
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Axel Henæs Rønold

Methods in Uncertain Multi-Objective
Optimization

Master’s thesis in Industrial Mathematics
Supervisor: Elisabeth Anna Sophia Köbis
July 2021

M
as

te
r’s

 th
es

is

Axel Henæs Rønold

Methods in Uncertain Multi-Objective
Optimization

Master’s thesis in Industrial Mathematics
Supervisor: Elisabeth Anna Sophia Köbis
July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

We begin the paper by discussing concepts of efficiency for uncertain
multi-objective optimization problems by using different set order relations.
In all, we discuss four different relations: the upper set less order relation
introduced by Kuroiwa [1], the lower set less order relation introduced by
Kuroiwa [1], the set less order relation introduced by Young [2] and the strict
set less order relation which was introduced as alternative set less order
relation by Ide et al. [3]. We then discuss the different characteristics of these
order relations and the differences between them. After this, we look at a
method that has been used to solve multi-objective optimization problems
where the feasible set is non-convex and even disconnected, the weighted
constraint method introduced by Burachik et al. [4]. The next part shows
that we can use the weighted constraint method to solve uncertain
multi-objective optimization problems. Hence, it is possible to obtain upper
set less order efficient solutions of a problem by solving the weighted
constraint method. Lastly, we wanted to explore how the weighted
constraint method performed when comparing it to other methods that
have been previously used on uncertain multi-objective optimization
problems. In our comparison, we used the weighted sum method. The
investigation focuses on problems with two and three objectives. It shows
that the weighted constraint method is quicker to compute than the
weighted sum method and performs better when the number of feasible
elements was low. However, when the number of feasible elements
increased, the weighted sum method found more upper set less order
efficient solutions.

Contents

Abstract i

1 Introduction 1
1.1 Clarification of reuse of text . 3

2 Preliminaries 4

3 Definitions of efficiency based on set order relations 6
3.1 Upper set less order relation . 7

3.1.1 Description and problem formulation 7
3.1.2 Efficiency and interpretation 7
3.1.3 Computing upper set less ordered efficient solutions . . . 8

3.2 Lower set less order relation . 13
3.2.1 Description and problem formulation 13
3.2.2 Efficiency and interpretation 13
3.2.3 Computing lower set less ordered efficient solutions . . . 14

3.3 Set less order relation . 17
3.3.1 Description and problem formulation 17
3.3.2 Efficiency and interpretation 17
3.3.3 Computing set less ordered efficient solutions 18

3.4 Strict set less order relation . 21
3.4.1 Description . 21
3.4.2 Efficiency and interpretation 21
3.4.3 Computing strict set less ordered efficient solutions . . . 22

3.5 Relationship between the solutions in the different relations . . 23

4 Non-convex feasible sets 24
4.1 Weighted-Constraint Method . 27

Contents iii

4.1.1 Description . 27
4.1.2 Computation of efficient points and interpretation 29

5 Weighted constraint method in uncertain multi-objective
optimization 32
5.1 Formulation . 32
5.2 Closer look at the weighted constraint method 33
5.3 Numerical investigation . 36

5.3.1 General framework . 36
5.3.2 Two objectives . 37
5.3.3 Three objectives . 40
5.3.4 Computation time . 42
5.3.5 Summary . 43

6 Conclusion 44

References 46

List of Figures

3.1 Example 3.1. 6
3.2 Supremum of every feasible sets in Example 3.1. 8
3.3 Every solution in Example 3.1. with subtracted ordering cone . . 8
3.4 The weighted sum method find x2 as upper set less order

efficient in Example 3.1. 10
3.5 The weighted sum method find x4 as upper set less order

efficient in Example 3.1. 10
3.6 Example 3.2. 12
3.7 The ε-constraint method are not able to find x1 as upper set less

order efficient in Example 3.2. 12
3.8 Infimum of every solution in Example 3.1. 14
3.9 Every solution in Example 3.2. with added ordering cone 14
3.10 The weighted sum method find x1 as lower set less order

efficient in Example 3.1. 15
3.11 The weighted sum method find x2 as lower set less order

efficient in Example 3.1. 15
3.12 The weighted sum method find x5 as set less order efficient in

Example 3.1. 19
3.13 Venn diagram of the different set order relations 23

4.1 Example 4.1. with Pareto set . 25
4.2 Example 4.2. with Pareto set . 26
4.3 First example of the weighted constraint method finding an

efficient solution in Example 4.1. 29
4.4 Second example of the weighted constraint method finding an

efficient solution in Example 4.1. 29
4.5 First example of the weighted constraint method finding an

efficient solution in Example 4.2. 30

List of Figures v

4.6 Second example of the weighted constraint method finding an
efficient solution in Example 4.2. 30

5.1 Example 5.1. 35
5.2 Supremum of the feasible elements from example 5.1. 35
5.3 Generated example with two objectives 37
5.4 Comparison of the weighted constraint method and the

weighted sum method based on the precision of weights 38
5.5 Comparison of the weighted constraint method and the

weighted sum method based on the number of upper set less
ordered efficient solutions found per problem instance with
two objectives . 39

5.6 Comparison of the weighted constraint method and the
weighted sum method based on the precision of weights with
three objectives . 40

5.7 Comparison of the weighted constraint method and the
weighted sum method based on the number of feasible
elements per problem instance with three objectives 41

5.8 Comparison of the weighted constraint method and the
weighted sum method based on the computaiton time used
per instance with two objectives 42

5.9 Comparison of the weighted constraint method and the
weighted sum method based on the computaiton time used
per instance with three objectives 42

Chapter 1
Introduction

The main topic we are focusing on in this paper is uncertain multi-objective
optimization. Uncertainty is common when we are dealing with
optimization problems in the real world. When we decide between the
different options in a problem, we are not always sure how the future will
unfold, but it still influences our choice. When we meet uncertainty, the
literature has suggested two main approaches. One is stochastic
optimization, where the uncertain parameters are assumed to possess a
probability distribution. We then optimize the expected value of each
option while they have other outcomes which are still possible to occur with
some probability. The other approach is the one we are going to focus on,
namely robust optimization. In this approach, we consider the case where
we have no stochastic information about the uncertain parameters. There
are different variations of what a robust solution is. One of the concepts that
have been introduced is minmax robustness, which was firstly introduced
by Soyster [5]. With this approach, the goal is to find solutions that are
feasible for every future scenario. Hence, the objective becomes to optimize
the worst-case scenario for each alternative. What we want to accomplish by
finding robust solutions is to have solutions that are less sensitive to
perturbations in the data. Let us explain with a scenario. Imagine we are a
company presented with two different plans. The first one earns the
company much money if everything goes right but bankrupts the company
if something suddenly goes wrong. The other one is not that lucrative, but a
very safe solution where we know that very little can go wrong. The first
solution is very sensitive and hence not very robust as it becomes
non-feasible for some scenarios. However, if we optimize by just looking at
the output and not factoring in the risk, we would have gone for this option.

2

These types of choices are the ones we try to eliminate by optimizing on the
worst-case scenario as we do in robust optimization. When we do this type
of optimization, it becomes a set-based method because we assume that the
uncertain parameters belong to an uncertainty set known before solving the
optimization problem.

We will discuss this further in the paper, namely to use different set order
relations to define the robust solutions of uncertain multi-objective
optimization problems. In the example when we optimize on the worst-case
scenario, we used a set order relation named in the literature as the upper
set less order relation [1]. This relation has a pessimistic approach as we
hedge against the scenarios with the worst outcomes. In addition to this
one, we will discuss other set order relations to define different approaches a
decision-maker can use, for instance, a more optimistic approach.
Throughout the discussions on these set order relations, we are going to
look at uncertain multi-objective problems where the objective functions
are affected by uncertain data, which is given by an arbitrary uncertainty set
U . All possible scenarios of the uncertain input data are represented within
this set. We want to show that we can end up with varying sets of efficient
solutions for the same uncertain multi-objective optimization problem by
using the different definitions of set order relations. For each set order
relation, we will discuss how it affects the set of efficient solutions. We will
also show two methods that can be used to find the different efficient
solutions, the weighted sum method, and the ε-constraint method.

However, as we will show in the paper, it is easy to construct uncertain
multi-objective optimization problems where methods such as the two
aforementioned can not obtain all the different efficient solutions given the
different set order relations. In an attempt to solve these issues, we are going
to look at another method that has been used in multi-objective
optimization, namely the weighted constraint method [4]. By first showing
that solving the problem with this method produces the solutions we are
looking for, we want to investigate how it performs versus other methods
used in solving uncertain multi-objective optimization problems to see if it
can find more solutions.

CHAPTER 1. Introduction 3

1.1 Clarification of reuse of text

This work is a continuation of the work done in my project thesis. In my
project thesis I gathered theory on uncertain multi-objective optimization
and also on the weighted constraint method in order to do the work I have
done now in my master thesis, solving uncertain multi-objective problems
with the weighted constraint method. The theory is the base of all this work
and is central in communicating to you, the reader, what the work I now
have done on the master thesis is. I put in a lot of effort to write the project
thesis and since it is the foundation of the work in my master thesis I feel it is
appropriate to use the text here. I have therefore reused the text from that
thesis in this paper. I have made some improvements of the text and also
made changes as some of the work turned out not to be of focus in my
master thesis. However, most of these chapters are still very similar to how
they were presented in my project thesis because they are relevant in their
current shape. This regards to Chapter 1 through 4. [6]

Chapter 2
Preliminaries

Firstly, we need to introduce some notation on multi-objective optimization.
Given a feasible setX ⊆Rn defined by some constraints, we want to minimize
a function f :X →Rk . We can write it more formally as

min f (x)

s.t. x ∈X .
P

Since we are comparing solutions in Rk where k > 1, it is necessary to define
relations to compare them as it lack total order. To do this, we use the
relations {5,≤,<}, referred to in Ehrgott [7]. Let {y1, y2} ∈Rk , then we say that

y1 5 y2 ⇐⇒ y i
2 ∈ [y i

1,∞) ∀ i ∈ 1, ...,k

y1 ≤ y2 ⇐⇒ y1 5 y2, y1 6= y2

y1 < y2 ⇐⇒ y i
2 ∈ (y i

1,∞) ∀ i ∈ 1, ...,k.

Furthermore, we define the ordering cones
{
Rk
=,Rk

≥,Rk
>
}

as

Rk
[=,≥,>] :=

{
x ∈Rk : x[=,≥,>]0

}
.

With this ordering, we want to find all feasible solutions x ∈X to (P) that are
[strictly/ · /weakly] efficient, which means that its function value, f (x), is not

CHAPTER 2. Preliminaries 5

dominated by any other function value, f (x̂), from a point x̂ ∈X \{x}. We can
write this as

x is [strictly/ ·/weakly] efficient ⇐⇒ Øx̂ ∈X \ {x} : f (x̂) ∈ f (x)−Rk
[=,≥,>].

Remark 2.1. A strictly efficient point is also an efficient point. An efficient
point is also a weakly efficient point, hence

strictly efficient =⇒ efficient =⇒ weakly efficient.

Given the tools already presented, we want to define the uncertain
counterpart for multi-objective optimization. Given a set of scenarios
U ⊆ Rm, also referred to as the uncertainty set, an uncertain multi-objective
optimization problem is given as the family (P(U), ξ ∈ U) of multi-objective
optimization problems

min f (x,ξ)

s.t. x ∈X ,
P(U)

with objective function f : Rn ×U → Rk , a feasible set X ⊆ Rn and ξ ∈ U to
represent one particular scenario of the uncertainty set. From this
framework, it is clear that we need to extend our definitions to define what
an efficient solution is. The reason being that uncertain optimization is, by
our definition, a family of problems where the object changes by each
scenario ξ ∈U .

Hence, we define the set

fU (x) := { f (x,ξ) : ξ ∈U } ⊆Rk ,

which is the set of all possible objective values for a point x ∈ X given each
ξ ∈U . We now need to find out how to turn the family of uncertain values for
each feasible point into a deterministic optimization formulation. One way
to do this is to define different set order relations to define what property
a feasible set fU (x) needs to have in order to dominate another feasible set
fU (x̂) given all feasible points from x ∈X and x̂ ∈X \ {x}.

Chapter 3
Definitions of efficiency based on set order
relations

In this section, we want to introduce different set order relations to define
efficient solutions in uncertain multi-objective optimization problems based
on various approaches. We will also discuss how this affects the properties
affiliated with the solutions that the different relations give us. To guide us
through the different set order relations in the chapter, we use Example 3.1.

Example 3.1. Figure 3.1 illustrates an uncertain multi-objective optimization
problem for k = 2, hence with R2

≥ as ordering cone.

Figure 3.1: Uncertain multi-objective optimization problem with feasible set X = {x1, x2, x3, x4, x5}.

CHAPTER 3. Definitions of efficiency based on set order relations 7

3.1 Upper set less order relation

3.1.1 Description and problem formulation

The first set order relation we want to define, introduced by Kuroiwa [1], is
the upper set less order relation:

Definition 3.1. A set A ⊆Rk dominates a set B ⊆Rk with respect to the upper
set less order relation, denoted A ¹u

[=,≥,>]
B , with respect to Rk

[=,≥,>]
if

A ¹u
[=,≥,>] B ⇐⇒ A ⊆ B −Rk

[=,≥,>].

Remark 3.1. The relation can be equivalently written as

A ¹u
[=,≥,>] B ⇐⇒ ∀a ∈ A∃b ∈ B : a[5,≤,<]b.

The way to frame P(U) to mirror this property is to take the supremum of the
uncertainty set

min
x∈X

sup
ξ∈U

f (x,ξ). P(ξ)u

3.1.2 Efficiency and interpretation

Definition 3.2. Given an uncertain multi-objective optimization problem
P(U), a solution x ∈ X to P(U) is upper set less ordered [strictly/ · /weakly]
efficient if there is no x̄ ∈ X \ {x} s.t. fU (x̄) ¹u

[=,≥,>]
fU (x) with respect to

Rk
[=,≥,>]

, or equivalently written

Øx̄ ∈X \ {x} : fU (x̄) ⊆ fU (x)−Rk
[=,≥,>].

The way to interpret this set order relation is that a solution set fU (x) is
efficient if there does not exist another solution set fU (x̄) such that the worst
case scenario for x̄ is better than the worst case scenario for x for the given
problem. We can look at this set ordering as pessimistic as the efficient
solutions to the problem given the feasible sets fU (x), x ∈ X will be chosen
on the grounds of which ones have the greatest worst case scenario. Hence,
this approach can be used to find risk averse solutions. In our example, we

8 3.1. Upper set less order relation

can see that only fU (x2) and fU (x4) fulfill the criteria. Looking at Figure 3.3
we observe that fU (x1)−R2

[=,≥,>]
, fU (x3)−R2

[=,≥,>]
and fU (x5)−R2

[=,≥,>]
contains

fU (x2). Hence, only x2 and x4 are upper set less ordered strictly efficient.

Figure 3.2: Supremum of every feasible set.
Figure 3.3: All five sets when we subtract
R2

[=,≥,>]
.

3.1.3 Computing upper set less ordered efficient solutions

We can use approaches from deterministic multi-objective optimization to
compute upper set less ordered efficient solutions by extending their
framework from deterministic to uncertain.

Weighted sum scalarization

This method forms a single objective optimization problem by multiplying
each objective function by some non-negative weight λi and summing them
together. So with a weight vector λ ∈Rk

[≥,>], we consider

min
x∈X

k∑
i=1

λi fi (x) Pλ

The way we extend the framework to use this method to compute upper set
less ordered efficient solutions is to insert the problem formulation obtained
in 3.1.1, P(ξ)u:

min
x∈X

sup
ξ∈U

k∑
i=1

λi fi (x,ξ) P(U)u
λ

Theorem 3.1. (Theorem 4.3. Ehrgott et al. [8]) Given an uncertain multi-
objective optimization problem P(U), the following statements hold.

CHAPTER 3. Definitions of efficiency based on set order relations 9

1. If x̂ ∈X is the unique optimal solution to P(U)u
λ

for some λ ∈ Rk
≥, then x̂

is upper set less ordered strictly efficient solution to P(U).

2. If x̂ ∈X is an optimal solution to P(U)u
λ

for some λ ∈Rk
{≥,>} and

max
ξ∈U

k∑
i=1

λi fi (x,ξ)

exists for all x ∈ X , then x̂ is upper set less ordered [·/weakly] efficient
solution to P(U).

Proof. 1. Assume x̂ is not upper set less ordered [strictly/·/weakly] efficient
for P(U). Then there exists an x ′ ∈X such that

fU (x ′) ⊆ fU (x̂)−Rk
[=,≥,>] =⇒ ∀ξ ∈U∃η ∈U : f (x ′,ξ)[5,≤,<] f (x̂,η)

Now choose λ ∈Rk
[=,≥,>]

arbitrary but fixed.

=⇒ ∀ξ ∈U∃η ∈U :
k∑

i=1

λi f (x ′,ξ)[5,≤,<]
k∑

i=1

λi f (x̂,η)

⇐⇒ ∀ξ ∈U :
k∑

i=1

λi f (x ′,ξ)[5,≤,<]sup
η′∈U

k∑
i=1

λi f (x̂,η′)

⇐⇒ sup
ξ′∈U

k∑
i=1

λi f (x ′,ξ′)[5,≤,<]sup
η′∈U

k∑
i=1

λi f (x̂,η′)

The last equivalence holds because for 2.

max
ξ′∈U

k∑
i=1

λi f (x ′,ξ′)

exists. However, this means that x̂ is not [the unique/an/an] optimal solution
to P(U)u

λ
for λ ∈Rk

[=,≥,>]
.

Given a set of scalarization vectors Λ, we can now compute upper set less
ordered efficient solutions by solving P(U)u

λ
for every λ ∈ Λ. One challenge

with the method is the choice of Λ. On the other hand, the technique does
not add any additional constraints to the problem formulation and thus
preserves the problem structure.

10 3.1. Upper set less order relation

Figure 3.4: Examples of weights to find x2

as upper set less strictly efficient. Here λ =
[1/2,1/2].

Figure 3.5: Examples of weights to find x4

as upper set less strictly efficient. Here λ =
[3/73,70/73].

ε-constraint scalarization

This approach uses the idea of minimizing one of the objective functions, the
i th objective function, while the others are less than a value ε j , j 6= i . By doing
this for every value from i ∈ {1, ...,k} and ε ∈ Rk

≥, we consider the problem
formulation

min
x∈X

fi (x)

s.t. fi (x) ≤ ε j∀ j 6= i .
P(ε,i)

The way we extend the framework to use this method to compute upper less
ordered efficient solutions is to insert the problem formulation obtained in
3.1.1, P(ξ)u:

min
x∈X

sup
ξ∈U

fi (x,ξ)

s.t. sup
ξ∈U

fi (x,ξ) ≤ ε j∀i 6= j .
P(U)u

(ε,i)

Theorem 3.2. (Theorem 4.7. Ehrgott et al. [8]) Given an uncertain multi-
objective optimization problem P(U), the following statements hold.

1. If x̂ ∈ X is the unique optimal solution to P(U)u
(ε,i) for some ε ∈ Rk and

some i ∈ {1, ..,k}, then x̂ is upper set less strictly efficient solution to P(U).

2. If x̂ ∈ X is an optimal solution to P(U)u
(ε,i) for some ε ∈ Rk and some i ∈

{1, ..,k} and
max
ξ∈U

fi (x,ξ)

CHAPTER 3. Definitions of efficiency based on set order relations 11

exists for all x ∈ X , then x̂ is upper set less weakly efficient solution to
P(U).

Proof. 1. Assume x̂ is not upper set less ordered strictly efficient for P(U).
Then there exists an x ′ ∈X such that

fU (x ′) ⊆ fU (x̂)−Rk
= =⇒∀ξ ∈U∃η ∈U : f (x ′,ξ)5 f (x̂,η)

=⇒ sup
ξ′∈U

f (x ′,ξ′)5 sup
η′∈U

f (x̂,η′) and

∀ξ ∈U∃η ∈U : f j (x ′,ξ)5 f j (x̂,η)5 ε j , j 6= i .

In this scenario, x ′ is feasible for P(U)u
(ε,i) and has an equal or better objective

value than x̂. This is a contradiction to the assumption that x̂ is the unique
optimal solution to P(U)u

(ε,i).

2. Assume x̂ is not upper set less ordered weakly efficient for P(U). Then
there exists an x ′ ∈X such that

fU (x ′) ⊆ fU (x̂)−Rk
> =⇒∀ξ ∈U∃η ∈U : f (x ′,ξ) < f (x̂,η)

=⇒ max
ξ′∈U

f (x ′,ξ′) < max
η′∈U

f (x̂,η′) and

∀ξ ∈U∃η ∈U : f j (x ′,ξ) < f j (x̂,η)5 ε j , j 6= i .

In this scenario, x ′ is feasible forP(U)u
(ε,i) and has a better objective value than

x̂. This is a contradiction to the assumption that x̂ is an optimal solution to
P(U)u

(ε,i).

Given a set E of vectors ε ∈ Rk
=, we can now compute upper set less ordered

efficient solutions by solving P(U)u
(ε,i) for each i ∈ {1, ...,k} and every ε ∈ E .

One challenge with the method is to choose the set E correctly. If the
elements in E are chosen too small, then the set of feasible solutions may be
empty. Still, if the elements in E are chosen too large, then the optimality of
the functions representing the constraints decreases.

Remark 3.2. ε-constraint method can find all the efficient solutions to a
deterministic multi-objective optimization problem, but this is not
necessarily the case for uncertain multi-objective optimization problems -
even when the sets are convex. To illustrate this, we can look at Example 3.2.

12 3.1. Upper set less order relation

Another problem with this approach lies in the altered problem structure.
We add constraints to the problem; hence the problem structure of the
original problem is not preserved. This may further complicate the decision
process.

Example 3.2. Figure 3.6 shows an uncertain multi-objective optimization
problem for k = 2 with both x1 and x2 as upper set less strictly efficient
solutions.

Figure 3.6: Uncertain multi-objective optimization problem with feasible set X = {x1, x2}.

From what we have learned, we observe in Figure 3.6 that both x1 and x2 are
upper set less strictly efficient. However, since x2 has a lower supremum in
both objective functions individually and is therefore feasible for whenever
x1 is. As shown in Figure 3.7, we can thus not obtain x1 as an upper set less
strictly efficient solution with this method, even though it is.

Figure 3.7: Illustration of how x2 is always feasible for every value ε ∈ E where x1 is feasible for both
objective functions. Hence, it is not possible to obtain x1 as an upper set less strictly efficient solution
by using the ε-constraint scalarization in this example.

CHAPTER 3. Definitions of efficiency based on set order relations 13

3.2 Lower set less order relation

3.2.1 Description and problem formulation

The second set order relation we are looking at is the lower set less order
relation, first introduced by Kuroiwa [1].

Definition 3.3. A set A ⊆ Rk dominates a set B ⊆ Rk with respect to the lower
set less order relation, denoted A ¹l

[=,≥,>]
B , with respect to Rk

[=,≥,>]
if

A ¹l
[=,≥,>] B ⇐⇒ A+Rk

[=,≥,>] ⊇ B.

Remark 3.3. The relation can be equivalently be written as

A ¹l
[=,≥,>] B ⇐⇒ ∀b ∈ B∃a ∈ A : a[5,≤,<]b.

This time, the way to frame the problem to obtain this property is to take the
infimum on the uncertainty set

min
x∈X

inf
ξ∈U

f (x,ξ). P(U)l

3.2.2 Efficiency and interpretation

Definition 3.4. Given an uncertain multi-objective optimization problem
P(U), a solution x ∈ X to P is lower set less ordered [strictly/ · /weakly]
efficient if there is no x̄ ∈ X \ {x} s.t. fU (x̄) ¹l

[=,≥,>]
fU (x) with respect to

Rk
[=,≥,>]

, or equivalently written

Øx̄ ∈X \ {x} : fU (x̄)+Rk
[=,≥,>] ⊇ fU (x).

When we examine the solution sets fU (x) for this set order relation, we
observe that in order for a solution to be efficient, there can not exist
another solution set fU (x̄) such that the best case scenario for x̄ is better
than the best case scenario for x. Hence, we can interpret this ordering as
optimistic as the efficient solutions to the problem given the feasible sets
fU (x), x ∈X will be evaluated based on greatest best case scenario. Because
of this, it is possible to obtain solutions for situations where we are looking

14 3.2. Lower set less order relation

to be risk seeking. For our example, the risk seeking solutions are therefore
fU (x1) and fU (x2). Conversely, as seen in Figure 3.9, fU (x3) and fU (x5) are
contained in fU (x1) + R2

[=,≥,>]
while fU (x3) and fU (x4) are contained in

fU (x2) + R2
[=,≥,>]

. Hence, only x1 and x2 are lower set less ordered strictly
efficient.

Figure 3.8: Infimum of every feasible set. Figure 3.9: All five sets when we add R2
[=,≥,>]

.

3.2.3 Computing lower set less ordered efficient solutions

To compute lower set less ordered efficient solutions, we can use the same
extension of a framework as for upper set less ordered efficient solutions in
3.1.3.

Weighted sum scalarization

The way we extend the framework from Pλ to use this method for computing
lower set less ordered efficient solutions is to insert the problem formulation
obtained in 3.2.1, P(U)l:

min
x∈X

inf
ξ∈U

k∑
i=1

λi fi (x,ξ) P(U)l
λ

As for the upper set less relation, given a set of scalarization vectorsΛ, we can
now compute lower set less ordered efficient solutions by solving P(U)l

λ
for

every λ ∈Λ.

Theorem 3.3. (Theorem 11 Ide et al. [9]) Given an uncertain multi-objective
optimization problem P(U), the following statements hold.

1. If x̂ ∈X is the unique optimal solution to P(U)l
λ

for some λ ∈ Rk
≥, then x̂

is lower set less ordered strictly efficient solution to P(U).

CHAPTER 3. Definitions of efficiency based on set order relations 15

2. If x̂ ∈X is an optimal solution to P(U)l
λ

for some λ ∈Rk
{>,≥} and

min
ξ∈U

k∑
i=1

λi fi (x,ξ)

exists for all x ∈ X , then x̂ is lower set less ordered [·/weakly] efficient
solution to P(U).

Remark 3.4. To prove Theorem 3.3, we can use a proof with similar reasoning
as for Theorem 3.1, only with the assumption that x̂ is lower set less ordered
[strictly/·/weakly] efficient.

Figure 3.10: Examples of weights to find x1

as lower set less strictly efficient. Here λ =
[2/5,3/5].

Figure 3.11: Examples of weights to find x2

as lower set less strictly efficient. Here λ =
[5/8,3/8].

ε-constraint scalarization

The way we extend the framework from P(ε,i) to use this method in order for
computing lower set less ordered efficient solutions is to insert the problem
formulation obtained in 3.2.1, P(U)l:

min
x∈X

inf
ξ∈U

fi (x,ξ)

s.t. inf
ξ∈U

fi (x,ξ) ≤ ε j∀ j 6= i .
P(U)l

(ε,i)

Given a set of vectors E , we can now compute lower set less ordered efficient
solutions by solving P(U)l

(ε,i) for each i ∈ {1, ...,k} and every ε ∈ E .

Theorem 3.4. Theorem 26 Köbis [10] Given an uncertain multi-objective
optimization problem P(U), the following statements hold.

1. If x̂ ∈ X is the unique optimal solution to P(U)l
(ε,i) for some ε ∈ Rk and

some i ∈ {1, ..,k}, then x̂ is lower set less strictly efficient solution to P(U).

16 3.2. Lower set less order relation

2. If x̂ ∈ X is an optimal solution to P(U)l
(ε,i) for some ε ∈ Rk and some i ∈

{1, ..,k} and
min
ξ∈U

fi (x,ξ)

exists for all x ∈ X , then x̂ is lower set less weakly efficient solution to
P(U).

Remark 3.5. To prove Theorem 3.4, we can use a proof that will look similar
to the one used for Theorem 3.2, only with the assumption that x̂ is lower set
less ordered [strictly/·/weakly] efficient.

CHAPTER 3. Definitions of efficiency based on set order relations 17

3.3 Set less order relation

3.3.1 Description and problem formulation

As our first two set order relations were pessimistic and optimistic, it is then
natural to define set order relations where we combine the two to obtain a
sort of compromise between the two opposites. The first one is the set less
order relation which Young [2] introduced

Definition 3.5. A set A ⊆Rk dominates a set B ⊆Rk with respect to the set less
order relation, denoted A ¹s

[=,≥,>]
B , with respect to Rk

[=,≥,>]
if

A ¹s
[=,≥,>] B ⇐⇒ A ¹l

[=,≥,>] B ∧ A ¹u
[=,≥,>] B.

Remark 3.6. The relation can be equivalently be written as

A ¹s
[=,≥,>] B ⇐⇒ (∀b ∈ B∃a ∈ A : a[5,≤,<]b)∧ (∀a ∈ A∃b ∈ B : a[5,≤,<]b).

This time, the way to frame the problem to obtain this property is to take both
the infimum and the supremum respectively of the uncertainty set

min
x∈X

(
infξ∈U f (x,ξ)
supξ∈U f (x,ξ)

)
. P(U)s

3.3.2 Efficiency and interpretation

Definition 3.6. Given an uncertain multi-objective optimization problem
P(U), a solution x ∈X to P(U) is set less ordered [strictly/ · /weakly] efficient
if there is no x̄ ∈ X \ {x} s.t. fU (x̄) ¹s

[=,≥,>]
fU (x) with respect to Rk

[=,≥,>]
, or

equivalently written

Øx̄ ∈X \ {x} : fU (x̄)+Rk
[=,≥,>] ⊇ fU (x)∧ fU (x̄) ⊆ fU (x)−Rk

[=,≥,>].

We can look at this relation as a middle ground compared to the two it is a
mixture of - the efficient solutions for the previous two form a subset of the
efficient solutions in this relation. So if the solution is either upper or lower
set less ordered efficient, it is efficient for this relation. However, it is

18 3.3. Set less order relation

important to notice that in this relation, a solution is efficient if not any
other solution dominates it in both the worst and best case. Therefore, it
might be possible that a solution is efficient for this relation without being
efficient for the two other relations. This is shown in Example 3.1. As a result
of the relationship between this relation and the other two mentioned, we
know that since x2 and x4 is upper set less ordered strictly efficient and x1

and x2 is lower set less ordered strictly efficient these three are also
automatically set less ordered strictly efficient. However, we also have
another feasible solution that is neither but still set less ordered strictly
efficient. If we look more closely at Figures 3.3 and 3.9, we observe that only
x2 dominate x5’s worst-case scenario while only x1 dominate x5’s best-case
scenario respectively. That said, none of the solutions dominate in both
relations. Hence, x5 is set less ordered strictly efficient even though it is
neither upper set less ordered strictly efficient nor lower set less ordered
strictly efficient.

3.3.3 Computing set less ordered efficient solutions

To compute set less ordered efficient solutions, we can use the same
extension of framework as for the former two ordered efficient solutions in
3.1.3 and 3.2.3.

Weighted sum scalarization

The way we extend the framework fromPλ to use this method to compute set
less ordered strictly efficient solutions is to insert the problem formulation
obtained in 3.3.1, P(U)s:

min
x∈X

(
infξ∈U

∑k
i=1λi fi (x,ξ)

supξ∈U
∑k

i=1λi fi (x,ξ)

)
P(U)s

λ

Given a set of scalarization vectors Λ, we can now compute set less ordered
efficient solutions by solving P(U)s

λ
for every λ ∈Λ. As discussed in 3.3.2, x5

is a set less ordered strictly efficient solution even though it is neither upper
nor lower set ordered strictly efficient.

Theorem 3.5. (Theorem 23 Ide et al. [9]) Given an uncertain multi-objective
optimization problem P(U), the following statements hold.

1. If x̂ ∈ X is strictly efficient to P(U)s
λ

for some λ ∈ Rk
≥, then x̂ is set less

ordered strictly efficient solution to P(U).

CHAPTER 3. Definitions of efficiency based on set order relations 19

2. If x̂ ∈X is weakly efficient to P(U)s
λ

for some λ ∈Rk
{>,≥} and

min
ξ∈U

k∑
i=1

λi fi (x,ξ) and max
ξ∈U

k∑
i=1

λi fi (x,ξ)

exists for all x ∈X , then x̂ is set less ordered [·/weakly] efficient solution to
P(U).

Remark 3.7. To prove Theorem 3.5, we use a similar proof as for Theorem
3.1, but with the assumption that x̂ is both lower set less ordered
[strictly/·/weakly] efficient and upper set less ordered [strictly/·/weakly]
efficient and then use both these two facts in the proof.

Figure 3.12: Examples of weights to find x5 as set less strictly efficient. Here λ= [1/6,5/6].

As we can observe in Figure 3.12 that there exist weights where only x1 is
better than x5 for the best case, and only x2 is better than x5 in the worst
case. Hence, since none of the solutions are better than x5 in both cases given
the weights, x5 is here found to be set less ordered strictly efficient using the
weighted sum scalarization method.

ε-constraint scalarization

The way we extend the framework from P(ε,i) to use this method to compute
set less ordered efficient solutions is to insert the problem formulation
obtained in 3.3.1, P(U)s:

20 3.3. Set less order relation

min
x∈X

(
infξ∈U λi fi (x,ξ)
supξ∈U λi fi (x,ξ)

)
s.t. inf

ξ∈U
f j (x,ξ) ≤ ε j∀ j 6= i

sup
ξ∈U

f j (x,ξ) ≤ ε j∀ j 6= i .

P(U)s
(ε,i)

Given a set of vectors E , we can now compute lower set less ordered efficient
solutions by solving P(U)s

(ε,i) for each i ∈ {1, ...,k} and every ε ∈ E .

Theorem 3.6. Given an uncertain multi-objective optimization problem
P(U), the following statements hold.

1. (a) If x̂ ∈ X is strictly efficient to P(U)s
(ε,i) for some ε ∈ Rk and some i ∈

{1, ..,k}, then x̂ is set less strictly efficient solution to P(U).

2. (b) If x̂ ∈ X is weakly efficient to P(U)s
(ε,i) for some ε ∈ Rk and some i ∈

{1, ..,k} and maxξ∈U fi (x,ξ) exists for all x ∈ X , then x̂ is set less weakly
efficient solution to P(U).

Remark 3.8. The proof we used to prove Theorem 3.6 is similar to the one we
used to prove Theorem 3.2, but instead with the assumption that x̂ is both
lower set less ordered [strictly/·/weakly] efficient and upper set less ordered
[strictly/·/weakly] efficient and then combine those two.

CHAPTER 3. Definitions of efficiency based on set order relations 21

3.4 Strict set less order relation

3.4.1 Description

The other relation is the strict set less order relation, which was first
introduced in Ide et al. [3] as alternative set less order relation.

Definition 3.7. A set A ⊆ Rk dominates a set B ⊆ Rk with respect to the strict
set less order relation, denoted A ¹ss

[=,≥,>]
B , with respect to Rk

[=,≥,>]
if

A ¹ss
[=,≥,>] B ⇐⇒ A ¹l

[=,≥,>] B ∨ A ¹u
[=,≥,>] B.

Remark 3.9. The relation can equivalently be written as

A ¹ss
[=,≥,>] B ⇐⇒ (∀b ∈ B∃a ∈ A : a[5,≤,<]b)∨ (∀a ∈ A∃b ∈ B : a[5,≤,<]b)

3.4.2 Efficiency and interpretation

Definition 3.8. Given an uncertain multi-objective optimization problem
P(U), a solution x ∈ X to P(U) is strict set less ordered [strictly/ · /weakly]
efficient if there is no x̄ ∈ X \ {x} s.t. fU (x̄) ¹ss

[=,≥,>]
fU (x) with respect to

Rk
[=,≥,>]

, or equivalently written

Øx̄ ∈X \ {x} : fU (x̄)+Rk
[=,≥,>] ⊇ fU (x)∨ fU (x̄) ⊆ fU (x)−Rk

[=,≥,>].

For a solution set fU (x) to be efficient in this relation, there can not exist
another solution set fU (x̄) such that neither the best nor worst-case scenario
for x̄ is lower than the best or worst-case scenario for x. This is a strict
property; hence this solution set might be sparse or even empty for some
problems. To see this, we notice that to be efficient in this relation, the
solution needs to be both upper and lower set less ordered efficient. Hence,
this solution set can be seen as really good as it is the top in both the worst
case and the best case compared to the other feasible solutions. If we look at
Example 3.1, we actually have such a solution, x2. It is both upper and lower
set less ordered strictly efficient and hence also strict set less ordered strictly
efficient.

22 3.4. Strict set less order relation

3.4.3 Computing strict set less ordered efficient solutions

To obtain strict set less ordered efficient solutions, we use the efficient
solutions computed in 3.1.3 and 3.2.3 and find the intersection of the two
solution sets. The resulting set is the set of strict set less ordered efficient
solutions.

CHAPTER 3. Definitions of efficiency based on set order relations 23

3.5 Relationship between the solutions in the different
relations

In this chapter, we have introduced several set order relations. During the
different sections, we have been discussing the relationship between a few of
the relations. In this section, we want to illustrate how the different relations
are related to each other.

Figure 3.13: Venn diagram of the different set order relations introduced in the chapter.

We begin with the least strict relation, the set less order relation. The
solution set of this relation is the union of the lower and upper set less
ordered efficient solutions. In addition to this, as discussed in 3.3.1, it is
possible for a solution to be neither lower nor upper set ordered strictly
efficient but still be set less ordered strictly efficient solution. Next, we have
the solutions that are lower and upper set less ordered efficient. These are
both a subset but not necessarily equal to the set less ordered efficient
solutions. Lastly, we have the strict set less ordered efficient solutions. These
solutions are the intersection of the lower and upper set less ordered
efficient solutions. A strict set less ordered efficient solution needs to be
both a lower and upper set less ordered efficient solution.

Chapter 4
Non-convex feasible sets

We want to have methods that can find all [upper/lower/·/strict] set less
ordered solutions given any uncertain multi-objective optimization
problem. As we saw with Example 3.2, ε-constraint method is not able to
fulfill this. It is also well known that for problems where the feasible set is
non-convex, the weighted sum scalarization method can not always find all
efficient solutions. We will illustrate this with several examples, which we
are going to look at throughout this chapter. Therefore, we want to
introduce methods to solve problems when the feasible set is not convex.
These frameworks can also solve problems with disconnected feasible sets.
In this chapter, we are going to focus on introducing two methods. These
approaches have primarily been used in multi-objective optimization
problems, not uncertain. Hence, we are going to look at the deterministic
version while we get to know the methods. In further work, we want to see if
we can use them to obtain all efficient solutions for our different set order
relations for uncertain multi-objective optimization. So given our already
introduced problem formulation (P), we present the first example of the
chapter

Example 4.1. Let X = {x ∈ R2
= : (x1 −1)2 + (x2 −1)2 −1 ≤ 0,1− x2

1 − x2
2 ≤ 0} and

f1(x) = x1, f2(x) = x2. Then the efficient solutions is given by XE = {x ∈ X :
1−x2

1 −x2
2 = 0}.

CHAPTER 4. Non-convex feasible sets 25

Figure 4.1: Feasible set and Pareto set for Example 4.1 visualized. Feasible set is black while Pareto
set is red. The points that are obtainable using weighted sum approach, {(1,0), (0,1)}, is highlighted in
green.

For Example 4.1, the only points which are possible to obtain as efficient
solutions with the weighted sum scalarization approach, Pλ, are
{(1,0), (0,1)}. The rest of XE is unobtainable using this method.

We also want to discuss an example where the feasible set is disconnected.
We already know that the weighted sum method can not find the whole
Pareto set, the efficient solutions, for all problems. Still, it is an excellent
illustration of how powerful the method we will introduce in this chapter is.

Example 4.2. Let X = {x ∈R2
= : (x1−0.5)2+(x2−0.5)2−1 ≤ 0, x2

1+x2
2−2 ≥ 0, x2

1+
x2

2−2x1x2−0.05 ≥ 0} and f1(x) = x1, f2(x) = x2. Then the efficient solutions are
given by XE = {x ∈X : x2

1 +x2
2 −2 = 0}.

26

Figure 4.2: Illustration of both the feasible set and Pareto set for Example 4.2. Feasible set is shown
as black while Pareto set is in red. The two points that are obtainable using weighted sum approach,

{(3+p7
4 , 3−p7

4), (3−p7
4 , 3+p7

4)}, are set in green.

For Example 4.2, the only points which are possible to obtain as efficient

solutions with the weighted sum method Pλ are {(3+p7
4 , 3−p7

4), (3−p7
4 , 3+p7

4)}.
The rest of XE is unobtainable using this method.

To deal with both these examples and find the whole Pareto set for both of
them, we introduce two methods not previously discussed in this paper.

CHAPTER 4. Non-convex feasible sets 27

4.1 Weighted-Constraint Method

This method was first introduced by Burachik et al. [4].

4.1.1 Description

Given the different objective functions fi , i = 1, ...,k and some positive
weights w ∈W ++ := {w ∈Rk |wi > 0,

∑k
i=1 wi = 1}, we consider the problem

min
x∈X

wd fd (x)

s.t. wi fi (x) ≤ wd fd (x), i = 1, ...,k, i 6= d ,
P(w,d)

which we refer to as the d th-objective weighted constraint problem. Then for
a fixed d and w we define the feasible set as

X d
w := {x ∈X |wi fi (x) ≤ wd fd (x),∀i 6= d}

and the solution set of (P(w,d)) as

Sd
w := {x ∈X |x solves (P(w,d))}.

We also define

W (x) := {w ∈W ++|x ∈Sd
w ,∀d = 1, ...,k}.

It is possible that W (x) = ; for some x ∈ X . To now generate an
approximation of the Pareto front, we just solve P(w,d) for all d ∈ {1, ...,k} over
a grid of values w . Then for all w ′ ∈W ++, we have

k⋂
d=1

Sd
w ′ ⊆ WE(P).

Where we have denoted WE(P) as the weak efficient solutions of P . This
relationship thus shows a way to compute weak efficient solutions by solving
P(w,d) for all d = 1, ...,k for some w ′ ∈ W ++. If

⋂k
d=1Sd

w ′ 6= ; then we have
obtained at least one weak efficient solution.

28 4.1. Weighted-Constraint Method

Theorem 4.1. (Theorem 3.1. Burachik et al. [4]) x̂ ∈ X is a weak efficient
solution of P ⇐⇒ there exist some w ∈ W ++ such that x̂ solves P(w,d) for all
d ∈ {1, ...,k}.

Proof. =⇒ Assume x̂ ∈ X is a weak efficient solution to P . Without loss of
generality we say that fi (x) > 0, i = 1, ...,k∀x ∈X . Then we define

wi := 1/ fi (x̂)∑k
j=1 1/ f j (x̂)

.

For this choice, w ∈ W ++ and x̂ satisfies all constraints as equalities, or in
other words

wi fi (x̂) = wd fd (x̂), i = 1, ..,k, i 6= d . (1)

If x̂ is not a solution of P(w,d) for some d , then there exist x̄ ∈X such that

wd fd (x̄) < wd fd (x̂) (2)

and

wi fi (x̄) ≤ wd fd (x̄), i = 1, ...,k, i 6= d .

Hence, we can write

wi fi (x̄) ≤ wd fd (x̄) < wd fd (x̂), i = 1, ...,k, i 6= d .

Then, by (1), we can write

wi fi (x̄) ≤ wd fd (x̄) < wi fi (x̂), i = 1, ...,k, i 6= d , (3)

and since wi > 0, if we combine (2) with (3) we get

CHAPTER 4. Non-convex feasible sets 29

fi (x̄) < fi (x̂), i = 1, ...,k.

This contradicts the weak efficiency of x̂.

⇐= Assume that w ∈W ++ is such that x̄ solves P(w,d) for all d . Suppose that
x̄ ∈X is not a weak efficient point of P . Then there must exist x̂ ∈X \ x̄ such
that

fi (x̂) < fi (x̄), i = 1, ...,k. (4)

Then there must exist a d such that x̂ ∈X d
w . Therefore, from (4) we can write

wd fd (x̂) < wd fd (x̄) where wd > 0. This contradicts that x̄ solves P(w,d).

Remark 4.1. (Remark 3.1. Burachik et al. [4]) The =⇒ part of Theorem 4.1
holds for efficient solutions since every efficient solution is a weak efficient
solution. However, if a point solves P(w,d) for all d ∈ 1, ...,k, then this does not
necessarily imply that the solution is efficient unless all objective functions
are strictly convex.

4.1.2 Computation of efficient points and interpretation

We will now illustrate how the method finds efficient solutions in examples
3.1 and 3.2.

Figure 4.3: Example of obtaining an efficient
solution x̂ = (11p

202
, 9p

202
) for a given w = [9

20 , 11
20].

The green line shows the line w1x1 = w2x2.

Figure 4.4: Example of obtaining an efficient
solution x̂ = (1p

17
, 4p

17
) for a given w = [4

5 , 1
5].

The green line shows the line w1x1 = w2x2.

30 4.1. Weighted-Constraint Method

Figure 4.5: Example of obtaining an efficient
solution x̂ = (3p

5
, 1p

5
) for a given w = [1

4 , 3
4]. The

green line shows the line w1x1 = w2x2.

Figure 4.6: Example of obtaining an efficient

solution x̂ = (
√

8
13 , 3

2

√
8

13) for a given w = [3
5 , 2

5].
The green line shows the line w1x1 = w2x2.

If we look at P(w,d) and combine that formulation with the definition of an
efficient solution for the method,

⋂k
d=1Sd

w ′, we see that the only set the
efficient solution can lie on in these examples for a given w ′ is the line
defined by w1x1 = w2x2. This can be explained by the fact that for P(w ′,1), the
constraint is given by w2x2 − w1x1 ≤ 0, while for P(w ′,2), the constraint is
given by w1x1 − w2x2 ≤ 0. The points x ∈ X eligible for being an efficient
solution for that given w ′ are therefore the set of points which fulfill the
equation w1x1 = w2x2. Hence, by choosing a range of w ∈W ++, it is possible
to estimate the Pareto front. However, it is important to note that not all w ′

will produce an efficient solution. In Figure 4.3 and Figure 4.4, two different
w ’s have been chosen to find two of the solutions x̂ that make up the
efficient solutions in Example 3.1, while in Figure 4.5 and Figure 4.6, two
different w ’s have been chosen to find two of the solutions x̂ that make up
the efficient solutions in Example 3.2.

One way one can compute an estimation of the Pareto front in the two
examples using this method is first to find the x̂ which optimize the different
objective functions isolated. For Example 3.1 and 3.2 these points are
illustrated in 4.1 and 4.2 in green. By finding these points, we know that the
rest of the Pareto front is in-between the weights used to obtain these two
endpoints of the set. By then choosing how many points we want to
approximate the set, choose the increment in weights we want. If we set the
weight w f1 at the weight used in finding the point optimizing the first
objective function and w f2 at the weight used in finding the point

CHAPTER 4. Non-convex feasible sets 31

optimizing the second objective function, we can now approximate the

Pareto front by setting the weights as wn = w f1 +
n(w f2−w f1)

N ,n = 1, ..., N −1. By
doing this, we get an approximation of the Pareto front with N points, given
that all optimization problems have a solution. For Example 3.1 this is true,
while in Example 3.2 we can observe that some of the weight might be set
such that

⋂k
d=1Sd

w ′ = ;. Then the approximation will contain fewer points if
one does not modify the algorithm not to divide the interval between w f1

and w f2 equally to avoid this. The problem with trying to fix this issue is that
one is unsure which weights will produce an efficient solution.

On the basis of these uplifting results, we now want to see if we can use the
weighted constraint method in uncertain multi-objective optimization to
find the solutions we have been discussing in earlier chapters. First, we need
to prove that solving a problem with the weighted constraint method will
produce a solution we are looking for. Then we can compare it to another
method we have been looking at already, the weighted sum method, to see if
it can perform well in finding the solutions we are looking for.

Chapter 5
Weighted constraint method in uncertain
multi-objective optimization

5.1 Formulation

In this chapter we want to find out if the weighted constraint method we
introduced in the last chapter (Chapter 4), is able to find all
[upper/lower/·/strict] set ordered efficient solutions in uncertain
multi-objective optimization problems. So far, when we introduced the
method, we only looked at deterministic multi-objective optimization. To
find out if the method can be useful in uncertain multi-objective
optimization problems, we need to extend the framework from P(w,d). In
this chapter, we are going to focus on computing upper less ordered efficient
solutions. Hence, we have to look at the supremum of the feasible elements.
Therefore, we consider:

min
x∈X

sup
ξ∈U

wd fd (x,ξ)

s.t. sup
ξ∈U

wi fi (x,ξ) ≤ sup
ξ∈U

wd fd (x,ξ), i = 1, ...,k, i 6= d ,
P(U)u

(w,d)

Remark 5.1. We are only looking at one of the relations in this chapter, the
upper set less order relation. The arguments and results will be similar for
the other relations, so we will not focus on these three in this chapter.

CHAPTER 5. Weighted constraint method in uncertain multi-objective optimization 33

5.2 Closer look at the weighted constraint method

Before we can use the weighted constraint method on uncertain
multi-objective optimization problems, we need to find out if we obtain the
solutions we are looking for using the weighted constraint method. As
mentioned in the last subsection, we will focus on the upper set less order
efficient solutions as a proof of concept.

Theorem 5.1. Given an uncertain multi-objective optimization problem
P(U), the following statements hold.

1. If x̂ ∈X is the unique optimal solution to P(U)u
(w,d) for some w ∈ Rk

> and
all d ∈ {1, ..,k}, then x̂ is upper set less ordered strictly efficient solution to
P(U).

2. If x̂ ∈ X is an optimal solution to P(U)u
(w,d) for some w ∈ Rk

> and all d ∈
{1, ..,k} and

max
ξ∈U

fd (x,ξ)

exists for all x ∈ X , then x̂ is upper set less ordered weakly efficient
solution to P(U).

Proof. 1. Assume x̂ is not upper set less ordered strictly efficient for P(U).
Then there exists a x ′ ∈X such that

fU (x ′) ⊆ fU (x̂)−Rk
[=,≥,>] =⇒ ∀ξ ∈U∃η ∈U : f (x ′,ξ)5 f (x̂,η)

Further, there must exist a d ′ ∈ {1, ...,k} such that

=⇒ ∀ξ ∈U∃η ∈U : wd ′ fd ′(x ′,ξ)5 wd ′ fd ′(x̂,η)

=⇒ ∀ξ ∈U : wd ′ fd ′(x ′,ξ)5 sup
η∈U

wd ′ fd ′(x̂,η)

=⇒ sup
ξ∈U

wd ′ fd ′(x ′,ξ)5 sup
η∈U

wd ′ fd ′(x̂,η) (1)

Now define

34 5.2. Closer look at the weighted constraint method

sup
ξ∈U

wd ′ fd ′(x ′,ξ) := max
i=1,...,k

sup
ξ∈U

wi fi (x ′,ξ),

then

sup
ξ∈U

wi fi (x ′,ξ)5 sup
ξ∈U

wd ′ fd ′(x ′,ξ), i = 1, ...k, i 6= d ′.

Hence, x ′ ∈ X d ′
w . (1) implies

sup
ξ∈U

wd ′ fd ′(x ′,ξ)5 sup
η∈U

wd ′ fd ′(x̂,ξ),

in contradiction to x̂ being uniquely minimal for all d ∈ {1, ...,k}.

Remark 5.2. The weighted constraint method does not find all upper set less
order efficient solutions. In the following example, an upper set less ordered
efficient solution exist, which is not found by the weighted constraint
method.

Example 5.1. Consider the following problem P(U), pictured in Figure 5.1:
Let f : R2 ×U → R2 be given by f (x,ξ) = x, X := {z1, z2} where z1 := {(x1 −
1)2 + (x2 − 1)2 ≤ 1} and z2 := {x1 + x2 ≥ 2, 4

9 x1 − x2 − 1 ≥ 0, 9
4(x1 − 1)− x2 ≤ 0}.

Then neither fU (z1) ¹u
[=,≥,>]

fU (z2) nor fU (z2) ¹u
[=,≥,>]

fU (z1). Therefore, both
z1 and z2 are upper set less order strictly efficient solutions. However, since
supξ∈U f1(z2,ξ) = supξ∈U f1(z2,ξ) = 1.8, the only w where z2 is feasible for both
d = 1 and d = 2 is w = [0.5,0.5]. Furthermore, we observe that z1 is the unique
optimal solutions to both P(U)u

([0.5,0.5],1) and P(U)u
([0.5,0.5],2). Therefore, there

does not exist a w ∈ Rk
> where z2 is the unique optimal solution to P(U)u

(w,d).
Hence, the weighted constraint method is not able to find all upper set less
order efficient solutions for any given P(U).

CHAPTER 5. Weighted constraint method in uncertain multi-objective optimization 35

Figure 5.1: Uncertain multi-objective
optimization problem with feasible elements
X = {z1, z2}.

Figure 5.2: Supremum of both feasible
elements in example 5.1.

Given this counterexample, we know that there exist problems where the
weighted constraint method cannot obtain all upper set less order efficient
solutions. Nevertheless, given a set W ++ of vectors w ∈ Rk

>, we can now
compute upper set less ordered efficient solutions by solving P(U)u

(w,d) for
each d ∈ {1, ...,k} and every w ∈W ++.

36 5.3. Numerical investigation

5.3 Numerical investigation

Now we know that solutions of P(U)u
(w,d) will be upper set less ordered

efficient solutions (u.s.l.o.e) to our original problem, P(U). To see how well
the method performs in finding these solutions, we want to generate some
problem instances and compare the weighted constraint method with a
previously discussed method, the weighted sum method. By doing this, we
can get some insight into how well the method can perform in finding the
solutions we are looking for when working with uncertain multi-objective
optimization problems compared to other methods.

Here is the link to the GitHub repository containing my implementation.

5.3.1 General framework

For the numerical results, we want to investigate several aspects when
comparing the two methods. We will primarily look at how many upper set
less order efficient solutions each method finds and how much time each
method uses to obtain the solutions. Since both methods use weights, it is
also interesting to see how the methods perform given the precision of the
weights. To test all these qualities, we have used randomly generated
problem instances of uncertain multi-objective optimization problems.

Parameters

The parameters we can tune to get some results are the number of feasible
elements per problem instance, the number of objectives per problem
instance, and the number of weights we are using. To explain the number of
weights, we give an example. Given a number of weights N , the weights will
be on the form [N−n

N , n
N] for n = 0,1, ..., N . So if we have two objectives and

N = 2, then the set of weights that the methods are going to solve for will be
{[1,0], [0.5,0.5], [0,1]}. The last parameter is the number of problem
instances we are creating given the other parameters. For the data to be
more insightful, we want to have many problem instances generated for
each set of the other parameters. Hence, given the number of weights N = 2
and the number of objectives is 2, we could generate 1000 problem
instances to find out how the methods perform on average in all these
problem instances given the parameters. In this analysis, we will only
discuss problem instances with either two or three objective functions. Both
methods work for more objective functions, as previously discussed in the

https://github.com/axelronold/thesis

CHAPTER 5. Weighted constraint method in uncertain multi-objective optimization 37

paper, but analyzing two and three are sufficient. Another reason is because
of the time spent to solve the problem instances. The number of weights we
have to solve for given N is in the order O(N s−1), where s is the number of
objective functions. Hence, for a given precision, the number of problems
needed to solve grows rapidly when given more objective functions.

5.3.2 Two objectives

First, we are going to discuss the performance for when the objective
function f has two components. Throughout this section, the two
components are given as f1(x) = x1 and f2(x) = x2. Further, every feasible
element is a set comprised of a circle with a randomly generated center
(x1, x2), {x1, x2} ∈ [1,4] and radius r ∈ [0.25,0.75].

Figure 5.3: Uncertain multi-objective optimization problem with feasible elements X = {1,2,3,4,5}.

Figure 5.3 shows an example of one problem instance that we have generated
with 5 feasible elements. In this problem instance, elements 1,3 and 4 are
upper set less order efficient.

Precision of weights

Given this setup, we wanted to test how the methods perform given the
number of weights it is solving for. To check this, we generated problem
instances with weights between 22 and 215. It was simulated twice with a
different number of feasible elements, 30 and 70 respectively, while the
number of problem instances was 1000 both times.

38 5.3. Numerical investigation

Figure 5.4: Number of upper set less order efficient solutions found per problem instance. Weighted
Constraint method in blue, weighted sum method in green and the combined effort of the two in
black. The number of feasible elements differs for the two plots. On the left it is 30 feasible elements
while it is 70 on the right.

Figure 5.4 is very interesting. Both methods have a point where more
precision of weights is irrelevant for the number of feasible elements found
to be upper set less order efficient. However, this point is not the same for
both methods. This number is much lower for the weighted sum method, 24

for 30 feasible elements and 26 for 70 feasible elements. It seems like that
same point is 29 for the weighted constraint method in both plots. This gives
an edge to the weighted sum method because it is way faster to run the code
with less precision in the weights as the computation time grows in the
order of O(N). So if the method can perform the same with a small number
of weights as it does with a larger number of weights, then no sacrifice is
made to save time running the code.

Number of Feasible Elements

Given the knowledge attained in the last section, the next thing we wanted to
test is the number of feasible elements in each problem instance. Therefore,
we generated problem instances with feasible elements between 10 and 100.
The other parameters are set to N = 29 as both methods seem to perform at
their peak given this precision, and the number of instances was 1000.

CHAPTER 5. Weighted constraint method in uncertain multi-objective optimization 39

Figure 5.5: Number of upper set less order efficient solutions found per problem instance. Weighted
Constraint method in blue, weighted sum method in green, and the combined effort of the two in
black.

Figure 5.5 shows that when the number of feasible elements is low, the
weighted constraint method outperforms the weighted sum method.
However, when the number of feasible elements gets higher than 50, the
weighted sum method outperforms the weighted constraint method. This is
not what we expected, as the belief was that the weighted constraint method
would perform better than the weighted sum method even when the
number of feasible elements grows. The reasoning behind this comes from
deterministic multi-objective optimization. Because when we are working
with those problems, the weighted sum method can only guarantee to find
the Pareto front if the set is convex. If it is non-convex, it is possible that the
method is not able to obtain the set we are looking for. However, the
weighted constraint method does not have this issue. It can find the Pareto
front even though the set is non-convex. In addition, the weighted sum
method is a linear method, while the weighted constraint method is a
non-linear method. Hence, it is unclear why the weighted sum method
outperforms the weighted constraint method, but there are some
differences. One is that the weighted constraint method is subjected to
constraints, while the weighted sum method is not. The other reason is that
for the weighted constraint method to find a feasible element to be an upper
set less ordered efficient solution, it needs to beat all other feasible elements
for both d = 1 and d = 2 given a weight w . The more feasible elements in the
problem instance, the harder this becomes. On the other hand, for the
weighted sum method to find a feasible element to be u.s.l.o.e., it only needs
to beat out all other feasible elements once for a given weight w . It is worth
mentioning that the objectives include both objectives as a linear

40 5.3. Numerical investigation

combination in the weighted sum method. In contrast, the weighted
constraint method only has one of the objectives to optimize at a time.

5.3.3 Three objectives

Now we shift the analysis to instances where the objective function f has
three components. Throughout the section, the three components are given
as f1(x) = x1, f2(x) = x2 and f3(x) = x3. Further, every feasible element is a set
comprised of a sphere with a randomly generated center
(x1, x2, x3), {x1, x2, x3} ∈ [1,4] and radius r ∈ [0.25,0.75]. Because of
computation time, the numbers in this section will be smaller, so the results
will have more variance than with two objectives. The main idea of
including this section is to see if the results from two objectives translate
into three or see if the results from two objectives can be an outlier.

Precision of weights

As for two objectives, we want to start by looking at how the methods
perform given the number of weights it is solving for. To check this, we
generated problem instances with weights between 22 and 27. The number
of feasible elements is set to 10, while the number of instances is 10. As
previously mentioned, the computation time is much more expensive since
we are dealing with three objectives, and the parameters are adjusted
accordingly.

Figure 5.6: Number of upper set less order efficient solutions found per instance. Weighted
Constraint method in blue, weighted sum method in green, and the combined effort of the two in
black.

Figure 5.6 shows some instability in the graphs. However, the preliminary
results agree with the picture given to us in the simulation with two

CHAPTER 5. Weighted constraint method in uncertain multi-objective optimization 41

objectives. The weighted sum method performs almost the same with
N = 22 as it does when N = 28. On the other hand, the weighted constraint
method performs much better given higher precision. Hence, this confirms
our first impression from the last section, namely that the weighted sum
method can produce the same results given lower accuracy, which is
advantageous because then it is faster to run. This still applies for three
objectives, giving it an edge as the computation time grows in the order of
O(N 2).

Number of feasible elements

We will also look at how the methods perform given a different number of
feasible elements with three objectives. Therefore, problem instances with
the number of feasible elements between 10 and 100 were generated. In
addition to this, we have set the number of weights to N = 26, and the
number of problem instances is 10.

Figure 5.7: Number of upper set less order efficient solutions found per instance. Weighted
Constraint method in blue, weighted sum method in green, and the combined effort of the two in
black.

Figure 5.7 shows a total agreement with what we saw with two objectives.
For problem instances where the number of feasible elements is lower than
50, the weighted constraint method outperforms the weighted sum method.
These results indicate that the number of constraints is not the main reason
why the weighted constraint method performs worse than the weighted sum
method. This is because we see almost the same results as for two
objectives, even though the weighted constraint method includes more
constraints when we increase the number of objectives. For two objectives,
P(U)u

(w,d) includes one constraint for each d , while this number becomes
two when we have three objectives. The weighted sum method overtakes

42 5.3. Numerical investigation

the performance of the weighted constraint method when the number of
feasible elements gets higher than 50 in this simulation as well. Hence, this
lowers the probability that the number of constraints is the main problem
why the weighted constraint method does not perform at the level of the
weighted sum method. Furthermore, this also debunks the other mentioned
reason, namely that the explanation for the bad performance is the number
of times a feasible element needs to be best for the method to find it as
u.s.l.o.e.. If that were the case, it would make more sense for the weighted
constraint method to perform worse than the weighted sum method, even
for fewer feasible elements. The reason for this is that for a feasible element
to be found as u.s.l.o.e. with three objectives, it needs to be best not only for
d = 1 and d = 2 as with two objectives but also for d = 3.

5.3.4 Computation time

As discussed in the previous sections, it is not just performance that matters
in our comparison. It is also essential to consider computation time.

Figure 5.8: Time used per instance given in
seconds. Weighted Constraint method in blue
and weighted sum method in green.

Figure 5.9: Time used per instance given in
seconds. Weighted Constraint method in blue
and weighted sum method in green.

Both figures were from the simulations when the changing variable was the
number of weights, as indicated on the x-axis on both plots. Figure 5.8 and
Figure 5.9 show that the weighted constraint method is much faster than the
weighted sum method. In both cases, the weighted constraint method is ten
times faster per instance it calculates. This information is valuable when
assessing the methods against each other. We could attribute this to the
characteristics of the sets. Because the weighted constraint method only has
one of the objective functions to optimize on, it is well known which points
will produce the maximum and the minimum. Hence, it is possible to do a
check before each optimization. Either all points are infeasible given the

CHAPTER 5. Weighted constraint method in uncertain multi-objective optimization 43

weights, or the maximum is feasible. In both scenarios, we can skip the
computation time of optimizing. In the former scenario, the method can not
find a feasible element to be u.s.l.o.e.. For the latter, we quickly found out
that the point which produces the maximum is feasible. Hence we choose
that point. If none of these two scenarios are true, we have to do the
optimization. This knowledge is not something we might be able to use in
all problems we are solving, but it shows that the weighted constraint
method can have some perks in some problems. The fact that we have some
weights where all points are infeasible can be attributed to the constraints
that the weighted sum method does not have.

It is crucial to take into consideration the discussion from the last sections.
We want to compare the methods on how they perform at their best. Since
the weighted sum method does this at a lower precision than the weighted
constraint method, the gap in time consumed between the two methods
becomes smaller. Hence, the weighted constraint method is not that
superior as the plots show at first glance, as the time saved by the weighted
constraint method per calculation is negated by the ability of the weighted
sum method to perform well with fewer calculations.

5.3.5 Summary

The results in the numerical investigation are two-sided. On one side, the
weighted constraint method was much faster to run per calculation than the
weighted sum method, which is very positive. However, the edge was not
huge because the weighted sum method needs fewer calculations to
perform at its best. When looking at the performance of finding upper set
less order efficient solutions, the difference was not that clear. For a fewer
number of feasible elements, the weighted constraint method outperformed
the weighted sum method. This was the case with two and three objectives.
When the number of feasible elements increased, the weighted sum method
did better.

Chapter 6
Conclusion

This paper first introduced different set order relations for finding different
efficient solutions in uncertain multi-objective optimization problems. The
upper set less order relation can be connected with risk aversion as the
efficient solutions in this relation are not dominated in the worst-case
scenario. Hence, the solutions we get from this are a way of hedging against
the scenarios where the worst happens. Next, we introduced the lower set
less order relation, connected with being risk affine. The efficient solutions
in this relation are not dominated in the best-case scenario. Hence, the
solutions we get from this have the most significant upside, but on the other
hand, we are not safe from these solutions having the worst downsides as
well. If we are risk-neutral instead, then the set less order relation might be
good for us to use as this is the union of the risk-averse and risk affine
solutions. As we saw in examples, it is also possible to have solutions in this
relation that are neither upper nor lower set less ordered efficient. These
solutions are often the ones that are neither the very best but not the very
worst either. The last relation we have introduced is the strict set less order
relation. This is the intersection of the risk-averse and the risk affine
solutions. As one can tell, these are the best solutions as they have the best
upside and are guaranteed not to have the worst outcomes. Depending on
the problem at hand, these solutions can be rare, but they are considered
the best no matter the risk assessment if they are achievable.

Secondly, we dived into a method used for approximating the Pareto front in
multi-objective optimization problems, the weighted constraint method.
The method is non-linear, as one of the previously discussed methods,
ε-constraint is. Since the weighted constraint method can obtain the whole

CHAPTER 6. Conclusion 45

Pareto set for multi-objective optimization problems, we wanted to check if
it could also find the solutions we were looking for in uncertain
multi-objective optimization. The last part dealt with this by showing we
could use the method to find the solutions we are looking for. Then we
compared how the method performed against one of the methods we have
previously discussed, the weighted sum method. To do this, we generated
uncertain multi-objective optimization problems and made both methods
solve them to see how many solutions they could find each. As a proof of
concept, we only check for solutions to one of the introduced set orderings,
the upper set less order relation. The results showed that the weighted
constraint method was much quicker and did better when the problem did
not have too many feasible sets. However, when the problem contained
many feasible sets, the weighted sum method found more upper set less
order efficient solutions. Hence, the weighted constraint method is a viable
option, especially for problems with fewer feasible sets. It is also worth
emphasizing the importance of saving computational time as the weighted
constraint method does when comparing it against the weighted sum
method. If we want to use this method to solve problems in real life, we have
to remember that companies often have many problems it needs to solve
each day. Even though the problems in real life are much more chaotic than
those dealt with in this paper, it gives us a feel for how the method can
perform against other methods. Hence, the difference we found in
computation time can be the difference between useful and useless.

References

[1] D. Kuroiwa. On natural criteria in set-valued optimization. RIMS Kokyuroku, 1998.
URL: https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/61857.

[2] R. C. Young. The algebra of many-valued quantities. Mathematische Annalen, 1931.
URL: https://doi.org/10.1007/BF01457934.

[3] J. Ide, E. Köbis, D. Kuroiwa, A. Schöbel, and C. Tammer. The relationship between
multi-objective robustness concepts and set-valued optimization. Journal of Fixed
Point Theory and Applications, 2014. URL:
https://doi.org/10.1186/1687-1812-2014-83.

[4] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi. A New Scalarization Technique to
Approximate Pareto Fronts of Problems with Disconnected Feasible Sets. Journal of
Optimization Theory and Applications, 2013. URL:
https://doi.org/10.1007/s10957-013-0346-0.

[5] L. A. Soyster. Convex Programming with Set-Inclusive Constraints and Application to
Inexact Linear Programming. Operations Research, Vol. 2, pp. 1154–1157, 1973.

[6] A. H. Rønold. Project thesis, TMA4500. Department of Mathematical Sciences,
Norwegian University of Science and Technology, 2020.

[7] M. Ehrgott. Multicriteria Optimization. Springer, Berlin, 2. Edition, 2005.
[8] A. S. M. Ehrgott J. Ide. Minmax robustness for multi-objective optimization problems.

European Journal of Operational Research, 2014.
[9] J. Ide and E. Köbis. Concepts of efficiency for uncertain multi-objective optimization

problems based on set order relations. Mathematical Methods of Operations Research,
2014. URL: https://doi.org/10.1007/s00186-014-0471-z.

[10] E. Köbis. On robust optimization - a unified approach to robustness using a nonlinear
scalarizing functional and relations to set optimization. Universitäts- und
Landesbibliothek Sachsen-Anhalt, 2014. URL: http://dx.doi.org/10.25673/1122.

https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/61857
https://doi.org/10.1007/BF01457934
https://doi.org/10.1186/1687-1812-2014-83
https://doi.org/10.1007/s10957-013-0346-0
https://doi.org/10.1007/s00186-014-0471-z
http://dx.doi.org/10.25673/1122

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Axel Henæs Rønold

Methods in Uncertain Multi-Objective
Optimization

Master’s thesis in Industrial Mathematics
Supervisor: Elisabeth Anna Sophia Köbis
July 2021

M
as

te
r’s

 th
es

is

	Abstract
	Introduction
	Clarification of reuse of text

	Preliminaries
	Definitions of efficiency based on set order relations
	Upper set less order relation
	Description and problem formulation
	Efficiency and interpretation
	Computing upper set less ordered efficient solutions

	Lower set less order relation
	Description and problem formulation
	Efficiency and interpretation
	Computing lower set less ordered efficient solutions

	Set less order relation
	Description and problem formulation
	Efficiency and interpretation
	Computing set less ordered efficient solutions

	Strict set less order relation
	Description
	Efficiency and interpretation
	Computing strict set less ordered efficient solutions

	Relationship between the solutions in the different relations

	Non-convex feasible sets
	Weighted-Constraint Method
	Description
	Computation of efficient points and interpretation

	Weighted constraint method in uncertain multi-objective optimization
	Formulation
	Closer look at the weighted constraint method
	Numerical investigation
	General framework
	Two objectives
	Three objectives
	Computation time
	Summary

	Conclusion
	References

