Thomas Lund Mathisen

Multigrid feature-based terrain
generation with erosion

Master’s thesis in Master of Science in Informatics
Supervisor: Theoharis Theoharis

July 2021

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke

Bo
:
o

zZ

0y
£e
o Y
[Te]
£wun
DOL
c g
w S
= a
SE
S O
oo
D«
w2
T C
ca
=
85
S g
gw
_CD
o}
|_
c
o
=1
©
€
_
L
£
Y
S)
=]
o
©
[N

@ NTNU

Norwegian University of
Science and Technology






Thomas Lund Mathisen

Multigrid feature-based terrain
generation with erosion

Master’s thesis in Master of Science in Informatics
Supervisor: Theoharis Theoharis
July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Norwegian University of
Science and Technology






Acknowledgements

I want to thank the Norwegian University of Science and Technology for enabling me to ex-
plore this research field and especially professor Theoharis Theoharis for supervising. A big
thank you to Maria for giving me structure and feedback over the last year and listening to
me pointing out pretty and fake-looking terrains wherever we go. Thanks to Hanne for an un-
limited amount of coffee. I would also like to thank @Qystein and Kristine for taking the time
to understand this thesis and proofreading it. Finally, I want to thank Lilis, the corona-cat,

for the mental support.



ii

Abstract

Landscape generation has been a field of research for almost thirty years and is a fundamen-
tal part of many applications. Despite this, there are still a lot of problems left to be solved
and designers are forced to manually design terrains as they cannot realize their ideas with
the current tools. In this thesis, we explore two problems related to feature-based terrain
generation: the ability to create fine-scale and large-scale terrain features and mitigating
the repetitiveness of noise used in "Feature based terrain generation using diffusion equa-
tion" by Hnaidi et al. Our contribution is our method with four novelties as well as an im-
plementation of this method integrated with Unity 3D. We combine feature and noise-based
terrain generation with hydraulic erosion by controlling the noise generation and erosion
simulation with diffused parameters. The first novelty is using multiple diffusion equations
enabling the user to generate smoother terrain and generate both fine- and large-scale fea-
tures. Our second novelty is simulating erosion on multiple grids to efficiently create erosive
features of different scales. Our third novelty is diffusing erosion parameters to constrain
the erosion by controlling the rain and hardness of the terrain. Our last novelty is creating
diffused noise warping without creating any artifacts in the terrain. These novelties make it
easier to generate terrain with fine- and large-scale features and mitigate a lot of the repeti-

tiveness of the noise.



iii
Sammendrag

Landskap generering har vert et forsknings-felt i nesten 30 ar og er fundamentalt i mange
applikasjoner. Til tross for dette er det fortsatt mange ulgste problemer, og designere er
nedt til & designe terreng manuelt for a realisere ideene sine, pa grunn av begrensninger
i dagens verkteoy. I denne oppgaven utforsker vi to problemer relatert til trekk-basert ter-
reng generering: muligheten til 4 lage terreng med bédde fin-skala og stor-skala trekk og &
minske den gjentakende effekten til stoy brukt i "Feature based terrain generation using
diffusion equation" av Hnaidi et al. Vart bidrag er metoden véar med fire nyskapninger og
implementasjonen vér av denne metoden i Unity 3D. Vi kombinerer trekk- og stoy-basert
terreng generering med hydraulisk erosjon ved & kontrollere stoy-generering og erosjons-
simuleringen med diffuse parametere. Var forste nyskapning er & bruke flere diffusjons-
likninger slik at brukeren kan generere jevnere terreng med bade fin-skala og stor-skala trekk.
Var andre nyskapning er 4 simulere erosjon med flere rutenett, for a effektivt simulere erosjon
i ulik skala. Var tredje nyskapning er & bruke diffuse parametere for & begrense erosjon ved
a kontrollere regn og hardheten péa terrenget. Var siste nyskapning er a generere diffust for-
dreid stoy uten a skape unaturligheter i terrenget. Disse nyskapningene gjor det enklere a
generere terreng med fin-skala og stor-skala trekk og minsker mye av den gjentakende effek-

ten til stoy.



Contents

Acknowledgment . . . . . . ... e i
ADSITACt . . . . . o e e e ii
Sammendrag . . ... ... e e e iii
Listof Figures . . . . . . . . . e e viii
Glossary 1
1 Introduction 2
1.1 Motivationand background . . . . . ... ... ... .. L L Lo L. 2

1.2 ODbjective . . . . . v it e e e e e e 3

1.3 Research questions . . . . . . . ... . . .. it 4

2 Theory 5
2.1 Terrain generationmethods . . . . . ... ... .. ... ... .. ... ... . ... 5
2.1.1 Noise-based generation . .. ... ... . ... ... ... .. ..... 5

2.1.2 Feature-based terrain generation . ... ................... 7

2.1.3 Terrain process simulation . .. ........................ 7

2.1.4 Example-based terrain generation . . . . . ... ... ... ... ... ... 8

2.2 Terrain datarepresentations . . . . . . . ... ... v i i 8
2.2.1 Elevationmodels . . ... ... ... .. ... . 9

iv



CONTENTS A%

2.2.2 Volumetricmodels . . . .. ... ... ... .. . 9
223 Hybridmodels . ... ... ... ... ... . .. 10

2.3 Feature-based terrain generation using diffusion equation ... ... ... ... 10
2.3.1 Diffusioncurves. . . .. ... ... . L 11
232 Diffusion . . . .. L 11
2.3.3 Multigridsolver . . . . .. ... .. 12
2.3.4 Generating terrain with multigridsolver . . . ... ... .. ... ..... 14

2.4 FErosionsimulation . . ... ... ... .. ... . e 15
2.4.1 Hydraulicerosion. .. . ... ... .. ... .. 15
2.4.2 Thermalerosion ... ... ... ... ... ... ... 17

2.5 ProgrammingtheGPU . . . ... ... ... .. .. ... . 17
3 Methods 18
3.1 OVEIVIEW . . . . o o e e e e e e 18
3.2 CONCEPLS . v v v o e e e e e e e e e e e e e e e e e 21
3.2.1 Featurespline . . ... ... . ... 22
3.2.2 Metapoint . . . . . . . . e e e e e e e e e e e e e e e 22

3.3 Terrainmodeling . .. ... ... ... ... ... 23
3.4 Diffusingtheterrain . ... ... ... ... ... .. ... e 24
3.4.1 Multigridsolver . . . . .. .. L 26

3.5 Parameterdiffusion. . .. ... ... ... L 27
3.6 Noisegeneration . . ... ... ... ...ttt 28
3.7 Erosionsimulation . ... ... ... ... . ... e 31
3.7.1 The erosion process . . . . . . ... v i ittt 31

3.7.2 Multigriderosion . . . . . .. ... L e 38



CONTENTS

3.7.3 Diffused parameterserosion . .. ....... .. ... ... . ...

4 Implementation

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Datarepresentation . . . ... ... ... ... ...
Rasterizing . . . . . . . . . . e e e
4.2.1 Elevationdata . . ... ... ... ... ... e e
4.2.2 Thenormalvectorscalarfield .........................
4.2.3 Guidinggradients. . . . . ... .. L e
424 ReStriCtions . . . . . . . . . i i e
425 Parameterdata . ... .. ... ... ...
Diffusion and multigridsolver . . ... .. .. ... ... .. ... .. .. ... ..
GeneratingnoisSe . . . . . . . . . i i e e e e e e
Erosion . . . . . . . e
4.5.1 Multigriderosion . . . . . ... ... L L e
Finalizingtheterrain . . . . . .. ... ... ... ... . . .
Integration with a modern gameengine. . . . .. ... ... ............
4.7.1 Unity3Dgameengine ... ... ... ... ... ...,
4.7.2 Editingtheterrain ... ... ... ... ... ... . ... o

4.7.3 Texturesused forrendering . . . ... ... ... ... .. ... .......

5 Results

5.1

5.2

5.3

5.4

5.5

OVEIVIEW . . . . . o e
Fantasyterrain. . . . . . . . . . . .. . . e e e e e
MountainIrange . . . . . . . . . v ittt e e e e e e e e e
Mountain river . . . . . . . . it e e e e

Combined terrain . . . . . . . . . o o e e e e e e

38

40

41

43

44

44

45

45

45

46

48

49

49

52

52

52

52

53

56



CONTENTS

5.6

5.7

5.8

Pathway . . . . . . . e
Generation pParameters . . . . . . . i it i e e e e e e e e e e e e e e

ComparisSon . . . . . . . e e e e e e e e

Discussion

6.1

6.2

6.3

6.4

6.5

6.6

Multigrid diffusion . . . .. ... ... L
Multigrid erosion . . . . . . . .. L
Constrained erosion . . . . . ... . .. ... e
Diffused warped noise . . . . . . . ... e
The scale of terrainfeatures . . . . .. .. ... . ... .. ... . ... ... ....

Noiserepetitiveness . . . . . . . . . . . . . . i e

Conclusions

7.1

7.2

Conclusion . . . . . . ot e e e e e

Future work . . . . . o o e e e e

Bibliography

A

Al

A2

A3

Additionalresults . . . . . ...
A1l MountainTivVer . . . . . . o v i ittt e e e e e e e
A.1.2 Combinedterrain. . . . .. ... ... ...
Differentkernels . . .. ... ... .. . . e

Dataoptimization. . . . . . . . . . . . . e e e e e e e e e

71

73

75

78

78

79

79

80

81

81

83

83

84

84

90



List of Figures

1.1 Aterrain generated withourmethod . ... ... ... ... ... ... ..... 2
2.1 Noise-based terrain using Equation2.1 . . ... ... ... ... .......... 6
2.2 Example-based terrain from Guérinetal. [20] . ... ... ... ... ... .... 8
2.3 Aheightmap and arenderingitasaterrain . . . . ... ... ............ 9
2.4 feature-based terrain from Hnaidietal [1] . . .. ... ... .. ... .. ..... 10
2.5 Visualizationofamultigrid . ... ... .. ... ... ... .. .. . .. .. 14
2.6 Terrain eroded with hydraulic erosion from Meietal. [26] . . .. ... ... ... 16
3.1 Ilustrationofourmethod . . . ... .. ... ... ... .. .. ... .. .. ..., 19
3.2 Simplified multigridsolver . . ... ... ... .. ... ... L oo .. 20
3.3 Ilustration of our multigridsolver . . . . ... ... ... ... .. ... ..... 21
3.4 Three-dimensional cubic Béziercurve . ... .................... 22
3.5 Positions of four meta points on a featurespline . . . . ... ... ......... 23
3.6 Visual representation ofametapoint . . ... ... . ... .. ... ... ... . 23
3.7 Asplinediffused onall gridlevels,2-12 . . . . ... ... .. ............ 26
3.8 Deconstructed diffusionofaspline .. ........................ 27
3.9 Aspline diffused on gridlevels2-5and8-12 . . ... ... ... .......... 27
3.10 Example of parameter diffusionoftwovalues . ... ... ... ... ....... 28

viii



LIST OF FIGURES X

3.11 Improved Perlinnoise [9] . . . ... ... ... .. ... . 29
3.12 Theeffect of noisewarping . . . . ... ... ... ... . ... ... 30
3.13 Blendingofnoise . . . ... ... .. ... 31
3.14 Grid levels in a multigriderosion . . . . . ... ... .. ... .. .. o ... 37
3.15 Different levels of erosion of a mountainside . ................... 39
4.1 Restriction texture with a rendering of the generated terrain. . . . . . ... ... 43
4.2 The diffused grids for Figure4.1 . . ... ... ... .. ... . ... ... ..... 44
43 5x5Gaussiankernel. . . . . ... L 50
4.4 The effect of smoothing after interpolation in a multigrid erosion . .. ... .. 50
4.5 Overview of multigriderosion . . ... ... ... ... ... ... ... ..... 51
4.6 The custom editor window in three differentstates . . . .. ... .. .. .. ... 53
4.7 A feature spline with and without meta points and terrain . . . .. ........ 53
4.8 Texture weightsbasedonheight . . ... ... ... ... ... ... ..... 54
5.1 Fantasyterrain. . . . . . . . . . . . . . i e e 57
5.2 Fantasy terrain with feature splinesinwhite . . ... ... ... ... ....... 58
5.3 Fantasyterrain-river. . . . . . . . . . . .. .t e 58
5.4 Fantasyterrain-volcanopath . ... ... ... ... ... ... ... ... ... 59
5.5 Fantasy terrain-volcanocenter . .. .. ... .. ... .. ... ... ..., 60
5.6 Fantasyterrain-theroad . ...... ... .. ... . ... . ... . .. . . ... 60
5.7 FEroded fantasyterrain-theroad . ... ... ... ... ... .. ... ... ... 61
5.8 Fantasy terrain with and without erosion from anotherangle . . . ... ... .. 62
5.9 Fantasy terrain with and withouterosion . . . ... ... ... ... ........ 63
5.10 Eroded fantasy terrain from differentangles . . ... ... ... ... .. ..... 64

5.11 Inspiration fortheterrain . . . .. ... ... ... .. ... . . .. . . . . . ... 64



LIST OF FIGURES X

5.12 Mountain range with and withouterosion . .. ... ... ... ... .. ..... 66
5.13 Lower resolutions of mountainrange . ... ... ... ... .. .......... 67
5.14 Mountain river with and withouterosion . . . . .. ... ... ... ........ 68
5.15 Erosion on lower grid levels of mountainriver . . . . ... ... ... .. ..... 69
5.16 Combined terrain with and withouterosion . ... ................. 70
5.17 Splines used to generate thisterrain . . . . .. ... ... ... ........... 71
5.18 Pathway with and withoutwarping . . ... .. ... ... ... ... ... .... 72
5.19 Warped pathway diffused terrain and noise separately . . . .. ... ... .. .. 73
5.20 Renderings of terrains made with different methods . . .. .. ... .. ... .. 76
Al Mountainriver cCameraz2 . . . . . . . . v ittt e e e e e e e e e e e e 90
A.2 Mountain river camera 2 withouterosion . . . . .. .. ... ... .. ....... 91
A.3 Mountainriverwithoutwater . . . . . . .. ... ... ... 91
A.4 Mountain river without waterorerosion . . .. ... ... ... .. ........ 92
A.5 Mountain river camera 2 withoutwater . . . ... ... ... ... ......... 92
A.6 Mountain river camera 2 without water or erosion . . . .. .. .......... 93
A7 Combinedterraincamera2 . . . ... ... ...ttt 93
A.8 Combined terrain camera2noerosion . . . . ... ... ... ... 94
A9 Combinedterraincamera3 . . .. .. ... ... ... 94

A.10 Combined terrain camera3 N0 €roSioN . . . . . v v v v v it e e e e e 95



Glossary

artifact

asset
CPU

GPU

grid level

kernel

LoD

scene

spline

terrain feature

An unnatural and unwanted effect.

A finished component in Unity 3D which one
can easily add to a scene.

Central Processing Unit.

Graphics Processing Unit.

A grid level is a stage in the multigrid solver. In
Figure 3.3 each row is a multigrid level. The size
of the grid is equal to 2* where x is the grid level.
A function in a compute shader that is called
from the CPU. For instance, a kernel is often
run for every cell in a grid, every pixel of an im-
age or every triangle in a mesh.

Level of Detail.

We use scene in a similar manner to how
it is used in Unity 3D. A scene is a three-
dimensional space in which objects can be po-
sitioned and rendered.

A spline is a piecewise polynomial curve.

A larger part of a terrain for example a hill, val-

ley, mountain, river or crevasse.



Chapter 1

Introduction

Figure 1.1: A terrain generated with our method

1.1 Motivation and background

Generated landscapes and worlds are more and more used as our lives become more digi-
tal. Digital landscapes are used in many computer games and have recently had a promi-
nent role in the movie The Lion King (2019) [2] and the TV show The Mandalorian [3]. The
Lion King (2019) was created and filmed in a virtual reality video game. The Mandalorian
was filmed entirely in studios and the landscape added digitally afterwards. Already in 2004

the game World of Warcraft [4] featured a huge world with different biomes and terrain fea-

2



CHAPTER 1. INTRODUCTION 3

tures. The premise of the game is to defeat enemies and complete quests to gain levels and
abilities until you can defeat the strongest foes. You team up with and fight other players
while exploring the world. The game was designed with different zones with different atmo-
spheres, vegetation, landscape features, and creatures. One of the motivations to gain levels
was to be able to freely explore the world and all its wonders. This exploration aspect was
also used in the game No Man’s Sky [5] from 2016. In this survival game, a player can repair
their spacecraft to travel between planets to find resources, currency and new species. All of
these planets are entirely procedurally generated which means there are about 18 quintillion
unique worlds [6] the player could explore. Such exploration games could not exist without

the research done in this field.

Research on terrain generation has been explored since the 90s, and there are still prob-
lems left to be solved. Already in 1982 two algorithms for large-scale terrain generation were
proposed [7]. Since then the field has evolved to involve complex simulations of natural
phenomena and machine learning. Though machine learning can generate very realistic
terrains these methods still suffer from one of the same problems as the first methods did -
user control [7]. User control is how easy it is to change the terrain and form it in a specific
way. Hnaidi et al. created a method for generating terrain with good user control where the
user controls the terrain by drawing splines [1]. According to Galin et al. [7], their methods
do not look that realistic and it can be tedious to add details. Generating terrain with simula-
tions of natural phenomena looks a lot more realistic. These methods do however also suffer
from a lack of user control and they are very performance expensive. Because of the lack of
user control as well as other problems designers are forced to revert back to manual editing

of the terrain to realize their intentions [7].

1.2 Obijective

In this thesis, we explore the possibilities of designing terrain with good user control and in-
teractivity by utilizing feature-based design using splines. We focus on improving the paper
"Feature based terrain generation using diffusion equation" [1] by Hnaidi et al. to make it
easier to create features of small and large scale and mitigate the repetitiveness of the noise.
To mitigate the repetitiveness of noise we explore warping the noise and simulating ero-

sion.



CHAPTER 1. INTRODUCTION 4

Our contribution is a new method for generating terrain with an implementation of terrain
generation using splines, diffusion, and erosion simulation in Unity 3D [8] that can be used

for further research and terrain generation.

As our objective is to explore we define performance and memory optimizations as out of

scope for this thesis.

1.3 Research questions

RQ1) How can one design a consistent terrain with a combination of fine-scale and large-
scale features?
RQ2) How can one mitigate the repetitiveness of the noise added in feature-based terrain

created with diffusion?



Chapter 2

Background and related Work

In order to answer our research questions we first need to look at the different methods used
to generate terrain and why answering these questions contributes to the field. In this chap-
ter, we look at four generalized methods which cover most of the terrain generation methods
used and the different data structures for representing the terrain. Then we look at previous
papers describing two terrain generation methods essential to this paper: feature-based ter-
rain using diffusion and erosion. Finally, we briefly explain the Graphics Processing Unit
(GPU); how the GPU compares to the Central Processing Unit (CPU), how one programs the

GPU and some new features introduced in recent years.

2.1 Terrain generation methods

Today there are many methods for generating terrain, several of which are discussed in the
recent paper by Galin et al. [7]. We give a quick overview of some of the methods, but for a
more general overview we refer the reader to the paper "A Review of Digital Terrain Model-

ing" [7].

2.1.1 Noise-based generation

Noise-based generation is a method suitable for creating large-scale terrain [7]. Any noise-
based generation relies on a smooth noise function such as improved Perlin noise [9] or
Worley noise [10]. These types of functions are extensively researched [10]-[15] for use in

many fields including terrain modeling [16]. Different layers of noise are calculated on the



CHAPTER 2. THEORY 6

grid with different amplitude and frequencies and added to create the final terrain. A com-
mon function for creating terrain using noise where S is a smooth noise function and p is a

point:

n
N(p) =) AxS(pxp) 2.1)
k=0

where Ay is the amplitude for each layer, n denotes the number of layers and ¢y, is the fre-
quency of each layer. This results in basic terrain types, however, this can be adapted to
create more complex forms. Carpentier et al. [14] proposed a more complex function which
uses warping. Warping is mapping the point p in a non-linear manner before sampling the
point with the noise function S. They proposed a more general function using three trans-

formation functions Ty, Tpre and Tpos;-

n
N(P) = Tpost (Y AcTin(S(Tpre(Prp)))) 2.2)
k=0

These three transformations can be used independently or combined to recreate well-known
noise functions. One can by defining T),,. as a non-linear mapping function create warped
noise. Ty, can be defined as Tyro(h) = 1 —|h| to create the well-known ridge noise. Tpos;
can be used to make hills and valleys steeper and the area in between flatter. In their pa-
per Carpentier et al. [14] used these transformations to create "erosive noise" which they
designed to emulate the effects of hydraulic erosion. Carpentier et al. state that "...defining
such a function is probably as much an art as it is a science". Though noise-based generation
methods work well for generating infinite terrain or randomized terrain, they are difficult to

control and often overly reliant on noise functions [7].

Figure 2.1: Noise-based terrain using Equation 2.1



CHAPTER 2. THEORY 7

2.1.2 Feature-based terrain generation

Feature-based terrain generation methods generate terrain from a set of parameters called
features. These features could be as simple as a point in space representing a mountain
top [17] or as complicated as the statistical measurements of mountains [18]. feature-based
methods generate terrain around these features and depending on the method often add
noise [1] or erosion [18]. When features define the height of the terrain at certain points in
the terrain both the Djikstra shortest path algorithm [17] and solving a diffusion equation
[1] has been used to fill in the rest of the terrain smoothly. Génevaux et al. published a pa-
per [19] generating terrains with complete river networks from a contour and partial river

sketches.

Feature-based methods give great user control as the input is closely related to the resulting
terrain. By moving a mountain top feature the entire mountain is moved and the surround-
ing terrain adjusts to the change. This gives designers great control over the terrain and let
them create the terrain they envision. When designing feature-based terrains one can itera-
tively improve the terrain by adding more and more features to control the generation. The
drawback with this method is that adding fine details to the terrain could take a lot of time.
The method can not generate terrains of infinite size like noise-based generation can. It can
not be as realistic as simulated and example-based terrains either. Feature-based terrains
are preferable when the designer needs a lot of control over the terrain and is designing a

static world.

2.1.3 Terrain process simulation

Terrain process simulation is used when creating natural terrain by simulating natural phe-
nomena that affect the terrain like tectonic-plates movement, thermal erosion, and hydraulic
erosion. These effects can create natural-looking terrain features. The drawback with this
technique is mainly the time these simulations take as well as a lack of user control. A sim-
ulation is often based on initial settings which are all the user can change and running a
simulation can take from a second to several hours [7]. We discuss simulating erosion fur-

ther in section 2.4.



CHAPTER 2. THEORY 8

2.1.4 Example-based terrain generation

Example-based terrains utilize machine learning to generate terrains. The results of the tech-
nique are heavily dependent on the data the machines are trained on and will create terrains
that are similar to that data. This method can provide moderate user control where users can
provide sketches of terrain or heightmaps using different labels. For this to be possible there
has to be a significant amount of examples using sketches or labels which are often labeled
by hand. Guérin et al. [20] automated the labeling process by analyzing real terrain data and
extracting curves and other data which they used as input to the algorithm. They generate
realistic terrains with erosive features in less than a second with a synthesizer. We rendered
one of their results in Figure 2.2. The results are limited as they need to train one terrain syn-
thesizer for each type of terrain and the designer needs to learn to draw input sketches in a
way the synthesizer understands. Example-based methods are limited by their training and
input data and do not always generate realistic terrains. This is an under-explored part of

terrain generation [7] with the potential to generate large realistic terrains in seconds.

Figure 2.2: Example-based terrain from Guérin et al. [20]

2.2 Terrain data representations

To represent terrain data for three-dimensional scenes one can use elevation models, volu-
metric models, or something in between. These categories are based on how well they can

represent three-dimensional terrain features.



CHAPTER 2. THEORY 9

2.2.1 Elevation models

The most common representation of terrain is with a heightmap [7]. A heightmap is a two-
dimensional grid of values where each cell represents the terrain height at that point. This is
very easy to create and work with as it can be represented as a grey-scale image or texture. As
the terrain is defined with only one height-value for each coordinate it is not possible to rep-
resent terrain features with overhangs or caves as this requires more information. Figure 2.3

shows a heightmap on the left and a rendering of how it looks as a terrain on the right.

Figure 2.3: A heightmap and a rendering it as a terrain

2.2.2 Volumetric models

Volumetric models are models for representing three-dimensional terrain. Perhaps the most
common representation is voxels which are evenly distributed data points in a three-dimensional
grid. They take a lot more space than heightmaps as they have one more dimension. A cell in
a three-dimensional grid often represents if there is terrain at that point or not, but can store
any information such as material hardness and temperature. Using such models gives a lot
more flexibility for the terrain as you can have overhangs and caves, but it is as of writing this

paper slow and not feasible for higher resolution terrain [21].



CHAPTER 2. THEORY 10

2.2.3 Hybrid models

Hybrid models are data representations somewhere between the two previously discussed
models created to mitigate one or more weaknesses while still being reasonably fast. One
such model is a multilayered heightmap which is used in some simulations to represent dif-
ferent types of material with various properties [7]. A multilayered heightmap uses many

times more memory than a heightmap and is more difficult to render.

2.3 Feature-based terrain generation using diffusion equa-
tion

In 2010 Hnaidi et al. [1] published a paper describing how one can generate terrain using
diffusion equations at an interactive speed. Their method lets a user define splines with
different properties and different heights along the curves. These splines are used in the
diffusion equations which they solve to generate a smooth terrain that follows the curves
of the splines. To make the terrain more natural they generate noise-based on one of the

diffusion equations and add it to the smooth terrain.

Hnaidi et al. [1] takes the concept of using diffusion to make a smooth transition between
splines from Orzan et al. [22] which used the concept to generate images. To solve the diffu-
sion both papers based their implementation on the paper by McCann et al. [23] which uses
a multigrid implementation. In this section, we will describe the method used by Hnaidi et
al. [1], Orzan et al. [22] and explain diffusion and multigrid solver. Figure 2.4 shows a feature-

based terrain created with diffusion.

Figure 2.4: feature-based terrain from Hnaidi et al. [1]



CHAPTER 2. THEORY 11

2.3.1 Diffusion curves

In 2008 Orzan et al. [22] published a paper about using diffusion curves in image design.
They described and implemented an algorithm for describing vector graphics using Bézier

splines and diffusing colors from each side of the splines to color the image.

Orzan et al. found that using splines was quite intuitive [22] and their method was better at
representing images as vector graphics than previous methods. An image was represented
with 2D splines where each spline had a color on each side as well as a blur parameter. Both
the color and blur could vary along the spline independently of each other. To generate the
image from this data they rasterized the splines onto grids, solved two diffusion equations

using the grids, and applied a blur to the image.

Hnaidi et al. [1] used a very similar method as Orzan et al. [22] for generating terrain. They
introduced the concept of guided diffusion. This lets the user guide the terrain up or down
away from each spline. To do this they changed color sources to represent the normal vectors
of the curves. With this data, they could guide the terrain to create different terrain features.
They added a gradient parameter that denoted the angle of the guided diffusion as well as
two parameters for generating noise. Finally, they combined guided and unguided diffusion
by introducing two weighing parameters a and . We explain the math for this in subsec-
tion 2.3.4. Throughout chapter 3 we explain the differences between our method and the

method Hnaidi et al. [1] used.

2.3.2 Diffusion

Diffusion is the movement of a substance from an area of high concentration to an area of
low concentration. It can, for instance, be used for describing heat transfer and fluid me-
chanics. Diffusion can often be described with a boundary value problem as a Poisson equa-

tion. A Poisson equation has this form:

Au=f (2.3)

where A is some operator acting on an unknown scalar field # with a non-homogeneous
source term f. The boundary-value in this context is a definition of what value to use when

at the edge of our scalar field. One can for instance use the closest value.



CHAPTER 2. THEORY 12

A popular method for solving Poisson equations is using Jacobi iteration. This method uses
the residual to correct the equation in an iterative manner. Jacobi iteration works well with
modern computing as a lot of the computation can happen in parallel which the GPU excels
at. This method does not always converge towards a solution, if the operator A is not strictly
diagonally dominant it might not converge towards a steady-state solution [24]. A commonly

used operator is the five-point Laplacian discretized which is approximately:

Au= Ui—1,j+ Ujt1,j+ Ui j—1+ Ui j+1 — AU j (2.4)

2.3.3 Multigrid solver

A multigrid solver is a method for solving Poisson equations that utilize the power of the
GPU. Briggs et al. [25] explains the inner workings of a multigrid solver in detail as well as
providing pseudo-code for an implementation. We use the same variable convention as they

do. We start with the problem

Au=f (2.5)

wherein the context of a multigrid solver A is a second derivative function, u is the unknown
and f is our source term. We want to find the variable u or a close approximation of it. To
do this we start with an initial guess vy which we set to 0. We calculate the residual of the

equation:

r=f-Av (2.6)

If the residual r is less than a threshold, for instance r < 0.01, we accept v as the solution.

However if the residual is not less than the threshold we need to improve our guess vy.

To improve our guess v we use Jacobi iteration.

Viy1 = Av; + fl . h2 (2.7)

where h = Zig and g is the grid level. Equation 2.7 is a Jacobi relaxation term from Briggs et

al. [25]. We use this as the general Jacobi relaxation term to explain our relaxation term in



CHAPTER 2. THEORY 13

section 3.4. One does not need to use this to define a Jacobi relaxation term, both Briggs et

al. [25] and McCann et al. [23] has proposed other more complicated relaxation terms.

The convergence of the grid is approximately 1 — O(h?) which is not practical to work with
on larger grids. To improve the convergence time we can solve the problem on a smaller grid
which is significantly faster and use the solution for the smaller grid as our initial guess vy.
When u and f are grids, we reduce the problem to a smaller grid by using the restriction
matrix, %, and interpolate the problem back using the interpolation, &2, matrix in Equa-

tion 2.8.

1 1 1

1 2 1

— — |1 1
9GP =R = 3 1 3 (2.8)

111

4 2 4

We can do this recursively and solve the equation when there is only one unknown at 7 = 1.
Then we interpolate our solution to a larger grid and approximate a solution using Jacobi
iteration. We repeat interpolating and solving the grid until the grid is of the correct size.

Then we have an approximate solution to our initial problem.

We can visualize this method with Figure 2.5. In this example multigrid, we approximate a
solution to the Poisson equation 2.5, where f is a two-dimensional grid of size 2048x2048.
f is defined based on some input data. Then we restrict f with Equation 2.8 to half its size
repeatedly until it is small enough. In this case, we chose 8x8, but it can be as small as 1x1.
We define vy as a grid of size 8x8 where all the cells have value 0. Then we refine vy with fj in
our Jacobi relaxation. The Jacobi relaxation term is defined with a function like Equation 2.7.
We relax vy multiple times. When r, computed with the residual equation Equation 2.6, is
lower than a set threshold, we interpolate v. We repeat refining v by relaxing it with f of a
similar grid size. When our residual r is low enough we interpolate v again. This process is
repeated until v is as big as the initial grid size and the residual is lower than the threshold.

Then we have reached an acceptable solution.



CHAPTER 2. THEORY 14

Multigrid diffusion

Restricted Refine
problem [ solution
8x8 8x8
S I

Restrict Interpolate
I
Restricted Refine
problem [ solution
16x16 16x16
Restrict Interpolate
I
Restricted Refine
problem [ solution

Restrict Interpolate
Define Refine Solved
Input data » problem [ solution > rdbilem
2048x2048 2048x2048 P

Figure 2.5: Visualization of a multigrid

Multigrid solvers are usually more complicated than what we described. One can change
the method to run at interactive speeds [23] and iteratively improve the results. We do not
explain how these solvers work as we do not use them for our implementation. Similarly to
Hnaidi et al. [1] and Orzan et al. [22] we only use the theory above for our multigrid solver.
To learn about the more complicated multigrid solver we refer the reader to Briggs et al. [25]

and McCann et al. [23].

2.3.4 Generating terrain with multigrid solver

The paper “Feature based terrain generation using diffusion equation” by Hnaidi et al. [1]
uses the multigrid solver to diffuse curves on a canvas inspired by Orzan et al. [22]. Orzan et
al. introduced a local restraint to the Poisson Equation 2.5. Let C denote a sparse grid with

seed values.

Au = fuyy = Cy,y if Cy y stores a value (2.9)



CHAPTER 2. THEORY 15

Hnaidi et al. [1] used this equation to smooth seed values placed by a user in the form of
splines similar to Orzan et al. [22] to create a heightmap representing a terrain. Hnaidi et
al. [1] used this equation with f =0 to get a smooth terrain and a smoothing kernel in their
Jacobi relaxation function. They made some additions to the Jacobi relaxation function we

used earlier Equation 2.7 by adding a weighting with ¢ and  and added a gradient.

010
1
Vit1 = @€ Av; + B(FN + Gy,y), where A = 1 1 01 (2.10)
010

where Fy is the weighted average based in the direction of the normal vector of the curve,
Gy,y is the change in height and the two components are weighted by a and  where 0 <

a,f<slanda+p=<1.

These changes are made to have more control over the diffusion process so the diffusion
looks more like the terrain features they try to generate. They similarly to Orzan et al. [22]
only run one cycle with the number of Jacobi iterations based on the grid level h where the
number of Jacobi iterations are 5(/ — h) where [ is the number of grid levels and # is the

current grid level.

2.4 Frosion simulation

In the context of terrain generation, we define erosion simulation as a process to simulate
the effects of some natural phenomena on the terrain where mass is transported from one
location to another. This can be simplified into three steps, detach mass from one location,
transport it to another location and deposit the mass at the new location [7]. Here we will
discuss the two most common phenomena that are used in erosion simulations: hydraulic

and thermal erosion.

2.4.1 Hydraulic erosion

Hydraulic erosion simulates the terrain deformation from sediment being picked up by wa-
ter and moved to another location at a lower altitude. There are two methods for simulating

such erosion: Eulerian and Lagrangian [7]. The Eulerian approach is discretizing the terrain



CHAPTER 2. THEORY 16

e
o o

Figure 2.6: Terrain eroded with hydraulic erosion from Mei et al. [26]

Copyright © 2007, IEEE

onto a grid and remember how much water and sediment is in each cell. This is the method
used in this thesis and by Mei et al. [26]. The Lagrangian approach is simulating particles of
water and remember where each particle is located and how much water and sediment each

particle has.

Hydraulic erosion creates quite distinct features in a terrain which is shown in Figure 2.6.
This figure shows four renderings of the erosion process. Subfigure a) shows the initial ter-
rain, b) is early in the erosion process, c) is later in the erosion process, and d) is the terrain af-
ter the erosion. The colors represent different aspects of the erosion process. Blue represents

water, green represents suspended sediment, and red represents deposited sediment.



CHAPTER 2. THEORY 17

2.4.2 Thermal erosion

Thermal erosion is simulating rock slides caused by weathering of the terrain making it un-
stable. The weathering is mainly caused by water sliding in between rocks freezing and ex-
panding when the temperature changes causing the rocks to break. This erosion mainly
affects cliffs and steep slopes. Weathering of the rocks was one of many erosion processes

that Musgrave et al. [27] described as a part of thermal erosion of heightfields.

2.5 Programming the GPU

The GPU has a different architecture than the CPU which can be utilized to speed up cal-
culations on computationally heavy algorithms that can be run in parallel. Goodnight et al.
[28] compared their multigrid implementation on the CPU and the GPU and found the GPU
implementation between 13 and 15 times faster. One of the key differences is that the GPU
can load multiple mathematical calculations using the same operator and calculate them all
simultaneously. This can be utilized to run the same operation for every pixel of an image
or every element of a list. When it comes to terrain generation this is used to speed up noise
functions, simulations, diffusion, and rendering, however, rendering is out of scope for this

thesis.

When programming on the GPU, one has to use a language the GPU can understand. Such
languages are called shader languages. There are different types of shaders one can use. In
DirectX 9 only fragment and vertex shaders were supported [29]. These are the two shaders
needed to render triangle-based objects. This is exploited in multigrid-solvers [28] and sim-
ulations [26] as there were no alternatives. With DirectX 11 the compute shader was intro-
duced [30]-[32]. The compute shader does not have the same restrictions as the fragment
and vertex shader and can be significantly faster for some calculations [33]. In this paper, we

will only use the compute shader when running code on the GPU.



Chapter 3

Methods

In this chapter, we give an overview of our method for generating terrain before defining new

concepts and explaining how we use diffusion, multigrid solver, noise, and erosion.

3.1 Overview

First, we introduce our method for generating terrain from our features with diffusion, noise,
and simulating erosion to get the final terrain. Then we introduce our multigrid solver and
the differences from the previous works of Hnaidi ez al. [1] and Orzan et al. [22]. Finally, we

introduce our four novelties which we discuss in chapter 6.

Figure 3.1 shows how we divide our method into four parts. This figure uses actual data
from generating a terrain with our method using one spline. Each box with an image is a
texture used in our method except "3D feature splines" which is a representation of our input
spline. "Final terrain" is a high-resolution rendering of the generated terrain. Our input
data are curves with attached parameters which we call feature splines. We define these in
section 3.2. This data is modeled by a user in a 3D environment. Each feature spline contains
information about its position, the height of the terrain, gradients as well as noise, warp, and
erosion parameters. We rasterize the feature splines to six grids as shown in Figure 3.1. Then
we diffuse the parameters and normals and use guided diffusion on the heightmap. In the
third step, we generate and add noise the heightmap which we use to simulate erosion. After

adding the erosion to the heightmap we get our final terrain.

18



CHAPTER 3. METHODS 19

Rasterize to 2D grids Diffuse the grids Generate and Erode the terrain

'j add noise

N

Erosion Diffused
parameters erosion

parameters

Simulated
erosion

Heightmap

Diffused Heightmap Heightmap
S heightmap with noise with noise
and erosion

Restrictions

=

Normals

Final terrain

3D feature splines

Diffused
noise

Generated
parameters parameters noise

Noise

Diffused
Warp warp
parameters parameters

Figure 3.1: Illustration of our method

This is a short overview of our method which is similar to the method of Hnaidi ez al. [1] with
added parameters and erosion. They used a multigrid solver to generate their terrain. Our
multigrid solver differs from theirs by doing all the four steps above and not just the diffusion.
A multigrid solver solves a diffusion equation by reducing the problem to a smaller grid,
solving the easier problem, interpolating the easier problem to a larger grid, and refining
the solution. Instead of reducing the problem, we define the problem for each level in the
multigrid as shown in Figure 3.2. We define the problem by rasterizing the feature splines
and we refine the solution with our Jacobi relaxation term described in section 3.4 which

results in a smooth terrain.



CHAPTER 3. METHODS 20

Multigrid diffusion

Define Refine
problem > solution
8x8 8x8

Interpolate
Define Refine

problem > solution

: 16x16 16x16
s
— \/ f‘ — [

/;0’5 Interpolate

P ~
E = et
1 o ~—— 25

2 g el

3D feature splines Define Refine
problem [—=>{ solution

Interpolate

Define Refine
problem [—=>{ solution
2048x2048 2048x2048

Smooth terrain
2048x2048

Figure 3.2: Simplified multigrid solver

We extend our multigrid solver to simulate erosion in addition to solving the diffusion equa-
tion. Similarly to refining and interpolating the result to the diffusion equation we erode and
interpolate the result of the erosion. As shown in Figure 3.3 we take the smooth intermediate
terrain, add noise, and erode the terrain on each level of the multigrid. This is what we call
multigrid erosion - the process of eroding the terrain at smaller grids and interpolating the

erosion results. We describe this in more detail in section 3.7 and subsection 4.5.1.



CHAPTER 3. METHODS 21

Multigrid diffusion Erode the terrain
Define Refine Erode
problem > solution [—Addnoise» terrain
8x8 8x8 8x8
Interpolate Interpolate
Define Refine Erode
problem > solution [—Addnoise» terrain
I 16x16 16x16 16x16
SR I |
~ \/ fj Interpolate Interpolate
=== s \ 4 \ 4
3D f tj - i Define Refine Erode
eature spiines problem > solution [—Addnoise» terrain
Interpolate Interpolate
Define Refine Erode
problem > solution [—Addnoise» terrain >
2048x2048 2048x2048 2048x2048

Finished terrain
2048x2048

Figure 3.3: Illustration of our multigrid solver where each row represents a grid level

Our method has four novelties which we discuss individually in chapter 6. The first novelty is
our multigrid diffusion which we illustrated with Figure 3.2 where we define the problem on
each grid level. section 3.4 describes our diffusion and multigrid diffusion in detail as well as
shows how this novelty gives more control over the diffusion process. Our second novelty is
the multigrid erosion illustrated with Figure 3.3. The third novelty is our constrained erosion
which gives the user more control over the erosion process. We explain both multigrid and
constrained erosion with the erosion process in section 3.7. Our last novelty is extending the
noise equation from Hnaidi et al. [1] with the warped noise equation from Carpentier et al.

[14]. We refer to this novelty as diffused warped noise and explain it in section 3.6.

3.2 Concepts

We introduce two new concepts which we will use throughout the thesis: feature spline and
meta point. Both of these are based on concepts introduced by Hnaidi et al. in [1] and ex-

tended and adjusted by us.



CHAPTER 3. METHODS 22

3.2.1 Feature spline

Feature splines are three-dimensional vector-based piecewise Bézier cubic splines with a
set of attached meta points. The feature splines work like feature curves in Hnaidi et al.
[1] but are in three dimensions instead of two and have slightly different data attached to
them which we call meta points. Each feature spline contains one or more Bézier curves, the

number of curves are denoted as C, and zero or more meta points are denoted as M;.

(2,2,0)0

/
/

-

(1,0,1)

Figure 3.4: Three-dimensional cubic Bézier curve

3.2.2 Meta point

Meta points are data points placed along a feature curve describing the properties of the

spline. A meta point is defined by the following attributes where m denotes the number of

meta points:
M; = (uj, i, (ai, bi, hy), (Ai, R, (Dy, Fi), (W, 57)) € [0, m]
Meta parameter Type Description
U; float the position parameter
T float half the width of the feature spline
a; and b; 2D vectors they control the gradient on both sides of the spline
h; float hardness of the gradient
A; and R; floats noise parameters
D; and F; floats noise warping parameters
w; and s; floats parameters used to control erosion

Table 3.1: Meta point parameters

A meta point is attached to a feature spline and positioned on the spline based on the pa-
rameter u;. With u; = 0 the meta point is positioned on the start of the spline and u; =1 is

positioned at the end of the first curve. The value is restricted to be between [0, C] where C



CHAPTER 3. METHODS 23

denotes the number of curves of the feature spline. All parameters except for u; are interpo-
lated linearly between the closest meta points along the spline. Figure 3.5 shows four meta

points positioned on a feature spline with one curve.

Figure 3.5: Positions of four meta points on a feature spline

A feature spline has a width, r;, a gradient on both sides, a; and b;, and hardness, h;. The
wider the spline the more cells it covers in the grid during our diffusion process. The gradi-
ents have a width, height, and hardness used for calculating  and G(x, y) in the diffusion.

From the direction of the curve, we visualize this in Figure 3.6.

T b,j

a;

Figure 3.6: Visual representation of a meta point r;, a; and b; from the direction of the curve

The rest of the parameters in Table 3.1 are used for generating noise and simulating erosion.
We explain how we prepare the parameters in section 3.5 with parameter diffusion and then

use them in section 3.6 and section 3.7.

3.3 Terrain modeling

A user models a terrain by placing multiple feature curves with attached meta points in a
3D space. The terrain follows the feature splines and goes in the directions of the gradients
defined by the meta points. With meta points, a lot of terrain features can be created. There

are many examples in Hnaidi et al. [1].



CHAPTER 3. METHODS 24

3.4 Diffusing the terrain

Our diffusion is expressed as a Poisson equation with a restriction on the solution and a
boundary value problem. Let S(x, y) denote the height value of our curves at (x, y). Now we

can describe our diffusion as:

Au=0 (3.1)

u(x,y) = S(x, y) if S(x, y) is set (3.2)

We simplify our Poisson equation to a Laplace equation with the local restriction in Equa-
tion 3.2. We define our second derivative function as a discretized matrix similar to the one
defined by Hnaidi et al. [1]. Let0<a,0<fand0<a+ B < 1. G(x,y) is a grid with guid-
ing gradients and N(x, y) is normalized normal vectors. The Jacobi relaxation iterates over
i.

We define the Jacobi relaxation term as:

Vit1 = @Av;+ B(Bv; +G) 3.3)

This equation is a weighted version of the general Jacobi relaxation Equation 2.7 where h = 1.
We set h = 1 because we define our Poisson equation at each grid level. This leads to each
grid level being the first. The first part of the equation weighted with «a is the smoothing part.
We define A from the nine-point approximation to the Laplace function, similarly to how
Hnaidi et al. [1] used the five-point approximation, shown in Equation 3.4. This averages the

current cell to the surrounding cells.

1 11
1
A= 3 1 01 (3.4)
111

The second part, weighted with S, is a guiding term that guides the diffusion in the direction
of the normalized normal vector scalar field N. B calculates the value in the opposite direc-

tion of the normal vector in a bilinear manner. This part takes the pixel in the direction of N



CHAPTER 3. METHODS 25

and adds the gradient G.
0 max(0, NJ,)2 0
B = | min(0, Ny)? 0 max(0, Ny)* (3.5)
0 min(0, Ny)? 0

By rearranging the previous equations we get the following Equation 3.6 which is equal to
the general Jacobi relaxation term from Equation 2.7 when & = 1. We use the operator K for

our more complex operator rather than A to avoid confusion.

vi+1 = Kv; + f, where f =G (3.6)
s $a+ B max(0, Ny)? s

K= §a+ﬁ- min(0, Ny)? 0 %a+ﬁ-max(0, N,)? (3.7)
%a %a+ﬁ-min(0, Ny)? %a

Our relaxation is slightly more complex than the one used by Hnaidi ez al. [1] and uses a nine-
point approximation of the Laplace function instead of an averaging function. We use the
nine-point approximation and not the five-point approximation as this seems to converge

with marginally fewer iterations.

We will use the same terminology with this diffusion as Hnaidi et al. [1] where this is referred

to as guided diffusion. If @ = 1 and = 0 for all cells in the grid, we call it diffusion.

For our boundary value problem, we chose the closest value. This means when a point in
any of our calculations is outside of our grid we sample the closest point which is inside of

the grid instead.



CHAPTER 3. METHODS 26

Figure 3.7: A spline diffused on all grid levels, 2-12

3.4.1 Multigrid solver

The change we have made to our multigrid solver compared to Hnaidi et al. [1] is that we
define our diffusion equation on each grid level, not just the largest grid. We start at a smaller
grid. We start our diffusion at a grid with a size of 4x4. According to our estimates, they
started with a grid of size 32x32 (or 64x64). We would argue they chose this size because it
limits the area a spline affect which makes it easier to work with. This is also faster as you
do not need to calculate the smallest grids. The ability to limit the area a spline affect is very

useful when using the workflow they described: incrementally adding more details.

We made the process of incrementally adding details easier by letting the user decide how
much area each spline should affect. Our multigrid solver defines the diffusion equation on
each grid level. This lets the user decide if they want to include each feature spline on which
grid levels. We diffused the spline shown in Figure 3.7 where we only defined it on some grid
levels to show how the spline affects the grid on the different grid levels. The spline used in
Figure 3.7 is defined on all grid levels 2-12, that is from grid size 4x4 to 2048x2048. We ren-
dered this spline three times in Figure 3.8 showing the diffusion on the smallest grids, grid
levels 2-6 (grid sizes 4x4 to 64x64) in (a), grid levels 6-8 (grid sizes 64x64 to 256x256) in (b),
and grid levels 8-12 (grid sizes 256x256 to 2048x2048) in (c). Together these three render-
ings splines are equal to the spline rendered in Figure 3.7, thus we call it a deconstruction
of the spline. Splines defined on the smallest grid levels as in Figure 3.8a are very smooth
and great for defining the general shape of the terrain. On the general shape, we can add
smooth curvature, ridges, and rivers with splines defined on the middle grid levels as done
in Figure 3.8b. We can add sharp details like ridgelines, roads, erosive features, or cliffs with

a spline defined on the largest grid levels as in Figure 3.8c. Grid levels let the user decide



CHAPTER 3. METHODS 27

how much of the terrain changes when adding a new spline. It can be compared to differ-
ent brush sizes when painting. One can also create different features by excluding the spline
from some grid levels. Figure 3.9 shows the spline where it is excluded from the grid levels

5-8.

Figure 3.7, Figure 3.8 and Figure 3.9 are all renderings from the same angle of the same spline.
The only difference in the input data between Figure 3.7 and the others are which grid levels

the spline is defined on.

a1

(a) Defined on grid levels 2-6 (b) Defined on grid levels 6-8 (c) Defined on grid levels 8-12

Figure 3.8: Deconstructed diffusion of a spline

Figure 3.9: A spline diffused on grid levels 2-5 and 8-12

3.5 Parameter diffusion

We introduce the concept of parameter diffusion which we use when generating our diffused
warped noise as well as when simulating erosion. This was used by Hnaidi et al. [1] for gener-
ating noise that was coherent with the terrain features and we use this method to give more

control over our erosion as well as generate our noise. Parameter diffusion is the process of



CHAPTER 3. METHODS 28

mapping the parameters from our feature splines and meta points to a grid. When diffus-
ing a parameter we rasterize the data from the feature splines to a grid and interpolate the
values linearly between the meta points along each spline. The resulting grid contains our
diffusion seed values which we use in our local restriction in Equation 3.2. We do not use
gradients, thus we can introduce a new local restriction: f = 0 and a =1 for all cells. Our

Jacobi relaxation term simplifies to:

Vi1 = Av; (3.8)

After solving the diffusion equation we get a smooth grid which we can sample to get the
parameter value on any cell in the grid. Figure 3.10 shows the rasterized parameters and the
solved diffusion grid of two parameters stored in the red and green components of an image.
The spline in the figure has a meta point at the beginning with value 0 for both parameters
and a meta point at the end with value 1 for both parameters represented as red and green.

The parameter diffusion is affected by what grid levels the splines are defined on.

(a) A rasterized parameter (b) The result of diffusion

Rendered at a 128x128 grid to Rendered at a 1024x1024 grid
clearly show the line and color to show the result
change

Figure 3.10: Example of parameter diffusion of two values

3.6 Noise generation

Our noise generation is based on multiple layers of smooth noise. The behaviour of the
noise changes based on our noise and warp parameters which we have diffused. We diffuse

the parameters (A;, R;) and (D;, F;) from our meta point definition in subsection 3.2.2. To



CHAPTER 3. METHODS 29

Figure 3.11: Improved Perlin noise [9]

refer to our diffused parameters we use A(x, y), R(x,y), D(x,y) and F(x, y) respectively. Let
S(x,y) be a smooth noise function. We use improved Perlin noise by Perlin [9] visualized in
Figure 3.11. Hnaidi et al. [1] used A(x, y) and R(x, y) similarly to us. They defined their noise

N(x, y) as the following where r and n are constant integer values.

n
1
NGy =AXY Y. ey S(rkx, r*y) (3.9)
k=0

This noise is rendered in Figure 3.12a with n =4 and r = 2. We introduce a transformation of
the points before sampling the smooth noise function S. This is a part of the noise generation
function which Carpentier et al. [14] used. They defined three transformation functions used
in different parts of their noise function. Carpentier et al. defined their general noise function

N(p) as this:

N(p) = Tpost(z Ak Tin(S(Tpre((,bkp)))) (3.10)
k=0

To create a warp effect with this equation we need to define Ty, as a non-linear mapping
function. We combine these noise functions by including T}, from Carpentier ef al. [14] in

the noise equation from Hnaidi et al. [1] to get our noise function Equation 3.11.



CHAPTER 3. METHODS 30

(a) Without warping (b) With warping

Figure 3.12: The effect of noise warping

n
1
NG Y) =AY Y s STpre(r* i,y 1) (3.11)
k=0

We use n =4 and r = 2 to generate our noise. These values control the number of layers of
noise and how the layers differ in frequency and amplitude. We create a warp effect with our
definition of Tj,.. To make the function non-linear we sample the smooth noise function
at different locations to get an offset vector and add this to the point p. With the following

equation, D scales the lower frequencies and F scales the higher frequencies.

D
Tpre(p, k) =p+(k-F(p) + %’2) [S(s1+ p), S(s2+ p)] (3.12)

where s; and s, are seed values which should be different and p is a point or two float values.
In our implementation we used s; = 50 and s, = 150. These equations generate smooth noise
with no visible artifacts. For different noise, one can experiment with different values of n
and r as well as the smooth noise function S. Figure 3.12 shows the same noise with and

without warping.

We can see the effect of D and F separately in Figure 3.13. In Figure 3.13a we vary the pa-
rameters D and F to show how these parameters affect the terrain. We used D=1and F =0

at the bottom of the image, D = F = 0.5 in the middle and D = 0 and F =1 at the top of the



CHAPTER 3. METHODS 31

image. One can see that the bottom half has the large features warped and the top half has
warping of a smaller scale as well. Figure 3.13b was generated with no warping in the mid-
dle and varying warping and roughness above and below. This image shows that our noise

function does not generate any artifacts.

(a) The effect of D and F (b) Varying values of R, D and F

Figure 3.13: Blending of noise

3.7 Erosion simulation

After generating a smooth terrain and adding warped noise we use this to simulate erosion.
We chose to use an Eulerian approach to erosion simulation meaning simulating using a
grid. This was a natural choice as we use grids in our multigrid solver. The erosion can make
the terrain look more natural as it simulates a natural process. Noise is by nature repetitive at
a certain scale. This is slightly mitigated by parameter diffusion, though with a large amount
of noise it is quite noticeable. This is why we added erosion as this is not repetitive and

changes the terrain in a natural way.

3.7.1 The erosion process

Our method for hydraulic erosion is very similar to the method proposed by Mei et al. [26].
Our method is a seven step model designed to run on the GPU using shallow water differ-

ential equations to simulate water flow. The faster the water moves and the steeper the ter-



CHAPTER 3. METHODS 32

rain is the more erosion occurs. In this section, we describe each of the seven steps in our

method.

This simulation has a lot of variables that the user can set to adjust the water and erosive
behavior. For a better reading experience, we introduce these variables as a table with a short
description in Table 3.2. We simplified all equations which use At. Whenever At is used to
calculate a value, the new value represents the value after At time has passed and should
be written with X;;, assuming X is the updated value. When X is used in the equation it

represents the value at the current time X;.

Erosion parameters Short name Description

Pipe Area A The diameter of the virtual pipe

Gravity g The downwards acceleration affecting the water
Pipe Length 1 The length of the virtual pipe

Sediment Capacity K, How much sediment can the water hold
Suspension Rate K; How fast sediment is picked up into the water
Deposition Rate Ky How fast sediment is deposited from the water
Evaporation Ke Percentage of water evaporated

Max Rain Intensity Iy Maximum water in a raindrop

Min Rain Intensity  Iyin Minimum water in a raindrop

Max Rain Size Riax Maximum radius of a raindrop

Min Rain Size Ruin Minimum radius of a raindrop

Time Delta At Step size of the simulation

Table 3.2: Erosion Parameters

Water increment

First, we add water to the simulation either as a water source or as randomized rain. A wa-
ter source has a position, radius, and intensity describing how much water is added. Rain
has similar properties as a water source, but they are randomized each time this step is run.
The position parameter is a randomly chosen continuous point inside of the grid. Both the
intensity and radius are randomly chosen continuous values between minimum and maxi-
mum values set by the user. We denote the minimum and maximum intensity as I,,;;, and

I'max and similarly R, and Ry, for the radius.

Algorithm 1 is pseudo-code to explain how we randomly choose our properties and then
update the water height. Let width and height be the width and height of our grid and let
random be a function returning a random number between 0 and 1. First, we calculate our

three properties before checking each cell in our grid. If the position of a cell is inside of the



CHAPTER 3. METHODS 33

radius of the raindrop we add water to this cell. The amount of water we add is the intensity
property multiplied with w; which is our diffused parameter defined in subsection 3.2.2. We

store the water height in the grid S, .

Algorithm 1 Water increment
intensity — random() - (Imax — Lmin) + Imin
radius — random() - (Ryax — Rmin) + Rmin
position — float2(random() - width, random() - height)
for all (x,y) — grid do
if (x — position.x)* + (y — position.y)* < radius* then
Swl(x, Y] — Swl(x, Y)1 + intensity- w;[(x, y)]
end if
end for

Water flux

Then we calculate the flow of water called water flux, based on the height difference between
neighboring cells. For each cell, we compare the height to the four closest neighboring cells
and calculate how much water should flow out to each of the cells. We denote d as the four
closest neighbors d = [, r, t, b which represents the neighboring cell to the left, right, top and

bottom respectively.

fa=maxO, fg+At-A-

& 'AZH"’ ) (3.13)

where d denotes the direction and is ran for up, down, left, and right, f is a grid where our

flux is stored and A Hy is defined in the following equations.

AH(x, ) = Swe, N+ S, )+ T, ) = (Swx -1, +S:(x-1, )+ T(x-1,5) (3.14)

AH (x, V) =Swx, ) +S:x, )+ T(x, )= (Swx+1, M+ S:;(x+1, )+ T(x+1,y)) (3.15)
AH(x, ) = (Swx, ) +Se(x, )+ T(x, ) = (Sw(x, y+ 1)+ Se(x, y+ D+ T(x,y+1)) (3.16)

AHp(x, ) = (Swx, )+ S, )+ T(x, ) = (Sw(x,y—1D+S:(x,y—-D+T(x,y-1)) (3.17)

where S; is a grid representing the removed and added sediment, S, is the water height and

T is the terrain height. To ensure we do not move more water out of a cell than there is in



CHAPTER 3. METHODS 34

the cell, we use a scaling factor K. We update the value of f; by multiplying it with K in
Equation 3.19. Though Equation 3.19 is not a valid mathematical representation of updating

fa, we use it as this is how the process is described by Mei et al. [26].

K = min(1 Swbx-ly ) (3.18)
=min(l, .
(fi+fr+ fr+ fo)AL
fa=K-fa (3.19)

Water update

We use the water flux grid to update the water height. The new water height for each cell is
the current water height plus the sum of incoming flux subtracted by the sum of outgoing
flux. We calculate the outgoing flux by summing the the four flux values in the current cell.
To calculate the incoming flux we calculate the outgoing flux in the direction of the current
cell from the four closest neighbours. For example we calculate the incoming flux from the

left by taking the right outflow of the cell to the left: f.(x -1, y).

(fr (6, 1) + filx, ) + f1(x, 9) + fo(x, ) (3.20)
-(fx=-1, M+ filx+ L,y + fr(x,y—=D+ fp(x,y+1)))

Water velocity

The velocity is computed based on the flux map. We calculated the velocity as the flux in x
and y direction divided by the size of the cell. To make the simulation more stable we restrict

the velocity vto —0.5 < v-At <0.5.

=L+ filk+1,y)
Vi = l
il y=D+ fplx, y+1)
- !

(3.21)

Vy

(3.22)



CHAPTER 3. METHODS 35

Local tilt angle

The local tilt angle, ¢, is the angle between the direction of the terrain at a point and a flat
plane aligned with the horizon. Thus we have to find the direction of the terrain for each
point. We take the lowest neighboring point in the x- and y-direction and subtract it from
the height of the cell in focus, H(x, y). Let p be a point representing the height difference in

the x- and y-direction.

px(x,y)=H(x,y)—-min(H(x-1,y), Hx+1,y))
(3.23)

py(x,y) = H(x,y)—min(H(x,y - 1), H(x,y + 1))

We restrict py and py, to 0 <= px <=1 and 0 <= py, <=1 to only suspend sediment when
there is a downward slope. By restricting p like this we ignore upwards slopes. This can be
formulated as a vector v = (py, py,1) and compared to the vector to a vertical vector u =

0,0,1).

v-u

0 S(P = (3.24)
vl - lul
As we are using sin¢ in our calculations we can calculate that directly.
sing = /1 - cos®¢p (3.25)

The final Equation 3.25 uses the square root which is a quite slow calculation. An efficient
approach is to check if either the sediment capacity modifier, s;, or the velocity is zero to cut

off the calculation early.

Suspension and deposition

In this step, we calculate the sediment capacity, C, for each cell and update the terrain height
accordingly. We use the velocity and local tilt angle to calculate our sediment capacity as
well as our diffused parameter s; from the meta points. Let E denote the maximum erosion

change which limits both sediment suspension and deposition to exceed E. E can have any



CHAPTER 3. METHODS 36

value between 0 and 1, we found that E = 0.15 created erosive features of a desirable maxi-

mum depth. We calculate the sediment capacity of a cell with the following equation.

1
C(x,y) =K. sinp(x,y)-|V(x, )| si(x,y)- (E (E—=1Sg1) (3.26)

Let Ss denote a grid representing the suspended sediment, Si; another grid representing the
updated suspended sediment, and Sy, represent the change in terrain height. If C(x,y) is
greater than S;(x, y) we suspend some sediment from the terrain, else we deposit some. We
decide if and how much sediment to suspend or deposit based on the sediment capacity cal-
culated with Equation 3.26. This algorithm first calculates the sediment capacity and com-
pares it to the amount of suspended sediment. If the capacity is more than or equal to the
suspended sediment we move some sediment from the terrain to the suspended sediment
Ss, if not we move some sediment the other way. We calculate the amount of sediment to
be suspended or deposited based on the suspension and deposition rates K and K; and the
difference between the suspended sediment amount and the sediment capacity. We store
the suspended sediment temporarily in S5; and write the suspended sediment back to S in

the next step. Algorithm 2 explains this process as pseudo-code.

Algorithm 2 Suspension and deposition

C(x,y) — K¢-sin(p(x, ) - [V(x, )| - si(x,y) - 1/ E- (E — abs(Sp)))

if C(x, y) >= Ss(x, y) then
diff — Ss(x,y) +At-Ks- (C(x,y) = Ss(x, )
Sn(x,y) — min(Sy(x,y)+dif f,E)
Ss1(x,y) = Ss(x,y)—diff

else
dif f—Ss(x, ) +At-Kg-(C(x,y) — Ss(x, )
Sn(x,y) — max(Sy(x,y)—dif f,—E)
Ss1(x,y) = Ss(x, ) +diff

end if

Sediment transportation

Now we can move the sediment that we have suspended with the following equation.

Ss(x,y) =Sa1(x = Vi(x,y)- AL,y = V) (x, y) - At) (3.27)



CHAPTER 3. METHODS 37

Let p be the vector (x — Vyx(x,y) - At,y — V,(x, y) - At). To solve this equation we sample the
closest four points by rounding the first and second parameters of p up and down. We sam-
ple each of these four points from S5;. Then we weigh each sample based on the distance
between p and the four samples. The result is a weighted average between the closest points.

This moves some of the sediment in the direction of the velocity.

Water evaporation

Lastly, we update the water height by multiplying it with the evaporation constant. This is
the only way to remove water from our simulation as water can not flow out of the grid. We
update the water amount, S,,, for the next time-step based on the time-delta, A¢, and the
water amount of the current time-step. As mentioned earlier, we do not write this in our

equations but it should be there as there is a At in the equation.

Sw=Sw - 1-Kg)-At (3.28)

(c) Grid level 10 (d) Grid level 11

Figure 3.14: Grid levels in a multigrid erosion



CHAPTER 3. METHODS 38

3.7.2 Multigrid erosion

As erosion is computationally expensive we have implemented the concept of multigrid solv-
ing as described earlier and applied it to erosion. We erode the terrain at a smaller grid, in-
terpolate the state of the erosion to a bigger grid and repeat the process. This integrates well
with our diffusion as we already have created the terrain at different grid sizes. We store the
height of the eroded terrain as the original height in one texture and the difference in a sep-
arate texture. We evaporate the water by setting evaporation variable K, = 0.9 and run the
erosion for 100 iterations on the largest grid. This ensures that no artifacts are created, all
the water is evaporated and all the suspended sediment is deposited. Figure 3.14 shows the

erosion on all grid levels larger than 7.

3.7.3 Diffused parameters erosion

To make the erosion easier to control we added two parameters to the meta points to help
control the erosion process; w; and s;. The w; is multiplied with the added water in the
water increment step and s; is used when calculating C in the suspension and deposition
step. This allows us to control how much if any water is added and how much sediment can
be suspended. By using these parameters we can erode one part of a mountain and have
no effects on the rest of the terrain. In other words, we can erode specific parts of a terrain.
In Figure 3.15 we show different renderings of a terrain where we changed the evaporation
constant K,. A lower evaporation constant gives stronger erosive features. Figure 3.15a is
rendered without any erosion. This terrain has low values for both w; and s; on both sides
of the terrain and high values in the middle. This results in erosion in the middle and no

erosion on the sides.



CHAPTER 3. METHODS

(c) Medium erosion (d) High erosion

Figure 3.15: Different levels of erosion of a mountain side

39



Chapter 4

Implementation

In this chapter, we first look at our data representation and our rasterization process. Then
we explain how we implemented our diffusion equation, how we generate noise and how we
erode the terrain using compute shaders. Finally, we explain how we implemented this in

the Unity 3D game engine and show the user interface.

40



CHAPTER 4. IMPLEMENTATION 41

4.1 Datarepresentation

As in earlier work in this field [1][22] we store the data as textures after being rasterized. Now
there are more powerful and flexible GPUs available. We could store our data as buffers and
freely access them, but we defined performance and memory optimizations as out of scope
for this thesis. We store our data as textures all using 32-bit float precision per channel. We
used in total nine textures to represent our data. We used the following three textures for the

diffusion:
* heightmap
e normal vector scalar field with gradient direction
* restrictions
For erosion we used three textures:
* state
e flux
* velocity
Finally we used three textures for our parameter diffusion:
* noise
e warp
* erosion

For our diffusion of the terrain, we stored the diffused heightmap in one channel of the first
texture, heightmap. Our second texture, normal vector scalar field with gradient direction,
stored the two normal vector components in the first two channels, the gradient direction
in the third channel and the mask in the fourth and final channel. We use a mask to denote
where the seed values are located for the diffusion which we store in the first two channels

of the restrictions texture.

For the erosion, we stored the height difference, water height, and suspended sediment
amount in the first three channels of our state texture and use the fourth to temporarily store

the sin angle and the sediment amount. The flux stores the water flux, one channel for each



CHAPTER 4. IMPLEMENTATION 42

direction. Finally, the velocity texture stores the water velocity in the first two channels.

For our parameter diffusion, we stored the appropriate meta point parameters from the meta

point in 3.1 in each texture.

In addition to these textures, we temporarily store the calculated noise in a separate texture.
In total, we use 9 textures for our data representation after rasterization. All textures are used
in the multigrid solver so we need smaller versions of these textures. The result of this is that

each texture requires almost twice the memory of the largest texture in use.



CHAPTER 4. IMPLEMENTATION 43

4.2 Rasterizing

In order to use the multigrid solver, we need to rasterize our splines onto discrete grids.

The splines have a line with a width of one pixel and possibly a varying width given by r;
and a varying gradient on both sides given by a; and b;. As the splines are rasterized to sizes
between 2048x2048 and 4x4 we rasterize both the one-pixel wide line and the varying width

and gradients.

The rasterization is done by sampling the spline relative to the resolution of the grid. For
rasterizing the one-pixel line we used the Bresenham line algorithm to find all pixels and in-
terpolate the values linearly. The spline radius and gradients were rasterized as quadrangles
with different colors on the corners that were interpolated using barycentric coordinates.

One-pixel lines and quandrangles are used and combined for rasterizing all the data.

Figure 4.1 shows a restrictions texture and a rendering of the terrain. There are two splines
with guiding gradients on both sides. In Figure 4.2 we have the heightmap, normal vector

scalar field and noise parameters after diffusion for the same terrain.

(a) The restrictions texture showing the a and (b) The rendered terrain
B values as red and green

Figure 4.1: Restriction texture with a rendering of the generated terrain



CHAPTER 4. IMPLEMENTATION 44

(a) The heightmap after diffu- (b) The normal vectors and (c) The diffused noise param-
sion gradient values after diffusion eters

Figure 4.2: The diffused grids for Figure 4.1

4.2.1 Elevation data

The elevation data is the value of the y component of each point along the spline divided by
the maximum height of the terrain which is defined by the user. This data is used as seed
values in the diffusion of the terrain and is needed on all pixels along the spline and inside
of the spline radius triangles. The value is interpolated normally and when multiple values

overlap we take the average value.

4.2.2 The normal vector scalar field

The normal vector scalar fields are rasterized using the one-pixel line along the spline. On
each pixel, we calculate the perpendicular direction of the spline in the x and z-direction.
Let the normalized value of the direction be d and the pixel along the spline be p. We color
two pixels for each p along the spline. We set the color of the first point, p1 = p+d, to d.
That means the first component of d is the red color and the second component is the green
color. We set the second point, p2 = p —d, to —d. Each component of our pixels can have
values in the range [—1,1]. We map this range to [0, 1] because our diffusion only converges

for positive values.

This method is inspired by Orzan et al. [22], however a noteworthy enhancement is that we
formulate the diffusion as a Laplace equation by setting f, from our diffusion equation in
section 3.4, to 0. Orzan et al. set it to the rasterized average line. By not setting a gradient
we do not know when we converge on a solution, but we save space and time as we do not

need to calculate the error. Hnaidi et al. [1] did formulate it as a Laplace equation which is



CHAPTER 4. IMPLEMENTATION 45

consistent as they normalize the results. The intensity of the values in the solution is not

important, the relative intensities are.

4.2.3 Guiding gradients

The gradients defined by a; and b; are rasterized as quadrangles on both sides of the spline.
They start where the radius quadrangles end. Their length is the x component of the vectors
and is always perpendicular to the spline direction. Between the meta points the length is
linearly interpolated between a;.x and b;.x. The values of the vertices are linearly interpo-
lated between a;.y and b;.y. When the gradient overlap itself or any other gradient the value
can be very different. To keep consistency in the terrain, we remove all pixels with overlap-

ping gradients and use diffusion to fill in the holes.

4.2.4 Restrictions

Restrictions are used to weigh the three different formulas in the diffusion step for the terrain
and contain two values, @, and . Wherever there are elevation data we use @ = f = 0. Where
there are guiding gradients the value is linearly interpolated between a = 1 - , where = h;
is closest to the spline and @ = 8 = 0 is furthest away from the spline. h; is interpolated
between meta points on the spline. This ensures a smooth transition between the guiding

gradient and the rest of the terrain. The rest of the grid is filled with a = 1, = 0.

4.2.5 Parameter data

The parameter data consists of two parameters each, for example R; and A; for noise, on
meta points. This data is rasterized into a texture by rasterizing the splines and using the

interpolated values as color values. When splines overlap we use the average value.



CHAPTER 4. IMPLEMENTATION 46

4.3 Diffusion and multigrid solver

We extend our diffusion equation with a local restraint and adjust our Jacobi relaxation term

accordingly:

Vit1 =aAv;+ PBri+G)+(1-a-p)S 4.1)

which is equivalent to the equation described in chapter 3 with the added local restric-

tion:

a=p=0if Sisset 4.2)
This fulfills the local restriction that u = S if S is set, which we defined in chapter 3.

We run our Jacobi relaxation with two passes between two textures to avoid side effects as
the relaxation uses neighboring values. As the number of cells in a grid grows exponentially

with the size of the grid we increase the number of relaxations linearly.

iterations = grid_level- diffusion_iteration_multiplier (4.3)

where grid level is the square root of the size of the grid. We use this equation to calculate
the number of iterations we run the Jacobi relaxation on each grid level. The user can freely

choose the diffusion_iteration_multiplier.

As the diffusion for our normal vector scalar field and parameters are less important we dif-
fuse them with a four-point average kernel like Hnaidi et al. [1] does and use half as many

iterations as we use for diffusing the terrain.

We interpolate by using the five-point Gaussian kernel from Equation 2.8 on the solution. We
optimized this by using a red-green-black texture. The texture is created using Algorithm 3
and is available during interpolation. We included the pseudo-code for our interpolation

kernel in Algorithm 4.

Algorithm 3 Pre-calculate modulo
t.r — x(mod2)
t.g — y(mod?2)




CHAPTER 4. IMPLEMENTATION

47

Algorithm 4 Interpolation kernel

center.x — x/2

center.y — yl2

color — t[(x,y)mod(1024)]

result — imagelcenter]

result — result+imagelcenter + (1,0)] * color.r
result — result+imagelcenter +(0,1)] * color.g

result — result+imagelcenter + (1,1)] * color.r = color.g
result —result/(1+ color.r + color.g + color.r x color.g)
return result




CHAPTER 4. IMPLEMENTATION 48

4.4 Generating noise

We use improved Perlin noise as described in “Improving Noise” by Perlin [9] as the smooth
noise function S. The function is implemented as a kernel in a compute shader and is used
as described in our method section 3.6. We map the coordinates x and y based on the grid
level. Let gridWidth and gridHeight be the size of the current grid size. We scale x and y
down to map it to a smaller scale more fit for our smooth noise implementation. To make it
independent of the grid level we multiply it with 2048/ gridWidth. We provide a scale param-
eter for the user which is multiplied with the input coordinates to our noise function to give
the user more control, and amplitude which is multiplied with the noise value for the same

reason. Pseudo-code for this is in Algorithm 5 and Algorithm 6.

Algorithm 5 Generate noise
X — (2048/ gridWidth) - (x/1000)
y — (2048/ gridHeight) - (y/1000)
k<0
sum-<—20
while k < n do
s — scale-r¥
SUM «— sum+ mS(Tpre(s X, 8-, k))
end while
return amplitude- A(x,y)-sum

Algorithm 6 T},

S1 < 50
52 — 150
s — k- F(x,y) + 220

return p — p+s-[S(s; + p),S(s2 + p)]




CHAPTER 4. IMPLEMENTATION 49

4.5 EFErosion

The compute shader differs from the fragment shader as it can take any amount of data in
and write any amount of data out to buffers or textures. This lets us write to multiple textures
in the same step which is not possible on a fragment shader. We should not read and write
to the same texture if we compare values with neighboring values of the same texture. That
would result in some cells updating using old values and other cells using new values which

might break our simulation.

In the first kernel, we implement "Water increment". This needs to be calculated before the
next step "Water flux" as water flux compares neighboring values including water height.
"Water flux" is a second kernel. For the third kernel, we can include "Water update", "Water
velocity" and "Local tilt angle". "Local tilt angle" has to be computed before "Erosion and
deposition" as "Local tilt angle" compares the terrain height between cells and "Erosion and
deposition" updates the terrain height. "Erosion and deposition" is the fourth kernel and

"Sediment transportation and "Water evaporation" is the fifth and final kernel.

We store the eroded and deposited mass, water height, sediment amount, and local tilt angle
in one texture, the output flux in another texture, and the velocity in a third texture. All
textures are 32-bit float textures where the first two textures use four channels and the third

texture uses two channels.

4.5.1 Multigrid erosion

We run the erosion on heightmaps of different sizes similar to how we solve diffusion. When
a terrain is diffused at a grid level, we add noise to the diffused terrain before we use it for
erosion. The erosion starts with empty textures of the smallest size. We run all the erosion
steps for a user-defined amount of iterations. When we run erosion on any size bigger than
the smallest, we interpolate all textures to the next size. This is done the same way as done
in diffusion - by using our interpolation Algorithm 4. In addition to interpolating, we run a
5x5 Gaussian smoothing kernel from Figure 4.3 four times on the first three color channels
of the state texture, which represent the deposited sediment, water height and suspended
sediment, and the water flux texture. This removes most of the edge-like artifacts which are
caused by the interpolation, as one can see in Figure 4.4. After all iterations on the largest

grid, we set the evaporation rate K, = 0.9 which removes 90% of the water each iteration and



CHAPTER 4. IMPLEMENTATION 50

(1 4 7 4 1]
4 16 26 16 4
1
=17 26 41 26 7
4 16 26 16 4
1 4 7 4 1]

Figure 4.3: 5x5 Gaussian kernel

(a) Multigrid erosion with smoothing (b) Multigrid erosion without smoothing

Figure 4.4: The effect of smoothing after interpolation in a multigrid erosion

run the simulation without adding water for 100 iterations. This ensures that all the water is
removed and all sediment is deposited. Finally, we run the 5x5 Gaussian kernel four times to
ensure no artifacts are added in the evaporation step. We provide a diagram outlining this

process in Figure 4.5.



CHAPTER 4. IMPLEMENTATION

Initialization on the
smallest grid x

Erosion loop
Y
i = iterations_on_x | Interpolate
n=0 h Smooth
+
No

Yes
Yes
—| Erosion kernels 1-5
n=n+1
Y
Ex=0.9
n=0
i=100
No—», Smooth
Yes
¢ A 4
| | Erosion kernels 2-5 Finished erosion on
n=n+1 the largest grid

Evaporation

Figure 4.5: Overview of multigrid erosion

Note that erosion kernel 1 "Water increment" is not used in the evaporation.



CHAPTER 4. IMPLEMENTATION 52

4.6 Finalizing the terrain

To get the final terrain we sum the terrain height texture from the diffusion process with the

sediment and deposition texture from the erosion simulation.

4.7 Integration with a modern game engine

In this section we introduce the Unity 3D game engine and show how we integrated our
method with the engine. Lastly we explain how we added texture to our terrains when ren-

dering the results.

4.7.1 Unity 3D game engine

Unity 3D is a game engine to design games and applications for computers, virtual reality,
consoles, and mobile devices. It is commercial software with free use for individuals! devel-
oped by Unity Technologies. The engine has three important components: the game engine,

a visual editor, and a code editor.

For our implementation, we used the visual editor and the code editor. We used the code
editor to write all the code in the project and integrated our code with the visual editor. The
feature splines are drawn in 3D and are selectable. When a spline is selected all points defin-
ing the Bézier curves are visualized as well as all meta points along the spline. The Bézier
curve points can be moved like any other object in Unity and for the meta points, the gra-
dients and radius are visualized and can be changed visually. To change the meta points

position on the spline and the noise values a custom editor window is available.

The resulting height map after the diffusion and erosion is copied to a built-in terrain asset
in Unity that supports Level of Detail (LoD). This terrain is scaled and moved to align with

the splines to visualize the effects of each feature spline.

4.7.2 Editing the terrain

The input data to our generation method is defined by feature splines with meta points.

These can be changed with the visual editor and from a custom window shown in Figure 4.6.

lwith some restrictions



CHAPTER 4. IMPLEMENTATION 53
TemainEditorwindow [ TTemaineaitorwindow [ TemainEditarWindow |1
Terrain options Terrain options Terrain options
Add Spline Add Spline Add Spline
Spline options Spline options
Add Curve Add Curve
o RemoweCuve
Add Meta Point Add Meta Point
Meta Point options
Pasition -—% 05
Noise [ 2 0
Noise L 0
C RemoveMemPoi

(a) When the terrain is se-
lected

(b) When a feature spline is se-
lected

(c) When a meta point is se-
lected

Figure 4.6: The custom editor window in three different states

To start editing, the user can press the "Add spline" button to create the first spline. It starts as
a cubic Bézier curve and more curves can be added by pressing the "Add curve" button. After
selecting the spline in the hierarchy or by pressing it in the scene window, the user can click
on any of the control points and move them freely in any of the three-axis. When having a
spline selected the user can press "Add meta point" to add meta points to the spline and then
configure the meta points. Once the user is happy with the splines they can press "Render

terrain" and the terrain appears based on the feature curves the user configured.

Figure 4.7 shows a feature spline with and without meta points and terrain. White is the
Bézier curve, blue is the radius, green is the gradients and the red squares are the location of

the meta points.

(a) A feature spline in the vi-
sual editor

(b) A feature spline with three
meta points

(c) The same spline as in b)
with the diffused terrain

Figure 4.7: A feature spline with and without meta points and terrain

4.7.3 Textures used for rendering

To texture our fantasy terrain we used procedural texturing. We used five textures with nor-
mal maps to color the terrain. Additionally, we provided the final terrain heightmap texture

and final restrictions texture to the shader. We combine our textures by applying different



CHAPTER 4. IMPLEMENTATION 54

A\ 4

Height O 01 0.25 0.3 0.5

Figure 4.8: Texture weights based on height

weights to each texture where the sum of all the weights equals 1. We use three steps to
calculate the weights based on the terrain height, the terrain steepness, and the restrictions

texture.

When calculating the weights depending on the height we decide on what height each tex-
ture starts and how smooth the transition is between that and the previous texture. Fig-
ure 4.8 shows what textures we used and approximate overlap and area where the texture is

applied.

We calculate T, as this has the highest priority. This is calculated from the restrictions texture

to texture roads. Let r be a function sampling the restrictions texture.

Ty (x,y)=r(x,y) (4.4)

Then we calculate steepness, s(x, y), by sampling with this equation:

s(u, v) =clamp(0,1,
|[h(u, v) — h(u+0.001, v)|+
|h(u, v) — h(u—0.001, v)|+ (4.5)
|h(u, v) — h(u,v+0.001)|+

|h(u, v) — h(u,v—0.001)|)



CHAPTER 4. IMPLEMENTATION 55

clamp(a, b, x) = max(a, min(b, x)) (4.6)

where u and v denote the position on the texture scaled down to between 0 and 1. Let h be
a function sampling the height of the terrain from the texture. Then we calculate the weight

of the steepness texture T.

S — Slimit + Ssmooth
Ts =Ty - ((S— Stimir) + (S < Stimit* S > (Stimir — Ssmooth)) * ) 4.7)

Ssmooth

where $jiir and Sgno0 could be any number between 0 and 1. The conditionals of the equa-
tion evaluate to either 0 if untrue or 1 if they are true. We calculate the restriction weight, T+,

by sampling the restrictions texture to get a used in the diffusion and setting T, = 1—a.

Then we need to scale our weights so that the sum is equal to 1. Let w, be the weight for a
texture a on a point with height 4. We calculate the texture weight T}, by scaling down the

weight based on T, and T so that T, + T + Tj, = 1 for that point.

To=we - A1-T5)-0-T;) (4.8)

Now that we have calculated and scaled all the weights, we can sample each texture and mul-

tiply the texture value with the weight. The sum of this is our color value for the pixel.



Chapter 5

Evaluation

5.1 Overview

In this chapter, we present five terrains generated with our method. Each terrain is designed
to showcase one or more of the differences between our and other methods. The terrains
were designed by the lead author of this thesis who has never designed any terrains before.
All of our terrains are generated as a texture with 2048x2048 pixels and rendered with proce-
dural textures. Finally, we show terrains created with other methods and compare them to

our terrains.

For the purposes of reproducing our results, we provide tables 5.1, 5.2 and 5.3 with the pa-
rameters we used to generate each terrain. We also provide the time spent generating the

terrain with and without erosion in tables 5.4 and 5.5.

We evaluate the terrains by comparing them to results using other methods, by realism com-

pared to images of real terrain, and theoretical and empirical analysis of repetitiveness.

5.2 Fantasy terrain

The fantasy terrain is our main result and is inspired by the southern part of Cape of Stran-
glethorn in World of Warcraft [4]. With this terrain, we tried to make a terrain designed for
a game like World of Warcraft. These terrains usually have roads leading to places where

the player can interact with a character or an object. Other places are usually populated

56



CHAPTER 5. RESULTS 57

with monsters, bandits, or friendly creatures. This inspired the design with two beaches, two

grasslands, a volcano, a bay, and a road into the side of a mountain.

We have rendered images from six different locations with and without erosion. For this ter-
rain, we will focus on three aspects. Firstly on the ability to limit splines to certain grid levels
to create a smooth terrain with distinct features and roads. Secondly on how the repetitive-
ness is mitigated by erosion and warp. Thirdly on limiting erosion to avoid eroding roads,

islands, and the volcano.

This terrain is our most detailed experiment. It took about four hours to design by a novice

designer using 38 feature splines. With efficient storage, it uses about 1.5 kB of space and it

takes 1.5 seconds to generate it at 2048x2048 resolution.

Figure 5.1: Fantasy terrain

Firstly the bay prominent in Figure 5.1 is surrounded by tall and rough mountains. These
mountains are created by one feature spline which is only defined at grid levels 2-8 with
maximum noise amplitude and roughness. Inside the bay, there is a spline beneath the water
level making the mountains very steep. The mountain is also very steep on the left side of the
bay caused by a spline separating the bay mountains and the mountain in the center of the
image. Creating such a mountain without using spline deconstruction would involve using
a large flat gradient on both sides of the mountain spline. This is how Hnaidi et al. described

generating a hill in their paper [1]. In this case, it would be difficult to use gradients as the



CHAPTER 5. RESULTS 58

splines are too close. When the splines are too close, the normal vectors change direction

which can lead to artifacts and unintended features.

Figure 5.2: Fantasy terrain with feature splines in white

Figure 5.2 shows the positions of the splines used to generate the terrain.

Figure 5.3: Fantasy terrain - river

Figure 5.3 shows the roads, river, and volcano. We can see a road in the foreground going
from the river up the hill where the road becomes wider before it stops. This wider road

represents a point of interest and shows how one can use the meta points to change the



CHAPTER 5. RESULTS 59

width of the spline. On this island, we added warping to make the noise look different from
the rest of the terrain. The river is created with three splines, one for each riverside and one
for the middle. The circular water body in the middle of the image is created with one spline
simply lowering the terrain. Above this body of water, we used seven splines to make the side

of the volcano uneven. Additionally, there is a road going up to the volcano which we look

closer at in Figure 5.4.

Figure 5.4: Fantasy terrain - volcano path

The prominent path in Figure 5.4 is only defined at grid levels 8-12 which results in very
steep sides of the road. By using only the high grid levels one can easily create features in the
terrain which do not look natural, but rather look like humans have been there and modified
the terrain to their liking. In this case by creating a path to the volcano. The next two images

are examples of this.



CHAPTER 5. RESULTS 60

Figure 5.5: Fantasy terrain - volcano center

Figure 5.5 shows the inside of the volcano where the path from Figure 5.4 continues down to
the bottom. At the bottom, we formed a heart from a spline which is only defined on the grid
levels 10-12. Since the spline is only defined on the two largest grid levels it does not affect

the terrain inside of the heart.

Figure 5.6: Fantasy terrain - the road

We wanted to make it look like humans created this road by carving out a path in the terrain.



CHAPTER 5. RESULTS 61

Figure 5.6 shows the path towards the bay. The spline creating the road has a downwards gra-
dient of both sides close to the camera which slowly disappears. There is a lot of noise added
on both side of the road after the gradient disappears. This noise is not warped and looks
quite repetitive without erosion. Figure 5.7 shows the same area after heavily eroding the

terrain. Most of the repetitive noise is eroded and hydraulic erosion details are added.

Figure 5.7: Eroded fantasy terrain - the road

We simulated a lot of erosion to most of the terrain. We eroded the main island the most and
reduced the erosion on the other islands and on the road. The road is not eroded, but has
received some sediment. To avoid eroding the roads we did not erode on grids levels smaller

than 9 because the roads were not added before grid level 8.



CHAPTER 5. RESULTS 62

Figure 5.8: Fantasy terrain with and without erosion from another angle

Figure 5.8 and Figure 5.9 show the difference with and without erosion of the terrain. The
second image has a lot of repetitiveness in the mountains surrounding the bay which is
mostly mitigated by the erosion. There is no erosion applied to the smaller islands, the roads,

and inside of the volcano. Figure 5.10 shows the eroded terrain from four angles.



CHAPTER 5. RESULTS 63

Figure 5.9: Fantasy terrain with and without erosion



CHAPTER 5. RESULTS 64

Figure 5.10: Eroded fantasy terrain from different angles

5.3 Mountain range

Our second terrain is modeled after an image of a mountain range. As previously stated we
have not designed terrains before nor consider ourselves good at design. The proportions of
the features are not similar to the features in the image. Arguably this is not a limitation of
the method, but rather our lack of design skills. Figure 5.11 shows our inspiration next to a

rendering of our eroded terrain.

wr

8
;'8
§V

(a) Mountain range photography (b) Our terrain
Image (a) by suolzonel00491 at Vecteezy.com

Figure 5.11: Inspiration for the terrain



CHAPTER 5. RESULTS 65

This terrain shows how one can recreate images and use erosion to greatly enhance the re-
sults. In the middle of the image in Figure 5.11, we can see the effects of erosion where some
bulks of mass have been moved from the higher altitudes. Figure 5.12 shows a rendering
of the full mountain range with and without erosion. To better see the effects of erosion
we rendered the terrain with erosion on different grid levels in Figure 5.13. We created this
mountainside by using only 27 curves which use about 0.8 kB of efficient storage space. Most
of the erosion happened at grid level 8. We did this to get larger erosion details. We added a
lot of water to this simulation which initially caused unnatural features. To remove these fea-
tures we used low values for our erosion parameters, w; and s;, on the lower feature splines

and higher values on the higher splines.



CHAPTER 5. RESULTS 66

Figure 5.12: Mountain range with and without erosion



CHAPTER 5. RESULTS 67

(c) Grid level 9 (d) Grid level 10

Figure 5.13: Lower resolutions of mountain range

Note: Lower resolutions are automatically scaled up by Unity 3D terrain to 20482

5.4 Mountain river

The terrain in Figure 5.14 is designed to be comparable to other methods for generating ter-
rain. We modeled it with a similar motif, scale, and features as the other terrains we use for
comparison in section 5.8. Though this is not what feature-based terrain excels at, it is some-
thing simulation methods are great at. Because of this, we created a very simple terrain with
our feature splines and focused on erosion. We made this terrain in less than an hour with
most of the time spent on erosion. It has the most erosion with 5500 erosion iterations in

total over all the grid levels.



CHAPTER 5. RESULTS 68

Figure 5.14: Mountain river with and without erosion

In Figure 5.15 we can see that more erosion details are gradually added with each grid level.
We simulated 2000 iterations of erosion on grid levels 8 and 9 so this is where the terrain
changes the most. Then we ran 1000 iterations on grid level 10 and another 500 iterations on

grid level 11 before evaporation. This took almost 35 seconds to simulate.



CHAPTER 5. RESULTS 69

Lo,

(c) Grid level 9 (d) Grid level 10
Figure 5.15: Erosion on lower grid levels of mountain river

Note: Lower resolutions are automatically scaled up by Unity 3D terrain to 20482

5.5 Combined terrain

Our combined terrain in Figure 5.16 is designed to have two different types of terrain divided
by a river. On one side there is a mountain range and on the other side, there are flat grass-
lands. This is to showcase control over noise and erosion. We split the grasslands into two
parts where half is slightly eroded and has a few splines to make the terrain less smooth.
Close to the camera in Figure 5.16 we have the slightly eroded grasslands with some spline

details and further from the camera we have the smooth grasslands.



CHAPTER 5. RESULTS 70

Figure 5.16: Combined terrain with and without erosion

We wanted a very visible deformation from erosion on the mountainside. Our process for
achieving this was first placing most of the feature splines. Then we added meta points with
erosion parameters and modeled the erosion on the 256x256 grid. Then we adjusted the
erosion for bigger grids and added noise in the end. We designed this terrain in 80 minutes,
half the time was used placing the feature curves, 25 minutes on erosion, 10 minutes on
noise, and 5 minutes on final touches. A screen recording of this process is available as an

attachment to this thesis.

This terrain is a good example of how parameter diffusion can be used in terrain generation.



CHAPTER 5. RESULTS 71

The erosion and noise are mostly limited to the mountains with small lines on the hills close
to the camera and no erosion in the river. By using multigrid erosion we could quickly create
large-scale erosive features in the terrain before adding finer details. As most of our erosion
happens on the smallest grid our diffusion and erosion take 4.6 seconds before evaporating

the water which takes 2.8 seconds.

Finally, this terrain was created without limiting the splines to certain grid levels. This results
in visible unnatural edges where the feature splines are located. In Figure 5.16 we can trace
about half of the splines used to generate this terrain. Some of these create sharp edges or
unnaturally smooth curves in the terrain. Figure 5.17 shows the splines used to generate this

terrain.

Figure 5.17: Splines used to generate this terrain

5.6 Pathway

This terrain is designed to showcase noise warping and limiting splines to grid levels. We
rendered the final terrain with and without warping in Figure 5.18. To showcase the noise
we also rendered the smooth diffused terrain and the warped noise separately in Figure 5.19.
We used five splines to generate this terrain and none of the splines were defined on all grids.
Two of the splines were used from the smallest grid to grid level 9, one was used from the
smallest grid to grid level 6, one was used from grid levels 4-9 and the last spline was defined

from 0-11. The final resolution is 2048x2048, grid level 11, which means the largest grid had



CHAPTER 5. RESULTS 72

no restrictions and was used only for smoothing. This is why there is almost no trace of
the splines in the final result. We used a lot of warped noise in this terrain as well as high

amplitude and low noise scale to make the noise very prominent.

Figure 5.18: Pathway with and without warping



CHAPTER 5. RESULTS 73

E

(a) The diffused terrain (b) Only noise

Figure 5.19: Warped pathway diffused terrain and noise separately

5.7 Generation parameters

We provide the parameters used to generate the terrains as well as the generation time as

tables below.

Table 5.1 shows the parameters we used for the diffusion and noise when generating each
terrain. Noise amplitude and Noise scale are multiplied with the diffused parameters as men-
tioned in section 4.4. Break on levelis used in section 4.3 to calculate how many Jacobi itera-
tions to do on each level in the multigrid solver. Spline samplings is described in section 4.2
where it refers to how many samples are taken from each Bézier curve when rasterizing. A

higher number gives more smooth curves but takes more time.

Terrain parameters Fantasy Mountainrange Mountainriver Combined Pathway
Noise Amplitude 23.5 30 12 20 62.2
Noise Scale 4 4.5 8.6 2.6 1
Diffusion Iteration Multiplier 2 3 0.89 3 1.5
Spline samplings 300 300 300 300 100

Table 5.1: Terrain Parameters

Table 5.2 shows the parameters we used in our erosion simulation. These parameters are
explained in Table 3.2 in section 3.7. We do not include pathway in tables 5.2, 5.3 or 5.4 since

no erosion was used to generate this terrain.




CHAPTER 5. RESULTS 74

Erosion parameters Fantasy Mountainrange Mountainriver Combined

Pipe Area 1 1 1 1
Gravity 4.36 3.48 6 2
Pipe Length 1 1 1 1
Cell Size 1 1 1 1
Sediment Capacity 0.9 1 1 0.9
Suspension Rate 0.7 0.525 1 0.69
Deposition Rate 0.882 0.812 1 0.46
Evaporation 0.12 0.15 0.15 0.1
Max Rain Intensity 0.4 0.5 0.18 0.36
Min Rain Intensity 0.24 0.276 0.08 0.2
Max Rain Size 32 35 50 29.7
Min Rain Size 20.8 15 16.4 15.4
Time Delta 0.2 0.2 0.25 0.1

Table 5.2: Erosion parameters

We show the number of iterations on each grid level in Table 5.3. This refers to the user-

defined amount of iterations mentioned in subsection 4.5.1.

Grid level Fantasy Mountainrange Mountainriver Combined

8 0 500 2000 1000
9 547 500 2000 200

10 1000 500 1000 100

11 0 0 500 0

Table 5.3: Erosion iterations

Though we did not focus on optimizing for speed in our implementation we provide the time

it took to generate the terrains with and without erosion in the tables 5.4 and 5.5.

Time to create 256 512 1024 2048

Fantasy 0.38s 1.7s 10.7s 13.8s
Mountainrange 0.54s 1.7s 6.8s 10.3s
Mountain river 1.8s 5.6s 14.8s 34.7s
Combined 0.78s 1.45s 3.14s 6.7s

Table 5.4: Generation time for different grid sizes with erosion



CHAPTER 5. RESULTS 75

Time to create 256 512 1024 2048

Fantasy 0.33s 0.4s 0.65s 1.5s
Mountain range 0.14s 0.23s 0.62s 1.9s
Mountainriver  0.09s 0.15s 0.33s 0.93s
Combined 0.17s 0.30s 0.67s 1.9s
Pathway 0.05s 0.12s 0.35s 0.94s

Table 5.5: Generation time for different grid sizes without erosion

The experiments were run on a computer with AMD Ryzen 5 3600X and Nvidia GeForce RTX
2060 Super. We ran each experiment a few times and took the average time from rasterization
to creating the finished texture as visualized in Figure 3.1. This time was measured after
reading back one pixel to the CPU of the finished texture. This ensures the GPU has finished
all the work and minimizes the cost of reading back the texture to the CPU as this is a slow

operation that is not needed for rendering.

5.8 Comparison

In this section we compare two of our terrains to the results of other papers. All terrains
compared in this section are provided by Galin et al. [7] and rendered by us shown in Fig-
ure 5.20. Table 5.6 gives some context to the terrains rendered in Figure 5.20. Our terrains (a)

Mountain river and (b) Combined are marked with bold text.

Terrain Name Author Method

(a) Mountain river This thesis Based on feature-based generation

(b) Combined and hydraulic erosion

(c) Stava-2008 St'ava et al. [34] Based on hydraulic erosion with
multiple layers of material

(d) Genevaux-2015 Génevaux et al. [19] Based on a construction trees which
is a type of feature-based generation

(e) Guerin-2017 Guérin et al. [20] Machine learning

(f) Hydraulic Musgrave et al. [27] Hydraulic erosion

(g) Simplex Galin et al. [7] Based on hydraulic erosion with

(h) Warped-noise multiple layers of material

Table 5.6: Short description of terrains in 5.20



CHAPTER 5. RESULTS 76

(g) Simplex (h) Warped-noise

Figure 5.20: Renderings of terrains made with different methods

Note: The intended height of the models was not provided so we chose something we
thought was appropriate for each terrain

We can see that (a) Mountain river has the distinct hydraulic erosion features that (f) Hy-
draulic has. (d) Guerin-2017 has different levels of noise on either side of the river which is
quite flat. This is comparable to our (a) Mountain river except you can not see the primitive

features as well. The erosion on both methods is based on hydraulic erosion, (¢) Stava-2008



CHAPTER 5. RESULTS 77

and (f) Hydraulic, have more even erosion than we were able to create. This is probably
caused by different erosion methods. (d) Guerin-2017 is very detailed and even has small

erosive details on the mountainside.

(b) Combined has both large scale and small scale features from erosion, small scale similar
to (f) Hydraulic and large scale more similar to (¢) Stava-2008. Though (b) Combined has
very repetitive noise on the mountain side, (@) Mountain river has less repetitive noise due

to the low scale erosion.



Chapter 6

Discussion

In this chapter, we will discuss our results presented in chapter 5. We compare the results
to previous papers, discuss our four novelties and finally discuss our two research ques-

tions.

6.1 Multigrid diffusion

Multigrid diffusion is solving a Poisson equation on multiple grids. It is previously used in
several computer graphics papers [1], [14], [22]. We improved the multigrid solver by chang-
ing our Poisson equation on each grid level. This lets us decide which grid levels each spline
should be included in. Our multigrid solver enables us to deconstruct splines as Figure 3.8
shows. The cost of the possibility to deconstruct splines is the time it takes to rasterize our

data onto new grids compared to restricting the grids.

We restricted most of our splines in three of the five results. Fantasy 5.2, mountain river 5.4,
and pathway 5.6 restricted most of the splines so they were not included in the largest grid.
This removes the sharp edges which the splines create on the largest grid. In our other two
results, mountain range 5.3 and combined 5.5, many of the splines are visible which in many
cases are unwanted and could even create artifacts. This problem can be seen in the previous
work by Hnaidi et al. [1] and their results shown in Figure 2.4. Another method for solving
this is by smoothing the final terrain. Though this can remove some of the artifacts created
by the splines it also removes some of the features of the terrain. Our methods let the user

remove the artifacts only.

78



CHAPTER 6. DISCUSSION 79

Fantasy terrain 5.2 utilized the multigrid diffusion both for creating a smooth mountain
range and a heart with a single spline each. As we mentioned in chapter 5 this would have
been very difficult to do with more splines or gradients. Gradients are only suitable for form-
ing the terrain in the immediate area around a spline or when the splines are far from each
other. The gradients are dependent on the normal vectors of the splines and they vanish
when there are more splines in the terrain. This makes the splines with gradients dependent
on the splines close by so adding a new spline could change the behavior of the gradients
in unexpected ways. For this reason we found the gradients difficult to work with and used
them sparsely. We can avoid using gradients to create hills and mountains with our multigrid

diffusion which is another advantage of our multigrid diffusion.

6.2 Multigrid erosion

Multigrid erosion is a new concept we introduced in chapter 3. This concept can be de-
scribed as simulating erosion on a small grid, interpolating the state to a larger grid, and
continue to simulate erosion with higher resolution. This gives results similar to simulating
erosion on different scales as done by Argudo et al. [18]. Our method runs the simulation on
smaller grids which uses less time compared to scaling down the simulation with parame-
ters, though it might be less accurate. By comparing our results, especially mountain river,
to hydraulic erosion by Mei et al. [26] we can see similar erosive features. We included one of
their results in Figure 2.6. Our terrain also has similar erosive features as the hydraulic ter-
rain in Figure 5.20. Our method does not have as much deposited sediment as the hydraulic
terrain and we discuss the reason for this in section 6.3. We could see in Figure 5.15 how
this allows us to create erosive features of different sizes and combine them to create heavily

eroded terrains. This is an efficient method for simulating erosion on multiple scales.

6.3 Constrained erosion

Constrained erosion is limiting the erosion in some way. Argudo et al. [18] used this term
when they counteracted erosion by applying procedural uplift in certain parts of a terrain.
We use this term to describe the effect of our diffused erosion parameters from section 3.7.
Lower values of s; reduce the sediment capacity and constrain the erosion to only deposit

sediment. Lower w; values reduce the amount of water which affects how far the water flows



CHAPTER 6. DISCUSSION 80

before evaporating. When creating our results we depended on these values to limit erosion
in certain areas. We also used it in the fantasy 5.2 and combined 5.5 terrain to not erode
certain areas. This method is based on the same method as the noise is from Hnaidi et al. [1]

which makes the constrained erosion and noise easy to combine.

The constrained erosion also solves an important problem in our mountain range terrain
5.3. This terrain has some sharp edges and areas where a lot of water flows in from multiple
directions. This is a problem with the method proposed by Mei et al. [26] which is the basis of
our method. The problem with this method has to do with sediment transportation. Though
Mei et al. [26] claim the sediment transportation is unconditionally stable this is not true for
all states. There are two possible states where sediment is lost because of what they describe
as "...taking an Euler step backward in time". The first state happens initially when water
is added for the first time. When a cell has an inflow of water but not yet an outflow the
sediment suspended is partly lost. The second state happens when a cell has an inflow from
multiple cells at the same time. If a cell has an equal inflow from two opposite directions the
velocity of the water is zero. In this scenario, this cell does not move any sediment as it has no
velocity while the neighboring cells can have a velocity and overwrite the sediment that was
supposed to be moved to the original cell. This second scenario affected our mountain range
terrain a lot and quickly eroded deep unnatural holes in the terrain. To compensate for this
we lowered the sediment capacity in these areas with our constrained erosion which resulted
in reduced sediment loss. There were also parts of the terrain that we did not want as much
eroded, so we lowered the amount of water added with w;. This illustrates the flexibility of

our approach and the ability to adjust the input locally to remove artifacts.

6.4 Diffused warped noise

Warped noise is a noise distorted by some other noise and is used in terrain generation. We
combined simple warped noise from Carpentier et al. [14] with diffused noise from Hnaidi
et al. [1] to create our diffused warped noise. The warp effect we implemented might be en-
hanced. We based our pathway 5.6 on warped noise and we used noise warping on a part
of our fantasy terrain 5.2. The warped noise looks unnatural and it is as repetitive as normal
noise on a lower scale. It did make the warped pathway more supernatural and made the

noise on the island in fantasy terrain 5.2 sharper. However, it did not have remotely the same



CHAPTER 6. DISCUSSION 81

impact as erosion had on the results. Carpentier et al. [14] used a more sophisticated warped
noise combined with directional vectors to create what they called erosive noise. For further
research one could use the diffused normal vector scalar field as directional vectors to warp
the noise in a direction relative to the splines. We have shown that warping does not create
artifacts in the terrain so it should be possible to generate terrain with similar warping as Car-
pentier et al. created. As Carpentier et al. [14] stated "...defining such a function is probably

as much an art as it is a science" so we leave it for artists to explore these possibilities.

6.5 The scale of terrain features

Our first research question was "How can one design a consistent terrain with a combination
of fine-scale and large-scale features?". With this method, we introduced two ways to gener-
ate such terrain. Our multigrid diffusion lets the user decide how much of the surrounding
area each spline should affect. By affecting a minor area one can design fine-scale features
such as a heart inside of a volcano as shown in section 5.2. The user can also create a moun-
tain range with a single spline by defining it only on lower grid levels as shown in section 5.2.
By combining these features, the user can start a process by creating the large features of the
terrain, and then incrementally adding finer details. Our second method is multigrid ero-
sion. The multigrid erosion can erode the terrain at different scales creating features of both

large and fine-scale as shown in Figure 5.15.

6.6 Noise repetitiveness

Our second research question was "How can one mitigate the repetitiveness of the noise
added in feature-based terrain created with diffusion?". We tried to mitigate this repetitive-
ness by adding erosion and warping the noise. Our results show that eroding the terrain can
remove most of the repetitiveness of the noise. Erosion simulation is computationally ex-
pensive and could hinder the modeling process. With our method, one can erode at lower
resolutions first to see a rough version of the terrain, created in half the time or even less.
This can be considered as a draft of the final terrain and includes enough information to im-
prove the model on a higher grid level. One can also attempt to mitigate the repetitiveness by
warping the noise. Our results show that it is not easy to do so with our diffused warped noise

algorithm 3.11. It does however show that warping can be added to the noise 5.2,5.6 and a



CHAPTER 6. DISCUSSION 82

further developed warping method could in the future be a comparable and significantly

faster method for mitigating the repetitiveness of the noise than erosion simulations.



Chapter 7

Conclusions and future work

7.1 Conclusion

In this thesis, we have presented four novelties to current methods for generating terrain to
answer our two research questions. Our results show examples of terrains generated with
this new method by inexperienced terrain designers. Our multigrid diffusion gives the de-
signer increased control over the process which proved very useful in the design process. It
also improves the results by smoothing over certain splines so that they are not pronounced.
Further, we improved hydraulic erosion from a previous paper by applying erosion at multi-
ple grids to create erosive features of different scales. To better control the erosion we let the
user control where water should be added as well as the hardness of the terrain. Finally, we
modified our noise function by warping the noise. Our paper has shown how erosion, dif-
fused warped noise, and feature-based terrain generation can be used together to generate
terrain in an innovative way. Erosion and diffusion work well on all sizes with different lev-
els of detail while our diffused warped noise did not prove as effective. Though our diffused
warped noise, Equation 3.11, did not clearly improve on the repetitiveness, we discovered
ways to modify the noise function to create more advanced noise which could do this at a
low computational cost. Our novelties pave ways for adding features of different scales to a

virtual terrain as well as a way to reduce the repetitiveness of the noise.

83



CHAPTER 7. CONCLUSIONS 84

7.2 Future work

This method would be more feasible to use for terrain modeling if one could create larger
terrains by seamlessly connecting multiple grids. Creating terrains with larger resolutions
than 4086x4086 takes a very long time, uses a lot of memory, and is currently not supported
by Unity 3D terrain. To create larger terrains one can connect multiple terrains in a grid.
Our method does not focus on making it easy to create two terrains that are adjacent to each
other. This is possible by placing a spline on the edge of both terrains to force the edge on
both terrains to be of equal height. An improved method could automate this by enforc-
ing the edge of the second terrain to fit the edge of the first terrain. There might be even
better methods to combine such terrains and this is worth exploring further. Generating
larger terrains is also a challenge when using erosion. The erosion currently has strict border
boundaries so no water can escape the grid. Without any water flow between the grids, the

erosion could be unnatural and create artifacts in the terrains where they meet.

As erosion proved useful at mitigating repetitiveness we believe a state-of-the-art hydraulic
erosion or multi-layer erosion method could improve our results. Such methods could create
new and more realistic erosive features in the terrain. As performance was not in our scope
one could improve the performance of our method by optimizing our erosion, diffusion,

noise generation, and rasterizing.

Finally, we encourage anyone to experiment with different types of noise to generate terrains
with our method. There are a lot of variables that could be changed when adding noise. It is
possible to change some of the variables to generate a wide variety of noise. Some of these
variables are the number of noise layers, the scale between each layer, the type of noise,
and the warping method. It is possible to introduce variables from diffused textures into the
noise function. This could result in very realistic or very surreal terrains and give each terrain

a unique appearance.



Bibliography

[1] H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, and E. Galin, “Feature based terrain
generation using diffusion equation,” Computer Graphics Forum, 7th ser., vol. 29, pp. 2179-
2186, Sep. 2010. DoI1: 10. 1111/ .1467-8659.2010.01806 . x. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01381590.

[2] I.Joshua Yehl. (2019). How jon favreau directed the lion king inside a video game, [On-
line]. Available: https://www.ign.com/articles/2019/05/30/how- jon-favreau-

directed-the-lion-king-inside-a-video-game (visited on 05/28/2021).

[3] W.W. (Brandon Bestenheider and D. D. ( Brad Baruh, Disney Gallery: The Mandalorian
- Technology, 2020. [Online]. Available: https://www.imdb.com/title/tt12258086.

[4] Blizzard Entertainment, World of warcraft, 2004.
[5] Hello Games, No man’s sky, 2016.

[6] W. Chris Higgins. (2014). No man’s sky would take 5 billion years to explore, [Online].
Available: https://www.wired.co.uk/article/no-mans-sky-planets (visited on

05/28/2021).

[7]1 E. Galin, E. Guérin, A. Peytavie, G. Cordonnier, M.-P. Cani, B. Benes, and J. Gain, “A re-
view of digital terrain modeling,” Computer Graphics Forum, vol. 38, no. 2, pp. 553-577,
2019.DOI:https://doi.org/10.1111/cgf .13657. eprint:https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf.13657.[Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.13657.

[8] Unity Technologies. (2021). The leading platform for creating interactive, real-time

content, [Online]. Available: https://unity.com/ (visited on 05/28/2021).

85


https://doi.org/10.1111/j.1467-8659.2010.01806.x
https://hal.archives-ouvertes.fr/hal-01381590
https://www.ign.com/articles/2019/05/30/how-jon-favreau-directed-the-lion-king-inside-a-video-game
https://www.ign.com/articles/2019/05/30/how-jon-favreau-directed-the-lion-king-inside-a-video-game
https://www.imdb.com/title/tt12258086
https://www.wired.co.uk/article/no-mans-sky-planets
https://doi.org/https://doi.org/10.1111/cgf.13657
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13657
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13657
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13657
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13657
https://unity.com/

BIBLIOGRAPHY 86

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

K. Perlin, “Improving noise,” ACM Trans. Graph., vol. 21, no. 3, pp. 681-682, Jul. 2002,
ISSN: 0730-0301. DOI: 10.1145/566654 . 566636. [Online]. Available: https://doi.
org/10.1145/566654 .566636.

B. Chan and M. Mccool, “Worley cellular textures in sh,” p. 18, Jan. 2004. DOI1: 10. 1145/
1186415.1186437.

A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré, “Procedural noise using sparse gabor
convolution,” ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2009),
vol. 28, no. 3, pp. 54-64, Jul. 2009. DOI1: 10.1145/1531326.1531360.

K. Perlin, “An image synthesizer,” in Proceedings of the 12th Annual Conference on
Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’85, New York, NY, USA:
Association for Computing Machinery, 1985, pp. 287-296, 1SBN: 0897911660. DOI: 10.
1145/325334 . 325247. [Online]. Available: https://doi.org/10.1145/325334.
325247.

K. Perlin and E. M. Hoffert, “Hypertexture,” in Proceedings of the 16th Annual Confer-
ence on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’89, New York,
NY, USA: Association for Computing Machinery, 1989, pp. 253-262, ISBN: 0897913124.
DOI: 10 . 1145 /74333 . 74359. [Online]. Available: https://doi . org/10. 1145/
74333 .74359.

G. J. P. de Carpentier and R. Bidarra, “Interactive gpu-based procedural heightfield
brushes,” in Proceedings of the 4th International Conference on Foundations of Digital
Games, ser. FDG ’09, Orlando, Florida: Association for Computing Machinery, 2009,
pp. 55-62, ISBN: 9781605584379. DOI: 10 . 1145/1536513 . 1536532. [Online]. Avail-
able: https://doi.org/10.1145/1536513.1536532.

I. Parberry, “Modeling real-world terrain with exponentially distributed noise,” 2015.

T. Hyttinen, E. Mdkinen, and T. Poranen, “Terrain synthesis using noise by examples,”
in Proceedings of the 21st International Academic Mindtrek Conference, ser. Academic-
Mindtrek 17, Tampere, Finland: Association for Computing Machinery, 2017, pp. 17—
25,1SBN:9781450354264. DOI1: 10.1145/3131085.3131099. [Online]. Available: https:
//doi.org/10.1145/3131085.3131099.


https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/1186415.1186437
https://doi.org/10.1145/1186415.1186437
https://doi.org/10.1145/1531326.1531360
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/74333.74359
https://doi.org/10.1145/74333.74359
https://doi.org/10.1145/74333.74359
https://doi.org/10.1145/1536513.1536532
https://doi.org/10.1145/1536513.1536532
https://doi.org/10.1145/3131085.3131099
https://doi.org/10.1145/3131085.3131099
https://doi.org/10.1145/3131085.3131099

BIBLIOGRAPHY 87

(17]

(18]

(19]

(20]

(21]

(22]

(23]

K. Golubev, A. Zagarskikh, and A. Karsakov, “Dijkstra-based terrain generation using
advanced weight functions,” Procedia Computer Science, vol. 101, pp. 152-160, Dec.

2016. DO1: 10.1016/j.procs.2016.11.0109.

O. Argudo, E. Galin, A. Peytavie, A. Paris, J. Gain, and E. Guérin, “Orometry-based ter-
rain analysis and synthesis,” ACM Trans. Graph., vol. 38, no. 6, Nov. 2019, 1SSN: 0730-
0301. poI1: 10.1145/3355089 . 3356535. [Online]. Available: https://doi.org/10.
1145/3355089.3356535.

].-D. Génevaux, E. Galin, E. Guérin, A. Peytavie, and B. Benes, “Terrain generation us-
ing procedural models based on hydrology,” ACM Trans. Graph., vol. 32, no. 4, Jul.
2013, 1SSN: 0730-0301. DOI: 10.1145/2461912.2461996. [Online]. Available: https:
//doi.org/10.1145/2461912.2461996.

E. Guérin, J. Digne, E. Galin, A. Peytavie, C. Wolf, B. Benes, and B. Martinez, “Interactive
example-based terrain authoring with conditional generative adversarial networks,”
ACM Trans. Graph., vol. 36, no. 6, Nov. 2017, 1SSN: 0730-0301. DOI: 10.1145/3130800.
3130804. [Online]. Available: https://doi.org/10.1145/3130800.3130804.

M. Becher, M. Krone, G. Reina, and T. Ertl, “Feature-based volumetric terrain genera-
tion,” in Proceedings of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, ser. 13D ’17, San Francisco, California: Association for Computing Machin-
ery, 2017, ISBN: 9781450348867. DOI: 10.1145/3023368.3023383. [Online]. Available:
https://doi.org/10.1145/3023368.3023383.

A. Orzan, A. Bousseau, H. Winnemoller, P. Barla, J. Thollot, and D. Salesin, “Diffusion
curves: A vector representation for smooth-shaded images,” in ACM SIGGRAPH 2008
Papers, ser. SIGGRAPH 08, Los Angeles, California: Association for Computing Ma-
chinery, 2008, ISBN: 9781450301121. DOI: 10.1145/1399504 . 1360691. [Online]. Avail-
able: https://doi.org/10.1145/1399504.1360691.

J.McCann and N. S. Pollard, “Real-time gradient-domain painting,” in ACM SIGGRAPH
2008 Papers, ser. SIGGRAPH 08, Los Angeles, California: Association for Computing
Machinery, 2008, 1SBN: 9781450301121. DOI: 10 . 1145/1399504 . 1360692. [Online].
Available: https://doi.org/10.1145/1399504.1360692.


https://doi.org/10.1016/j.procs.2016.11.019
https://doi.org/10.1145/3355089.3356535
https://doi.org/10.1145/3355089.3356535
https://doi.org/10.1145/3355089.3356535
https://doi.org/10.1145/2461912.2461996
https://doi.org/10.1145/2461912.2461996
https://doi.org/10.1145/2461912.2461996
https://doi.org/10.1145/3130800.3130804
https://doi.org/10.1145/3130800.3130804
https://doi.org/10.1145/3130800.3130804
https://doi.org/10.1145/3023368.3023383
https://doi.org/10.1145/3023368.3023383
https://doi.org/10.1145/1399504.1360691
https://doi.org/10.1145/1399504.1360691
https://doi.org/10.1145/1399504.1360692
https://doi.org/10.1145/1399504.1360692

BIBLIOGRAPHY 88

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

Y. Saad, Iterative Methods for Sparse Linear Systems, Second, ser. Other Titles in Applied
Mathematics. SIAM, 2003, 1SBN: 978-0-89871-534-7. DOI1: 10.1137/1.9780898718003.
[Online]. Available: http: //www-users.cs.umn.edu/%5C~%7B%7Dsaad/IterMethBooky,
5C_2ndEd.pdf.

W. Briggs, V. Henson, and S. McCormick, A Multigrid Tutorial, 2nd Edition. Jan. 2000,
ISBN: 978-0-89871-462-3.

X. Mei, P. Decaudin, and B. Hu, “Fast hydraulic erosion simulation and visualization
on gpu,” in 15th Pacific Conference on Computer Graphics and Applications (PG'07),
2007, pp. 47-56. DOI: 10.1109/PG.2007 . 15.

E K. Musgrave, C. E. Kolb, and R. S. Mace, “The synthesis and rendering of eroded frac-
tal terrains,” in Proceedings of the 16th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’89, New York, NY, USA: Association for Com-
puting Machinery, 1989, pp. 41-50, ISBN: 0897913124. DOI: 10 . 1145/74333 . 74337.
[Online]. Available: https://doi.org/10.1145/74333.74337.

N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys, “A multigrid solver
for boundary value problems using programmable graphics hardware,” in ACM SIG-
GRAPH 2005 Courses, ser. SIGGRAPH '05, Los Angeles, California: Association for Com-
puting Machinery, 2005, 193—es, ISBN: 9781450378338. DOI1: 10.1145/1198555.1198784.
[Online]. Available: https://doi.org/10.1145/1198555.1198784.

Microsoft Corporation. (2018). Direct3d architecture (direct3d 9), [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/direct3d9/direct3d-

architecture (visited on 05/25/2021).

Microsoft Corporation. (2018). Graphics pipeline, [Online]. Available: https://docs.
microsoft.com/en-us/windows/win32/direct3dll/overviews-direct3d-11-

graphics-pipeline (visited on 05/25/2021).

Microsoft Corporation. (2018). Compute shader overview, [Online]. Available: https:
//docs .microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-

advanced-stages-compute-shader (visited on 05/25/2021).

N. Ashu Rege. (2008). An introduction to modern gpu architecture, [Online]. Available:
http://download.nvidia.com/developer/cuda/seminar/TDCI_Arch.pdf (vis-
ited on 05/25/2021).


https://doi.org/10.1137/1.9780898718003
http://www-users.cs.umn.edu/%5C~%7B%7Dsaad/IterMethBook%5C_2ndEd.pdf
http://www-users.cs.umn.edu/%5C~%7B%7Dsaad/IterMethBook%5C_2ndEd.pdf
https://doi.org/10.1109/PG.2007.15
https://doi.org/10.1145/74333.74337
https://doi.org/10.1145/74333.74337
https://doi.org/10.1145/1198555.1198784
https://doi.org/10.1145/1198555.1198784
https://docs.microsoft.com/en-us/windows/win32/direct3d9/direct3d-architecture
https://docs.microsoft.com/en-us/windows/win32/direct3d9/direct3d-architecture
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-graphics-pipeline
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-graphics-pipeline
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-graphics-pipeline
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-compute-shader
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-compute-shader
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-compute-shader
http://download.nvidia.com/developer/cuda/seminar/TDCI_Arch.pdf

BIBLIOGRAPHY 89

(33]

(34]

E Sans and R. Carmona, “A comparison between gpu-based volume ray casting im-
plementations: Fragment shader, compute shader, opencl, and cuda,” CLEI Electron.

J., vol. 20, 2017.

0. St’ava, B. Benes, M. Brisbin, and J. Kfivanek, “Interactive terrain modeling using hy-
draulic erosion,” in Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, ser. SCA’08, Dublin, Ireland: Eurographics Association, 2008,

pp. 201-210, ISBN: 9783905674101.



Appendix A

A.1 Additional results

We rendered more images of the terrain than it was useful to showcase in the results. Here

are some of them:

A.1.1 Mountain river

Figure A.1: Mountain river camera 2

90



APPENDIX A. 91

Figure A.3: Mountain river without water



APPENDIX A. 92

Figure A.5: Mountain river camera 2 without water



APPENDIX A. 93

Figure A.6: Mountain river camera 2 without water or erosion

A.1.2 Combined terrain

Figure A.7: Combined terrain camera 2



APPENDIX A. 94

Figure A.8: Combined terrain camera 2 no erosion

Figure A.9: Combined terrain camera 3



APPENDIX A. 95

Figure A.10: Combined terrain camera 3 no erosion

A.2 Different kernels

One can use many different kernels for the Jacobi relaxation. We used the nine-point Laplace
kernel in Equation 3.4 for our method, but the following kernels would also work with a
minor modification to the method. The first equation below was used by Hnaidi, Guérin,
Akkouche, er al. [1]. To use one of the three first kernels listed below the Jacobi relaxation

terms needs to be redefined to Equation A.5.

010
A=—11 0 1 (A1)
010
1 2 4 21
2 4 8 4 2
1
=— A2
Too |4 8 16 8 4 (A.2)
2 4 8 4 2
1 2 4 21




APPENDIX A. 96

1 2 4 21
2 4 8 4 2
1
A=— A3
aa 4 8 0 8 4 (A.3)
2 4 8 4 2
1 2 4 21
0O 1 O
A=11 -4 1 (A.4)
0 1 0
Vi+1 = aAv; + BBv; + G (A.5)

A.3 Dataoptimization

As our implementation uses ARGB textures there is a lot of room for optimizations. Firstly
one could remove all unused channels reducing the number of channels from 36 to 26 chan-
nels. Then one could move all masks into one channel using bit operations reducing the
number of channels needed further down to 24. One could impose a local restriction to the
guided diffusion @ = 1 - g if a + § # 0 where the if part could be stored as a mask reducing

the number of channels needed to 23. This is one channel less than six full textures.



@ NTNU

Norwegian University of
Science and Technology



	Acknowledgment
	Abstract
	Sammendrag
	List of Figures
	Glossary
	Introduction
	Motivation and background
	Objective
	Research questions

	Theory
	Terrain generation methods
	Noise-based generation
	Feature-based terrain generation
	Terrain process simulation
	Example-based terrain generation

	Terrain data representations
	Elevation models
	Volumetric models
	Hybrid models

	Feature-based terrain generation using diffusion equation
	Diffusion curves
	Diffusion
	Multigrid solver
	Generating terrain with multigrid solver

	Erosion simulation
	Hydraulic erosion
	Thermal erosion

	Programming the GPU

	Methods
	Overview
	Concepts
	Feature spline
	Meta point

	Terrain modeling
	Diffusing the terrain
	Multigrid solver

	Parameter diffusion
	Noise generation
	Erosion simulation
	The erosion process
	Multigrid erosion
	Diffused parameters erosion


	Implementation
	Data representation
	Rasterizing
	Elevation data
	The normal vector scalar field
	Guiding gradients
	Restrictions
	Parameter data

	Diffusion and multigrid solver
	Generating noise
	Erosion
	Multigrid erosion

	Finalizing the terrain
	Integration with a modern game engine
	Unity 3D game engine
	Editing the terrain
	Textures used for rendering


	Results
	Overview
	Fantasy terrain
	Mountain range
	Mountain river
	Combined terrain
	Pathway
	Generation parameters
	Comparison

	Discussion
	Multigrid diffusion
	Multigrid erosion
	Constrained erosion
	Diffused warped noise
	The scale of terrain features
	Noise repetitiveness

	Conclusions
	Conclusion
	Future work

	Bibliography
	
	Additional results
	Mountain river
	Combined terrain

	Different kernels
	Data optimization


