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Abstract

This thesis presents a novel solution to hate speech detection that combines several
artificial intelligence methods to identify hateful content within short Norwegian
texts. With the explosive growth of the internet and the ever-increasing adoption of
social media and discussion forums, user-generated hateful utterances have become
progressively more frequent. While freedom of speech is a constitutional right in
Norway, discriminatory or hateful utterances are illegal and should therefore be
removed.

Previous solutions to hate speech detection, both for English and non-English lan-
guages, have primarily used text classification approaches. While impressive results
have been achieved using these methods, they face several drawbacks. Among these
is the necessity for large, annotated corpora tailored to hate speech detection, which
is not available for less used languages such as Norwegian.

This thesis contains a methodical literature review, a novel approach to hate speech
detection, and an exhaustive experiment evaluating its viability and performance.
The novel approach is called BSSAD and contains a convolutional neural network
that uses a pre-trained, bidirectional encoder model to produce word embeddings.
By using a bidirectional encoder, the resulting word embeddings are able to reflect
context, making better use of the contents of smaller corpora.

The experiment results show that the new approach significantly outperforms pre-
vious solutions for hate speech detection in Norwegian. This indicates that in-
troducing pre-trained BERT models yields more valuable word embeddings from
which the BSSAD model is able to benefit.

Automatic hate speech detection in its infancy faces many challenges. While there
are numerous advanced approaches for the English language, applying those to less-
used languages like Norwegian yields inferior results due to a lack of specialized
corpora. The BSSAD approach presented in this thesis combines recently developed
state-of-the-art methods such as BERT models and anomaly detection to surpass
previous approaches, showing great potential for future development based on this
combination.
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Sammendrag

Denne avhandlingen presenterer en ny løsning for deteksjon av hatefulle ytringer
som kombinerer flere metoder innen kunstig intelligens for å identifisere hatefullt
innhold i korte norske tekster automatisk. Internettet har historisk sett opplevd en
eksplosiv fremvekst, og samtidig som bruken av sosiale medier og diskusjonsforum
stadig vokser, vokser ogs̊a tilfellene av brukergenerert hatefullt spr̊ak. Selv om
ytringsfrihet er stadfestet i Norges Grunnlov, er det ulovlig å sette fram diskrimin-
erende eller hatefulle ytringer, og slike ytringer bør derfor oppdages og fjernes.

Tidligere løsninger for deteksjon av hatefulle ytringer, b̊ade for Engelsk og andre
spr̊ak, er stort sett basert p̊a klassifiseringsmetoder. Selv om imponerende res-
ultater er blitt oppn̊add med disse metodene, medfører de et antall ulemper. En
av disse er at de krever store, annoterte tekstkorpora som er tilpasset deteksjon av
hatefulle ytringer, som ofte ikke er tilgjengelig for mindre brukte spr̊ak som Norsk.

Denne avhandlingen inneholder en metodisk gjennomgang av tidligere studier, en
ny tilnærming til deteksjon av hatefulle ytringer, og et omfattende eksperiment
som evaluererer hvorvidt løsningen er hensiktsmessing og dens ytelse. Den nye
tilnærmingen, kalt BSSAD, inneholder et konvolusjonelt nevralt nettverk som drar
nytte av en ferdig opplært, bidireksjonell enkoder modell for å produsere ord-
vektorer. Ved å bruke en bidireksjonell enkoder vil de resulterende ordvektorene
kunne reflektere kontekst, og dermed dra mer nytte av innholdet i mindre tekstkor-
pora.

Resultatene av eksperimentet viser at den nye tilnærmingen overg̊ar tidligere løsninger
for deteksjon av hatefulle ytringer p̊a norsk. Dette indikerer at bruken av opplærte
BERT modeller kan produsere mer verdifulle ordvektorer som BSSAD modellen
kan utnytte.

I tidilige stadier av utviklingen er det mange utfordringer knyttet til automatisk
deteksjon av hatefulle ytringer. Det finnes et utvalg avanserte tilnærminger p̊a
Engelsk, men disse yter ikke like godt for mindre brukte spr̊ak som Norsk grunnet
mangel p̊a spesialiserte korpora. Metoden som er presentert i denne avhandlingen
forbig̊ar tidligere løsninger ved å kombinere BERT modeller og avviksdeteksjon,
og viser dermed at det ligger stort potensiale i denne kombinasjonen for videre
utvikling i feltet.
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CHAPTER1
Introduction

Hate speech is becoming a growing concern with the continuously increasing pre-
valence of social media. While freedom of speech is a concept that should be
guarded as much as possible, potential victims of hateful utterances should also
be protected. The internet has, over the years, become an arena where some find
it easy to hide behind the anonymity it provides while sharing hateful comments
directed at these victims. Being able to detect such hateful comments is the first
step of filtering them out and addressing them appropriately. Given the amount of
continuously generated information on the internet, this is an enormous task that
is not practical nor feasible to perform manually. Thus, the need for automatic
detection of hate speech becomes evident.

Recent progress has been made in the area of hate speech detection using machine
learning, a subgroup of artificial intelligence, with methods that have proven helpful
in the semantic interpretation and classification of texts. This is especially useful
within the area of hate speech detection, where sentiment plays an important role.
This paper focuses on researching state-of-the-art applications of machine learning
in attempts to solve the hate speech detection problem.

The following chapter starts by presenting the motivation behind this thesis. The
following section addresses the problem specification, including the goal, scope,
and research questions. Next, the contributions of the thesis are listed before an
overview of the thesis structure is provided.

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

The problem of hate speech detection is at its forefront when considering the Eng-
lish language. Although some approaches are language agnostic, research in the
field when using non-English languages is comparatively undeveloped. However,
the issue of hate speech is just as crucial for these languages. Unfortunately, the
barrier of entry for research in non-English languages is higher because of the insuffi-
cient amount of available evaluation resources such as pre-trained word embeddings
and annotated corpora. As a result, researchers attempting hate speech detection
in non-English languages often have to begin by constructing a new, suitable cor-
pus. Creating a decent-sized corpus with accurate annotations is time-consuming
and may be challenging to justify. Moreover, the resulting corpora are often inferior
in quality compared to their English counterparts. Therefore, approaches that are
either language-agnostic or that perform well on smaller corpora will benefit the
field.

A critical problem faced within hate speech detection is complexity. This problem
is rooted in the fact that language is unstructured and complex. In order to make
use of modern machines’ computing capabilities, the data must be translated to
a format that makes sense to a computer. One such format is word embeddings,
which are numerical representations of each word in a text. Several different word
embeddings are available with different sizes and techniques. With such a complex
data source as language, the nuances between different word embeddings can sig-
nificantly affect the works that rely on them. Moreover, the same word can convey
different meanings when used in different sentences, highlighting the importance
of context. This is especially relevant in hate speech detection, as hateful content
has been known to appear concealed by, for instance, using metaphors or avoid-
ing obscene language. Recently, solutions have been developed that can reflect
this context in the produced word embeddings. Language models like BERT can
consider the meaning of a word in the context of the surrounding text, offering
additional value to the resulting word embeddings compared to traditional, static
word embedding techniques.

Numerous approaches have been taken to detect hate speech. One such approach
recently presented by Jensen (2020) is ADAHS, which was the first of its kind
to be implemented and tested on both English and Norwegian corpora. Where
previous methods usually employ multiclass text classification techniques, ADAHS
uses anomaly detection to detect hateful content. This approach defines only one
class, namely the normal class, and focuses on detecting outliers in the corpus,
representing hateful utterances. Defining classes assumes similarity between the
entries within. This assumption is unfortunate when applied to hate speech due
to constant change in abusive language to avoid attention, as stated by Nobata
et al. (2016). Thus, anomaly detection is advantageous as it assumes no similarity
between the anomalous data points. The purpose of presenting ADAHS was not to
provide an optimized solution but rather to present a novel way of detecting hate
speech by rephrasing the problem to use anomaly detection. Its promising results
are therefore a motivating factor for using recently developed methods that are not
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yet thoroughly explored.

Many current approaches are in their infancy and leave topics such as optimizations
for future work. Therefore, examining factors for optimization is a promising path
of progression. There are many factors to consider when working with machine
learning, such as features, types of models, hyperparameters, and corpora. Further
investigating these factors and how they affect performance may lead to valuable
discoveries.

1.2 Problem Specification

This section presents the overall goal and the following Research Questions (RQ)
for the thesis. The scope describing the focus of the thesis is also included.

Goal

The thesis aims to look at existing hate speech detection approaches in languages
other than English and improve upon them by implementing new state-of-the-art
methods. Corpora as sources for datasets are not as abundantly available for non-
English languages, and the datasets that do exist are not as extensive. Therefore,
it is necessary to develop a solution that will perform well on smaller datasets. To
improve on existing solutions, the factors that affect them need to be understood
to then be able to configure the solutions optimally.

Scope

The scope of this thesis includes conducting a literature review, developing a novel
solution and an experiment with accompanying discussions. The literature review
regards the general field of hate speech detection and a more specific review of
Norwegian hate speech detection. The novel machine learning method for hate
speech detection is developed by combining previous methods and applying it on a
Norwegian dataset. The experiment is created and executed using an experiment
plan with a pre-defined set of configurations. Finally, the results are evaluated and
discussed, and compared to previous implementations.
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Research Questions

The following research question is presented to solve the overall goal explained
above:

Research Question
How can existing approaches for hate speech detection in languages other
than English be improved?

Hate speech detection is at its forefront using the English language. However, hate
speech detection is equally relevant for other languages. Solving the problem can be
done by either implementing language-specific solutions for non-English languages
or language-agnostic solutions to cover a multitude of languages. This thesis aims
to solve the problem by researching related works, implementing a solution, running
experiments on the solution, and comparing it to previous solutions. The research
question is divided into three parts presented below.

RQ1 How can recently developed techniques in the field, such as BERT, be integrated
to provide state-of-the-art results?

The field of hate speech detection in concurrence with Natural Language Processing
(NLP) is in constant development. Providing state-of-the-art results requires using
state-of-the-art techniques such as BERT. Current solutions for non-English lan-
guages are not at the forefront of the field and utilize less sophisticated techniques,
whereas BERT is a new method with advanced features. However, using recently
developed techniques comes with the risk of being neither sufficiently documented
nor thoroughly tested.

RQ2 How can the performance be improved for approaches using smaller datasets?

The absence of appropriately large datasets is a common problem for hate speech
detection in less used, non-English languages. Instead of spending resources on
expanding the existing datasets or creating new ones, it may instead be beneficial to
create solutions that can perform well on smaller datasets. Discovering techniques
to improve performance on smaller datasets will benefit hate speech detection for
other languages.

RQ3 How can we determine what factors affect the results?

Examining the variable factors is essential to improve existing approaches. As time
is a resource, not every factor can be considered, and a set of promising factors
needs to be selected. Each of these factors can be evaluated individually, and a
plan can be made to examine how they affect performance.
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1.3 Contributions

Through pursuing the previously stated goal of improving hate speech detection
in Norwegian using state-of-the-art techniques, this thesis provides the following
contributions to the field:

I A literature review including surrounding elements, in addition to a specific
review of Norwegian hate speech detection.

II A novel approach to hate speech detection building on and combining state-of-
the-art techniques.

III A thorough evaluation of the developed method and comparison of results to
previous methods.

1.4 Thesis Overview

The structure of the thesis is as follows:

Chapter 2 provides theory to introduce concepts related to the field of hate speech
detection in addition to theory for specific concepts discussed in the thesis.

Chapter 3 provides an overview of related research and state-of-the-art works.

Chapter 4 presents the proposed solution and describes in detail its inner workings,
including an overview of the model architecture.

Chapter 5 presents an experiment plan and setup, in addition to the results of the
executed experiment.

Chapter 6 contains an evaluation and discussion of the model and its results.

Chapter 7 discusses the results gathered as well as contributions and possible fur-
ther work.





CHAPTER2
Background Theory

This chapter introduces key concepts to lay a foundation for understanding the
topics addressed in the following chapters. First, the definition of hate speech and
its intricacies will be discussed. Next, the theory appropriate for the thesis will
be presented. This theory begins with general concepts before introducing more
specific topics directly related to the proposed solution and experiment.

Parts of the following chapter were produced as part of the specialization project
preceding this thesis (Wahl & Skj̊astad, 2020). While some of the following sections
include parts from the other project, most of them have been adapted and built
upon to better fit this thesis’ specific focus better.

2.1 Definition of Hate Speech

The term “hate speech” is a broad one. To the best of our knowledge, no univer-
sal definition has yet been made to describe it. Therefore, in the context of hate
speech detection, a pragmatic interpretation of the term is beneficial. Generally,
the consensus in previous works seems to be that hate speech can be recognized as
any communication that disparages a person or a group based on some character-
istic such as race, color, ethnicity, gender, sexual orientation, nationality, religion,
or other characteristic (Nockleby, 2000). Despite the generally accepted descrip-
tion, the problem of labeling utterances as hateful or non-hateful is deceptively
complicated.

Firstly, and importantly, hate speech is often context dependant. A text can be
labeled one way when considered on its own and another when considered a part
of a bigger picture. For instance, the labeling could be affected by an ongoing
discussion, a reference in the text, or the author’s background. As an example,
the phrase “Go back where you came from” might be innocent enough in the

6
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context of giving someone directions. However, in the context of immigration, it
can undoubtedly be perceived as a hateful utterance. When it comes to hate speech
detection, the importance of context is a double-edged sword: On the one hand, it
makes the problem far more complex, making it challenging to solve automatically.
On the other hand, it allows for creative and clever solutions that can use other
available data to indicate the probability for a particular text to be hateful. Several
variations of such solutions have been implemented and shown to improve results
for hate speech detection. Pitsilis et al. (2018) show improvements with a solution
that utilizes a user’s tendency to have written hateful messages in the past when
labeling hateful texts.

Secondly, hate speech is a subjective matter. One annotator might find something
offensive that another does not. Moreover, there is the issue of broad definitions:
it can be challenging to distinguish between hate speech and offensive language.
Including offensive words in a text might make it offensive, but that does not
inherently mean it contains hate speech. While some solutions show promising
results, they may fall short by having too broad definitions, as stated by Davidson
et al. (2017).

Furthermore, hate speech can be rather sophisticated and challenging to detect
without human intuition. While certain words or variations of them can be in-
dicative of hate speech, it is no guarantee. Moreover, hate speech can consist of
grammatically correct and sophisticated sentences that, on the surface, do not seem
alarming. Here, it is again in the context that one must root the classification: who
the recipient is, who the author is, at what time the comment was produced, and
where it was produced.

To summarize, the problem of detecting hate speech is a complicated one. Without
a universal definition, it is hard to set criteria for what constitutes hate speech.
Even when someone claims an utterance to be hateful, others might disagree.
Whether a given comment is perceived as hateful or not often depends on sur-
rounding factors such as related content and sources and the intended recipient.
Thus, classifying content as either hateful or non-hateful is a tedious and complic-
ated process that requires automation. In the following section, the field of machine
learning is introduced. In this field, algorithms can be found that show promise
concerning the automation of hate speech detection.

2.2 Machine Learning

Machine learning is a broad subject within computer science with an abundance
of applications. There exist many variations of methods, each with its strengths
and weaknesses. Choosing the correct method is usually done based on previous
work. New machine learning-based methods are also discovered through explor-
ation, where different methods are tested on the given application. This section
describes the main methods of machine learning that are relevant for automatic
hate speech detection.
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2.2.1 Machine Learning Supervision

Supervised machine learning uses a labeled dataset as input to a function and
maps it to a specified output. The key concept for supervised learning is that
a prediction model is created based on a pre-labeled dataset (Goodfellow et al.,
2016). Each data point in the dataset has a corresponding label used to train the
prediction model. After this process, the trained model can be used by providing
new, unlabeled data points as input. The trained model then outputs the predicted
label. Supervised machine learning has two types of results, one by classification the
other by regression. Classification is used to put data points in one of a collection of
classes, whereas regression is used for continuous values, predicting a corresponding
value for a given input.

Unsupervised learning is more of an exploratory approach and differs from su-
pervised learning by only using unlabelled datasets. The goal is to detect previously
undetected patterns and structures. A common usage of unsupervised learning is
clustering, where the data is split into different groups or clusters. Clustering has
the benefit of not requiring the previous labeling, which can be demanding work.
However, it can be hard to infer meaning from the results.

Semi-supervised learning uses a combination of supervised and unsupervised
methods. An example of this may be that not all data points are labeled (Goodfel-
low et al., 2016). Semi-supervised learning can be effective for incomplete datasets
or where some labels are hard to define or assign.

2.2.2 Classification

Classification is the problem where the learning model categorizes the results into
different classes. The classes can be binary or multi-class. The classification works
best when the classes are balanced in the training dataset. However, lack of such
balance within datasets is a common issue for hate speech detection because the
natural frequency of hateful utterances is much lower compared to non-hateful ones
(Burkal & Veledar, 2018).

Each piece of information that represents a class is known as a feature (Goodfellow
et al., 2016). These features make up a representation of the given dataset and are
the input of the classification model. For instance, features may include age, name,
gender, or any information relating to a person for a dataset of people. Designing
a suitable and descriptive set of features, also known as feature engineering, is a
central task within machine learning. In the case of hate speech detection, feature
engineering is not thoroughly explored. However, works such as Waseem and Hovy
(2016) and Nobata et al. (2016) have looked into the incorporation of other features
than the text itself with varying results.
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2.2.3 Anomaly Detection

Anomaly detection is a method for finding anomalies or outliers in a dataset. It
can be utilized for both supervised, unsupervised and semi-supervised learning.
Two definitions of data are relevant for anomaly detection, namely normal and
anomaly. Normal data is comprised of the most regular data points, which should
conform to the majority of a given dataset. Anomalies are rare data points or
data in abnormal patterns which can appear in the dataset. Supervised anomaly
detection uses datasets where each data point is labeled as either normal or an-
omaly. Semi-supervised anomaly detection uses a partially labeled dataset or a
dataset containing only normal data points. Unsupervised anomaly detection does
not have any labels, and the model attempts to identify data points or patterns
in the dataset which do not conform to the normal distribution (Chandola et al.,
2009).

2.3 Classic Methods for Data Mining in Text

Machine learning is a broad and intricate subject that encompasses a large vari-
ety of applications, one of them being text analysis. The foundation for textual
machine learning comes from concepts such as text data mining, natural language
processing, and information retrieval. It is essential to understand and discuss
these more classic concepts to confer and present different solutions to the task of
detecting hate speech in text. Text in this context can be considered as unstruc-
tured data. Unstructured data is unsuitable for direct computer processing, thus
requiring conversion into structured data.

2.3.1 Preprocessing

An information retrieval approach to preprocessing text makes use of five trans-
formations: lexical analysis, stopword elimination, stemming, keyword selection,
and thesauri (Baeza-Yates & Ribeiro-Neto, 2011). Lexical analysis entails remov-
ing symbols, numbers, and punctuation while also converting the text to lower or
upper case. Additionally, it involves tokenizing the text, converting each word in
the sentence to some corresponding token. Thus, tokenization represents texts as
lists of unique tokens. Stopword elimination is the process of removing words that
do not contribute to adding meaning to the text. Such words appear in nearly all
texts, with common examples including “the”, “a”, and “is”. There are numerous
lists of these stopwords available online which can be used. Stemming attempts to
reduce words to their “base” form by removing conjugation and plurality. Keyword
selection is used for selecting useful words that have distinct values, thus disreg-
arding less valuable words. Thesauri finds similarities between and synonyms for
different words, allowing for a deeper understanding of texts by relating them to
other ones that are semantically similar. These methods are not straightforward
and therefore need to be adapted to the task at hand. This thesis is concerned with
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hate speech detection, where the texts in question usually come from internet sites
such as social media. Because of this, they often contain spelling errors that have
to be taken into consideration. The approach also differs for different languages,
such as Norwegian, where words are often compounded.

2.3.2 Feature Extraction

Machine learning methods require text to be represented as structured data. Con-
verting textual data to categorical numerical vectors is known as feature extraction.
A feature is one representation of text, a simple example being each term converted
into a number. The process of choosing and creating favorable features is known as
feature engineering. The following paragraphs will describe some well-known text
representations such as TF-IDF, N-grams, and Bag-of-words.

TF-IDF Term Frequency and Inverse Document Frequency are two well-known
methods of defining the importance of a term in a document. In this context, a
term is a word or a string in a document, a document is a complete text, and each
document is part of a collection of documents. Different terms will have different
degrees of importance in a document, and how often these terms appear will affect
the overall meaning or sentiment. However, using only the frequency of words in
a text will not yield accurate results, as the most common words usually do not
convey the most meaning. For this reason, term frequency is often normalized. One
common method for this is shown in Equation 2.1, where tfi,j is some normalized
version of fi,j, which is frequency of the term i in the document j. Normalization
allows for potentially meaningful terms not to be dwarfed by exceedingly common
ones (Baeza-Yates & Ribeiro-Neto, 2011). To further rate a term, it is pertinent
to consider it in the context of the collection of documents it belongs to, which
IDF attempts to achieve. As opposed to TF, IDF assigns higher weights to rarer
terms occurring in fewer documents in the collection. It does this by taking the
total number of documents (N ) and dividing by the number of documents the
term appears in (ni), then normalizing the quotient logarithmically, as shown in
Equation 2.2 where idfi is the IDF of term i. (Baeza-Yates & Ribeiro-Neto, 2011).
TF and IDF are usually combined as TF-IDF which highly weights frequent terms
in the document while also being rare in the document collection.

tfi,j =

{
1 + logfi,j, if fi,j > 0

0 otherwise
(2.1)

idfi = log
N

ni

(2.2)

N-grams Words or terms in a text do not always have a distinct and singular
sentiment. The context of the surrounding sentence may change the meaning of a
word. An example is the word “black”, where followed by the word “people” may
imply racial or ethnic sentiment, while followed by the word “out” may imply loss
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of consciousness or a power outage. A way of providing this context is the use of
n-grams. N-grams are an ordered sequence of characters or words with a length
of n (Bengfort et al., 2018). However, providing context to words is not the only
use of n-grams. As mentioned, it can also be used for characters. A use case for
this is in informal texts where words may have many different variations caused
by abbreviations, slang, and spelling errors. In these cases, character n-grams are
able to detect the canonical spelling of a word, which could allow understanding
to be applied to misspelled words (Schmidt & Wiegand, 2017).

Bag-of-words Bag-of-words is a method for representing text by adding each dis-
tinct word to an unordered list, or “bag”, together with each word’s corresponding
frequency in the text. Bag-of-words is a rudimentary way of representing a text
that can find similarities between texts and classify texts. Bag-of-n-grams is an
alternate version of bag-of-words where a text is represented with some variation
of n-grams and their frequency (Bengfort et al., 2018). Using bag-of-n-grams may
allow the representation to include some contextual and more nuanced informa-
tion.

2.4 Natural Language Processing

Natural language processing (NLP) is a branch within Artificial Intelligence con-
cerned with allowing computers to process, understand, and analyze natural lan-
guage in text or audio. Bird et al. (2009) describe natural language as “a language
that is used for everyday communication by humans; languages such as English,
Hindi, or Portuguese. In contrast to artificial languages such as programming lan-
guages and mathematical notations, natural languages have evolved as they pass
from generation to generation and are hard to pin down with explicit rules.” NLP
is a large field that covers a variety of use cases. However, with regards to hate
speech detection, the use case derives meaning from short texts.

Frameworks serving different purposes have been created to solve NLP-related
problems. For this thesis, it is pertinent to look at frameworks for representing
and analyzing hate speech texts. A popular method of representing texts is using
word embeddings. Word embeddings are a way to map high dimensional words of
a text into a less complex continuous vector space (Bengfort et al., 2018). Using
only a basic mapping such as TF-IDF will be solely based on word similarity, while
word embeddings can capture and identify semantic similarity. There are many
systems, techniques, or models to apply word embeddings. Some of the most used
and popular ones are Word2Vec, fastText, GloVe, and BERT.

Word2Vec is a prediction based method, commonly using a Continuous-Bag-
of-Words (CBOW) architecture (Bengfort et al., 2018). This approach assumes
similarity by removing a word and checking the probability of another being in
the same context. This implies semantic similarity by words like “walking” and
“running” being similar as they can replace each other while maintaining the same
sentiment.
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GloVe (Global Vectors) is an unsupervised method that uses a global corpus to
find a word-to-word co-occurrence vector representation (Pennington et al., 2014).
Like Word2Vec, it only considers the local context of words.

fastText employs a different approach from GloVe and Word2Vec by using char-
acter representations (Athiwaratkun et al., 2018). These representations allow for
noncanonical words, also known as Out of Vocabulary (OOV) words, to be included
in the word embeddings. As mentioned, hate speech detection deals with informal
text, and it can therefore be useful to consider out of vocabulary words.

BERT is a bidirectional language representation technique that can represent
words as homonyms, meaning a single word having multiple meanings based on
context (Devlin et al., 2018). An example of such a word is “saw”, which would
result in different representations when used in the sentences “I saw something over
there” and “A saw is a cutting tool”.

2.5 Popular Base Learners

Base learner is a term often used when discussing ensemble learners. According to
Zhou (2009), “Ensemble learning is a machine learning paradigm where multiple
learners are trained to solve the same problem”. The multiple learners that make
up the ensemble by themselves are known as base learners. These base learners
serve different purposes, and each has its strengths and weaknesses when applied
to different tasks. Some of the most popular learners are logistic regression, näıve
Bayes classifiers, support vector machines, and decision trees.

Logistic regression (LR) originates from the field of statistics and can be used
as a supervised machine learning model. It is used to predict whether an object
belongs to one class or another. It was originally designed for binary classification
but has been expanded to allow for multi-class prediction as well (Collins et al.,
2002).

Näıve Bayes classifiers are also from statistics and are based on applying Bayes’
theorem (Bayes, 1763). The classifiers use a set of simple probabilistic models to
classify objects while assuming independence between features.

Support Vector Machines (SVMs) are supervised machine learning models
that can be used for both classification and regression. It is used for data with
binary classes. However, it can be used for multiple classes by performing multiple
binary class classifications. An essential part of SVM is the mapping of the input
to a high-dimensional vector space. This mapping is one of the reasons it is suitable
for text classifications, as text is high dimensional by nature (Joachims, 1998).

Decision trees are based on dividing the classification into multiple stages and
making rules for each stage (Safavian & Landgrebe, 1991). To classify an object,
the tree has to be traversed from the root node to a leaf node taking paths based
on rules set on each node. An advantage of this approach is intuitiveness, as it is
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easier for an analyst to observe how decisions are made.

2.6 Deep Learning

Deep learning is a subgroup of machine learning that has gained traction over the
years. As opposed to classical supervised and unsupervised learning, deep learning
techniques require no manual selection and engineering of features beforehand, a
task that proves challenging in many cases. Instead, deep learning techniques can
automatically extract features by building representational hierarchies of abstract
concepts, which increase in complexity with higher levels. According to Goodfellow
et al. (2016), the power of deep learning lies in this hierarchy, which allows models
to learn complicated concepts by building them out of simpler ones. The hierarchies
are deep, giving deep learning its name.

Artificial Neural Networks (ANNs) make up one type of the models used in
deep learning and are based on the biological neurons in the human brain. In
the brain, neurons are interconnected through synapses, along which signals are
sent from neuron to neuron. Analogous to this, ANNs contain layers of nodes,
or neurons, that are highly interconnected through weighted links. A node that
receives one or more signals will process the input and signal other nodes with which
it is connected. This output is based on a non-linear function of the collected input.
The simplest variants of neural networks are feed-forward, meaning that the signal
travels in only one direction, originating in the input layer and propagating through
the network towards the output layer, forming a directed acyclic graph.

Deep Neural Networks (DNNs) are neural networks that contain one or more
hidden layers between the input and output layer. The depth of a network refers
to the number of hidden layers within it, with deeper networks having more layers.
The increased number of layers and accompanying nodes makes the networks more
complex, which in turn allows the network to model complex data with fewer
units than a similarly performing shallow network (Bengio, 2009). The networks
discussed in the following paragraphs are all examples of DNNs.

Convolution Neural Networks (CNNs) are deep neural networks that have
one or more convolutional layers as part of the hidden layers. Like the other hidden
layers, these convolutional layers receive input, transform the input, and provide
an output to the next layer based on the transformed input. In convolutional
layers, however, the transformation is a convolution operation. These convolution
operations are used in order to extract features based on patterns in the data. For
each layer, several filters are created, which essentially are numerical matrices with
variable size and content, depending on the function of the filter. When performing
the convolution operation, the filters are moved over a larger matrix, representing
the input data. The dot product between the filter and a section of the matrix
is calculated to output a transformed result that can be used to detect patterns.
CNNs are popularly used within image classification, as the pixels that make up
the image are easily represented through numerical matrices. However, CNNs
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can also be applied to text by representing the text as matrices by, for example,
concatenating vector representations of each word.

In contrast to feed-forward networks, Recurrent Neural Networks (RNNs) con-
tain cycles within the graph, allowing the output from some level in the network
to be fed back as input to a previous level. These cycles allow the network to
maintain a type of memory in the form of an internal state. Thus, the output of
an RNN will depend on its internal state, which in turn depends on its previous
inputs. Because of this, RNNs are especially well suited to handle sequential data
such as time series, text, or audio.

Long Short-Term Memory (LSTM) networks are variants of RNNs that are
designed to improve short-term memory by addressing the vanishing gradient prob-
lem. The problem relates to backpropagation, which is used to train and optimize
neural networks. For a given prediction of the model, gradients are calculated
for each node based on the results from a loss function. The internal weights of
the network are adjusted based on these gradients, allowing the model to learn.
However, the gradient of a given level is calculated with respect to the gradient of
the layer before and can diminish drastically over the course of the backpropaga-
tion process, resulting in little or no learning in the shallow layers of the network.
This applies to RNNs’ backpropagation through time, where each time step in an
RNN represents a layer in the neural network on which backpropagation is applied.
Here, the earlier parts of the sequence of input data, like the shallow layers of the
network, are not well adjusted for, meaning that long-range temporal relationships
are lost. LSTM networks solve this by introducing Long Short-Term Memory cells
within the network that allow LSTM based models to detect long-term dependen-
cies in, for example, texts, making them even more useful for solving NLP-related
problems.

Transformer networks, introduced by Vaswani et al. (2017), are deep neural
networks that build upon the concept of attention. In short, attention allows
computation of context by representing the relationship between each entry in a
sequence and all the entries of another sequence.

Transformers are designed for the purpose of sequence-to-sequence modeling tasks
such as translation and consist of one encoder and one decoder section. The encoder
section takes a sequence as input, for example, a sentence to be translated, and
transforms the sequence into embeddings, which are numerical representations of
the input sequence. The decoder section takes the embeddings as input and returns
the output sequence of the model. Both sections include modules that make use
of self-attention. Self-attention is similar to attention, but instead of using two
different sequences, the relationship is represented between each entry in a sequence
and every other entry within the same sequence. Therefore, self-attention is useful
for representing contextual relationships within an input sequence like a sentence.

To appreciate the benefit of employing self-attention, consider the following ex-
ample using the sentence “a blue sky” as an input sequence. First, an attention
matrix is computed reflecting the relationship between all pairs of words within
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the sentence. The corresponding attention matrix for the example can be seen
in Figure 2.1. Each value in the matrix represents the relationship between the
relevant terms. For instance, the word “blue” has a stronger contextual relation
to “sky” than it has to “a”. Each row in the attention matrix can subsequently
be assigned to each word as their attention vector. In the example, the attention
vector for the word “sky” is the last row in Figure 2.1.

a blue sky

a [ -, 0.4, 0.9 ]

blue [ 0.4, -, 0.7 ]

sky [ 0.9, 0.7, - ]

Figure 2.1: Example attention matrix

Transformer models take the entire sequence as input and calculate the attention
vector for each entry with respect to the entire input sequence. This process dif-
fers from RNNs, where each entry in a sequence is processed sequentially. Not
having to process the sequence entries sequentially brings important benefits to
transformer models. Firstly, with sequential processing, context is only detected
with respect to the previously processed entries. Thus, sequential processing allows
only for interpreting unidirectional context, risking the loss of potentially valuable
relations between entries. Transformer models can detect contexts bidirectionally
by considering all other entries when calculating the attention vectors. Moreover,
each attention vector is independent of the others. This independence means that
the vectors can be calculated concurrently, making better use of hardware capacity
when compared to RNNs. Finally, by considering the entire sequence simultan-
eously, the transformer models do not face the short-term memory issues that
LSTM architectures attempt to solve.

2.7 BERT

Bidirectional Encoder Representation from Transformers, or BERT, is a language
representation model based on the transformer network architecture. It was first
introduced by Devlin et al. (2018) and has since been referenced in more than
20 000 works related to NLP.

As explained in Section 2.6, transformers are sequence-to-sequence models used for
tasks like translating texts from one language to another. The model is largely
divided into two sections, one encoder, and one decoder. The encoder takes as
input a sequence, for instance, a text, and produces embeddings for every word
in the sequence simultaneously. The word embeddings are numerical vectors that
encapsulate the meaning behind the word. As such, two words that have similar
meanings will produce similar word vectors. The decoder takes as input the word
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embeddings from the encoder and produces the output sequence of the model.

In short, the BERT language model is constructed by stacking multiple encoders
from the transformer network architecture. The stack includes either 12 or 24 en-
coders for the base and large BERT models, respectively. Recall that because they
employ self-attention, transformer encoders can capture the context of a sequence
bidirectionally. Because BERT is based on transformer encoders, it is also bidirec-
tional in this regard. Moreover, BERT benefits from how the encoders calculate
each word embedding independently. This independence allows for parallelization
and utilization of hardware to speed up the encoding process.

BERT is publicly available, and a multitude of pre-trained models can be found on
the web. The purpose of pre-training is for the model to understand language and
context. For this, the model is trained on two unsupervised tasks simultaneously,
namely Masked Language Modeling (MLM) and Next Sentence Prediction (NSP).
The goal of MLM is for the model to predict masked tokens in sentences where
parts of the sentence are removed. For instance, when inputting to the model
“Please fill out the [MASK]”, the target output of the model is [MASK]=“blanks”.
In order to make these predictions, BERT learns to interpret bidirectional context
within the sentence. In the case of NSP, the model takes two separate sentences
and predicts whether the second sentence follows the first. Thus, NSP teaches the
model to interpret context both within one sentence and across multiple sentences.
By solving both of these tasks, the resulting model acquires a good understanding
of language and context. Such pre-trained models can produce valuable word
embeddings that include information about the context in which a word appears.
Because of this acquired understanding of context from training on the MLM task,
BERT is well equipped to handle Out of Vocabulary (OOV) words by analyzing
the surrounding text of the word in question. Moreover, because it employs self-
attention through the encoders, BERT models are able to detect the different
meanings behind homonyms. As explained in Section 2.4, homonyms are words
that, while spelled identically, carry different sentiments. An example is the word
“bark”, which carries different meanings in “the bark of the dog” and “the bark
on the tree”. Because of these advantages, one common way of using BERT is to
extract the resulting word embeddings as input for another custom-made model
trained for an NLP-related task.

The pre-trained BERT models are trained using massive unlabeled text datasets.
In the pre-trained state, the models have a good understanding of language and
can provide valuable word embeddings. However, it is not uncommon to employ
a secondary fine-tuning of the model. When fine-tuning, the model is further
trained in a supervised fashion to better fit specific tasks. Pre-trained BERT
models are available in over 100 languages at the time of writing, making BERT
readily available for use even for less common languages. Moreover, an effort has
been made to create a multilingual BERT model, mBERT1, that supports 100
languages, including English, Chinese, Spanish, German, Arabic, and Urdu.

1https://github.com/google-research/bert/blob/master/multilingual.md
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2.8 Evaulation Methods of Models

When attempting to solve a task, it is vital to be able to compare to previous
workds and other solutions. Thus, it is pertinent to use a measurable metric for
evaluating the results. In machine learning, researchers often attempt to solve the
same task while using separate methods. However, comparing the results of this
research is not a straightforward task, as there are many factors to consider. The
researchers may have used different datasets, made dissimilar assumptions, or they
may have used different approaches to defining hate speech, such as using binary
labelling or a more nuanced grading system.

The simplest metric to measure the results of a classification solution is the per-
centage of correctly classified data. However, this metric can be misleading, as
using an unbalanced dataset may skew the results. This scenario can be exempli-
fied by considering a classifier predicting when a game of roulette will land on the
number 0 with the binary set of classes, namely “yes” and “no”. A model that
always predicts “no” might have an accuracy of about 97%. The model, while at
first glance appearing quite successful, has completely failed at achieving its goal.
Because of this, more sophisticated metrics are often used, such as precision, recall,
F1-score and ROC/AUC.

Precision and Recall

Precision and recall are two metrics commonly used for evaluating both informa-
tion retrieval and classification results. The metrics can be used to evaluate the
performance of a model classifying texts as hateful using a test set. The model will
be tested on the test set and return the number of texts classified as hateful. Note
that this is a mix of true and false positives. The precision can then be calculated
as the number of correctly classified texts out of the total number of texts classi-
fied as hateful. Recall denotes the number of correctly classified texts out of the
total number of actually hateful texts (Bengfort et al., 2018). Thus, a strict model
which is very good at classifying the most hateful texts will have high precision
for classifying hateful texts. However, it will have low recall if it does not classify
most of the less obvious comments as hateful.

F1-score

F1-score, also called F-score or F-measure, is used to get a balance between precision
and recall. It is calculated by taking the harmonic mean of precision and recall and,
producing a number between 0 and 1. An F1-score of 0 means that no objects have
been classified correctly, while an F1-score of 1 means that all classified objects are
classified correctly. F1-score is commonly used in the field of text classification as
a metric for evaluating model performance (Baeza-Yates & Ribeiro-Neto, 2011).

ROC/AUC

A receiver operating characteristics (ROC) graph is a visualization of the perform-
ance of a classification (Fawcett, 2006). ROC graphs have been used for evaluating
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machine learning models since 1989 (Spackman, 1989) and have in later years been
discovered as useful metrics when working with unbalanced classes. The ROC
graph is two-dimensional, with the true positive rate on the y-axis and the false
positive rate on the x-axis. The performance will be shown by the ROC curve,
where a random guess would result in a straight diagonal line. Some analysis can
be gathered visually from the graph. However, a single number is easier to com-
pare. The area under the curve (AUC) can be calculated to a number between 0
and 1, where 0 means all classifications are wrong, and one means all classifications
are correct.





CHAPTER3
Related Work

This thesis is concerned with the problem of hate speech detection in Norwegian.
This topic is somewhat of a niche area, as the majority of prior research on the
topic is focused on the English language. In addition to research for English and
Norwegian, it is also pertinent to examine solutions made for different languages
and language agnostic solutions that might contain transferable insights.

The following chapter begins by presenting an overview of well-known methods for
hate speech detection using classification. It continues by describing commonly
used features within hate speech detection. Anomaly detection is then explored
before an in-depth review of the ADAHS approach by Jensen (2020). Finally, a
discussion of the Norwegian dataset used by ADAHS and in this thesis’ experiment
is presented.

As with Chapter 2, the following chapter extends upon the specialization project
preceding this thesis (Wahl & Skj̊astad, 2020). The chapter has been adjusted
where relevant to fit the topics of this thesis.

3.1 Classification Methods

Previous solutions to hate speech detection have historically tended toward training
classifiers in a supervised fashion on manually annotated corpora (Fagni et al., 2019;
Schmidt & Wiegand, 2017). These classification methods are divided mainly into
two groups, namely the classic and deep learning methods (Zhang & Luo, 2019).

The classic methods implement the use of algorithms such as support vector
machines (SVMs), linear regression (LR), näıve Bayes (NB), decision trees (DT),
and Random forests (RF). According to Schmidt and Wiegand (2017), LR and
SVMs are among the most used classical methods.

19
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Waseem and Hovy (2016) used LR when experimenting with a variety of features
in order to detect hate speech. Sharma et al. (2018) published a constructed
dataset fetched from Twitter with multiple annotated classes and applies hate
speech detection on the corpus using SVMs, RFs, and NB, achieving accuracies of
72 to 76%. Burnap and Williams (2015) used SVMs, RFs, and Bayesian LR for
implementing three separate models, in addition to building an ensemble classifier
comprised of a combination of all three. Here, the optimal results we obtained using
the ensemble classifier. Davidson et al. (2017) tests a variety of models, including
LR, näıve Bayes, decision trees, RFs, and linear SVMs. They found LR and linear
SVMs to perform significantly better than the rest, achieving F1-scores up to 0.90.
Furthermore, the classical methods are included as baseline models in works that
explore deep learning models, such as Fagni et al. (2019), Zhang and Luo (2019)
and Del Vigna et al. (2017).

Deep learning methods have become increasingly popular in many recent state-
of-the-art works. As described in Section 2.6, these methods make use of neural
networks in order to automate the process of extracting features from the input.
Frequently used deep learning methods in recent works include CNNs and RNNs,
with LSTM networks being the most widely used variant of the latter. Gambäck
and Sikdar (2017) uses CNN for creating four separate classification models, using
combinations of character-level n-grams and word vectors. Fagni et al. (2019)
employs a set of deep learning models including a CNN in an ensemble, achieving
F1-scores that outperform a set of baseline methods based on SVMs. Similarly,
Zhang and Luo (2019) found that an extended CNN-based model outperformed
baseline SVMs and, indeed, other state-of-the-art solutions at the time with its
highest achieving F1-score at 0.96. Pitsilis et al. (2018) utilize LSTM networks
when exploring user history-based features for detecting hate speech. de Gibert
et al. (2018) implemented classifiers using LSTM, CNN, and SVM, with the LSTM
based classifier achieving the best performance of the three. Furthermore, Del
Vigna et al. (2017) uses LSTM and SVM to create two classifiers that perform
hate speech detection in Italian, observing that both models perform better when
classifying on datasets with a higher inter-annotator agreement.

Overall, the solutions that implement deep learning methods seem to perform bet-
ter than those that use classic methods. However, when exploring the implement-
ation of BERT in classification models, Isaksen and Gambäck (2020) found that
when using an RNN, learning did not improve when compared with a shallow, two-
layered network. Furthermore, the classical methods still perform reasonably well
and are therefore still included in many solutions as baselines for comparatively
evaluating deep learning models.

3.2 Features

One central topic for all text classification problems, and indeed classification in
general, is features. Classifying text in hate speech detection is no exception.
Schmidt and Wiegand (2017) constructed a summary of the state-of-the-art of
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hate speech detection that includes an overview of several types of features that
will be discussed in this section. Furthermore, new features are subject to continu-
ous development and testing in several bodies of work. Several additions to the
summary will therefore also be included where deemed fitting.

Simple Surface Features are features that might be included in all manner of text
classification tasks and include well-known features such as bag-of-words-based
vectors. Many of the proposed solutions to the hate speech detection problem use
either token or character-level n-grams. Waseem and Hovy (2016) found that token
and character n-grams performed well on their own and that performance degraded
when adding additional features, author sex being the exception. However, Nobata
et al. (2016) found that including additional features improved performance, even
though n-grams was the single most predictive feature.

Including character-level n-grams is beneficial over tokens in that they are less
sensitive to spelling variations that occur either by mistake or intentionally. For
example, a malicious user might produce the phrase kill yrslef a$$hole in an attempt
to escape automatic detection of offensive or hateful content. While such spelling
variations pose challenges when using token-leveled approaches, character-leveled
variants are more easily able to detect similarities between the alternative spellings
of a given word (Schmidt & Wiegand, 2017). Nobata et al. (2016) shows that,
when using only token and character-based n-grams as features, the character-based
methods provide the best results. Furthermore, Mehdad and Tetreault (2016) found
character n-grams to be more predictive than word level n-grams in a systematic
comparison between the two.

Other simple surface features that are not based on tokens or characters can also
benefit hate speech detection. Nobata et al. (2016) include features based on the
occurrences of URLs, the inclusion of politeness words and words not recognized
by the English dictionary, capitalization, non-alpha characters, and average length
of words, showing that the inclusion of these features enhances performance.

Word Generalization is a solution to the problem of data sparsity and high di-
mensionality, which is prone to occur when dealing with short texts. The general
concept of word generalization is to establish some connection between similar
words to determine commonalities between a set of words or phrases. Generally,
this is achieved through word clustering or word embeddings.

When employing word clustering, the resulting cluster IDs can be allocated to each
word and added as features. Algorithms for this purpose include Brown Clustering
(Brown & Huntley, 1992), which allocates each word with exactly one cluster, and
Latent Dirichlet Allocation (Blei et al., 2003), which provides a distribution metric
for each word, indicating to which degree the word belongs to each cluster.

In later contributions, however, it has become more popular to use word embed-
dings for similar purposes. Word embeddings are distributed word representations
based on neural networks that present words as n-dimensional vectors. These
vectors can be valuable foundations for features because different words that are
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semantically related may end up having similar vector representations. Popular
word embeddings include Word2Vec (Mikolov et al., 2013), GloVe (Pennington et
al., 2014) and fastText (Mikolov et al., 2017).

Sentiment Analysis is the task of detecting the sentiment polarity of a text. Be-
cause it is reasonable to suggest that hate speech often contains negative sentiment
(Schmidt & Wiegand, 2017), these polarities could be useful to incorporate as
auxiliary features. Gitari et al. (2015) utilize sentiment analysis in multi-step ap-
proaches, wherein the first step includes the use of a classifier to detect negative
polarity. Additionally, Van Hee et al. (2015) presents a single-step solution that
uses the frequency of positive, negative, and neutral words as features.

Lexical Resources are used to benefit from the assumption that hateful messages
might include specific words such as insults, curse words, slurs, or some widely
used word variation. Typically, to obtain these descriptive words, publicly available
lexical resources such as hate speech-related word lists are used. The occurrence of
such words is a popular choice for baseline or feature when attempting to classify
hateful content. Burnap and Williams (2015) and Nobata et al. (2016) both make
use of publicly available lists of hate-speech-related terms in order to improve their
results. However, while being popular inclusions for features, such occurrences
are usually not sufficiently descriptive alone and serve better as additions to more
descriptive features such as word or character-level n-grams, as reflected in the
findings of Nobata et al. (2016).

Linguistic Features make use of syntactic information of language in order to im-
prove results. This syntactic information includes Part-of-speech (POS) tagging
of words and creating typed dependency relationships. POS tagging categorizes
words grammatically to identify words such as verbs, nouns, and adjectives. This
categorization provides additional context that can be used as features. Building
upon POS, Burnap and Williams (2015) found that by employing typed depend-
ency relationships, which are able to capture long-distance connections between
non-consecutive words, the number of false negatives was reduced by 7 percent
over baseline BoW features. Such typed dependencies hold advantages over simple
POS tagging in sentences such as “leave them alone” and “send them away”. The
POS representations are the same in these sentences, but the dependency tuples
(them, home) and (them, alone) are quite different, and the former might be more
common among hateful utterances.

Meta-Information contains data about the context around a given text and can
consequently be a valuable source for features in hate speech detection. An example
of valuable contextual information is user history, such as the user’s sex or the
frequency of which a user has produced hateful utterances in the past. Previous
works that utilize such user history include Pitsilis et al. (2018), Waseem and Hovy
(2016) and Unsv̊ag (2018).

In addition to text, modern social media also includes images, videos, and audio
content. Such content is frequently commented on, and these comments can be
potential sources for hate speech. Therefore, Multi-modal Information about non-
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textual content is also included as feature sources in works such as Zhong et al.
(2016) and Hosseinmardi et al. (2015), who both use information about photos
posted Instagram for this purpose.

Finally, Knowledge-Based Features make use of world knowledge to improve the
understanding of the context surrounding the sentence in question. Dinakar et al.
(2012) utilizes world knowledge in order to perform hate speech detection focusing
on anti-LGBT utterances. However, such approaches require manual coding and
can result in solutions that only work for certain confined areas of hate speech. It is
presumably for these reasons that similar solutions have been infrequent, Dinakar
et al. (2012) being the only one that employs knowledge-based features to the best
of the authors’ knowledge.

3.3 Anomaly Detection

One approach that has recently been employed for detecting hate speech is anomaly
detection. This method is used to detect unexpected, deviating, or rare behavior.
Using anomaly detection for textual data is not a topic that is thoroughly explored.
In the context of hate speech detection, the anomalies would be hateful utterances.
According to Burkal and Veledar (2018), hate speech utterances make up only 10%
of comments on social media and news sites such as Facebook, NRK, and TV2.
Chandola et al. (2009) presents a structured overview of research in the field of
anomaly detection for a variety of domains. This section will introduce different
aspects of anomaly detection presented by this overview and how it could be applied
to hate speech detection.

When working with anomaly detection, it is essential to make the distinction
between noise and anomalies. In the context of hate speech detection, noise could
be a comment which consists of a string of random characters. This comment
would appear very different from regular text and would be of no benefit to ana-
lysis. Another distinction is between novelties and anomalies. Novelty detection
aims to discover previously undetected samples or patterns in the data.

Chandola et al. (2009) establishes some main challenges for general anomaly detec-
tion that also apply to hate speech detection. One of these challenges is concerned
with defining normal behavior. As text is very high dimensional, it is hard to
create objective definitions. The lack of objectivity may cause an increase in false
negatives and false positives. For general anomaly detection, anomalies are often
the result of malicious actions, which in this context translates to users actively
trying to circumvent the detection by masking their hateful comments as normal
ones. Another concern is change over time. Something considered non-hateful now
might be considered hateful in the future due to an event or gradual language
evolution. Additionally, the unavailability of labeled data for semi-supervised and
unsupervised solutions is a valid concern. Finally, how to deal with noise is also a
problem with no straightforward solution which has to be considered.
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3.3.1 Types of Anomalies

Point anomalies, contextual anomalies, and collective anomalies are three classes
of anomalies discussed by Chandola et al. (2009). Any of the three types can be
applied to hate speech detection in texts.

Point anomalies can be defined as data points that are anomalous when compared
to the dataset as a whole. Using point anomalies is the most straightforward
approach and can be applied to hate speech detection by transforming the text
into vectors and comparing for similarity.

Contextual anomalies use the context around a data point to decide if it is an
anomaly or not. This method is commonly used for time-based or spatial data,
which can be applied to social media as posts are usually paired with a timestamp
and sometimes a location. Contextual anomalies can be exemplified by looking
at temperatures throughout the year in Norway. A point with the value of 0°C
would be considered quite normal during the winter months. However, a day with
0°C during the summer would be out of the ordinary and therefore considered a
contextual anomaly. This method is hard to apply to hate speech detection as
topics in social media are all connected. A controversial event in world news might
provoke a lot of hateful comments. Attempting to identify one of these comments
as hateful using contextual anomalies would fail as it would be similar to the other
related comments. This example is a problem that collective anomalies could solve.

Collective anomalies are a group of related data points that are anomalous to
the dataset as a whole. This approach could detect a wave of hateful comments.
However, it would also detect other trends or waves happening.

3.3.2 Data Collection and Learning Supervision

As with other machine learning techniques, a well-built dataset is a necessity when
applying anomaly detection. However, data collection is not as straightforward as
collecting as many data points as possible. It must also be considered if the data
should be labeled or not. Labeling the data is the most costly part of the process.
It could therefore be pertinent to only label some of the data. Anomaly detection
can be performed in a supervised, semi-supervised or unsupervised fashion, each
designed to work with three different types of datasets, respectively.

Unsupervised models use the most basic dataset where the data points are unla-
belled. An unsupervised model has to infer what data points are anomalies within
the dataset with no given knowledge of the data. This technique is used when it is
too costly to label the dataset or when the goal is to explore potential unknown out-
liers or tendencies. Most unsupervised techniques will run in a single iteration over
the dataset and return the detected anomalies. This approach is not particularly
suitable for real-time detection because, for a new data point to be processed, the
entire dataset must be reconsidered. By comparison, a trained model will be able
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to make predictions for new data points without having to reconsider the entire
dataset and is better equipped for real-time scenarios.

Supervised models require that the data points in the dataset are labeled as
either normal or anomalies. Labeling all of the data points can be difficult and
also very time-consuming. Furthermore, as the anomalous data points are rare by
nature, it is hard to gather enough data to represent all the possible anomalous
cases accurately. An interesting idea to combat this is to inject artificial anomalous
data to improve the dataset (Fan et al., 2004).

Semi-supervised models are models that use datasets that are partially labeled.
Traditionally, semi-supervised settings use datasets where the labeled portion of
the data exclusively consists of normal data points. This approach can be useful
where it is easy to identify what normal behavior is, while the anomalous data may
be hard to define due to them being too sparse. It could also be that the anomalies
are dynamic. Another less popular semi-supervised setting includes both normal
anomalies in the labeled portion of the dataset. For either approach, it is crucial
to consider that the unlabelled part of the dataset may be contaminated with
anomalous data (Ruff et al., 2020).

3.3.3 Anomaly Detection for Text

According to Chandola et al. (2009), anomaly detection for text is primarily used
to detect novel topics, events, or news stories in a collection of documents or news
articles. In the context of hate speech detection, this would translate to detecting
the topic of hate speech in a collection of social media comments. In terms of
data, textual anomaly detection faces challenges of sparsity, high dimensionality,
and temporal change. The anomaly detection techniques used for textual data
are comprised of Mixture of Models, Statistical Profiling using Histograms, Sup-
port Vector Machines, Neural Networks, and Clustering Based anomaly detection
(Chandola et al., 2009).

As pointed out by Jensen (2020), the application of anomaly detection to hate
speech detection is a recently conceived approach. Their work is the very first
to conduct in-depth research on the potential for such solutions. In it, a semi-
supervised, deep anomaly detection solution to automatically detect hate speech
in Norwegian is presented. For this, a CNN model is used along with pre-trained
word embeddings based on fastText and GloVe.

Hendrycks et al. (2018) employed semi-supervised deep anomaly detection with
datasets containing images and texts. By training anomaly detection models
against an auxiliary dataset of outliers, the models were able to generalize and
detect unseen anomalies, which was found to improve performance. Ruff et al.
(2019) introduce a new anomaly detection method for text classification employing
the pre-trained word embeddings GloVe, fastText, and BERT. Additionally, an
SVM-based model was used as a baseline. The solution is found to be capable of
learning distinct, diverse contexts from unlabeled text corpora.
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3.4 ADAHS

The master thesis conducted by Jensen (2020) is highly relevant to discuss in depth.
This thesis hypothesizes that the problem of hate speech detection can be looked at
from an anomaly detection perspective and then attempts to prove that hypothesis
correct. Another focus of the thesis is to attempt to solve the problem for Nor-
wegian and possibly in a language-agnostic way. The thesis’ contributions consist
of a literature review, creating a Norwegian dataset, developing an anomaly detec-
tion method for detecting hate speech, and experimentation using the implemented
method.

Background

The goal of the thesis is: “Investigate how to accurately detect hate speech in
text using anomaly detection techniques”. This goal is further split into several
research questions to elaborate on precisely what the author wants to achieve. The
author is not attempting to create a solution that competes with other state-of-
the-art solutions, but rather to explore a new way to solve the problem, laying the
foundation for future research.

Previous methods of hate speech detection using classification methods have been
steadily improving over the years. However, they face some difficult challenges.
These challenges are the basis of motivation for using anomaly detection, as first
suggested by Gröndahl et al. (2018).

Classification methods perform best when given a balanced dataset, meaning that
the classes in the dataset are more or less evenly distributed. For hate speech
detection, that would mean that there would be an equal number of hateful and
non-hateful messages in the dataset. This imbalance is reflected in the real-life
distribution of the two types, where the amount of non-hateful messages greatly
exceeds the number of hateful ones. Creating a balanced dataset would require
either tweaking the collection to gather more hateful data or discarding non-hateful
data to match the number of hateful data. The first suggestion could cause the
method to work with data gathered with that method but would fail with a normal
distribution. The second suggestion is not cost-effective as a large quantity of non-
hateful data would need to be gathered and labeled just to be discarded. While this
is a problem for classification methods, anomaly detection builds on the assumption
that anomalies are underrepresented in the dataset.

Another concern with classification methods is that they assume similarities within
a class. This assumption is a problem for topics such as language where the data is
changing over time, which could mean that a new hateful message might not share
many similarities with historical ones. Anomaly detection does not face this issue
as it compares new data points only to the normal data class. According to Ruff
et al. (2020), the assumption of similarity between data holds for the normal class
but is invalid for anomalies.
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Using machine learning methods generally requires a significant amount of data.
In addition, classification methods require that the data is labeled with the correct
classes. This process of collecting and labeling data is a costly effort. Not having
to label all of the data points or simplifying the labeling process could be highly
beneficial. The thesis suggests using a semi-supervised approach which means that
all of the data would not have to be labeled.

The thesis outlines several challenges with hate speech detection using anomaly
detection. As mentioned in the motivation, the detection of anomalies is based on
dissimilarity to the normal data. This assumption means that the model needs to
have a robust and extensive representation of the normal behavior in the domain.
Achieving such a representation is especially difficult when working with text, as it
is a high-dimensional data type, and it is impossible to represent all permutations
of a textual topic.

The output of the resulting anomaly detection model is binary, where a data point
is identified to be either normal or anomalous. These binary values can be found
by scoring the data on the degree that it is anomalous and selecting all data above
a scoring threshold as anomalous. Selecting this threshold to an appropriate value
is also a challenge.

Solution

A solution is presented in the form of a deep semi-supervised Anomaly Detection
Approach to Hate Speech detection called ADAHS. The ADAHS model is based
on and extends a general semi-supervised anomaly detection method presented by
Ruff et al. (2020) called Deep SAD and the implementation of Context Vector
Data Description (CVDD) by Ruff et al. (2019). The method is rooted in the
assumption that similarity holds between normal data instances but not for an-
omalous instances. The ADAHS solution uses a deep, CNN-based architecture in
addition to pre-trained word embeddings. GloVe was used as the pre-trained word
embeddings for the English dataset, while fastText was used for the Norwegian
dataset.

The English and Norwegian datasets were preprocessed and cleaned to match
the vocabulary of the word embeddings. Methods such as removing punctuation,
adding and removing white spaces where appropriate, reducing all text to lower-
case, and removing unwanted tokens such as names or usernames were utilized. In
addition, a list of common misspellings was created to replace many of the OOV
words with the canonically spelled ones.

Ruff et al. (2020) describes two different settings for semi-supervised anomaly de-
tection. The first using only normal data for training, the second using both labeled
normal and anomaly data for training, ADAHS making use of the latter. As the
number of normal instances greatly outweighs the number of anomalous instances,
most training data will be normal. One of the challenges faced is choosing the ratio
of normal to anomalous instances and what impact the ratio has on the model’s
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performance.

Two baseline methods were selected to assess the performance of the ADAHS
model. As opposed to the semi-supervised setting of ADAHS, the two baseline
methods are unsupervised. The first method is a One-Class SVM model by Schölkopf
et al. (2001) and the second is the CVDD by Ruff et al. (2019). The baseline meth-
ods also use the same word embeddings as ADAHS.

Results

The experimental results of the thesis are given in three parts. The first part
contains the results from using the Norwegian and the English dataset to tune the
parameters, achieving the optimal settings for the rest of the experiments. The
second part is testing with different amounts of labeled data and how pollution
influences the performance. Finally, the third part is using the baseline methods
on the same data to compare the results.

It is underlined that the goal of the experiments is not to find the optimal para-
meters to get the most accurate results but that some tuning may help evaluate
the model. Therefore, two parameters were tuned. The first one was tested on five
different values based around an assumption from Ruff et al. (2020). The second
parameter was tested on three different values.

The experiment using the semi-supervised approach was split into two scenarios.
The first scenario was to test with varying amounts of labeled data. The second
scenario entailed testing with varying amounts of pollution. In this context, pollu-
tion refers to anomalous data that is added to the set of unlabelled data.

The English dataset has six classes of anomalies data: toxic, severe toxic, obscene,
threat, insult, and identity hate. Different experiments are done by adding no
labeled data, labeled normal data, labeled data from one class, or labeled data
from all classes. The experiments are done using both fastText and GloVe. Exper-
imenting with the English dataset reveals that not adding any labeled data results
in poor performance, almost comparable to random guess. The same applies when
adding labeled normal data, which performs even worse using fastText. The scores
are calculated using AUC, and the best performing configurations were using fast-
Text. The best configurations were adding 5% labeled toxic anomalies and when
adding 10% labeled anomalies from all classes.

The Norwegian dataset has five classes of increasing severity of hate speech. The
tests were done with two different splits of the dataset. The first combined classes
4 and 5 as anomalies, only making up 1.84% of the entire dataset. The second
combined classes 3, 4, and 5 as anomalies, making up 5.65% of the dataset. The
inadequate number of anomalies means that the experiment cannot use the desired
5% and 10% added anomalous data. This test shows that the model performs
poorly when no labeled data is added. It also shows that performance slightly
improves with added labeled normal data. The best configurations were using all
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of the available anomaly data.

The pollution test is done by adding 1% or 5% of anomalous data to the training
set. The test on the English dataset generally shows that adding 1% decreases
the performance slightly, and adding 5% decreases the performance slightly more.
The test on the Norwegian dataset shows slight deviations, both increasing and
decreasing performance by adding pollution.

The unsupervised baseline tests were performed using both the English and the
Norwegian datasets. The OC-SVM tests result poorly, with the bests AUC scores
being 67.6% and 50.4% using the English and Norwegian datasets, respectively.
The CVDD test shows slightly improved performance, with the best AUC scores
being 70.9% and 55.2% using the English and Norwegian datasets, respectively.

Discussion

There were a number of general takeaways from the results of the thesis. Firstly, all
methods perform better on the English dataset than the Norwegian dataset. The
methods also generally perform poorly in the unsupervised setting. Including pol-
lution seems to yield slightly worse performance. Lastly, adding labeled anomalous
data to the training set improves performance significantly.

One reason for the Norwegian dataset’s unsatisfactory performance is the size of
the dataset. When using only classes 4 and 5 as anomalies, they make up only
150 comments of the total of 8192 in the test set. This is a very small num-
ber when working with deep learning. With such a small dataset, it is possible
that the deviating results from the pollution tests were caused by random chance.
The author mentions that even with strict annotating guidelines, there was much
inter-annotator disagreement. One suggestion could be to use binary classes when
annotating the dataset. This approach may make it easier for annotators to label
the hateful data, allowing for labeled data to be collected more effectively.

While generally producing better-performing models, the English dataset faces
its own set of challenges. For instance, the dataset contains different classes of
anomalies, which may overlap. This overlap is unfortunate because it is potentially
unclear what classes are actually represented as anomalies.

Comparing the results using the Norwegian and English datasets is difficult for a
number of reasons. Firstly, there are differences associated with the languages that
might impact the results. For instance, it is conceivable that the English pre-trained
models perform better than the Norwegian equivalents. Secondly, the datasets
have different approaches when it comes to the annotation process. Moreover,
the datasets are built from different types of sources. The Norwegian dataset is
gathered from three different social media sites with set topics, while the English
dataset contains more direct hate, profanities, and cursing.

Overall, the thesis shows that anomaly detection has potential in the field of hate
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speech detection. The semi-supervised tests outperform the unsupervised baseline
methods. This is best shown using the English tests, as the Norwegian baseline test
performances barely exceed random guess. There are many potential factors to im-
prove, such as using better datasets, using more advanced word embeddings, tuning
parameters, and testing other anomaly detection techniques. Further experiment-
ation with this approach could potentially lead to state-of-the-art performance.

3.5 Norwegian Corpus

One of the contributions of the thesis described in the last section is a new, annot-
ated Norwegian corpus on which to perform hate speech detection. The corpus was
created in a cooperative effort between Andreassen Svanes and Gunstad (2020) and
Jensen (2020). Corpora are the basis on which the machine learning algorithms are
trained and are subsequently significant for the models’ performances. There are
no current standard corpora for hate speech detection in Norwegian, so it is valu-
able to examine one of the latest contributions in this area. The corpus consists
of 41 891 short texts with accompanying classes as defined by the theses’ multi-
class definitions. The data was sourced from the social media sites Facebook and
Twitter, as well as from comments fetched from the politically themed news site
Resett1.

3.5.1 Sources

To obtain the comments from Resett, a web crawler was used to fetch the data
from the 1000 most recent articles. These were mainly comments on potentially
sensitive subjects such as immigration, environment, and politics. After removing
duplicates, preprocessing, and discarding texts with less than ten characters, the
final contribution to the corpus from Resett was 6000 comments.

The data from Twitter was collected by using the Twitter Search API for de-
velopers. This search query required search words to yield results. Because using
common everyday Norwegian terms resulted in a minuscule amount of hateful data
instances, the final set of search words includes only inflammatory words to increase
the number of non-neutral occurrences in the dataset. After preprocessing, such as
removing duplicates and non-Norwegian occurrences, a total of 24 510 short texts
from Twitter were included in the constructed corpus.

From Facebook, 11 400 comments were fetched and added to the corpus. These
were gathered from public pages of newspapers and public persons. The pages were
manually visited, and heavily debated posts on immigration, environment, and
politics were sought out. Then, the public comments were anonymized, filtered,
and preprocessed before they were put in the final corpus.

1https://www.resett.no/
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3.5.2 Annotation Process

The annotation of the corpus was done manually and on two different occasions.
This is because the part of the corpus sourced from Resett was gathered and an-
notated in another project, preceding the master theses. The annotation was per-
formed jointly by the authors of the theses and external annotators. For both
occasions, the same grading system containing five categories from neutral to hate-
ful was used. The five categories were Hateful, Moderately Hateful, Offensive,
Provocative, and Neutral. The classes are categorized from 1 to 5, reflecting sever-
ity, where Neutral is marked as 1 and Hateful as 5. The annotation process was the
same in both stages and was based on guidelines provided by de Gibert et al. (2018).
These annotation guidelines were set in place such that all annotators would have
the same understanding of hate speech. This included concrete definitions and
examples for each of the classes, which themselves were based on previously formu-
lated definitions provided by works such as Sanguinetti et al. (2018) and Sharma
et al. (2018).

3.5.3 Discussion

The data used to build the corpus was gathered from three different sources, all of
which are different domains with slight differences regarding writing patterns and
composition. As shown by the results of Gröndahl et al. (2018), models tend only to
perform well when tested on the same type of data on which they are trained. This
issue is somewhat mitigated by the fact that all three data sources were annotated
under the same circumstances and by the same annotators. Additionally, including
data from different sources is beneficial for making a less case-specific solution
applicable in a more general sense. However, the unequal distribution of data
provided by each source could be an issue when training the classifier if the data
from each source is sufficiently different from the others. For instance, the portion
of the corpus sourced from Twitter makes up roughly 59% of the entire dataset.
If it is assumed that the distribution of sources similar in the training set and
the structure or content of the Twitter data somehow differs from the rest of the
corpus, the trained model will be better equipped to classify the Twitter data than
the data gathered the other two sources.

As part of the annotation process for the data fetched from Twitter, all tweets
containing phrases such as “+”, “pluss”, “abo” and “DN+” were auto-annotated
as neutral because the authors found that these were often neutral tweets that
were created by newspaper accounts. Although they might have manually sifted
through these tweets after automatically annotating them, this is not made clear.
If this is not the case, it is conceivable that some non-neutral comments were falsely
annotated as neutral because they include a “+” character or the word “pluss”.
This erroneous labeling could contribute to degrading the performance of any model
that is trained using the dataset.

As the Twitter API required the inclusion of a search word, a list of offensive
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words was created to uncover tweets that contained them. However, the inclusion
of offensive words by itself is not an indication of hateful or non-hateful content.
Using only offensive words means that the results exclude all the hateful comments
that do not contain these offensive words. Given that the data fetched from Twitter
makes up 59% of the dataset, and if the same distribution of hate speech is assumed
in the three parts, then most of the hate speech in the dataset will contain offensive
words. This could make it more challenging to detect hate speech from other
sources, which may not contain any offensive words.

3.6 Summary

In this chapter, works related to hate speech detection have been presented. These
make use of both classic and deep learning methods in order to detect hateful con-
tent within texts. Throughout the works, various features have been employed that
are useful for classification tasks. Some of the most important features for classi-
fication, both in general and when considering the hate speech detection problem,
have been introduced and discussed. One more recently emerging technique in the
field of hate speech detection is that of anomaly detection. Using this technique,
recent works have been able to achieve promising results by regarding hate speech
as anomalies. One such solution is presented in Jensen (2020). Along with a new,
annotated corpus in Norwegian for the purpose of hate speech detection, the thesis
presents a novel solution based on anomaly detection called ADAHS. This solu-
tion shows potential for hate speech detection both when tested on English and
Norwegian datasets. Thus, the combination of the background theory presented
in Chapter 2 and the related work discussed in this chapter lay the foundation
for the remainder of this thesis, beginning with the proposed solution presented in
Chapter 4.





CHAPTER4
The BSSAD Solution

This chapter introduces and describes the BERT Semi-Supervised Anomaly Detection
approach to hate speech detection (BSSAD). The approach is built upon and ex-
tends the concepts and architecture of the ADAHS approach, presented in Jensen
(2020), which in turn is an extension of the Deep SAD and Context Vector Data
Description (CVDD) approaches, presented in Ruff et al. (2020) and Ruff et al.
(2019), respectively. The method interprets hate speech detection as an anomaly
detection problem, where hateful content is considered anomalous data and neutral
content is considered normal data. BSSAD uses a pre-trained BERT model to pro-
duce context-dependent word embeddings. It employs a semi-supervised setting in
which the model is trained given an adjustable amount of labeled data. Further-
more, it employs a deep convolutional neural network (CNN) to extract important
features for learning. This chapter presents the preprocessing techniques applied
to the dataset, followed by an outline of the semi-supervised setting. Then, the
architecture and behavior of the proposed model are described in detail. Lastly,
a set of configurable hyperparameters are presented that can be tuned in order to
optimize performance, along with their respective functionalities.

4.1 Preprocessing

For training and testing the BSSAD model, this thesis makes use of the dataset
discussed in Section 3.5, which contains Norwegian short texts. However, unstruc-
tured data such as user-generated text is difficult for machines to comprehend. For
computers to make sense of the data, it is necessary to process the texts and con-
vert them to a format that the computer understands. One such format is word
embeddings, where each word is converted to a set of numerical representations
usable to the computer. Such conversion of texts to make them interpretable to
computers without compromising the contents within is an important task and a
central area within natural language processing (NLP).

33
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Before converting the text in the dataset into word embeddings, preprocessing
techniques are applied to clean the data. Below, these techniques and any others
employed as part of the BSSAD approach are introduced and described.

As part of lexical analysis, the text is lowercased, and all occurrences of ’\n’ are
replaced by whitespace. The whitespace on either end of each text is also removed.
Whitespace is added after ’.’ to avoid occurrences where ’.’ is erroneously followed
by another character. This correction was added after observing many such oc-
currences in the dataset. Not adding the whitespaces would result in an incorrect
concatenation of words when stripping punctuation from the text. An example is
’ [...] her.dette [...]’ that, after removing punctuation, would result in a perceived
single word ’herdette’ instead of the presumably correct ’her dette’. Then, the text
is stripped for punctuation and special characters, not including the Norwegian
characters ’æ’, ’ø’ and ’̊a’. Next, the special tokens ’@user’ and ’navn’, referring to
user entities, are removed. Finally, redundant whitespaces are also removed.

Common misspellings are corrected in the dataset to minimize the amount of out
of vocabulary (OOV) word occurrences. Traditionally, misspellings have been es-
sential to correct when employing pre-trained, static word embeddings with well-
defined word vocabularies. Left untreated, misspellings are equivalent to OOV
words and lose valuable information as static pre-trained models have no corres-
ponding word vectors. BERT models are better equipped to handle OOV words by
inferring context, so misspellings are not equally detrimental. Nevertheless, BERT
models are not immune to this issue, and OOV words might still result in the
loss of valuable information. Because of this, correction of common misspellings is
carried out. The correction process is based on the vocabulary of a pre-trained fast-
Text model for Norwegian Bokmål. Meanwhile, the word embeddings used by the
BSSAD model is produced by a more advanced pre-trained BERT model for Nor-
wegian Bokmål1. While there might be slight differences between the vocabularies
of the fastText and BERT models, the corrections are considered good enough for
use with both.

As mentioned in Section 2.3.1, one central part in text preprocessing is tokeniza-
tion. In this project, words are converted into integer tokens, representing texts
as ordered lists of numbers. For this conversion, a pre-trained BERT tokenizer for
Norwegian Bokm̊al is used. This tokenizer is designed to encode and decode tokens
appropriate as inputs for the pre-trained BERT model for Norwegian Bokmål em-
ployed in the first layer of the BSSAD model to generate word embeddings. Finally,
Section 2.3.1 mentions other common preprocessing techniques such as stopword
elimination, stemming, and keyword selection. Using these techniques removes
parts of the texts that could carry valuable information, which could negatively
affect the training potential of the data. Because of this, such techniques are not
included as part of the data preprocessing.

Before being fed to the model, the data is collected in batches of multiple texts
that are given simultaneously. By default, these batches contain 64 texts, but the
batch size (b) is adjustable. When dividing the data into batches, if there are

1https://huggingface.co/nbailab
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not enough data samples to fill the last of the batches, the final, non-full batch is
dropped. Then, the texts are padded so that all texts within a single batch are of
equal length. This padding is done by concatenating padding tokens at the end
of each text in the batch. After the texts are padded, they are stacked and then
transposed to achieve better performance and integration using CUDA.

4.2 Semi-Supervised Setting

BSSAD utilizes a semi-supervised setting when training the model. To achieve this,
a portion of the data samples supplied to the model is labeled as either normal or
anomalous. The model is given no knowledge of the labels of the remaining data.
The number of labeled samples can be adjusted and is subject to testing as part
of this thesis’ experiments.

For the semi-supervised setting, assume we have n sample-label pairs (x1, l1),
(x2, l2), ..., (xn, ln) with l ∈ {−1, 0,+1} where l = −1 denotes normal data, l = −1
anomalous data and l = 0 represents unlabeled data. The dataset used in this
thesis is fully labeled, and so to achieve such a semi-supervised setting, a large
portion of the labels must be kept inaccessible for the model during training. This
is achieved by setting l = 0 for the relevant samples before being used by the
model. However, the original labeling of the dataset is kept in order to evaluate
the model’s performance.

The amount of labeled normal and anomalous data samples is denoted by γa, γn,
and γl. Here, γa refers to labeled anomalous samples and γn to labeled normal
samples. Additionally, γl describes both labeled anomalous and normal samples in
the case where they have equal values. That is, whenever γl = k, it follows that
γa = γn = k. The values of γa and γn describe the desired percentage of labeled
anomalous and normal samples in relation to the entire dataset.

It is not always the case that there are enough samples to meet the desired ratio.
In accordance with the nature of anomaly detection problems, this issue mainly
concerns anomalous data. In such situations, the solution is limited to provide the
number of labeled anomalies available.

4.3 Model Architecture

Below is an overview of the architecture of the proposed BSSAD solution. BSSAD
implements a modified iteration of the ADAHS solution presented by Jensen (2020),
with the inclusion of BERT embeddings. ADAHS, in turn, was an iteration based
on Deep SAD, presented by Ruff et al. (2020) and CVDD, presented by Ruff et al.
(2019). As such, the BSSAD architecture shares commonalities with CVDD, Deep
SAD, and ADAHS.
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Figure 4.1: Overview of the BSSAD architecture

Fundamentally, the BSSAD solution can be divided into two main segments; one
embedding segment and one convolutional neural network (CNN) segment. The
embedding segment takes the input of the model, which is the cleaned and token-
ized batches of texts described in 4.1, and generates word embeddings using a
pre-trained BERT model. The second segment includes a CNN that performs con-
volution operations on the stacked word embeddings to extrapolate features and
patterns that can be used for learning. Figure Figure 4.1 shows an overview of
the architecture of the BSSAD solution, and depicts the architecture’s two main
sections.

The BSSAD model employs a CNN and consists of a collection of layers. The word
embeddings are produced in the first layer of the network and subsequently fed into
a convolutional layer. This layer performs convolution operations on the stacked
embeddings. Next, in a linear activation layer, the rectified linear unit (ReLu)
activation function is applied to the output of the convolutional layer. Then, max
pooling is used to reduce dimensionality in a pooling layer. A dropout layer is
implemented for increased robustness before a final, fully connected dense layer
applies linear transformation to produce the output of the model.

The first step for the model is to convert the cleaned, tokenized, and batched
text into word embeddings. This conversion is accomplished in the first layer of
the network and is imperative for the model’s ability to learn and perform well.
BSSAD supports the use of NoTraM2, which offers pre-trained BERT models for
Norwegian Bokm̊al. Specifically, BSSAD employs the NB-BERT-base3 model, which
is trained on a vast collection of Norwegian text from the last two centuries. The
output of the last hidden state of this model is the word embeddings, which are
extracted for further use in the BSSAD model. These word embeddings have a
dimensionality of 768× sentence length. Recall from Section 4.1 that the sentence
length is fixed for each batch but may vary between different batches.

The convolution operations are performed by running filters over matrices in search
of internal patterns, as described in 2.6. Convolution is commonly used on images,
where the matrix is based on the values of each pixel. When applied in NLP, the

2https://github.com/NBAiLab/notram
3https://huggingface.co/NbAiLab/nb-bert-base
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matrices can be created by stacking the word embeddings for each word in a text.
Given the word length lw and the word embedding dimensionality de, stacking the
word embeddings results in a lw × de matrix. The filters that are run over the
matrices can have variable sizes. We denote the filter size wf × hf , where wf and
hf is the width and height of the filter, respectively. When applied to images,
it is common for both wf and hf to be of variable sizes. In NLP, however, the
filters usually employs wf = de, and varies hf . As mentioned above, in the case
of BSSAD, de = 768. In practice, this means that the filters consider the entire
word embedding vectors of hf words, which again can be described as considering
the word embeddings of the hf -grams in the text. Recall from 2.3.1 that the n-
grams of a given text are the collection of the n consecutive words in said text.
By applying filters that run over multiple words simultaneously, the convolution
operation is able to capture some context to the words being analyzed, making it
easier to reflect content and meaning in the outputs.

The convolution process can simultaneously employ several filters of different sizes
to analyze different regions of the input text. The amount and sizes of these filters
are determined on a configurable set of hfs, denoted as the filter set (f). By default,
f = [1, 2, 3, 4, 5].

For each hf if the filter set, 100 filters of size hf × 768 are used in the convolution
operations to pick up complimentary features from the same regions in the matrices.

The output of the convolutional layer is fed to the linear activation layer. Here,
the ReLu activation function is applied to the output of the convolutional layer,
and the result is passed to the pooling layer. In this layer, max pooling is used
to extract the highest value for each feature. This reduces the dimensionality
of the output from the linear activation layer while retaining the highest valued
features. The results of the max-pooling are then concatenated to a feature vector.
The feature vector is fed to a dropout layer to prevent the model from overfitting
and increase robustness. Here, dropout is performed by randomly dropping nodes
during training with a probability p of p = 0.50. By employing dropout, overfitting
is avoided by making sure that the model is resilient to the loss of any individual
piece of data (Nielsen, 2015).

Lastly, the output vector of the dropout layer is fed to the final, fully connected
layer. Here, linear transformation is applied to the vector to reduce its dimension-
ality to a representation dimension (d). The resulting vector is the model’s final
output, so the value of d dictates the dimensionality of the output space. While
being adjustable, the default value for d is d = 32.

The output vector is used to calculate the anomaly score of the input text. This
is done by defining a d-dimensional hypersphere as the mean from the previously
encountered output vectors, and calculating the distance between this sphere and
the new output vector from the model. The distance between the hypersphere
and the output vector is denoted as the text’s anomaly score. This method builds
on the assumption that the distribution of the normal texts is uniform, whereas
hateful texts are considered anomalies that do not conform to this distribution and
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will thus generally lie further away from the hypersphere.

4.4 Optimisation

The BSSAD model has a set of configurable hyperparameters that can be tuned
to optimize its performance. These hyperparameters include learning rate (lr),
eta (η), weight decay (λ), batch size (b), representational dimension of the output
space (d), and filter set (f). Below, each hyperparameter is explained in terms of
its impact on performance and functionality.

Learning rate: The learning rate (lr) is a hyperparameter that influences how
the model adjusts during training. When the loss is calculated for a given input to
the model, the gradient of that loss is subsequently also calculated. The gradients
are then multiplied by lr, resulting in the value that the weights are subtracted
by. Thus, lr dictates how much impact the loss value has on the model, or in
other terms, how much the model learns from each input. Higher values for lr
will cause the model to make larger adjustments, risking perpetual over adjusting
that prevents the model from performing optimally. Conversely, lower values for
lr will cause the model to adjust less, requiring longer training to achieve optimal
performance.

Eta: The hyperparameter eta is proprietary to the Deep SAD solution and its
iterations and was introduced by Ruff et al. (2020). The purpose of eta is to
adjust how the model weighs labeled normal and anomalous data provided during
training. When eta = 1, the model weighs the normal and anomalous data equally.
When eta > 1, the anomalous data is weighed more. Conversely, when eta < 1,
the labeled normal data outweighs the anomalous data.

Weight decay: L2 regularisation, or weight decay, is tuned using different values
for λ. Weight decay is important to optimize in order to prevent overfitting. In
short, overfitting occurs when the model specializes too much on the training data,
meaning it performs well on that particular data but is unable to generalize enough
to perform well on previously unseen data. Introducing weight decay prevents
overfitting by penalizing higher complexity in the model. This is done by adding
to the loss function an additional term dependent on the size of the weights. In
turn, this incentivizes the model to reduce weights, reducing the impact of some
layers, thus reducing the overall complexity of the model and consequently its
tendency to overfit the training data.

Batch size: The batch size b is an integer value that dictates how many comments
are processed by the network in a single pass-through. Choosing a larger batch size
allows the machine to utilize more of its capacity and can shorten the experiments’
running time. However, the benefits of choosing a high batch size are limited to
the capabilities of the computer. Moreover, Even if the computer can handle large
batches, the quality of the model may degrade as the batch size increases.
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Representation dimension: The representation dimension d dictates the size
of the output vector of the model. Larger values for d allows for representing
more complex information in the vector. However, for exceedingly high values of d,
there is a risk of making the output vector too complex, resulting in the inclusion of
obscurities and noise. Conversely, having a too low value for d means complex but
potentially valuable information cannot be represented. Therefore, an appropriate
middle ground should be found through tuning.

Filter set: As explained in Section 4.3, the filter set f is a list of integers that
dictate the amount and sizes of filters to be used in the convolutional layer. Each
integer in the list represents the number of consecutive words, or n-grams, that is
being processed by the corresponding filter. As an example, using f = {1, 2, 3}
would result in filters that consider 1-grams, 2-grams, and 3-grams, respectively.
For each increase of f , another filter is added with greater size and complexity,
along with a higher computational cost. Larger filters are able to capture the
context over multiple words, making them beneficial for longer texts. However, the
increase in size means that the filter can detect obscure and specific patterns that
may not be useful for the model’s purpose, decreasing its performance. On the
opposite end, when using only small n-grams, some of the contextual meaning in
the text may be discarded as the n-grams only contain shallow information.





CHAPTER5
Experiment and Results

The following chapter consists of three parts. First, the experiment plan is presen-
ted, explaining the goal of the experiments and its overall structure. Then, the
experimental setup is introduced, explaining the base configurations and the data
distribution of the dataset. The setup includes what values will be tested and why
they were chosen. The configurations of all of the tests are provided for reprodu-
cibility and further evaluation of the results. The final part of the chapter presents
the results of the experiments.

5.1 Experiment Plan

The experiment section of this thesis consists of the tests made to the solution after
it was initially realized. In other words, the trial and error part of implementing
BERT into the preceding solution will not be part of the results. After BERT was
successfully implemented, it was essential to create a structured and scientifically
supported plan moving forward. The plan is vital to stay on track and progress
toward answering the research questions in the allotted time frame. The running
time of the experiments was also an important consideration. Each test run took
several hours, and the results were usually not available before the following work-
ing day. Therefore, running incorrect or irrelevant tests would cost crucial time.
Another goal of the plan was to make the results be presentable and provide a
clear understanding of the path from beginning to end, underlining why choices
were made, where values were gathered and what can be learned from the results.

The experiment was performed as an exploratory study investigating how an initial
implementation of BERT would perform and the impact of hyperparameter tuning
on the performance. When tuning the hyperparameters, it was necessary to identify
logical and relevant values to test. Thus, the values were chosen based on previously
applied ones from other sources.
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It was crucial to isolate the setup variations between runs to the values being eval-
uated throughout the testing. Hence, when examining different hyperparameters
and configurations, an effort was made to keep the model consistent in all other
respects. For this, a set of base configurations was defined. Instead of adjusting the
configurations iteratively after every hyperparameter test, the base configurations
were used throughout while only changing the value of the tested hyperparameter.
The exception is in the third and final stage of the tests, wherein the optimal
configurations from previous stages are used. This is done to more accurately com-
pare the model’s performance to preceding solutions while also testing the model’s
capabilities under optimal conditions.

Performing the hyperparameter tuning using base configurations was a compromise
we had to make to preserve the experiment’s integrity. One preferred approach
would be to implement a grid search to identify the optimal parameters by iterating
over possible combinations within a defined range for each parameter. However,
given the temporal restrictions and the fact that each test run took several hours,
such a setup was deemed unfeasible for this thesis.

When the hyperparameters were satisfactorily tuned, the goal was to evaluate
the model’s performance while providing various amounts of labeled anomaly and
normal data. The reasoning behind this is twofold: firstly, it is done in order to be
able to compare more results with ADAHS, and secondly, to identify the relative
importance between the inclusions of known/unknown anomaly/normal data in the
training of the model.

5.2 Experiment Setup

In this section, the details of the experiments are presented, including which hy-
perparameters and configurations were evaluated. Additionally, the background
for choosing the tested values is provided. Thus, the following paragraphs serve as
rationales for the test configurations and guides for reproducing the experiments.

5.2.1 Data Distribution

In accordance with the research goal, the model’s performance was evaluated on
Norwegian short texts. Thus, all experiments were performed using the Norwegian
dataset presented in Jensen (2020) and Andreassen Svanes and Gunstad (2020).
The text preprocessing methods described in Section 4.1 were applied to the dataset
prior to use in the experiments. The resulting distribution of comments after
preprocessing and selection is presented in Table 5.1.

When running the experiments, anomalies and non-anomalies are defined through
a configurable collection of categories. Specifically, one anomaly class and one nor-
mal class are constructed by choosing which of the categories in the dataset make
up each respective class. These two classes are then used as sources for sampling
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Table 5.1: Distribution of comments

Category Samples Percentage

1 - Neutral 34083 82.8%
2 - Provocative 4734 11.5%
3 - Offensive 1563 3.8%
4 - Moderately hateful 509 1.2%
5 - Hateful 250 0.6%

Total 41139 100%

labeled data in the learning phase and evaluating the model’s performance regard-
ing detecting anomalies. We denote here that AC and NC represent the anomaly
class and the normal class, respectively. Furthermore, we make use of notations on
the form of AC = {4, 5} to express that the anomaly class contains categories 4 and
5. According to Jensen (2020), the inter-annotator agreement scores for the data-
set used in the experiments indicate that annotators have difficulty agreeing on the
annotation of categories {4, 5}. Therefore, one test was set up having AC = {4, 5}
and NC = {1, 2, 3}. Furthermore, many hate speech detection solutions struggle
to separate hateful and offensive utterances (Jensen, 2020). Because of this, an
additional test was set up having AC = {3, 4, 5} and NC = {1, 2}. Finally, for
exploratory purposes, it was interesting to investigate the model’s performance
when all non-neutral categories were included as anomalies. Thus, a final test was
planned having AC = {2, 3, 4, 5} and NC = {1}.

The results of the tests, shown in Table 5.6, indicate that having AC = {4, 5}
yielded the best performance. Thus, this was used in the base configurations men-
tioned in Section 5.2.2. In the final phase of the experiments, described in Sec-
tion 5.2.6, a more comprehensive examination was performed having AC = {4, 5}
and AC = {3, 4, 5}. Here, for each configuration of AC, the model’s performance
is tested when varying the number of labeled samples of AC and NC provided in
the training phase.

5.2.2 Base Configurations

Initially, the experiment was run using the default settings of ADAHS. These set-
tings included the following hyperparameters and configurations: Learning rate
lr = 1e−5, eta η = 10, weight decay λ = 1e−6, batch size b = 64, representation
dimention d = 32, and filter set f = {1, 2, 3, 4, 5}. The default supervised settings
include (γn, γa) = (0.10, 0.10), and having the anomaly class consisting of categor-
ies {4,5}. In order to ensure reproducability and consistency, the same seed was
used in all experiments, arbitrarily set to 1337. Furthermore, in all experiments,
the model is trained over 100 epochs. These configurations were regarded as base
configurations and were employed in all tests except the semi-supervised setting
tests.
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5.2.3 Experiment Phases

The experiment to be conducted is split into three phases, with varying goals.
The first phase aims to test the initial configuration of the proposed model. In
the second phase, a range of values are tested for the hyperparameters to find
an optimized configuration. The third test aims to measure the impact of the
distribution of labeled normal and anomaly data to the model’s training. This
third and final phase is run using the optimized configurations discovered from
phase 2.

5.2.4 Phase 1 - BERT Embeddings

The first part of the experiment is the first successful run with BERT implemented,
as explained in Section 5.1. This test serves as a base test to identify the viability
of relying on BERT as word embeddings in the context of hate speech detection
in Norwegian. The test was run in three configurations, as reflected in Table 5.2.
In the tests, the anomaly class consisted of categories {2, 3, 4, 5}, {3, 4, 5}, and
{4, 5}, respectively. The reasoning for these configurations are as stated above in
Section 5.2.1. In all other regards, the experiments were similar, and all employed
the base configurations described in Section 5.2.2.

Table 5.2: BERT Embedding setup

Anomaly Classes

{2, 3, 4, 5}
{3, 4, 5}
{4, 5}

5.2.5 Phase 2 - Hyperparameter Tuning

In this second phase of experiments, configurations and hyperparameters were
tuned and tested in parallel. These parameters were all tested using the base
configurations. Testing all possible combinations of the chosen parameter value
ranges would ensure optimal performance. However, as mentioned in Section 5.1,
such a comprehensive testing phase was considered infeasible due to the time re-
strictions of this thesis. Instead, running the tests in parallel allowed testing a
reasonably sized set of parameters, providing a best-effort performance increase
for the BSSAD model. The parameters tested in parallel included eta η, weight
decay λ, batch size b, learning rate lr, representational dimension of the output
space d and filter sets f . The following paragraphs contain the setup and short
explanations for the chosen values for each of the tests.
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Learning Rate

One effective way to explore different values for learning rate lr is by annealing, a
technique proposed by Smith (2017). This method relies on periodically altering
lr over a run of several epochs. One variation on this is step decay, in which the
learning rate is decreased by some factor Γ every number of epochs. For each
epoch, the training loss can be calculated and plotted in a graph that can later be
analyzed to locate areas of good learning rate values.

The first part of the lr test utilizes a learning rate scheduler to perform learning
rate annealing. The test has an initial learning rate of 1e−8 and a step value of 20.
A step value of 20 means that the learning rate will be changed every 20 epochs,
where the amount of change is decided by the gamma value Γ. Γ is what the
learning rate will be multiplied by after every 20 epochs. This test uses Γ = 10.
This means the test will run with lr = 1e−8 for the first 20 epochs, then lr = 1e−7
for the next 20 epochs, then continue this process until lr = 1e−4 for the last 20
epochs. The resulting training loss curve can be visually examined and used to
identify where the training loss decreases the most. Such a decrease may indicate
potentially good learning rate values.

The second part of the test is an experiment using static learning rate values.
Following the previous test, the resulting graph showed promising results for lr ≈
1e−5. A range of static values around the promising value was selected: lr ∈
{1e−7, 1e−6, 1e−5, 1e−4, 1e−3}. Goodfellow et al. (2016) explains that selecting
a learning rate too low will cause slow learning and possibly lead to converging
towards a high value of training loss. Selecting a large value may lead to a feedback
loop where the weights may continuously increase to a numerical overflow. After
executing the tests with static lr values, the resulting loss curves and AUC scores
were analyzed to find a good value for lr.

Finally, Jensen (2020) achieved improved results by employing a two-phase learning
rate setup. This setup involves defining a searching phase spanning the first 50
epochs, having lr = 1e−4, and a fine-tuning phase in the final 50 epochs having
lr = 1e−5. Building on this concept, an additional two tests were designed with
a similar setup. One of the two employed lr = 1e−4 in the searching phase and
lr = 1e−5 in the fine-tuning phase. The other used lr = 1e−5 in the searching
phase and lr = 1e−6 in the fine-tuning phase. Both cases considered the first 50
epochs to the the searching phase and the last 50 to be the fine-tuning phase. The
different testing configurations for lr are reflected in Table 5.3.

Eta

As descriced in Section 4.4, the hyperparameter η dictates how the labeled normal
and anomalous data is weighed during training. The values tested for η were
chosen based on the earlier implementations of the Deep SAD model, including
ADAHS. Ruff et al. (2020) used η ∈ {0.01, 0.1, 1, 10, 100}, while Jensen (2020)
used η ∈ {0.01, 1, 5, 10}. Consequently, η ∈ {0.1, 1, 5, 10, 50, 100} were initially
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Table 5.3: Learning rate setup

Starting lr Γ Step size Ending lr

Annealing 1e−8 10 20 1e−3

Static lr

1e−7 − − 1e−7

1e−6 − − 1e−6

1e−5 − − 1e−5

1e−4 − − 1e−4

1e−3 − − 1e−3

Two-phase lr schedule
1e−4 0.1 50 1e−5

1e−5 0.1 50 1e−6

used as values for testing η as they are within the range of previous tests. After
these values were tested, tendencies emerged, indicating that potentially better-
performing alternatives existed outside the chosen set of values. Because of this,
further exploration was conducted. For the following test phase, the values η ∈
{20, 30, 40, 60, 70, 80, 90, 250, 500, 1000} were chosen. The second phase ensured
that more potentially optimal values would be tested. An overview of the tests for
η can be seen in Table 5.4.

Weight decay

When testing different values for λ, used in L2 regularisation, or weight decay,
a similar approach was adopted. The selected values to test were based on the
previous implementations of Deep SAD, with a few additional ones as supplement-
ation. When running their experiments on Deep SAD, Ruff et al. (2020) employed
λ = 1e−6. Jensen (2020) used λ ∈ {0.5e−4, 0.5e−5, 0.5e−6}, emphasizing that
testing only these three values does not result in a sufficiently comprehensive ex-
ploration. Based on this, λ ∈ {1, 1e−1, 1e−2, 1e−3, 1e−4, 1e−5, 1e−6, 1e−7} were
all tested. An overview of the tests for λ can be seen in Table 5.4.

Batch size

Furthermore, different values for batch size b were tested for potential enhancements
in run times and performance. For this configuration, relatively little exploratory
work seems to have taken place with previous implementations. Jensen (2020)
uses b = 64 in all presented experiments. In their work, they mention that tests
were ran using b = 300 to match the dimensions of the applied word embeddings.
Though this decreased performance, further exploration of different batch sizes is
encouraged. Conversely, Ruff et al. (2020) does not explicitly state the batch size
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used in their experiments. However, the default value for b is 128, provided in the
code for the model described in their work. Subsequently, b ∈ {16, 32, 64, 128} were
chosen for testing. An overview of the tests for b can be seen in Table 5.4.

Representation dimension

When testing representation dimension of the output space d, the relatively broad
set of values d ∈ {16, 32, 64, 128, 256, 512, 1024} were considered. The difference
in increments was chosen to fully map the relatively little explored lower values
in the previous implementations of Deep SAD. Jensen (2020) uses d = 32 in all
experiments, while Ruff et al. (2020) tests d ∈ {24, ..., 29}. Interestingly, the results
of the latter show tendencies toward better performance converging to an upper
bound with higher values for d, incentivizing further exploration of even higher
values. An overview of the tests for d can be seen in Table 5.4.

Filter set

Different sets of filters to be used in the convolutional layer of the network were
also tested. As explained in Section 4.3, each filter set f represents filters of
size n × s where n ∈ f and s is equal to the word embedding vector dimen-
sionality. Thus, when employing BERT embeddings, s = 768. For the exper-
iments, f = {1, 2, 3}, f = {1, 2, 3, 4}, f = {1, 2, 3, 4, 5}, f = {1, 2, 3, 4, 5, 6},
f = {1, 2, 3, 4, 5, 6, 7} and f = {1, 2, 3, 4, 5, 6, 7, 8} were used. For comparison,
Jensen (2020) uses f = {1, 2, 3, 4, 5} in all experiments, encouraging extended test-
ing in future implementations. Ruff et al. (2020) uses different approaches to filters
depending on which network is chosen. For the networks that make use of convo-
lution, varying numbers of 5 × 5 filters are employed. However, these values are
comparatively less relevant for this thesis as Deep SAD is not NLP-focused, and
the networks are made with other data formats in mind, such as images. Further-
more, BSSAD implements a modified version of the ADAHS network presented by
Jensen (2020). An overview of the tests for f can be seen in Table 5.4.

5.2.6 Phase 3 - Semi-Supervised Setting

In the final phase of testing, a set of different scenarios were examined with different
semi-supervised settings. This phase entailed measuring the model’s performance
when providing different amounts of labeled normal and anomalous data and com-
binations of the two in the training phase. It was essential to be able to compare
the performance of this model to previous implementations. As such, the setup of
the semi-supervised tests was similar to the one presented by Jensen (2020), with a
few additional values added for exploration. The tests in this third and final phase
were performed using the optimal settings discovered in previous phases.

As described in Section 5.2.1, the tests consider two different scenarios with re-
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Table 5.4: Hyperparameter setup

Hyperparameters η λ b d f

Values

0.1 1 16 16 {1, 2, 3}
1 1e−1 32 32 {1, 2, 3, 4}
5 1e−2 64 64 {1, 2, 3, 4, 5}
10 1e−3 128 128 {1, 2, 3, 4, 5, 6}
20 1e−4 256 {1, 2, 3, 4, 5, 6, 7}
30 1e−5 512 {1, 2, 3, 4, 5, 6, 7, 8}
40 1e−6 1024

50 1e−7

60

70

80

90

100

250

500

1000

gards to defining the normal and anomaly classes. In one case, AC = {4, 5},
while in the other, AC = {3, 4, 5}. In both cases, the desired ratio of labeled an-
omalies γa is drawn randomly from these categories. Likewise, the desired ratio
of the labeled normal samples γn are drawn randomly from the remaining cat-
egories {1, 2} and {1, 2, 3}, respectively. The values for (γn, γa) used during the
tests are (γn, γa) ∈ {(0.00, 0.00), (0.10, 0.00), (0.20, 0.00), (0.00, 0.01), (0.00, 0.02),
(0.00, 0.04), (0.00, 0.06)}. Additionally, γl ∈ {0.01, 0.02, 0.04, 0.06, 0.10} were also
employed during testing. Recall that whenever a value is set for γl, it follows
that γn = γa = γl, as explained in Section 4.2. In the cases where (γn, γa) ∈
{(0.00, 0.00), (0.10, 0.00), (0.20, 0.00)}, no labeled anomalies are provided. Moreover,
when (γn, γa) = {(0.00, 0.00)}, hereafter named the base scenario, no labeled data
is provided to the model whatsoever. An overview of the test configurations are
provided in Table 5.5.

While γa denotes the desirable ratio of labeled anomalies, the actual ratio achievable
is specific to each scenario due to the different number of anomalies available.
The total amount of data samples in categories {4, 5} make up less than 2% of
the dataset. For the scenario where AC = {4, 5}, the actual value of labeled
anomalies, therefore, has an upper bound of 1.84%. Having γa > 0.0184 will
result in all anomalies fed to the model during training being labeled. Similarly,
when AC = {3, 4, 5}, an upper bound of γa exists at 5.65% for the same reason.
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Theoretically, the same applies to the labeled normal samples. However, since the
normal data by definition constitutes most of the dataset, the issue has no practical
importance when including smaller portions of labeled data.

Table 5.5: Semi-supervised setting setup

Anomaly Classes γn γa

−
− −

10% −
20% −

{4, 5}

− 1%
− 2%
1% 1%
2% 2%
4% 4%
6% 6%
10% 10%

{3, 4, 5}

− 1%
− 2%
− 4%
− 6%
1% 1%
2% 2%
4% 4%
6% 6%
10% 10%

5.2.7 Evaluation Metrics

For each configuration of the model, it is first trained using a portion of the dataset
and then tested using another, smaller portion, where metrics are gathered during
both processes. Validation loss, training loss, and ROC/AUC scores are calculated
for each epoch and stored for analysis during the training. These scores are later
plotted in graphs for visual representations that can be analyzed to rate the model’s
change in performance throughout the training process.

It is advantageous to use a standard metric to evaluate as objectively as possible.
The standard metric in the field is AUC, and so this is the main metric used to
evaluate the model’s performance in this experiment. As such, the AUC score is
considered for all experiments. However, some hyperparameters seek to increase
performance that is not necessarily reflected in the AUC score. For instance, the
purpose of increasing b is to reduce the run time of the experiment. Because of
this, the run times for the experiments should also be evaluated when testing b.
Similarly, for lr and wd, it is also necessary to consider the loss curves during
training.
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5.3 Results

The results of the experiments outlined in section Section 5.2 are presented in
this section. Each test presents noteworthy values and observable trends. For
the hyperparameter tuning phase, the best performing or most suitable value is
outlined. The outlined values are the ones used as the configuration for the semi-
supervised setting tests. The semi-supervised setting phase shows how the model
performs using different amounts of added labeled data.

5.3.1 Phase 1 - BERT Embeddings

The first test of the experiment is to test the BERT embedding implementation
using the base configurations as defined in Section 5.2.2. The supervised setting
for these three tests was using 10% normal and 10% anomalies. However, as dis-
cussed, there is not enough anomaly data when using classes {4, 5} and {3, 4, 5}
as anomalies. For AC = {4, 5} the percentage of known anomalies is 1.84%, for
AC = {3, 4, 5} it is 5.65% and 10% for AC = {2, 3, 4, 5}.

The goal of this test was to verify the initial viability of using BERT. The results
in Table 5.6 show that all three configurations achieved an AUC score above the
best AUC score achieved using ADAHS on the Norwegian dataset. The best AUC
achieved using ADAHS was 75.3% with {4, 5} as anomalies and 77.3% with {3, 4, 5}
as anomalies (Jensen, 2020). However, the performance when using BSSAD im-
proves with anomalies selected from the more severe categories. The AC = {4, 5}
test has 2.34% higher AUC than AC = {3, 4, 5} which in turn has 5.5% higher
AUC than AC = {2, 3, 4, 5}. As AC = {4, 5} has the best result, it was chosen to
be used during the parameter tuning in the next phase.

Table 5.6: BERT Embedding results (AUC score in %)

Anomaly Classes AUC

{2, 3, 4, 5} 81.23
{3, 4, 5} 86.73
{4, 5} 89.07

5.3.2 Phase 2 - Hyperparameter Tuning

This test consists of tuning the parameters: learning rate lr, eta η, weight decay
λ, batch size b, representational dimension of the output space d and filter sets f .
As described in Section 5.2.5, the parameters are tested independently using the
base configurations.
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Learning rate

Figure 5.1a and Figure 5.1b display the model loss and AUC per epoch for the
learning rate (lr) annealing test. Looking at the training loss in Figure 5.1a the
model is learning slowly during the first 40 epochs before it drops substantially
between epoch 40 and 60, where the learning rate is 1e−6. After epoch 60, the
training loss drops again before beginning to stabilize at a low number. In Fig-
ure 5.1b the AUC starts climbing between epoch 40 and 60. However, the main
increase happens between epoch 60 and 80, where the learning rate is 1e−5. This
test shows that a potentially optimal learning rate might be around 1e−5 and
1e−6.

The results of the static learning rate tests are displayed in Table 5.7 and Figure 5.2.
The highest AUC score is 89.07%, and is achieved using lr = 1e−5. The lr = 1e−7
and lr = 1e−6 configurations perform poorly, a fact that is also reflected in the
loss curves, where the train loss does not drop rapidly enough. The lr = 1e−4 and
lr = 1e−3 configurations almost perform comparably to lr = 1e−5, however the
training loss curves are non-optimal with a large amount of noise. The lr = 1e−5
configuration is the clear best performing configuration.

The last two entries in Table 5.7 display the results of the two-phase learning rate
tests. The test where lr begins with lr = 1e−5 and ends with lr = 1e−6 performed
the worst of all learning rate tests. The test that starts with lr = 1e−4 performed
better; however still lower than three of the static learning rate tests. Thus, the
static configuration of lr = 1e−5 was employed for the semi-supervised setting
tests in Section 5.3.3.

(a) Loss curve (b) Validation AUC curve

Figure 5.1: Loss curve and AUC curve per epoch for lr annealing test, with starting
learning rate = 1e−8, Γ = 10 and Step = 20
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(a) Loss curve for lr = 1e−7 (b) Loss curve for lr = 1e−6

(c) Loss curve for lr = 1e−5 (d) Loss curve for lr = 1e−4

(e) Loss curve for lr = 1e−3

Figure 5.2: Loss curves for static learning rate tests
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Table 5.7: Learning rate results (AUC score in %)

Starting rate Γ Step Ending rate AUC

Annealing 1e−8 10 20 1e−4 −

Static lr

1e−7 − − 1e−7 52.14
1e−6 − − 1e−6 45.55
1e−5 − − 1e−5 89.07
1e−4 − − 1e−4 86.12
1e−3 − − 1e−3 85.57

Two-phase lr schedule
1e−4 0.1 50 1e−5 80.34
1e−5 0.1 50 1e−6 33.18

Eta

Table 5.8 displays the result of testing different values for eta (η). Recall from
Section 4.4 that η adjusts the weighing of labeled normal and anomalous data
during training. The general trend of the results show that low values for η perform
poorly up to η = 10. The tests run with η ≥ 10 all score close to AUC = 90%, and
there does not seem to be any sort of trend. The best performing configuration is
η = 500 with AUC = 91.05%. The second best performing configuration is η = 50
with AUC = 90.91%. As η is a hyperparameter introduced by Ruff et al. (2020)
using values η ∈ {10−2, ..., 102}, it may be beneficial to use a value for η within
that range for future tests. Therefore, η = 50 is selected as the value to be used in
the semi-supervised setting tests in Section 5.3.3.

Table 5.8: Hyperparameter η results (AUC score in %)

η AUC

0.1 48.69
1 22.64
5 61.06
10 89.07
20 90.45
30 90.46
40 89.90
50 90.91
60 90.56
70 90.71
80 90.22
90 90.58
100 89.83
250 90, 61
500 91.05
1000 90.50
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Weight decay

Table 5.9 presents results from the weight decay tests tuning the hyperparameter
λ. The best result is achieved using λ = 1e−1 or 0.1, with AUC = 91.77%. All
configurations except λ = 1e−1 and λ = 1e−2 score within 0.5% of AUC = 89%,
while λ = 1e−1 and λ = 1e−2 perform slightly better.

The aim of tuning λ is to prevent model overfitting. Because of this, it is also
important to consider the model loss graph when choosing the better value for
lambda. The two best performing values were λ = 1e−1 and λ = 1e−2. While
λ = 1e−1 achieved a slightly higher AUC score, its model loss graph presented in
Figure 5.3a indicates overfitting. The model loss graph for λ = 1e−2 presented
in Figure 5.3b shows a more promising trend, where both training and validation
loss decreases in synchronization. Thus, λ = 1e−2 was chosen as value for the
semi-supervised setting tests in Section 5.3.3.

Table 5.9: Hyperparameter λ results (AUC score in %)

λ AUC

1 89.17
1e−1 91.77
1e−2 91.39
1e−3 88.84
1e−4 89.31
1e−5 89.03
1e−6 89.07
1e−7 88.26

(a) λ = 1e−1 loss curve (b) λ = 1e−2 loss curve

Figure 5.3: Loss curve of λ test, with λ = 1e−1 and λ = 1e−2
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Batch size

The four different values tested for batch size (b) are displayed in Table 5.10.
The best performing configuration is using b = 32 with AUC = 91.70%. The
performance drops slightly when decreasing to b = 16 or increasing to b = 64. Using
b = 128, comparatively performs extremely poorly. The purpose of increasing the
value of b is to utilize more of the computer’s capability by having more comments
pass through the model at a time. Larger values for b are therefore desirable as
they reduce the run time of the experiments. This is reflected in the run times
for the different values for b shown in Table 5.10. However, when the value for b
becomes too large, the model may be negatively affected. Because the achieved
AUC score decreases when increasing b above 32, b = 32 was the value chosen for
the semi-supervised setting tests in Section 5.3.3.

Table 5.10: Batch size b results (AUC score in % and Run Time in seconds)

b AUC Run Time

16 90.88 17 052
32 91.70 15 387
64 89.07 14 887
128 37.44 14 552

Representation dimension

The result of testing representation dimension output space (d) is presented in
Table 5.11. The best results are achieved using d ≤ 32. The best performing
overall is d = 16 with AUC = 90.16%. The tests using d > 32 perform very
poorly. Thus, d = 16 was chosen as value for the semi-supervised setting tests in
Section 5.3.3.

Table 5.11: Representation dimension d output space results (AUC score in %)

d AUC

16 90.16
32 89.07
64 39.71
128 25.37
256 56.53
512 52.68
1024 53.50
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Filter set

Table 5.12 displays the results when using different filter sets (f). The best result
is achieved using f = {1, 2, 3, 4} with AUC = 89.41%. There is a slight decrease in
performance when increasing to f = {1, 2, 3, 4, 5} and another decrease when using
f = {1, 2, 3, 4, 5, 6, 7, 8}. The other configurations have a more substantial decrease
in performance. Thus, f = {1, 2, 3, 4} was chosen as value for the semi-supervised
setting tests in Section 5.3.3.

Table 5.12: Filter sets f results (AUC score in %)

f AUC

{1, 2, 3} 80.14
{1, 2, 3, 4} 89.41
{1, 2, 3, 4, 5} 89.07
{1, 2, 3, 4, 5, 6} 83.92
{1, 2, 3, 4, 5, 6, 7} 82.52
{1, 2, 3, 4, 5, 6, 7, 8} 88.42

5.3.3 Phase 3 - Semi-Supervised Setting

As described in Section 5.2.6, this third and final phase of tests is performed using
the optimal configurations from the results of the preceeding phases. These optimal
configurations are: AC = {4, 5}, lr = 1e−5, η = 50, λ = 1e−2, b = 32, d = 16,f =
{1, 2, 3, 4}.

Table 5.13 displays the result of the semi-supervised setting test. The base scenario,
providing no labeled data to the model during training, performed with AUC =
42.79%, which is not a viable result. Adding known normal in γn = 0.10 and γn =
0.20 did not significantly improve performance, and all cases performed comparably
to random guess. The γa tests show that the AUC scores increase when increasing
the number of known anomalies. This is the case for both {4, 5} and {3, 4, 5}, where
the AUC is strictly increasing from the lowest γa to the highest. The same trend is
not apparent from increasing the amount of known normal data. This can not be
viewed in the γn tests as they have poor results, but rather in the γl tests. When
considering AC = {4, 5}, only 1.84% anomaly data is available. Because of this, the
tests γl ∈ {0.02, 0.04, 0.06, 0.10} all use the same amount of known anomaly data
but an increasing amount of known normal data. These tests perform similarly,
and all fall within a range of about 0.5% variation, with no definitive increasing
trend. Going from γl = 0.06 to γl = 0.10 when using AC = {3, 4, 5} also only
increases the amount of known normal data and achieves comparable results.

The best result for both {4, 5} and {3, 4, 5} are found when only adding known an-
omalies and no known normal data. However, the performance difference between
the γa tests and the γl test is minuscule. The highest AUC score is achieved us-
ing AC={4, 5} and γa = 0.02, which is using all available known anomalies and no
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known normal with AUC = 92.94%. The best-performing score using AC={3, 4, 5}
is also achieved using all available known anomalies and no known normal with
AUC = 88.36%.

Table 5.13: Semi-supervised setting results using AUC (in %)

B γn γa γl
AC 0.00 0.10 0.20 0.01 0.02 0.04 0.06 0.01 0.02 0.04 0.06 0.10

{3, 4, 5} 82.97 86.96 87.89 88.36 83.40 85.54 87.02 87.91 87.86
{4, 5} 90.77 92.94 90.68 92.66 92.75 92.24 92.23
None 42.79 56.78 55.40

5.4 Summary

In this chapter, the experiment plan and setup were presented, along with the
results of all the tests. Below is a summary of the experiment, providing an overview
of the main results of the testing.

Initially, in phase 1, the model was tested using BERT embeddings with differ-
ent configurations for the anomaly class. The best performing configuration was
having AC = {4, 5}, achieving an AUC score of 89.07%. In phase 2, a set of
hyperparameters were tuned and tested in parallel.

For learning rate (lr), the best performing configuration used a static lr with the
value lr = 1e−5. This configuration achieved an AUC score of 89.07% and showed
no sign of overfitting on the loss curve.

When testing the hyperparameter eta (η), the configurations η = 50 and η = 500
achieved the highesd AUC scores of 90.91% and 91.05%, respectively. η = 50 was
consideres the preferred configuration as it falls within the range of tested values
in Ruff et al. (2020), in which η was first introduced.

Weight decay was also adjusted and tested by tuning the hyperparameter λ. The
two best configurations when considering AUC scores were λ = 1e−1 and λ =
1e−2, yielding 91.77% and 91.39%, respectively. However, when inspecting the loss
graphs, λ = 1e−1 showed signs of overfitting, making λ = 1e−2 the preferrable
configuration.

When testing different batch sizes (b), the best performing configuration in terms of
AUC score was b = 32, achieving a score of 91.70%. Increasing b above 32 resulted
in lower run times but revealed tendencies of decreasing AUC scores. Thus, b = 32
was chosen as the best configuration.

The best performing configuration of representation dimension output space (d)
was d = 16, achieving an AUC score of 90.16%. When d increased above 64, the
model performed very poorly.
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The best performing filter set (f) was f = {1, 2, 3, 4}, achieving an AUC score of
89%. A slight decrease in AUC scores was detected when adding more numbers to
the set.

In phase 3, different semi-supervised settings were tested. This final phase of
testing was performed using the optimal configurations discovered in previous
phases. The best performing configurations when AC = {3, 4, 5} was achieved
when (γn, γa) = (0.00, 0.06). For these configurations, the resulting AUC score was
88.36%. The best performing configurations when AC = {4, 5} was achieved when
(γn, γa) = (0.00, 0.02). This was the best performing configuration out of all the
tests, achieving an AUC score of 92.94%.

The main findings of the experiment are the substantial outperformance compared
to ADAHS, the optimized configuration found in phase 2, and the high impact
of adding known anomaly data versus the insignificant impact of adding known
normal data in phase 3.





CHAPTER6
Evaluation and Discussion

This chapter consists of two sections, the first directly evaluating the results presen-
ted in Section 5.3. The second section consists of the proposed solution’s general
discussion, including its advantages, challenges, and potential improvements, before
revisiting the research questions.

6.1 Evaluation

In this section, the results of each phase of the experiments presented in Section 5.3
are discussed. First, the BERT embedding phase is evaluated and compared to the
results of Jensen (2020). Then the experiments on tuning the hyperparameters are
discussed by analyzing the AUC scores and their trends and other interesting factors
such as the training/validation loss and computation time. The semi-supervised
setting tests are then evaluated by describing the discovered trends and explaining
their significance. Lastly, an overall evaluation is made considering all of the tests
together.

6.1.1 Phase 1 - BERT Embeddings

The first test was conducted to try out the BERT embedding implementation using
the default hyperparameters from ADAHS. The goal of the test was to find out
the immediate viability and briefly compare it to the results of ADAHS using the
Norwegian dataset. All three splits of anomaly classes for BSSAD immediately
outperformed the best result of ADAHS. BSSAD outperforming ADAHS was an
expected result as BERT is a more sophisticated word embedding than fastText,
used in ADAHS. The most significant difference is that BERT interprets the context
within texts and handles OOV (Out Of Vocabulary) words and terms. It was not
entirely expected that the BSSAD model would perform at this level using the

58
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hyperparameters from ADAHS. The word embeddings of BSSAD are much larger
and more complex than ADAHS. This could imply that the model requiring more
finely tuned hyperparameters to reach its full potential. It is also important to
note that the hyperparameters chosen in ADAHS were not thoroughly explored
but rather chosen as an acceptable level for the tests employed by Jensen (2020).
As opposed to ADAHS, BSSAD performed better using {4, 5} as known anomaly
classes rather than {3, 4, 5}. For BSSAD every test using AC = {4, 5} outperformed
the ones using AC = {3, 4, 5}, while the opposite is true for ADAHS. This could
be explained by fastText not being as sophisticated as BERT and needing more
anomalous samples to perform well.

An explanation for AC = {4, 5} being better is that classes 4 and 5 are the actual
hateful classes in the dataset, while class 3 is not. In addition, class 3 outnumbers
class 4 and 5, which causes the model to be trained more towards offensive texts
than actual hateful texts.

In addition to the two sets of known anomaly classes used by ADAHS, this test
included an experiment having AC = {2, 3, 4, 5}. This configuration performed
worse than using AC = {3, 4, 5} and AC = {4, 5}, but still better than ADAHS.
Running the experiment with AC = {2, 3, 4, 5} was not expected to provide the
best performance but was rather conducted to check how it compares to the other
two. Category 2 is likely too similar to the normal class, which in this case only
consists of category 1, whereas anomalies by nature are supposed to be deviating.
On the other hand, using only category 5 as anomaly class is ineffective as the
number of comments in category 5 is insufficient.

6.1.2 Phase 2 - Hyperparameter Tuning

Learning rate

The learning rate (lr) test was conducted in three separate parts with results
displayed in Table 5.7, Figure 5.1 and Figure 5.2. The first part involved performing
an annealing test to find a rough estimate for an optimal learning rate value.
The initial observation was that the training loss dropped the most when using
lr = 1e−6 and lr = 1e−5, where the latter was the initial value used for the
previous test. The next part of the learning rate test was to use static values for lr,
which immediately showed that using lr = 1e−6 was not a desirable configuration.
The reason for this can be observed in Figure 5.2b, where the graph for training
loss is not steep enough, meaning the model is learning too slowly and therefore
achieves a poor AUC score.

Observing Figure 5.2, a clear trend can be seen from lr = 1e−7 to lr = 1e−3.
lr = 1e−7 shows a slowly decreasing training loss curve which does not start to
converge toward the end. lr = 1e−6 displays a more promising curve, which is
then even further improved when using lr = 1e−5. When increasing beyond to
lr = 1e−4, training loss has a much lower initial value and introduces more noise.
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This means that the model may be overfitted, meaning it specializes excessively on
the given training data. Using lr = 1e−3, the resulting training loss curve is even
noisier and barely shows a decrease over the range of epochs.

Table 5.7 displays the AUC score for the static learning rate tests. In addition to
having the best training loss curve, using lr = 1e−5 also has the best AUC score.
Furthermore, the results show that increasing the lr causes small performance
decreases compared to decreasing the lr, where the AUC score plummets. From
this test, there is further potential for investigating lr values between 1e−6 and
1e−4.

The third part of the learning rate test was to use one learning rate for the first
50 epochs and then decreasing it for the last 50 epochs. This was only explored in
two configurations, where one yielded an unusable result and the other performed
worse than the two learning rates did statically. However, this approach may show
potential with more appropriately selected starting and ending learning rate values.

Eta

The hyperparameter eta (η) was tested using the values presented in Section 5.2.5.
This parameter is different from many of the others as it is created by Ruff et al.
(2020) and its range and growth are not clearly defined. The largest differences in
performance can be observed in the range from η = 0.1 to η = 10 in Table 5.8.
Using η = 0.1 results in AUC = 48.69% which is slightly worse than random guess.
When η is less than 1, added known normal training data is weighed more than
the added known anomaly data. When the model weighs the normal and anomaly
data equally at η = 1, the model performs with AUC = 22.64%. It is unclear
what caused the AUC score to be so low, but it still shows that the configuration
is unsatisfactory. At η = 5, the result is AUC = 61.06%, which begins to show
some potential. When using η = 10, the performance increases substantially to
AUC = 89.07% and seems to start stabilizing around this performance as η in-
creases. This trend can be observed in Figure 6.1. As mentioned in Section 5.3.2,
the configuration chosen as the best result was η = 50 even though η = 500 scored
slightly higher. This can be further justified by observing the graph as there is no
clear trend for one configuration to be the undisputed best.

From this test, it is made clear that adding known anomaly data is signific-
antly more impactful towards improving performance than adding known normal
data. Jensen (2020) also conducted a test with the η parameter with the values
η ∈ {0.1, 1, 5, 10}. Their results are quite different when looking at the same config-
uration for BSSAD and can be viewed alongside each other in Figure 6.1. ADAHS
has a clear trend of increasing AUC score when increasing η where all of the scores
are significantly larger than 50, while BSSAD does not score above AUC = 50%
before η is increased to 5. This indicates that ADAHS makes better use of added
normal data than BSSAD even though it does not perform as well as BSSAD when
using higher values for η. The effects of adding known anomaly data versus adding
known normal data are further discussed in Section 6.1.3.
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Figure 6.1: Graph of different configurations of η by AUC score (in %) for ADAHS
by Jensen (2020) and BSSAD
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Weight decay

Weight decay was tested using different values for λ found in Table 5.4. As ex-
plained in Section 4.4, weight decay is important to optimize in order to prevent
overfitting. Keeping his in mind, the AUC score alone is not a good metric to eval-
uate the performance when employing different values for λ. Instead, the training
and validation loss of the model should be included as an additional part of the
evaluation process.

When considering AUC scores only, displayed in Figure 6.2, all the tests ran per-
formed reasonably well, with most variations achieving AUC between 88.17% and
89.17%. A slight trend can be observed in that the two best scoring configurations
lie within proximity of each other, namely λ = 1e−1 and λ = 1e−2. These config-
urations achieved AUC scores of 91.77% and 91.39%, respectively, indicating that
λ = 1e−1 is the best performing option. However, when inspecting the model loss
graphs for the configurations, as seen in Figure 5.3a and Figure 5.3b, it becomes
apparent that λ = 1e−1 shows signs of overfitting. This can be recognized by
the fact that while training loss decreases, validation loss increases, suggesting the
model is specializing too much on the training data.

In contrast, λ = 1e−2 produces no such indications. It was for this reason that
λ = 1e−2 was the chosen value for phase 3 of the tests. Nevertheless, inspecting
Figure 5.3b, the argument could be made that neither training loss nor validation
loss decreases sufficiently for continued training to create a meaningful impact on
performance in later stages of the experiment. Indeed, while training loss undergoes
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Figure 6.2: Graph of different configurations of λ by AUC score (in %)
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a slight, consecutive decrease towards the end, validation loss seems to remain
fairly constant after 20 epochs. Therefore, early stopping could be considered to
avoid unnecessarily long training, possibly with little to no impact on the model’s
performance.

Batch size

The value for batch size (b) dictates how many comments are processed by the
network in a single pass-through. As described in Section 4.4, b can therefore be
used to shorten the run time of the experiments. However, setting b too high
might negatively affect the model’s performance. Because of this, it was essential
to consider both AUC scores and run times for the experiments when evaluating
the b alternatives.

When considering run times, a clear tendency appears from the results seen in
Table 5.10. As batch size increases, the time it takes for running through all
100 epochs decreases consistently. This is expected as larger batch sizes allow for
higher utilization of hardware. However, the decrease in run time is relatively
small, saving on average 625 seconds for each doubling of b. Moreover, the impact
decreases for higher values of b. Doubling b from 16 to 32 shortens run time by 1665
seconds, which translates to 27 minutes and 45 seconds, whereas doubling b from
64 to 128 results in a difference of 335 seconds, or 5 minutes and 35 seconds. More
importantly, none of the improvements bear an overwhelming impact compared to
the average total run time, which for the 4 runs is 15 469.5 seconds, or 4 hours, 17
minutes, and 49.5 seconds.
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Figure 6.3: Graph of different configurations of b by AUC score (in %)
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The AUC scores in Figure 6.3 show less of a trend when compared to the run
times. When b ∈ {16, 23, 64}, the model performs similarly, achieving and AUC
scores of 90.88%, 91.70% and 89.07%, respectively. However, when b = 128, the
model’s performance decreases drastically, yielding an AUC score of 37.44%. This
suggests that a limit exists for the value of bath size between 64 and 128, where
the model’s performance rapidly decreases. When choosing which value to use in
the third phase of testing, it was decided that b = 32 was the best option as it
provided an appropriate balance between model performance and run time. While
b = 64 has improved run time, its difference of 500 seconds was considered less
important than the AUC score decrease of 2.63% compared to the chosen value.

Representation dimension

The representation dimension (d) dictates the size of the output vector of the model.
An optimal value for d makes the output vector complex enough to contain im-
portant information while still being simple enough to avoid obscurities and noise.
Moreover, a large output vector dimension will result in a larger memory load, and
a higher computational cost (Goodfellow et al., 2016). However, the difference in
computational cost for the different values of d does not seem consequential as the
computation time per epoch is seemingly unchanged for all values. The results of
the tuning of d are represented in Figure 6.4 where d = 16 and d = 32 are the
clear best results. The AUC score of d = 16 is slightly higher. However, they are
very similar to the rest of the scores. There seems to be some threshold between
d = 32 and d = 64 where the model can no longer learn anything of value. Jensen
(2020) tested d = 32 and d = 300, where d = 300 was able to achieve comparable
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Figure 6.4: Graph of different configurations of d by AUC score (in %)
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results to d = 32 after many more epochs. The same effect does not happen with
values above d = 32 for BSSAD, as none of the graphs portraying validation AUC
per epoch have an upward trend towards the end of the 100 epochs, as shown in
Appendix A. There is still much room for experimenting with different values for
d around the values 16 and 32 to gain potential performance increases.

Filter set

As explained in Section 4.3, the filter set (f) represents the number of consecutive
words, or n-grams, that are being processed by the filters in the convolutional layer
of the model. Increasing f produces filters that can capture greater context, but
could also lead to the detection of obscure patterns and has a higher computational
cost. Conversely, too small n-grams might lose contextual meaning as they only
contain shallow information.

The computational cost of increasing the size of the filter set has a noticeable
increase in the computation time of training the model. In Table 6.1 the av-
erage computation time of all epochs are displayed for all configurations of f .
There is an average increase of 18.17 seconds per epoch from f = {1, 2, 3} to
f = {1, 2, 3, 4, 5, 6, 7, 8}. This is expected behavior, as adding higher values to f
means that new, larger filters are employed in the convolution process in addition
to the current ones.

The resulting AUC scores of the f tests are displayed in Figure 6.5. The best score
is achieved using f = {1, 2, 3, 4}, and is very slightly worse at f = {1, 2, 3, 4, 5}.
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Figure 6.5: Graph of different configurations of f by AUC score (in %)
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Decreasing to f = {1, 2, 3} results in the poorest performance, which likely means
that there is not enough complexity to this filter set, and it loses some of the
contexts of the texts. The models performance decreases from f = {1, 2, 3, 4}
to f = {1, 2, 3, 4, 5, 6, 7}, and then unexpectedly improves significantly at f =
{1, 2, 3, 4, 5, 6, 7, 8}. One explanation for this may be that some unique pattern in
the dataset matches the 8-gram created by the filter set, which is significant enough
to affect the performance. The performance spike at f = {1, 2, 3, 4, 5, 6, 7, 8} may
indicate that even larger filter sets could be investigated. However, as the com-
putation time increases with the size of f , it is beneficial to select a smaller f ,
which in this case, there is no compromise to be made as f = {1, 2, 3, 4} is the best
performing configuration while also being the second smallest one.

Table 6.1: Average time per epoch in seconds for tested values of f

f Average seconds per epoch Time for 100 epochs

{1, 2, 3} 142.98 3:58:18
{1, 2, 3, 4} 144.33 4:00:33
{1, 2, 3, 4, 5} 147.59 4:05:59
{1, 2, 3, 4, 5, 6} 149.90 4:09:50
{1, 2, 3, 4, 5, 6, 7} 155.46 4:19:06
{1, 2, 3, 4, 5, 6, 7, 8} 161.15 4:28:35
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6.1.3 Phase 3 - Semi-Supervised Setting

The semi-supervised setting test results shown in Table 5.13 show that the inclusion
of labeled data in the training phase can have a drastic effect on the model’s per-
formance. The lowest scoring configuration was the base scenario, where no labeled
data was provided to the model. This resulted in an AUC score of 42.79%, which
is comparable to random guess. Interestingly, adding known normal data yielded a
slight performance increase; however, this increase was not large enough to be con-
sidered impactful. Even when adding as much as 20% normal data, the resulting
AUC score of 55.40% is still comparable to random guess. However, adding only
1% of labeled anomalies and no labeled normal data, the performance increased
drastically, achieving AUC scores of 82.97% and 92.94% when AC = {3, 4, 5} and
AC = {4, 5}, respectively. Moreover, the performance strictly increases when in-
creasing γa both for AC = {3, 4, 5} and AC = {4, 5}.

The trend persists for the γl tests, where both labeled anomalous and normal data
is added. When considering AC = {4, 5}, the AUC score increases from γl = 1%
to γl = 2%. In this step, the number of anomalies increases from 1% to 1.84%.
However, because only 1.84% anomalies are available, no further anomalies are
added from γl = 2% to γl = 10%. In these steps, only normal samples are added to
the labeled data. These tests perform similarly, and all fall within a range of about
0.5% variation, with no definitive increasing trend. The scenario repeats when
considering AC = {3, 4, 5}. In this case, 5.65% anomalies are available, and an
increase in AUC scores can be seen from γl = 1% to γl = 6%. However, increasing
γl = 6% to γl = 10%, only increasing the amount of labeled normal labeled data,
does not result in any significant change in performance.

One reason for the drastic impact of the labeled anomalies could be the value
of η. When η = 1, the model weighs the anomalous and normal data equally.
As η increases, the model puts more emphasis on the anomalous data. From
the previous testing phase, the value chosen for η is 50, meaning that the model
finds the anomalous data to be exceedingly more important than the normal data.
This could explain why adding large amounts of normal data has little impact on
performance, while adding comparatively small amounts of anomalous data results
in significant differences. This is somewhat concerning because the model might
miss out on valuable insights regarding normal data that might negatively impact
its performance. If time had allowed for it, it would have been prudent to explore
the same tests with lower values for η to uncover what impacts could have been
made by weighing the labeled normal data to a higher degree.

Overall Evaluation

Overall the tests show a substantial performance increase when compared to the
results of ADAHS. The highest AUC score achieved using AC = {4, 5} was 75.3%
for ADAHS and 92.94% for BSSAD, which translates to an increase of 17.64%.
Using AC = {3, 4, 5}, ADAHS achieved 77.3% and BSSAD achieved 88.36%, which
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is an increase of 11.06%.

The hyperparameter tuning phase of the experiment yielded a noticeable increase
in performance. All of the tested parameters except for lr resulted in a new value
with a higher AUC score. The AUC differences from the original value using
base configurations with the new configuration are displayed in Table 6.2. The
largest difference was found when increasing b by 2.63%. However, this came with
the cost of a longer overall run time. On the opposite end, using the new value
for f only yielded an increase of 0.34% and reduced the run time. Before the
hyperparameter tuning phase, the model scored an AUC of 89.07% using AC =
{4, 5}. The test run only changing the values of the hyperparameter tuning phase
scored an AUC of 92.23% (AC = {4, 5} and γl = 0.10 in Table 5.13), which is
an overall increase of 3.16%. One possible disadvantage to independently testing
all of the hyperparameters was that the new values would be less compatible with
each other, resulting in an unsatisfactory performance increase when combined.
However, this does not seem to be the case as the increase is greater than the
highest individual increase.

It is vital to underline that random factors may cause some slight differences in the
AUC score, and it may not always be beneficial to select the configuration with
the highest score. Identifying trends in the data was crucial when selecting the
best possible values and separating actual performance differences from anomalous
values.

Table 6.2: Performance increase of parameter tuning phase

Hyperparameters Original value New value AUC increase

lr 1e−5 1e−5 −

η 10 50 1.84%

λ 1e−6 1e−2 2.32%

b 64 32 2.63%

d 32 16 1.09%

f {1, 2, 3, 4, 5} {1, 2, 3, 4} 0.34%
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6.2 Discussion

This section discusses the results of the experiments concerning the research ques-
tions. Firstly by discussing the advantages of the proposed solution and where
it was successful, then about the challenges and disadvantages faced, followed by
suggestions for overcoming the challenges and other thoughts on how to improve
the solution. Finally, the last section directly discusses the research questions and
how successful the solution has been in fulfilling them.

6.2.1 Advantages

It becomes apparent from the results of the experiments that the BSSAD solution
performs better than the preceding ADAHS solution when applied to the same
Norwegian dataset. The best performing configurations, as presented in Chapter 5,
achieved an AUC score of 92.94%. This is a significant improvement of the results
presented by Jensen (2020), achieving an AUC score of 75.3%.

The BSSAD solution is an iteration of ADAHS. The main difference between the
two is the inclusion of BERT embeddings. Therefore, it would seem like having
more sophisticated embeddings that can capture context and handle OOV words
has a considerable impact on hate speech detection. This is not surprising, as hate
speech detection is a complex task, even for humans. As presented in Section 2.1,
hate speech is often context dependant and might hide in what at first glance
appears as a well constructed, grammatically correct sentence. In these situations,
it is helpful not to produce word embeddings by having predefined values for each
token but instead produce them on a per-occurrence basis, taking into account the
context of the surrounding text. While this can be implemented by employing n-
grams, BERT improves upon this by producing context-specific word embeddings
that might differ for two identical tokens depending on the sentence.

Moreover, a common technique to avoid automatic detection of hateful content is
to create slang or replacement terms that resemble or symbolize offensive ones,
which simple filterings like blacklists could easily flag. In previous works, these
OOV words are usually handled by employing simple solutions. One such solution
is to ignore OOV words, as employed by Bojanowski et al. (2017) and Mitra et
al. (2016). Jensen (2020) handle OOV words by initializing them as 0-vectors
with the same dimensionality as the other word embeddings. Another approach
still is randomizing the word vectors or creating ones as a function of the rest
of the vectors, for instance, using the mean values. A drawback of such simple
solutions is the loss of important information. Ignoring the words and utilizing
0-vectors involves losing potentially meaningful word embeddings. Furthermore,
randomizing and averaging the vector might make the model believe that the word
conveys some false meaning. If the generated word vector is similar to other word
vectors in the vocabulary, the model might falsely believe that the two words carry
similar meanings. Comparatively, it is advantageous to assign a word embedding
to this OOV word based on the surrounding text, as is the technique employed by
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BERT.

The BSSAD solution is so far tested only using the Norwegian dataset presented
by Jensen (2020) and Andreassen Svanes and Gunstad (2020). The dataset con-
tains 41 139 labeled comments, where only 759 of these are in categories 4 and 5,
which are the moderately hateful and hateful categories. Compared to available
datasets used for hate speech detection in English, the Norwegian dataset contains
drastically fewer comments. For instance, the English Jigsaw dataset from a Toxic
Comment Classification Challenge available from Kaggle 1 as used by Jensen (2020)
contains more than 220 000 data points. When training a model, an abundance
of data is desirable, and having too little available is a challenge that can prevent
good performance even for well-designed solutions. Indeed, both Jensen (2020),
and Andreassen Svanes and Gunstad (2020) mention that ideally, the Norwegian
dataset would have more samples and that the limited amount might have negat-
ively affected the performance of the proposed solutions. Jensen (2020) goes one
step further, showing that the ADAHS solution experiences a substantial increase
in performance of about 20% in AUC score when using the Jigsaw dataset. There-
fore, it is a considerable advantage of the BSSAD solution that it achieves AUC
scores in the 90% range using the Norwegian dataset, highlighting the model’s abil-
ity to perform well even when trained using smaller datasets. This ability suggests
that the BSSAD solution is applicable to hate speech detection in other less-used
languages in addition to Norwegian. A common issue for hate speech detection in
less-used languages such as Norwegian is the lack of large, available datasets ap-
propriate for hate speech detection. Because of this, solutions such as BSSAD that
can learn well from smaller datasets have a large advantage and are sought out for
such types of problems. However, the BSSAD solution relies on pre-trained BERT
models being available for the language in question. While creating such models
requires large sets of corpora, the models can be created on less domain-specific
data. Thus, it presumably requires less effort to provide datasets that can facil-
itate the creation of pre-trained BERT models than to create large, high-quality
datasets for hate speech detection.

In the experiments presented in this thesis, a set of hyperparameters and config-
urations were adjusted to improve performance. Looking at the results presented
in Chapter 5, it becomes apparent that tuning the chosen set of parameters had a
significant impact on the model. Moreover, the results of the experiments reveal
valuable trends and provide insights that can be used for further exploration. For
instance, the results show that values for lr show potential around 1e−5, and that
further testing in the proximity of this value might provide even better results.
Furthermore, it has been discovered that the model performs best when providing
only labeled anomalous data, with a strict increase in performance whenever more
labeled anomalies are provided. Following this trend, the implication seems to be
that, when this solution is employed with the current best-performing configura-
tions, the performance could benefit even further by adding more labeled anomalous
data. In such a scenario, a binary labeling technique could be used to label either
hateful or non-hateful comments, removing the need for finely categorized datasets

1https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
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that could be more time-consuming to produce.

6.2.2 Challenges

Using BERT word embeddings for the model instead of the previously implemented
word embeddings caused the model’s training to increase significantly in computa-
tion time. Using simpler word embeddings, such as fastText used by Jensen (2020)
allows for fast fetching of the word embeddings using a stored dictionary. When
using BERT, each token does not have a corresponding word embedding, which
requires the word embeddings to be created from the given dataset. In addition
to this, the BERT embedding vectors are also considerably larger than the fast-
Text embedding vectors. Due to these factors, the embedding of the dataset could
not be done previous to the testing as it would overflow the amount of available
memory. Instead, the word embeddings were created iteratively for each batch. As
a consequence of the increased computation time, the number of hyperparameter
values to be tested was constricted.

Originally it was desired to use a more sophisticated method of hyperparameter
tuning such as grid search. However, the long computation time immediately ex-
cluded that as a possibility. Grid search generally suffers from the curse of di-
mensionality, where the amount of required tests grows exponentially with the
number of parameters. Running grid search with the values used in the hyperpara-
meter testing phase in Section 5.2.5 with all possible combinations would require
16× 8× 4× 7× 6 = 21 504 tests. This is an extreme example, and the parameter
values would be selected more appropriately in an actual test. Additionally, para-
meters that are independent of each other should not be included. Nevertheless,
the example reveals the increased cost of using a method such as grid search.

In addition to testing the parameters comparatively, it would be favorable to test
each value more thoroughly. As mentioned in Section 6.1.3, the AUC scores of
the tests were susceptible to random factors such as the data distribution. This
made it difficult to accurately analyze the test results and distinguish what values
performed better than others. One common way of accounting for this is to use k-
fold cross-validation, where each test is run k times with different data distributions.
This method also had to be discarded because of time constraints, as the total
computation time would be increased k times.

The results of testing different distributions of added labeled data to the model
clearly show that adding labeled anomalies is beneficial. However, there is no
evidence of increased performance for including labeled normal data. This was
first discovered by testing the η hyperparameter, where low values that weigh the
added normal data more importantly performed poorly. This does not coincide
with the discoveries of Jensen (2020) and Ruff et al. (2020) which also experimented
with the value of η. The former concludes that adding labeled anomalies is more
useful than adding labeled normal data; however, the difference is between the
two types is not as severe. The latter found that using an even split of labeled
normal and anomaly data performed the best. However, this is using several data
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types, not just text. The BSSAD model builds upon the Deep SAD model by Ruff
et al. (2020) which assumes that “the entropy of the latent distribution for normal
data should be lower than the entropy of the anomalous distribution,” and that
may be a cause for the model not learning as well from the normal data. When
considering text as a data type, there is inherently a large amount of entropy, and
it can be impossible to create a complete model of the normal data. As the BERT
embedding vectors are larger than the ones used by Jensen (2020) and include
additional information such as context and out-of-vocabulary words, the entropy
is even further increased. Even though Jensen (2020) performed better with low
η values, their tests using different distributions of added labeled data showed no
improvements by adding normal data. The same result was found in this thesis as
discussed in Section 6.1.3. The cause of the models not increasing in performance
when adding labeled normal data may have been caused by the high value of η that
was set for both models. The high value of η may have caused the model to ignore
the contribution of normal data. Running the same test discussed in Section 6.1.3,
however, with a lower value for η could provide further insight into whether adding
labeled normal data is truly inconsequential to the performance.

6.2.3 Improvements

The BSSAD model has overall had great results, improving in performance com-
pared to previous implementations. The hyperparameter tuning phase led to fur-
ther performance increases; however, as mentioned above, there were some chal-
lenges. The main challenge discussed has to do with the computation time, which
constricted the number of tests that could be run. As creating word embeddings
from the tokens is the most time-consuming part of the experiments, it would be
beneficial to find a way to store and reuse the embeddings between experiments.
Other factors may also help reduce the computation time, such as using a smaller
filter set, increasing the batch size, or reducing the number of epochs. However,
that may come at the cost of the overall performance. Many tests show that
the model is adequately trained after approximately 20 epochs. Therefore, either
simply reducing the total number of epochs or implementing an early stopping
method for when the model is adequately trained could significantly reduce the
run time. Reduced computation time would allow for further and more sophistic-
ated tests to be run for the hyperparameters, such as grid search to find a better
overall configuration for the model or k-fold cross-validation to validate the model’s
performance more accurately.

In this thesis, the BSSAD model has only been tested using one dataset and only
directly compared to the results from Jensen (2020). One logical next step would
be to apply the BSSAD model to other, more widely used datasets in English and
possibly other languages. This would allow for further comparison of the results to
other state-of-the-art solutions and further anomaly detection as a viable method
to perform hate speech detection.
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6.2.4 Research Questions

The following section revisits the research questions presented in the problem spe-
cification in Section 1.2. The overall research question for this thesis is:

“How can existing approaches for hate speech detection in languages
other than English be improved?”

The research question is split into three sub-questions, and how the thesis has
attempted to answer each one is discussed.

RQ1 How can recently developed techniques in the field, such as BERT, be integrated
to provide state-of-the-art results?

Most previous works rely on classification methods. However, classification has
some disadvantages when it comes to hate speech detection. The main one is that
of dataset imbalance which is inherent for hate speech. A suggested approach for
solving issues related to dataset imbalance is using anomaly detection. Anomaly
detection has the advantage of relying on the imbalance between normal data and
anomaly data, which in this case is hateful content. Another factor to consider is
the evolution of language, where elements such as vocabulary and topics change
over time.

Traditional classification methods rely on defining a set of classes in which to
categorize data. This classification inherently assumes some form of similarity
between the entries within a given class. However, this assumption is not optimal
for hate speech detection due to the constant change in abusive language to avoid
detection, as stated by Nobata et al. (2016). As language evolves, instances may no
longer fit within the boundaries of the defined classes. Anomaly detection assumes
no similarity between the anomalous data points, making it possible to identify
even evolved forms of hate speech.

Jensen (2020) presents ADAHS as an approach to hate speech detection using an-
omaly detection. The approach is tested on a Norwegian and an English dataset.
The English dataset is substantially larger with 223 549 comments compared to
the Norwegian dataset with 41 139 comments. The model performed well on the
English dataset and acceptably on the Norwegian dataset. The goal of ADAHS was
to test the viability of anomaly detection as an approach to hate speech detection,
not to find the best performing configuration. An opportunity was discovered to
build upon the ADAHS solution to explore its potential when optimized further.
The main focus for optimization was to change the way the model interprets the
data. The ADAHS model utilized static word embedding methods. BERT was
discovered as a comparatively advanced and superior tool for creating more valu-
able word embeddings, and recently, pre-trained BERT models were made publicly
available for the Norwegian language. Combining the approach of using anomaly
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detection for hate speech detection with the state-of-the-art BERT method laid
the foundation for the solution proposed in this thesis.

RQ2 How can the performance be improved for approaches using smaller datasets?

As laid out previously, non-English hate speech detection does not have adequate
datasets available. It was decided to focus the scope of the thesis to Norwegian and
use the dataset developed by Jensen (2020) and Andreassen Svanes and Gunstad
(2020). While the created dataset represents a decent foundation, it is of inadequate
size when compared to English datasets. One possible means for progression for
this thesis was to expand upon the dataset. Expanding the dataset was deemed
a too time-consuming task and would impede other goals of the thesis. Instead,
it was decided to approach the problem differently by looking at ways to improve
performance on smaller datasets in general. This approach could lead to discoveries
that would benefit languages other than Norwegian, which also face the challenge
of small datasets. To improve performance on smaller datasets, the available data
had to be used more effectively. This thesis builds upon the previous approach
of ADAHS, which uses fastText word embeddings that do not utilize important
factors such as context within a sentence and misspellings. BERT embeddings
include these factors and are, therefore, able to acquire more valuable information
from the same amount of text. The results in phase one of the experiment in
Section 5.3 show a substantial increase in performance when incorporating BERT
into the model compared to the results of ADAHS, both using the same dataset.
To further investigate the hypothesis of BERT increasing the performance on small
datasets, it would be beneficial to test the model on other small datasets. However,
this was considered beyond the scope of this thesis.

RQ3 How can we determine what factors affect the results?

In addition to combining state-of-the-art techniques to improve performance, there
are more specific factors to consider to optimize the solution. Using the default
configurations of the selected techniques may not be entirely compatible with each
other. In addition, the configuration of ADAHS was only optimized to achieve
acceptable performance by testing only a few values for a small set of paramet-
ers. Therefore, reviewing the factors that may affect the results was essential to
attain optimal performance. The main focus of optimization was on the model’s
hyperparameters and the semi-supervised setting. When determining what hy-
perparameters to test and the range of values, the most important resource was
previous works. A plan was made selecting values from previous work in addition
to auxiliary values for further exploration. The experiment discovered how the
different hyperparameters affected the results. For all hyperparameters except for
one, a better performing configuration was found through testing, and the overall
performance increased when combining the best configurations. The goal was not
solely to improve the performance but also to discover trends and the general effects
of the hyperparameters on the model. Some had significant effects on the model’s
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performance; others were more important for the sake of computation time. Fi-
nally, it was discovered how the distribution of added known normal and anomaly
data affected the model.





CHAPTER7
Conclusion and Future Work

The following chapter provides a conclusion to the thesis by discussing the research
and work conducted to improve hate speech detection in non-English languages.
Furthermore, the chapter provides possible improvements and future work relevant
to continue research on this thesis.

7.1 Conclusion

Hate speech in social media is an important topic and can have a large negative
impact on individuals or groups. Machine learning techniques for detecting hate
speech have become a rapidly growing field of research in recent years. However,
most of the research is conducted with the English language in mind. This thesis
has the goal of improving hate speech detection in non-English languages. As a
proxy for non-English languages in general, Norwegian was selected to improve hate
speech detection methods. The approach chosen for the thesis was to extend upon
existing solutions, and the selected solution to improve was one called ADAHS
presented by Jensen (2020). To be able to create a substantial improvement, state-
of-the-art methods had to be applied. Therefore, the recently developed BERT
word embedding technique was implemented. The aforementioned laid the found-
ation for the novel Bert Semi-Supervised Anomaly Detection (BSSAD) approach
laid forth in this thesis.

Using the BSSAD approach, extensive experiments were planned and conducted
with multiple goals in mind. The primary goal was to test the overall performance
of the new approach and the relative performance increase compared to ADAHS.
Another aim was to gain insights regarding the hyperparameters of the model and
how to optimize performance. For this, the experiment implemented the tuning
of a wide range of hyperparameters. The final goal of the experiments was to
explore how providing different amounts of labeled normal or anomaly data during
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training would impact performance. For this purpose, the experiments included a
phase in which performance was measured for different semi-supervised settings.
Throughout the experiments, the Norwegian dataset provided by Jensen (2020)
and Andreassen Svanes and Gunstad (2020) was applied.

From the experiments and their results, a number of observations and conclusions
can be made. Firstly, the results revealed a substantial increase in performance
when compared to the results of ADAHS. This is reflected in the best performing
AUC scores for the two approaches, which were 77.3% and 92.9% for ADAHS and
BSSAD, respectively. When considering these AUC scores, it is important to note
that the same Norwegian dataset was used when achieving both scores. Secondly,
the hyperparameter tuning phase successfully improved performance and provided
insights regarding how each parameter affects the model’s behavior. Moreover,
combining the best performing configurations for the hyperparameters yielded a
better performing solution overall. Finally, the results show that the proposed
BSSAD approach achieves more than satisfactory performance even without ex-
tensive datasets.

Ultimately, the contributions of this thesis include a literature review, a novel
approach to hate speech detection, and an elaborate experiment with accompanying
results and discussions. The literature review provides insight into the field of hate
speech detection for both English and non-English languages. The novel approach
presented in the thesis, BSSAD, extends upon previous work and includes recently
developed state-of-the-art techniques. Finally, the conducted experiment includes
a structured plan explaining the goals and presents the results and the discussion
of the findings to yield valuable insights regarding the performance of the BSSAD
method.

7.2 Future Work

The research on the topics discussed in this thesis is by no means thoroughly
explored yet. Hate speech detection is being developed continuously, and there is
still room for improvements. The BSSAD model is no exception and shows excellent
potential for improvement by further tuning its configurations and applying it to
other datasets or other problems. This section will present suggested next steps
towards future research using the BSSAD model.

The dataset used in the experiments employed the same cleaning process as ADAHS.
However, it might not be advantageous to clean the dataset in the same fashion
when using BERT models due to their ability to interpret context. For instance,
the cleaning process included the removal of punctuation and concatenation of
sentences. This cleaning effectively reduces each text to a single, potentially long
sentence with incorrect grammar. Such removal of punctuation is beneficial when
using static word embeddings but is potentially unfortunate when employing BERT
because the BERT model understands sentence separation. Thus, modifying the
preprocessing of the data with BERT in mind could enhance the resulting word
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embeddings and, in turn, the performance of the BSSAD model.

The BSSAD approach proposed in this thesis has only been tested on one dataset
and one language. A future improvement would be to apply the method to other
datasets and in other languages. Testing on well-known datasets such as the one
created by Waseem and Hovy (2016) and the Jigsaw dataset would allow for direct
comparison of the model’s performance compared with multiple state-of-the-art
approaches. Using larger datasets would also allow for testing when using variable
amounts of data as input. The BSSAD approach could be tested using various sizes
of subsets of the complete dataset to determine how the input dataset’s size affects
performance. Furthermore, it would be pertinent to test the BSSAD approach on
other languages. However, this would require a slight modification to the BSSAD
approach. Currently, it only supports the pre-trained model for Norwegian Bokmål.

One of the main challenges of this thesis was the increased computation time when
using BERT. For further exploration of the model, it would be beneficial to first
attempt to reduce the overall computation time. Each batch of data fed to the
model has to be converted into word embeddings, which is a time-consuming pro-
cess. A suggested approach to solving the issue is to create word embeddings for
the entire dataset and storing them appropriately. Then, the word embedding
could be reused for each run. Each batch would then fetch the relevant texts as
word embeddings into memory. Fetching the word embeddings would still require
computation time, however, much less than creating them. Another approach to in-
creasing the efficiency is to apply early stopping to the training of the model. Every
experiment run with the BSSAD model was set to run for 100 epochs. However,
most of the configurations seemed to be sufficiently trained after approximately
20 epochs. Either simply decreasing the total amount of epochs or implementing
early stopping techniques would severely reduce computation time.

Reducing the computation time mentioned above would allow for the application
of more sophisticated testing methods. The hyperparameter testing experiment
performed in this thesis tested all of the selected hyperparameters individually.
This approach was not optimal as many of the hyperparameters are interdependent,
meaning that changing one could affect the performance of another. This meant
that combining the optimal values for each individual hyperparameter may not
have led to an overall optimal configuration. A more sophisticated method is grid
search, where all the combinations of selected values for the hyperparameters are
tested. Grid search would ultimately be able to find a more optimal configuration
and reveal the model’s true potential.

Another potent next step would be to perform validation on the results. As men-
tioned previously in this thesis, the results are affected by some arbitrary factors,
and small deviations in the AUC scores are difficult to analyze accurately. Using
k-fold cross validation would help by training and testing the model configurations
on multiple distributions of the dataset. Having more accurate values or plotting
the values with standard deviation would allow for a better analysis of the results.
Validation could also be improved by using other metrics such as precision, recall,
f-score, and confusion matrices.
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APPENDIXA
Additional graphs for tuning of

representation dimension

hyperparameter

This appendix presents figures of validation AUC per epoch for different values of
representation dimension size (d), which are discussed in Section 6.1.

82



83
APPENDIX A. ADDITIONAL GRAPHS FOR TUNING OF REPRESENTATION

DIMENSION HYPERPARAMETER

Figure A.1: Validation AUC per epoch curve for d = 16

Figure A.2: Validation AUC per epoch curve for d = 32
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DIMENSION HYPERPARAMETER

Figure A.3: Validation AUC per epoch curve for d = 64

Figure A.4: Validation AUC per epoch curve for d = 128
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Figure A.5: Validation AUC per epoch curve for d = 256

Figure A.6: Validation AUC per epoch curve for d = 512
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Figure A.7: Validation AUC per epoch curve for d = 1024
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