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Abstract

This thesis is an exploration of novel material substrates for computation. Guided
by the principles of material computation, we investigate what computations a ma-
terial supports naturally. The goal is to perform computation close to physics, ex-
ploiting physical properties directly for more efficient computing devices. At the
same time, we seek to understand the emergent computational mechanisms that
are present within a material. We stress the importance of suitable computational
models for understanding and exploiting novel physical systems. The model used
in this work, reservoir computing, provides a powerful lens in which the computa-
tional properties of a material can be analyzed.

Three material substrates with distinct qualities are explored in this work. First, we
investigate the computational properties of carbon nanotube nanocomposites. We
find that these unstructured materials can exhibit complex dynamics in response to
electrical stimuli, but that the limited control offered makes exploitation difficult.
Next, we consider a simple chaotic circuit as a substrate for reservoir computing.
We demonstrate how such a simple physical system can be exploited for computa-
tion. Its simplicity, controllability and structure enables detailed analysis, yielding
insight into what physical properties are important for computation. Finally, we
dive into the world of artificial spin ice (ASI): a family of structured magnetic meta-
materials composed of coupled nanomagnets. ASI systems display a rich variety of
complex emergent behavior, while at the same time offering considerable control.
We explore the complex dynamics available in “square” ASI, and demonstrate how
its computational properties can be controlled and exploited. A new ASI simulator
was developed to support further investigations, which can capture realistic dynam-
ics of large-scale ASI systems within practical time frames. We introduce reservoir
computing in artificial spin ice, and quantify the reservoir quality of “pinwheel”
ASI. A key result is that the emergent large-scale patterns of pinwheel ASI can be
exploited at different scales of observation, ranging from individual magnets to the
collective state of the resulting metamaterial. These findings, combined with highly
developed fabrication techniques, make ASI very promising material substrates for
future computing devices.

Our results highlight important properties of material computing systems, the de-
gree of control offered by different materials, and what insight can be gained from
reservoir computing in-materio.
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Structure of the thesis

This thesis is a paper collection and consists of two parts.

Part I (Overview) introduces the research area, provides an overview of the work,
covers relevant background, and concludes with a discussion of the research.

In part II (Publications), the papers are included in full. For readability and con-
sistency, the papers have been reformatted for inclusion in the thesis, and therefore
deviate visually from the published versions.

The five papers are listed below:

A. Dynamics in Carbon Nanotubes for In-Materio Computation
Stefano Nichele, Johannes Høydahl Jensen, Dragana Laketic, Odd Rune Strøm-
men Lykkebø, and Gunnar Tufte (2016)
International Journal On Advances in Systems and Measurements

B. Reservoir Computing with a Chaotic Circuit
Johannes H. Jensen and Gunnar Tufte (2017)
ECAL 2017: The Fourteenth European Conference on Artificial Life

C. Computation in artificial spin ice
Johannes H. Jensen, Erik Folven, and Gunnar Tufte (2018)
ALIFE 2018: The 2018 Conference on Artificial Life

D. flatspin: A Large-Scale Artificial Spin Ice Simulator
Johannes H. Jensen, Anders Strømberg, Odd Rune Lykkebø, Arthur Penty,
Magnus Själander, Erik Folven, and Gunnar Tufte (2020)
In review, preprint in arXiv:2002.11401 [cond-mat, physics:physics]

E. Reservoir Computing in Artificial Spin Ice
Johannes H. Jensen and Gunnar Tufte (2020)
ALIFE 2020: The 2020 Conference on Artificial Life

A summary of the papers and author contributions is given in Section 1.3.
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Chapter 1

Introduction

No modern invention has had such a profound impact on mankind as the digi-
tal computer. The stored program computer and semiconductor technology have
proven an unbeatable combination for nearly 70 years. Easily programmable, gen-
eral purpose, high-precision, blazingly fast computing has become a ubiquitous re-
source. One would be hard pressed to find areas of society unaffected by the digital
revolution.

Progress has been remarkable over the years, with a seemingly endless exponen-
tial growth in computing capabilities, as predicted by Moore (1965). Primarily, the
growth has been facilitated by shrinking the size of the transistor, meaning more
logic can be packed in the same area, while maintaining roughly the same power
budget (Dennard et al., 1974). Reductions in size have been crucial to keep power
consumption within manageable bounds, i.e., within physical limits where the heat
generated can be effectively dissipated. Although a range of innovations have al-
lowed progress to continue seemingly undisturbed for decades, it has become clear
that we are near the end of transistor scaling (Mack, 2011). Scaling further will
soon involve features approaching the atomic scale, which is simply not feasible.

Power is the limiting factor of modern processors today. Even though we have
managed to shrink the transistor beyond our wildest dreams, parasitic effects re-
sult in leakage currents and have become a constant headache for designers. A
consequence is that modern processors can only be partially powered at any given
time, since the heat generated from the entire chip cannot be dissipated quickly
enough (Esmaeilzadeh et al., 2011). Reducing power is not only a technological
requirement at the chip level. Power is a limiting factor at all levels, from simple
devices to data centers. The operational life time of battery-powered devices is lim-
ited by energy usage. Data centers consume power in the megawatt (MW) range,
enough to power a small city, and getting rid of all that heat means a large part of
the budget is dedicated to cooling (Ebrahimi et al., 2014).
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Chapter 1 Introduction

When it comes to power, why is the digital computer so inefficient? The answer, it
turns out, is fundamentally rooted in digital logic. Digital computing uses a lot of
resources to do very little computation: even the most basic operations involve an
intricate interplay between a large number of components. In silicon, the transistor
is used to implement a simple switch, on top of which more complex operations
are built, layer by layer. By design, digital computers do only the bare minimum
of the computation in the physical domain. By involving the physical domain as
little as possible, physical challenges such as component imperfections and signal
noise can be engineered around to have no effect on the resulting computation. Dig-
ital machines perform perfect abstract computation in an imperfect physical world.
However, we pay a high price for perfect computation, in terms of manufacturing
costs, complexity, and power consumption.

Computing could be much more efficient if we dare let go of the digital paradigm al-
together, and explore more unconventional ways of performing computations. The
fundamental nature of the issues mentioned above makes such an exploration press-
ing. It is within the diverse field of unconventional computation we find the primary
research topic of this thesis: material computation.

Material computation

Material computation aims to exploit the intrinsic properties of materials directly
for computation. Computing close to physics can be extremely efficient, since op-
erations happen “for free” in the rich physical domain. Analog computers prevailed
well into the 1980s exactly because they used electrical phenomena as computa-
tional building blocks, and therefore were orders of magnitude more efficient than
the digital computers at the time. Although material computing shares a similar goal
(computing close to physics), it is based on fundamentally different principles.

Classical computer engineering is concerned with the question: how can we imple-
ment this kind of computation in this physical substrate? The classical approach
involves building abstraction layers to effectively hide the physical processes of
the substrate. Material computation, on the other hand, asks instead: what kind
of computation does this physical system do naturally? By focusing on what the
material does naturally, we strive to do as much of the computation in the physical
domain as possible. There is very little or no design involved, but rather an investi-
gation into the available physical mechanisms and how they relate to computation.
In doing so, we may also discover computational models based on entirely different
principles.
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A key principle of material computation is emergent computation, i.e., computa-
tional processes that emerge from the underlying physics of the material substrate.
We may contrast emergent computation with designed computation, as exempli-
fied by classical computer engineering. Identifying and quantifying such emergent
properties is an important part of assessing the computing potential of a material.
Through a bottom-up exploration of material properties, one seeks to find emergent
computational mechanisms that can be readily exploited.

In the search for computational properties, we take inspiration from nature, which
is full of systems performing some form of intrinsic computation. Neural systems
are a good example, in which computation is a result of the collective activity of
large, self-organized networks of relatively simple elements (neurons). It is the
ultimate example of efficiency and scalability: our brain consists of billions of neu-
rons and trillions of synapses, yet it consumes only 20W of power. This incredi-
ble efficiency can be attributed to the use of physical phenomena as computational
primitives (Mead, 1990). Natural computing systems display properties such as
vast parallelism, self-organization, local communication, simple elements, emer-
gent behavior, robustness and adaptation. Materials that exhibit similar properties
are therefore particularly interesting.

However, transferring natural computing principles to artificial substrates must be
done with care, since the physical properties of the artificial substrates are likely
quite different from those of nature. For example, the time scales of silicon dynam-
ics are much shorter than those involved in biological systems. Subtle differences in
physical properties may have significant consequences for the computational prop-
erties, and consequently affect what kind of computations can take place.

Reservoir computing

A crucial step is finding a suitable computational model for the material substrate. A
distinctive feature of biological computing systems is a close coupling between the
architecture and the physics of the computing substrate. After all, biological com-
putation is the result of natural evolution, where computation has developed hand in
hand with the physical biochemical substrate. To exploit the intrinsic computation
within a material, there must be a good correspondence between the properties of
the model and the material.

A suitable model not only enables a material to be exploited to solve our computa-
tional tasks, it also enables its properties to be analyzed and reasoned about. Models

5



Chapter 1 Introduction

with programmability features greatly extend the versatility of a material, i.e., al-
lowing the material to be exploited for different tasks. In this work, we employ a
reservoir computing model, which is particularly promising for material computa-
tion.

Reservoir computing (RC) is a computational model that enables dynamical sys-
tems to be exploited for computation. The dynamical system, referred to as the
reservoir, provides a rich repertoire of behaviors that can be tapped into to perform
useful computations. RC employs a readout layer which is trained to produce some
desired function based on reservoir state. While classical RC employs reservoirs
in software, the model can be readily applied to exploit physical systems as reser-
voirs. The primary topic of this thesis, reservoir computing in-materio, is the study
of novel material substrates as reservoirs.

Material computation is basic research, with a long-term goal of more efficient com-
puters, as well as enhancing our understanding of the phenomena of computation
itself. It is an inherently cross-disciplinary effort, involving fields such as physics,
chemistry, biology, mathematics and computer science. In doing so, we must pro-
ceed with an open mind, dare let go of established notions of what computing is,
and start exploring computing as it could be.

1.1 Research questions

The overarching theme of this research project is the exploration of novel physical
substrates for computation. We are guided by the principles of material computa-
tion: computation close to physics, emergent rather than designed, bottom-up ex-
ploration of computational properties. A key principle is the use of computational
models that provide a good fit with the material substrate. Only then can we hope
to exploit the full computing potential of the substrate, where physics is exploited
directly for computation. Towards that end, we depart from the classical paradigm
of digital computing, and consider unconventional computational models.

The goal of such an endeavor is twofold.

First, there is a technological goal: investigating novel computing machinery may
lead to the development of more efficient computers. In this context, efficiency may
include properties such as power consumption, area usage, design and fabrication
costs, fault-tolerance, robustness, etc. The study of unconventional computation
close to physics may lead to improvements to the classical computer, or entirely
new computing devices altogether.

6



1.1 Research questions

The second goal is to advance our theoretical understanding: by exploring com-
puting as it could be, we hope to gain insight into the nature of computation itself.
What physical properties and mechanisms are essential for computation? How does
the physics of the substrate affect its computational properties? For a given physical
system, what are suitable computational models? These questions are relevant not
only for insight into computation within man-made machines, but also for under-
standing computational processes occurring in nature.

Of course, these are lofty goals whose scope extends well beyond what can possibly
be covered in a single research project. Nevertheless, they illustrate the big picture
in which this research project is situated.

With that backdrop in mind, we present the three central research questions which
are investigated in this thesis.

Research question 1

What properties of a material are important for computation, and how do we
quantify these properties?

The aim of this research question is to find methods to assess the potential com-
puting capabilities of a material. We begin by identifying relevant material proper-
ties, and how they relate to computation. In this context, the focus is on intrinsic
computation, i.e., the basic mechanisms needed for computation to take place. An
understanding of these intrinsic properties sheds light on the kind of computation a
material does naturally, and highlights strengths and weaknesses. Some properties
are structural, given by the composition of the material, e.g., the number of compu-
tational elements in a material could be related to the number of constituent parts.
Other properties must be measured, and methods to quantify them are needed, e.g.,
the dynamical characteristics of a system has direct consequences for computation.
It should be stressed that intrinsic computation is task-independent, and hence pro-
vide somewhat of a birds-eye view of a material’s computational capabilities.

Research question 2

How can the computational properties of a material be controlled to tune
functionality?

The computational properties of a material emerge from its underlying physical
properties. Hence, the computational properties may be affected by changes in
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Chapter 1 Introduction

the physical properties. If we can find ways to reliably control the computational
properties, the functionality of the material may be tuned, resulting in a kind of
programmability. Some properties may only be changed structurally by modifying
the material itself, e.g., the coupling between the particles of a material may depend
on the distance between them. Other properties may be changed through the envi-
ronment, leaving the material unchanged, e.g., the properties of a driven dynamical
system is typically affected by the characteristics of the external driving signal. The
ability to tune computational properties from the environment offers a kind of mate-
rial field-programmability. Metamaterials, i.e., physical systems whose constituent
parts give rise to emergent material-like properties at some higher level, are particu-
larly interesting in this regard, as they offer direct control over the constituent parts
at the lower level.

Research question 3

How can reservoir computing help elucidate and exploit the intrinsic com-
putational properties of a material?

Reservoir computing (RC) is a promising computational model for material com-
putation, due to its generic requirements and basis in dynamical systems theory.
RC in-materio allows the intrinsic properties of a material to be exploited for use-
ful tasks. In addition, RC provides a framework in which useful computational
properties can be measured and analyzed. A key question is which material prop-
erties are most important from a RC perspective. How flexible is the RC model
at accommodating different materials? What does RC theory have to say about
the computational capabilities and limitations of a material? In addition to theory,
established reservoir quality metrics can be used to quantify computational proper-
ties, at a spectrum from intrinsic to task-specific. In this way, RQ1 and RQ2 may
be illuminated from a RC perspective.

1.2 Research overview

This thesis is a paper collection, where the research has culminated in five papers.
The papers have been published in relevant conferences and journals, and are in-
cluded in part II of the thesis. In this section, an overview of the work is provided,
along with a summary of the papers, organized according to the three research ques-
tions presented earlier.
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1.2 Research overview

The five papers, labeled A-E, are as follows:

A. Dynamics in Carbon Nanotubes for In-Materio Computation

B. Reservoir Computing with a Chaotic Circuit

C. Computation in artificial spin ice

D. flatspin: A Large-Scale Artificial Spin Ice Simulator

E. Reservoir Computing in Artificial Spin Ice

Materials

To address the research questions, the work has been focused on three different
materials with a distinct set of properties. Using a reservoir computing model, we
investigate the computational capabilities of these materials, and highlight impor-
tant strengths and limitations.

The three material substrates investigated in this work are:

1. A complex, unstructured carbon nanotube material (CNT).

2. A simple, structured “material” consisting of a driven chaotic circuit (CC).

3. A family of complex, structured magnetic metamaterials called artificial spin
ice (ASI).

These materials are particularly interesting for our study because they exhibit cer-
tain key properties for material computation: nonlinearity, rich dynamics, paral-
lelism, local interactions and self-organization. The motivation for these properties
is discussed in Section 2.3.

In the above list, the materials have been characterized as unstructured or struc-
tured, simple or complex. A structured material has a well-defined and ordered
internal structure, i.e., the internal organization of the material is known. Unstruc-
tured materials, on the other hand, have no well-defined internal structure, i.e., with
a disordered and unknown arrangement of the constituent parts. Somewhat orthog-
onally, complex materials have many constituent parts, whereas a simple material
consists of relatively few elements.

The three materials are described in more detail in chapter 2 (Background): Sec-
tion 2.5 introduces carbon nanotube materials, Section 2.6 describes the chaotic
circuit, and Section 2.7 details artificial spin ice (ASI). Of the three materials, ASI

9
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Figure 1.1: Overview of the papers in this thesis (top row) and how they relate to the
research questions and material substrate (left column). The presence of a bump in the
graphs indicate a relationship between a paper and research question / material. The dashed
lines between papers indicate a dependency, i.e., paper E depends on the work in papers C
and D.

is seen as particularly promising, and has been the primary focus of the work (three
of the five papers are on ASI). Consequently, in the background chapter, ASI is
covered in greater detail.

The papers at a glance

Fig. 1.1 illustrates how each paper (labeled A-E) relates to the three research ques-
tions (RQ1-3) and which material substrate is studied (CNT, CC or ASI). Relation-
ships are depicted as six plots, where bumps indicate a relationship between paper
and research question or material. As can be seen, RQ1 and RQ2 are addressed by
all the papers (except paper D), whereas papers B and E involve reservoir computing
(RQ3). Paper D is special in that it does not address any of the research questions
directly, but presents a new ASI simulator which forms the foundation for further
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1.3 Research summary

research on ASI. Papers A and B are somewhat independent, while papers C-E are
very much related in the common focus on ASI. In fact, paper E directly depends
on the results from paper C and D, as indicated by the dashed arrows.

RC has been a key topic throughout all of the research, but not all papers employ
RC directly. Papers A and C investigate the intrinsic computing properties of the
material, and hence provide a foundation for choosing suitable computational mod-
els.

1.3 Research summary

In the subsections that follow, a summary of each paper is provided, along with
relevant contextual information. Other relevant contributions are discussed at the
end of this section.

The summary is given early to quickly give the reader an overview of the work. It
makes use of terminology which is not introduced until later in chapter 2 (Back-
ground). As such, the reader may wish to skip ahead to chapter 2, before returning
to this summary.

Paper A: Dynamics in Carbon Nanotubes for In-Materio
Computation

By Stefano Nichele, Johannes Høydahl Jensen, Dragana Laketic, Odd Rune Strøm-
men Lykkebø, and Gunnar Tufte (2016)

Published in International Journal On Advances in Systems and Measurements

In this paper, the intrinsic computational properties of a complex, unstructured bulk
material are investigated. Specifically, nanocomposites of Single-Walled Carbon
Nanotubes (SWCNTs) and PolyButyl MethAcrylate (PBMA) are examined as ma-
terial computing substrates. A basic requirement for computation is the availability
of rich and complex dynamics, and the aim of this work was to gain a better un-
derstanding of the range of dynamics available in the material. The investigation
was done at the experimental level of electrical signals and observations, i.e., using
a model-free approach where the material is treated as a black box. First, a quali-
tative characterization is conducted by examining the material response to various
input stimuli. Next, a quantitative measure of the dynamics based on computational
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complexity was performed. We find that interesting, complex dynamics are avail-
able in the material. The dynamics depend on the material properties (such as the
ratio of SWCNTs to PBMA), as well as properties of the input signals.

Role of authors:
Nichele and Jensen did the main experimental work in this paper.
Laketic made text contributions and the theoretical work.
Lykkebø and Tufte contributed with ideas, discussions and paper corrections.

Note:
This paper is an extended version of a conference paper (Nichele et al., 2015),
which was invited to the International Journal On Advances in Systems and
Measurements. This work was done as part of the NASCENCE project (see
Section 1.4).

Paper B: Reservoir Computing with a Chaotic Circuit

By Johannes H. Jensen and Gunnar Tufte (2017)

Published in ECAL 2017: The Fourteenth European Conference on Artificial Life

This work was motivated by the question: what is the simplest physical reservoir?
In this paper, we show how a very simple system can be exploited for computation
through reservoir computing. The circuit in question is the driven Chua’s circuit,
which is one of the simplest chaotic circuits. Its rich repertoire of available dynam-
ics suggests considerable intrinsic computing capacity. Dynamics range from stable
to chaotic, readily tunable by the choice of circuit components and input stimuli.
At the same time, the simplicity of the circuit enables detailed analysis to be made,
offering insight into what physical properties are important for computation. In
the paper we show, both through simulation and in-circuit experiments, how such
a simple physical system can be readily exploited for reservoir computing. We ob-
tain excellent performance on two non-temporal tasks, and demonstrate how RC
allows the same physical system to be exploited for different computations. The
fact that such a simple physical system can be utilized, suggests that a wide variety
of physical systems should be viewed as potential reservoirs.

Role of authors:
Jensen did the main experimental work and writing of the paper.
Tufte contributed with text and corrections to the paper, as well as ideas and
discussions.
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1.3 Research summary

Paper C: Computation in artificial spin ice

By Johannes H. Jensen, Erik Folven, and Gunnar Tufte (2018)

Published in ALIFE 2018: The 2018 Conference on Artificial Life

Artificial spin ice (ASI) is a class of magnetic metamaterials consisting of nano-
magnets arranged on a 2D lattice. Local interactions between the magnets give rise
to a range of complex emergent behavior. In this paper, we investigate intrinsic
computing properties of ASI systems. We find several analogues between ASI and
neural networks. Through micromagnetic simulations, we assess the range of dy-
namics available in “square” ASI, and quantify the number of reachable states. We
find that the system exhibits a large number of reachable states and wide range of
dynamics when perturbed by an external magnetic field. The strength and frequency
of the external field has a direct influence on the dynamical regime and reachable
states. We demonstrate how these properties may be exploited for temporal pattern
recognition. Furthermore, we show that square ASI can be tuned to obtain effec-
tively different modes of computation, ranging from classification to memory.

This paper laid the foundation for the remaining papers in this thesis, whose focus
is also on ASI.

Role of authors:
Jensen did the main experimental work and writing of the paper.
Folven and Tufte contributed with text and corrections to the paper, as well
as ideas and discussions.

Note:
This work was funded in part by the SOCRATES project (see Section 1.4).

Paper D: flatspin: A Large-Scale Artificial Spin Ice Simulator

By Johannes H. Jensen, Anders Strømberg, Odd Rune Lykkebø, Arthur Penty, Mag-
nus Själander, Erik Folven, and Gunnar Tufte (2020)

In review, preprint in arXiv:2002.11401 [cond-mat, physics:physics]

Micromagnetic simulations (MM) provide a high-fidelity view of ASI systems.
However, MM are computationally costly, which places hard limits on the size,
time scales and number of ASI systems which can be investigated within reasonable
time frames. For material computation, we are interested in emergent large-scale
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behavior, at long time scales. To make matters worse, computational models such
as reservoir computing require large number of simulations for training.

These issues prompted the development of a new fast simulator for ASI called flat-
spin, which is presented in Paper D. Flatspin employs a dipole model, where each
magnet is approximated by a point dipole with a binary state (spin), and spins are
coupled through magnetic dipole-dipole interactions. A novel switching criterion
enables realistic dynamics to be captured with the dipole model. Through GPU
acceleration, large ASI systems can be simulated within practical time frames. In
the paper, the simulator is verified against a range of experimental results from the
ASI literature. A highlight is that flatspin is able to reproduce the magnetization
reversal of “pinwheel” ASI, which is the first time this has been demonstrated with
a dipole model. The simulator enables quick exploration of new ASI geometries
and properties, and has proven crucial for much of the ongoing ASI research within
the SOCRATES project and beyond.

Role of authors:
Jensen and Lykkebø did the principal engineering work on the simulator, with
important contributions from Strømberg and Penty.
The main authors of the paper were Jensen, Strømberg, Lykkebø and Penty.
Själander, Folven and Tufte contributed with text and corrections.
All authors contributed with ideas and discussions, both regarding the design
of the simulator itself and its verification.

Note:
This work funded in part by the SOCRATES project (see Section 1.4).

Paper E: Reservoir Computing in Artificial Spin Ice

By Johannes H. Jensen and Gunnar Tufte (2020)

Published in ALIFE 2020: The 2020 Conference on Artificial Life

This paper presents the first study of reservoir computing in ASI. Specifically, we
assess the reservoir quality of “pinwheel” ASI using established reservoir metrics
(kernel quality and generalization capability). From a large number of flatspin sim-
ulations, we estimate the reservoir properties of pinwheel ASI under different field
strengths and lattice spacings. As reservoir output, we consider the state of the ASI
at different scales of observation, ranging from individual spins to the collective
behavior of the resulting metamaterial. The results show excellent reservoir quality

14



1.3 Research summary

for a range of parameters, as well as clear evidence of the fading memory property.
Good reservoir quality is obtained at a range of different scales, yielding insight into
the scalability and robustness of ASI reservoirs. The fact that good performance is
found also at the larger scales suggests that ASI reservoirs are not only possible, but
also practical.

Role of authors:
Jensen did the main experimental work and writing of the paper.
Tufte contributed with text and corrections to the paper, as well as ideas and
discussions.

Note:
This work was funded in part by the SOCRATES project (see Section 1.4).

Other contributions

In addition to the papers above, other research contributions have been made which
are worth mentioning.

The flatspin ASI simulator described in Paper D has been released as open source
software under a GNU GPL license. flatspin is written in Python and uses OpenCL
to accelerate calculations on the GPU. It has already received considerable interest
from the ASI community, and has been instrumental for much of the work within the
our research group. For more information, see the flatspin website1, user manual2

and source code repository3.

Some of the work has been presented as posters and abstracts at various scien-
tific venues. Worth mention is a poster (Strømberg et al., 2019) about our work
on computation in ASI at the workshop Frontiers in Artificial Spin Ice in 2019.
An extended abstract (Lykkebø et al., 2019) was submitted and presented at the
First International Workshop on Theoretical and Experimental Material Comput-
ing (TEMC 2019), which was held in conjunction with the Unconventional Com-
putation and Natural Computation 2019 (UCNC 2019) conference.

1flatspin website: https://flatspin.gitlab.io
2flatspin user manual: https://flatspin.readthedocs.io/en/latest/
3flatspin source code repository: https://gitlab.com/flatspin/flatspin
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Chapter 1 Introduction

1.4 Associated projects

The research is associated with three larger research projects.

The first project is NASCENCE (NAnoSCale Engineering for Novel Computation
using Evolution), which was a EU-funded project (grant number 317662) exploring
evolutionary computation in nanosystems (Broersma et al., 2012). A key principle
of the project was a model-free approach, where the nanomaterial was treated as a
black box, under direct control of an evolutionary algorithm. The project ran from
2012 until 2015. Although NASCENCE was being wrapped up in 2015 as this
PhD project began, many of its ideas, principles and artifacts have been a hugely
important foundation.

A few years later, in 2017, the SOCRATES4 project (Self-Organising Compu-
tational substRATES) was started, funded by the Norwegian Research Council
(NFR), grant number 270961. The goal of the project is the development of new
computing paradigms to exploit self-organizing substrates. Biological neural net-
works and ensembles of nanomagnets are the primary substrates considered, where
one seeks to replicate neuronal properties in nanomagnetic systems. In many ways,
SOCRATES continues the work from NASCENCE, although moving away from
the model-free evolutionary approach in favor of established physical and compu-
tational models. SOCRATES is a five-year project which will complete in 2022.
The research in this PhD has been funded, in part, by the SOCRATES project.

Finally, in 2020, the SpinENGINE5 project was funded under the FET Open EU
programme, grant number 861618. The focus of SpinENGINE is on emergent
computation in nanomagnetic ensembles. It is a continuation of the work set out
in SOCRATES, but with a sole focus on nanomagnetic systems. SpinENGINE is a
four year project which will last until 2024.

4SOCRATES website: https://www.ntnu.edu/socrates
5SpinENGINE website: https://spinengine.eu/
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Chapter 2

Background

2.1 What is computation?

Before we go any further, we ought to define more precisely what is meant by
computation. What, exactly, is a computer? Intuitively, we understand that a laptop
running a spreadsheet program is performing computations, or that a calculator
computes the sum 2+2. However, when we consider unconventional computing
devices, such as material substrates, the issue becomes less clear. When is a material
performing a computation, and when is it not?

Abstract theories of computation, such as Turing Machines (Turing, 1937), provide
a mathematical formalism for the study of computational objects and their proper-
ties. They are pure mathematical theories, and describe computation entirely in the
abstract domain.

However, in this thesis we are approaching computation from the physical point of
view, i.e., physical computation. The bottom-up approach of material computation
starts with the physical system, and asks what kind of computation it naturally sup-
ports. Hence, abstract theories of computation provides only half the picture. What
is missing is the physical entity that is performing the computation: the computer.

A computer is a physical system that implements an abstract computation. For ex-
ample, the digital computer is a physical device that implements an abstract Turing
Machine. As such, a key question is how a physical system can be said to compute,
when computation is defined entirely in the abstract domain. This is known as the
problem of computational implementation, and there are many different theories.
For an in-depth review, see Piccinini and Maley (2021).

At one end of the scale, pancomputationalism argues that everything is compu-
tation, i.e., that the universe can be considered a giant computer (Toffoli, 1982;
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Wolfram, 2002). Although an interesting theory, many would argue that pancom-
putational reasoning is simply a rebranding of physics as computation, and gets us
nowhere (Horsman et al., 2014). Clearly computers can be used to model most
physical systems, but that does not mean, ipso facto, that all physical systems are
computers (Hopfield, 1994). Based on these arguments, pancomputationalism must
be rejected.

Other theories of computation impose much more stringent requirements on when a
physical system can be said to compute. For instance, mechanistic theories require
that some computational function can be tied to the constituent parts of the physical
system (Piccinini, 2007). For material computation, such requirements seem much
too strict. Importantly, they seem to exclude the possibility of emergent computa-
tion, i.e., computational mechanisms that cannot be tied to any constituent parts of
the physical system.

For the purpose of our discussion, we define computation based on abstraction /
representation (AR) theory (Horsman et al., 2014; Stepney and Kendon, 2019). AR
theory is broad enough to include both classical and unconventional computing, but
sufficiently narrow as to not include the entire universe.

The theory provides a useful definition of physical computation for our purpose:

Physical computing is the use of a physical system (the computer) to
predict the outcome of an abstract evolution (the computation).
(Horsman et al., 2014)

Physical computing thus involves the abstract and physical domains, and is defined
by the use of a physical system to implement a computational function.

As illustrated in Fig. 2.1, a computation is an abstract operation on some input,
which produces some output as a result. To perform a computation on a physical
system (the computer) the abstract input needs to be encoded into the physical do-
main. The state of the physical computer will then evolve according to its intrinsic
dynamics. Finally, the physical state of the computer is decoded back to the abstract
domain as the result of the computation.

A key element of AR theory is the representation relation, which relates physi-
cal variables to their abstract representations. In digital electronic computers, for
example, (physical) voltages are used to represent (abstract) binary values. Put an-
other way, the representation relation describes how abstract input is encoded into
the physical system, and how physical state is decoded back into the abstract do-
main.
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Figure 2.1: Physical computing is the use of a physical system (the computer) to predict
the outcome of an abstract evolution (the computation). The figure is a simplified version
of the “commuting diagrams” from AR theory.

We require that the (decoded) output from the physical computer matches the ex-
pected output of the abstract computation, within some margin of error. Thus a
crucial step in the design of any physical computer, is to verify that the correct out-
put is produced for a sufficiently large number of different inputs. Once we are
confident that the physical computer works as intended, we can use the computer
to perform the computation directly. At this point, we have established that the
physical computer in Fig. 2.1 computes the abstract computation f (x).

Note that we place no restrictions on the form of input and output: they may be dis-
crete or continuous, static or time-dependent, etc. Furthermore, a particular form of
abstract input/output does not necessarily dictate the form of physical input/output.
For instance, a single discrete input value may be encoded as a continuous time-
dependent signal in the physical domain.

Programmability has not been included in the above definition of computation.
Granted, programmability is an essential feature of the modern computer: the abil-
ity to change functionality without re-wiring circuitry was key to the success of the
stored-program computer. However, programmability is not a strict requirement for
computation per se, e.g., fixed-function hardware accelerators can greatly speed up
computations, at the cost of generality (non-programmability). In any case, a com-
puter program can readily be included in the above definition as part of the input,
or as an additional component.
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Within our definition of computation, any physical system can be used as a com-
puter as long as:

1. Input can be encoded into the physical system (encodability)

2. The physical system has the property of being influenced by the input (per-
turbability)

3. The influence can be observed as changes in the state of the physical system
(observability)

4. Physical state can be decoded into the abstract domain as the output of the
computation (decodability)

5. The resulting physical computation matches some desired abstract computa-
tion (correctness)

To summarize, computation involves an encoding and decoding process, as well as a
physical dynamical process which implements an abstract computation. From this
definition we immediately appreciate the close connection between computation
and dynamical systems. Physical computation is the result of the time-evolution of
a physical system, i.e., without dynamics there cannot be computation. We return
to the topic of dynamics later in Section 2.2.

2.1.1 Natural computing

How does natural computing fit into the AR theory of computation? Do animals,
bacteria or even plants “compute”?

According to AR theory, the answer depends on a key component: the represen-
tation relation. To identify computation, we must show that encoding and decod-
ing takes place. In other words, “there is no computation without representation”
(Fodor, 1981).

For example, animals make decisions based on sensory input such as smell, and
an abstract computational problem could be “is this the smell of food?”. In this
case, encoding takes place in the nose, where aerosol particles are detected and
transformed to electrical signals. The electrical signals are processed by neural
circuits in the animal brain, which determine whether the scent stems from food,
e.g., based on past experience. The result of the computation is an electrical signal,
which can be decoded as “food” or “not food” by other parts of the brain, and
eventually result in actions taken by the animal. Natural computation can thus be
identified by the existence of a physical encoding and decoding process.
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Computation can be distinguished from other physical processes by the arbitrariness
of the physical signals involved (Horsman et al., 2017). For example, different or-
ganisms use different physical signals (electrical or chemical) to represent the same
information (“food”). It is not the physical properties of the signals themselves that
are being exploited, but their representational properties. This arbitrariness is key
in determining whether an organism computes or not.

While AR theory may be used to understand computational processes occurring in
nature, it has been challenged on more philosophical grounds. Such a discussion
is outside the scope of this research project, but the interested reader is referred to
Szangolies (2020).

2.1.2 Computational models

A computational model describes how an abstract computation is performed. In
other words, it contains an abstract description of the internals of a machine which,
when given an input, computes the desired output. It relates the computation to
the computer in Fig. 2.1: it is an abstract description of a machine, which can
be analyzed and reasoned about. A computational model should not be confused
with a physical model: A physical model captures physical properties, while a
computational model captures computational properties. The most widely stud-
ied computational model is the Turing Machine (Turing, 1937), but a number of
of alternate models exist, e.g., neuromorphic computing (Mead, 1990), quantum
computing (Benioff, 1980), cellular automata (von Neumann, 1951) and reservoir
computing (Jaeger, 2001; Maass et al., 2002).

All modern digital computers are instantiations of the Turing Machine. It is a se-
quential, symbolic, mathematical construct, which is abstracted far away from the
physical realm of silicon and transistors. Granted, the digital computer deviates
from the Turing Machine in certain aspects for increased efficiency, e.g., the use
of random-access memory instead of a sequential tape, shared memory for both
instructions and data, etc. However, the core principle of the Turing Machine re-
main integral parts of the digital computer: the sequential execution of instructions,
lossless information storage, and perfect mathematical computations.

With a computational model comes a set of properties which must be realized phys-
ically. Some properties can easily be transferred to the physical domain, e.g., infor-
mation storage can be realized as electric charge, magnetic domains, the position
of gears, etc. Other properties may require substantial engineering efforts, e.g.,
lossless information storage as realized in the digital computer requires extensive
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support circuitry. The computational model also puts certain restrictions on com-
puter architecture, e.g., sequential or parallel operation, global or local control, how
information flows within the system, etc.

Clearly the choice of computational model has a huge impact on the performance
of physical implementations. When there is a mismatch between the model and rel-
evant physics, the speed and efficiency of computations will suffer. If the mismatch
is too great, the model may not be physically realizable at all.

Nevertheless, a computational model is an invaluable tool for analyzing, comparing
and reasoning about novel computing machines. Placing a physical system within
a computational model highlights key properties of the system, its principles of
operation, its strengths and weaknesses.

2.2 Computation in dynamical systems

Dynamical systems theory is the study of systems whose states change over time.
Historically, the theory was developed for the study of physical systems (mechani-
cal systems, electrical circuits, heat transfer, etc). It has since grown to encompass
a wide range of more abstract models with loose connections to physics (cellular
automata, neural networks, L-systems, etc). For an excellent introduction to dy-
namical systems theory, see Strogatz (2015).

Dynamical systems theory provides a solid foundation for the analysis of physical
systems. The language of dynamical systems involves attractors, stability, chaos
and bifurcations. If computation can be usefully described in the language of dy-
namical systems, the dynamical properties of a physical system may be directly
related to computational mechanisms (Stepney, 2012). Dynamical systems theory
thus enables a powerful link to be established between physical systems and com-
putation.

Viewing computers as dynamical systems raises several important questions. What
properties of a dynamical system are necessary for computation? How are basic
computational mechanisms realized in a dynamical system? What is the relation-
ship between dynamics and computation?

From our definition of computation in the previous section, almost any dynamical
system can be used for computation, at least in principle. However, some dynamical
systems will be more suited than others, as discussed next.
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2.2.1 Styles of computation

The type of dynamical system will influence the style of computation.

Closed (autonomous) dynamical systems, for instance, evolve without any external
influence. The only way to encode input into closed systems is through the initial
condition. Hence, closed systems support a “ballistic” style of computation: once
the input has been encoded, the computation is “fired off” after which the system
evolves without any further input from the environment (Stepney, 2012). Once
some equilibrium condition is reached, the particular attractor can be considered the
output of the computation. If the system never reaches equilibrium, the computation
has no result.

As an example of a closed dynamical system, consider a billiards table. The initial
condition includes the placement of all the billiard balls, as well as the angle and
force used to strike the cue ball. After the cue ball has been hit, the state of the
system evolves on its own until all the balls have stopped moving, and an equilib-
rium has been reached. While the merits of “billiards computing” is questionable,
it serves as a useful analogy for the ballistic style of computation.

The Turing Machine in its pure form can be considered a ballistic style of com-
putation, in that input is provided as the initial state on the tape, after which the
machine is left to run on its own. Another ballistic model is simulated annealing,
which can realized in a physical system whose low energy states represents solu-
tions. Computing based on attractors has the potential to exhibit robustness: a small
perturbation might cause a small shift in system state, but over time the system will
return to the same attractor.

Open (non-autonomous) dynamical systems, on the other hand, allow for exter-
nal perturbations also during evolution. In this case, the dynamics will not only
depend on the initial condition, but also on a time-dependent signal from the envi-
ronment.

Returning to the billiards table example, imagine we modify the rules so that one is
allowed to continuously tilt the table after the cue ball has been hit. In this modified
system, the dynamics of the system will also depend on how and when the table is
tilted, in addition to the original initial conditions. As such, the ability to tilt the
table introduces a time-dependent signal from the environment.

For open dynamical systems, the computation may have a result even though the
dynamics may never settle into an equilibrium. In other words, the output of the
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computation can be a continuous function of time, or be based on the entire trajec-
tory of the system. Such “trajectory-based” computation is more similar to the con-
tinuous processing of sensory information seen in biological systems, and real-time
processing in digital systems. Reservoir computing (Section 2.4) can be considered
a trajectory-based computational model.

Of course, computation is not limited to the two styles outlined above. Hybrid styles
are also possible. If the state of a closed system can be observed continuously, for
example, the entire trajectory may be considered as output. Open systems can also
support a ballistic style of computation: input may be encoded as a time-dependent
signal of finite length, after which the system is allowed to settle into an equilib-
rium.

2.2.2 Intrinsic computation and dynamics

Computation in dynamical systems can be viewed from two perspectives: useful
computation and intrinsic computation.

Useful computation is related to the computations that help us solve concrete prob-
lems. Hence what is considered useful computation is somewhat subjective, in that
it is related to human problems. Nevertheless, much can be learned by attempting
to solve concrete problems with a dynamical system.

Intrinsic computation, on the other hand, concerns the fundamental mechanisms
a dynamical system must possess in order to support computation (Crutchfield,
1994). Important mechanisms include the transmission, storage and modification
of information. Intrinsic computation views computation as an emergent feature of
a dynamical system. Hence intrinsic computation can guide us towards promising
computational systems, but does not tell us how they can be used in practice.

The study of intrinsic computation has revealed some remarkable connections be-
tween dynamics and computation.

Wolfram (1984) categorized the dynamics of 1D cellular automata (CA) into four
distinct classes, based on their long-term behavior. Class 1 systems relax to a ho-
mogeneous state, independent of the initial conditions (a point attractor). Class 2
systems exhibit periodic patterns of states (cyclic attractors). Class 3 systems are
characterized by chaotic patterns (chaotic attractors). Class 4 systems display com-
plex localized patterns, neither cyclic nor chaotic, with very long transients. He
speculated that only class 4 systems are capable of universal computation, which
was later confirmed (Cook, 2004).
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Langton (1990) asks what dynamical regime supports the necessary ingredients for
computation, i.e., information transmission, storage, and modification. Computa-
tion in dynamical systems involves a trade-off between information storage and
transmission. From an information theoretic perspective, storage involves lowering
entropy, while transmission involves raising entropy. Langton’s work with CAs re-
vealed that this trade-off is maximized near a phase transition, when the dynamical
regime is between the ordered and chaotic regime. He hypothesized that adapta-
tion in living systems involves adjusting their internal dynamics towards a critical
regime near a phase transition, where computational capabilities are maximized.

That computational capabilities peak at the “edge of chaos” is a recurring observa-
tion and appears to be a very general feature of dynamical systems. Crutchfield and
Young (1990) discovered similar features in continuous dynamical systems, using a
measure of statistical complexity based on reconstructing the dynamics with a finite
state machine.

Computation at the “edge of chaos” has also been a key topic in reservoir com-
puting. The computational performance of random neural networks appear to peak
when dynamics are at the edge of chaos (Bertschinger and Natschläger, 2004; Leg-
enstein and Maass, 2007). Indeed, the peak in performance can be correlated with
a maximization of information storage and transfer capabilities (Boedecker et al.,
2012). Note that in the case of reservoir computing, computational performance can
be directly related to useful computation. Reservoir computing is discussed later, in
Section 2.4.

To summarize, dynamical systems theory provides a mathematical framework for
the study of physical systems, and several connections have been established be-
tween dynamical systems and computing. Building on this foundation, material
computation aims to exploit physical systems directly for computing, which is dis-
cussed next.

2.3 Material computation

The overarching goal of material computation is to perform computation close to
physics, by exploiting the intrinsic properties of materials directly. Computing close
to physics has the potential to be extremely efficient, since computations happen
“for free” in the rich physical domain. The idea is to let physics do the job, by
making use of what the material does naturally, rather than coercing the material to
implement some abstract machine.
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Figure 2.2: The hybrid architecture of EIM consists of a configurable material in the physi-
cal domain, and a conventional digital computer in the computer domain. See text for more
details. Figure from Paper A (Nichele et al., 2016).

2.3.1 Evolution in materio

Material computation has its origins in evolution in materio (EIM), in which evo-
lutionary algorithms (EAs) are used to “program” materials to solve computational
problems (Miller and Downing, 2002). EIM treats the material substrate as a black
box, and solutions to problems are evolved by searching for suitable input and con-
figuration signals.

Fig. 2.2 illustrates the hybrid architecture of an EIM system, consisting of a con-
figurable material (the physical domain), and a conventional digital computer (the
computer domain). The digital computer controls the physical input and configu-
ration signals that go into the material. In response to these signals, the material
produces some physical output, which is measured by the digital computer. An EA
runs on the digital computer, which searches for appropriate input and configuration
signals, such that the output of the material matches some desired computation.

EIM deliberately avoids the use of computational models as well as physical models
of the material. The motivation for such a model-free approach is to enable the EA
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to discover and exploit physical properties which are either unknown or too complex
to understand. Indeed, EAs have been known to discover highly unconventional
solutions (Hornby et al., 2006), sometimes exploiting unknown physical properties
(Thompson et al., 1999) or even physical mechanisms external to the experiment
(Bird and Layzell, 2002).

A variety of computational problems have been solved successfully using EIM (see
Miller et al. (2014) for a review). However, a critique of the black-box model-free
approach is the limited insight it provides into the resulting computational process.
It is difficult to discern what computations happen within the material, the measure-
ment equipment, environment, or the EA itself (Lykkebø et al., 2015).

2.3.2 Early cybernetics

Although the field of material computation is still young, the underlying ideas and
principles can be traced back to the early days of cybernetics. Ashby’s work on
adaptive mechanisms in the brain showed how adaptation is an emergent property
of sparsely connected systems with random structure (Ashby, 1960).

Exploiting physical mechanisms for computation was a central theme in the early
cybernetics movement. Pask experimented with growing conductive networks by
varying the voltages of electrodes placed in a solution of ferrous sulfate. In this way
he was able to grow an artificial “ear” in the solution: a self-organized conductive
structure which could distinguish between different sounds (Pask, 1959).

A principal focus of early cybernetics was to understand the mechanisms that give
rise to intelligence, in animals and machines. Central topics in the field were com-
putation, communication, feedback, self-organization, adaptation, self-replication
and reproduction as they occur naturally in animals and in artificial systems (Wiener,
1961). Although the modern field of cybernetics has evolved to become primar-
ily concerned with control theory, many of the ideas from early cybernetics live
on within fields such as Artificial Life, Complex Systems and Artificial Intelli-
gence (Pickering, 2011).

2.3.3 Computation close to physics

The efficiency advantages of computing close to physics has been well-known since
the days of analog computers (Sarpeshkar, 1998). Analog addition, for instance, is
realized directly from Kirchoff’s current law: the current flowing out of a wire junc-
tion is the sum of the currents flowing into that junction. As illustrated in Fig. 2.3,
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Figure 2.3: The use of physical phenomena as computational primitives can be very effi-
cient. (a) Digital addition of two binary numbers A and B is realized as a cascade of full
adders. Each adder circuit consists of a handful of logic gates. At the level below, each
logic gate consists of a number of transistors. (b) Analog addition exploits Kirchoff’s cur-
rent law (KCL) to add two numbers A and B. From KCL, the output current S is the sum of
the input currents A and B.

analog addition can be orders of magnitude more efficient than digital addition, both
in terms of material resources and energy consumption during operation. Physics is
full of interesting phenomena which may be exploitable for computation, ranging
from simple operations such as addition to more complex computations.

Carver Mead, the father of neuromorphic computing, made similar efficiency ob-
servations when comparing biological and digital information processing systems.
He writes: “This advantage [of biological systems] can be attributed principally to
the use of elementary physical phenomena as computational primitives”. In other
words, digital methods are inefficient exactly because they are abstracted far away
from physics. He further argues that the deficiency is not due to any fundamen-
tal differences between the computational substrates (neural tissue vs silicon), but
rather in how the substrates are being used in the system (Mead, 1990). In other
words, suitable substrates (such as silicon) are readily available, but we are using
them wrong.

How then, do we get it right? How do we effectively exploit the intrinsic computa-
tion available in a physical substrate? Material computation may have the answer.
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Figure 2.4: Abstraction levels in material computation. See text for details.

2.3.4 Emergent rather than designed

A key principle of material computation is emergent computation, i.e., the computa-
tional mechanisms that are naturally present in a physical system. Material compu-
tation calls for a bottom-up, exploratory approach, where the basic computational
properties of a material are investigated. Once we have a sufficient understanding
of these properties, then we can find good ways to exploit them for computation.
Indeed, the bottom-up process is reminiscent of the natural processes which have
ultimately resulted in biological information processing systems. Through explo-
ration of physical building blocks, natural evolution has discovered extremely effi-
cient ways of doing computation close to physics.

Both material computation and analog computation perform computations close to
physics, but their approach is fundamentally different. Analog (and digital) comput-
ing is based on the top-down engineering of analog (or digital) circuits, which are
carefully designed to implement some desired function. Material computation, on
the other hand, is concerned with exploiting the intrinsic computation that emerges
naturally from the physical properties of a substrate. The bottom-up emergent ap-
proach of material computation involves very little human design.

In some sense, classical computer engineering (be it analog or digital) is concerned
with physical building blocks that have some desired functionality, which can be
used to create larger structures. Material computation, in contrast, is the search for
entire computational buildings within a physical medium.

Fig. 2.4 illustrates the different abstraction levels of material computation. At the
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bottom level is the physics of the elementary components which constitute the mate-
rial substrate (atoms, particles, nanomagnets). The hidden processes at the physics
level gives rise to emergent phenomena at the material level above. It is at the mate-
rial level we wish to perform computations, and consequently the level where input
is applied and output observed. The phenomena at the material level give rise to
computational properties at the level above. It is the computational properties we
exploit when doing a computation, at the topmost level.

What kind of physical properties are relevant for computation? One answer is that
it depends on the kind of problems we wish to solve: different problems exhibit
different computational requirements. Nevertheless, it is possible to identify some
generic properties which are desirable regardless of the application. Again, inspira-
tion from nature guides us in the search for desirable properties.

2.3.5 Parallelism, local interactions and self-organization

Parallel computing is much more scalable than sequential computation. Intuitively,
adding more computational elements is straightforward, whereas increasing the
speed of every element is far from trivial. Luckily, most physical systems are in-
herently parallel, hence parallel computations are natural properties of most mate-
rials.

Biological computing systems are vastly parallel, consisting of large numbers of
computing elements. While the computational capability of each element is fairly
modest, it is from the collective operation of the ensemble as a whole that complex
functionality emerges. The prototypical example is the complex function of the
brain which emerges from the collective behavior of simple neurons. Hence a key
question is how interactions between simple elements gives rise to some desired
function.

Physical information transfer costs energy, a cost which increases with distance.
Hence, we want to avoid sending data all over the place. Architectures where the
communication between nodes is primarily local can have significant efficiency
gains. Connectivity in the brain is mostly local, which has been attributed to the
scaling of “wiring resources” (Mead, 1990). A range of physical mechanisms sup-
port local interactions, where the strength of physical signals decays naturally as a
function of distance.

Maintaining global control of many parts is costly, complex and introduces a bottle-
neck in the controller. The centralized architecture of digital computers is the source
of a range of performance problems in modern computing. Biological systems, in
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contrast, employ distributed architectures without any central control mechanism.
Instead, the individual parts self-organize to maintain some desired structure and/or
dynamic behavior. Materials with elements that self-organize in some way are thus
particularly relevant.

Self-organization can also be associated with robustness, when computation is the
result of the collective behavior of many simple elements. For instance, elements
may collectively perform error correction through some form of majority voting
scheme. In the self-organized system, imperfections or even component failures
can potentially have little impact on the computation.

2.3.6 Nonlinearity and rich dynamics

Most, if not all, computational models rely on some form of nonlinearity. Fun-
damental operations such as conditionals and branching requires the presence of
a threshold function (a nonlinear function) at some lower level. Nonlinearity can
be directly related to the computational capabilities of a system. Multilayer neural
networks have been proven to be universal approximators, i.e., any function f can
be approximated arbitrarily well by a network, but only when a nonlinear activation
function is present (Pinkus, 1999). Luckily, most physical systems are nonlinear
(Strogatz, 2015), although this might not be apparent at the material level.

Importantly, nonlinearity is fundamental in any type of complex dynamics. As we
have discussed in Section 2.2, complex dynamics are associated with intrinsic com-
putation. For a material to support computation, it must exhibit complex dynamics
and consequently nonlinearity.

Rich dynamics refers to the presence of a variety of dynamics in a material, ranging
from simple to complex. A rich variety of dynamics suggests that the material is
capable of a range of different computations. Although chaotic dynamics may not
be directly computationally useful, the presence of chaos indicates that a dynamical
regime at the edge of chaos may be obtained by tuning parameters. Rich dynamics
and chaos are thus key properties of promising materials.

2.3.7 Physical constraints

In addition to the abovementioned desirable properties, physical constraints place
limits on the usability of a substrate. As discussed in Section 2.1, a strict require-
ment for computation is the ability to perturb the system with input, and observe
the response. The input signals must be realized physically, which places limits on
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the strength, speed and number of signals. Similarly, the output must be recorded
within the capabilities of available measurement technology. For example, compu-
tation at the atomic scale may look promising on paper, but wildly impractical if
output cannot be observed at larger scales.

Given the desirable properties discussed above, where should we start looking for
candidate materials? Biological systems clearly exhibit most, if not all, of these
properties. However, Stepney (2008) argues that biological material substrates
should be avoided, since they have already been highly specialized through evo-
lution. Put another way, biological systems are less malleable, and difficult to adapt
for our computational benefits. Instead, we should focus our attention on non-living
systems which have not yet been adapted towards some purpose. Relevant fields are
thus physics and chemistry, rather than biology.

2.3.8 Quantifying computation

Some material properties will be intrinsically tied to the system, e.g., the presence of
local interactions can be deduced directly from physical structure. Other properties,
such as those related to dynamics, must be measured through experiments.

The intrinsic computational properties of a material can be quantified using metrics
which are independent of any particular computational model. For example, com-
plexity metrics give an overall indication of computational capacity, by considering
the difficulty of reproducing material behavior with a machine. Although such met-
rics are suggestive of computational capabilities, they say little about the usefulness
of the computations.

To investigate the amount of useful computational capabilities available in a sys-
tem, one approach is to apply it to solve a variety of problems. Although such
an application-focused approach certainly has value, it is often difficult to gener-
alize the results to different problem domains. An alternative, and arguably more
informative approach, is to measure and characterize the useful computational ca-
pabilities of a system.

If the material can be placed within a suitable computational model, more power-
ful analysis and reasoning about the computational properties can be performed.
Within some computational models, there are metrics developed to assess specific
computational capabilities which are directly translatable to useful computation.
Hence, if a substrate can be placed within the framework of existing computational
models, much more can be deduced about its useful computational capabilities.
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Figure 2.5: The reservoir computing architecture consists of the input layer, the reservoir,
and the readout layer. Figure from Paper B (Jensen and Tufte, 2017).

As discussed earlier, it is crucial that the chosen computational model matches the
natural properties of the material, lest the efficiency suffers (Section 2.1.2). Clearly
different computational models place distinct requirements on the properties of a
material. A model designed specifically for a given material has the potential to
provide a perfect fit. However, the use of more generic models is beneficial at an
early exploratory stage. Furthermore, generic computational models allow for com-
parison of the computational capabilities of different materials. One such generic
computational model, which places rather loose requirements on the substrate, is
reservoir computing, which is discussed next.

2.4 Reservoir computing

Reservoir computing (RC) is a computational model in which a dynamical system
is exploited for computation. The dynamical system is referred to as the reser-
voir, which provides a rich repertoire of computations which can be tapped into to
perform useful tasks.

Fig. 2.5 illustrates the typical RC architecture, which consists of three distinct parts:
the input layer, the reservoir, and the readout (output) layer. A time-dependent in-
put signal perturbs the reservoir, which in turn produces some complex dynamical
response. Subsequently, the reservoir state is passed to a linear readout which is
trained to produce some desired output as a weighted sum of reservoir states. The
readout is memoryless, meaning it only has access to the current state of the reser-
voir at any given time. Crucially, the readout layer is the only trained part of the
system. Both the input layer and the reservoir remains fixed throughout, and are
typically randomly generated according to some hyperparameter.
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RC was discovered twice, independently and simultaneously, under the names Echo
State Networks (ESNs, Jaeger (2001)) and Liquid State Machines (LSMs, Maass
et al. (2002)). ESNs were proposed as a way to exploit the computational power of
recurrent neural networks (RNNs), which are difficult to train. Using randomly gen-
erated RNNs, Jaeger (2001) discovered that good performance could be obtained
by training only a linear readout layer on the activations of the network. Training
the readout amounts to linear regression, which is both easy and fast.

At the same time, LSMs were proposed as a computational model of the real-time
processing in biological neural microcircuits (Maass et al., 2002). Although the
focus was on neural modeling rather than purely computation, the ideas and overall
architecture are identical to ESNs. ESNs and LSMs were later unified as reservoir
computing.

RC has outperformed state of the art methods on a range of challenging tasks.
The primary focus has been on temporal tasks, i.e., where the input and/or output
are functions of time. Examples include time series prediction and classification,
speech recognition, signal generation and attractor reconstruction. Although not as
frequent, non-temporal tasks have also been treated successfully with RC methods.
For an excellent introduction to RC methods, see Lukoševičius and Jaeger (2009).
Gallicchio et al. (2020) reviews recent developments in the highly active field of
RC.

2.4.1 Reservoirs are dynamical systems

It was early realized that reservoirs do not need to be neural networks at all. Any
dynamical system can potentially be used as a reservoir, as long as it can be per-
turbed with input and (some of) its state observed. Reservoirs are open (nonau-
tonomous) dynamical systems, whose states are continuously affected by external
stimuli. What, then, is the computational function of a reservoir?

Reservoirs are high-dimensional dynamical systems, whose transient states rep-
resent nonlinear projections of the input. They can thus be viewed as nonlinear
kernels with memory, projecting a low-dimensional temporal input into a high-
dimensional space where salient features of the input are expressed. The high-
dimensional reservoir space allows input to be separated using linear methods, as
illustrated in Fig. 2.6. Reservoirs have memory in the sense that their state depends
both on present and past input, i.e., a nonlinear memory of input history is main-
tained. This nonlinear memory is exploited by the readout layer to perform useful
computations.
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Figure 2.6: Reservoirs can be viewed as nonlinear kernels that map low-dimensional input
into a high-dimensional space. Illustrated here is a set of points which represent two classes:
square and circles. Left: In two dimensions, the two classes are not linearly separable, i.e.,
they cannot be separated by a line. Right: A nonlinear mapping into a third dimension
allows the classes to be separated by a plane, i.e., the mapping has made the points linearly
separable.

The “liquid” analogy of Maass et al. (2002) is fitting: dropping pebbles into a
pond of water produces long lasting perturbations, visible as wave patterns trav-
eling across the surface. Hence, the state of the reservoir (liquid) represents both
current and past input (pebbles), transformed in a complex way which potentially
highlights salient features of the input.

2.4.2 Reservoir properties

To be useful, a reservoir needs to possess a set of fairly general properties: high
dimensionality, nonlinearity and fading memory. Each of these are discussed below,
as well as some other related properties.

A reservoir needs to be high-dimensional to facilitate a rich repertoire of functions
within its states. Theoretically, the inherent computational capacity of reservoirs is
bounded by the number of output nodes, i.e., the number of state variables avail-
able to the readout layer (Dambre et al., 2012). Computational capacity is maxi-
mized when the output nodes are linearly independent, i.e., a maximum of diversity
in the available functions. This make intuitive sense: the richer the repertoire of
functions, the more freedom available to the readout layer to construct useful com-
putations. However, low-dimensional reservoirs may still be employed, e.g., by
time-multiplexing the output to produce a virtual high-dimensional state (Appeltant
et al., 2011).
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Nonlinearity is an important property of reservoirs. As discussed in Section 2.2,
all non-trivial computations rely on some kind of nonlinearity, and nonlinearity is a
requirement for rich dynamics. In RC, any memoryless linear computation may be
implemented by the readout layer alone. Purely linear reservoirs thus have limited
computing power, serving only as a memory of past input. Interestingly, there is
an apparent universal trade-off between nonlinearity and memory (Inubushi and
Yoshimura, 2017).

A key property of reservoirs is fading memory (Boyd and Chua, 1985), also known
as the “echo state property”. Informally, fading memory means that the reservoir
forgets over time. In other words, reservoir state depends on a finite window of past
states. The name ESN is based on exactly this notion of reservoir state as an “echo”
of input history. Fading memory can be directly related the dynamical regime of the
reservoir. Ordered dynamics have fading memory, but limited computational power
as all inputs quickly converge to the same attractor. In contrast, chaotic dynamics
never forget, since the effect of perturbations will be unbounded in time. Fading
memory thus calls for a dynamical regime lying somewhere in between stability
and chaos.

As discussed earlier (Section 2.2), there is ample evidence that reservoir perfor-
mance peaks when the dynamical regime is at the edge of chaos (Bertschinger and
Natschläger, 2004; Legenstein and Maass, 2005; Boedecker et al., 2012). It should
be noted that an inherently chaotic system may still be used as a reservoir, as long
as input is sufficiently strong to drive dynamics out of the chaotic regime (Ozturk
and Principe, 2005).

Closely related to the dynamical regime are the separation and approximation prop-
erties (Maass et al., 2002, 2004). A reservoir exhibits the separation property if
different inputs give rise to significantly different reservoir states, effectively sepa-
rating the inputs. Likewise, the approximation property is fulfilled if similar inputs
result in reservoir states that coincide. Both properties are required for useful com-
putations, and both properties are related to the dynamical regime of the reservoir.
Chaotic dynamics will only exhibit the separation property, since all inputs will be
separated, regardless of their similarity. Stable dynamics, on the other hand, will
only result in the approximation property, by mapping all inputs to a small subset
of reservoir states. Thus a good reservoir will be in a dynamical regime somewhere
between stability and chaos, i.e., where both the separation and approximation prop-
erties are fulfilled.
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2.4.3 Physical reservoirs

The close relationship between RC and dynamical systems has spurred the use of
physical systems as reservoirs. As discussed, RC is a very general computational
model, with fairly permissive requirements of the reservoir. Hence there is a great
deal of flexibility in the physical realization of reservoir properties. Given that the
physical system is nonlinear, high-dimensional and exhibits fading memory, it can
potentially be exploited for computations in a RC framework.

Due to the general and permissive nature of RC, it has become a popular model
for exploring unconventional hardware. A diverse range of physical reservoirs have
been proposed, including electronic (Schurmann et al., 2004), optoelectronic (Ap-
peltant et al., 2011), photonic (Vandoorne et al., 2014), magnetic (Nomura et al.,
2019) and mechanical (Coulombe et al., 2017) reservoirs. Some of the more un-
usual physical reservoirs include a bucket of water (Fernando and Sojakka, 2003),
a soft robotic arm (Nakajima, 2017), the E.Coli bacteria (Jones et al., 2007) and the
cat’s primary visual cortex (Nikolić et al., 2007). For a recent review of physical
RC, see Tanaka et al. (2019).

More recently, RC has attracted attention as a promising model for material com-
putation (Dale et al., 2017). One of the earlier examples of a material reservoir
is Atomic Switch Networks (Sillin et al., 2013): ensembles of silver nanowires
that self-assemble into random memristive networks with inherent plasticity. Car-
bon nanotubes have a similar random network structure, but without the plasticity,
and have been explored as reservoirs within an evolutionary framework (Dale et al.,
2016b,a). A newly proposed class of reservoir materials are skyrmion fabrics: topo-
logical magnetic structures pinned in the plane of a ferromagnetic material (Pinna
et al., 2020). It is clear that RC provides a very capable framework for exploring
the inherent computational capabilities of such novel material substrates.

The versatility of physical reservoirs depends on the ability to control their behavior
to obtain desirable properties. Clearly, different tasks have distinct computational
requirements; some tasks may be dominated by memory, while others require more
nonlinearity. If the properties of a physical reservoir can be tuned reliably, they may
be exploited in a variety of tasks. Towards that end, Dale et al. (2019) have pro-
posed a framework for the systematic characterization of material reservoirs based
on established RC metrics. The potential of a reservoir can then be quantified from
the number of different computational behaviors.

37



Chapter 2 Background

 

Input Computation Output

State Reservoir State

encode readout

A
BST

R
A

C
T

PH
Y

SIC
A

L

𝑥 𝑓(𝑥)

..
.

𝑦

Figure 2.7: Physical reservoir computing exploits a physical dynamical system (the reser-
voir) for computation, by training a linear readout on the high-dimensional state of the
reservoir.

2.4.4 The computational model of physical RC

As a computational model, how does physical RC fit into our definition of compu-
tation from Section 2.1? Comparing the RC architecture (Fig. 2.5) with Fig. 2.1, it
becomes clear that RC is a fairly minimal computational model. All that is strictly
required is the ability to encode an input as perturbations to the reservoir, and a way
to decode the reservoir state.

Fig. 2.7 illustrates the RC model placed in our previous definition of computation.
There are several options on what should be considered physical, i.e., is the input
layer and/or readout part of the physical or abstract domain? For the purpose of our
discussion, it is most natural to consider only the reservoir as part of the physical
domain. This also reflects the typical approach of physical RC. The input layer is
then part of the encoding stage, whereas the output layer takes part in the decod-
ing.

To be precise, the input and readout layers are the abstract part of the encoding
and decoding stage. When the reservoir is a physical system, there will also be a
physical part of the encoding and decoding. The physical encoding dictates what
physical states to perturb, i.e., how the abstract input should be encoded as a physi-
cal signal. Likewise, the physical decoding specifies what physical state to record,
and how the physical variables should be mapped to abstract values before being
passed to the readout layer.
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Within this definition, what is the programming model of RC? If we consider the
reservoir to be a fixed resource which cannot be changed, then the programming
model involves only the readout layer. In this case, programming is an exercise
in supervised machine learning, subjecting the reservoir to a range of training ex-
amples, where the corresponding reservoir states are used as training data for the
readout layer. It is an activity in the abstract domain, adapting the use of reservoir
states for a particular task. This is a very advantageous model for material computa-
tion, since it allows the same material reservoir to be re-used for a range of different
tasks. In fact, Jaeger (2001) used the very same ESN for all the benchmark tasks in
his seminal paper. Another attractive possibility is the use of multiple readout lay-
ers to implement different computations on the same stream of input data (Maass
et al., 2002).

Alternatively, programming may also involve modifications to the physical input
encoder to perturb the reservoir in different ways, effectively tuning the computa-
tional properties of the reservoir. For example, many dynamical systems are sen-
sitive to the strength of the input signal, allowing different dynamical regimes to
be selected. Although it can be argued that this effectively changes the dynamical
system itself, the underlying structure of the reservoir remains unaltered. Some
physical systems may even allow additional modifications through other tuning sig-
nals, e.g., tuning of the nonlinearity.

Finally, programming may include making structural changes to the reservoir it-
self. Such changes may involve moving the internal components of the reservoir,
modifying the coupling between the components, altering components, adding or
removing elements, etc. In classical RC, this would be analogous to generating a
new RNN with different hyperparameters. If such modifications can be done in a
controlled manner, it could allow tuning the emergent computational properties of
a physical reservoir towards some desired functionality.

Physical RC is a highly active research area. Novel physical systems are routinely
proposed as promising reservoir candidates, ranging from highly engineered sys-
tems to more exotic substrates. Within this research project, we investigate three
different material substrates (CNT, CC and ASI), which are described in the follow-
ing sections. Note that, because a majority of the research has focused on ASI, this
class of materials is discussed in greater detail.
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(a) (b)

Figure 2.8: (a) A sheet of graphene consists of a single layer of carbon atoms arranged in
a 2D honeycomb lattice. (b) A single-walled carbon nanotube (SWCNT) is obtained when
a sheet of graphene is rolled up to form a cylinder. Figures derived from Eric Wieser, CC
BY-SA 3.0, via Wikimedia Commons.

2.5 Single-walled carbon nanotubes

Carbon nanotubes (CNTs) are tubular carbon nanostructures, obtained when sheets
of graphene are rolled up to form cylinders, as shown in Fig. 2.8b. Graphene
consists of a single layer of carbon atoms arranged in a 2D honeycomb lattice
(Fig. 2.8a). A single sheet of graphene results in the single-walled carbon nanotube
(SWCNT), whereas multiple sheets of graphene creates the multi-walled carbon
nanotube (MWCNT). While the diameter of a CNT is only a few nanometers, they
can be several centimeters in length.

Carbon nanotubes have received enormous interest due to their unique proper-
ties (Volder et al., 2013). The electrical properties of CNTs are of particular rel-
evance for novel computing devices. Depending on the chirality (a characteristic of
how the sheet of graphene is rolled up), CNTs can be either metallic or semicon-
ductive. Roughly one third of the possible CNTs are metallic, while the remaining
two thirds are semiconductive.

There are two major directions for CNT applications in electronics: nanoelectronics
and macroelectronics (Che et al., 2014). Nanoelectronics is concerned with the
controlled alignment of nanotubes to form electrical circuits. Macroelectronics,
on the other hand, employs thin films of random CNT networks as components in
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Figure 2.9: SEM image of gold electrode array with different coverage of nanotubes. Fig-
ure from Paper A (Nichele et al., 2016).

electronic devices. It is such thin-film CNT materials that are investigated in this
thesis.

Specifically, the CNT materials investigated here are nanocomposites of SWCNTs
and an insulating polymer (PolyButyl MethAcrylate, or PBMA). Mixing a solution
of SWCNTs in PBMA results in random CNT networks, where the polymer creates
insulation barriers within the material. A key parameter is the concentration of
SWCNTs, i.e., the weight ratio of SWCNTs to PBMA. The resulting nanomaterial
thus consists of random networks of metallic and semiconductive nanotubes.

The SWCNT nanomaterial may be interfaced electrically by the use of a micro-
electrode array (MEA), as illustrated in Fig. 2.9. Dispersing the material onto a
MEA exposes parts of the material to electrical measurements and stimuli. Note
that, with this method, there is no control over which parts of the CNT networks are
being accessed. Furthermore, depending on the deposition of the material onto the
MEA, some electrodes may be exposed to large amounts of material while others
may receive little. This can be seen in Fig. 2.9 where some electrodes are covered
by more material than others. As such, the MEA allows access to a random section
of the material, both in terms of location and the amount of material.
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2.5.1 Computation in carbon nanotubes

While carbon nanotubes have received considerable interest as building blocks in
conventional digital electronics, their use in unconventional computing paradigms
is much less explored.

From a computational point of view, the SWCNT material is, conceptually, a ran-
dom network of linear and nonlinear elements. Such random networks may be ex-
ploited for computation, if the material can be configured to elicit a useful response
to input stimuli.

One approach is to use an evolutionary algorithm (EA) to search for suitable input
and configuration signals, i.e., evolution in materio (Section 2.3.1). CNT materials
have been successfully exploited for computation in this manner to solve a variety
of computational problems, e.g., traveling salesman problems (Clegg et al., 2014),
graph coloring (Lykkebø and Tufte, 2014) and logic gates (Massey et al., 2015).
While this demonstrates that useful computations can take place with a CNT mate-
rial, the black-box EIM approach makes it difficult to pinpoint exactly what com-
putational mechanisms are being exploited in the material itself (Lykkebø et al.,
2015).

Another approach is to employ a reservoir computing (RC) model, which allows
more insight into the computational properties of the CNT material. After all, clas-
sical RC exploits the inherent properties of random neural networks. Perhaps ran-
dom CNT networks are exploitable in a similar manner? Dale et al. (2016a) show
that the answer is yes: by using an EA to configure the CNT material, it can sub-
sequently be used to solve RC tasks. In some cases, the CNT material is shown to
outperform other hardware reservoirs (Dale et al., 2016b). RC metrics can be used
to capture various computational properties of material reservoirs. Different phys-
ical reservoirs can thus be compared, and contrasted with classical software-based
reservoirs. In this manner, CNT material reservoirs have been shown to be less ver-
satile: they exhibit a limited set of computational capabilities compared to software
models of similar size, as well as other physical reservoirs (Dale et al., 2019).

2.6 Chaotic circuit

Analog electronic circuits allows for the physical realization of ordinary differen-
tial equations (ODEs). By combining Kirchoff’s circuit laws with the equations for
various electrical components (resistors, capacitors, inductors, diodes, operation
amplifiers), it is possible to create a circuit whose behavior matches some desired
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Figure 2.10: Driven Chua’s circuit. Figure from Paper B (Jensen and Tufte, 2017).

ODE. In this way, electrical phenomena are exploited to effectively integrate the
differential equations in the analog circuit. In an analog implementation, the vari-
ables from the original ODE take the form of electrical quantities such as voltage
and current. The time-evolution of the (integrated) ODE can then be monitored in
real-time using electrical measurement equipment such as an oscilloscope.

For the purpose of material computation, an analog circuit is a physical computing
substrate in which we have a great deal of control. It offers a direct route to a
physical system with specific characteristics, e.g., with a desired dynamic regime.
As discussed in Section 2.2, computational capabilities peak when the dynamic
regime lie at the edge of chaos. We are therefore interested in a circuit which
exhibits rich dynamics, with the ability to tune the dynamic regime from stable to
chaotic.

The chaotic circuit (CC) used in this work is the driven Chua’s circuit, which is one
of (if not the) simplest known circuit that exhibits chaos (Murali et al., 1994a,b).
The circuit (Fig. 2.10) consists of only a handful of components: three linear el-
ements (a resistor, an inductor and a capacitor) and a nonlinear resistor (a Chua’s
diode). An external periodic forcing signal f (t) drives the dynamics of the circuit.
It is a two-dimensional dynamical system: the system variables correspond to the
voltage across the capacitor C, and the current through the inductor L.

Circuit dynamics depend on the choice of components, the nonlinear characteristics
of the Chua’s diode, and the properties of the external forcing signal. Fig. 2.11
shows the circuit implemented on a printed circuit board. Varying the amplitude
and frequency of the external forcing signal allows different dynamical regimes to
be obtained. Fig. 2.12a shows a phase plot of a stable regime, as measured on an
oscilloscope in XY mode where the horizontal axis corresponds the voltage across
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Figure 2.11: The driven Chua’s circuit implemented on a printed circuit board.

(a) (b)

Figure 2.12: Phase plots of the driven Chua’s circuit, measured on an oscilloscope in XY
mode. The horizontal axis corresponds to the voltage across the capacitor, and the vertical
axis represents the current through the inductor. Shown are plots of the (a) stable dynamic
regime, and (b) chaotic dynamic regime.
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the capacitor, and the vertical axis represents the current through the inductor. As
can be seen, the trajectory is cyclic and stable. Fig. 2.12b depicts a chaotic regime,
where the trajectory orbits a strange attractor.

Further details about the circuit, including circuit equations, are given in Paper B:
Reservoir Computing with a Chaotic Circuit.

2.6.1 Computation in chaotic circuits

Using chaotic systems as computational building blocks, aptly named “chaos com-
puting”, taps into the rich repertoire of behaviors available in chaotic systems (Ditto
et al., 2008; Munakata et al., 2010). It has been hypothesized that chaos plays an
important role in natural systems by providing a rich repertoire of behaviors that
may be utilized for various tasks (Sinha and Ditto, 1998). The idea is that a sin-
gle chaotic element can be used to implement different logic gates and arithmetic
tasks (Munakata et al., 2002; Sinha et al., 2002). Furthermore, the ability to easily
switch between different operations could enable more dynamic computer architec-
tures. Several physical realizations of chaos computing using analog circuits have
been demonstrated (Murali et al., 2005b,a; Ditto et al., 2008).

As discussed (Section 2.4), chaos plays a central role in reservoir computing. In-
deed, classical RNN reservoirs are known to be chaotic for certain parameters.
Chaotic reservoirs may still be usable as long as the input is sufficiently strong
to drive dynamics out of the chaotic regime (Ozturk and Principe, 2005).

However, the low-dimensionality of (most) chaotic circuits poses a problem, as
reservoir computing requires a high-dimensional dynamical system. One approach
is to use a time-multiplexing technique, where the low-dimensional output is sam-
pled over time to produce a virtual high-dimensional system (Appeltant et al.,
2011). Time-multiplexing comes at a cost, however, as each input is presented
to the reservoir for an extended period of time, and consequently memory of past
inputs is lost in the process. This can be remedied by adding a delay line which
provides delayed feedback to the reservoir, e.g., using digital electronics (Appeltant
et al., 2011) or fiber optics (Paquot et al., 2012). Alternatively, if non-temporal tasks
are considered, time-multiplexing can be used without a delay line.
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(a) (b)

Figure 2.13: Images of 25× 25 square ASI, consisting of 1300 nanomagnets. (a) SEM
image shows the structure of the array, where each elongated rectangle is a nanomagnet with
dimensions 220 nm×80 nm×20 nm. (b) PEEM image reveals magnetization direction of
the magnets, where white represents right or up, and black represents left or down. Images
courtesy of Anders Strømberg.

2.7 Artificial Spin Ice

Artificial spin ice (ASI) are systems of nanoscale ferromagnetic islands (nanomag-
nets) arranged on a 2D lattice. Collectively, the nanomagnets form a magnetic
metamaterial, whose emergent properties can be controlled directly by the place-
ment, orientation and shape of the magnets. Established nanofabrication techniques
coupled with the ability to directly observe magnetic state, has enabled the study of
a wide range of physical phenomena in ASI.

Fig. 2.13a shows a fabricated “square” ASI, imaged using a scanning electron mi-
croscope (SEM). Each elongated rectangle in the image is a nanomagnet with di-
mensions 220 nm×80 nm×20 nm. The entire 25×25 array consists of 1300 such
nanomagnets, arranged on the square lattice. Fig. 2.13b shows the magnetic state
of a square array, imaged using photoemission electron microscopy (PEEM). In
the PEEM image, white represents magnetization pointing right or up, while black
represents left or down. The emergent stripe pattern is the result of magnetic inter-
actions between the nanomagnets.

ASI has received considerable interest over the last decade, primarily as a model
system for the study of fundamental physics. The name “artificial spin ice” stems
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(a) (b)

Figure 2.14: Internal magnetization of a (a) single-domain magnet and a (b) multi-domain
magnet. The volume and shape of a nanomagnet determines its stable internal magne-
tization. Magnetization direction as indicated by the color wheel (white represents zero
magnetization).

from the use of engineered systems to mimic the arrangement of molecules in water
ice. Square ASI was the first ASI system to be proposed, and was shown to obey
the so-called “ice rules” of molecular spin ice materials (Wang et al., 2006). Since
then, a rich variety of ASI systems have been investigated, ranging from repeatable
structures to stochastic disordered arrays. A wide range of emergent phenomena
has been discovered in ASIs, e.g., collective ferromagnetic/antiferromagnetic or-
dering (Sklenar et al., 2019), domain wall propagation (Li et al., 2019), avalanche
dynamics (Mengotti et al., 2011), and phase transitions (Levis et al., 2013). For a
recent review of the ASI field, see Skjærvø et al. (2020).

2.7.1 Artificial spins

In ASI, each nanomagnet behaves as a mesoscopic spin with an effectively binary
state. The small size ensures a uniform internal magnetization (a single-domain
state), while an elongated shape constrains the direction of magnetization to lie
along the long axis (a binary state). Fig. 2.14a shows the stable internal magneti-
zation of a 220 nm×80 nm×15 nm magnet, as obtained from micromagnetic sim-
ulations, where the internal magnetization is randomly initialized and subsequently
relaxed (at zero field) to obtain a low energy state. As can be seen, the magne-
tization is uniform and oriented along the long axis (pointing towards the right).
Fig. 2.14b shows the same picture for a magnet of size 440 nm×160 nm×15 nm.
Due to its larger size, its internal magnetization is no longer uniform, and two vor-
tex structures have formed (centered at the white spots). A single-domain magnet
will have a larger stray magnetic field than a multi-domain magnet, since all the
atomic spins are aligned in the same direction and sum to a net positive magnetic
moment. In a multi-domain magnet, on the other hand, the atomic spins are not
aligned and their moments tend to cancel out.
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Figure 2.15: Hysteresis curve of a 220 nm×80 nm×15 nm magnet, when subject to an
external magnetic field B applied along its long axis. mx is the normalized magnetization
along the long axis of the magnet. The images on the right show the internal magnetization
of the nanomagnet at the different stages of reversal as marked in the curve. Colors indicate
magnetization direction according to the color wheel in Fig. 2.14.

Magnetization reversal, or switching, is an inherently nonlinear process. If a magnet
is subjected to an external magnetic field, which is sufficiently strong and directed
in the opposite direction of its magnetization, the magnetization will switch direc-
tion. Fig. 2.15 plots long-axis magnetization mx versus the strength of an external
magnetic field B, applied along the long axis of the magnet. As can be seen, the
magnetization follows a hysteresis curve, where reversal happens at B ≈ ±70mT.
The image insets show the internal magnetization of the nanomagnet at different
stages of reversal. The critical field strength where switching occurs is referred to
as the coercive field, which is an intrinsic property of the magnet, determined by
the ferromagnetic material, the shape and size of the magnet, as well as the angle
of the external field.
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Figure 2.16: The relative arrangement of magnets determine the dipolar coupling between
them. Shown here are two arrangements which results in a coupling where (a) aligned and
(b) anti-aligned states are energetically favorable. (c) A geometrically frustrated system
where all competing interactions cannot be satisfied at the same time. The state shown
is one of the two configurations with the lowest energy. Colors indicate magnetization
direction according to the color wheel in Fig. 2.14.

2.7.2 Magnetic interactions and frustration

When placed close together, the nanomagnets are coupled via the magnetic dipole-
dipole interaction: each magnet is subject to the stray magnetic field of nearby mag-
nets. The strength and nature of the coupling depends on the distance and relative
orientation of the magnets. Fig. 2.16 shows different arrangements of nanomagnets
which results in a coupling where aligned (Fig. 2.16a) and anti-aligned (Fig. 2.16b)
states are energetically favorable.

Based on the placement and orientation of the magnets, it is possible to create a
geometrically frustrated system, i.e., a system in which all competing interactions
cannot be satisfied at the same time. Fig. 2.16c shows a system of four magnets
which exhibits geometrical frustration. No configuration of states exist in which
the energy of all four magnets is minimized. The state shown is one of two possi-
ble configurations with the lowest energy, obeying the so-called ice rule with two
spins pointing in and out of the center. The relative strength of the coupling also de-
pends on the geometrical arrangement, i.e., some arrangements will be dominated
by nearest-neighbor interactions, while others will have significant long-range in-
teractions.
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(a) (b)

(c) (d)

Figure 2.17: The emergent behavior of an ASI is a result of the placement and orientation
of the nanomagnets. (a) Square ASI consists of horizontal and vertical magnets arranged on
a square lattice. (b) Square ASI favors antiferromagnetic order, resulting in domains of zero
net magnetization (white regions). (c) Pinwheel ASI is obtained by rotating each magnet
in square ASI by 45° about its center. (d) Pinwheel ASI exhibits long-range ferromagnetic
order, supporting formation of domains with coherent magnetization. The systems shown
in (b) and (d) are 25× 25 square and pinwheel ASI, respectively, each consisting of 1300
magnets. The arrows in (b) and (d) indicate the collective magnetization of the four circled
magnets in (a) and (c), respectively. Figure from Paper E (Jensen and Tufte, 2020).
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2.7.3 Geometry and emergence

The particular arrangement and orientation of the magnets in an ASI is referred to
as the geometry, which effectively defines the nature of the magnet-magnet inter-
actions. Fig. 2.17a depicts “square” ASI, which consists of horizontal and vertical
magnets arranged on two square lattices. The sub-lattice with vertical magnets is
placed at an offset from the sub-lattice with horizontal magnets, as indicated by the
different colors. “Pinwheel” ASI is shown in Fig. 2.17c, and is obtained by rotating
each magnet in square ASI by 45° about its center.

Geometry is the principal source of emergent phenomena in ASIs. Some geome-
tries result in the emergence of antiferromagnetic ordering, where domains of zero
net magnetization are energetically favorable. Fig. 2.17b shows the collective mag-
netization in square ASI, with the emergence of such antiferromagnetic domains
(white regions). Pinwheel ASI, on the other hand, exhibits ferromagnetic order, i.e.,
the magnets form domains with coherent magnetization of non-zero magnitude, as
shown in Fig. 2.17d. It is quite remarkable how such a small change (rotating the
magnets), can completely alter the macroscopic behavior, all the while the ferro-
magnetic material, amount of material, magnet density, magnet shape, underlying
lattice and so on stay the same.

Due to the emergence of patterns at higher scales, ASIs can be considered meta-
materials. When observed at larger scales, magnetic patterns emerge as a result of
interactions between the underlying mesoscopic spins. Compared to bulk materials,
metamaterials offer considerable control and flexibility, and opens for the design of
exotic substrates with unusual physical behavior.

There are a myriad of ways to tune the behavior of ASIs. For example, the lattice
spacing (characteristic distance between magnet centers) determines the size of the
anti- or ferromagnetic domains: a smaller spacing results in larger domains. Small
changes to the geometry can result in fundamentally different behavior, as illus-
trated by the significantly different properties obtained when square ASI is modi-
fied, ever so slightly, to obtain pinwheel ASI. Novel geometries provide a seemingly
endless playground for exploration. In addition, there are several ways to tune be-
havior externally, without altering the system, e.g., through an external magnetic
field or temperature.
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2.7.4 Fabrication, input and output

Fabrication of ASIs is done using lithographic methods originating from the semi-
conductor industry. Electron beam lithography (EBL) can be used to create ASI
samples with arbitrary geometries in the lab. Nanomagnets are produced on a sili-
con wafer using a lift-off process with a layer of magnetic material (NiFe) covered
by a metal oxidation barrier (Al). Common magnet dimensions are 220 nm×80 nm
with a thickness in the range 5 nm to 25 nm. While EBL can create patterns with
a lateral feature size down to 5 nm, practical limitations in fabrication of ASI sys-
tems limit the magnetic spacing to around 10 nm. There are few limitations when it
comes to the number of magnets, limited only by the size of the silicon wafer and,
most significantly, EBL patterning time.

There are many ways to perturb ASI systems. The use of external magnetic fields is
a well-established approach, applied either globally to the entire array or locally to
specific areas, e.g., via current-carrying electrical wires. Temperature is routinely
used to effectively “anneal” ASI systems to obtain low energy states. Other pos-
sibilities include current-induced torques (Brataas et al., 2012), optically induced
switching (Le Guyader et al., 2015) and using a scanning probe to manipulate indi-
vidual nanomagnets (Gartside et al., 2018).

A key feature of ASIs is the ability to directly observe the magnetic state of the in-
dividual nanomagnetic spins. It is thus possible to observe phenomena at multiple
scales, ranging from the state of individual spins, to spatial patterns of neighbor-
ing spins, to the collective state of the entire ensemble. Magnetic force microscopy
(MFM) can be used in the lab to resolve magnetization direction of individual nano-
magnets, while even higher resolution images can be obtained at a synchrotron us-
ing PEEM. Readout techniques beyond the lab include magnetic tunnel junctions
(MTJ) and anisotropic magnetoresistance (AMR).

Simulations of ASI systems generally fall into two categories. Micromagnetic sim-
ulations capture the internal magnetization dynamics of individual magnets, and
hence provide a very accurate picture. With GPU acceleration, ASI ensembles
with hundreds of magnets can be simulated micromagnetically within practical time
frames (Leliaert et al., 2018). To simulate larger systems, a mesoscopic model of
the magnets is needed, where detail is sacrificed for speed. Treating single-domain
magnets as point dipoles is a common approach, where the state of each magnet is
approximated as a single magnetization vector (Budrikis, 2012).
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2.7.5 Computation in ASI

Nanomagnetic computation is inherently energy efficient, due to the use of spin
instead of electric charge as information carriers (Salehi Fashami et al., 2011).
The energy dissipated in magnetic switching is orders of magnitude lower than
transistor-based switching, in some cases approaching thermodynamic limits (Lamb-
son et al., 2011). In addition to low-energy operation, nanomagnets are non-volatile
devices which retain state without power, and exhibit radiation hardness.

Nanomagnetic logic (NML), the construction of digital logic using nanomagnetic
elements, has attracted considerable interest as an alternative to the electronic dig-
ital computer (Imre, 2006; Niemier et al., 2011). Logic gates based on ASI have
been proposed (Gypens et al., 2018), including gates that are thermally active (Ar-
ava et al., 2019). Still, there are several fundamental challenges which must be
solved for NML to be a viable contender, in particular related to reliability of com-
putations and robust magnetic interconnects.

If alternative computing paradigms are considered instead, we may be able to ex-
ploit the inherent energy efficiency of nanomagnetic systems, without the engineer-
ing difficulties associated with NML. Probabilistic computing based on annealing is
one approach, where a computation is encoded in an Ising Hamiltonian, whose en-
ergy minima represent a solution. A magnetic system can then be engineered with
the same Hamiltonian, and subsequently annealed to find the solution (Debashis
et al., 2016; Bhanja et al., 2016; Sutton et al., 2017). Recently, a nanomagnetic
Galton board was demonstrated, with the ability to tune the resulting probability
distribution (Sanz-Hernández et al., 2021).

In addition to the work presented in this thesis, reservoir computing based on ASI
has recently received interest elsewhere (Hon et al., 2021). Reservoirs based on
nanomagnetic rings have been proposed, based on similar principles (Dawidek
et al., 2021). Also related are reservoirs based on dipolarly coupled nanomag-
nets (Nomura et al., 2019).

Nanomagnetic systems have long been promoted as promising candidates for future
computing devices, but so far the technology has failed to compete with semicon-
ductor digital logic. Perhaps it is as unconventional computing substrates the full
potential of nanomagnetic systems will be realized?
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Discussion

The thesis concludes with a discussion of the topics raised by the research ques-
tions, how they are addressed by the papers, and identifies important directions for
future work. While the discussion is loosely organized around the research ques-
tions, there is some overlap in some of the topics, in particular related to reservoir
computing (RQ3) and computational properties (RQ1).

Throughout this research, a variety of material properties have been investigated in
relation to computation. Towards that end, three material substrates have served as
subjects of study, with distinct properties: a complex, unstructured carbon nanotube
material (CNT), a simple chaotic circuit (CC) and a family of complex, structured
magnetic metamaterials called artificial spin ice (ASI).

We begin the discussion with the first research question (RQ1):

Research question 1

What properties of a material are important for computation, and how do we
quantify these properties?

It can be argued that the answer to this question depends on the particular compu-
tational task we are interested in. While it is certainly true that some properties are
more important for some types of tasks and not so for others, there exist fundamen-
tal mechanisms which are needed for any type of computation. The primary focus
of this research has been on exactly such intrinsic properties.

We have considered both structural and emergent properties. Structural proper-
ties include: nonlinearity, dimensionality, local interactions and self-organization.
Emergent properties include: rich dynamics, information storage and manipulation,
input separation, approximation and fading memory.
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3.1 The importance of dynamics

Throughout this research project, dynamics has been the principal vehicle for under-
standing the computational properties of a material. As we have discussed, dynam-
ics is fundamentally what gives rise to intrinsic computational mechanisms such as
information storage, transfer and manipulation (Section 2.2). Without dynamics,
there cannot be computation (Section 2.1).

Dynamical systems theory provides a solid foundation for our investigation, and
forms a bridge between the physical system and its intrinsic computation. Thinking
about computation in terms of stability, attractors, chaos and bifurcations offers
insight into the kind of computation a physical system does naturally.

There is an important distinction between the dynamics of classical dynamical sys-
tems theory and the dynamics related to computation. Dynamical systems theory
is mainly concerned with the behavior of the free-running system, i.e., where the
system is left to run on its own, under well-defined conditions. For driven (non-
autonomous) dynamical systems, this amounts to fixing all external signals to well-
defined functions of time. The principal interest lies on the asymptotic (long-term)
behavior of the system.

Computation, in contrast, introduces the notion of an abstract input which is en-
coded into the domain of the dynamical system (Section 2.1). When a dynamical
system is used for computation, input (and output) means there is always a con-
nection between the dynamical system and the environment. Thus, computing is
concerned with the behavior of the input-driven system, and the relationship be-
tween the input and dynamics. In this case, the transient (short-term) dynamics can
be very relevant. It is with input-driven dynamics we approach the computational
properties of a material. Still, the two perspectives are by no means orthogonal:
free-running and input-driven dynamics are typically related.

3.2 Measures of dynamics and computation

By observing the free-running dynamics of a system, we obtain an understanding
of its general dynamical properties, the effect of different parameters, etc. We get
a birds-eye view of the behavior of the system, which is crucial when consider-
ing its potential for computation, deciding how to encode input and decode output,
and ultimately finding a suitable computational model. The particular input en-
codings used in this work have been based largely on what was learned from the
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free-running dynamics of the respective system. Papers A, B and C all begin with a
study of the free-running dynamics of the corresponding material.

It is with the input-driven system we can really begin to explore the computational
properties of a material in greater depth. We have employed several measures to
quantify key computational properties, which can all be related to dynamics.

Complexity metrics is an effective, albeit crude, method to quantify the richness of
dynamics emitted from a black-box system such as the CNT material. We showed
that to isolate the complexity contribution of the material itself, the complexity of
the input signal must be taken into account (Paper A).

When the physical system is simple and well-understood, methods from dynamical
systems theory can be applied more or less directly to computation. A bifurcation
diagram of transients is an effective way to visualize system output under different
input encoding schemes (Paper B).

For complex systems with many moving parts and a well-defined state (such as
ASI), state space analysis provides valuable insight into several computational
properties (Paper C). The number of unique states visited during a trajectory is
an indicator of the dynamical regime, and quantifies richness in behavior. For the
input-driven system, the number of unique final states indicates the mode of com-
putation, with classification and memory at two extremes. State transition graphs
can be used to uncover computational mechanisms in a system, such as information
storage.

Finally, reservoir computing metrics allow deeper insight into the computing ca-
pabilities of a system (Paper E). Kernel-quality (KQ) is effectively a measure of
the separation property, and indicates the discriminatory power of material state.
Generalization capability (GC) quantifies the material’s sensitivity to similar in-
puts – the computational analogy to sensitivity to initial conditions from dynamical
systems theory. Measured over time, GC can also reveal the presence of fading
memory, a key property for temporal information processing. Combined, KQ and
GC provide an overall assessment of computing capacity.

The abovementioned methods by no means exhaust the ways to quantify computa-
tional properties. A range of other methods are available to capture similar, overlap-
ping and orthogonal properties, e.g, methods based on information theory (Lang-
ton, 1990), statistical complexity (Crutchfield and Young, 1990), memory capac-
ity (Jaeger, 2002) and information processing capacity (Dambre et al., 2012).
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3.3 Nonlinearity and dimensionality

Among the structural properties, nonlinearity is a prerequisite for complex dy-
namics and consequently a key ingredient for any non-trivial computation (Sec-
tion 2.3.6). Hence all the materials considered in this work exhibit nonlinearity at
some level. However, it should be mentioned that although CNTs have an inherent
nonlinearity, this was not observed directly at the level of our electrical measure-
ments in the bulk material. Still, the complex dynamics observed does indicate that
nonlinear mechanisms are at play.

The dimensionality of a system is often used as an indication of its potential com-
puting capacity. For a silicon chip, the number of transistors is treated as a measure
of inherent computing capabilities. For a material, however, what constitutes a com-
putational element is not so clear. As we have seen with ASI, it is possible to define
computational elements at different levels of observation, from individual spins to
the collective state of the metamaterial. The situation is similar in bulk materials,
where the granularity of measurements to a certain extent defines the computational
elements.

In reservoir computing, the computing capacity is bounded by the output dimen-
sionality of the reservoir (Dambre et al., 2012). We refer to the output dimension-
ality as the number of computational nodes. It is an indication of the amount of
“freedom” to express different types of computations at the readout layer. In many
cases, the number of output nodes may equal the dimensionality of the system, as is
the case with RNNs and ASI (Paper C). However, as demonstrated in Paper B, the
number of nodes can exceed system dimensionality, e.g., by employing techniques
such as time-multiplexing. Such techniques do come at a cost, however, impos-
ing a serial mode of computation which effectively hides properties such as fading
memory.

If a material exhibits emergent high-level patterns, it is possible to use an average
coarse-grained view of the system as output, which reduces the output dimension-
ality but with a potential increase in output resolution. This was demonstrated for
ASI in Paper E, where the effects of coarse-grained outputs were explored in detail.
For bulk materials, such as CNT nanocomposites, we typically always obtain a very
coarse-grained view of system state, and consequently the number of nodes will be
much lower than the dimensionality of the underlying material.

Theoretically, the computing capacity of a reservoir is maximized if all the nodes
are linearly independent and have the fading memory property. Of course, the ac-
tual computing capacity of a material will typically be well below the theoretical
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upper bound. We quantified the computing capacity of a family of ASI reservoirs in
Paper E, which was very promising, but still below the theoretical limit. Neverthe-
less, there are trade-offs between maximizing computing capacity and robustness:
redundant node function increases robustness, at the cost of total computing capac-
ity.

3.4 Local interactions and self-organization

Local interactions and self-organization are important properties of natural comput-
ing systems, and have been highlighted as particularly relevant for material com-
putation (Section 2.3.5). Of the materials explored in this thesis, only ASI clearly
demonstrate these properties. Magnetic coupling facilitates local interactions be-
tween magnets, which results in the emergence of spatio-temporal patterns at larger
scales. We found that magnetic coupling plays a key role in the computational capa-
bilities of ASI: for the number of reachable stable states, the formation of memory
and the separation of temporal input patterns (Papers C and E). Although it can
be argued that CNTs also exhibit these properties at the lower levels, it was not
apparent at the level of our electrical measurements of the bulk material.

Repeatedly, we have seen how self-organization at lower levels can give rise to com-
putational properties at higher levels, i.e., from the “physics” level to the “material”
level in Fig. 2.4. The metamaterial properties of ASI has allowed us to explore three
levels in the scale hierarchy, from the micro level of internal magnetization, to the
meso level of individual spins, to the macro level of collective spin organization. In
Paper C we found that micromagnetic state acts as information storage, which gives
rise to an apparent memory effect in the dynamics of the mesoscopic spins. Contin-
uing up the hierarchy, in Paper E, we explored how the computational capacity is
affected by the scale of observation, from the meso level of individual spins to the
self-organized patterns of multiple spins at the macro level.

Local interactions can also be related to dynamics, in that it mediates the connec-
tivity of the network and controls the flow of information. Connectivity is a key
parameter for controlling network dynamics. In random boolean networks (Kauff-
man, 1969), sparse connectivity is associated with stable dynamics, whereas dense
connectivity results in a chaotic regime. A critical dynamical regime is found in the
transition from sparse to dense connectivity (Aldana et al., 2003). Similar observa-
tions have been made in relation to RNNs in RC (Büsing et al., 2010). Intuitively,
when connectivity is primarily local, information is more easily maintained over
longer time scales, since each node is affected by a limited set of neighbors.
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3.5 Controlling computational properties

The computational properties of a material emerge from its underlying physical
properties. Throughout this research project, we have uncovered many connec-
tions between physical material properties and computational capabilities. While
the first research question is concerned with the relationship between physics and
computation, the focus of the second research question is the dynamics of this rela-
tionship.

Research question 2

How can the computational properties of a material be controlled to tune
functionality?

How does a change in physical parameters affect computation? To what degree
can the computational properties be controlled by turning the available physical
knobs? As we discover how the various physical parameters affect computation, a
key question is whether the relationships are predictable enough to support reliable
control of functionality.

We have argued that the ability to control the computational properties of a material
is crucial to obtain a kind of programmability. At its core, programming amounts
to changing the function of a computer according to the wish of the programmer.
Similarly, if the computational properties of a material can be reliably controlled
and changed as we see fit, we have the ability to change the function of the material.
Granted, changing computational properties may not offer as detailed control over
function as writing a computer program. However, it is exactly when we let go of
such detailed control we discover what computation a material does naturally.

As discussed, computational properties can be modified through changes in the
physical parameters. It is natural to distinguish between internal and external phys-
ical parameters. Internal parameters are tied to the structure of the material itself,
and can (typically) only be changed at the point of fabrication. External param-
eters, on the other hand, are accessible from the outside of the material, and can
potentially be changed at runtime. From the materials investigated in this research,
examples of internal parameters include: the percentage weight of single-walled
carbon nanotubes (CNT), the nonlinear characteristics of the Chua diode (CC), the
spacing between magnets (ASI), the orientation of magnets (ASI) and the number
of magnets (ASI). Examples of external parameters include: the amplitude and fre-
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quency of an external driving signal (CNT, CC and ASI), the number and location
of input signals (CNT) and output granularity (ASI).

3.6 Controlling dynamics

As discussed earlier (RQ1), dynamics is fundamentally tied to computation and
therefore of primary interest also here in RQ2. Finding ways to control and change
the dynamics of a material will ultimately give us a powerful knob for controlling
its computational properties. Towards that end, we have explored both internal and
external parameters.

All the materials investigated in this work have been driven dynamical systems,
where an external input signal drives the dynamics of the system and provides a
source of energy. In all cases, the properties of the input signal have had a sig-
nificant effect on the dynamics of the system. As we have seen, parameters such
as amplitude, frequency, waveform and input location all affect dynamics in some
way. Being external to the material, such parameters offer a convenient set of knobs
with which to control dynamics and ultimately the computational properties.

When the frequency of the input signal is sufficiently high, effects at the lower lev-
els come into play. In ASI we saw how frequency of the input signal can be used
to excite magnetization dynamics within each nanomagnet (Paper C). These mi-
crolevel dynamics give rise to a memory effect at the macro level, where the state
of the ensemble exhibits an apparent dependency on input history. This emergent
phenomenon is the result both of micro level dynamics and local interactions be-
tween magnets at the macro level. As information about past input is maintained in
the spatial state of the ensemble, the system effectively separates input into distinct
states. We found that the sensitivity of the separation can be tuned by the ampli-
tude of the input signal. Interestingly, the sensitivity can be tuned in a continuous
manner, meaning a spectrum of function is available within the system. That such
a degree of control is possible through an external parameter is exciting for the
prospects of ASIs as computational substrates.

Rich input-driven dynamics are also available in ASI at low input frequencies (Pa-
per E). In this case, the dynamics emerge solely from the local interactions at the
macro level. Adjusting the interaction strength allows the dynamics to be con-
trolled to support information storage and manipulation. We saw how the magnetic
coupling strength can be used to control the system’s sensitivity to different input
patterns, i.e., tuning of the separation property. At a critical coupling strength, the
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system exhibits a chaotic dynamical response to the input and sensitivity is max-
imized. In the chaotic regime, the system never forgets past input history. More
computationally useful is a regime where past input history is gradually forgotten.
We found that increasing the coupling strength allows such a regime to be obtained,
i.e., exhibiting the fading memory property. Computational tasks require differ-
ent sensitivity and amount of memory, hence the ability to reliably control these
properties is an important finding.

Rich dynamics is inherently tied to nonlinearity. Some physical systems (such as
our CC circuit) offer precise control of nonlinearity and a very fine-grained way to
tune node function (Paper B). More often, however, the nonlinearity of a material
is the result of its underlying physics where we have limited access. The nonlinear
switching characteristics of nanomagnets, for instance, is tied to the properties of
the ferromagnetic material itself. Still, the switching characteristics can be influ-
enced to a certain extent by altering the shape of the nanomagnets.

3.7 Dimensionality and scalability

Scalability is concerned with the relationship between the number of computational
elements and performance. For a computing system to be scalable, adding physical
resources should ultimately result in an increase in performance. Physical resources
include the material itself (the amount of “stuff” within), as well as the physical
interface to the system (number of input and output signals).

For the CNT material, the number of computational elements is not well-defined,
due to the inherent unstructuredness of the nanocomposite. Therefore, it is difficult
to say anything about the scalability of such materials, without further detailed in-
quiry. What we did see, however, was that increasing the density of SWCNT in the
nanocomposite resulted in a reduced output complexity (Paper A). In other words,
fixing the material volume and adding more “stuff” does not yield scalability.

For structured metamaterials like ASI, the number of internal components is well-
defined and countable (number of magnets). In other words, the material volume
effectively scales with the number of components. This allows detailed investiga-
tions to be conducted on the scalability of the output nodes. How does computing
capacity scale with the amount of material being used as output? Instead of ob-
serving each internal component directly, can we get away with an aggregate view
of system state? In Paper E we found that the large-scale patterns in pinwheel
ASI were fairly robust under an aggregate (coarse-grained) view. An interesting
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discovery was that computing capacity per output node would, in some cases, in-
crease under an aggregate view. This implies that for a given ASI system, there
exists an observation level in which computational capacity per output node can
be maximized. In other words, controlling output dimensionality can have direct
computational benefits.

3.8 Controllability of unstructured and structured
systems

For different materials, the amount of control over physical parameters varies greatly.
We have characterized the materials in this research as either structured or unstruc-
tured, depending on how orderly their constituent parts are arranged. The presence
of structure has important implications for the controllability of parameters, and
consequently also computational behavior.

Unstructured materials offer rather limited control over parameters. For the un-
structured, bulk CNT material, we found that the frequency and location of input
signals plays a significant role in the computational complexity of the emitted out-
put (Paper A). Due to the unstructuredness of the material, there will be large spatial
variations in internal structure which ultimately affect the computational function.
Correspondingly, correlations between parameters and dynamics are often arbitrary,
and ultimately tied to the specific material sample. The amount of control offered
over dynamics in such unstructured materials is thus very limited.

Structured materials, on the other hand, offer much more control over physical pa-
rameters and consequently also dynamics and computational properties. The avail-
ability of physical models opens for more systematic investigations of how different
parameters affect computation. With the CC circuit we saw how the nonlinearity
of the Chua diode directly influenced task performance, revealing a complex pa-
rameter landscape with salient features. For such a simple system, an exhaustive
search was possible due to the limited number of parameters. As the number of
parameters grow, exhaustive sweeps are no longer viable and we can only explore
a subset of the parameter space. Metamaterials such as ASI offer unprecedented
control over internal parameters. Although the ASI parameter space is vast, and we
have explored only a small part, we have found many physical knobs which directly
control computational properties.
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3.9 Reservoir computing in-materio

Placing a material within a computational model allows useful computational tasks
to be solved in-materio. Furthermore, a model enables us to analyze and reason
about how computation takes place within a material.

The topic of the final research question is reservoir computing in-materio, i.e., the
use of a reservoir computing (RC) model for material computation.

Research question 3

How can reservoir computing help elucidate and exploit the intrinsic com-
putational properties of a material?

Efficient computing depends on a good correspondence between the physical sys-
tem and the abstract computational model. In other words, the abstract properties of
the model should be accommodated by the physical properties of the system. Be-
cause RC is such a generic computational model, its requirements can be fulfilled
by many physical systems.

RC is a model inspired by biological computing systems. Hence its properties are
inherited from an existing physical system, namely biological neural networks. As
we have discussed (Section 2.3), many of the properties of neural networks can be
transferred to other physical systems, also non-biological ones. Physical systems
consisting of large number of nonlinear nodes governed by local interactions are
seemingly abundant in nature. If such physical systems can be reliably controlled,
they can potentially be exploited for reservoir computing.

The close connection between RC and dynamical systems theory makes RC partic-
ularly suitable for exploring computation in physical systems. If a material can be
usefully described as a dynamical systems model, its computational properties can
be elucidated from a RC perspective. From our discussion on RQ1, it is clear that
a RC perspective opens for powerful analysis and reasoning about the computa-
tional properties of a material: from dimensionality and nonlinearity (Section 3.3),
to connectivity and dynamics (Section 3.2).

The programming model of RC is very apt for material computation. Programming
a reservoir computer involves training the linear readout layer, which is separated
from the reservoir itself. This distinct feature relaxes the computational require-
ments of a material a fair bit. A material reservoir does not need to provide some
specific computation directly, but rather its repertoire of intrinsic computations are
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combined by the readout layer. Hence, as a computational model, reservoir com-
puting is ideal for exploiting the natural computations within a physical system.

In Paper E we applied RC metrics to quantify the computing properties of an ASI.
We saw how system parameters affected computational capacity in terms of RC
metrics. Since the RC metrics are tied to a well-defined computational model, their
results can be directly related to useful computation. For instance, the KQ/GC
quality metrics indicate the number of useful nodes within the system. They also
quantify the expressiveness of system state for performing signal classification.

We have also seen that the requirements of the RC model does not necessarily need
to be fulfilled by the physical system itself. In Paper B, a low-dimensional dynam-
ical system could be treated as a virtual high-dimensional system by using time-
multiplexing. Furthermore, even though the system then lacks (fading) memory, it
can still be exploited for reservoir computing for non-temporal tasks. In a way, this
paper illustrates the entire process of reservoir computing in-materio: from simu-
lation to physical system, from intrinsic properties to useful computation, and the
important choice of input encoding and output decoding.

Although the field of reservoir computing in-materio is still young, the results are
already very promising. RC is a powerful model for material computation, both for
exploiting and understanding the intrinsic computational properties within.

3.10 Conclusions and future work

What kind of materials are ideal for computation is still an open question. In this
research project we have explored three materials with distinct properties, ranging
from unstructured to structured, from simple to complex, exhibiting various degrees
of controllability.

What is clear is the major advantage offered by a physical model, as a vehicle to
understand the relationship between physical properties and intrinsic computation.
Therefore, in assessing the computational potential of a material, the existence of
physical models should carry significant weight.

We have also argued for using a well-defined computational model in the explo-
ration of material substrates. Reservoir computing is a very general model which
can be applied to a range of different physical systems. Still, there are other com-
putational models which may be even more suitable for certain types of materials,
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e.g., membrane computing (Păun, 2006) may be more apt for certain chemical ma-
terials. While reservoir computing provides an excellent starting point, we should
not be predetermined in this choice of model.

RC is a very promising model for material computation, but it only provides a
general computational framework. For physical reservoirs, it provides no answer
regarding the representation relation, i.e., the choice of input encoding and output
decoding. As we have discussed, the properties of physical input signals will often
have significant consequences for the computational properties of a material. Al-
though the physical encoding and decoding of signals will inevitably be substrate-
dependent, a theoretical treatment of the subject seems pressing.

Of the three materials investigated in this work, ASI is the most promising and
therefore been the target of a majority of the work. While the CNT material has
many desirable properties in theory, i.e., as a large random network of nonlinear el-
ements, the limited control offered by such unstructured materials makes exploita-
tion difficult in practice. The CC substrate, on the other hand, can be controlled
very precisely due to its simple structure. However, its potential is severely lim-
ited by the low dimensionality, especially with regards to reservoir computing. ASI
seems to offer the best of both worlds: vast parallelism and controllability.

ASIs are high-dimensional, nonlinear dynamical systems governed by local inter-
actions and self-organization. As metamaterials they offer a high degree of control
over their internal structure and parameters, which ultimately allows controlling
their emergent properties at higher levels. The existence of established physical
models and highly developed fabrication techniques make ASIs promising material
substrates for future computing devices.

The future of computation in ASI

Within this research project, we have only scratched the surface of this truly fasci-
nating family of metamaterials. There is a lot of future work in store for material
computation in ASI.

It is imperative that future work on ASI computing also involves physical realiza-
tions of the computing substrate. All the work on ASIs within this research project
has been based on software models. Transferring results from models to physical
systems requires a lot of practical problems to be solved, in particular regarding
input and output. An open question is how susceptible physical ASIs are to noise,
and how noise affects their computational properties. Understanding noise in ASI
systems is a key topic towards practical realizations.

66



3.10 Conclusions and future work

An important question is how the computational capabilities of ASI systems scales
with size. While the ASI systems considered here have been fairly small, ASIs can
readily be scaled up to systems with millions of elements. In terms of fabrication,
large systems are just as easy to manufacture as are small systems. Simulating large
systems will require more computational resources, but the flatspin simulator will
easily scale up to a million magnets.

Another key topic is robustness, in terms of device imperfections, component fail-
ure and environmental noise. We have hypothesized that large scale patterns, such
as the emergent magnetic domains of ASI, should support more robust computa-
tion, as the collective behavior will smooth over local imperfections. Future work
should investigate whether this is the case, and how the physical properties of the
system affect robustness.

Novel ASI geometries provides a seemingly endless playground for the study of
emergent computation. Almost all of the established ASI geometries were created
as model systems for the study of fundamental physics. What might geometries
designed for computation look like? Hybrid geometries, geometries with defects,
and more irregular structures are areas that warrant more research. Still, hand-made
geometries are the result of the human imagination, with its many inherent biases.
An intriguing direction of research are geometries designed by algorithms, which
can discover novel geometries with desired computational properties, without the
human bias.

Another key topic of research is input encoding. As we have seen, the properties of
the input encoding can have a big impact on the dynamics and emergent properties
of a material. While the output decoding also plays an important role, it does not
directly influence system behavior. For some physical systems, the choice of input
encoding may follow fairly naturally, e.g., as part of the driving signal as in the case
of our chaotic circuit. For more complex substrates such as ASI, there is a wealth
of possibilities when it comes to how to encode input. So far we have considered
fairly simple input encoding schemes based on a global magnetic field. Future
directions should explore more sophisticated field protocols and the use of local
magnetic fields. Here again we are somewhat limited by our human ingenuity. An
algorithmic approach to the design of input encodings could be a very interesting
pursuit.

Still, there are certain properties of ASIs that are problematic from a computational
perspective. The symmetry of magnetic dipole interactions makes controlling the
flow of information in magnetic systems challenging. Considering the resulting
network of the magnetic interactions, all edges are effectively undirected, which
means that information transfer between nodes does not follow immediately from
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network structure. Hence, to facilitate information flow in ASI systems, one must
rely on emergent dynamic behavior, rather than the structure of the underlying sys-
tem. Future work should focus on exploring the kind of emergent dynamic behavior
that supports information transfer. One potential impact is improving the inherent
linear memory, which so far has been quite limited in ASI reservoirs (Hon et al.,
2021).

Another feature that is (currently) lacking in ASI systems is adaptation, i.e., mecha-
nisms that allow the underlying structure of the system to be changed dynamically.
Intrinsic plasticity is an important feature of adaptive biological systems, which
facilitates learning new behavior in response to changes in the environment. Reser-
voirs with dynamic structure have received relatively little attention, although some
promising results have been reported (Schrauwen et al., 2008). Adaptive mecha-
nisms within a material could support similar features, and further extend the com-
putational versatility of the substrate.

Final remarks

Material computation is redefining computing in terms of physical processes and
emergence. The world of physics, chemistry and biology provide an abundance
of intriguing material systems waiting to be explored. Using physical phenomena
for computation can be extremely efficient, encouraging the development of new
computational models that naturally exploit them. The endeavor has the potential
to result in novel computing devices, whose mode of operation is fundamentally
different from anything we have seen so far.

Natural computing provides an endless source of inspiration, demonstrating how
computational mechanisms can emerge spontaneously in a range of physical sys-
tems. Through a bottom-up exploration of physical substrates, we seek to uncover
the fascinating world of computation within. The results may surprise us, challenge
our notions of computation, and lead to new directions in computing and beyond.
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Abstract
In-materio computation exploits physical properties of materials as

substrates for computation. Evolution-In-Materio (EIM) uses evolu-
tionary search algorithms to find such configurations of the material
for which material physics yields desired computation. New unconven-
tional materials have been recently investigated as potential computa-
tional mediums. Such materials may intrinsically possess rich physical
properties, which may allow a wide variety of dynamics. However, how
to access such properties and exploit them to carry out a wanted com-
putation is still an open question. This article explores the dynamics
in one particular type of nanomaterials which is used to solve com-
putational tasks. Nanocomposites of Single-Walled Carbon Nanotubes
(SWCNTs) and PolyButyl MethAcrylate (PBMA) are configured so as
to undergo evolutionary processes with the goal of performing certain
computational tasks. Early experiments showed that rich dynamics
may be achieved, which may yield complex computations. Some indica-
tions of chaotic behavior were observed so further work was carried out
with the aim of examining the dynamics achievable by such nanocom-
posites. Since it is not an easy task to access the physics at the very
bottom of the material, investigation of the material dynamics is kept
within the limits imposed by our measurement equipment and the level
of observability enabled by it. Presented results show that interesting,
complex dynamics is achievable by examined nanocomposites and that
it depends on the type of signals used for the material configuration
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as well as on the material intrinsic properties such as percentage of
SWCNTs in the nanocomposite.

1 Introduction

Computations result from perturbations of some dynamical system. The
observable output of the system is the result of its dynamics. Dependent
on the type of dynamics exhibited by the system, computations of various
complexity levels may be achieved. The type of dynamics depends on the
physics of the system and on the way in which the system is manipulated.
Our work considers novel nanoscale materials [1] and was carried out within
the EU-funded NASCENCE (NAnoSCale Engineering for Novel Computa-
tion using Evolution) project [2]. The nanomaterials investigated within the
project are nanocomposites of Single-Walled Carbon Nanotubes (SWCNTs)
and polymer molecules (PBMA), and networks of gold nanoparticles. The in-
vestigation of nanocomposites is performed under the Evolution-In-Materio
(EIM) scenario [3, 4].

EIM is a novel approach to designing computing devices where various ma-
terials are used as computational substrates. It is one approach that may
emerge as an answer to the challenges of today’s widely accepted semiconduc-
tor technology. Digital computers based on silicon technology are designed
using a conventional top-down process by human engineers. Engineering of
such processors poses technological challenges due to scaling down. Various
design techniques are applied in order to sustain scaling down of the semi-
conductor technology but it is becoming increasingly difficult to fabricate
transistors at the nanoscale.

This has motivated efforts towards novel technologies that will assume not
only new computational substrates but also novel principles of the design of
computing devices and their usage. EIM is a bottom-up approach in which
the physics of a computing substrate is used to produce computations of
interest. Different computational substrates have been previously explored
such as liquid crystals and Field Programmable Gate Arrays (FPGAs) [5–7].
The configuration of the computing substrate, i.e., some material, undergoes
evolutionary changes until some desired response of the material is achieved
according to the computational task at hand. The digital computer accesses
the material via a special board, which allows the Evolutionary Algorithm
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1 Introduction

Figure 1. Principle of EIM illustrating the separation of an analog/physical domain
where the material operates and the digital domain of computers, from [3].

(EA) to apply configuration and input signals and read the material response
which will guide the evolutionary search.

Figure 1 illustrates an EIM system. Three main entities can be distinguished:
a digital computer, the material and the interface between the two. The
system clearly shows the separation of an analog/physical domain in which
materials operate and a digital domain in which the computer responsible
for input/output mapping and configuration operates. In all such systems
an interface is needed for bidirectional translation of signals between digital
signals of the computer and analog signals in the physical domain of the
material. As mentioned, the digital computer is used for running the EA,
which generates a population of genomes, and translates each genome into
suitable analog signals which can be sent to the interface board.

Further, the response of the material for a given configuration and input
signals is translated from analog form as produced by the material to its
corresponding digital value so that the computer can calculate the fitness
value of the genome. The fitness value guides evolutionary search towards a
solution to the problem at hand.

In order to produce interesting behavior under the EIM scenario, it is re-
quired that the material is able to exhibit rich dynamics. The richness of
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Figure 2. Conceptual domains of the computing system.

the exhibited dynamics can be attributed to the physical properties of the
material. In a way it can be said that EIM manipulates the material so as
to produce rich dynamics. The material blob is treated as a black box and
EAs are used to “program” the material to solve a problem at hand.

Such a black box hybrid approach has been shown successful for a number
of computational problems [8–13]. At the current state of research, it is not
clearly understood what the exploited physical properties are and what the
best way of exploring them is, e.g., what number of inputs and outputs and
which types of signals - electrical (static voltages, sinusoidal waves, square
waves) or even of some other kind such as temperature or light. The solved
problems serve as a proof of concept that an EIM approach may be used for
solving computational problems and indicates that it may be competitive
in terms of computational time, size, and energy consumption. However,
scaling-up to solve larger instances of a problem requires a better under-
standing of the dynamics exhibited by the material. In other words, the
black box needs to be opened so that the underlying physical properties of
the material are well understood. The number of used input electrodes, con-
figuration signals available, etc. will directly affect the evolutionary search
space.

Observing dynamics and its emergent complexity in computational mate-
rials is not an easy pursuit. Observability is limited by what output can
be measured from the material and at which scale. At some scales we are
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not able to directly observe physical effects present in the materials, e.g.,
quantum effects due to mechanisms of electron transmission through carbon
nanotubes. Therefore, we are limited to use signals which can be observed
and measured. Figure 2 illustrates the taken approach to observe, exploit
and gain an understanding of the dynamics of EIM systems. At the lowest
level we have the physics of the material where computations happen, but
due to nanoscale and even quantum effects, what is captured by our instru-
ments will at best be just an approximation. In other words, the lowest level
is inaccessible and must be treated as a black box. At the second level, the
level of measurements and transformations, physical properties and dynam-
ics are observable in the analog domain. This level can be explored to gain
insight into the electrical properties of the material. The top level is the level
of interpretations, i.e., computations as we perceive them. So, as shown in
Figure 2, the dynamics of the analog signals are interpreted and transferred
to data, i.e., the computational input – output mapping is performed. The
top level is the level which is explored for computation. Here, it is impor-
tant to note that the observations on the top level emerge as a result of all
underlying dynamics.

The work presented in this paper includes a specific approach, as illustrated
in Figure 2, to investigate the dynamics of the material at hand. The ap-
proach considers the complexity of the input - output mapping performed
by the material for computation. Complexity is hard to measure even when
well defined as, for example, Kolmogorov complexity [14]. Some approxima-
tions are needed if we want to obtain quantitative measures. In this work,
we adopt compressibility as a measure of complexity.

This paper, which is an extended version of [1], is organized as follows: Sec-
tion 2 provides background on EIM and position of the NASCENCE project
within the field. Section 3 presents experimental platform Mecobo, which
was developed within NASCENCE project, and which is used in our EIM
experiments. Also, an experimental setup is explained as well as the mate-
rial which was used in the experiments. Moreover, the section provides some
background on different computational domains which can be distinguished
under EIM computing scenario. Further, Section 4 provides some initial
results, presented in [1], which demonstrate interesting behaviors of the in-
vestigated material. Section 5 presents experiments which were conducted
with the aim of investigating material dynamics in a greater detail. A mea-
sure of complexity is introduced which is used as the description of material
behavior, the three sets of experiments are described followed by the results
and the discussion which relates results to theoretical foundations. Finally,
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Section 6 provides conclusion about the presented experiments and exhibited
material dynamics within EIM computing.

2 Background – Evolution-in-Materio

The term Evolution-in-Materio was introduced by Julian Miller and Keith
Downing in 2002 [4]. The general concept of EIM is that physical systems
may intrinsically possess properties which may be exploited for computa-
tion.

2.1 Pioneering work

Early work on manipulation of physical systems for computation is related to
the work of Gordon Pask [15], a classical cyberneticist whose pioneering work
dates back to the 1950s. He tried to grow neural structures, dendritic wires,
in a metal-salt solution by electrical stimulation [7]. His goal was to self-
assemble a wiring structure within the material in order to carry out some
sort of signal processing embedded in the material. He was able to alter the
position and structure of the wiring filaments, and thus the behavior of the
system. This was achieved by external influence, which consisted in applying
different currents on electrodes in the metal-salt solution. This early version
of material manipulation was done without aid of computers and different
electrical configurations were tested manually. Stewart [16] later defined such
a process as manufacturing logic “by the pound, using techniques more like
those of a bakery than of an electronics factory”.

2.2 Analog computers, FPGAs and liquid crystal

Later, Mills constructed an analog computer which he called Kirchhoff-
Lukasiewicz Machine (KLM) [17]. The construction was done by connecting
a conductive polymer material to logical units. The analog computation was
carried out by placing current sources and current sinks into the conductive
foam layer and reading the output from the logical units. One could argue
that such machines were not easy to program due to the manual placement
of connections into the material. On the other hand, some advantages of per-
forming computation directly in the material substrate became obvious, e.g.,
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a large number of partial differential equations were solved within nanosec-
onds.

In 1996, Thompson used intrinsic evolution to produce electrical circuits in
FPGAs [5]. In his well-known experiment, he demonstrated that artificial
evolution can be used to exploit physical properties of FPGAs to build work-
ing circuits, e.g., a frequency discriminator circuit. He found out that placing
the circuit in a different part of the chip or disconnecting some unused mod-
ules would result in a non-working solution. Moreover, he was unable to
replicate the chip behavior in simulation because evolution had exploited
underlying physical properties of the FPGA. In fact, changing the FPGA
with a similar model from the same producer would result in slightly differ-
ent behavior. Thompson described such a process as “removing the digital
design and letting evolution do it”.

In [4], Miller and Downing suggested several materials which may be suitable
for EIM, liquid crystals being among them. Simon Harding [18] later demon-
strated that it was indeed possible to apply EIM on liquid crystals to evolve
several computational devices: a tone discriminator [19], logic gates [20],
and robot controllers [6]. Liquid crystal is a movable material where volt-
ages affect orientation of the crystals. The movability was problematic since
the material would undergo permanent changes during evolution. This led
to unstable solutions that worked only once. Nevertheless, he showed that
it was possible to quickly reach a working solution again by re-running the
evolutionary algorithm for a couple of generations [19].

2.3 The NASCENCE project and recent work

Recently, the NASCENCE project [2] addressed nanomaterials and nanopar-
ticles for EIM with the long term goal to build information processing devices
exploiting such materials without the need to reproduce individual compo-
nents. In particular, investigated nanomaterials included nanocomposites
made of SWCNTs and polymer molecules and nanoparticle networks, in par-
ticular gold coated nanoparticles. Several hard-to-solve computational prob-
lems have been solved as proof of concept, e.g., Traveling Salesman [8], logic
gates [9], bin packing [10], machine learning classification [11], frequency
classification [12], function optimization [13] and robot controllers [21]. The
SWCNT materials from the project are the subject of our investigation in
this paper.
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2.4 Interpretation and computation

As stated, EIM has been used to solve a variety of problems. However,
these results are all limited to a specific problem domain. To assess the
potential computational power available in a material, we need a more gen-
eral measurement. One way is to view complexity as indication of potential
computational power [22].

Kolmogorov complexity [14, 23] is well-defined but incomputable in theory.
However, it is possible to use measures such as compressibility to approx-
imate complexity to some extent [24–27]. In fact, strings that are hardly
compressible have a presumably high Kolmogorov complexity. Complexity
is then proportional to the compression ratio.

High measurable complexity of output data or a high complexity ratio be-
tween input and output data may not always be a desired property. In classi-
fier systems, such as Thompson’s frequency discriminator [5], the output may
be a binary response to a complex input signal. In this case the complexity
ratio between output and input is very low. However, the computation, i.e.,
internal state transitions in the underlying physics of the material, is still a
complex process but the complexity is unobservable since we only observe
the input and output signals.

3 A platform for experiments and understanding of
EIM systems

The conceptual idea of exploiting physics for computation requires a physical
device, i.e., the material. In most EIM works, an intrinsic approach has been
taken – computation is a result of real physical processes and the evaluation
is a result of the performance of a physical system. An intrinsic approach al-
lows access to all inherent physical properties of the material [3]. An analog
computation [28] is a possibility, however, in this work a hybrid approach is
taken. The hybrid approach includes the computational matter in a mixed
signal system using a digital computer to configure and communicate with
the material. Such an approach enables the computational power of the ma-
terial with the ease of programmability of digital computers [2]. In a hybrid
approach, observability is an issue, i.e., ensuring that the data from the ma-
terial is observable and sound without using more computational power for
the observation than the actual computation [29].
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(a) Block diagram of the
Mecobo hardware interface.

(b) Picture of the
Mecobo motherboard
with mixed signal
daughter board.

(c) Electrode array,
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(Source:
documentation of the
NASCENCE project).

Figure 3. Overview of the Mecobo hardware interface.

3.1 NASCENCE’s Mecobo: an experimental platform for EIM

A hybrid approach requires an interface between the digital world of com-
puters and the analog world of materials. The Mecobo experimental plat-
form [30] from the NASCENCE project is a hardware/software platform
implementing the conceptual Evo-Materio-system shown in Figure 1.

Figure 3 shows an overview of the hardware interface: a Mecobo platform and
microelectrode array on the material slide. A block diagram of the Mecobo
platform is shown in Figure 3a. Configuration specification, i.e., genotypes,
are loaded from a PC to Mecobo over a USB port. A microcontroller com-
municates with the USB interface and with an FPGA via an internal bus.
The FPGA can be interfaced to the materials directly or, as shown in the
figure, use a daughter board to extend the range of possible signals.

A picture of the Mecobo hardware is presented in Figure 3b. In the picture,
the Mecobo is shown with a mixed signal daughter board and a material
sample on a glass slide plugged in. Electrical connection between the ma-
terial on the slide and the board is realized by the microelectrode array. A
microscopic view of the microelectrode array before material disposition is
shown in Figure 3c.
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Mecobo is capable of controlling close to 100 individually configurable in-
put/output signals (pins), which can be connected to the material. Each
signal is described by parameters at a given point in time. For example,
a pin can be programmed as a recording pin from time 0 to 100ms, or as
an output pin of square waves of some frequency from 0 to 1000ms, or as
an output pin of a constant voltage level, e.g., 2.7V from time 0 to 1500ms
etc. Mecobo is connected to a host PC over USB and communicates via a
Thrift server [31]. Communication based on Thrift technology also enables
access to Mecobo remotely over the Internet. The maximum analog sam-
pling frequency of the Mecobo board is 500kHz. Input signals may be static
voltages or periodic (e.g., square, sinusoidal) waves ranging in frequency be-
tween 400Hz and 25MHz. For more details on Mecobo and an overview of
the full range of programmable properties of the platform, see [30].

3.2 Explaining computations within EIM

It can be said that computations are based on transformations of a system,
so that the system input(s) and output(s) are related in some functional way.
This functional relation can be expressed by a simple formula:

y = F (x) (1)

where x and y correspond to an input and output of the system, respectively,
and, in general, they are considered to be multidimensional and represented
by vectors.

One way of analysis, more formally addressed within the system theory [32,
33] assumes that the system state is described by a set of variables that move
through a state space.

For an EIM scenario, a better look into the state space of the system needs
clarification of what is meant by system variables [34]. According to the ex-
planation of different domains of computation as described in Section 1, the
variables of the system belong to the domain of measurements as schemati-
cally shown in Figure 2. The voltages and the set of properties which define
them in this domain, i.e., amplitude, frequency and phase, can be represented
with:

vi = ai ·funcp(fi,φi) (2)
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Figure 4. CNT computing system within a system theory framework.

where vi is voltage on the i-th electrode, ai the amplitude, funcp some
periodic function, fi frequency of the function funcp and, finally, φi the
phase of the voltage, all referring to the i-th electrode. The symbols are left
lower case to remind that all of these values can be time varying.

Let us now consider an example in which for a system to perform function-
ality func_0, for the input x_0, an output value y_0 is desired (Figure
4 a)). For simplicity, the variables on each of the axes are assumed to be
scalars. When different configuration voltages are applied to the material,
they change the system variables so that it passes through various states in
the state space along some trajectory. Further, let us assume that only one
electrode is used for configuration voltage and only one voltage parameter is
changed, for example amplitude. By changing the amplitude along the a_1
axis different input-output mappings will be performed by the system. EIM
would then search through the space until func_0 point is reached. If also
the frequency of the voltage v_1 is changed, then the state space could be
searched along two axes as shown in Figure 4 b). And even further, if more
than one electrode is used for configuring the material, then, in general, the
space would look something like in Figure 4 c) and would be searchable along
high number of axes, the limitation being only the physical number of elec-
trodes in the system. Moreover, the state space may grow due to the change
in some parameter, like temperature or light, as shown in Figure 4 d), which
may all increase the size of the state space to search for the solution.
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Table 1. Different materials used in the experiments.
Material SWCNT Concentration, wt%
B09S12 0.53%
B15S03 1.25%
B15S04 1.50%
B15S08 5.00%

4 A Detailed View of Material Dynamics

Experiments are performed on SWCNT mixed with PBMA on a micro elec-
trode array supplied by Durham University. Material samples and micro
electrode arrays are produced in a process where SWCNT-PBMA mixture is
dissolved in anisole (methoxy benzene). The material samples are prepared
on 4x4 grids of gold micro-electrode arrays with pads of 50µm and pitch of
100µm, see Figure 3c. The preparation is done by dispensing 20µL of the
material onto the electrode area. The concentration of SWCNTs varies as
shown in Table 1 where the material samples used in our experiments are
listed. The SWCNT mixed with PBMA material dispersed over electrode
array is baked for 30min at 90C◦. The solvent dries out and leaves a thick
film of immovable SWCNTs supported by polymer molecules. The substrate
is cooled slowly over a period of 1h. This process leaves a variable distri-
bution of nanotubes across the electrodes. Typically, carbon nanotubes are
30% metallic and 70% semi-conducting, while PBMA creates insulation ar-
eas within nanotube networks. Such electrical properties of the material may
allow non-linear current versus voltage characteristics.

The coverage of gold microelectrodes with randomly dispersed nanotubes
varies and some of the electrodes may even be left with little or no coverage,
as visible in the Scanning Electron Microscope (SEM) image in Figure 5.

Initial investigation of the material response to various input signals showed
several interesting behaviors in the material [1]. The goal was to gain insight
into the material dynamics to identify suitable ways in which the material
can be manipulated to perform computation.

As mentioned, EIM requires an interface between a digital computer which
runs the EA and the material whose physics undergoes analog processes.
This interface is typically provided by the Mecobo board. However, in or-
der to better understand the underlying properties of the material and its
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Figure 5. SEM image of gold electrode array with different coverage of nanotubes.
Adopted from [9].

responses, it is necessary to use more precise instruments. In these experi-
ments, oscilloscopes and signal generators were used to get a more detailed
view of the material dynamics.

4.1 Experimental Setup

In the experiments herein, we connect a material slide to a Hewlett Packard
33120A 15MHz function / arbitrary waveform generator (used as input) and
an Agilent 54622D 100MHz mixed signal oscilloscope (used as output). In-
put signals are square waves at different frequencies from the signal generator
and the output signals are recorded on the oscilloscope.

The input / output pins were chosen so that there would be an equal distance
between microelectrode pads within the microelectrode array (Figure 3c).
The placement of input and output signals on the material slide is shown in
Figure 6, where the input probe (from the signal generator) is placed on pin
#2 (IN) and the two output probes (to the oscilloscope) are connected to
pins #9 (OUT1) and #7 (OUT 2).
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Figure 6. Material slide and pins connected to signal generator (IN) and oscilloscope
(OUT).

4.2 Results and discussion

Figure 7 presents the experimental results. In particular, Figures 7a) show
several snapshots of the material response on two different pins at different
frequencies, ranging from 1KHz (Figure a1) to 14MHz (Figure a12). At
1KHz the signals may seem similar (a1), where the material charges-up and
subsequently discharges, but in a zoomed in snapshot, i.e., where a part of
the response is shown at a higher resolution (a2), a voltage spike is visible
on the second probe which is not present on the first probe. This is better
visible at 5KHz (a3), 30KHz (a4) and 100KHz (a5), where it is possible to
notice that on the rising front there is a sudden voltage increase/drop. The
material behavior is capacitor-like. Starting from 500KHz (a6), which is also
zoomed in (a7), the second probe signal is similar to a square wave (most of
the harmonic frequencies are passed) while the first probe acts more like a
filter. The difference is caused by different concentrations of CNTs between
the IN-OUT electrodes, i.e., different paths the current is enabled to follow
between the electrodes. In both cases, there is a resonance phase which
results in a deterministic yet semi-chaotic waveform. This may be the effect
of some conducting sub-networks in the material that are enabled at specific
frequencies and disabled at others. At 2, 5 and 8.5MHz the measured voltage
decreases while frequency increases. At 10MHz (a11) a strange phenomenon
is observed where both signals show a voltage increase. The effect is more
prominent on the first output. We ascribe such behavior to be due to a
feedback effect where harmonics of some frequencies are fed again into the
material by some nanotube sub-networks. At 14MHz (a12) the signal on the
second probe is sinusoidal, i.e., only one harmonic is present. As such, it may
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(a1) 1kHz (scale:
5V,200µs)

(a2) 1kHz (zoom,
2V,5µs)

(a3) 5kHz (scale:
2V,20µs)

(a4) 30kHz (scale:
2V,10µs)

(a5) 100kHz (scale:
1V,2µs)

(a6) 500kHz (scale:
1V,500ns)

(a7) 500kHz (zoom,
500mV,200ns)

(a8) 2MHz (scale:
1V,100ns)

(a9) 5MHz (scale:
1V,50ns)

(a10) 8.5MHz (scale:
1V,50ns)

(a11) 10MHz (scale:
1V,50ns)

(a12) 14MHz (scale:
500mV,20ns)

(b1) 30kHz (scale:
1V,1V )

(b2) 60kHz (scale:
500mV,500mV )

(b3) 100kHz (scale:
500mV,500mV )

(b4) 500kHz (scale:
200mV,200mV )

(c1) 350kHz (scale:
1V,1V )

(c2) 2MHz (zoom,
200mV,50mV )

(c3) 5MHz (scale:
1V,200mV )

(c4) 10MHz (scale:
2V,500mV )

Figure 7. Oscilloscope screenshots. The resolution is indicated in parentheses. The
resolutions have been chosen so as to be able to show interesting results at different scales.
(a) Voltage responses on 2 different pins with input square wave at different frequencies.

(b) XY plots, X (OUT1) is plotted against Y (OUT2) at different frequencies.
(c) XY plots, X (IN) is plotted against Y (OUT1) at different frequencies.
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be concluded that with a single square wave input it is possible to observe a
rich variety of behaviors while the frequency spectrum is traversed.

As the system produces uniform, stable, and semi-chaotic behaviors, it is
of particular interest to visualize input-output responses and output-output
relations in order to better understand traversed trajectories and attractors.
For this purpose, XY plots are shown in Figure 7b), where OUT1 is plotted
against OUT2 and Figure 7c), where IN is plotted against OUT1. In Figure
7b1), some orbits are present at 30KHz. Similar orbits are visible at 60KHz
(b2) and 100KHz (b3), moving towards opposite corners to those where the
impulse is. After each impulse, there is a semi-chaotic orbit that relaxes
before the next impulse arrives, as the semi-chaotic behavior is annihilated
by the lack of energy in the material, until the arrival of the next impulse.
This suggests that chaotic behavior may be present, yet particularly difficult
to observe.

XY plots between input and output are shown in Figure 7c). These figures
represent the phase space of the system (input-output pin pair). Figure
7c1) is obtained at 350Khz. Several oscillating orbits are present, which are
zoomed-in at 2MHz (c2). The same effect is observed for frequencies up to
5MHz (c3) while for frequencies around 10MHz and higher we observe a
hysteresis loop, which indicates that some saturation may have been reached
in the material. Some sort of non-linearity seems present, which is always a
good indicator that the system may achieve complex behavior.

To summarize this set of results, even if a single square wave input signal is
used, the resulting output shows a variety of behaviors. Square waves [35]
produce richer dynamics than what may be achieved by a single static voltage
or by a sinusoidal wave. Such richness of the response is due to the rich
spectrum of the square waves which contains a variety of harmonics. In
particular, some of the nanotube sub-networks may be sensitive to certain
frequencies. Therefore, square waves may be better suited to penetrate the
material and exploit the nanocomposite’s intrinsic properties.

5 A Complexity View of Material Dynamics

The initial experiments with the oscilloscope measurements gave valuable
insight into the different dynamics available in the material. However, such
detailed measurements only give a very narrow view of the possible behaviors
of the system. In order to get a broad picture of the space of possible material
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dynamics, one has to sacrifice some amount of detail. By using the Mecobo
hardware platform (Section 3) we are able to explore material dynamics at
a higher level.

Mecobo allows us to scan a much wider range of signal frequencies, explore
a myriad of different material locations and easily analyze the results on a
PC. For these experiments we use the digital signal generator on Mecobo
to generate square waves as input signals. The output signal is sampled as
analog voltage using the on-board AD converter (Figure 3).

Complexity of the input/output signal is used as metric to classify different
types of material dynamics. We use compressibility as an estimate of com-
plexity as described in Section 2.4. Since we are primarily interested in the
complexity contribution of the material (and not the complexity of the input
signal itself), we adapt the complexity ratio:

Cr = Co

Ci

where Co is the complexity of the output signal and Ci is the complexity of
the input signal.

We present three sets of experiments where the computational complexity of
the material is explored:

1. Complexity as number of input signals are increased

2. Complexity as function of one input frequency

3. Complexity as function of two input frequencies

5.1 Experimental Setup

For all the experiments, a set of input signals are sent through the material
and a single output signal is recorded. The input signals are digital square
waves in the range 400Hz to 25kHz. The amplitude of the square waves is
0 − 3.3V , which means that the material is exposed to a sharp rise and fall
of the signal in this range. The duty cycle is held constant at 50%.

The output signal is recorded as analog voltage over time and sampled at
a frequency of 500kHz for 10ms resulting in an output buffer of 5000 sam-
ples.
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In order to compare the analog output signal to the digital input signal, we
digitize the output signal by using the mean voltage as digital threshold. In
other words, samples above the mean correspond to logical 1 and samples
below the mean correspond to logical 0. To reduce sensitivity to noise, we
apply hysteresis so that transitions between logic levels happen only if the
analog voltage crosses the mean by a noise margin.

Complexity is estimated by compressing the sample buffer with zlib (zlib
is based on LZ77 [36]) and calculating the length of the compressed string.
Input complexity Ci is calculated based on a set of ideal square waves sampled
at the same frequency as the output signal (500kHz).

All the experiments are repeated for the different material samples listed in
Table 1.

5.1.1 Complexity as number of input signals are increased

In the first experiment, the number of input pins are increased from 1 to 15.
Input pins are selected at random and for each input pin a random frequency
is chosen in the range of 400Hz−25kHz. The output signal is recorded from
pin #0. The experiment is repeated 100 times for each number of input pins
resulting in 1500 output signals.

5.1.2 Complexity as function of one input frequency

The second set of experiments provides a more detailed view of a subset of the
first experiment by traversing the input frequency spectrum. Frequencies are
increased from 400Hz− 25kHz in steps of 1000Hz resulting in 25 different
input frequencies. The number of input pins are again increased from 1 to
15 but the same frequency is now applied to all input pins. In addition, both
input pins and output pins are selected at random. For each number of input
pins and for each frequency, the experiment is repeated 100 times resulting
in 37500 output signals.

5.1.3 Complexity as function of two input frequencies

In the third experiment, we again traverse the same input frequency spectrum
(400Hz− 25kHz), but this time for two input pins. In other words, the
frequency spectrum is traversed in two dimensions resulting in 252 pairs of
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5 A Complexity View of Material Dynamics

input frequencies. Both input pins and output pins are selected at random.
The experiment is repeated 10 times for each set of input/output pins.

5.2 Results and discussion

5.2.1 Complexity as number of input signals are increased

Figure 8 shows output complexity Co measured over the range of 1-15 input
frequencies. The blue line shows the mean output complexity value for each
of the 100 data points. As shown in the plots, the output complexity increases
with the number of input signals. There appears to be a fairly sharp rise in
complexity as the number of square wave inputs are increased from 1 to 4.
After this point the output complexity appears to saturate.

The scatter plot shows a fairly high variation in output complexity when
the number of input signals exceeds one. This indicates that the materials
exhibit a rich variety in output depending on the frequency and/or the choice
of input pins.

A more detailed view is obtained when output complexity is plotted against
input complexity (Figure 9). In these plots, it becomes clear that the input
complexity Ci increases almost linearly with the number of input signals.
Output complexity, however, saturates quickly above 3-4 input signals. In
other words, above this level the added complexity from the input signal is
not observed at the output.

Again the richness of output complexity can be observed. The output signal
is generally less complex than the input signal, which indicates that the ma-
terial acts as a filter or stable attractor. However, there are situations where
the complexity of the output signal exceeds that of the input signal. The
input complexity is estimated from ideal square waves, which are not directly
comparable to the signals generated by the hardware platform. However, the
estimate does give an indication that the materials exhibit rich dynamics.

From Figures 8 and 9 it appears as if higher concentrations of SWCNTs
result in higher output complexity. Such a trend is counter-intuitive, since as
concentration increases the electrical resistance of the material is reduced. As
resistance goes towards zero the material should act more like a wire, which
means that the input signals should pass through unaltered. If multiple input
signals are sent through a wire, the output signal would simply be the sum
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(a) Material B09S12 (0.53 wt% SWCNT)
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(b) Material B15S03 (1.25 wt% SWCNT)

Figure 8. Output complexity as the number of input frequencies are increased from 1 to
15 for four different material samples. The red scatter plot shows individual

measurements while the blue line indicates the mean values for each of the 100 data
points.
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(c) Material B15S04 (1.50 wt% SWCNT)
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(d) Material B15S08 (5.00 wt% SWCNT)

Figure 8 (cont.). Output complexity as the number of input frequencies are increased
from 1 to 15 for four different material samples. The red scatter plot shows individual
measurements while the blue line indicates the mean values for each of the 100 data

points.
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(a) Material B09S12 (0.53 wt% SWCNT)
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(b) Material B15S03 (1.25 wt% SWCNT)

Figure 9. Input vs output complexity as number of input frequencies are increased from
1 to 15 for four different material samples. The dots are colored according to the number

of input frequencies used.
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(c) Material B15S04 (1.50 wt% SWCNT)

0 200 400 600 800 1000 1200

Input complexity

0

100

200

300

400

500

600

O
ut

pu
t

co
m

pl
ex

it
y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
in

pu
t

fr
eq

ue
nc

ie
s

(d) Material B15S08 (5.00 wt% SWCNT)

Figure 9 (cont.). Input vs output complexity as number of input frequencies are
increased from 1 to 15 for four different material samples. The dots are colored according

to the number of input frequencies used.
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of the input signals. Therefore, it would be interesting to investigate how
closely the output signal resembles the sum of the input signals.

Figure 10 plots input vs output complexity when the input signals are summed
together before Ci is estimated. For the material with high SWCNT concen-
tration (B15S08, Figure 10b) there is now a clear linear relationship between
input complexity and output complexity. In other words, this material ap-
pears to behave much like a wire that simply sums the input signals together
in some way. Lower SWCNT concentrations, however, display more diverse
behavior as can be seen in Figure 10a, where there is no clear linear relation-
ship between Ci and Co.

5.2.2 Complexity as function of one input frequency

Figure 11 shows the mean complexity ratio Cr over the range of input fre-
quencies applied to the four material samples. From the plots it is evident
that Cr is highly dependent on the input frequency with spikes at certain fre-
quencies. Complexity appears to be fairly consistent across the four material
samples, i.e., the materials are sensitive to the same frequencies.

Applying the input frequency to more pins does not seem to affect the mean
complexity by much. However, there is a clear reduction in complexity vari-
ation, as can be seen from Figure 12, where standard deviation of the com-
plexity ratio is shown. One possible explanation is that the input signal is
effectively amplified as it is applied to more input pins.

Another trend that can be seen from the plots in Figure 12 is an inverse
relationship between complexity variation and the SWCNT concentration,
i.e., more uniform output complexity with increased SWCNT concentration.
This may be due to the fact that higher SWCNT concentration leads to
a lower electrical resistance in the material and thus more pathways for the
input signal to reach the output pin. However, one exception can be observed
for the B15S04 sample where a higher variation is found when the frequency
is applied to only one input pin. This likely indicates that one electrode is
only partially connected to the material in this particular sample.

5.2.3 Complexity as function of two input frequencies

By sweeping the two input frequencies applied to the material we get a more
detailed view of some of the results from the first experiment. Figure 13
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(a) Material B15S04 (1.50 wt% SWCNT)
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(b) Material B15S08 (5.00 wt% SWCNT)

Figure 10. Input vs output complexity when the input signals are summed together
before input complexity is estimated. Results from two material samples with different
SWCNT concentrations are shown. The dots are colored according to the number of

input frequencies used.
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(a) Material B09S12 (0.53 wt% SWCNT)
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(b) Material B15S03 (1.25 wt% SWCNT)

Figure 11. Mean complexity ratio as function of input frequency for 1, 2, 4 and 8 input
pins. The same frequency is applied to all input pins. Results from four different material

samples are shown.
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(c) Material B15S04 (1.50 wt% SWCNT)
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(d) Material B15S08 (5.00 wt% SWCNT)

Figure 11 (cont.). Mean complexity ratio as function of input frequency for 1, 2, 4
and 8 input pins. The same frequency is applied to all input pins. Results from four

different material samples are shown.
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Figure 12. Standard deviation of complexity ratio as function of input frequency for 1,
2, 4 and 8 input pins. The same frequency is applied to all input pins. Results from four

different material samples are shown.
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Figure 12 (cont.). Standard deviation of complexity ratio as function of input
frequency for 1, 2, 4 and 8 input pins. The same frequency is applied to all input pins.

Results from four different material samples are shown.
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(a) Material B09S12 (0.53 wt% SWCNT), input pins 3 and 8,
output pin 15
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(b) Material B09S12 (0.53 wt% SWCNT), input pins 7 and 0,
output pin 1

Figure 13. Complexity ratio as function of two input frequencies (X and Y axes). The
heat maps shows complexity ratio Cr averaged over 10 runs. Colors range from dark
purple (low complexity) to bright yellow (high complexity). Four heat maps are shown
for two material samples: B09S12 (13a-13b) and B15S08 (13c-13d). Each heat map

shows complexity when input is applied to different input/output pins.
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(c) Material B15S08 (5.00 wt% SWCNT), input pins 12 and 11,
output pin 10
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(d) Material B15S08 (5.00 wt% SWCNT), input pins 10 and 0,
output pin 6

Figure 13 (cont.). Complexity ratio as function of two input frequencies (X and Y
axes). The heat maps shows complexity ratio Cr averaged over 10 runs. Colors range
from dark purple (low complexity) to bright yellow (high complexity). Four heat maps

are shown for two material samples: B09S12 (13a-13b) and B15S08 (13c-13d). Each heat
map shows complexity when input is applied to different input/output pins.
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depicts complexity ratio as a heat map where the two input frequencies are
swept in the X and Y axes and color represents complexity. The colors
range from dark purple (low complexity) to bright yellow (high complexity).
As with one input signal, the heat maps show clearly that the complexity
landscape is dependent on the selection of input frequencies.

Figures 13a and 13b depict complexity for the same material sample B09S12,
but with different selection of input and output pins. As can be seen, the
two heat maps display clear differences in complexity ratio, where the latter
pin configuration (13b) generally exhibits more complex output. However,
this is not always the case, as can be seen in Figures 13c and 13d, where
different input locations result in quite similar complexity landscapes.

6 Conclusion

The general ideas, experiments, and results presented relates to dynamics
performed by SWCNT and PBMA nanocomposites, which may be exploited
by EIM. The materials and experimental system (as presented in Section 2)
has shown promising computational behavior on a variety of problems. In
this work, the behaviors are related to measurable dynamic behavior. That
is, the experiments are designed to capture dynamic properties of the mate-
rials as to gain an understanding of what inherent dynamics are observable
in an EIM setting. The approach taken is to view the material, i.e., phys-
ical system, as a hierarchical information processing device (Figure 2). At
the bottom level the physical dynamics, i.e., quantum effects due to mecha-
nisms of electron transmission through carbon nanotubes, are not observable
within a reasonable resource usage. As such, the lowest level is treated only
at a conceptual level. Dynamics at the bottom level are only observed as
resulting voltages in the analogue domain. The information available at this
level is exploited to gain insight into the electrical properties of the material
when exposed to dynamic input stimuli. At the top level the material is in-
terpreted as a discrete dynamical system. However, the observable dynamics
at this discrete level is a result of all the underlying physics.

As stated by Miller et al. [3]: "...exploit the intrinsic properties of mate-
rials, or “computational mediums”, to do computation, where neither the
structure nor computational properties of the material needs to be known
in advance". The statement may indicate that any material can be looked
at as a black-box. However, insight into what properties are available for
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evolution provides knowledge on how to construct a successful EIM system.
Our findings show that the materials exhibit rich dynamical properties ob-
servable at the analogue level. Figure 7 shows the behavior at an (close to)
analogue time and voltage scale. The properties of these behaviors are avail-
able for exploitation by evolution, even if not explicitly controllable from the
top discrete digital domain.

At the top level, the abstract measurements of complexity shows how such
a measurement can indicate what computational problems the EIM system
may handle. Especially, the experimental results from Figure 13 show that
the materials tested include behavior found in classifier systems, such as
Thompson’s frequency discriminator [5] (generally a trend of reduced com-
plexity as illustrated in Figure 13d). From the same experiment, Figure 13b
shows an increase in complexity generated by the dynamics of the material.
A clear indication of a system which has more internal (observable) states
than of the input data.

Our results also reveal several specific properties of the SWCNT materials
used. In particular, as the number of input signals grows, a saturation of
output complexity is reached. From an EIM perspective this is interesting,
since it implies that information is filtered when many input signals are
applied. The results also show a wide variety in output complexity depending
on input frequency and selection of input/output pins. An indication that
the materials are capable of many different modes of operation.
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Johannes H. Jensen, Gunnar Tufte
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Abstract

Reservoir Computing has been highlighted as a promising methodol-
ogy to perform computation in dynamical systems. This makes Reser-
voir Computing particularly interesting for exploiting physical systems
directly as computing substrates, where the computation happens “for
free” in the rich physical domain. In this work we consider a simple
chaotic circuit as a reservoir: the Driven Chua’s circuit. Its rich variety
of available dynamics makes it versatile as a reservoir. At the same
time, its simplicity offers insight into what physical properties can be
useful for computation. We demonstrate both through simulation and
in-circuit experiments, that such a simple circuit can be readily ex-
ploited for computation. Our results show excellent performance on
two non-temporal tasks. The fact that such a simple nonlinear circuit
can be used, suggests that a wide variety of physical systems can be
viewed as potential reservoirs.

1 Introduction

Most dynamical systems in nature are nonlinear (Strogatz, 2015). An abun-
dance of these systems show complex dynamic behavior, giving rise to phe-
nomena such as self-organization, robustness, adaptivity, learning and intel-
ligence (Mainzer, 2007).

It is argued that many natural systems perform some form of intrinsic com-
putation. Neural systems and self-organizing cellular structures are examples
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of large networks of simple electrochemical nodes that together process large
amounts of information in support of the organism (Toffoli, 2004).

Transforming such intrinsic information processing to the artificial realm
has been a key topic towards reproducing lifelike systems. Dynamics in the
brain and neural systems has been targeted from the early days of cyber-
netics (Wiener, 1961; Ashby, 1960) to today’s ongoing Human Brain Project
(Markram, 2012). The processes of cellular communication also includes dy-
namic behavior that can be exploited toward mimicking natural information
processing in artifacts, e.g. self-replication of structure (Langton, 1984).

An often neglected aspect about these phenomena is that they occur in phys-
ical systems. Through millions of years, computation has evolved bottom-up
with electrical and chemical mechanisms as the basic building blocks. Evolu-
tion has discovered ways of doing computation by exploration and exploita-
tion of the natural processes available in the physical substrate. Can we
similarly exploit the underlying physics of matter to perform computation
with such desirable properties as self-organization, robustness, vast paral-
lelism and adaptivity?

To be successful, we need to consider computation both from a physical and
a dynamical systems perspective. What types of dynamical/physical systems
are suitable for computation? How do we "program" such systems (what are
the inputs and outputs)? How should we define computation in terms of
fixed points, attractors and trajectories? What’s the role of bifurcations and
chaos? (Stepney, 2012)

Finding natural models of computation would pave the way for exploiting
physical systems directly for information processing. Such devices would be
highly efficient, since computation happens "for free" directly in the substrate
as the result of intrinsic physical properties. Complex materials with a vast
number of interconnected elements could be exploited for immense parallel
processing at the nanoscale. Evolution in-materio has indeed shown that
computation can be evolved in physical matter (Miller et al., 2014).

Reservoir Computing (RC) has emerged as a promising technique for ex-
ploiting a dynamical system (the "reservoir") for computation. It is difficult
to know how the output of a dynamical system should be interpreted to ef-
fectively perform useful computation. RC offers a flexible solution to this
problem by utilizing a readout layer that is trained to produce some desired
function as a linear combination of reservoir states. By virtue of its complex
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1 Introduction

dynamics, the reservoir provides a rich repertoire of nonlinear transforma-
tions that can be utilized by the readout.

The study of nonlinear dynamics has shown that surprisingly simple systems
can exhibit complex behavior. In this work, we present one of the simplest
physical reservoirs: a chaotic circuit. We show both through simulations and
in-circuit experiments that the rich dynamics of the circuit can be exploited
for solving computational tasks.

Typically, reservoirs are complex systems with many state variables. How-
ever, even low-dimensional systems can be used effectively as reservoirs. Ap-
peltant et al. (2011) show that by multiplexing output in time rather than
space, a single nonlinear node can act as a virtually high dimensional sys-
tem.

RC’s primary success story has been processing temporal (time-dependent)
signals, where the reservoir serves as a nonlinear memory. Appeltant et al.
(2011) employ delayed feedback to provide the nonlinear node with memory
of past states. Our reservoir is conceptually simpler in that it does not
employ delayed feedback, and consequently has very limited memory.

It is often argued that a reservoir performs optimally when its dynamics lie
on the "edge of chaos" (Bertschinger and Natschläger, 2004). However, a
chaotic reservoir can still be used as long as the input is sufficiently large to
drive its dynamics out of the chaotic regime (Ozturk and Principe, 2005).

For non-temporal tasks, a chaotic system can be more readily exploited as
long as it can be reset between inputs. Goh and Crook (2007) demonstrate
how the transients of the Lorenz attractor can be used for pattern recogni-
tion. All transients will eventually diverge in a chaotic attractor, effectively
separating all inputs. However, transients will remain similar for an initial
period of time. By selecting at which point(s) in time the transients are
observed, the sensitivity of the classification can be adjusted. This selection,
of course, can be done automatically by the readout.

This paper is organized as follows: we begin by discussing the relevant back-
ground theory and related work. Next, we describe the chaotic circuit and
our approach for using it as a reservoir. We then explain our experimen-
tal setup, followed by results and discussion. Finally we conclude with a
discussion of future work.
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Figure 1: Reservoir Computing architecture.

2 Background

Inspired by the wide array of intrinsic physical computation found in nature,
Evolution in-materio takes a bottom-up approach to evolve computation in
physical matter (Miller et al., 2014). These efforts have been rather successful
and a variety of computational devices have been evolved, e.g. a tone dis-
criminator and robot controller in liquid crystal (Harding and Miller, 2004,
2005) and logic gates evolved in carbon nanotubes (Lykkebø et al., 2014;
Massey et al., 2015) and gold nanoparticles (Bose et al., 2015).

Stepney (2008) argues that the time is ripe to climb the “neglected pillar of
material computation”. To be successful we must find computational models
that are natural for the physical substrate. Stepney further argues that
model-free evolutionary search provides limited insight into what (physical)
mechanisms are being exploited and for what reason.

Links between dynamical systems and information theory were established
over half a century ago when Shannon entropy was used to describe uncer-
tainty in nonlinear dynamics (see Crutchfield et al. (2010) for a historical
discussion).

Shaw (1981) argues that attractors act as information sinks: in the joining of
trajectories, information about the state history of the system is lost. Chaos
conversely acts as an information source: divergence of trajectories brings
into view new information not present in the initial conditions.

It has been suggested that chaos plays an important role in natural systems
by providing a rich repertoire of dynamics that may be utilized for increased
performance (Sinha and Ditto, 1998).
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3 System description

Reservoir Computing has its roots in neural network research, where it was
discovered that the rich dynamics and memory capabilities of recurrent neu-
ral networks (RNNs) could be exploited without any training of the network.
Good performance could be obtained with a random network coupled with
a linear readout layer trained on the activations of the RNN nodes (Jaeger,
2001; Maass et al., 2002).

Figure 1 shows the typical RC architecture with three distinct parts: the
input layer, the reservoir with its many recurrent nodes, and the readout
layer. Note that the readout is the only trained part, both the input layer
and the reservoir remain unchanged.

Formally, the reservoir transforms a low-dimensional time-dependent input
u(t) into a high-dimensional state vector xxx(t) which is more readily processed
by the linear readout. The reservoir acts as a nonlinear kernel with mem-
ory, maintaining a rich, high dimensional, nonlinear transformation of input
history.

RNN reservoirs have outperformed state of the art methods in a wide range
of challenging temporal tasks such as speech recognition and time series
prediction. For an overview of RC methods, see Lukoševičius and Jaeger
(2009).

The reservoir can be any kind of dynamical system, as long as it can be
perturbed by input and its output observed. This has inspired a diverse range
of physical systems used as reservoirs. Examples include an optoelectronic
system (Paquot et al., 2012), a photonics chip (Vandoorne et al., 2014),
nanoscale switch networks (Sillin et al., 2013), the bacterium Escherichia
coli (Jones et al., 2007) and even a bucket of water (Fernando and Sojakka,
2003).

3 System description

In this work we consider a simple nonlinear circuit as a reservoir. We have
chosen the Driven Chua’s circuit introduced by Murali et al. (1994a,b) since
it is one of the simplest circuits with a rich variety of dynamics. The circuit
(Figure 2) consists of only a handful of components: three linear elements
(a resistor, an inductor and a capacitor) and a nonlinear resistor (a Chua’s
diode). An external periodic forcing signal f(t) drives the dynamics of the
circuit.
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Figure 2: Driven Chua’s circuit, adapted from Murali et al. (1994a)

The circuit is described by the following set of normalized differential equa-
tions:

ẋ = y−g(x)
ẏ = −βy−βx+Ff(ωt) (1)

g(x) = bx+ 0.5(a− b)[|x+ 1|− |x−1|]

where x corresponds to the voltage across the capacitor C and y corresponds
to the current through the inductor L. The term Ff(ωt) is the external
forcing signal with amplitude F and angular frequency ω. Note that in
the original paper, the periodic driving force was sinusoidal, i.e. f(t) =
sin(t). Here we generalize the forcing term to include any type of periodic
function.

g(x) is the equation for the Chua’s diode which has a piecewise-linear current-
voltage characteristic as shown in Figure 3. The three linear regions have
slopes a and b as shown with breakpoints at ±1.

The dynamics of the circuit depends on the parameters β, a, b, ω and F .
Figure 4 shows the bifurcation diagram as we increase the amplitude F of
the forcing signal. Several interesting phenomena can be observed, such as
period-doubling bifurcations, chaos and periodic windows.

For the current study we consider the case where the slopes of the Chua’s
diode are in the range a <−1 and −1< b< 0. In the absence of the external
forcing (F = 0), the system has three fixed points in this case: an unstable
fixed point at the origin and two stable fixed points P+ and P−.
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Figure 3: Current-voltage characteristic of Chua’s diode. Given the (normalized)
voltage x across the diode, the current through the diode is given by g(x). The
characteristic slopes a and b from equation (1) are also depicted.

0.0 0.2 0.4 0.6 0.8 1.0

F

−8

−6

−4

−2

0

2

4

x

Figure 4: Bifurcation diagram as the forcing amplitude F is increased from 0.0 to
1.0. The system shown has β = 1.0, a=−1.70 b=−0.52 and ω = 0.7.
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For the first part of this work we simulate the system numerically using
the normalized version of the equations. When implementing the circuit
physically we translate back to the corresponding circuit equations.

3.1 Input/output encoding

Before any dynamical system can be used as a reservoir, we need to decide
how to perturb the system with input (the input encoding), and how to
observe the corresponding response (the output decoding). Since we also
wish to realize the circuit experimentally, we must keep in mind the physical
constraints of the system, as well as the limitations of electrical components
and test equipment.

First we tackle the question of input encoding: where in our system do we
apply the input signal u(t) and how should this signal be encoded? Note
that the focus here is on non-temporal tasks, where the input u does not
depend on time.

A common approach is to apply input as the initial conditions (x0,y0) of
the system. This is possible in simulation where we are free to choose initial
conditions, however in a physical system this may not be the case. For
instance, forcing a physical system towards an unstable fixed point may be
impossible.

In this work, we instead apply input as part of the external forcing signal
Ff(ωt). We map the input u to the amplitude F of the forcing signal in a
linear range [Fmin,Fmax], i.e. u is first normalized to the range [0,1] then
F = Fmin + (Fmax−Fmin)u. Instead of sinusoidal forcing, we use square
waves since they are more easily generated with our test equipment, i.e.
f(t) = sgn(sin(t)). For each input u, the system is perturbed for N periods
of the forcing signal. Between each input the system is reset to start in the
same stable fixed point.

The output of our reservoir is the (discretized) transients of the system during
the fixed perturbation period. We can visualize the output as a bifurcation
diagram of transients, as shown in Figure 5. With such an output mapping,
the reservoir produces many nonlinear transformations as a function of the
input F . Compared to the long-term dynamics of the same system (Figure 4),
the transients produce a richer repertoire of nonlinear functions.
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0.0 0.2 0.4 0.6 0.8 1.0

F

−8

−6

−4

−2

0

2

4

6

8

x

Figure 5: Bifurcation diagram of transients as the forcing amplitude F is increased
from 0.0 to 1.0. The system shown has β = 1.0, a=−1.70, b=−0.52 and ω = 0.7,
sampled with k = 10 for N = 5 periods.

Specifically, we observe the variable x(t) while the system is perturbed by
input. We record x(t) at a fixed sampling rate kω, always an integer multiple
of the forcing frequency, to obtain kN discrete output samples from the
system. The reservoir state vector is thus xxx = [x(0),x(τ),x(2τ), ...,x(kNτ)]
where τ = 2π/kω is the sample interval. Note that with k = 1 we get the
Poincaré map.

4 Experimental setup

The dynamics of our reservoir depends on several parameters which will
affect performance. For the current study we fix β = 1.0, ω = 0.7 and vary
the slopes in the intervals a= (−2,−1) and b= (−1,0).

From Figure 5 we observe a linear region from F = 0 up to the first bifurcation
point (here at F = 0.45). As a reservoir, such a linear region is uninteresting
(since any linear function can be constructed by the readout layer alone)
so we should set Fmin past the first bifurcation point. The width of the
linear region depends on the parameters a, b, and ω. Thus for a given set
of these parameters, there exists a (problem-specific) optimal value for Fmin

and Fmax. However, to reduce the number of parameters we need to explore,
we experimentally fix Fmin = 0.5 and Fmax = 1.0.

We perturb the reservoir with N = 5 periods of square waves and record
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kN = 100 output samples. Between each input, the system is reset to a
stable fixed point, i.e. we set the initial condition (x0,y0) = P+.

4.1 Tasks

We evaluate the performance of the reservoir on two non-temporal tasks:
nonlinear regression and nonlinear classification.

The goal of the regression task is to approximate the 7th degree polynomial

y = (x−3)(x−2)(x−1)(x)(x+ 1)(x+ 2)(x+ 3)

in the range (−3,3). Such a smooth function was selected to test the reser-
voir’s generalization capabilities and to investigate the effect of bifurcations
and chaos on reservoir performance.

For classification we use the classical “circles” dataset with two classes or-
ganized in concentric rings (Ben-Hur et al., 2001). This is a simple dataset
which requires a nonlinear decision surface. Being two-dimensional, it can
be easily visualized which enables graphical analysis. We reset the reservoir
between the application of each input feature, i.e. the x and y coordinates
of each point are independently transformed by the reservoir. Furthermore,
the number of samples was set to kN = 50 for each feature resulting in a
total of 100 output samples.

For each of the tasks, 10 000 examples were generated of which 75% were
used for training and 25% for validation. As performance metric we have
used the normalized root mean square error (NRMSE) for regression and
accuracy for classification.

Ridge regression was used for the readout layer, which is widely adopted
within the RC community as it reduces overfitting thanks to a regularization
term (Hoerl and Kennard, 1970).

4.2 Simulation experiments

First we evaluate reservoir performance in simulation, i.e. the governing
equations (1) were integrated numerically.
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Figure 6: Driven Chua’s circuit implemented using an active version of Chua’s
diode based on two op-amps.

We sweep the slopes of the Chua’s diode in the intervals a = (−2,−1), b =
(−1,0) and evaluate performance on the regression task. We use ten-fold
cross validation on the training set to evaluate reservoir performance.

We then have a closer look at the best performing reservoir by analysing the
approximated polynomial on the validation set.

Next we apply the same reservoir on classification, to demonstrate that the
reservoir can be re-used for a different task.

4.3 Circuit experiments

Based on the sweeps from simulation, we select a good performing reservoir
which we implement on a printed circuit board. We use high-quality com-
ponents with low tolerances whenever possible. Some components are not
readily available with low tolerances (such as the inductor L), so these must
be measured.

Figure 6 shows our circuit implementation. A passive version of Chua’s diode
doesn’t exist, but an active version can be implemented using two op-amps
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(Kennedy, 1992) which is what we have done here. This implementation
allows the slopes to be set by the choice of resistors R1−R6.

Given the normalized set of parameters β = 1.0, a = −1.70, b = −0.52 and
ω = 0.7 (the best performing reservoir from the sweeps), we calculate values
for the circuit components as follows: select L≈ 14mH (measured) and C =
10nF . Calculate R =

√
βL/C = 1185Ω and determine the frequency of the

forcing signal Ω = ω/RC ≈ 9.4kHz. The required slopes of the Chua’s diode
are then Ga =Ga≈−1.435mS and Gb =Gb≈−0.439mS where G= 1/R.

For Chua’s diode we adjust the breakpoints Bp =±0.8V so that the dynam-
ics of the circuit stays within the range of our ADC. Adjustable positive
and negative power supplies of the op-amps allows fine-tuning these break-
points.

The slopes of the Chua’s diode are determined by resistors R1−R6. Fol-
lowing the design procedure in Kennedy (1992), we set R1 = R2 = 100Ω,
R3 =Esat/((Bp−Esat)Gb−BpGa)≈ 1915Ω, R4 =R5 =Esat/(Bp(Gb−Ga))≈
10052Ω and R6 =Esat/((Esat−Bp)(Gb−Ga))≈ 1116Ω where Esat = 8.0V is
the saturation level of the op-amps.

After application of input, the circuit may end up in either of the two stable
fixed points P+ and P−. To make sure the circuit starts in the fixed point
P+ before each input, we use the following reset procedure: first a constant
positive voltage F >−a−1 is applied at the input f(t). This has the effect
of destroying the other two fixed points, leaving a single fixed point close to
P+ which the system will approach. Next, the constant voltage is removed
(F = 0), causing the the system to return to the nearest fixed point P+ as
desired. The duration of the reset period must be sufficiently large (� 1/Ω)
to allow transients to settle.

To interface with the circuit we use the Mecobo platform (Lykkebø et al.,
2014). The board can generate analog voltage signals using an onboard DAC
and record analog voltages with an onboard ADC. For our experiments we
use a 12-bit DAC (AD5308) with range set to ±1.024V and a 13-bit ADC
(AD7327) with a range of ±5V .
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Figure 7: Score on the regression task as a function of the slopes a and b. Mean
NRMSE from ten-fold CV is shown, where values have been capped to 1.0.

5 Results

5.1 Regression

Figure 7 shows the mean NRMSE of the reservoir plotted as a function of the
slopes a and b. There is a fairly large region of parameter space with NRMSE
below 0.1. The best performing reservoir has slopes a=−1.70, b=−0.52 and
a NRMSE of 0.05(±0.02). We can also see that performance is fairly smooth
as a function of the two parameters.

Figure 8a shows the approximated polynomial on the validation set obtained
with the best performing reservoir. For a majority of the input range, the
approximation is almost perfect. There is however two noisy regions at
around x = −0.75 and x = 1.45. The NRMSE score on the validation set
is 0.07.

With the circuit reservoir we obtain an NRMSE score of 0.16 on the val-
idation set (Figure 8b). Although the overall shape of the approximation
resembles the desired polynomial, there is a fair amount of noise present.
Note that no filtering has been performed on the sampled voltage data.
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Figure 8: Approximated polynomial (red line) on validation set: (a) simulation
NRMSE=0.07 (b) circuit NRMSE=0.16. The target polynomial is shown in green.

5.2 Classification

On the classification task, the simulated reservoir obtains perfect accuracy.
Figure 9a shows the decision surface for the two classes, with the validation
data superimposed. As can be seen, the decision surface is smooth and there
is a sizeable margin separating the two classes.

Figure 9b shows the classification results with the circuit reservoir. Excellent
performance is obtained with only one misclassified point (99.9% accuracy).
However, the decision surface is markedly more noisy compared to simula-
tion.
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Figure 9: Decision surface and classification result on validation set: (a) simulation
100% accuracy (b) circuit 99.9% accuracy.

6 Discussion

Our results demonstrate that a chaotic circuit can be exploited for reliable
computation within a reservoir computing framework.

The a and b parameter sweeps revealed a sizeable region of parameter space
where good performance was obtained. Furthermore, the performance land-
scape has many smooth features, which looks promising for further explo-
ration of the parameter space with stochastic search methods.

The sweep was performed with fixed values for Fmin and Fmax which, as
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highlighted earlier, may be a suboptimal choice depending on the slopes. It
is likely that the overall performance could be improved quite substantially
if Fmin and Fmax was tuned individually for each pair of slopes.

Although good results were obtained on the polynomial task, there were two
noisy regions in the approximation. They were also present on results from
the training set, although not as pronounced. These regions are likely caused
by instability close to bifurcation points, where chaotic dynamics dominate
even the initial transients. The locations of the noisy regions (x = −0.75
and x= 1.45) correspond to F ≈ 0.69 and F ≈ 0.87 with our input encoding.
This is very close to two narrow chaotic bands which can be seen in the
bifurcation diagram (Figure 4).

For the classification task, near-perfect performance was obtained with a very
smooth decision surface. This result demonstrates that the same reservoir
can be re-used for two quite different tasks, by re-training the readout layer
only. This is particularly relevant for physical reservoirs whose properties
cannot easily be changed to suit a particular task.

Our experimental results with the circuit implementation of the reservoir
revealed comparable performance to that of simulation. However, there is
clear performance degradation caused by noise, especially on the regression
task. Classification seems more robust to this noise where we can get away
with a rather rugged decision surface.

We can attribute much of the noise due to sampling errors which will be
particularly large in regions of the signal with steep slopes. Although noise
will always be a problem when dealing with a physical system, it can have
an even more pronounced effect in sensitive chaotic systems.

Finally, the dynamics of our circuit implementation did deviate somewhat
from simulation, likely due to nonidealities in the circuit components. How-
ever, good performance was still obtained, which illustrates the robustness
and power of the Reservoir Computing methodology.

7 Conclusion

In this work we have shown that a simple chaotic circuit can be used effec-
tively as reservoir. We demonstrate that its rich dynamics can be exploited
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References

directly for computation, both in simulation and with a circuit implementa-
tion. To the best of our knowledge, this is the first time a chaotic circuit has
been used as a reservoir.

Here we have restricted the scope to non-temporal tasks. Future work will
explore ways in which the chaotic circuit can be used to process temporal
signals as well. Using the reservoir for more difficult tasks should also be
attempted, e.g. with real-world datasets that contain more noise and/or
require a more complex decision surface.

Different input/output encoding schemes should be investigated to obtain a
richer repertoire of nonlinear transformations. Further exploration of param-
eter space through e.g. evolutionary search is likely to find better performing
reservoirs.

To further investigate reservoirs within the same family, i.e. with a single
nonlinear node, the Chua’s diode could be replaced with other nonlinear
elements. Memristive devices could potentially serve as nonlinear memory,
making the circuit applicable to tasks such as speech recognition.

Our chaotic circuit can be viewed as an electrical analogy of any physical
system with similar dynamic properties. The methods and results presented
herein should therefore be transferable to any natural system that can be
manipulated to behave within the desired dynamic regime. Given that such
a simple physical system can be exploited, a wide variety of natural systems
can be viewed as potential reservoirs. The grand goal of exploiting intrinsic
properties of matter for computation seems within reach, paving the way
towards highly efficient computation at the nanoscale.
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Abstract

We explore artificial spin ice (ASI) as a substrate for material com-
putation. ASI consists of large numbers of nanomagnets arranged in
a 2D lattice. Local interactions between the magnets gives rise to a
range of complex collective behavior. The ferromagnets form large net-
works of nonlinear nodes, which in many ways resemble artificial neural
networks. In this work, we investigate key computational properties of
ASI through micromagnetic simulations. Our nanomagnetic system
exhibits a large number of reachable stable states and a wide range of
available dynamics when perturbed by an external magnetic field. Fur-
thermore, we find that the system is able to store and process temporal
input patterns. The emergent behavior is highly tunable by varying
the parameters of the external field. Our findings highlight ASI as a
very promising substrate for in-materio computation at the nanoscale.

1 Introduction

Intelligent systems in nature are closely coupled to physics. Through bottom-
up exploration and exploitation of physical processes, evolution has found
ways to achieve self-organized computation. Such natural computation ulti-
mately results in intelligent behavior (Mainzer, 2007). Furthermore, natural
computation is extremely efficient: Our brain contains billions of processing
elements (neurons) but consumes only 20W.

Artificial intelligent systems, e.g. artificial neural networks, are abstracted
far away from the physical and chemical domain. As such, physical properties
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are not exploitable for computation. Consequently, running these abstract
models is inherently inefficient and requires massive server farms consuming
megawatts of power.

Material computation places physics back in the front seat and views com-
putation as an inherently physical process. Within a physical system (the
material) lies an inherent capacity for computation. The goal is to find
ways to exploit this inherent computing power. If accomplished, we can
build extremely efficient computing devices based on principles found in bi-
ological systems: vast parallelism, self-organization, robustness and adapta-
tion (Stepney, 2008).

The key principles of material computation date back to the early days of
cybernetics (Ashby, 1960; Pask, 1959) and artificial life (Langton, 1990):
a large number of nodes, nonlinearity, local interactions and rich dynamics.
More recently the field of reservoir computing (Jaeger, 2001) has proven that
complex physical systems with such properties can be readily exploited, by
training a readout layer to map system output to the target problem (Dale
et al., 2017; Jensen and Tufte, 2017; Sillin et al., 2013).

Hopfield (1982) was early to establish links between neural network models
and physics. Hopfield networks are defined in terms of an energy function
whose many local minima represent memorized states. Recently there has
been an increased interest in energy-based neural network models since they
are physically plausible learning architectures (Scellier and Bengio, 2017).

Hopfield energy provides a direct link between neuronal computation and
ferromagnetic systems. The energy function is isomorphic with an Ising
model where atomic spins take the place of neurons, while exchange coupling
between spins is analogous to synaptic connections. Hopfield showed that
important properties for computation spontaneously arise in such systems
with many nonlinear nodes.

Artificial spin ice (ASI) is a class of ferromagnetic metamaterial which con-
sists of large arrays of coupled nanomagnets. ASI exhibits key properties for
material computation: a large number of nonlinear elements whose local in-
teraction gives rise to complex collective behavior. Furthermore, the physical
fabrication of ASI systems has been well-established over the last decade. It
is thus an intriguing substrate for neuronal material computation.

In this work we investigate key properties for material computation in an
ASI substrate. Through detailed micromagnetic simulations, we explore the
range of dynamics available and the number of reachable states when ASI
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2 Artificial spin ice

(a)

45

B

(b) (c)

Figure 1: Square artificial spin ice consists of horizontal and vertical nanomagnets
arranged in a ’square’ pattern. For this work we study the 4x4 square spin ice
which consists of 40 nanomagnets (a). Since the nanomagnets are single-domain,
the internal magnetization will align left/right for horizontal magnets and up/down
for vertical magnets (b). Colors indicate the direction of magnetization as shown in
the color map. We perturb the array with an external magnetic field B at an angle
of 45◦ as shown. Microscopic imaging of our fabricated spin ice (c) enables a view
of the geometry (top) and magnetization (bottom) of each individual nanomagnet.
The size of each magnet is 220x80 nm.

is subject to an oscillating magnetic field. Finally we demonstrate how the
system can be exploited for temporal pattern classification.

This paper is organized as follows: we begin with a short introduction to the
field of artificial spin ice. Next, we discuss how ASI relates to established
models of computation. We introduce our methods and simulation experi-
ments, followed by results and discussion. Finally we conclude our findings
and discuss future work.

2 Artificial spin ice

Artificial spin ice is a class of metamaterial which consists of nanoscale fer-
romagnetic islands (nanomagnets) arranged in a 2D lattice. Figure 1a shows
the spin ice system used in this study, which consists of 40 nanomagnets
arranged in a 4x4 square lattice.

For nanomagnets smaller than some critical dimension, the individual spin
moments will tend to align in the same direction, i.e. a single-domain state.
When the magnets are elongated, the ground state magnetization will be
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oriented homogeneously in either of the two directions defined by the long-
axis of the magnet. Figure 1b shows how the internal magnetization of
each nanomagnet is oriented in a single-domain ground state. Magnetization
reversal, or switching in such nanoscale magnets is an inherently nonlinear
process (Stoner and Wohlfarth, 1948).

Nanomagnets in the lattice will interact through local dipolar coupling. The
interactions depend on the geometrical arrangement of the lattice. This
makes it possible to create a geometrically frustrated system, i.e. a system
in which all competing interactions cannot be satisfied at the same time.
Many geometric patterns giving rise to geometrical frustration have been
demonstrated. In this work we focus on the ’square’ lattice as shown in
Figure 1.

Originally, the field of ASI was developed to build nanotechnological model
systems for fundamental studies of geometrical frustration (Wang et al.,
2006). It has since grown to encompass a wide variety of phenomena ranging
from effects of quenched disorder, thermally activated dynamics, microwave
frequency responses, magnetotransport properties, and magnetic phase tran-
sitions (Marrows, 2016).

Owing to the semiconductor industry, the fabrication routes for artificial spin
ice devices are already highly developed. With electron beam lithography,
extended arrays consisting of millions of elements can readily be fabricated.
The variety of geometrical arrangements that can be realized is only limited
by the creativity of the designer and a plethora of different lattices have
been created and explored in existing literature (Heyderman and Stamps,
2013).

The development of microscopy techniques with lateral resolution at the
nanoscale and magnetic contrast enables direct imaging of the magnetiza-
tion of individual nanomagnet elements (Figure 1c). At the macroscale, the
collective state of the array can be observed using well-established magne-
tometry techniques. Reading techniques beyond the lab include magnetic
tunnel junction based approaches similar to those found in Magnetic RAM
and conventional hard drives.

There are many ways to manipulate the nanomagnet elements within an ASI.
External magnetic fields is a well-established approach, applied either glob-
ally to the entire array or locally to specific areas, e.g. via current-carrying
electrical wires. Other possibilities include current-induced torques (Brataas
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3 Computation in artificial spin ice

et al., 2012), optically induced switching (Le Guyader et al., 2015) and us-
ing a scanning probe to manipulate individual nanomagnets (Gartside et al.,
2018).

Recent developments of GPU accelerated simulation frameworks combined
with increased computational resources have opened for simulation studies of
extended nanomagnet ensembles, which greatly aids the exploration of novel
artificial spin ice configurations.

3 Computation in artificial spin ice

ASI exhibits key properties for material computation, i.e. a large number
of nodes, nonlinearity and local interactions. However, the question of how
ASI relates to models of computation needs to be answered. Here we discuss
the relation between ASI and one model of computation: artificial neural
networks (ANNs).

ASI has a range of properties which are analogous to ANNs. Like neural
networks, ASI consists of a large number of nonlinear nodes (nanomagnets)
which are connected together in a network (dipolar coupling). Magnets are
non-volatile devices, so each node exhibits long term memory. As with neural
networks, computation in ASI is thus closely coupled with memory.

Network dynamics is the result of local interactions between neighboring
magnets, much like recurrent neural networks. Geometry imposes certain
limitations on the network topology, e.g. fully connected networks are not
realizable in ASI. In this aspect ASI shares similarities with cellular neural
networks (Chua and Yang, 1988).

A major difference between ASI and ANNs is the absence of intrinsic synaptic
plasticity: the coupling between magnets is determined by their geometri-
cal arrangement which is fixed. ASI is thus analogous to a network with
fixed weights. The coupling strength can however be modified externally,
e.g. through local magnetic fields. Reservoir computing has proven that
even random fixed-weight networks can be exploited to solve many useful
problems (Jaeger, 2001).
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3.1 Microstates and macrostates

The state of a physical system can be understood in terms of hierarchies, i.e.
the level of observation. We can distinguish between the microstate and the
macrostate. The microstate is the state at the most detailed level, i.e. down
to the smallest particle. Usually we do not have access to the microstate.
Typically we only have access to the macrostate: the state of the system
observed at some higher level. As observers, we are free to choose how and
at what level we measure the macrostate.

In the case of ASI, the microstate is defined by the magnetic moments of
the atoms within a nanomagnet. In simulation we can directly observe the
microstate, something which is not possible in the real physical system. Fig-
ure 1b shows the microstate of our simulated 4x4 square spin ice.

Regarding the macrostate of ASI, a natural choice is to define a macrostate
based on the average magnetization within a nanomagnet. For the single
domain magnets used here, the magnetization will align in one of two di-
rections, i.e. a binary macrostate. The macrostate of the entire array can
thus be represented with N bits, where N is the number of nanomagnets.
Figure 1a shows the macrostate derived from the corresponding microstate
in Figure 1b. The macrostate as can be observed in the real physical system
can be seen in the bottom of Figure 1c.

Macrostates are in general degenerate, i.e. there are many microstates which
map to the same macrostate. Information about the true state of the system
is therefore hidden. States that look identical at the macro level may in
reality be different at the micro level.

3.2 Energy-based computation

Energy-based models such as Hopfield networks define computation as move-
ment through an energy landscape. Each valley is a local energy minimum
and represent stable ground states of the system. Given an arbitrary initial
state, the system will settle into the nearest valley. If there are many such
valleys, the system has a large number of stable states.

If we perturb the system with sufficient force (input), the system may es-
cape the valley and transition to a nearby state. This movement through
state space is a form of intrinsic physical computation. Computation is thus
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4 Methods

closely linked to dynamics, i.e. complex dynamics results in complex com-
putations (Langton, 1990).

When ASI is subject to a cyclic external magnetic field, complex switching
behavior can occur. The behavior will depend critically on the strength
of the magnetic field. If the field is too weak, there is not enough energy
to leave the local energy minimum so no switching occurs. If the field is
too strong, all the magnets will simply follow the field and we get trivial
switching behavior. However, when the field strength is at some critical
value, the local magnetic fields around each magnet will affect the switching
of neighboring magnets. At this critical field strength we may find complex
dynamics. Gilbert et al. (2015) demonstrated experimentally that for slowly
varying fields whose strength is just above the array coercivity, an ASI will
go through several transient states before settling in a stable ground state.

Little is however known about the switching dynamics of ASI at high frequen-
cies. It seems likely that increasingly complex dynamics occur at higher fre-
quencies where phenomena such as spin waves come into play. Indeed, studies
of magnetic resonance has revealed complex frequency dependence of spin
ice systems in the GHz range (Jungfleisch et al., 2016, 2017). Furthermore,
a system of two interacting dipoles exhibits chaotic dynamics when subject
to a time-dependent external magnetic field (Urzagasti et al., 2015).

4 Methods

We have argued that artificial spin ice exhibits key properties for material
computation. Several properties are fulfilled by definition: a large number
of nodes, nonlinearity and local interactions. However, the availability of
complex dynamics within ASI is still largely unexplored. We need a reliable
way to excite and control such complex dynamics.

Here we investigate magnetization dynamics when ASI is perturbed by an
external magnetic field of high frequency. Next we demonstrate how such
complex dynamics can be exploited for computation.

As subject of study we use the 4x4 square spin ice depicted in Figure 1
consisting of 40 permalloy nanomagnets. The size and spacing of the magnets
is similar to previous studies (Wang et al., 2006): each magnet is 220x80 nm
with a thickness of 25 nm, and the lattice spacing between each magnet is
320 nm.
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We start with an initially polarized array such that all horizontal magnets
point to the right and vertical magnets point up. The initial state is easily
obtained by first saturating the array with a strong magnetic field at 45◦

which is then reduced to zero.

We perturb the array with a time-varying external magnetic field B(t) =
Asin(ωt) with amplitude A and frequency ω. The field is applied at a con-
stant angle of 45◦ as shown in Figure 1.

The magnets in our experiments are single domain, so we adopt a binary
macrostate based on the average magnetization. For horizontal magnets, let
the state be 1 if the magnetization points to the right and 0 if it points to
the left. Similarly for vertical magnets, the state is 1 if the magnetization
points up and 0 if it points down. Since the array consists of 40 magnets, the
macrostate of the entire array can be represented as a 40 bit vector. Hence
the system has a state space of 240 unique states.

All experiments were conducted using the MuMax3 micromagnetic simula-
tor (Vansteenkiste et al., 2014). Key material parameters used are Msat =
860×103 A/m, Aex = 13×10−12 J/m and α= 0.01. A lateral cell size of 5x5
nm2 was used throughout, which is less than the exchange length (Lex = 5.3
nm).

5 Experiment 1: Complex dynamics

First we investigate the dynamics of the array when the sinusoidal external
field has constant amplitude and frequency. In the following, we investigate
the impact of field amplitude A and frequency ω on the dynamics of the
system.

We perturb the array with 100 periods of the external field and sample the
state of the system at the end of each period. We then count the number
of unique states S visited during this time (1 ≤ S ≤ 100). A large number
of unique states indicates complex dynamics while a low number indicates
stability. A hallmark of chaos is aperiodic long-term behavior where state
space trajectories never repeat, hence a large number of unique states is an
indication of chaotic dynamics.

For weak fields, we expect S = 1 since none of the magnets will switch. For
strong fields, we also expect S = 1 as all magnets will switch in unison with
the field, and return back to the same polarized state after one period. Only
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5 Experiment 1: Complex dynamics
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Figure 2: Number of unique states S visited as a function of the external field
strength A, for four different frequencies.

for intermediate field strengths close to the array coercivity Hc can we hope
to find complex switching dynamics and consequently S � 1. For our system
we estimate Hc ≈ 75 mT measured at 45◦.

We vary the field amplitude A around Hc and count the number of states
for each A. This sweep is repeated for a set of frequencies.

5.1 Results and discussion

Figure 2 shows the number of unique states S as a function of the external
field strength A. We plot the number of states for four different frequencies:
10 MHz, 50 MHz, 100 MHz and 200 MHz.

At 10 MHz we see at most 6 unique states which is in agreement with Gilbert
et al. (2015). When the frequency is increased to 50 MHz, the number of
states reaches a maximum of 29 for A = 75 mT. At 100 MHz there is a
significant increase in number of states with a maximum of 87 for A = 76
mT. As we increase frequency further to 200 MHz, we observe a saturation
in the number of states (S = 100) for A= 79 mT.
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(a) (b)

Figure 3: Snapshots of the microstates for 200 MHz (a) and 100 MHz (b). The
color map is identical to Figure 1.

As expected, the bell-like curves are all centered around the array coercivity
Hc ≈ 75 mT. A general trend is that the number of unique states increases
with frequency. The curves also become wider with increased frequency.

The large number of unique states seen at frequencies 100 MHz and above
is the product of long transients. It is thus likely that dynamics are chaotic
in these cases. The results also indicate that the dynamics get more chaotic
as frequency is increased. Videos of the dynamics are available on our web-
site1.

These results demonstrate that ASI has a large number of reachable macrostates.
Furthermore, the states can be reached by the straightforward application
of a cyclic magnetic field, as long as the field strength is close to a critical
value and the frequency is sufficiently high.

We get a better understanding of these results by examining the microstate.
Figure 3 shows snapshots of the microstate taken at the end of the field cycle,
i.e. at zero amplitude. Figure 3a shows the microstate at 200 MHz, where
we can see that spin wave dynamics have not yet settled. These micro level
dynamics become very turbulent if frequency is increased further to 1 GHz
(not pictured). Hence at high frequencies, the spins within the nanomagnet
have not yet aligned in one direction. In other words, the system has not
reached a stable equilibrium and consequently the macrostate will be in flux.
Figure 3b shows the microstate at 100 MHz, where we see that the spin
waves have mostly settled at the end of the field cycle, resulting in a stable
macrostate.

1https://www.ntnu.edu/socrates/magnets
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5 Experiment 1: Complex dynamics

(a) (b)

Figure 4: Example state transition graphs for 10 MHz (a) and 50 MHz (b).

What effect do micro level dynamics such as spin waves have on dynamics
at the macro level? An interesting question is whether macro level dynamics
are memoryless, i.e. does the next macrostate depend only on the current
macrostate? We answer this with an analysis of the state transition graphs
derived from the observed macro level dynamics (Figure 4). Here nodes
represent macrostates and edges are the transitions between them.

At low frequencies (10 MHz) we find that all nodes have at most one outgoing
edge, i.e. the dynamics are memoryless. An example is shown in Figure 4a
where the system settles in a stable state after a transition through an in-
termediate state.

At higher frequencies (50 MHz and above) most graphs contain nodes with
more than one outgoing edge, as shown in Figure 4b. Here the next macrostate
can not be determined without knowing the history of previous macrostates.
This is information which is hidden in the microstate.

This suggests that the microstate provides a means of information storage,
which is indirectly observed in the history dependent dynamics at the macro
level. Indeed it has been shown that chaos both generates and stores infor-
mation (James et al., 2014).

In summary, these results demonstrate that rich micro level dynamics are
available in the ASI system. Dynamics at the micro level give rise to phe-
nomena at the macro level, i.e. a large number of distinct macrostates and
complex state transition patterns. Crucially, the dynamics appear to be
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highly tunable, e.g. by varying the amplitude and/or frequency of an exter-
nal magnetic field.

6 Experiment 2: Temporal pattern classification

Results from the first experiment show that information about state history
is embedded in the microstate, which suggests that the system may be able
to store and process temporal input.

Let us assume that transitions between macrostates is sensitive not only to
the history of past states, but also to the history of the external field. We
can exploit this property for computation by encoding input as part of the
time-varying external field.

For each input, does the system end up in a unique macrostate? If so,
the system essentially acts as memory, transforming a temporal input to a
unique spatial state. The function is that of maximum discrimination: each
input is mapped to a unique output state. Hence, information in the input
is preserved by the system.

On the other hand, if the system ends up in only a handful of states, the
functionality is some form of classification. The input-output relations are
many to one, i.e. many inputs map to the same output state. This mapping
may be arbitrarily complex, but information about the input is always lost
in the mapping process.

What about the case in-between these two extremes? Here the functionality
is a mixture of memory and classification where some information is retained
and some information is lost in the mapping.

Can we find these different modes of computation in square artificial spin
ice? To test this, we consider as input bit strings of length N = 1 to N = 8.
For each N we apply all possible 2N inputs and record the final macrostate
of the array. We then count the number of unique such states to determine
what mode of computation is performed: memory, classification or a mixture
of the two.

To encode the bit strings we employ amplitude modulation of the external
magnetic field as shown in Figure 5. Each bit corresponds to one cycle of
the external field, where 1 maps to an amplitude Ahi while 0 maps to an
amplitude Alo.
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6 Experiment 2: Temporal pattern classification
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Figure 5: Bit strings are encoded into the external magnetic field with amplitude
modulation. Each bit corresponds to one cycle of the external field, where 1 maps
to an amplitude Ahi while 0 maps to an amplitude Alo. The figure shows how the
bit string 0101 is encoded.

We set the frequency of the external field to 100 MHz in order to obtain
both complex dynamics and a stable macrostate at the end of each period.
For the current study we fix Alo = 70 mT and vary Ahi in the range where
complex switching dynamics was found in the previous experiment, i.e. 70
mT <Ahi ≤ 84 mT.

6.1 Results and discussion

Figure 6 shows the number of unique final states S as a function of the
number of bits N in the input string. For comparison we plot the function
2N which is the number of different input values and thus the theoretical
maximum. We plot the number of unique states for a selection of Ahi values
which resulted in distinct behavior, namely 76 mT, 79 mT, 81 mT and 84
mT.

A general trend for all the values of Ahi is that the number of states increases
with the number of input bits. The rate of increase is however quite different
for distinct values of Ahi. Another observation is that the number of states
do not appear to saturate.

Recall from the first experiment that A = 76 mT was the amplitude which
produced the highest number of states at 100 MHz. Here we see that this
particular value for Ahi also results in the highest number of unique final
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Figure 6: Number of unique final states S as a function of number of bits N in the
input string (100 MHz input frequency).

states, closely tracking the theoretical maximum 2N . In this regime the sys-
tem acts primarily as memory, mapping almost all temporal input patterns
to unique macrostates. At the maximum N = 8 the system maps the 256
different input patterns to 226 different states.

On the other extreme we have Ahi = 84 mT which results in only a handful of
unique states. In this regime the system acts as a form of classifier. When the
number of input bits is 8, the system maps the 256 different input patterns
to 13 distinct states.

Interestingly, we find that certain values of Ahi result in functionality some-
where in between memory and classification. For Ahi = 79 mT we can see
that the number of states follows roughly in the middle of the previous ex-
tremes, while for Ahi = 81 mT the state count is somewhat lower.

We may understand these modes of intrinsic computation in terms of dy-
namical systems theory. Classification is equivalent to entering an attractor,
where the number of attractors is equal to the number of classes. Mem-
ory can be explained by chaos where sensitivity to initial conditions means
that every distinct input will result in a unique trajectory through state
space (Crook, 2007; Shaw, 1981).
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7 Conclusion and future work

The sensitivity of the system will determine how quickly nearby trajecto-
ries diverge and consequently whether similar input patterns will end up in
the same macrostate after all the bits have been applied. By adjusting the
field amplitude Ahi we are essentially tuning the sensitivity of the system,
resulting in different modes of computation.

These results demonstrate only one way to exploit ASI for computation with
a temporal input encoding. Here we are exploiting the rich repertoire of
dynamics available in the system. Combined with the large number of stable
states, the system is able to effectively distinguish between temporal pat-
terns. Furthermore, we show that the sensitivity of discrimination is highly
tunable which yields different modes of computation.

7 Conclusion and future work

In this work we have explored artificial spin ice (ASI) as a highly promis-
ing substrate for material computation. The ferromagnetic material exhibits
key intrinsic properties for computation: a large number of nodes, nonlin-
earity, local interactions and rich dynamics. Fabrication methods for ASI
are already highly developed, making such computational properties readily
available in-materio.

Through micromagnetic simulations of square ASI, we have found a large
number of reachable stable states and a wide range of available dynamics
when ASI is perturbed by an oscillating magnetic field. Furthermore, the
dynamics are highly tunable by varying the amplitude and frequency of the
magnetic field.

We have also demonstrated how the complex dynamics and many stable
states in ASI can be exploited for temporal pattern classification. By tuning
the sensitivity of the system, different modes of computation can be obtained:
memory, classification or a mixture of the two.

The results in this work have been derived from micromagnetic simulations.
A natural next step is to replicate these results experimentally with physical
realizations of the spin ice. As shown in Figure 1c, the physical parameters
of the ASI are all well within limits of what can be fabricated and measured
in our lab today.

Our experiments so far have been purely deterministic without noise. A key
question is how the system behaves in the presence of noise, e.g. thermal
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noise at room temperature or electrical noise from measurement equipment.
Results indicate that the system may be very sensitive to small changes, i.e.
chaotic dynamics will be susceptible to noise. Hence, it is critical to obtain
a measure of this sensitivity.

The ASI system used in this study has been rather small, consisting of only 40
magnets. However, scaling up to millions of magnets can easily be achieved in
physical realizations. A key question is then how scale affects the behavior
of larger arrays. Micromagnetic simulations of such large systems is not
computationally feasible, hence it is crucial to establish simulation models
at higher levels of abstraction.

The focus of this work has been on the basic computational properties of
ASI. As such, we have not focused on any specific application in our ex-
periments. Future work will include the application of techniques such as
reservoir computing to exploit ASI for useful tasks. Reservoir computing in
spin ice could enable robust, massively parallel magnetic processing at the
nanoscale.

The work presented herein only scratches the surface of what is possible with
ASI systems. There is a wealth of parameters worth exploring, e.g. magnet
size, shape, spacing and geometry, together with methods for perturbation
and observation of dynamics. Furthermore, developing ways to efficiently
exploit the intrinsic computing power in such systems is critically important.
The field of ASI computation is ripe for exploration, towards vastly parallel
and energy efficient computing substrates.
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Abstract
We present flatspin, a novel simulator for systems of interacting meso-

scopic spins on a lattice, also known as artificial spin ice (ASI). Our
magnetic switching criteria enables ASI dynamics to be captured in a
dipole model. Through GPU acceleration, flatspin can simulate realis-
tic dynamics of millions of magnets within practical time frames. We
demonstrate flatspin’s versatility through the reproduction of a diverse
set of established experimental results from the literature. In particu-
lar, magnetization details of “pinwheel” ASI during field-driven reversal
have been reproduced, for the first time, by a dipole model. The sim-
ulation framework enables quick exploration and investigation of new
ASI geometries and properties at unprecedented speeds.

1 Introduction

An artificial spin ice (ASI) is an ensemble of nanomagnets arranged on a lat-
tice, coupled through magnetic dipole-dipole interactions. The vast variety
of emergent collective behaviors found in these systems have generated con-
siderable research interest over the last decade [1, 2]. Using modern nanofab-
rication techniques, emergent phenomena can be facilitated through direct
control of the ASI geometry, e.g., collective ferromagnetic/antiferromagnetic
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ordering [3], Dirac strings [4], and phase transitions [5, 6]. ASIs offer a unique
model system for exploring fundamental physics, since magnetic microscopy
enables direct observation of their internal state. There is also a growing
interest in ASIs as building blocks for novel devices [7].

Micromagnetic simulations of ASI have been limited to a handful of nano-
magnets due to excessive computational cost. Although physically accurate,
such high fidelity simulations are unable to capture large-scale emergent phe-
nomena, such as the size of magnetically ordered domains and long-range
order. To simulate large ASI systems, an established approach is to sacrifice
fidelity for speed by employing a dipole model, i.e., treating each nanomag-
net as a single macro spin approximated by a point dipole [8]. Traditionally,
Monte Carlo methods have been used in conjunction with the dipole approx-
imation to search for low energy configurations [9, 10] or study statistical
measures such as vertex populations [8]. However, Monte Carlo methods are
inherently stochastic and better suited for ensemble statistics rather than
detailed dynamics [11].

flatspin is a simulator for large ASI systems based on a dipole approxima-
tion with the ability to capture realistic dynamics, inspired by the work of
Budrikis [8]. The flexibility of flatspin enables quick exploration of ASI pa-
rameters and geometries. Through GPU acceleration, flatspin can capture
realistic dynamics of millions of magnets within practical time frames.

In this paper, we present the motivation and design of flatspin. We demon-
strate good agreement between flatspin and a variety of published experimen-
tal results. We show that flatspin can capture dynamic behaviors observed
experimentally, which have previously eluded modeling [12].

2 The flatspin magnetic model

In this section, we describe the dipole model and the underlying physical
assumptions of flatspin. The model is designed to simulate the ensemble
state-by-state evolution, i.e., dynamics, of two-dimensional ASI. In short,
magnets are modeled as point dipoles (section 2.1), and each dipole can be
affected by three types of external influence: magnetic dipole-dipole coupling
(section 2.3), an applied external magnetic field (section 2.4), and thermal
fluctuations (section 2.5). The switching of spins is determined using a gen-
eralized Stoner-Wohlfarth model (section 2.6). Imperfections in the ASI are

Paper D flatspin: A Large-Scale Artificial Spin Ice Sim. . . (Jensen et al., 2020)

170



2 The flatspin magnetic model

introduced as different coercive fields, set per spin (section 2.7). Dynamics
are modeled using a deterministic single spin flip strategy (section 2.8).

2.1 Magnets as dipoles

ASI systems are physically realized as elongated islands of a ferromagnetic
material, arranged on a two-dimensional lattice. The magnets are made
small enough to exhibit a single ferromagnetic domain, i.e., coherent magne-
tization throughout the magnet. The single domain is stable as the energy
cost associated with domain walls exceeds the cost associated with the de-
magnetization energy [13, 14]. Since a magnet has coherent magnetization,
it can be approximated by a single mesoscopic spin and the magnetic state
can be represented by a single vector m.

The magnets will exhibit an in-plane shape anisotropy due to their small
thickness, as well as a magnetization direction defined by their elongated
shape. Hence individual magnets can be approximated by classical macro
spins with a twofold degenerate ground state defined by the elongated shape
of the individual elements. Due to the two degenerate ground state con-
figurations, we approximate each magnet as a magnetic dipole with binary
magnetization, i.e., a macro spin, si ∈ {−1,+1}.

As illustrated in Fig. 1, each magnetic dipole is modelled with a position ri
and rotation θi, which together define the ASI geometry. Furthermore, each
magnet is assigned a coercive field, h(i)

c , describing its resistance to switching
(see section 2.6). Using reduced units, the magnetization vector of a single
magnet can be expressed as

mi = sim̂i (1)

where m̂i is the unit vector along mi.

2.2 Magnetic Fields and Temperature

External fields and temperature are modeled as a combination of effective
magnetic fields. The total field, hi, affecting each magnet i is the sum of
three components:

hi = h(i)
dip +h(i)

ext +h(i)
th , (2)
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Figure 1: The representation of nanomagnets as spins si and associated quantities:
angle θi and distance to neighbor j, rij . Note that the magnetization of spin i is
given by its spin, si, and orientation, θi.

where h(i)
dip is the local magnetic field from neighboring magnets (magnetic

dipole-dipole interactions), h(i)
ext is a global or local external field, and h(i)

th is
a random magnetic field representing thermal fluctuations in each magnetic
element. The contributions from each field is described in the following
sections.

2.3 Magnetic dipole-dipole interactions

The individual magnets, or spins, are coupled solely through dipole-dipole
interactions. Each spin, i, is subject to a magnetic field from all neighboring
spins, j 6= i, given by

h(i)
dip = α

∑

j 6=i

3rij(mj ·rij)
|rij |5

− mj

|rij |3
, (3)

where rij = ri− rj is the distance vector from spin i to j, and α scales the
dipolar coupling strength between spins. The coupling strength α is given by
α= µ0M

4πa3 , where a is the lattice spacing, M is the absolute magnetic moment
of a single magnet, and µ0 is the vacuum permeability. The distance rij is
given in reduced units of the lattice spacing.
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2 The flatspin magnetic model

The dipole field present at each spin’s location is calculated by summing the
dipole field contributions from spins in its neighborhood. The size of the
neighborhood is user-configurable and defined in units of the lattice spacing.
In some geometries, such as square ASI, short range interactions dominate
the contributions to hdip [15, 16], in which case the neighborhood size can
be relatively small, for a benefit of increased efficiency. For geometries where
long range interactions are significant, a larger neighborhood is required, e.g.,
pinwheel ASI [17].

2.4 External field

Applying an external magnetic field is the primary mechanism for altering
the state of an ASI in a controlled manner. The external field can either be
set locally on a per-spin basis, h(i)

ext, globally for the entire system, hext, or
as a spatial vector field, hext(r).

Time-dependent external fields are supported, i.e., hext is a discrete time
series of either local, global or spatial fields. A variety of time-dependent
external fields are provided, including sinusoidal, sawtooth and rotational
fields. More complex field-protocols can be generated, e.g., for annealing
purposes or probing dynamic response.

2.5 Thermal field

Thermal fluctuations are modeled as an additional local field, h(i)
th , applied

to each magnet individually. Two orthogonal components of the field are
independently drawn from the Normal distribution N (0,σ2

th). The simu-
lated temperature T is closely related to the value of σth, where a large σth
corresponds to higher temperatures.

When the material and geometric properties of the magnetic islands are
known, it is possible to choose a σth to match a desired thermal behavior.
In some cases, such as for no thermal field and for thermal protocols with no
absolute reference point, it is useful to note that σth = 0 implies T = 0, and
that T is a monotonically increasing function of σth.
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2.6 Switching

Magnetization reversal, or switching, may take place when a magnet is sub-
jected to a magnetic field or high temperature. If the field is sufficiently
strong (stronger than some critical field) and directed so that the projection
onto mi is in the opposite direction to mi, the magnetization mi will switch
direction.

The critical field strength is referred to as the coercive field hc. For elon-
gated magnets, hc depends on the angle between the applied field hi and
mi. As illustrated in Fig. 2a, the easy axis, where the magnetization favors
alignment, lies along the long axis of the magnet, whereas the hard axis is
perpendicular to the long axis. The external field can be decomposed into
two components, h‖ and h⊥, corresponding to the field component parallel
and perpendicular to the easy axis, respectively. We denote the coercive field
strength along the hard axis as hk.

A switching astroid is a polar plot of hc at different angles, with h⊥ on the
horizontal axis and h‖ on the vertical axis. It is a description of hc, or hc(φ).
For any applied field hi that is outside the switching astroid, the magnet will
switch (given that the projection of hi onto mi is oppositely aligned with
respect to mi).

Fig. 2c shows the normalized switching astroid for an elliptical magnet (Fig. 2a)
as obtained from micromagnetic simulations (red dots). Notice how hc is the
smallest at a 45◦ angle, indicating that a field directed at 45◦ to a mag-
net’s principal axes will require the least field strength in order to switch its
magnetization.

The Stoner-Wohlfarth (SW) model captures the angle dependent switching
characteristic of single-domain elliptical magnets [18]. The characteristic SW
astroid is shown in Fig. 2c (blue line) and is described by the equation

(
h‖
hk

)2/3
+
(
h⊥
hk

)2/3
= 1. (4)

In the SW model, switching may occur when the left hand side of Eq. (4) is
greater than one.

The astroid obtained from micromagnetic simulations and the SW astroid
(Fig. 2c) are nearly identical, indicating that the SW model is a simple and
valid description of switching in elliptical nanomagnets.
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Figure 2: Top: Schematic showing hard and easy axes of (a) an elliptical magnet
and (b) a rectangular stadium-shaped magnet, as well as the total field acting on
the magnet, hi, with its parallel and perpendicular components, h‖ and h⊥, respec-
tively. Bottom: Switching astroid for (c) an elliptical magnet and (d) a rectangular
stadium-shaped magnet. Red dots show the coercive field obtained from micromag-
netic simulations. The blue line in (c) shows the Stoner-Wohlfarth astroid. The
blue line in (d) shows the generalized Stoner-Wohlfarth astroid with parameters
b= 0.42, c= 1, β = 1.7, and γ = 3.4 in Eq. (5). The astroids have been normalized
with respect to hk.

However, the SW model is only accurate for elliptical magnets, other magnet
shapes typically have quite different switching characteristics. Fig. 2d shows
the switching astroid for rectangular stadium-shaped magnets (red dots),
which is the shape commonly used in most fabricated ASIs (Fig. 2b). Notice
how the astroid is asymmetric: rectangular magnets switch more easily along
the easy axis than the hard axis.

To capture the asymmetric switching characteristics of non-elliptical mag-
nets, we have generalized the SW switching model to allow an asymmetry
between easy and hard axes. Additionally, the model has been extended to
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support tuning of the curvature of the extrema. In the generalized model,
the switching threshold is given by

(
h‖
bhk

)2/γ
+
(
h⊥
chk

)2/β
= 1, (5)

where b, c, β and γ are parameters which adjust the shape of the astroid:
b and c define the height and width, respectively, while β and γ adjust the
curvature of the astroid at the easy and hard axis, respectively. Introducing
these new parameters allows for tuning of the switching astroid to fit with the
shape of nanomagnets used in ASIs. With b = c = 1 and β = γ = 3, Eq. (5)
reduces to Eq. (4), i.e., the classical Stoner-Wohlfarth astroid is obtained
(valid for elliptical magnets).

By tuning the parameters of the generalized SW model, we can obtain the
asymmetric switching astroid shown in Fig. 2d (blue line). The astroid is in
good agreement with results obtained from micromagnetic simulations (red
dots).

In flatspin, the generalized SW model is used as the switching criteria, i.e., a
spin may flip if the left hand side of Eq. (5) is greater than one. Additionaly,
the projection of hi onto mi must be in the opposite direction of mi:

hi ·mi < 0. (6)

2.7 Imperfections and disorder

Due to manufacturing imperfections there will always be a degree of variation
in the shape and edge roughness of nanomagnets. This variation can be
thought of as a disorder in the magnets’ inherent properties. Rough edges and
a slightly distorted geometry can affect the magnets’ switching mechanisms,
with defects pinning magnetization and altering the coercive field for each
magnet.

In flatspin we model this variation as disorder in the coercive fields. The
coercive field is defined individually for each magnet, and a distribution of
values can be used to introduce variation. A user-defined parameter, kdisorder,
defines the distribution of coercive fields, i.e., h(i)

k is sampled from a normal
distribution N (hk,σ), where σ = kdisorder ·hk (while ensuring h(i)

k is always
positive).
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2 The flatspin magnetic model

2.8 Dynamics

flatspin employs deterministic single spin flip dynamics. At each simulation
step, we calculate the total magnetic field, hi, acting on each spin. Next, we
determine which spins may flip according to the switching criteria Eqs. (5)
and (6). Finally we flip the spin where hi is the furthest outside its switching
astroid, i.e., where the left hand side of Eq. (5) is greatest. Ties are broken
in a deterministic, arbitrary manner, although with non-zero disorder such
occurrences are rare. The above process is repeated until there are no more
flippable spins.

This relaxation process is performed with constant external and thermal
fields. To advance the simulation, the fields are updated and relaxation
is performed again. Hence a simulation run consists of a sequence of field
updates and relaxation processes.

The dynamical process makes three main assumptions:

1. The external field is quasi-static compared to the time scale of magnet
switching.

2. Magnet switching is sequential.

3. The magnet experiencing the highest effective field compared to its
switching threshold is the first to switch.

Assumption 1 means the model holds for low frequency external fields, i.e.,
where switching settles under a static field. The switching mechanics of nano-
magnets are typically in the sub nanosecond range [19, 20], and experimental
setups often employ external magnetic fields which can be considered static
at this time scale. At high applied field frequencies, more complex physical
phenomena such as spin waves will have a non-negligible effect on switching
dynamics, which are not modeled in flatspin.

Assumption 2 holds if the coercive fields h(i)
c , and total field hi, of the mag-

nets are sufficiently non-uniform, so that there will always be a single magnet
which will flip first. It is assumed to be unlikely that two magnets will have
the same h(i)

c and hi simultaneously. However, in those rare cases where two
magnets are equally close to switching, overlapping switching events may
occur in a physical system.

Assumption 3 relies on the fact that all changes in the magnetic fields are ef-
fectively continuous, and the change is unidirectional within a simulated time
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(a) (b) (c)

(d) (e) (f)

Figure 3: flatspin includes the most common ASI geometries: (a) Square (closed
edges), (b) Square (open edges), (c) Kagome, (d) Pinwheel “diamond”, (e) Pinwheel
“lucky-knot”, and (f) Ising.

step, i.e., a quasi-static field. Since evaluation happens in discrete time, there
will be cases where several magnets are above their corresponding switch-
ing thresholds simultaneously. In those cases, the magnet furthest above its
switching threshold will have been the first to have crossed the threshold
under a quasi-static field. Furthermore, if the angle of the external field
is constant, the switching order is invariant to the time resolution of the
external field.

2.9 Geometries

The particular spatial arrangement of the magnets is referred to as the geom-
etry. A wide range of ASI geometries have been proposed in the literature.
Fig. 3 depicts the geometries included in flatspin, which are the most com-
monly used ASI geometries: square [15], kagome [21, 22], pinwheel [12, 17]
and ising [23].
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3 Simulation framework

ASI model

Input encoder

Runner Dataset

Analysis tools

Figure 4: Overview of the flatspin architecture, with arrows indicating data flow.

Geometries are often decomposed into two or more “sublattices”, where the
magnets within one sublattice are all aligned (have the same rotation). In
Fig. 3, the sublattice a magnet belongs to is indicated by its color. As can
be seen, both square and pinwheel ASIs have two perpendicular sublattices,
whereas kagome has three sublattices.

flatspin can be used to model any two-dimensional ASI comprised of identical
elements. New geometries can easily be added by extending the model with
a new set of positions ri and rotations θi.

3 Simulation framework

In addition to a magnetic model, flatspin provides a flexible framework for
running simulations, storing results, and performing analysis.

Fig. 4 illustrates the overall architecture of flatspin. The ASI model has been
described in detail in section 2. Conceptually, the ASI model describes the
physical system under study. The rest of the components are tools used by
the experimenter to interact with the ASI and observe the results. In this
section we briefly describe each of these components.

The input encoder translates a set of input values to a series of external
fields. Encoders provide a flexible way to define field protocols, and have
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been designed with neuromorphic computing in mind. A range of encoders
are included, e.g., sinusodial, sawtooth and rotational fields.

The responsibility of the runner component is to perturb the ASI model
according to the field protocol, and save the results. The model, which is
fully parametric, receives parameters from the runner, enabling automated
parameter sweeps. In addition, there is support for distributed running of
simulations on a compute cluster.

Results are stored in a well-defined dataset format which makes the analysis
of a large numbers of simulations straightforward. A suite of analysis tools
are included, e.g., for plotting results, visualizing ensemble dynamics and
analysis of vertex populations.

flatspin is written in Python and utilizes OpenCL to accelerate calculations
on the GPU. OpenCL is supported by most GPU vendors, hence flatspin
can run accelerated on a wide variety of platforms. The simulator may also
run entirely on CPUs in case GPUs are not available, albeit at a reduced
speed.

flatspin is open-source software and released under a GNU GPL license. For
more information see the website [24] and User Manual [25].

4 Validation of flatspin

To evaluate the ASI model, flatspin simulations were compared to estab-
lished experimental results from the literature, as well as micromagnetic
simulations. In particular we investigate phenomena such as Dirac strings
in kagome ASI, the size of crystallite domains in square ASI, and superfer-
romagnetism in pinwheel ASI. Finally, we compare the switching order from
flatspin simulations with that of micromagnetic simulations, and investigate
the effect of varying lattice spacings.

4.1 Dirac strings in kagome ASI

To assess the ability of flatspin to reproduce fine-scale patterns, we con-
sider the emergence of Dirac strings in a kagome ASI (Fig. 3c). Applying a
reversal field to a polarized kagome ASI results in the formation of monopole-
antimonopole pairs [26]. These pairs are joined by a “string” of nanomagnets
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Figure 5: Left: snapshots of the evolution of a kagome ASI at selected field values.
Right: Comparison of the hysteresis curve of the simulated ensemble (blue line)
against a sketch of the hysteresis curve from the experimental results [26] (red
dashed line). Green dots indicate the points at which the snapshots are sampled
from.

which have flipped due to the reversal field. As the strength of the reversal
field increases, the strings elongate until they fill the array.

We closely follow the methodology set out in an experimental study of Dirac
stings in kagome ASI [26], in which a room temperature kagome ASI un-
dergoes magnetization reversal. We start with an array of 2638 magnets
(29×29 hexagons) polarized to the left and apply a reversal field H to the
right with a slight, downward offset of 3.6◦. This offset breaks the symmetry,
such that one of the sublattices is now least aligned with the field, resulting
in an increased coercive field on this “unfavored” sublattice.

Micromagnetic simulations of magnets of size 470 nm×160 nm×20 nm yield
the following estimation of flatspin parameters: α= 0.00103,hk = 0.216,β =
2.5,γ = 3, b = 0.212, c = 1. The temperature and disorder parameters σth =
0.002 and kdisorder = 0.05 were determined empirically through qualitative
comparison with the experimental results [26].

The time evolution snapshots of Fig. 5 demonstrate a strong, qualitative sim-
ilarity to the results of Mengotti et al. [26]. We see Dirac strings developing
with a preference to lie along the two sublattices most aligned with the field
angle. Furthermore, in the final image, we see the vast majority of unflipped
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magnets (excluding the edges) are on the unfavored sublattice, in accordance
with both experimental and simulated results from the literature.

Also in Fig. 5, we see the hysteresis of the simulated ensemble (solid line) is
similar to that of Mengotti et al. [26] (dashed line) in some sections, but dif-
fers near the extrema. The hysteresis can be understood in two phases. The
first phase, at roughlyM/MS ∈ [−0.6,0.6], is dominated by the lengthening of
the Dirac strings, with almost no activity occurring on the unfavored sublat-
tice. At M/MS <−0.6 and M/MS > 0.6, the ensemble enters a second phase
in which the Dirac strings have fully covered the array, and change in mag-
netization is dominated by switching on the unfavored sublattice. Clearly
we see good agreement, within phase one, between our simulated hysteresis
and the experimental results. Furthermore, there is a clear phase transition
(characterized by a sharp decrease in gradient) in our hysteresis very close
to the transition in the experimental hysteresis. Notably however, although
the phase transitions occur at a similar time, the change in gradient is less
pronounced in our simulated hysteresis. This disparity indicates that, in the
second phase, the magnets on the unfavored sublattice flip more easily in our
simulation than in the experimental data.

The accuracy of the point dipole approximation is known to suffer when
considering kagome ASI. Specifically, it has been shown to underestimate
the coupling coefficient of the nearest neighbors by approximately a factor
of 5 [27]. Despite this, we observe flatspin accurately reproduces snapshots
of the time evolution behavior, while also capturing salient features of the
ensemble hysteresis curve.

4.2 Domain size in square ASI

In order to demonstrate simulation of large-scale behavior, we have repro-
duced the emergence of large domains of magnetic order in square ASI, sim-
ilar to experimental results of Zhang et al. [9]. One of the main advantages
of flatspin over typical alternatives is the scalability and high throughput
of large systems with many magnets. Some emergent ASI phenomena re-
quire large systems in order to be fully quantified and studied with high
fidelity, such as the domain size of magnetic charge crystallites. For ASIs
with strongly coupled magnets, typical domain sizes can become too large for
direct experimental observation. Thus, an accurate estimate of the domain
size for ASIs with a small lattice constant is, in part, limited by the number
of directly observable magnets.
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4 Validation of flatspin

For a given range of lattice constants covering both strongly coupled ASIs
and weakly coupled ASIs, a corresponding range of large to small magnetic
order coherence lengths is expected. In this study, we consider square ASI
(closed edges, Fig. 3a) with different lattice constants, a, ranging from 320 nm
to 880 nm.

50× 50 square ASIs were annealed in flatspin using a thermal protocol of
exponentially decreasing σth. A switching astroid for 220 nm×80 nm×25 nm
was obtained through micromagnetic simulations, described by generalized
astroid parameters b= 0.4, c= 1.0, β = 3.0, and γ = 3.0. Additionally, hk =
0.186, kdisorder = 0.05, and a neighbor distance of 10 magnets was used. The
thermal protocol was chosen such that the total dipole interaction energy
was not significantly reduced by increasing simulation steps.

In the annealed state, the spin-spin correlation as a function of their lateral
separation was calculated across the ensembles. Analysis of the average
correlation of annealed states provides insight about the typical coherence
length of magnetic order, i.e., magnetic charge crystallite size, or domain
size. Here, the correlation of two spins is defined as +1 (-1) if their dipole
interaction is minimized (maximized). Averaging correlation across distinct
types of spin pairs, in the annealed ASI, gives a measure of how coherent
the ASI is at that particular neighbor separation. How quickly the average
correlation decreases as a function of separation can be used to estimate the
characteristic domain size. In particular, it can be argued that the separation
where the correlation falls below 1/e is the characteristic domain radius [9,
28].

Typical domain structures and correlation results can be seen in Fig. 6. The
domains shown in Fig. 6a and the correlation curves in Fig. 6b are, for the
most part, in good agreement with experimental results [9]. A qualitative
comparison of the domain sizes and structures in Fig. 6 shows that the do-
mains tend to be larger, with smoother domain boundaries, for smaller a.
The analysis of coherence as a function of separation also shows identical
trends and similar values, where an increase in a leads to low correlation,
even between nearest neighbors.

For cases where a < 400 nm, domains do not significantly increase in size
when the lattice constant is further reduced. This discrepancy with the
experimental results is not completely unexpected: the point-dipole approx-
imation is known to underestimate nearest-neighbor interaction for magnets
placed close together [27]. In addition, a stronger interaction between spins
would cause each spin flip to contribute a greater change in the total dipole
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Figure 6: (a) Maps showing the net magnetization of the ASI vertices, for an
annealed 50× 50 square ASI with the given lattice constant a. The white regions
have zero net magnetization and thus correspond to a coherent domain of Type I
vertices. Colored regions have a non-zero net magnetization, direction indicated by
the color wheel, and correspond to Type II or III vertices. (b) The absolute value
of spin-spin correlation at a given separation for square ASIs of different lattice
constants, a. Also indicated is a 1/e threshold of correlation (dashed line).

energy. This makes a gradual descent towards the ground state by random
spin flips (the thermal fluctuations as modeled by flatspin) harder to achieve.
These issues may be addressed by increasing the coupling parameter α for
nearest neighbor spins, and by a longer and slower annealing protocol. A
longer and slower annealing protocol will inevitably come at the cost of longer
computation times. In a future version of flatspin, it might be beneficial to
include other thermal effects such as a declining saturation magnetization of
the constituent material.

These results show that flatspin provides sufficient flexibility, fidelity and per-
formance required to reproduce experimentally observed large-scale emergent
behavior in ASIs.

4.3 Superferromagnetism in pinwheel ASI

In this section, we use flatspin to reproduce the dynamic behavior of pinwheel
ASI, which had yet to be demonstrated with a dipole model [12]. We find that
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4 Validation of flatspin

our switching criteria plays a key role in replicating magnetization details
during the field-driven array reversal.

Pinwheel ASI is obtained by rotating each island in square ASI some an-
gle about its center. A rotation of 45 degrees results in a transition from
antiferromagnetic to ferromagnetic order [17]. The dynamics of pinwheel
ASI in many ways resemble continuous ferromagnetic thin films, with meso-
scopic domain growth originating from nucleation sites, followed by coherent
domain propagation and complete magnetization reversal [12].

Here we demonstrate that flatspin is able to replicate the experimental re-
versal processes presented in Li et al. [12], where pinwheel “diamond” ASI
(Fig. 3d) is subject to an external field at different angles. A key result is
that the angle θ of the external field controls the nature of the reversal pro-
cess. When θ is small (equally aligned to both sublattices), reversal happens
in a single avalanche, whereas when θ is large (more aligned to one sublat-
tice), reversal happens in a two-step process where one sublattice switches
completely before the other. Previous attempts at capturing this behavior
in a dipole model have proven unfruitful [12].

To replicate this process in flatspin, an asymmetric switching astroid is re-
quired, i.e., the threshold along the parallel component is reduced by setting
b< 1 in Eq. (5). From micromagnetic simulations of a single 470×170×10 nm
magnet we obtain the following characteristic switching parameters: b =
0.28, c = 1.0, β = 4.8 and γ = 3.0. Other simulation parameters include
α≈ 0.00033, hk = 0.098, kdisorder = 0.05 and a neighbor distance of 10.

Figs. 7a to 7d show hysteresis loops and array snapshots when the field is
aligned with the array (θ = 0◦ and θ = −6◦). As can be seen, the results
from flatspin (Figs. 7b and 7d) are qualitatively very similar to experimental
results (Figs. 7a and 7c). In all cases, the ASI undergoes reversal in a single
avalanche. Reversal begins at a small number of nucleation points close to
the edge, followed by domain growth and domain wall movement perpen-
dicular to the direction of the field. The simulated system appears to have
an anisotropy axis of 0◦ as opposed to −6◦ observed experimentally. Hence
Fig. 7b is most similar to Fig. 7c and Fig. 7d is most similar to Fig. 7a. It
should be noted that the non-zero anisotropy axis found experimentally has
not yet been explained.

Figs. 7e and 7f show the hysteresis loops and array snapshots when the field
is misaligned with the array (θ = 30◦). Again, flatspin simulations (Fig. 7f)
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Figure 7: Hysteresis loop and snapshots of the pinwheel units for various angles
θ of the applied field. Figures (a), (c) and (e) show experimental results, adapted
from Li et al. [12], Copyright ©2018 American Chemical Society, CC-BY-4.0 https:
//creativecommons.org/licenses/by/4.0/. Figures (b), (d) and (f) show results
from flatspin simulation (white indicates zero net magnetization).
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Figure 7 (cont.): Hysteresis loop and snapshots of the pinwheel units for various
angles θ of the applied field. Figures (a), (c) and (e) show experimental results,
adapted from Li et al. [12], Copyright ©2018 American Chemical Society, CC-BY-
4.0 https://creativecommons.org/licenses/by/4.0/. Figures (b), (d) and (f)
show results from flatspin simulation (white indicates zero net magnetization).

replicate key features observed experimentally (Fig. 7e). Reversal now hap-
pens in two steps: the sublattice whose magnets have their easy axis most
aligned with the field will switch first, followed later by the other sublattice.
This two-step reversal process results in an emergent rotation of the collective
magnetization. The magnetization is constrained to follow the orientation of
the magnets, resulting in reversal via stripe patterns at 45◦.

Li et al. [12] report they were unable to replicate the magnetization details
using a point-dipole Monte Carlo model. One crucial difference between
flatspin and their dipole model is the switching criteria. They use the simpler
criteria hi ·mi < h

(i)
k , which considers only the parallel field component and

will be largely inaccurate for fields which are not aligned with the magnet’s
easy axis. Indeed, using this simpler switching criteria in flatspin results in
a very different reversal process and magnetization details (not shown).
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4.4 Comparison to micromagnetic single-spin switching order

Micromagnetic simulations in MuMax3 [29] have been shown to agree with
experiment due to high simulation fidelity. It is, therefore, of interest to
study how well flatspin agrees with MuMax3 at the level of detail expressed
in flatspin.

Here we evaluate the switching strategy outlined in Section 2.8, by comparing
the switching orders obtained in flatspin and MuMax3, of a square ASI as it
undergoes reversal by an external field. As a similarity measure, Spearman’s
rank correlation coefficient ρ [30] is used, where a value of 1 indicates perfect
correlation and 0 indicates no correlation between switching orders.

In the weakly coupled regime, the switching order is dictated by the coercive
fields of each individual magnet. In flatspin, the coercive field can be set
directly by modifying h(i)

k . In MuMax3, we control the coercive field implic-
itly, by varying the first-order, uniaxial, magnetocrystalline anisotropy, K(i)

U1
of each magnet. Given a set of randomly drawn K(i)

U1 values, the correspond-
ing h(i)

k values were obtained by a linear map.

The system we considered was a 4× 4 square (closed) ASI, each magnet
measuring 220 nm×80 nm×25 nm. flatspin was run with parameters b =
0.38, c= 1, β = 1.5, and γ = 3.2. In both simulators, we applied a gradually
increasing reversal field at θ = 44◦.

At a certain point the dipolar interactions begin contributing to the switching
order. To verify that flatspin still captures switching dynamics, we perform
a comparision of the switching orders for all pairs of lattice spacings in both
simulators.

Fig. 8a shows the correlations for each pair of lattice spacings as an average
over 32 different square ASIs. We observe a clear linear relationship between
the two simulators, with higher lattice spacings exhibiting higher correla-
tion. The non-zero y-intercept in the heatmap indicates that, as suspected,
the coupling strength is slightly underestimated by the dipole approxima-
tion employed in flatspin, in particular for lower lattice spacings. For ex-
ample, flatspin with 300 nm lattice spacing is most similar to MuMax3 with
380 nm.

The red line in Fig. 8b traces the ridge in the heatmap, i.e., the highest ρ,
for each flatspin lattice spacing. As can be seen, a near-perfect agreement
between the simulators is found in the weakly coupled regime (high lattice
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Figure 8: (a) Spearman’s rank correlation coefficients ρ averaged over 32 different
square ASIs, evaluated for different lattice spacings in flatspin and MuMax3. The
red line shows the approximate maximum ridge line through the heatmap. (b) The
red line shows the true maximum ρ for the lattice spacing pairs. The blue and violet
lines show projections of the top row and rightmost column of (a), respectively.

spacing). As lattice spacings decrease, the effect of dipole interactions be-
come apparent. Below 450 nm the correlation drops. Since flatspin does not
account for the micromagnetic state, complete correlation is not expected.

The particular selection of h(i)
k values introduces an inherent bias in the

switching order. One might expect that this bias causes the dipole interac-
tions to have a negligible impact on the switching order, leading to an inflated
correlation between flatspin and MuMax3, regardless of lattice spacing.

The violet and blue lines, (rightmost column and top row from Fig. 8a), show
the deviation from the inherent switching order in MuMax3 and flatspin,
respectively. Their rapid decline confirms that the switching order is not
dominated by the inherent bias for highly coupled systems. The red line
clearly shows a stronger agreement between MuMax3 and flatspin (higher
than the blue and violet lines), even at smaller lattice spacings.

5 Performance

Although the total simulation time will depend on many factors, it is of
interest to measure how simulation time scales with the number of spins. As

189



101 102 103 104 105 106

Number of spins

105

106

107

108

T
h

ro
u

g
h

p
u

t
(fi

el
d

ca
lc

u
la

ti
o
n

s
/

se
co

n
d

)

Figure 9: The throughput (number of field calculations per second) as a function
of number of spins. Throughput is averaged over 100 simulations of each size. The
test was performed on an NVIDIA Tesla V100 GPU with 32GB of RAM. Note the
logarithmic scale of the axes.

the number of spins are increased, simulation time will be largely dominated
by the calculation of the effective field, hi, acting on each of the N spins in
the lattice. Computing time for h(i)

dip depends on the number of neighbors
around spin i, which is typically constant for all spins except the ones at the
edges of the geometry. For large N , the number of edge magnets is negligible
(in the common ASI geometries). Computing hi for all spins will take O(N)
time, i.e., computation time grows no faster than linear in N .

Fig. 9 shows the throughput (number of field calculations per second) as a
function of the number of spins. Here a field calculation is defined as the
computation of hi for a single spin i, hence for N spins there will be N such
field calculations. The geometry used was square ASI (open edges) using
a standard 8 spin neighborhood for calculating h(i)

dip. The throughput was
averaged over 100 simulations of each size. The test was performed on an
NVIDIA Tesla V100 GPU with 32GB of RAM.

At around 200 000 spins, the throughput saturates at 108 field calculations
per second. On our test setup, computing hi for one million spins takes
approximately 10 ms. Above 200 000 spins we are able to fully utilize the
GPU resources.

To simulate the reversal of an ASI by a gradually increasing external field,
at least one field calculation per spin flip is required, i.e., at least N field
calculations. If the external field gradually changes with a resolution of K
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Figure 10: A snapshot from flatspin simulations of 708× 708 pinwheel ASI with
more than one million magnets, as it undergoes reversal by an external field. The
angle of the external field is θ = 0◦.

values, the worst case will be when all spins flip during a single field value.
In this case the number of field calculations required will be N +K−1 since
there will be K−1 field calculations which results in no spin flips.

The total simulation time depends largely on the particular experimental
setup, parameters and other system characteristics. Time will be spent on
things other than field calculations, e.g., organizing and writing results to
storage. Hence the total simulation time will be longer than predicted by
field calculations alone. As an example, the simulations from section 4.3 of
25×25 pinwheel ASI with 1250 magnets took approximately 6 seconds with
K = 2500, for one reversal.

Fig. 10 shows a snapshot from flatspin simulations of 708×708 pinwheel ASI
as it undergoes reversal by an external field. The ability to simulate such
large systems allows an experimenter to explore phenomena at much larger
scales than can be directly observed experimentally. With more than one
million magnets, the simulation of array reversal took several days to com-
plete. A video of the full reversal is available as Supplemental Material1.

1See Supplemental Material at [URL will be inserted by publisher] for a video of the
reversal of 708x708 pinwheel ASI.
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6 Conclusion

flatspin is a highly effective simulator for ASI ensemble dynamics. At its
heart lies a robust magnetic model based on dipole-dipole interactions with
a switching criteria based on a generalized Stoner-Wohlfarth model. Ac-
companying the model is a toolbox of useful input encoders and analysis
tools. The model includes several common ASI geometries, and there are no
inherent limits to the range of possible geometries.

The flatspin ASI model has been verified against micromagnetic simulations
and experimental results from the literature. On a detailed level, we found
good agreement between micromagnetic simulations and flatspin in terms of
magnet switching order. Emergent fine-scale patterns in kagome ASI were
replicated successfully, where the formation of Dirac strings matched exper-
imental results. Large-scale domain sizes in square ASI were reproduced,
and good agreement was found between flatspin and experimental results.
Finally, using flatspin, the experimental magnetization reversal of pinwheel
ASI was reproduced for the first time in a dipole model.

Through GPU acceleration, flatspin scales to large ASI systems with millions
of magnets. High speed, parallel computation allows for a large number of
ASI simulations to be executed, enabling quick exploration of parameters
and novel geometries. The flexibility and performance offered by flatspin
opens for unprecedented possibilities in ASI research.
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Reservoir Computing in Artificial Spin
Ice

Johannes H. Jensen and Gunnar Tufte
Department of Computer Science,

Norwegian University of Science and Technology, Trondheim, Norway

Abstract
Artificial spin ice (ASI) are systems of coupled nanomagnets arranged

on a 2D lattice. ASIs are promising computing substrates due to the
rich variety of emergent behavior, accompanied by considerable control
and flexibility. Computational models may exploit the small-scale dy-
namics of the individual elements, or large-scale emergent behavior of
the resulting metamaterial. We investigate the computational capabil-
ities of “pinwheel” ASI, whose emergent ferromagnetic patterns can be
observed at different scales. Within a reservoir computing framework,
we examine how key system parameters affect performance using well-
established reservoir quality metrics. As reservoir output, we consider
system state at different granularities, ranging from individual magnets
to the collective state of multiple magnets. Our results show that pin-
wheel ASI exhibits excellent computing capacity, including evidence of
fading memory. Interestingly, a wide range of output granularities re-
sult in good performance, offering new insights into the scalability and
robustness of reservoirs based on self-organized collective behavior. The
apparent flexibility in output granularity show that ASIs have compu-
tational properties at different abstraction levels, from the small-scale
dynamics of simple elements, to the large-scale spatial patterns of the
metamaterial.

1 Introduction

In ASI, each nanomagnet behaves as a macrospin, analogous to the atomic
spins in bulk materials. Collectively, the macrospins form a magnetic meta-
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material, whose emergent properties can be controlled directly by the place-
ment, orientation and shape of the nanomagnets.

Coupled nanomagnetic systems are ideal for studies related to self-organization
and emergence. A wide range of emergent phenomena has been discovered
in ASIs, e.g., collective ferromagnetic/antiferromagnetic ordering (Sklenar
et al., 2019), domain wall propagation (Li et al., 2019), avalanche dynam-
ics (Mengotti et al., 2011), and phase transitions (Levis et al., 2013).

Furthermore, established nanofabrication methods make ASIs readily avail-
able for real-world exploration. Unlike atomic spins, the mesoscopic size of
the nanomagnets enables direct observation of the macrospin states through
magnetic microscopy. Micromagnetic simulations are feasible for smaller sys-
tems (Leliaert et al., 2018; Jensen et al., 2018), while large-scale behavior
can be captured by mesoscopic models (Jensen et al., 2020).

As systems of coupled spins, ASIs are natural substrates for neuromorphic
computing. Like biological computing systems, the coupled nanomagnets
form large spatial networks of nonlinear nodes, where computation is closely
linked to memory. Computation in neuromorphic systems is inherently par-
allel, the result of interactions between large numbers of simple elements.

An alternative view is ASI as a metamaterial: when observed at larger scales,
magnetic patterns emerge as a result of the underlying macrospin interac-
tions. The metamaterial view is a natural fit for material computation (Step-
ney et al., 2018). Compared to bulk materials, metamaterials offer consid-
erable control and flexibility, and opens for the design of exotic substrates
with unusual physical behavior. Furthermore, computation with large-scale
emergent phenomena offers an inherent robustness, as small differences in
the underlying state are washed out in the aggregate view.

Here, we explore the computation arising from these alternate ASI views. By
observing the system at different scales (adjusting the amount of "squinting"),
it is possible to move gradually between the two views: at the smallest scale
we have the network of spins, while at larger scales we approach the metama-
terial. How does the scale of observation affect computation? This question
has practical implications for computing devices based on ASI, where the
readout of magnetic state necessitates sensor circuitry with an associated
cost. Note that the same is true for all physical computing devices: readout
of state has a cost which scales with a growing number of outputs.

Specifically, we investigate the computational properties of “pinwheel” ASI
within a Reservoir Computing (RC) framework. Using established RC met-
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2 Background

rics, we study how key system parameters affect performance. We consider
different output granularities to define the reservoir nodes, ranging from sin-
gle magnets to the aggregate of multiple magnets.

2 Background

2.1 Artifical Spin Ice

ASIs have received considerable interest over the last decade, primarily as a
model system for the study of fundamental physics. The name “artificial spin
ice” stems from the use of engineered systems to mimic the arrangement of
molecules in water ice. Established nanofabrication techniques coupled with
the ability to directly observe macrospin states, has enabled the study of a
wide range of physical phenomena in ASI (Skjærvø et al., 2020).

In ASI systems, each nanomagnet behaves as a binary mesoscopic spin. The
small size ensures a uniform internal magnetization (a single-domain state),
while an elongated shape constrains the orientation of the magnetization to
lie along the long axis (a binary state).

The artificial spins are coupled via the magnetic dipole-dipole interaction:
each magnet is subject to the stray magnetic field of neighboring magnets.

The particular arrangement and orientation of the magnets is referred to
as the geometry, which effectively defines the nature of the magnet-magnet
interactions. Fig. 1a depicts square ASI, which consists of horizontal and ver-
tical magnets arranged on two square lattices. The sub-lattice with vertical
magnets is placed at an offset from the sub-lattice with horizontal magnets,
as indicated by the different colors. Pinwheel ASI is shown in Fig. 1c, and is
obtained by rotating each magnet in square ASI by 45◦ about its center.

Some geometries result in antiferromagnetic ordering, where domains of zero
net magnetization are energetically favorable. Fig. 1b shows the collective
magnetization in square ASI, with the emergence of antiferromagnetic do-
mains (white regions). In antiferromagnetic systems, only the boundaries
of the domains have an observable magnetization at larger scales. Pinwheel
ASI, on the other hand, exhibits ferromagnetic behavior, i.e., the magnets
form domains with coherent magnetization of non-zero magnitude. Fig. 1d
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(a) (b)

(c) (d)

Figure 1: The emergent behavior of ASI is a result of the placement and orientation
of the nanomagnets. (a) Square ASI consists of horizontal and vertical magnets ar-
ranged on a square lattice. (b) Square ASI favors antiferromagnetic order, resulting
in domains of zero net magnetization (white regions). (c) Pinwheel ASI is obtained
by rotating each magnet in square ASI by 45◦ about its center. (d) Pinwheel ASI
exhibits long-range ferromagnetic order, supporting formation of domains with co-
herent magnetization. The systems shown in (b) and (d) are 25× 25 square and
pinwheel ASI, respectively, each consisting of 1300 magnets. The arrows in (b) and
(d) indicate the collective magnetization of the four circled magnets in (a) and (c),
respectively.
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shows emergent ferromagnetic patterns as found in pinwheel ASI. Ferromag-
netic domains are also clearly visible at large scales, making pinwheel ASI
ideal for our study.

There are a myriad of ways to tune the behavior of ASIs. For example, the
lattice spacing (distance between magnet centers) determines the size of the
anti- or ferromagnetic domains: a smaller spacing results in larger domains.
Small changes to the geometry can result in fundamentally different behavior.
Novel geometries provide a seemingly endless playground for exploration of
self-organization and emergence in-materio. In addition, there are several
ways to tune behavior externally, without altering the system, e.g., through
an external magnetic field or temperature.

2.2 Reservoir Computing

Reservoir Computing (RC) is a methodology which allows a dynamical sys-
tem to be exploited for computation (Jaeger, 2001; Maass et al., 2002). The
key component is the dynamical system, which is referred to as the reser-
voir. An input signal perturbs the reservoir, which, as a result of its inherent
properties, produces a complex dynamic response. The reservoir functions
as a nonlinear kernel with memory, maintaining a rich repertoire of nonlinear
input transformations. Subsequently, a linear readout layer is trained to pro-
duce some desired function as a weighted sum of reservoir states. Crucially,
the readout layer is the only trained part of the system, i.e., both the input
layer and the reservoir remains unchanged.

State of the art performance has been obtained using RC methods for a va-
riety of tasks, both with classical neural reservoirs (Lukoševičius and Jaeger,
2009) as well as a range of physical reservoirs (Tanaka et al., 2019). A va-
riety of magnetic reservoirs have been proposed, such as magnetic tunnel
junctions (Furuta et al., 2018), spin torque oscillators (Torrejon et al., 2017)
magnetic skyrmions (Prychynenko et al., 2018), magnetic thin-films (Nakane
et al., 2018) and dipole coupled nanomagnets (Nomura et al., 2019). The lat-
ter two examples bear some resemblance to ASIs, as magnetic metamaterials
consisting of dipole coupled nanomagnets.

Good reservoirs are nonlinear, high dimensional dynamical systems with rich
dynamics. Interactions between nodes in the reservoir facilitates the forma-
tion of nonlinear memory, i.e., where the state of a node is a nonlinear func-
tion of current and previous inputs. Crucially, the reservoir should have the
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echo-state property which, informally, means the reservoir gradually forgets
over time.

ASIs are promising reservoirs since they exhibit many of the above-mentioned
properties. Magnetic switching is inherently nonlinear, hence a large number
of magnets is a high-dimensional nonlinear system. Magnetic dipole-dipole
interactions enable the flow of information between nodes, with the potential
for memory formation. Reservoir state can be observed directly as the state
of individual spins, or through emergent patterns at coarser granularities.

As dynamical systems, ASIs exhibit a large number of attractors, due to the
highly degenerate energy landscape. Earlier work has shown that different
attractors can be reached by encoding input as a global external magnetic
field (Jensen et al., 2018). Consequently, the system state forms a spatial
representation of input history, i.e., exactly the kind of behavior sought in a
reservoir.

2.3 Reservoir quality

A range of methods have been proposed to evaluate reservoir quality, ranging
from benchmark tasks such as speech recognition and signal classification,
to more generic measures such as memory capacity (Jaeger, 2002) and infor-
mation processing capacity (Dambre et al., 2012).

In this work, we employ two generic measures related to signal classifica-
tion, namely the kernel-quality and generalization-capability (Legenstein and
Maass, 2005).

Kernel-quality is a measure of how well the reservoir is able to separate
temporal input patterns. It is estimated by perturbing the reservoir with
m different input signals. At the end of each signal, the reservoir states are
recorded as the columns of an n×m matrix MK where n is the number
of reservoir nodes. Computing the rank K of this matrix gives a measure
of kernel-quality (higher is better). If the kernel rank K = m, then it is
guaranteed that any assignment of target outputs can be implemented by a
linear readout. If K <m, the kernel rank can still be viewed as a measure
of computational power, since it is a measure of the number of "degrees of
freedom" the readout has available.

Kernel-quality is insufficient alone as a measure of reservoir quality. A com-
plementary property is the reservoir’s ability to generalize to new unseen
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input signals. Generalization-capability is measured the same way as kernel-
quality, except the n×m matrix MG is now the reservoir states after seeing
m similar input signals. We wish for the generalization rank G of this ma-
trix to be low, meaning the reservoir states are similar and should generalize
well.

A good reservoir maximizes K while minimizing G, hence a combined mea-
sure of computing capacity Q can be obtained by simply taking the differ-
ence: Q = K−G (higher is better). Q is a measure of the usable nodes in
the reservoir, i.e., nodes with both good kernel-quality and generalization-
capability.

Theoretically, the information processing capacity is bounded by the num-
ber of reservoir nodes n (Dambre et al., 2012). Since the rank of a matrix
is bounded by its smallest dimension, one should choose m≥ n to avoid sat-
uration of the measures before the theoretical limit. Thus K,G ∈ [1,n] and
Q ∈ [1−n,n− 1], where Q = n− 1 indicates the best possible performance,
while Q≤ 0 indicates a reservoir with no usable computing capacity.

When comparing reservoirs with different numbers of nodes, the normalized
rank r provides a measure of computational power per node: r =R/n where
R is the matrix rank. We denote the normalized versions of K, G and Q as
k, g and q, respectively. Thus, k,g ∈ [1/n,1] and −1< q < 1 with q = 1−1/n
indicating the best possible performance while q ≤ 0 represents a reservoir
with no usable capacity (Haynes et al., 2015).

3 Methods

3.1 Magnetic model

For our computational study, we use the flatspin ASI simulator, which en-
ables fast simulations of dynamics in coupled spin systems (Jensen et al.,
2020). In flatspin, magnets are modeled as point dipoles with binary state.
Each dipole is affected by neighboring magnets through magnetic dipole-
dipole interactions, as well as a global external field.

Dynamics in flatspin are deterministic, modeled as a series of single spin
flips. A spin may flip (switch state) if the total magnetic field acting on it is
sufficiently strong, i.e., exceeds its intrinsic coercive field, and is directed in
the opposite direction of its magnetization.
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(a) (b) (c)

Figure 2: (a) A reservoir node contains one or more spins: shown here are nodes
with one, four and 12 spins. (b) 10× 10 pinwheel ASI has 220 spins, shown here
with a 7×7 grid superimposed. Summing the magnetization of the spins in each cell
results in the coarse-grained view shown in (c). The length of the arrows indicates
the magnitude of the magnetization.

The global parameter α scales the strength of the dipole-dipole interactions.
A large value of α denotes a high degree of coupling between the spins.
An increase in α is equivalent to reducing the lattice spacing between all
magnets.

3.2 Input encoding

As input we consider temporal binary patterns, i.e., the input is a function
u(t) ∈ {0,1} for discrete time t = 0..T . For each input bit we cycle the
external field at a fixed field strength H at an angle determined by the input
bit: φ0 for 0 and φ1 = φ0 + 90◦ for 1. The 90◦ offset ensures both 0 and 1
will perturb the system with the same amount of force (due to the pinwheel
geometry). To break symmetry, we set φ0 = 7◦, which causes each input bit
to affect magnets in one sub-lattice slightly more than the other. We use a
small angle to still allow switching to occur in both sub-lattices.

3.3 Output granularity

As reservoir output we record the magnetization of the ASI. The number
of reservoir nodes n depends on the granularity of observation (the level
of "squinting"). Fig. 2a illustrates nodes containing different numbers of
magnets: a single spin, four magnets and twelve magnets. Each group of
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magnets results in two reservoir nodes, one for each vector component of the
collective magnetization.

At the finest granularity, we resolve the binary state of individual spins, i.e.,
the number of reservoir nodes n equals the number of spins N .

To define coarse-grained nodes, we superimpose a regular S×S grid onto
the ASI, as shown in Fig. 2b. The magnetization of the spins within each
grid cell is then summed to produce an aggregate output vector, as shown in
Fig. 2c. For an S×S grid, we obtain n = 2S2 reservoir nodes, as each grid
cell results in two nodes.

The grid won’t necessarily align with the underlying ASI geometry, thus the
number of magnets within each grid cell may vary. This can be seen in
Fig. 2b, where some cells contain four magnets while others contain five.

A decrease in the number of grid cells results in an increase in state resolution,
as nodes can take more possible values. Hence, a coarse-grained view offers
more computational power per node, at the cost of fewer nodes.

When multiple magnets are aggregated, the reservoir state is effectively de-
generate: there will be multiple spin configurations which produce the same
vector sum.

3.4 Experiment setup

We consider systems of 10×10 pinwheel ASI, consisting of N = 220 stadium-
shaped nanomagnets with dimensions 220 nm×80 nm×20 nm, and parame-
ters hk = 200mT, b= 0.41, c= 1.0, β = 1.5 and γ = 3.9.

Due to manufacturing imperfections there will always be variation in the
coercive fields of the magnets. Hence, we apply a disorder of 5% to the
coercive fields h(i)

k of each magnet i, i.e., the coercive fields are sampled from
a normal distribution with mean hk and standard deviation 0.05hk. We
define an ASI sample as a set of N coercive fields {h(i)

k }.

We start with an initially polarized ASI, such that the total magnetization is
saturated towards the right (as illustrated in Fig. 1c). Next, the input signal
is applied through the external field. For kernel-quality we use m = 220
random binary input signals, each 100 bits in length. For generalization-
capability, we use m = 220 random binary input signals where the first 40
bits are random and the remaining 60 bits are equal across the signals. Hence
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the generalization rank, at the end of the input signal, is a measure of how
sensitive the system is to inputs older than 60 time steps.

In the following, we vary the strength of the external fieldH and the coupling
strength α. For each experiment we generate 30 ASI samples, and take the
average rank.

3.4.1 Full visibility

First, we consider reservoirs with full visibility of the 220 magnets as out-
put (n= 220 reservoir nodes). For each ASI sample, we sweep the coupling
strength α and the strength of the external field H, and measure the corre-
sponding K, G and Q. We sweep 16 values of α in the range 3e−5 to 3e−3,
which roughly corresponds to lattice spacings from 1000 nm to 215 nm. For
each α value, we sweep 16 values of H in the range 66 mT to 81 mT.

3.4.2 Output granularity

Next, we investigate how the output granularity affects performance. Grids
of size 1× 1 to 10× 10 are superimposed onto the ASI, resulting in n = 2
to n = 200 reservoir nodes. For each n we calculate the corresponding K,
G and Q. When comparing performance across different number of nodes
n, we use the normalized rank measures k, g and q. We maintain the same
number of input patterns m= 220, i.e., independently of n.

4 Results

4.1 Full visibility

Fig. 3 shows the results of the parameter sweep of H and α, as heatmaps of
the average kernel rank K, generalization rank G and computing capacity
Q=K−G. Each cell in the heatmap is the average of the 30 different ASI
samples.

All measures exhibit a ridge line in the H–α plane, which drops quickly for
low α values. The ridge shows an apparent linear relationship between H
and α, in terms of computational performance.
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Figure 3: Average (a) kernel rank K, (b) generalization rank G and (c) computing
capacity Q=K−G, as a function of the parameters H and α.
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Figure 4: Average kernel rank K, generalization rank G and computing capacity
Q, along the ridge lines of Fig. 3, i.e., for each α value, the highest value of K, G
and Q is plotted.
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Figure 5: Average generalization rank G over time. The dashed line marks where
the input signals transition from being different to being identical.

As can be seen in Fig. 3a, kernel rank K is generally high along the ridge. In
Fig. 3b, a similar but thinner ridge is apparent for the generalization rank G.
The K and G ridges are in the same location of the H–α plane. In Fig. 3c,
the ridge line of their difference Q is shifted slightly to the right.

Fig. 4 plots K, G and Q along the ridge lines in Fig. 3, as a function of
α, i.e., for each α value, the highest value of K, G and Q is plotted. A
general trend is a decline in both K and G as α is increased. K nearly
saturates for 1e−3< α < 2e−3 with ranks as high as 215 on average (recall
that the maximum rank is 220). The Q ridge, on the other hand, is fairly
flat as a function of α, with an apparent maximum for α = 1.02e−3 and
H = 78mT. However, we note that the standard deviation of K (and hence
Q) is significantly higher for large values of α.

Fig. 5 shows how G evolves over time, i.e., measured after being perturbed
with each of the 100 input bits, for α= 1.02e−3 and H = 78mT. Recall that
after the first random 40 bits, the input signals are identical for the remaining
60 bits. As can be seen in Fig. 5, the average rank drops quickly at t = 40,
after which there is a somewhat gradual decline. Inspecting the trajectories
of G for the individual ASI samples reveals that there are variations in the
behavior: for some samples, the rank drops quickly, while others exhibit a
more gradual decline.
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Figure 6: Average (a) kernel rank K, (b) generalization rank G and (c) computing
capacity Q = K −G, as a function of the parameters H and α, using an output
granularity of n= 50 nodes (5×5 grid).

4.2 Output granularity

Fig. 6 shows similar heatmaps of K, G and Q, but using a coarse-grained
output with a 5× 5 grid (n = 50 nodes). Compared to the heatmaps using
full visibility of all magnets (Fig. 3), both K and G exhibit wider ridge lines.
As a consequence, the Q ridge is shifted diagonally towards higher H and α
values. Saturation of K is still obtained for large regions of parameter space
(here the maximum rank is 50).

Comparing the heatmaps from all granularities (not shown), a general trend
is that, as output becomes more coarse-grained, the Q ridge line moves di-
agonally in the heatmaps towards higher H and α.

Fig. 7 shows the average normalized rank measures k, g and q = k− g, as
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Figure 7: Average normalized kernel rank k, generalization rank g and computing
capacity q = k− g, as a function of the number output of nodes n. The reservoir
parameters are α= 1.02e−3 with (a) H = 78mT and (b) H = 79mT.
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the number of reservoir nodes n are increased (resulting from the increasing
number of grid cells). For completeness, the plots also include results with
full visibility at n= 220.

Fig. 7a shows the measures for α= 1.02e−3 and H = 78mT, i.e., the parame-
ters with the best performance from the full visibility experiment. As can be
seen, a decrease in n results in poor generalization g and hence a decrease in
performance per node q. There’s an apparent peak of q ≈ 0.6 for n= 162.

Fig. 7b shows the same plot for an increased field strength of H = 79mT.
With a stronger field, much better generalization is obtained. In this case, we
observe an increase in q as n is decreased, with an apparent peak at q ≈ 0.8
for n= 50.

5 Discussion

5.1 Full visibility

Our investigation of the H–α parameter space demonstrates salient features
of ASI reservoirs. For most values of α, there exists a corresponding critical
field strength H, which is neither too weak (resulting in little activity), nor
too strong (causing all magnets to switch).

Clearly, spin interactions play a crucial role in the formation of a complex
dynamic response, since low α values result in poor kernel-quality. Intu-
itively, in an uncoupled system, the state of the spins will only be affected
by the current input. Memory formation requires sufficient flow of informa-
tion between the spins. If the coupling is too weak, the current state will be
completely overwritten by new input, and all history of previous inputs is
lost.

The saturation of kernel rank, shown in Fig. 3a, demonstrates excellent in-
put separation for large regions of parameter space. In these cases, the
ASI states contain sufficient information to discriminate between all the in-
put signals. However, the reservoirs with the highest kernel-quality suffer
from poor generalization-capability. High generalization rank is evidence of
chaotic dynamics, where the initial difference in states persists for a long
time.

The measure of computing capacity Q (Fig. 3c) exhibited a ridge line which,
compared to the ridge lines of K and G (Fig. 3a and Fig. 3b), is shifted
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slightly towards stronger fields (larger H). A stronger external field will
consequently result in more spin flips per input, thus overwriting more of
the system state. Indeed, chaotic reservoirs may still be used successfully,
as long as the input is sufficiently strong to drive its dynamics out of the
chaotic regime (Ozturk and Principe, 2005).

The decrease in kernel-quality as function of coupling strength α is expected,
since the size of ferromagnetic domains increase with α, and hence there is
less variation in the spin states. Smaller domains result in more diverse spa-
tial patterns, and consequently a richer repertoire of input transformations.
However, the parameter regions with the highest kernel-quality have very
poor generalization-capability, resulting in poor overall performance. As a
result, the capacity measure Q predicts no significant difference in perfor-
mance between loosely and highly coupled systems. Still, the higher variance
observed for large α values is evidence that the particular ASI sample, i.e.,
the set of coercive fields, plays a more important role for highly coupled ASIs
compared to the loosely coupled systems.

The observed gradual decrease in generalization rank over time is clear evi-
dence of fading memory, where past input is gradually forgotten over time.
The plot in Fig. 5 is remarkably similar to the time-wise separation observed
in neural microcircuits (Maass et al., 2004). Although there are variations
in the behavior, the results indicate that ASI reservoirs can indeed exhibit
the echo-state property.

5.2 Output granularity

Our results revealed that a change of output granularity affects the perfor-
mance landscape in the H–α parameter space. Parameters which perform
well with full visibility of all spins perform poorly with a coarse-grained
view.

As the number of spins per node is increased, the areas in the parameter space
with good performance move towards stronger fields and higher coupling
(compare Figs. 3c and 6c). Interestingly, a small increase in field strength
seems to be sufficient to improve performance under a coarse-grained view
(Figs. 7a and 7b).

Under a coarse-grained view, one might expect that the more strongly cou-
pled systems would have a benefit, since larger magnetic domains would still
be visible without significant information loss. However, we find no evidence
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6 Conclusion

of this in our results. In fact, the strongly coupled systems appear to perform
worse, regardless of output granularity.

Since the computational capacity is bounded by the number of reservoir
nodes (Dambre et al., 2012), it would seem like full visibility of all spins
is always beneficial. However, in any physical reservoir there will be a cost
associated with measurement of state, placing practical limits on the number
of output nodes. Additionally, a coarse-grained view brings some additional
benefits, which we discuss below.

The normalized rank measures (Figs. 7a and 7b) revealed that, for a system
consisting of binary elements, the computing capacity per node q can be
increased by combining multiple elements into one node. The increase can
be attributed primarily to an increase in the degrees of freedom per node, i.e.,
as a node can take more possible values. This was confirmed by thresholding
the aggregate values, effectively making the grid cells "super-spins", which
resulted in a fairly flat q across the different granularities (not shown).

For a given number of reservoir nodes, it should be possible to maximize
performance by scaling up the underlying system, while maintaining a fixed-
size coarse-grained view.

Another potential benefit of a coarse-grained view is robustness: the output
will be less sensitive to small differences in the underlying spin state. If a
spin inadvertently flips, e.g., due to noise, its immediate effect will be small
under a coarse-grained view. With full visibility, however, the readout may
be more sensitive to a single spin flip.

The results show that, at least for pinwheel ASI, there is a great degree of
freedom in choosing the output granularity. We may observe the system at
a range of different scales, and still obtain good performance.

6 Conclusion

ASIs are promising computing substrates due to the wide variety of emergent
behavior, which can be directly controlled by the system geometry. We have
shown how the inherent properties of pinwheel ASI result in complex spatio-
temporal patterns that can be readily exploited for computation. Our exper-
iments demonstrate excellent computing capacity in terms of well-established
reservoir quality measures. We find clear evidence of fading memory, sug-
gesting the presence of the crucial echo-state property.
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An exciting finding is that good performance can also be obtained with
a coarse-grained metamaterial view of the system. Although the size of
our magnetic system was fixed, our results indicate that ASI reservoirs are
scalable, both in terms of the number of nodes as well as the computing
capacity per node. The apparent flexibility in output granularity show that
ASIs have computational properties at different abstraction levels, from the
small-scale dynamics of simple spins, to the large-scale spatial patterns of
the metamaterial. The fact that meaningful computations can be obtained
with a very coarse-grained view of the substrate, shows that physical ASI
reservoirs are not only possible, but also practical.
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