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Abstract 

Due to sudden and considerable flow fluctuations during hydropeaking operation, 

forecasting of inflow to hydropower reservoirs at high temporal resolution (e.g. hourly) 

is required. Prediction of streamflow for both gauged and ungauged basins using 

Precipitation-Runoff (P-R) models is widely employed for operational purposes. 

However, there are various challenging factors and inherent uncertainties in the P-R 

modelling. Moreover, for the boreal Norwegian catchments there are research gaps for 

prediction of hourly streamflow related to identification of suitable parameterizations, 

model structures and regionalization methods for prediction in ungauged basins (PUB). 

Therefore, to address some of the research gaps, comprehensive calibration and post-

calibration comparative evaluation of the performances of the different runoff response 

routines for both catchment and regional scale modelling are required. This is required 

to improve the runoff simulation based on observed input climate forcing (simulation 

mode) and hence for the improvement of hydrological forecast (forecast mode). 

    The objective of the first paper (P1) in this study was the identification of six 

different cases of explicitly resolved or probabilistic parameterizations of the spatial 

heterogeneity of a single state subsurface storage capacity. We conducted semi-

distributed and distributed simulations based on the ‘fill-and-spill’ saturation excess, 

infiltration excess and subsurface drainage runoff mechanisms. Equivalent 

performances of simulation from the different cases indicate the unidentifiably of the 

parameterizations and hence a preference for a parsimonious simple distributed 

parameterization. Identification requires more representative input climate data than a 

mere calibration problem. In addition, calibration only to streamflow data cannot fully 

identify the parameterizations.  

    In light of the findings from the first paper, we conducted a study on identification of 

parametrical parsimonious and more complex configurations of the widely used 

conceptual Hydrologiska Byråns Vattenbalansavdelning (HBV) runoff response routine 

in the second paper (P2). Despite equivalent streamflow simulations for the tested HBV 

variants, a parametrical parsimonious HBV routine (HBV-Parsim) provided better 

parameter identifiability and more reliable baseflow simulation. In the other variants, 

considerable interactions between the soil moisture accounting and the response routine 
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parameters and compensation between the outflow from the upper reservoir and the 

baseflow from the lower reservoir affect the reliability of the simulation. Hence, 

evaluation of the reliability of internal simulations of baseflow and soil moisture by the 

widely used HBV routines against tailor-made analytical methods or observations is 

necessary. 

    Inspired by the preference to parsimony in P1 and P2 and the compensation between 

the fluxes from multiple storage reservoirs of the conceptual model in P2, our objective 

in P3 was geared towards the evaluation of the performance of a distributed version of a 

‘top-down’ parsimonious single storage routine (hereafter named Kirchmod). We 

applied the principle of catchments as simple dynamical systems following Kirchner 

(2009) for a macroscale (3090 km2) mountainous catchment of considerable runoff 

delay compared to the hourly simulation. In this case, we both set the response routine 

parameters by estimation from streamflow recession analysis and by calibration. We 

obtained simulated streamflow hydrographs and flow duration curves that are in good 

agreement with the observed and transferability of the optimal parameter sets to the 

interior subcatchments validated the model. However, the parameter calibration 

provides slightly better simulation of peak flows than estimation from the recession 

analysis. In addition, the various sources of uncertainty in parameter estimation needs 

thorough assessment. There is no marked influence of the runoff delay due to the 

correlation among the free parameters, which indicates problems of parameter non-

identifiability even for the parsimonious routine.  

    Based on the findings from the catchment scale performances of the P-R response 

routines in P1, P2 and P3, we wished to address the issues of Prediction in Ungauged 

Basins (PUB) through multi-model identification of different regionalization methods 

on 26 catchments in a mid-Norway study region in P4. We found that the best 

performing regionalization methods for the catchments vary among the model structures 

and evaluation metrics. However, based on the regional performances, the 

regionalization methods based on the single-donor physical similarity and the multi-

donor regional calibration corresponding to maximum regional weighted average 

(MRWA) performance measures (PM) performed better than the nearest neighbor and 

regional median parameters. The lack of data on the subsurface physical attributes and 
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high- density hourly hydro-climatic gauging networks for the region can affect the 

performances of the regionalization methods, which needs scrutiny in future endeavors. 

    The fifth objective was the identification of distributed P-R response routines relevant 

to operational purposes based on a multi-basin (26 catchments) local and regional 

calibration in P5. The best performing model structure(s) vary among the catchments 

and the evaluation metrics and hence there is no unique model structure that performs 

best for all catchments in the region. However, the Kirchmod followed by the BGM 

perform better than the various configurations of the HBV routine for the majority of 

the catchments and in terms of the regional calibration (MRWA) for the PUB. 

Therefore, flexible models and a multi-basin modelling framework, which allow 

identification of models for hourly simulation among a pool of plausible options for 

several catchments in the region, is better than the common single catchment model for 

operational purposes. 

    In P1 to P5, we observed the challenges in identifying a unique regional P-R response 

routine due to the uniqueness of catchments runoff response and various sources of 

uncertainties. The last objective of the thesis was the development of data based 

statistical model and comparative evaluations against the best performing P-R response 

routine for hourly prediction in an ungauged and regulated basin for ecological 

applications in P6. A simple regional regression model based on the relationship among 

streamflow percentiles and catchment drainage areas, and regional transfer of 

streamflow information to the nearest neighbor catchment performed better than the 

MRWA based transfer of model parameters using the Kirchmod. We found the simple 

regional regression model to be useful to predict a natural time series of streamflow in a 

regulated river to derive ecologically relevant streamflow metrics, for assessing 

hydrological alterations due to regulation and hydropeaking and environmental flows. 
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Chapter 1 INTRODUCTION 

Context and motivation 

Anticipating increased energy production from unregulated and intermittent renewable 

energy sources in the European power market, the Norwegian hydropower industry 

envisages utilization of the large storage capacity of reservoirs for hydropeaking. 

Therefore, the need for sustainable use of water resources for hydropower production is 

becoming even more important due to increased anthropogenic pressure on the 

resources. To achieve this, prediction of inflow to storage reservoirs are important for 

optimal utilization and an environmental friendly management. Both single catchment 

and regional scale predictions based on continuous simulation of streamflow by 

precipitation-runoff (P-R) models on a daily temporal resolution have wide and still 

evolving applications within hydrology. However, the hydropeaking operation would 

require improved inflow forecasting for short-term (e.g. hourly) peaking operation, 

flood management and assessments of negative ecological impacts of the operation. In 

addition, using parameters calibrated for a coarser temporal resolution for prediction of 

hourly streamflow creates an additional source of uncertainty in the hourly prediction. 

    In real-time forecasting for operational purposes, the accuracy of forecast is highly 

affected by the uncertainties in the simulation relevant to input data, parameter 

calibration and model structure and uncertainties in the forecast for instance due to 

weather forecast and model states at the start of forecast. Therefore, improved 

modelling approaches that allow opportunities for better representation of the spatial 

variability of input climate forcing especially of the precipitation variability in snow 

dominated and high altitude regions and utilization of available data from grid-based 

measurements would be necessary. Current applications of spatially distributed 

(gridded) models for scenario assessment of the impacts of land use and climate change 

are common. However, there are growing interests towards utilization of distributed 

precipitation-runoff models for prediction purposes and inclusion to a real-time 

forecasting tool. Therefore, the potential utilities of distributed precipitation-runoff 

model algorithms for improved prediction of hourly runoff require thorough 

investigations. Identification of parameterization, model structure and modelling 

approaches that better simulate the dominant hydrological processes for hourly runoff 
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responses based on observed input climate forcing (simulation mode) and hence a 

potential for better hydrological forecast (forecast mode) are required through 

comprehensive calibration and post-calibration comparative evaluations, which are the 

focus of this thesis.   

    Precipitation-runoff modelling entails different procedures for transformation of 

precipitation to runoff and hence several factors affect the performance. The major 

factors are the quality of climate forcing, parameterization of spatial heterogeneities and 

issues of scales, model structure and procedures related to model calibration and 

validation. The quality of the climate forcing and streamflow data used for model 

calibration is a crucial factor that affects calibration and simulation performance. 

Explicit or probabilistic parameterization of grid-to-grid heterogeneities and 

probabilistic parameterization of subgrid or subelement scale heterogeneities involve 

the issues of selection of spatial scale and parametrical parsimony versus complexity. 

Due to the uniqueness of catchments, the performance of the model structures that are 

different in terms of conceptualizations and modelling paradigms could be markedly 

different for different catchments. The model calibration involves calibration 

algorithms, objective functions, performance measures, parameter identifiability and 

uncertainty whereas the model validation involves temporal and spatial transferability of 

the calibrated parameter set to interior catchments or homogeneous catchments in the 

region.  

    However, prediction of streamflow based on at-site or local calibration of 

precipitation and streamflow relationships is possible only for gauged basins, where 

streamflow records of sufficient length is available. This can be a challenging problem 

in hydrology particularly when catchments contributing to the reservoir inflow are 

ungauged or poorly gauged. In addition, it is difficult to predict natural flow in many 

regulated rivers for assessment of flow alterations and impacts on the ecological 

integrity. Therefore, there need to be methods available for prediction of streamflow 

contributions for ungauged basins. In this regard, the issues of Prediction in Ungauged 

Basins (PUB) (Sivapalan, 2003) have become an active research area in hydrology 

especially during the decade of PUB (Hrachowitz et al., 2013). However, the focus has 

been mainly on prediction with a daily or coarser temporal resolution.  
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    Therefore, prediction in ungauged basins for hourly temporal resolution through 

regional calibration or other regionalization techniques require a thorough assessment. 

In addition to the PUB, the regional calibration allows for input data augmentation by 

utilizing all the available data in the region and multi-basin based evaluation of the P-R 

response routines. However, regional scale prediction by utilizing the P-R response 

routines through transfer of model parameters is a challenging task due to the 

heterogeneities in catchments runoff response, the inherent uncertainties in input data 

and limitations in parameter calibration procedures. Therefore, comprehensive attempts 

for identification of more suitable P-R response routines based on both local and 

regional calibration and identification of regionalization methods for the PUB are very 

important. In addition, investigation of the potential utility of statistical models for 

hourly prediction in ungauged basins allows data based transfer of information, which 

avoids the challenges associated to calibration of the P-R routines. 

Current state of research and research questions 

There are several studies on precipitation-runoff models for forecasting purposes in 

different geographic zones. Some examples are the Probability Distributed model or 

PDM model (Moore et al., 2005; Moore, 2007) for United Kingdom, the HBV model 

e.g. Huttunen and Vehvilainen (2001) for Finland, Kobold and Brilly (2006) for 

Slovenia, Blöschl et al. (2008) for Austria, Olsson and Lindström (2008) for Sweden, 

orman et al. (2009) for Turkey, Renner et al. (2009) for Rhine basin, Engeland et al. 

(2010) for northern Norway and Engeland and Steinsland (2014) for south-western 

Norway, the TOPKAPI model (Bartholmes and Todini, 2005) for Italy and multi-

models (Velàzquez et al., 2011) for France.      

    However, many of the previous studies conducted model calibration and forecast at 

daily time scales while the hydropeaking operation requires forecasts for short-term 

peaking operation (e.g. hourly). Several studies indicated the time scale dependencies of 

conceptual model parameters. Kavetski et al. (2011) investigated the time scale 

dependencies of information content of data, parameter calibration and identifiability, 

quick flow and hydrograph peak simulation. Bastola and Murphy (2013) illustrated 

considerable loss in performance by using parameters calibrated for a daily streamflow 

for simulation of hourly streamflow, which introduces additional sources of uncertainty 
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to the hourly prediction. Therefore, even if there is probably lack of hourly records from 

high-density hydrometric networks compared to the daily resolution, there are clear 

advantages of hourly prediction based on model parameters calibrated utilizing the 

hourly observations. Regarding the spatial scale, most of the previous forecasting 

models were lumped conceptual models as noted in the distributed model 

intercomparison project or DMIP (Smith et al., 2004; Reed et al., 2004). Further, Smith 

et al. (2012) noted an expanded use of spatially distributed watershed models by the US 

National Weather Service (NWS). Therefore, there are several open research questions 

pertinent to the utility of spatially distributed P-R models for hourly prediction for 

operational purposes in the boreal climate regime and landscape features. 

    However, thorough diagnostic evaluation of the behavior of the P-R models in 

simulation mode is indispensable since the quality of real-time forecast is dependent on 

the process simulation (e.g. Bell and Moore, 1998; Refsgaard, 1997). The simulation 

performance of the P-R models is subject to uncertainties from various sources, which 

include climate forcing and streamflow observations used for the calibration, model 

structure, parameter calibration, spatial scales for parameterization of the spatial 

heterogeneities and temporal scales of observations. Moreover, the discrepancy between 

optimal rainfall-runoff models for engineering purposes and optimal rainfall-runoff 

models for scientific investigations of the overall basin behavior as noted by Wagener 

and McIntyre (2005) requires further research progress.  

    Continuous simulations of streamflow in different climate regimes for the PUB based 

on different regionalization methods to mention a few include regional calibration (e.g. 

Fernandez et al., 2000; Beldring et al., 2003; Engeland et al., 2006), parameter 

averaging (e.g. Kokkonen et al., 2003), nearest neighbor (e.g. Merz and Blöschl, 2004; 

Parajka et al., 2005; Oudin et al., 2008), physical similarity (e.g. McIntyre et al., 2005; 

Reichl et al., 2009) and regression (e.g. Bárdossy, 2007). However, the majority of the 

works used lumped conceptual models at daily or coarser temporal scales. In addition, 

regionalization for hourly prediction in boreal catchments is not common in literature. 

Moreover, the regional modelling offers additional advantages of multi-basin based 

comprehensive evaluation of predictions. Therefore, the main research questions lie in 

the identification of the distributed Precipitation-Runoff routines for better simulation of 

hourly runoff response based on both catchment and regional scale modelling towards a 
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potential improvement in the forecast mode. We classified the work in this thesis in to 

six main objectives presented in six papers, where the first three papers are based on 

catchment scale modelling and the last three are at both catchment and regional scales.  

Research papers  

The lists of papers (P1 to P6), which form this thesis, are as listed below: 

P1: Evaluation of different parameterizations of the spatial heterogeneity of 

subsurface storage capacity for hourly runoff simulation in boreal mountainous 

watershed (under review). 

Teklu T. Hailegeorgis, Knut Alfredsen, Yisak S. Abdella and Sjur Kolberg 

P2: Hailegeorgis, T. T. and Alfredsen, K. Comparative evaluation of performances 

of different conceptualizations of distributed HBV runoff response routines for 

prediction of hourly streamflow in boreal mountainous catchments.  

Hydrology Research (IWA Publishing), article in press, 2014.  

http://www.iwaponline.com/nh/up/default.htm  

P3: Distributed hourly runoff computations in mountainous boreal catchments 

from ‘catchments as simple dynamical systems’ storage-discharge relationships 

(under review). 

Teklu T. Hailegeorgis, Knut Alfredsen, Yisak S. Abdella and Sjur Kolberg  

P4: Evaluation of regionalization methods for hourly continuous streamflow 

simulation using distributed models in boreal catchments (under review). 

Teklu T. Hailegeorgis, Yisak S. Abdella, Knut Alfredsen and Sjur Kolberg  

P5: Multi-basin and regional calibration based identification of distributed 

Precipitation-Runoff models for prediction of hourly streamflow on 26 catchments 

in mid-Norway (under review). 

Teklu T. Hailegeorgis and Knut Alfredsen  

P6: Regional statistical and Precipitation-Runoff modelling for ecological 

applications: prediction of hourly streamflow in regulated rivers and ungauged 

basins (under review). 

Teklu T. Hailegeorgis and Knut Alfredsen 
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Thesis objectives  

The general objectives of the research are the development, calibration and evaluation 

of different distributed precipitation-runoff response routines for prediction of hourly 

streamflow. The focuses of the work are the identification of parameterizations of 

spatial heterogeneity, model configurations and structures, and regionalization methods. 

We also performed comparative evaluations of the regional calibration of the P-R 

response routines and the regional regression model for the PUB. Six sub-objectives 

were specified that together answer the main objective. Each of these is analyzed and 

presented in the six scientific papers P1 to P6. The specific objectives for each paper 

can be summarized as: 

O1: Investigation of the performance of parameterizations of the spatial heterogeneity 

of subsurface storage capacity across different spatial scales for semi-distributed and 

distributed hourly simulation of streamflow; 

O2: Investigation of the performance of parametrical parsimonious and more complex 

configurations of a distributed conceptual runoff response routine for hourly simulation 

of streamflow including parameter identifiability and uncertainty; 

O3: Evaluation of the performance of a distributed ‘top-down’ response routine for 

hourly runoff simulation for a macroscale catchment, when parameters are both 

estimated from streamflow recession and calibrated based on observed streamflow; 

O4: Comparative evaluation of the performance of different regionalization methods for 

the PUB based on multi-models, different performance measures and evaluation 

metrics; 

O5: Identification of distributed P-R models for prediction of hourly streamflow 

relevant to operational purposes based on multi-basin and regional calibration; and 

O6: Developing a regional regression model for prediction of natural hourly streamflow 

in regulated and ungauged rivers for ecological applications, and comparison with the 

regional calibration of the P-R model. 

Thesis organization 

The first chapter outlines the context, motivation and objectives of the thesis, current 

state of research and lists of the papers that forms the Thesis. Chapter 2 provides a brief 
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description of the study region, input data and the general methods and tools used. 

Chapter 3 presents summary of results from the six papers (P1 to P6). Chapter 4 

summarizes the conclusions based on the findings of the research and presents 

perspectives for future research for the study region. Appendix A contains the six 

research papers, which form the thesis, and Appendix B contains co-authors and 

publishers’ declarations. 
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Chapter 2 STUDY REGION, DATA AND RESEARCH METHODOLOGY 

Study region and data 

The study region consists of 26 unregulated gauged catchments ranging in size from 39 

to 3090 km2 in boreal mid Norway (catchments no. 1 to 26 in Figure 2). We also used 

the Lundesokna catchment, where a regulated hydropeaking river exists, for the study in 

paper 6. The dominant land uses/land covers in the study area are mountains above 

timberline and forests, and the predominant soil or loose material is glacial tills. For the 

P1, P2 and P3, we implemented catchment scale modelling by utilizing data from 4 

streamflow gauging stations inside the Gaula watershed and 12 nearby precipitation-

gauging stations (Figure 1). The catchments are catchment nos. 3, 6, 8 and 14 in Figure 

2. For the P4, P5 and P6, we implemented regional scale modelling on 26 catchments 

(Figure 2) using precipitation and temperature data from 44 and 54 hourly stations, 

wind speed data from 40 stations and global radiation and relative humidity data from 

12 stations in the region. We used hourly records from 2008 to 2010 for calibration. We 

obtained the streamflow, hypsography and land use data from the Norwegian Water 

Resources and Energy Directorate (NVE), the climate data from the Norwegian 

Meteorological Institute, Statkraft, TrønderEnergi, Nord Trøndelag Elektrisitetsverk 

(NTE) and Bioforsk, data on loose material (soil) and bedrock geology from the 

Norwegian Geological Survey (http://www.ngu.no) and stream networks map from the 

Norwegian Mapping Authority. 

Research methodology 

For the P-R modelling, we performed the local and regional calibration using 

continuous streamflow series. We used the Nash-Sutcliff efficiency (NSE) or R2 and for 

a log-transformed series (NSEln) or R2ln performance measures (Nash and Sutcliffe, 

1970) and various runoff signatures for comparative evaluations of the runoff response 

routines for hourly prediction. We also developed and evaluated a regional regression 

model for prediction of hourly streamflow in regulated ungauged basin. For all the P-R 

models, we used the ENKI modular hydrological modelling framework (Kolberg and 

Bruland, 2012) for model set-up, parameter calibration and runoff simulation. ENKI 

allows building a model from a library of routines for model calibration and simulation, 
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making it very flexible for analyzing various combinations of routines and for testing 

new developments. New routines were coded and compiled as dynamic-link libraries 

(dlls) using the Microsoft Visual Studio and dynamically added to the ENKI 

framework. The required input static maps such as elevation and land use were prepared 

in ArcGIS (http://www.esri.com) and converted to Idrisi raster files using Geospatial 

Data Abstraction Library (GDAL) for use as input in ENKI. The input and output 

databases in ENKI are based on the NetCDF. ENKI allows import of TAB-delimited 

text file input time series and export of output time series for instance to MS-excel for 

further processing of the results. We interpolated the input climate forcing from gauging 

stations on a 1x1 km2 grids using the Inverse Distance Weighted (IDW) interpolation 

routine in ENKI. We used the Matlab software for development and evaluation of the 

regional regression model (P6).  

 

 
Figure 1. Location map of the Gaula catchment, precipitation and streamflow gauging 
stations, and elevation map (DEM) used for the local calibration (P1, P2 and P3). 
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Figure 2. Location map of the study region and catchments (nos. 1 to 26 and the 
Lundesokna (sokna) catchment, and precipitation and streamflow gauging stations used 
for P4, P5 and P6.  
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Chapter 3 SUMMARY OF MAIN RESULTS  

One of the main challenges in precipitation-runoff modelling is identification of suitable 

parameterization for instance discretization techniques and scales of representation of 

spatial heterogeneities either explicitly or by a probability distribution. We investigated 

the performance of six different cases of parameterizations based on the probability-

distributed model (Moore, 1985) for representing the spatial heterogeneity of the 

subsurface storage capacity for semi-distributed (elements) and gridded (1x1 km2) 

simulation of hourly streamflow. Table 1 shows summary of the key features of the six-

parameterization cases. 

Table 1. Summary of the key features of the six parameterization cases. 

Cases 

Scales of representation of spatial heterogeneity and computation or calibration 
Heterogeneity 

by a 
probability 
distribution 

Smax  
Shape parameter ‘b’ 
of the distribution 

Runoff 
generation 
(response) 

STS 
runoff 
routing 

1 Subcatchment Catchment 
(calibrated) 

Catchment 
(calibrated) Element Grid  

2 Subelement Element (from 
topographic gradient) 

Element (from 
topographic gradient) Element Grid  

3 - Catchment 
(calibrated) - Element Grid  

1G Subgrid  Catchment 
(calibrated) 

Catchment 
(calibrated) Grid Grid  

2G Subgrid Grid (from 
topographic gradient) 

Grid (from 
topographic gradient) Grid Grid  

3G - Catchment 
(calibrated) - Grid Grid  

Smax: maximum subsurface storage capacity and STS: source-to-sink routing. 

    We calibrated the routines for the Gaulfoss catchment and transferred the calibrated 

parameters to interior catchments of Eggafoss, Hugdal bru and Lillebudal bru (Figure 1) 

for ‘proxy basin’ based model validation. Calibration of the six-parameterization cases 

provided satisfactory but indistinguishable simulation of the hourly runoff hydrographs 

(Figure 3 and Figure 4) and to some extent reproduced the temporal variability of 

streamflow in terms of the flow duration curves (FDCs). Spatial transfer of the 

calibrated parameters reproduced hydrographs at the two interior catchments with 

relatively representative climate data (Eggafoss and Hugdal bru), which indicate the 

validation of the models.  
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Figure 3. Hourly observed and simulated streamflow hydrographs for part of the 
calibration period corresponding to the maximum Nash-Sutcliffe efficiency (R2) for 
Gaulfoss for cases 1 to 3. 
 

 

Figure 4. Hourly observed and simulated streamflow hydrographs for part of the 
calibration period corresponding to maximum R2 for Gaulfoss for cases 1G to 3G. 
     
    Unidentifiability and equifinality of parameters related to overparameterization pose 

challenges to calibration and prediction by precipitation-runoff models. In light of the 

findings in P1 regarding the equivalent performances by the simple and more complex 
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parameterizations, we wanted to evaluate the simulation performances of parametrical 

parsimonious versus more complex configurations of the HBV runoff response routines, 

which is lacking for hourly simulation using the widely used HBV model in the Nordic 

watersheds. The evaluated model configurations are the distributed (1x1 km2) standard 

HBV from the Swedish Meteorological and Hydrological Institute (SMHI) (Bergström, 

1976) or HBV-SMHI, a non-linear storage-discharge relationship HBV (HBV-

Nonlinear), a standard soil-moisture accounting and linear reservoir, and parsimonious 

runoff response routine (HBV-Soil Parsim R) and a parsimonious and linear 

configurations of both the soil-moisture accounting and the runoff response routines 

(HBV-Parsim). We calibrated the routines using four streamflow gauging stations in the 

Gaula watershed (Figure 1) and conducted spatial, temporal and spatio-temporal 

validation of the routines through parameter transfer among the catchments.  

    The different configurations provided nearly indistinguishable simulation of 

streamflow hydrographs (Figure 5a&b). However, the HBV-Parsim routine provided 

reliable baseflow simulation (Figure 5c) complying with the high baseflow contribution 

to the streamflow for the study catchments as demonstrated by analytical baseflow 

separation techniques in this study and in previous studies (e.g. Beldring et al., 2000). 

This complies with the principle of parsimony (Jakeman, 2000) and the simplest model 

is more likely to be correct among models of equal performance (Forster, 2000). The 

reliable baseflow simulation by the HBV-Parsim was obtained due to the maximum soil 

moisture storage capacity or the field capacity (FC) assigned based on the land use 

classes. In the other configurations, we calibrated the FC as a free parameter, which 

resulted in considerable negative correlation between the FC and the percolation rate 

and hence a decrease in the baseflow. In addition, the compensation between the 

outflow from the upper reservoir and the baseflow from the lower reservoir resulted in 

equivalent prediction of the total streamflow, which masked the lack of realism in the 

internal simulation of the baseflow.  
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(a)                                                                (b) 

 
(c) 

Figure 5. (a) and (b) streamflow hydrographs for part of calibration period, and (c) 
baseflow hydrographs for the calibration period for Gaulfoss. 
 
    The models and equations used for the P1 and P2 were mainly conceptual types. In 

addition, the basis of some of the physical equations used in P1 is scaling-up of the 

theories of small-scale processes or the ‘bottom-up’ modelling paradigm. The non-

identifiability of parameterizations and model configurations, and problems of 

compensation between the runoff fluxes substantiates the need for parsimonious model 

structure and alternative modelling paradigm. In P3, we wanted to evaluate a 

parsimonious distributed runoff response routine based on a ‘top-down’ modelling 

paradigm. We evaluated the performance of a response routine based on functional 
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relationships between catchment storage and discharge. The routine is named Kirchmod 

in the further discussion. We estimated the parameters from streamflow recession 

analysis following the method outlined by Kirchner (2009) and as an alternative we 

tested the case where the response routine parameters of Kirchmod are calibrated. We 

estimated and calibrated the parameters for a macroscale (3090 km2) Gaulfoss 

catchment and validated through spatial transfer to interior catchments of Eggafoss, 

Hugdal bru and Lillebudal bru (Figure 1).  

    The routine provided simulated streamflow hydrographs and flow duration curves 

that are in good agreement with the observed (Figure 6 and Figure 7) while simulation 

from parameters estimated from recession analysis resulted in slight underestimation of 

the peak flows (Figure 7). In addition, there are various sources of uncertainties in 

parameter estimation from the recession analysis, which requires an assessment of 

parameter uncertainty and identifiability to evaluate the reliability of inferences and 

predictions. However, the results obtained from the study generally encouraged further 

evaluation of the ‘top-down’ routine for operational purpose based on larger number of 

catchments or the regional scale modelling. 

 
Figure 6. Hydrographs for catchment no. 6 (Gaulfoss) from calibration corresponding 
to max NSE (response routine parameters calibrated). 
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Figure 7. Hydrographs for catchment 6 (Gaulfoss) from calibration corresponding to 
max NSE (response routine parameters estimated from streamflow recession). 
     
    In the P1, P2 and P3, we performed the parameter calibration based on catchment 

scale modelling and validation of the models based on parameter transfer to interior or 

neighboring catchments following the ‘proxy-basin’ test. However, regional scale 

modelling or regionalization studies for prediction in ungauged basins with an hourly 

resolution are important but are not common for the boreal catchments. Therefore, in P4 

we evaluated a regional scale modelling approach based on calibration of 26 

unregulated catchments in boreal mid-Norway with size ranging from 39 to 3090 km2 

using the Kirchmod, the HBV and the Basic Grid Model or BGM (Bell and Moore,  

1998) based model structures. We evaluated four regionalization methods, which 

include the regional calibration in terms of the parameter vectors that yield the 

maximum regional weighted average (MRWA) performance measures, regional median 

of optimal parameters (RMedP), nearest neighbor (NN) and physical similarity.  

    For the study region and the set of hydro-climatological data, the best performing 

regionalization method tends to vary among the model structures, performance 

measures and evaluation metrics for the PM. Based on the regional median and mean of 

the raw values of the Nash-Sutcliffe efficiencies R2 and R2ln, and the regional median 

and mean of the losses or gains of the PM between the local calibration and the 

regionalization, the MRWA regionalization method performs slightly better than the 

other methods. However, more comprehensive comparisons based on the cumulative 

distribution functions (CDF) of the losses or gains in the performance measures 
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indicated that the physical similarity in the combined physical attributes spaces 

(PSCOMB) performed slightly better for the R2 (Figure 8) while the physical similarity 

in soil types (PSSOIL) performed slightly better for the R2ln (Figure 9). Therefore, for 

the study region the physical similarity and the regional calibration based 

regionalization methods are more suitable than the NN and RMedP.  

 

Figure 8. Cumulative distribution functions (CDF) of the losses or gains in the 
performance measures from the local calibration due to the regionalization for R2. 
Some portions of the larger losses in the PM are not displayed for clarity of the figures. 

 

Figure 9. Cumulative distribution functions (CDF) of the losses or gains in the 
performance measures from the local calibration due to the regionalization for R2ln. 
Some portions of the larger losses in the PM are not displayed for clarity of the figures. 
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    The study in P4 was a multi-model based comparative evaluation of regionalization 

methods for prediction in ungauged basins. There are additional merits of multi-basin 

based local and regional calibrations in terms of identification of suitable P-R response 

routines for operational uses. However, such study is lacking for hourly prediction of 

streamflow in the boreal catchments. Therefore, in P5 we investigated the performances 

of five distributed P-R response routines on the 26 catchments in the region. The 

routines include the Kirchmod, the BGM and three variants of the HBV response 

routine (HBV1, HBV2 and HBV3). The evaluation and identification criteria include (a) 

parameter uncertainty and identifiability; (b) the Nash-Sutcliffe efficiencies NSE and 

NSEln from the local and regional calibration (MRWA) and (c) ‘realism of simulation’ 

for the local calibration based on different runoff signatures for some selected 

catchments.  

    We obtained narrow posterior parameter distributions for the Kirchmod compared to 

the other routines indicating that small number of free parameters provides a narrow 

range of parameter uncertainty. Considerable correlation among some pairs of 

calibrated parameters for all of the routines indicate problem of parameter interactions, 

which is the potential cause of non-identifiability of the performances of the runoff 

response routines. Based on the performance measures of the local and regional 

calibration, a good performing model structure vary among the catchments and the PM. 

Therefore, there is no single best performing model structure for the whole region due 

to uniqueness of catchments and the optimal parameter set cannot provide good 

calibration performance across full ranges of streamflow. Based on the box plots of the 

PM for both the local and regional calibration, the Kirchmod and BGM routines provide 

higher NSE values between the 25th and 75th percentiles (Figure 10). The Kirchmod, 

HBV2 and HBV3 provided slightly higher NSEln values between the 25th and 75th 

percentiles (Figure 11). However, the regional performance in terms of the regional 

mean and regional median PM of the Kirchmod and the BGM are higher than the HBV 

based routines, and hence they are more suitable for the regional calibration (MRWA) 

based PUB in the region. Simulation of multiple runoff signatures indicate that different 

model structures appeared to be relatively better in reproducing runoff ratio for different 

catchments, the Kirchmod and BGM routines reproduced relatively better FDCs than 
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the other routines and there is systematic under prediction of high flows by all the 

routines.  

 
Figure 10. Box plots of the NSE performance measures (PM) for the local and regional 
calibration. 
On each box, the central mark is the median, the edges of the box are the 25th and 75th 

percentiles, the whiskers extend to the most extreme data points not considered outliers, 

and outliers are plotted individually as “+” marks.  

 

 
Figure 11. Box plots of the NSEln performance measures (PM) for the local and 
regional calibration. 
 
    The regional studies conducted in P4 and P5 are based on simulation of the dominant 

runoff response mechanisms using the P-R routines that involve the input climate 

forcing, model structure and procedures for model calibration. Further endeavors 

towards more improved prediction are indispensable to reduce the uncertainty in 

prediction and associated risks for instance in assessments of the impacts of regulation 
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on ecological integrity. Despite the limitations of the black-box models, the regional 

regression model allows data mining based predictions and inferences without 

employing the simulation of the real-world hydrological processes. However, the use of 

such models for the PUB for hourly resolution is not common. In P6, we developed the 

regional regression model using the 26 catchments for prediction of flow duration 

curves (FDCs) and streamflow time series at regulated (ungauged) basin. We then 

compared the transfer of hourly observed streamflow information using the regional 

regression model together with the nearest neighbor (NN) regionalization method with 

the Kirchmod response routine together with MRWA regionalization method, which are 

selected based on the performances in P4 and P5.  

    The simple regional regression model outperformed the P-R response routine (Table 

2) for instance the regression based prediction by transferring information from 

catchment no. 6 (Gaulfoss) to its interior catchment of catchment no. 3 (Eggafoss) 

indicated the NSE value of 0.89 versus the local P-R calibration (NSE = 0.81) and the 

MRWA (NSE = 0.68). The results for other catchments further illustrate the usefulness 

of the improved prediction by the regression model when applied to a regulated 

hydropeaking catchment inside the study region. The natural streamflow hydrographs 

and FDCs predicted by the regression model shows smoothly varying hydrographs at 

downstream of the tailrace of Lundesokna hydropeaking plant while the observed 

(regulated) flow exhibits continuous sudden fluctuations of streamflow magnitudes 

(Figure 12 and Figure 13). The within a year FDC for observed (regulated) flow under 

hydropeaking operation exhibits sharp transitions from high to medium flows and from 

medium to low flows (Figure 12). Alteration in the FDC and hydrographs due to 

hydropeaking operation indicate alterations in several streamflow characteristics, which 

affects the ecological integrity in regulated rivers. Therefore, improved prediction of 

natural time series of streamflow at regulated river is useful to derive ecologically 

relevant streamflow metrics for assessments of environmental flows and ecological 

responses. In addition, the model allows prediction at any ungauged or regulated 

catchments for assessment of contribution to environmental flow or reservoir inflow. 

The concept of an inflow controlled environmental flow regime (e.g. Alfredsen et al., 

2012) would also benefit from a more reliable prediction of continuous natural flow in 

regulated rivers, where environmental legislations on riverine systems are stringent. 
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Table 2. NSE for regional transfer of information based on regional regression (2006-

2011) and P-R model calibration (2008-2010) for prediction of hourly streamflow. 
Donor catchments 
(Catchment No.) Recipient catchments (Catchment No.) 

Regression(reg.) 1 3 6 10 12 14 16 17 20 21 26 
1 0.95 0.31 0.39 -1.10 0.50 -0.07 -1.21 -0.44 0.42 0.70 0.49 
3 0.35 0.96 0.88 -0.40 -0.13 0.55 -2.29 0.48 0.33 0.02 -0.22 
6 0.42 0.89 0.95 -0.39 -0.07 0.54 -2.02 0.42 0.38 0.12 -0.16 
10 0.04 0.39 0.42 0.43 -0.21 0.23 -2.49 0.61 0.44 -0.21 -0.36 
12 0.53 -0.35 -0.26 -1.96 0.80 -0.77 -0.68 -1.08 0.15 0.67 0.80 
14 0.21 0.80 0.79 -0.30 -0.19 0.70 -2.26 0.47 0.34 -0.09 -0.30 
16 -0.06 -0.69 -0.54 -2.29 0.26 -0.98 0.45 -1.22 -0.10 0.13 0.25 
17 -0.17 0.49 0.46 -0.06 -0.37 0.22 -2.72 0.97 0.12 -0.39 -0.51 
20 0.50 0.34 0.42 -0.44 0.22 0.11 -1.48 -0.14 0.83 0.24 0.10 
21 0.72 -0.07 0.04 -1.68 0.61 -0.50 -0.98 -0.83 0.20 0.90 0.66 
26 0.48 -0.37 -0.30 -2.07 0.73 -0.82 -0.71 -1.12 0.06 0.67 0.88 
P-R model                       
1 0.74 0.79 0.82 0.48 0.63 0.53 0.03 0.44 0.56 0.71 0.66 
3 0.73 0.81 0.83 0.51 0.71 0.53 0.14 0.23 0.53 0.72 0.71 
6 0.70 0.79 0.83 0.54 0.49 0.56 -0.59 0.15 0.65 0.67 0.54 
10 -0.14 0.10 0.18 0.58 0.19 0.23 -0.23 0.16 0.31 0.24 0.06 
12 0.68 0.78 0.70 0.50 0.75 0.52 0.12 0.41 0.51 0.70 0.71 
14 0.62 0.66 0.74 0.47 0.27 0.58 -0.34 0.18 0.62 0.57 0.47 
16 0.44 0.48 0.50 0.40 0.50 0.38 0.67 0.66 0.28 0.46 0.42 
17 0.29 0.31 0.44 0.35 0.29 0.28 0.56 0.77 0.20 0.30 0.21 
20 0.58 0.69 0.75 0.56 0.23 0.56 -1.16 -0.11 0.67 0.55 0.32 
21 0.69 0.73 0.74 0.56 0.69 0.54 0.17 0.35 0.53 0.71 0.63 
26 0.64 0.71 0.61 0.45 0.71 0.48 0.30 0.56 0.44 0.65 0.72 
MRWA NSE 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 

 

 

Figure 12. Typical comparisons of summer and fall observed/regulated streamflow 
versus the predicted ‘unimpaired’ or natural streamflow for Lundesokna river 
(transferred from Gaulfoss by the regional regression). 
FDC: Qobs (observed streamflow 2008-2011) and FDC: Qpred (predicted 2006-2011).  
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Figure 13. Typical comparisons of winter observed/regulated streamflow versus the 
predicted ‘unimpaired’ or natural streamflow for Lundesokna river (transferred from 
Gaulfoss by the regional regression). 
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Chapter 4 CONCLUSIONS AND PERSPECTIVES FOR FUTURE RESEARCH 

Conclusions 

The main objective of the thesis is development, calibration and comparative evaluation 

of distributed Precipitation-Runoff response routines for hourly simulation. The work 

includes the identification of different parameterizations, model structures, modelling 

paradigms and regionalization methods for hourly continuous streamflow simulation 

based on both catchment and regional scale modelling including the PUB. Development 

of a regional regression model and the comparisons of this with the P-R model was also 

an additional objective of the Thesis. We conducted the studies in P1, P2 and P3 based 

on catchment scale local calibration and the ‘proxy basin’ approach for model validation 

while the focus in P4, P5 and P6 was regional calibration for identification of the 

regionalization methods and the P-R response routines. The main conclusions drawn 

from the research findings are as follows:  

    The study in P1 indicated that identification of parameterizations of spatial 

heterogeneities based on model calibration only to precipitation and streamflow 

relationships is challenging and identification requires measurements from high density 

precipitation networks than that is required for a mere parameter calibration. However, 

the equivalent simulation performances of the simple semi-distributed and simple 

distributed (BGM) parameterizations to the subelement or subgrid scale 

parameterizations show the potential suitability of the parametrical parsimonious 

routine for operational prediction in the boreal catchments.  

    The study in P2 based on different configurations of the HBV response routine 

indicated that overparameterization is the main explanation for the non-identifiability of 

parameterizations. Parsimonious configuration provides equivalent streamflow 

simulation with improved parameter identifiability. In addition, parametrical parsimony 

allows for reliable internal simulation by minimizing the correlations between the soil 

moisture and runoff response parameters and compensation between the outflow from 

the upper reservoir and the baseflow from the lower reservoir. Therefore, predictions by 

the conceptual HBV runoff response routine variants require evaluation of the reliability 

of internal simulation of the variables other than that used for model calibration, for 
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instance the baseflow against analytical estimation (e.g. tailor-made baseflow separation 

techniques).  

    The distributed version of a parsimonious response routine (Kirchmod) based on the 

‘top-down’ modelling paradigm and functional relationships between catchment storage 

and discharge (P3) reproduces the streamflow signatures for a macroscale (3090 km2) 

boreal mountainous catchment, which exhibit a considerable runoff delay compared to 

the hourly simulation. In addition, validation of parameter transfer to the interior 

catchments encourages regional scale evaluations of the routine. However, the 

correlation among the free parameters or the parameter non-identifiability is the main 

causes of the insensitivity of the calibration to the runoff routing. Moreover, we 

observed different sources of uncertainties and non-identifiability of the response 

routine parameters estimated from the streamflow recession. Therefore, the results 

indicate the need for assessments of uncertainty and non-identifiability even for 

parametrical parsimonious models.  

    The multi-donor regional calibration (MRWA) performs nearly equivalent to the 

single-donor regionalization method based on similarity of catchments in their physical 

attributes for transfer of parameters of the P-R response routines for the mid-Norway 

region (P4). In addition, both methods perform better than the nearest neighbor 

regionalization method. Comprehensive selection of performance measures and their 

evaluation metrics for a specific modelling objective (e.g. high flow, low flow and water 

balance) are required for reliable identification of suitable regionalization methods. 

Further regionalization attempts for the boreal region should focus on improving the 

density of both climate and streamflow gauging networks to obtain a more 

representative hourly input and to allow regional study on a confined region to reduce 

the heterogeneities among the pooled catchments. In addition, measurements and use of 

attributes related to soil hydraulic properties, which mainly influences the runoff 

response in the region, are important for further assessment of the physical similarity 

regionalization.  

    Multi-basin local and regional calibration based attempts for comprehensive 

identification of reliable P-R routines indicates that there is no single best performing 

model structure solution for the mid-Norway region due to ‘uniqueness’ of catchments 

and change in the optimal parameter vectors with the changes in the PM that are 
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selected to suit specific calibration objectives (P5). In addition, narrow posterior 

parameter distributions (less parameter uncertainty), which are obtained for parametrical 

parsimonious routines, does not guarantee less parameter correlations and 

identifiability. Therefore, combined flexible models and multi-basin regional scale 

modelling framework provides an opportunity for comprehensive identification of 

reliable model structure, parameterizations and modelling paradigms among a pool of 

competing plausible options for improved prediction than the contemporary operational 

prediction using a fixed model at a catchment scale. Systematic under prediction of high 

flows by all the routines indicates unrepresentativeness of the precipitation input leading 

to less accurate estimation of spatially interpolated precipitation on the 1x1 km2 grids, 

which requires upgrading of the hourly gauging networks in the region.  

    For the boreal study region, a data based simple regional regression model with the 

nearest neighbor method regional transfer of streamflow information performs better 

than parameter transfer by the regional calibration of the P-R response routine for 

prediction of hourly flow duration curves and streamflow (P6). The improved prediction 

for the hourly natural flow at regulated rivers is very useful for estimation of 

ecologically relevant streamflow metrics for studies related to ecological impacts of 

regulation and environmental flow assessment. Hydrological alterations in terms of the 

hourly hydrographs and flow duration curves due to the regulation (hydropeaking 

operation) compared to the predicted natural streamflow indicate potential alterations in 

several streamflow characteristics, which require further scrutiny relevant to the 

ecological integrity in regulated rivers. 

Perspectives for future research 

The thesis mainly focused on evaluating the performances of spatially distributed (1x1 

km2 grids) P-R response routines in the simulation mode while the study also 

demonstrated the potential merits of a data based regional regression model for 

prediction in regulated and ungauged basins. The main premise is that for an improved 

performance and reliability in the simulation mode, there is a likelihood of improved 

performance in the forecast mode. Even though the spatially distributed models allow 

better representation of the spatial variability of precipitation, availability of adequate 

precipitation data in terms of the density of the gauging networks and quality is 



28 
 

mandatory for reliable calibration and identification of the P-R response routines. The 

low-density of available gauging networks and hence low resolution of the hourly 

climate forcing field compared to the extent of the modelled catchments or region is the 

major limitation of this thesis. The sparse streamflow gauging networks on the 

unregulated catchments for the regional scale modelling using the P-R response routines 

has the drawbacks of pooling catchments that are heterogeneous in their runoff response 

and affects the performance of parameter transfer based on the regionalization methods. 

In addition, calibration based on a single objective function and model evaluation based 

on some performance measure cannot yield a unique versatile optimal parameter vector 

to reproduce the whole portions of the hydrograph and other runoff signatures relevant 

for operational purposes. Therefore, future perspectives for improved prediction by the 

P-R response routines in the region should include:  

 The limitations due to the lack of sufficient hourly measurements need to be 

addressed through upgrading of the existing climate and streamflow gauging 

networks to high-density networks of sufficient and quality-controlled hydro-

climatic records for research purposes and data dissemination through 

coordinated involvement of the various stakeholders;  

 Additional observations for instance soil moisture and ground water level in 

selected catchments, which help for multi-criteria calibration and validation of 

the response routines and the physics-based modelling;  

 Study that clearly illustrate the merits of transition from lumped to spatially 

distributed models, and from daily to hourly and sub-hourly temporal resolution 

for operational forecasting in terms of simulation of the hydrographs (e.g. low 

flow, medium flow, peak flow and time to peak) and other runoff signatures;  

 More comprehensive studies on flexible multi-model, multi-basin and multi-

objective parameter calibration strategy for identification of models among a 

pool of plausible competing options;  

 Study on methods how to handle the varying optimal (calibrated) parameter sets 

,which correspond to the different objective functions or performance measures, 

in the forecast mode; and 



29 
 

 Study on identification of models based on their performance in the forecast 

mode. 
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Abstract 

Identification of proper parameterizations of spatial heterogeneity is required for 

precipitation-runoff models. However, relevant studies with a specific aim at hourly 

runoff simulation in boreal mountainous catchments are not common. 

We conducted calibration and evaluation of hourly runoff simulation in a boreal 

mountainous watershed based on six different parameterizations of the spatial 

heterogeneity of subsurface storage capacity for a semi-distributed (subcatchments 

hereafter called elements) and distributed (1x1 km2 grid) setup. We evaluated 

representations of element-to-element, grid-to-grid, and probabilistic subcatchment or 

subbasin, subelement and subgrid heterogeneities.  

The parameterization cases satisfactorily reproduced the streamflow hydrographs with 

the Nash-Sutcliffe efficiency (R2) values up to 0.84/0.86 and for a log-transformed 

streamflow (R2ln) up to 0.85/0.90 for the calibration and validation periods respectively. 

However, the more stringent test for predictive reliability in terms of quantile-quantile 

(Q-Q) plots indicated marked over and under predictions and the parameterizations 

slightly reproduced the flow duration curves. The simple and parametrical parsimonious 

parameterizations with no subelement or no subgrid heterogeneities provide equivalent 

simulation performance compared to the more complex cases. The results indicate that (i) 

identification of parameterizations require measurements from dense precipitation 

networks than a mere calibration of the precipitation-streamflow relationships, (ii) 

challenges in identification of parameterizations based on calibration to only the 

catchment integrated streamflow observations (iii) potential preference for the simple and 

parsimonious parameterizations for operational forecast due to their equivalent 

simulation performance to the more complex subgrid scale parameterizations and (iv) the 
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effects of non-identifiability of parameters (correlations and equifinality) needs 

assessment. 

Keywords: 

Parameterization; Spatial heterogeneity; Subsurface storage capacity; Semi-distributed 

and distributed; Calibration and evaluation; boreal mountainous watershed.  

Introduction 

Heterogeneities across spatial scales require either explicit resolving or proper 

parameterization procedures, which are prevailing challenges in catchment scale 

precipitation-runoff modelling. Previous studies such as Myrabø (1986; 1997), 

Gottschalk et al. (2001), Singh et al. (2002), Smith et al. (2004) and Bogaard et al. (2005) 

showed growing opportunities for distributed precipitation-runoff modelling, which 

allow for better representation of the spatial heterogeneity in climate forcing, catchment 

characteristics, runoff responses and state variables. Advances in measurement 

techniques of input variables such as precipitation from weather radar and remotely 

sensed snow accumulation data can resolve some of the spatial heterogeneities. There are 

also several efforts to improve model calibration algorithms for parameter identification 

in distributed hydrological models. However, a thorough diagnostic evaluation of the 

behavior of the prediction models is indispensable since the quality of real-time forecast 

is dependent on the process simulation (e.g. Bell and Moore, 1998; Refsgaard, 1997). 

One of the main challenges related to predictions based on distributed precipitation-

runoff models is the sensitivity of the results to the degree of the spatial resolution of 

inputs and the computational units used to address the spatial heterogeneity. The 

heterogeneities to model may include those of model parameters, climate forcing, land 

surface characteristics, storage capacity of soils and runoff delay (travel lag). Various 

discretization techniques in precipitation-runoff modelling for the representation of the 

spatial heterogeneities are available in literature. Selection of discretization of catchments 

into a number of units based on the various catchment characteristics that govern the 

hydrological processes namely hydrological response units (HRUs) (Leavesley and 

Stannard, 1990), topographic wetness index (Beven and Kirby, 1979), topographic 

drainage divide based subcatchments (Sivapalan and Viney, 1994) hereafter called 

elements, hillslopes (Goodrich, 1990) and grid squares (Abott et al., 1986) are useful 
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depending on the objectives of the study and the availability of data. Parameterizations 

of internal heterogeneities within the catchments or within units (e.g. elements, hillslopes, 

HRUs or grids) by probability distribution functions (e.g. Moore, 1985) are common. 

Aggregation of inputs and state variables for instance based on simple averaging are also 

common in catchment modelling (see a review by Blöschl and Sivapalan, 1995).  

There are challenges related to parameterizations and scales for the boreal 

mountainous region. Halldin et al. (1999) noted for northern (boreal) catchments with 

distinct topographic features that small-scale phenomena influence the exchange 

processes between the land surface and the atmosphere and the lateral distribution of 

water through subsurface and surface flows. The spatial observation scale of the input 

climate forcing is usually coarse (low resolution) from sparse hydro-meteorological 

networks compared to a fine (high) resolution discretization that may be required to 

represent the underlying heterogeneity explicitly or probabilistically. In addition, there 

are scale mismatches between the spatial heterogeneities of climate forcing and 

topographic controls (e.g. the fine scale topographic driven spatial heterogeneity is 

dominating the grid-to-grid variability of the low intensity precipitation).  

Therefore, for a reliable prediction augmented by sensitivity analysis and hence 

insights in to the dominant hydrological processes, it is indispensable to investigate the 

effects of heterogeneities at different spatial scales (i.e. subcatchment or subbasin, 

subelement, subgrid, element-to-element and grid-to-grid) on the simulation of runoff 

responses. The subcatchment, subelement and subgrid scale runoff parameterization may 

also enhance our understanding of saturation excess runoff generation and it allows for 

validation of models against spatial observations. 

Previous work reported in literature introduced different probability distribution 

function based models (PDM) to reduce the complexity of the ‘fully’ distributed 

precipitation-runoff models by parameterizing the spatial heterogeneity for instance the 

subbasin or subgrid scale heterogeneity of the subsurface storage and infiltration capacity 

by a probability distribution to model the dynamics of runoff contributing areas. 

Examples of these are the Hydrological Byråns Vattenballansavdelning (HBV) model 

(Bergström, 1976), the Xinanjiang model (Zhao, 1980;1992), the Probability distributed 

model or PDM (Moore and Clarke, 1981; Moore, 1985), the ARNO model (Todini, 1988; 

1996), the variable infiltration capacity or VIC (Wood et al, 1992) and the Improved 
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Arno-IA model (Hagemann and Gates, 2003), Ducharne et al. (1998), Manfreda (2008) 

and Beven and Kirby (1979). Bell and Moore (1998), Cole and Moore (2009) further 

illustrated the performances of a grid based PDM variants based on both rain gauge and 

radar precipitation data.  

    The main tasks addressed in the present study are investigation of the performances of 

different parameterization approaches related to representation of the spatial 

heterogeneity of the subsurface storage capacity for boreal mountainous watershed. The 

approaches range from the explicit representation of element-to-element and grid-to-grid 

heterogeneities to probabilistic parameterization of subcatchment, subelement and 

subgrid heterogeneities. The main objective of the present study is to investigate 

performances of six different parameterizations for representing the spatial heterogeneity 

of the subsurface storage capacity for semi-distributed (elements) and gridded (1x1 km2) 

cases for prediction of streamflow hydrographs and flow duration curves (FDC). We 

calibrated the routines for the Gaulfoss gauge in the Gaula catchment in mid-Norway and 

evaluated the calibrated parameters through spatial transfer to the internal catchments of 

Eggafoss, Hugdal bru and Lillebudal bru for model validation. To our knowledge, this 

study is the first attempt at evaluating the performance of different levels of 

parameterizations of the spatial heterogeneity of subsurface storage capacity for hourly 

runoff simulation in a boreal mountain watershed. For the study region, there are growing 

interest in streamflow prediction at fine temporal resolution for instance hourly for 

hydropeaking operation of reservoirs for production scheduling, flood forecasting and 

environmental flow assessment. Bastola and Murphy (2013) illustrated a marked loss in 

performance of the parameters calibrated for a daily time step when used for hourly 

simulation, which substantiates the need for hourly predictions based on parameters 

calibrated for hourly observations.   

The study watershed and data 

We used hourly streamflow data from four gauges located inside the 3600 km2 Gaula 

watershed located in mid Norway (Gaulfoss, Hugdal bru, Eggafoss and Lillebudal bru) 

(Figure 1). The last three catchments are located inside the Gaulfoss catchment, but are 

not nested. For the elements based simulation, we topographically delineated 33 elements 

within Gaulfoss. Seven of these elements (1-7) are located inside Eggafoss, another seven 
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elements (9-15) are located inside Hugdal bru, the smallest gauged catchment (Lillebudal 

bru) was discretized as element 8, and the elements 16-33 are parts of the Gaulfoss 

catchment outside of Eggafoss, Hugdalbru and Lillebudalbru. Generally, the discretized 

elements are mesoscale sizes, which are less than but comparable to the size of the 

smallest gauged catchment of Lillebudal bru. Figure 1a shows the locations of the study 

catchments, hydro-climatic stations, elevation, and different discretization schemes.  

The main land use is mountainous terrain above the tree line, forests dominated by 

conifers and riparian areas (marshes/bogs) as shown in Figure 1b. Hypsometric curves 

(Strahler, 1952) indicate considerable variations in the elevations of the catchments 

(Figure 1c). The dominant loose material (soil) in the Gaula watershed is glacial till 

deposits underlain predominantly by metamorphic and igneous bedrock geology 

(http://www.ngu.no) (Table 1).  

The characteristics of the watershed are humid temperate climate and snowmelt 

dependent high-flow regime (Figure 1e). The flow duration curves (Figure 1d) show 

marked contribution of the subsurface flow to the streamflow. Precipitation occurs mainly 

in the form of rainfall (April-October) and mainly snowfall (November-March). The 

climate input data are precipitation (P), temperature (T), wind speed (Ws), relative 

humidity (HR) and global radiation (RG) of hourly resolution, which matches to the 

simulation time step. The model was forced by a climate input distributed on a 1x1 km2 

grid scale based on the inverse distance weighed (IDW) spatial interpolator from the point 

measurement gauges. We used precipitation data from 12 gauging stations, three of which 

are located inside the Gaulfoss catchment. Table 1 provides a summary of some 

characteristics of the catchments and the hydro-climatic data. 

Models and methods 

Probability distributed parameterization of runoff response routines 

The model structure used in the present study is based on the probability-distributed 

model or PDM (Moore, 1985). For the sake of generality we presented the 

parameterization by the general form of the double bounded distribution (DB-PDF) on 

[0, 1] or the Kumarswamy distribution (KwD) (Kumarswamy, 1980). Although the 2-

shape parameter KwD can capture a wide range of variability depending on the values of 
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its two shape parameters (see Fig 2b), it entails an inconvenient analytical solution. 

Therefore, a special form of the KwD obtained by setting the shape parameter ‘a’ to 1, 

which then forms the 1-shape parameter Pareto distribution, is used due to its analytical 

solution and computational feasibility. However, the performance of the PDM based 

models may depend on the parameterization approaches used to represent the spatial 

heterogeneities that we wanted to investigate. We provide detailed descriptions of six 

parameterization cases evaluated in the present study as below while Table 2 provides a 

summary. Table 3 gives the lists of calibrated model parameters and their uniform prior 

ranges. 

Case 1: Subcatchment heterogeneity by a probability distribution, catchment scale Smax 

and calibrated shape parameter ‘b’  

This case is similar to the probability distribution functions based parameterizations in 

the PDM (Moore, 1985) and the VIC model (Wood et al., 1992). The PDM model is 

collection of subsurface reservoirs with different storage capacities (c) and maximum 

storage capacity (cmax). We take into account the pattern of subcatchment scale runoff by 

parameterizing the heterogeneity of the subsurface storage capacity in the catchment by 

a probability distribution. We computed the maximum storage capacity on the catchment 

scale (the catchment scale Smax) from the calibrated parameters cmax and cmin and the shape 

parameters according to eq. (A.3) or the analytical solution in Appendix A. This case does 

not represent the element-to-element heterogeneity of the Smax.  

The effective precipitation (TOSTORAGE) is partitioned into saturation excess runoff 

or ‘saturation from below’ (Dunne and Black, 1970 a&b) and change in storage based on 

the probability distribution following the ‘equal storage redistribution of interacting 

storage elements’ concept of Moore (1985) as shown in Figure 2a. The subsurface storage 

is a conceptual ‘bucket type’ single reservoir of finite storage capacity (equal to Smax) 

depleted by the subsurface drainage and evaporation from the subsurface (soil).  

The cumulative distribution function (CDF) and the probability density function (PDF) 

for the KwD for a random variable of cn (Figure 2b) are: 
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min

max min

11

: 1 1 ;  0,1

1    , 0, 0
:

0,otherwise

ba

n n n

ba a
n n n

n
n

c c
CDF F c c c

c c

dF c ab c c a b
PDF f c

dc

                                       (1) 

By inverting the cumulative distribution function, the quantile function for the local 

storage capacity (c) is:  
1

1

min max min 1 1
a

bc c c c F c ,                                                                            (2)

                              
where the cn [0, 1] is the normalized local storage capacity, cmin is a parameter which 

represents the minimum (threshold) local storage capacity below which there is no 

saturation excess runoff generation (Hegemann and Gates, 2003) and it also represents 

the threshold storage below which there is no drainage and water held under soil tension 

(Moore and Bell, 2002; Moore, 2007). The cmax is the maximum local storage capacity 

and ‘a’ and ‘b’ are the shape parameters of the distribution. Appendix A contains further 

details of the KwD and analytical solutions for the Pareto distribution.  

The direct runoff generated due to infiltration excess or Riex [L] (Horton, 1933) and the 

actual infiltration to the soil or TOSOIL [L] are: 

max 0, ( )iex

iex

R SNOWOUT INFCAP

RTOSOIL SNOWOUT
,                                                                            (3) 

where the INFCAP [L] is a free parameter and SNOWOUT [L] is outflow from the snow 

routine to the soil. The saturated excess direct runoff or R [L] is the amount of runoff in 

excess of the storage capacity. The change in storage with time is:   

;

rv

dS
S S t t S t TOSTORAGE R

dt

TOSTORAGE TOSOIL AET D
                                                          

              
(4)

     

We computed the actual evapotranspiration from the soil (AET [L]) as a linear function 

of potential evapotranspiration rate (PET) from the storage, the total storage (ST) and the 

total maximum storage capacity (STmax):                                                                       

max

T

T

S
AET PET

S
                                                                                                             (5)                         
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    We used the following conceptual relationships between storage and drainage for the 

subcatchment based runoff response:  

n
rvD k S t ,                                                                                                               (6)                             

where k is in mm1-nh-1, S [L] is the storage in mm, Drv [L] is the drainage volume per unit 

area computed before saturation excess runoff and n is a dimensionless exponent. We 

computed the drainage or Dr [L3T-1] from the Drv [L]. From eqn. (4), we derived the 

following equation for simulation of saturation excess direct runoff over the interval t, 

t+ t: 
11

1

max max max
max max

max max

( )
( ) 1 ; ( )

1

( ) ; ( )

b

bS t TOSTORAGE
TOSTORAGE S S t S S t t S

R t S b S

TOSTORAGE S S t S t t S

 (7)                        

We computed the rate of total direct runoff (Rr [L3T-1]) as: 
 

*i
r iex

A
R R F c t R

t
,                                                                                             (8) 

where the F(c*(t)) is the fraction of the catchment saturated to generate the saturation 

excess runoff (see Appendix A) and Ai is the catchment area.  

 Case 2: Subelement heterogeneity by a probability distribution, element-to-element 

heterogeneities of the Smax and the shape parameter ‘b’ 

In case 2, we investigated the case when the element-to-element heterogeneity of the 

maximum storage capacity or Smax and the shape parameter are modelled (i.e. the Smax and 

the shape parameter are computed for each element).  

The role of topography in runoff response dynamics have been widely studied (e.g. 

Beven and Kirby, 1979; Wood et al., 1990; Blöschl and Sivapalan, 1995; Wood et al., 

1990; Bell and Moore, 1998). In a study of Norwegian catchments, Beldring et al. (2003) 

noted a relationship between the maximum soil moisture storage and altitude with larger 

soil moisture storage for lowland areas than for mountains as the average thickness of 

surface deposits tends to decrease with altitude. Therefore, depending on the distribution 

of topographic and soil characteristics in the catchment, the maximum storage capacity 

(Smax) may vary throughout the catchment and hence the effects of the lumped 
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representation of the maximum storage capacity on the runoff simulation needs further 

investigation.  

    Dumenil and Todini (1992) computed the shape parameter ‘b’ of the distribution based 

on the standard deviation of the subgrid elevation. Bell and Moore (1998), Hagemann and 

Gates (2003), Manfreda and Fiorentino (2008), Manfreda (2008) and Liu et al. (2012) 

also noted the topographic influence on ´b’. Figure 2b illustrates as the value of ‘b’ 

increases, the fraction of element with small storage capacity increases that increases the 

likelihood of more saturation excess runoff.  

    This case considers the influence of topography on the storage capacity and hence on 

the dynamics of runoff generation by directly utilizing the topographic information. It is 

useful to represent the spatial heterogeneity of hydrological variables based on readily 

available high-resolution spatial information such as topographic features derived from 

the Digital Elevation Model (DEM) to reduce the number of model parameters, to allow 

transfer of parameters to ungauged catchments and in parameterization for climate models 

(e.g. Ducharne et al., 1998).  

The maximum storage capacity and shape parameter ‘b’ for each element are computed 

from a functional relationship between the equations for maximum storage capacity (Smax) 

from integration of eq. (A.3) or its analytical solution and based on the topographic 

gradient (eq. 9). This approach is similar to the linkage function in the grid-to-grid (G2G) 

model of Bell and Moore (1998). We related the parameter ‘b’ to the maximum storage 

capacity of the Pareto distribution:  

max min
max max

max
max min

max 1
;  avg c c

S S
b

MaxMFDslope MaxMFDslope
c c

MaxMFDslope
              (9) 

Equating the above two equations for Smax, the following relationship for ‘b’ and the 

topographic gradient: 

max

avg

avg

MaxMFDslope
b

MaxMFDslope MaxMFDslope
                                                                   (10) 

The above relations provide 
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max

max

max

max min

max min
max

max

 0,  0

 0.5 ,  1 
2

0  ,    

avg

avg

avg

S

S

S

c c if MaxMFDslope b

c c if MaxMFDslope MaxMFDslope b

if MaxMFDslope MaxMFDslope b is undefined

,                        (11) 

where the MaxMFDslopeavg represent the average of the gradients of the 1x1 km2 grid 

cells within the element while MaxMFDslopemax is a regional parameter representing the 

maximum of gradients for the 1x1 km2 grid cells in the whole catchment.  

The MaxMFDslope for the grid cell is the topographic gradient in the steepest flow 

direction among its eight neighbors in a 3x3 window computed from the DEM as 

MFDslope = (Elevation upstream cell - Elevation downstream cell) / Flow travel length. Flow travel 

length = (grid cell size) for the cardinal flow direction and (grid cell size)* 2 for diagonal 

flow directions. For the element based simulation (cases 1 to 3), the case of 

MaxMFDslopeavg = MaxMFDslopemax is not an issue, but for the grid based simulation 

(cases 1G to 3G) a storagemin calibrated parameter was introduced to avoid Smax and ‘b’ to 

become zero in flat areas. Besides allowing study on the sensitivity of runoff generation 

to spatial distribution of Smax and b, case 2 also reduces the number of free parameters.  

Case 3: No subcatchment and subelement heterogeneity of the storage capacity and no 

element-to-element heterogeneity of Smax  

In case 3, there is no parameterization of the spatial heterogeneity by a probability 

distribution. There is no element-to-element heterogeneity of the Smax, rather it is a free 

parameter. Therefore, case 3 is a simple semi-distributed model. We computed the direct 

runoff and update of the storage for the elements as follow: 

maxmax 0, ; max 0,

r iex
i

R S t TOSTORAGE S S t t S t TOSTORAGE R

A
R R R

t

       (12) 

Cases 1G, 2G and 3G: Grid based runoff simulation  

Case 1G is parameterization of the subgrid heterogeneity by a probability distribution, 

but we calibrated the parameters for the catchment scale similar to that of case 1. Case 

2G is parameterization of the subgrid heterogeneity by the probability distribution and it 

accounts for the grid-to-grid heterogeneity of Smax based on the linkage function between 
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Smax and the topographic gradient. We derived the following equations for case 2G from 

the linkage function between topographic gradients and the Smax: 

max min max min
max

max

MaxMFDslope MaxMFDslope
S Storage c Storage

MaxMFDslope
                        (13) 

max min min

max min

max

max

MaxMFDslope c Storage c MaxMFDslope
b

c MaxMFDslope MaxMFDslope Storage MaxMFDslope
                   (14) 

max min

min max min

max

max

c MaxMFDslope MaxMFDslope Storage MaxMFDslope
a

c MaxMFDslope MaxMFDslope c Storage
                            (15) 

Case 3G donot consider both the subgrid heterogeneity of storage capacity by a 

probability distribution and the grid-to-grid heterogeneity of the Smax. We set the Smax by 

calibration. Therefore, case 3G is a simple distributed model.  

The main difference between the distributed simulations (cases 1G to 3G) and the 

semi-distributed simulations (cases 1 to 3) is in the equations used for simulation of the 

subsurface drainage. In a boreal landscape dominated by till soils, hydraulic conductivity 

decreases with depth, the groundwater table largely follows the topography and the 

catchment runoff depend on soil moisture conditions and the depth to groundwater (Lind 

and Lundin, 1990; Hinton et al., 1993; Myrabø, 1997; Beldring, 1999; 2002). Therefore, 

topography has a significant impact on runoff by controlling movement and storage of 

water through convergence and divergence of flow (Beldring, 2002). We computed the 

rate of subsurface drainage or flow from derived equation based on assumptions of 

Dupuit-Forchheimer to Darcy’s law for saturated subsurface flow (Freeze and Cherry, 

1979; Wigmosta and Lettenmaier, 1999) by assuming a power-law transmissivity decay 

with depth (Ambroise et al. 1996; Wigmosta and Lettenmaier, 1999): 

max

1 TT nn
r

T i

w
D lope S

n

t
A

MaxMFDs S t ,                                                          (16) 

where  [LT-1] is diffusivity or saturated hydraulic conductivity at the surface divided by 

porosity, w [L] is size of the grid cell, and nT is the transmissivity decay exponent, Dr 

[L3T-1] is drainage and Drv (L) is drainage volume per unit area computed from the Dr 

and the MaxMFDslope is as defined earlier. Eq. (16) accounts for the grid-to-grid 

heterogeneity of topographic gradient. Based on preliminary tests of parameter 
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sensitivity, we used a hyperbolic (Duan and Miller, 1997) transmissivity decay profile 

(i.e. exponent nT = 2.0) for the study catchments.  

The evapotranspiration routine  

We used the Priestley Taylor method (Priestley and Taylor. 1972) to estimate the potential 

evapotranspiration: 

   nPET R ,                                                                                                       (17) 

where  is Priestley Taylor constant, the  is the slope of saturation vapor pressure curve 

corresponding to an air temperature at 2m (T2m),  is the psychometric constant (0.67 

hPaK-1), Rn is the net radiation, which is the sum of net shortwave radiation and the net 

longwave radiation. Following Teuling et al. (2010), we used  = 1.26 rather than 

calibrating to reduce the number of parameters. We computed the net short wave radiation 

from global radiation and land albedo, and the net long wave radiation based on Sicart et 

al. (2006). We used eq (5) for the computation of the actual evapotranspiration (AET) for 

all cases. The AET is set to zero when the surface is snow covered.  

The snow routine 

The snow accumulation and snowmelt processes exert significant influence on the 

hydrological cycle of the study area. The outflow melt water release from saturated snow 

(i.e. SNOWOUT) is computed by a snow routine based on the Gamma distributed snow 

depletion curve (SDC) (Kolberg and Gottschalk, 2006; 2010), which was implemented in 

ENKI hydrological modelling platform (Kolberg and Bruland, 2012). The free parameters 

in this routine are snow-rain threshold temperature parameter (TX) and snowmelt 

sensitivity to wind speed or the windscale (WS). We simulated the potential 

evapotranspiration, snow accumulation and snowmelt-runoff processes based on the 1x1 

km2 grid scale. For the semi-distributed (element) simulations (cases 1, 2 and 3), we 

aggregated the gridded (1x1 km2) outflow from the snow routine (SNOWOUT) and 

potential evapotranspiration (PET) to the element scale based on simple averaging and 

provided as an input to the runoff response routines.  

Runoff routing 
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We used the source-to-sink (STS) routing algorithm (Olivera, 1996; Olivera and 

Maidment, 1999) to route the generated runoff at each source to the sink (catchment 

outlet). In the STS, a flow path response function or Ui (t) [T-1] relates the instantaneous 

runoff generated at the source to the outlet response. The flow path response function is 

based on the first passage time distribution (Hayami, 1951; Nauman, 1981). Olivera 

(1996) showed the relationships among the total expected travel time from the source to 

the outlet (Ti), its corresponding variance or Var (Ti), the flow dispersion coefficient (Di) 

and Peclet number or i[-] based on the statistical properties of mean and variance. The 

gridded (1x1 km2) flow path response function or Ui (t) [T-1] is given by:                                                      

2

1
1

( ) exp
4 /2 /

i
i

ii
ii

t
T

U t
tt

t TT

                                                                        (18) 

The flow path responses function for grid cell ‘i’ represents the probability distribution 

of flow travel time (t) from the source (grid cell) to the sink (outlet) which has a mean 

value of Ti . The flow path Peclet number is a representative measure of the relative 

importance of advection with respect to dispersion, whereby the flow dispersion 

coefficient represents the effects of storage and spreading. Figure 3c shows typical 

response functions. 

For the semi-distributed runoff simulations (cases 1, 2 and 3), we distributed the 

generated runoff at the element scale over the 1x1 km2 grid cells within the elements. We 

coupled the generated runoff to the flow path response function to perform the flow 

routing on the grid scale, rather than aggregating to the element scale. The grid scale 

would enable us to account for the differences in the flow travel time and hence response 

functions among the grid cells especially for elongated elements. Beldring et al. (2003) 

noted that the permanent river network including streams and lakes lies within 1x1 km2 

of almost every point in the Norwegian landscape and all the lateral transfers of water at 

1x1 km2 grid cells take place within the river network.  

We routed the sum of direct runoff and subsurface drainage generated at the source 

grid cell to the outlet. We performed the runoff routing by a convolution from the unit 

hydrograph model for a spatially distributed linear system subdivided into uniform non-

overlapping sub-areas (Maidment et al., 1996; Olivera and Maidment, 1999): 
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1

( ) i

N

ri ri
i

Q t U tR t D t                                                                                   (19)                             

Q [L3T-1] is routed simulated streamflow, N is the total number of grids in the watershed, 

and  is the convolution operator. The routing routine involves two free parameters 

namely the velocity of flow (V) and the dispersion coefficient of flow (D). We assumed 

the parameters to be ‘time-invariant’ and set as calibration parameters for the whole 

catchments (i.e. not spatially distributed).  

 

Model calibration and evaluation 

We used the Differential Evolution Adaptive Metropolis algorithm or DREAM (Vrugt et 

al, 2008; 2009) with residuals based log-likelihood objective function for the calibration. 

DREAM is an adaptive random walk Metropolis algorithm to enhance the applicability 

of the MCMC methods to complex, non-linear and high-dimensional problems such as 

calibration of watershed models (Vrugt et al, 2008; 2009).  

For the hourly streamflow series, the serial correlation is high and hence the actual 

amount of information obtained from the data is much less. Therefore, we introduced the 

fraction of effectively independent observations from the total observations denoted as 

‘f’. We used the logarithmic likelihood function for simplicity and numerical stability 

(Vrugt et al., 2012). The residual based log-likelihood (L-L) is:                               

2( ) ( )

1
2

22 ( ) ( ) 2

1

/ 2log log
2 2 2

,

i

i

n

t t
t

n
i i

t t
t

Qsim Qobs
n nL L Qsim Qobs f , (20) 

where Qsim( ) and Qobs( ) respectively are Box-Cox (Box and Cox, 1964) transformed 

observed and simulated streamflow time series (t), ni is the length of non-missing records 

of streamflow for the catchment,  represents model parameter,  is the Box-Cox 

transformation parameter and 2 is variance of error.  

We carried out the transformation in order to obtain an approximately Normal 

distributed series with homoscedastic residuals. If  = 0, the streamflow is assumed to be 

lognormal distributed (i.e. high weightage to low flows). If  = 1, the streamflow series 

is assumed to be Gaussian (i.e. high weightage to high flow). A value of  = 0.3 is 
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common in literature (e.g. Vrugt and Bouten 2002 and references therein). However, we 

computed the  values from the observed streamflow data set using the ‘fminsearch’ 

algorithm in matlab, which calls for finding the  value that maximizes a likelihood 

function (http://www.mathworks.com). We computed the fraction f based on a 

AutoRegressive or AR(1) model of error covariance (Zi ba, 2010).  

The maximum Nash-Sutcliffe efficiency or R2 (Nash and Sutcliffe, 1970), which 

emphasizes high flows, and the maximum R2ln for log-transformed series, which 

emphasizes low flows), were used for further comparisons and evaluations. We also 

evaluated the performances of the routines based on their predictive reliability (Kavetski 

and Fenicia, 2011) using quantile-quantile (Q-Q) plots. The plots were in the form of the 

empirical cumulative distribution functions (CDF) of the observed and simulated 

streamflow. The departures of the plots from the theoretical uniform distribution indicate 

the discrepancy between the predictive distribution and the observed data. In addition, we 

evaluated the routines based on their prediction performances of temporal variability of 

the streamflow or the flow duration curves. We used the ‘split-sample’ test and ‘proxy 

basin’ test (Kleme , 1986) for temporal, spatial and spatio-temporal validation of the 

models against independent data to test the reliability of model prediction outside the 

calibration conditions (Seibert, 2003). We performed the spatial and spatio-temporal 

validation of the models through direct transfer of calibrated parameter vectors, which 

correspond to the maximum R2 and maximum R2ln, of the Gaulfoss catchment to the 

internal catchments of Eggafoss, Hugdalbru and Lillebudal bru both for the calibration 

and validation periods.                                                                                                                           

Results and discussion                                                                                                           

Model calibration 

Figure 3a-b, Figure 4 and Figure 5 respectively present the hydrographs, quantile-quantile 

(Q-Q) plots and flow duration curves of observed versus simulated streamflow for 

Gaulfoss. We presented the hydrographs only for the R2 performance measure for a part 

of calibration period (for clear presentation of the Figures), the Q-Q plots for the R2 for 

the calibration and validation results and the flow duration curves for both the R2 and R2ln 

for the results of calibration and validation periods. We presented the performance 
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measures for calibration, temporal, spatial and spatio-temporal validation of the calibrated 

parameters in Table 4.  

We obtained the goodness-of-fits of R2/R2ln respectively up to 0.84/0.86 for 

calibration and up to 0.85/0.90 for the temporal and spatial validation, which indicate 

satisfactory fits between the observed and simulated hydrographs for the six different 

parameterization cases for semi-distributed and distributed runoff simulation. Therefore, 

the simulations based on different parameterizations of the single state and single 

drainage outlet subsurface storage provided satisfactory runoff simulation in terms of the 

goodness-of-fit tests.  

However, a more stringent test for reliability of prediction based on the Q-Q plots of 

the observed and simulated streamflow indicate that there is a considerable prediction 

uncertainty for all the parameterization cases as shown in Figure 4. Nearly symmetrical 

deviations from the perfect fit uniform distribution (diagonal line) show both under and 

over predictions. The results of the flow duration curves indicate better simulation of the 

temporal variability of the high flow compared to the low flow as shown in Figure 5. The 

performance of the calibration of the parameterizations in reproducing the hydrographs 

(based on R2 and R2ln performance measures) found to be better than the Q-Q plots and 

the FDC. Calibration of hydrological models for specific objectives of reproducing the 

flow-duration curves (e.g. Westerberg et al., 2011) and the Q-Q values may improve their 

respective performances. 

It was not possible to consistently distinguish the best performing parameterization 

since the different parameterizations provided only marginally different performances for 

different seasons (snow melt versus rainfall) and ranges of streamflow (low, medium and 

high). 

Model validation 

Investigation of the performances of distributed models calibrated to the streamflow at 

basin outlet for hydrologic simulation at internal catchments was one of the science 

question tested by the Distributed Model Intercomparison Project, DMIP (Smith et al., 

2004). Spatial transferability of calibrated parameters from the Gaulfoss catchment to the 

internal catchments of Eggafoss and Hugdal bru (Table 4) provided indistinguishable 

satisfactory performances for all the parameterization cases. However, parameter transfer 

to Lillebudal catchment resulted in poor performance especially for R2ln (low flows). For 
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Lillebudal bru catchment, Hailegeorgis and Alfredsen (2014, article in press) found poor 

performance of parameter transfer from the Gaulfoss watershed for the HBV conceptual 

model especially for low flow simulation. Mountainous terrain dominates the Lillebudal 

bru catchment with a mean altitude above the altitude of all climate stations used for the 

calibration (Table 1). Effects of the dominantly mountainous terrain may cause significant 

temporal and spatial variability of precipitation fields. Moreover, there are no climate 

stations inside or close to the Lillebudal bru catchment and hence less representativeness 

in precipitation data may cause poor streamflow simulation. Performance in simulation 

of low flow from the baseflow is also rather poor for Lillebudal bru. Therefore, the quality 

of observed streamflow data needs scrutiny for the Lillebudal bru gauge.  

Parametrical parsimony  

The effects of correlations among the parameters during calibration may cause the poor 

identifiability of the parameterizations. One of the solutions to reduce parameter 

interactions is improving the parametrical parsimony of the routines. Parametrical 

parsimony involves reducing the number of free parameters for instance by fixing the 

insensitive parameters. The parameter cmin is introduced to represent the minimum 

(threshold) local storage capacity below which there is no saturation excess runoff 

generation (Hegemann and Gates, 2003) and also the threshold storage below which there 

is no drainage, water being held under soil tension (Moore, 2007). The calibrated values 

for this parameter were less than 7.5 mm against a uniform prior range of (0.0 -100 mm) 

and hence the cmin can be set to zero and excluded from the free parameters to improve 

the parsimony and to avoid its interaction with cmax and other parameters.  

Also, the calibrated values for the exponent parameter of the conceptual subsurface 

drainage-storage relationship (n) of the parameterization cases 1 to 3 ranges from 1.5 to 

3.0 against a uniform prior range of (0.20-5.0). Hence, there is a possibility to fix this 

parameter to some representative value within this range to improve the parsimony and 

to avoid its interaction with k and other parameters. For instance, Wittenberg and 

Sivapalan (1999) and Moore and Bell (2002) respectively assumed quadratic (n = 2.0) 

and cubic (n = 3.0) relationships between ground water storage and baseflow.  

However, parametrical parsimony alone may not guarantee improvement in the 

identifiability and predictive uncertainty of the parameterizations since there are also 

other sources of uncertainty related to the input data and scale issues.  
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The effects of input data for model calibration 

We conducted the semi-distributed and distributed runoff simulations for the boreal 

mountainous catchments based on precipitation data from 12 gauging stations spatially 

interpolated by inverse distance weighing (IDW) on 1x1 km2 grids. However, Goodrich 

et al. (1995) reported an inadequacy of meteorological gauging networks in the higher 

altitudes. Also for high latitude mountainous regions, Moine et al. (2003) noted the 

complexity of hydrological modelling due to the complexity of local processes and the 

difficulty of estimating spatially distributed inputs such as rainfall and temperature due 

to sparse networks. Beldring et al. (2003) noted that the spatial interpolation procedure 

with correction for altitude differences is unable to describe all effects caused by the 

various precipitation formation mechanisms and wind directions in Norwegian 

catchments. Das et al. (2008) found that a distributed HBV model structure do not 

outperform the simpler model structures, which they attributed to the interpolated climate 

inputs that cannot reflect the true spatial variability. Wrede et al. (2013) compared a 

distributed HBV model complemented by subgrid scale parameterization for distinct land 

use classes to a less parameterized lumped HBV model for a Swedish lowland catchment. 

The authors found that the results were indistinguishable, which they attributed to the 

deficiency of the traditional model calibration against only the observed streamflow at 

the catchment outlet. Calibration based on climate data from high density gauging 

networks and spatial distributed observations, which are not available for the present 

study, may provide more insights out of the simulations. In addition, only the catchment 

integrated observed streamflow data is available for calibration for the study region.  

Parameterization and scale issues 

Both discretization and aggregation techniques in precipitation-runoff models are 

dependent on the scales and hence the results of simulation from parameterization across 

a range of scales may be sensitive to the spatial scales used (e.g. Wood et al., 1990; Becker 

and Braun, 1999; Koren et al., 1999; Haddeland et al., 2002; Merz et al., 2009). Beldring 

et al. (1999; 2000) suggested elements at scales of approximately 1x1 km2 sufficient to 

parameterize the hydrological processes in till soils. Gottschalk et al. (2001) also 

identified a hillslope scale of 1-2 km2 for the NOPEX region. In addition, Wood et al. 

(1988; 1990) identified a ‘Representative Elementary Area (REA)’ of subcatchments of 
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about 1x1 km2. Scale issues in hydrological modelling (Blöschl and Sivapalan, 1995) are 

one of the major challenges in parameterization of precipitation-runoff models.  

    Due to the sparse hydro-meteorological networks (i.e. only 12 precipitation stations 

distributed over the boreal mountainous study region), it is clear that the resolution of the 

forcing field is low. Even though the resolution of climate forcings is much lower than 

the resolution of the parameterization for the case 2G, the performances of the case 2G 

and case 2 are indistinguishable. There are scale mismatch between spatial 

heterogeneities of climate control and topographic control due to the prevailing terrain 

heterogeneity at a finer hillslope scale (e.g. 25mx25m). For the boreal watershed, the 

topographic driven influence on the spatial heterogeneity of soil moisture, subsurface 

storage and hence lateral movement of subsurface flow dominate the grid-to-grid 

variability of the low intensity precipitation. However, the only advantage of distributed 

(gridded) simulations (cases 1G to 3G) over the semi-distributed (cases 1 to 3) in the 

present study is found to be the simplicity in preparing gridded input maps for the 

distributed model than preparing topographically delineated elements for the semi-

distributed model rather than marked improvement in the runoff simulation.  

    For the boreal catchments, topographic control heterogeneities at finer spatial scales 

dominates the runoff generation processes and hence parameterizations for the finer scale 

hillslope processes may be required (see Halldin et al., 1999). Therefore, the grid cell-to-

grid cell routing in the hillslopes (e.g. 25mx25m grids) towards the stream networks by 

considering the hillslope topographic gradients within the 1x1 km2 grid like in the 

distributed hydrology-soil-vegetation model or DHSVM (Wigmosta et al., 1994) may 

further allow more representativeness and utility of the terrain features.  

Conclusions 

We examined the performances of six different parameterizations of the subsurface 

storage capacity based on the probability distributed model for semi-distributed and 

distributed (1x1 km2 grids) hourly runoff simulation in boreal mountainous watershed in 

mid Norway.  

    The study for the boreal watershed of variable relief showed that the subelement and 

subgrid scale parameterizations of the subsurface storage capacity donot provide better 
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results for the hourly runoff simulation than the coarser parameterizations, which 

indicate:  

i. Identification of parameterizations require measurements from dense 

precipitation networks than what is required for a mere calibration of 

precipitation-streamflow relationships;  

ii. Challenges towards identification of parameterizations based on model 

calibration only to the catchment integrated streamflow observations; 

iii. Equivalent simulation performance for the available data set showed a 

potential preference for the simple and parsimonious parameterizations e.g. 

case 3G (a simple distributed routine) in operational forecast mode related to 

model updating. 

iv. The effects of input uncertainties related to precipitation and streamflow, and 

parameter non-identifiability on identification of the parameterizations require 

scrutiny.  

Previous studies are lacking pertinent to comparisons of different parameterizations of 

the subsurface storage capacity for hourly runoff simulation in boreal catchments. Both 

the precipitation control e.g. density of the climate networks and topographic control 

driven heterogeneities at further finer spatial scales need thorough exploration. In 

addition, the present study donot consider the preferential flow that may be apparent 

in the glacial till soils. 
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Appendix A: Further details on the PDM  

The actual storage S [L] is the sum of the unsaturated (SUS) and saturated (SS) portions 

(Figure 2a): 
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The total actual storage, ST [L] for the grid cell is: 

minTS t t c S t t ,                                                                                            (A.2) 

 where F(c*(t)) = probability (c  c*(t)) indicates the fraction of grid cell with local 

storage capacity less than or equal to c*(t) and is saturated to generate runoff at time t 

(Figure 2a and b). The c is the local storage capacity, cn is the normalized storage capacity, 

cmin is the minimum local storage capacity, and ‘a’ and ‘b’ are the shape parameters. 

Based on the ‘equal storage redistribution of interacting storage elements’ assumption, 

c*(t) is the critical store capacity at which all stores have water content of c*, irrespective 

of their capacity, unless this is less than c* when they will be full at time t (Moore, 1985). 

The maximum possible storage at saturation (Smax [L]) and the total maximum possible 

storage at saturation (STmax [L]) for the grid cell are: 
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The analytical solutions for the Pareto distribution are as below: 
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Tables 

Table 1. Main characteristics of the study catchments and hydro-climatic data. 

Catchments Gaulfoss Eggafoss Hugdal bru Lillebudal bru 
Catchment area, km2 3090 668 546 168 

Major soil types (%) 
Till soils (thick layer) 26.9 39.9 23.2 14.5 
Till soils (thin layer) 33.0 27.8 38.7 29.5 
Peat and marsh (organic material) 8.6 6.8 8.1 2.9 
Bare mountains 24.0 23.9 20.1 49.1 

Major types of bed rock geology (%) 
Gabbro and amphibolite 2.4 6.8 0.0 0.0 
Amphibolite and schist 4.4 21.2 0.0 0.0 
Greenstone and amphibolite 11.0 22.4 11.8 0.0 
Quartzite 9.7 0.0 15.7 1.2 
Mica gneiss, schist, amphibolite and 
metasandstone 48.2 8.7 41.3 97.7 
Phyllite and schist 17.8 31.1 26.9 0.0 
Elevations at climate stations                      127-885 127-885 127-885 127-885 
Elevations at streamflow stations               45 135 330 515 
Mean annual precipitation at stations 
[mm]   670-1105 670-1105 670-1105 670-1105 
Catchment averaged (interpolated) 
annual precipitation [mm] 874.21 922.6 884.06 864.7 

 

Table 2. Summary of the key features of the parameterization cases.  

Cases 

Scales of representation of spatial heterogeneity and computation or calibration 
Heterogeneity 

by a 
probability 
distribution 

Smax  
Shape parameter ‘b’ 
of the distribution 

Runoff 
generation 
(response) 

STS 
runoff 
routing 

1 Subcatchment Catchment 
(calibrated) 

Catchment 
(calibrated) Element Grid  

2 Subelement Element (from 
topographic gradient) 

Element (from 
topographic gradient) Element Grid  

3 - Catchment 
(calibrated) - Element Grid  

1G Subgrid  Catchment 
(calibrated) 

Catchment 
(calibrated) Grid Grid  

2G Subgrid Grid (from 
topographic gradient) 

Grid (from 
topographic gradient) Grid Grid  

3G - Catchment 
(calibrated) - Grid Grid  

Smax: the maximum subsurface storage capacity and STS: source-to-sink routing. 
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Table 3. Lists of the calibrated model parameters and their uniform priors. 

 
No. Parameters Routines Cases Uniform 

priors Description 

1 cmax [mm]     PDM 1-2, 1G-2G 150-1000       Local max. storage  

2 cmin [mm]     PDM 1-3, 1G-3G 0-100 Local min. storage 

3 Smax [mm]          PDM 3, 3G 150-1000       Catchment scale max. storage  

4 Storagemin 
[mm]    PDM 2G 0.001-20 Min. storage capacity 

5 b [-]              PDM 1, 1G 0.001-1      Shape parameter of distn. 
6 k [mm1-nh-1]       PDM 1-3 10-7-10-3         Coefficient of Q-S r/shp 
7 n [-] PDM 1-3 0.2-5              Exponent of Q-S r/shp 
8  [m/s]   PDM 1G-3G 0.005-1.5 Diffusivity  
9 Ic [mm/hr]     PDM 1-3, 1G-3G 0.1-40            Infiltration capacity 

10 TX [0C]          Snow 1-3, 1G-3G -3-2                Snowfall-rainfall threshold 
temp. 

11 WS [-]           Snow 1-3, 1G-3G 1-6             Snowmelt sensitivity to wind 
speed  

12 V [m/s]         Routing 1-3, 1G-3G 1.9-2.6         Velocity of flow 
13 D [m2/s]        Routing 1-3, 1G-3G 200-1500       Flow dispersion coefficient 

 
Table 4. Calibration, temporal and spatial validation of model parameters corresponding 

to maximum R2 and R2ln performance measures for Gaulfoss.  

Calibrated 
catchment 
(calibration 

period)  

Cases 
(calibration or 

validation 
period) 

Parameter transferability in time and space (to internal 
catchments) 

Gaulfoss Eggafoss Hugdal bru Lillebudal bru 

Gaulfoss 
(2008-2010) 

 R2 R2ln R2 R2ln R2 R2ln R2 R2ln 
1 (2008-2010) 0.84 0.86 0.75 0.78 - - 0.58 -2.38 
1 (2010-2011) 0.78 0.90 0.64 0.85 0.80 0.87 -0.01 -3.79 
2 (2008-2010) 0.82 0.81 0.75 0.73 - - 0.56 -6.11 
2 (2010-2011) 0.83 0.90 0.61 0.82 0.82 0.77 -0.01 -3.46 
3 (2008-2010) 0.80 0.83 0.74 0.77 - - 0.30  0.34 
3 (2010-2011) 0.83 0.88 0.59 0.85 0.77 0.79 -0.03 -3.39 

1G (2008-2010) 0.84 0.83 0.73 0.76 - - 0.57 -3.59 
1G (2010-2011) 0.85 0.87 0.62 0.82 0.81 0.78 -0.03 -4.03 
2G (2008-2010) 0.84 0.85 0.73 0.78 - - 0.58 -3.85 
2G(2010-2011) 0.85 0.90 0.62 0.84 0.81 0.83 -0.03 -4.03 
3G (2008-2010) 0.84 0.84 0.73 0.75 - - 0.58 -3.77 
3G (2010-2011) 0.84 0.89 0.64 0.84 0.81 0.79 -0.01 -3.86 

*The bold values indicate results of the calibration period for Gaulfoss and the 

validation period is 2010-2011. 
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Figures 

 

                                                                                                                                                                             

                                                        (a)  

 

  

Figure 1. (a) Locations of the study catchments and gauging stations, elevation map, and different 

discretization schemes used for representation or simulation of the different variables as explained in the 

boxes, (b) Land use/cover cumulative percentages, (c) Hypsometric curves (d) Semi-log plot of daily 

streamflow duration curves, (e) Flow regimes or Pardé coefficients from daily streamflow data.  

The numbers from 1-33 on Figure 1a (top right) are topographically discretized subcatchments called 

elements. The descriptions in the boxes in Figure 1a are the spatial scale used for the representation of the 

spatial heterogeneities and for the simulation of different variables.   

The subcatchments 
(38-168 km2) based 
computations 
- PET and 
infiltration 
(TOSOIL) 
aggregated from the 
1km2 grids; and 
- Runoff generation 
or response (cases 1, 
2 and 3). 

The 1km2 grid based 
computations  

- Interpolation of input climate 
forcings; 
- SNOWOUT, PET and 
TOSOIL; 
- Runoff generation or response 
(cases 1G, 2G and 3G); 
- Relationship between 
topographic gradient, and Smax 
and b for cases 2 and 2G; 
- Flow travel length resampled 
from the 625 m2 grids; and 
-Response (lag) function for 
routing. 

The 625m2 grid based 
computation 

-Flow travel length from 
25m DEM and used for 
resampling to the 1km2 
grids. 

(b) 

(c) 

(d) 

(e) 
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(a) 

 

(b) 

Figure 2. (a) Probability distributed subsurface storage based model structure and 

schematic of partitioning effective precipitation (TOSTORAGE), (b) Probability density 

functions (PDFs-KwD) and cumulative distribution functions (CDFs-KwD).  

At initial, c*(t) = cmin is considered. 
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Figure 3. Hourly observed and simulated streamflow hydrographs for part of the 

calibration period corresponding to maximum R2 for Gaulfoss: (a) Cases 1 to 3, (b) Cases 

1G to 3G, and (c) Typical source-to-sink (STS) routing flow path response (lag) functions.  

(a) 

(b) 

(c) 
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Figure 4. Quantile-quantile (Q-Q) plots for observed versus simulated flows for 

calibration and validation periods for Gaulfoss for R2. 

  
 
Figure 5. Flow duration curves for observed versus simulated flows for calibration and 

validation periods for R2 and R2ln performance measures for Gaulfoss.  
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Distributed hourly runoff computations in mountainous boreal 

catchments from ‘catchments as simple dynamical systems’ storage-

discharge relationships  
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Abstract  

We evaluated the ‘top-down’ runoff response routine based on the principles of 

‘catchments as simple dynamical systems’ for distributed hourly runoff simulation for 

macroscale (3090 km2) mountainous boreal catchment dominated by glacial till soils 

and considerable proportion of snowfall precipitation. The main research question lies 

in how the approach performs when we both estimate the parameters from streamflow 

recession and calibrated (for both runoff routed and unrouted cases) for a macroscale 

boreal catchment. The routine reproduced the streamflow hydrographs and duration 

curves with Nash-Sutcliffe efficiency (NSE) up to 0.83. Moreover, transferability of the 

parameters to internal mesoscale (168-653 km2) subcatchments validated the ‘top-

down’ paradigm and indicated an opportunity for prediction in ungauged 

subcatchments. However, both estimating the parameters from recession and neglecting 

runoff delay underestimate the peak flows slightly. In addition, the lower end of 

recession and the minimum length of recession segments included in the analysis affect 

the estimated parameters. Despite the parsimony, there are considerable parameter 

uncertainty and non-identifiability for both estimation and calibration. Therefore, 

detailed evaluation of reliability of the ‘top-down’ routine is necessary based on other 

observed variables not used for calibration. Study on combined utility of the ‘top-down’ 

and process based ‘bottom-up’ paradigms would be essential. However, the results 

encourage further comparative evaluations of the routine on large number of 

catchments.  
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Key words 
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1  INTRODUCTION 

Several studies indicated the uniqueness of watersheds in runoff response due to natural 

heterogeneities in catchment characteristics, climate forcing, dominant hydrological 

processes and process interactions. Uniqueness of watersheds has been studied in 

literature, e.g. Beven (2000) and McDonnell et al. (2007). To model catchment 

uniqueness, modelling of the dominant hydrological processes based on small-scale 

physics such as Darcy’s and Richard’s equations and upscaling of the theories to the 

catchment scale following the ‘bottom-up’ approach is common. However, Sivapalan et 

al. (2003) presented an overview of the ‘top-down’ and discussed the importance of the 

approach for parsimony and learning from observed data. The authors also suggested 

adopting the approach in a comparative mode for many catchments in different climatic 

and hydrologic conditions. McDonnell et al. (2007) suggested a combination of the 

‘bottom-up’ and ‘top-down’ worldviews for descriptions of watershed function based 

on the conditions that constrain the watershed throughout its long-term evolution. 

Kirchner (2006) asserted the need for modelling based on analyses of contemporary 

hydrological observations to infer model structure, equations and parameters for 

improved hydrological modelling. The main motivation was to reduce relying on the 

traditional approach of parameter tuning to a calibration data set in overparameterized 

and poorly identified ‘bottom-up’ models. 

    Rainfall-runoff modelling based on storage-discharge relationships and streamflow 

recession analysis has long been conducted (e.g. Ambroise et al., 1996; Lamb and 

Beven, 1997; Wittenberg and Sivapalan, 1999 and Rees et al., 2004). Kirchner (2009) 

proposed a simplified ‘top-down’ approach for a lumped modelling study of headwater 

catchments in Mid Wales (United Kingdom) based on a functional relationship between 

catchment storage and discharge and parameter estimation from both streamflow 

recession analysis and direct calibration of the rainfall-runoff relationships. The author 

inferred a single storage model structure based on a variable known as the discharge 
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sensitivity function, g(Q) = dQ/dS, where S is catchment storage and Q is discharge. If 

discharge is a function of storage, then the catchments antecedent moisture will be 

implicitly measured by stream discharge and the catchment response to a unit increase 

in storage will be directly quantified by the hydrologic sensitivity function (Kirchner, 

2009). Parameter estimation from only streamflow observation would avoid the 

uncertainty of the quality of climate data on the parameter calibration, which may 

provide significant advantages in areas with a sparse climate network. Moreover, the 

computational demand of calibration, for instance calibration of a distributed model 

running at hourly time-step is high with well-known pitfalls. Additional expected 

advantages of such parsimonious precipitation-runoff models are reduction of problems 

related to overparameterization since one can estimate the parameters in the runoff 

response routine from the recession plots of observed streamflow at times when effects 

of evapotranspiration and precipitation are negligible. 

    The defining feature of the downward approach to hydrologic modelling is the 

attempt to predict overall catchment response and the catchment functioning based on 

an interpretation of the observed response at the catchment scale (Sivapalan et al., 

2003). Therefore, an additional advantage of the approach proposed by Kirchner (2009) 

is the ability to make inference on the unobservable catchment storage from streamflow 

observations. We are particularly limited due to our inability to ‘see’ the subsurface of a 

catchment, in which much of the hydrologic response often remains hidden from our 

current measurement techniques (Wagener et al, 2007).  

    However, previous studies such as Myrabo (1997), Beldring (2002) and Jansson 

(2005) shows the dominance of glacial tills in the boreal catchments. Jansson et al. 

(2005) further reported preferential flow in glacial tills. Zehe and Sivapalan (2009) 

classified the preferential flow and connectivity of flow paths to the outlet as a runoff 

response threshold. The preferential flow violates one of the main assumptions of the 

runoff response routine evaluated in the present study, which is the hydraulic 

connectivity of unsaturated and saturated storages. Hence, the validity of the prevailing 

assumptions in the approach needs assessment across catchments in different climate 

regimes, landscape features and spatial scales (from micro to macro scales). Blöschl 

(2006) endorsed the need for hydrological synthesis across places and scales for 

improved knowledge based on comparative analysis. Kirchner (2009) also concluded 
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with a statement on the importance of assessing the applicability of the approach to 

diverse hydrologic setting. 

    In addition, to our knowledge all the previous studies or applications of the approach 

were lumped. The main examples are Teuling et al. (2010) for streamflow simulation in 

Swiss prealpine catchment and Krier et al. (2012) for inferring basin-averaged effective 

precipitation rates for 24 small to mesoscale catchments in Luxembourg. More recently, 

Brauer et al. (2013) applied the predetermined power-law relation of Brutsaert and 

Nieber (1977) for a less humid lowland catchment (6.5 km2) in the Netherlands. 

However, Kirchner (2009) noted that the storage-discharge relationship that 

characterizes the catchment’s behavior might not describe any individual point on the 

landscape. Clark et al. (2009) illustrated that for a mountain research watershed in 

Georgia (USA) the recession relationships of (dQ/dt) and Q is approximately consistent 

with a linear reservoir at a hillslope scale and deviation from linearity that becomes 

progressively larger with increasing spatial scale. Spence et al. (2010) also illustrated a 

hysteretic relationship between storage and streamflow at a catchment scale for 

subarctic catchment with dominant shallow organic soils and numerous water bodies. 

Therefore, the performance of the distributed version of the approach needs further 

exploration. 

    Relevant to the catchment size and the effects of runoff delay, the potential 

applicability of the approach for runoff simulation in macroscale catchments is lacking 

in literature. Kirchner (2009) stated that the method must break down for catchments 

that are too large, but Krier et al. (2012) illustrated the validity of Kirchner’s ‘doing 

hydrology backward’ approach for small to mesoscale catchments (  1092 km2) which 

exhibit heterogeneous lithology. One can also speculate for large size watersheds that 

the spatial heterogeneity of precipitation and the effects of runoff routing in the 

hillslopes and river networks may influence the precipitation-runoff relationship more 

than the catchment storage and discharge relationships. Therefore, the effects of the 

runoff delay on calibration of parameters, the g(Q) and streamflow simulation require 

further study.  

    Overparameterization in precipitation-runoff models introduce more degrees of 

freedom than the data can adequately constrain, which leads to equifinality problem 

(Beven and Binley, 1992; Kirchner, 2006). Since precipitation-streamflow relationships 
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can provide only limited information, uncertainty and identifiability problems of model 

parameters are not completely avoidable even in parsimonious models. However, the 

likelihood of reliability of prediction is highly influenced by the reliability of calibrated 

parameters. Therefore, the evaluation and assessment of uncertainties in estimation of 

parameters related to extraction of recession segments, interaction among the 

parameters and the model equation inferred from the recession analysis are required. In 

addition, the uncertainty and identifiability assessment of the calibrated parameters is 

necessary.  

The objectives of the present study are:  

(1) To evaluate the calibration and validation performances of a spatially distributed 

version of the ‘top-down’ approach of single catchment storage runoff response 

routine for hourly runoff simulation when parameters are both estimated from 

streamflow recession and calibrated to observed discharge; 

(2) To assess the parameter uncertainty and identifiability for both parameter 

estimation and calibration; and 

(3) To study the effects of parameter uncertainty and runoff delay on the g(Q).  

2  THE STUDY REGION AND DATA 

The study area is the Gaula watershed in mid Norway. We used streamflow data from 

Gaulfoss and its internal subcatchments Eggafoss, Hugdal bru and Lillebudal bru. The 

catchments exhibit boreal climate with seasonal snow. The dominant land covers are 

conifer forests, mountains above timberline and marsh land/bogs. Lillebudal has a mean 

catchment elevation of 915 masl and 65 % of the catchment area above the timberline, 

which is higher than the other catchments. There is no considerable proportion of 

farmland and lakes, and none of the catchments has glacier coverage. The dominant soil 

type is glacial tills. The underlain bedrocks are mainly metamorphic (mica gneiss, mica 

slate, phyllite, green stone, quartzite, mica schist and amphibolite), and metasandstone 

(Figure 1a). All climate input data are of hourly time resolution similar to the 

computational time step. The climate data used are precipitation (P) from 12 stations, 

temperature (T) from 11 stations, wind speed (Ws) from 9 stations, and relative 

humidity (HR) and global radiation (RG) from 3 stations. The spatial resolution for the 

climate measurement is at a very coarse scale compared to the 1x1 km2 computational 
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grid size. Spatial fields of the climate data are computed by inverse distance weighing 

(IDW). A catchment map and characteristics of the study catchments are given in 

Figure1a and Table 1.  

3  METHODS AND MODELS 

3.1  Kirchner’s runoff response routine 

Kirchner’s method (Kirchner, 2009) was developed based on the main assumptions that: 

(i) The streamflow Q depends solely on the amount of water stored in the 

catchment (S) and f is a strictly monotonically increasing function (i.e. 

invertible); 
1 =  ;  Q f S QS f                                                                                                     (1) 

(ii) The discharge in the catchment is mainly controlled by release of water from 

the storage rather than ‘bypassing’ flow from direct precipitation; and 

(iii) The unsaturated and saturated storages are hydraulically connected and the 

net groundwater flow across watershed boundary (Gin-Gout) is zero.  

    From conservation of mass equation: 

- -- - in out
dS

I AET Q
dt

I AET Q G G                                                                  (2) 

The water balance based response routine is: 

- - - -
dQ dQ dS dQ

I AET Q g Q I AET Q
dt dS dt dS

 ,                                                     (3) 

where the actual evapotranspiration (AET), infiltration (I) = rainfall + snow melt (SM) 

and discharge (Q) are given in mm/hr, storage (S) is in mm, t is a time variable and g(Q) 

is the sensitivity of discharge to change in storage. The reciprocal of the sensitivity 

function or 1/g(Q) is system ‘response time’ or ‘memory’ (Teuling et al, 2010) usually 

denoted as  (Tau) and indicates how rapidly streamflow recedes.  

    Based on the lumped water balance model of Kirchner (2009), I, AET, Q and S in the 

above equations are lumped for the catchment scale. But, the differences in the usage of 

eq. (1-3) in the present study is that we simulated distributed runoff for each grid cell by 

considering spatially distributed climate inputs, fluxes and storage. The grid based 

computations in this study accounts for the spatial variability of climate forcing. Since 
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the seasonal snow accumulation and snowmelt highly influence the water balance of the 

catchment, spatial variability of temperature based on elevation is also important.  

3.1.1 Estimation of the regression parameters and g(Q) from streamflow recession  

Kirchner (2009) inferred the model structure and parameters from observed streamflow 

during recession periods. The recession curve describes in an integrated manner how 

different factors in a catchment influence the generation of streamflow in dry weather 

periods (Tallaksen, 1995). Recession plots provide information on how the rate of 

streamflow recession (-dQ/dt) varies with discharge (Q) when effects of 

evapotranspiration and precipitation or infiltration are assumed to be negligible and 

hence eq. (3) for dQ/dt can be reduced to eq. (4). The main advantages of recession 

analysis are that rainfall can be assumed to be zero, or at least small (so difficulties with 

any errors in catchment rainfall estimation are avoided), and that the hydrograph 

represents an aggregate measure of catchment behavior (Sivapalan, et al., 2003).  

    We followed the refined recession analysis (extraction and binning) procedures by 

Kirchner (2009). We used hourly data from 1995–2011 for Gaulfoss, Eggafoss and 

Hugdal bru and 2004–2011 for Lillebudal bru. We extracted only night-time recessions 

to filter out periods with significant effect of evapotranspiration but we did not exclude 

periods with precipitation due to the lack of long hourly series of precipitation data. 

From the recession plots of observed streamflow (Figure 2), we inferred a second order 

polynomial fit between ln(-dQ/dt) and ln(Q): 

,- I Q AET Q
dQ

g Q Q
dt

                                                                                             (4) 

As already stated, the ‘top-down’ paradigm provides an opportunity to infer model 

equation and structure from the streamflow observations. Rearranging for g(Q) in eq. 

(4) with log transformation for numerical stability following Kirchner (2009), the 

following polynomial regression based storage-discharge relationship was fitted from 

the recession analysis: 

2

, 0 1 2

- /
ln ln ln ln lnP Q AET Q

dQ dQ dt
g Q Q Q

dS Q
,                   (5) 

where 0, 1 and 2  are parameters of the polynomial regression model. The rate of flow 

recession (-dQ/dt) is computed as differences in discharge between two successive 
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hours and the discharge Q is computed as average discharge over the two hours 

following Brutsaert and Nieber (1977) and Kirchner (2009). 

    However, the validity of the results depends on the adequacy of the fitted regression 

model. Hence, we tested the adequacy of the selected polynomial regression model. We 

diagnosed the multicollinearity, significance of the regression model and parameters, 

key features of residuals and parameter uncertainty based on the following regression 

model and ordinary least square or minimizing the standard error of estimates (SSE): 

0 1 2

2

0 1 2

2

0 1 2

2

0 1 2
, , 1

ln ln

ln ln ln

ˆ ˆ ˆ, , arg  min  ln -
bn

T

i i i
i

Q Q

g Q Q Q

g Q
,                           (6) 

where  is an error term, Qi represents bin-averaged discharges, nb is the number of bin- 

averaged discharges. 

    Though a polynomial regression with only two parameters obtained by setting the 

quadratic term 2 = 0 may reduce problems related to correlation among the parameters, 

the regression model may not remain significant due to the lack of fit because of the 

missing quadratic term. We performed significance test for the regression parameters 

and the regression model by the t-test and F-test. We diagnosed the residuals for the 

normality assumption of the linear regression model by the Z-score test, which is the 

inverse of the standard normal distribution corresponding to a probability (pr) from 

ranking of the residuals pr = (i-0.5)/N, where i is the ranks of the residuals in ascending 

order and N is the number of samples. We carried out residuals diagnosis for 

homoscedasticity, correlation, systematic lack of fit and outliers from plots of the 

estimates of the response variable ln(g(Q)) versus the residuals, which should be 

random plots around an expected value of zero.  

    We estimated the Individual Confidence Levels (ICL) for the parameters from the t-

test. To assess identifiability of regression parameters through their joint confidence 

regions, we wanted to compute the Joint Confidence Region (JCR), which 

simultaneously bounds the joint parameters, to assess the effects of parameters 

correlation or interaction based on elliptical confidence regions (Bard, 1974). Elliptical 

joint confidence regions are better predictors of regression model uncertainty because 

they capture the parameter correlation (Rooney and Biegler, 2001). From the 

multivariate normal distribution of regression parameters given in Appendix A, the sum 



9 
 

of squares function in the exponent term of eq. (A1) is an equation of a hyper-ellipse 

centred at the parameter estimates. The joint confidence region is all the points in the 

ellipsoid region and computed from the F-distribution as:  

1

', ,2

ˆ ˆ

'

T

p n p

C
f

p S
,                                                                                          (7) 

where  is the subset of , C is the part of the (XTX)-1 matrix, which is corresponding to 

the parameters for which the joint confidence region is to be constructed, p’ < p is the 

dimension of the parameters for which the joint confidence region is to be constructed. 

In the present study p’ = 2 since the joint confidence regions of two parameters at a time 

are computed. The  is significance level, S2 is estimated error variance = SSE/N-p and 

p denotes the number of parameters. Equation (7) is exact for the linear regression 

model (Rooney and Biegler, 2001; Vurgin et al, 2007).  

    For estimation of g(Q) from the recession analysis, we estimated the parameters 

based on bin-averaged discharges extracted from streamflow recessions. Therefore, we 

also employed an alternative parameter calibration. However, we calibrated the model 

parameters as effective parameters for the catchment. Hydrological models are often 

lumped spatially with calibrated effective parameters, which are assumed to take into 

account all of the local scale heterogeneity of land surface characteristics, 

meteorological variables and hydrological processes and fluxes for large areas 

(Gottschalk et al., 2001; Beldring et al., 2003). In addition, Pokhrel et al. (2008) and 

Pokhrel and Gupta (2011) illustrated the limitations of making inferences on the spatial 

properties of a distributed model when only information about catchment output stream 

response is available.  

3.1.2 Model parameters and g(Q) from direct calibration  

Direct calibrations based on optimization algorithms involve comparisons of simulated 

streamflow with the observed streamflow at the outlet. In this case, we calibrated the 

response routine parameters in eq. (5) based on precipitation-streamflow relationships to 

compute the g(Q) and simulate the streamflow. We used the Differential Evolution 

Adaptive Metropolis algorithm or DREAM (Vrugt et al., 2009) with residual based log-

likelihood objective function implemented in ENKI hydrological modelling framework 

(Kolberg and Bruland, 2012): 
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Qsim Qobs

n nQsim Qobs f ,   (8)                              

where Qsim( ) and Qobs( ) respectively are Box-Cox (Box and Cox, 1964) transformed 

simulated and observed streamflow series of length n,  denotes model parameter,  is 

the Box-Cox transformation parameter and 2 is variance of error. We computed the  

from observed streamflow records based on the ‘fminsearch’ algorithm in matlab, which 

finds the  value that maximizes a log-likelihood function (http://www.mathworks). The 

f is a fraction of effectively independent observations estimated from the autoregressive 

or AR (1) model of error covariance (Zi ba, 2010).  

    We assessed the uncertainty and identifiability of the calibrated parameters from the 

last 50 % of marginal posterior parameters. The calibrated parameters in the response 

routine are 0, 1, 2 and EvR, where EvR represents a discharge at which AET equals 

0.95*PET (Figure 1(b)). Runoff is computed by integrating eq. (3) in time using an 

adaptive Bogacki-Shampine (Bogacki and Shampine, 1989) numerical method, which is 

implemented in ENKI (Kolberg and Bruland, 2012). We used the observed discharge 

[mm/h] before the start of simulation period as an initial state for all the grid cells to 

infer initial storages. We started the simulation in September and provided ‘burn-in’ 

period before the calibration period to reduce the effects of initial snow state. 

    Despite the log-likelihood objective function for the DREAM calibration, we used 

the parameter set yielding maximum NSE (max NSE) performance measure for further 

analyses since it is a suitable scale for comparison of streamflow hydrographs. We 

evaluated the simulation based on the two common runoff signatures of hydrographs 

and flow duration curves. Hydrographs are catchment-integrated signatures explaining 

how catchments respond to climate forcing and its own states. Flow duration curves 

express the temporal variability of flow in terms of the percentage of time a flow of a 

certain magnitude is available within a year. We also tested the spatial transferability 

(validation) of both the estimated and calibrated parameters of the Gaulfoss catchment 

(3090 km2) to internal subcatchments of Eggafoss (653 km2), Hugdal bru (549 km2) and 

Lillebudal bru (168 km2).  

3.2 Snow routine 
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The snow processes are dominant in the study area during winter and spring seasons. 

The snow routine is based on the gamma distributed snow depletion curve or SDC 

(Kolberg and Gottschalk, 2006), which computes the outflow melt water release from 

saturated snow (Qs). The free parameters in the routine are rainfall-snowfall threshold 

temperature (TX) and snowmelt sensitivity to wind speed (WS).  

3.2  Evapotranspiration routine 

We computed the potential evapotranspiration (PET) by the Priestley Taylor method:

   nPET R ,                                                                                                    (9) 

where  is the Priestley Taylor constant = 1.26 (Priestley and Taylor. 1972),  is the 

slope of saturation vapor pressure curve at air temperature at 2m (T2m),  is the 

psychometric constant (0.67 hPaK-1), Rn is net radiation. The AET is computed from the 

PET and streamflow, which is used as a proxy to indicate the soil-moisture state 

according to the equation given in Figure 1(b). There is no free parameter in this 

routine.  

3.3  Runoff routing routine 

We linked the response function based source-to-sink (STS) routing (Naden, 1992; 

Olivera, 1996) to the runoff response routine to account for the effects of runoff delay 

both in hillslopes and river networks. Travel time lag influences the hydrologic behavior 

of large basins. The runoff response at the outlet for runoff signal at each grid cell i is 

given by the response function (Ui (t) [T-1]):                                                                                 
2

1
1

( ) exp
4 /2 /

i
i
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t
T

U t
tt

t TT

,                                                                   (10) 

where i [-] = (liVi/Di) is the flow path Peclet number, Ti is the expected flow travel 

time to the outlet for grid cell i, li is flow travel length in grid cell i, Di (flow dispersion 

coefficient) and Vi (velocity of flow) are effective calibrated parameters representing all 

the grid cells. We performed the runoff routing by a convolution following Maidment et 

al. (1996): 
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where Qsim [L/T] is catchment averaged routed simulated flow at the time step t, Ai [L2] 

is area of grid cell, A [L2] is catchment area, Qgi [L/T] is average runoff (over time step) 

generated at each grid cell i and  is the convolution operator.  

    We presented the model structure and equations in Figure 1(b). We conducted 

calibration of parameters with and without including the runoff routing. 

4  RESULTS 

4.1 Recession plots and estimated g(Q)  

Kirchner (2009) discussed the importance of measuring g(Q) across nested networks to 

understand how storage-discharge relationships vary across the landscape. For the four 

catchments in the present study, flow recession rates and recession plots or recession 

relationships fitted to bin-averaged discharges with their corresponding polynomial 

regression equations are given in Figure 2(a) and (b). The rate of streamflow recession 

(-dQ/dt) ranges from 0.0000-0.031 mm/hr2 for Gaulfoss, 0.000055-0.0359 mm/hr2 for 

Eggafoss, 0.0000-0.0369 mm/hr2 for Hugdal bru and 0.00022-0.259 mm/hr2 for 

Lillebudal bru. The ‘response time’  ranges 16-237 h for Gaulfoss, 19-145 h for 

Eggafoss, 22-126 h for Hugdal bru and 15-131 h for Lillebudal bru. The corresponding 

bin-averaged discharges (Q) range from 0.0032-0.698 mm/h for Gaulfoss, 0.0020-0.744 

mm/h for Eggafoss, 0.00298-0.948 mm/h for Hugdal bru and 0.0189-0.942 mm/h for 

Lillebudal bru. Response time ( ) is dependent on catchment size or the effects of runoff 

delay. The larger Gaulfoss catchment exhibits slow response time while the smaller 

Hugdal bru and Lillebudal bru catchments exhibit fast response time. Catchments with 

slow recession rate are typically groundwater dominated, while impermeable 

catchments with little storage show faster recession rates (Staudinger et al., 2011).  

4.2 Hydrographs and flow duration curves 

We presented the simulated versus the observed streamflow hydrographs of Gaulfoss 

for calibration and validation periods in Figure 3a-c. Figure 3a corresponds to the 

regression parameters estimated from recession (runoff routed), Figure 3b corresponds 

to parameters calibrated (runoff routed) while Figure 3c corresponds to parameters 
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calibrated (runoff unrouted). Parameter estimation from recession and calibration 

resulted in NSE up to 0.77 and 0.82 respectively and the model reproduced the 

hydrographs for the different seasons for Gaulfoss (Table 5). In addition, the spatial 

transferred parameters to internal subcatchments (Eggafoss, Hugdal bru and Lillebudal 

bru) based on the traditional ‘split sample’ and ‘proxy ungauged basin’ tests (Kleme , 

1986) provide NSE up to 0.81 and 0.83 for parameter estimation and calibration 

respectively (Table 5). This also shows that both the estimated g(Q) from recession 

segments of 17 years and from calibration based on continuous streamflow observations 

of two years provide representative parameters to capture seasonal variations of 

streamflow hydrographs. However, both parameter estimation from recession analysis 

and neglecting the runoff routing slightly underestimates the peak flows compared to 

simulation based on direct calibration and runoff-routed. Figure (5a) displays the plots 

of the observed versus the simulated flow duration curves from combined calibration 

and validation periods. The model reproduced the temporal variability of streamflow in 

terms of the flow duration curve. 

4.3 Parameter uncertainty and identifiability 

Table 2 shows the lists of calibrated parameters along with their ranges of uniform prior 

whereas Table 3 gives the values of the parameters estimated and calibrated both for 

runoff routed and unrouted cases corresponding to the max NSE performance measure 

for Gaulfoss. Figure 4(a) and 4(b) respectively show typical results from diagnostics of 

the polynomial regression and uncertainty bounds of regression parameters for 

parameter estimation from streamflow recession. Figure 4(c) presents the uncertainty of 

the calibrated response routine parameters (runoff routed) in terms of histograms of the 

marginal posterior distributions from the DREAM calibration. The parameters 0 and 1 

exhibit wider posterior distributions (large uncertainty) compared to the 2 and EvR.  

    Diagnostics of the fitted second order polynomial regression of the recession analysis 

revealed the adequacy of the model. The parameters and the model are significant, and 

normality and randomness of the residuals comply with the key assumptions in the 

regression model. However, the residual plots indicating the systematic lack of fit 

indicated that the regression model appeared to be insignificant for some of the 

catchments when there is no quadratic term.  
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    The rectangular region created by individual 95% confidence limits based on the t-

test indicates wide uncertainty ranges. We performed tests on whether it is necessary to 

consider the joint confidence regions to account for the correlation among the regression 

parameters for Gaulfoss. It was observed that the majority of ellipsoid joint confidence 

regions lie inside the rectangular individual confidence limits only for 0 and 1 (Figure 

4(b)) which indicates that considering joint confidence region is not necessary for the 

two parameters. However, the elliptical joint confidences regions involving the 

quadratic parameter 2 (not shown here) are far off their corresponding rectangular 

individual confidence limits, which indicate the poor identifiability due to correlation 

between the parameters and suggest the removal of 2 from the regression model.  

    However, significance test based on residuals analyses (Figure 4(a)) revealed that the 

regression model is not adequate for some cases without the quadratic term as discussed 

earlier. Despite these two contradicting results, we preferred to use the second order 

polynomial regression with the three parameters (constant, linear and quadratic) of eq. 

(5) in the present study. Even though the optimal regression parameters obtained from 

the recession analysis and direct calibration are different (Table 3), their uncertainty 

bounds somehow overlap, which can be observed from comparing the confidence limits 

or regions (Figure 4b) versus histograms of posterior parameters for Gaulfoss (Figure 

4c).  

    Table 4 contains the results of parameter correlation in terms of the linear correlation 

matrix and ranges of posterior parameters for Gaulfoss. The large linear correlations 

among the response routine parameters for the direct calibration indicate poor 

identifiability of parameters. We presented the effects of parameter estimation and 

calibration and the runoff delay on the g(Q) along with ensemble mean of g(Q), which 

is computed from posterior parameter sets from the calibration, in Figure 5(b) to address 

the effects of parameter uncertainty on the g(Q). 

 4.4 Parameters transferability or model validation 

The transferability of model parameters from Gaulfoss (3090 km2) to its three internal 

subcatchments namely Eggafoss (653 km2), Hugdal bru (549 km2) and Lillebudal bru 

(168 km2) indicated the validity of the ‘top-down’ modelling paradigm. However, the 

performance of parameter transfer to Lillebudal is lower than that of the others. In 
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addition, the hypsometric curves (Figure 1a) and mean catchments elevation (Table 1) 

indicate that the major portion of Lillebudal bru is located at higher elevation than the 

climate stations, which indicates the unrepresentativeness of the climate input for the 

catchment. The landuse map (Figure 1a) and Table 1 show higher proportion of 

mountains above timberline (bare rock) for the Lillebudal bru. Contingent on 

availability of dense streamflow and climate gauging networks, it would be possible to 

test how the parameter transferability works down to the 1x1 km2 computational grid.  

5  DISCUSSION 

Motivated by Kirchner (2009), we evaluated the applicability of the principle of 

‘catchments as simple dynamical systems’ for macroscale to mesoscale (3090-168 km2) 

mountainous boreal catchments in mid Norway for distributed hourly runoff simulation.  

Model calibration and validation 

Both parameter estimation from recession analysis and neglecting the runoff routing 

slightly underestimates the peak flows compared to simulation based on direct 

calibration (runoff-routed case). This result do not comply with that of Brauer et al. 

(2013), who found that for a less-humid catchment in the Netherlands parameter 

calibration from direct storage-discharge fitting of the power-law relationship led to a 

strong underestimation of the response of runoff to rainfall while recession analysis lead 

to an overestimation. The differences may also arise from the difference between the 

polynomial relationship derived from the recession analysis and/or the power-law 

relationship, the differences in calibration algorithms used and the runoff routing.  

    Transferability of model parameters indicated spatial validation of the model and an 

opportunity for regionalization of the parameters towards prediction in ungauged rivers 

in the catchment. If g(Q) can be estimated from some combination of catchment 

characteristics, then it may help in solving the problem of hydrologic prediction in 

ungauged basins (Kirchner, 2009). However, previous attempt by Krakauer and Temimi 

(2011) to identify first order controls of recession time scale indicated that the used 

predictor variables were significant at only high flow or low flow rates. Moreover, 

observations on the geological characteristics of the catchments, which influences the 

recession behaviors, are not easily available and there are limitations associated with the  

data mining or spatial analysis methods. Further work in this regard on large number of 
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catchments would be interesting. Nevertheless, the temporal and spatial transferability 

of the estimated and calibrated model parameters are promising for further evaluation of 

the routine on large number of catchments.  

    The results from the present study indicate that the principle of ‘catchments as simple 

dynamical systems’ in which the streamflow is assumed to be mainly controlled by the 

release of water from the storage allows us to simulate the runoff responses in the study 

region. Though the occurrence of preferential flow in glacial till soil was reported for 

instance by Jannson et al. (2005), the present study shows streamflow simulation from 

the method proposed by Kirchner (2009) that is based on the main assumption of 

hydraulic connectivity of storages and flow pathways provided validated results. 

Graham et al. (2010) and Graham and McDonnell (2010) reported the existence of 

connected preferential flow paths at the soil-bedrock interface in their study on hillslope 

threshold runoff responses to rainfall. However, both estimation of parameters from 

streamflow recession and calibrated effective parameters could represent effective 

characteristics of the heterogeneous catchment system (see Beven et al., 2000; Wagener 

and Wheater, 2006). 

Effects of parameter uncertainty on the g(Q) 

Parameter uncertainty affects the observed discharge sensitivity to storage or g(Q) and 

hence streamflow simulation. We found considerable differences between the results of 

the g(Q) that is computed from estimated and calibrated parameters for recession 

segments of low flows for Gaulfoss catchment (Figure 5(b)). From recession based 

inference, the expected behavior of g(Q) as an increasing function of Q or decreasing 

‘response time’ with increasing discharge are observed only above certain limits of Q. 

This problem is attributed to the recession segments at the lower end of recession. 

Kirchner (2009) discussed the significant scatter at the lower end of recession 

particularly for Q < 0.1 mm/h and attributed it to the effects of measurement noises. As 

we can observe from the lower ranges of recession rates in (Figure 2(a)), there are equal 

recession rates over the ranges of bin-averaged discharges. The ln (-dQ/dt) versus 

ln(g(Q)) plots in Figure 2(b) also shows higher observed g(Q) for the lower ends of 

recession plots, which may not be related to fluctuations in catchment storage rather 

potentially related to resolution of loggers and errors in measurements of low winter 

flows. These figures suggest cutting of the lower end of recession below ln(-dQ/dt) < -



17 
 

8.0 or nearly below ln(Q) < -3.20 for Gaulfoss and similarly for the other catchments. 

However, the values of estimated parameters are sensitive to the cut limits of the lower 

end of recession that we obtained markedly different recession parameters from 

different cut limits of the lower end recession.  

    Moreover, the estimated parameter sets based on different lower cut limits provided 

equivalently good performances of runoff simulation, which obviously indicate a major 

source of uncertainty. Therefore, in the present study we kept the lower ends of 

recession segments while estimating the parameters. However, we limited the upper end 

of recession to ln(Q) = 0 to remove outliers above this limit, which are most probably 

attributable to the errors in streamflow measurements during high flow recessions. A 

further study is required to address uncertainties due to the lower end of recession and 

other sources in a comprehensive manner, which was not the main objective in the 

present study. Stoelzle et al. (2012) compared different recession extraction and fitting 

procedures and found significant differences in the results. Differences between the 

g(Q) from recession and direct calibration may also arise since the g(Q) from recession 

analysis was obtained from parameter estimation based on nighttime hourly recessions 

for 17 years streamflow data while g(Q) from calibration was obtained from calibration 

based on 2 years hourly continuous records. Continuous records in the case of 

calibration allow inclusion of all ranges of streamflow (low flow to high flow) which 

have different degrees of sensitivity to the catchment storage.  

    We also found that incorporating the shorter recession segments in the analysis 

provided a nearly constant  and g(Q). Since streamflow fluctuations causing recessions 

only for short periods are not related to catchment storage, we set minimum length of 

recession segments to be included in the analysis to exclude the shorter discharge 

fluctuations. Selection of recession segments longer than 9 to 15 h provided nearly 

similar patterns of g(Q) for Gaulfoss and Eggafoss and hence we extracted recession 

segments  9h for the two catchments while we extracted recession segments  4h for 

Hugdal bru and Lillebudal bru. In addition, the quickly draining storages are more prone 

to evaporation (see Staudinger et al., 2011). 

    The differences in the recession versus calibration and the routed versus unrouted are 

observed both in the slope and intercept parameters. Therefore, it is not easy to 

distinguish the effects of the procedures in the recession analysis from the effects of the 
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runoff delay related to the river networks or catchment size. However, the model 

calibration allows quantification of uncertainty in the g(Q) from the posterior 

parameters. The ensemble mean of g(Q) from the last 1000 posterior parameters sets are 

lower than the g(Q) corresponding to the optimal parameter sets for both the runoff 

routed and unrouted cases while the difference is more exaggerated for runoff routed 

case (Fig. 5b).  

Effects of catchment size and runoff delay 

We obtained a maximum runoff delay or travel time lag between headwater and outlet 

of 14.81h for Gaulfoss based on parameter calibration including the source-to sink 

routing algorithm. When we consider the runoff routing explicitly during the 

calibration, the routing parameters accounts for runoff delay in the hillslopes and 

channel networks and hence it is expected that the response routine regression 

parameters do not compensate for the runoff delay. Therefore, we obtained lower 

‘response time’ (  = 1/g(Q)) when routing is included in the model compared to the case 

when runoff is unrouted (Figure 5(b)). Despite the significant runoff travel time lag in 

the Gaulfoss catchment compared to the hourly runoff simulation, we found slight 

underestimation of peak flows due to the effects of neglecting runoff delay or runoff 

routing during the calibration (Fig. 3c). In addition, there is no considerable difference 

in the maximum performance measures (max NSE). This shows that interaction or 

compensation among model parameters during calibration partially conceals the 

sensitivity of the outlet hydrographs to the effect of runoff delay, which is the 

unidentifiability problem. However, generally importance of runoff routing decreases 

with the catchment size and almost negligible for the smallest modelled catchment of 

Lillebudal bru (Table 5). 

Effects of data quality 

The climate stations are available only inside the Gaulfoss and Hugdal bru catchments 

and hence more representative climate input is expected for these catchments than for 

Eggafoss and Lillebudal bru. Therefore, for study catchments with few precipitation 

stations the performance of precipitation interpolator affects the inferences made on the 

calibrated parameters. Moreover, sparse gauging networks may not capture localized 

precipitation events. Slightly better transferability of parameters to internal 

subcatchments for the parameter sets based on recession analysis over parameter sets 
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based on direct calibration (Table 5) may be attributable to the fact that estimation from 

recession is dependent only on streamflow while the representativeness of climate input 

affects the calibration. 

 6  CONCLUSION 

A parsimonious ‘top-down’ modelling is also prone to the parameter uncertainty and 

non-identifiability problems, which are the main challenges in the ‘bottom-up’ 

paradigm. The correlation among the parameters during calibration and hence their non-

identifiability masks the sensitivity of streamflow simulation from catchment storage-

discharge relationships to the runoff delay even for a macroscale catchment. Detailed 

evaluation of the reliability of runoff simulation and inferences made from the ‘top-

down’ approach is required for any catchment size for instance based on variables other 

than the catchment-integrated streamflow used for model calibration, which requires 

observations other than streamflow. Study on combined utility of the ‘top-down’ and 

process-based ‘bottom-up’ approaches by utilizing the strengths of each would be 

essential. 

    Calibration based on data from high-density climate stations would improve the 

uncertainty and poor identifiability problems for improved predictions and inferences 

on the hydrological behavior of catchments. Evaluation of possible effects of 

precipitation during recessions is required rather than assuming negligible precipitation 

during recessions. However, the results obtained from the present study encourage 

further comparative evaluation of the routine for prediction purposes based on large 

number of catchments. 

Acknowledgements  

This work was a part of Centre for Environmental Design of Renewable Energy’s, 

(CEDREN’s) hydroPEAK projects under hydrology sub project (Project number: 

50043420). CEDREN substantially funded the project. We wish to express our thanks 

to the Norwegian Meteorological Institute, Statkraft, TrønderEnergi and bioforsk for the 

climate data and the Norwegian Water Resources and Energy Directorate for the 

streamflow data used in the present study. 



20 
 

REFRENCES 

Ambroise, B., Beven, K. & Freer, J. (1996) Towards a generalization of the 

TOPMODEL concepts: topographic indices of hydrological similarity. Water Resour. 

Res. 32(7), 2135–2145. 

Bard, Y. (1974) Nonlinear parameter estimation. Academic Press, New York, NY. 

Beldring, S. (2002) Runoff Generating Processes in Boreal Forest Environments with 

Glacial Tills. Nord. Hydrol. 33 (5), 347-372. 

Beldring, S., Engeland, K., Roald, L. A., Sælthun, N. R. & Vøkso, A. (2003) Estimation 

of parameters in a distributed precipitation-runoff model for Norway. Hydrol. Earth. 

Syst. Sc. 7(3), 304-316. 

Beven, K. J. & Binley, A. M. (1992) The future of distributed models: Model 

calibration and uncertainty prediction. Hydrol. Process. 6, 279-298. 

Beven, K. J. (2000) Uniqueness of place and process representations in hydrological 

modelling. Hydrol. Earth Syst. Sci. 4(2), 203-213. 

Beven, K.J., Freer, J., Hankin, B. & Schulz, K. (2000) The use of generalized likelihood 

measures for uncertainty estimation in higher-order models of environmental systems. 

In: Nonlinear and Nonstationary Signal Processing (Fitzgerald, Smith, R.C., Walden, 

A.T., & Young, P.C., eds), Cambridge University Press, UK. 

Blasone, R. S. (2007) Parameter Estimation and Uncertainty Assessment in 

Hydrological Modelling. Ph.D. Thesis, Institute of Environment & Resources Technical 

University of Denmark 

Blöschl, G. (2006) Hydrologic synthesis: Across processes, places, and scales. Water 

Resour. Res. 42, W03S02, doi:10.1029/2005WR004319. 

Bogacki, P. & Shampine, L. F. (1989) "A 3(2) pair of Runge–Kutta formulas". Applied 

Mathematics Letters 2 (4), 321-325, doi:10.1016/0893-9659(89)90079-7, ISSN 0893-

9659. 

Box, G. E. P. & Cox, D. R. (1964) An analysis of transformations. Journal of the Royal 

Statistical Society, Series B 26, 211-252. 

Brauer, C. C., Teuling, A. J.,Torfs, P. J. J. F. & Uijlenhoet, R. (2013)  Investigating  

Storage-Discharge Relations in a Lowland Catchment Using Hydrograph Fitting, 



21 
 

Recession Analysis and Soil Moisture Data. Water Resour. Res. 49, 4257–4264, 

doi:10.1002/wrcr.20320. 

Brutsaert, W., Nieber, J. L., 1977. Regionalized drought flow hydrographs from a 

mature glaciated plateau. Water Resour. Res. 13, 637–643. 

Brutsaert, W. (2008) Long-term groundwater storage trends estimated from streamflow 

records: Climatic perspective. Water Resour. Res. 44, W02409, 

doi:10.1029/2007WR006518. 

Bárdossy, A. (2007) Calibration of hydrological model parameters for ungauged 

catchments, Hydrol. Earth. Syst. Sc. 11, 703-710. 

Clark, M.P., Rupp, D.E., Woods, R.A., Tromp-van Meerveld, H.J, Peters, N.E. & Freer, 

J.E. (2009) Consistency between hydrological models and field observations: linking 

processes at the hillslope scale to hydrological responses at the watershed scale. Hydrol. 

Process. 23, 311-319. 

Gottschalk, L., Beldring, S., Engeland, K., Tallaksen, L., Sælthun, N.R. & Kolberg, S. 

(2001) Regional/macroscale hydrological modelling: a Scandinavian experience. 

Hydrolog. Sci. J. 46 (6), 963-982. 

Graham, C., B., Woods, R. A., McDonnell, J. J. (2010) Hillslope threshold response to 

rainfall: (1) A eld based forensic approach. J. Hydrol. 393, 65–76. 

Graham, C. B. & McDonnell, J. J. (2010) Hillslope threshold response to rainfall: (2) 

Development and use of a macroscale model. J. Hydrol. 393, 77-93. 

Götzinger, J. & Bárdossy, A. (2007) Comparison of four regionalization methods for a 

distributed hydrological model. J. Hydrol. 333, 374-384. 

Jansson, C. Espeby, B. & Jannson, P-E. (2005) Preferential flow in glacial till soil. 

Nord. Hydrol. 36 (1), 1-11. 

Kirchner, J. (2003) A double paradox in catchment hydrology and geo-chemistry. 

Hydrol. Processes 17, 871 – 874. 

Kirchner, J.W. (2006) Getting the right answers for the right reasons: Linking 

measurements, analyses, and models to advance the science of hydrology. Water 

Resour. Res. 42, W03S04, doi:10.1029/2005WR004362. 

Kirchner, J. W. (2009) Catchments as simple dynamical systems: Catchment 

characterization, rainfall-runoff modeling, and doing hydrology backward. Water 

Resour. Res. 45, W02429, doi:10.1029/2008WR006912. 



22 
 

Kleme , V. (1986) Operational testing of hydrological simulation models. Hydrolog. 

Sci. J. 31, 13-24. 

Kolberg, S. A. & Bruland, O. (2012) ENKI - An Open Source environmental modelling 

platform. Geophys. Res. Abstracts 14, EGU2012-13630, EGU General Assembly. 

Kolberg, S. A. & Gottschalk, L. (2006) Updating of snow depletion curve with remote 

sensing data. Hydrol. Process. 20(11), 2363–2380. 

Krakauer, N.Y. & Temimi, M. (2011) Stream recession curves and storage variability in 

small watersheds. Hydrol. Earth Syst. Sci. 15, 2377–2389. 

Krier, R. Matgen, P. Goergen, K., Pfister, L., Hoffmann, L., Kirchner, J. W., 

Uhlenbrook, 

S. & Savenije, H. H. G. (2012) Inferring catchment precipitation by doing hydrology 

backward: A test in 24 small and mesoscale catchments in Luxembourg. Water Resour. 

Res. 48, W10525, doi: 10.1029/2011WR010657. 

Lamb, R, & Beven, K. J. (1997) Using interactive recession curve analysis to specify a 

general catchment storage model. Hydrol. Earth Syst. Sci. 1,101-113. 

Maidment, D.R., Olivera, J.F., Calver, A., Eatherral, A. & Fraczek, W. (1996) A unit 

hydrograph derived from a spatially distributed velocity field. Hydrol. Process.10 (6), 

831–844. 

McDonnell, J. J., Sivapalan, M., Vaché, K. Dunn, S., Grant, G., Haggerty, R., Hinz, C., 

Hooper, R., Kirchner, J., Roderick, M. L., Selker, J. & Weiler, M. (2007) Moving 

beyond heterogeneity and process complexity: a new vision for watershed  hydrology. 

Water Resour. Res. 43, W07301, doi:10.1029/2006WR005467. 

Myrabo, S. (1997) Temporal and spatial scale of response area and groundwater 

variation in Till. Hydrol. Process.11, 1861–1880. 

Naden, P. S. (1992) Spatial variability in flood estimation for large catchments: The 

exploitation of channel network structure. J. Hydrol. Sci. 37, 53–71. 

Nash, J. E. & Sutcliffe, J. V. (1970) River flow forecasting through conceptual models, 

I. A discussion of principles. J. Hydrol. 10, 228–290. 

Olivera, F. (1996) Spatially distributed modeling of storm runoff and nonpoint source 

pollution using geographic information systems, PhD Thesis, Department of Civil 

Engineering, University of Texas at Austin, USA. 



23 
 

Oudin, L., Kay, A., Andréassian, V. & Perrin, C. (2010) Are seemingly physically 

similar catchments truly hydrologically similar?. Water Resour. Res. 46, W11558, doi: 

10.1029/2009WR008887. 

Parajka, J., Merz, R. & Bloschl, G. (2007) Regional calibration of catchment models: 

Potential for ungauged catchments. Hydrol. Earth Syst. Sci. 9, 157-171.  

Pokhrel, P., Gupta, H. V. & Wagener, T. (2008) A spatial regularization approach to 

parameter estimation for a distributed watershed model. Water Resour. Res. 44, 

W12419, doi:10.1029/2007WR006615. 

Pokhrel, P. & Gupta, H. V. (2010) On the use of spatial regularization strategies to 

improve calibration of distributed watershed models. Water Resour. Res. 46, W01505, 

doi:10.1029/2009WR008066. 

Pokhrel, P. & Gupta, H. V. (2011) On the ability to infer spatial catchment variability 

using streamflow hydrographs. Water Resour. Res. 47, W08534, 

doi:10.1029/2010WR009873. 

Priestley, C.H.B. & Taylor, R.J. (1972) On the assessment of surface heat flux and 

evaporation using large-scale parameters. Mon. Weather Rev. 100, 81-82. 

Rees, H.G.; Holmes, M.G.R.; Young, A.R. & Kansakar, S.R. (2004) Recession-based 

hydrological models for estimating low flows in ungauged catchments in the 

Himalayas. Hydrol. Earth Syst. Sci. 8(5), 891-902. 

Rooney, W. C. & Biegler. L.T. (1999) Incorporating joint confidence regions into 

design under uncertainty. Comput. Chem. Eng. 23, 1563-1575. 

Rooney, W. C. & Biegler, L. T. (2001) Design for model parameter uncertainty using 

nonlinear confidence regions. Proc. Syst. Eng. 47, 1794-1804.         

Shrestha, S., Bastolab, S. Babelc, M.S., Dulalb, K.N., Magomeb, J. Hapuarachchid, 

H.A.P., Kazamaa, F., Ishidairab, H. & Takeuchid, K. (2007) The assessment of spatial 

and temporal transferability of a physically based distributed hydrological model 

parameters in different physiographic regions of Nepal. J. Hydrol. 347, 153-172. 

Sivapalan, M. Blöschl, G., Zhang, L. & Vertessy, R. (2003) Downward approach to 

hydrological prediction. Hydrol. Process. 17, 2101 – 2111. 

Spence, C., Guan, X.J., Phillips, R., Hedstrom, N., Granger, R. & Reid, B. (2010) 

Storage dynamics and streamflow in a catchment with a variable contributing area. 

Hydrol. Process. 24, 2209-2221.  



24 
 

Staudinger, M., Stahl, K., Seibert, J., Clark, M. P. & Tallaksen, L. M. (2011) 

Comparison of hydrological model structures based on recession and low flow 

simulations. Hydrol. Earth Syst. Sci. 15, 3447–3459. 

Stedinger, J. R., Vogel, R. M., Lee, S. U. & Batchelder, R. (2008) Appraisal of the 

generalized likelihood uncertainty estimation (GLUE) method. Water Resour. Res. 44, 

W00B06, doi:10.1029/2008WR006822. 

Stoelzle, M., Stahl, K. & Weiler, M. (2012) Are streamflow recession 

characteristics really characteristic?. Hydrol. Earth Syst. Sci. Discuss. 9, 10563-

10593.  

Tallaksen, L. M. (1995) A review of baseflow recession analysis. J. Hydrol. 165, 349-

370. 

Teuling, J. Lehner, I., Kirchner, J. W. & Seneviratne, S. I. (2010) Catchments as simple 

dynamical  systems: Experience from a Swiss prealpine  catchment. Water Resour. Res. 

46, W10502, doi:10.1029/2009WR008777. 

Vrugt  J.A.,  Ter  Braak  C.J.F.,  Diks  C.G.H.,  Robinson  B.A.,  Hyman  J.M. & 

Higdon D. (2009) Accelerating  Markov  Chain  Monte  Carlo  simulation  by  

differential  evolution  with  self-adaptive randomized subspace sampling. Journal of 

Nonlinear Sciences and Numerical Simulation 10(3), 273-290. 

Vugrin, K. W., Swiler, L. P., Roberts, R. M., Stucky-Mack, N. J., & Sullivan, S. P. 

(2007) Confidence region estimation techniques for nonlinear regression in 

groundwater flow: Three case studies. Water Resour. Res. 43, W03423, 

doi:10.1029/2005WR004804. 

Wagener, T., Sivapalan, M., Troch, P. A. & Woods, R. A. (2007) Catchment 

classification and hydrologic similarity. Geogr. Compass 1, doi:10.1111/j.1749-

8198.2007.00039.x.  

Wagener, T. & Wheater, H. S. (2006) Parameter estimation and regionalization for 

continuous rainfall-runoff models including uncertainty. J. Hydrol. 320, 132-154. 

Wittenberg, H. & Sivapalan, M. (1999) Watershed groundwater balance estimation 

using streamflow recession analysis and baseflow separation. J. Hydrol. 219, 20-33. 

Zehe, E. & Sivapalan, M. (2009) Threshold behaviour in hydrological systems as 

(human) geo-ecosystems: manifestations, controls, implications. Hydrol. Earth Syst. 

Sci. 13,1273- 1292.                                                                                                                                       



25 
 

Zi ba, A. (2010) Effective number of observations and unbiased estimators of variance 

for autocorrelated data an overview. Metrol. Meas. Syst. XVII (1), 3-16. 

Appendix 

The multivariate normal probability density function for the regression parameters can 

be written as: 

2
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where X is a matrix of exploratory variables,  is vector of parameters, p is the total 

number of parameters, |(XTX)-1 2| is determinant of the covariance matrix of the 

parameter estimates, 2 is variance, the underline represents a vector or a matrix, T 

denotes transpose and the hat notation represents an estimate.  
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Tables 

Table 1. Some major characteristics of the study catchments.  

Description [units]                     Gaulfoss         Hugdal bru    Eggafoss      Lillebudal bru 
Lat./long. of flow stns [0]         63.12/10.25    63.01/10.19     62.93/11.08      62.83/10.48 
Catchment area, A [km2]                   3090            549                  653                168 
Elev. 25 m DEM [m.a.m.s.l.]            54-1330       130-1257         285-1286      516-1304 
Mean elev. catchment [m.a.m.s.l.]    730.6            651.27             832.33           915.20 
Elev. of climate stations                    127-885      127-885           127-885        127-885  
Catch. averaged annual precip.[mm] 874.21         863.53              884.06          864.7                      
Lake percentage [%]                          2.05              1.0                   2.84             1.14 
Forest percentage [%]                        36.72            53.59               24.55           21.7 
Bare rock/mountain above TL* [%]   35.8              20.69               43.96           65.33 
Marsh/Bog [%]                                  14.53            16.70               12.57           8.98 
Farm land [%]                                    2.66              5.99                 2.11             0.52 
* TL denotes timberline. 

Table 2.  Lists of free parameters and their uniform priors.  

No. 
Calibrated 
parameters Description Unit 

Uniform 
prior range 

Snow 
1 TX Threshold temperature 0C [-3,2] 
2 WS Snow melt sensitivity to wind speed - [1,6] 

Response 

3 EvR Discharge at which AET equals 
0.95*PET mm/h [0.1,Qmax] 

4 0 Regression parameter (constant term) - [-4.2,-1] 
5 1 Regression parameter (linear term) - [0.2,1.5] 
6 2 Regression parameter (quadratic term) - [-0.5,0,5] 

Routing  
7 V Velocity of flow m/s [1.9,2.6] 
8 D Dispersion coefficient of flow m2/s [200,1500] 

Qmax is maximum streamflow for the calibration period. 

Table 3. Calibrated and estimated parameters (corresponding to max NSE) for 
Gaulfoss. * Parameters other than regression are taken from calibrated (routed). Bold 
fonts are recession/regression parameters. 

Cases TX WS EvR 2 1 0 V D 
1 Max NSE: regression parameters estimated from recession* 

-1.482 5.708 0.273 0.130 0.920 -2.850 2.198 774.215 
2 Max NSE: calibrated (routed) 

-1.482 5.708 0.273 -0.040 0.684 -2.477 2.198 774.215 
Max NSE: calibrated (unrouted) 

3 -0.999 5.895 0.670 -0.127 0.286 -3.234 
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Table 4.  Parameters correlation matrix (r), and maximum and minimum values of 

marginal posteriors parameters for the calibration (runoff-routed) for Gaulfoss.  

Parameters TX WS EvR 1 0 2 V D 

TX 1.00 0.44 0.27 0.03 0.12 -0.07 0.06 0.05 

WS 1.00 0.23 0.25 0.27 0.23 -0.28 0.12 

EvR 1.00 0.51 0.64 0.40 -0.17 -0.37 

1 1.00 0.91 0.97 -0.28 -0.23 

0 1.00 0.80 -0.36 -0.23 

2 1.00 -0.23 -0.20 

V 1.00 -0.08 

D 1.00 

Max -0.73 6.00 0.34 1.49 -1.55 0.10 2.59 1466.24 

Min -1.41 2.71 0.13 0.27 -3.63 -0.13 1.91 201.11 
Bold fonts are |r| > 0.6. 

 
Table 5.  Results for Max NSE from parameter estimation from recession and 

calibration for Gaulfoss (01.09.2008-01.09.2010), and temporal and spatial 

transferability/verification of model parameters for internal subcatchments.  

Cases 

Max NSE from 

calibration/estimation 

for Gaulfoss  

Temporal 

verification 

(01.09.2010-

01.09.2011) 

Spatial validation or transferability 

('proxy ungauged' internal catchments 

Eggafoss 
Hugdal 

bru 

Lillebudal 

bru 

1 Max NSE: regression parameters estimated from recession 

0.77 0.81 0.70 0.80 0.55 

2 Max NSE: calibrated (routed) 

0.82 0.83 0.68 0.75 0.52 

3 Max NSE: calibrated (unrouted) 

0.80 0.82 0.65 0.79 0.51 
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Figures 

  

  

(a) 
 

 
  (b) 

Figure 1. (a) Maps of landuse, locations, bedrock geology and hysometric curves for 

the study catchments and (b) model structure (grid cell) based on Kirchner’s runoff 

response routine. The snow routine is based on Kolberg et al. (2006). The Qinst is 

instantaneous runoff, Qgi is average runoff (over the time step) generated at the grid cell 

and Qsim is the Qgi routed to the outlet.  
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(a) 

 

 
(b) 

 
Figure 2. (a) Flow recession rates and fitted recession plots, and (b) ln (-dQ/dt) versus 

ln(g(Q)) plots showing effects of lower end of recession.  
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Figure 3. Hydrographs for Gaulfoss from DREAM log-likelihood performance measure 

calibration corresponding to max NSE (a) regression parameters estimated from 

recession (runoff routed), (b) calibrated (runoff routed) and (c) calibrated (runoff 

unrouted). 

(b) 

(c) 

(a) 
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(a) 

  
(b) 

 

 
(c) 

 
Figure 4. (a) Typical results from diagnostic of the regression for recession analysis: 

normality test for Hugdal bru (left), residuals plot for Gaulfoss (middle) and systematic 

lack of fit due to missing quadratic term for Eggafoss (right), (b) 95% Individual 

Confidence Limits (ICL) and Joint Confidence Regions (JCR) for regression parameters 

for Gaulfoss, and (c) Response routine parameters uncertainty in terms of histograms of 

marginal posteriors from calibration (runoff-routed) for Gaulfoss.  
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(a) 

 
(b) 
 

Figure 5.  (a) Precipitation and streamflow duration curves and (b) Observed discharge 

sensitivity function (g(Q)) and ‘response time’ (Tau) for Gaulfoss.  

The g(Q) and Tau are computed based on eq. 5 from fitted and calibrated regression 

parameters. 
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Abstract 

Regionalization for continuous hourly streamflow simulation is not common in literature 

especially for boreal catchments. In this paper we performed calibration of 26 catchments 

(39-3090 km2) in boreal mid-Norway using three different model structures: a first-order 

nonlinear system model (hereafter Kirchmod), the HBV model and the Basic-Grid-Model 

(BGM). We evaluated four regionalization methods: regional calibration or parameter 

vector yielding maximum regional weighted average (MRWA) performance measures 

(PM), regional median of optimal parameters (RMedP), nearest neighbor (NN) and 

physical similarity. The physical similarity attributes include hypsometric curves (PSH), 

land use (PSLU), drainage density (PSDD), catchment area (PSCA), terrain slope (PSSL), 

bedrock geology (PSBRG), soil type (PSSOIL) and combinations of all (PSCOMB).  

Based on the regional median and mean of the raw values and regional median and 

mean of losses or gains of the PM (from local calibration due to the regionalization) 

evaluation metrics, a multi-donor MRWA method performed slightly better than the other 

methods. For the single-donor methods, the physical similarity could explain hydrological 

homogeneity better than the NN. The more comprehensive evaluation metrics of the 

cumulative distribution functions (CDF) of the losses or gains in the PM indicated that 

the PSCOMB and PSSOIL are more suitable for the R2 and R2ln respectively and hence 

the single-donor physical similarity performed slightly better than the multi-donor 

MRWA. However, due to the marginal differences between the multi-donor regional 

calibration (MRWA) and the single-donor physical similarities (PSCOMB and PSSOIL), 
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both methods can be considered suitable for the study region. The study indicated the 

importance of comprehensive evaluations of the regionalization methods by considering 

the objectives of prediction (high flow, low flow and water balance) for selection of the 

PM and various evaluation metrics for the PM. 

Introduction 

Continuous streamflow simulation for prediction in ungauged basins or PUB (Sivapalan 

et al., 2003) is a fundamental and challenging task in hydrology. Precipitation-runoff 

models are widely used to transfer hydrological information (through model parameters) 

for continuous simulation in ungauged basins. The approach also has the potential to 

provide generalized or regionalized hydrological understanding and inferences. In the 

present study, regionalization method is defined as any method for transfer of 

hydrological information from gauged to ungauged basins (Blöschl and Sivapalan, 1995; 

Oudin et al., 2010). 

However, there are different challenging factors pertinent to identification of suitable 

regionalization method(s) namely the selection of proper donor catchment(s), 

identification of proper model structure and performance measures. Wagener and 

Wheater (2006) noted the uncertainties pertinent to estimation of continuous streamflow 

time-series in ungauged basins. 

Regionalization attempts based on different methods have been conducted in literature. 

The first category of methods is based on regional calibration by utilizing data from multi-

sites in the region or a multi-donor approach. Fernandez et al. (2000) implemented a 

regression model based regional calibration. Beldring et al. (2003) conducted a multi-

criteria calibration of a distributed HBV model for 141 catchments in Norway. Engeland 

et al. (2006) conducted a multi-objective model calibration for a physically-based 

distributed Ecomag model (Motovilov et al., 1999) based on a multi-site streamflow 

observations. Parajka et al. (2007) proposed an iterative regional calibration (IRC) by 

defining a combined objective function that linearly combines local and regional 

information. Donnelly et al. (2009) demonstrated comparable performance of a spatially 

homogeneous parameter set to the local calibrated parameter sets. Vaze et al. (2013) 

showed nearly equivalent performance of the regional calibration and the transfer of local 

calibrated parameter values from gauged catchments using geographical proximity.  
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The second category of multi-donor regionalization methods are based on pooling of 

model parameters (e.g. transferring of averages of optimal parameters for the catchments 

in the region and methods based on averaging of streamflow) and also ensemble 

simulations. Kokkonen et al. (2003), Oudin et al. (2008) and Kim and Kaluarachchi 

(2008) computed regional parameters as averages of local calibrated parameters. 

Goswami et al. (2007) followed regional averaging of discharge from multi-donor 

catchments for model calibration at pseudo-ungauged catchments. McIntyre et al. (2005) 

employed an output averaging method where a regional computed streamflow was 

derived from simulations obtained from acceptable parameter sets for a number of 

different gauged catchments. Recently, Cibin et al. (2014) illustrated ensemble 

simulations for the PUB based on transferring derived probability distributions of 

parameters rather than transferring a single optimal parameter vector or averaged or 

interpolated parameter values.  

The third category of regionalization method is the geographic distance based nearest 

neighbor (NN). The NN method is a spatial proximity approach based on the assumption 

that hydrological properties may vary smoothly in space and hence geographic proximity 

between the donor and the recipient catchments could explain hydrological similarity. 

This method is based on a single-donor catchment. Some of the previous regionalization 

attempts based on the NN are Merz and Blöschl (2004), Parajka et al. (2005), Oudin et al. 

(2008) and Samuel et al. (2011).  

The fourth category of regionalization method is based on physical similarity. The 

method of physical similarity is based on the assumption that similarity in some physical 

attributes, which govern the runoff response, could explain the hydrological similarity. 

This method is also based on a single-donor catchment. Kokkonen et al. (2003), McIntyre 

et al. (2005), Parajka et al. (2005), Oudin et al. (2008) and Reichl et al. (2009) and Zhang 

and Chiew (2009) conducted regionalization based on the physical similarity.  

The fifth category of regionalization methods common in literature are regression 

based which are also a multi-donor approach. However, Bárdossy (2007) illustrated that 

regionalization should not focus on relating catchment properties to individual parameter 

values but on relating them to compatible parameter sets or vectors. Parameter equifinality 

(Beven, 2006) or interactions among parameters during calibration may not retain the 

expected relationships between model parameters and catchment attributes. In addition, 
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several studies among others Fernandez et al (2000), Kokkonen et al. (2003), McIntyre et 

al. (2005), Wagener and Wheater (2006), Oudin et al. (2008), Kim and Kaluarachchi 

(2008), Bastola et al. (2008) and Parajka et al. (2013) noted various limitations in the 

regression based regionalization methods.  

Comparative evaluations of the performances of different regionalization methods are 

commonly performed in literature in order to identify suitable method(s) for a region (e.g. 

Parajka et al., 2005; Oudin et al., 2008; Zhang and Chiew, 2009). However, endeavors for 

identification of suitable regionalization method(s) are affected by several factors such as 

selection of the model structure and performance measures, selection of the physical 

attributes for similarity measures, climatic and landscape characteristics of the study 

region, quality of input data and density of hydro-climatic gauging networks that require 

comprehensive study.  

In addition, the previous comparisons of regionalization methods were mainly based 

on simulations for low spatial resolution (i.e. lumped or semi-distributed) and also low 

temporal resolution (e.g. daily runoff simulation). However, distributed or gridded spatial 

resolution allows better representation of the spatial heterogeneity for prediction in 

ungauged basins. Moreover, evaluation of performances of the regionalization methods 

based on hourly temporal resolution are also important for management of water 

resources e.g. inflow prognosis for hydropeaking operation of hydropower reservoirs, 

flood prediction and monitoring of environmental flows. Also, better insights on the 

regionalization endeavors would be expected from the fine resolution inputs. Where sub-

daily data exist, it would appear to be wise to use the extra information they contain, 

leading to more accurate calibrated model parameters (Littlewood et al., 2013).  

Regionalization for continuous simulation of streamflow using precipitation-runoff 

models are affected by the model structure and model calibration (Wagener and Wheater, 

2006; Oudin et al., 2008; Oudin et al., 2010; Kim and Kaluarachchi, 2008). Engeland and 

Gottschalk (2002) noted that structural errors in the model are more important than 

parameter uncertainties. Oudin et al. (2010) while testing hypothesis of inferring 

hydrological homogeneity based on spatial proximity of catchments pointed out that the 

physical meaning of calibrated model parameters suffers from problems in model 

identification, model structural errors, and difficulties in finding an appropriate 

calibration strategy.  
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However, previous attempts for continuous streamflow simulation by rainfall-runoff 

models for the PUB were mainly based on conceptual model structures such as the HBV 

model (e.g. Siebert, 1999; Merz and Blöschl, 2004; Parajka et al., 2005; Götzinger and 

Bárdossy, 2007; Samuel et al., 2011), Probability Distributed Model based on 

parameterization of sub-basin heterogeneity (e.g. McIntyre et al., 2005; Zhang and Chiew, 

2009). Rare applications of physics-based distributed model for regionalization include 

the Mike 11 NAM (Reed et al., 2004; Makungo et al., 2010). Hrachowitz et al. (2013) and 

Croke and McIntyre (2013) discussed the utility of the ‘top-down’ modelling approach 

for the PUB.  

Parajka et al. (2007) suggested varying the model structure between catchments to 

improve model efficiency for local calibration. Wagener and Wheater (2006) also noted 

that progress in parameter estimation procedures and parsimonious modelling still has to 

be fully incorporated in regionalization approaches. Lee et al. (2005) while selecting 

conceptual models for regionalization of catchments in UK noted that the study provided 

no evidence of relationships between the catchment structures and the model structures. 

Therefore, comprehensive evaluation of the regionalization methods based on different 

modelling paradigms and model structures is indispensable. 

Furthermore, Wagener and McIntyre (2005), Wagener and Wheater (2006) and 

references therein demonstrated the incapability of current model structures to simulate 

both high flow and low flow behaviors of catchments simultaneously with a single 

parameter set. The results of calibration and evaluation are also affected by the choice of 

objective functions (Gupta et al., 1998; Madsen, 2003; Muleta, 2012) for model 

calibration and any performance measures (PM) used for model evaluations. Hence, 

evaluations based on various performance measures may not provide similar 

regionalization solutions since the performance measures give different weightages to the 

high flows and low flows. In addition, some catchments that are similar in their rainfall 

and snow melt dependent high flow regime may not be necessarily similar in their 

catchment storage related low flow regime or vice versa due to differences in their 

precipitation patterns and subsurface characteristics. Dependency of catchment similarity 

on the flow conditions was illustrated by Patil and Stieglitz (2011) for flow duration 

curves for catchments in the United States. Hence, dependency of the regionalization on 

the performance measures is also an additional challenge in the regionalization endeavors, 
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which needs to be studied. Further references on regionalization works can be found from 

reviews by He et al. (2011), Razavi and Coulibaly (2013) and Hrachowitz et al. (2013), 

and the synthesis by Parajka et al. (2013). 

Despite of several attempts of regionalization for prediction in ungauged basins, there 

are still challenges in the transfer of hydrological information through rainfall-runoff 

model parameters from gauged to ungauged catchments within a certain region (see a 

recent review by Hrachowitz et al., 2013). No universally best performing regionalization 

method, model structure or evaluation criteria could be suggested due to the peculiarities 

of catchments in different climate regimes and landscapes (see a recent synthesis by 

Parajka et al., 2013). Therefore, the major challenges in precipitation-runoff model 

calibration based regional transfer of model parameters pose research questions pertaining 

to (a) are the performances of the regionalization methods consistent among the model 

type and the selected performance measures (PM)?; (b) Is the best regionalization method 

consistent among different evaluation metrics of the PM (i.e. based on raw values of 

performance measures and loss or gain in the performance measures from the local 

calibration due to the regionalization)? and (c) which regionalization method performs 

best for the specific region of interest?. The main objectives of the present study are to 

conduct comparative evaluations of the performances of four types of regionalization 

methods based on the above research questions. To our knowledge, the present study is 

the first attempt for distributed hourly runoff simulation in the study region and globally 

regionalization for distributed hourly simulation is not common in literature. Moreover, 

there are growing interests for hourly prediction in ungauged basins pertinent to 

hydropower operation (e.g. hydropeaking, floods, environmental flow assessments and 

prediction of natural flow series or the flow regime in regulated rivers).  

 
The Study Region and Data 

The study region consists of 26 unregulated gauged catchments ranging in size from 39 

to 3090 km2 in boreal mid Norway (Table 1 and Figure 1). There are five subcatchments 

nested in the main catchments. Catchments 3, 8 and 14 are subcatchments of catchment 

6, catchment 5 is subcatchment of catchment 9, and catchment 19 is subcatchment of 

catchment 22.  
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Streamflow and climate records of hourly time resolution from 2008 to 2010 are used 

for model calibration. The climate forcing are precipitation (P), temperature (T), wind 

speed (Ws), relative humidity (HR) and global radiation (RG). Locations of precipitation 

and streamflow gauging networks are given in Figure 1. Lists of the catchments and 

streamflow stations, and some characteristics of the catchments are given in Table 1. 

Precipitation occurs in the form of snowfall during winter and rainfall dominates 

during summer, spring and autumn. Therefore, runoff dynamics of the catchments is 

influenced by both rainfall-runoff and snowmelt-runoff processes. High flow regimes for 

most of the study catchments are related to snow-melt events (nival regime). Also, some 

catchments exhibit precipitation on snow melt events (pluvial and nival combined) and 

precipitation events (pluvial) high flow regime.  

The catchments exhibit wide range variations of elevation and terrain slope. The 

dominant land uses/land covers in the study area are mountains above timberline and 

forests (Figure 2). There are also significant proportions of marshes/bogs and lakes for 

some of the catchments. Five of the study catchments have glacier coverage (maximum 

5.25 % for catchment 10). Predominant soil or loose material is glacial tills (Figure 3). 

The dominant bedrock types for the study catchments are metamorphic and igneous 

rocks. We obtained the hypsometric curves and land use date from http://www.nve.no 

and the soil and bedrock geology data from http://www.ngu.no. We used the stream 

network from the 1:50000 maps produced by the Norwegian Mapping Authority 

(http://www.statkart.no) to estimate the drainage density [km/km2] (Horton, 1932; 

Dingman 1978) as the total length of stream networks divided by the catchment area 

(Table 1).  

Models and Methods 

Three different distributed (1x1 km2 grid) runoff response routines namely the ‘top-down’ 

water balance model proposed by Kirchner (2009) (hereafter Kirchmod), the 

Hydrologiska Byråns Vattenballansavdelning model (Bergström, 1976) (hereafter HBV) 

and the Basic-Grid-Model (Bell and Moore, 1998) (hereafter BGM) were used. The 

numbers of free parameters for the Kirchmod, HBV and BGM are 6, 10 and 7 respectively 

(Table 2). Brief descriptions of the models are given here. 

Kirchner’s runoff response routine  
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Kirchner (2009) inferred the model structure, equations and parameters from binned 

analysis of streamflow recession (i.e. the ‘top-down’ modelling paradigm). The method 

is based on a nonlinear single storage-discharge relationship. Kirchner (2009) applied the 

model for headwater catchments in Mid Wales (United Kingdom) by estimating the 

discharge sensitivity function g(Q) = dQ/dS, where S is catchment averaged storage and 

Q is discharge. Further applications of the methodology for individual catchments or at-

site applications include Teuling et al. (2010), Krier et al. (2012), Ajami et al. (2011), 

Birkel et al. (2011) and Brauer et al. (2013). Hailegeorgis and Alfredsen (2014a) 

conducted regional calibration of the routine.  

The main assumption in the Kirchner’s method is the streamflow Q depends solely on 

the amount of water stored in the catchment S. The water balance response routine is 

given as: 

dQ dQ dS dQ
I AET Q g Q I AET Q

dt dS dt dS
                                                  (1) 

The following linear regression relationship was considered between the g(Q) and Q:     

0 1ln lng Q Q ,                                                                                               (2)                             

where the actual evapotranspiration (AET), infiltration (I) = rainfall + snow melt (SM) 

and discharge (Q) are given in mm/hr and catchment storage (S) is in mm, t is a time 

variable, 0 and 1 are parameters. We computed the AET from the potential 

evapotranspiration (PET) and discharge, which is used as a proxy to indicate the soil-

moisture state according to: 

1 exp instPET
QAET
EvR

,                                                                                     (3) 

where Qinst is an instantaneous discharge in mm/hr and EvR is a parameter which denotes 

a discharge at which AET equals 0.95*PET.  

The HBV Runoff Response Routine 

The distributed version of the HBV runoff response routine used in the present study 

contains two conceptual storage reservoirs. The relationship between the single outlet 

upper storage reservoir and outflow is non-linear while the relationship between the single 

outlet lower storage reservoir and baseflow is linear. The upper and lower reservoirs 

conceptually represent quick flow (QUZ) and baseflow (QLZ) respectively: 
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1 0    ;  un

UZ LZQ Qk UZ k LZ ,                                                                                (4) 

where nu is exponent of non-linearity for the upper zone (UZ), LZ denotes the lower zone, 

k1 and k0 are recession coefficients (parameters). Percolation from the upper to the lower 

reservoir is controlled by a parameter PERC. The soil moisture accounting routine is 

based on a non-linear function partitioning the infiltration from rainfall and snowmelt (I) 

into change in soil moisture storage ( SM) and recharge (R) to upper reservoir (Bergström, 

1976). 

Basic Grid Model (BGM) Runoff Response Routine 

The BGM is a simple distributed model based on Bell and Moore (1998). The runoff 

generation mechanisms are the Hortonian or infiltration excess runoff, Riex [L] (Horton, 

1933) and the ‘fill and spill’ type saturation excess runoff, R [L] (Dunne and Black, 1970 

a&b) and a subsurface flow or drainage based on a non-linear catchment storage-

discharge relationship: 

max 0, ( )  ; 
iex iexcR SNOWOUT I RTOSOIL SNOWOUT                                                            (5)                              

maxmax 0, ; max 0,R S t TOSTORAGE S S t t S t TOSTORAGE R                  (6) 

 ;  ; 
max

S nTOSTORAGE TOSOIL AET D AET PET D k S trv rvS
 ,                                 (7) 

where Ic [L/T] is an infiltration capacity parameter, SNOWOUT [L] is rainfall and 

snowmelt outflow from the snow routine, TOSOIL [L] is infiltration in to the soil, 

TOSTORAGE is net input to the subsurface storage (S[L]), PET [L] and AET [L] are as 

defined earlier, Drv[L] is subsurface flow or drainage per unit area, and k [L1-n/T], n[-] 

and maximum subsurface storage capacity or Smax[L] are the free parameters.              

Snow Routine 

The influences of snow processes are dominant in the study area during winter and spring 

seasons. The snow routine simulates the outflow melt water release from saturated snow 

(Qs) based on the gamma distributed snow depletion curve or SDC (Kolberg and 

Gottschalk, 2006), which was implemented in ENKI hydrological modelling platform 

(Kolberg and Bruland, 2012). We used the same snow routine with all of the three runoff 

response routines. 
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Potential Evapotranspiration Routine 

We used the PriestleyTaylor method (Priestley and Taylor, 1972) for the calculation of 

potential evapotranspiration for all the routines: 

     nPET R ,                                                                                                  (8) 

where  is the slope of saturation vapor pressure curve at air temperature at 2m (T2m), 

 is the psychometric constant (0.67 hPaK-1), Rn is net radiation and  is the Priestley 

Taylor constant. Following Teuling et al. (2010), we used an alpha value of 1.26 rather 

than setting it by calibration in order to reduce the number of free parameters.  

Runoff Routing  

A simple translation based on 1-hr isochrones was implemented for all the routines. The 

hillslope runoff response of each 1x1 km2 grid cell was translated to the catchment outlet 

based on travel time lags. Routed simulated streamflow at the outlet was computed from 

the sum of contributions from each grid cell:  

i
1

 ,T  = 
i

N
i i

t t T
i

LQsim qsim
V

,                                                                                          (9) 

where t and i represent time and grid cells, N is the number of grid cells in the catchments, 

Qsim [LT-3] is streamflow at the outlet, qsim [LT-3] is runoff generated at each grid cell, 

Ti [T] is flow travel time lag to the outlet for each grid, Li [L] is flow travel path length 

computed from 25m Digital Elevation model (DEM) and V [LT-1] is ‘effective’ velocity 

of flow set by calibration.                

Model Calibration and Diagnostics 

We used the Differential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt et 

al., 2009) with residuals based log-likelihood (L-L) objective function for model 

calibration, which was implemented in ENKI hydrological modelling platform (Kolberg 

and Bruland, 2012). The log-likelihood (L-L) function for the regional calibration is: 
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where  denotes model parameter, i
2 and ni respectively are error variance and the length 

of non-missing records of streamflow for catchment i, NC is the total numbers of modelled 

catchments in the region, Qsim( ) and Qobs( ) respectively are Box-Cox (Box and Cox, 

1964) transformed observed and simulated streamflow time series,  is the Box-Cox 

transformation parameter and f represents a fraction of effectively independent 

observations of the hourly time series, which can be estimated from the autoregressive 

(AR1) model of error covariance (Zi ba, 2010).  

The objective of Box-Cox transformation was to obtain an approximately Normal 

distributed series with homoscedastic residuals (i.e. variance of residuals is independent 

of streamflow). If  = 0, the streamflow is assumed to be lognormal distributed and low 

flows get high weightages similar to the Nash-Sutcliffe efficiency for log-transferred 

series or R2ln. If  = 1 (i.e. no transformation), the streamflow series is assumed to be 

Gaussian and high flows get high weightages similar to the Nash-Sutcliffe efficiency or 

R2 (Nash and Sutcliffe, 1970). Values of  between 0.25 and 0.30 are common in literature 

(e.g. Vrugt et al., 2002 and references therein; Willems, 2009) but it can also be estimated 

by optimization. However, for the sake of consistency among the catchments, we used  

= 0.3 and f = 0.001.  

    We performed the performance evaluations of the local calibration and the 

regionalization methods based on the R2 and  R2ln:  

, ,

,

2

2 1

2

.
1

1

i

t i t i

i

t i

n

obs sim
t

i n

obs obsavg i
t

Q Q
R

Q Q
 ,                                                                                     (11) 

where Qobsavg.i is the mean value of observed streamflow time series for catchment i with 

length of non-missing streamflow record ni. The evaluation metrics for the performance 

measures (PM) include their regional median and mean of the raw values, regional 

median and mean of their losses or gains from the local calibration due to the 

regionalization, cumulative distribution functions (CDF) of their raw values and CDF of 

their losses or gains from the local calibration due to the regionalization.                                                       

     Parameter vectors which yield maximum values of R2 and R2ln for each catchment 

from the DREAM regional calibration are identified as optimal parameter vectors for each 

catchment and defined as local calibration (local calib.). These optimal parameter vectors 
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for each catchment (local calibration) are transferred among the catchments based on the 

different regionalization methods. Regional calibration by the DREAM algorithm can be 

regarded as an 'importance sampling' strategy for each catchment, where we sample 

according to an ‘importance surface’ reflecting where we believe the optimum is likely 

to be. DREAM seeks and converges to the posterior distribution and DREAM’s regional 

posterior distribution is an importance surface for each catchment. The regional 

calibration approach is an acceptable calibration strategy for each single catchment 

without considerable loss in performance from the DREAM at-site calibration, which 

utilizes only streamflow data from each individual catchment.  

Regionalization Methods  

The performances of the following four regionalization methods were explored in 

order to identify suitable regionalization or parameter transfer method(s) in the region. 

Regionalization based on the regression method is not conducted in the present study due 

to its limitations discussed in the introduction.  

Regionalization method 1: Regional calibration i.e. parameter vectors yielding 

maximum regional weighted average performance measures or the MRWA 

This method explores the performance of the regional calibration based on a parameter 

vector which provide the maximum regional weighted average (MRWA) performance 

measures (R2 and R2ln) among those computed using eq. (12) for each parameter vector 

accepted by the DREAM calibration algorithm. It involves pooling of performance 

measures from multiple donor catchments to identify the parameter sets which provide 

the MRWA performance measures for the region. In this method a homogeneous 

parameter vector is derived for the region for each performance measure.  

2 2

1

1 CN
i

RWA i
iC TS

nR R
N N

                                                                                              (12) 

NTS is the length of calibration time stamps (including the missing records), NC and ni are 

as defined earlier and RWA represents regional weighted averaged, where the weights 

are the term in the parenthesis assigned for each catchment based on the length of their 

non-missing streamflow records in the calibration period. The regional calibration 

regionalization method used in the present study is similar to previous works on the 



13 
 

regional calibration based regionalization in terms of utilizing the streamflow data from 

all the catchments in the region. However, the regional parameter vectors corresponding 

to the maximum regional weighted average (MRWA) performance measures are used in 

the present study. 

Regionalization method 2: Regional median parameters (RMedP) 

This method evaluates the performance of homogeneous parameter vector derived for a 

region from the optimal parameter vectors for each catchment or the local calibration. 

Performances of the regional median parameters (RMedP) were evaluated: 

1 2, ,...., CN
j j j jRMedP Median P P P ,                                                                            (13) 

where j is subscript for the free parameters (j = 1 to Np, Np is the total number of free 

parameters). This method allows pooling of parameters from multiple donor catchments 

(i.e. multi-donor median) and deriving unique parameter sets for the whole region for 

each performance measure. The only difference between this method and the parameter 

averaging method by Kokkonen et al. (2003), Oudin et al. (2008) and Kim and 

Kaluarachchi (2008) is that the median rather than the mean values of parameters were 

computed. The limitation of this method is it transfers the regional median of each 

parameter rather than a set or vector of optimal parameters and hence does not keep the 

correlation structure of the calibrated model parameters. 

Regionalization method 3: Nearest neighbor (NN)  

This method tests whether the nearest neighbor (NN) or the spatial proximity explains 

hydrological homogeneity or not. The method is based on transfer of the local calibration 

optimal parameter vector from the nearest neighbor single-donor catchment. The 

Euclidean distance in the geographic co-ordinates spaces is used to identify the nearest 

neighbor for the catchments. 

Regionalization method 4: Physical similarity (PS) 

The physical similarity based regionalization method tests the assumption that similarity 

of catchments in physical attributes could explain their homogeneity in runoff responses 

or the hydrological/functional similarity. This method is based on transfer of the local 

calibration optimal parameter vectors from a single donor catchment to a similar (in 
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physical attributes spaces) recipient catchment. The method is highly affected by 

identification of the physical attributes governing the runoff response, the pre-processing 

of the selected attributes and the types of distance metrics, which entail some elements of 

subjectivity. Comprehensive work is required for identification of the physical, climate 

and runoff attributes (e.g. Sawicz et al., 2011; Viglione et al., 2013).  

    However, the attributes related to the physical and climate characteristics of catchments 

are more useful for prediction in ungauged basins. In the present study, we evaluated eight 

different cases of physical similarity based on seven attributes namely hypsometric curves 

(PSH), land use (PSLU), drainage density (PSDD), catchment area (PSCA), cumulative 

distribution functions of terrain slope (PSSL), bedrock geology (PSBRG), soil types 

(PSSOIL) and combinations of all attributes (PSCOMB). Despite of potential interactions 

among the attributes, combinations of large numbers of attributes are expected to provide 

more information on runoff responses of the catchments. The PSLU, PSBRG and PSSOIL 

are based on the percentages of catchment areas covered by the types or classes of the 

respective attributes.  

Dominant topographic influences on the runoff response for boreal catchments were 

reported in Halldin et al. (1999) and Beldring et al. (2003). The hypsometric curves 

express how the area of the catchment is distributed according to elevation and it is 

expected to provide more information than using only the mean and median values of 

altitudes. Elevation variations can affect the precipitation pattern, snowmelt and the land 

cover. Catchments with steeper slopes are expected to have flashy response than 

catchments with gentle slopes. Large drainage density signifies dominant quick flow in 

stream channels. The land use mainly controls the water balance through 

evapotranspiration and snow processes. The soil types are used as a proxy for soil 

characteristics (e.g. infiltration capacity and soil depth) and bedrock types are used as a 

proxy for bed rock hydraulic properties mainly that influence the subsurface storage and 

release of water. The scale of the catchment (catchment area) mainly controls the runoff 

delay. 

The Euclidean distance similarity metric between the two catchments (Distj,h) 

calculated in the Min Max normalized [0,1] attributes space for the sake of simplicity or 

scaling of the combined attributes is used: 
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,                                               (14)     

where i is the index for the attributes ‘x’, j and h are indexes for the two catchments to be 

compared, m is the total numbers of attributes and N stands for normalized. The min and 

max are the minimum and the maximum values for the whole catchments of the attribute 

i. We assigned equal weightages to each attributes. All the regionalization methods are 

evaluated when catchments are recipients or the model parameters are donated to them 

from multi-donor catchments or a best single-donor catchment in the region. 

Results  

Performance measures (R2 and R2ln) for each catchment corresponding to the local 

calibration, parameter transfer to recipient catchments based on arbitrary best single-

donor catchment(s) and parameter transfer based on best performing regionalization 

method(s) for the individual catchments are given in Table 3, Table 4 and Table 5 

respectively. The best regionalization method(s) vary among the catchments, model 

structures and performance measures but the results generally showed that the physical 

similarity based regionalization methods performed best for the majority of the 

catchments. We identified the best single-donor catchment for each recipient catchment 

from arbitrary transfer of the optimal parameter vector of the local calibration from the 

25 potential donor catchments without employing any regionalization method. It provides 

the maximum possible performance measure (PM) that can be obtained from the single-

donor based transfer of optimal parameters among the catchments.  

    Tables 3 to 5 also indicate that for some catchments two or more regionalization 

methods performed equally good when more than one donor catchments have the top 

similarity rank (rank no. 1) to the recipient catchment in terms of two or more physical 

attributes spaces or when different best-donor catchments in different physical attributes 

spaces have the same optimal parameter set from the local calibration. In some cases for 

instance, for catchment 16-HBV-R2, catchment 17-HBV-R2ln and catchment 5-BGM-R2, 

the multi-donor based RMedP regionalization method provided higher PM than the 
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maximum possible performance that can be obtained by the best arbitrary single-donor 

catchment. In addition, the RmedP provided higher PM than the local calibration for some 

of the catchments (catchment 16-HBV-R2 and catchment 5-BGM-R2) in Table 4 and 

Table 5 respectively. These unlikely cases of higher PM from the median parameter 

vector than the local calibrated (optimal) parameter vectors from the DREAM algorithm 

does not guarantee better performance of the RMedP, which does not keep the correlation 

structure of the parameters.  

    Differences in performance among the catchments and models can be observed from 

the results in Tables 3 to 5. For instance, the local calibration and regionalization methods 

resulted in low performance (for instance R2 < 0.6) for six catchments (2, 10, 11, 15, 22 

and 25) for the Kirchmod and the BGM and for eleven catchments (4, 8, 10, 11, 14, 16, 

20, 22, 23, 24 and 25) for the HBV. The R2ln < 0.6 were observed for five catchments (8, 

11, 14, 22 and 25) for the Kirchmod and the HBV and for eight catchments (8, 11, 14, 15, 

20, 22, 23 and 25) for the BGM.  

The performance measures obtained from the best regionalization method(s) of the 

individual catchments and their regional median and mean are comparable to the 

maximum possible PM and their regional median and mean values based on arbitrary 

transfer of local calibration parameters (Tables 3 to 5). However, the main objective of 

the regionalization is to derive the best performing regionalization method(s) for the 

whole region or sub-regions which generally involves compromises in the performances 

for the individual catchments. Therefore, further comparisons of the regionalization 

methods based on the regional performance in terms of the regional median and mean 

performance measures are presented in Table 6. Based on the regional median and mean 

R2 and R2ln for the three models, the MRWA regionalization method performed slightly 

better than the others.  

However, the regional median and mean performance measures are affected by the 

results of poorly performing catchments. Therefore, improved comparisons which 

reduces the effects of poor simulation for some catchments for instance due to poor or 

unrepresentative input data are required. To this end, losses in the regional performances 

(i.e. losses in the regional median and mean performance measures) from the local 

calibration due to the regionalization are presented in Table 7. Based on Table 7, the 

MRWA also provided relatively better results in terms of the losses in the regional median 
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and mean performance measures (i.e. lower losses). However, the PSCOMB provided 

better results in terms of the losses in the regional median and mean R2 for the HBV 

model. The RMedP, PSH and PSOIL regionalization methods also provided equivalent 

performance for some of the cases (Tables 6 and 7). Therefore, based on their relative 

merits of regional performances, only the MRWA, RMedP, PSH, PSOIL and PSCOMB 

regionalization methods are considered for further comparative evaluations based on 

graphical plots. 

Further evaluations based on the cumulative distributions functions (CDF) of 

performance measures rather than the regional median and mean statistics are presented 

in Figure 4(a) for R2 only for Kirchmod and BGM and Figure 4(b) for R2ln only for 

Kirchmod and HBV for the sake of clear presentation. However, a consistently best 

performing regionalization method is nearly indistinguishable. But, the PSCOMB gave 

better performances for relatively large proportions (i.e. 38 % to 46 % of the catchments) 

while the PSSOIL performed slightly better for the HBV model for the R2ln performance 

measure, which gives higher weightages to low flows. A more improved evaluation based 

on the CDF of the loss or gain in performance measures are presented in Figure 5(a) and 

Figure 5(b). By looking at the higher portions of the CDF of Figure 5(a) and Figure 5(b), 

the PSCOMB and the PSSOIL appeared to perform better for R2 and R2ln respectively. 

The performance losses or gains for each catchment indicated that transfer of model 

parameters resulted in high losses in R2 for catchments 2, 15, 16 and 17 and high losses 

in R2ln for catchments 14 and 22 though the performance losses vary among the models. 

Catchments 2 and 17 are dominated by high relief. Hailegeorgis and Alfredsen (2014a) 

found catchment 22 to be an outlier in the region for regional regression model between 

flow percentiles and catchment areas. Hailegeorgis and Alfredsen (2014b, article in press) 

for the Gaulfoss watershed (catchment 6) found poor performances of parameter transfer 

to its internal sub-catchment of Lillebudal bru (catchment 14) especially for low flow 

simulation, which may be attributable to less representativeness of climate data or low 

quality streamflow data for catchment 14. 

Discussion  

The results of the present study revealed that selection of proper regionalization methods 

are dependent on the model structure used, the selected performance measures and 
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evaluation metrics for the performance measures. There was also no consistent trend to 

explain the variations but generalization of the results to infer the best regional solution 

would be possible through comparative evaluations. The results reflect the limitations of 

the contemporary regionalization endeavors using precipitation-runoff modelling due to 

their high dependence on model structure, input data and procedures related to model 

calibration, which require comprehensive comparative evaluations for identification of 

suitable regionalization methods. 

Evaluation of the regionalization methods, the PM and their evaluation metrics 

Evaluations of regional performance based on the regional median and mean of R2 and 

R2ln (Table 6) and losses in the regional median and mean of R2 and R2ln from the 

regional calibration due to the regionalization (Table 7) revealed that the MRWA 

regionalization method performed slightly better than the other methods. These results 

generally indicated good performance of the regional calibration (MRWA) for prediction 

in ungauged basins in the region. The regional median and mean based evaluation in the 

present study is expected to favor the MRWA due to the facts that the regional calibration 

algorithm utilizes the streamflow data from all the catchments in the region and the 

regional calibration or the MRWA parameter vector is corresponding to the maximum 

regional weighted average of the performance measures (eq. 12). Moreover, removing 

the poorly simulated catchments from the analyses would be expected to benefit more the 

multi-donor based regionalization methods (MRWA and RMedP) than the single-donor 

regionalization methods. However, a study on the effects of the number of donor 

catchments (e.g. Oudin et al., 2008) on the multi-donor regionalization methods was not 

the objectives of the present study. Oudin et al. (2008) based on a regionalization of 913 

catchments excluded poorly performing catchments (i.e. R2 < 0.70) from the donor set. 

However, owing to the small number of catchments in the present study we did not 

exclude the poorly performing catchments from the analyses.  

    Alternatively we performed comparisons based on the regional losses or gains in the 

performance measures rather than the regional mean and median of the raw performance 

measures to remove the effects of poor simulation for some of the catchments due to the 

unequal representativeness and quality of the input data among the catchments. Though 

seemingly useful to draw general regional conclusions, the discriminatory power of the 

regional statistics (e.g. the regional median and mean) of the raw PM and their 



19 
 

corresponding regional losses to identify differences among the regionalization methods 

appeared to be less. From the more comprehensive comparisons based on the CDF of the 

losses or gains in the performance measures (Figure 5(a) and Figure 5(b)), looking at the 

higher frequency portions revealed that physical similarity in the combined physical 

attributes spaces (PSCOMB) regionalization method performed slightly better for the R2 

while the physical similarity in soil types (PSSOIL) performed slightly better for the R2ln. 

The R2 gives higher weightage to high flow (which is mainly contributed from rainfall 

and snowmelt events) while the R2ln gives higher weightage to the low flow (which is 

mainly contributed by the subsurface flow and affected by the soil hydraulic properties). 

Beldring et al. (1999; 2000) based on studies on boreal glacial tills dominated catchments 

noted significant contribution of the subsurface flow from the subsurface storage to the 

runoff hydrographs. The better performances of the soil types attribute would substantiate 

the need for data acquisition on soil hydraulic properties for further attempts of 

regionalization based on the physical similarity in the region.  

The better performance of transfer of the local calibration parameters in the region 

based on the physical similarity generally indicated the physical control of runoff 

processes. Low performances of the nearest neighborhood (NN) regionalization method 

in terms of the regional mean and regional median (Table 6 and 7) indicated the lack of 

smooth spatial variations of dominant hydrological processes in the study region. 

However, the results also indicated the potential effects of geographical proximity on the 

performances of regionalization or the interaction between the geographic proximity and 

physical similarity which substantiates the need for further study how to integrally utilize 

the two methods for prediction in ungauged basins. For instance, catchments 15 and 24 

are geographically farthest north and south respectively of the region and catchments 13, 

19, 22, 10 and 16 are least close to the rest of the catchments in their geographical 

proximity. Catchments 23, 10, 2, 24, 14, 17, 25, 15 are far from the rest of catchments in 

terms of Euclidian distances in their combined physical attributes or the soil attribute 

spaces. The majority of the catchments, which are far in their geographical and/or 

physical attributes (i.e. combined or soil attributes) Euclidian distance space, are among 

those catchments which exhibited R2 < 0.6 and/or R2ln < 0.6 (Tables 3-5) and with high 

performance losses in R2 and/in R2ln. Therefore, evaluation of the representativeness of 
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climate stations and the quality of streamflow data need to be scrutinized in 

regionalization endeavors.  

The findings of the present study compared to the previous studies   

The findings of the present study do not support the results of previous studies that 

reported better performances of the nearest neighbor (spatial proximity) than the physical 

similarity. Parajka et al. (2005) compared the CDF, median and scatter of R2 and found 

that spatial proximity based on Kriging performed best followed by the physical similarity 

for Austrian catchments for daily runoff simulation by a semi-distributed conceptual HBV 

model. Oudin (2008) demonstrated the suitability of spatial proximity followed by 

physical similarity based on the median R2 for daily lumped runoff simulation using GR4J 

and TOPMO models for non-snow catchments of dense stream networks in France. Zhang 

and Chiew (2009) based on comparisons in terms of the mean, median and percentiles of 

R2 found that the spatial proximity approach performed better than a physical similarity 

approach for daily runoff simulation by lumped conceptual Xinanjiang and SimHyd 

rainfall-runoff models for Australian catchments. Parajka et al. (2013) from synthesis of 

previous regionalization studies and comparisons based on median R2 noted that the 

spatial proximity and similarity methods performed best in humid catchments than simple 

averaging of parameters and parameter regression.  

    The main reasons for the differences among the findings of the present study and the 

previous works may be attributed to the differences in the hydrological behavior of the 

boreal snow-dominated catchments. Also, the present study is based on simulation of 

hourly runoff response compared to the daily or monthly simulation in the previous 

studies. The effects of the choices of performance measures and their evaluation metrics 

are also the causes of the differences as observed even with in the present study. 

Moreover, the results of the physical similarity is affected by the selection of the physical 

attributes and the similarity distance metrics. However, there are considerable similarities 

in the types of attributes used in the previous studies and the present study except that the 

hypsometric curves rather than the mean elevation and the CDF of the slope rather than 

the mean slope are used in the present study.  

The density of hydro-climatic gauging networks of the present study can also have 

considerable influences on the performances of the nearest neighbor (NN) donor 

catchments based regionalization. Parajka et al (2005) and Oudin et al. (2008) noted the 
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better performance of the nearest neighbor (NN) based regionalization contingent on the 

availability of dense stream-gauging networks and nested modelled catchments. 

Therefore, the sparse hydro-climatic gauging networks in the present study might have 

contributed to the less performance of the nearest neighbor method. Only two of the 

modelled catchments have precipitation gauging stations inside their boundary. The 

effects of the quality (less representativeness) of precipitation data may also result in 

pronounced effects on the high flow simulation that is highly influenced by rainfall and 

snowmelt events. Several studies (e.g. Croke and McIntyre, 2013;Yadav et al., 2007; 

Oudin et al., 2008; Samuel et al., 2011; Kim and Kaluarachchi, 2008) noted the 

importance of considering the representativeness of input climate data for prediction in 

ungauged basins. However, Samuel et al. (2011) demonstrated that coupling of spatial 

proximity and physical similarity methods provided better performance than model-

averaging and regression methods even for less dense stream-gauging network in Ontario 

(Canada). Dense hourly measurement networks inside the unregulated catchments would 

generally benefit the target hourly runoff simulation in the study region. 

The differences in the performance between the two performance measures used in the 

present study supports the previous studies by Wagener and McIntyre (2005) and 

Wagener and Wheater (2006), which demonstrated the incapability of the current model 

structures to simulate both high flow and low flow behaviors of catchments 

simultaneously with a single parameter set. Dependency of catchment similarity on the 

flow conditions was also demonstrated by Patil and Stieglitz (2011). The dependency of 

regionalization on the performance measures substantiates the need for selection of the 

PM depending on the modelling objectives (e.g. high flow, low flow and water balance 

simulation). Catchments which are similar in their rainfall and snow melt related high 

flow regime may not be necessarily similar in their low flow behavior or vice versa due 

to the likely regional similarities or differences in precipitation patterns and subsurface 

characteristics. Also, comprehensive evaluation of the PM based on different metrics such 

as regional median and mean and also CDF of the raw PM values and their losses or gains 

from the local calibration due to the regionalization found to be important for more 

improved identification of the regionalization methods. 

Conclusions 
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We performed comparative evaluations of regionalization methods for transfer of local 

calibration parameters for hourly runoff simulation in boreal mid-Norway based on 

regional calibration of 26 catchments using three distributed runoff response routines, and 

two performance measures and various evaluation metrics. 

    For the study region and available set of hydro-climatological data, the results indicate 

that the best performing regionalization method(s) vary among the model structures, and 

performance measures and their evaluation metrics. Therefore, multiple models, and 

various PM and their evaluation metrics are important for comprehensive identification 

of suitable regionalization method(s) and hence for reduction of uncertainty in the PUB. 

For the mid Norway study region, the marginal differences between the regional 

calibration (MRWA) and the physical similarity indicate the suitability of both methods. 

The physical similarity based regionalization method is a more suitable regionalization 

method than the nearest neighbor, but the effects of hydro-climatic network density on 

the nearest neighbor requires further study.  

    The present study was the first attempt for regionalization of hourly runoff simulation 

in boreal mid Norway and regionalization for hourly runoff prediction are not common in 

literature. Therefore, the findings from the present study provide comprehensive 

information relevant to distributed continuous hourly simulation in ungauged basins to 

the general scientific community. Learning the differences or the similarities among 

catchments in different climate regimes and landscapes would also be important for the 

advancement of the PUB. Further regionalization study at hourly temporal resolution for 

a boreal region should focus on input data (both climate and streamflow data) from high-

density and large pool of gauging networks and additional physical attributes related to 

soil hydraulic properties. Comparative regionalization studies for distributed hourly 

runoff simulation among catchments in different climate regimes and landscape features 

would provide further insights.  
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Tables 

Table 1. Characteristics of the study catchments.  

Catchment 
No. Catchment name 

Station 
No. 

(NVE) 

Station 
altitude 

masl 

Catchment 
area, km2 

Drainage 
density 
km/km2 

Mean 
hourly 
flow, 
m3/s 

Catchment 
averaged 

P, mm  
1 Dillfoss 127.13 25 480 2.1 16.6 1332.94 
2 Driva v/Risefoss 109.9 550 745 0.8 14.5 1029.06 
3 Eggafoss 122.11 330 668 2.0 16.8 1041.80 
4 Embrethølen  139.26 160 495 1.8 20.1 1152.83 
5 Feren 124.13 401 220 2.0 9.3 1354.49 
6 Gaulfoss 122.9 45 3090 1.9 83.5 981.87 
7 Gisnås  121.29 580 95 1.2 2.4 928.76 
8 Hugdal bru 122.17 135 546 1.6 12.5 913.79 
9 Høggås bru  124.2 97 495 2.1 20.6 1361.58 

10 Isa v/Morstøl bru 103.2 103 44 1.0 3.1 1217.40 
11 Kjeldstad i Garb. 123.31 173 145 1.8 5.7 1441.30 
12 Krinsvatn  133.7 87 207 1.2 13.1 1860.95 
13 Lenglingen 308.1 354 450 1.7 14.7 1173.91 
14 Lillebudal bru 122.14 515 168 3.1 4.9 930.07 
15 Murusjø  307.5 311 346 1.8 8.5 1192.55 
16 Osenelv v/Øren  105.1 12 138 1.3 6.4 1337.01 
17 Rauma v/Horgheim  103.4 60 1100 0.9 36.6 1186.46 
18 Rinna 112.8 460 91 1.2 3.6 1344.66 
19 Skjellbreivatn  139.25 354 546 1.8 19.2 1126.52 
20 Søya v/Melhus 111.9 40 138 1.9 8.4 1676.71 
21 Støafoss 128.5 80 477 1.9 14.8 1268.16 
22 Trangen 139.35 137 852 1.8 35.1 1115.87 
23 Valen  117.4 10 39 1.2 1.2 1385.99 
24 Valldøla v/Alstad  100.1 265 226 0.9 11.0 1246.80 
25 Vistdal   104.23 50 67 2.2 3.9 1258.18 
26 Øyungen 138.1 103 239 1.7 12.1 1353.40 

We estimated catchment averaged precipitation (P) and temperature (T) by the inverse 

distance weighing (IDW) interpolation. 
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Table 2. Lists of calibrated parameters and their uniform prior ranges for the models.  

Parameters  Description Kirchmod HBV BGM Units Uniform 
prior ranges 

Snow 
TX Threshold temperature x x x      0C [-3,2] 

WS 
Snow melt sensitivity to wind 
speed x x x      - [1,6] 

Soil and evapotranspiration 

FC Maximum soil moisture (SM) 
or field capacity     x     mm [50,600] 

LP (SM/FC) value at and above 
which AET= PET     x      - [0.5,0.99] 

 

Shape parameter of the curve 
partioning the infiltration in to 
UZ recharge and change in 
soil moisture 

    x      - [0.5,5] 

Runoff response 

EvR Discharge at which AET 
equals 0.95*PET        x   mm 

h-1 [0.1,6.15] 

0 Regression parameter 1 x   - [-8,0] 

1 Regression parameter 2 x   - [-1,1] 

k1 
Recession coefficient of the 
upper reservoir     x      d-1 [0.001,1.5] 

k0 
Recession coefficient of the 
lower reservoir     x      d-1 [0.0005,0.5] 

nu 
Non-linearity exponent of the 
upper reservoir     x       - [0.2,5] 

PERC Percolation rate from the 
upper to lower reservoir     x  mm 

d-1  [0,6] 

Smax Maximum storage capacity      x mm [150,1000] 

Ic Infiltration capacity of the soil      x mm 
h-1  [0.1,40] 

k Coefficient of storage-
drainage relationship      x mm1-

nh-1       [10-7-10-3]    

n Exponent of storage-drainage 
relationship      x  -  [0.2,5.0] 

Routing  
V Velocity of flow x x x m s-1 [0.25,3.5] 
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Table 3. The R2 and R2ln performance measures for the local calibration, best arbitrary 

single-donor and best regionalization method(s) for the Kirchmod. 

Catchment 
No. 

Local calib. Best arbitrary single-
donor 

Best regionalization 
method(s) for the 

individual catchment 

 

R2 R2ln R2 R2ln R2 R2ln  
1 0.74 0.84 0.73 0.83 0.73 0.83  
2 0.49 0.69 0.28 0.66 0.37 0.66  
3 0.81 0.87 0.75 0.87 0.79 0.87  
4 0.71 0.77 0.70 0.72 0.70 0.72  
5 0.70 0.73 0.67 0.70 0.64 0.70  
6 0.83 0.89 0.83 0.88 0.83 0.87  
7 0.64 0.68 0.81 0.68 0.64 0.68  
8 0.60 0.54 0.58 0.54 0.58 0.53  
9 0.73 0.79 0.72 0.78 0.71 0.78  
10 0.58 0.77 0.58 0.74 0.58 0.72  
11 0.38 0.42 0.34 0.42 0.38 0.41  
12 0.75 0.82 0.71 0.82 0.71 0.82  
13 0.81 0.84 0.73 0.84 0.75 0.84  
14 0.58 0.52 0.57 0.28 0.57 -0.13  
15 0.43 0.60 0.22 0.58 0.37 0.58  
16 0.67 0.82 0.55 0.77 0.64 0.81  
17 0.78 0.86 0.68 0.82 0.76 0.82  
18 0.63 0.75 0.61 0.75 0.63 0.75  
19 0.81 0.83 0.75 0.79 0.75 0.79  
20 0.67 0.65 0.58 0.62 0.65 0.62  
21 0.72 0.70 0.71 0.79 0.72 0.69  
22 0.51 0.32 0.51 0.30 0.51 0.22  
23 0.61 0.64 0.44 0.49 0.44 0.49  
24 0.74 0.73 0.74 0.73 0.74 0.73  
25 0.51 0.54 0.54 0.54 0.51 0.54  
26 0.72 0.83 0.71 0.81 0.71 0.79  
Regional 
median 0.69 0.74 0.68 0.73 0.65 0.72 

 

Regional 
mean 0.66 0.71 0.62 0.68 0.63 0.66 
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Table 4. The R2 and R2ln performance measures for the local calibration, best arbitrary 

single-donor and best regionalization method(s) for the HBV model.  

Catchment 
No. 

Local calib. Best arbitrary single-
donor 

Best regionalization 
method(s) for the 

individual catchment 
R2 R2ln R2 R2ln R2 R2ln 

1 0.68 0.82 0.68 0.82 0.68 0.82 
2 0.70 0.75 0.42 0.72 0.42 0.71 
3 0.72 0.84 0.72 0.83 0.72 0.83 
4 0.56 0.70 0.52 0.70 0.52 0.70 
5 0.64 0.63 0.59 0.61 0.59 0.60 
6 0.79 0.85 0.76 0.85 0.76 0.85 
7 0.64 0.66 0.64 0.64 0.64 0.63 
8 0.54 0.53 0.54 0.50 0.52 0.50 
9 0.66 0.75 0.64 0.75 0.63 0.75 
10 0.42 0.69 0.41 0.68 0.41 0.68 
11 0.34 0.44 0.32 0.41 0.32 0.41 
12 0.65 0.81 0.64 0.81 0.64 0.81 
13 0.76 0.82 0.71 0.82 0.71 0.82 
14 0.48 0.33 0.47 -0.13 0.47 -0.13 
15 0.74 0.73 0.54 0.66 0.59 0.20 
16 0.47 0.62 0.61 0.61   0.69* 0.54 
17 0.86 0.88 0.81 0.85 0.80 0.86 
18 0.61 0.72 0.61 0.69 0.61 0.69 
19 0.85 0.86 0.76 0.86 0.76 0.86 
20 0.52 0.64 0.52 0.63 0.52 0.61 
21 0.62 0.68 0.62 0.68 0.62 0.68 
22 0.55 0.40 0.53 0.40 0.53 0.32 
23 0.56 0.62 0.48 0.62 0.48 0.62 
24 0.58 0.67 0.51 0.66 0.51 0.64 
25 0.29 0.44 0.27 0.35 0.28 0.34 
26 0.63 0.87 0.63 0.87 0.63 0.87 
Regional 
median 0.63 0.70 0.60 0.68 0.60 0.68 
Regional 
mean 0.61 0.68 0.57 0.65 0.58 0.62 

*PM of the multi-donor RmedP regionalization method is higher than the local calibration 

PM. 
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Table 5. The R2 and R2ln performance measures for the local calibration, arbitrary best 

donor and best regionalization method(s) for the BGM model.  

Catchment No. Local calib. Best arbitrary single-
donor 

Best regionalization 
method(s) for the 

individual catchment 
R2 R2ln R2 R2ln R2 R2ln 

1 0.72 0.78 0.69 0.78 0.69 0.78 
2 0.49 0.68 0.30 0.68 0.49 0.58 
3 0.81 0.85 0.81 0.85 0.81 0.85 
4 0.70 0.76 0.70 0.74 0.65 0.74 
5 0.63 0.62 0.58 0.62   0.72* 0.62 
6 0.83 0.86 0.81 0.82 0.81 0.84 
7 0.68 0.64 0.67 0.64 0.67 0.64 
8 0.58 0.51 0.56 0.50 0.56 0.50 
9 0.73 0.75 0.72 0.73 0.72 0.72 
10 0.59 0.74 0.59 0.73 0.55 0.72 
11 0.39 0.40 0.36 0.38 0.38 0.38 
12 0.76 0.79 0.71 0.79 0.71 0.79 
13 0.80 0.78 0.76 0.78 0.76 0.78 
14 0.58 0.19 0.58 0.07 0.57 0.07 
15 0.29 0.50 0.02 0.46 0.02 0.46 
16 0.65 0.79 0.62 0.77 0.54 0.77 
17 0.79 0.81 0.76 0.79 0.70 0.73 
18 0.68 0.74 0.68 0.74 0.68 0.74 
19 0.72 0.72 0.69 0.72 0.69 0.72 
20 0.68 0.59 0.67 0.59 0.67 0.58 
21 0.72 0.68 0.70 0.68 0.70 0.68 
22 0.54 0.33 0.46 0.33 0.50 0.33 
23 0.58 0.53 0.56 0.43 0.43 0.43 
24 0.75 0.69 0.62 0.67 0.60 0.67 
25 0.55 0.53 0.54 0.50 0.54 0.50 
26 0.72 0.75 0.71 0.75 0.71 0.75 
Regional 
median 0.68 0.71 0.67 0.70 0.67 0.70 
Regional mean 0.65 0.65 0.61 0.64 0.61 0.63 

*PM of the multi-donor RmedP regionalization method is higher than the local calibration 

PM. 
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Table 6. Regional median and mean performance measures (PM) for the local calibration 

(local calib.) and the regionalization methods.  

Description 
R2 R2 ln 

Kirchmod HBV BGM Kirchmod HBV BGM 
Regional median performances 

Local calib. 0.69 0.63 0.68 0.74 0.70 0.71 
MRWA 0.54 0.49 0.53 0.67 0.64 0.63 
RMedP 0.54 0.50 0.52 0.69 0.63 0.59 
NN 0.51 0.47 0.50 0.55 0.59 0.53 
PSH 0.51 0.50 0.53 0.53 0.51 0.48 
PSLU 0.45 0.44 0.48 0.62 0.60 0.57 
PSDD 0.51 0.44 0.45 0.61 0.56 0.54 
PSCA 0.43 0.39 0.52 0.64 0.59 0.59 
PSSL 0.49 0.48 0.51 0.61 0.55 0.54 
PSBRG 0.52 0.50 0.46 0.55 0.55 0.49 
PSSOIL 0.53 0.50 0.53 0.67 0.63 0.56 
PSCOMB 0.54 0.50 0.52 0.60 0.60 0.55 

Regional mean performances 
Local calib. 0.66 0.61 0.65 0.71 0.68 0.65 
MRWA 0.51 0.48 0.50 0.59 0.56 0.53 
RMedP 0.49 0.48 0.47 0.58 0.54 0.43 
NN 0.35 0.45 0.39 0.52 0.54 0.48 
PSH 0.45 0.47 0.47 0.51 0.52 0.48 
PSLU 0.40 0.42 0.41 0.48 0.42 0.40 
PSDD 0.35 0.40 0.27 0.51 0.46 0.45 
PSCA 0.30 0.36 0.33 0.54 0.49 0.50 
PSSL 0.35 0.40 0.33 0.51 0.47 0.47 
PSBRG 0.41 0.43 0.39 0.51 0.48 0.48 
PSSOIL 0.46 0.48 0.44 0.58 0.56 0.51 
PSCOMB 0.48 0.50 0.47 0.56 0.51 0.53 

The best performances are given in bold. 
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Table 7. Losses in the regional mean and median PM from the local calibration due to 

the regionalization.  

Regionalization 
methods Models 

Loss in 
regional 
mean R2 

Loss in 
regional 

median R2 

Loss in 
regional 

mean R2ln 

Loss in 
regional 
median 

R2ln 
MRWA Kirchmod -0.154 -0.143 -0.120 -0.073 
MRWA HBV -0.128 -0.135 -0.119 -0.056 
MRWA BGM -0.157 -0.155 -0.122 -0.078 
RMedP Kirchmod -0.175 -0.151 -0.133 -0.049 
RMedP HBV -0.132 -0.125 -0.141 -0.068 
RMedP BGM -0.187 -0.166 -0.219 -0.116 

NN Kirchmod -0.309 -0.177 -0.186 -0.185 
NN HBV -0.159 -0.157 -0.145 -0.108 
NN BGM -0.260 -0.184 -0.170 -0.174 
PSH Kirchmod -0.202 -0.126 -0.189 -0.141 
PSH HBV -0.137 -0.107 -0.156 -0.096 
PSH BGM -0.182 -0.125 -0.163 -0.146 

PSLU Kirchmod -0.256 -0.200 -0.232 -0.103 
PSLU HBV -0.192 -0.117 -0.264 -0.092 
PSLU BGM -0.241 -0.181 -0.252 -0.091 
PSDD Kirchmod -0.308 -0.173 -0.196 -0.108 
PSDD HBV -0.213 -0.145 -0.221 -0.135 
PSDD BGM -0.380 -0.207 -0.202 -0.125 
PSCA Kirchmod -0.354 -0.322 -0.171 -0.113 
PSCA HBV -0.245 -0.147 -0.197 -0.129 
PSCA BGM -0.319 -0.252 -0.153 -0.140 
PSSL Kirchmod -0.313 -0.128 -0.200 -0.100 
PSSL HBV -0.207 -0.077 -0.208 -0.164 
PSSL BGM -0.325 -0.143 -0.185 -0.168 

PSBRG Kirchmod -0.253 -0.127 -0.200 -0.164 
PSBRG HBV -0.178 -0.101 -0.206 -0.144 
PSBRG BGM -0.267 -0.240 -0.177 -0.149 
PSSOIL Kirchmod -0.201 -0.130 -0.130 -0.068 
PSSOIL HBV -0.134 -0.129 -0.127 -0.071 
PSSOIL BGM -0.213 -0.191 -0.140 -0.081 

PSCOMB Kirchmod -0.176 -0.102 -0.152 -0.084 
PSCOMB HBV -0.105 -0.063 -0.176 -0.103 
PSCOMB BGM -0.181 -0.144 -0.126 -0.093 

Smaller losses for the models and regionalization methods are shown in bold and colored 

respectively. 
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Figures 

   

Figure 1. Locations of the study region and the hydro-climatic stations. 

 

 
Figure 2. Major land use/cover types or classes (given in cumulative percentages of the 

catchments).  

The sum less than 100 indicate some areas are unclassified by the source institute. 
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Figure 3. Major soil types (given in cumulative percentages of the catchments).  

The sum less than 100 indicate some areas are unclassified by the source institute. 
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Figure 4. Cumulative distribution functions (CDF) of the performance measures for the 

local calibration and the regionalization methods (a) for R2 for Kirchmod and BGM and 

(b) for R2ln for Kirchmod and HBV.  

Lower portions of the PM are not displayed for clarity of the figures. 
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Figure 5. Cumulative distribution functions (CDF) of the losses or gains in the 

performance measures from the local calibration due to the regionalization (a) R2 and (b) 

R2ln.  

Some portions of larger losses in the PM are not displayed for clarity of the figures. 
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REGIONAL STATISTICAL AND PRECIPITATION-RUNOFF MODELLING 

FOR ECOLOGICAL APPLICATIONS: PREDICTION OF HOURLY 

STREAMFLOW IN REGULATED RIVERS AND UNGAUGED BASINS 

 

 

Teklu T. Hailegeorgis  

Norwegian University of Science and Technology (NTNU), Department of Hydraulic 

and Environmental Engineering, S.P. Andersens vei 5, N-7491, Trondheim, Norway. 

Knut Alfredsen  

Norwegian University of Science and Technology (NTNU), Department of Hydraulic 

and Environmental Engineering, S.P. Andersens vei 5, N-7491, Trondheim, Norway. 

Abstract 

River regulation for hydropower may create significant alterations of natural river flow 

characteristics or regime that have profound ecological, geomorphologic and hydraulic 

repercussions. Pre-regulation or ‘baseline’ natural flow regime can be obtained from 

pre-regulation observed streamflow if available, which frequently is not the case. 

Moreover, humanities have regulated rivers for generations and hence pre-regulation 

natural flow characteristics may not represent contemporary post-regulation natural 

flow characteristics mainly due to land use and climate change. In addition, it is 

impossible to observe post-regulation natural flow directly and hence local or at-site 

calibration of the P-R model is not possible for regulated river reaches. Furthermore, 

previous ecological studies mainly focused on coarse temporal resolutions such as 

annual, monthly and daily streamflow while contemporary operation rules or practices 

in regulated rivers for instance hydropeaking require examination of relevant ecological 

indicators at high temporal resolution. To obtain information on temporal flow pattern 

alterations compared to the natural (i.e. pretending no regulation) to study the impacts 

of regulations, there need to be a methodology for predicting a time series of natural 

streamflow that excludes the effects of regulation. In addition, prediction in ungauged 

basins (PUB) where ecological data are available and for environmental flow 

assessment are required. 

Therefore, in the present study regional prediction through transfer of information 
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from gauged donor catchment(s) in the region based on both regional regression model 

and regional calibration of a ‘top-down’ Precipitation-Runoff (P-R) model were 

conducted for prediction of hourly time series of ‘unimpaired’ or natural flow and flow 

duration curves (FDCs) downstream of a regulation. We evaluated the models and the 

regionalization methods based on the ‘proxy ungauged catchment’ technique. For the 

study region of boreal Norway, the results indicated that prediction of hourly 

streamflow from simple regression model relating streamflow percentiles and catchment 

drainage area outperformed prediction by regional calibration of the P-R model. 

Therefore, the approach has significant advantage for derivation of ecologically relevant 

indices to study ecological impacts of river regulation and hydropeaking operation, and 

for the PUB. Regionalization method based on spatial proximity explained homogeneity 

of catchments in streamflow characteristics in the case of the regression model while the 

regional calibration in terms of transferring of model parameters corresponding to 

maximum regional weighted average (MRWA) Nash-Sutcliffe efficiency (NSE) 

performance measure performed better in the case of P-R model. 

Plots of hydrographs and FDC of observed regulated flow versus predicted 

‘unimpaired’ or natural flow indicated significant hydrological alterations due to the 

regulation. The within a year FDC for observed regulated hydropeaking flow exhibits 

sharp bend transitions from high to medium flows and from medium to low flows. High 

flow (e.g. Q > 22 m3/s) occurs only about 1 % of the time (< 100 hours duration), low 

flow (e.g. Q < 5.0 m3/s) occurs for more than 68 % of the time (6000 hours) while the 

middle portion of the FDC which is 1% to 60 % of the time (100-5250 hours) is 

characterized by a nearly constant streamflow. The observed regulated hydrograph also 

shows continuous sudden fluctuations of streamflow while the predicted natural flow 

hydrographs and FDC exhibit smoothly varying patterns, which are typical 

characteristics of a natural flow. Alteration in FDCs and hydrographs would also 

indicate potential alteration in other streamflow characteristics, which are relevant for 

assessment of ecological integrity. The predicted natural time series is useful to derive 

any ecologically relevant streamflow metrics (ERSFM). Comparison of the indices 

derived from the predicted (natural) versus the actual flow under regulation would help 

to characterize flow related changes and devise improved mitigation and management in 

regulated rivers. The predicted natural flow provides useful information related to the 



3 
 

concept of natural flow regime for environmental flow (e-flow). Moreover, the methods 

are also applicable for prediction at any ungauged sites.  

1   INTRODUCTION 

Study on environmental flow and flow regime [e.g. 1, 2, 6, 26, 32, 36, 37], alterations of 

natural flow regime due to regulation or hydropeaking [e.g. 11, 25] and impacts of 

climate change [e.g. 8, 35, 39] are indispensable to investigate the effects of 

hydrological alterations on ecological integrity. In addition, there are also interests to 

predict contributions from ungauged streams downstream of regulations to the 

environmental flow (e-flow). In addition, prediction of streamflow may be required at 

ungauged sites where ecological data is available in order to study the impacts of 

hydrological alteration on the riverine ecology. It is not possible to measure post-

regulation natural flow for regulated rivers due to disturbance of the natural flow, and 

prediction in ungauged basins for water resources development planning and 

management is one of the challenging tasks in hydrology. Moreover, the effects of 

operation practices in hydropeaking rivers require prediction for hourly or finer 

temporal scale. Therefore, methodologies for prediction of time series of natural flow 

regime that excludes the effects of regulation (i.e. ‘unimpaired’ or natural flow) and in 

ungauged basins are required as a decision support for ecological friendly management 

of water resources. 

Continuous streamflow prediction in ungauged basins through regional 

Precipitation-Runoff (P-R) modelling is one of a highly researched area [e.g. see review 

and comparison papers 9, 10, 24, 28] especially from 2003 to 2012 which was a 

Prediction in Ungauged Basins (PUB) decade for the International Association of 

Hydrological Sciences (IAHS) [33]. Regional transfer of information from gauged site 

to ungauged site for the PUB are performed for various objectives such as derivation of 

ecologically relevant streamflow metrics (ERSFM) for environmental flow assessment, 

to study the ecological and physical processes in riverine ecosystem and for water 

resources planning and management. Current scientific understanding of hydrologic 

controls on riverine ecosystems and experience gained from individual river studies 

support development of environmental flow standards at the regional scale [26]. Several 

regionalization attempts for prediction of flow characteristics (e.g. regime, hydrograph, 
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seasonality, frequency, extremes such as flood and drought) at ungauged basins are 

available in literature on both hydrological and ecological sciences but the task remain 

challenging. A number of approaches for prediction of ERSFM at ungauged sites are 

available in literature. In a more recent time, the two main modelling approaches for 

prediction of ERSFM are statistical regression [5, 15, 31, 34] and the P-R models [e.g. 

13, 20, 26].    

However, these ecological applications are on only coarse temporal resolutions such 

as annual, monthly and daily streamflow while contemporary operation practices in 

regulated rivers such as hydropeaking require high-resolution prediction, which allows 

close examination of relevant ecological indicators from high-resolution hydrographs. 

The lists of suggested ERSFM and extraction software available in literature [e.g. 15, 

18, 23, 25, 29] are based on daily or coarser time series which may not be representative 

for hydropeaking flow, which is variable at high resolution (e.g. hourly).  

The main objectives and scope of this study are: (i) developing statistical regression 

models for prediction of streamflow ‘signatures’ such as flow duration curves (FDCs) 

and streamflow time series from relationship between streamflow and watershed 

characteristics; (ii) evaluating regionalization methods for regional transfer of 

streamflow information and Precipitation-Runoff model parameters; (iii) demonstration 

through comparative evaluation of the methods for prediction of flow duration curves 

and time series of natural streamflow by transferring of regional information to a 

hydropeaking river.  

To our knowledge, thorough study on continuous prediction of ‘unimpaired’ or 

natural hourly streamflow for regulated rivers, from which ecologically relevant hourly 

ERSFM can be derived, are lacking. The concept of inflow controlled environmental 

flow regime can also be well evaluated if a continuous time series of natural flow can be 

predicted rather than assessing based on a pre-regulation natural flow regime. This work 

is supposedly an initial attempt of regional prediction of hourly streamflow for 

ecological applications in boreal Norway where regulation of rivers is common and 

hydropeaking operation is increasing while environmental legislations are stringent and 

aquatic ecosystems (e.g. salmonid fish) are abundant. However, the methods and 

procedures are applicable for other climate regimes too. Identification of ERSFM, 

which are relevant for hourly streamflow, was not an objective and scope of the present 
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study.  

2   THE STUDY REGION 

The study region is boreal mid Norway (Figure 1) and the first portion of Table 1 

presents the lists of catchments along their drainage areas. We used hourly streamflow 

data (2006-2011) from 26 stations in unregulated catchments (40 to 3090 km2). Four of 

the catchments (3, 6, 8 and 14) are located inside the Gaula watershed. Hourly climate 

forcing include precipitation (P) from 44 stations, temperature (T) from 54 stations, 

wind speed (Ws) from 40 stations, relative humidity (HR) and global radiation (RG) 

from 12 stations, which are spatially interpolated on 1x1 km2 grids for calibration of the 

gridded P-R model. The high flow regime for the study catchments are from snowmelt 

events in most cases, but some of the catchments exhibit precipitation on snowmelt or 

summer precipitation events. The dominant land use/land cover types in the study area 

are bare rock mountainous above timberline and forests. Predominant soil formation is 

glacial tills. We applied the proposed methods in the present study to predict the 

‘unimpaired’ or natural streamflow series for the regulated Lundesokna catchment at 

tailrace outlet of the Sokna hydropower plant (total catchment area 243.4 km²). 

Lundesokna river is a tributary of the Gaula river and flows from Samsjøen reservoir 

(487-473 masl, 9.8 km²) to Gaula. Gaula one of the best salmon rivers in Norway. 

Sokna hydropower plant (commissioned in 1964) is a hydropeaking plant and has the 

following salient features: installed capacity of 30 MW, a gross head of 185 meters, 

intake regulation height of 9 meters and total catchment area at intake of 217 km². For a 

regulated observed time series, a time series of discharge data from the Sokna power 

plant is available while contribution of the local catchment between Sokna intake and 

tailrace outlet (area = 26.4 km2) to the streamflow was predicted by the P-R model.  
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Figure 1. Maps indicating locations of regional catchments and the Sokna catchment-

hydropower systems. 

3   METHODS AND MODELS 

There are several inherent uncertainties associated to both of regional regression and P-

R modelling. The accuracy of streamflow characteristic predictions is important because 

of the potential consequences a poor prediction can have on estimates of ecological 

health [20]. Some of the main problems associated to P-R models are predictive 
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uncertainty due to uncertainty in inputs, parameter calibration and model structure, and 

regionalization methods. Similarly, the data driven regression approach is associated 

with several assumptions such as randomness, normality and homoscedascity of 

residuals and non-collinearity of the independent variables. In addition, dependence 

between regression model parameters and subjectivity in selection and pre-processing of 

the independent variables are prevailing challenges. For instance, [15] conducted 

regional regression analyses based on 16 potential independent variables (watershed 

characteristics) to predict 19 presupposed ecologically relevant streamflow 

characteristics for Tennessee and Cumberland river basins (USA). The P-R models 

allow prediction of continuous time series of streamflow, from which one can derive 

any ecological indices of interest, while the regression approach focuses on deriving 

separate relationships among various dependent variables (i.e. each ERSFM) and 

selected catchment attributes. However, selection of a small number of independent 

variables would reduce the number of regression parameters and hence the uncertainties 

related to dependence among parameters and collinearity among independent variables. 

Therefore, the modelling approach in the present study geared towards parametrical 

parsimony, simplicity and consistency.  

3.1   Statistical (regression) model 

Some applications of regression or other statistical models for direct prediction of 

ERSFM from watershed characteristics include [7, 15, 19, 20, 22]. [7] compared 

regional regression based on 24 potential catchment characteristics as independent 

variables versus the HBV model for prediction of low flow index for daily streamflow 

from 51 catchments in Southern Norway. [19, 22] demonstrated regressing different 

catchment attributes versus discharge relationships for prediction of low flow 

hydrograph in ungauged basins in Australia.  

Identification of independent variables and choice of dependent variables are 

important for the regression model. In the study on global environmental assessment 

methodologies, [36] stated that flow duration curves and other single flow indices 

comprise the second largest subgroup of hydrological approach for environmental flow. 

[13] used ratio of 25 % to 75 % exceedance flows. [39] used frequency of high flows 
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(Q95 and Q99) during winter and summer, mean annual and mean summer flows, and 

frequency of summer low flows (Q10 and Q20). [40] used 10 % and 20 %, and 30% 

respectively of average daily flow for baseflow in dry and wet seasons and the 25th 

percentile flow as a minimum high pulse discharge. [1] defined flow regimes based on 

flow percentiles (low < 25%, high > 75% and normal 25% to 75%) to represent dry, wet 

and normal years to develop an inflow controlled environmental flow regime. The 

natural flow regime paradigm [25, 30] focuses on a full range of intra-and inter annual 

variability of streamflow characteristics pertinent to magnitude, frequency, duration, 

timing and rate of change to study comparative relationships between natural and 

altered hydrological conditions and riverine ecology. Therefore, due to various utility of 

streamflow characteristics the focus of the present study was to evaluate methods to 

derive the two main runoff ‘signatures’ namely flow duration curves and time series of 

streamflow or hydrographs for prediction in regulated rivers and ungauged basins from 

which further ERSFM can be extracted, rather than identifying and extracting each 

ERSFM.  

Flow duration curves 

We fitted separate linear regressions between each streamflow percentiles of 0 % to 

100 % at 1% intervals (response or dependent variables) with the independent variable 

(drainage areas of catchments). The flow percentiles rather than the various ERSFM 

exhibit similar relationships to watershed characteristics and make the regression more 

consistent. A simple linear regression model with assumptions of normal and 

homoscedastic residuals is:

* * *
0 1 1 or i iY X Y x                                                                                                          (1)               

2 * 20, ,and  N I Y N X I                                                                                                  (2) 

We estimated the set of parameters by minimizing the standard error of estimates or the 

ordinary least-square technique and their lower and upper confidence levels (UCL and 

LCL) from the t-statistics: 

10 2
/2,

1

1
'ˆ ' '  ;  UCL, LCL  = 

ˆ
ˆ

ˆ i n p iiX XX X X Y t S ,                                                                   (3)  

where Y is nx1 column vector of response (dependent) variable, X is nxp matrix of 
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independent variable,  is nx1 column vector of the error term that indicates the 

deviation of the estimate from the true value,  I is a nxn identity matrix, 2 is a variance, 

* represents the ‘true’ values, the underline represents the vector or matrix notation, n is 

the number of observations (data points), p is the number of model parameters, N 

represents the assumed Normal distribution, (X’X)ii-1 is the main diagonal element 

corresponding to ith row and ith column of a (X’X)ii-1 matrix of size pxp,  represents a 

transpose and  is the significance level. 

We performed diagnostic analyses of residuals to verify the adequacy of the model. 

We performed the significance tests for model parameters by F-test. We computed the 

percentage of variability in the data explained by the regression model (R2). We tested 

randomness of the residuals and outliers by plots of residuals versus the dependent 

variable. We also verified the normality of the residuals by probability plots and 

presented the model prediction error in terms of 95 % confidence intervals (CI). Once, 

we develop regional regression equations between streamflow percentiles and 

catchment areas, we can estimate streamflow percentiles and hence flow duration curves 

for ungauged or regulated basins in the region. Flow duration or the percentage of time 

flow equaled or exceeded F (%) = 100-percentiles. 

Time series of streamflow (hydrographs) 

Streamflow percentiles or flow duration alone cannot provide sufficient information for 

ecological studies and hence prediction of complete time series of streamflow 

hydrographs for regulated or ungauged catchments is required. In the present study, a 

simple method was proposed to derive streamflow time series for ungauged catchments 

from flow percentiles of both gauged and ungauged catchments (which are derived from 

the regional regression) and observed streamflow data for the gauged catchments. The 

main premise or assumption in the method is that for catchments that are homogeneous 

in terms of their streamflow percentiles, the streamflow time series at a similar time t 

exhibit the same percentile for the homogenous donor (gauged) and the recipient 

(ungauged) catchments. We used a simple lookup function in Microsoft excel: 

 
0:1:100 :, ,ungauged Qgauged

t t
reg ungauged

PerQ lookup Per Per Q (4) 
          
where Qt is time series of streamflow, Pert are percentiles for time series of streamflow, 

Per0:1:100 are percentiles from 0 % to 100 % at 1% intervals and QPer is streamflow 
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corresponding to percentile Per. 

3.2   Precipitation-Runoff (P-R) model 

3.2.1   Runoff response routine 

Based on plausible assumptions, [14] proposed a ‘top-down’ modelling approach with 

possibility of inferring model structure, equations and parameters from observed 

streamflow during recession. The parsimonious water balance based P-R response 

routine is as below: 

- -- -
dS

I AET Q
dt

I AET Q                                                                                              (5) 

,
-

I Q AET Q

dQ dQ dS dQ
I AET Q g Q I AET Q g Q Q

dt dS dt dS
,                                      (6)    

where actual evapotranspiration (AET), infiltration (I) = rainfall + snow melt (SM) and 

discharge (Q) are given in mm/hr, ground water storage (S) is in mm depth of water, t is 

a time variable. The g(Q) is discharge sensitivity function [14], which is the sensitivity 

of discharge to changes in storage. The response routine used in the present study is 

based on 1x1 km2 grid cells or the hillslope scale rather than lumped for the whole 

catchment.  

, 0 1

- /
ln ln ln lnP Q AET Q

dQ dQ dt
g Q Q

dS Q
,                                               (7)                                   

where 0 and 1 are model parameters set by calibration. Runoff computation follows 

integrating in time the storage-discharge relationship: 

1
S Q dS dQ

g Q
                                                                                                                         (8)       

 3.2.2   Other routines 

We computed the potential evapotranspiration (PET) based on Priestly Taylor method 

[27] and actual evapotranspiration from the PET, discharge and evapotranspiration ratio 

parameter (EvR). We simulated the snow accumulation and snowmelt outflow 

(SNOWOUT) based on gamma distributed snow depletion curve or SDC [17]. We 

implemented a simple travel time zone isochrones routing (pure translation) to translate 

the hillslope runoff response of each 1x1 km2 grid cell to the catchment outlet based on 
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travel time lags. 

 3.2.3   Calibration of the P-R model 

We performed regional calibration of the P-R model based on streamflow data from the 

26 gauged catchments. We used the Differential Evolution Adaptive Metropolis 

algorithm or DREAM [38] with residual based log-likelihood (L-L) objective function 

implemented in ENKI hydrological modelling platform [16]: 

2( ) ( )
, ,

1
2

22 ( ) ( ) 2
, ,

1 1 1
/ 2log log

2 2 2
,

i

C i C

n

t i t i
t

i

N n N
i i

i t i t i i
i t i

Qsim Qobs
n nL L Qsim Qobs f ,    (9) 

where Qsim( ) and Qobs( ) respectively are Box-Cox [3] transformed observed and 

simulated streamflow time series of length n, NC is the total numbers of the catchments, 

 denotes model parameter,  is the Box-Cox transformation parameter, f is fraction of 

effectively independent observations and 2 is variance of error. Nash-Sutcliffe 

efficiency, NSE [21] performance measure was used for evaluation of both the P-R and 

regression models. The six free parameters are threshold temperature (TX), wind speed 

sensitivity of snow (WS), the EvR, velocity of flow for runoff routing (V), and 1 and 

0, which are response routine parameters. For the P-R model, we evaluated the 

regionalization method or parameter transferability based on the spatial proximity, 

arithmetic and weighted averaged parameters, and parameters corresponding to 

maximum regional arithmetic and maximum regional weighted average (MRWA) 

performance measure (NSE). We assigned the weights based on the length of the non-

missing records.                                                                                                

4   RESULTS 

Results of parameter estimation for the regional regression model and regional 

calibration of the P-R model (i.e. parameters corresponding to maximum regional 

weighted average or MRWA NSE) are given in the second portion of Table 1. We 

presented the regional regression results at 5 % percentiles intervals. The diagnostics of 

residuals identified the Trangen catchment as an outlier and hence excluded from the 

regression analysis. Table 2 shows the NSE results for 11 catchments, which has no 
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missing streamflow data for P-R model calibration period. The bold values along the 

diagonals indicate the performances of regression model and local calibration of the P-R 

model for a particular catchment. Figure 2 shows predictions for Eggafoss watershed by 

transferring regional regression information from the Gaulfoss watershed, regional 

transfer of P-R model parameters corresponding to MRWA NSE and results for the local 

calibration. In this case, we evaluated the transferability of regional information for 

predictions in internal subcatchments based on spatial proximity. In Figure 3, we 

presented the transferability of regional regression information to a neighboring 

catchment based on spatial proximity and regional transfer of P-R model parameters 

corresponding to MRWA NSE. Figure 4 presents observed hydrographs and FDC under 

hydropeaking versus the predicted ‘unimpaired’ or natural streamflow and FDCs for 

Lundesokna river. Figure 5 and Figure 6 respectively provide typical prediction by the 

regional regression versus the observed regulated hydrographs for summer and fall, and 

winter seasons. 

 5   SUMMARY AND CONCLUSIONS 

The study geared towards evaluation of parametrically parsimonious, simple and more 

consistent approaches for prediction of hourly streamflow for regulated or ungauged 

basins, which is useful for deriving streamflow characteristics of ecological relevance. 

We proposed a simple (two parameters) linear regression model with catchment area as 

independent variable to predict streamflow percentiles and hence duration curves. For 

the regression model, we predicted for the ungauged sites based on regional transfer of 

predicted streamflow percentiles and observed streamflow from the nearest gauged site. 

For the P-R model, we conducted regional calibration of a parsimonious ‘top-down’ 

model and regional transfer of model parameters corresponding to the MRWA NSE 

performance measure performed slightly better than the other methods. Table 2 provides 

the results from comparative evaluation of the models through spatial transfer of 

information.  
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Figure 2. Transfer of regional information to Eggafoss from Gaulfoss to its internal 

subcatchment (regression) and based on regional P-R model calibration (2008-2010).  

 

Figure 3. Transfer of regional information to Øyungen from a nearby catchment 

Krinsvatn (regression) and based on P-R model calibration (2008-2010). 

 

Figure 4. Transfer of regional information from Gaulfoss catchment to a nearby 

regulated Lundesokna river (regression) and based on parameter corresponding to 

MRWA NSE (P-R model calibration). 
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Table 1. The study catchments, regional regression and calibrated MRWA NSE 

parameters for the P-R model. Regression (2006-2011) and P-R model calibration 

(2008-2010). The bold fonts are model parameters. 

Catchments and streamflow stations Parameters for regional regression and P-R model 

Cat
ch. 
No. 

Catchment name 
NVE 
Station 
No. 

Drai
nage 
area, 
km2 

Flow 
perc
entil
es, P 0LCL 0 0UCL 1LCL 1 1UCL R2 

1 Dillfoss 127.13 480 0 -0.24 -0.02 0.20 0.001 0.002 0.002 0.84 
2 Driva v/Risefoss 109.9 745 5 0.10 0.47 0.84 0.002 0.002 0.003 0.80 
3 Eggafoss 122.11 668 10 0.28 0.75 1.22 0.002 0.003 0.004 0.80 
4 Embrethølen  139.26 495 15 0.32 0.86 1.41 0.003 0.004 0.004 0.83 
5 Feren 124.13 220 20 0.44 1.06 1.67 0.004 0.005 0.005 0.86 
6 Gaulfoss 122.9 3090 25 0.56 1.23 1.90 0.005 0.006 0.006 0.88 
7 Gisnås  121.29 95 30 0.68 1.39 2.09 0.006 0.007 0.008 0.90 
8 Hugdal bru 122.17 546 35 0.82 1.58 2.35 0.007 0.008 0.009 0.91 
9 Høggås bru  124.2 495 40 0.93 1.75 2.58 0.008 0.009 0.010 0.93 

10 Isa v/Morstøl bru 103.2 44 45 1.10 2.02 2.95 0.009 0.011 0.012 0.93 
11 Kjeldstad i Garb. 123.31 145 50 1.25 2.29 3.34 0.011 0.013 0.014 0.94 
12 Krinsvatn  133.7 207 55 1.39 2.56 3.74 0.013 0.015 0.017 0.94 
13 Lenglingen 308.1 450 60 1.71 3.14 4.57 0.015 0.017 0.019 0.94 
14 Lillebudal bru 122.14 168 65 2.03 3.79 5.55 0.018 0.020 0.023 0.93 
15 Murusjø  307.5 346 70 2.30 4.54 6.79 0.021 0.024 0.027 0.92 
16 Osenelv v/Øren  105.1 138 75 2.44 5.12 7.79 0.026 0.030 0.033 0.93 

17 
Rauma 
v/Horgheim  103.4 1100 80 2.10 5.28 8.46 0.035 0.039 0.043 0.94 

18 Rinna 112.8 91 85 2.29 5.90 9.52 0.046 0.051 0.056 0.95 
19 Skjellbreivatn  139.25 546 90 3.98 8.24 12.49 0.059 0.065 0.071 0.96 
20 Søya v/Melhus 111.9 138 95 5.27 11.6 17.92 0.085 0.094 0.102 0.96 
21 Støafoss 128.5 477 100 19.48 99.0 178.5 0.321 0.428 0.534 0.75 
22 Trangen 139.35 852  TX, oC WS EvR 1 0 V, m/s 
23 Valen  117.4 39  -0.73 3.82 0.85 0.71 -3.52 2.93 
24 Valldøla v/Alstad  100.1 226 
25 Vistdal   104.23 67 
26 Øyungen 138.1 239 
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Figure 5. Typical comparisons of summer and fall observed regulated streamflow 

versus the predicted ‘unimpaired’ or natural streamflow for Lundesokna river 

(transferred from Gaulfoss through regional regression).  

 

 

Figure 6. Typical comparisons of winter observed regulated streamflow versus the 

predicted ‘unimpaired’ or natural streamflow for Lundesokna river (transferred from 

Gaulfoss through regional regression).  

FDC: Qobs (2008-2011) and FDC: Qpred (2006-2011).   
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Table 2. NSE for regional transfer of information based on regional regression (2006-

2011) and P-R model calibration (2008-2010) for prediction of hourly streamflow.  
Donor 

catchments 
(Catchment No.) Recipient catchments (Catchment No.) 
Regression(reg.) 1 3 6 10 12 14 16 17 20 21 26 
1 0.95 0.31 0.39 -1.10 0.50 -0.07 -1.21 -0.44 0.42 0.70 0.49 
3 0.35 0.96 0.88 -0.40 -0.13 0.55 -2.29 0.48 0.33 0.02 -0.22 
6 0.42 0.89 0.95 -0.39 -0.07 0.54 -2.02 0.42 0.38 0.12 -0.16 
10 0.04 0.39 0.42 0.43 -0.21 0.23 -2.49 0.61 0.44 -0.21 -0.36 
12 0.53 -0.35 -0.26 -1.96 0.80 -0.77 -0.68 -1.08 0.15 0.67 0.80 
14 0.21 0.80 0.79 -0.30 -0.19 0.70 -2.26 0.47 0.34 -0.09 -0.30 
16 -0.06 -0.69 -0.54 -2.29 0.26 -0.98 0.45 -1.22 -0.10 0.13 0.25 
17 -0.17 0.49 0.46 -0.06 -0.37 0.22 -2.72 0.97 0.12 -0.39 -0.51 
20 0.50 0.34 0.42 -0.44 0.22 0.11 -1.48 -0.14 0.83 0.24 0.10 
21 0.72 -0.07 0.04 -1.68 0.61 -0.50 -0.98 -0.83 0.20 0.90 0.66 
26 0.48 -0.37 -0.30 -2.07 0.73 -0.82 -0.71 -1.12 0.06 0.67 0.88 
P-R model                       
1 0.74 0.79 0.82 0.48 0.63 0.53 0.03 0.44 0.56 0.71 0.66 
3 0.73 0.81 0.83 0.51 0.71 0.53 0.14 0.23 0.53 0.72 0.71 
6 0.70 0.79 0.83 0.54 0.49 0.56 -0.59 0.15 0.65 0.67 0.54 
10 -0.14 0.10 0.18 0.58 0.19 0.23 -0.23 0.16 0.31 0.24 0.06 
12 0.68 0.78 0.70 0.50 0.75 0.52 0.12 0.41 0.51 0.70 0.71 
14 0.62 0.66 0.74 0.47 0.27 0.58 -0.34 0.18 0.62 0.57 0.47 
16 0.44 0.48 0.50 0.40 0.50 0.38 0.67 0.66 0.28 0.46 0.42 
17 0.29 0.31 0.44 0.35 0.29 0.28 0.56 0.77 0.20 0.30 0.21 
20 0.58 0.69 0.75 0.56 0.23 0.56 -1.16 -0.11 0.67 0.55 0.32 
21 0.69 0.73 0.74 0.56 0.69 0.54 0.17 0.35 0.53 0.71 0.63 
26 0.64 0.71 0.61 0.45 0.71 0.48 0.30 0.56 0.44 0.65 0.72 
MRWA NSE 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 
  

Comparisons of the NSE along the diagonals (i.e. bold values) in Table 2 for the 

regression (reg.) versus the P-R model indicate that for most of the catchments the 

regional regression model outperformed the local calibration of the P-R model. This 

shows that the prediction errors for those particular catchments of the regression model 

are less than the errors in prediction by the P-R model. The ‘proxy ungauged basin’ 

parameter transfer indicated the regression model + spatial proximity resulted in 

regional performances better than the regional calibration (MRWA) NSE of the P-R 

model parameters. The regression based prediction transfers characteristics of the 

observed streamflow from gauged to ungauged catchments while the P-R model 

transfers the model parameters affected by rigorous calibration procedures and various 

sources of uncertainties. Regression based prediction by transferring from Gaulfoss to 

an internal subcatchment of Eggafoss (Figure 2) indicated NSE value of 0.89 versus the 

local P-R calibration (NSE = 0.81) and the MRWA (NSE = 0.68). In addition, prediction 
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for Øyungen based on transfer of information on streamflow from the neighboring 

Krinsvatn catchment (Figure 3) indicated NSE value of 0.79 versus the local P-R 

calibration (NSE = 0.72) and the MRWA (NSE = 0.65). The NSE values in Table 2 

further explained the spatial proximity based transferability of regional regression based 

information among pairs of catchments such as between catchments 1 and 21, 3 and 6, 

10 and 17, 12 and 26, 14 and 3, 14 and 6, 21 and 1, and 21 and 26. However, some 

catchments such as catchments 10 and 16 exhibit poor NSE and hence poor spatial 

transferability due to large prediction error associated to them, but these catchments are 

not outliers. However, if a large number of catchments are available for the analyses 

certain additional criteria can be set to exclude less performing catchments. 

Results of application of the proposed tools for prediction (2008-2011) in the 

regulated Lundesokna river at downstream of the tailrace discharge of Sokna 

hydropower plant are given in Figure 4. The observed streamflow (Qobs. regulated in 

Figure 4) for Lundesokna river at downstream of the tailrace is highly influenced by the 

hydropeaking plant discharge. We used the developed tools to predict or simulate the 

FDC and time series of hourly ‘unimpaired’ streamflow and then transferred the 

regional regression information from the Gaulfoss catchment to the Lundesokna river 

based on spatial proximity or nearest neighbor. The predicted hydrographs show that the 

catchment runoff generation well responds to the catchment-averaged precipitation 

events. Even though there are similarities between the general patterns of hydrographs 

predicted from the regression-based approach (Qest.) and the P-R model (Qsim) and 

their corresponding FDCs, the results show significant differences in predicted 

streamflow magnitudes for specific time and duration. However, as demonstrated by 

transfer of information among the catchments, the regression model + spatial proximity 

outperformed the regional calibration (MRWA) NSE of the P-R model. [7, 20] 

respectively also found that regional regression model outperformed the P-R models for 

Southern Norway and Kentucky (USA).    

Figure 4, Figure 5 and Figure 6 show significant hydrological alterations due to 

regulation and hydropeaking for Lundesokna. The within a year FDC for observed 

regulated hydropeaking flow exhibits sharp bend transitions from high to medium flows 

and from medium to low flows. High flow (e.g. Q > 22 m3/s) occurs only about 1 % of 

the time (< 100 hours duration), low flow (e.g. Q < 5.0 m3/s) occurs for more than 68 % 
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of the time (6000 hours) while the middle portion of the FDC which is 1%  to 60 % of 

the time (100-5250 hours) is characterized by a nearly constant streamflow. The 

observed regulated hydrograph also shows continuous sudden fluctuations of 

streamflow magnitudes while the predicted streamflow hydrographs and FDCs exhibit 

smoothly varying patterns, which are typical characteristics of an ‘unimpaired’ or 

natural flow. Alteration in the FDCs and hydrographs would also indicate alterations in 

several streamflow characteristics, which affect the ecological integrity in regulated 

rivers. Figure 5 and Figure 6 for summer and fall, and winter seasons respectively 

clearly indicate typical differences between the regulated or hydropeaking flow and the 

predicted natural flow. The ecological impacts of such hydrological alterations require 

further study, which was not an objective and scope of the present study.  

In conclusion, the study illustrated that a simple data based regression model from 

relationships among streamflow percentiles and catchment drainage areas for prediction 

of streamflow percentiles and FDCs, and regional transfer of observed streamflow time 

series outperformed the regional calibration of the P-R model for prediction of hourly 

streamflow at regulated or ungauged site in the boreal study region. The simple 

approaches for derivation of FDCs and hydrographs and hence for estimation of 

ERSFM for studies related to ecological impacts of river regulation provide significant 

contribution for operational environment and research purposes. It would relieve people 

working with management issues from relying on scarce or short data series and it 

would contribute to endeavors for the PUB, which is one of the important but 

challenging tasks in hydrology. The followed methodologies are also applicable in other 

climate regimes. We expect improved results for a large set of catchments.   
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