** is such that x solves P, 4) for all d. Suppose that
X € X is not a weak efficient point of P. Then there must exist X € X' \ X such
that

fid < fix),i=1,..k. (4)

Then from 4.1 there exists d such that x € X ,jf . Therefore, from 4 we can write
wg fa(X) < wg fa(X) where w; > 0. This contradicts that X solves P, 4). O]

Remark 4.1. (Remark 3.1. Burachik et al. [4]) The —> part of Theorem 4.1
holds for efficient solutions since every efficient solution is a weak efficient
solution. However, if a point solves P, 4 forall d € 1,..., k, then this does not
necessarily imply that the solution is efficient unless all objective functions
are strictly convex.

4.1.2 Computation of efficient points and interpretation

Now we show an illustration of how efficient solutions are found in Example
3.1 and Example 3.2 with the method.
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]

e — %

Figure 4.3: Example of obtaining an efficient
9 11

solution X = (\/ZT \/ﬁ) foragiven w = (55 261

The green line shows the line w; x; = wo xy.

2]

. . . E

Figure 4.5: Example of obtaining an efficient
cs_ 3 1 —

solution % = (\/g f) for a given w = [4, 4] The

green line shows the line w; x; = wo xy.
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f2]

e —%

Figure 4.4: Example of obtaining an efficient
. s _ (1 _4 : —r41

solution x = (W’ m) for a given w = (5, 5]

The green line shows the line w, x; = wox».

f2]

. . . E

Figure 4.6: Example of obtaining an efficient

solutlonx—(\/%,z\/ )foraglvenw [5,5]

The green line shows the line wyx; = wyxo.

If we look at P(,,4) and combine that formulation with the definition of an
efficient solution for the method, HZZISL‘Z,, we see that the only set the
efficient solution can lie on in both examples for a given w’ is the line
defined by w; x; = w,x,. This can be explained by the fact that for P, 1), the
constraint is given by w,x, — wyx; < 0, while for P, ), the constraint is
given by w;x; — wyx, < 0. The points x € X eligible for being an efficient
solution for that given w’ are therefore the set of points which fulfill the
equation w;x; = w,x,. Hence, by choosing a range of w € W', it is possible
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to estimate the Pareto front. In Figure 4.3 and Figure 4.4, two different w’s
have been chosen to find two of the solutions X that make up the efficient
solutions in Example 3.1, while in Figure 4.5 and Figure 4.6, two different w’s
have been chosen to find two of the solutions * that make up the efficient
solutions in Example 3.2.

One way one can compute an estimation of the Pareto front in the two
examples using this method is to first find the X which optimize the different
objective functions isolated. For Example 3.1 and 3.2 these points are
illustrated in 4.1 and 4.2 in green. By finding these points, we know that the
rest of the Pareto front is in-between the weights which is used to obtain
these two endpoints of the set. By then choosing how many points you want
to use to approximate the set, choose the increment in weights you want. If
we set the weight wy, at the weight used in finding the point optimizing the
first objective function and wy at the weight used in finding the point
optimizing the second objective function we can now approximate the
Pareto front by setting the weights as w, = wy, + W&T_wfl), n=1,..,N-1. By
doing this we get an approximation of the Pareto front with N points given
that all optimization problems have a solution. For Example 3.1 this is true,
while in Example 3.2 we can observe that some of the weight might be set
such that ﬂgzl S Zl} , = @. Then the approximation will contain less points if
one does not adapt the algorithm to not divide the interval between wy, and
wy, equally to avoid this. The problem with trying to fix this issue on a

general basis is that one is not sure which weights does not produce an
efficient solution.
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4.2 Pascoletti-Serafini Method

4.2.1 Description

The next method we want to analyze is a method derived first by Pascoletti
and Serafini [5], which is a more generalized framework and therefore very
applicable to many optimization problems. Given P, the method can be
stated as

min
xeX 5

st.p+éqg—f(x) EIRE Pwp.a
eR

This problem is solved by moving along the line p +¢ g for a given pair {p, g} €
RF x [Rg and ¢ € R. We first start with ¢ = 0, hence at p, and from there we

move ¢ until the set (p+¢&qg— R’;) N f(X) = @. ¢ is then defined as the smallest

value of ¢ such that the relation (p + éq— Rg) N f(X) # @ which then will be
the optimal value for the problem with a corresponding & which is then an
efficient solution to P.

Theorem 4.2. % € X is an efficient solution of P < there is some ¢ € R such
that (¢, X) is a minimal solution of P, 4 for some pair of parameters (p, q) €
RF x RE.

Proof. = Assume X € X is a weak efficient solution to P. If we then set
p' = f(%) and ¢’ € RX \{0}, then (0, %) solves P, 4 for {p’, ¢'}. Suppose that % is
not the minimal solution given the pair {p’, ¢'}, then there exist a X € X’ such
that (¢, %) is a minimal solution with & < 0. However, if X € X, then by design
of {p’, q'} it contradicts that X is an efficient solution to P.

<= Assume that £ is such that (¢, £) solves P(p,q forapair of {p’, q'}. Suppose
that X € X' is not a weak efficient point of P. Then there must exist X € X such
that (&, %) solves P, for {p’, q'} with & < ¢. Then we can write p' +&q’ - IR’; N

X=X%#@.Sincel< 5 , this contradicts that (c? , X) solves Py, ). O
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4.2.2 Computation of efficient points and interpretation

f2]

h

Figure 4.7: Example of obtaining an efficient solution (¢, £) = (— % V2, (%, %
1 11

1 1
((?) ?)) [\/_E’ 72])

)) for a given pair of (p, q) =

f2 |

. . . . . E

9-5v15 (1+\/ﬁ V15-1
4 0T 4

Figure 4.8: Example of obtaining an efficient solution (é, %) = (-2 Tovz

pair of (p, q) = (35, 2, [ 75, 751)

)) for a given

As shown in Figure 4.7 and 4.8, the method is able to find a point X that is a
part of the Pareto set while also being in the non-convex part of the feasible
set, something P, are unable to do. By varying the two parameters {p, g}, it
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would be possible to obtain all efficient points X of P where each &’ would be
a solution corresponding to a specific P, 4 given a pair {p, g}.

Now the question becomes, how many pairs do we need to obtain the whole
set of efficient points or at least a good approximation. We can do this by
either by setting g static and instead vary p and solve all the different
problems given that pair of p and g to obtain the desired number of efficient
points we want, or we could do it the other way around and instead set p to
a point and vary . One way to do this is to work your way through different

q1s on the form [N]Q”, Z]forn=0,1,...,, N for an arbitrary N.




Chapter 5

Conclusion and further work

In this paper we firstly introduced different set order relations for finding
different efficient solutions in uncertain multi-objective optimization
problems. The upper set less order relation can be connected with risk
aversion as the efficient solutions in this relation are not dominated in the
worst case scenario. Hence the solutions you get from this are a way of
hedging against the scenarios where the worst happens. Next, we
introduced the lower set less order relation, which can be connected with
being risk affine as the efficient solutions in this relation are not dominated
in the best case scenario. Hence the solutions you get from this have the
biggest upside, but on the other hand you are not safe from these solutions
having the worst downsides as well. If you are risk neutral instead then the
set less order relation might be a good relation for you to use. This is the
union of the risk averse and risk affine solutions. As we saw in examples, it is
also possible to have solutions in this relation that are neither upper nor
lower set less ordered efficient. These solutions are often the ones that are
neither the very best but neither the very worst. The last relation we have
introduced is the strict set less order relation. This is the intersection of the
risk averse and the risk affine solutions. As one can tell, these are the very
best solutions as they have the best upside and at the same guaranteed not
to have the worst outcomes. Depending on the problem at hand, these
solutions can be rare but if they are achievable they are considered the best
no matter the risk assessment.

Secondly we dived into two scalarization techniques for approximating the
Pareto front in multi-objective optimization problems, Weighted-Constraint
and Pascoletti-Serafini. The techniques are non-linear and therefore very
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useful in the cases where the feasible set is non-convex and even work when
the feasible set is disconnected.

This is important as the previously discussed linear approach, the weighted
sum scalarization, is not necessarily able to approximate the Pareto front
when the problem has a nonconvex feasible set as discussed in Example 4.1
and 4.2. The other method discussed, the e-constraint method, is able to
approximate the Pareto front even when the feasible set is non-convex for
deterministic multi-objective optimization problems. However, as seen in
Example 3.2, it is not always able to obtain all [upper/lower/-/strict] set less
ordered solutions in uncertain multi-objective optimization problems
which is what we are looking for.

In further work, we want to look at how we can combine these two topics in
an attempt to obtain all [upper/lower/-/strict] set less ordered efficient
solutions for all uncertain multi-objective optimization problems - even
when the feasible sets for the different solutions are non-convex - by using
Weighted-Constraint or Pascoletti-Serafini. This is applicable as there are
many problems where the feasible sets are non-convex. Real world
problems are often more chaotic than the examples presented in this paper
and even then it is easy to construct a non-convex feasible set as seen in
Chapter 4.
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