
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Arulnesan, D
ahlstrøm

Flate: exploring a collaborative platform
 in m

athem
atics

Piruthusan Arulnesan
Philip Dahlstrøm

Flate: exploring a collaborative
platform in mathematics

Master’s thesis in Informatics
Supervisor: Trond Aalberg

June 2021

M
as

te
r’s

 th
es

is

Piruthusan Arulnesan
Philip Dahlstrøm

Flate: exploring a collaborative
platform in mathematics

Master’s thesis in Informatics
Supervisor: Trond Aalberg
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

More and more schools in Norway are opting to provide pupils with personal digital devices, such as
computer tablets. The increased use of tablets in education provides opportunities to adapt concepts
from groupware in learning, like shared text editors, to other contexts like collaboration in mathematics.
This project aims to explore how to facilitate collaboration in a software platform using a shared
workspace.

The main contribution of this work is a fully functioning prototype supporting collaboration in mathe-
matics. It was developed by identifying common features and technologies in groupware and determining
which of these features were necessary to facilitate collaboration in mathematics.

An evaluation of the platform was performed to identify collaborative patterns that occurred when pupils
used the prototype in a test setting. A test on three pairs of pupils was executed to generate data,
with observations and interviews. Observations were performed by using a monitoring system built for
the testing and taking field notes of the conversation between the pupils. The system was developed
to visualize interactions in the platform as user actions in a scatter plot. Semi-structured interviews
with the pupils and the teacher overseeing the test on-site were used to elicit opinions regarding the
collaboration. The data from the observations were qualitatively analyzed to identify collaborative
patterns, and the data from the interviews were used to enhance the understanding of how the pupils
worked together.

Results from the test show that the pupils collaborated in multiple ways, and the main patterns exhibited
were categorized as parallel, ping-pong, and singular action. In the first collaboration pattern, the pupils
interacted in parallel; in the second, their interactions were alternating; and in the third, only one pupil
interacted with the shared workspace. In addition to these results, this thesis found that collaborative
platforms often focus on transparency; all users are kept aware and updated regarding the state of the
shared workspace. It also identified simultaneity when drawing lines, allowing users to interact with
objects, and making users aware of each other’s actions as the most significant features to facilitate
collaboration in mathematics.

3

Sammendrag

Flere og flere skoler i Norge velger å tilby elever en personlig digital enhet, som ofte er nettbrett. Den
økende bruken av nettbrett i utdanning gir mulighet for å tilpasse konsepter fra gruppevare, f.eks. fra
delte tekstredigeringsverktøy, til andre kontekster som samarbeid innen matematikk. Denne oppgaven
hadde som mål å tilrettelegge for samarbeid i en programvareplattform med en delt flate hvor elever
kan løse matematiske oppgaver sammen.

Hovedbidraget fra dette arbeidet er en fullt fungerende prototype som er lagd for å støtte samarbeid
i matematikk. Prototypen ble utviklet ved å først identifisere vanlig funksjonalitet og teknologi innen
gruppevare, og s̊a vurdere hva slags funksjonalitet som var nødvendig for å tilrettelegge for samarbeid
innen matematikk.

En evaluering av plattformen ble gjort for å identifisere samarbeidsmønstre som dukket opp under bruk
av elever i en test-setting. Testen ble gjennomført av tre par med elever. Observasjoner og intervjuer
ble gjort for å generere datamateriale. Observasjonene ble gjort med et egenutviklet monitorerings-
system som visualiserte interaksjoner i plattformen. I tillegg ble det tatt feltnotater av samtalen mellom
elevene. Semistrukturerte intervjuer med elevene, og læreren deres, ble brukt for å frembringe meninger
om samarbeidet. Datamaterialet fra observasjonene ble kvalitativt analysert for å identifisere samar-
beidsmønstre, og datamaterialet fra intervjuene ble brukt for å forbedre forst̊aelsen av hvordan elevene
jobbet sammen.

Resultatene fra testen viser at elevene samarbeidet p̊a flere måter, og hovedmønstrene ble kategorisert
som: parallel, ping-pong, og singular action. I det første samarbeidsmønsteret interagerte elevene
parallelt; i det andre var deres interaksjoner alternerende; i det tredje var det bare én elev som interagerte
med den delte flaten. I tillegg til disse resultatene, ble det funnet at samarbeidsplattformer ofte fokuserer
p̊a transparens, som kan bety at alle brukere blir gjort bevisste og oppdaterte om tilstanden til den delte
flaten. Funksjoner som samtidighet n̊ar man tegner linjer, å tillate brukere å interagere med objekter,
og å oppdatere brukere om hverandres handlinger ble identifisert som de viktigste funksjonene for
samarbeid innen matematikk.

4

Preface

This thesis is written as a part of the authors’ master’s degrees in the Informatics study program and
presents an implementation-focused software project conducted in autumn 2020 and spring 2021. This
project was completed under the supervision of associate professor Trond Aalberg at the Department
of Computer and Information Science (IDI) at the Norwegian University of Science and Technology
(NTNU).

The authors would like to thank Fredrik Sørum Andersen and Ida Dahl at Neddy for the initial help
shaping the platform’s idea and their continued support and interest in the project. Beate Horg at
Mattematikksenteret has been an invaluable actor for this project by providing the mathematical tasks
and giving advice on structuring the platform to facilitate learning. In addition, Beate assisted in
recruiting Peder Vevelstad, the teacher who was willing to perform the final testing in this project
with help from his pupils. Without the help from Peder, this project would not have been possible to
complete in the planned way. Lastly, the authors would like to thank Excited, senter for fremragende
IT-utdanning for providing tablets used for the development in this project.

5

Table of Contents

List of Figures iv

List of Tables vi

1 Introduction 1

1.1 Problem description . 1

1.2 Motivation . 1

1.3 Research questions . 2

1.4 Research method . 2

1.5 Platform description . 3

1.6 Thesis structure . 3

2 Background 5

2.1 Groupware . 5

2.1.1 Groupware spectrum . 5

2.1.2 Groupware time space matrix . 6

2.1.3 Alternative groupware time space matrix . 6

2.2 Real-time groupware . 8

2.2.1 Concurrency . 9

2.3 Awareness . 10

2.3.1 Workspace awareness . 10

2.4 Relevant collaborative software platforms . 13

2.4.1 Google Docs . 13

2.4.2 Miro . 13

2.4.3 Review of the software platforms . 13

2.5 Computer-supported collaborative learning . 15

3 Designing a real-time groupware platform 17

3.1 Concept . 17

3.2 Platform design decisions . 17

3.3 Groupware framework placement . 19

3.4 Real-time groupware features . 20

3.4.1 Attributes . 20

3.4.2 Concurrency control . 23

3.5 Awareness . 26

i

3.5.1 Shared feedback . 26

3.5.2 Workspace awareness . 28

4 Implementation 31

4.1 Development . 31

4.2 Front end . 33

4.2.1 Screens . 33

4.3 Back end . 36

4.3.1 Server . 36

4.3.2 Database . 37

4.4 Local processes . 38

4.4.1 The drawing pipeline . 38

4.4.2 Canvas objects . 40

4.4.3 User interaction . 42

4.4.4 Canvas object actions . 44

4.5 Communication and replication . 44

4.5.1 Communication . 45

4.5.2 Replication . 48

5 Method 50

5.1 Overall research strategy . 50

5.2 Data generation and evaluation . 50

5.2.1 Observations . 51

5.2.2 Interviews . 53

5.3 Analysis . 54

6 Results 56

6.1 Group 1 . 56

6.1.1 Interview . 57

6.1.2 Patterns . 57

6.2 Group 2 . 59

6.2.1 Interview . 61

6.2.2 Patterns . 61

6.3 Group 3 . 62

6.3.1 Interview . 65

6.3.2 Patterns . 66

ii

6.4 Interview with the teacher . 68

6.4.1 Q1: How do you think the test went? . 68

6.4.2 Q2: What did you think of the collaboration between the pupils? 68

6.4.3 Q3: How did you experience the engagement of the pupils? 68

6.4.4 Q4: Would you use such a platform in your teaching? Why, or why not? . . . 69

6.4.5 Q5: What worked well? . 69

6.4.6 Q6: What could have been better? . 69

6.5 Main patterns . 69

7 Discussion 74

7.1 Questions . 74

7.2 Contributions . 75

7.2.1 A framework for real-time collaborative software 75

7.2.2 Achieving simultaneity when drawing lines . 76

7.2.3 Monitoring system . 76

7.2.4 Support for multiple collaboration patterns . 76

7.3 Considerations . 76

7.4 Project evaluation . 77

7.5 Future Work . 77

8 Conclusion 79

Bibliography 80

Appendix 82

A Special terms 82

Acronyms 82

B Code examples 83

B.1 Receive object action . 83

C Application screenshots 84

C.1 Onboarding . 84

C.2 Information box . 84

C.3 Invitation . 85

C.4 Chat . 85

C.5 Comments . 86

iii

C.6 Calculator . 86

C.7 Settings . 87

C.8 Side menu . 87

C.9 Task description . 88

C.10 Users in the session . 88

C.11 Color picker . 89

C.12 Zoom . 89

C.13 Compass . 90

D Usability test questions 90

E Test schedule and instructions 91

List of Figures

1 Research method overview . 2

2 The groupware spectrum . 5

3 Groupware Time Space Matrix . 6

4 An alternative to the Groupware Time Space Matrix 7

5 Elements of workspace awareness related to the present 11

6 Elements of workspace awareness related to the past 11

7 Flow between the different parts of the platform . 18

8 Ideal placement in the Groupware Spectrum . 19

9 Placement in the Groupware Time Space Matrix . 20

10 Placement in the alternative Groupware Time Space Matrix 20

11 Line creation action message sent from User 1 to User 2 via the server 21

12 Socket communication example. 22

13 WebRTC connection triangle . 22

14 Two interfaces displaying different states due to slow notification time 23

15 Processing messages on the server . 24

16 Replication of actions on users devices . 24

17 A simple example showing the cursor pointer presentation in two different browser sizes 26

18 Illustration of the expanded view a larger screen might have compared to a smaller screen
at same zoom level . 26

19 Illustration of how a false negative could occur . 27

20 Depiction of how Miro highlights moving objects . 27

21 Object highlights for User 2 when User 1 clicks on object 28

iv

22 The session picker screen . 33

23 The lobby screen . 34

24 The whiteboard screen . 35

25 A simplified view of the communication between the server and the users when a user
performs an action . 36

26 Three model classes in the drawing pipeline . 39

27 The drawing pipeline simplified . 39

28 Canvas Objects . 40

29 Example of an overridden method across different subclasses 41

30 Screenshot snippets showing all whiteboard tools icons 42

31 The canvas object toolbox when single and multiple objects are selected. 43

32 The CanvasObjectAction class . 44

33 Object creation replication . 49

34 A frame from the monitoring system from the pilot test 51

35 The historic plot of the monitoring system from the pilot test. The section marked in
red is the frame shown in Figure 34. 52

36 Cluster messages (red circles) forming a pattern for group 1 during task 1: Byggeklosser. 58

37 Cluster messages (red circles) forming a pattern for group 1 during task 3: Grublis.
The blue circle marks that Legendarisk Kulturmelk moved around in the workspace after
both pupils asked each other about what they had written. 58

38 Parallel workflow using the same method to complete the task for group 2 during task
1: Grublis. 61

39 Parallel workflow using the same method to complete the task (red box), and a mostly
independent workflow not using the same method (blue box) for group 2 during task 3:
Femten fordelt p̊a seks. 62

40 Parallel workflow to a guided workflow for group 3 during task 1: Telle marihøner. The
break point is indicated with a pink line. 66

41 Pattern formed by cluster messages (red circles) to a parallel workflow for group 3 during
task 2: Grublis. 67

42 Pattern formed by cluster messages (red circles) to a singular contributor for group 3
during task 3: Femten fordelt p̊a seks. 67

43 Main patterns of collaboration . 69

v

List of Tables

1 The problems of locking addressed by the designed locking-implementation 25

2 Description of the tasks in the platform . 53

3 Questions to the pupils, separated into themes . 54

4 Questions to the teacher . 54

5 Figures and tasks where parallel collaboration occurred 70

6 Figures and tasks where ping-pong collaboration occurred 71

7 Figures and tasks where singular action collaboration occurred 72

8 Table of the patterns the groups exhibited . 72

vi

1 Introduction

”Fremme læring, ikke teste den.”

This thesis presents a project where a collaborative software platform was designed and implemented
to facilitate a test where pupils solved mathematical tasks together. To visualize interactions in the
platform, a monitoring system was developed. Together with field notes and interviews, this monitoring
system was used to identify and analyze the collaborative patterns that occurred during the test.

1.1 Problem description

In 2020, the Norwegian primary school curriculum was updated to focus more on digital competence.
As a result, more and more schools are actively using computers such as tablets during classes [1][2].
The usage of tablets in primary schools allows pupils to learn, cooperate, collaborate, and explore in
new ways using educational software and the internet. A pupil’s physical location is potentially rendered
insignificant. Exploring how teachers and pupils can collaborate in new ways is an interesting subject.

Mathematics has traditionally been a subject where pupils explore concepts and logical thinking while
supervised. Working with tasks and solving problems have conventionally been done individually. This
way of working is possibly due to how mathematics varies a lot in format and is often performed with
pen and paper. Some tasks can be solved with text only, while others may require a combination
of text, graphs, diagrams, drawings, and formulas. Other subjects, such as languages, history, and
social studies, are more suited for utilizing collaborative text processing platforms such as Google Docs
(Section 2.4.1). The varied format found in mathematics makes collaborative work challenging to
support within a digital space.

With today’s tablet usage in primary schools, it is interesting to explore how a collaborative software
platform built to focus on mathematics would behave in an educational setting. Due to the varied
input types different mathematical tasks and exercises often demand, such a platform would ideally
be based on point- and line inputs in a shared workspace rather than text. One of the significant
advantages tablets have compared to other personal computers is their integration with styluses, which
helps make drawing feel intuitive and natural for pupils. This thesis will discuss the requirements,
design, implementation, and validation of such a platform.

1.2 Motivation

The motivation for creating a collaborative platform for solving mathematical tasks was to encourage
and support collaborative learning amongst pupils regardless of physical location. After informal con-
versations with Neddy AS1 and Mattematikksenteret2, it became apparent that a platform aimed to
encourage learning was sought after within the educational environment. They claimed many of the
existing and widely used software platforms for mathematics in schools today were mainly focused on
validating and testing pupils’ skills within different topics. Neddy expressed that an application with
a flexible shared workspace and inter-user communication, where pupils were encouraged to explore,
could be a valuable addition to today’s learning methods.

1https://www.neddy.no/
2https://www.matematikksenteret.no/

1

https://www.neddy.no/
https://www.matematikksenteret.no/

1.3 Research questions

The project’s overall goal was to implement a collaborative software platform with a shared workspace,
where pupils could solve mathematical tasks together. This thesis explores the design, implementation,
and evaluation of this platform, with the following questions:

RQ1 What are common features and technologies in collaborative software platforms?

RQ2 Which features are necessary to facilitate collaboration in mathematics?

RQ3 What patterns of collaboration occur when using the platform?

1.4 Research method

Figure 1 shows an overview of the research method for this project. The conceptual framework was
the result of the initial literature review, and acted as the foundation for the project and the research
questions. Additionally, the design and implementation of the platform include features and attributes
from it. Awareness is central within collaborative software, and enabling pupils to be aware of each other
and their actions would presumably allow them to collaborate in different ways. Identifying collaborative
patterns in usage was therefore deemed interesting.

The design and creation strategy [3, p. 108] was chosen for this project, as it would allow for the
developed platform to act as a vehicle to identify collaborative patterns. A test scenario using this
platform was then designed to gather data. The test was performed with pairs of pupils solving multiple
tasks under supervision from their teacher. To observe [3, p. 202] the collaboration, a monitoring system
was developed for the test and used in conjunction with field notes. The system visualized interactions
in the platform. In addition to the observations, interviews [3, p. 186] were held with each group of
pupils. An interview with the teacher was held after all the groups had finished. All of the interviews
conducted were semi-structured [3, p. 188].

The data was analyzed qualitatively using an inductive approach [3, p. 269]. The primary data were
the visualizations from the monitoring system and the field notes from the observations. In addition,
the data from the interviews were used to assist these visualizations where applicable. This approach
led to descriptions and analysis of the different patterns that occurred and the different technologies
within the framework that enabled them.

Figure 1: Research method overview

2

1.5 Platform description

“Flate,” the Norwegian word for surface, is the working name of the platform made throughout this
project. Flate is a collaborative software platform where users can explore and solve mathematical
tasks. The application’s core is a shared workspace: an infinitely expandable virtual whiteboard, where
users can draw and write together using touch input in real-time. Users create lines that are streamed
to other users as they are drawn. After a user completes their lines, the platform converts the lines
into objects which all users in the same session can manipulate. The manipulations users can perform
include: moving, deleting, commenting, grouping several objects, and more.

When opening the app, the user is presented with a list of mathematical tasks they can solve. After
selecting a task, the user enters a lobby. A user can create a room from this lobby and invite other
users, which creates a session. Upon joining a session, an audio link between the connected users is
established. Through this open audio link, all users can communicate directly with each other. When
users are ready, they can start the session, which sends them to the whiteboard. Some tasks may contain
images, and these are added to the whiteboard as accessible pre-rendered objects. These image-based
objects can then be interacted with in the whiteboard in the same way as line-based objects. The
shared whiteboard is unbounded in size, allowing users to move throughout the shared workspace as
they please. Having an expandable whiteboard allows users to structure their work however they please.
Other users’ positions are displayed within the interface using avatars, enabling all users to be aware of
their collaborators’ positions. Both written and verbal communication is supported in the platform.

The goal of this platform is to create a stand-alone experience where simultaneous collaboration feels
effortless and intuitive.

1.6 Thesis structure

A description of the sections in this thesis is provided here:

2. Background
This section presents central theories in the field of Computer-Supported Cooperative Work
(CSCW) as a framework, focusing on groupware and awareness. Two relevant groupware plat-
forms for this project are also presented and reviewed in this section, followed by a discussion on
Computer-Supported Collaborative Learning (CSCL).

3. Designing a real-time groupware platform
The design of the platform is presented in this section. This design is based on the framework
presented in the Background section, where some design decisions are made to fit the project’s
context.

4. Implementation
The section presents the development process and how the core functionality of the platform is
implemented. The features within the platform are based on the design from the previous section.
Both the front-end and the back-end are presented, followed by the local processes supporting
drawing and interaction. The last subsection presents how actions are transmitted and replicated
between devices.

5. Method
This section presents the research strategy, data generation and evaluation, and the chosen
approach for analyzing the data. The test case and how the data was generated using observations
is described within the data generation subsection.

6. Results
In this section, the results from the data generation are presented. It includes test summaries
and interviews for each group, and the interview with the teacher. The section also presents
and analyses the collaborative patterns observed using the monitoring system and discusses how
the different features in the platform, which are based on the framework from the Background,
helped facilitate these patterns.

3

7. Discussion
This section discusses the findings for each research question and evaluates the project. It also
presents potential future work for the platform, and considerations and contributions of the
project.

8. Conclusion
In this section, the findings and contributions presented in this thesis are summarized and con-
cluded, followed by recommendations for future work on the research topic.

4

2 Background

This section presents common attributes and characteristics of groupware software and includes an
elaboration on the subgroup of groupware that supports simultaneous activity called real-time groupware.
It also defines and discusses awareness within this type of software. Section 2.4 presents two groupware
platforms and discuss how the attributes and characteristics of groupware are present within these
platforms. Section 2.5 presents Computer-Supported Collaborative Learning (CSCL), and discusses its
relevance to the project.

2.1 Groupware

Computer-Supported Cooperative Work (CSCW) is a term for technologies of computer hardware,
software, services, and techniques that support people working together in groups of different sizes [4].
A term that is frequently used synonymously with CSCW is groupware. Ellis et al. [5] suggest that
groupware can be defined as the application class, both for smaller groups and larger organizations, that
arises from merging computers, large information bases, and communication technology. Specifically,
they define groupware as:

Computer-based systems that support groups of people engaged in a common task (goal)
and that provide an interface to a shared environment.

This definition does not specify that users have to be active simultaneously. Groupware that specifically
support simultaneous activity is called real-time groupware (see Section 2.2).

2.1.1 Groupware spectrum

As software systems support common tasks and shared environments to varying degrees, one can think
of a groupware spectrum with different systems at different points on the spectrum. In Figure 2, this
spectrum is illustrated in two dimensions. These dimensions derive from the definition of groupware and
aim to visualize to which degree a common task and shared environment are present within a platform.

Figure 2: The groupware spectrum

In the groupware spectrum, a system on the far left scores low in the groupware spectrum, and conversely,
a system on the far right scores high in the spectrum. Examples of systems are placed on the spectrum
in each dimension.

A conventional timesharing system where many users perform separate and independent tasks con-
currently is usually low (left) on the groupware spectrum in the common task dimension. A software

5

review system that electronically allows a group of users to evaluate an entity with real-time interaction
would be placed high (right) on the groupware spectrum. E-mail would be placed low on the groupware
spectrum in the shared environment dimension as it gives few environmental cues, meaning the environ-
ment does not give cues to the user about, for instance, what the other users are doing. An electronic
classroom system that emulates a traditional classroom and allows instructors to present online lectures
to students at remote computers would be placed high on the groupware spectrum. This is because
such a system, depending on the design, can give cues to users about what is happening around them.

2.1.2 Groupware time space matrix

Groupware can be designed to support cooperation within a face-to-face group or a group working
together remotely. It can also be designed to facilitate communication and collaboration in real-time
interaction and non-real-time interaction. A two-by-two matrix can represent the geographic dispersion
(distributed actors vs. non-distributed actors) and time dispersion (synchronous vs. asynchronous com-
munication). The work of Johansen [6] inspires this taxonomy and often categorizes CSCW technologies
[7, p. 13].

Figure 3: Groupware Time Space Matrix

In Figure 3, the time dispersion is represented by the columns same time and different times, and the
geographic dispersion by the rows same place and different places.

Video conferencing solutions3 would be placed in the lower-left cell. An interactive whiteboard, like
the SMART Board4, would be placed in the upper-left cell. A physical bulletin board would be placed
in the upper-right cell. Systems do not have to belong to only one cell, and an online text editor like
Google Docs, described in Section 2.4.1, could be placed in the lower-right and the lower-left cell.

2.1.3 Alternative groupware time space matrix

Carstensen and Schmidt [7, p. 17] proposed an alternative to Johansen’s taxonomy as: “... it is not
very useful for describing most of today’s existing CSCW systems since these have different facilities
falling in different boxes.” They suggested categorizing systems in a two-by-two matrix where the rows
separate tightly and loosely coupled interaction among collaborators. The columns separate between
seeing the computer as a medium or as a regulator of interaction. This taxonomy is illustrated in
Figure 4.

3Examples of this include, but are not limited to, Zoom, Google Meet, and Microsoft Teams.
4https://www.smarttech.com/en/products/education-displays/smart-board-800

6

https://www.smarttech.com/en/products/education-displays/smart-board-800

Figure 4: An alternative to the Groupware Time Space Matrix

Imagine moving a dining table set with friends, which consists of a table and some chairs. Moving
the chairs can be done individually and requires little coordination. This interaction would be loosely
coupled. However, moving the table is a joint effort, which requires additional coordination (e.g.,
agreeing on the side of the table and where to move it). This interaction would therefore be tightly
coupled.

When using the computer as a medium of interaction, tightly coupled interaction requires that the actors
are mutually aware. For example, when working with others in real-time in the same document, Google
Docs would be placed in this cell, as users are aware of each other’s activity. Loosely coupled interaction
when using the computer as a medium requires that the different actors agree on the concepts in the
system. For instance, in Wiki software systems, users have to agree on the concept related to the
software. The editing of pages is usually done individually, and this would therefore place this type of
software in the lower-left cell.

When using the computer as a regulator of interaction, an example of a system that facilitates tightly
coupled interaction would be a Kanban board5 like Trello.This is because Trello is used to regulate
activities outside of the system itself, and the actors use the system to adjust these activities. For
loosely coupled interaction, an example could be a shopping list application where a list is shared
between two or more people.

It is important to note that the two dimensions in the matrix serve as continuums and that one
application can serve multiple roles that cut across multiple areas in the matrix space.

5https://www.atlassian.com/agile/kanban/boards

7

https://www.atlassian.com/agile/kanban/boards

2.2 Real-time groupware

Groupware that supports simultaneous activity is called real-time groupware. Real-time distributed
groupware allows geographically distributed users to interact with each other. Many real-time groupware
systems provide a bounded space where people can see and manipulate artifacts related to their activities
[8, p. 414].

The invocation of a groupware system is usually called a session. The group of users in a session is
called participants. Each participant in a session is provided an interface to a shared context. The
time the system needs for the actions of a user to be reflected upon within their own interface is called
response time. The time needed to propagate and replicate one user’s action onto the other users’
interfaces is called notification time.

Ellis and Gibbs [9, p. 399] use the following attributes to characterize real-time groupware systems:

• Highly interactive: The response times must be short.

• Real-time: The notification time must be short and comparable to the response time.

• Distributed : Assumes that participants are not all connected to the same machine.

• Volatile: The participants are free to enter and leave a session.

• Ad hoc : The information accessed by the participants can not be told a priori.

• Focused : The high degree of access conflict as participants work on and modify the same data.

• External channel : The participants are often connected by an external channel such as an audio
or video link.

One example of a real-time groupware system is the online collaborative whiteboard platform called
Miro. This system is discussed further in Section 2.4.2.

Methods that aim to ensure correct results of concurrent actions in multi-user softwares are collectively
called concurrency control. Ellis and Gibbs’ paper [9, p. 400] emphasizes that concurrency control is
needed within groupware systems to help resolve conflicting actions (e.g., two users moving and deleting
the same object) between participants and to enable users to perform tightly coupled activities. Below
are some of the issues the paper found that are related to concurrency control:

• WYSIWIS : Ellis and Gibbs note that having a What You See Is What I See (WYSIWIS) interface
is necessary to maintaining group focus. The cohesiveness is quickly lost if each user sees a
slightly different or outdated version. The response- and notification times have to be as short
as possible to ensure the interface always reflects the latest actions.

• Replication: The short response times puts high demands on groupware systems, and because of
this, the data state is replicated for each participant locally. Many expensive operations can this
way be done locally. If an object is not replicated, even simple operations require communication
between the users, resulting in degrading the response time for each user.

One approach to solving concurrency control is locking. This means that the data is locked before it is
modified, preventing other users from performing actions on the same data. Ellis and Gibbs note that
there are several techniques to help decrease the probability that a user will request a lock on data that
is already locked [9, p. 401]. One of the techniques mentioned in the paper is to provide the participants
with visual indicators of locked resources. The papers note three main problems with locking:

1. Overhead : A degradation in response time because of the overhead achieved when requesting
and obtaining the lock on an object.

2. Granularity : The level of granularity is not always clear when implementing locking. Ellis and
Gibbs’ paper illustrates this with an example using a text editor. Is it the enclosing paragraph,
the sentence, the word, or the character that should be locked when a user inserts a character in
the middle of a sentence?

8

3. Request and release: This problem is related to determining when locks on objects should be
requested and released. Expanding on the text editor example, when should the lock be requested?
Is it when the cursor is moved to the sentence or when the character key is pressed?

2.2.1 Concurrency

Real-time groupware systems always have an element of concurrency challenges. Replicating the data
state locally for each participant has been identified as appropriate for real-time groupware systems with
shared workspaces [9, p. 400][10, p. 207]. Whenever a user performs an action, their local data state is
immediately updated, meaning the system has a short response time as presented earlier in Section 2.2.
This introduces an inconsistency with the states of the other replicas [11, p. 195]. The states will
be consistent again when the user action, sent asynchronously, has been received and handled by the
other replicas. So, one can think of user actions going through several stages. For instance, Greenberg
and Marwood [10, p. 208] present these stages: creation, local execution, transmission, reception, and
remote execution. When multiple users interact with the system, actions interleave and get executed
out of order at different sites. This can lead to interference and inconsistencies in the data states of
the replicas.

Concurrency control is the activity of coordinating potentially interfering user actions that occur in
parallel [10, p. 208]. The usability of a method for concurrency management relies both on its ability
to maintain consistency among the replicas of a shared workspace and on the production of meaningful
results that meet users’ expectations [12, p. 288]. When discussing methods, its level of “optimism”
refers to how strict the method is with the execution order of user actions. It differs slightly from
method to method, but the basic idea is:

• Non-optimistic methods prevent a user action from being executed if the previous action has not
yet been executed

• Optimistic methods allow user actions to be executed out of order and detect and repair incon-
sistencies that occur because of this

Examples of classical approaches for non-interactive computer systems, like distributed databases, are
serialization and locking methods. Serialization algorithms work by either synchronizing user actions
so that they are executed serially across the entire system or by repairing effects of out-of-order user
action to give the illusion that they have been executed serially [10, p. 208]. Locking is a method that
works by users gaining privileged access to some object for a length of time [10, p. 209]. Typically, a
user will request a lock on an object, and if no one else has it, the user gains access. If someone else
has the lock, the user requesting access will be denied. When a user who has the lock on an object
no longer needs it, the object is released. More information about these two methods, including the
specificity surrounding their optimism levels, can be found in Greenberg and Marwood’s paper [10].

The classical approaches to concurrency control assume that computers can tolerate the delays associ-
ated with non-optimistic serialization and locking or that they can accept the local inconsistencies that
could occur with their optimistic counterparts [10, p. 210]. Distributed systems can use concurrency
control methods that do not consider that people are viewing a shared workspace, which is something
real-time groupware can not. People can be more or less tolerant of problems related to concurrency
in real-time groupware, and the effect of how these problems are presented in the shared workspace are
individual.

Google Docs seems to use algorithms based on an optimistic replication technique called Operational
Transform (OT) [13, p. 1] [14]. Each user operates on their own replica of the shared workspace,
and any change done by a user is immediately propagated to other users. The basic idea of the
approach is to transform an operation done by a user in accordance with a previous operation so that
the shared workspace can achieve the correct data state. An alternative optimistic replication technique
is Conflict Free Data Types (CRDT) [15, p. 150]. It is a class of data types that allow replicas to be
modified and can guarantee convergence to the correct data state after updates without coordination
[15, p. 150]. CRDTs are either operation-based, where updates are propagated as operations and

9

executed on every replica, or state-based, where updates propagate as full local states and merge on
every replica. Operation-based CRDT and OT are similar in how they solve concurrency. The difference,
however, is that the operations in CRDTs are assumed to be commutative, while in OT, the incoming
operation is transformed according to a previous operation.

2.3 Awareness

In CSCW, awareness is an understanding of the activities of others, which provides a context for your
activity [16, p. 107]. It is a fundamental concept and refers to knowing who is in the proximity and
what activities are occurring [17]. The term has been a challenge for the CSCW community to define.
The most important thing to note is that it describes a user’s internal knowing and understanding of a
situation, including other users and the environment, and that it is gained through subtle practices and
interpreting information [18, p. 432]. This information partly exists in the system the user is operating
in, and it is also partly provided by awareness technology in the system.

Information about awareness can be passively collected and distributed in the same shared workspace
as the object of collaboration [16]. The study conducted by Dourish and Belloti [16] suggests that
awareness information provided and exploited passively through the shared workspace allows users to
move smoothly between close and loose collaboration. This also allows them to assign and coordinate
work dynamically. In addition, it suggests that CSCW systems supporting the aforementioned method
provide effective support for collaboration by using an approach called shared feedback.

The shared feedback approach is when the interface presents feedback on all individual users’ activities
within the shared workspace. This approach provides low overheads for both the providers and con-
sumers of awareness information and the availability of information is as-and-when needed as a context
for individual activities. Dourish and Belloti [16] performed a case study on a group of three designers
using the ShrEdit6 editor and had them linked via video and audio. Their paper noted the informal
channel of verbal communication as important for supporting a system that required flexibility. From
the case study, the paper suggests multiple benefits of using the shared feedback approach:

• Individuals have the opportunity to monitor each other’s activities peripherally and comment on
them. They can both communicate their activities and provide others with the opportunity to
communicate on the activity or observe consequences for their own actions.

• Individuals can explicitly tailor their contributions knowing that others can see them, conveying
information and soliciting responses via the shared workspace or other communication channels.

• The group can amongst themselves assign and reassign roles through fluid negotiation.

2.3.1 Workspace awareness

One subgroup of awareness in shared spaces is workspace awareness. Gutwin et al. define workspace
awareness as the up-to-the-moment knowledge about other’s interaction within the environment in
which a task is performed that is afforded by person-to-person interaction in a shared workplace [19].
The paper Gutwin and Greenberg published in 2002 [8] provides a conceptual framework of three parts.
It examines the workspace awareness concept and provides designers with help for understanding the
concept when building awareness support in groupware. Even though the conceptual framework uses,
among other things, observations from physical shared workspaces, it can be used to identify necessary
features for groupware systems supporting shared workspaces.

The first part of the framework contains the different types of information that constitute workspace
awareness. This awareness is made up of many kinds of knowledge, and the framework divides the
concept into components. It presents that people usually keep a certain set of information to track in
all kinds of collaborative work, either consciously or unconsciously. When working in a shared space,
the set of information people usually keep consists of the elements that answer:

6A synchronous, multi-user text editor that runs on a network of Apple Macintoshes

10

• Who: Who they are working with

• What: What the other people are doing

• Where: Where different events are happening

• When: When the different events are happening

• How : How the different events occur

Given these categories, Gutwin and Greenberg identify the core elements that constitute workspace
awareness. These elements are further divided into elements related to the present and elements
related to the past. The two types of elements are shown in Figure 5 and Figure 6, respectively.

Figure 5: Elements of workspace awareness related to the present

The elements in Figure 5 and Figure 6 are commonsense phenomenons that deal with interactions that
happen between the person and the environment. For instance, in Figure 5, the elements awareness,
intention, and artifact refer to the understanding of what another participant is doing on what object,
at a high level of granularity or a general level.

Figure 6: Elements of workspace awareness related to the past

In the elements related to the past, action history and artifact history refer to the details of events that
have occurred, while event history refers to when events happened. The remaining elements deal with
the historical aspects of the elements related to the present.

Workspace knowledge will consist of these elements in some combination. However, when designing
groupware systems, one should not aim to include support for all of these elements equally. Two factors
are paramount in deciding how to include each element:

1. The degree of interaction between the participants indicates the level of granularity the information
should include in the activity

11

2. How often the information changes indicates how often the interface needs to be updated

Gutwin and Greenberg illustrate that some situations do not require explicit support as certain ele-
ments never change. For instance, there is little need for the system to gather and distribute location
information if the participants are constantly assigned to specific areas of the shared workspace.

The elements presented in the first part of the framework provide a high-level organization of workspace
awareness, and Gutwin and Greenberg remark that they should act as a starting point for thinking about
the awareness requirements of particular task situations.

The second part of the framework describes the mechanisms people use to gather workspace aware-
ness information from the workspace environment. This means that the mechanisms described are how
people find the answers to the who, what, where, when, and how listed in Figure 5 and Figure 6. These
are described to make it easier to design groupware that presents awareness information to make the
continuation of the workspace awareness easy and simple to understand. Gutwin and Greenberg describe
three mechanisms to gather workspace awareness information [8, p. 422]: consequential communication,
feedthrough and intentional communication.

• Consequential communication: This is transferred information and emerges as a consequence of a
person’s activity within an environment. The producer of this information does not intentionally
undertake actions to inform other people. The people that perceive the information pick up the
available information.

• Feedthrough: Manipulated artifacts in the environment give off information, and the feedback
given to the person performing the action can also be observed by others to gather information.

• Intentional communication: Use verbal communication, the usual form of communication, and
the exchanges to pick up awareness information. This can be done in three ways:

1. Information is gathered by simply stating where they are working and what they are working
with.

2. Information is gathered by people overhearing others’ conversations.

3. Information is gathered by listening to the running commentary people produce while per-
forming their actions (spoken to no one in particular).

The third part of the framework describes how workspace awareness is used in collaboration. It
provides a basic set of collaborative activities that can be used to analyze work situations. The five
activities the framework provides are [8, p. 425]: management of coupling, simplification of communi-
cation, coordination of action, anticipation, and assistance . Below, a summary of the benefits of these
activities in workspace awareness is presented [8, p. 432] :

• Management of coupling : People keep track of others’ activities when they engage in loosely
couple collaboration to determine the appropriate time to initiate tightly coupled collaboration.
Workspace awareness assists people in noticing and managing transitions between individual and
shared work.

• Simplification of communication: Workspace awareness allows people to use the shared workspace
and artifacts as conversational props that let people mix verbal and visual communication. It
includes using mechanisms of deictic references7, demonstrations, manifesting actions as a re-
placement for verbal communication, and visual evidence of understandings.

• Coordination of action: Coordination can be accomplished by either explicit communication or
less explicit, brought about by the shared objects in the workspace. The latter is enabled by
workspace awareness. Workspace awareness can also be useful in the division of labor and planning
and replanning the activity.

7The practice of pointing or gesturing to indicate a noun, such as “this”, “that”, “here”, or “there”

12

• Anticipation: Workspace awareness allows people to predict others’ actions and activity at several
time scales. This allows them to replan movements based on the anticipated action. Without the
up-to-the-moment knowledge of workspace awareness, this would be difficult to accommodate.

• Assistance: Workspace awareness assists people in understanding the contexts where help is to
be provided. In order to assist someone, one needs to know what they are doing, what the goal
of the action is, and the context in which they are doing it. By being aware of these things, one
can assess the situation and provide the appropriate assistance.

2.4 Relevant collaborative software platforms

This section presents two collaborative software platforms that handle simultaneous cooperation in
different contexts and settings. It also presents a review of the software using the relevant models and
frameworks presented in Section 2.1 and Section 2.3.

2.4.1 Google Docs

Google Docs [20] is an online word processing software that allows users to create, share, and collaborate
on writing documents in real-time. Google Docs has a similar user interface and feature-set as Microsoft
Word, which has been the most commonly used word processing software for Computer Assisted Writing
(CAW), with additional features which handle real-time inter-user interaction and document sharing in
the web-browser [21]. A user can create a new document and give other users access to it. Once a user
has been granted access to a document, they can read and write in the document together with the
original creator, depending on the type of access given. Other users currently viewing the document are
represented as colored avatars in the top-right of the software, and their cursor is shown in the editor
with the same color as the avatar. When other users are writing, their names are displayed above their
cursor. One can be transported to other users’ cursor placement by clicking on their avatar.

In addition to this, the software gives users the ability to mark an area in the text editor and create a
comment thread. Users can tag other users in a comment in this thread, and a comment thread can
be resolved when done. Users can also suggest edits in the editor, which can be approved or rejected.

2.4.2 Miro

Miro [22] is an online collaborative whiteboard software where users can collaborate in a shared surface.
It provides users with the possibility to choose from pre-built templates or the option to create their
own. The software has a board with an infinite canvas and different tools like sticky notes, a freeform
pen, shapes, and arrows. A user can invite other users to their board, which enables collaboration.
Like Google Docs, users currently viewing the canvas are shown in the top-right of the software as
avatars. One can also be transported to another user’s view by clicking on their avatar. In addition to
this, a user has the possibility to bring everyone to their view by clicking on their own avatar. A user
can also see the other users’ cursor in the canvas and has the possibility to get feedback, reviews, and
approvals on work done on the board. Like Google Docs, users can start a comment thread on objects,
tag collaborators in the comment, and resolve comment threads.

When clicking on an object, the user is presented with several operations that can manipulate it. The
operations are related to the type of object and will therefore vary somewhat depending on the object.
For instance, when clicking on a sticky note, the user is presented with the option to change the font,
but when clicking on an arrow object, the user is presented with the option to change the direction of
the arrow.

2.4.3 Review of the software platforms

Although both Google Docs and Miro can be used outside of group work, the thesis will consider the
softwares within the context of enabling collaborative work.

13

Both Google Docs and Miro fit the description of groupware as they engage people in a common task
and provide an interface to a shared environment. The common task that the people are engaged in
motivates the choice of software, i.e., writing an article in Google Docs or planning a sprint in Miro.

Google Docs
The interface provided in Google Docs is a shared online text editor. It provides a shared workspace
to users working on the same document. The interface gives environmental cues such as displaying
each other’s cursor and each other’s activity, for instance, seeing the words typed by other users and
seeing who typed it. The software can therefore be placed high in the shared environment dimension
on the groupware spectrum. Depending on the task, users can perform separate and individual tasks
concurrently and perform activities with real-time interaction. This makes it hard to place it on the
common task dimension since the placement on the spectrum depends on the task.

The software supports simultaneous activity, but whether or not users are active simultaneously depends
on the task they are performing. For instance, a group could outline an article that they will write
together in the same document and delegate each part of the article to team members in the group. The
team members could then, at their own convenience complete the delegated tasks. This means that the
software supports activities that both happen at the same time and at different times. Since the software
is designed to support distributed actors, meaning users working on their own devices, the software can
be characterized as supporting both synchronous- and asynchronous distributed interactions.

Supporting synchronous distributed interactions makes the software fit the category of real-time group-
ware. The attributes specified in Section 2.2 are present in the platform, meaning it is highly interactive,
volatile, ad hoc, and so on. The interface in Google Docs is a WYSIWIS (what you see is what I see)
interface, meaning actions in the text editor (i.e., a character) is immediately propagated to all users
in the same session. The response- and notification times are kept short to maintain group focus.

Visual indicators in the software indicate where users are working in the document (by showing other
users’ cursor) and highlighting sections in the text that other users have highlighted. This can decrease
the probability that other users will operate on that section in the editor. Although highlighting the
section can decrease the probability, conflicting actions could occur in Google Docs. However, it does
not implement locking as a way to solve concurrency control as deciding the level of granularity is not
an easy task in text editors (like mentioned in Section 2.2). Instead, a user can operate in the same
place in the editor as another user. Conflicting actions, for instance, a user deleting a character and
another user changing the color of the same character, seems to be solved by the technique called
Operational Transform (see Section 2.2.1. This can lead to some confusion between the users, which
can be solved by the users utilizing an audio link like an external channel or removing the write access
of other users.

The software implements the shared feedback approach, where the feedback on users’ activities is
presented in the shared workspace. Through the software itself, users can monitor each other’s activities
by observing their cursors and actions. The cursor shown is the typical cursor used in a text editor,
and it only shows the last place clicked by another user in the editor itself. They can also use the
commenting functions to solicit responses to their text in the editor.

The ability to view users’ activities and monitor each others cursors and actions are examples of how
users can use the feedthrough and consequential communication mechanisms in the second part of the
workspace awareness framework to update their awareness information. For instance, when a user moves
their cursor, another user updates their workspace awareness by simply noticing that the cursor has been
moved. In this example, the workspace awareness has been updated as a result of the consequential
communication mechanism. The software does not directly support the intentional communication
mechanism, but this can be achieved using third party software (an external channel in Ellis and Gibbs
description of real-time groupware, described in Section 2.2).

Miro
The interface provided in Miro is a shared online whiteboard. It provides a shared workspace to users
in the form of a canvas. Like Google Docs, it gives environmental cues such as displaying users’ cursors
and their activity. Unlike Google Docs, the activity consists of creating and moving objects such as

14

different shapes, drawing, adding sticky notes and texts. Miro could be placed similarly to Google Docs
on both the shared environment dimension and the common task dimension for the same reasons as
mentioned above.

Miro is similar to Google Docs in many ways. It supports simultaneous activity, but how the users
use the software is dependent on the task. Miro seems to be designed to be used by users on their
own devices, and the software is built to enable distributed and remote teams to collaborate without
the constraints of a physical location8. Like Google Docs, Miro can be categorized as supporting
both synchronous- and asynchronous distributed interactions. Miro categorizes as real-time groupware
because it has the attributes specified in Section 2.2. It also implements the WYSIWIS interface.

Visual indicators are also used in Miro to decrease the probability of other users operating on the same
object. When a user moves an object, it is highlighted and marked with the user’s username in the
bottom-right of the object. Miro differs from Google Docs in how it solves concurrency control when
users operate on the same object. When a user moves an object, it prevents other users from performing
operations on the same object. This shows that Miro implements locking as a concurrency control when
a user moves an object. But, it does not lock an object when a user merely has it pressed, and other
users are allowed to operate on the same object. It could not be found how Miro solves conflicting
actions, but it seems to implement Operational Technique (OT) like Google Docs.

The software implements the shared feedback approach, like Google Docs. The users’ activities are
presented in the shared workspace, and users can observe each other’s cursors and actions. The cursor
shown in Miro is different from the cursor shown in Google Docs. Miro uses a mouse pointer cursor, and
it displays the hovering/movement of the cursor, as opposed to just the last place clicked like in Google
Docs. Presenting this information in the shared workspace makes more sense in Miro than in Google
Docs because moving around in the canvas requires users to click-and-drag to get around. Because
of this, the position of the mouse provides information about where the user is currently looking. In
Google Docs, users do not have to click and drag in the editor to move around, and presenting the last
place clicked instead of the mouse’s current position is a better indicator of where the user is currently
working.

2.5 Computer-supported collaborative learning

Computer-Supported Collaborative Learning (CSCL) describes a field within the learning sciences, which
explores how collaborative learning can occur with the help of computers [23]. Similiar to Computer-
Supported Cooperative Work (CSCW), CSCL focuses on supporting group work, and providing shared
workspaces to users [24]. Additionally, CSCL is focused on the learning outcomes of the computer-
supported collaboration. According to Dillenbourg et al. [25, p.4], CSCL emerged as a researching
field in the early 1990s and has since gained a scientific community. In the later years, CSCL has to an
extent disappeared as a distinct pedagogical approach. Dillenbourg et al. argue this disappearance is
due to collaborative activities in education being integrated into more complex environments. These
environments also often include non-collaborative activities and bridge the gap between physical and
digital spaces using several different tools.

There has been a lot of research into the effectiveness and quality of learning using CSCL methods.
Dillenbourg et al. present an overview of different ideas, myths, and results in the field of CSCL [25, p.
5], based on research performed by multiple researchers over the last few decades. For instance, it is
argued that collaboration itself does not produce learning outcomes. Therefore, the goal of designing
a CSCL environment should not just be to enable collaboration but to also “create conditions in
which effective group interactions are expected to occur” [25, p. 6]. It is also emphasized that CSCL
environments should strive to give users a shared understanding of the environment, using shared
graphical representations and visual indications of individuals’ contributions. This focus is similar to
awareness in CSCW (see Section 2.3). In the overview, Dillenbourg et al. argue that initially CSCL was
tackling the problem of compensating for actors not being in a face-to-face situation. This focus has
then gradually shifted towards how technology can enable collaboration in ways that are not available
in a face-to-face situation. There are several other interesting points brought up in this overview, which
Dillenbourg et al. sums up as:

8https://miro.com/about/

15

https://miro.com/about/

“In summary, a CSCL environment is not simply a tool to support communication among
remote students but a tool used in both co-presence and distance settings for shaping verbal
interactions in several ways[...] and for capturing, analyzing and mirroring these interactions
in real time.”

Within CSCL, there are several explored paradigms such as Mobile Computer-Supported Collabora-
tive Learning (MCSCL), Computer-Supported Cooperative Writing (CSCWR), Computer-Supported
Cooperative Reading (CSCR), and Computer-Supported Collaborative Drawing (CSCD). Within these
paradigms, the research presented in this thesis relates to both MCSCL and CSCD, as it explores us-
ing a tablet platform, which includes drawing features, to facilitate collaboration between pupils solving
mathematical tasks. While this research relates to the paradigms in CSCL, the focus is not on evaluating
the effectiveness or quality of learning occurring within the platform.

In primary education worldwide, Carapina and Boticki estimate that between 2009 and 2014, tablets
were used in 44% of cases where mobile devices supported collaborative activity [26]. Additionally,
Carapina and Boticki conclude that a 1:1 distribution between users and devices is the most common
case in which tablets are used. Research regarding drawing applications within MCSCL is not as
widespread as other types of software, such as reading and writing platforms. Notable entries on this
topic include research by Bollen et al. [27], and Ferraris and Martel [28]. Bollen et al. explores
advantageous conditions for collaborative drawing activities, and conclude that learning results may
benefit from awareness information, amongst other findings [27, p. 14]. Ferraris and Martel explore
introducing a teacher-centered regulation role into a drawing platform. This role allows a teacher both
to manage groups and to coordinate the pupils’ interactions. In this thesis, adding a similar role to the
platform is discussed in Paragraph Teachers in Section 7.5.

16

3 Designing a real-time groupware platform

This section presents the design of the platform developed during this project. The design is based on
the theories and software platforms presented in Section 2, while some design decisions are made as a
result of the context of the project.

Section 3.1 describes the concept of the platform. Section 3.2 presents design decisions that were made
for the platform to be used in the test setting. Section 3.3 places the platform within the groupware
frameworks from Section 2.1. Then, Section 3.4 presents how the platform is designed to attain the
real-time groupware attributes. Section 3.5 discusses awareness design and shows the design of the
features assumed as most important. The presented features are dependent on the implicit awareness
technology provided by fulfilling a subset of the real-time groupware attributes presented in the previous
section.

3.1 Concept

RQ2 relates to identifying the necessary features in a software platform to facilitate collaboration in
mathematics. In the project presented in this thesis, a line-based real-time groupware platform is
developed, allowing pupils to solve mathematical tasks collaboratively. This platform is then tested with
a selection of pupils in a controlled setting. The test is described in Section 5.2. Features needed for
this are identified using the knowledge gained about groupware and awareness from Section 2, adapted
to the project’s needs. RQ3 is answered by the test-setting and aims to examine collaborative patterns
occurring when using the platform.

The designed platform includes several features and functionalities presented in Section 2. A central
part of the design is to allow for synchronous distributed interaction between users similar to Google
Docs and Miro, only in the context of drawing lines in an expandable whiteboard. This whiteboard is
represented by a shared What You See Is What I See (WYSIWIS) interface, in which replication
and locking are used for concurrency control.

Awareness is assumed to be an important contributor to enable collaboration and facilitate different
types of it. Therefore, approaches such as shared feedback are included in the design of the platform.
A feature supporting this approach is Cursor activity. The design of this feature within the platform
is inspired by the implementation in Miro and aims to represent a user’s location within the shared
workspace. Another feature inspired by both Miro and Google Docs is Highlighting, which acts as an
indicator for objects selected by other users.

Workspace awareness is supported within the platform with several different features. Features support-
ing the workspace awareness category who are user avatars; supporting the category what is streaming
partial lines9, having a low notification time for replicating object actions, highlighting objects se-
lected by other users, and supporting both verbal and written communication; finally, supporting the
category where is primarily “cursor” activity, where an avatar represents other users’ location within
the shared workspace.

Some additional features were added to the platforms inspired by the two software platforms presented
in Section 2.4. Examples of this are: commenting and clicking on another user’s avatar to jump to
where they are in the shared workspace; both inspired by Google Docs. Included features inspired by
Miro are: implementing a whiteboard to act as the shared workspace between users and presenting users
with a side menu when selecting objects. This side menu contains actions that manipulate objects.
The implementation of this side menu is shown in Figure 31.

3.2 Platform design decisions

The platform is designed to facilitate collaborative work within mathematics and is centered around
users drawing and interacting with lines and objects within a shared workspace. Since mathematical

9see Paragraph Streaming of partial lines in Section 4.5.2

17

tasks often require many different input formats, such as numbers, equations and plots, basing the
collaborative platform on line-based objects seemed apt. Having users draw lines allows their contri-
butions to be structured in several different ways, in contrast to text editors that are often more rigid.
Also, tasks in mathematics are usually solved by hand on paper in primary schools; therefore, emulating
this workflow within the platform allows the users to solve them in a familiar way. As discussed in
Section 3.1, the platform is designed to be used in a test setting. To enable this test, the following
design decisions were made:

• Platform flow: How should the platform be structured in terms of screens and navigation?

• Tasks: What type of tasks should the platform include?

• Core functionality: What functionality needs to be present in the platform for the test?

As a platform, Flate is primarily meant to function as a tool used in the final tests. Some basic
functionality, such as login and registration, can therefore be omitted. This allows the pupils to be
ready to start testing the platform quickly. Instead of having user accounts, the pupils are given a
randomized set of credentials representing them within a session. This is done by generating a random
id for each pupil and generating a random word-pair (adjective + noun) to act as their username.

With no login screen, the pupils are immediately presented with a list of tasks to choose from. The
platform could immediately give the pupils a predetermined set of tasks to perform for the test. However,
for simplicity and flexibility, the pupils are instead instructed on which tasks to select. This way, the
number of tasks per group of pupils can easily be adjusted, and the platform does not need to include
methods for ordering tasks for each group. Selecting a task sends the pupils to another screen to
connect with other pupils to work with. If the platform included user accounts, a list of friends or
classmates that the pupils could invite could be shown within this interface. Instead, the platform lists
all other pupils that have selected the same task to work on. As a pupil invites others to their session,
a connection is established between all participants. After the connection is established, users can start
the session and are sent to the screen where the task can be collaboratively solved. Figure 7 shows an
overview of the flow between the different parts of the platform.

Figure 7: Flow between the different parts of the platform

To distinguish collaborative patterns that occur during testing, the tasks in the platform are chosen to
make the pupils collaborate in different ways. The chosen tasks are presented in Paragraph Description
of tasks in Section 5.2.1. The emphasis of these tasks is on how users solve them rather than the
solution itself. Some tasks allow the pupils to delegate sub-tasks and work somewhat independently,
while other tasks force and encourage the pupils to collaborate more tightly. A varied set of tasks allows
for potentially more patterns to occur, as each task could influence how the collaboration would ensue.

The shared workspace is designed to provide the pupils with an expandable surface enabling structuring
contributions as they see fit. Designing a flexible work surface within the platform allows different tasks
to be solved using the same user interface. Another option would be to tailor the interface depending
on each task, but this would somewhat limit the pupils’ freedom to explore and solve tasks in their own
way. As presented in Section 2.2, this form of ad hoc behavior is an attribute of real-time groupware
and should therefore be facilitated within this platform. How the platform is designed as real-time
groupware is described further in Paragraph Real-time in Section 3.4.1.

18

The set of features present in the platform are designed to allow the pupils to solve the different tasks
during testing collaboratively. Most central are the different functions that allow the pupils to draw
lines within the shared workspace and have these lines appear on other pupils’ devices in real-time. As
a pupil is drawing, the drawn line is chunked into smaller parts and streamed to other devices where
they are replicated. Pre-rendered assets related to the task and lines are made into accessible objects
that the pupils can interact with. The types of interactions include moving, deleting, commenting,
grouping, and more (see Paragraph Canvas object toolbox in Section 4.4.3).

Streaming of lines allows the pupils to be aware of each other’s actions within the shared workspace.
Awareness between pupils is assumed to be important for collaboration. Other features designed to
support awareness within the shared workspace include visualizing the pupils’ locations within the
interface and object highlighting. The design of these features is discussed further in Section 3.5.

3.3 Groupware framework placement

When designing a groupware platform, certain attributes and characteristics need to be considered.
Figure 8 shows the ideal placement of the platform described above. For the platform to be placed
on this right-most side of the Groupware Spectrum, the platform needs to emphasize common tasks
and create a shared environment. This means that the platform would need to focus on the users
of a session, letting them collaboratively work together in the same environment while giving them a
common goal to achieve.

The common task in the platform is the mathematical task the users are to solve together. Therefore,
giving all users an equal opportunity and responsibility in solving these tasks is essential. The platform
should have no specialized roles for different users in a session to achieve this equality, letting them
interact equally in the shared environment. The shared environment of the platform is the shared
workspace. The state of the shared workspace, the virtual whiteboard, has to be updated for all users
as actions happen. This way, all users are made aware of what is happening in the platform. If the users
are constantly updated with changes in the shared workspace, they will have the same prerequisites
for contributing towards the common task. Implementing the platform emphasizing these features
would make the platform score high in the groupware spectrum in both dimensions. This high-scoring
placement is outlined in Figure 8.

Figure 8: Ideal placement in the Groupware Spectrum

Figure 9 shows desired placement (in green) for Flate in the Groupware Time Space Matrix. This
placement requires the platform to support geographically distributed users and enabling synchronous
interaction within the platform. Therefore, the platform should send messages containing user actions
between users’ devices with minimal latency to support distributed users. How the platform should
support distributed users is discussed further in Section 3.4.1.

19

Synchronous interaction means that users work together simultaneously to solve a common task. A
platform supporting synchronous interaction may also support asynchronous interaction, as is the case
with Google Docs (Section 2.4.3). Synchronous interaction requires users to collaborate in real-time,
and the core requirements for real-time interaction are discussed further in Paragraph Real-time in
Section 3.4.1.

Figure 9: Placement in the Groupware Time Space Matrix

The alternative Groupware Time Space Matrix focuses on the role of the computer in collaborative
work and the nature of the interactions between users. In this matrix, Flate would be placed in the
upper-left, and this is shown in Figure 10. The computer, or tablet, is the medium the users use to
interact with each other. The platform should allow users to interact with the same objects in the
shared environment directly to facilitate tightly coupled interaction. This type of interaction requires
that the platform enables users to be mutually aware of each other, as explained in Section 2.1. In
general, the platform should give visual clues and feedback to reflect other users’ actions within the
shared environment. How the design of the platform enables these features is explained in Section 3.5.

Figure 10: Placement in the alternative Groupware Time Space
Matrix

3.4 Real-time groupware features

This section presents Flate as a real-time groupware platform and explains how the platform is designed
to attain the attributes and requirements associated with this type of groupware.

3.4.1 Attributes

This section presents a selection of the attributes described by Ellis and Gibbs [9, p. 399] (Section 2.2).
The attributes discussed below were chosen as they required certain design decisions to be made to

20

fulfill the requirements of the attributes and were relevant for the context of this project. The ad
hoc attribute does not describe a requirement, as it simply characterizes a type of user behavior that is
common within real-time groupware. It is therefore omitted from this discussion. The focused attribute
is discussed in Section 3.4.2 as it relates to concurrency control.

Highly interactive
A highly interactive platform means that a user’s actions should be quickly reflected within the user
interface. To achieve this, the platform is designed to have a short response time. As the platform’s
core functionalities are drawing lines and interacting with objects, high interactivity is critical. Having
an object not immediately respond to actions when interacting with it might make actions feel clumsy
and make the platform feel less interactive. For instance, when drawing a line on paper, users naturally
expect lines to be drawn as the pen moves on paper. Mirroring this behavior in a virtual context is
essential to ensuring that drawing feels natural. When users perform actions such as moving drawn
lines or other objects, the interface gives instant feedback. This way, the user can feel confident that
objects are moved precisely as intended.

Real-time
The real-time attribute is essential in groupware platforms and is directly dependent on the platform’s
notification time. The notification time is the time it takes for a user’s action to be handled and
reproduced on another user’s interface. For real-time platforms, the notification time should be short
and comparable to the response time. If a user draws a line in the platform, the points in the line are
streamed immediately to other users in the session. This allows them to observe the line being drawn
in real-time. If lines only were to appear after a user has drawn complete lines, other users would be
less aware of this action while it is happening.

Figure 11: Line creation action message sent from User 1 to User
2 via the server

Figure 11 shows an example where User 1 draws a line. Upon creation, this line is immediately
transmitted via a server as a message with information about this action. The message is then used to
display the action in the other user’s interface. To further enhance the real-time aspect of the platform,
actions that transpire over an extended amount of time, such as drawing lines, are split up into smaller,
more frequent messages. Sending smaller chunks of a line while a user is drawing allows the other user
to be aware of the action in real-time. Displaying actions while they are happening enables awareness
within the platform, which is important for collaboration in shared workspaces. Awareness within Flate
is discussed further in Section 3.5.

Distributed
Distribution in real-time groupware means that all users are connected using separate devices in different

21

geographical locations. Flate supports distributed users and includes methods to handle connections
and interactions between users. To establish connections between users, the platform presents users
with an interface to create sessions and invite other online users.

A server is needed to handle connections between users, and the connections have to be kept active for
all connected users. User actions that manipulate objects in the shared workspace are transmitted to
all connected users via the server. This way, user actions are mirrored on all users’ interfaces and lets
all users have an up-to-date and identical view of the shared workspace.

Figure 12: Socket communication example.

The server is designed with full-duplex communication. Full-duplex communication means that the
server can both send and receive messages. Without this, clients would need to poll the server to get
messages, whereas, with full-duplex communication, the server can push messages directly to connected
clients. An event where a new client registers on the server is shown in Figure 12. Here, another client
is already registered on the server and is notified by the server of the newly connected user. This client
is then able to invite the new client to their session. As a user performs an action within the session,
this action is sent to the server as a message. The server then pushes this message to all connected
users in the session.

External channel
When users work together using real-time groupware, they are often connected externally through audio
or video link. Today, platforms such as Zoom10 and Microsoft Teams11 are often used for this. Having
an external channel is often beneficial as users can communicate directly to plan and structure their
work.

Figure 13: WebRTC connection triangle

10https://zoom.us/
11https://www.microsoft.com/nb-no/microsoft-teams/group-chat-software

22

https://zoom.us/
https://www.microsoft.com/nb-no/microsoft-teams/group-chat-software

As the platform’s target device type is tablet computers, most users have access to a built-in microphone.
Because of these built-in microphones, it is possible to include an audio link between users in the
platform. Users can then communicate verbally without relying on an external connection using third-
party software. The platform enables this using WebRTC12 to stream audio between users. WebRTC
enables real-time communication using peer-to-peer connections. Figure 13 shows how a WebRTC
connection is established. There needs to be a server between users to establish a connection initially,
but once users are connected, the audio is transmitted directly between the users’ devices with minimal
latency. Using WebRTC for the audio link is therefore beneficial as a media server for streaming audio
is unnecessary. The initial connection between users is established through the socket server described
earlier.

3.4.2 Concurrency control

As explained in Section 2.2, concurrency control is important in real-time groupware, especially when
interacting with shared objects in tightly coupled activities. Within Flate, concurrency control is needed
to handle potentially conflicting actions on objects in the shared workspace. All users need an equal
representation of the state of the shared workspace to ensure effective collaboration. If the state is
represented differently in the users’ interfaces, it could lead to confusion and problems.

What you see is what I see
To achieve a WYSIWIS interface in the platform, there are several considerations to be made. All
actions that modify objects in the shared workspace would need to be quickly replicated in other users’
interfaces. For this to be possible, the notification time needs to be as short as possible to decrease
instances where users’ interfaces show different states. If the notification time in the platform is slow,
for instance, a few seconds, and a user moves an object, there would be a few seconds time-frame
where users are viewing different states. Figure 14 shows User 1 moving an object, while User 2’s
interface shows the object in the original position due to slow notification time. Objects being displayed
differently may confuse users and decrease their effectiveness in collaboration, as they could be making
decisions based on different circumstances.

Figure 14: Two interfaces displaying different states due to slow
notification time

Replication
In addition to keeping notification times short, the platform needs a robust system to ensure all users’
interfaces display a uniform representation of the state. One solution would be to keep track of the
state on the server and mirror this state to connected users. While it sometimes may be preferable
to have a shared “truth” of the session state stored in one central place, it would require additional
processing on the server. For each message, the server would then need to access objects in the stored
session state and update it before broadcasting this new state to all the other users in the session, as
shown in Figure 15.

12https://webrtc.org/

23

https://webrtc.org/

Figure 15: Processing messages on the server

Another solution, and the one implemented in the platform, is that the server only forwards messages
without processing them. Receiving users would then replicate the actions locally. This reduces the
amount of processing needed on the server, which helps keep notification times between users shorter.
Reducing the amount of processing needed for each message would increase the server’s performance.

Having the server only forward messages provides the benefit of faster transmission between users. Repli-
cating the actions performed by other users requires the messages to be transmitted in a standardized
format. Following is the standard set of fields these messages contain:

• Action author id

• Session id

• The type of action

• The id of the target object

• Parameter values for the action

Figure 16 shows an example where User 1 performs an action locally. A message in the format presented
above is then created and sent to the server. The server forwards this message to other connected users
in the session. Receiving users’ devices then replicates this action by accessing the correct object and
performing the action according to the parameter values. In this example, all connected users of a
session end up with an identical representation of the shared workspace through their interfaces within
a short time frame. Replicating actions locally reduces the notification time of the platform, which
enables tightly coupled collaboration.

Figure 16: Replication of actions on users devices

24

This designed method, i.e., replicating any action in other replicas (workspaces) by sending a message
to update the states, is similar to the optimistic replication approach operation-based CRDT, discussed
in Section 2.2.1. It is only inspired by the operation-based CRDT framework, and the design does
not contain it in its entirety. This because the complexities of how to resolve conflicting actions using
CRDT were not needed for this project.

Locking
The platform includes concurrency control methods to prevent conflicting actions modifying the same
objects happening in the shared workspace. Locking is used in the platform to handle concurrency
control. Following is a description of the locking implementation used in the platform:

An object in the shared workspace is only locked when a user selects it, and upon de-selecting an object,
the lock is undone. An object consists of one or multiple drawn lines or assets related to the task. A
message is sent to all users in the session when an object is locked/unlocked. Information on which
objects are currently locked is kept on each replica, not on the server. Locked objects are highlighted
(see Paragraph Highlighting in Section 3.5.1), and other users are unable to interact with locked objects
until the lock is resolved.

This method of locking is non-optimistic, as it prevents others from manipulating a locked object. By
preventing others from accessing a locked resource, conflicting actions are easily avoided. Any potential
conflicts that could arise because of this, like, for instance, two users trying to operate on the same
object, can be solved by the pupils communicating with each other. Solving concurrency control on the
same object using this method seems appropriate for this project, and the implementation costs related
to this method are assessed as ideal.

As explained in Section 2.2, locking presents three problems that need to be addressed: overhead,
granularity, and request and release. Table 1 shows how this locking implementation handles the three
problems.

Problem Solution
Overhead Not having to poll the server by storing locking information locally

reduces overhead.
Granularity Locking is performed on an object level. For instance, a point in

a line object can not be locked.
Request and release The lock should only be applied as a user selects an object and

should only be released as the user deselects it.

Table 1: The problems of locking addressed by the designed
locking-implementation

25

3.5 Awareness

The section presents how the platform is designed to provide awareness technology.

3.5.1 Shared feedback

Effective support for collaboration can be provided with the shared feedback approach (for more read
Section 2.3). In this approach, individual users’ activities are presented within the shared workspace.
From the review in Section 2.4.3, some visual indicators of users’ activities in the platforms Google
Docs and Miro were identified. The visual indicators deemed most notable were:

• Cursor activity: Both platforms use either a cursor in the text editor or a mouse pointer in the
whiteboard canvas to present the individual user movement in the shared workspace.

• Highlighting: Google Docs presents when a user has highlighted a section in the text editor. Miro
presents when another user moves an object by highlighting the object.

Since this project’s scope is limited to creating a tablet platform, the design adapts some of the different
techniques used to present user activities in the aforementioned platforms to this context.

Cursor activity
The cursor activity can be adapted to present the position of each user relative to what part of the
expandable whiteboard is present in their viewport. This would be similar to how Miro presents cursor
activity, as it shows users’ hover activity in the shared workspace. However, it differs in that presenting
the cursor in Miro requires the point on the canvas where the mouse currently resides, and this point is
not relative to the browser’s viewport. This is illustrated in the simple example below, where the mouse
pointer of User 1 is presented in the shared workspace for User 2:

Figure 17: A simple example showing the cursor pointer presenta-
tion in two different browser sizes

The visual indicator of each user position in the project’s platform would need to consider the different
sizes of tablet viewports. The different sizes means that even though two users are both at the origin
point, a user with a bigger screen can view a larger section of the whiteboard than a user with a smaller
screen. This is illustrated in Figure 18:

Figure 18: Illustration of the expanded view a larger screen might
have compared to a smaller screen at same zoom level

26

This problem occurs when defining if users are currently viewing the same section of the shared
workspace, and there are multiple ways of determining this. One way could be to determine a cer-
tain threshold of overlap to conclude that users are viewing the same thing. However, this solution
would require each user to keep track of the viewports of all the users in a session to calculate whether
or not the threshold is met. The chosen threshold can also seem arbitrary and confusing for users. At
anything less than full overlap, there is the possibility of a false positive.

Another way to implement the visual indicator of a user position is to consider a fixed point for each
user. The fixed point is used to represent the current view of each user and moves according to the
panning of the user. If the fixed point of another user is not currently in a user’s viewport, one could
conclude that the other user is not viewing the same thing. This fixed point should coincide with
the anchor point (meaning: the origin point of the coordinate system) in the infinite whiteboard. For
instance, imagine that the anchor point of the platform is in the top-left of the canvas, but the fixed
point for two users in a session is in the middle. If User 2 stands still while User 1 moves to the right, a
false negative would occur at some point. This is illustrated below with the blue cross representing the
anchor point, the black cross representing the fixed point from User 1, and the red cross representing
the position of User 1 in the view of User 2:

Figure 19: Illustration of how a false negative could occur

In Figure 19, User 1 and User 2 still have overlapping views after User 1 scrolls to the right. However,
User 1 would be presented as outside of the current view of User 2 since the chosen fixed point represents
the middle of the view of User 1. If the fixed point in this crude example had been top-left, the same
as the anchor point, this false negative would not have occurred.

The fixed-point implementation has parallels to the cursor pointer presentation in Miro because it only
considers a single point and presents this in the whiteboard. It is evaluated as a favorable way of
designing “cursor activity” in the platform.

Highlighting
Both highlighting techniques from Google Docs and Miro can be adapted to highlight which objects
users currently are operating on. In Miro, when a user moves an object, the object is highlighted for
other users. Other users are then presented with a border surrounding the object, and they can not
operate on the object. An example of this is depicted in Figure 20:

Figure 20: Depiction of how Miro highlights moving objects

27

Miro only highlights the object when another user moves it, meaning it is not highlighted when another
user only has it pressed. It makes sense that Miro wants to restrict the possibility of two users moving
the same object simultaneously. However, other conflicting actions like a user changing the color of an
object and another user deleting it have to be solved by an intermediary. The intermediary can be a
server that determines which actions have precedence and applies the actions in order. If each user has
a replicated state, synchronizations with the server is needed to render the correct state of the canvas.

A user simply marking a section in Google Docs is highlighted for other users. This is adapted to the
project to highlight when a user presses an object. By also implementing locking when an object is
pressed to avoid conflicting actions, the platform does not have to determine the order of precedence.
For more information about locking in the platform, read Paragraph Locking in Section 3.4.2. Figure 21
presents an illustration of how it could look like when User 1 presses an object in the platform:

Figure 21: Object highlights for User 2 when User 1 clicks on object

3.5.2 Workspace awareness

Using the conceptual framework by Gutwin and Greenberg [8], one can identify necessary features in
groupware systems. The framework focuses on workspace awareness, an awareness type related to
awareness within shared workspaces (see Section 2.3.1).

The first part of the framework identifies the core elements that constitute workspace awareness
and presents them in Figure 5 and Figure 6. Elements of workspace awareness related to the past can
be omitted due to this project’s scope, which is to facilitate a test case where two users collaborate
in real-time to solve a mathematical task. Thus, this thesis will only discuss elements related to the
present, as shown in Figure 5. The elements are divided into the categories who, what, and where.

Category: Who
The elements in this category are presence, identity, and authorship. They relate to knowing if anyone
is in the workspace, who they are, and who is doing what action.

From the descriptions of Google Docs and Miro (Section 2.4.1 and Section 2.4.2), one can notice that
rounded avatars are used in both platforms to indicate the presence of others and their identities. Their
avatars are a circle with either an abbreviation of a user’s first and last name (Google) or just the first
letter in the first name (Miro). In addition to this, each avatar has a color that is unique to the user.
The designated color seems to be locally delegated in Google Docs, meaning the user’s avatar will not
have the same color in every users’ platform. However, in Miro, the color of the user’s avatar will be
the same for everyone.

Using a circle avatar with letters to indicate both presence and identity in the platform seems to be an
effective and easy-to-implement solution. To create the avatars, the interface of each user needs the
profiles of other users. This profile needs to include the name of the users and their colors. Like Google
Docs is seemingly doing, assigning the color locally requires less synchronization with the server. It is
also preferred that the server only stores the necessary information to act as an intermediary. To adhere
to standards set by other groupware systems, the platform is designed to have the avatars placed in the
top-right.

Due to this project’s scope, the authorship element is implicitly included in that only two users will
collaborate in the test. However, the platform should include this element when used in more general
contexts, for instance, in use-cases involving more than two users.

28

Category: What
The elements in this category are action, intention, and artifact. They relate to understanding what
another user is doing, what the intention of the action is, and what object they are working on.

To understand what another user is doing, the action performed by one user is designed to be reflected
in other users’ replicas with a low notification time. For instance, when a user moves an object, the
entire chain of movement has to be reflected in other users’ whiteboards to properly convey that a
displacement of the object has occurred. This also applies when a user draws a line; other users should
also get immediate feedback in their whiteboards when a point in the line has been drawn. Reflecting
user actions is discussed in Paragraph Real-time in Section 3.4.1, and in Paragraph What you see is
what I see in Section 3.4.2.

The Paragraph Highlighting in Section 3.5.1, describes highlighting an object as a visual indicator to
indicate what object users are currently operating on. This is a good technique to provide users with
the artifact element.

Reflecting the intention of an action in the canvas seems difficult, and neither Google Docs nor Miro
asks users to declare what the goal of an action is. In the presence of a communication channel, it also
seems somewhat unnecessary as a user could just ask the other users what the intention of an action
is. Therefore, rather than trying to imbue each action with a goal, providing users with the ability to
communicate with each other will implicitly provide users with support for this element.

Category: Where
The elements in this category are location, gaze, view, and reach. They relate to understanding where
another user is working, where they are looking, where they can see, and where they can reach.

The fixed-point implementation discussed in Paragraph Cursor activity in Section 3.5.1 can support
this category. By implementing this solution the platform explicitly supports the location element, as it
would represent the current workspace of a user’s whiteboard as a position in other users’ whiteboards.
It would implicitly support the gaze element, assuming that the workspace is where a user would be
looking. There exist implementations of gaze technology to correctly represent where a user is currently
looking, like Gazture [29], but designing a platform that includes this is outside of this project’s scope.

Using the fixed-point implementation to represent user position could also implicitly support understand-
ing where other users can view and reach. This requires the user to understand that the representation
of the position reflects the current workspace. They have to use this position as an interpretation of
other users’ views and reach. However, having a communication channel allows users to communicate
to avoid issues surrounding this.

The second part of the framework describes the mechanisms users use to gather awareness infor-
mation from the environment. The mechanisms are called consequential communication, feedthrough,
and intentional communication, and these are further described in Section 2.3.1.

Many of the design decisions mentioned here prompt users with a combination of consequential commu-
nication and the feedthrough mechanism. For instance, a user drawing a line in the whiteboard provides
information to other users using the consequential communication mechanism to gather awareness in-
formation. The user producing the line might not have created the line to inform other users in the
shared workspace of the action, but the action itself produces a line in other users’ whiteboard. How-
ever, if one considers the whiteboard to be an artifact and the creation of a line to be a manipulation of
it, the feedback given to the user performing the action can also be observed by other users to gather
information. This also applies to other actions, like moving an object.

By providing a communication channel within the platform, all three methods of intentional communi-
cation can be used by users to access awareness information. To make it easy for users to gather this
information, the communication channel allows users to produce work in the platform while talking.
An open-microphone solution enables that, as the audio link between users would always be open. In
a push-to-talk solution, the users would have to push a button to open the audio link, and only after
opening it could they converse with the others. A push-to-talk solution could therefore cause disruptions

29

and is evaluated as less optimal than an open-microphone solution.

30

4 Implementation

This section gives an overview of how the platform was developed throughout this project and presents
the core functionalities, methods, and models. The core functionality of the platform coincides with
features identified in Section 3. The implementation of the platform relates to RQ3, as the implemen-
tation was used to observe collaborative patterns that occurred. Additionally, from the usage of the
platform the design and choices made regarding functionality can be validated.

Section 4.1 presents the different phases of the development process and the features added to the
platform following two rounds of usability testing. Section 4.2 gives a tour of the various screens and
interfaces presented to the users. Section 4.3 presents and explains the different parts of the back-end.
Section 4.4 presents local processes happening within the front-end, such as drawing and handling user
interaction with objects within the whiteboard. Section 4.5.1 presents structures and methods that
enable communication between clients. Section 4.5.2 presents how replication of the user’s actions and
state between devices is handled.

4.1 Development

The development of the platform was structured based on the Design Thinking process. Dam and
Siang [30] describe Design Thinking as an iterative process where developing an understanding of the
target user is a central concept. Design Thinking is also a well-suited process for tackling problems
with unknown or loosely defined solutions, which is fitting for this project. As presented by Dam and
Siang, the Design Thinking process has five distinct phases:

• Empathise with the target users

• Define the users requirements

• Ideate, create solutions to the requirements of target users

• Prototype, implement the solutions into a prototype

• Test the prototype on users

These phases are not necessarily executed in sequential order; several phases can be parallel or repeated.
During the platform’s development, a complete cycle of the Design Thinking phases was completed,
followed by a supplementary partial cycle for additional user testing.

Early stages - Empathise, Define, Ideate
At the beginning of the project, the focus was on collecting information and defining requirements
for the platform. It was largely done by reaching out and having informal conversations with experts.
Experts, in this case, were teachers and other individuals with experience in the field of educational
technology. In addition to these conversations, there was a focus on finding scientific papers related
to how technology and software can facilitate collaborative work between individuals. From this initial
phase, core functionality and essential attributes needed in the platform were identified.

Prototyping
Prototyping began as a result of the findings from the information-gathering phase. The emphasis
during this prototyping phase was to implement the local processes (Section 4.4) within the shared
workspace, called the Whiteboard screen. Additionally, enabling communication and replication of user
actions between devices (Section 4.5) was implemented. After a few months of development, early
versions of both the front- and back-end were ready for initial user testing.

First round of user testing
This round of user testing aimed to measure the platform’s usability and identify new features that
could be valuable additions. This round of testing was done using IT students as test subjects. Test

31

subjects were matched with one of the authors and were given a set of tasks to complete. These tasks
were designed to ensure that the test subject would use all the different features and functions present
within the platform. Appendix D shows a table containing these tasks.

Findings from this round of testing were made by observing the test subjects and taking notes during
tests. After each test was completed, test subjects were asked to evaluate how they experienced using
the platform for solving collaborative mathematical tasks. Following are the most critical findings from
the first round of testing:

• Features that support awareness within the whiteboard are essential and help facilitate collabo-
ration

• The platform should provide users with information about the different features in the workspace

• The platform should include a guide to help users understand and utilize more functionality within
the platform

• Several minor user interface-tweaks were necessary to improve usability, such as changing icons
and labels on buttons, and more

Prototyping and final round of user testing
After evaluating and implementing new features based on the findings from the first round, a second
round of testing was conducted to ensure that the platform was ready for the test with the pupils
described in Section 5.2. A newly implemented feature was an onboarding modal when users entered
the Whiteboard screen (Appendix C.1). Also, as test subjects selected different tools and features, a
box containing a written explanation of how this tool or feature worked was shown in the top right
corner of the workspace (Appendix C.2).

The second round of testing was performed using the same tasks from Appendix D with a new set
of IT students. Findings from this round were minor, as the changes made from the previous round
of testing seemingly improved the platform’s usability. Findings consisted primarily of specific user
interface changes that needed to be made to enhance the platform’s usability further. A test subject
also felt that zoom functionality could be helpful, as it would give a better overview of the whiteboard.

Finalizing the platform
After the final round of user testing, zoom functionality and minor changes to the user interface was
added. This final round of prototyping was focused on covering edge cases that could cause errors
when during the data generation for this project (Section 5.2). In addition, the monitoring system
used during the test with the pupils, described in Paragraph Monitoring system in Section 5.2.1, was
developed during this phase.

32

4.2 Front end

The front end of the platform is built for both iOS and Android, and was written using Flutter13,
Google’s open-source UI toolkit for creating multiplatform mobile applications using a single code base.
Flutter code is written using the object-oriented programming language Dart14.

4.2.1 Screens

The platform includes three main screens: Session picker, Lobby, and Whiteboard. The session picker
screen is where users select which mathematical tasks to solve. The lobby screen is where a connection
between the users is established, and the whiteboard screen is the shared workspace where users work
together to solve the common task.

Session picker

Figure 22: The session picker screen

Figure 22 shows a screenshot of the platform running on an iOS emulator. The session picker screen is
the first screen presented to users when opening the platform. From here, users can see the different
math tasks present in the platform. There are five tasks in the platform, including an introduction task
to guide users through the different tools and functions within the whiteboard. The remaining four
tasks are based on mathematical problems, detailed in Paragraph Description of tasks in Section 5.2.1.
Tasks are shown to the right as cards in a scrollable area. After selecting a card, the box on the left
side of the screen displays information about the task. The blue button on the bottom of this box lets
the user move on to the Lobby screen.

13https://flutter.dev/
14https://dart.dev/

33

https://flutter.dev/
https://dart.dev/

Lobby

Figure 23: The lobby screen

This screen is where the connection between users is established. As shown in Figure 23, the lobby is
centered around mathematical tasks chosen by the user. Information about this task can be seen on the
left side of the screen. The box on the right side contains an area where other users with the same task
selected are shown. From here, users can invite other online users to their session. In the figure, this
area is empty as there are no other users to invite, and the user Hygenisk Yoghurt has already joined the
room. When a user joins a session, an audio link is established between all users. The middle part of
the screen contains information about the current session and allows users to toggle their microphones.
Invitations are also shown in the middle part of the screen, as shown in Appendix C.3. The green button
in the lower right allows users to mark themselves as ready. When all users in a session are ready, users
are sent to the Whiteboard screen together.

34

Whiteboard

Figure 24: The whiteboard screen

Figure 24 shows a screenshot of the whiteboard screen. This screen provides users with an interface to
the shared workspace for solving tasks collaboratively. The central part of this screen is the collaborative
workspace in which users can draw and interact with objects. The floating container on the lower left
contains tools (see Section 4.4.3) that allow the user to interact with and manipulate objects within
the workspace. The container of the lower right contains additional features, such as a microphone
toggle, text chat (Appendix C.4), comments (Appendix C.5), calculator (Appendix C.6), and options
(Appendix C.7). On the top right corner, avatars with other users’ initials are displayed. When another
user’s avatar is pressed, a user is transported to their location. Other users’ positions are displayed as
colored person-icons on the whiteboard itself. In this case, the purple user, HY, is currently positioned
between the 10 and 14 cards. In the top left corner, pressing the three horizontal lines opens a side
menu (Appendix C.8). In this menu, users can read the task’s description (Appendix C.9) and see all
users in the session (Appendix C.10). After the task has been completed, users can leave the session
from this menu.

35

4.3 Back end

To enable synchronous activity, two different users using the platform have to communicate with each
other. This communication is realized in the platform by utilizing the client-server model. The users’
tablets are the clients, while a virtual machine (VM) administered by NTNU is the server.

Figure 25: A simplified view of the communication between the
server and the users when a user performs an action

In Figure 25, a simplified model of the communication can be viewed. In this model, an action is
performed by User 1 and sent to the server. The server relays this action message to User 2. In
addition to this, the server logs the action performed in a database.

This section describes the implementation of the server and the database. Section 4.3.1 discusses
the technologies used to implement the server and gives an overview of the processes. Section 4.3.2
elaborates on the database used to log data, detailing the technologies used and provides an example.

4.3.1 Server

The server communicates with the clients using the WebSocket protocol, which provides full-duplex
communication. Full-duplex communication allows messages in both directions, and the communication
can coincide. This communication is different from the HTTP protocol, where the communication is
half-duplex, meaning the messages are only sent if requested. In the WebSocket protocol, once the
connection has been established, the overhead per message is minimal. Using this protocol, a client
can send an action to the server, and the server can push the updates to all other clients without the
client polling for updates.

This protocol was implemented in Python, version 3.6.9, using the APIs from the websockets15 package.
The document guide16 for the package recommends using the asyncio17 library to enable asynchronous
programming, and was implemented according to this guide.

When a user enters the lobby of a session in the platform, it gets registered on the server. In this
process, the client sends the auto-generated id of the user to the server. The registration on the server
consists of saving the WebSocket connection and user information (e.g., username) as the JSON value
in a Python dictionary18 and using the provided user id as the key. Once the user is registered on the
server, they can create a group or receive invites to an already established group.

As a user creates a group, an id is created locally for the group, which is sent to the server. The server
uses this id as the key in a dictionary to keep track of all groups. This user’s id is then appended as
the first item of a list of user ids. When this user invites another user to the group, the invited user’s
id gets appended to the same list if they accept.

15https://websockets.readthedocs.io/en/stable/index.html
16https://websockets.readthedocs.io/en/stable/intro.html
17https://docs.python.org/3/library/asyncio.html
18https://docs.python.org/3/tutorial/datastructures.html#dictionaries

36

https://websockets.readthedocs.io/en/stable/index.html
https://websockets.readthedocs.io/en/stable/intro.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/tutorial/datastructures.html#dictionaries

Users in the same group are presented with a shared workspace when they move on from the lobby in
the platform. The shared workspace is an illusion; it relies on communication and replication of actions
to maintain it. These are some of the most important actions to create the illusion in the platform:

• The position of a user

• User object actions

• Streaming of partial lines

When actions are performed by users, e.g., moving objects, a message is sent to the server. This message
is then relayed by the server to all users in the group, informing them of the object’s displacement.
This displacement is then replicated locally by each client, ensuring that each user in the group has the
same workspace state. Replication is discussed further in Section 4.5.

4.3.2 Database

In Figure 25, one can see that a database was used for logging actions in the platform as JSON
objects. The data stored represent interactions performed by users in the same group within the shared
workspace. MongoDB19 was used for storing this. The data was stored on an NTNU VM and did not
contain any identifiable information. In Listing 1, one can find an example of the data stored from one
of the pilot test runs.

{

"_id" : ObjectId("604b5bb0fa9434e06d183eb5"),

"group_id" : "4513yw",

"user_id" : "XYAeSn",

"user_name" : "Trøtt Hest",

"user_action" : "move_object",

"object_id" : "kort14-s0-i13",

"object_author" : "session",

"message" : "none",

"tool_used" : "hand_tool",

"other_data" : "session_image",

"timestamp" : "2021-03-12T13:16:48.159287"

}

Listing 1: Example of stored log-data

The data shown in Listing 1 is an action performed by a user. In this case, the user is identified by
the name “Trøtt Hest.” The action performed was moving an object, which one can see from the field
user action. From the object author field, one can see that the object’s author was “session,” meaning
the object moved was one of the pre-generated objects related to the task. From the data, one can
also get information about the tool used, the timestamp of the action, and the group- and session-id
registered on the server.

Below, a list of the user actions logged by the server is presented. These were logged because they
were assumed to be most important in indicating collaboration:

• create object: Creating an object on the canvas, i.e., drawing a line or a number. Here, additional
information about the type of pen tool used was stored.

• move object: Moving an object. Here, additional information about the owner of the object
moved was stored.

• delete object: Deleting an object. Here, additional information about the owner of the object
deleted was stored.

19https://www.mongodb.com/

37

https://www.mongodb.com/

• chat message: Sending a chat message. Here, additional information containing the message
sent was stored but not visualized in the monitoring system.

• comment: Commenting an object. Here, additional information about the owner of the object
commented on was stored.

• ping object: “Pinging” on an object. Here, additional information about the emoji used was
stored.

• position update: A user has updated its position. Here, additional information about the coordi-
nate was stored but not visualized in the monitoring system.

• misc action: Sub-actions like the opening of the menu, opening the calculator, opening the
chat, and opening the comments were stored in one user action. The field message was used to
differentiate between the sub-actions.

In addition to this, the following actions were also logged: the creation of a group, the connection
and disconnection of a group, the pressing, and un-pressing of an object, the locking of an object, the
grouping and ungrouping of an object, and the rotation of an object.

Logging interaction data enables analyzing collaboration in different ways. For instance, one could
create a histogram plot of all interactions done during a specific session. One could also visualize the
interaction data in a monitoring system. The latter was used as a data generation method to make
observations, and it is discussed in Section 5.2.

4.4 Local processes

This section presents methods and data models that enable the local part of the core functionality
within the platform, i.e., the actions performed by users on their devices. The local part of the core
functionality includes drawing and representing lines graphically, turning lines and images into user-
accessible objects, and letting users interact with objects and the whiteboard itself.

4.4.1 The drawing pipeline

Many of the methods and models that support the drawing pipeline in the platform are based on
the GitHub repository whiteboardkit made by user abdulaziz-mohammed20. This repository includes
code for a single-user whiteboard with rudimentary support for drawing. The decision to import and
modify this code within the platform was made to save development time in the early stages of the
project. Classes from this repository were heavily modified and built upon, and made into a collaborative
whiteboard supporting multiple users collaborating.

Important classes
Whiteboard is the widget21 responsible for displaying the whiteboard to users and registering user input.
The widget contains two canvases, one for rendering lines and one for images. User input is then sent
to DrawingController, which modifies data according to the input it receives. Within Whiteboard

there is a class named ToolBox that lets the users choose between the different whiteboard tools in
the platform (see Tools). When a touch is registered, updated, or removed, information is sent to
DrawingController. This information includes coordinates of the touch, the timestamp, and an id.

DrawingController is the class responsible for creating and manipulating data based on user input.
There are three main methods for input handling in DrawingController:

1. addTouch: A new touch is registered.

2. updateTouch: A touch is moved, position changed.

3. removeTouch: A touch is removed.

20https://github.com/abdulaziz-mohammed
21https://api.flutter.dev/flutter/widgets/Widget-class.html

38

https://github.com/abdulaziz-mohammed/whiteboardkit
https://github.com/abdulaziz-mohammed
https://api.flutter.dev/flutter/widgets/Widget-class.html

As a new touch is registered, it is stored in a dictionary. Storing each touch as an entry in this dictionary
makes it possible to track multi-touch gestures. Touch-entries are updated as touches are moved and
removed. DrawingController also keeps track of which tool the user is currently using and handles
input depending on this.

Figure 26: Three model classes in the drawing pipeline

Figure 26 shows three important model classes used by DrawingController in the drawing pipeline.
The DrawingController includes an instance of WhiteboardDraw where Line objects are stored.
After input methods are completed by DrawingController, a copy of the WhiteboardDraw is sent
to the whiteboard for rendering (see Rendering lines). Line objects contain a list of Point objects.
Additionally, Line objects include several fields that identify and characterize it, such as id, color, width,
etc. The Point class consists of a timestamp from when the point was created, and two double fields
that combinedly represents the position of the point within the whiteboard.

Pipeline

Figure 27: The drawing pipeline simplified

Figure 27 shows a simplified view of the drawing pipeline and includes its most important events. This
set of events allow users to draw lines using one of the drawing tools within the platform. When a new
touch is registered by Whiteboard the addTouch method in DrawingController is triggered. The
DrawingController then adds a new Line to its WhiteboardDraw. A Point object is then added
to to the line, and a copy of the WhiteboardDraw is sent to Whiteboard for rendering. As the user
updates the position of the current touch, the updateTouch method adds a new point to the current
line based on the new location of the moving touch. This method is repeated for as long as the user
updates the location of the touch without removing it. When the touch is removed, the line is closed.

39

Rendering lines
The Whiteboard class has a subscription that listens to a stream of WhiteboardDraw objects from
DrawingController. When a new WhiteboardDraw object is received, the state of Whiteboard is
updated with the lines from this object using setState()22. As the Whiteboard widget is re-drawn,
so are the canvases in its render tree. The canvas responsible for rendering lines in the Whiteboard

state then draws lines between all Point object in each Line object with its correct color and line
width.

Line chunking
DrawChunker is a class used when transmitting partial lines to be shown on other users’ devices.
Without this class, lines would only appear on other users’ devices after a line has been completely
drawn. While the user is drawing, DrawingController sends copies of the WhiteboardDraw to the
DrawChunker every 100th millisecond. As mentioned above, the WhiteboardDraw contains all lines in
the whiteboard, and a field called myLastLine. This field references the last line drawn by the user, and
while drawing, it refers to the current line being drawn. The DrawChunker then converts the current
line into JSON-serializable chunks, which are then transmitted for replication (see Section 4.5).

4.4.2 Canvas objects

Users can interact with drawn lines on the whiteboard, as lines are made accessible by encapsulating
them in a type of CanvasObject upon creation. Images related to the mathematical tasks, elsewhere
referred to as pre-rendered objects, are also encapsulated by a different extension of this same class.
CanvasObject is an abstract class that surrounds its child or children with a hitbox. This hitbox is a
rectangle (Flutter Rect23 class) based on the child’s size, and includes a contains(Offset) method
that returns true if the provided offset is within the bounds of the rectangle.

Figure 28: Canvas Objects

Figure 28 shows the abstract CanvasObject class, and three subclasses that extend it. CanvasOtherType
is used for line based objects, CanvasSessionImage is used to make images interactive, and LinkedCanvasObject

is made by grouping several CanvasObject instances together. The main benefits of this inheritance
is that all the different subclasses of CanvasObject include a similar set of methods, and that all sub-
classes can be handled as instances of CanvasObject within the platform. While all subclasses includes
the methods from CanvasObject, the classes override them in different ways as shown in Figure 29.

22https://api.flutter.dev/flutter/widgets/State/setState.html
23https://api.flutter.dev/flutter/dart-ui/Rect-class.html

40

https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/dart-ui/Rect-class.html

Some subclasses, such as LinkedCanvasObject include additional methods to handle actions that are
not applicable to the other subclasses.

Line-based object creation
The last event in the drawing pipeline from Figure 27 is close current line. This event happens when
a line is completely drawn, i.e., the user’s touch is removed. A CanvasObject that encapsulates the
line is then created. Lines drawn within a certain threshold of time are joined together within the same
object. Joining is performed based on the assumption that lines drawn one right after the other are
often are related, e.g., the number ”5” is often drawn using two lines and should therefore be joined.
This threshold has a default value within the platform, which can be changed within the user interface
to allow users to control the granularity of joined lines, even allowing complete statements to act as
one object.

The subclass used for line-based objects is the CanvasOtherType subclass. When the CanvasObject

system was originally designed, the platform used TensorFlow24-based machine learning methods to
classify whether or not the user had drawn a number or a mathematical operator. The idea was to
create subclasses for numbers and operators and only classify an object as a CanvasOtherType if it
was neither. The classification was dropped later on in the development process as the need for it
dissipated, resulting in only CanvasOtherType being used for line-based objects.

Figure 29: Example of an overridden method across different sub-
classes

CanvasObjectHandler
CanvasObjectHandler is the class keeping track off all objects in the whiteboard, and handles ob-
ject manipulation. CanvasObjectHandler includes a dictionary, called characters, that contains
all CanvasObjects in a session. Upon creation, the CanvasObjectHandler generates a random al-
phanumerical String and provides this to the different subclass-constructors as an id. All subclass
constructors take in this id, while the first parameter which sets the child/children of the subclass
differs between subclasses, as shown in Figure 28. These constructors also set the type field according
to the type of subclass.

As the user interacts with objects, the CanvasObjectHandler applies the modification to the correct
object. Listing 2 shows that CanvasObjectHandler can move all types of CanvasObject as all the
subclasses inherit and overrides the same methods.

24https://www.tensorflow.org/

41

https://www.tensorflow.org/

void moveSelectedObjects(double dx, double dy, List<Line> drawLines) {

if (allSelectedObjects != null) {

for (var object in allSelectedObjects) {

if (object.type != "sessionImage") {

updateObject(object.id, drawLines);

_characters[object.id].moveBy(dx, dy);

_canvasObjectUpdateController.sink.add(CanvasObjectAction.move(

_characters[object.id], dx, dy, session.user));

} else {

_characters[object.id].moveBy(dx, dy);

_canvasObjectUpdateController.sink.add(

CanvasObjectAction.moveImage(

_characters[object.id], dx, dy, session.user),

);

}

}

}

}

Listing 2: moveSelectedObjects method in the
CanvasObjectHandler class

4.4.3 User interaction

In the platform, the users can interact with objects in two ways: either by using the different Tools or
by using the features within the Canvas object toolbox.

Tools
In the shared workspace, there are multiple tools the user can use to draw and interact with objects in
the collaborative surface. These tools are selectable from the bottom left container in the Whiteboard
screen (see Figure 24). The user can choose which tool to use by pressing the different icons. From
the top, the first button lets the user choose between different drawing tools from a pop-up menu, as
shown in the middle frame in Figure 30. From left to right, the drawing tools are:

• Brush: Standard drawing tool, which lets the user draw lines of any color, length, and width.

• Timed line: Draws a semi-transparent line with a fixed width and the user’s color. These lines
disappear after a set amount of time. Users can change this time threshold in the whiteboard
options.

• Straight line: Draws straight lines only.

• Polygon tool: Allows users to draw polygonal shapes. Adds points on the interface as the user
presses down on the whiteboard. Upon pressing the first point, lines are drawn between all points,
forming a polygon.

Figure 30: Screenshot snippets showing all whiteboard tools icons

42

The color palette icon opens a color picker when pressed (Appendix C.11). Colors chosen from this
palette are applied when using all drawing tools, except for timed lines, which always use the user’s
color. The hand tool is the default selected tool when starting the platform. This tool lets the user
move their position within the whiteboard by pressing and dragging. Objects can be selected using the
hand tool. Selecting an object highlights it, and opens the Canvas object toolbox. By dragging in the
box surrounding an object, users can move it. The multi-select tool can select multiple objects at once
by pressing and dragging over objects. This tool is selectable by pressing the square icon with the four
corners. The toolbox icon on the bottom reveals a pop-up menu with additional tools, as seen in the
right frame in Figure 30. From left to right, the tools in this menu are:

• Zoom: Lets the user zoom in or out by pinching (Appendix C.12).

• Eraser: Lets the user delete line objects by dragging over objects.

• Compass: Allows the user to draw arcs and circles (Appendix C.13).

Canvas object toolbox
The canvas object toolbox consists of a box surrounding selected objects and a side menu appearing
adjacent to it. An example where both single and multiple objects are selected is shown in Figure 31.
The box is drawn based on the size of the corresponding object(s). When multiple objects are selected
the box expands to include all objects while drawing a darker cell surrounding each object. This box
contains a gesture listener that responds to user input, allowing users to perform the following actions:

• Move: Touching and dragging allows users to move all selected objects.

• Rotate: Using two fingers, users can rotate single objects.

Figure 31: The canvas object toolbox when single and multiple
objects are selected.

Depending on the object type currently selected, the side menu shows different icons. These icons
relate to the following actions:

• Comment: Allows the user to make comments related to the selected object(s). Shown for all
types of objects.

• Delete: Deletes the selected objects(s). This icon is only shown when one or more line-based
objects are selected, as images related to the task can not be deleted.

• Link: Allows multiple objects to be grouped, allowing them to be interacted with as a single
object. This icon is only shown when multiple or linked objects are selected. Linked objects are
highlighted in a turquoise color, as seen in Figure 24.

• Lock: Allows objects to be locked in place. Locked objects cannot be moved or deleted. The
icon is only shown for single and linked objects. All users in the session can unlock a locked item.

43

• Ping: Allows users to ping an object in order to get their attention faced towards this specific
object. Pinging an object marks it visibly within the whiteboard by attaching specific emojis to it.
In addition to an audible notification, a pop-up is displayed within the receiving users’ interfaces.
Pressing this pop-up will transport users to the pinged object’s position in the shared workspace.
This action is only available for single and linked objects.

4.4.4 Canvas object actions

To reproduce a user action on other devices, the actions need to be transmitted. This process is
described in Section 4.5.1. Supporting this transmission is the CanvasObjectAction class, shown in
Figure 32. This class includes information on what action was performed, which objects are related,
which user performed the action, and parameters needed for replication.

Figure 32: The CanvasObjectAction class

A CanvasObjectAction object is made after each user action is completed locally. This object is then
serialized into a JSON object and transmitted to other users for replication. Replication of actions is
presented in Section 4.5.2. The CanvasObjectAction class has multiple named constructors relating
to each of the actions possible within the platform. The constructors for move and link actions are
shown in Listing 3.

CanvasObjectAction.move(CanvasObject object, double dx, double dy, Person user) {

this.action = ObjectAction.move;

this.object = object;

this.dx = dx;

this.dy = dy;

this.user = user;

}

CanvasObjectAction.link(List<CanvasObject> children, CanvasObject object, Person user) {

this.action = ObjectAction.link;

this.objects = children;

this.object = object;

this.user = user;

}

Listing 3: Move and link action constructors

4.5 Communication and replication

Communicating the actions a user performs and replicating these locally for each user are essential
for the shared workspace. In Section 4.5.1, the messages that are created for the actions listed in

44

Section 4.3.1 are shown. Section 4.5.2 explains how the platform replicates the actions of other users
by using the action messages it receives.

4.5.1 Communication

To be able to communicate with the server, the platform implements the client-side WebSocket pro-
tocol with the web socket channel25 package. This package provides an API to communicate over a
WebSocket easily.

All actions done in the platform are completed by executing Dart methods, and the methods manipulate
Dart objects. To communicate these actions with the server, the data must be sent in a format suitable
for converting into a stream of bytes. This was achieved by implementing serializers and de-serializers.
A serializer is a method to take a data structure and convert it into a series of bytes, and the inverse
operation is a deserializer. The serializers convert to the JSON26 format since it encodes objects into
a string.

The position of a user
The position of a user is indicated as an avatar in the shared workspace. A fixed point of a user’s view
is used to communicate their current position in the shared workspace. Each user has an overview of
all other users in the same session saved as a list of Person objects. The user position is a property of
the Person object, and it is used to represent the current position in the workspace.

Each second, the platform evaluates the user’s current position up against their previous position. If the
position has changed, the platform sends the Person object to the server with the updated positions.
To serialize the object, the toJson() method in Listing 4 is used.

Map<String, dynamic> toJson() => {

"id": this._id,

"name": this._name,

"color": Constants.colorToHexString(this._color),

"emoji": this.emoji.toString(),

"position_dx": this.position.dx,

"position_dy": this.position.dy,

"is_ready": this.isReady,

};

Listing 4: Serializer for the Person object

The serialization creates the JSON object shown in Listing 5. The JSON object is included in the
message sent to the server in a field called actionData. The message will also include the id of the
user sending the message, the id of the group, and the action performed as fields. In this case, the
action performed is titled user position update, so the message to the server will include this in its
action field.

25https://pub.dev/packages/web socket channel
26https://www.json.org/json-en.html

45

https://pub.dev/packages/web_socket_channel
https://www.json.org/json-en.html

{

"user":

{

"id": String,

"name": String,

"color": String,

"emoji": String,

"position_dx": double,

"position_dy": double,

"is_ready": boolean

}

}

Listing 5: User object after serialization

When the server receives a JSON object, it checks what type of action the message contains by
checking the action field. All actions possible are checked in an if-elif clause, and unsupported actions
are logged as an error. Upon receiving an user position update action, the server uses the group id
to identify all other users in the group and forwards it to them. However, it changes the action field
to receive user position update. The server also logs the action as a position update log, as
shown in Section 4.3.2.

User object actions
As presented in Section 4.4.3, there are multiple ways in which users can interact with objects using
the Canvas object toolbox. In addition to these interactions, there are two other actions that are made
into CanvasObjectAction objects.

• Create: Happens when a line object is created, i.e., the user has completed drawing a line using
one of the drawing tools.

• Press: Happens as objects are selected using the hand tool or the multi-select tool. When another
user selects an object, it is highlighted in this user’s color, and the object is locked. Locking an
object ensures no other users can not perform conflicting actions on it.

Most of these operations are executed as methods in the CanvasObject class, described in Sec-
tion 4.4.2. To communicate the actions performed by a user to the server, the actions are made into
CanvasObjectAction (see Section 4.4.4) objects. CanvasObjectAction objects are then serialized
as JSON objects as shown in Listing 6. These JSON objects are then transmitted to all the other users
in the session for replication.

{

"object": CanvasObject,

"objects": [CanvasObject, ...],

"action": String,

"dx": double,

"dy": double,

"user": Person

}

Listing 6: All the fields an action message sent to the server can
include

The fields object, objects, and user in Listing 6 do not contain primitive types. These fields have
data that themselves are serialized objects. The user field has the serialized Person object in the same

46

format as shown in Listing 5. Object and objects both contain similar data, respectively either a
CanvasObject or a list of CanvasObject instances. These objects are serialized using the toJson()

method the class contains, as shown in Figure 28. This is similar to the toJson() method shown in
Listing 4.

The format shown in Listing 6 shows all the possible fields that an action message could have. The three
fields used in every message are object, action, and user. These fields are all pretty self-explanatory;
they refer to the action performed on an object by a user. For the create, delete, press, pin, flag,
rotation, these three fields contain everything needed to replicate the action locally.

If a user has grouped several objects into one object, the objects field is included in addition to
the three fields. The objects field has the grouped objects, and the object field refers to the new
object created by grouping. For the move action, the dx and dy fields are included to indicate the new
placement of the object.

Streaming of partial lines
When a user is drawing a line, they are essentially adding new points to a list. This list of points is
what constitutes a line. When the user has completed the creation of a line, an object with that line
is created. The user also has the possibility to include multiple lines into one object when drawing
by starting a new line right after drawing one within a set time threshold. After the object has been
created, an action message with the create action is sent to the server (mentioned above in User object
actions).

As described in Line chunking, a local process called chunking occurs periodically as users are drawing.
Listing 7 shows the format of the JSON object sent when chunking.

{

"id": int,

"draw":

{

"lines":

[{

"points":

[{

"x": double,

"y": double,

"timeStamp": int,

}, ...],

"color": String,

"width": double,

"duration": int,

"id": string,

"canvasObjectId": String,

"user": Person

}, ...],

},

"createdAt": String

}

Listing 7: Example of a line message sent to the server

The field draw represents a serialized WhiteboardDraw object, which contains the information about
the partially drawn lines. In draw, a field called lines contains a list of lines. If a user is currently
drawing multiple lines in the same object, the length of this list will be bigger than 1. As mentioned
above, a line is itself a list of points. The points field is a list of points, where each element in the
list specifies the x and y of the point and the timeStamp of when the point was drawn. Each line
also contains information about the color and the width of the line. A line has an id, and it is also

47

connected to the object it is creating with the canvasObjectId field. Duration specifies how long
the user spent drawing the line. The user field contains the serialized Person object of the user who
drew the line.

4.5.2 Replication

The position of a user
All other users in a group will receive a JSON message with the action specified by the server. The
platform will then deserialize the JSON object containing the Person object, which it will find in the
message’s actionData field. It deserializes these objects by using the method in Listing 8.

factory Person.fromJson(Map<String, dynamic> json) {

return Person(

json["id"] as String,

json["name"] as String,

Constants.colorFromHex(json["color"]),

Emoji.byName(json["emoji"]),

)

..position = Offset(json["position_dx"], json["position_dy"])

..isReady = json["is_ready"].toString().toLowerCase() == "true";

}

Listing 8: Deserializer to convert JSON data to the Person object

User object actions
Users actions are replicated using CanvasObjectAction instances, which are presented in Section 4.4.4.
When a JSON-serialized CanvasObjectAction object is received, this object is deserialized using the
named constructor fromJson(Map<String, dynamic>) in the CanvasObjectAction class. This
action object is then handled by the receiveObjectAction method (Appendix B.1) within the
CanvasObjectHandler class. Based on the type of action performed, denoted by the action field in
the CanvasObjectAction object, this action is replicated using the corresponding methods:

void handleMoveAction(CanvasObjectAction action, List<Line> drawLines) {

String objectId = action.object.id;

double dx = action.dx;

double dy = action.dy;

updateObject(objectId, drawLines);

moveObject(objectId, dx, dy);

}

void updateObject(String id, List<Line> drawLines) {

List<Line> newLines =

drawLines.where((line) => line.canvasObjectId == id).toList();

_characters[id].setLines(newLines);

}

void moveObject(String id, double dx, double dy) {

if (_characters.containsKey(id)) {

_characters[id].moveBy(dx, dy);

}

}

Listing 9: Method for replicating move actions

Listing 9 shows the methods used to replicate received move actions. The method handleMoveAction

48

receives a CanvasObjectAction, which represents the action to replicate, as well as a reference to all
lines currently in the users’ whiteboard. The updateObject method is called to ensure that references
between the local CanvasObject and its related lines are correct. This way, as the moveObject

method is called, the locally stored object’s related lines are moved correctly. Listing 9 also shows the
moveObject method, which uses the moveBy method from Figure 29 to move the lines related to the
CanvasObject. By using these methods, the receiving user’s device can replicate the move action.
Other actions are handled similarly with their own methods.

Streaming of partial lines
Listing 7 (Section 4.5.1) shows the structure of messages sent between devices as lines are drawn.
These messages are used to replicate another user drawing a line on all devices in a session. Lines
sent via these messages are deserialized into Line object instances and added to the WhiteboardDraw

object of the receiving users. As explained in Paragraph Pipeline in Section 4.4.1, the WhiteboardDraw

contains all lines to be drawn in the whiteboard. Due to the frequency of these messages, lines appear
to be drawn in real-time on receiving users’ devices.

Figure 33: Object creation replication

Figure 33 shows the sequence of events that occur as lines are streamed between devices. User
A draws a line, which is streamed in chunks and replicated on Device B. When User A has com-
pleted drawing the line, a create object message containing a JSON-serialized CanvasObjectAction

object is sent from Device A to Device B. As with other CanvasObjectAction instances, create
actions are handled within the CanvasObjectHandler. Chunked lines are then deleted from the
receiving users WhiteboardDraw, and replaced with the lines from the CanvasObject within the
CanvasObjectAction. A CanvasObject is then made using the id from the action object, and the
correct lines from the users WhiteboardDraw. This removes the many, smaller Line-object chunks
that combinedly represent the drawn line, with the actual continuous line drawn by the user. After this
process has been completed, the whiteboards of both Device A and Device B will display identical lines,
which are both encapsulated by local CanvasObject instances.

49

5 Method

This section presents the research methodology for this project. It includes a presentation of the research
strategy, the chosen data generation methods with a description of the monitoring system developed
for the test and the approach for analyzing the collected data.

5.1 Overall research strategy

The research was conducted using the design and creation strategy [3, p. 108]. The strategy allows
researchers to analyze, design, and develop an IT product such as a platform. New IT products are
called artifacts [3, p. 108]. The IT artifact created for this project, presented in Section 4, is an
instantiation [3, p. 108] of the design presented in Section 3. Oates emphasizes that projects within the
design and creation strategy contribute to knowledge by either being the main focus of the research,
being a vehicle for something else, or being a tangible end-product of a project where the focus is on the
development process [3, p. 109]. The research conducted in this paper contributes to knowledge by
creating an application that is a vehicle for something else, namely to discuss the collaborative patterns
that occur when using this platform.

5.2 Data generation and evaluation

The design and creation strategy often makes use of different data generation methods to find out
how people evaluate the IT artifact created [3, p .117]. A test with groups of pupils was designed
to generate data to answer RQ3. Observations were used as the primary data generation method. In
addition to observations, interviews were used to support the observations by eliciting feedback from
the participants.

The participants of the test were pupils from the 5th and 7th grades. The pupils were divided into
three groups, each consisting of two pupils. They were chosen and placed into the groups by their
teacher, who was identified through communication with Matematikksenteret. Matematikksenteret
recommended choosing pupils in those grade levels, as one could with more certainty guarantee a good
level of maturity and technical aptness. The teacher chose pupils based on their aptness, availability,
and interest in participating in the test. Groups were constructed so same-grade pupils who already
knew each other were grouped. They were grouped like this because it was assumed that knowing the
other pupil would ease collaboration. Since the goal of the test was to see what patterns of collaboration
would occur and not to see if the platform itself would enable collaboration, this was evaluated as a
fair way to construct the groups. The sampling frame, meaning the population of pupils that could
have been included, was the pupils from the 5th and 7th grades the teacher taught and deemed apt to
participate in the test. The sampling technique executed for the data generation was non-probabilistic
convenience sampling [3, p. 98] because the teacher chose based on the availability of the pupils in the
sampling frame.

Each group was asked to perform three or four tasks, depending on how much time they spent on
each task. The order of the tasks was shuffled and was therefore different for each group. The test
could only last for an hour per group due to limitations in their schedule. The test schedule, including
the order of the tasks and instructions given to the teacher, can be seen in Appendix E. Groups were
expected to complete a minimum of three tasks within the allotted time. A distribution that ensured
that all tasks were performed at least twice was chosen. Tasks marked in red in the schedule were
dropped if necessary to avoid delays.

The tasks in the platform were adapted from Mattelist27 and chosen based on their required type
of interactivity. For instance, one task would require more drawing in the shared workspace, while
another would require moving specific pre-generated objects around. A variety of tasks was preferred
to potentially enable different collaboration patterns since tasks themselves were assumed to be of
influence. Before the test, the teacher was consulted to make sure the tasks chosen were not too

27https://www.mattelist.no/

50

https://www.mattelist.no/

difficult for the pupils.

5.2.1 Observations

The observations were conducted overtly [3, p. 208], meaning the participants knew that they were
being observed. The type of observation used was participant observation [3, p. 209]. It was chosen over
systematic observation because defining particular types of events of interest to observe did not apply
to observing what type of collaboration Flate would enable. Meaning there was no preconceived notion
of the collaboration patterns that would ensue. The type of participant observation used was complete
observer. Everything that occurred was observed. Other than minimal formalities to make sure the
observations would go smoothly, there was no participation in the proceedings from the authors. To
ensure inter-observer reliability [3, p. 206] between the authors, pilot runs of the test were conducted
beforehand.

The test was conducted with one group at a time. During the test, a teacher was present with the
pupils to assist them but was asked to be reserved unless they needed help. The pupils were in the
same room, but they had their backs to each other to ensure that they would only look at their tablets.
Because of this, the implemented open-microphone solution in the platform was not used by the pupils
to converse. Due to not being physically on-site, two methods were deployed to enable the observation:

1. A monitoring system was created to visualize interactions in Flate by each pupil in a group

2. An audio link to the pupils was used to take field notes of the conversation between them

Monitoring system
The monitoring system was created in Python (version 3.6.9) using Matplotlib28 for the visualization.
It uses the data stored in the database described in Section 4.3.2.

Each second, the system retrieves and visualizes the hundred latest user actions registered in the
database for a specific group. In Figure 34, a frame of the monitoring system from a pilot test run is
shown. The red arrow in Listing 1 indicates the example action.

Figure 34: A frame from the monitoring system from the pilot test

In the monitoring system plot, each user action has a predesignated lane. Visualization of actions
occurs as a point in specified lanes, with a designated color corresponding to the legend in the plot.

28https://matplotlib.org/

51

https://matplotlib.org/

The actions will appear in order with create action as the bottom-most lane and misc action as the
top-most lane. The lane of a user action will only appear if at least one point is plotted in that lane.
If an action includes additional information, it will be plotted as an annotation connected to the point.
For instance, the action in Listing 1 includes information about the object’s author, which is plotted as
an annotation.

The visualized sessions were recorded using screen recording, allowing them to be used in further analysis.
In addition, the log data from a session was persisted in the database. This log data includes actions
that were deemed unnecessary to monitor. Examples of unnecessary actions include rotating, grouping,
pressing, and locking objects. These actions, and the actions plotted in the monitoring system, can be
used to visualize all the actions done during a session. This could be characterized as the historical
view of a session. An example of a historical plot of a session from the monitoring system is shown
in Figure 35. The historical plot is similar to the live version of the monitoring system, except that it
includes additional user actions. Also, using functions provided by the plotting function of Matplotlib,
one can zoom in and out on the historical plot.

Figure 35: The historic plot of the monitoring system from the pilot
test. The section marked in red is the frame shown in Figure 34.

Field notes
Field notes [3, p. 210] of the conversation between the pupils were taken to contextualize the plots
created by the monitoring system. The notes were either verbatim quotes or discussed topics and
included a timestamp. For quotes, an alias was included to link the quote to the pupil. Below is an
example of a field note taken during the same pilot test previously mentioned:

13:16:10 Coordinating between themselves that they are going to read the task description

Aliases were not relevant for this note, as it presents a topic the participants discussed. This note
explains why both participants opened the menu around 13:16:10 in Figure 34, indicated by the blue
arrows.

Description of tasks
As mentioned above, the tasks were adapted from Mattelist and were chosen based on the type of
interactivity they required. Table 2 shows an overview of these tasks. The tasks are presented with
their Norwegian names, description, pre-rendered objects related to the tasks, and the users’ expected
behavior in terms of interactivity with the platform.

52

Task name Task description Pre-rendered
objects

Expected behaviour

Byggeklosser In this task you will see multiple three-
dimensional figures. How do you think
they will look like from another angle?
Draw at least two different angles for
each figure

Multiple cards
with 3-D figures.

Users draw the figures
from different angles.

Femten
fordelt p̊a
seks

Karen had 15 cards with the numbers
from 1 to 15. She distributed the
cards in 6 piles. The sum of the num-
bers in each pile was equal in all the
piles. What was this sum? How can
the cards be distributed?

15 cards with the
numbers from 1
to 15.

The users move the pre-
rendered objects to cre-
ate the piles. Users
might use in-built calcu-
lator to find the sum.

Grublis How many calculations can you come
up with whose final result is 81? Find
at least 10 ways to do this using dif-
ferent methods like addition, multipli-
cation, etc. Try not to use the same
method multiple times.

One card with
the number 81.

Users draw different cal-
culations.

Telle
marihøner

Some kids played a game where they
collected cards with ladybirds. Create
a diagram that shows how many lady-
birds each kid collected. What kind of
diagram do you think fits best?

Cards for each
kid with a num-
ber of ladybirds.

The users draw a di-
agram that represents
how many ladybirds
each pre-rendered
object has.

Table 2: Description of the tasks in the platform

5.2.2 Interviews

In addition to the observation methods presented above, interviews were used to support the find-
ings from the observations. The primary goal of the interviews was to elicit feedback regarding the
collaboration from both the pupils and the teacher.

After each session, a semi-structured interview was carried out with the pupils in the group. Semi-
structured interviews were chosen because of the opportunity to ask additional questions if the pupils
brought up something of relevance. The questions were all related to a theme and were designed to
prompt open-ended answers, allowing them to speak their minds. The themes that the questions were
related to were: application, collaboration, and awareness. These were chosen to inquire the pupils
about their subjective notions of the application, how they experienced collaborating using it and if
they felt aware of each other during collaboration. A structured interview was not applicable as it
would require the pupils to answer in a pre-coded answer. An unstructured interview was not chosen
because the authors would have had less control of the themes raised during the interview.

After having completed the tests with all the groups, a semi-structured interview was conducted with
the teacher. The goal of having an interview with the teacher was to assess how the teacher perceived
the pupils’ engagement with Flate and their collaboration. Additionally, questions about if the teacher
could imagine continuing using the platform and what worked well with the platform were asked.

The responses from the pupils and the teacher can not be used to reach generalizable conclusions.
However, they can be used to give an indication of what types of collaboration the platform facilitated.
Table 3 and Table 4 showcase the questions asked to the pupils and the teacher. The questions were
asked in Norwegian and have been translated for this thesis.

53

No. Theme: Application
Q1 Was it fun?
Q2 Did you enjoy doing the tasks in the applica-

tion?
Q3 What did you like most in the application?

No. Theme: Collaboration
Q4 Was it fun to collaborate?
Q5 Do you feel like both of you contributed?
Q6 Did you distribute the work evenly?
Q7 Was it a good collaboration even though

both of you had your own tablets?

No. Theme: Awareness
Q8 Did you see what the other person was work-

ing on?
Q9 Were you ever unsure about what the other

person was working on?
Q10 Was it easy to notice when the other person

was working in the canvas?

Table 3: Questions to the pupils, separated into themes

Question Question description
Q1 How do you think the test went?
Q2 What did you think of the collaboration be-

tween the pupils
Q3 How did you experience the engagement of

the pupils?
Q4 Would you use such a platform in your teach-

ing? Why, or why not?
Q5 What worked well?
Q6 What could have been better?

Table 4: Questions to the teacher

5.3 Analysis

As presented above, data was primarily collected through observations of the tests. The data consisted
of non-textual data from the monitoring system and textual data from the field notes. In addition to
the data from the observations, textual data from interviews conducted were collected. A description
of the data generation method is presented in Section 5.2.

The inductive approach [3, p. 269] was chosen for the analysis. In this approach, one goes into the field
first and then extracts themes from the data collected. During the observations conducted for the tests,
recordings of the monitoring system were taken. Historical plots of the sessions were also available after
the tests from the monitoring system. These were used in conjunction with the field notes to analyze
and extract themes and patterns. The interviews were used to explain particular behavior or enhance
the understanding of how the pupils collaborated.

The themes and patterns were mainly extracted by looking for relationships within the plots from the
monitoring system. If interesting patterns were noticed in the plots, field notes were used to indicate
the conversations occurring between the pupils in the relevant time frame. Then, either the entire plot
of the session or a specific time frame was extracted. Drawings (arrows, boxes, circles) were added to

54

the plots using draw.io29 when necessary to emphasize the relationships within them.

Field notes were used to try to explain why a certain pattern appeared. Additionally, answers from
the interviews with the pupils were used to get a general indication of how they collaborated and how
aware they were of each other’s actions. The interview with the teacher was used to see if anything
was noticed about their collaboration that could help explain the occurrence of a pattern.

An approach to qualitative research is grounded theory [3, p.274], where researchers go into the field
and then analyze the data to see what theory emerges. The grounded theory approach is also inductive,
but it aims to create a theory. Therefore, this approach was not chosen for this thesis. This thesis is
not concerned with generating a theory. It aims to give a descriptive account of the data generated
from the tests and analyze it to describe the patterns that occurred (as presented with RQ3).

29https://app.diagrams.net/

55

https://app.diagrams.net/

6 Results

This section presents the results from the data generation described in Section 5.2.

Sections 6.1 - 6.3 describe results for groups 1 - 3, respectively. These sections begin by introducing
how the test went overall for each group. A description of how it generally went when the group
performed a task is also provided. This description includes excerpts of the field notes, which consist
of direct quotes and explanations of conversations between pupils.

In Section 6.1.1, Section 6.2.1, and Section 6.3.1, the answers to the semi-structured interviews with
each group of pupils are shown. In Section 6.4, the interview conducted with the teacher that supervised
during the test is presented. The answers are translated to English from Norwegian for this thesis.

In Section 6.1.2, Section 6.2.2, and Section 6.3.2, the notable patterns that occurred are displayed.
Section 6.5 categorizes and discusses the main patterns observed from the notable patterns. This is
related to answering RQ3 by explaining the patterns that occur when using the platform.

During the test with the first group, it became evident for the teacher that the pupils did not read
the task’s description thoroughly. Therefore, the teacher explicitly encouraged group 1 to do so during
their second task and continued doing this with every group.

6.1 Group 1

Most of group 1’s collaboration was coordinated through non-verbal communication. After the group
had completed the test, the teacher noted that they often waited and looked at what the other was
doing before embarking on individual sub-tasks.

Below is an ordered list of their tasks, the time they spent on completing them, and the pupils’ aliases
for each task.

1. Byggeklosser

• Time: circa 8 minutes.

• Aliases: Legendarisk Kulturmelk and Flau Professor.

2. Femten fordelt p̊a seks

• Time: circa 8 minutes.

• Aliases: Introvert Smarting and Lei Solnedgang.

3. Grublis

• Time: circa 5 minutes.

• Aliases: Lang Lemmen and Syrlig Moped.

Byggeklosser
For task 1, the group required some assistance from the teacher in the beginning and during the exercise.
Other than Lei Kulturmelk announcing once at 08:59:30 that they had been able to complete drawing
a block, “I was able to draw the purple one”, there was not much communication between the pupils
in the group. The monitoring system showed that they only deleted their own lines and that there was
a pattern emerging in their collaboration in the create object messages.

Femten fordelt p̊a seks
In task 2, there was more communication between the pupils. The teacher encouraged that one of the
pupils read the task aloud, which Lei Solnedgang then proceeded to do. Lei Solnedgang then suggested
how to solve the task, and the pupils discussed the tasks amongst themselves. They found a solution
to the task together. The monitoring system showed clear breaks where they discussed and agreed on
a tactic. The work seemed to be pretty evenly distributed.

56

Grublis
During task 3, the communication between the pupils was characterized by confirming the solutions they
had concurred with individually. For instance, in the very beginning, after reading the task description:

09:15:35

Syrlig Moped: “9 times 9?”

Lang Lemmen: “Yes.”

Syrlig Moped: “Should we write it down?”

At 10:17:00, they talked to each other about possible solutions, and at 10:18:00, they asked each
other about what they had written. At around 10:18:00, one could see from the monitoring system
that Legendarisk Kulturmelk moved around in the workspace, marked in Figure 37 with a blue circle.
This action could be Legendarisk Kulturmelk moving to where Syrlig Moped was in the workspace to
compare their calculations. Other than this, a pattern reminiscent of what was noticed in task 1 was
prevalent throughout this session.

6.1.1 Interview

No. Theme: Application Answers
Q1 Was it fun? Yes.
Q2 Did you enjoy doing the tasks in the applica-

tion?
Yes.

Q3 What did you like most in the application? A lot of stuff. Mainly that it was easy to use.
However, we wish we could write text using
the keyboard.

No. Theme: Collaboration Answers
Q4 Was it fun to collaborate? Yes.
Q5 Do you feel like both of you contributed? Yes.
Q6 Did you distribute the work evenly? Pretty evenly. We did so by talking with

each other. We also distributed the work by
watching what the other person did.

Q7 Was it a good collaboration even though
both of you had your own tablets?

Not asked

No. Theme: Awareness Answers
Q8 Did you see what the other person was work-

ing on?
Yes.

Q9 Were you ever unsure about what the other
person was working on?

If we were, we would just watch what the
other person did.

Q10 Was it easy to notice when the other person
was working in the canvas?

Yes.

6.1.2 Patterns

The most notable patterns were observed during Byggeklosser (task 1) and Grublis (task 3). These are
presented in Figure 36 and Figure 37. Each red circle in the figures contains a cluster of create object
messages from a pupil. These clusters span a length of 30 seconds or less. Each message in a cluster
is assumed to be related to each other. Meaning a cluster represents some work produced, and each
message in a cluster relates to that work.

From the figures, one can see that the clusters from each pupil form a pattern when related to each
other. The prominent characteristic of this pattern is that clusters from a pupil are either completely
non-overlapping or almost non-overlapping with clusters from their partner.

57

Figure 36: Cluster messages (red circles) forming a pattern for
group 1 during task 1: Byggeklosser.

In Figure 36, there seems to be more space between the clusters of the two pupils than in Figure 37.
Particularly the second and third clusters of Lang Lemmen and Syrlig Moped overlap more than their
first clusters. Even though there are slight differences, the patterns shown in the figures are still similar.

Figure 37: Cluster messages (red circles) forming a pattern for
group 1 during task 3: Grublis. The blue circle marks that Legen-
darisk Kulturmelk moved around in the workspace after both pupils
asked each other about what they had written.

58

6.2 Group 2

The pupils in group 2 communicated more verbally than the previous group. However, like the group
before them, each pupil also looked at what the other pupil was doing to figure out what they could
do to complete the task.

During the test with this group, a bug within the platform occurred several times. This bug was related
to drawing and appeared during all tasks except during the third. From Table 2, one can see that the
expected behavior from the pupils for Femten fordelt p̊a seks does not involve them drawing in the
canvas. This could explain why the drawing bug did not appear during this task.

Below is an ordered list of their tasks, the time they spent on completing them, and the pupils’ aliases.
For task 2, the group used two attempts. When the bug occurred during the second task, the group
tried to restart the platform to see if it helped, thus starting a second attempt. This group was able to
complete four tasks during the allocated time.

1. Grublis

• Time: circa 5 minutes.

• Aliases: Mellomstor Sykkel and Intern Trønder.

2. Byggeklosser

• Time: circa 3 minutes on the first try and 2 minutes on the second try.

• Aliases: Intensiv Sjøstjerne and Perfekt Smarting on the first try. Sliten S̊ape and Pratsom
Sveis on the second try.

3. Femten fordelt p̊a seks

• Time: circa 7 minutes.

• Aliases: Syrlig Ekspert and Intern Sei.

4. Telle marihøner

• Time: circa 10 minutes.

• Aliases: Intensiv Lemmen and Ordentlig Purre.

Grublis
During task 1, the communication between the pupils was fluid. Each pupil would announce suggestions
to each other. They would then either delegate suggestions to the other pupil to write down or
write them down themselves. From the monitoring system, one could notice overlapping create object
messages. They seemed to solve the task by solving sub-tasks individually since the create object
messages were parallel. There were not a lot of position update messages, and they only deleted their
own lines. At the end of the task, the drawing bug occurred, but they moved along to the next task
since they had completed it.

Byggeklosser
In task 2, the drawing bug occurred before the task had been completed, so the group restarted the
platform. Restarting did not help, as the bug occurred again. Either way, the group almost completed
this task before the bug happened again.

The collaboration during this exercise was seemingly characterized by delegating the figures amongst
themselves and drawing them independently. This could be seen in the monitoring system, where the
second try of the session starts with the users moving the different figures around. After having moved
them in the shared workspace, both users started drawing in parallel. They also only deleted their own
lines.

The pupils spent some time during the beginning of the second try of the session to redraw the figures
they had drawn the previous try. When doing this, there was some explicit communication when moving
the objects, exemplified with this quote by one pupil:

59

09:54:10 Sliten S̊ape: “I will bring the red one down here.”

This action could be seen in the monitoring system, as there were move object messages during that
time produced by Sliten S̊ape.

Femten fordelt p̊a seks
The execution of task 3 involved a good amount of communication between the pupils. Intern Sei
suggested a method to solve the task, and they distributed piles of cards amongst themselves. After
figuring out the sum that had operated with (15) was wrong, they started over and moved the cards
back:

10:03:30 Intern Sei: “I can just move everything back up here again.”

The pupils then gave it a new try. Together they dove in headfirst and tried moving the cards to figure
out what the sum could be. At around 10:04:45, they opened the calculator, but it seemed that only
Intern Sei used it from the conversation that occurred. Within thirty seconds of each other, they were
able to find the solution independently. Syrlig Ekspert found the solution by trying out 20 as the sum,
while Intern Sei used the calculator.

10:05:30 Syrlig Ekspert: “What if we try 20?”

10:06:00 Intern Sei: “120 divided by 6. We need 20.”

Telle marihøner
The pupils spent some time at the beginning of task 4 announcing how many ladybirds there were in
each card and summed it up using the calculator. Then, led by Ordentlig Purre, they had to coordinate
how to proceed:

10:10:15 Ordentlig Purre: “Zooming out... Drag them over to this side, and then we can
make them over here.”

10:11:00 Discussion about how they were going to create a diagram.

10:11:40 Ordentlig Purre: “Drop it there.”

These activities can be seen in the monitoring system with Ordentlig Purre moving session objects at
circa 10:10:15 and Intensiv Lemmen moving the created objects at circa 10:11:40. It seems that Intensiv
Lemmen started drawing when Ordentlig Purre started moving the cards around, and Ordentlig Purre
informed that the diagram should be moved to the new placement of the cards.

Approximately two minutes after that, the drawing bug appeared. However, they were able to complete
the task using the polygon drawing tool, which worked as a loophole.

60

6.2.1 Interview

No. Theme: Application Answers
Q1 Was it fun? Yes.
Q2 Did you enjoy doing the tasks in the applica-

tion?
Yes.

Q3 What did you like most in the application? That we could collaborate with each other.

No. Theme: Collaboration Answers
Q4 Was it fun to collaborate? Not asked
Q5 Do you feel like both of you contributed? Yes.
Q6 Did you distribute the work evenly? Yes.
Q7 Was it a good collaboration even though

both of you had your own tablets?
Yes.

No. Theme: Awareness Answers
Q8 Did you see what the other person was work-

ing on?
Not asked.

Q9 Were you ever unsure about what the other
person was working on?

Yes, by using the bubble. Had to look for it
a bit in the beginning, but found it after a
while.

Q10 Was it easy to notice when the other person
was working in the canvas?

Not asked

6.2.2 Patterns

The most notable patterns for group 2 were observed during Grublis (task 1) and Femten fordelt p̊a
seks (task 3). These are presented in Figure 38 and Figure 39.

Figure 38: Parallel workflow using the same method to complete
the task for group 2 during task 1: Grublis.

In Figure 38, the entire Grublis (task 1) session of group 2 is shown using the historical view of the
monitoring system. The pattern in this session is not obvious, as there seems to be no apparent
relationship between the create object message clusters between the two pupils. Rather, the figure
could indicate that the pupils worked in parallel during the whole session when collaborating. The
workflow being described as parallel in Paragraph Grublis substantiates this. Even though they worked
in parallel, both wrote down calculations, i.e., used the same method to complete the task.

61

Figure 39: Parallel workflow using the same method to complete
the task (red box), and a mostly independent workflow not using
the same method (blue box) for group 2 during task 3: Femten
fordelt p̊a seks.

In Figure 39, group 2 went from working in parallel (red box) to working independently (blue box). The
figure shows approximately the last three minutes of the group solving Femten fordelt p̊a seks (task
3). As noted above in Paragraph Femten fordelt p̊a seks in Section 6.2, the group spent the time from
10:03:30 until approximately 10:04:45 trying to figure out the sum by moving the cards. This part of
the collaboration is marked in the figure with a red box. Then, after 10:05:00, Syrlig Ekspert tried
moving the cards to see if the sum could be 20. Intern Sei decided to contribute after confirming that
20 was the correct answer by using the calculator. This part of the collaboration is marked with a blue
box, with the moment Intern Sei confirms the sum marked with a pink line.

6.3 Group 3

The pupils in group 3 verbally communicated actively with each other and often distributed tasks
explicitly. The drawing bug mentioned in Section 6.2 also appeared during the execution of task 1.

Below is an ordered list of their tasks, the time they spent on completing them, and the pupils’ aliases.

1. Telle marihøner

• Time: circa 5 minutes.

• Aliases: Utmerket Whippet and Introvert Fornøyelse.

2. Grublis

• Time: circa 6 minutes.

• Aliases: Søt Forsker and Lav Modell.

3. Femten fordelt p̊a seks

• Time: circa 8 minutes.

• Aliases: Trøtt Smarting and Introvert Bris.

62

Telle marihøner
From the beginning of task 1, the pupils actively communicated their thoughts. After Intovert Fornøyelse
read aloud the description of the task, they together figured out how they wanted to solve it:

10:32:30

Introvert Fornøyelse: “We can create those...”

Utmerket Whippet: “Bar charts.”

Introvert Fornøyelse: “Yes, that is what I was thinking of!”

They were also actively announcing tasks to do:

10:33:00

Introvert Fornøyelse: “We have to count.”

Utmerket Whippet: “Yes.”

Introvert Fornøyelse: “We can write up how many each card has so that we do not forget
it.”

After writing up how many ladybirds there were in each card, Utmerket Whippet announced: “The
highest number is 10.” Now that this was clear, they proceeded to complete their bar chart. During
this, they assigned themselves to duties:

10:35:30

Utmerket Whippet: “I will write letters.”

Introvert Fornøyelse: “I will write numbers.”

The drawing bug appeared after delegating tasks, and Introvert Fornøyelse could not interact with the
platform anymore. They then proceeded with Introvert Fornøyelse guiding Utmerket Whippet, who
could still write, and completed the task.

Grublis
In task 2, Lav Modell distributed duties to Søt Forsker. Lav Modell suggested that they do five calcu-
lations each and delegated operators between them. There was not much communication between the
pupils after this regarding the task. This could be because they explicitly assigned tasks that presum-
ably could be done independently of one another. The pupils did announce when they had completed
a calculation. For instance, during the creation of a second calculation, Søt Forsker announced:

10:41:30 Søt Forsker: “Should be correct, I just have to double-check it.”

From the monitoring system, one can see that after 10:40:20, a pattern emerged that was reminiscent
of the pattern seen with group 1. From around 10:41:15, the create object messages seemed to appear
more in a parallel manner.

Femten fordelt p̊a seks
During task 3, the pupils communicated actively to solve the task. The beginning was characterized by
exchanging ideas to each other on how to solve the task:

10:47:40 Trøtt Smarting: “There has to be more than 15 in each pile since one of the cards
is 15.

10:48:00 Introvert Bris: “Don’t we have to divide it by 6 in some way?”

63

While trying to find a strategy to solve the task, one could in the monitoring system see that only Trøtt
Smarting was moving the cards around. After getting input from the teacher that the sum is helpful
when solving the task, the group agreed on a strategy:

10:48:40 Agree on trying 18 as the sum for each pile of cards

When solving the task using this strategy, a pattern similar to the one seen before in the move object
messages emerged. However, using 18 as the sum is not the right answer. After a while, the group
realized this, and at 10:48:25, Trøtt Smarting said: “This does not add up. Probably not 18.” They
then tried out a new strategy:

10:51:00

Trøtt Smarting: “Have to sum up all the cards to find the sum.”

Introvert Bris: “I can do it.”

Trøtt Smarting: “I am already doing it here.”

In the monitoring system, one can see that both of them opened their calculators. Trøtt Smarting was
approximately 10 seconds ahead of Introvert Bris in opening it. Trøtt Smarting announced: “It is 20
then”, after dividing the sum of the cards by 6. The conversations then progressed to solving the task
with this information.

10:52:20 Introvert Bris: “I will do it up here in the left.”

During this time, one can from the monitoring system see position update messages from both users,
indicating that they had moved in the shared workspace. The work from 10:52:10 to 10:53:40 could be
divided into two. Up until circa 10:53:00, most of the work had the pattern shown in Section 6.1.2. This
pattern can be seen in the move object messages. Only Introvert Bris produced move object messages
towards the end, meaning this pupil moved the last cards into piles.

64

6.3.1 Interview

No. Theme: Application Answers
Q1 Was it fun? Yes. But there is room for improvement.

Maybe you could add it so that we can put in
tables, that lines could be straightened, and
that we do not have to go out of pen-mode
to zoom in/out.

Q2 Did you enjoy doing the tasks in the applica-
tion?

Yes.

Q3 What did you like most in the application? It was something else than working on paper.
We could write and build things ourselves. It
also had tasks we did not get tired of.

No. Theme: Collaboration Answers
Q4 Was it fun to collaborate? Yes. We could also collaborate from home

with this. The teacher could divide us into
groups, and we could get our homework
through this app.

Q5 Do you feel like both of you contributed? Yes. We distributed tasks between our-
selves. For instance, in Marihøner one of
us counted while the other one wrote down
letters. Sometimes the distribution of tasks
happened automatically.

Q6 Did you distribute the work evenly? Yes.
Q7 Was it a good collaboration even though

both of you had your own tablets?
Not asked

No. Theme: Awareness Answers
Q8 Did you see what the other person was work-

ing on?
Yes, we were on the same ”page”.

Q9 Were you ever unsure about what the other
person was working on?

No. We could see what the other person was
working on by, for example, watching the bor-
der that appeared when object were moved.

Q10 Was it easy to notice when the other person
was working in the canvas?

Yes, except for the calculator. Maybe you
could have it so that we could see when the
other person opened the calculator.

65

6.3.2 Patterns

Notable patterns were observed during each task for group 3. These are presented in Figure 40,
Figure 41, and Figure 42.

Figure 40: Parallel workflow to a guided workflow for group 3 during
task 1: Telle marihøner. The break point is indicated with a pink
line.

Figure 40 shows the session for Telle marihøner (task 1). Before the pink line, one can see that the
interactions with the tablet were largely parallel. From Paragraph Telle marihøner in Section 6.3, one can
see that the delegation of task happened explicitly. After the pink line, it was mainly Utmerket Whippet
that drew in the platform. At the timestamp of where the pink line is, the drawing bug occurred for
Introvert Fornøyelse, which prevented any further drawing action from them during that session. After
that, the collaboration consisted of Utmerket Whippet drawing, while Introvert Fornøyelse contributed
with suggestions on what to draw. This distribution is visible in the plot, as the actions Introvert
Fornøyelse performed on the tablet are either moving the cards or moving around in the workspace.

66

Figure 41: Pattern formed by cluster messages (red circles) to a
parallel workflow for group 3 during task 2: Grublis.

Figure 41 shows an excerpt of the session for Grublis (task 2). At the beginning of the figure, one can
see the same pattern mentioned in Section 6.1.2. As mentioned in Paragraph Grublis in Section 6.3,
the create object messages start overlapping at around 10:41:15 (pink line in the figure), and it seems
the pupils started working more in parallel after that.

Figure 42: Pattern formed by cluster messages (red circles) to a
singular contributor for group 3 during task 3: Femten fordelt p̊a
seks.

In Figure 42, the last 01:30 minutes of the session for Femten fordelt p̊a seks (task 3) is presented. As
noted above in the Paragraph Femten fordelt p̊a seks in Section 6.3, the work during the time from
10:52:10 to 10:53:40 can be divided into two. This division is illustrated with a pink line in the figure.
Before the pink line, one can see that the move object message clusters form a pattern similar to the
pattern displayed in Section 6.1.2. After the pink line, Introvert Bris moved the last cards into piles for
approximately 40 seconds. There was nothing in the conversation that would have initiated this change
in the workflow.

67

6.4 Interview with the teacher

In this section, the semi-structured interview with the teacher conducted at the end is presented. This
interview aimed to extract the perspective and observations of the teacher regarding the test, and the
questions asked can be found in Table 4. Each subsection will reproduce the opinions of the teacher
related to a question.

6.4.1 Q1: How do you think the test went?

The teacher expressed that it was an unusual situation for the pupils and that eventually, they got more
comfortable in it. The teacher noted that the first group needed a bit more time to get used to the
test than the others, which the authors also noticed. The teacher also observed that there was a bug
with the platform.

6.4.2 Q2: What did you think of the collaboration between the pupils?

The teacher thought the pupils used the platform well. When speaking of the groups, the teacher said:

“The first group did not talk with each other that much, but they looked at what the other
pupil was doing and ‘corrected’ their activity. The other groups talked more with each other
to coordinate.”

The teacher also expressed seeing the platform’s value as a collaborative tool:

“I can absolutely see the potential it has. Solving the mathematical problem goes a little
faster since a pupil does not have to orient themselves about what the other pupil in the
group is doing. It is easier to see what the other pupil is doing since they are on the same
‘page’ and can just drag around.”

The teacher further explained that a pupil usually has to ask more questions in a classroom setting to
figure out what the other pupil had done. There was value in pupils being able to coordinate amongst
themselves easily, which was more important than solving the task faster.

“The work is more efficient, as one does not get the usual ‘how far along are you’-questions.”

The teacher noted that objects getting locked when someone selects them caused less arguing between
the pupils. In addition to this, the mobility a pupil has in the platform was something that the teacher
said they would not get when writing on paper. The teacher added:

“One could just move stuff in the platform if one does not want it there.”

It seems that from the teacher’s perspective, the platform served its purpose in facilitating collaboration
between the pupils. The difference in how verbal each group was did not necessarily affect how well they
performed. The teacher also felt there was value in enabling pupils to coordinate the work non-verbally
through the shared workspace.

6.4.3 Q3: How did you experience the engagement of the pupils?

The teacher explained that the pupils immediately tend to get more excited when something is not on
paper. They get engaged when there is something digitally visual in front of them.

Elaborating on the engagement of the groups, the teacher explained that group 1 collaborated just as
well as group 3 did, even though:

68

“... the pupils in the former were not as talkative as the pupils in the latter.”

The teacher said that the platform facilitated both types of collaboration:

“the more non-verbal and the more verbal collaboration.”

6.4.4 Q4: Would you use such a platform in your teaching? Why, or why not?

“Yes, absolutely.”

The teacher said that, in a way, the platform was pretty simple to use. Additionally, the teacher
emphasized that it works well with open-ended tasks because:

“one can think and move objects, and test out different possibilities.”

From the teacher’s point of view, It seemed like it was easy to collaborate, and if a pupil has to be
home one day, they could still participate and be a part of a group. Lastly, the teacher added that there
was potential for using the platform in a classroom setting.

6.4.5 Q5: What worked well?

The teacher thought that the lobby worked well, as it was easy for the pupils to connect. The teacher
also mentioned some other features in the platform, like commenting on objects and manipulating
lines as independent objects. Pupils having the possibility to draw in their own area was mentioned as
something positive by the teacher.

6.4.6 Q6: What could have been better?

The teacher mentioned the occurrence of the drawing bug and that it made the platform seem a bit
fragile. The teacher also suggested several improvements to the platform, like being able to erase parts
of a line, a “snap-to-grid” function, adding text to the shared canvas, and selecting multiple objects by
clicking on them instead of using the multi-select tool.

6.5 Main patterns

The notable patterns that occurred for each group were used to identify the patterns of collaboration.
Abstractions were made to visualize these patterns based on how they occurred in the monitoring
system. This was done to describe and categorize the different types of collaboration that arose.

(a) Parallel (b) Ping-pong (c) Singular action

Figure 43: Main patterns of collaboration

69

The main patterns of collaboration identified are presented in Figure 43. Three types of collaboration
were identified: parallel, ping-pong, and singular action.

Parallel collaboration
Parallel collaboration had the characteristic of parallel interactions in the platform. This type of col-
laboration happened when the pupils could delegate sub-tasks that could be solved at least somewhat
independently of each other. The delegation of tasks happened before actions were taken in the plat-
form. This seemed to happen explicitly through verbal communication, by either a pupil delegating
the sub-tasks or the pupils announcing which sub-tasks they would perform. The sub-tasks themselves
did not seem to cause the groups to lose coherence regarding the common task. In some sessions, the
ability to have your own territory enabled the occurrence of this pattern, while in others, the pattern
occurred regardless of this. This seemed to be somewhat dependent on the type of task that was solved
in the session.

The parallel pattern of collaboration occurred when group 2 solved their first task Grublis. This can
be seen in Figure 38, where this pattern was prevalent during the entire session in the create object
messages. During this task, the group solved sub-tasks independently and delegated these explicitly
by speech. The sub-tasks were to create calculations by using operators they had delegated amongst
themselves. Interestingly, they mainly deleted their own lines, indicating that they possibly had their
own territory within the shared workspace. Even with this, the group announced suggestions to each
other, indicating that the group did not lose coherence.

One can also see the pattern occur when group 2 solved their final task Femten fordelt p̊a seks. The
pattern can be seen in the red box of the plot in Figure 39 in the move object messages. In this task,
the delegated sub-task involved creating piles that could provide them with the correct sum. Even
though they had individual sub-tasks, they could not work fully independently since all the piles had to
add up to the same sum.

The pattern also occurred when group 3 solved their first task Telle marihøner. It can be seen in
Figure 40, before the pink line. Unlike the previous two sessions discussed above, one must consider
both the move object and create object messages to notice the parallel collaboration. The pupils
delegated sub-tasks explicitly, and these consisted of counting up the number of ladybirds in each card
and creating the axis of a bar chart. However, the drawing bug appeared at the pink line, effectively
stopping the parallel collaboration.

Additionally, the pattern occurred when group 3 solved their second task Grublis. This can be seen
in Figure 41, after the pink line in the create object messages. Similar to when group 1 solved the
same task, group 3 delegated operators and created calculations independent of each other. Before
the pink line, the pattern of collaboration was different. It is interesting that right before switching
their type of collaboration to parallel, one can see that the pupil Lav Modell moved around in the
shared workspace. This could be because Lav Modell wanted their own territory, similar to how group 2
utilized the workspace for the same task. Additionally, each pupil announced when they had completed
a calculation, indicating that this group also did not lose coherence when solving independent sub-tasks.

In Table 5, the occurrences of parallel collaboration are shown with links to the relevant figures and the
tasks of where they occur.

Task reference Figure reference Occurrence in the figure
Group 2: Grublis Figure 38 Entire plot in the create object messages
Group 2: Femten fordelt p̊a seks Figure 39 Red box of plot in the move object mes-

sages
Group 3: Telle marihøner Figure 40 Before the pink line in the plot in the

move object and create object messages
Group 3: Grublis Figure 41 After the pink line in the plot in the cre-

ate object messages

Table 5: Figures and tasks where parallel collaboration occurred

70

Ping-pong collaboration
Ping-pong collaboration had the characteristic of alternating interactions in the platform. This type of
collaboration happened when the pupils were dependent on what the other pupil was doing to complete
their sub-task. The delegation of sub-tasks mostly happened implicitly, meaning it happened without
any verbal communication. It usually seemed to happen by pupils picking the sub-task that the other
pupil was not doing. For this to happen, there had to be an agreement on sub-tasks, and most of the
time these were evident from the task description.

The ping-pong pattern of collaboration can be seen in the first and last task of group 1, which were
Byggeklosser and Grublis respectively. The plots related to these tasks are Figure 36 and Figure 37,
and the pattern can be seen in the create object message clusters, marked by the red circles. In both
figures, the clusters of messages are alternating between the two pupils. This could indicate that after
drawing a 3-D figure or writing down a calculation, the pupils waited to see what the other pupil was
doing in the platform. The teacher present during the test noted in Section 6.4.2 that group 1 were
not that talkative, but “...they looked at what the other pupil was doing and ‘corrected’ their activity”.

In the test with group 3 the pattern occurred in the second and last task, which were Grublis and
Femten fordelt p̊a seks respectively. The plots related to the task are Figure 41 and Figure 42. In both
figures, the pattern occurs before the pink line, and the relevant message clusters are indicated with
red circles. Interestingly, the pattern occurred when the group worked on Grublis even though they
had explicitly delegated sub-tasks between them. This might indicate that before the pink line, the
pupils chose to watch what each other were doing, even though they had delegated explicitly. After
this short period of watching what the other did, they changed the type of collaboration, explaining
why the parallel pattern was the most dominant for the rest of the session.

When group 3 was working on Femten fordelt p̊a seks, they agreed slightly before 10:52:10 to create
piles with 20 as the sum. Creating the piles were the sub-tasks in this case. Therefore, it makes
sense that the pattern occurred before the pink line in the plot, since the pupils had to be aware of
the sub-task the other pupil was doing to solve their own. The sub-tasks were implicitly delegated,
meaning the pupils chose a sub-task by coordinating through the shared workspace non-verbally. They
likely picked a sub-task by seeing, and sometimes foreseeing, what was available.

In Table 6, occurrences of ping-pong collaboration are shown with links to relevant figures and tasks in
which they occur.

Task reference Figure reference Occurrence in the figure
Group 1: Byggeklosser Figure 36 Entire plot in the create object messages
Group 1: Grublis Figure 37 Entire plot in the create object messages
Group 3: Grublis Figure 41 Before the pink line in the plot in the cre-

ate object messages
Group 3: Femten fordelt p̊a seks Figure 42 Before the pink line in the plot in the cre-

ate object messages

Table 6: Figures and tasks where ping-pong collaboration occurred

Singular action collaboration
Singular action collaboration had the characteristic of only one pupil performing actions in the platform.
This type of collaboration is identified in three of the notable patterns from the tests, happening for
different reasons each time.

The pattern occurred for group 2 during their second task, Femten fordelt p̊a seks. This can be seen in
Figure 39 in most of the blue box, made evident by the move object messages. This pattern occurred
after the pupils decided to verify the sum using different methods; one pupil placed the cards into
piles, while the other used the calculator. After the pink line, the second pupil started moving cards
into piles after verifying the sum with the calculator. Interestingly, this pupil was able to join in on
moving cards without needing any conversation to get oriented in what had been done already. This
type of assistance is characterized in the third part of the workspace awareness framework presented in
Section 2.3.1. It emphasizes that workspace awareness enables users to provide the assistance deemed
appropriate by assessing the situation, which seems to be what the pupil did.

71

For group 3, this pattern occurred when solving Telle marihøner (task 1) and Femten fordelt p̊a seks
(task 3). In the former, the pattern occurred in the create object messages after the pink line in
Figure 40. At around the timestamp of the pink line, the drawing bug appeared and prevented one of
the pupils from writing in the platform. Because of the bug, they proceeded with one pupil guiding
while the other wrote in the platform. This is reminiscent of the software development technique
pair-programming30, where two programmers work together on one editor.

When group 3 solved Femten fordelt p̊a seks, their third task, this pattern occurred in the move object
messages after the pink line in Figure 42. In this case, there was nothing in the conversation to initiate
this change in the collaboration. Also, there was no difference in methods to verify parts of the task
like with group 2. Instead, it seems that it occurred naturally. Meaning, since there only were a couple
of cards left to move into piles, the pupil Trøtt Smarting decided not to cause conflict by letting the
other pupil finish the task.

In Table 7, the occurrences of singular action collaboration are shown with links to the relevant figures
and the tasks of where they occur.

Task reference Figure reference Occurrence in the figure
Group 2: Femten fordelt p̊a seks Figure 39 Most of the blue box in the plot
Group 3: Telle marihøner Figure 40 After the pink line in the plot
Group 3: Femten fordelt p̊a seks Figure 42 After the pink line in the plot

Table 7: Figures and tasks where singular action collaboration oc-
curred

Analysis
The main patterns discussed were identified by looking for occurrences of notable patterns within each
group. Group 1 and 2 had notable patterns in two of the tasks they completed, while group 3 had
notable patterns in three tasks. Each group did not exhibit all of the main patterns in their notable
patterns. Table 8 shows the patterns the different groups exhibited.

Group Parallel Ping-pong Singular action
Group 1 No Yes No
Group 2 Yes No Yes
Group 3 Yes Yes Yes

Table 8: Table of the patterns the groups exhibited

In the semi-structured interviews conducted with the groups after their test session, every group ex-
pressed that they felt that both pupils in the group contributed to the work. Additionally, they all
said that they felt they distributed the work evenly within the group. This distribution could indicate
that the main patterns of collaboration mentioned above did not skew the workload within the groups.
Alternatively, at the very least, the groups exhibiting the patterns did not experience the distribution
of work as unfair.

Group 3 said during the interview that: “Sometimes the distribution of tasks happened automatically”.
This statement coincides with the ping-pong collaboration pattern, where the delegation of tasks hap-
pened implicitly, which was seen in two of their tasks. Group 1 expressed that they: “... distributed
the work by watching what the other person did.” This group only had notable patterns where the
ping-pong pattern occurred, and the statement substantiates the importance of implicit delegation for
its occurrence.

One approach deemed important for the main patterns identified in the groups’ collaboration is the
shared feedback approach described in Section 2.3. Features related to presenting feedback on individual
user activity were highlighting the objects each user currently had pressed and showing their “cursor”
activity. Both features are detailed in Paragraph Highlighting in Section 3.5.1, and Paragraph Cursor

30https://en.wikipedia.org/wiki/Pair programming

72

activity in Section 3.5.1. These features were important for enabling ping-pong collaboration because
the pupils had to orient themselves according to what the other pupil was working on. For this to
happen, the pupils had to be aware of the other pupil’s location and activity. The features were likely
also important for the singular action pattern. By seeing where and what the other pupil was working
on, one could guide them. In addition to this, as it happened with group 3, one could also let the other
pupil take over and finish the task if applicable. The benefits from using the shared feedback approach
described in Section 2.3 were assumed to be why some of the main patterns emerged. For instance,
being able to monitor each other’s activities peripherally enabled ping-pong. Additionally, being able
to explicitly assign and reassign themselves to sub-tasks enabled the parallel collaboration pattern.

The features related to presenting feedback were also crucial for parallel collaboration, especially when
the pupils had sub-tasks that could not be solved entirely independently of each other. For instance,
when group 2 solved Femten fordelt p̊a seks, they had to be aware of what other objects the other
pupil was working on to create individual piles simultaneously. In addition to this, the intentional
communication mechanism described in Section 2.3.1 was deemed particularly important for the parallel
pattern. Especially the first way to gather awareness information, by simply stating where they were
and what they were working on. This was done by the pupils when they delegated tasks amongst
themselves.

It could be argued that the consequential and feedback mechanisms were necessary for the main patterns
seen in the test. These mechanisms are very similar to the shared feedback approach in that they both
discuss how the shared workspace as an environment gives awareness information. As discussed above,
this information was used differently in the three main patterns identified. From the first part of the
framework described in Section 2.3.1, the who element was not directly relevant to the test as the
pupils always knew who the other pupil was. It would be interesting to see how the main patterns
would change or if they would emerge if three pupils were in each group.

Some of the activities described in the third part of the framework presented in Section 2.3.1 can
be used to analyze the collaboration. In both group 2 and group 3, instances of pupils using deictic
references to simplify communication can be found. For instance, in the conversation between the
pupils in Paragraph Femten fordelt p̊a seks in Section 6.3.

Several instances of ping-pong collaboration were enabled by coordinating actions and anticipating
what the other pupil was doing. The former is evident since ping-pong mostly happened by delegating
the sub-tasks implicitly, which was enabled by workspace awareness. Pupils would adjust their activity
according to what the other pupil was doing. The latter is not as evident, but having the ability to
foresee what a pupil could do is also a way of coordinating actions. Pupils would pick a sub-task by
seeing what was available and anticipating what the other pupil was not about to do.

There were instances where pupils managed the transitions between individual and shared work, charac-
terized by the framework as management of coupling. This can be seen in Figure 42, where the pupils
went from ping-pong (shared) to a singular action pattern. Additionally, in the blue box of Figure 39,
one pupil provided assistance by assessing what was needed.

73

7 Discussion

Answers to the research questions and the contributions of this thesis are discussed in this section.
Section 7.1 aims to answer research questions presented in Section 1.3, and the contributions from
this thesis are presented in Section 7.2. Considerations regarding the research and contributions are
discussed in Section 7.3, while Section 7.4 evaluates the conducted project. Finally, Section 7.5 presents
additional features that could be added to the platform if developed further.

7.1 Questions

The early stages of this project focused on developing the platform to be used in the final testing.
Common features and attributes used in collaborative software platforms were identified and added
to the platform. After a fully functional platform was developed, the later stages of the project were
dedicated to designing the test described in Section 5.2, developing the monitoring system, and making
final adjustments to the platform. This section aims to answer the research questions presented in
Section 1.3.

RQ1: What are common features and technologies in collaborative software platforms?
There is often a focus on transparency within collaborative software platforms; that is, transparency in
the sense that all users of the platform should be kept aware and updated about the state of the shared
workspace. This is especially true for platforms that support simultaneous activity. For such platforms,
it is essential to present all users with a cohesive representation of the state. Platforms often perform
different forms of concurrency control to achieve this, such as locking, to ensure correct results from
concurrent actions.

In addition to keeping the state consistent between users, platforms keep users aware of occurring
actions within the interface. Providing users with this information allows them to dynamically switch
between loose and tightly coupled collaboration effectively. An effective way of solving this is using the
shared feedback approach. This approach allows for low overhead for both performers and observers,
as the interface itself presents feedback on all users’ activity.

Examples of shared feedback approaches are how Google Docs and Miro display users’ positions within
the shared workspace. In Google Docs, the position of a user relates to the location of their text
cursor within the document. In Miro, the position is relative to the user’s mouse pointer. When a
user’s position changes in both platforms, this change of position is reflected in other users’ interfaces.
Therefore, the moving user does not have to perform any additional action to update others of their
relocation, as the action is reflected automatically within the interface. Providing instant feedback from
actions is a common feature within groupware and presents users with greater flexibility in coordinating
their collaborative work.

RQ2: Which features are necessary to facilitate collaboration in mathematics?
Throughout this project, several important features supporting collaboration in mathematics were iden-
tified and included in the platform. As presented in Section 6, the pupils were able to collaborate solving
the different tasks. One could assume that the combination of features within the platform allowed for
this collaboration to occur. However, the number of participants in the test was somewhat limited, and
the assumption that the platform’s features allowed for collaboration to occur can be easily challenged.
Regardless, this thesis can be used as a document presenting features that are potentially necessary for
facilitating collaboration in mathematics.

The design of these features is presented in Section 3, and how these features were implemented in the
platform is shown throughout Section 4. Following is a selection of the features that were found to be
most significant by the authors:

• Simultaneity when drawing lines

• Allow users to interact with objects in the shared workspace

74

• Making users aware of each other’s actions

Having lines appear while they are drawn allows users to observe each other and be aware of what others
are working on within the shared workspace. Combined with allowing users to interact with objects and
having these actions replicated, could enable different types of collaborations to occur. The various
features designed to make users aware of each other further increase the collaborative experience. This
includes features such as lines appearing in real-time, highlighting selected objects, avatars displaying
users’ locations (also called “cursor” activity), and replicating actions with a low notification time.

RQ3: What patterns of collaboration occur when using the platform?
Tests with three pairs of pupils were conducted to identify patterns of collaboration that occur when
using the platform. To identify the patterns, and because the authors could not physically be on-site
during the tests, a monitoring system was created that logged and visualized interactions in the platform.
From these tests, seven notable patterns were identified in the monitoring system. The notable patterns
were then used to create abstractions that describe the main collaborative patterns. These were:

• Parallel collaboration: Parallel interactions

• Ping-pong collaboration: Alternating interactions

• Singular action collaboration: Only one pupil performing actions

Section 6.5 contains further discussion about these patterns.

Even though the main patterns were different, the semi-structured interview conducted with each
group could indicate that neither of them skewed the workload within the groups. Each group felt they
contributed equally and that the distribution of work was fair.

Features related to presenting feedback on users’ activity, as emphasized by the shared feedback ap-
proach (read: Section 2.3), were assumed to be important for enabling the main patterns identified. For
instance, take the features detailed in Paragraph Highlighting in Section 3.5.1 and Paragraph Cursor
activity in Section 3.5.1. These features were important for enabling parallel collaboration when pupils
had sub-tasks that could not be solved fully independently of each other. With the platform highlighting
the objects the other pupil was working on, they could simultaneously solve their sub-task. In addition
to this, with the platform indicating where the other user was by showing their “cursor” activity, the
ping-pong collaboration pattern could occur. In this pattern, pupils had to be aware of where the other
pupil was and what they were working on to orient themselves to pick a sub-task. These features
were important in the singular action pattern where one pupil was guiding the other because it allowed
the pupil to be aware of the other pupil’s action. In addition to this, the other pupil did not have to
communicate the actions taken, providing low overhead to the collaboration.

7.2 Contributions

This section presents this thesis’s different contributions, which are products of the project conducted.
These can be beneficial for similar projects in the future.

7.2.1 A framework for real-time collaborative software

This thesis can act as a document for researchers and developers implementing a real-time collaborative
software platform. A framework describing important features and characteristics of such software is
presented in Section 2. This framework is based on several literature works and can act as a guide when
designing the features facilitating collaboration within groupware. Supporting this, Section 3 can be
used as an example of a design that considers the different challenges and problems presented in this
framework. Section 4 gives an example of a platform based on this design, and how the framework is
used in a fully functional prototype. The framework primarily comprises two significant considerations
within groupware:

75

1. Attributes and concurrency in groupware

2. Awareness within shared workspaces

A significant takeaway from this project is the importance of awareness within this type of software, as
it is essential for allowing collaboration between actors.

7.2.2 Achieving simultaneity when drawing lines

During development, much effort was put into the real-time aspect of drawing lines and having them
appear on other users’ devices while they are drawn. Future projects tackling similar problems could use
this thesis as inspiration to enable the streaming of partial objects as they are created. Section 4 presents
how this is achieved in this project’s platform, with the different subsections explaining the different
parts that enable this functionality. Additionally, how the line-based objects are made accessible and
interactive in the platform can be adopted and used in other projects. This system proved to be very
modifiable, making adding new types of objects and manipulations a relatively straightforward affair.

7.2.3 Monitoring system

Using a monitoring system to identify collaborative patterns is an approach that was created during this
project. Even though the initial reason for developing the system was to act as a work-around for not
being on-site, it worked well for the purpose. The approach of logging events and visualizing them made
it easier to identify collaborative patterns that occurred instead of only taking field notes. Different
types of user actions that could be observed to categorize collaboration are provided in Section 4.3.2.
Although these are specific to the project, they could be generalized and adapted to other contexts as
needed.

7.2.4 Support for multiple collaboration patterns

As discussed in Section 6.5, different types of collaborations were identified. This thesis shows how
the pupils’ collaboration varied and that it was dynamic, adding to the findings of the third part of the
workspace awareness framework presented in Section 2.3.1. Clearly, people collaborate in multiple ways,
but it shows that a collaborative platform should be designed to enable variety within the collaboration.
A dynamic and non-restrictive platform enables the users to choose how they want to collaborate when
solving a shared task.

7.3 Considerations

As presented in Section 3, the features needed for this project were identified and adapted using the
knowledge gained about groupware and awareness from Section 2. Therefore, the features chosen and
implemented might have influenced the main patterns observed, and another combination of features
could have given different results. In addition to this, bias from the authors could have informed the
choice of features in the platform.

Due to only getting in contact with one teacher and time constraints related to the project, the test
had few participants. Additionally, the results gathered from the test could have been denser with more
participants, giving the authors more data to analyze. Due to the sparsity, the patterns noticed could
have been influenced by other factors that were not present in the data. More patterns could have
potentially emerged with more participants.

The drawing bug encountered during the test impacted how the tasks were completed, especially for
group 2. This drawing bug impacted their collaboration, and there is a possibility that the singular
action pattern would not have occurred for group 2 if this bug did not happen.

76

The analysis of the observations conducted potentially includes bias from the authors. There is also no
guarantee that another person would have found the same patterns that the authors have. However, to
increase the validity of the research conducted, verbatim quotes from the pupils and screenshots from
the monitoring system were included. Another way to increase the validity of the research would have
been to triangulate [3, p. 212] the observations with interviews after analyzing the data, where the
pupils and teacher could have confirmed the main patterns observed by the authors. This triangulation
differs from the interviews conducted after the test, where the goal was to elicit feedback regarding the
collaboration.

7.4 Project evaluation

The initial goal for the project was somewhat open-ended, as the only criterion was that the project had
to exist within the field of Educational Technology (EdTech). This resulted in the authors having an
excellent opportunity to define the scope of the project. This opportunity led to increased motivation
during all stages of the project and heightened the sense of ownership. The authors felt a strong desire
to develop a piece of software when deciding what type of project to execute for this thesis.

In the early stages, considerable effort was put into researching what demands and opportunities existed
within the field of EdTech in Norway. This effort was fueled by a desire to develop software that
could be used in schools and education in the future. The first few weeks of the project mainly
consisted of having conversations with different types of stakeholders; teachers, professors, developers,
and companies related to education and EdTech. As a result of these conversations, the project was
scoped towards designing a line-based collaborative mathematics platform and performing a test with
the platform towards the end of the project. Conversations with most of these stakeholders were
continued throughout the project, both to get feedback and ideas for the platform during development
and to get in contact with interested teachers willing to test the finished platform.

The decision to implement the platform using Flutter was made based on a wish to try new technology.
Flutter is a relatively new framework for mobile development. After a bit of research, Flutter seemed
promising as the framework advertised good performance and rapid development. Developing the
platform using Flutter was a good experience, and no significant features needed to be dropped due
to framework limitations. Flutter includes several helpful components and classes, such as icons, fonts,
buttons, and specialized containers. Building the various interfaces of the application felt very intuitive
and quick. Compared to React Native, the authors felt that much time was saved using Flutter,
especially when styling and aligning components. In the end, the platform was developed using a single
codebase with minimal platform-specific code, which builds into native apps for both Android and iOS.

This project was executed during two semesters. The general plan for the project was to spend the
first semester designing and developing the platform, and to use the second semester to plan, design,
and perform the final test. Some features were added specifically to support the test during the second
semester, while most core functionalities were implemented in the first semester. The general plan also
included performing the final test before Easter and using the remaining time to analyze and discuss
the findings. Getting in contact with teachers to help conduct the tests proved difficult due to the
global pandemic. However, a teacher willing to test the platform using their pupils was found during
the second semester. This teacher recruited three groups of willing pupils, which allowed the test to
be conducted. Even though the authors could not be on-site, the combination of an audio link and a
monitoring system allowed for sufficiently detailed observations. In the end, the project revealed some
interesting findings and was completed following the general plan with no major delays.

7.5 Future Work

If the platform was to be developed further, additional features could be implemented. The platform
was designed to support the final testing of the project, and only functionalities needed for this were
implemented. This section presents features that could be added to the platform to make it suitable
for general use-cases.

77

User accounts
Including user accounts in the platform was unnecessary for this project. However, if the platform was
to be developed further, user accounts should be added. This way, users will have a persistent account,
allowing them to establish connections with other users, such as friends and classmates. Log in and
authentication could be implemented using third-party solutions such as Feide31 or Google32, to allow
users to register effortlessly. A significant benefit of having a Feide integration in the platform is because
Feide is widely used within the Norwegian education system, with over 1.3 million users registered [31].

Asynchronous interaction
Another point of improvement for the platform would be to support asynchronous interaction. Sessions
should be kept persistent, allowing users to enter and exit sessions as they please. Storing session states
within a database would allow users to re-enter a previous session and continue working from where
they left off. As changes are made to the state, these should be sent to the database and other users.
Upon re-joining a session, users would query the database and receive the session’s current state. If
the platform were to support this type of interaction, it would allow users to solve a task periodically,
in the same way documents can be re-opened and edited in other collaborative software platforms such
as Google Docs and Miro.

Teachers
The current platform only supports one type of actor, which is pupils. This choice was intentional as
the platform was made specifically to facilitate the testing performed during this project. Additional
types of actors, such as teachers, could be added to expand the platform’s usefulness in an educational
setting. Teachers could both have administrative and supervisory roles within the platform. They could
assign tasks to individual pupils or groups and could receive the pupils’ submissions in the platform.
Another benefit of having a teacher role within the platform is allowing teachers to supervise pupils
remotely. Pupils could then ask for help with a task within the interface, allowing teachers to enter
sessions as supervisors.

Tasks
In the current platform, the tasks are stored locally as a JSON file. If tasks were to be stored in a
database, it would allow for greater flexibility in adding, removing, or editing tasks. It would also enable
teachers to design tasks and submit them to this database, even though this would require additional
interfaces to be added to the platform. Teachers could also assign a set of tasks to pupils, which
would provide teachers with greater control of the content provided to their pupils. Having a database
with tasks could also allow the platform to be used for more subjects than mathematics, as the shared
workspace may be flexible enough to be used in other subjects with minimal effort.

31https://www.feide.no/
32https://www.google.com/account/about/

78

https://www.feide.no/
https://www.google.com/account/about/

8 Conclusion

This project was completed over two semesters, with the first semester dedicated to designing and
developing the platform and the second semester focused on testing. Developing the platform went
according to plan, allowing the monitoring system to be designed and implemented when it was needed.
This monitoring system proved valuable for identifying collaborative patterns from the test. Due to
only getting in touch with one teacher, the test had fewer participants than ideal. The sparsity in the
gathered data might have omitted information that could have strengthened the analysis and findings.

Related to RQ1, it was found that common features and technologies in collaborative software often
focused on a common attribute: transparency regarding the state of the shared workspace. Concerning
RQ2, allowing users to be aware of each other and their actions is potentially the single-most-important
feature. Enabling simultaneity in the workspace allowed users to interact effectively with the shared
objects. As for RQ3, the identified collaborative patterns from the test were classified as parallel,
ping-pong, and singular action collaboration. Parallel collaboration is where the pupils interacted with
the shared workspace in parallel. In ping-pong collaboration, the pupils’ interactions were alternating.
Singular action collaboration is characterized as instances where only one pupil interacted with the
shared workspace.

This thesis can be used as a document presenting a framework for creating real-time collaborative
software, which highlights useful features to include. The design and implementation presented in this
thesis can be used to illustrate how these features could be implemented when developing a collabo-
rative software platform that supports dynamic collaboration. The thesis also provides an example of
implementing simultaneity in actions related to mathematics, such as drawing and manipulating objects.
Additionally, it presents a method of how a monitoring system can be used in conjunction with field
notes and interviews to identify collaborative patterns.

The research presented in this thesis mainly focused on identifying collaborative patterns occurring
as pairs of pupils worked together on solving mathematical tasks. Within the topic of collaboration
in mathematics on tablets, there are many other exciting subjects to explore. For instance, would
the characteristics of the patterns identified in this thesis change if more than two pupils were to
collaborate? Would any of these patterns occur at all, and would new patterns be observed? Are the
identified patterns presented in this thesis generalizable? It would also be interesting to evaluate how
the different functionalities of the platform, such as highlighting and cursor activity, affect collaboration
and if one could determine which of these features are most beneficial.

79

Bibliography

[1] Kjersti Nipen. Nettbrettene rykker inn i klasserommet. ingen vet helt hva det
gjør med læringen., 2021. https://www.aftenposten.no/amagasinet/i/OpaaqO/

nettbrettene-rykker-inn-i-klasserommet-ingen-vet-helt-hva-det-gjoer-me.

[2] Helga Engs Sæl. Mål med implementeringen av en-til-en - FIKS - forskn-
ing, innovasjon og kompetanseutvikling i skolen. https://www.uv.uio.

no/forskning/satsinger/fiks/kunnskapsbase/digitalisering-i-skolen/

-mal-med-implementeringen-av-en-til-en/index.html.

[3] Briony J. Oates. Researching information systems and computing. SAGE Publications, 2006.

[4] Paul Wilson. Computer Supported Cooperative Work:: An Introduction. Springer Science &
Business Media, 1991.

[5] Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. Groupware: some issues and experiences.
Communications of the ACM - Vol 34, No. 1, 34(1):39–58, 1991.

[6] Robert Johansen, Jeff Charles, Robert Mittman, and Paul Saffo. Groupware: Computer Support
for Business Teams. Free Pr, first edition, 1st printing edition, 1988.

[7] Peter H. Carstensen and Kjeld Schmidt. Computer supported cooperative work: New challenges
to systems design. In In K. Itoh (Ed.), Handbook of Human Factors, pages 619–636, 1999.

[8] Carl Gutwin and Saul Greenberg. A descriptive framework of workspace awareness for real-time
groupware. Computer Supported Cooperative Work (CSCW), 11(3):411–446, 2002.

[9] C A Ellis and S J Gibbs. Concurrency control in groupware systems. Proceedings of the 1989 ACM
SIGMOD international conference on Management of data, page 9, 1989.

[10] Saul Greenberg and David Marwood. Real time groupware as a distributed system: Concurrency
control and its effect on the interface. Proceedings of the 1994 ACM conference on Computer
supported cooperative work, page 11, 1994.

[11] A. Karsenty and M. Beaudouin-Lafon. An algorithm for distributed groupware applications. In
[1993] Proceedings. The 13th International Conference on Distributed Computing Systems, pages
195–202, 1993.

[12] Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhäuser. An integrating, transformation-
oriented approach to concurrency control and undo in group editors. In Proceedings of the 1996
ACM conference on Computer supported cooperative work - CSCW ’96, pages 288–297. ACM
Press, 1996.

[13] Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Emmanuel Desmontils. Concurrency effects
over variable-size identifiers in distributed collaborative editing. CEUR Workshop Proceedings,
page 8, 2013.

[14] Chengzheng Sun. Operational transformation in real-time group editors: Issues, algorithms, and
achievements. Proceedings of the 1998 ACM conference on Computer supported cooperative work,
page 10, 1998.

[15] Mehdi Ahmed-Nacer, Pascal Urso, Valter Balegas, and Nuno Preguiça. Concurrency control
and awareness support for multi-synchronous collaborative editing. In 9th IEEE International
Conference on Collaborative Computing: Networking, Applications and Worksharing, pages 148–
157, 2013.

[16] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared workspaces. In Proceed-
ings of the 1992 ACM conference on Computer-supported cooperative work - CSCW ’92, pages
107–114. ACM Press, 1992.

80

https://www.aftenposten.no/amagasinet/i/OpaaqO/nettbrettene-rykker-inn-i-klasserommet-ingen-vet-helt-hva-det-gjoer-me
https://www.aftenposten.no/amagasinet/i/OpaaqO/nettbrettene-rykker-inn-i-klasserommet-ingen-vet-helt-hva-det-gjoer-me
https://www.uv.uio.no/forskning/satsinger/fiks/kunnskapsbase/digitalisering-i-skolen/-mal-med-implementeringen-av-en-til-en/index.html
https://www.uv.uio.no/forskning/satsinger/fiks/kunnskapsbase/digitalisering-i-skolen/-mal-med-implementeringen-av-en-til-en/index.html
https://www.uv.uio.no/forskning/satsinger/fiks/kunnskapsbase/digitalisering-i-skolen/-mal-med-implementeringen-av-en-til-en/index.html

[17] Thomas Olsson, Pradthana Jarusriboonchai, Pawe l Woźniak, Susanna Paasovaara, Kaisa
Väänänen, and Andrés Lucero. Technologies for enhancing collocated social interaction: Review of
design solutions and approaches. Computer Supported Cooperative Work (CSCW), 29(1):29–83,
2020.

[18] Tom Gross. Supporting effortless coordination: 25 years of awareness research. Computer Sup-
ported Cooperative Work (CSCW), 22(4):425–474, 2013.

[19] Carl Gutwin, Saul Greenberg, and Mark Roseman. Workspace awareness in real-time distributed
groupware: Framework, widgets, and evaluation. People and Computers XI, page 24, 1996.

[20] Google. Google docs, 2021. https://www.google.no/intl/en/docs/about/.

[21] Regina Maria Ambrose and Shanthini Palpanathan. Investigating the effectiveness of computer-
assisted language learning (CALL) using google documents in enhancing writing–a study on senior
1 students in a chinese independent high school. IAFOR Journal of Language Learning, 3(2):85–
112, 2017. Publisher: International Academic Forum.

[22] Miro. Miro, 2021. https://miro.com/online-whiteboard/.

[23] Gerry Stahl, Timothy Koschmann, and Dan Suthers. Computer-supported collaborative learning:
An historical perspective. Cambridge handbook of the learning sciences, page 1, 2006.

[24] D. Hernandez-Leo, E.D. Villasclaras-Fernandez, J.I. Asensio-Perez, Y.A. Dimitriadis, and S. Retalis.
CSCL scripting patterns: Hierarchical relationships and applicability. In Sixth IEEE International
Conference on Advanced Learning Technologies (ICALT’06), pages 388–392, 2006. ISSN: 2161-
377X.

[25] Pierre Dillenbourg, Sanna Järvelä, and Frank Fischer. The evolution of research on computer-
supported collaborative learning. In Nicolas Balacheff, Sten Ludvigsen, Ton de Jong, Ard Lazonder,
and Sally Barnes, editors, Technology-Enhanced Learning: Principles and Products, pages 3–19.
Springer Netherlands, 2009.

[26] Mia Carapina and Ivica Boticki. Technology Trends in Mobile Computer Supported Collabo-
rative Learning in Elementary Education from 2009 to 2014. International Association for the
Development of the Information Society, 2015. Publication Title: International Association for
Development of the Information Society.

[27] Lars Bollen, Hannie Gijlers, and Wouter van Joolingen. Computer-supported collaborative drawing
in primary school education – technical realization and empirical findings. In Valeria Herskovic,
H. Ulrich Hoppe, Marc Jansen, and Jürgen Ziegler, editors, Collaboration and Technology, Lecture
Notes in Computer Science, pages 1–16. Springer, 2012.

[28] C. Ferraris and C. Martel. Regulation in groupware: the example of a collaborative drawing tool
for young children. In Proceedings Sixth International Workshop on Groupware. CRIWG 2000,
pages 119–127, 2000.

[29] Yinghui Li, Zhichao Cao, and Jiliang Wang. Gazture: Design and implementation of a gaze based
gesture control system on tablets. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 1(3):74:1–74:17, 2017.

[30] Rikke Friis Dam and Teo Yu Siang. What is design thinking and why is it
so popular? https://www.interaction-design.org/literature/article/

what-is-design-thinking-and-why-is-it-so-popular.

[31] Hvorfor tilby feide-innlogging? https://www.feide.no/hvorfor-feide-innlogging-p%C3%

A5-tjeneste.

81

https://www.google.no/intl/en/docs/about/
https://miro.com/online-whiteboard/
https://www.interaction-design.org/literature/article/what-is-design-thinking-and-why-is-it-so-popular
https://www.interaction-design.org/literature/article/what-is-design-thinking-and-why-is-it-so-popular
https://www.feide.no/hvorfor-feide-innlogging-p%C3%A5-tjeneste
https://www.feide.no/hvorfor-feide-innlogging-p%C3%A5-tjeneste

Appendix

A Special terms

Acronyms

CAW Computer Assisted Writing. 13

CRDT Conflict Free Data Types. 9, 10, 25

CSCD Computer-Supported Collaborative Drawing. 16

CSCL Computer-Supported Collaborative Learning. 3, 5, 15, 16

CSCR Computer-Supported Cooperative Reading. 16

CSCW Computer-Supported Cooperative Work. 3, 5, 10, 15

CSCWR Computer-Supported Cooperative Writing. 16

EdTech Educational Technology. 77

MCSCL Mobile Computer-Supported Collaborative Learning. 16

OT Operational Transform. 9, 10

WYSIWIS What You See Is What I See. 8, 17

82

B Code examples

B.1 Receive object action

void receiveObjectAction(CanvasObjectAction action, List<Line> lines) {

switch (action.action) {

case ObjectAction.create:

handleCreateAction(action, lines);

break;

case ObjectAction.delete:

handleDeleteAction(action, lines);

break;

case ObjectAction.move:

handleMoveAction(action, lines);

break;

case ObjectAction.moveImage:

handleMoveImageAction(action);

break;

case ObjectAction.rotate:

handleRotateAction(action);

break;

case ObjectAction.pressed:

handlePressedAction(action, lines);

break;

case ObjectAction.unpressed:

handleUnPressedAction(action);

break;

case ObjectAction.link:

handleLinkAction(action, lines);

break;

case ObjectAction.unlink:

handleUnLinkAction(action, lines);

break;

case ObjectAction.pin:

handlePinAction(action);

break;

case ObjectAction.addEmoji:

handleAddEmojiAction(action);

break;

default:

print("unsupported action");

}

if (action.action != ObjectAction.move) {

removeUntrackedLines(lines);

}

}

Listing 10: receiveObjectHandler in the CanvasObjectHandler class

83

C Application screenshots

C.1 Onboarding

Figure 44: The onboarding consists of a slideshow with screenshots
and descriptions

C.2 Information box

Figure 45: Information box is shown in the top right corner

84

C.3 Invitation

Figure 46: Invitations can either be accepted or declined

C.4 Chat

Figure 47: The chat allows users to write messages to each other

85

C.5 Comments

Figure 48: Comments are show in this box, pressing the comment
highlights the related object(s)

C.6 Calculator

Figure 49: The calculator allows users to do simple calculations

86

C.7 Settings

Figure 50: The settings menu lets users change certain parameters

C.8 Side menu

Figure 51: The side menu provides users with important informa-
tion, and allows them to leave the session

87

C.9 Task description

Figure 52: Users are able to re-read the task description from within
the session

C.10 Users in the session

Figure 53: All users in the session is listed will full names, pressing
the user-tiles centers the whiteboard around their location

88

C.11 Color picker

Figure 54: The color picker provides users with a color palette to
choose from

C.12 Zoom

Figure 55: Users are able to zoom in and out. The possible range
is from 0.3x to 2x zoom. Zooming is either done by pinching with
two fingers, or using the slider in the center bottom part of the
screen

89

C.13 Compass

Figure 56: The radius of the compass can be changed by dragging
the icon on the left side of the compass’ circle. The compass is
moved by pressing the central node. Drawing is done by pressing
and dragging on the compass arc

D Usability test questions

Figure 57: Tasks used for usability testing

90

Test av samarbeidsplattform 23.03.2021

Plan for testen:

Gruppe 1 Gruppe 2 Gruppe 3

08:45 Introduksjon 09:45 Introduksjon 10:45 Introduksjon

08:50
Byggeklosser

09:50
Grublis

10:50
Telle marihøner

08:55 09:55 10:55

09:00 Femten fordelt på
seks

10:00
Byggeklosser

11:00
Grublis

09:05 10:05 11:05

09:10
Grublis

10:10
Telle marihøner

11:10 Femten fordelt på
seks09:15 10:15 11:15

09:20
Telle marihøner

10:20 Femten fordelt på
seks

11:20
Byggeklosser

09:25 10:25 11:25

09:30 Intervju med
deltakere / diskusjon

med lærer

10:30 Intervju med
deltakere / diskusjon

med lærer

11:30 Intervju med
deltakere /

diskusjon med lærer09:35 10:35 11:35

09:40 pause 10:40 pause 11:40 pause

Testen gjennomføres i 3 grupper bestående av to deltakere.

I appen er finnes det fire hoved-økter, og en introduksjon. Introduksjons-økten skal gjøres de

andre oppgavene slik at deltakerne kan bli litt kjent med appen.

Deltakerne skal sitte i samme rom, med ryggen mot hverandre.

1

E Test schedule and instructions

91

Test av samarbeidsplattform 23.03.2021

Instruksjoner underveis

============================ Introduksjon ============================

Introduksjons-økt (ca. 5 min)

● be deltakerne om å velge introduksjons økten
● be en deltaker om å lage et rom og inviter den andre, og sette seg som klare (når de

er klare)
● be deltakerne om å følge instruksjonene som står på kortene, disse er ment for å

hjelpe dem med å forstå interaksjon med objekter på flaten.
● Etter ca 5 minutter med utforsking i flaten kan du avbryte dem, og be dem om å

avslutte økten.
● Gå videre med test-opplegget:)

============================ Hoveddel ===========================

Velge oppgave

● Instruer deltakerne om å velge riktig oppgave basert på gruppenummer (vist i

tabellen på første side)

I “lobby”

● Be en deltaker om å starte et rom

● Be samme deltaker om å invitere den andre brukeren til rommet

● Be deltakerne om å si brukernavnet sitt høyt

● Be deltakerne om å skru av mikrofonene sine i appen for å unngå feedback.

● Be deltakerne om å markere seg som “klare” når de er klare.

● Si ifra til oss når de har laget et nytt rom og er klare for å starte økten

● Be deltakerne om å starte øken

I samarbeidsflaten

● Be deltakerne se gjennom info-popup’en (kun første oppgave, eller etter behov)

● Hjelp deltakerne om de står helt fast med oppgaven eller brukergrensesnittet

● Når deltakerne er ferdige med oppgaven kan de avslutte økten via sidemenyen

øverst til venstre i appen.

● Om deltakerne har slitt for lenge med en oppgave kan det være lurt å hoppe videre

slik at de får testet senere oppgaver. Si ifra til oss om dette skjer :)

^ gjenta helt til gruppen har gjort alle oppgavene.

==

2

92

Test av samarbeidsplattform 23.03.2021

Kjente feil og håndtering av disse

- En kjent feil er at en strek kan bli fastlåst på brettet uten at den kan slettes, be isåfall

deltakerne om å ignorere dette.

- Om noe oppfører seg rart i en oppgave, be deltakerne om å avslutte økten og starte

på nytt. Forhåpentligvis mister de ikke så mye fremgang.

Etter ferdig test:

Vi intervjuer elevene om hvordan de opplevde arbeidet med appen (ca 5-10 min).

3

93

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Arulnesan, D
ahlstrøm

Flate: exploring a collaborative platform
 in m

athem
atics

Piruthusan Arulnesan
Philip Dahlstrøm

Flate: exploring a collaborative
platform in mathematics

Master’s thesis in Informatics
Supervisor: Trond Aalberg

June 2021

M
as

te
r’s

 th
es

is

	List of Figures
	List of Tables
	Introduction
	Problem description
	Motivation
	Research questions
	Research method
	Platform description
	Thesis structure

	Background
	Groupware
	Groupware spectrum
	Groupware time space matrix
	Alternative groupware time space matrix

	Real-time groupware
	Concurrency

	Awareness
	Workspace awareness

	Relevant collaborative software platforms
	Google Docs
	Miro
	Review of the software platforms

	Computer-supported collaborative learning

	Designing a real-time groupware platform
	Concept
	Platform design decisions
	Groupware framework placement
	Real-time groupware features
	Attributes
	Concurrency control

	Awareness
	Shared feedback
	Workspace awareness

	Implementation
	Development
	Front end
	Screens

	Back end
	Server
	Database

	Local processes
	The drawing pipeline
	Canvas objects
	User interaction
	Canvas object actions

	Communication and replication
	Communication
	Replication

	Method
	Overall research strategy
	Data generation and evaluation
	Observations
	Interviews

	Analysis

	Results
	Group 1
	Interview
	Patterns

	Group 2
	Interview
	Patterns

	Group 3
	Interview
	Patterns

	Interview with the teacher
	Q1: How do you think the test went?
	Q2: What did you think of the collaboration between the pupils?
	Q3: How did you experience the engagement of the pupils?
	Q4: Would you use such a platform in your teaching? Why, or why not?
	Q5: What worked well?
	Q6: What could have been better?

	Main patterns

	Discussion
	Questions
	Contributions
	A framework for real-time collaborative software
	Achieving simultaneity when drawing lines
	Monitoring system
	Support for multiple collaboration patterns

	Considerations
	Project evaluation
	Future Work

	Conclusion
	Bibliography
	Appendix
	Special terms
	Acronyms
	Code examples
	Receive object action

	Application screenshots
	Onboarding
	Information box
	Invitation
	Chat
	Comments
	Calculator
	Settings
	Side menu
	Task description
	Users in the session
	Color picker
	Zoom
	Compass

	Usability test questions
	Test schedule and instructions

