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Abstract

A shore-based network of maritime radars is to be developed by NTNU and Sintef as part of the
Ocean Lab Node 2 infrastructure. The purpose of the network is to track both autonomous and
traditional vessels in the Trondheim fjord and contribute to a shared situational awareness. This
report presents a system architecture for the remote radar sites, based on sampling the radar
data on-site and transmitting the data via the emerging 5G network in Trondheim to minimize
the cost of infrastructure. A data acquisition system is developed based on the Analog Devices
AD-FMCDAQ2 ADC and an iWave Intel Arria10 SoC/FPGA FMC+ Development Kit. A Simrad
Halo 20+ pulse compression radar is currently considered for the system. The radar waveforms
are measured and revealed to transmit both pulses and chirps with varying center frequencies and
bandwidths. The sweep bandwidth is measured to a maximum of 30 MHz, which is expected to
result in 1.0 Gbit/s of uplink data. The data acquisition system is shown to successfully perform
IQ demodulation, clock domain crossing and pulse compression in simulation. Pulse compression is
achieved by dynamically creating a matched filter from the transmitted chirp to account for the
alternating center frequency and bandwidth of the chirp. The required filter length was not achieved
due to over-utilization of the FPGA multipliers, to which multiple solutions are discussed. A driver
issue prevented the testing of the dechirping in hardware. The project also makes successful use of
a continuous integration workflow for simulating the FPGA design with the VUnit test framework
and the open source GHDL simulator. It is also demonstrated how VUnit can be used to verify the
signal processing chain by generating and validating simulation data in Python, rather than pure
VHDL.
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Sammendrag

Et landbasert nettverk av maritime radarer skal utvikles av NTNU og Sintef som en del av
Ocean Lab Node 2-infrastrukturen. Hensikten med nettverket er å spore både autonome og
tradisjonelle fartøy i Trondheimsfjorden for å bidra til en delt situasjonsbevissthet. Denne rapporten
presenterer en systemarkitektur for eksterne radarsteder, basert på sampling av radardata på stedet
og opplasting via det nye 5G-nettverket i Trondheim for å minimere infrastrukturkostnadene. Et
datainnsamlingssystem er utviklet basert på Analog Devices AD-FMCDAQ2 ADC og et iWave Intel
Arria10 SoC / FPGA FMC+ utviklingskort. En Simrad Halo 20+ pulskompresjonsradar er tiltenkt
for systemet som del av prosjektet. Radarbølgeformene måles og viser seg å overføre både pulser og
chirps med varierende senterfrekvenser og båndbredde. Båndbredden for en chirp måles til maksimalt
30 MHz, som forventes å resultere i 1.0 Gbit/s opplinkingsdata. Datainnsamlingssystemet er vist å
utføre IQ-demodulering, klokkedomenekryssing og pulskompresjon i simulering. Pulskompresjon
oppnås ved dynamisk å lage et matchet filter fra den overførte chirp-en for å ta hensyn til
den alternerende senterfrekvensen og båndbredden til chirpen. Den nødvendige filterlengden ble
ikke oppnådd på grunn av overutnyttelse av FPGA-multiplikatorene, som flere løsninger blir
diskutert til. Et driverproblem forhindret testing av dechirping i maskinvare. Prosjektet bruker
også continuous integration for å simulere FPGA-design med VUnit-testrammeverket og GHDL-
simulatoren med åpen kildekode. Det er også demonstrert hvordan VUnit kan brukes til å verifisere
signalbehandlingskjeden ved å generere og validere simuleringsdata i Python, fremfor bruk av ren
VHDL.
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Abbreviation Definition
BFM Bus Functional Module. Software model applying stimuli to a bus under simulation.
COTS Commercially available off-the-shelf
DSP slice Special logic block providing arithmetic for large numbers
DUT Device Under Test
Entity VHDL language construct defining a module, its ports and content
Fabric Reconfigurable logic part of the FPGA silicon
FIFO First In, First-Out. Simple memory structure
FMC HPC FPGA Mezzanine Card High Pin Count. Also called FMC+
FMC LPC FPGA Mezzanine Card Low Pin Count. Often denoted as only FMC
FPGA Field-programmable gate array
GNSS Global Navigation Satellite System
GNSSDO GNSS Disciplined Oscillator
HPS Hard Processor System
IP Core Intellectual Property core. Ready-to-use entity designed by vendor or third party
Logic block Basic FPGA building block providing reconfigurable logic
LUT Lookup table
Process VHDL language construct providing sequential execution of code
PPS / 1PPS (1) Pulse Per Second
Quartus Intel/Altera Quartus Prime FPGA design tool
R/W Read/Write
SoC System on Chip. Term describing a FPGA with a HPS
UDP User Datagram Protocol
UVVM Universal VHDL Verification Methodology
VHDL VHSIC-HDL, Very High Speed Integrated Circuit Hardware Description Language
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Chapter 1

Introduction

In 2016, The Norwegian Coastal Administration authorized the Trondheim Fjord as the first testbed
for autonomous vessels in the world [2]. These vessels are also known as Maritime Autonomous
Surface Ships (MASS). Since then, the fjord has been a prime target for innovation in the transport,
fishing and aquaculture industries through the emergence of autonomous vessels [31]. This includes
the NTNU research vessel MilliAmpere [34] and its recent commercialization through ZeaBuz
[3]. The new autonomous vessels need to co-exist with and safely navigate traditional crafts and
recreative vessels, as well as sporting crafts such as sailboats and kayaks. This is imperative to
sustain a safe environment, establish trust and preserve the various and diverse interests of all the
different groups using the fjord.

As part of the effort to sustain safe transport on the fjord, NTNU and SINTEF wish to develop
a radar network to track both autonomous and non-autonomous vessels. The radar network is
to be part of the Ocean Lab Node 2 infrastructure [35]. The objective of this infrastructure is to
help detect small craft and objects, assist navigation in confined waters and automatic operation
in ports, as well as contribute to a shared situational awareness for the vessels. Furthermore, the
information can be used in control rooms to monitor the traffic and quickly react to emerging
situations. The radar network will also be useful to gather more information for further research on
autonomous vessels.

The radar network will consist of several shore based radars stationed at remote sites around the
fjord, as shown in Figure 1.1. A data acquisition system on site shall be used to sample and process
the radar data. Each site will transmit the raw radar data to a central processing hub using the
emerging 5G mobile broadband network in Trondheim [5]. Observing the objects from multiple
angles allows for better coverage and high reliability of detection, as well as reduction of sea clutter
[19].

Existing solutions, such as the Vessel Traffic System (VTS), are mostly based on professional
personnel supervising and hailing vessels to regulate traffic and ensure safe passage. Autonomous
vessels pose a challenge as they cannot be contacted as conventional piloted vessels. At the same
time, they provide both the potential to resolve situations themselves as well as do it faster and
more accurately than human personnel could achieve. This requires an accurate shared awareness
between the autonomous vessels. Other research projects are also addressing this problem, albeit
with slightly different solutions. The University of Florence develop a similar system, albeit based
on AIS and shared data from ship-borne radars [37]. Kongsberg Maritime AS also develop several
systems for situational awareness based on radar, cameras and AIS [28].

A secondary objective of the project is to offer users of recreative vessels with a real-time map of
the various vessels in the fjord. This service is dubbed "Augmented AIS". This service is largely
targeted at small recreational vessels with onboard radar. These vessels are susceptive to tilting
during wind and high waves, potentially blinding the radar. The Augmented AIS, therefore, has a
comparative advantage to the on-board radar, in addition to avoiding the investment of a radar.
There should be less than a one-second delay from the radar detecting a vessel to the end-user
being updated.

1
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Figure 1.1: Overview image of the fjord showing potential radar sites and coverage [19].

The scope of this project is to explore a possible system architecture and its validity for the projects
remote site systems. A proof of concept for the on-site data acquisition system is to be developed,
in addition to the hardware selection for this system.



Chapter 2

Radar characteristics

This chapter presents the Simrad Halo 20+ pulse compression radar currently considered for the
project. Measurements to characterize the radar waveforms are also presented, as well as some
background material for radar systems.

2.1 Radar background
The following section aims to provide a short introduction to radar systems and important terms
therein, such as IQ samples, complex signals and pulse compression.

Radar system introduction

A typical radar transmitter and receiver is shown in Figure 2.1. An oscillator generates a radio
frequency (RF) signal which is transmitted by an antenna. The resulting radio wave will propagate
until it hits a target. This will cause a fraction of the energy to be transmitted back to the radar.
The received signal will be very weak and must first be amplified before it is mixed down to an
intermediate frequency (IF). It this stage, a detector can be used to determine whether a target is
present or not. Alternatively, the radar signal can be sampled by an analog to digital converter
(ADC) as Figure 2.1 suggest. This allows more complicated signal processing to be performed
digitally using a signal processor.

Figure 2.1: Typical radar system showing the major elements of the transmit (TX) and receive (RX)
processes [33].

3
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IQ samples and complex signals

When sampling radar signals it is often desired to measure phase changes between transmit and
receive. This is referred to as a coherent receiver and is useful for measuring Doppler shifts [33].
Coherent sampling is achieved by sampling the signal twice with a 90◦ phase difference in between.
These are called the in-phase (I) and in quadrature (Q) samples, respectively, which together
make up an IQ-sample. The signal can then be represented as a complex-valued signal, where
the I-channel is real and the Q-channel is imaginary. For instance, xIQ(t) is a complex signal
represented by its I- and Q-components,

xIQ(t) = xI(t) + j · xQ(t), (2.1)

where j is the imaginary unit.

Figure 2.2 illustrates this concept in practice, where a real-valued signal x[n] is split into an I- and
Q-channel after being sampled by an ADC. This is done by multiplying the sampled signal with
a sine and cosine function, which are separated by a 90◦ phase offset. Note that the IF signal is
band-limited to avoid aliasing.

Figure 2.2: Figure illustrating how an IQ-signal is constructed after sampling an IF signal [33].

Pulse compression

A basic pulse radar is based on transmitting short duration pulses to detect targets. The radar
can transmit more energy by transmitting longer pulses, which increases the signal strength and
improves the signal-to-noise ratio (SNR). Longer pulses will however also decrease the radar’s ability
to distinguish between targets that are very close. This is called the radars range resolution and is
given by

∆R = c0
τ

2 , (2.2)

where c0 is the speed of light and τ is the pulse length in seconds. Because the of the inverse
relationship between resolution and pulse length, a pulse radar must trade between SNR and range
resolution.

This tradeoff can be overcome by using a chirp radar to decouple the pulse length and range
resolution. A chirp radar transmits chirps, which are frequency modulated signals that increase or
decrease in frequency. One such chirp is shown in Figure 2.3, which clearly shows the increasing
frequency from 0 Hz to 6 Hz. A radar can create a chirp by modulating the frequency of a sine
wave. By using knowledge of the modulation and frequency change, the radar can demodulate the
reflected chirp back to a simple pulse. This technique is called pulse compression, which yields a
narrow bandwidth pulse to resolve close targets without decreasing the radars SNR.

2.2 Simrad Halo 20+ Radar
A Simrad Halo 20+ Pulse Compression radar is currently considered for the project. While the exact
radar to be used in the system is yet to be determined, the Halo 20+ serves as a reference radar for
initial development. It can therefore be used to extract design specifications and constraints. Since
this is a commercial product, its implementation details and internal workings are largely unknown.
Some key specifications are however available from the manual [4], given in Table 2.1.

Frequency and bandwidth specifications are of special interest for sampling the radar signal.
Table 2.1 states that the radar operates in the X-band with a center frequency between 9.4 GHz



CHAPTER 2. RADAR CHARACTERISTICS 5

Figure 2.3: Example of a chirp signal increasing in frequency.

Table 2.1: Key radar specifications taken from the Simrad Halo 20+ Radar manual [4].

Range 36 NM
Rotation speed 20-60 RPM Dependent on mode and display (MFD)
Frequency 9.4-9.5 GHz X-band
Transmitter peak power 25 W
Polarization Horizontal
Minimum range 6 m
Sweep repetition frequency 700-2400 Hz Mode dependent
Pulse length 0.04-64 us ± 10%
Sweep bandwidth 48 MHz Max
Horizontal beamwidth 4.9 degrees TX and RX
Noise figure 5 dB max

and 9.5 GHz. The radar sweeps over a maximum of 48 MHz, which dictates the sampling frequency.
Another Simrad Halo model additionally lists its intermediate frequency (IF) stage as fIF = 70 MHz
[4]. It can be assumed that this is equal to, or at least close to, the IF frequency of the Halo 20+.

Time of flight

The radar’s two way time of flight (TOF) is also of interest to determine how long the delay is
between a transmitted and received signal. Figure 1.1 suggests that a radars in this aplication
should be operated with a range of 6 nautical miles, or 11 km. The time of flight t is then given by

t = 2 ·R
c0

= 2 · 11.1 km
3 · 108 m/s = 74.1 µs, (2.3)

Antenna position

It is necessary to know the antenna position to discern where the radar targets are. While the
time of flight determines the distance to the target, the position of the antenna determines the
direction of the target. The radar does not explicitly state which communication protocol is used to
communicate with the antenna rotator. It is however likely that it is based on NMEA 2000, as the
radar already uses this to communicate with external systems [4]. Other common antenna rotator
interfaces include RS232 or CAN-bus, or simply as a pulsed signal.
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2.3 Waveform characteristics
This section presents the waveform characteristics of the Simrad Halo 20+ radar acquired by
measuring the radar signal. The measurements are important to gain further insight into the
functionality of the radar, as well as narrowing down constraints regarding bandwidth and pulse
lengths. The measurement setup is also presented, along with a brief discussion of the measurement
results.

2.3.1 Measurement setup
Both time domain and frequency domain representations of the radar waveforms are of interest for
further examination. Table 2.1 lists the radar frequency between 9.4 GHz and 9.5 GHz, with a max
sweeps bandwidth of 48 MHz. In order to measure the waveform with good resolution, it should be
mixed down to the order of a few 100 MHz using a mixer and a local oscillator (LO) before being
measured with an oscilloscope. The proposed measurement setup is shown in Figure 2.4.

Figure 2.4: Block diagram of the measurement setup for determining the radar waveforms.

The measurement setup is shown in Figure 2.5. An AnaPico APSIN20G (100 kHz-20 GHz) was
used as a local oscillator and set to 9.3 GHz. Considering the frequency and bandwidth of the
signal, a signal between 100 and 200 MHz was left after mixing with the local oscillator output.
The signal was sampled using an Agilent MSO9254A (2.5 GHz, 25 GSaps) set to 4 GSps. This
yields an oversampling rate of at least 20, giving good resolution. The radar was set to different
range settings and the data was exported from the oscilloscope to create a spectrogram for each
setting. To avoid fading due to the rotating antenna, the radar was put on its side as shown in
Figure 2.6. The results are shown in table Table 2.2.

Figure 2.5: Image showing the radar measurement setup with a local oscillator, mixer signal analyzer
and a horn antenna.
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Figure 2.6: Image showing the radar being put on its side to avoid fading due to the rotating antenna.

2.3.2 Measurement results
Table 2.2 shows the measurement results for various range settings of the radar. The radar emits
bursts consisting of up two pulses followed by up to three chirps, as shown in Figure 2.7. The exact
number of pulses and chirps depends on the radar setting. The time between two bursts is denoted
the Burst Repetition Interval, while the offset denotes the time since the first pulse in a burst. Two
such bursts are shown in Figure 2.8 for the 0.75 NM setting, consisting of two pulses and a single
chirp. Figure 2.9 shows the time domain and spectrogram plots of a single chirp, showing how the
chirp increases in frequency.

Figure 2.7: Illustration of a radar burst containing two pulses and three chirps. Examples of offset and
length, along with burst repetition interval (BRI), are annotated.

The table indicates that the radar emits a single pulse for range settings below 1 NM and two for
ranges above that. Likewise, the radar will emit up to three pulses for the longest range. Pulse
and chirp center frequencies are listed after downmixing for readability. The true frequencies lie
9.3 GHz above the listed frequencies.

It can be noted that the pulses are of constant frequency and the length independent of the range.
The varying frequency of the first pulse is likely attributed to measurement error.
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Table 2.2: Radar waveforms for the Simrad Halo 20+ radar. Not all burst repetition intervals (BRI) could be calculated using the measurements.

Burst description
Pulse #1 Pulse #2 Chirp #1Radar Range (NM)
f1 (MHz) Length(us) Offset (us) f2 (MHz) Length(us) Offset (us) fc (MHz) BW (MHz) Length(us) Offset (us)

0.125 100 0.1 0
0.25 90 0.1 0 105 30 1.75 38
0.5 90 0.1 0 105 30 1.76 38
0.75 100 0.1 0 110 30 1.5 38
3.00 90 0.1 110 2 150 20 10
6.00 80 0.1 0 110 2 40 150 12 8 102
12.00 90 0.1 0 110 2 38 150 15 16 100

Chirp #2 Chirp #3
fc (MHz) BW (MHz) Length(us) Offset (us) fc (MHz) BW (MHz) Length(us) Offset (us) BRI (us) Remarks

0.125 Single pulse only
0.25 Single pulse and chirp
0.5 Single pulse and chirp
0.75 150 20 8 39 415 Single pulse and two chirps
3.00 130 10 16 Two pulses and two chirps
6.00 133 8 15 182 18 4 30 300 965 Two pulses and three chirps
12.00 135 20 15 185 19 4 60 300 1020 Two pulses and three chirps
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Figure 2.8: Time domain and spectrogram plots of two bursts for the 0.75 NM setting. Two pulses and
one chirp can be seen for each burst.

2.3.3 Measurement discussion
The length of the pulses and chirps increases with the range, likely to improve the SNR for long
distances. Pulse #2 is 20 times longer than Pulse #1 and only used for the longer ranges. The
pulses seem to have a fixed length. Chirp #1 however increases its length for longer ranges, which
is also true for Chirp #2. Chirp #3 is only used for ranges above 6 NM and goes up to 60 µs.

It was not possible to measure the burst repetition interval for all settings. The three measurements
that were made indicate that the BRI increases with range. The BRI can however be used to
give some indications of the radar time budget. It can be seen that the BRI is some ten times
longer than the TOF for the various ranges. For instance, for the 12 NM range the BRI is 1020 µs
compared to a TOF of only 148 µs. This is likely to add guard time in case the radar signal bounces
of a strong reflector beyond the intended range, which would look like a large vessel on a short-range
to the radar. The large BRI can also indicate that the radar uses some time to transfer or process
the incoming data.

As shown in Table 2.2, the radar switches frequencies for the chirps. This is likely done to solve
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(a) Time domain plot (b) Spectrogram

Figure 2.9: Time domain and spectrogram plots of a single chirp for the 0.75 NM setting.

some ambiguity functions or make the radar more resistant to interference. Table 2.2 further reveals
that the radar only performs up-chirps. That is, the chirps only increase in frequency. There are no
down-chirps that decrease in frequency, which is a common way to resolve the ambiguity function
for pulse compression systems [33].

Furthermore, the radar transmits one or two pulses before transmitting the chirps. This may have
been done to trigger radar beacons which may not work with chirps. The fact that it switches
between transmitting one or two pulses depending on the setting, along with the radar lacking
down-chirps, suggests that the pulses may be used to solve the radar ambiguity function by creating
estimates of position and velocity.

Figure 2.9 also suggests that the chirp may be non-linear, as seen by the rapid changes in frequency
near the edges of the chirp. Non-linear chirps are a technique used by radars to suppress sidelobes
[33]. New measurements must be performed to confirm the non-linearity of the chirp.



Chapter 3

System architecture

This chapter presents the initial project specifications. Estimates for required sampling frequencies
and data rates are presented, based on measurements of radar waveforms from a reference radar.
The proposed system architecture is presented, along with hardware selection and a proposed FPGA
fabric design.

3.1 System specification
The remote site system shall sample and transmit a stream of IQ-samples from the various radar
sites to a central processing hub. The data shall be sampled at the radars IF stage using a data
acquisition system, as shown in Figure 3.1. As the reference radar is a pulse compression radar,
the data acquisition system must also perform dechirping of the received signal, as explained i
Section 2.1. Due to the function of the pulses being currently unknown, only the chirps will be
considered at this time. The transfer of data shall be done via a mobile broadband connection to
avoid the need for cables. 5G should preferably be used due to strategic partnerships with Telia
Norge AS during the roll out of their new infrastructure in Trondheim. As the radar network is part
of a safety-related system, there should be emphasis on minimizing latency as well. It is desired
that the overall system provides less that a one second delay between receiving the radar data to
broadcasting the radar tracks to subscribing systems.

Figure 3.1: Overview of the system.

As the sites are remote, the system shall also have some debug and configuration options that can
be accessed remotely.

Since the project is at an early development stage, commercially available off-the-shelf (COTS)
parts are preferred to create a minimum viable product (MVP).

The following list summarizes the requirements set for the system at this stage:

• Sample an intermediate frequency (IF) radar signal at 70 MHz.

• Perform dechirping on the reflected radar signal.

• Precisely timestamp IQ-samples for correlation with the data from other sites.

• Transmit data from site to the central processing hub via mobile broadband.

• Offer remote access and debug capabilities for each site.

• Hardware should be COTS

11
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The specs presume a stream of IQ-data are to be transmitted from the radar site. It is therefore
assumed that no further processing than the dechirping is desired on-site at this point.

3.2 System proposal
The proposed system for the remote site data acquisition is shown in Figure 3.2.

The data acquisition system is split into an ADC (Analog to Digital Converter) and FPGA (Field-
Programmable Gate Array). The analog radar waveform is sampled by an ADC at the radar
IF-stage. Both the transmitted and received signals are sampled in order to perform the dechirping,
as discussed in Section 3.3. The digitized waveforms are transmitted to an FPGA for processing.
An FPGA is chosen as it is well suited for fast, deterministic signal processing at the order of a few
100 MHz. In addition, FPGAs add flexibility due to being re-programmable, so the design can be
updated and expanded as needed in the future. The FPGA can also be used to do signal conditioning
and preprocessing before it is sent to the central processing hub, to ease the computational load
and latency constraints of the latter.

A modem is used to transfer the data to the central processing hub. The User Datagram Protocol
(UDP) is preferred for the uplink of data due to its simplicity and low latency. It is also well suited
for streaming data in real time systems, as UDP is an unreliable protocol that will drop lost packets
rather than request a time consuming re-transmission.

The FPGA must know the exact time of arrival of the radar waveforms. This is necessary to
compare data from different sites. While a operating system or processor with a network stack can
request the current time trough an internet connection, sub-second precision must be provided
trough the use of a GPS (Global Positioning System) disciplined oscillator (GPSDO). The GPSDO
uses the accurate clocks in the GPS system as a time source and provides a pulse per second (PPS
or 1PPS) signal.

The antenna position must also be transmitted along with the radar data, so the direction of the
radar targets can be known. This will however not be considered at this point, due to the radar
antenna interface being unknown.

Figure 3.2: Proposed system architecture.
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3.3 Proposed FPGA architecture
Figure 3.3 shows the proposed FPGA architecture. SoC (System on Chip) FPGAs, such as the
proposed solution, contain a Hard Processing System (HPS) in addition to the usual programmable
fabric. The HPS consists of a microprocessor, which can run a Linux-based operating system or be
programmed bare metal. In either case, the HPS can be used to implement functionality that is
better suited for software, such as using a network stack. The namesake programmable fabric of
the FPGA consists of generic logic units, which the compiler uses to implement behaviour specified
by a hardware description language (HDL), such as VHDL (Very High Speed Integrated Circuit
Hardware Description Language). The fabric additionally contains RAM blocks and special DSP
blocks with multipliers for signal processing.

An ADC interface in the FPGA fabric provides a stream of IQ-samples from the ADC. Desired
signal processing is performed on the IQ-samples, including dechirping of the radar signal. This is
proceeded by a threshold detector to remove the samples between the received signals, in order
to reduce the amount of data. The processed IQ-samples is given to a framer, which packs the
IQ-data with metadata such as the antenna position and a timestamp from the GNSSDO.

While using Ethernet PHY is possible directly from the FPGA fabric, the use of a MAC-layer (Media
Access Control layer) and the rest of the network stack is inherently a software job. Therefore
the transfer of the data to the modem should be handled by a HPS rather than the FPGA fabric.
The same applies to providing an UDP/IP stack and handling socket traffic to transfer the data
to the central processing hub. FPGAs not including an HPS can still initialize a processor in the
fabric through the use of an IP core. These are however inherently slower, as they typically use a
fabric oscillator at only hundreds of MHz, rather than some GHz. A HPS also works out of the
box, requires no extra licenses and can be used to program the FPGA fabric of necessary.

The frames with IQ-samples, antenna position and timestamps are transferred from the FPGA
fabric to the HPS via direct memory access (DMA). DMA lets the FPGA fabric directly access the
system memory without interrupting the processor, while the processor is busy transferring the
frames to the modem via Ethernet and UDP.

The use of a HPS also allows the system to run a Linux-based operating system. As the modem
provides the system with an Internet connection, the system can be reached through an SSH (Secure
Shell) session for debugging and configuration. As Figure 3.3 indicates, the SSH session can access
the FPGA fabric via UART or similar interconnects. Furthermore, the FPGA fabric can also be
completely reprogrammed by the HPS if necessary or fall back to a safe version of the firmware if a
critical error is detected [15].

3.4 Data rate calculation and link budget
While the Nyquist theorem states that it is theoretically sufficient to sample the radar signal at its
Nyquist rate, oversampling the signal increases design flexibility at an early stage in the project.
This makes it possible to change the radar, which may also change the signals bandwidth and
enter frequency. Furthermore, oversampling has the added benefit of enabling averaging of samples
to reduce white noise and therefore increase the effective number of bits (ENOB). For instance,
for each additional bit of resolution, the signal must be oversampled by a factor of four [27]. To
maximize the design flexibility, using an oversampling factor of four is suggested.

The required ADC resolution is not quantitatively known, as this would require knowledge of the
receiver noise level and clutter-to-noise-ratio (CNR), amongst others [33]. As a general rule of
thumb, the effective number of bits for an ADC is usually one to three bits less than listed due to
the SNR of the device. Qualitatively, this places the ADC in the 12-14 bit range. Opting for a
higher number of bits early on also makes for a more flexible option for early development.

The reference radar is according to Section 2.2 stated to use an IF stage of 70 MHz and a chirp
bandwidth of 48 MHz. Examining the radar measurements in Table 2.2 show that the bandwidth
is at most 30 MHz, but that the center frequencies vary. To find the necessary sampling rate
for the ADC, the highest frequency component of the IF signal must be known. Examining the
measurements, chirp #1 is revealed to have the highest frequency component at 160 MHz for the
longest ranges. However, these measurements are taken at an IF frequency of 100 MHz. Considering
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Figure 3.3: Overview over fabric design.

the chirp at an center frequency of 70 MHz yields a highest frequency component of 130 MHz. The
data rate calculations for sampling the radar IF signal are thus given in Table 3.1.

Table 3.1: Sample rate and data rate estimates for the IF signal.

Parameter Value
Highest frequency component fmax 130 MHz
Nyquist rate 2fmax 260 MHz
Oversampled 4 times 1040 MHz
ADC resolution 14 bit
Data rate at Nyquist rate rIF 3.64 Gb/s
With oversampling rIF,4 14.6 Gb/s

The calculations in Table 3.1 reveals that the ADC must at least be able to sample at 260 MHz to
satisfy the Nyquist requirement, but up towards 1.0 GHz to add flexibility. This requires the ADC
interface to be able to transmit between 3.64 Gb/s and 14.6 Gb/s for a 14 bit resolution.

The data rate requirements for transmitting the radar data to the processing hub varies from the
data rate requirements of the ADC, as shown in Table 3.2. Here it is assumed that the varying center
frequencies can be ignored by moving the various chirp bandwidths down to complex baseband
with digital down conversion (DDC). It is further assumed that the signal is reduced to its Nyquist
rate to minimize the data rate. As the listed and measured sweep bandwidth differ, an estimate is
given for both. The data rate can be further reduced by neglecting the samples between the bursts,
rather than continuously streaming the incoming samples. The burst itself constitutes at most
30 % of the burst repetition interval, seen at the 12 NM range setting in Table 2.2. Therefore the
data rate can potentially be reduced by 70 %. More could be removed if the pulses and chirps were
isolated.

Table 3.2 shows that the remote site must be able to continuously transmit at least 0.84 Gb/s or
1.34 Gb/s, depending on which estimate is used. If only the bursts are transmitted, this can be
reduced all the way down to 0.25 Gb/s for the slightly smaller measured sweep bandwidth. To
allow for some overhead and add flexibility, the target uplink rate should be increased towards
1.0 Gb/s, which is a factor of four above the minimum specified.
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Table 3.2: Data rate estimates for the complex baseband signal for both the listed and measured sweep
bandwidth.

Listed Measured
Bandwidth B 48 MHz 30 MHz
Nyquist rate 2B 96 MHz 60 MHz
ADC resolution 14 bit 14 bit
Data rate at baseband rcb 1.34 Gb/s 0.84 Gb/s
rcb with 30 % duty cycle 0.40 Gb/s 0.25 Gb/s

3.5 Hardware requirements and selection
This section summarizes the hardware requirements set by the design requirements and proposed
design. A selection is made and a bill of materials (BOM) is presented at the end.

3.5.1 ADC and FPGA
The ADC and FPGA should be part of a development kit to shorten development time. As such,
the selection of these two components are closely related and presented together here. In general,
it is desired that both components are part of a development kit and easy to interface with each
other. Preferably, they should be part of an evaluation kit consisting of an FPGA and ADC to
start development faster. This kit should include the minimum source code to get the ADC and
FPGA to work together.

ADC requirements

Sampling rate and data transfer requirements are taken from Section 3.4. The ADC must be part
of a development kit or similar that can be readily used, rather than an integrated circuit (IC). It
must also employ high-speed interfaces that are easily combined with FPGAs.

The ADC should also provide digital downconversion (DDC) and support complex signals as output
to avoid the need to implement it on the FPGA.

To summarize, the ADC requirements are:

• Sampling IF signals at 1 GSps

• Resolution of 12-14 bits

• Support transfer of up to 15 Gb/s of sampled data

• Part of a development kit

• Easy to interface with FPGA

• Should support digital downconversion (DDC)

FPGA requirements

The FPGA is responsible for interfacing with the ADC at high data rates, do real-time signal
processing on the digitized IF signal and transmit the data to the processing hub. It also provides
a flexible development platform which can be reprogrammed to respond to changing requirements
and designs. The FPGA should preferable be part of a development kit with lots of exposed IO,
such as PMOD, GPIO, UART/USB-connections for debug, LEDs and various buttons.

Section 3.4 suggests that a Gigabit Ethernet connection is required due to the high data rates. As
mentioned in Section 3.3, the FPGA must provide an Ethernet MAC layer which requires a HPS.
Thus a SoC FPGA is desired. The FPGA should also be sufficiently large to accommodate future
signal processing logic. By experience a mix-range FPGA with around 100.000 logic elements and
above a hundred DSP blocks should suffice. These requirements stem from mid-range Cyclone V
FPGA the commonly used for such signal processing [9].

To summarize, the FPGA requirements are:
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• SoC FPGA

• Gigabit Ethernet connector

• At least 100 000 logic elements

• Above 100 DSP blocks

• High-speed interface for ADC

• Varied IO interfaces such as UART, PMOD, LEDs and buttons

ADC and FPGA selection

Arrow Electronics was chosen as the hardware supplier for the data acquisition system as they
are the official vendor for both Intel FPGA and Analog Devices in Norway. They offer both
recommendations, advice and support for these products.

iWave’s Intel Arria10 SoC/FPGA FMC+ Development Kit (IW-G24D-CU2F-4E002G-
S008G-LCM) was recommended by Arrow as a FPGA board for this project. It is part of a reference
design for the AD-FMCDAQ2 offered by Analog Devices and Arrow Electronics shown in Figure 3.4.
This means that the hardware combination of FPGA and ADC is verified to work, as well as the
accompanying HDL. It is also one of the few FPGA boards currently available with an FMC (FPGA
Mezzanine Card) HPC (High Pin Count) connector.

(a) iWave Arria 10 SoC Development Board
[22].

(b) AD-FMCDAQ2 [16]

Figure 3.4: Pictures of the selected FPGA and ADC for the project.

The Analog Devices AD-FMCDAQ2-EBZ is a combined ADC and DAQ extension card. It is
based on the AD9680 ADC with 14 bit resolution and 1.0 GSPS sampling rate. The card uses a
FMC HPC connector and performs data transfer to the FPGA via a JESD204B data interface. It
has four FMC lanes running at 10 Gbit/s for the two ADC-channels, which covers the data rate
requirement [16]. The ADC can be further configured via SPI (Serial Peripheral Interface) to enable
digital down-conversion and signal decimation. Timestamping of the sampled data is also supported
for aligning samples from multiple chips [17]. The samples are timestamped relative to a reference
signal. This can be considered for the future, if latency between the FPGA and ADC proves to be
a problem. While the DAQ is not needed, it can be useful for testing the system by generating test
signals. [21].

The iWave systems development kit consists of an Intel Arria 10 SX480 SoC/FPGA system-on-a-
module (SOM) and a carrier card containing a FMC HPC (also called FMC+) connector and a
Gigabit Ethernet Port. The on-board FMC connector matches the data rate of the ADC, being
able to receive a total of 40 Gbit/s of data. This more than covers the data rate requirement from
section Section 3.4. The FPGA has 480k logic elements and a speed grade of -2. It features 2736
DSP blocks that can handle 18x19 bit fixed-point multiplication at 438 MHz [12]. The board also
contains PCIe lane connectors, USB Blaster-II interface, Pmod connectors, as well as various LEDs,
push buttons and switches [22].
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The development kit from Arrow was deemed as very good as it more than satisfies the requirements.
This combined with the reference design and free support on both FPGA and ADC led to the
development kit being selected for the project.

3.5.2 Modem
The modem is responsible to upload the radar data from the remote site. It must do so according
to the data rate calculations in Section 3.4. Although a partnership with Telia Norway AS provides
early access to the 5G network in Trondheim, the choice will be further elaborated here along with
a modem selection.

To satisfy the criteria of up to 1.0 Gbit/s mobile broadband with a high data rate must be used.
While the standards are numerous and telecommunication company claims vary, the 3GPP Releases
and ITU standards give a good overview. The 3GPP Release 15, which specifies the initial release
of 5G, has a target uplink rate of 50 Mbit/s according to the ITU.[1] This number serves as an
indicator of the mean data rate, described as the "user experienced data rate" taking protocol
overhead and environment variations into account. It should also be noted that this applies only to
the eMBB (enhanced Mobile Broadband) part of 5G.

Telia on the other hand only specifies a maximum data rate of at least four times that of their
4G+ networks [5]. This accounts to a maximum data rate of 140 Mbit/s. The maximum data rate
is however not suitable to calculate mean operating conditions. It is also not specified weather
this is the maximum data rate that can be achieved under the right operating conditions, or the
max that can be served in the duration of a short burst of data. Therefore the ITU performance
requirements likely give a better and more balanced indication of the data rates.

The Celerway Arctus is a high-end, ruggedized and 5G-ready modem which has been previously
tested in the related MilliAmpere project [6]. It has the required gigabit Ethernet interface for the
FPGA. The modem itself supports above 1 Gbit/s uplink with load balancing by using six SIM
card slots. Using the ITU and Telia data rate estimates, this amounts to between 300 Mbit/s and
840 Mbit/s. The minimum data rate of 0.25 Gbit/s lies somewhere slightly below the presumed mean
estimate by ITU, but this leaves little design overhead. It is therefore suggested that measurements
must be done to verify the data rate. Furthermore, more signal processing should be applied to
decrease the required data rate further.

No further alternatives were found for modems at the time of writing, likely due to the relatively
new technology. Teltronika, another modem producer, does not have any 5G ready hardware at the
time of writing but expects to release a comparable modem that can be considered in the future
[18].

3.5.3 GNSSDO
A GNSSDO (Global Navigation Satellite Systems Disciplined Oscillator) is required for creating
accurate timestamps for the radar data. The GNSSDO must have a 1PPS output to help the FPGA
determine the exact UTC time. Furthermore, the accuracy of that pulse directly affects the range
accuracy of the radar. A 10 ns delay in the system will cause a c · 10 ns/2 = 1.5 m error in range.
Therefore the jitter of the 1PPS signal should be low, but for the development phase some tens of
nanoseconds will be sufficient.

As the radar network is a key part of the Ocean Lab Node2 infrastructure, it should also be resistant
to jamming and have a high holdover capability should a loss of signal occur. The latter is achieved
by featuring the GNSSDO with an extremely stable oscillator. This lets the GNSSDO function
with very low frequency drift over an extended time period without being disciplined by GNSS
until the signal can be reacquired.

The requirements for a GNSSDO are summarized as follows:

• 1PPS output

• Jitter at only tens of nanoseconds

• Should have holdover capability

• Should be jamming resilient
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Furuno supplies high-end GNSSDOs, but for the early development stage the Digilent PMOS GPS
suffices as a proof of concept. The PMOS interface is a good fit for the iWave development board
as well. It should be noted that the listed jitter of only 10 ns seems a bit low compared to the
industrialized Furuno alternatives.

3.5.4 Bill of materials (BOM)
A selection of components is presented in the BOM (bill of materials) in Table 3.3. For the initial
development, only the iWave, AD-FMCDAQ2 and PMOD GPS module have been acquired.

Table 3.3: BOM

Name Price (NOK, exc. VAT) Vendor
iWave Intel Arria10 SoC/FPGA FMC+ 19800 Arrow Electronics [22]
AD-FMCDAQ2-EBZ 13600 Arrow Electronics
Celerway Arctus 0 Borrowed. Price not incquired.
Digilent GPS Expansion Module 410-237 340 RS Components [7]
Sum: 33740



Chapter 4

Implementation

The following chapter presents an overview of the reference design and how it is altered for the
project. It is shown how signals of interest are exported from the system_bd entity, which
contains the reference design. The new user_top entity is introduced to contain the application
specific logic, also called the user logic. Furthermore, each module in the user top is presented and
documented.

The entire codebase, including the modified reference design, can be found at https://gitlab.com/
peteruran/ntnu-coastal-radar.

4.1 Reference design
The reference design is provided by Arrow Electronics and Analog Devices for the evaluation kit
containing the iWave Arria 10 SoC board and the AD-FMCDAQ2. It consists of HDL which can
be found at GitHub under https://github.com/ArrowElectronics/hdl.git. The reference design also
provides a Linux image for the HPS and a software oscilloscope to test the ADC. The following
section presents an overview of the design, as well as a manual on how to build and modify it.

4.1.1 Overview of the reference design HDL
The reference design provided by Arrow Electronics is shown in Figure 4.1. The RX path in the
fabric is emphasized in Figure 4.2. The figures show that the sampled data is transmitted over
FMC to the FPGA, where it is received in the AD9680_JESD204 entity. This entity handles
the implementation of the JESD204B protocol, including deserialization of the serial data and
synchronization of the four serial channels. The AD9680_CORE entity deframes the data and
provides two 64-bit buses for ADC channels ch0 and ch1, as well as a valid signal for each stream.

The samples are then transferred to the HPS via direct memory access (DMA). The DMA is
configured to use a 128 bit bus. As such, the AD9680_CPACK entity will combine the ch0 and
ch1 samples to a single 128-bit vector, which is buffered up in the AD9680_FIFO before being
transferred to the HPS domain with DMA.

The data is further streamed from the HPS via Ethernet using a libiio daemon running on a Linux
core on the HPS. libiio is a protocol developed by Analog Devices for streaming sensor data in an
industrial setting [20].

It should also be noted that transferring 14-bit samples using 64-bit signals is under-optimized,
especially in regards to the DMA. However, altering the DMA is dependent on the HPS imple-
mentation, which is out of scope at this time. Keeping the larger bus also adds flexibility at this
point.

4.1.2 Building the reference design
The Arrow Electronics reference design requires the Intel Quartus Prime Standard version
18.0 software, which can be downloaded from https://fpgasoftware.intel.com/18.0/?edition=
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Figure 4.1: Overview over the reference design provided by Arrow Electronics, showing a loopback
configuration. [20]

Figure 4.2: The RX path in the FPGA fabric.

standard&platform=linux. The build script will look for Quartus in the system path. The
build script will fail if it detects that another version of Quartus is being used.

A floating license can be checked out from the Department for Electronic Systems license server
1716@europa.iet.ntnu.no while being connected to Eduroam. This also works while being connected
to Eduroam via the NTNU VPN server (vpn.ntnu.no). Note that the free Quartus Lite version is
not sufficient, as does not include support for Arria10 devices.

To build the reference design, first clone the Arrow Electronics HDL repository from Github.

1 git clone https :// github .com/ ArrowElectronics /hdl.git
2 cd hdl

The repository contains HDL (hardware description language) for various Analog Devices daughter
boards and accompanying carrier boards. The latter include both Intel and some Xilinx boards.
Checkout the correct branch for the iWave carrier board.

1 git checkout R18 .0 _IW_CC_2 .0

To build the HDL, use make and target the daq2 project for the iwg24d. The latter is a short
form for the iWave board.

1 make daq2. iwg24d

The build process can take a significant amount of time to complete, taking up to several hours.
The Makefile will run several Tcl-scripts to setup and configure dependencies for the project. The

https://fpgasoftware.intel.com/18.0/?edition=standard&platform=linux
https://fpgasoftware.intel.com/18.0/?edition=standard&platform=linux
1716@europa.iet.ntnu.no
vpn.ntnu.no
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completed project folder will contain a Quartus project file to configure and synthesize the design,
a Quartus Qsys (also known as Platform Designer in new versions of Quartus) file to configure
peripherals and interconnects. The system_bd/system_top.v file contains the design’s top
level entity system_bd.

4.1.3 Modifying the reference design
There are several ways to alter the reference design to include the user logic. One can either

• modify the HDL files directly,

• create a new Qsys component for the user logic and connect it using Qsys,

• or export the system_bd signals of interest and manually instantiate and connect the user
top.

While modifying the HDL files directly is most straightforward and requires less use of the tools,
doing so puts the design changes at risk of being overwritten should the Platform Designer be
used to regenerate the HDL wrappers. While creating a new Qsys component mostly consists
of selecting the desired HDL source files in the tool, it creates an unnecessary hard dependency
on using Qsys to build the design. A decision is made to divide and conquer by exporting the
signals of interest from Qsys and manually instantiate an entity for the user logic. This leaves the
responsibility of generating the reference design to Qsys, while the designer keeps full control of the
changes in the user logic. This also has the added benefit of being able to keep the altered reference
design and user top in separate git repositories. This is an advantage as the latter can be updated
and simulated independently, in addition to increasing the portability of the design. The altered
reference design only is needed for the compilation.

To contain the user logic, a new entity must be inserted into the design. As it contains the user
logic and provides a new top-level abstraction created by the user, it shall be called the user
top. Figure 4.3 shows how the user top is inserted into the reference design by exporting signals
of interest from system_bd. The user top must use valid-handshaking on its input and output
interfaces to match the proceeding and succeeding entities in the signal processing chain. This is a
simple bus protocol enforcing the use of a separate valid signal to indicate whether the data in the
associated data bus is valid or not [23].

The design is altered by first opening the system_bd.qsys file in Qsys. This will open a large
list of Qsys components with ports and interconnects. As it is desired to insert the user_top
entity between the axi_ad9680_core and util_ad9680_cpack entities, the adc_ch_0 and
adc_ch_1 must be exported, along with the adc_valid and adc_clock signals. The Qsys
components with their ports are shown in Figure 4.4 and Figure 4.5. Exporting the signals is done
by clicking the "Export" tab in Qsys for both entities. This will break the connection between the
entities and instead expose the signals as ports in the system_bd entity. These ports can then be
connected to the user_top instance in the system_top.v file.

After exporting the desired signals the HDL must be regenerated. The Qsys generated entity is
called system_bd and is manually instantiated in system_top.v as part of the reference design.
The port map of the system_bd instance in system_top.v must be manually updated to reflect
the changes done in Qsys. When this is done, the user_top entity can be instantiated beside
system_bd in system_top.v. The user should ensure that the adc_clock signal is routed to
the user_top along with the data to keep everything in the same clock domain.

4.1.4 Pitfalls and other considerations
This section lists some important considerations to successfully set up the project, as well as some
pitfalls.

VHDL vs Verilog wrappers

Qsys has an option to generate the HDL wrappers in either Verilog or VHDL. Generating the
system_bd entity in VHDL resulted in numerous syntax errors. While the user_top entity is
written in VHDL, it can easily be instantiated in Verilog as Quartus provides multi-language
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Figure 4.3: Overview of the system top entity, illustrating how the system_bd and user_top entities are
connected.

support. This has the added benefit of not needing to translate the system_top.v to VHDL, as
that is a manually created file supplied as part of the reference design.

Generation of the QIP file

When exiting Qsys, the user is prompted to generate a QIP (Quartus Prime IP) file to store the
file paths for all the IP cores. This file must NOT be added to the project, as it is automatically
generated and used by system_qsys.tcl. Adding the QIP file will cause it to interfere with the
system_qsys.tcl script and break the synthesis chain.

Adding VHDL 2008 support

Quartus Standard only has limited support for the 2008 version of the VHDL standard, compared
to Quartus Pro which has full support. While this edition of the standard has few changes for
synthesizable code and targets mainly simulation, it brings support for useful constructs such
as unconstrained elements in arrays. VHDL 2008 support must be enabled by opening the .qpf
(Quartus Project file) file and adding the following line:

1 set_global_assignment -name VHDL_INPUT_VERSION VHDL_2008

Changing the IP regeneration policy

Quartus will automatically regenerate the whole design, including the Qsys components, when the
project is compileded. Since the Qsys components are mostly unchanging and that all frequent
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Figure 4.4: The entry for the ad9680_core entity in Qsys, showing the ports, clocks and protocols. Note
the exported signals in the right hand side.

Figure 4.5: The entry for the ad9680_cpack entity in Qsys, packing the ADC ch0 and ch1 into a signle
signal.

design updates happen in the user_top, Quartus’ IP regeneration policy can be changed to only
generate IP cores once. This change removes much of the projects compilation time. This setting is
found under the Assignments pane > Settings > IP Settings > IP Regeneration Policy
and is set to "Never regenerate design files for IP cores".

Removal of the DAC code

Compiling the reference design shows multiple setup time violations related to the JESD204 interface
of the now unused AD9144 DAC (Digital to Analog Converter). This indicates that the routing
algorithm struggles to route the signals in a way ensuring they arrive on time. To fix these, all
AD9144 components are removed in Qsys as they played no integral part of the application specific
design either way. This has the added benefit of speeding up compilation time, save FPGA resources
and relax routing constraints. The removed components are the avl_ad9144_fifo, ad9144_jesd204,
axi_ad9144_core, util_ad9144_unpack and axi_ad9144_dma.

Bitstream generation and programming

As the design contains a HPS, the Intel design guidelines discourage programming the FPGA
directly with Quartus [13] as this can crash the Linux drivers using the FPGA-HPS interconnect.
A restart of the HPS will also cause it to reprogram the FPGA with the bitstream present on the
SD card.

To create a new bitstream for the HPS to use when programming the FPGA, the quartus_cpf
utility can be used to generate a RBF file (Raw Binary File). This must then be placed on the
boot-partition of the SD card in the iWave Arria 10 card.

To generate the RBF file, run:

1 quartus_cpf -c -o bitstream_compression =on daq2_iwg24d .sof
socfpga .rbf
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4.2 User top overview
The user top entity contains the application specific design to be inserted into the reference design.
This partitioning makes it easier to focus on the core design, as well as increasing the portability. It
also makes it simpler and faster to simulate part of the design rather than the system in its entirety.

The user top consists of several debug and convenience modules. The comms module implements a
UART interface to the FPGA fabric that can be connected to either the HPS or external ports.
Together with the address decoder it makes up a system for register access, where registers can
be read and written to. The UART interface and register access are together referred to as the
debug interface. This is convenient to provide an entrypoint to inspect the internal workings of the
FPGA, as well as adjusting settings in runtime rather than compile time. The address decoder acts
as a bridge between the comms module and the various modules. It uses an Avalon MM interface
covered in Table 4.3 to access the module registers.

All signal processing is performed inside the DSP Core to provide another abstraction level in
the design. It uses a simple valid interface to receive and transmit samples and receives accurate
timestamps from the PPS module. The DSP core is covered in Section 4.3.

This section presents the various modules in the user top, along with their testbenches. Testcases
and simulation results for the user top and DSP core are presented in Section 5.1. The simulator
and test framework selection is also presented there, with an explanation of VUnit.

Figure 4.6: Overview of the user_top entity.
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4.2.1 Comms module
The comms module is responsible for providing access to the FPGA fabric via UART. It is part of
the chain of modules enabling read and write access to FPGA registers together with the address
decoder. An overview of the module is shown in Figure 4.7. The UART configuration is shown in
Table 4.1.

Table 4.1: Configuration of the the UART serial link.

Baud rate Data bits Stop bits Parity Flow control Bit order
115200 8 1 None None Least significant bit

Figure 4.7: Overview over the comms module, showing both the TX- and RX-chain.

Communication is based on frames, containing a header followed by an address and data. The
frame is shown in Figure 4.8, consisting of header, address and data fields. The frame is used for
both transmit (TX) and receive (RX). The frame header contains flags for specifying write and
read, in addition to other system status and error flags. The header flags are listed in Table 4.2.
More bits can be reserved in the future for transmitting various status and error flags, such as an
unknown address error.

Table 4.2: Table of flags in the frame header.

Bit number Flag Purpose
0 Write-not-read Indicate write or read operation for register access
1 Stop bit error Indicate possible baud rate mismatch
2 Reserved Reserved for unknown address error
3 Not used
4 Not used
5 Not used
6 Not used
7 Not used

The module consists of an RX and a TX chain. The RX-chain consists of an uart_rx entity and a
deframer. The uart_rx entity feeds the deframer with the received bytes, which the deframer uses
to assemble the frame and then extract the content. The TX-chain similarly consists of an uart_tx
entity and a framer. The framer takes in data and assembles a frame, which is then fed bytewise
to the uart_tx entity. The latter exerts backpressure through a simple ready/valid handshake to
control when the next byte should be sent. This handshake extens the valid interface with allowing
the receiving entity to stall the transfer until it signals that it is ready. Both uart_rx and uart_tx
are based on simple state machine implementations.

In the case of the stop bit not being found the uart_rx entity will clear the frame buffer to avoid it
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Figure 4.8: Generic frame structure for the UART link.

coming out of sync. It will also initiate the transmission of an empty frame containing the stop
bit error flag. This notifies the user of the baud rate most likely being wrong. This is shown in
a simulation in Figure 5.7. A stop bit error is trigged by pulling the RX line low for 10 symbols,
causing the uart_rx entity to fail to detect the stop bit. This immediately causes it to transmit a
frame with the stop bit error flag.

Figure 4.9: Holding the RX line low causes a stop bit error, which triggers the transfer of a frame with
the according flag (orange). The stop bit flag can be observed in the second bit of the first byte. Note the
reversed bit order.
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4.2.2 Address decoder
The purpose of the address decoder is to implement the register access by routing incoming read and
write requests to the correct modules. The module is shown in Figure 4.10. It acts as a bridge by
translating the incoming address into a module address and a register address. The module address
is converted to a chip select signal, whereas the register address is broadcasted to all modules. The
activated module in turn either receives the write data or returns the read data, as indicated by
the write and read signals (module_wr and module_rd).

The address decoder is based on the Avalon MM standard [8]. It uses single-cycle signals to perform
read and write operations. The standard allows for the exact number of signals employed from
the standard to be customized to the application, making it a very flexible standard. As such, the
pipeline signal rdata_avail has been added from the standard to let the address decoder know that
the read data from the module is valid. The subset of signals used from the standard is listed in
Table 4.3.

Figure 4.10: An instance of the address decoder, showing the various input and output ports.

Table 4.3: Signals for register access based on Avalon MM [8].

Name Width Direction Description
addr 16 Master → slave Register address
rdata 16 Slave → master Read data
wdata 16 Master → slave Write data
read 1 Master → slave Indicate read transfer
write 1 Master → slave Indicate write transfer
chip select 1 Master → slave Select slave for transfer
rdata_avail 1 Slave → master Notify master that rdata is valid

4.2.3 About module
The about module serves as a pure convenience module in which information about the current
build is stored, such as the git hash and build time. This is useful information for making sure that
the correct firmware is used. The values are compiled in and can be accessed through the register
access. The address map for the about module is given in Table 4.4.

Table 4.4: Register addresses of the about module.

Register R/W Address offset Description
git_hash R 0x00 Hash value of current git commit
build_date R 0x01 DDMMYY
build_time R 0x02 HHMMSS

4.2.4 Debug module
The purpose of the debug module is to enable the designer to verify basic functionality such as read
and write using the register access. It is also used to gather error and status information about the
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system in one place. As the FPGA is essentially a black box after programming, this module serves
as an important entry point to the systems state during runtime. The module also controls the
systems LEDs: A blinking status LED to indicate a running system and an error LED to indicate
any error. The module’s registers and addresses are listed in Table 4.5.

Table 4.5: Register addresses of the debug module.

Register R/W Address offset Description
debug_value R 0x00 Fixed value of 0xBEEF
write_reg R/W 0x01 Empty register to test write operation. Initialized

to 0
blink_led R/W 0x02 Write 0x0001 to blink LED
comms_error R/W 0x03 Sticky bit indicating that an error has occurred

in the comms module

4.2.5 1PPS module
The 1PPS module creates a simple timestamp from a 1PPS signal. It consists of a counter
incrementing every 10 ns until it is reset by the rising edge of the 1PPS (1 Pulse-per-second) signal.
The counter counts from 0 to (1 s/10 ns− 1) = 108 − 1. To avoid nonsensical timestamps in case of
jitter the counter will not wrap when reaching its high value and must be reset by the 1PPS signal.
The module outputs the timestamps as a dlog2 1 s/10 nse = 27 bit standard logic vector, which is
rounded up to 32 bits for convenience.

Figure 4.11: Overview over the PPS module.

4.3 DSP core
The purpose of the DSP core is to handle all signal processing in the design. The block diagram of
the module is shown in Figure 4.12.

The DSP core performs IQ demodulation on the real TX and RX signals to convert them to complex
signals and move their bandwidth down to complex baseband. This reduces the signals Nyquist
rate, which makes it possible to reduce the clock frequency needed to drive the signal processing
logic, greatly relaxing design constraints. See subsection 4.3.2. It is currently deemed faster to
implement the IQ demodulation in the FPGA fabric rather than using the digital downconversion
built into the ADC, due to the SPI interface of the ADC interface being tightly connected to HPS
drivers.

Clock domain crossing is performed to move the downmixed data to a slower clock domain. Two
FIFO (first in, first out) buffers are used to perform the clock domain crossing, which is presented
in subsection 4.3.1.

Finally, the pulse compression is performed in the dechirper entity. See subsection 4.3.4.

The DSP core takes in 14 bit wide signals. To comply with the input width of the multipliers in
the DSP cores, the IQ demodulator allows the width to increase to 18 bits. This yields an output
width of 36 bits from the multipliers in the dechirper, which is also the maximum output from a
multiplier. See subsection 4.3.4 for further details about the DSP blocks and signal widths. Note
that the output from the DSP core is scaled back to 32 bits to comply with the FIFO buffers used
to interface with the HPS for now.
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Figure 4.12: Block diagram of the DSP core module. Samples from the RX and TX channels are moved
down complex baseband with IQ demodulation before being used for pulse compression in the dechirper.
Two FIFO (first in, first out) buffers are used to cross the two clock domains highlighted in the figure.

4.3.1 Clock domain crossing
Theory of operation

Clock domain crossing is necessary to move data from one clock domain to another while avoiding
problems such as setup and hold time violations at the registers. In this case, it is necessary to
move the input signals from their 250 MHz input clock to a slower 100 MHz clock to relax design
constraints. The latter is chosen as it is a commonly employed clock frequency in FPGA design,
offering some flexibility while being neither especially fast nor slow. It is also readily available from
the design top layer.

Running the entire design at the data input clock of 250 MHz essentially requires that data must be
manipulated, routed and finally stored in registers within a clock cycle of only 4 ns. As the design
grows, the place and route algorithms will struggle and fail more due to the increased area used on
the FPGA. This in turn increases the distance the signals must potentially traverse in the duration
of one clock cycle, which increases the likelihood of setup time violations.

Clock domain crossing is necessary due to the clock cycles being shorter in the fast domain than in
the slow domain. Since the data is linked to the clocks, the data in the fast domain may already be
gone before the slow domain registers that it is there. Essentially, the data must persist longer in
the register to enable the slower clock domain to register it. One simple way to achieve this is by
using some of the FPGA fabric’s block RAM as a FIFO (first-in, first-out) buffer. The block RAM
can be initialized as a two-port RAM using different clocks on either port. One port is assigned to
writing data from the fast clock domain, while the other port is used to read the data to the slower
clock domain. Although this can be expensive in terms of consuming block RAM resources, it is
more guaranteed to work as the toolchain can ensure its functionality. Additionally, since the data
rate on either side of the FIFO is the same, it should never underflow or overflow. [30]

Implementation

The clock domain crosser is shown in Figure 4.13. It is based around the Intel DCFIFO IP core,
which can be readily configured using Quartus. The DCFIFO is based on using FPGA block
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RAM as a circular buffer with two ports and some timing optimizations [30]. Using the IP core
ensures the correct implementation of this FPGA-specific hardware functionality. It is also faster
to implement, with the only drawback being that it makes the design dependent on Verilog source
code and simulation models. The simulation of this entity therefore requires cross-language support.
See subsection 5.1.1.

The DCFIFO (Dual-Clock FIFO) is configured to use 36-bit wide words, which is equal to the
length of one IQ-sample. The memory depth is set to 128 words. This is large enough to hold
a considerable amount of samples, while not too large as to waste RAM. The Arria 10 SX 480
contains 28620 kbit of block RAM, so memory usage is not a concern at this point. Note that the
IP core requires the memory depth to be a power of two.

As shown in Figure 4.13, one process using the faster write clock feeds incoming samples to the
DCFIFO by packing I- and Q-samples to a single array. It is submitted to the DCFIFO along with
setting the wrreq port to ’1’, but only if the wrfull flag indicates that the FIFO is not full. A
similar output process monitors the state of the rdempty port. The process will request samples
from the DCFIFO by asserting the rdreq port as soon as samples are available to minimize latency.
The DCFIFO uses one clock cycle to return the samples after rdreq is asserted, on which the
output iq_valid_out port is set.

Figure 4.13: Clock domain crosser based on the DCFIFO (Dual-clock FIFO) IP Core, going from a fast
clock domain of 250 MHz to 100 MHz. The input process feeds samples to the FIFO, while the output
process retrieves them as soon as they are available.

Simulation

The simulation for the cross domain crosser is shown in Figure 4.14. The main process generates
random IQ-samples, which are applied to the DUT. The fifo_slave process record the samples at
the output of the DUT and places them in a queue. The main process then compares the input
values with the values stored in the queue. If they are equal, the simulation passes. Overrun of the
DCFIFO inside the DUT is not tested at this point.

4.3.2 IQ demodulator
Theory of operation

The IQ-demodulator is important for coherent processing, as well as reducing the signal’s Nyquist
rate. The entity converts a real input signal to a complex signal and moves the signals bandwidth
down to a complex baseband around the 0 Hz frequency. This reduces the highest frequency
component of the signal and lowers the Nyquist rate, while preserving the signal’s bandwidth. This
makes it possible to reduce the signals sample rate, which makes it possible to clock the signal with



CHAPTER 4. IMPLEMENTATION 31

Figure 4.14: Testbench the clock domain crosser. The main process generates random IQ-samples and
compares the input samples with the output samples stored in the fifo_slave queue.

a slower clock frequency on the FPGA. The latter has multiple benefits, such as simpler routing in
regards to relaxed timing constraints and possible re-use of multipliers.

An IQ-demodulation is performed by multiplying with a complex sinusoid, or the hardware equivalent
of using sine and cosine in parallel as shown in Figure 2.2. This moves the positive frequency
components of the real input signal down to baseband, while at the same time causing the negative
frequency components to wrap around to the positive side of the frequency axis. These high-
frequency components are then filtered away using a lowpass filter, preserving only the signals
around 0 Hz. The process results in IQ-samples forming a complex baseband containing both
positive and negative frequency components.

Sample sorting

Constructing such sinusoids becomes infeasible as the data arrives at such high clock speeds. It is
however possible to create a square wave with the same frequency as the input signal. The square
wave acts as a 2 bit sinusoid alternating between 1, 0 and -1. This can be viewed as sorting the real
input samples around the unit circle in the complex plane using two 4-to-1 muxes, as illustrated in
Figure 4.15. The upper mux sorts the samples into the in-phase (I) channel and the lower mux into
the 90 degree delayed quadrature (Q) channel. Muxes are inferred by using if-statements in VHDL,
as demonstrated in Appendix B. A wrapping sample counter is used to determine which input is to
be selected. This implementation requires the signal to be oversampled by a factor of twice the
Nyquist rate of the signal to correctly move the spectrum down to a complex baseband.

Filter design

A low pass filter is required to suppress the frequencies stemming from the negative part of the real
input signal spectrum, keeping only the complex baseband components. A half-band filter is an
efficient solution for this problem. It consists of a filter where every even coefficient, except 0, is 0.
The filter requires only half the number of multipliers as the multiplications with zero are constant
and can be optimized away. A halfband filter has its transition band around 1/4 of the sampling
frequency, which is also called the halfband frequency [32].

The filter coefficients for a half-band filter can easily be generated using the remez function in the
scipy.signal package for Python [36]. This is a free option and good for creating models, this does
not provide the necessary HDL to implement the filter on an FPGA. As shown in subsection 4.3.4,
implementing it by hand requires a lot of work and can end up as under-optimized designs. The
Intel FIR II IP Core provides the option to import filter coefficients from file and likely the most
optimized design for Intel FPGAs. It is however licensed, which creates a hard dependency for the
project [10]. The third alternative is to use Matlab to design the filter and generate the HDL using
the DSP System Toolbox [29]. This is chosen because it gives the fastest implementation time and
generates unlicensed VHDL code that can be used freely.

pyFDA should also be mentioned as a free option to generate filters. It provides a graphical user
interface for generating filters, using the scipy.signal package as a backend. It was not chosen due
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Figure 4.15: Block diagram of the IQ-demodulator. The signal is mixed down by sorting the real input
samples using two 4-to-1 muxes. A complex halfband filter suppresses the mirror frequency. The signal is
decimated to remove redundant samples.

to the HDL generation lacking maturity and only supporting Verilog at this point in time [25].

The filter is generated in Matlab by using the DSP System Toolbox. The filter type is set to
halfband filter with a linear phase. The arithmetic must be set to fixed-point in order to make
Matlab use HDL synthesize data types instead of floating-point. The input width is set to 14 bits,
but the filter output is set to 18 to match the output port of the entity. The filter is not allowed to
overflow to avoid creating distortions and making overflowing easier to debug later, although it
should not occur with a properly constrained design.

4.3.3 Decimation
A complex signal does not have an ambiguity between positive and negative frequencies. This
makes it possible to reduce the sampling rate of the complex signal down to the signals Nyquist
rate without violating the Nyquist theorem, reducing the data rate to its minimum without loss of
information [26]. This is done by decimating the filter output by a factor equal to the oversampling
rate. The decimation is done by taking the moving average of four samples and keeping every
fourth sample. The moving average makes it possible to slightly increase the SNR by averaging
away white noise. Dividing by a power of two enables the compiler to implement the division using
an inexpensive right shift operation and throwing away the rightmost bits. This is a matter of
simple signal routing and does not consume any special hardware on the FPGA.

Simulation results

A simulation for the module is made using Python, Scipy and VUnit. A real-valued chirp with a
5 kHz bandwidth is generated around a 40 kHz center frequency using the scipy.signal.chirp function
[36]. The input signal is shown in Figure 4.16. The samples representing the chirp are written
to file and accessed in the simulation with the help of VUnit’s integer_array_t type [38]. The
resulting complex output signal is logged to an array of the same type and similarly written back
to file, before being plotted in Python. The output signal is shown in Figure 4.17. The power
spectral density plot clearly shows that the bandwidth has been moved down to complex baseband
around 0 Hz. The time domain plot illustrates the 90 degree offset between the I- and Q-channels.
Furthermore, the magnitude of the complex signal lies at a constant level as expected.

The various signals in the module can also be seen in the Modelsim simulation waveforms shown in
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Figure 4.18. Here the real-valued signal is first sorted into the I- and Q-channels. Then the filter
smoothes out the signal, removing all high-frequency components from the signal.

Resource usage

The Fitter Resource Utilization Report by Entity lists that each filter channel used 14 DSP blocks,
in addition to 1200 ALMs (Adaptive Logic Modules). The latter contains generic logic, such a look
up tables, adders, muxes and registers. The effect of using the halfband filter is clearly seen, as the
number of DSP blocks consumed is half the filter order due to every other coefficient being zero.
As there are 185.000 ALMs on the Arria10, this is a modest contribution. 1368 DSP blocks are
more precious, where the IQ demodulator uses approximately 2 % of the available resource. This is
an important consideration for a smaller FPGA, such as the Cyclone V, which has between 25 and
342 DSP blocks depending on the version [9].
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Figure 4.16: Input data for the IQ-demodulator simulation with a 5 kHz chirp around a 40 kHz center
frequency. The power spectral density (PSD) is mirrored around 0 Hz due to the input signal being real.

Figure 4.17: Output data from the IQ-demodulator simulation. The chirp has been moved down to the
complex baseband and the mirror frequency has been suppressed with a filter.

Figure 4.18: Modelsim displaying the real chirp signal after simulation, as well as the unfiltered and
filtered I- and Q-channels.
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4.3.4 Dechirper
Theory of operation

The dechirper is part of the DSP core and is responsible for converting the received radar chirp to
a pulse by performing pulse compression. As specified in Section 3.3, the dechirper must create a
matched filter using the TX signal at the rising edge of the radar trigger pulse. The module must
then convolute the reflected RX signal with the filter, which dechirps the signal.

A matched filter maximizes the SNR of the system by convolving the reflected signal sRX(x) by
convolving sT X(t) with the complex-conjugated and time-reversed transmitted signal s∗

T X(−t) [33],

f(t) = sRX(t) ∗ s∗
T X(−t), (4.1)

where both signals are assumed to be complex valued.

The dechirper can be implemented as shown in Figure 4.19. The filter creator process implements a
finite state machine (FSM) that samples the TX signal at the rising edge of the radar trigger pulse.
The FSM is illustrated in Figure 4.20. The process will take in samples until either the constant
MAX_CHIRP_LENGTH or the input port chirp_length is exceeded. The latter enables the
DSP core to specify the length of the chirp. This is necessary as the chirp lengths vary and some
may be shorter than the maximum specified by the constant. When the TX signal is sampled, the
FSM goes into its last state and creates the filter coefficients by taking the complex-conjugate and
time-reversed of the signal. The former is as simple as adding a sign-bit to the quadrature channel
to make it negative. The latter is done by reversing the array containing the samples, which the
compiler performs by simple routing. Neither is very resource-intensive for the FPGA. Finally, the
FSM goes back to the initial state, listening for the trigger signal.

Figure 4.19: Block diagram of the dechirper entity. One process samples the TX signal and creates the
matched filter coefficients, which the filter process uses to perform the corrolation with the RX signal.

The filter process performs the correlation between the filter coefficients created by the filter creator
process and the RX signal. To design the filter, the filter length given by the compile-time constant
MAX_CHIRP_LENGTH, must first be determined. To find the maximum number of samples
the chirp with the highest time-bandwidth product is considered. This equals to a 20 MHz wide
chirp over 15 µs for a range of 12 nautical miles Table 2.2. Sampling this signal at baseband at its
Nyquist rate with an ADC equates to

N = 2 · 20 MHz · 15 µs = 600 samples, (4.2)

which equals to a filter length of 600 samples. Further considering that the multiplication of two
complex signals, x and y, equals to

x · y = (xI + jxQ) · (yI + jyQ) = (xIyI − xQyQ) + j(xIyQ + xQyI), (4.3)
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Figure 4.20: Flow chart illustrating the FSM of the filter creator process, which samples the TX signal
and creates the matched filter coefficients for the dechirper.

where it can be seen that two multipliers are needed per sample. This requires a total of 2·600 = 1200
multipliers. As the Arria 10 DSP blocks contain two multipliers each, the filter will consume 600
of about 1300 DSP blocks available. This consumes a large number of FPGA resources, but can
nevertheless be done as the resources are there. See subsection 6.2.2 for a discussion on optimizing
the DSP block usage.

Two design attempts for the filter process are presented: A simple design approach and a slightly
more optimized one. This section serves to illustrate why careful consideration of the design and
resource usage is necessary for FPGA design.

Simple filter design approach

Listing 4.1 shows a slightly simplified version of the filter process in VHDL. It consists of a for-
loop correlating the filter coefficients with the RX signal and summing the contributions to the
v_i_data_out and v_q_data_out variables, which are applied to the output of the dechirper
entity at the next clock cycle. Notice that the product of two equal length signals has twice the
length of the originals.

1 f i l t e r_p r o c : process ( c l k ) i s
2
3 va r i ab l e v_i_data_out : signed (2∗C_CHANNEL_SIZE − 1 downto 0) ;
4 v a r i a b l e v_q_data_out : signed (2∗C_CHANNEL_SIZE − 1 downto 0) ;
5 v a r i a b l e v_iq_valid_out : std_logic ;
6
7 begin
8
9 i f r i s ing_edge ( c l k ) then

10 i f rst_n = ’0 ’ then
11 i_data_out => ( othe r s => ’0 ’ ) ;
12 q_data_out => ( othe r s => ’0 ’ ) ;
13 iq_valid_out => ’ 0 ’ ;
14 else
15
16 −− Cor r e l a t i on o f complex s i g n a l s
17 f o r i in 0 to MAX_CHIRP_LENGTH − 1 loop
18 v_i_data_out := v_i_data_out + ( i_rx ( i ) ∗ i _ f i l t e r ( i ) − q_rx ( i )

∗ q_ f i l t e r ( i ) ) ;
19 v_q_data_out := v_q_data_out + ( i_rx ( i ) ∗ q_ f i l t e r ( i ) + q_rx ( i )

∗ i _ f i l t e r ( i ) ) ;
20 end loop ;
21 v_iq_valid_out <= ’ 1 ’ ;
22
23 end i f ;
24
25 −− Set output s i g n a l s
26 i_data_out <= v_i_data_out ;



CHAPTER 4. IMPLEMENTATION 37

27 q_data_out <= v_q_data_out ;
28 iq_valid_out <= v_iq_valid_out ;
29
30 end i f ;
31 end process ;

Listing 4.1: Simplified process for implementing the matched filter.

This design works perfectly under simulations and provides the matched filter output as desired.
The for-loop will perform the convolution of the two complex signals and accumulate the filter
response in the v_i_data_out and v_q_data_out variables, before storing the final value in
the i_data_out and q_data_out signals. However, due to the concurrent nature of FPGAs,
compiling the design will cause the synthesizer to implement the content of the for-loop in parallel.
In hardware terms, a chirp of MAX_CHIRP_LENGTH = 64 number of samples will need 2 · 64
multipliers for a single channel, equaling to 128 multipliers for both channels. While this could
work for a few samples, the compiler will not be able to implement the design for any significant
number of samples.

This design works perfectly under simulation and provides the matched filter output as desired.
However, due to the concurrent nature of FPGAs, compiling this design will cause the synthesizer
to implement the content of the for-loop in parallel. This means that all 1200 multiplications are
expected to be performed in parallel. As the DSP blocks are placed in groups around the hardware,
this places heavy constraints on the routing algorithm as the physical distance the signals must
traverse in a single clock cycle is relatively large.

In addition to high consumption of DSP block for multiplication, the dechirper also suffers
from timing violations due to long combinatorial paths being inferred when summing the filter
contributions in the for-loop. The graph generated by the Quartus Timing Analysis tool in
Figure 4.21 for one of the dechirper output signals reveals that the data arrived more than seven
full clock cycles too late, corresponding to −28.56 ns in negative slack. Ultimately, the compiler is
not able to synthesize the design as intended by the designer.

Figure 4.21: Quartus Timing Analysis output for the dechirper initial design without pipelining, showing
a large setup time violation over at least seven clock cycles.

Improved design using pipelining

To avoid the timing errors encountered in the simple design attempt, the filter behavior model must
be more closely specified using HDL.

Setup time errors generally indicate that a process must be executed over multiple clock cycles.
This can generally be done in one of two ways. The process can be changed to an asynchronous
process and declared a multicycle path in the timing constraints. This allows the signal to propagate
through an asynchronous logical circuit using more than a single clock cycle. Multicycle paths
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are however infeasible if data arrives at the input every clock cycle, as the asynchronous process
is busy propagating the signals for several clock cycles. The other option is to create a pipeline
by splitting the large process into multiple smaller processes. For every clock cycle, the smaller
processes perform their calculation and hand over the result to the next process in the pipeline.
This retains fine-grained control of the processes by clocking them, as well as allowing data to be
transferred to the process at every clock cycle.

A pipelined version of the filter is shown in Figure 4.22. Note that the figure is simplified and does
not take multiplication by the complex conjugated filter coefficients into account, as specified in
Equation 4.3. The idea still holds but must be extended to include complex signals. Convolution
between the signal and the filter coefficients is implemented by exploiting the parallel nature of
FPGAs. Therefore the convolution can be implemented by multiplying each sample in the shift
register by the filter coefficients. The resulting products are then added together over multiple
clock cycles using a pipelined binary adder tree. After all filter contributions are summed, the
resulting filter response will be made available at the output of the process.

To ease the design constraints somewhat due to exceedingly long compilation times, the chirp length
is set to 256 samples.

Figure 4.22: Simplified architecture for a pipelined matched filter implemented using shift register based
convolution and a binary adder tree.

Using pipelining has the consequence of introduces latency into the design. Due to the adders binary
tree structure, the number of pipeline stages can be found using the base 2 logarithmic function.
For instance, adding the response from 256 filter coefficients results in log2(256) = 8 pipeline stages.
Using a 10 ns clock to drive the adder, this introduces 80 ns of latency to the system. Furthermore,
256 filter coefficients result in 4 · 256 = 1024 multipliers consumed due to multiplying two complex
numbers. This consumes around a quarter the available multipliers in the Arria 10 FPGA. As each
DSP block contains two multipliers, this translates to half the DSP blocks on the FPGA.

The dechirper is simulated along with the overall design in Section 5.4.



Chapter 5

Design verification

This chapter presents the process of verifying the FPGA design through simulation, as well as
physical testing. Verification is a central part of digital design to ensure that the design works
in hardware. Unlike software, it is much harder to test the design ad-hoc as it requires both
time-consuming compilation to hardware and as well as a physical test setup. Furthermore, insight
and debugging capabilities are reduced considerably when the design has been synthesized and
programmed to the FPGA. It is therefore important to have good testbench coverage of the design.

An overview and selection of verification tools and simulators is presented, along with a selection of
these for the project. Justification for a continuous integration (CI) workflow for FPGA is given, in
addition to the tool configuration.

The testbenches for the user top and the DSP Core are presented, along with their simulation
results. A final physical test is also performed to verify that the design works as intended in
hardware.

5.1 Verification toolchain overview and selection
5.1.1 Simulators
Simulators are used to make cycle-correct emulations of the design to ensure that the logic is valid.
Two simulators are considered for this project: Modelsim and GHDL. High-end simulators like
Rivera Pro are considered out of scope for this project and not part of the selection.

Siemens/Mentor Modelsim

Modelsim is a proprietary and commercially available simulator made by Mentor Graphics (now
Siemens EDA). It comes bundled with Intel Quartus and is therefore a widely used simulator for
Intel FPGA designs. It also supports cross-language simulation with VHDL and Verilog, as well
as support for encrypted IP cores. Both are often a requirement when working with IP cores, for
instance to interface with a particular part of the FPGA hardware. Intel also provides libraries with
bus-functional modules (BFMs) for Modelsim, which are non-synthesizable behavioural models of
integrated circuits and similar hardware. It also has a GUI (graphical user interface) which can be
very useful for debugging. Modelsim is a licensed product and requires one license per processor
core if used in a parallel processing setting.

GHDL (Open source)

GHDL is an open-source simulator. Since its version 1.0 release in 2021 the simulator has fairly
good support for VHDL 2008 constructs, to the point where doesn’t restrict the designer. While it
lacks a dedicated GUI, it is completely free and can therefore be run on multiple processor cores
at once. This can significantly speedup testbench execution by running multiple tests in parallel,
better utilizing modern multi-core processors. It also provides a significant speedup over Modelsim.
This makes GHDL very good for deploying in continuous integration (CI) settings. The drawback
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of using GHDL is that the design must be pure VHDL in addition to lacking support for encrypted
IPs. Consequently, GHDL is best for performing unit tests on a module basis rather than top-level
simulations of entire designs.

Simulator selection

Both simulators are used in this project, due to different requirements. Modelsim is necessary
to run simulations on parts of the design using Verilog, such as the DCFIFO component used in
the clock domain crosser in subsection 4.3.1. It also provides a GUI, which is an advantage while
debugging. GHDL is however used for running the continuous integration pipelines, described in
Section 5.2. While it cannot simulate the entire design due to it only supporting VHDL, it can be
used to execute most of the module testbenches. It being a free, open source simulator also makes
it possible to run the simulator in the cloud, which is further described in Section 5.2.

5.1.2 Verification library
While VHDL can be used for both design and verification, mostly simple assert boolean statements
are provided for verifying conditions in testbenches. It is therefore lacking in features increasing
both testing capabilities and usability, such as asserting conditions within time limits or checking
for signal stability. This can be added by using verification libraries, such as UVVM and VUnit.
Along with providing extended checking functionality, they provide BFMs (bus-functional modules)
to emulate and interface with different bus standards, such as UART and SPI. As OSVVM (Open
Source VHDL Verification Methodology) is included as a dependency in both VUnit and UVVM it
will not be considered as a stand-alone verification library.

UVVM

UVVM (Universal VHDL Verification Mythology) and its subset UVVM Light are open-source
verification frameworks provided by Inventas (formely Bitvis AS) [24]. The light version consists of
a feature subset including a checking library and BFMs for commonly used interfaces like UART,
SPI, SBI and Avalon MM.

VUnit

VUnit is an open-source unit testing framework offering commonly used BFMs and an extended
checking library. It differs from UVVM by being more community-driven and openly developed
than UVVM, albeit currently with a less mature selection of BFMs. It also differs from UVVM
by providing a Python-based run-library. The run-library of VUnit offers scanning directories of
source files, in addition to simulator backends for most simulators. The run-library also functions
as an API between the testbenches and Python. This enables easier interfacing between Python
and VHDL. This allows designers to use Pythons more extensive language and powerful libraries
to generate and validate simulation data using a high-level programming language, rather than
VHDL. VUnit further enables designers to make use of continuous integration toolchains, which is
further discussed in Section 5.2.

Selection

UVVM is considered too extensive for a project of this scale, making it’s subset UVVM Light a
better choice. While VUnit and UVVM Light provide similar capabilities on checking and logging,
UVVM Light has a larger and more mature selection of BFM’s. VUnit however provides a testbench
compilation and execution environment, as well as a simple and powerful Python interface. The
capability to create and validate testbench stimulus in Python outweighs the slightly more immature
BFM selection, which makes VUnit the verification library of choice for the project. Although it is
possible to include both VUnit and UVVM, it is deemed better to take on as few dependencies as
possible for stability.
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5.2 Continuous integration for design verification
Continuous integration (CI) is a technique where changes to the source code are frequently merged
into the main codebase to avoid diverging codebases and conflicts. It is combined with automatic
execution of tests to ensure that functionality is not accidentally broken. While inherently a software
development technique, it is well suited for FPGA design. This is especially true for large designs
where testbench executing becomes a time-consuming task.

Continuous integration for FPGA design is one of the advantages VUnit advocates. VUnit advises
to test early and often by automating test execution of unit tests [38]. Unit tests are tests of
individual modules in the design, rather than testing the whole design at once. VUnit offers hooks
for CI tools so it can monitor the status of the unit tests and report if any of them are failing, thus
immediately altering the designer when changes break existing functionality.

This project employs git as a version control system with the main codebase stored at GitLab.
GitLab is chosen over Github and Bitbucket as it is the only git server that supports local runners.
As the name indicates, local runners are programs that run on machines set up by the user, rather
than in the GitLab cloud. The local runners can automatically execute a set of instructions after
new code is pushed to the server, such as running the FPGA synthesis and programmer chain.

CI is performed in the GitLab cloud using VUnit and Docker. Whenever code is pushed to the
server, the GitLab CI service uses Docker to fetch a minimalistic Linux-based image with the latest
GHDL and VUnit versions. It then uses this image to run the tests by executing the VUnit run.py
file with a Python3 interpreter. The run.py file scans the project for source and testbench files,
compiles them and executes all tests. VUnit then reports back to the GitLab CI service, which
either accepts the new code or alerts the designer of failing tests. The relatively simple YAML file
used to configure the service is shown below.

1 d e f au l t :
2 image : ghdl / vunit : mcode
3
4 vunit−t e s t s :
5 s tage : t e s t
6 s c r i p t :
7 − echo " I n s t a l l i n g requ i rements . . . "
8 − python3 −m pip i n s t a l l −r . / requ i rements . txt
9 − echo "Running VUnit run . py s c r i p t . . . "

10 − python3 . / run . py

Listing 5.1: Process for providing a module with Avalon MM register access.

5.3 User top testbench
The user top testbench is intended for simulating how the various modules work together, as
opposed to the unit tests written for the individual modules - see chapter 4 for the unit tests. This
excludes testing the ADC and HPS interfaces, as they are part of the reference design and outside
the abstraction level of the user top. Testing the signal processing is performed in the testbench for
the DSP core. This is done to narrow down the scope, as well as reduce testbench execution time.
The user top testbench is intended to expand as more modules are added to the design, which will
increase the way the modules interact with each other.

The testbench is currently used for verifying the register access for reading and writing to the
registers in the various modules. These tests are well suited for the user top testbench, as they rely
on both the comms module and the address decoder. It also tests the register access process in the
various modules. The testbench is also used for verifying that errors, such as the stop bit error in
the comms module, propagate correctly to the debug module, which in turn enables the error LED.
The various tests are listed in Table 5.1.

Testbench setup

An overview of the testbench is shown in Figure 5.1. The main process contains the testbench’s
test cases. It instructs other processes to apply stimulus and then checks the output of the DUT
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Table 5.1: Test cases for the user top

Testcase Name Description Pass/Fail
TCS-1 Read from about module Register access read Pass
TCS-2 Read from debug module Register access read Pass
TCS-3 Read from DSP core Register access read Pass
TCS-4 Write to debug module Register access write Pass
TCS-5 Status LED Status LED is enabled after

reset is deasserted
Pass

TCS-6 Error LED Error LED is enabled due to
baud rate mismatch

Pass

(Device Under Test). Interfacing with the debug interface to access the design’s registers is done
by using the UART master and slave BFMs, which are connected to the DUT. These BFMs are
part of VUnit. They enable the main process to push frames to a queue, which is transmitted to
the DUT via UART. The UART slave concurrently reads any output from the DUT and puts it
in a queue of bytes, which the main process can pop. Additional functions have been developed
for assembling the bytes to frames, as well as decoding the frames into data per Figure 4.8. A
watchdog process, also part of VUnit, terminates the testbench if it gets stuck and the execution
time exceeds 1 ms. This is important for automatic testbench execution in CI.

Figure 5.1: Diagram of the user top testbench.

5.4 DSP core testbench
The DSP core testbench is used to verify that the signal processing chain performs as expected.
The testbench differs from the user top testbench by having a more narrow scope, only focusing
on testing the signal processing. The testbench also differs from the user top testbench by relying
heavily on external scripts in Python to do the testing, rather than standard VHDL checking.
These scripts generate radar data and validate the simulation results in Python, by using VUnit
to pass data to and from the testbench. This leverages the fact that Python is a programming
language with a higher abstraction level and better suited for handling math than VHDL, which is
ultimately a hardware description language (HDL).

Testbench setup

An overview of the testbench is shown in Figure 5.2. It consists of the main process controlling the
test execution, as well as the DSP core acting as the DUT (Device Under Test). It also contains
several other concurrent processes to apply and read stimuli. These are controlled by the main
process. Two avalon_mm_master and avalon_mm_slave processes also provide the main process
with access to the DSP core’s registers. The testbench uses VUnit’s integer_array_t for reading
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simulation data from files and writing the results back. The type has built-in functions to load and
write data to and from files with comma-separated values (CSV). The VHDL simulation can be
broken into the following steps:

1. The design and testbench are loaded into the simulator. CSV data for the RX and TX signal
is loaded from file using the integer_array_t type.

2. The main process starts. It asserts the reset signal for several clock cycles to put the DUT in
a known state.

3. The main process uses the avalon_mm_master process to provide the DUT with the chirp
length. This is necessary when the applied chirp is shorter than the maximum chirp length,
to prevent the dechirper from expecting too long of a chirp.

4. The radar trigger signal is asserted by main. This signals the dechirper to start sampling the
TX signal for constructing the matched filter.

5. The main process then signals the stimuli_tx and stimuli_rx processes to concurrently apply
the data on the DUTs input ports, mimicking the transmitted and received radar signal.

6. Simultaneously, the main process signals the save_output process to concurrently monitor the
iq_valid_out signal and record the output from the i_data_out and q_data_out ports.
These are converted from bit vectors to integer types and stored in a 2D integer_array_t.

7. The main process waits until the stimuli_tx and stimuli_rx processes signal that they are
done applying stimuli. The main process then stops the save_output process.

8. Finally, main saves the output data to CSV file using the integer_array_t type built-in
function and ends the simulation.

In the event of the testbench becoming stuck, the testbench execution will be terminated by the
watchdog process after 1 ms of simulated time.

Figure 5.2: Diagram of the DSP core testbench.

In order to provide the simulation with data, as well as extract the result, VUnit allows pre-config
and post-check functions to be registered for a testbench. These are callback functions that are
automatically called by VUnit before and after the simulation, respectively. Part of the VUnit
run.py file is given in Listing 5.2. The complete file is given in Appendix C.

1 # Add pre_conf ig and post_check to t e s tbenche s
2 tb_dsp_core = l i b . test_bench ( " tb_dsp_core " )
3 tb_dsp_core . set_pre_conf ig ( dsp_core_sim . pre_conf ig )
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1 import numpy as np
2 import s c ipy . s i g n a l as s i g n a l
3 import matp lo t l i b . pyplot as p l t
4
5 def pre_conf ig ( output_path ) :
6 # Create TX s i g n a l
7 ch i rp = s i g n a l . ch i rp ( t=t , f 0=f0 , t1=t [ −1] , f 1=f1 , method=’ l i n e a r ’ )
8 tx_s igna l = ch i rp ∗ (2 ∗∗ 5) / ch i rp .max( ) # Sca l e ch i rp to 5 b i t s
9

10 # Create RX s i g n a l
11 channel = s i g n a l . unit_impulse (10000 , ’mid ’ ) # 10 km @ 1 m r e s o l u t i o n
12 rx_s igna l = s i g n a l . f f t c o nvo l v e ( channel , tx_signal , mode=’ same ’ )
13
14 # Save data to f i l e
15 np . save txt ( output_path + ’ tx_s igna l . csv ’ , tx_s igna l . as_type (np . in t32 ) )
16 np . save txt ( output_path + ’ rx_s igna l . csv ’ , rx_s igna l . as_type (np . in t32 ) )
17
18 return True
19
20 def post_check ( output_path ) :
21 # Load sim data from CSV f i l e
22 csv_data = np . l oadtx t ( os . path . j o i n ( output_path , f i le_name ) ,

d e l im i t e r=" , " )
23 # Convert data to np . complex128
24 complex_sim_output = csv_data [ : , 0 ] + 1 j ∗csv_data [ : , 1 ]
25
26 # Plot r e s u l t s
27 p l t . p l o t ( )
28 p l t . t i t l e ( ’ Expected␣ c o r r e l a t i o n ’ )
29 p l t . p l o t ( complex_sim_output . r ea l , l a b e l=’ I−channel ’ )
30 p l t . p l o t ( complex_sim_output . imag , l a b e l=’Q−channel ’ )
31 p l t . p l o t (np . abs ( complex_sim_output ) , l a b e l=’Magnitude ’ )
32 p l t . show ( )
33
34 return True

Listing 5.3: Simplified callback functions for the DSP core testbench

4 tb_dsp_core . set_post_check ( dsp_core_sim . post_check )
5 tb_dsp_core . set_sim_option ( ’ modelsim . i n i t _ f i l e . gu i ’ , ’ . / dsp_core/ tb/wave . do ’ )

Listing 5.2: Using VUnit to add pre- and post-simulation callback functions for the DSP Core testbench.

The callback function simply utilizes the scipy.signal library’s chirp() function to create the radar
TX signal. The RX signal is created by convolving the signal with a Dirac pulse, representing a
single scatterer. Some white Gaussian noise can be added to the RX signal as well to test the
performance of the pulse compression. The post-sim callback function only plots the result using
Matplotlib. A simplified version is given in Listing 5.3.

For the test a 1 ms chirp with bandwidth 40 kHz and center frequency 60 kHz is generated with
Python, which approximately matches the compiled in filter length of 256 samples after decimation.
The chirp is shown in Figure 5.3. Convolving the simple channel model with the TX signal yields
the RX signal shown in Figure 5.4.

5.4.1 Simulation results
Figure 5.5 shows the simulation output. The peak in the simulated output is slightly skewed to the
left. This is likely due to the filter in the dechirper having to be filled before starting to output
samples. The output is a complex valued signal, but the magnitude shows a distinct peak where
the vessel is. The peak is not as distinct in the simulation, likely because of slight filter mismatch
and quantization effects.
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(a) Time domain plot of the simulated TX signal.

(b) PSD of the simulated TX signal.

Figure 5.3: Time domain and spectrogram plots of a 1 ms chirp with bandwidth 40 kHz and center
frequency 60 kHz used for testing the design.

(a) PSD of the simulated TX signal.

(b) Time domain plot of the simulated TX signal.

Figure 5.4: Simple channel model and resulting RX signal generated by convolving the TX signal with
the channel.

5.5 Physical test
A physical testbench is needed to verify whether the design works as intended in hardware or not.
Simulation is the most important verification tool since it gives the designer the most information.
It also has the fastest turnover time, as simulation does not involve the often lengthy process of
compiling the design for the FPGA. Simulation models do however have limited coverage, operate
under conditions and assumptions set by the designer and cannot accurately recreate the operating
conditions. For instance, both the ADC and HPS present a considerate complexity in the system
and are not part of the simulation. Physical tests can therefore be used to verify these, and indicate
to the designer which testbenches need to be further developed to fix a bug.

The goal of the physical test is to verify whether the reference design and user top entity work
together. It is also desired to demonstrate that both the dechirping and debug interface work as
intended.

5.5.1 Test setup
The test setup is shown in Figure 5.6. The iWave Arria 10 development kit is set up as the DUT. It
is connected to a test computer, which runs a virtual machine with a digital oscilloscope provided
by Arrow and Analog Devices as part of the reference design [20]. The HPS will stream samples
from the FPGA fabric to the scope via Ethernet. The test computer also runs a simple UART
interface written in Python, parsing frames to enable register access for debugging. It can be used
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(a) Time domain plot of complex simulation output signal.

(b) Expected simulation output.

Figure 5.5: Expected and simulated output of the DSP Core under simulation.

to read and write frames as described in subsection 4.2.1. The interface is provided in Appendix D.
A Digilent PMOD USBUART module is used to provide the fabric with UART.

To mimic the functionality of the radar, a TX, RX and trigger signal is needed. These are provided
with a 2.4 GS/s Siglent SDG6022X Arbitrary Waveform Generator. This is capable of generating
the chirp waveforms with its 200 MHz bandwidth. The radar trigger must be pulsed at the same
time as the TX signal is transmitted. Because the waveform generator only has two outputs, one
channel will be used to create the chirp signal, while the other channel will pulse the radar trigger
for every second chirp. That way the first chirp will be registered by the DUT as the TX signal,
while the second chirp will be registered as the reflected signal.

It is expected that a correlation peak can be observed briefly in the signal scope when the RX
signal overlaps with the matched filter in the dechirper.

Figure 5.6: Block diagram of the physical test setup, using a function generator to create radar waveforms.

5.5.2 Register access test
The UART interface is tested by transmitting a frame to the FPGA via the PMOD USBUART
component, requesting a read from the debug value register at address 0x0000. This returns the
debug value, 0xBEEF, as expected. Write is tested by writing 0xCAFE to the write register in the
debug module, located at address 0x0001. The value can be successfully read back.

Trying to change the baud rate to an incorrect one causes the DUT to respond with an empty
frame containing the stop bit error flag, as seen in Figure 5.7. The stop bit flag can be observed in
the second bit from the left of the first byte. Note the reversed bit order employed in the UART
connection. The stop bit also causes the error LED to turn on, as can be seen in Figure 5.8.

These tests successfully verify that the UART debug interface works as intended for accessing the
FPGA registers by performing both read and write operations. Furthermore, it is proven that the
stop bit error causes a response frame and causes the error LED indicator to turn off.
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Figure 5.7: Mismatching baudrates causing a stop bit error, triggering the transfer of a frame with the
according flag (orange). The stop bit flag can be observed in the second bit of the first byte. Note the
reversed bit order.

Figure 5.8: Mismatching baudrates causing a stop bit error, turning off the error LED routed to diode
D7 on the iWave carrier card (rightmost diode).

5.5.3 Dechirping test
Stimulus is applied using the waveform generator as described above. The software oscilloscope
connects to the HPS without errors, but does not display any signals. Using the UART debug
interface it is revealed that the ADC valid signals have never been active. To further debug the
design, the Intel Signal Tap IP is compiled in. This provides a logic analyzer that can read signals
directly from the FPGA fabric via the on-chip USB Blaster. This further reveals that the 250 MHz
clock delivered by the ADC interface does not tick, indicating an error with the reference design.

The system log in the Linux kernel running on the HPS reveals that the HPS driver has trouble
accessing the fabric via the HPS-FPGA interconnect. This probably makes the HPS driver to
unable to properly set up the ADC, causing the ADC interface to stop its output clock.

Due to the described error, it remains inconclusive whether the signal processing performs as
intended in hardware.
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Discussion

This chapter provides a brief evaluation of various key elements from the design process. A brief
overview over future work is also given.

6.1 Evaluation
6.1.1 Radar selection
The Simrad Halo 20+ pulse compression radar considered for the project has proven itself to be
source of uncertainty for the development. Measuring and characterizing the waveforms showed
that the radars actual sweep bandwidth was 30 MHz, in contrast to the 48 MHz listed in the manual.
Furthermore, it is unknown why the radar only performs upchirps and not downchirps, as discussed
in Section 2.3. As both the technical specifications and internal workings of the radar are unknown,
it has been hard to reverse engineer the radar for the use in this project.

Making use of a simpler radar and extracting clearer requirements would most likely have made
the implementation of the system easier. Alternatively, one could consider to implement a simple
radar using the DAC on the AD-FMCDAQ2 component in addition to the ADC. The FPGA could
handle the needed signal processing to create the radar waveforms.

6.1.2 Hardware selection
The FPGA and ADC selected for the project offered a flexible development platform. The reference
design provided with the evaluation kit significantly shortened the development time by providing
complete ADC interfaces and a working HPS implementation. The JESD204 interface for the ADC
was however not completely documented by Analog Devices on the Arrow Wiki [20]. This was
however complemented by Arrow Electronics offering support on the development kit.

Having such a large FPGA provides a good base that should cover all future development needs.
Due to the low quantity of FPGAs necessary the cost of using a high-end FPGA should be negligible,
especially as it is compatible with the ADC.

6.1.3 Verification toolchain and continuous integration
VUnit has shown itself to be a powerful tool, both for traditional checking, but also for leveraging
the simulation workflow. While it is somewhat less mature than UVVM in the selection of BFMs,
as discussed in Section 5.1, the selection was good enough for this project, requiring only UART,
Avalon and a FIFO.

Using continuous integration (CI) for automatically executing the testbenches upon project changes
proved to be very helpful. Testing often made it possible to quickly detect and fix errors that
appeared after doing small design changes, such as changing signal widths. The full benefit of using
CI could not be utilized, as some testbenches were not self checking. This was the case for the
DSP core testbench, which relied on the designer manually reviewing the output plots. As the CI
pipeline relied on using GHDL some testbenches could not be ran due to Verilog dependencies.
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This can however be solved by setting up a GitLab local runner to execute the testbenches on a
local computer with Modelsim, rather than relying on the GitLab cloud.

The use of CI can be further leverages by using formal verification. This can be used to automatically
verify that the system as a black box performs according to formal requirements, but also requires
that the system is more strictly specified.

6.1.4 Physical test
The physical test of the signal processing was unsuccessful due to a driver issue. However, due to
the extensive simulation and passing compilation the FPGA design is expected to work as intended.
This is further proved by the debug interface working as intended.

6.1.5 Data rates
The reqired uplink data rate of the system was estimated to a minimum of 0.25 Gbit/s in Section 3.4.
However, to add design overhead and flexibility this estimate was increased towards 1.0 Gbit/s.
As the ITU listed only the minimal requirement and Telia only listed their minimum data rate,
measurements must be done to verify what rates can be expected under various conditions. This
is however expected to be difficult to achieve, as the proposed solution in subsection 3.5.2 was
estimated to achieve between 300 Mbit/s and 840 Mbit/s. The estimated data rates also don’t take
the increased dynamic range of the radar signal into consideration, which is currently not part of
the systems specification.

This suggests that it will be difficult to get the system to perform as intended, and that more signal
processing must be done to reduce the data rate.

6.2 Future work
6.2.1 Timing analysis and timing violations
Proper timing analysis and optimizations were largely skipped to create a minimum viable product
in time. As the design grows, place and route will struggle and fail more due to the occupied area
on the FPGA increasing. This in turn increases the distance the signals potentially have to cross
ion one clock cycle, increasing the change of setup time violations on the registers. The Quartus
Timing Analysis already identifies the design to be unstable in its multicorner timing analysis. The
design frequently fails the Slow 0 °C Timing Model. This particular corner case is identified by
excepting the slowest silicon performance for the specific FPGA’s speed grade, combined with slower
delays caused by temperature inversion of the transistors due to low temperature. It also expects
the lowest possible core voltage. While failing one of the corner cases doesn’t stop the design from
working, it provides another uncertainty to both debugging and operation of the system. [11]

6.2.2 DSP block optimization
The design ended up consuming most of the available DSP blocks on the FPGA. This not only
makes it hard to add more signal processing to the design, but also requires the routing tool to
utilize DSP blocks that are spread far apart. The main consumers of DSP blocks are the IQ
demodulator and the dechirper through construction of filters. As these entities perform processing
on both I- and Q-channels of complex signals, any optimization of the number of DSP blocks will
have twice the payoff, which doubles the amount of multipliers available. As the DSP blocks are
optimized FIR filters, a more careful implementation could also save adders by making use of the
multiply-accumulate functionality of the DSP blocks, shown in Figure 6.1. This is called the 18x18
Sum 2 Mode, which in addition to calculating resulta and resultb also adds them in the same clock
cycle.

The IQ demodulator uses DSP blocks for it’s internal halfband filter. The demodulator is used for
both the TX and RX signal, which additionally contains one half band filter for both the I- and
Q-channels of these signals. Removing one DSP block in the filter therefore results in freeing four
DSP blocks in the design. The halfband filter already uses half the number of multipliers than a
conventional lowpass filter, as discussed inn subsection 4.3.2. It is however possible to reduce the
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Figure 6.1: Block diagram of an Arria 10 SoC DSP block.

filter order by carefully examining how much dampening is necessary to avoid aliasing. Furthermore,
the Matlab implementation of the filter is somewhat underoptimized by not being targeted at a
specific FPGA. It also runs at a fairly high 250 MHz, placing it higher at risk for timing errors.

The dechirper is by far the largest consumer of DSP blocks due to the high time-bandwidth product
of the chirp. Due to the clock domain crossing described in subsection 4.3.1, the data is clocked
at a rate much slower than the DSP blocks can be ran. Figure 6.2 shows a solution where the
DSP block performs the multiply and accumulate (MAC) at a much higher clock speed than the
surrounding logic. Two multiplexers are used to feed samples and filter coefficients to the DSP
block. Clocking the data at 100 MHz while running the DSP block at 400 MHz uses four times less
multipliers. Clocking the data at 50 MHz could use eight times less, but at the expense of setting
up and managing yet another clock domain. The DSP block can take in multiple clock sources and
perform the clock domain crossing from fast to slow at the output register [14]. It should be noted
that the fabric surrounding the DSP block must be able to run a 3-bit counter and multiplexers at
400 MHz without timing violations. The Arria 10 FPGA fabric is however rated for this [12].

6.2.3 HPS driver
The development has been mostly focused on creating and verifying the FPGA fabric design.
Therefore the HPS has been neglected and only used as part of the reference design build. The
project lacks a HPS driver that reads data from the FPGA fabric and transfers it to the processing
hub, preferably with a UDP socket via the onboard Ethernet connector. This not only constitutes
creating a Linux kernel driver, but also to potentially modify the fabric-HPS interconnect and build
a Linux kernel with an updated device tree.

6.2.4 More processing on the FPGA
The FPGA provides a powerful platform to do real-time processing of high bandwidth signals.
Depending on future specifications of the overall system, the FPGA can implement more signal
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Figure 6.2: Proposed optimization to reduce the number of DSP blocks used in the design, by having the
DSP block perform multiply and accumulate (MAC) at a much higher clock speed than the surrounding
logic. A counter and two multiplexers are used to feed samples and filter coefficients to the DSP block
running at 400 MHz. The data is clocked by a much slower 50 MHz.

processing to relax the computational load of the processing hub and the data rate of the communi-
cation link. For instance, target detection could be performed on-site and sent to the processing
hub for comparison with the other sites. Such optimizations could include pulse integration of the
radar signal to increase the SNR and decrease the output data rate [33], or the use of compression
algorithms of the processed signal.

6.2.5 Build tools
The FPGA part of the project already employs continuous integration (CI) for verifying the design.
This could easily be expanded to include continuous deployment (DO) by expanding the pipeline
to compile the design and program the FPGA. This saves time for the designer by automatically
using the latest gateware for testing, as well as providing the latest resource and timing reports.
This can be further expanded to automatic hardware tests, as well a building the Linux kernel.

6.2.6 Python model
While the Python models employed by VUnit test the functionality reasonably well, they can be
further improved to give performance indications such as SNR. They can also be used for formal
verification by asserting whether the design has the necessary performance, provided that such
specifications are made. Formal verification could be done on the system level by adding channel
effects such as noise, clutter and fading and measuring output SNR or probability of detection.



Chapter 7

Conclusion

A design was proposed where radar data was sampled from a radars IF stage. Measuring and
characterizing the radar signals of the Simrad Halo 20+ Pulse Compression radar revealed that
the radar transmitted bursts of pulses and chirps. The number of pulses and chirps, as well as the
latter’s length, bandwidth and frequency varied based on the radars range current setting. A design
proposal was made to use an FPGA to sample both the radars RX and TX signals. The TX signal
could then be used to implement a matched filter, which performs the pulse compression on the
received RX signal. Sampling the TX signal takes into account the varying waveform characteristics
for each transmission, which made it possible to update the matched filter for each transmission.

The iWave systems Arria 10 SoC development kit along with the Analog Devices FMCDAQ2
evaluation board were selected for this project. These have proven to be a capable and flexible
development platform, providing the ability to sample and process up to 1 GS/s in real-time. Basing
the remote site data acquisition system on an FPGA also has the benefit of making it possible
to alter and update the signal processing. A suitable 5G modem was also found, but initial data
rate calculations revealed that the data rate is currently too high to be transmitted. More signal
processing should be added to the system to reduce the data rate further.

The proposed design was implemented in the FPGA fabric using VHDL. Simulations show that
the design works, successfully performing IQ demodulation on the RX and TX signals before
performing the dechirping the transmitted signal. The chirp length was reduced to 256 samples due
to consuming all available DSP cores in the FPGA. It was not possible to verify this in hardware
due to an error occurring in a driver related to the FPGA-HPS interconnect.

The project also successfully made use of a continuous integration (CI) pipeline to automatically
run all testbenches on design changes. This was done by using the VUnit testing framework and
the open source GHDL simulator. The project also made use of VUnit to transfer simulation data
to and from the simulation. This successfully enabled rapid verification of signal processing using
the high-level programming language Python rather than VHDL.

The project still lacks customization of the HPS to move the resulting data from the FGPA to the
HPS and transmit it to the processing hub. Further optimizations should also be done on the fabric
design to reduce the consumption of DSP blocks. Specifications of the overall system should be
done before proceeding with further development.
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Appendix A

Avalon MM slave process

Example of the Avalon MM slave process giving the address decoder read and write access to
module registers. This excerpt is taken from the debug module.

1 r e g i s t e r_a c c e s s : process ( c l k )
2 va r i ab l e v_memory_rdata : std_logic_vector (DATA_W − 1 downto 0) := ( othe r s => ’0 ’ ) ;
3 va r i ab l e v_rdata_avail : std_logic ;
4
5 begin
6 i f r i s ing_edge ( c l k ) then
7
8 i f rst_n = ’0 ’ then
9 memory_rdata <= ( othe r s => ’0 ’ ) ;

10 rdata_avai l <= ’ 0 ’ ;
11
12 −− Assign de f au l t va lues
13 debug_value <= C_DEBUG_VALUE;
14 write_reg <= C_WRITE_REG;
15 bl ink_led <= ’ 1 ’ ;
16 else
17
18 −− Always r e s e t v a r i ab l e
19 v_memory_rdata := ( othe r s => ’0 ’ ) ;
20 v_rdata_avail := ’ 0 ’ ;
21
22 −− Read from r e g i s t e r
23 i f (memory_cs and memory_rd) = ’1 ’ then
24 v_rdata_avail := ’ 1 ’ ;
25 case to_integer (unsigned (memory_addr ) ) i s
26 when C_ADDR_DEBUG_VALUE => v_memory_rdata := debug_value ;
27 when C_ADDR_WRITE_REG => v_memory_rdata := write_reg ;
28 when C_ADDR_BLINK_LED => v_memory_rdata (v_memory_rdata ’ low ) :=

bl ink_led ;
29 when C_ADDR_COMMS_ERROR => v_memory_rdata (v_memory_rdata ’ low ) :=

comms_error_sticky ;
30 when othe r s => −− Do nothing
31 v_rdata_avail := ’ 0 ’ ;
32 end case ;
33
34 −− Write to r e g i s t e r s
35 e l s i f (memory_cs and memory_wr) = ’1 ’ then
36 case to_integer (unsigned (memory_addr ) ) i s
37 when C_ADDR_DEBUG_VALUE => debug_value <= memory_wdata ;
38 when C_ADDR_WRITE_REG => write_reg <= memory_wdata ;
39 when C_ADDR_BLINK_LED => bl ink_led <= memory_wdata(memory_wdata ’ low

) ;
40 when othe r s => −− Do nothing
41 end case ;
42
43 end i f ;
44 −− Set s i g n a l to va r i ab l e value
45 memory_rdata <= v_memory_rdata ;
46 rdata_avai l <= v_rdata_avail ;
47 end i f ;
48 end i f ;
49 end process ;

Listing A.1: Process for providing a module with Avalon MM register access.
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Appendix B

IQ Demodulator Sample Sorter

1 sample_sorter : process ( c l k ) i s
2 begin
3 i f r i s ing_edge ( c l k ) then
4 i f rst_n = ’0 ’ then
5 sample_counter <= 0 ;
6 i_un f i l t e r e d <= ( othe r s => ’0 ’ ) ;
7 q_un f i l t e r ed <= ( othe r s => ’0 ’ ) ;
8 f i l t e r_va l i d_ i n <= ’ 0 ’ ;
9 else

10
11 −− S ing l e cy c l e b i t
12 f i l t e r_va l i d_ i n <= ’ 0 ’ ;
13
14 i f val id_in = ’1 ’ then
15
16 i f sample_counter = 0 then
17 i_un f i l t e r e d <= rea l_in ;
18 q_unf i l t e r ed <= ( othe r s => ’0 ’ ) ;
19
20 e l s i f sample_counter = 1 then
21 i_un f i l t e r e d <= ( othe r s => ’0 ’ ) ;
22 q_unf i l t e r ed <= rea l_in ;
23
24 e l s i f sample_counter = 2 then
25 i_un f i l t e r e d <= −rea l_in ;
26 q_unf i l t e r ed <= ( othe r s => ’0 ’ ) ;
27
28 e l s i f sample_counter = 3 then
29 i_un f i l t e r e d <= ( othe r s => ’0 ’ ) ;
30 q_unf i l t e r ed <= −rea l_in ;
31
32 end i f ;
33
34 f i l t e r_va l i d_ i n <= ’ 1 ’ ;
35
36 −− Increment counter
37 i f sample_counter = 3 then
38 sample_counter <= 0 ;
39 else
40 sample_counter <= sample_counter + 1 ;
41 end i f ;
42 end i f ;
43 end i f ;
44 end i f ;
45 end process ;

Listing B.1: Simplified process for sorting the input samples.
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Appendix C

VUnit run file

1 import l o gg ing
2 l ogge r = logg ing . getLogger (__name__)
3
4 l ogg ing . bas i cCon f i g ( l e v e l=logg ing . INFO)
5
6 from vunit import VUnit
7
8 from chirp_radar import ChirpRadar
9 radar = ChirpRadar ( )

10
11 import dech i rpe r . tb . dechirper_sim as dechirper_sim
12 import iq_demodulator . tb . iq_demod_sim as iq_demod_sim
13 import dsp_core . tb . dsp_core_sim as dsp_core_sim
14
15
16 # Create VUnit i n s tance by pars ing command l i n e arguments
17 vu = VUnit . from_argv ( )
18 vu . enab le_locat ion_preproces s ing ( )
19 vu . add_veri f icat ion_components ( )
20
21 # Create l i b r a r y ’ l i b ’
22 l i b = vu . add_library ( " l i b " )
23
24 # Add a l l f i l e s ending in . vhd in cur rent working d i r e c t o r y to l i b r a r y
25 l i b . add_source_f i l e s ( " ./∗/ s r c /∗ . vhd " )
26 l i b . add_source_f i l e s ( " ./∗/ tb /∗ . vhd " )
27
28
29 # Altera dependenc ies f o r DCFIFO
30 a l t e r a = vu . add_library ( " a l t e r a " )
31 a l t e r a . add_source_f i l e s ( " /opt/ intelFPGA_lite /19 .1/ quartus / l i b r a r i e s /vhdl / a l t e r a /∗ . vhd " )
32
33 a l te ra_ver = vu . add_library ( " a l t e ra_ver " )
34 a l t e ra_ver . add_source_f i l e s ( " /opt/ intelFPGA_lite /19.1/ quartus /eda/ sim_lib /

a l t e r a_pr im i t i v e s . v " )
35
36 altera_mf = vu . add_library ( " altera_mf " )
37 altera_mf . add_source_f i l e s ( " /opt/ intelFPGA_lite /19 .1/ quartus / l i b r a r i e s /vhdl / altera_mf /∗ .

vhd " )
38
39 altera_mf_ver = vu . add_library ( " altera_mf_ver " )
40 altera_mf_ver . add_source_f i l e s ( " /opt/ intelFPGA_lite /19.1/ quartus /eda/ sim_lib / altera_mf . v "

)
41
42 # Add I n t e l s imu la t i on model f o r c l o ck domain c r o s s i n g FIFO (DCFIFO)
43 cdc_f i fo_f i fo_180 = vu . add_library ( " cdc_f i fo_f i fo_180 " )
44 cdc_f i fo_f i fo_180 . add_source_f i le ( " . / cdc_f i f o / f i f o_180 /sim/ cdc_fi fo_f i fo_180_jn2auoq . v " )
45
46 cdc_f i f o = vu . add_library ( " cdc_f i f o " )
47 cdc_f i f o . add_source_f i l e ( " . / cdc_f i f o /sim/ cdc_f i f o . vhd " )
48
49
50 # Add pre_conf ig and post_check to te s tbenches
51 tb_dechirper = l i b . test_bench ( " tb_dechirper " )
52 tb_dechirper . set_pre_conf ig ( dechirper_sim . pre_conf ig )
53 tb_dechirper . set_post_check ( dechirper_sim . post_check )
54 tb_dechirper . set_sim_option ( ’ modelsim . i n i t _ f i l e . gui ’ , ’ . / dsp_core/ tb/wave . do ’ )
55
56 tb_iq_demod = l i b . test_bench ( " tb_iq_demod " )
57 tb_iq_demod . set_pre_conf ig ( iq_demod_sim . pre_conf ig )
58 tb_iq_demod . set_post_check ( iq_demod_sim . post_check )
59
60 tb_dsp_core = l i b . test_bench ( " tb_dsp_core " )

57
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61 tb_dsp_core . set_pre_conf ig ( dsp_core_sim . pre_conf ig )
62 tb_dsp_core . set_post_check ( dsp_core_sim . post_check )
63 tb_dsp_core . set_sim_option ( ’ modelsim . i n i t _ f i l e . gui ’ , ’ . / dsp_core/ tb/wave . do ’ )
64
65 # Run vunit func t i on
66 vu . main ( )



Appendix D

Python UART interface

1 import os
2 import l o gg ing
3 import s e r i a l
4
5 l ogg ing . bas i cCon f i g (
6 l e v e l=logg ing . INFO,
7 format=’%(asct ime ) s ␣%(name)−12s ␣%(levelname )−8s ␣%(message ) s ’ )
8
9 l ogg e r = logg ing . getLogger (__name__)

10
11 BYTES_PER_FRAME = 5
12 SERIAL_PORT = ’ /dev/ s e r i a l /by−id /usb−FTDI_FT232R_USB_UART_A904DP5X−i f 00−port0 ’
13 BAUDRATE = 115200
14
15 r e g i s t e r_ad r e s s e s = {
16 # About module
17 ’ git_hash ’ : 0x0000 ,
18 ’ bui ld_date ’ : 0x0001 ,
19 ’ build_time ’ : 0x0002 ,
20 # Debug Reg i s t e r
21 ’ debug_reg i s ter ’ : 0x0100 ,
22 ’ write_reg ’ : 0x0101 ,
23 ’ b l ink_led ’ : 0x0102 ,
24 ’ comms_error ’ : 0x0103 ,
25 # DSP Module
26 ’ chirp_length ’ : 0x0200 ,
27 ’ decimation_rate ’ : 0x0201 ,
28 ’ ch0_data ’ : 0x0202 ,
29 ’ ch1_data ’ : 0x0203 ,
30 ’ ch0_was_valid ’ : 0x0204 ,
31 ’ ch1_was_valid ’ : 0x0205 ,
32 ’ radar_tr igged ’ : 0x0206 ,
33 ’ ch0_iq_demod_was_valid ’ : 0x0207 ,
34 ’ ch1_iq_demod_was_valid ’ : 0x0208 ,
35 ’ dechirper_was_val id ’ : 0x0209 ,
36 ’ decimator_was_valid ’ : 0x0210 ,
37 }
38
39 class FpgaInter face :
40
41 def __init__( s e l f ) :
42 s e l f . s e r = s e r i a l . S e r i a l ( port=SERIAL_PORT, baudrate=BAUDRATE, timeout=1)
43
44 def wr i t e_r e g i s t e r ( s e l f , addr , data ) :
45 " " " Write data to r e g i s t e r " " "
46 tx_frame = _encode_frame ( addr=addr , data=data , wr i t e=True )
47 s e l f . s e r . wr i t e ( tx_frame )
48
49 def r ead_reg i s t e r ( s e l f , addr ) :
50 " " " Read data from r e g i s t e r address . " " "
51 # Create and send a read reques t
52 tx_frame = _encode_frame ( addr=addr , data=0, wr i t e=False )
53 s e l f . s e r . wr i t e ( tx_frame )
54
55 # Get response
56 rx_frame = s e l f . s e r . read (BYTES_PER_FRAME)
57
58 i f rx_frame == b ’ ’ :
59 raise IndexError ( " Zero␣ bytes ␣ r e c e i v ed ␣ from␣FPGA. " )
60
61 addr , data = _decode_frame ( rx_frame )
62 return addr , data
63

59



APPENDIX D. PYTHON UART INTERFACE 60

64 def __del__( s e l f ) :
65 " " " Close s e r i a l connect ion when in s tance i s de l e t ed . " " "
66 s e l f . s e r . c l o s e ( )
67
68
69 def _encode_frame ( addr , data , wr i t e ) :
70 " " " Create frame . Returns bytearray . " " "
71
72 frame = bytearray ( )
73
74 frame += int ( wr i t e ) . to_bytes ( l ength=1, byteorder=’ big ’ )
75 frame += addr . to_bytes ( l ength=2, byteorder=’ big ’ )
76 frame += data . to_bytes ( l ength=2, byteorder=’ big ’ )
77
78 return frame
79
80
81 def _decode_frame ( frame ) :
82 " " " Decodes frame c on s i s t i n g o f bytes to i n t e g e r s . " " "
83
84 try :
85 header = frame [ 0 : 1 ]
86 addr = frame [ 1 : 3 ]
87 data = frame [ 3 : 5 ]
88 except IndexError :
89 l ogg e r . except ion ( "Frame␣ too ␣ shor t . " )
90
91 header = int . from_bytes ( header , byteorder=’ big ’ )
92 addr = int . from_bytes ( addr , byteorder=’ big ’ )
93 data = int . from_bytes ( data , byteorder=’ big ’ )
94
95 print ( ’ header ’ , header )
96 print ( ’ addr ’ , hex( addr ) )
97 print ( ’ data ’ , hex( data ) )
98 i f header == 3 :
99 raise RuntimeError ( "FPGA␣ responded␣with␣ stop ␣ b i t ␣ e r r o r . ␣Check␣your␣baudrate . " )

100
101 return addr , data
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