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Abstract

We consider the problem of inverting the Radon transform of a shape, with only sparse
data from limited angles available. We propose a regularization functional, where the
penalty term is based on the difference in bending energy of an a priori guess and the
reconstructed shape. We approximate the ill-posed operator equation by a minimization
problem involving the proposed regularization functional. In order to deal with the non-
differentiability of the functional, we derive a smooth approximation, before implementing
a method to solve the problem numerically. The reconstructed solution is then used as
a priori guess in the next minimization of the functional. This is repeated for a fixed
number of iterations. Numerical experiments show that, unless we have a very good initial
guess of how the shape looks like, the best reconstructions is obtained with some degree
of regularization. This result is even more apparent when the available data contains
random noise.
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Sammendrag

Denne oppgaven undersøker problemet med å invertere Radon-transformasjonen av en
form, hvor vi kun har tilgjengelig data fra et f̊atall vinkler i et begrenset intervall. For
å løse dette foresl̊ar vi en regulariseringsfunksjonal, hvor straffeleddet av funksjonalen er
basert p̊a forskjellen i krumningsenergien mellom den rekonstruerte kurven og en a priori
gjetning. Den illestilte operatorlikningen approksimeres med et minimeringsproblem som
involverer den foresl̊atte regulariseringsfunksjonalen. For å h̊andtere ikke-deriverbarheten
til funksjonalen utleder vi en glatt approksimasjon, før vi implementerer en metode for å
løse problemet numerisk. Den rekonstruerte løsningen blir s̊a brukt som a priori gjett neste
gang vi minimerer funksjonalen, og dette repeteres s̊a for et bestemt antall iterasjoner.
De numeriske eksperimentene viser at, med mindre vi har en veldig god initialisering
av formen, de beste rekonstruksjonene oppn̊as med en viss grad av regularisering. Dette
resultatet er enda tydeligere n̊ar det er tilfeldig støy i den tilgjengelige dataen.
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Chapter 1

Introduction

An important aspect of object recognition today is segmenting an object in an image.
However, the entire image is not always available. In some cases we might only have
available data for a transformed version of the image. In this application we will focus
on the case where only the Radon transform of the image is available, for a given number
of directions, and try to reconstruct the object based on this. Such a situation could
occur when an object is inspected with a tomograph. In other words, we wish to solve
the inverse problem of

R[Ω] = f,

where R describes the Radon transform, i.e., the action of the tomograph on the object
Ω, and f denotes the available data.

This is an example of an ill-posed problem where the solution does not depend contin-
uously on the data f . In addition, to ensure that biological harm caused by the radiation
is kept to a minimum, we might wish to perform the scan for only a limited number of
directions. Then, the available data will be insufficient for a unique reconstruction of the
object, unless we have some other a priori knowledge about the object. If there is some
a priori knowledge available, we can stabilize the reconstruction process by using some
kind of regularization. A common approach is to incorporate the a priori knowledge in the
initial guess, and then proceed to use an iterative method for matching the available data,
but stop well before convergence [1]. Another approach, also described in [1], is to split the
operator equation into a functional consisting of a fit-to-data term and a regularization
term. This approach is commonly referred to as (generalized) Tikhonov regularization
[2]. The fit-to-data term ensures that the solution closely matches the given data, while
the regularization term incorporates some a priori knowledge of how the solution should
look like.

In this application we will consider the reconstruction of shapes, i.e., objects with a
homogeneous density described by binary density functions. This is done, with a Tikhonov
regularization approach, in [3], where the shapes considered are star-shaped, and the
regularization term is based on integral invariants. In [4] they do not address the exact
same problem, but propose a regularization term, based on the Euler-Bernoulli bending
energy, for measuring the difference of two shapes. In this application we will follow
a similar procedure, for reconstruction of shapes, as in [3], but use the regularization
term described in [4]. Furthermore, we generalize the method used in [3] by combining it
with an iterative regularization method. This approach is known as Tikhonov-Morozov
regularization. Besides, we do not restrict ourselves to star-shaped objects, but also try
to reconstruct non star-shaped objects.

1



In section 2 we describe the shape space, the Radon transform, the bending energy
and the optimization problem in a more precise mathematical manner. In section 3 and
4 we describe the discretization and implementation of the problem, while in section 5 we
present the numerical experiments that have been conducted.
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Chapter 2

Problem formulation

To formulate the problem precisely, consider a given set of functions fi ∈ L2(R,R) for
i ∈ {1, . . . , N}. We then wish to find a shape Ω such that these functions match the
Radon transform of Ω for a corresponding set of directions σi ∈ S1, i.e., we wish to find
a shape Ω such that,

Rσi [Ω] = fi for i ∈ {1, . . . , N}.

If the number N of directions is small, we cannot guarantee that the problem has a
unique solution, and so we have to use some sort of regularization. Regularization is also
necessary because of the ill-posedness of the problem, this becomes especially clear if the
angles that determine the directions are limited to a narrow interval, as can be seen from
the results shown in Figure 5.7. In this application we will use some a priori knowledge
of the object, given as a reference shape that covers some essential information about the
object, in order to obtain this regularization. This will give us an optimization problem
with an objective functional consisting of a fit-to-data term and a regularization term. In
the following we describe this more thoroughly.

2.1 Shape description

We consider a shape as a characteristic function of a simply connected and bounded set
Ω ∈ R2 with C2 boundary. To describe a shape we can describe the boundary curve that
defines the shape. To achieve this we follow the parameterization procedure described in
[4]. Consider the shape manifold of closed curves Γ in R2, and let Γ be a regular curve
of class H2 and length L. Then there exists a parameterization γ ∈ H2

per([0, 1],R2) of Γ
such that γ′(t) never vanishes, with H2

per([0, 1],R2) denoting the one-periodic functions in
H2([0, 1],R2). Furthermore, without loss of generality with regard to which shapes the
curve can describe, we can assume constant speed, i.e., |γ′(t)| = L. This curve can then
be described by a triplet m = (θ, L, p), where p is the starting point, θ ∈ H1([0, 1],R) is a
function describing the angle of the tangent vector to γ(t), and L is, as earlier mentioned,
the length of the curve. The expression for γ(t) then reads

γ(t) = γm(t) := p+ L

∫ t

0

(cos(θ(τ)), sin(θ(τ))) dτ,

and since γ ∈ H2
per([0, 1],R2), it satisfies the closing conditions

γ(0) = γ(1), γ′(0) = γ′(1).

3



2.2. MÖBIUS ENERGY

In terms of θ, these are equivalent to the equations∫ 1

0

cos(θ(t))dt =

∫ 1

0

sin(θ(t))dt = 0, θ(1)− θ(0) ∈ 2πZ,

where θ(1)−θ(0)
2π

is the turning number of the curve, i.e., the number of loops the curve
performs. By further requiring that the turning number of the curve is +1, we restrict
ourselves to curves that perform a single loop in a counter-clockwise manner, and obtain
the angle function space

Θ :=

{
θ ∈ H1([0, 1],R)

∣∣∣∣ ∫ 1

0

(
cos(θ(t)), sin(θ(t))

)
dt = 0, θ(1)− θ(0) = 2π

}
.

Thus our space of feasible triplets is defined by

M := Θ× R>0 × R2,

which implicitly defines the space of feasible curves,

S := {γm | m ∈M}.

Shapes described by a curve γm ∈ S can be found by considering the winding number
of points in R2. Points that are inside the curve will have winding number 1, while points
that are outside the curve will have winding number 0, such that the shape Ωγm is given
by

Ωγm :=

{
x ∈ R2 | 1

2π

∫ 1

0

dφxγm(t) = 1

}
,

where φxγm(t) is the signed angle of γm(t)− x.
Note that when reconstructing a domain, one requires a boundary curve that is free

of self-intersections. This is not guaranteed for our shape descriptor, as the space S
contains self-intersecting curves, which means that the set of feasible curves is actually
only a subset of S. We will address this issue in the next section. Another issue with this
parameterization is non-uniqueness: a shape Ω, with a corresponding boundary curve
γ, does not give rise to a unique triplet m. To see this, note that for any triplet m
we could shift the starting point p arbitrarily along the curve, while also shifting the
θ-function accordingly, and still get the same curve. In addition, a shift of the angle
function θ by any multiple of 2π would yield the same curve. This can lead to problems
if we want to compare shapes based on their parameterizations, as it would require us
to determine which parameterizations yield the same shape. In our application, we do
not want to compare shapes in this manner, but the regularization term depends on the
parameterization that is used for the a priori guess, and thus the parameterization of the
reconstructed shape will do so as well. However, the shape itself will not depend on the
parameterization, and we can therefore ignore this issue.

2.2 Möbius Energy

To avoid the problem of self-intersecting curves we introduce a popular and widely studied
energy that is self-avoiding, known as the Möbius energy [4]. For a curve γm ∈ S this is
defined by

E∗M [γm] =

∫
γm

∫
γm

(
1

|x− y|2
− 1

dγm(x, y)2

)
ds(x)ds(y),

4



2.3. BENDING ENERGY

where |x − y| denotes the Euclidean distance between x and y, dγm(x, y) denotes the
geodesic distance between x and y along γm, and integration is performed with respect to
the line elements. Self-avoiding in this sense means that finiteness of E∗M [γm] is equivalent
to γm not having any self-intersections. Observe that the integrand is constructed in such
a way that we have singularities precisely when x approaches y, while dγm(x, y) does not
approach zero. As we are considering curves of constant speed L, the Möbius energy can,
using the expression in [5, equation 0.3, p. 2], equivalently be computed as

E∗M [γm] = L2

∫ 1

0

∫ 1

0

(
1

|γm(t)− γm(t′)|2
− 1

dγm(γm(t), γm(t′))2

)
dtdt′.

By including this energy as a penalty term in our objective functional we ensure that the
minimizers of the regularized problem are indeed free of self-intersections [4].

The self-avoiding property is more difficult to preserve in numerical experiments, be-
cause when conducting numerical integration, only a finite number of points on the curve
can be included in the calculation. This means that even for a self-intersecting curve, two
points that are included in the calculation of the integral will not have the exact same
position. As a result, the self-avoiding property of the Möbius energy will not necessarily
hold when performing numerical integration. However, with enough discretization points,
the energy will become very large in the case of an intersection. Assuming that this is
the case we can make the energy of a self-intersecting curve even larger by redefining the
energy to

EM [γm] = L8

∫ 1

0

∫ 1

0

(
1

|γm(t)− γm(t′)|8
− 1

dγm(γm(t), γm(t′))8

)
dtdt′,

which gives us a steeper function, in the sense that the two terms in the integrand grows
more rapidly for low distances. This should in turn make the required number of dis-
cretization points, needed to ensure that the energy of a self-intersecting curve is suffi-
ciently large, decrease. What is meant by sufficiently large will be explained in section
4.4.

2.3 Bending energy

Before defining the regularization term of the objective functional, we define the concept
of the bending energy of a curve. For a curve Γ the Euler-Bernoulli bending energy [4] is
given by ∫

Γ

κ2ds,

where κ denotes the curvature of Γ and ds is the line element. The bending energy models
the energy required to deform a straight line of the same length as Γ into Γ. This measure
also has the benefit of being independent of the choice of parameterization of Γ. With
our parameterization the curvature is given by κ = θ′(t)

L
and the line element is given by

ds = Ldt. This results in a bending energy expression,

EL(m) =

∫ 1

0

θ′(t)2

L
dt,

5



2.4. THE RADON TRANSFORM

which is dependent on the length L. We choose to proceed with the scale-invariant bending
energy, E(m) : Θ→ [0,∞), instead, which is given by

E(m) =

∫ 1

0

θ′(t)2dt,

i.e., the H1- seminorm. This gives us a scale-invariant version of the energy needed to
deform a straight elastic rod of the same length, L, into the curve described by the triplet
m.

For the purpose of the application in this thesis, we wish to describe the bending energy
required to deform more general curves into a given curve γm. Consider another curve
described by the triplet m∗ ∈ M, then the scale-invariant energy required to transform
this curve into γm is given by

Eb(m,m∗) =

∫ 1

0

(θ′(t)− θ∗′(t))2dt.

This functional will be used as a regularization term in the objective functional, with m∗,
and in particular θ∗, representing a reasonable a priori guess of the true solution to the
inverse problem. In the absence of a priori knowledge of the shape, a natural selection
would be to let m∗ describe a circle. In this case we would have θ∗(t) = 2πt− c for some
constant c and

Eb(m,m∗) =

∫ 1

0

(θ′(t)− 2π)2dt.

In addition to being scale-invariant, this energy is invariant under translation and
rotation of the curve described by m∗. The first is obvious because altering the starting
point p∗ will not affect the energy, as it does not appear in the expression. To see that it
is invariant under rotation note that this would correspond to shifting the θ∗-function by
a constant, which again would disappear in differentiation.

2.4 The Radon transform

To describe the problem precisely we need to describe the Radon transform. First, recall
that in this application we make the simplification of assuming homogeneous objects and
backgrounds, even though this is not realistic for physical objects. Thus, we wish to
describe the Radon transform of a shape described by a boundary curve γm, for a triplet
m ∈ M. In addition, we let the background intensity be equal to zero and the function
value in the shape be equal to one. The Radon transform, for a given direction σi ∈ S1,
Rσi : S → L2(R,R), is then given by

Rσi [γm](α) :=

∫
R
χΩγm (ασ⊥i + τσi)dL1(τ), (2.1)

where L1 denotes the Lebesgue measure, χ the characteristic function and α the per-
pendicular displacement of the direction vector σi. Note that for σi = (σ1

i , σ
2
i ) we define

σ⊥i := (σ2
i ,−σ1

i ), i.e., the direction obtained by rotating σi 90 degrees clock-wise. An
illustration of the Radon transform, for a given direction σi, is shown in Figure 2.1. It is
now desireable to find an expression for the Radon transform that depends explicitly of
γm.

6



2.4. THE RADON TRANSFORM

Figure 2.1: A sketch of the Radon transform for a given direction σi. Here Ωγm is the
grey square inside the blue boundary curve γm. The stippled lines are given by τσi +ασ⊥i
for τ ∈ R and a given α, where the center line corresponds to α = 0. To find the Radon
transform for a given α we first find the corresponding line τσi + ασ⊥i , τ ∈ R. Then the
Radon transform is the length of the part of this line that lies within Ωγm (colored in red).

Theorem 2.1 Denote by H(x) the Heaviside function defined by H(x) = 0 for x < 0
and H(x) = 1 for x ≥ 0. The operator in (2.1) can, for γm ∈ S a non self-intersecting
curve, be written as

Rσi [γm](α) :=

∫ 1

0

H

(
〈γm(t), σ⊥i 〉 − α

)
〈γ′m(t), σi〉dt, (2.2)

where 〈·, ·〉 denotes the Euclidean inner product on R2.

Proof . Let α ∈ R and σi ∈ S1 be fixed. Then define the projection

fσi,γm(t) = 〈γm(t), σi〉

of γm onto σi. First, note that we can write∫ 1

0

H

(
〈γm(t), σ⊥i 〉 − α

)
〈γ′m(t), σi〉dt

=

∫ 1

0

sgn
(
〈γ′m(t), σi〉

)
H

(
〈γm(t), σ⊥i 〉 − α

)∣∣〈γ′m(t), σi〉
∣∣dt.

Next, from the one dimensional coarea formula [6, theorem 3.2.3(2), p. 243], we can further
write ∫ 1

0

sgn
(
〈γ′m(t), σi〉

)
H

(
〈γm(t), σ⊥i 〉 − α

)∣∣〈γ′m(t), σi〉
∣∣dt

=

∫
R

(∫
f−1(τ)∩[0,1]

H

(
〈γm(t), σ⊥i 〉 − α

)
sgn(〈γ′m(t), σi〉)dH0(t)

)
dτ.

7



2.4. THE RADON TRANSFORM

Observe that for every τ such that f−1(τ) ∩ [0, 1] is a finite set and 〈γ′m(t), σi〉 6= 0 for all
t ∈ f−1(τ) ∩ [0, 1], the integrand is well defined. It follows from the coarea formula that
this is the case for almost every τ . To see this more clearly recall that γm has a finite
length L, which can be expressed by the integral

L =

∫ 1

0

|γ′m(t)|dt =

∫
R

(∫
f−1∩[0,1]

1

|〈γ′m(t), σi〉|
dH0(t)

)
dt.

Here the last integral is finite if and only if we have for almost every τ that f−1(τ)∩ [0, 1]
is a finite set and 〈γ′m(t), σi〉 6= 0 for all t ∈ f−1(τ) ∩ [0, 1].

Now that we have established that the integrand is well defined almost everywhere,
observe that for all such τ the integrand will evaluate to either zero or one for any
counterclockwise curve. It will evaluate to one for any point inside the curve and to zero
for any point outside the curve. To see this, observe that for a given τ ∗ the integrand can
be viewed as the sum of the intersections with γm(t), when following a ray in direction σ⊥i
from the point τ ∗σi+ασ

⊥
i . Sum in this sense means that intersections with 〈γ′m(t), σi〉 < 0

will subtract one, while intersections with 〈γ′m(t), σi〉 > 0 will add one. A sketch to
illustrate this is shown in Figure 2.2. It follows that we obtain∫

R

(∫
f−1(τ)∩[0,1]

H

(
〈γm(t), σ⊥i 〉 − α

)
sgn(〈γ′m(t), σi〉)dH0(t)

)
dτ

=

∫
R
χΩγm (ασ⊥i + τσi)dL1(τ),

which completes the proof.

8



2.5. THE OPTIMIZATION PROBLEM

Figure 2.2: A sketch of some curve γm, with the line τσi + ασ⊥i , for τ ∈ R and a fixed
α. Included are three arbitrary points on this line, two interior points of γm in black,
and one exterior point in grey. For each point a stapled line is drawn in direction σ⊥i
to find the intersection points with γm. The points in red represent the intersections for
which 〈γ′m(t), σi〉 is positive, while the blue points represent the intersections where this
quantity is negative. Recall that γm(t) is oriented counterclockwise.

2.5 The optimization problem

We can now define the objective functional in a precise manner. Let m∗ ∈ M be a
triplet describing a reference solution γm∗ ∈ S. We then recall the expression for the scale
invariant bending energy, and define

P [γm, γm∗ ] := E(m,m∗).

Furthermore, for a given σi ∈ S1, let fi ∈ L2(R,R) be the corresponding measurement
data. We can then define the functional

Dσi [γm] := ||Rσi [γm]− fi||2L2 ,

i.e., the squared L2-norm of the difference between the measurement data and the Radon
transform of the shape described by γm, for the direction σi. Now, for a given regular-
ization parameter β > 0, a reference solution m∗ and a set of directions {σ1, . . . , σN}, we
define the objective functional F : S × S → R by

F [γm, γm∗ ] =
1

2

N∑
i=1

Dσi [γm] +
β

2
P [γm, γm∗ ] + EM [γm].

9



2.5. THE OPTIMIZATION PROBLEM

Minimizing this functional within the constraints of the curve, γm, gives us the optimiza-
tion problem

min
γm

F [γm, γm∗ ]

s.t. γm(0) = γm(1),

γ′m(1) = γ′m(0),

which can be expressed in the triplet m = (p, L, θ) as

min
m=(p,L,θ)

F [γm, γm∗ ]

s.t.

∫ 1

0

cos(θ(t))dt =

∫ 1

0

sin(θ(t))dt = 0,

θ(1)− θ(0) = 2π.

10



Chapter 3

Discretization

3.1 Adjustment of the problem formulation

Before we attempt to solve the optimization problem numerically, we must address certain
issues, and make choices regarding discretization and optimization methods. First of
all, the optimality condition of the optimization problem involves the derivative of the
functional Rσi [γm](α), which is not differentiable with respect to γm, as γm appears as an
argument to the Heaviside function in the integrand. For the numerical implementation
we will therefore replace the Heaviside function by a smooth approximation defined by

Hε(x) =
1

1 + e−2x/ε

for a small ε. Inserting this approximation in the expression for the Radon transform we
obtain,

Rε
σi

[γm](α) :=

∫ 1

0

Hε

(
〈γm(t), σ⊥i 〉 − α

)
〈γ′m(t), σi〉dt,

which gives us the smooth approximate functional,

Fε[γm, γm∗ ] =
1

2

N∑
i=1

||Rε
σi

[γm]− fi||2L2 +
β

2
P [γm, γm∗ ] + EM [γm].

Using this approximation we wish to determine an upper bound for the resulting error
in the functional. To do this we first find an upper bound for the error in the Radon
transform. As the curve has a known length L we can find such an upper bound by first
calculating the difference between the integral of the original and the mollified Heaviside
function, from zero to L. Multiplying this difference by L will then provide an upper
bound. The integral of the mollified Heaviside function from zero to L is given by∫ L

0

1

1 + e
−2x
ε

=
ε

2
(ln(e

2L
ε + 1)− ln(2)),

while the integral of the original Heaviside function is equal to L. Multiplying the differ-
ence of these integrals by L and assuming L/ε� 1 we get the upper bound

L
∣∣∣L− ε

2
(ln(e

2L
ε + 1)− ln(2))

∣∣∣ = Lε ln(
√

2) + o(ε)

Adding this error term to the Radon transform, when calculating the value of the objective
functional, will give an error of size O(Lε). The size of this error will later be compared

11



3.2. DISCRETIZATION OF THE OPTIMIZATION VARIABLES

to the errors resulting from numerical integration, in order to find a reasonable value for
ε.

To solve the problem of minimizing Fε numerically we must choose a numerical method
for solving constrained optimization problems. The approach chosen in this application
is to replace the two non-linear constraints by quadratic penalty terms, while the last
constraint is built in explicitly. Thus, for a given λ > 0, and by denoting

c1(θ) =

∫ 1

0

cos(θ(t))dt,

c2(θ) =

∫ 1

0

sin(θ(t))dt,

our new problem reads

min
m=(p,L,θ)

Fε[γm, γm∗ ] +
λ

2

2∑
i=1

ci(θ)
2

s.t. θ(1)− θ(0) = 2π.

3.2 Discretization of the optimization variables

An issue when solving the problem numerically is that the optimization problem is infinite
dimensional, as the θ variable is infinite dimensional. To avoid this issue we choose a
discretization of the interval [0, 1] into n + 1 equally spaced points, tj = j/n for j ∈
{0, . . . , n}. This gives us the set of variables

Θn+1 = {θ0, . . . , θn} = {θ(t0), . . . , θ(tn)},

replacing the infinite dimensional θ variable. Furthermore, we observe that the last con-
straint of the problem, θ(1) − θ(0) = 2π, can be satisfied automatically by viewing only
the variables {θ0, . . . , θn−1} as decision variables and then setting θn = θ0 + 2π. This
redefines our set of variables to

Θn = {θ0, . . . , θn−1} = {θ(t0), . . . , θ(tn−1)}.

3.3 Discretization of the objective functional

Now that we have the finite dimensional set of variables mn = (p, L,Θn) we must choose
an integration method in order to approximate the functional of the optimization problem.
For this purpose we will use the trapezoidal rule, which means that we are viewing the
functions as piecewise linear. Thus, we approximate the curve γm, in the points tj, j ∈
{0, . . . , n}, by the approximate γmn given by

γmn(tj) = p+ L

j−1∑
i=0

(
cos(θi) + cos(θi+1)

2n
,
sin(θi) + sin(θi+1)

2n

)
,

for j ∈ {1, . . . , n}, and γmn(tj) = p, for j = 0. Next, by applying the fundamental theorem
of calculus, we find that

γ′m(t) = L(cos(θ(t)), sin(θ(t))),

12



3.3. DISCRETIZATION OF THE OBJECTIVE FUNCTIONAL

and so a natural choice is to use the approximation

γ′mn(tj) = L(cos(θj), sin(θj)),

for j ∈ {0, . . . , n}. Here it should be noted that for γmn the derivative is not uniquely
defined in these points, which is why we have to choose an approximation.

The absolute error of the trapezoidal rule, when integrating a function f from 0 to 1,
is given by [7]

|f ′′(ξ)|
12n2

, (3.1)

for some ξ ∈ [0, 1]. We obtain an upper bound for this error by choosing the maximum
value of |f ′′(ξ)| on the interval. In the approximation of γm, the functions to integrate are
sin(θ(ξ)) and cos(θ(ξ)), and so the maximum value of the second derivative is dependent
on the first and second derivative of θ. Assuming that the curves involved in our problem
are somewhat regular, we do not expect these values to be too large. This gives us an
expected error in γmn of size O(L/n2).

3.3.1 Discretization of the fit-to-data term

Now we can define the discretized Radon transform for a given n, α and direction σk by

Rε
σk

[γmn ](α) =
n−1∑
i=0

Ii + Ii+1

2n
,

where
Ii = Hε

(
〈γmn(ti), σ

⊥
k 〉 − α

)
〈γ′mn(ti), σk〉.

To find an upper bound for the error in the Radon transform, as a result of using the
trapezoidal rule, we again use the formula in (3.1). However, for this approximation the
second derivative could become very large for some values. The approximated Heaviside
function has a maximum value of the second derivative equal to

2

3
√

3ε2
.

Differentiating the Heaviside function with respect to t two times also gives us the term
〈γ′mn(ti), σ

⊥
k 〉2 from the chain rule, which has a maximum value of L2. The other factor

of the integrand is bounded by L, which gives us a maximum value of

2L3

3
√

3ε2

for the dominating term of the second derivative. This term alone gives us a terrible upper
bound for the integration error. However, this is an absolute worst case, and we should
expect that for most intervals [ti, ti+1] the maximum of the first and second derivative
of the Heaviside function will be approximately zero. In this case, the upper bound of
the integration error is expected to be of the forementioned size O(L/n2). Also, as the
integrand is bounded in the interval [0, L], the maximum possible integration error for a
single interval is bounded by L/2n. Since we assume few or no intervals where this is the
case, the total integration error is expected to be of this size at most.

13



3.3. DISCRETIZATION OF THE OBJECTIVE FUNCTIONAL

To compute the L2-norm of the difference between the computed Radon transform
and the available data, we must discretize the α-domain. Recall that α represents the
perpendicular displacement of the direction vector σk. It is therefore important that the
domain gives a Radon transform that covers the entire object. However, as we operate
with images, this domain will be bounded by the size of the image and can be discretized
into m evenly distributed points {αk1, . . . , αkm}. By further denoting

Ek
i = Rε

σk
[γmn ](αki )− fk(αki ),

we acquire the approximation of the L2-norm

m−1∑
i=1

(Ek
i )2 + (Ek

i+1)2

2(m− 1)
,

where the α-domain has been normalized by the division of m−1. For a set of directions,
σk, k ∈ {1, . . . , N} with corresponding sets of α’s {αk1, . . . , αkm} we further obtain an
approximation of the first term in our objective functional,

1

2

d∑
k=1

Dσk [γmn ] =
1

2

N∑
k=1

m−1∑
i=0

(Ek
i )2 + (Ek

i+1)2

2(m− 1)
.

To find an estimate of the error when calculating Dσk , by integrating over α, we
could again use the formula in equation (3.1). This would yield an error of similar size
as for the approximation of the Radon transform, as the second derivative involves the
second derivative of the mollified Heaviside function. However, as we look at a connected
domain, and the boundary curve is of length L, the maximum possible integration error
is (L/2)2/(2m − 2). One situation that could give an integration error close to this, is,
for instance, if the data fk is the zero function, while the reconstructed shape converges
towards a very thin line of length L/2, parallel to the direction σk. This situation is highly
unlikely, but any line segment on the reconstructed shape that is almost parallel to σk
could potentially give integration errors of this size.

3.3.2 Discretization of the regularization term

To find an approximation of the regularization term in the objective functional, we must
decide on a finite difference scheme for approximating the derivative. For this purpose we
will use a forward difference scheme, which for our discretization is defined by

δθi =
1
1
n

(θi+1 − θi) = n(θi+1 − θi), for i ∈ {0, . . . , n− 1},

with θn = θ0 + 2π. Now let θ∗ be the angle function of m∗, i.e., our reference solution.
Then, by discretizing θ∗ in the same manner as θ, we can approximate the second term
of the objective functional, P [γm, γm∗ ], by the discretized version

P [γmn , γm∗n ] =
n−1∑
i=0

n

2

(
(δθi − δθ∗i )2 + (δθi+1 − δθ∗i+1)2

)
.

The error in the forward difference scheme is of size O(1/n) [8], which leads to a total
error in the estimation of P of sizeO(1/n2). To find an estimate of the integration error we
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3.3. DISCRETIZATION OF THE OBJECTIVE FUNCTIONAL

could use the formula in equation (3.1) again, but we do not have an estimate of the second
derivative. However, as P is a penalty term punishing irregularity in the reconstructed
solution, we would not expect the second derivatives of θ to be too large, assuming that
we have a somewhat regular reference solution. Thus, we expect an integration error of
size O(1/n2) for this term.

3.3.3 Discretization of the Möbius energy penalty term

To find an approximation of the Möbius energy penalty term we again apply the trape-
zoidal rule. First we define the integrand, for given i, j ∈ {0, . . . , n}, to be

Ji,j =


1

|γmn(ti)− γmn(tj)|8
− 1

dγmn (γmn(ti), γmn(tj))8
if i 6= j

0 else,

where we have included a conditional statement to avoid numerical difficulties with zero
division. As we have a double integral we first define the approximation of the innermost
integral, for a fixed i, by

Ki =
n−1∑
j=0

Ji,j + Ji,j+1

2n
.

Then we can define the approximation to the Möbius energy penalty term as

EM [γmn ] = L2

n−1∑
i=0

Ki +Ki+1

2n
.

In the calculation of this term we are not too worried about the integration error, as it
is mainly the self-avoiding property of this energy that is of importance. However, when
we discretize the Möbius energy it is necessary that the grid is adequately fine, in order
for the energy to preserve the self-avoiding property. What is meant by adequately fine
will be described in more detail in section 4.4. To ensure this, without having to use a
much finer grid for the entire discretization, we add k interpolation points between every
pair of consecutive points (γmn(ti), γmn(ti+1)) on γmn , using linear interpolation, before
calculating the Möbius energy.

3.3.4 Discretization of the quadratic penalty term

Lastly, we can approximate the penalty terms of our functional by the discretized versions

c1(Θn) =
n−1∑
i=0

cos(θi)

n

c2(Θn) =
n−1∑
i=0

sin(θi)

n
,

where we have used the trapezoidal rule again and exploited that sin(θ0) = sin(θn) and
cos(θ0) = cos(θn), as θn = θ0 + 2π. In this approximation the second derivatives is again
bounded by terms consisting of the first and second derivatives of θ, and the error is thus,
based on the same reasoning as before, expected to be of size O(1/n2).
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3.3. DISCRETIZATION OF THE OBJECTIVE FUNCTIONAL

In total, for a given n and by defining

Qε[mn,m
∗
n, λ] := Fε[γmn , γm∗n ] +

λ

2

2∑
i=1

ci(Θn)2,

we arrive at the discretized problem

min
mn=(p,L,Θn)

Qε[mn,m
∗
n, λ]. (3.2)
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Chapter 4

Implementation details

4.1 The BFGS method with backtracking line search

In order to solve (3.2) numerically, for a fixed λ, a line search method commonly known as
the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method [9] has been implemented. This
method is, for a decision variable x and an initial guess x0, based on updating x iteratively
by the formula,

xk+1 = xk + ηkqk,

where ηk denotes the step length and qk the direction. For a given direction qk, the step
length ηk is chosen so that for a given set of constants c1, c2 ∈ (0, 1), with c1 < c2, the
strong Wolfe conditions [9]

f(xk + ηkqk) ≤ f(xk) + c1ηk∇f(xk)
T qk,

|∇f(xk + ηkqk)
T qk| ≥ c2|∇f(xk)

T qk|,

are satisfied. The choice for ηk is obtained using the same algorithm as described in [9,
Algorithm 3.5, p. 60].

The direction qk is determined by considering a quadratic model of the objective
function f ,

mk(q) = fk +∇fTk q + qTBkq, (4.1)

where Bk is a symmetric positive definite matrix that will be updated in each iteration.
The search direction, and minimizer of (4.1), is then given by

qk = B−1
k ∇fk.

The BFGS method is a quasi-Newton method and the matrix Bk is an approximation
to the Hessian at xk. Since it is the inverse of Bk that is needed to compute the search
direction qk, we focus on finding an approximation of this and denote Hk = B−1

k . Instead
of computing the inverse Hessian at every iteration, we start with an initial guess, H0,
and then iteratively update Hk by,

Hk+1 = (I − ρkskyTk )Hk(I − ρkyksTk ) + ρksks
T
k

where

sk = xk+1 − xk, yk = ∇fk+1 −∇fk and ρk =
1

yTk sk
.
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4.2. NUMERICAL DERIVATIVES

For a step length ηk, satisfying the strong Wolfe conditions, Hk will always be a positive
definite matrix, such that qk is a descent direction [9].

We observe that each iteration of this method avoids the calculation of second deriva-
tives. Thus, for our application, the operation with highest cost is the numerical gradient
evaluation, with a computational complexity of O(n3). The rate of convergence is super
linear, and even though Newton’s method converges more rapidly (quadratically), its cost
per iteration is much higher due to the calculation of second derivatives, which would have
a computational complexity of O(n4) if done numerically. It is also worth mentioning that
the superlinear/quadratic convergence only holds for sufficiently regular functionals to be
minimized. Technically, this is the case here, but, as earlier mentioned, we have very large
second and third derivatives of the functional, as a result of the approximated Heaviside
function in the integrand for the Radon transform. The Möbius energy could potentially
also have large second and third derivatives. Thus, the theoretical advantage of Newton’s
method might not be visible in practice.

To determine when the BFGS method should terminate, we need to choose a conver-
gence criterion. One way to choose this criterion is by considering the algorithm’s progress
in terms of reducing the objective function. We wish to terminate the method when it
seems to be making almost no improvement in minimizing the objective function. Now,
for a given tolerance T > 0, we consider an iteration in which∣∣∣∣f(xk+1)− f(xk)

f(xk)

∣∣∣∣ < T, (4.2)

to be an iteration with almost no improvement. If multiple consecutive iterations yield
almost no improvement, we consider the method’s progress to be insufficient. Thus, for a
fixed constant D, we terminate the method if (4.2) is fulfilled for D consecutive iterations.

4.2 Numerical derivatives

To use the method described above we need to find an expression for the gradient of the
objective function Qε[mn,m

∗
n, λ], with respect to mn. Now consider mn to be an n + 3

dimensional vector,
mn = {L, p1, p2, θ0, ..., θn−1},

where p1 denotes the x-coordinate of p and p2 denotes the y-coordinate. Then, using a
forward difference scheme, the partial derivative of Qε[mn,m

∗
n, λ], with respect to mi

n, is
given by

∂Qε[mn,m
∗
n, λ]

∂mi
n

= lim
δ→0

Qε[mn + δei,m
∗
n, λ]−Qε[mn,m

∗
n, λ]

δ
,

where ei denotes the vector with the i’th element equal to one and the rest equal to zero.
This partial derivative can be approximated numerically by choosing a small δ > 0 and
then calculating

∂Qε[mn,m
∗
n, λ]

∂mi
n

≈ Qε[mn + δei,m
∗
n, λ]−Qε[mn,m

∗
n, λ]

δ
.

From this formula we have an approximation of all the partial derivatives, and this can
in turn be used to obtain an approximation of the gradient, with respect to mn.

An important consideration here is the size of the step δ. Choosing a too small δ,
when using floating-point arithmetic for calculations, will yield a large rounding error. In
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4.3. THE QUADRATIC PENALTY METHOD

fact, the forward difference scheme is ill-conditioned [10] and a too small step will give
a value of zero due to cancellation [11]. For larger values of δ the slope of the secant
line will be more accurately approximated, but the estimate of the slope of the tangent,
using the slope of the secant, will be worse. An idea presented in [12] is to use a δ that
is proportional to the variable that we differentiate with respect to. For our problem this
would amount to choosing δ = kmi

n, where the proposed value of k is the square root of
the machine epsilon for double precision (2.2 · 10−16) [12]. This value of δ is small, but
does not produce a large rounding error [12]. However, for our problem, the only variable
that is related to the size of the functional value is the length L. The size of the angles
in Θn or the starting point p is not related to the size of the functional. Therefore we
choose to scale δ by L, for all decision variables, which gives us the value used in this
implementation, δ = 1.5L · 10−8.

4.3 The quadratic penalty method

The method described in section 4.1 considers λ to be a fixed parameter. It follows that
we have to decide which values λ should take. As the penalty terms in our objective
function represent hard constraints, we must choose a sufficiently large λ to ensure that
the constraints are not violated. However, if the value of λ is too big, the penalty terms will
completely dominate the problem, and the minimization of the actual objective function
will be very slow. To solve this we use the procedure presented in [9, Framework 17.1,
p. 501] of first choosing an initial λ, and then, after finding the minimizer m∗n of Qε[mn, λ],
increase λ until the constraints are adequately honored by m∗n. In this application, the
updating of λ is done by first choosing an initial λ0 and then update λ iteratively by

λi+1 = 10λi.

To determine when to stop the updates and terminate the method, we need a measure of
how much the current solution violates the constraints. A natural way to measure this,
for the quadratic penalty method, is to consider the sum of the squared values of the
violation of the constraints,

c1(Θn)2 + c2(Θn)2.

For a given threshold C, we can then state a condition that needs to be satisfied in order
for the solution to be accepted, namely

c1(Θn)2 + c2(Θn)2 < C. (4.3)

When this condition is satisfied we stop the updating of λ and return the solution.

4.4 Möbius energy

As mentioned in section 3.3.3, we will be using a finer grid when calculating the Möbius
energy in each iteration. The purpose of this is to make sure that we never accept a step
leading to a self-intersecting curve. To achieve this we make sure that the Möbius energy
of any self-intersecting curve is larger than the current objective value. This way, the
Wolfe conditions will never be satisfied for a self-intersecting curve.

To make sure that the value of the Möbius energy is larger than the objective value,
we must determine a lower bound for the Möbius energy in the case of an intersection.
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4.4. MÖBIUS ENERGY

Such a lower bound could be the contribution to the Möbius energy for a single pair of
points on γmn . Now, assume that we have a self-intersection and let γmn(ti), γmn(ti+1),
γmn(tj), γmn(tj+1) be the points closest to the intersection as displayed in Figure 4.1. The
pairs of points among these four that will give a contribution to the Möbius energy are

B = {(γmn(tk), γmn(tl)) | k ∈ {i, i+ 1}, l ∈ {j, j + 1}}.

In order to find a lower bound, we now consider the pair in B that gives the largest
contribution to the Möbius energy. The contribution from this pair will be the value of
the integrand

Ji,j =


1

|γmn(ti)− γmn(tj)|8
− 1

dγmn (γmn(ti), γmn(tj))8
if i 6= j

0 else,

multiplied by L8, and divided by n2 as we apply the trapezoidal rule twice. Here it should
be noted that in the case of an intersection we expect the first term of the integrand
to be much larger than the second term, for at least one of the pairs in B. For the
discretized curve it is theoretically possible to have a small geodesic distance between all
pairs in B, but with a large number of discretization points we should in all practical
applications expect the geodesic distance between at least one pair to be more than L/2.
In comparison, a bound for the Euclidean distance between a pair of consecutive points
is

|γmn(ti)− γmn(ti+1)| ≤ L

n
,

and so the the maximal Euclidean distance between the elements of a pair in B is
√

2L/n.
We therefore expect the ratio between the first and second term of the integrand to be of
size (n/2

√
2)8 for at least one pair of points. Hence, for a fairly large n it should be safe

to neglect the contribution from the second term, when finding a lower bound.
Now, focusing only on the first term of the integrand, we wish to determine the

minimum value of this term for a pair of points in B. This is obtained when the elements
of a pair in B have the maximum possible distance between each other, which we recall
is
√

2L/n. The first term of the integrand will then evaluate to(
n√
2L

)8

=
n8

16L8
,

which gives us the contribution to the Möbius energy,

n8

16L8
· L

8

n2
=
n6

16
.

This is our lower bound for the Möbius energy in the case of an intersection. In order to
make sure that this value is larger than the objective value, we have to make sure that n
is sufficiently large. By adding k interpolation points between every pair of consecutive
points (γ(ti), γ(ti+1)), as described in section 3.3.3 and displayed in Figure 4.2, we increase
n by a factor of k + 1. This again increases the lower bound by a factor of (k + 1)6. In
order to ensure that this lower bound is larger than the current objective value we have
to ensure that for an objective value K we have

(k + 1)6n6

16
> K,

20



4.4. MÖBIUS ENERGY

Figure 4.1: A self-intersection of the discretized curve γmn , where the crossing line
segments are perpendicular.

or equivalently that

k >
6
√

16K

n
− 1.

Thus, in our implementation k will be set to the smallest integer value that satisfy this
inequality. As one can observe, the exponent ensures that even for very large objective
values K, we do not expect k to be infeasibly large when considering computational
complexity. This is why we wanted the steeper version of the Möbius energy, as described
in section 2.2.

A possible implementation issue when using this approach is rounding errors when
the distance between consecutive points gets very low. Let Wi denote the set of the k
interpolation points between (γmn(ti), γmn(ti+1)) for a given i. These points could be very
close to each other if k is large. However, all of these points lie on a straight line, so the
integrand should evaluate to zero. In order to avoid rounding errors we will therefore set
the integrand to zero explicitly for all pair of points contained in the same set Wi.
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Figure 4.2: A self-intersection of the discretized curve γmn with k = 2 extra interpolation
points between each pair of consecutive points. The points in black are the original points
on γmn , while the points in grey are the extra interpolation points that will be added before
calculating the Möbius energy.

4.5 Iterative Tikhonov-Morozov method

When the algorithm in 4.1 terminates for a λ such that the reconstructed solution satisfies
the constraint condition in (4.3), the method terminates and returns the reconstructed
solution. This solution is expected to be a better guess of the true solution than the
initial guess. It therefore makes sense to assume that if we update the initial guess to
the current solution, and run the method again, we would obtain better results. This
approach is known as the iterative Tikhonov–Morozov method [13]. Assume we repeat
the updating procedure for a fixed number of r times, for a fixed regularization parameter
β, this will correspond to using a regularization parameter β/r in one iteration. The
idea behind this method is that we can use a stronger regularization in each iteration,
and in this sense solve an easier problem, as the quadratic term is more dominant in the
objective functional.

A natural question is why we do not run this method all the way to convergence. A
simplified explanation is that, ignoring the constraints of our problem and the Möbius
penalty term, we have a problem of the form

min
u

1

2
||F (u)− v||2 +

1

2τ
||u− uk||2

in each step. The solution uk+1 to this problem will satisfy

F ′(uk+1)∗(F (uk+1)− v) +
1

τ
(uk+1 − uk) = 0,
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or equivalently
1

τ
(uk+1)− uk) = −F ′(uk+1)∗(F (uk+1)− v).

This can be viewed as using the implicit Euler method for approximating a flow of the
form

∂tu = −F ′(u)∗(F (u)− v).

If we assume that for sufficiently small steps the explicit and implicit Euler method behave
similarly, we can use the explicit Euler method to get an idea of how the method will
behave. A step with the Explicit Euler method is given from the optimality condition

F ′(uk)
∗(F (uk)− v) +

1

τ
(uk+1 − uk) = 0,

which results in the step

uk+1 = uk − τF ′(uk)∗(F (uk)− v).

We recognize this as the gradient descent method for the residual

1

2
||F (u)− v||2.

The gradient descent method tries to find a critical point (in general a minimum) of
the least squares problem, ideally a solution of the equation F (u) = v. In the presence
of noise, however, this equation will in general have no solution. As we have presence
of measurement and integration errors, trying to run the method until convergence will
make it diverge. We expect that our method behaves similarly, and this is why we do not
want to run the iterations all the way to convergence.

4.6 Specific algorithm

Altogether we obtain the method described by the pseudo-code in Algorithm 1.

Algorithm 1: The full method

Set m0
n = (p0, L0,Θ0

n) as initial guess;
Set m∗n = m0

n as reference solution;
λ = λ0;
repeat r times

Compute mmin
n as the minimizer of Q[·,m∗n, λ], with the BFGS method;

while mmin
n violates the constraints do

λ = 10λ;
Set mmin

n as initial guess;
Compute mmin

n as the minimizer of Q[·,m∗n, λ], with the BFGS method;
end
Set m0

n = mmin
n as initial guess;

Set m∗n = mmin
n as reference solution;

λ = λ0;
end
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4.6.1 Computational complexity

Having defined the discretization and algorithm we can determine the computational
complexity of the method. To do this we first consider the complexity of a single iteration
of the BFGS-method. In each step of the BFGS-method the most expensive operation is
calculating the numerical gradient, which is done at least one time, and potentially many
times, when searching for a step that satisfies the Wolfe conditions. To calculate the
numerical gradient we must calculate the objective functional O(n) times. Finding the
first term of the objective functional involves calculating γmn from mn (O(n)), and from
γmn calculating the Radon transform for all α′s (O(mn)). Computing the Bernoulli energy
term is of complexity O(n), while calculating the Möbius energy term is of complexity
O(n2(k+1)2). Thus, calculating the objective functional have a computational complexity
of O(n + mn + n + n2(k + 1)2) = O(mn + n2(k + 1)2), which gives us a complexity of
O(mn2 + n3(k + 1)2) for the calculation of the numerical gradient. The computational
complexity of one iteration of the BFGS method is expected to be of this size, but the
number of calculations of the numerical gradient, that are needed to find a step that
satisfies the Wolfe conditions, is dependent on the specific problem and iterate. The total
number of performed iterations of the BFGS method is naturally also dependent of the
specific problem.

4.6.2 Programming language

The algorithm has been implemented in Python 3.8, a link to the Github repository is
provided in the beginning of Chapter 5. To speed up the computations, the Numba
package was used. This package translates Python functions to optimized machine code
at runtime using the industry-standard LLVM compiler library [14]. Numba-compiled
numerical algorithms in Python can approach the speeds of C or FORTRAN [14].
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Chapter 5

Numerical experiments

In the numerical experiments we test how the implemented method performs for differ-
ent data sets and reference solutions. We test how the method performs for a range of
values for the regularization parameter, and how different sets of angles affect the re-
constructed solution. In addition, we test how the method performs when the data is
perturbed by random noise. The code is available in the Github repository https://

github.com/ErikBoee/ShapeAnalysisForInverseProblems.git, for anyone interested
in either verifying the experiments presented here, or performing their own.

5.1 General setup for the experiments

5.1.1 Discretization points

Throughout the experiments we will use a fixed grid for the t- and α-domain. In order
to define the grids we need to decide values for the number of discretization points, n
and m. As we have seen, the errors in the functional resulting from integration errors are
expected to scale with L/n and L2/m in a worst case scenario, while the computational
complexity contains a term proportional to mn2 and a term proportional to n3. Thus,
the error terms are of the same order, but the error term from the integration over α has
a higher proportionality constant. It therefore makes sense to choose n and m to be of
the same order, but with m larger than n. This is also consistent with the fact that the
computational complexity of the problem scales better with m.

The first parameter we consider is the number of points in the discretization of the
t-domain [0, 1]. Naturally, we would like this parameter to be large enough to avoid
significant errors from the numerical integration, but we also have to consider the com-
putational complexity and decide on a value that do not make the running time of the
method infeasibly high. As mentioned in section 4.6.1, there are some factors that make it
hard to get an accurate estimate of the running time, but we expect it to be O(mn2 +n3).
It therefore makes sense to perform some tests with low values of n, and make an estimate
of the running time for larger values, based on how we expect the running time to scale
when increasing n. As discussed in the former paragraph we want m to be of the same
order as, but larger than, n, we therefore set m = 3n in the experiments, so that the
expected running time is O(n3).

After some initial testing, setting the number of points in the discretization to be
n = 100 appeared to be the best option. The running time for solving a problem with
this value was between 10 and 48 hours. Increasing n significantly above this value would
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5.1. GENERAL SETUP FOR THE EXPERIMENTS

yield infeasibly large running times, and even though the error bound of L/2n is not very
low in a worst case scenario we do expect the error to scale with L/n2 for most curves.

Next, we must determine a domain and discretization of the α’s. In order to avoid
inverse crimes, as described in [2], where the data is generated by the same method as
what is used in the reconstruction process, we wish to use Python’s built-in function for
the Radon transform to generate the data. For an image with m×m pixels, this function
discretizes and determines the α-domain to be m evenly spaced points, where the distance
from the first to the last point is equal to the width and height of the image. Here the
height and width of a pixel is considered to be one, such that the image has height and
width equal to m. The center point of the domain corresponds to the line, in direction
σk, passing through the center pixel of the image. As we wish to compare the Radon
transforms of our reconstructed solution with this data, we choose the same domain and
discretization for the α’s in our experiments. As earlier mentioned, the value of m was
set to 3n = 300. In addition to the forementioned error considerations, it is important to
have a sufficiently fine grid in order for the Radon transforms from the true solution to
accurately describe the shape. The built-in function in Python counts pixels, and if the
grid is coarse this could deviate much from what is found by the analytical expression in
(2.2).

5.1.2 Heaviside approximation

As discussed in section 3.1 we use a smooth approximation for the Heaviside function,
which leads to an error in the objective functional bounded by O(Lε). On the other hand,
the regularity of the functional increases with ε, and we want this value to be as large
as possible, without imposing a significant error. We therefore want ε to be of the same
order as 1/n and 1/m. A choice of ε = 7 · 10−3 satisfies this requirement and was used in
the experiments.

5.1.3 Convergence of the method

To determine when to terminate the method we need to decide the value of four parame-
ters, the tolerance, T , and number of consecutive iterations, D, for terminating the BFGS
method, the tolerance, C, for not increasing λ further, and the number of iterations, r,
performed in the iterative Tikhonov-Morozov method. For the parameter C it makes
sense to choose a value of the size ε2, as ε can be viewed as the amount of blur in the
curve. Thus, if the constraint violation is smaller than this it should not give a noticeable
error in the results. The reason for choosing ε2 is that C is a bound for the squared value
of the constraint violation. In these experiments C is set equal to 10−6. The values of T
and D are based on observations from preliminary experiments, where the method was
ran without a stopping criterion. Here it was observed that when the method made a
relative improvement in the objective function of less than 10−5 for more than 5 consec-
utive iterations, we did not observe any noticeable further improvement when continuing
to run the method. Therefore, T was set to 10−5 and D was set to 5. A similar proce-
dure was used when deciding the value of r, a selection of r = 10 appeared to be small
enough to avoid divergence of the method, and simultaneously large enough to ensure
that further iterations did not give a significant improvement in the reconstructed curve.
Here it should be mentioned that the optimal number of iterations is dependent on the
specific problem, and the regularization parameter β. For β = 0 it does not make sense
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Fixed parameters

ε 7× 10−3

λ0 100
r 10
c1 1× 10−3

c2 0.9

T 1× 10−5

D 5

C 1× 10−6

n 100
Pixels 300

Table 5.1: Values of the fixed parameters in the numerical experiments.

to update the reference solution at all, as it does not affect the solution, while with strong
regularization it would probably make sense to run more iterations. For further work it
would be interesting to look at more intelligent methods for determining the number of
iterations, instead of using a fixed number.

5.1.4 Fixed parameters

In addition to the forementioned parameters, some additional parameters will be fixed
for all experiments. These parameters are λ0, used in the first iteration of the quadratic
penalty method, and c1, c2 used in the Wolfe conditions, when determining an acceptable
step length. The values of the fixed parameters are listed in Table 5.1.

5.1.5 Construction of experiments

To construct the numerical experiments we first define the triplet, msol
n , describing the

boundary curve of the shape we wish to reconstruct. This boundary curve will later be
referred to as the true solution. From the boundary curve we construct an image with
300 × 300 pixels that contains the characteristic function describing the shape. Then,
for a given set of angles, the built-in Python function generates the Radon transforms.
A visualization of how a given angle is related to the direction of the Radon transform
is presented in Figure 5.1. The Radon transforms are then perturbed by random noise.
To generate this noise, for a particular Radon transform f , we first find the maximum
element of the Radon transform, i.e.,

fmax = max
α

f(α).

Then, for each α, f(α) is perturbed by a noise value drawn from a normal distribution
with zero mean and standard deviation equal to µfmax, for a noise parameter µ. Next,
we define another triplet, mref

n , which represents the reference solution, i.e., the a priori
knowledge of how we expect the boundary curve to look like. For all examples we let the
initial guess of mn, m0

n, equal the reference solution, mref
n . Note that the position of the

starting point p, and the length of the curve L is not assumed to be known. However, we
should be able to get a reasonable estimate from the Radon transforms, and thus a good
initial guess of these variables is not expected to influence the results. On the other hand,
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correct rotation of the initial guess is not assumed to be known either, and could be more
difficult to estimate. We should therefore be careful when evaluating the performance
of the method for the experiments with very good initial guesses. That said, this will
be equal for every reconstruction, and so the comparison of the different reconstructions
should be valid.

For each experiment we wish to test different sets of angles and different values of
the regularization parameter β, and the noise parameter µ. We have chosen to look at
four sets of angles, three sets of respectively 4, 8 and 16 angles evenly distributed over
the entire interval from 0 to 180 degrees, and one set with 5 angles evenly distributed
over the more narrow interval from 67.5 to 112.5 degrees. We will refer to these sets
as A4, A5, A8 and A16, where the subscript is equal to the number of angles. Each set
gives different information about the shape. Here we would expect that for the sets with
angles evenly distributed over the entire interval, a larger number of angles leads to better
reconstructions. Furthermore, for A5 we expect that there may be parts of the shape that
have hardly any influence on the measurements. Thus the reconstructions are significantly
more difficult with angles in A5 than with angles in one of the other sets. For the noise
parameter we have looked at the values 0 and 0.15, where the former corresponds to no
noise, and the latter to a substantial amount of noise. For the regularization parameter
we have considered, for each set of angles, the values 0N, 0.01N, 0.1N and N , where N
represents the number of angles in the set. The reason for scaling with N is that when we
increase the number of angles, we increase the number of fit-to-data terms in the objective
functional. It therefore makes sense to adjust the regularization parameter in order to
avoid too much change in the ratio between the regularization term and the sum of the
fit-to-data terms. Here it should be noted that we always have the regularization from
the Möbius energy penalty term, which prefers circles over more complicated forms, but
this effect is expected to be rather weak.

Figure 5.1: Directions of the Radon transform corresponding to the angles 0, 45 and 90
degrees.
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5.1.6 Performance

In order to determine how well the method performs we wish to measure the difference
of the reconstructed solution and the true solution. To do this we will define a metric on
the spaceM. We start by denoting the distance from a point p ∈ R2 to a triplet m ∈M
as the minimum distance from p to the curve defined by m, i.e.,

dp(γm) = min
t∈[0,1]

|p− γm(t)|.

Assume further that we have two triplets m1,m2 ∈M, then we define the distance from
γm1 to γm2 as the maximum distance from a point on γm1 to γm2 , i.e.,

dγm1
(γm2) = max

p∈γm1

dp(γm2).

We are now ready to define the metric on M as,

d(m1,m2) = max(dγm1
(γm2), dγm2

(γm1)), for m1,m2 ∈M.

In order to use this metric to measure the difference between the true solution msol
n

and the reconstructed solution mrec
n , we have to define a discretized version of this metric.

This is done in a straight forward manner by considering the distance between each point
on the discretized curves. This results in the following minimum distance from a point,

dp(γmn) = min
t∈{t0,...,tn}

|p− γmn(t)|.

In the expression for distance between curves we interpret p ∈ γmn as p = γmn(ti) for some
i ∈ {0, ..., n}. To make this discretized version more accurate we use linear interpolation
to add extra points between two consecutive points on γmn , in the same manner as when
calculating the Möbius energy. Since we only calculate this metric once for each exper-
iment, we can afford to add many points. The number of points added between every
pair of consecutive points was set to n, giving a total of n2 points. It is worth mentioning
that here we are only looking at pointwise differences and thus completely disregard the
regularity of the solutions. Therefore, a reconstruction with a relatively small distance to
the true solution might in practice be relatively poor due to its irregularity, which we will
see examples of in the experiments.

5.2 Simple shapes

5.2.1 Summary of results

The first experiment we present contains rather simple shapes, which are modifications of
a circle and displayed in Figure 5.2. The values of the metric described in section 5.1.6,
for the different sets and parameters, are shown in Table 5.2. In terms of this metric we
observe that for the sets A4 and A5 the best results were obtained with a regularization
parameter of 0.1N , regardless of whether the data contained noise. This was also the
situation for the sets with more angles, A8 and A16, when the data contained noise.
However, when there was no noise present, the best results for these sets were achieved
with no regularization. This makes sense, as we expect more angles and less noise to
make the reconstruction process more stable, which in turn should reduce the need for
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Regularization A4 A8 A16 A5 A′4 A′8 A′16 A′5
0.0 4.64 2.14 1.64 15.53 9.4 7.82 9.9 21.7
0.01N 3.22 2.25 1.8 13.21 8.42 6.71 7.14 17.03
0.1N 2.68 3.42 1.92 11.26 7.37 3.42 5.65 10.6
N 5.38 5.11 4.54 11.66 10.35 7.5 7.92 17.49

Table 5.2: A table showing the difference between the reconstructed solution mrec
n and

the true solution msol
n , measured in d(mrec

n ,msol
n ), for the first experiment (shapes in Figure

5.2). The prime indicates that the data set contained noise.

regularization. It is also worth mentioning that the reconstructions with angles in A5 give
a much higher value than the other reconstructions. This could indicate that some parts
of the true solution have hardly any influence on the Radon transform from these angles,
which makes it hard to reconstruct. This will be discussed in more detail in section 5.2.3.

Figure 5.2: On the left we see the true solution from which the Radon transforms are
generated, on the right we see the reference solution.

5.2.2 Importance of regularization when noise is present in the
data

The data in Table 5.2 tells us the furthest distance from a point on one of the curves to
the other curve. To make a more thorough evaluation of the method we want to study
the reconstructions. A visualization of the reconstructions with angles in A8 and no noise
is presented in Figure 5.3. As one can observe, the reconstruction with no regularization
matches the overall shape of the true solution well. However, in the rightmost part of the
curve we observe that the reconstruction is far less smooth than the true solution. In the
other reconstructions we see that the curves are smooth, but the overall shape matches
the true solution more poorly as the regularization parameter increases.

In Figure 5.4 we show a visualization of the same reconstructions, with angles in A8,
but this time with noisy data. As one can observe the reconstruction with no regular-
ization is in this case highly irregular. Using the weakest regularization, β = 0.08, we
observe that the reconstruction is far more smooth, but approximates the true solution
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poorly in some regions. When β = 0.8 we observe a much better reconstruction, as the
overall shape still matches the true solution well, and the local errors are far less apparent.
In the last reconstruction the regularization again seem to be too strong, as the overall
shape does not match the true solution as well as for the other reconstructions.

Figure 5.3: A plot showing the reconstructed curves for different values of the regular-
ization parameter. In this plot we see the reconstructed curves for angles in A8 and data
containing no noise. The curves presented in each subplot are the true solution, γs, the
reconstructed solution, γr, and the initial guess, γ0, which coincides with the reference
solution. We observe that most of the reconstructions are very good, but with no regu-
larization we see some irregularity in the rightmost part of the reconstructed curve. For
the strongest regularization the overall fit is not as good as for the other reconstructions.
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Figure 5.4: A plot showing the reconstructed curves for different values of the regu-
larization parameter. In this plot we see the reconstructed curves for angles in A8 and
data containing noise with µ = 0.15. The curves presented in each subplot are the true
solution, γs, the reconstructed solution, γr, and the initial guess, γ0, which coincides with
the reference solution. Here we observe that the reconstructions with some amount of
regularization are much more robust to noise in the data, with the best reconstruction
obtained for β = 0.8.
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5.2.3 Difficulties with angles in A5

In the reconstructions using the angle sets A4, A8 and A16 similar results were observed,
in the sense that all reconstructions matched the overall shape of the true solution quite
well, and the best reconstructions corresponded to the lowest values in Table 5.2. For
the reconstructions using angles in A5, on the other hand, we did not observe good
reconstructions, a visualization is displayed in Figure 5.5. None of the reconstructions
match the overall shape of the true solution very well, which indicates that the available
Radon transforms do not give enough information about the object. Recall that all
angles in A5 are close to 90 degrees, which could make some parts of the curve difficult to
reconstruct. In figure 5.6 we present the Radon transforms for the true solution and the
reconstructed solution, with β = 0.05. As one can observe, the Radon transforms of the
reconstructed curve is not very different from the Radon transforms of the true solution,
and some of the differences between the curves appears to be hard to discover based on
these Radon transforms.

To investigate this hypothesis further, the same experiment was conducted, but with
both the true solution and the initial guess rotated 90 degrees. The reconstructions are
presented in Figure 5.7. As one can observe, the reconstructions are much better than
in the former experiment, especially when weak regularization is utilized. This indicates
that most of the information about these shapes was in Radon transforms corresponding
to angles that were not included in A5 for the original experiment. In Figure 5.8 we
present the original and rotated solution, along with the directions corresponding to the
angles in A5.

From a purely theoretical view, if we have angles in an arbitrary small interval (−l, l)
for some l > 0, a perfect reconstruction is possible [2]. In practice, on the other hand,
it is observed that when the angle of view decreases from 180 degrees towards zero,
the reconstruction problem becomes increasingly ill-posed and makes reconstruction very
challenging [2]. However, in chapter 9.2 of [2] they state that some features of the shape
are expected to be reconstructed quite well, and roughly speaking the boundaries that
are tangential to the directions in A5 should be reconstructed well.

It is hard to tell from Figure 5.8 if the directions are closer to being tangential to
the boundaries, of the solution, in the rightmost plot. However, we do observe that the
reconstructions of the original solution in Figure 5.5 was especially poor on the left hand
side of the shape, where the boundaries are not tangential to any of the angles. Another
explanation, for why the reconstructions of the rotated solution are better, could be that
the entire shape is seen from directions in A5. In comparison, the original solution has a
concave part that is not seen from any of the directions in A5.
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Figure 5.5: A plot showing the reconstructed curves for different values of the regular-
ization parameter. In this plot we see the reconstructed curves for angles in A5 and data
containing no noise. The curves presented in each subplot are the true solution, γs, the
reconstructed solution, γr, and the initial guess, γ0, which coincides with the reference
solution. We obtain poor reconstructions, due to angles in the narrow interval from 67.5
to 112.5 degrees. The reconstructions obtained with some regularization are smoother.
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Figure 5.6: A visualization of the true solution, the reconstructed solution and the
Radon transforms, when there is no noise in the data, the angles are in A5, and we have
β = 0.05. In the bottom right plot we see the reconstructed curve, γr, in red and the true
solution, γs in blue. In the rest of the plots we see the Radon transforms corresponding to
the angle in the title. The red graphs represent the Radon transforms of the reconstructed
curve, while the blue graphs represent the Radon transforms of the true solution. Here
we observe that the Radon transforms of the reconstructed solution are not too different
from the Radon transforms of the true solution. However, the reconstruction is still poor.

35



5.2. SIMPLE SHAPES

Figure 5.7: A plot showing the reconstructed curves for different values of the regular-
ization parameter. In this plot we see the reconstructed curves for angles in A5 and data
containing no noise. The curves presented in each subplot are the true solution, γs, the
reconstructed solution, γr, and the initial guess, γ0, which coincides with the reference
solution. Here we see rather good approximations even though we have angles in the nar-
row interval from 67.5 to 112.5 degrees, however, the reconstruction with no regularization
creates some spurious oscillations at certain parts of the boundary.
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Figure 5.8: A plot showing the original solution of the experiment on the left, and the
rotated solution on the right. In both plots the directions corresponding to the angles in
A5 are included.

5.3 More complicated shapes

In the next experiment we look at more complicated shapes. The reference solution is still
close to the true solution, and yields a good initial guess, the shapes are shown in Figure
5.9. In Table 5.3 we present the results. For the experiments with no noise, we see that
regularization only improved the reconstructions when the available Radon transforms
corresponded to angles in A4. For the sets with more angles the reconstructions were
stable enough without any regularization. However, when the data contained noise we
observe that for all angle sets, the best reconstructions were obtained with some degree
of regularization. It is also interesting to see that when the data sets contained noise the
results was far better with regularization, while the results without regularization was
only marginally better for the data sets without noise.

As mentioned earlier, the metric in Table 5.3 does not describe the reconstructions
fully, and it would be interesting to see what reconstructions led to these results. In
Figure 5.10 we present the reconstructions for angles in A16 without noise. As one can
observe, the points furthest from the other line appear to be at the bottom left corner in
each reconstruction. Except from this part of the curves, the reconstructions are good,
and the ones obtained with regularization are smoother than the one obtained without
regularization. Next, we look at the reconstructions when there is noise present in the
data. The reconstructions are presented in Figure 5.11. Here we clearly see that the
reconstructions obtained with weak or no regularization are terrible. The reconstructions
with stronger regularization are much better. However, we see that the curvature of these
reconstructions look very much like the initial guess, and could be dependent on a good
initial guess. To investigate this further, we perform an experiment with a very poor
initial guess.

37



5.3. MORE COMPLICATED SHAPES

Figure 5.9: On the left we see the true solution from which the Radon transforms are
generated, on the right we see the reference solution.

Regularization A4 A8 A16 A5 A′4 A′8 A′16 A′5
0.0 5.21 1.99 1.87 2.66 11.42 13.58 14.55 12.13
0.01N 3.24 3.82 3.15 3.34 9.31 5.29 9.66 9.77
0.1N 3.04 2.16 2.09 4.44 5.87 5.85 6.17 10.45
N 4.76 3.25 3.01 5.44 6.58 5.96 4.99 7.42

Table 5.3: A table showing the difference between the reconstructed solution mrec
n and

the true solution msol
n , measured in d(mrec

n ,msol
n ), for the second experiment (shapes in

Figure 5.9). The prime indicates that the data set contained noise.
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Figure 5.10: A plot showing the reconstructed curves for different values of the regular-
ization parameter. In this plot we see the reconstructed curves for angles in A16 and data
containing no noise. The curves presented in each subplot are the true solution, γs, the
reconstructed solution, γr, and the initial guess, γ0, which coincides with the reference
solution. Here we observe the reconstructions of a more complicated shape. The recon-
structions are rather good, but we observe some irregularity in the reconstruction with
β = 0, and the regularization with β = 16 appears to be too strong.
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Figure 5.11: A plot showing the reconstructed curves for different values of the regular-
ization parameter. In this plot we see the reconstructed curves for angles in A16 and data
containing noise with µ = 0.15. The curves presented in each subplot are the true solu-
tion, γs, the reconstructed solution, γr, and the initial guess, γ0, which coincides with the
reference solution. Here we see that with noise present in the data, strong regularization
is needed. However, this could be dependent on a good initial guess, which we have here.
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5.4 Poor initial guess

In this section we present an experiment where the initial guess is a circle, while the true
solution is more complex. The shapes are displayed in Figure 5.12. The values of the
metric described in section 5.1.6, for the different sets and parameters, are shown in Table
5.4. For such a poor initial guess we do not expect very good results, especially when
there is noise present. This is also reflected in the results, as we observe that the metric is
above 10 for all reconstructions with noise. In Figure 5.13 we present the reconstructions
for angles in A8 and noise in the data. As one can observe, the reconstructions with weak
regularization gives a poor reconstruction that is highly irregular and contains artifacts.
For β = 0.8 the reconstruction is much smoother, and this is maybe the best reconstruction
of the overall shape. However, at the rightmost part of the figure we see an artifact. The
strongest regularization gives a rather poor reconstruction of the overall shape, but it
does not create artifacts. In addition, the reconstruction with strong regularization is not
as sensitive to noise in the data, and is in this sense more robust. For the reconstructions
with no noise in the data we see that for angles in A8 and A16 the values are a bit more
promising for some reconstructions. In Figure 5.14 we show the reconstructions for angles
in A16. As one can observe, the reconstruction with no regularization is poor, while the
one with β = 0.16 approximates the true solution well for almost the entire curve, but
deviates at the bottom. For β = 1.6 this problem is eliminated, and we have obtained a
very good reconstruction. The reconstruction with the strongest regularization is similar
to the reconstruction with strongest regularization in Figure 5.13, it is a rather poor
approximation of the overall shape, but robust.

Figure 5.12: On the left we see the true solution from which the Radon transforms are
generated, on the right we see the reference solution.
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5.4. POOR INITIAL GUESS

Regularization A4 A8 A16 A5 A′4 A′8 A′16 A′5
0.0 13.5 13.43 12.36 10.65 13.83 12.83 12.63 16.82
0.01N 12.01 6.69 11.64 14.88 12.4 11.75 11.62 24.2
0.1N 26.64 7.89 2.81 9.03 12.95 11.68 20.2 18.88
N 32.26 9.32 10.05 14.61 14.02 14.38 22.92 21.79

Table 5.4: A table showing the difference between the reconstructed solution mrec
n and

the true solution msol
n , measured in d(mrec

n ,msol
n ), for the second experiment (shapes in

Figure 5.9). The prime indicates that the data set contained noise.

Figure 5.13: A plot showing the reconstructed curves for different values of the regu-
larization parameter. In this plot we see the reconstructed curves for angles in A8 and
data containing noise with µ = 0.15. The curves presented in each subplot are the true
solution, γs, the reconstructed solution, γr, and the initial guess, γ0, which coincides with
the reference solution. With a poor initial guess and noise in the data, it is hard to obtain
a good reconstruction, but the reconstructions with stronger regularization are the best
attempts.

42



5.4. POOR INITIAL GUESS

Figure 5.14: A plot showing the reconstructed curves for different values of the regular-
ization parameter. In this plot we see the reconstructed curves for angles in A16 and data
containing no noise. The curves presented in each subplot are the true solution, γs, the
reconstructed solution, γr, and the initial guess, γ0, which coincides with the reference
solution. Here we have a very poor initial guess, and observe that quite strong regu-
larization is needed to avoid a very irregular reconstruction. However, with too strong
regularization the overall fit is rather poor.
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5.5. OTHER EXPERIMENTS

5.5 Other experiments

A total of 9 experiments were conducted, the shapes, and the tables with results, for
the experiments not discussed in this chapter are presented in Appendix A. As earlier
mentioned we should keep in mind that this metric only gives an indication of how well the
reconstruction is. A reconstruction with a large distance to the true solution will, however,
be poor in at least some areas, but a reconstruction with a relatively small distance to
the true solution might in practice also be relatively poor, due to its irregularity. This
was often the case for the reconstructions with β = 0, which gave highly irregular curves.
Stronger regularization gave smoother curves, but sometimes at the cost of how well the
reconstruction matched the overall shape of the true solution.
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Chapter 6

Conclusion

This thesis has introduced a regularization functional for the reconstruction of shapes,
which is based on the Euler-Bernoulli bending energy. We have considered the inverse
problem of reconstructing a shape from its Radon transform, given only for a finite number
of directions. To solve the problem numerically, we implemented the BFGS-method with
a line search based on the Wolfe conditions.

In the numerical experiments we tried to reconstruct a shape from an initial guess,
with four different levels of regularization. This was done with different amounts of
information available, where the information is the Radon transforms of the true solution
for a given set of angles. Three of the sets contained angles evenly distributed between 0
and 180 degrees, with respectively 4, 8 and 16 angles, while he last set contained 5 angles
evenly distributed in the more narrow interval from 67.5 to 112.5 degrees. In addition,
we compared these reconstructions with the reconstructions obtained when random noise
was added to the Radon transforms. The quality of the reconstructions varied much for
the different experiments. It was observed that, for some shapes, it was important that
the available Radon transforms corresponded to angles in the entire interval from 0 to
180 degrees, as the Radon transforms for angles between 67.5 to 112.5 degrees failed to
give enough information. It was also seen that, when the initial guess was very poor,
more angles were needed to obtain good reconstructions, and the reconstructions with 8
or 16 available Radon transforms were much better than the ones with 4. The same was
observed when noise was added to the data.

In the experiments we observed that the optimal amount of regularization depended
on several factors, including of course the shape of the true solution and the initial guess.
If the shapes were simple, we had a good initial guess, and sufficient available informa-
tion, with no random noise, the best reconstructions were obtained with no regulariza-
tion. However, in almost all experiments, no regularization resulted in a very irregular
reconstruction. The reconstructions containing some regularization were more visually
appealing. The strongest level of regularization appeared to be too strong in most ex-
periments, as the reconstructions did not match the overall shape of the true solution
very well. However, in some experiments the other reconstructions were very poor, due to
either noise, lack of available information or poor initial guesses, so that this gave the best
reconstruction anyway. The best reconstructions in most experiments was obtained with
β equal to 0.01N or 0.1N , this gave reconstructions that were smooth and also matched
the overall shape of the true solution quite well.

For further work it would be interesting to look at the possibilities for improving
the iterative regularization method. More specifically, it should be possible to use more
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intelligent methods for determining the number of iterations, instead of using a fixed
number.
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Appendix A

Additional experiments

A.1 Experiment 4

Figure A.1: On the left we see the true solution from which the Radon transforms are
generated, on the right we see the reference solution.

Regularization A4 A8 A16 A5 A′4 A′8 A′16 A′5
0.0 4.67 2.18 3.32 8.22 8.61 4.83 4.43 13.69
0.01N 2.46 4.28 2.07 15.44 6.7 5.65 3.72 15.11
0.1N 7.82 4.27 5.48 14.62 10.1 10.56 8.09 9.23
N 11.47 7.15 8.6 13.48 12.94 7.76 7.36 17.81

Table A.1: A table showing the difference between the reconstructed solution mrec
n and

the true solution msol
n , measured in d(mrec

n ,msol
n ), for the second experiment (shapes in

Figure A.1). The prime indicates that the data set contained noise.

The reconstructions with angles in A4, A8 and A16 matched the overall shape of the
true solution quite well, when weak or no regularization was utilized. The reconstructions
obtained with no regularization had a more irregular boundary, this was most apparent
when the data contained noise. The reconstructions with angles in A5 were significantly
worse, which could be because of the concave part of the true solution, as it cannot be
seen from these directions.
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A.2. EXPERIMENT 5

A.2 Experiment 5

Figure A.2: On the left we see the true solution from which the Radon transforms are
generated, on the right we see the reference solution.

Regularization A4 A8 A16 A5 A′4 A′8 A′16 A′5
0.0 2.68 2.32 4.57 2.94 6.52 8.82 5.53 7.77
0.01N 4.96 1.99 2.53 5.77 5.53 3.92 2.76 12.19
0.1N 2.54 2.66 2.47 4.58 7.47 5.2 5.4 7.73
N 2.78 3.1 2.41 3.44 4.31 7.25 8.23 10.95

Table A.2: A table showing the difference between the reconstructed solution mrec
n and

the true solution msol
n , measured in d(mrec

n ,msol
n ), for the second experiment (shapes in

Figure A.2). The prime indicates that the data set contained noise.

The reconstructions obtained with some degree of regularization had smoother bound-
aries. Reconstructions with angles in A5 were almost as good as the other reconstructions,
when there was no noise in the data, which indicates that the information from these an-
gles was sufficient. However, when the data contained noise, the reconstructions in A5

were significantly worse than the other reconstructions.
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A.3. EXPERIMENT 6

A.3 Experiment 6

Figure A.3: On the left we see the true solution from which the Radon transforms are
generated, on the right we see the reference solution.

Regularization A4 A8 A16 A5 A′4 A′8 A′16 A′5
0.0 11.59 32.15 16.33 24.34 23.24 28.37 24.29 26.6
0.01N 10.61 21.25 13.68 25.45 15.13 22.02 31.3 17.64
0.1N 13.26 23.57 13.72 21.71 17.48 33.21 16.63 30.4
N 23.57 21.15 21.92 18.18 26.26 23.07 23.98 22.14

Table A.3: A table showing the difference between the reconstructed solution mrec
n and

the true solution msol
n , measured in d(mrec

n ,msol
n ), for the second experiment (shapes in

Figure A.3). The prime indicates that the data set contained noise.

The true solution was difficult to reconstruct, due to the pointy part of the boundary.
The best reconstructions were obtained with some regularization, the reason for the large
values in the table is that no reconstructions matched the pointy part.
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A.4. EXPERIMENT 7

A.4 Experiment 7

Figure A.4: On the left we see the true solution from which the Radon transforms are
generated, on the right we see the reference solution.

Regularization A4 A8 A16 A5 A′4 A′8 A′16 A′5
0.0 8.42 7.24 10.32 2.57 15.16 9.17 5.58 12.95
0.01N 2.56 5.37 2.53 19.62 8.66 11.48 8.04 14.86
0.1N 7.63 5.56 5.36 23.45 4.97 8.23 15.45 18.61
N 12.78 14.51 8.51 17.86 18.68 12.49 17.28 19.39

Table A.4: A table showing the difference between the reconstructed solution mrec
n and

the true solution msol
n , measured in d(mrec

n ,msol
n ), for the second experiment (shapes in

Figure A.4). The prime indicates that the data set contained noise.

Artifacts, created when no regularization was used, gave some seemingly random values
for the metric corresponding to these reconstructions. The reconstructions with some
regularization had smoother boundaries, thus the metric gives a more realistic result for
these reconstructions.
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A.5. EXPERIMENT 8

A.5 Experiment 8

Figure A.5: On the left we see the true solution from which the Radon transforms are
generated, on the right we see the reference solution.

Regularization A4 A8 A16 A5 A′4 A′8 A′16 A′5
0.0 6.81 2.85 4.28 2.94 7.14 13.15 11.08 8.11
0.01N 5.41 9.96 7.67 6.12 10.81 11.68 10.81 10.71
0.1N 6.85 4.39 4.35 11.09 6.69 7.66 6.14 9.58
N 5.49 5.62 6.54 9.17 7.27 5.71 6.01 8.23

Table A.5: A table showing the difference between the reconstructed solution mrec
n and

the true solution msol
n , measured in d(mrec

n ,msol
n ), for the second experiment (shapes in

Figure A.5). The prime indicates that the data set contained noise.

The best reconstructions were obtained without regularization when there was no noise
in the data, as the overall shape matched the true solution better. However, with noise
present, these reconstructions became highly irregular, and the best reconstructions were
obtained with some regularization.
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A.6. EXPERIMENT 9

A.6 Experiment 9

Figure A.6: On the left we see the true solution from which the Radon transforms are
generated, on the right we see the reference solution.

Regularization A4 A8 A16 A5 A′4 A′8 A′16 A′5
0.0 3.11 3.94 3.09 7.74 8.24 5.86 7.35 9.74
0.01N 6.76 3.76 1.51 3.77 9.7 6.42 10.11 8.76
0.1N 3.61 2.32 2.42 3.33 6.1 8.89 6.36 5.51
N 5.79 4.69 6.62 4.9 9.24 8.16 8.53 7.55

Table A.6: A table showing the difference between the reconstructed solution mrec
n and

the true solution msol
n , measured in d(mrec

n ,msol
n ), for the second experiment (shapes in

Figure A.6). The prime indicates that the data set contained noise.

The best results were in general obtained with some degree of regularization. In the
columns where the lowest value of the metric was obtained without regularization, the
boundary of this reconstruction was irregular, and the reconstruction corresponding to
the second lowest value of the column was more visually appealing.
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