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Abstract

In the field of machine learning, symmetric nonnegative matrix factorization
(NMF) is commonly used for clustering. NMF is often performed by multiplica-
tive update (MU) algorithms, because they naturally maintain nonnegativity.
Inspired by the success of stochasticity in gradient descent, we develop a novel
stochastic MU algorithm for symmetric NMF. We call the algorithm Stochastic
Bound-and-Scale Multiplicative Updates (SBSMU). To the best of our knowl-
edge, this is the first time stochasticity has been introduced to MU for symmetric
NMF. We provide a theoretical analysis of SBSMU, including a proof which pro-
vides insights into the conditions under which the algorithm converges. Further-
more, we present the results of three empirical experiments. The data suggests
that a standard configuration of SBSMU achieves a relatively good performance
across datasets. Moreover, we find that that SBSMU is able to factorize the large
datasets we apply it to, although it is not on par with the best benchmarks.



Sammendrag

Innen maskinlæring brukes symmetrisk ikkenegativ matrisefaktorisering (NMF)
i forbindelse med clusteranalyse. NMF utføres ofte ved hjelp av algoritmer som
tar i bruk multiplikative oppdateringer (MU). Disse har den fordelen at de au-
tomatisk opprettholder ikkenegativitet i faktormatrisen. Inspirert av suksessen
til stokastisk gradient descent, utvikler vi en ny stokastisk MU-algoritme. Vi
kaller algoritmen Stochastic Bound-and-Scale Multiplicative Updates (SBSMU).
Så langt vi vet, er dette den første gangen en stokastisk MU-algoritme har blitt
utviklet for symmetrisk NMF. Vi presenterer en teoretisk analyse av SBSMU,
inkludert et bevis som gir innsikt i betingelsene som avgjør om SBSMU konverg-
erer. Videre presenterer vi resultatene fra tre empiriske eksperimenter. Dataene
tilsier at en standardkonfigurasjon for SBSMU gir relativt god ytelse på tvers av
datasett. I tillegg viser vi at SBSMU kan faktorisere store datasett vi tester den
på, selv om algoritmen ikke når opp til de beste referansealgoritmene.
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1 Introduction
Nonnegative matrix factorization (NMF) is the decomposition of a nonnegative
matrix into a set of nonnegative factor matrices. In symmetric NMF, the purpose
is to find a matrix factor W so that WW> ≈ X. This can be used for cluster
analysis, which has applications in many different fields.

Multiplicative updates (MU) are a commonly used class of algorithms for per-
forming NMF. These algorithms perform multiplicative update steps, as opposed
to the additive update steps used in gradient descent. This has the key advantage
that it naturally maintains nonnegativity.

Stochastic gradient descent (SGD) is a variant of gradient descent that uses
a randomly selected subset of the data in each iteration, thus reducing com-
putational cost. SGD and its various extensions are the leading optimization
algorithms in machine learning, illustrating how successful the introduction of
stochasticity has been for gradient descent.

There exists some research into stochastic MU, though only for linear NMF [43,
25, 24]. Nevertheless, these papers suggest that this approach holds potential. In
addition to reducing the computational cost per iteration, stochastic MU makes
parallelization possible, which can further improve performance on systems with
multiple processors or cores.

We are motivated by this to investigate how stochasticity can be applied to
MU for symmetric NMF, and whether it leads to improvement in performance.
We choose to focus on symmetric NMF because it is an important variant of NMF
where stochasticity has not been introduced previously. Furthermore, symmetric
NMF poses some unique challenges and opportunities compared with linear NMF.
The symmetric matrices are usually sparse, which means computation time can
be significantly reduced by introducing algorithmic optimizations that handle
zero-entries well. This is particularly important for very large datasets, where
factorization may be computationally infeasible otherwise. However, these zero-
entries also create challenges in the stochastic case. They produce multiplicative
updates that are themselves zero, and this must be accounted for to avoid a factor
matrix of all zeroes.

The remainder of this section is structured as follows: in Section 1.1, we define
our goals and present specific research questions (RQ). Section 1.2 contains the
research methods used to investigate these questions. After summarizing our
contributions in Section 1.3, we present the structure of the thesis in Section 1.4.
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1.1 Goals and Research Questions

Our overarching goal is to improve the performance of MU for symmetric NMF
by introducing stochasticity. Our hypothesis is that it is possible to develop a
converging algorithm for stochastic MU, which can be parallelized to achieve a
faster rate of convergence. Our goal raises the question of what is meant by
the term performance. First and foremost it is necessary to define the metrics
that measure the quality of the factorization, since a perfect factorization where
WW> =X is impossible to obtain for most datasets.

There are multiple candidates for quantifying factorization quality. Multi-
plicative update rules are derived based on some loss function that quantifies the
difference between WW> and X. Thus, the loss function is a logical candidate
when considering possible metrics. However, in applications the typical use case
for symmetric NMF is cluster analysis. The quality of a particular clustering
does not depend directly on the calculated loss, but on the extent to which the
clusters reflect meaningful groups in the data. If the dataset is labeled with the
true cluster identities, the quality of the clustering can then be measured using
metrics like homogeneity and completeness. We choose to measure the quality
of a clustering using the loss function rather than other metrics. This is because
our focus is on MU as an optimization algorithm and not on any particular ap-
plication. One advantage of this is that we do not require the datasets we use for
experiments to be labeled.

Given that we use the loss function to determine factorization quality, there
are still multiple ways to measure performance. For example, we may consider
the minimum loss, or the time taken until a specific loss is reached. Since mul-
tiplicative algorithms depend on hyperparameters and randomized initialization,
we may also consider the variance of an algorithm.

What measure of performance is the most important depends on the problem
at hand. When the total running time is low, the minimum loss might be the
only thing that really matters, since it is not problematic to run the factorization
multiple times. However, for extremely large problems it may be that stability
and a high rate of convergence is critical. Since we are not concerned with one
specific use case, we thus need to consider multiple criteria.

Our goal and hypothesis, as well as our reasoning around how to best measure
performance, lead us to the following research questions:

• RQ1: How can stochasticity be introduced to MU for symmetric NMF?

– RQ1.1: Can stochastic MU be proven to converge?

– RQ1.2: Can stochastic MU be parallelized?

• RQ2: How does stochastic MU for symmetric NMF perform?
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– RQ2.1: How robust is stochastic MU to different datasets, hyperpa-
rameter configurations and initializations?

– RQ2.2: How does stochastic MU perform in terms of minimum loss?
– RQ2.3: How does stochastic MU perform in terms of convergence

time?

1.2 Research Methods

In order to answer the research questions, our first step was to conduct a literature
review on stochastic MU. We searched for relevant works based on predefined
keywords and scope and filtered the results according to certain quality criteria.
In addition, we included some foundational papers on MU. We then reviewed the
resulting papers with a focus on features that were relevant for our work.

To address RQ1 we then developed a novel stochastic MU algorithm for sym-
metric NMF. We used full-batch MU as a basis and introduced stochasticity,
loosely following the example of SGD. By analyzing potential issues and possible
solutions, we developed a converging stochastic algorithm, Stochastic Bound-and-
Scale Multiplicative Updates (SBSMU). We then optimized the algorithm and
its implementation. To answer RQ1.2, we parallelized the factorization using the
Hogwild framework [41].

We evaluated SBSMU through both theoretical analysis and empirical experi-
ments. Theoretically, we investigated under what assumptions the algorithm can
be proven to converge in order to answer RQ1.1. By applying existing frame-
works, we derived a proof of convergence in expectation. Again, we used tech-
niques from SGD to model the stochastic behavior. To test the performance
of SBSMU and answer RQ2, we applied our implementation to 10 real-world
datasets in three experiments. We focused on sparse datasets factorized using
the I-divergence, as this is the most common use case for symmetric NMF. We
empirically investigated how sensitive SBSMU is to its hyperparameters and how
it performs on medium-sized and large datasets compared to three benchmark al-
gorithms. To facilitate reproducibility, we present in detail how the experiments
were run, including hardware environments, source code and datasets.

1.3 Contributions

Here we summarize the key contributions of this work. We divide our contribu-
tions into three categories: the SBSMU algorithm, the proof of convergence and
the experimental results.

Our most important contribution is the novel SBSMU algorithm. To the
best of our knowledge, it is the first stochastic algorithm to be devised for MU
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for symmetric NMF. To achieve convergence, SBSMU utilizes a novel variance
reduction technique which we call bound-and-scale. Beyond the algorithm itself,
we also present several techniques for improving the efficiency of implementations
of SBSMU. We provide three different algorithmic optimizations, which reduce
execution time without affecting the logic of the pseudocode. Furthermore, we
show how a modified version of stratified sampling can be applied to increase
the sampling rate of nonzero entries in sparse matrices. Finally, we show how
SBSMU can be parallelized without the use of object locks.

Another key contribution is a proof of convergence for SBSMU. The bound-
and-scale step in SBSMU is controlled by the parameter α. Our proof shows that
SBSMU will converge as long as the bound-and-scale parameter α is sufficiently
close to 1. The minimum value of α depends on an convergence condition, which
we analyze as a part of our remarks on the proof.

Our final contributions are the results from a set of empirical experiments
on real world datasets. We show data that suggests SBSMU is robust to the
random factors in the algorithm, and relatively robust to hyperparameters and
datasets for high values of α. Furthermore, we demonstrate that SBSMU is
able to factorize two large datasets, MNIST and Higgs. However, SBSMU is
outperformed by full-batch MU, both in terms of minimum loss and convergence
time.

1.4 Thesis Structure

Here we present how the remainder of the thesis is structured. Section 2 contains
background knowledge and theory that is necessary to understand our work and
put it into context. It includes foundational mathematical concepts, real-world
applications of symmetric NMF and a summary of our literature review of the
field. This section also introduces much of the mathematical notation we use
throughout our thesis. For an overview of notation, see Appendix A. Section 3
introduces SBSMU, our theoretical analysis with the proof of convergence, and
how we have optimized and parallelized our implementation. Section 4 presents
the results of the empirical experiments, as well as the setup and datasets we used.
Next, in Section 5 the research questions are discussed in light of the theoretical
analysis and experimental results. Finally, Section 6 contains the evaluation.
This includes our conclusions, a discussion of the limitations of our work and
ideas on where future research may be directed.



2 Background
This chapter provides the background information and theory that our work
is based on. Section 2.1 presents mathematical concepts that are central to
our theoretical work. Section 2.2 contains an overview of the applications of
symmetric NMF, including how it is closely related to kernel k-means. Finally,
Section 2.3 presents our literature review protocol and the results of our literature
search. The most relevant papers are presented in detail.

2.1 Mathematical Concepts

This section presents a selection of mathematical concepts that are key in under-
standing this work. The first sections introduce the concepts we build our algo-
rithm on: NMF in Section 2.1.1, loss functions in Section 2.1.2 and MU in Section
2.1.3. The remaining subsections contain tools for proving the convergence of MU
algorithms. The MM algorithm is introduced in Section 2.1.4, followed by Taylor
approximations in Section 2.1.5 and Jensen’s inequality in Section 2.1.6. The
latter two are often used in conjunction with the MM algorithm.

2.1.1 Nonnegative Matrix Factorization

Matrix factorization is the process of finding a set of factor matrices whose ma-
trix product is approximately equal to the original matrix. Nonnegative matrix
factorization adds the constraint that each element in the original matrix and the
factor matrices must be nonnegative. In this work we discuss two forms of NMF,
linear NMF and symmetric NMF.1

Definition 2.1.1 (Linear NMF). Denote the original matrix X ∈ Rn×m≥0 , and
factors W ∈ Rn×r≥0 and H ∈ Rr×m≥0 . Find W and H so that

WH ≈X. (2.1)

Definition 2.1.2 (Symmetric NMF). Denote the original matrixX ∈ Rn×n≥0 and
the factor W ∈ Rn×r≥0 . X is symmetric, i.e. X =X>. Find W so that

WW> ≈X. (2.2)
1For a comprehensive introduction to NMF, see the textbook by Cichocki et al. [8].
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The rank r of the factorization determines the representative capacity of the
factors — the complexity of the relationships they are able to model. Let i ∈
{1 . . . n}, j ∈ {1 . . .m} and k ∈ {1 . . . r}. Intuitively, each entry in the linear
approximation WH is calculated as

(WH)ij =
∑
k

WikHkj (2.3)

and increasing r thus increases the number of terms that are used to approximate
each entry of X. The same holds for symmetric NMF, where i, j ∈ {1 . . . n} and

(WW>)ij =
∑
k

WikWjk. (2.4)

In practical applications, it is usually the case that r << min{n,m}.
For both linear and symmetric NMF, it is often not possible to find factors

that exactly reproduce X. It is useful to be able to quantify the quality of an
approximation, which can be accomplished using a loss function.

2.1.2 Loss Functions

Loss functions map a variable to a scalar cost, which the goal is to minimize.
In matrix factorization, the loss function compares an approximation with the
ground truth and returns the error. More specifically, in symmetric NMF the
loss function L : Rn×r≥0 → R≥0 is of the form

L(W ) = D(X‖WW>), (2.5)

and compares the ground truth X with its approximation X̂ =WW>.
Different loss functions emphasize different properties of the approximation

and are thus applied in different use cases. In this work, we are especially inter-
ested in the Euclidean distance

LEU (W ) =
∑
ij

[
Xij − X̂ij

]2
,

which is commonly used for factorizing dense matrices, and the I-divergence

LI(W ) =
∑
ij

[
Xij ln

(
Xij

X̂ij

)
−Xij + X̂ij

]
,

which is especially useful for factorizing sparse matrices [52].
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2.1.3 Multiplicative Update Algorithms

Multiplicative update algorithms are widely used for NMF. As the name suggests,
MU algorithms iteratively apply multiplicative updates to the factor matrices.
The concrete updates depend on the loss function that is minimized. The updates
are based on the gradient of the loss and are of the form

Wik ←Wik ·
[
∇−ik
∇+
ik

]η
. (2.6)

Here, 0 < η ≤ 1 is an exponential learning rate. ∇+
ik and ∇−ik are the unsigned

sums of the positive and negative terms of the partial derivative of the loss func-
tion, such that

∂L(W )

∂Wik
= ∇+

ik −∇
−
ik. (2.7)

As opposed to SGD, where updates are applied additively, multiplicative up-
dates naturally maintain nonnegativity. If the factor W is initialized to be non-
negative, the updates and in turn the updated W will remain nonnegative.

2.1.4 MM Algorithm

The MM algorithm is not strictly an algorithm, but a method for creating itera-
tive optimization algorithms [39, 23] and proving their convergence. The central
idea is to define an auxiliary function to derive the updates. If the goal is the
minimization of a loss function f , MM stands for majorize-minimize2.

The auxiliary function g majorizes f and is itself minimized by the update of
the model parameters at each iteration. Majorization requires that for any a and
b in the domain of f ,

g(a, a) = f(a) (P1)
g(b, a) ≥ f(b). (P2)

Let x represent the current value of the model parameters and x̃ the model
parameters as a variable. In each iteration, the next value xnew is found by
minimizing g so that

xnew = argmin
x̃
g(x̃, x), (2.8)

which ensures

g(x, x) ≥ g(xnew, x). (P3)

2When the goal is maximization, MM analogously stands for minorize-maximize.
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This in turn ensures that the optimization algorithm is monotonically decreasing,
because

f(x)
(P1)
= g(x, x)

(P3)
≥ g(xnew, x)

(P2)
≥ f(xnew) (2.9)

To prove convergence, all three properties (P1), (P2) and (P3) have to be shown.
The challenge in constructing an MM algorithm is to find an auxiliary function

that both majorizes f and itself is easy to minimize. Two important tools in this
regard are Taylor’s theorem and Jensen’s inequality, which are presented in the
next two subsections. Furthermore, Section 2.3.3 contains an example of how
they can be used to majorize concave and convex functions.

2.1.5 Taylor’s Theorem
Taylor’s theorem allows us to create polynomials that approximate differentiable
functions.

Definition 2.1.3 (Taylor Polynomial). Let f : R −→ R be k times differentiable
at a ∈ R. The kth Taylor polynomial of f near a is defined as

Pk(x) =

k∑
i=0

(x− a)i

i!

dif(a)

dxi
. (2.10)

The Taylor polynomial is an approximation of f , where Pk(x) ≈ f(x) for
values near a, and Pk(a) = f(a) [46].

If f is concave, the first order Taylor polynomial upper bounds it [51],

f(x) ≤ f(a) + df(a)

dx
(x− a) = P1(x). (2.11)

This bound can be visualized geometrically by considering that P1(x) is a tangent
to f(a), as shown in Figure 2.1.

Taylor polynomials can be generalized to multiple dimensions. Let f : Rn −→ R
be a concave function, then

f(x) ≤ f(a) + (x− a)∇f(a) (2.12)

= f(a) +
∑
i

(xi − ai)
∂f(a)

∂xi
. (2.13)

2.1.6 Jensen’s Inequality
Jensen’s inequality is a useful tool for upper bounding convex functions. Geomet-
rically, convexity means that the graph of f lies below the weighted arithmetic
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Figure 2.1: Illustration of first order Taylor polynomial upper bounding a concave
function

mean of any two of its points. The idea of Jensen’s inequality is that this defi-
nition can be extended to any number of points n and their weighted arithmetic
mean [37].

Theorem 2.1.1 (Jensen’s Inequality). Let f : R− > R be a convex function.
For x1, . . . , xn ∈ R and λ1, . . . λn ∈ R≥0 where

∑
i λi = 1, Jensen’s inequality

states that

f

(∑
i

λixi

)
≤
∑
i

λif(xi). (2.14)

Jensen’s inequality is visualized geometrically in Figure 2.2. The triangle
represents all possible weighted means between the three points, (x1, f(x1)),
(x2, f(x2)) and (x3, f(x3)).

2.2 Application of Symmetric NMF:
Cluster Analysis

The main application of symmetric NMF is clustering. Clustering is a form of
unsupervised learning where a dataset is partitioned into disjoint groups. Samples
with similar features are grouped together. In this way, clustering adds structure
to the data and may provide the researcher with new insights. Section 2.2.1 shows
why NMF can be used for clustering by demonstrating how symmetric NMF is
closely related to kernel k-means. Section 2.2.2 presents a selection of typical
applications of cluster analysis.
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Figure 2.2: Illustration of Jensen’s inequality

2.2.1 K-Means and Symmetric NMF

One of the most widely used techniques for cluster analysis is the k-means algo-
rithm [32, 34]. The k-means algorithm partitions the dataset into k clusters, each
of which is represented by a centroid — the mean of all samples in that cluster.
In this section, we first introduce the fundamentals of the k-means algorithm.
Based on this foundation, we then present a sketch of the proof for how k-means
is nearly equivalent to symmetric NMF with rank r = k using the Euclidean
distance.3 The only difference is that k-means is a form of hard clustering, while
symmetric NMF is a form of soft clustering. In hard clustering each sample is
assigned to exactly one cluster. In soft cluster the samples may belong partially
to multiple clusters.

K-Means

Let Y ∈ Rn×m be the original dataset to be clustered, where n represents the
number of samples and m the dimensionality of the samples. Furthermore, let
C = {Cl : l ∈ 1 . . . k} be the set of all clusters, where each cluster Cl ⊆ Y is a
subset of the samples in Y . The centroid zl ∈ Rm is the mean of the samples
y ∈ Rm in Cl,

zl =
1

|Cl|
∑
y∈Cl

y. (2.15)

Each sample y is assigned to the nearest centroid and the k-means algorithm
chooses the clusters by minimizing the variance within each cluster. Hence, the

3In the remainder of the thesis we use both k and l as indices for the rank r. Due to
convention we let r = k only in this section.
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algorithm optimizes for the loss function

L(C) =
∑
l

∑
y∈Cl

||y − zl||2. (2.16)

This loss function can be kernelized, meaning that it is rewritten in such a way
that the samples only appear in the form of inner products 〈a, b〉 =

∑
s asbs [42],

L(C) =
∑
y∈Y

〈y,y〉 −
∑
l

1

|Cl|
∑

yi∈Cl

∑
yj∈Cl

〈yi,yj〉. (2.17)

Here we use the subscripts i, j to clarify that we sum over the cluster samples
y ∈ Cl twice.

One severe limitation of the standard k-means algorithm is that it generates
spherical clusters with linear decision boundaries between them. Achieving good
results therefore requires that the clusters are linearly separable. This can be
remedied by applying a kernel function K : Rm×Rm → R, instead of taking the
inner product in (2.17). This gives a modified loss function

LK(C) =
∑
y∈Y

K(y,y)−
∑
l

1

|Cl|
∑

yi∈Cl

∑
yj∈Cl

K(yi,yj). (2.18)

Like the inner product, kernel functions can be viewed as mapping a pair of
samples to their similarity. However, the kernel functions implicitly transform
the feature space of the dataset into a higher dimension before calculating the
similarity. The clusters may be linearly separable in this higher dimension feature
space. An illustration of this is shown in Figure 2.3.

One important advantage of this approach is that it is not necessary to explic-
itly map the dataset into a higher-dimensional feature space. Instead, the inner
products between each pair of samples is calculated directly in the transformed
feature space. The kernel functions that are used in practice avoid an explicit
mapping, resulting in an operation that is far less computationally expensive.
For this reason, this approach is commonly known as the kernel trick [47]. One
drawback of kernel k-means is that the choice of kernel function is highly problem
dependent.

Equivalence to Symmetric NMF

It has been shown that symmetric NMF with rank r = k using the squared
Euclidean distance creates a clustering by minimizing the same loss function as
kernel k-means clustering [12]. We summarize the main points of the proof here.

Let i, j ∈ {1 . . . n} index the samples in Y . The kernel matrix X ∈ Rn×n≥0 is
defined by

Xij = K(yi,yj). (2.19)
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Figure 2.3: Illustration of how mapping a dataset into a higher dimension can
make its clusters linearly separable

We require that X is nonnegative. Note that since K(yi,yj) is equivalent to the
inner product between the transformed images of yi and yj , X is always sym-
metric. Next, the clustering found by the k-means algorithm can be represented
by W ∈ Rn×k≥0 , where

Wil =

{
|Cl|−1/2 if yi ∈ Cl,
0 otherwise.

(2.20)

Note that this imposes the orthogonality constraint

W TW = I, (2.21)

which reflects the fact that k-means is a hard clustering algorithm. The trace of
a matrix is the sum of the elements along its diagonal,

Tr(X) =
∑
i

Xii. (2.22)

Using this definition, the kernelized loss function can be expressed as

LK(C) = Tr(X)− Tr(W>YW ). (2.23)

Finally, minimizing (2.23) with respect to W is equivalent with minimizing the
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squared Euclidean distance for symmetric NMF,

argmin
W

[
Tr(X)− Tr(W>YW )

]
(2.24)

=argmin
W

[
−2Tr(W>YW )

]
(2.25)

=argmin
W

[
||X||2 − 2Tr(W>YW ) + ||W>W ||2

]
(2.26)

=argmin
W

||X −WW>||2. (2.27)

The last step uses the orthogonality constraint from (2.21). It shows that kernel
k-means clustering finds W by optimizing for the same objective as symmet-
ric NMF. However, while the orthogonality constraint on W is approximated
by symmetric NMF, it is not strictly imposed [12]. This is a result of k-means
being a form of hard clustering, while symmetric NMF is a form of soft cluster-
ing. Nevertheless, the fact that symmetric NMF approximates the orthogonality
constraint means that each sample will tend mostly to one cluster. This makes
symmetric NMF suitable for clustering applications.

2.2.2 Use Cases for Cluster Analysis

Having discussed how symmetric NMF can be used to perform cluster analysis on
data, we now turn to the question of why this is useful. The purpose of clustering
is to generate meaningful groups in a dataset. These groups then typically serve
as the starting point for further analysis. For example, the researcher may wish
to assign a label to each group and summarize their key characteristics. The
specifics of how cluster analysis is applied depends on the problem at hand, and
clustering has been used successfully in a variety of domains [45]. This section
presents three examples of problems that can be solved using clustering: text
mining, image segmentation and gene expression analysis.

Text Mining

Text mining is one domain where cluster analysis can be applied [8]. The dataset
is typically a large dataset of unlabeled documents, for example from an email
database or search engine. Cluster analysis can be applied to segment the docu-
ments into groups based on their content. Arranging the documents into topics
adds some structure to the dataset and facilitates further analysis.

Preprocessing involves converting each document into a fixed-size vector that
represents it content. There are several ways to accomplish this. One approach is
to remove stop words, generate a dictionary of terms and convert each document
to a vector with the term frequencies. For each document and each term in the
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dictionary, the term frequency is the number of times that term occurs in the
document. This value is also weighted by how common the term is in the dataset.
Rarer terms will typically be more useful in determining the topic of a document.

Regardless of the method used to generate the fixed-size vectors, the resulting
matrix can be multiplied by itself to generate a symmetric matrix of pairwise
similarities. The matrix of pairwise similarities can in turn be factorized using
symmetric NMF to group the documents into the desirable number of clusters.

Image Segmentation

Image segmentation is the partitioning of an image into meaningful clusters. It
is also known as pixel classification, because each pixel is assigned to a group.
There are numerous applications for image segmentation, including the detection
of tumors in MRI images, classifying land cover in satellite imagery and finding
road signs for self-driving cars [31].

One way to apply cluster analysis to an image is by flattening it and treating
each pixel as a sample xi. The dimensionality of the samples then depends on the
type of image. With the RGB color model each pixel is encoded by three integer
values, whereas each pixel is represented by a single scalar in a black and white
image. A pairwise similarity matrix is created by taking the inner product of
every pair of samples Xij = 〈xi,xj〉, and this similarity matrix can be factorized
using symmetric NMF [6].

Gene Expression Analysis

Genes contain instructions that are used to create proteins — large biological
molecules that serve a variety of functions. The expression level of a gene is
a measure of how frequently it is used. Gene expression datasets contain the
expression levels of a set of genes, usually measured across some other variable
like time or patient. In the former case each sample will be a gene, and the goal
may be to find genes with similar functionality. In the latter case, where the
dataset contains gene expression levels versus patient, each patient represents a
sample. The goal could then be to estimate the efficacy of treatments or chance
of survival by grouping patients with similar profiles.

A pairwise similarity matrix can be constructed from gene expression datasets
in the same manner as above. However, the clusters may be arbitrarily shaped
and are unlikely to be linearly separable. Hence, it is often necessary to transform
the dataset using a kernel function [2].
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2.3 Literature Review

This section presents an overview of the literature that is most closely related to
our work. Section 2.3.1 contains the literature review protocol we used for the
literature search. The subsequent sections summarize the key contributions of
papers we found. Section 2.3.2 and 2.3.3 present two important papers for under-
standing full-batch MU for NMF. Section 2.3.4 and 2.3.5 focus on the literature
that exists on stochastic MU for linear NMF.

2.3.1 Literature Review Protocol

This subsection presents how we conducted the literature review. It explains
quality criteria and limitations of the scope, as well as content and keywords for
the search. Finally, it introduces two papers we include in addition to the results
of the formal literature protocol.

We applied certain quality screening criteria in selecting the papers we include
here. We only considered papers that provide either source code, pseudocode
or formulas describing the algorithms they discuss. We also required that the
claimed properties of the algorithms are either proven analytically or at least
demonstrated empirically. Finally, all the works presented in this section have
been published in peer-reviewed journals or conferences. Since MU algorithms
were only introduced in 2001 [30], we limited our scope to papers published in
this year or later.

In terms of content, the search was focused on stochastic MU. We included
both linear and symmetric NMF, however, we only found stochastic approaches
for linear factorization. There exists some literature on stochastic NMF using
other algorithms [5, 54, 20, 40] than MU, but none of these papers considered
symmetric NMF. We therefore concluded that they were not relevant for our
work and do not discuss them here.

We extended the scope of stochastic MU approaches to include online and
mini-batch MU as well, since the terms online and mini-batch describe similar
approaches and are often used interchangeably. All three terms describe models
that learn by processing a single or a few data points at a time, as opposed
to full-batch models that use the whole dataset. However, online models are
often used to describe models that handle streaming data. Unlike stochastic
models, they do not necessarily require that the order of processing is randomized.
What distinguishes mini-batch models from stochastic models is that the former
operates on batches that contain multiple samples, whereas stochastic models
generally process a single sample at a time. Despite these differences, there is
considerable overlap between the online, mini-batch and stochastic models.

As previously mentioned, the field of stochastic MU is relatively small. The
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result of our literature review was the work of two research groups, [43] and [25,
24]. The advantage of a limited literature base is that it allows us review these
works in-depth. This is the subject of Section 2.3.4 and 2.3.5.

In addition to the papers named above, we include two foundational papers
in the review. The first additional paper is the original work by Lee and Se-
ung from 2001 [30]. The authors introduced the concept of MU algorithms and
proved their convergence for Euclidean distance and I-divergence. The second pa-
per introduced a unified development procedure for MU algorithms with different
loss functions and was published by Yang and Oja in 2011 [51]. It presented a
framework for deriving auxiliary functions and proving the convergence of mul-
tiplicative update rules for a wide range of loss functions.

These two papers were not the product of a formal literature search. However,
we include them as a part of this review for two reasons. Firstly, they serve as an
introduction to MU algorithms for NMF for the reader. Secondly, our theoretical
analysis uses several ideas from these papers. Especially [51] is used heavily in
our proof of convergence.

2.3.2 Lee-Seung Algorithms

Algorithms using multiplicative updates for NMF were first formulated by Lee
and Seung in 2001 [30]. They introduced two iterative algorithms, sometimes re-
ferred to as the Lee-Seung algorithms, for performing linear NMF. One algorithm
minimizes the Euclidean distance and the other one the I-divergence.

The multiplicative update rules for the Euclidean distance are

Wik =Wik
(XH>)ik

(WHH>)ik
(2.28)

Hkj = Hkj
(W>X)kj

(W>WH)kj
. (2.29)

The multiplicative update rules for the I-divergence are

Wik =Wik

∑
j HkjXij/(WH)ij∑

j Hkj
(2.30)

Hjk = Hjk

∑
iWikXij/(WH)ij∑

iHik
. (2.31)

As shown in Algorithm 1, the Lee-Seung algorithms perform NMF by alter-
nately updating W and H until some convergence criterion is achieved. Lee
and Seung proved the convergence of this algorithm by constructing appropriate
auxiliary functions and using the MM algorithm.
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Algorithm 1: Lee-Seung algorithms
Input : X
Output: W , H
W ← RandomNonnegativeMatrix();
H ← RandomNonnegativeMatrix();
while ¬(convergence condition) do

W ← MultiplicativeUpdateW(X, W , H) ; // (2.28) or (2.30)
H ← MultiplicativeUpdateH(X, W , H) ; // (2.29) or (2.31)

The Lee-Seung algorithms have been extended to a number of different loss
functions and other NMF problems, including symmetric NMF. Furthermore,
various algorithmic enhancements have been proposed to improve the rate of
convergence [8].

2.3.3 Unified Development of Multiplicative Algorithms

Yang and Oja introduced a unified procedure for deriving multiplicative update
rules with guaranteed convergence for a broad range of loss functions [51]. The
procedure extends and generalizes the work of other researchers, who have pre-
viously derived methods covering the Bregman divergences [11] and most of the
α-divergences [7].

Specifically, the unified procedure is applicable to all loss functions that can
be expressed as a finite sum of monomials. The monomials take the form aX̂b

ij ,
where a, b ∈ R and X̂ij is the current approximation of Xij . It must be possible
to express the loss function as

L(X̂) =
∑
dij

adijX̂
bd
ij + constant, (2.32)

where d identifies the monomial and i, j are the indices of X̂. Formulas for
transforming logarithmic and nonseparable loss functions into the required format
are provided in the paper.

The procedure constructs an auxiliary function based on the loss function in
question. This is then used to obtain the update rules and prove convergence
using the MM algorithm. The steps can be summarized as follows:

1. Transform the loss function into a finite sum of monomials.

2. Derive an auxiliary function by upper bounding concave monomials using
Taylor’s theorem and convex monomials using Jensen’s inequality.
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3. If there are more than two monomials, merge their bounds4.

4. Differentiate the auxiliary function with respect to the factor matrix and
set the derivative equal to zero to derive the update rules.

As explained in Section 2.1.4, the MM algorithm is based on three properties
which together ensure that the loss is nonincreasing. Here, step 2 guarantees
Property (P2) by upper bounding the loss function. Step 4 is equivalent to
Property (P3).

The auxiliary function derived from the unified development procedure can
always be expressed as

G(W̃ ,W ) =
∑
ik

Wik

 ∇+
ik

ψmax

(
W̃ ik

Wik

)ψmax

−
∇−ik
ψmin

(
W̃ ik

Wik

)ψmin
+ constant,

(2.33)
where ψmax, ψmin ∈ R and ψmax > ψmin. Since

(
W̃ ik

Wik

)
= 1 if W̃ =W , Property

(P1) is guaranteed by an auxiliary function of this form.
In most cases, the update derived by setting the partial derivative of (2.33)

equal to 0 will be of the form

Wik =Wik

(
∇−ik
∇+
ik

)1/(ψmax−ψmin)

. (2.34)

Exceptions include some loss functions that contain logarithms. However, up-
dates for the I-divergence follow the usual format.

Logarithmic Loss Functions

For loss functions that contain logarithms, such as the I-divergence, step 1 of the
unified development procedure requires the use of the limit

lnx = lim
ε−→0+

(
xε

ε
− 1

ε

)
. (2.35)

The expression on the right-hand side takes the limit of two monomials. These
can be upper bounded as any other monomials. We can differentiate and then
subsequently apply the limit, as long as the loss function is smooth with respect
to both ε and the factor matrix.

4Both the Euclidean distance and the I-divergence can be represented using two monomials.
For this reason we do not discuss this step in detail.



Chapter 2. Background 19

Quadratic Monomials

The unified development procedure can be applied to loss functions that yield
quadratic monomials. This is the case for symmetric NMF, since X̂ = WW>.
The construction of an auxiliary function that includes quadratic monomials fol-
lows the same steps as the linear case, using Taylor’s theorem or Jensen’s in-
equality.

Example Derivation for Euclidean Distance

We conclude this section with an example of how the unified development proce-
dure is used. We apply the steps defined above to symmetric NMF with Euclidean
distance:

1. Writing the Euclidean distance as a finite sum of monomials gives

LEU (X̃) =
∑
ij

(Xij − X̃ij)
2 =

∑
ij

−2XijX̃ij + X̃2
ij + constant. (2.36)

2. In order to upper bound the convex monomial

∑
ij

X̃2
ij =

∑
ij

(∑
k

W̃ ikW̃ jk

)2

, (2.37)

we introduce λijk =
WikWjk

(WW>)ij
and use Jensen’s inequality from Section

2.1.6 to derive an upper bound,

∑
ij

X̃2
ij =

∑
ij

(∑
k

λijk
W̃ ikW̃ jk

λijk

)2

(2.38)

≤
∑
ijk

λijk

(
W̃ ikW̃ jk

λijk

)2

(2.39)

=
∑
ijk

W̃ 2
ikW̃

2
ij

WikWij
(WW>)ij (2.40)

≤
∑
ik

W̃ 4
ik

2W̃ 3
ik

∑
j

(
(WW>)ij + (WW>)ji

)
Wjk (2.41)

=
∑
ik

W̃ 4
ik

W̃ 3
ik

∑
j

(WW>)ijWjk (2.42)



20 2.3. Literature Review

=
∑
ik

Wik

4
∇+
ik

(
W̃ ik

Wik

)4

. (2.43)

In (2.41), we follow [51] by using

x>Ax ≤
∑
i

x2i
2yi

(Ay +A>y), (2.44)

with xi = W̃ 2
ik/Wik, yi = Wik and A =WW>. This inequality has been

proven in [30] and [13].

The monomial
∑
ij −2XijX̃ij is linear and therefore both convex and con-

cave. For a complete example, we treat it as concave and apply the upper
bound derived from the Taylor polynomial in Section 2.1.5. Let f(X̃ =∑
ij −2XijX̃ij , then

∑
ij

−2XijX̃ij ≤ f(−X̂) +
∑
ij

(X̃ij − X̂ij)
∂f

∂X̃ij

∣∣∣∣∣
X̃=(−X̂)

(2.45)

=
∑
ij

2XijX̂ij +
∑
ij

X̃ij
∂

∂X̃ij

∑
ab

(
−2XabX̃ab

) ∣∣∣∣∣
X̃=(−X̂)

(2.46)

=
∑
ij

2XijX̂ij +
∑
ijk

−4XijW̃ ikW̃ jk (2.47)

=
∑
ij

2XijX̂ij −
∑
ik

W̃ ik∇−ik (2.48)

= −
∑
ik

W̃ ik∇−ik + constant. (2.49)

3. Since the Euclidean distance consists of two monomials only, no merging is
needed and the auxiliary function is given by

G(W̃ ,W ) =
∑
ik

Wik

4
∇+
ik

(
W̃ ik

Wik

)4

− W̃ ik∇−ik

+ constant, (2.50)

which fulfills Property (P1):

G(W ,W ) =
∑
ik

[
Wik

4
∇+
ik

(
Wik

Wik

)4

−Wik∇−ik

]
+ constant (2.51)
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=
∑
ik

[
Wik

4
∇+
ik −Wik∇−ik

]
+ constant (2.52)

=
∑
ikj

[
Wik

4
(4X̂ijWjk)−Wik(4XijWjk)

]
+ constant (2.53)

=
∑
ij

[
X̂2
ij − 4XijX̂ij

]
+ constant (2.54)

=
∑
ij

[
X̂2
ij − 4XijX̂ij

]
+
∑
ij

[
X2
ij + 2XijX̂ij

]
(2.55)

=
∑
ij

[
X̂2
ij − 2XijX̂ij +X2

ij

]
(2.56)

= LEU (W ). (2.57)

4. Setting the derivative of (2.50) equal to 0 yields the update rule

∂G(W̃ ,W )

∂W̃ al

= 0

⇔ ∂

∂W̃ al

∑
ik

Wik

4
∇+
ik

(
W̃ ik

Wik

)4

− W̃ ik∇−ik

+ constant = 0

⇔ ∇+
ik

(
W̃ ik

Wik

)3

−∇−ik = 0

⇔ W̃ ik =Wik

[
∇−ik
∇+
ik

] 1
3

(2.58)

2.3.4 Mini-Batch MU for Linear NMF
Serizel, Essid and Richard [43] presented several versions of mini-batch MU algo-
rithms that are only applicable to linear NMF. This is distinct from our approach,
which focuses on symmetric NMF. In [43], the authors introduced two basic algo-
rithms which differ in how often the factors are updated, as well as two augmented
versions using a gradient averaging technique.

The proposed approaches use sets of rows from the ground truth as mini-
batches. These are denotedWb and Xb, where b contains the indices of multiple
rows. Since H contributes to the approximation in a column-wise fashion, an
update based on Xb changes the full factor matrix H.5

5In [43], the mini-batches consist of columns of X. Here we use mini-batches with rows of
X instead to facilitate the comparison with our approach.



22 2.3. Literature Review

Algorithm 2: Asymmetric Stochastic Gradient MU (ASG-MU)
Input : X, mini-batches
Output: W , H
W ← RandomNonnegativeMatrix();
H ← RandomNonnegativeMatrix();
Shuffle(X);
while ¬(convergence condition) do

Shuffle(mini-batches);
for b in mini-batches do

Wb ← MultiplicativeUpdateW(Xb, Wb, H);
H ← MultiplicativeUpdateH(Xb, Wb, H);

Algorithm 2 shows the first variant introduced by [43], ASG-MU. The name
comes from the asymmetry in howW andH are updated. While the full matrix
H is updated with each mini-batch and thus multiple times per epoch, the full
matrix W is only updated once per epoch. Note that the variable mini-batches
is a list of lists of indices. It is also worth noting that Shuffle() only shuffles
the first dimension. In other words, it shuffles the order of lists in mini-batches.

Algorithm 3: Greedy Stochastic Gradient MU (GSG-MU)
Input : X, mini-batches
Output: W , H
W ← RandomNonnegativeMatrix();
H ← RandomNonnegativeMatrix();
Shuffle(X);
while ¬(convergence condition) do

Shuffle(mini-batches);
for b in mini-batches do

Wb ← MultiplicativeUpdateW(Xb, Wb, H);

H ← MultiplicativeUpdateH(Xb, Wb, H);

The second variant is GSG-MU, shown in Algorithm 3. It differs from ASG-
MU only in the wayH is updated. While ASG-MU updatesH multiple times per
epoch, GSG-MU only updatesH once per epoch using the last mini-batch. Since
the mini-batches are shuffled at the beginning of each epoch, this is equivalent
with choosing a random mini-batch.

ASG-MU and GSG-MU can be extended by adding gradient averaging. The
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goal of gradient averaging is to increase convergence speed by reducing the vari-
ability of the gradient. The extensions are named Asymmetric Stochastic Average
Gradient (ASAG) MU and Greedy Stochastic Average Gradient (GSAG) MU,
respectively. Gradient averaging is performed by incorporating the stochastic
gradient into the current gradient estimate. Let ∇− and ∇+ denote the negative
and positive components of the gradient estimate, while λ ∈ (0, 1] denotes the
forgetting factor. In each iteration, the gradient estimates are updated by

∇− ← (1− λ)∇− + λ∇−b (2.59)

∇+ ← (1− λ)∇+ + λ∇+
b . (2.60)

In [43], ASG-MU, GSG-MU, ASAG-MU and GSAG-MU were all tested on
a speech recognition dataset with regular MU as a baseline. The authors found
that GSG-MU and GSAG-MU converges at a rate similar to the baseline, while
ASG-MU and ASAG-MU converge significantly faster.

2.3.5 Variance Reduced Stochastic MU for Linear NMF

Kasai presented several algorithms that use stochastic multiplicative updates
in his two papers from 2018 [25, 24]. The algorithms are specific to Euclidean
distance and only applicable to linear NMF, as opposed to symmetric NMF in our
approach. The first paper introduced SVRMU and its two extensions, SVRMU-
ACC and R-SVRMU. In the second paper Kasai presented SAGMU, an improved
version of SVRMU. In this section, we first present SVRMU and then explain
SAGMU based on SVRMU.

SVRMU

SVRMU uses variance reduction to improve the performance of stochastic MU.
Factorization is controlled by two loops. An execution of the outer loop is referred
to as an epoch, and an execution of the inner loop as an iteration. In each
iteration, the stochastic contributions are combined with contributions that are
calculated once per epoch and stored. To clearly distinguish between calculations
that are performed every iteration and the stored components, let the latter be
denoted

[
W>X/|n|

]stored and
[
W>WH/|n|

]stored.
Following the notation from the previous section, let Xb be the mini-batch of

X entries and let Wb denote the corresponding rows in W . The values used to
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update H are

υ− =
W>

b Xb

|b|
+

[
W>

b WbH

|b|

]stored
+

[
W>X

|n|

]stored
(2.61)

υ+ =
W>

b WbH

|b|
+

[
W>

b Xb

|b|

]stored
+

[
W>WH

|n|

]stored
. (2.62)

The most computationally expensive terms only need to be computed once per
epoch. Hence this technique reduces the variance at a limited computational
cost. SVRMU is shown in Algorithm 4.

Algorithm 4: Stochastic Variance Reduced MU (SVRMU)
Input : X, mini-batch-size, n-iter
Output: W , H
W ← RandomNonnegativeMatrix();
H ← RandomNonnegativeMatrix();
while ¬(convergence condition) do

Compute the components of
[
(W e)>X
|n|

]stored
and

[
(W e)>W eHe

|n|

]stored
;

for t = 1, 2, . . . , n-iter do
b← RandomMiniBatch(mini-batch-size);
Wb ← MultiplicativeUpdateW(Xb, Wb, H);

υ− ← W>
b Xb

|b| +
[
W>
b WbH
|b|

]stored
+
[
W>X
|n|

]stored
;

υ+ ← W>
b WbH
|b| +

[
W>
b Xb

|b|

]stored
+
[
W>WH
|n|

]stored
;

H ←H � υ−

υ+ ;

An accelerated version of SVRMU, called SVRMU-ACC, takes advantage of
the fact that updatingWb is much faster than updating H for small batch sizes.
Instead of only updatingWb once for that mini-batch, it repeatedly updatesWb

until some convergence criterion is reached. The convergence criterion in the
outermost loop may be different from the convergence criterion in the innermost
loop. This is somewhat similar to GSG-MU and GSAG-MU, which balance out
the frequency of updates forW andH. However, while those algorithms achieve
this by only updatingH once each epoch, SVRMU-ACC increases the time spent
on updating each mini-batch of rows from W .

The final variant of SVRMU is Robust SVRMU (R-SVRMU). It is based on
the success of robust NMF [22] and robust online NMF [53]. The approach is
designed to handle outliers in the dataset X. It does this using an outlier matrix
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R ∈ Rn×m, where WH +R ≈ X. Using a regularization parameter γ > 0 this
gives the following set of updates for R-SVRM,

W new
b =Wb �

XbH
>

(WbH +Rb)H>

Rnew
b = Rb �

Xb

WbH +Rb + γ

υ− =
W>

b Xb

|b|
+

[
W>

b (WbH +Rb)

|b|

]stored
+

[
W>X

|n|

]stored
υ+ =

W>
b (WbH +Rb)

|b|
+

[
(Wb)

>Xb

|b|

]stored
+

[
W>(WH +R)

|n|

]stored
.

The steps of R-SVRMU are essentially the same as in basic SVRMU, but the
updates are modified to incorporate the outlier matrix R and the regularization
parameter γ.

Kasai [25] compared SVRMU and its extensions to ASAG-MU and GSG-MU
from the previous section. The author showed that SVRMU and SVRMU-ACC
outperform ASAG-MU on a synthetic dataset, with SVRMU-ACC achieving the
fastest convergence speed by a significant margin.

SAGMU

SAGMU and its two extensions, SAGMU-ACC and R-SAGMU were presented
in [24]. These are very similar to SVRMU and its extensions. In fact, the only
difference lies in the treatment of stored values. While SVRMU updates the
stored values once per epoch, SAGMU initializes its stored values to zero and
then updates them every iteration.

SAGMU is shown in Algorithm 5. With each iteration a mini-batch is chosen
uniformly at random and the stored values are updated. This eliminates the need
for an inner loop. It also means that each iteration becomes somewhat more
expensive, but it removes the need for an expensive full-batch computation every
epoch. Furthermore, constantly updating the stored values may improve the
quality of those estimates and in turn increase convergence speed. The extensions
of SAGMU use the same techniques as SVRMU-ACC and R-SVRMU.

Kasai found that SAGMU-ACC converges faster than both ASAG-MU and
SVRMU-ACC on several synthetic datasets. Furthermore, R-SAGMU outper-
forms R-SVRMU on an image dataset with randomly added outliers [24].
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Algorithm 5: Stochastic Average Gradient MU (SAGMU)
Input : X, mini-batch-size
Output: W , H
W ← RandomNonnegativeMatrix();
H ← RandomNonnegativeMatrix();

Initialize the values in
[
(W e)>X
|n|

]stored
and

[
(W e)>W eHe

|n|

]stored
to zeros;

while ¬(convergence condition) do
b← RandomMiniBatch(mini-batch-size);
Wb ← MultiplicativeUpdateW(Xb, Wb, H);

υ− ← W>
b Xb

|b| +
[
W>
b WbH
|b|

]stored
+
[
W>X
|n|

]stored
;

υ+ ← W>
b WbH
|b| +

[
W>
b Xb

|b|

]stored
+
[
W>WH
|n|

]stored
;

H ←H � υ−

υ+ ;

Update
[
(W e)>X
|n|

]stored
using W>

b Xb

|b| ;

Update
[
(W e)>W eHe

|n|

]stored
using W>

b WbH
|b| ;



3 Stochastic Multiplicative
Updates for Symmetric NMF

In this chapter we present a novel algorithm for stochastic multiplicative up-
dates for symmetric NMF. We call the algorithm Stochastic Bound-and-Scale
Multiplicative Updates (SBSMU). Based on [51], we use the following notation
throughout this section: X ∈ Rn×n≥0 is the symmetric ground truth matrix, while
X̂ = WW> is its approximation. The factor matrix is denoted W ∈ Rn×r≥0 ,
where r is the rank. We letW ,W new and W̃ denote the current estimate of the
factor, the new estimate and the factor as a variable, respectively. Likewise, we
use X̃ in place of X̂ to indicate that the approximation contains W̃ .

Section 3.1 contains the algorithm itself, which uses a technique for variance
reduction we called bound-and-scale. Section 3.2 introduces a proof showing
that our algorithm converges in expectation given a certain condition on the
bound-and-scale parameter. Finally, Section 3.3 presents how we optimized and
implemented the algorithm. While much of what is introduced in this chapter
is applicable to various loss functions, we focus exclusively on the Euclidean
distance and the I-divergence.

3.1 Algorithm

Comparing stochastic gradient descent (SGD) to gradient descent is a useful
analog to how we introduce stochasticity to MU. Instead of using the full dataset
to calculate the gradient each iteration, SGD uses a random subset of the entries
— a mini-batch. The idea is to replace loss and gradient calculations that involve
the full dataset with stochastic approximations based on a fraction of the data.
This has two potential advantages. First, it significantly reduces the computation
time per iteration. The complexity of an update is reduced from O(m), where
m is the size of the dataset, to O(b), where b is the size of each mini-batch. If
the stochastic approximations of the gradient are sufficiently accurate, this will
increase the rate of convergence. The second advantage is that SGD sometimes
is able to find a better local optimum than full-batch gradient descent. The noise
introduced by stochasticity can lead SGD to escape local minima, and in turn find
a better solution. The success of SGD is an important motivation for introducing
stochasticity to MU.
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In this section we analyze how stochasticity can be introduced to MU for
symmetric NMF. The stochastic derivative calculation is based on stochastic
approximations of the loss, which are introduced in Section 3.1.1. This is followed
by the derivation of stochastic partial derivatives in Section 3.1.2. However,
simply replacing the full-batch derivatives by the stochastic derivatives does not
yield a converging algorithm. In Section 3.1.3 we discuss why this naive approach
fails. Section 3.1.4 presents our algorithm, SBSMU, which remedies the problems
with the naive approach.

3.1.1 Stochastic Approximation of Loss

The basis for introducing stochasticity to MU are stochastic approximations of the
loss functions we wish to optimize. Each stochastic approximation is calculated
based on a mini-batch. The mini-batch size determines how many entries of Xij

are used in the stochastic loss calculation every iteration. In general, a larger
mini-batch size means more accurate estimates but slower iterations. In this
work we use a single entry of the ground truth X in each mini-batch. However,
we utilize the symmetry of X by including both Xij and Xji.

There are two reasons why we use mini-batches with only two symmetric
entries. Firstly, this means that we only update two rows of the factor matrix
in each iteration. As we will see in Section 3.3.5, this simplifies parallelization.
Secondly, preliminary experiments indicated that increasing the mini-batch size
does not improve performance.

In order to approximate the loss based on only two entries, the loss function
needs to be additively separable over the entries of X. Hence, we require that
the loss function is of the form

L(W ) =
∑
ij

l(Xij , X̂ij). (3.1)

Each summand in (3.1) only depends on two rows ofW , since X̂ij =
∑
kWikWjk.

This means that the gradient of l(Xij , X̂ij) is zero for all elements of W except
these two rows. Note that both the Euclidean distance and the I-divergence are
sums and satisfy the separability requirement.

The stochastic approximation of the loss is then defined by including only the
corresponding summands of the loss function. Due to symmetry, Xij = Xji and
X̂ij =

∑
kWikWjk = X̂ji. Hence we define a stochastic loss function L(ij) as

L(ij)(W ) = l(Xij , X̂ij) + l(Xji, X̂ji) = 2l(Xij , X̂ij). (3.2)
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3.1.2 Derivation of Stochastic Partial Derivatives

Multiplicative updates can be formulated based on the partial derivative of the
loss function. Similarly to how SGD replaces gradients with stochastic gradients,
we use the partial derivative of the stochastic loss function instead. We denote
the stochastic partial derivative

∇ij,al =
∂L(ij)(W̃ )

∂W̃ al

. (3.3)

The update rule is constructed using the positive and negative components of the
gradient separately. In alignment with the full-batch updates in Section 2.1.3,
we denote them

∇ij,al = ∇+
ij,al −∇

−
ij,al. (3.4)

Here, we derive the partial derivative and its components both for the Eu-
clidean distance and the I-divergence.

Euclidean Distance

First we calculate the partial derivative of the stochastic loss function,

∇ij,al =
∂

∂W̃ al

2
(
Xij − X̃ij

)2
(3.5)

= 4
(
Xij − X̂ij

) ∂

∂W̃ al

(
Xij −

∑
k

W̃ ikW̃ jk

)
(3.6)

= 4
(
X̂ij −Xij

) ∂

∂W̃ al

(
W̃ ilW̃ jl

)
. (3.7)

This gives four cases depending on the value of a, as shown in Table 3.1.

Table 3.1: Stochastic partial derivatives for the Euclidean distance

Case ∇ij,al ∇−ij,al ∇+
ij,al

a = i ∩ a 6= j 4(X̂ij −Xij)Wjl 4XijWjl 4X̂ijWjl

a 6= i ∩ a = j 4(X̂ij −Xij)Wil 4XijWil 4X̂ijWil

a = i = j 8(X̂ij −Xij)Wal 8XijWal 8X̂ijWal

a 6= i ∩ a 6= j 0 0 0
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I-Divergence

Likewise, we derive the partial derivative with its positive and negative parts for
the I-divergence,

∇ij,al =
∂

∂W̃ al

2

(
Xij ln

Xij

X̃ij

−Xij + X̃ij

)
(3.8)

= 2
∂

∂W̃ al

(
−Xij ln X̃ij + X̃ij

)
(3.9)

= 2

(
1− Xij

X̃ij

)
∂

∂W̃ al

(
W̃ ilW̃ jl

)
. (3.10)

This also gives four cases depending on a, shown in Table 3.2.

Table 3.2: Stochastic partial derivatives for the I-divergence

Case ∇ij,al ∇−ij,al ∇+
ij,al

a = i ∩ a 6= j 2(1−Xij/X̂ij)Wjl 2WjlXij/X̂ij 2Wjl

a 6= i ∩ a = j 2(1−Xij/X̂ij)Wil 2WilXij/X̂ij 2Wil

a = i = j 4(1−Xij/X̂ij)Wal 4WalXij/X̂ij 4Wal

a 6= i ∩ a 6= j 0 0 0

3.1.3 Failure of the Naive Approach

In general, the naive approach to stochastic MU for symmetric NMF does not
converge. Replacing the full-batch partial derivatives with the stochastic par-
tial derivatives presented in Section 3.1.2 without further modification yields a
stochastic update

W new
al ←Wal

[
∇−ij,al
∇+
ij,al

]η
. (3.11)

Preliminary experiments showed that factorization by (3.11) fails to converge for
symmetric NMF.

The reason for the failure of this naive approach can be explained by con-
sidering updates calculated from zero-valued entries in X. For both Euclidean
distance and I-divergence,

∇−ij,al

∣∣∣∣
Xij=0

= 0, (3.12)
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for any iteration with Xij = 0. This gives the update

Wik ←Wik �

(
∇−ij,ik
∇+
ij,ik

)η ∣∣∣∣∣
Xij=0,Wik 6=0

= 0. (3.13)

Regardless of the previous value, all entries in the rows i and j in W are set
to zero. As a result, subsequent updates targeting those rows do not have any
effect. This means that a single stochastic update cancels out all previous or
future updates for some rows inW . These rows therefore only model zero entries
and do not have the capacity of approximating the non-zero entries of X. The
problem is particularly acute for the sparse matrices that are most relevant to
us. A sparse X will often have at least one zero entry per row or column, and
this will quickly lead to a factor matrix W of all zeros.

Adding a small constant to each update in order to avoid zero entries is not
sufficient to remedy this problem. Once the algorithm encounters a zero-valued
entry in X, the two corresponding rows inW are set to very small values. When
a later update for a nonzero entryXij uses either of these rows, the approximation
X̂ij also becomes very small. Since the naive updates for both Euclidean distance
and I-divergence are calculated with X̂ij in the denominator, they become very
large in turn. An update of this magnitude is required to substantially change
the very small entries ofW . However, it causes the other entries to become very
large, leading to an imbalance that causes the algorithm to diverge. Eventually,
some entries become so large that overflow errors arise.

Zero-valued entries in X are not a problem in full-batch MU, since the corre-
sponding entries in W are only set to 0 if this is in fact the optimal value. This
is a result of the full-batch partial derivative calculation. The full-batch partial
derivative,

∇ik =
∂L

∂W̃ ik

(W̃ ), (3.14)

takes into account all the entries in X̃ that contain W̃ ik. As a consequence, the
negative component ∇−ik will only be 0 if all the corresponding entries in X is
also 0. It is easy to see that in this case, Wik = 0 is the optimal value.

Of the stochastic algorithms for linear NMF introduced in Section 2.3, GSG-
MU and ASG-MU are susceptible to this problem with zero-valued entries. GSG-
MU and ASG-MU both use mini-batches containing complete rows of X. Since
X̂ = WH in linear NMF, the updates effect a subset of the rows in W and
all entries in H. Hence, a column with all zeros in the mini-batch would pro-
duce a zero-update for the corresponding column in H. The optimal value for
that column is not necessarily zero and the problem described above applies. In
contrast, ASAG-MU and GSAG-MU, as well as SVRMU and its variants, are
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unlikely to have this problem due to their use of variance reduction. Although
the algorithms differ in how they use variance reduction, they all ensure that each
update contains information from previous updates.

3.1.4 Bound-and-Scale Algorithm
In this section we introduce Stochastic Bound-and-Scale Multiplicative Updates
(SBSMU), our novel stochastic MU algorithm for symmetric NMF. It is sum-
marized in Algorithm 6. To overcome the challenges presented in the previous
section, we augment the naive approach with a variance reduction technique we
call bound-and-scale. It is parameterized with α ∈ [0, 1). Each iteration, we
randomly choose two indices i and j and perform the update

W new
al =Wal

(
α+ (1− α)∇−ij,al
α+ (1− α)∇+

ij,al

)η
. (3.15)

The bound-and-scale technique is applied to both components of the partial
derivative. Each component is lower bounded by α and scaled down by (1− α).

Algorithm 6: Stochastic Bound-and-Scale Multiplicative Updates
Input : X, η, α
Output: W
W ← RandomNonnegativeMatrix();
while ¬(convergence condition) do

i, j ← SelectRandomIndices();
for k in 1 . . . r do

Wik ←Wik

(
α+ (1− α)∇−ij,ik
α+ (1− α)∇+

ij,ik

)η
;

Wjk ←Wjk

(
α+ (1− α)∇−ij,jk
α+ (1− α)∇+

ij,jk

)η
;

The bound-and-scale parameter α is independent of the magnitude of the
partial derivative components. Although each gradient component is scaled by
(1−α), there is no mechanism to prevent gradient components that are so large as
to make α virtually negligible. Likewise, there is nothing that prevents gradient
components that are so small that α dominates the fraction. These issues could be
compounded by cases where the magnitude of ∇−ij,al and ∇

+
ij,al varies significantly

between entries. Consider the case where α is nearly negligible for one entry, while
simultaneously dominating another entry. This may lead to an imbalance in how
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different parts of W are updated, with unpredictable results. However, as we
show in the experiments in Section 4, there appears to be values for α that work
well across datasets in practice. Normalizing X seems to remedy the problem by
reducing the variation in gradient component magnitude between datasets.

Bound-and-scale is similar to the variance reduction methods used in GSAG-
MU and SVRMU, presented in Sections 2.3.4 and 2.3.5. In statistics, two impor-
tant concepts for a series of estimates are accuracy and precision. The accuracy
of one estimate describes how close this estimate is to the true value. The preci-
sion, in contrast, describes how close the estimate is to the other estimates in the
series. Recall that the stochastic partial derivative is an estimate of the full-batch
partial derivative. While SBSMU cannot improve the accuracy of these estimates,
it clearly increases precision by reducing their variance. Hence, the bound-and-
scale step can be considered a variance reduction technique. Unlike the form
of variance reduction in GSAG-MU and SVRMU, however, the bound-and-scale
step is not a variant of gradient averaging and does not rely on information about
previous gradients. One advantage of this is that SBSMU does not require any
extra memory.

To the best of our knowledge, SBSMU is the first stochastic MU algorithm
for symmetric NMF. This distinguishes it from the stochastic MU algorithms
presented in the literature review in Section 2.3. Those algorithms are only
applicable to linear NMF, as opposed to symmetric NMF in our approach. Fur-
thermore, the algorithms from the literature review use mini-batches containing
complete rows or columns fromX. In contrast, SBSMU only uses a single sample
at a time. One advantage of the purely stochastic approach used by SBSMU is
that this enables parallelization without locking, as we demonstrate in Section
3.3.5.

3.2 Proof of Convergence

This section presents a proof of convergence of SBSMU. The proof relies on the
MM algorithm from Section 2.1.4, as well as the unified development procedure
from Section 2.3.3. We denote the loss function, that is either the I-divergence or
the Euclidean distance, by L. Furthermore, L(ij) is the corresponding stochastic
loss function as defined in Section 3.1.1. The proof is not specific to Euclidean dis-
tance and I-divergence and could therefore hold for other separable loss functions
as well. However, since it relies on assumptions that only have been evaluated for
Euclidean distance and I-divergence, no claims can be made beyond these two
loss functions.

Section 3.2.1 shows how the unified procedure can be applied to a stochastic
loss function. While this is sufficient to majorize the stochastic loss, it is not
sufficient to show convergence for the total loss. This is the main challenge in
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proving convergence, and Section 3.2.2 outlines how the bound-and-scale step
solves it. Building on this analysis, we introduce the main theorem with the
proof of convergence in Section 3.2.3. Finally, we present a set of remarks on the
proof and the convergence condition in Section 3.2.4.

3.2.1 Majorizing the Stochastic Loss

By applying the unified development procedure from Section 2.3.3, we can ma-
jorize the stochastic loss function. Recall that the unified procedure transforms
a loss function L into an equivalent polynomial form that is additively separa-
ble over the entries of the ground truth matrix. Then, Jensen’s inequality and
Taylor’s theorem are applied separately to upper bound the monomials of each
summand. For SBSMU, we require L to be separable in order to define a stochas-
tic loss L(ij) as in Section 3.1.1. L(ij) can be thought of as a loss function over
a matrix with a single element. Furthermore, for both the Euclidean distance
and the I-divergence, L(ij) can be expressed as a polynomial with respect to X̂ij .
To majorize the monomials of L(ij), we can thus apply the unified development
procedure directly.

Lemma 3.2.1 (Stochastic Majorization Function). There exist ψmax, ψmin ∈ R
with ψmax > ψmin, such that

G(ij)(W̃ ,W ) =
∑
al

[
Wal

ψmax

(
W̃ al

Wal

)ψmax

∇+
ij,al

− Wal

ψmin

(
W̃ al

Wal

)ψmin

∇−ij,al

]
+ constant (3.16)

majorizes L(ij), that is

G(ij)(W ,W ) = L(ij)(W ) (3.17)

G(ij)(W̃ ,W ) ≥ L(ij)(W̃ ) (3.18)

for all i, j.

Proof. See the proof of Theorem 1 in [51], which is the basis of the unified de-
velopment procedure. For both the Euclidean distance and the I-divergence, the
procedure is applicable as the loss functions can be expressed in the required
form. L(ij) can be viewed as the loss 2L of a matrix with a single entry. The
proof can thus be applied directly to L(ij).
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3.2.2 Bound-and-Scale-Divergence

G(ij) majorizes L(ij). However, L(ij) depends on the indices i, j chosen for the
update. Herein lies the challenge. We need to extend this to the deterministic loss
function L, which also depends on all the other indices a, b 6= i, j. For clarity, we
define the concepts of self-change and cross-change. Let W denote the current
value of the factor matrix, andW ij,new the new value after applying an iteration
of SBSMU with indices i and j.

Definition 3.2.1 (Self-Change).

L(ij)(W ij,new)− L(ij)(W ) (3.19)

is called self-change and

Eij

[
L(ij)(W ij,new)− L(ij)(W )

]
(3.20)

is called expected self-change.

Definition 3.2.2 (Cross-Change).∑
ab6=ij

L(ab)(W ij,new)− L(ab)(W ) (3.21)

is called cross-change and

Eij
∑
ab6=ij

L(ab)(W ij,new)− L(ab)(W ) (3.22)

is called expected cross-change.

The main challenge is the cross-change, which represents the change in loss
for every entry except X̂ij . Indeed, the stochastic update is completely unaware
of the impact on the loss of other entries than X̂ij . Thus there is no guarantee
that the cross-change nonpositive.

Our solution to this problem is the bound-and-scale step. In each iteration of
SBSMU, the bound-and-scale step counteracts the impact of the cross-change. In
order to show this theoretically and formulate an auxiliary function from which
SBSMU can be derived, we define the bound-and-scale-divergence H.

Definition 3.2.3 (Bound-and-Scale-Divergence). Let ψmax and ψmin be the con-
stants used in the stochastic majorization function G(ij). H : Rn×r≥0 ×R

n×r
≥0 → R,

H(W̃ ,W ) =
∑
al


(
W̃al

Wal

)ψmax

− 1

ψmax
−

(
W̃al

Wal

)ψmin

− 1

ψmin

 (3.23)

is called the bound-and-scale-divergence.
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Lemma 3.2.2. The bound-and-scale-divergence defines a valid divergence be-
tween the factor matrix W and an updated factor matrix W̃ , that is

H(W ,W ) = 0, (3.24)

∀ W̃ 6=W : H(W , W̃ ) > 0. (3.25)

Proof. Consider the function f : R×R→ R,

f(x, ψ) =
xψ − 1

ψ
. (3.26)

f(x, ψ) is monotonically increasing over ψ if x > 0 [51]. For x = 1, f is constant
with f(1, ψ) = 0 for all ψ. Since ψmax > ψmin, we get

f(x, ψmax)− f(x, ψmin) ≥ 0. (3.27)

The equality holds iff x = 1. Setting x = W̃al

Wal
and summing over the entries of

the factor matrix gives H.

3.2.3 Theorem and Proof
Theorem 3.2.1 (Convergence of SBSMU). If

Eij
∑
ab6=ij

[
L(ab)(W ij,new)− L(ab)(W )

]
EijH(W ij,new,W )

≤ α

1− α
, (3.28)

then
L(W ) ≥ EijL(W ij,new). (3.29)

Because SBSMU is a stochastic algorithm, it is not guaranteed to monotoni-
cally decrease the loss in every iteration. However, like in the convergence proof
for SGD [4], we can still prove converge in expectation. Specifically, we consider
the expected value of the loss with respect to the entry we choose at a given
iteration, EijL(W new). Using the MM algorithm from Section 2.1.4, we show
that EijL(W new) is nonincreasing if the condition (3.28) holds. To do so, we
define a function F (ij) and prove that it satisfies the properties required for an
auxiliary function in expectation. This includes the majorization properties (P1)
and (P2), as well as the minimization property (P3).

Let F (ij) : Rn×r≥0 ×R
n×r
≥0 → R≥0 be defined as

F (ij)(W̃ ,W ) =
1

2

G(ij)(W̃ ,W ) +
α

1− α
H(W̃ ,W ) +

∑
ab6=ij

L(ab)(W )

 .
(3.30)
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Lemma 3.2.3 (P3). EijF (ij)(W ,W ) ≥ EijF (ij)(W ij,new,W ).

Proof. Setting

∂F (ij)(W̃ ,W )

∂W̃ al

= 0 (3.31)

gives the stochastic update rule1

W ij,new
al =Wal

(
α+ (1− α)∇−ij,al
α+ (1− α)∇+

ij,al

) 1
ψmax−ψmin

. (3.32)

This is the update we apply in SBSMU. Because W ij,new is the minimum of
F (ij)(W̃ ,W ) over W̃ , we have

F (ij)(W ,W ) ≥ F (ij)(W ij,new,W ) (3.33)

for any indices i and j. Taking the expectation completes the lemma.

Lemma 3.2.4 (P1). L(W ) = EijF
(ij)(W ,W ).

Proof. Lemma 3.2.1 shows that G(ij) majorizes L(ij), hence G(ij)(W ,W ) =
L(ij)(W ). Lemma 3.2.2 shows that H is a valid divergence with H(W ,W ) = 0.
Hence,

EijF
(ij)(W ,W ) = Eij

1

2

L(ij)(W ) +
∑
ab6=ij

L(ab)(W )

 (3.34)

=
1

2

∑
ab

L(ab)(W ) (3.35)

= L(W ), (3.36)

where the last equality follows from the definition of L(ij) in Section 3.1.1.

Lemma 3.2.5 (P2). EijF (ij)(W ij,new,W ) ≥ EijL(W ij,new).

Proof. From Lemma 3.2.2 and the assumption in (3.28), we have

α

1− α
EijH(W ij,new,W ) ≥ Eij

∑
ab6=ij

[
L(ab)(W ij,new)− L(ab)(W )

]
. (3.37)

1See Appendix B for the full derivation.
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This gives

EijF
(ij)(W ij,new,W )

= Eij
1

2

G(ij)(W ij,new,W ) +
α

1− α
H(W ij,new,W ) +

∑
ab6=ij

L(ab)(W )


(3.38)

≥ Eij
1

2

L(ij)(W ij,new) +
α

1− α
H(W ij,new,W ) +

∑
ab6=ij

L(ab)(W )

 (3.39)

≥ Eij
1

2

L(ij)(W ij,new) +
∑
ab6=ij

L(ab)(W ij,new)

 (3.40)

= EijL(W
ij,new), (3.41)

where (3.39) uses that G(ij) majorizes L(ij), proven in Lemma 3.2.1. (3.40) uses
the inequality in (3.37), which comes from the convergence condition.

Proof of Theorem 3.2.1. Lemma 3.2.4, Lemma 3.2.3 and Lemma 3.2.5 prove each
of the properties of an auxiliary function under the condition (3.28). Thus, in
expectation, F (ij) is a valid auxiliary function for the loss L. We get

L(W )
(P1)
= EijF

(ij)(W ,W )
(P3)
≥ EijF

(ij)(W ij,new,W )
(P2)
≥ EijL(W

ij,new).
(3.42)

This implies that L is nonincreasing in expectation and in turn SBSMU converges.

3.2.4 Remarks
In this section we present some remarks on Theorem 3.2.1 First, we discuss
the meaning and implications of the convergence condition. In one sense the
condition represents a limitation of the proof. However, it reveals insights about
how α should be tuned, under what condition SBSMU converges and why the
bound-and-scale step is necessary to achieve convergence. Second, we explain how
the proof can be relaxed to include different values for the exponential learning
rate.

Remarks on the Convergence Condition

The meaning of the condition (3.28) can be illustrated by an analogy with velocity.
The left side of the condition is the expected cross-change relative to the expected
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change of the factor matrix W , measured by the bound-and-scale-divergence.
In the velocity analogy, the distance traveled is the expected cross-change and
the time dimension is expressed in terms of change of the factor matrix. The
condition then states that the expected cross-change “speed” is upper bounded
by a constant α

1−α , depending on α.
In general, the condition points out that higher value for the hyperparameter

α are more likely to yield convergence. The margin between the smallest possible
α and the chosen value leads to a decrease in convergence rate. Indirectly, the
optimal value for α depends on the magnitude of the partial derivative compo-
nents, which determine the change in the factor matrix. Note that the proof also
supports the requirement α < 1: for α = 1, the condition is undefined, while
even higher values give a negative upper bound.

When learning signals over different samples share some common pattern,
the condition holds for a larger range of values for α. That is, learning from Xij

probably leads to a decrease in loss for the other entries as well. In turn, the
expected cross-change relative to the change inW is smaller and therefore easier
to upper bound. In cluster analysis, which we present as an application of NMF
in Section 2.2, this is often the case. All entries in the same cluster attract the
corresponding rows in W closer.

The theorem derivation procedure reveals the need for the augmentation. The
minimization property (P3) guarantees the decrease of expected self-change, but
learning from the current sample could result in an increase in cross-change. The
augmentation term α

1−αH(W ij,new,W ), which introduces the bound-and-scale
step to the update, remedies this. As a result, convergence can be guaranteed
under certain conditions on the bound-and-scale parameter α.

Relaxation of the Exponential Learning Rate

The current proof fixes the value of the learning rate parameter to η = 1
ψmax−ψmin

.
While SBSMU with this learning rate is guaranteed to converge, different values
can improve the rate of convergence in practice. The proof can be relaxed to
include lower values for η by altering ψmax in the stochastic majorization function
and the bound-and-scale divergence.

3.3 Implementation and Optimization

This section presents our implementation of SBSMU and explains how we op-
timized execution time. The optimizations we applied can be divided into four
categories:

• Algorithmic modifications. While the optimized implementation is log-
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ically equivalent with Algorithm 6, we make certain changes to improve
performance on sparse matrices and reduce the cost of random number
generation.

• Stratified sampling. When factorizing sparse matrices, it is desirable
to increase the sampling rate for nonzero entries compared to zero-valued
entries.

• Compilation. The execution of compiled code is significantly faster than
using an interpreter.

• Parallelization. Parallelizing code makes it possible to utilize multi-core
architectures.

First, Section 3.3.1 presents how we treat the concept of convergence and de-
termine termination criteria. Each of the remaining sections discuss one of the
optimizations described above. Section 3.3.2 presents an overview of algorithmic
modifications. Section 3.3.3 shows how we use an adapted version of stratified
sampling to increase utilization of the nonzero entries of X. Section 3.3.4 intro-
duces Numba, which we use to compile the code instead of running it through the
Python interpreter. Finally, Section 3.3.5 explains how we utilize parallelization
to enhance performance on architectures with multiple processors.

3.3.1 Convergence Criteria
In Algorithm 6, the update loop continues until an unspecified convergence cri-
terion is reached. The nature of this convergence criterion depends on the ap-
plication. Broadly speaking, there are two approaches: run until convergence is
detected or run until some computational budget limit is reached. These two ap-
proaches might also be combined, so that the algorithm terminates when either
criterion is satisfied.

While detecting convergence is straightforward for full-batch MU, this is not
the case for stochastic algorithms. The advantage of full-batch MU is that they
have the monotone convergence property. The loss is always decreasing, so it is
possible to run the algorithm until the decrease in loss between two iterations is
sufficiently small. The challenge with stochastic algorithms is that they usually
are not guaranteed to monotonically decrease the loss. Even if the expected
value of the loss is nonincreasing, there may still be temporary increases in the
loss. This is because different entries in the dataset can pull the values in the
factor matrix in different directions. A step that reduces the loss with respect to
one entry in X may do the opposite for others, and thus increase the total loss.
Hence, an approach based on measuring the difference in loss between successive
iterations does not work. One alternative is to keep track of the lowest loss so
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far, and terminate when a sufficiently long period of time goes by without an
improvement.

Computational budget criteria are applicable to both full-batch and stochastic
algorithms, and the budgets can be specified in terms of the number of iterations
or the running time. The latter has the advantage that it allows fair comparisons
between different algorithms. Furthermore, budgets based on running time give
the user more control when the time per iteration is unknown.

3.3.2 Algorithmic Optimization

Algorithmic optimizations are modifications of the algorithm that improve per-
formance, while keeping the algorithm logically equivalent to the non-optimized
version. The optimizations yield a more time efficient execution, for example by
avoiding calculation of terms that are later multiplied by zero. In the following
we present three algorithmic optimizations. The first two modifications are al-
ways valid when factorizing sparse, symmetric matrices and have been used in our
implementation. The third modification is specific to NMF applied to clustering,
and is not used in this work.

Generating Lists of Random Indices

When generating random indices, we improve performance by generating lists of
random numbers instead of making calls to the random number generator every
iteration. Logically, we need to choose two indices i and j for each iteration.
These determine the entry Xij that the update derivation is based on. Instead
of performing random number generation separately at the beginning of each
iteration, two index lists of size 10 000 are randomly generated and stored every
10 000 iterations. At the beginning of each iteration, the current heads of the
two lists are consumed as index i and j.

This approach optimizes execution time by minimizing the overhead of ran-
dom number generation. Due to fixed costs like the initialization of the random
generator, the cost per random number is lower when generating 10 000 numbers
than when generating a single number. The resulting speedup is greater than the
time it takes to store and fetch random numbers. One potential disadvantage is
that storing lists of random indices requires extra memory. However, the amount
of memory required to store 20 000 integers is negligible compared to the size of
the datasets SBSMU is applied to.

Utilizing the Sparsity of X

Our focus is on factorizing sparse datasets with the I-divergence, and so we
consider how SBSMU can be optimized for this specific problem. Since sparse
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matrices are dominated by zero-valued entries, simplifying the update whenXij =
0 may significantly speed up execution. We derive the stochastic multiplicative
update for I-divergence in Section 3.1.2. Its negative component is

∇−ik = 2
WjkXij

X̂ij

. (3.43)

If Xij = 0, then ∇−ik = 0 for all k. Hence, we do not explicitly calculate this term
for the zero entries of X. Importantly, this means that we avoid the relatively
expensive computation of X̂ij =

∑
kWikWjk.

Omitting Diagonal Entries

In clustering applications, the diagonal entries of the dataset do not need to be
included. As discussed in Section 2.2, clustering is the most important application
of symmetric NMF. In clustering, X is a similarity matrix where Xij represents
the similarity between two entities i and j. The diagonal entries thus represent the
similarity of each entity with itself. This information is not useful for clustering,
and can be left out of the factorization process.

Not including diagonal entries is straightforward and likely to improve per-
formance. To avoid diagonal entries, we can simply enforce i 6= j when randomly
selecting indices. By removing information that is not useful, it is likely that the
convergence rate will increase. Furthermore, the quality of the factorization may
improve because it is not constrained by the diagonal entries.

3.3.3 Stratified Sampling

Stratified sampling is a statistical technique for reducing estimation errors in
populations with mutually exclusive subgroups. The technique involves allocat-
ing the total number of samples among the subgroups, and then sampling each
subgroup independently. More samples are allocated to larger subgroups and
subgroups with greater internal variability. This ensures that each subgroup is
adequately represented. If the subgroups are relatively homogeneous compared to
the population as a whole, this will often reduce the overall estimation error [48].

Stratified sampling can be applied to the factorization of sparse datasets,
where nonzero elements and zero-valued elements constitute two subgroups. The
zero-valued elements outnumber the nonzero elements, but the nonzero elements
contain most of the information. Hence, it makes sense to choose a distribution
that prioritizes nonzero elements, rather than choosing elements uniformly at
random. We achieve this by introducing a sampling variable β ∈ (0, 1), which
represents the probability of selecting a nonzero element each iteration.
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It is necessary to ensure that we still optimize the correct loss function. Since
we apply stratified sampling to sparse matrices, we show how the sampling vari-
able can be introduced to the I-divergence here. However, the same principles
can be applied to the Euclidean distance. To ensure that we are optimizing for
the I-divergence, we require that X is normalized so that

∑
ij Xij = 1. This

allows us to view X as a probability distribution, which gives

LI(W ) =
∑
ij

X̂ij −
∑
ij

Xij ln X̂ij + constant (3.44)

=N2E(i,j)∼[1..N ]2

[
X̂ij

]
− E(i,j)∼X

[
ln X̂ij

]
+ constant (3.45)

=
1

β

(
(1− β) β

1− β
N2E(i,j)∼[1..N ]2

[
X̂ij

]
− βE(i,j)∼X

[
ln X̂ij

])
+ constant. (3.46)

Optimizing for (3.46) is equivalent to optimizing for the I-divergence, but it allows
us to set the sampling rate for nonzero entries using β. The term E(i,j)∼X [ln X̂ij ]
contains only nonzero entries that are sampled according to X. The β factor is
applied implicitly through the sampling rate. The term E(i,j)∼[1..N ]2 [X̂ij ] includes
both nonzero and zero-valued entries, and contains no information from X. The
(1 − β) factor is applied implicitly through sampling, but this term must be
explicitly multiplied by β

1−βN
2. The leftmost 1

β factor outside the parentheses
is applied to both terms. It can be safely ignored since scaling the loss will not
alter the location of the minimum.

The approach differs from how stratified sampling usually works, but update
rules based on (3.46) can enforce a higher sampling rate for the nonzero terms.
The two terms in (3.46) do not exactly represent the two subgroups, nonzero
and zero-valued entries. While E(i,j)∼X [ln X̂ij ] only contains nonzero entries,
E(i,j)∼[1..N ]2 [X̂ij ] contains a uniform distribution over all the entries. However,
in a sparse matrix with mostly zero-valued entries, the latter subgroup is very
similar to the group of all zero-valued entries. Regardless of sparsity, increasing
the sampling rate for the first subgroup increases the sampling rate for nonzero
entries relative to zero-valued entries. Hence, although this technique is different
from stratified sampling in the standard sense, it achieves the same goal.

The update rules are derived from the stochastic partial derivative of the loss
function with respect to a single entry ofW . Following the procedure in Section
3.1.2, we use the symmetry of X to include both Xij and Xji by multiplying by
2. Since the two terms in (3.46) are distributed differently, we derive two separate
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update rules2. For the positive term,

∇+
ij,al =

∂

∂Wal

(
2N2 β

1− β
X̂ij

)
(3.47)

= 2N2 β

1− β
∂

∂Wal
(WilWjl) , (3.48)

which gives the update

Wal ←Wal

(
α

α+ (1− α)∇+
ij,al

)
. (3.49)

For the negative term,

∇−ij,al =
∂

∂Wal

(
ln X̂ij

)
(3.50)

=
1

WilWjl

∂

∂Wal
(WilWjl) , (3.51)

which gives the update

Wal ←Wal

(
α+ (1− α)∇−ij,al

α

)
. (3.52)

It is worth noting that since we redefine the loss function to include stratified
sampling, the formulas of ∇+

ij,al and ∇
−
ij,al change. The resulting pseudocode is

shown in Algorithm 7.
This approach to stratified sampling changes how we apply the algorithmic

optimizations presented in the previous section. It is still beneficial to generate
lists of random numbers instead of calling the random number generator every
iteration. However, five separate lists for β values, indices sampled uniformly at
random, and indices sampled according to X. The technique for utilization of
sparsity is applied implicitly, since ∇−ij,al only is calculated for nonzero entries.

3.3.4 Compilation

Our implementation of SBSMU is written in Python, which we also used to exper-
iment with different versions of the algorithm. Extensive third-party mathematics
libraries like NumPy [21] and SciPy [49] make Python a common choice for scien-
tific computing software. Furthermore, with dynamic typing, garbage collection

2For brevity, we omit the four cases introduced by the term ∂
∂Wal

(
WilWjl

)
.
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Algorithm 7: SBSMU with Stratified Sampling for the I-divergence
Input : X, η, α, β
Output: W
W ← RandomNonnegativeMatrix();
while ¬(convergence condition) do

b ∼ U [0, 1];
if b < β then

(i, j) ∼ U [1, ..., N ]
2;

for k in 1 . . . r do

Wik ←Wik

(
α

α+ (1− α)∇+
ij,ik

)η
;

Wjk ←Wjk

(
α

α+ (1− α)∇+
ij,jk

)η
;

else
(i, j) ∼X;
for k in 1 . . . r do

Wik ←Wik

(
α+ (1− α)∇−ij,ik

α

)η
;

Wjk ←Wjk

(
α+ (1− α)∇−ij,jk

α

)η
;

and emphasis on readability, Python facilitates high development velocity and is
a suitable language for prototyping. However, this comes at a significant perfor-
mance cost. A study comparing the performance of Python, Go and C++ on
the N Queens problem, found that the C++ implementation was 1-2 orders of
magnitude faster than the Python implementation [17]. Nevertheless, as long as
the main bottleneck is development time, Python is a good choice for the reasons
stated above. If the goal is to optimize performance however, other tools are
needed.

Numba is a third-party compiler that translates Python code into machine
code to increase performance. The authors of Numba claim that it can achieve
execution times comparable to those of C or C++ in scientific computing do-
mains [27]. This is supported by the previously cited study on the N Queens
problem, where Numba was found to perform about 10% worse than the C++ im-
plementation [17]. Numba is based on the LLVM compiler library, which provides
the low-level programming language Intermediate Representation (IR). LLVM
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takes IR code as input, optimizes it and converts it to platform-dependent ma-
chine code [28]. Numba is able to parse most of the basic Python language and
convert it to IR code. In addition, it supports most of the functionality provided
by NumPy. Applying Numba to a function written in Python is as simple as
adding a decorator, provided that it only contains code that can be parsed by
Numba. Hence, Numba can greatly increase the performance of Python code
with minimal effort.

By applying Numba to our Python implementation, we were able to reduce
execution time by approximately two orders of magnitude without making sig-
nificant changes to the code.

3.3.5 Parallelization

Parallelizing code may greatly speed up its execution, but sometimes these gains
are more than offset by the associated overhead. Parallelization means writing
code that can be run on multiple processors in parallel. This can be utilized on
systems with multiple processing units. However, spawning new processes and
synchronizing their execution may lead to significant overhead. Synchronization
is usually required to avoid concurrency issues when handling shared, mutable
objects. It entails one process waiting on another process to avoid two processes
accessing the shared region of memory at the same time. Aside from the wait
itself, this necessitates inter-process communication that also adds extra cost. In
particular, synchronization is often implemented using locks that a process must
acquire when using the shared object and then release.

Hogwild is an update scheme that allows parallelized SGD to be implemented
without any object locks [41]. Stochastic optimization algorithms like SGD use
fast update loops that may only take nanoseconds to calculate. The updates
require reading from and writing to memory, but those operations can also be
completed in a matter of tens of nanoseconds on modern systems. This means
that locking can become a significant bottleneck. Hogwild avoids this by giving
the processes unhindered access to the shared memory. Each process updates
the components without any synchronization. This will inevitably lead to some
incorrect updates. However, the errors introduced by such updates are minor,
and they are rare when data access is sparse. Sparse data access means that
each update only affects a small part of the shared memory. The authors behind
Hogwild show that a linear speedup in the number of processors can be theo-
retically guaranteed as long as data access is sufficiently sparse. Furthermore,
they empirically demonstrate that Hogwild outperforms parallelization schemes
for SGD that require locking.

The Hogwild scheme can be applied to parallelize SBSMU without locking.
A single update of SBSMU affects at most 2 rows of W , which means that data
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Main process
<Python>

Worker process
<Numba>

Worker process
<Numba>

N workers

...

- dispatch workers

- allocate and initialize W

factorize

wait

- terminate workers

factorize

- return W

Figure 3.1: Parallelization architecture in SBSMU

access is extremely sparse. The loop in SBSMU can thus be run independently
on several cores, which are unaware of each other aside from sharing access to
the same factor matrix W in memory. It does not matter in the long run if
two processes sometimes choose the same entry Xij at the same time. This may
cause one process to updateW incorrectly by using rows ofW from different time
steps. However, as long as the number of entries is far greater than the number
of processors, this will be a highly infrequent event. The erroneous updates are
drowned out by correct updates, and also become less significant as X̂ converges.

Because we require very little communication between the worker processes,
we can implement parallelization using a simple fork-join design pattern [36]. The
algorithm first allocates memory for and randomly initializes W , then branches
out by dispatching multiple workers that apply the update loop in SBSMU inde-
pendently. The main process keeps track of the convergence criterion and signals
to the workers when they should terminate. This is illustrated in figure 3.1.
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4 Experiments
This section presents the empirical experiments we conducted to assess the per-
formance of SBSMU, including the setup, methodology and the results. Our
overarching approach was to test SBSMU on sparse datasets from the real world,
with the I-divergence as the loss function. Section 4.1 presents the setup, includ-
ing hardware, software, random number generation and datasets. The remaining
sections contain method and results of the experiments. Section 4.2 presents the
hyperparameter experiment, where we explore how SBSMU performs with dif-
ferent configurations by performing grid searches on several datasets. Section 4.3
presents the benchmark experiment, which compares the performance of SBSMU
and three other matrix factorization algorithms on the MNIST dataset. Finally,
Section 4.4 presents the big data experiment, which compares the performance of
SBSMU and full-batch MU on the Higgs dataset. Due to the size of the dataset,
running four benchmark algorithms was infeasible, so we prioritized MU.

4.1 Setup and Datasets

This section details the setup for the experiments in order to facilitate repro-
ducibility. By using this setup, the datasets we list here, and our source code1, a
researcher should be able to reproduce all the results presented in this work.

Hardware and Software

We ran some of our experiments on a local desktop computer, while the most
resource-intensive tasks were run on the remote cluster system IDUN. The desk-
top computer is a Dell OptiPlex 9020 that runs Windows 10, has 16GB of memory
and has a 3.40GHz Intel Core i7-4770 processor with 8 threads. The IDUN cluster
is maintained by the High Performance Computing Group at NTNU and con-
tains multiple Intel Xeon processors [44]. We used the Python 3 interpreter and
libraries that come bundled with Anaconda 2020.07 on the cluster and Anaconda
2020.11 on the desktop computer [1].

1The source code is available for download at https://github.com/schlueter-riege/sbsmu.

https://github.com/schlueter-riege/sbsmu
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Random Number Generation

The seeds we used to generate random numbers in our experiments are listed
in Appendix C. The implementations of SBSMU and the benchmark algorithms
take the seed as an optional argument, and use the default random number
generators provided by Numpy and Numba. This ensures that the initialization of
W and the indices chosen by each worker are reproducible. Furthermore, all our
optimization algorithms have the initialization ofW as the first call to the random
number generator. They also use the same initialization method, choosing the
entries of W randomly from a uniform distribution over (0, 1]. This ensures
that two algorithms with the same seed will start with the same randomized
W . Nevertheless, due to parallelism it is not possible to guarantee the order
of the updates in SBSMU. Furthermore, we ran the experiments with a time
limit. This means that there were small fluctuations in the number of iterations
between runs. Hence, there will always be some variation between experiments
with the same algorithm and the same seed.

Convergence Criteria

Ideally, we would be able to let each algorithm run until it converges. However,
as discussed in Section 3.3.1, the concept of convergence is problematic when
working with stochastic algorithms. Because they may never settle completely in
a local minimum, it is not possible to detect convergence from the change in loss in
consecutive iterations. Furthermore, limited computational resources prevented
us from running slow-converging algorithms until they stabilized completely. For
these reasons we opted to use computational budgets based on execution time,
and we only consider the minimum loss and rate of convergence within the time
limit.

Additionally, for some experiments we detected convergence by considering
the time since the last recorded improvement in minimum loss. If a specified
time interval went by without any improvement in loss, the algorithm was termi-
nated. This ensured that diverging configurations were stopped early, thus saving
computational resources. This was used in combination with a time limit.

Datasets and Preprocessing

The datasets used in this work are listed in Table 4.1. We included data from a
variety of sources in order to test the performance of SBSMU in many different
domains. All the datasets are publicly available in their original form through
the provided sources.

We applied some preprocessing steps in order to make the datasets symmetric
and sparse. The network datasets, Dolphins and Football, consist of symmetric
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Table 4.1: Datasets used in experiments

Dataset Size Rank Domain Source
Higgs 11 000 000 5 Physics [3]
MNIST 70 000 10 Handwriting images [10]
20Newsgroups 19 938 20 Text documents [38]
Gisette 7 000 2 Handwriting images [29]
CUReT 5 612 61 Texture images [9]
Wine 178 3 Chemistry [16]
Iris 150 3 Biology [15]
Football 115 12 Sports league network [18]
Dolphins 62 2 Social network [33]
AML/ALL 38 3 Gene expression [19]

adjacency matrices. Both are also naturally sparse. For the remaining datasets,
the k-nearest neighbor algorithm (k -NN) was applied to generate sparse adjacency
matrices. These adjacency matrices represent directed graphs, and to enforce
symmetry we calculated the matrix to be factorized as

X ←−X +X>.

We scaled all the datasets, including the networks, so that
∑
ij Xij = 1. For

more information about the preprocessing, see table D.3 in Appendix D. The
processed datasets are available on request.

We used the I-divergence in all experiments. As mentioned in Section 2.1.2,
the I-divergence is often the loss function of choice when factorizing sparse matri-
ces. We focused exclusively on sparse matrices in our experiments, and so we used
the I-divergence throughout. Hence, when we discuss loss in the experiments, we
are always referring to the I-divergence.

4.2 Hyperparameter Experiment

The aim of this experiment was to determine how sensitive SBSMU is to differ-
ent hyperparameters, and in particular whether there exists a configuration that
performs well across all datasets. To do so, we performed a grid search over the
bound-and-scale variable α, the sampling variable β and the learning rate η. To
some extent this relates to RQ2.2, since we investigated whether SBSMU con-
verges in various settings. However, the main focus was RQ2.1, as we evaluated
how performance varies with different hyperparameters and datasets.
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Table 4.2: Parameter values tested in the hyperparameter experiment.

Parameter Domain Values tested
α [0, 1) [0.9, 0.99, 0.999, 0.9999, 0.99999]
β (0, 1) [0.1, 0.3, 0.5, 0.7, 0.9]
η (0, 1] [0.1, 0.3, 0.5, 0.7, 0.9]

4.2.1 Setup and Method

To perform a grid search it is necessary to determine the ranges of the hyperpa-
rameters, the desired granularity and how the values should be distributed. As
previously mentioned, α ∈ [0, 1) controls the bound-and-scale step, β ∈ (0, 1) the
determines the sampling rate for nonzero entries and η ∈ (0, 1] is the exponential
learning rate. The domains of all three variables are thus constrained to the
real numbers between 0 and 1, with some variation in whether the endpoints are
included. Running a grid search is computationally intensive, so we limited our
search to 5 values per parameter. This gave a total of 5× 5× 5 = 125 configura-
tions to test. For α, preliminary experiments indicated that values very close to
1 gave the best results. The proof also suggested that high values of α could be
needed to achieve convergence. Hence, we chose a distribution of values that was
skewed towards the upper limit of its domain. For β and η, preliminary exper-
iments did not indicate a strong tendency towards either end of their domains.
For these variables we thus chose values that were evenly distributed between 0
and 1. The specific values we tested for each parameter are listed in Table 4.2.

In order to assess the robustness of SBSMU in a variety of scenarios, we ran
the grid search on several datasets from a variety of domains. Specifically, we
used all datasets from Table 4.1 except for MNIST and Higgs. In addition to
variation in domain, these datasets gave us significant variation in size and rank.
The smallest dataset was AML/ALL with dimensions 38× 38, while the largest
was 20Newsgroups at 19 938 × 19 938. Dolphins and Gisette both have a rank
of 2, while CUReT has a rank of 62.

We performed 10 trials with different random seeds per configuration, for a
total of 1250 SBSMU runs per dataset. Aside from the configuration, the outcome
of a run depends on the random initialization and the order in which the indices
are chosen. We performed multiple runs in order to average out the effect of
these random factors. Furthermore, doing so allows us to calculate the standard
deviation of the minimum loss across runs with different random seeds. Hence
we can estimate how sensitive SBSMU is to the random factors.

We ran SBSMU with a time limit of 10 minutes per optimization run, while
calculating the loss every 0.1 seconds. Furthermore, we terminated the run if 5
seconds went by without an improvement in minimum loss. These parameters
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Figure 4.1: Illustration of average minimum loss and average last loss in a ficti-
tious experiment with 3 trials. One trial diverges and is terminated early.

were chosen based on preliminary experiments.
We considered both the average minimum loss and the average last loss for

each configuration. The average minimum loss was calculated by finding the
minimum loss for each trial, and then taking the average over the trials. The
average last loss was calculated by finding the last recorded loss for each trial,
and then taking the average over the trials. The minimum loss is the most
important of the two, as it represents the best factorization found. However,
the last loss provides some information about the stability of the configuration.
If the last loss is significantly higher than the minimum loss, it suggests that
the configuration diverges in the long run. For clarity, the concepts of average
minimum loss and average last loss are illustrated in Figure 4.1.

The experiment was run on the IDUN cluster due to its computational re-
quirements, with 24 GB of memory allocated to each run. With 1250 runs per
dataset, 8 datasets and a time limit of 10 minutes per run, it would have taken too
long to execute all runs sequentially on a single computer. Through the cluster,
we were able to run the experiment in parallel on 30 computers simultaneously.
This did not interfere with the parallelization of SBSMU, as described in Section
3.3.5. Thus each instance of SBSMU was itself parallelized, running on multiple
cores within the assigned computer.

The cluster is less of a controlled environment compared to the desktop com-
puter. Although all the CPUs on the cluster are from the Intel Xeon series, we do
not know the exact types of the processors the experiment ran on. Furthermore,
the trials were not run in exclusive mode on the nodes on the cluster. That
means that our processes may have had to share certain resources with other
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jobs. However, we considered this acceptable, since the evaluation of the results
from this experiment does not depend on exact time measurements.

4.2.2 Results
The results from the hyperparameter experiment are summarized in Table 4.3.
The table shows the best configuration found for each dataset, as determined by
the average minimum loss. It also shows the associated average minimum loss
and average last loss, including standard deviations. From the table, it is clear
that the average last loss is near the average minimum loss for the best configu-
rations. For all the datasets, the last loss is less than 1 standard deviation away
from the minimum loss. Furthermore, it is clear that the best configurations all
have relatively high values of α. For all datasets, the top configuration has one of
the two highest values tested in the hyperparameter search. Beyond this, there is
no clear tendency for β and η. While SBSMU achieves the lowest loss on 20News-
groups with the lowest values of both β and η, the optimum for Dolphins and
Football is near the highest parameter values. For CUReT the best configuration
has a low value of β and a high value of η, while the exact opposite is true for
Iris.

Figure 4.2, 4.3 and 4.4 show heat maps of α and η for a given β. Each cell con-
tains the natural logarithm of the average minimum loss for that configuration.
The cells are color coded so that red represents relatively high average minimum
loss, while blue represents a relatively low average minimum loss. These particu-
lar plots were chosen because they illustrate the most important trends we wish
to highlight. They contain the best configuration found for three of the datasets,
20Newsgroups, CUReT and Dolphins. Similar plots for all other configurations
tested can be found in Appendix F.

All plots indicate that higher values of α reduce both the average minimum
loss and the average last loss. Furthermore, it seems that the value of η becomes
less important for higher values of α. Consider the plot of the average minimum
losses for 20Newsgroups in Figure 4.2. Across the values of α, decreasing η leads
to lower minimum losses. For α = 0.9 for example, decreasing η from 0.9 to
0.1 reduces the average minimum loss by 99.9%. For α = 0.99999, however, the
reduction is only 3.0%. Note that these percentages are calculated based on the
average minimum loss, not the logarithm of the average minimum loss which is
shown in the plot.



Chapter 4. Experiments 55

0.9 0.99
0.999

0.9999

0.99999

α

0.1

0.3

0.5

0.7

0.9

η

2.69 2.32 1.98 1.77 1.70

3.47 2.70 2.20 1.85 1.71

5.73 3.85 2.64 1.93 1.71

8.14 5.67 3.37 2.03 1.72

10.20 7.26 4.30 2.16 1.73

2.0

4.0

6.0

8.0

10.0

ln
(L

I
)

(a) Avg. min. loss

0.9 0.99
0.999

0.9999

0.99999

α

0.1

0.3

0.5

0.7

0.9

η

6.70 3.93 2.23 1.77 1.70

9.81 5.91 2.93 1.85 1.71

11.51 7.21 3.67 1.94 1.71

12.78 8.56 4.38 2.06 1.72

13.85 9.56 5.24 2.21 1.73

2.5

5.0

7.5

10.0

12.5

ln
(L

I
)

(b) Avg. last loss

Figure 4.2: Hyperparameter experiment results for 20Newsgroups with β = 0.1.
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Figure 4.3: Hyperparameter experiment results for CUReT with β = 0.1.
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Figure 4.4: Hyperparameter experiment results for Dolphins with β = 0.7.
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Table 4.3: Best configuration, determined by average minimum loss, for each
dataset from the hyperparameter experiment.

Dataset Best configuration Avg. min. loss Avg. last loss
(α,β, η)

20Newsgroups (0.99999, 0.1, 0.1) 5.497± 0.005 5.497± 0.005
AML/ALL (0.9999, 0.1, 0.5) 0.802± 0.007 0.804± 0.007
CUReT (0.99999, 0.1, 0.9) 2.490± 0.023 2.491± 0.023
Dolphins (0.99999, 0.7, 0.7) 1.602± 0.007 1.603± 0.007
Football (0.99999, 0.7, 0.9) 0.842± 0.034 0.844± 0.034
Gisette (0.99999, 0.3, 0.1) 5.406± 0.032 5.407± 0.032
Iris (0.9999, 0.7, 0.1) 2.139± 0.046 2.143± 0.047
Wine (0.99999, 0.5, 0.3) 2.383± 0.032 2.384± 0.032
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4.3 Benchmark Experiment

In this experiment, we compare the performance of SBSMU and benchmark al-
gorithms on MNIST. One important benchmark is the performance of full-batch
MU. In addition, we consider exponentiated gradient descent (EGD) and pro-
jected stochastic gradient descent (PSGD). EGD is an optimization algorithm
that naturally maintains nonnegativity since the exponentiated gradient is al-
ways positive. PSGD is an extension of SGD that maintains nonnegativity by
using a projection step after each iteration. For more details on EGD and PSGD,
see Appendix E.

4.3.1 Setup and Method

When comparing SBSMU to benchmarks, one important question is to what
extent the benchmark algorithms should be optimized. With the aim of providing
a fair comparison, we implemented MU, EGD and PSGD with the same libraries
we used for SBSMU. Their core loops are compiled using Numba, but unlike
SBSMU we did not attempt to parallelize their execution.

Another important question is what configuration to use for each algorithm.
For SBSMU, we performed a two-step hyperparameter search on MNIST. Firstly,
we explored combinations of a broad range of settings in a coarse search. Secondly
we ran a fine-grained search, exploiting the data from the first step to investi-
gate the most promising areas. The best configuration we found, measured in
average minimum loss, was α = 0.999999, β = 0.25, η = 0.8. For the benchmark
algorithms, we chose hyperparameter configurations either from the literature or
from preliminary experimentation. For MU we used an exponential learning rate
of η = 0.5, which was derived using the unified development procedure from Sec-
tion 2.3.3. For EGD, ω = 0.1 was determined to work well through preliminary
experiments. For PSGD, we achieved the best results with a learning rate of
η = 10−5.

The benchmark experiment was run on the Dell desktop computer. For each
algorithm, 5 trials were run with different random seeds to allow us to assess
variance and average out the effect of random initialization. Each trial was run
with a time limit of 10 minutes. Unlike the hyperparameter experiment, we did
not calculate losses during runs and did not terminate any runs before the time
limit. Instead, temporary copies ofW were saved once per second and processed
after the optimization was complete. The time it took to initialize the algo-
rithms was not taken into account. This includes compilation of functions using
Numba, initialization of W and spawning of worker processes. Since SBSMU
uses multiprocessing, it takes 3-8 seconds to initialize it.

Besides minimum loss, the other key criterion is convergence time. This
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Table 4.4: Average minimum loss and standard deviation for SBSMU and the
benchmark algorithms applied to MNIST.

Algorithm Minimum loss
SBSMU (6.483± 0.015)× 100

EGD (6.398± 0.024)× 100

MU (6.424± 0.021)× 100

PSGD (6.437± 0.089)× 109

is somewhat tricky when comparing algorithms that achieve different minimum
losses. As discussed in Section 3.3.1, convergence generally represents the point
at which an algorithm no longer significantly reduces the loss. Consider an al-
gorithm that quickly levels off at a high loss, compared to one that takes longer
to converge, but does so at a substantially lower loss. It is too simplistic to con-
clude that the former performs best in terms of convergence time. We cannot
completely separate the concept of minimum loss from the concept of convergence
rate when evaluating performance. Hence, we measure convergence time with re-
spect to a loss threshold. The algorithm that most quickly reaches the threshold,
is deemed to perform the best in terms of convergence time. This way we can
judge algorithms based on how quickly they reduce the loss, without penalizing
algorithms that achieve lower minimum losses.

4.3.2 Results

Like in the hyperparameter experiment, a key metric for each algorithm is the
minimum loss. The minimum losses and standard deviations for each algorithm
are shown in Table 4.4. The numbers in the table were calculated by first finding
the minimum loss for each of the 5 trials, and then computing the average and
standard deviation over these values.

Additionally, the average I-divergence is plotted against time for each algo-
rithm in Figure 4.5 and 4.6. However, in Figure 4.6 PSGD has been excluded
since the losses reached by PSGD are several orders of magnitude higher than
those achieved by the other algorithms. The y-axis in this plot was clipped in
order to show how the remaining algorithms perform near convergence.

It is worth noting that Table 4.4 shows the average minimum across the trials,
while the minimum of the plots represents the minimum average. This is due to
the fact that each data point in the plots shows the average loss of the trials at
that point in time. For this reason, the minima of the plots are in general not
equal to the minima listed in the table

EGD performs best in terms of minimum loss, with MU and SBSMU relatively
close at second and third place. PSGD is a distant fourth. Table 4.4 shows
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Figure 4.5: Average loss vs time for SBSMU and the benchmark algorithms
applied to MNIST.

that the average minimum loss of PSGD is approximately 9 orders of magnitude
greater than that of the other algorithms. The same applies to its standard
deviation. Conversely, the average minimum losses achieved by SBSMU, MU
and EGD differ by less than 1%. As the numbers are relatively close, we use
Welch’s t-test to determine whether the means are significantly different. This
is an extension of Student’s t-test, designed to be more reliable for populations
with different standard deviations [50]. We use Welch’s t-test to estimate the
probability that the true average minimum loss of SBSMU is smaller than or
equal to that of MU or EGD. This gives a probability of 0.062% for MU, and
0.016% for EGD. Hence it is evident that the average minimum loss of SBSMU
is significantly greater than that of both MU and EGD.

Considering the convergence time, either MU or EGD performs best depend-
ing on the threshold we set for convergence. SBSMU follows as either second or
third. Once again, PSGD is a distant fourth, regardless of the threshold. After 10
minutes, PSGD has reduced the average loss by less than one order of magnitude.
The other algorithms reduce the average loss by more than 9 orders of magni-
tude in the first 30 seconds. If we set the convergence threshold at about 6.7 or
greater, MU converges first, followed by SBSMU and then EGD. For thresholds
below this, EGD and SBSMU switch place. If the threshold is lower than 6.45,
EGD also surpasses MU.
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Figure 4.6: Average loss vs time for SBSMU, MU and EGD applied to MNIST.
The y-axis has been clipped to visualize trends near convergence.

4.4 Big Data Experiment

In this experiment, we compared the performance of SBSMU and MU on Higgs.
Higgs is the largest dataset in our database. It consists of 11 000 000 × 11 000
000 entries, compared to 70 000 × 70 000 entries for MNIST, our second largest
dataset. One important potential application of SBSMU is the factorization of
very large datasets. Hence, the purpose of this experiment was to assess the
performance of SBSMU in this setting. This addresses the questions that fall
under RQ2.

4.4.1 Setup and Method

The experiment was run on the Dell desktop computer. Although this meant
limited computational resources compared to the cluster, it allowed us to ensure
nearly identical runtime environments for the two algorithms. Each algorithm
was run only once, with a time limit of 225 minutes. Like in the experiment on
MNIST, we saved temporary copies of W and performed loss calculation after
the runs were completed. We sampled W once every 15 minutes.

For both SBSMU and MU, we used the same configuration as in the MNIST
experiment. Due to the size of Higgs, a hyperparameter search would have been
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Table 4.5: Minimum loss for SBSMU and MU applied to Higgs.

Algorithm Minimum loss
SBSMU 82.630
MU 13.214
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Figure 4.7: Loss vs time for SBSMU and MU applied to Higgs.

prohibitively expensive, even on the cluster.

4.4.2 Results
The minimum loss for both algorithms is shown in Table 4.4. MU outperforms
SBSMU in terms of minimum loss, with about 13 compared to 83. Since we
only conducted a single run, we cannot estimate the standard deviation for either
algorithm. Neither can we use statistical tools to determine whether the difference
is significant.

The loss is plotted against time in Figure 4.7. MU outperforms SBSMU in
terms of the rate of convergence as well, regardless of the time interval under con-
sideration. Beyond considerations of convergence rate, the plot shows that both
algorithms are able to reduce the initial loss by about 12-13 orders of magnitude.
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5 Discussion
In this section we assess the results from our theoretical analysis and experiment
and discuss the research questions put forward in the introduction. Therefore,
the structure of the discussion follows the research questions. In Section 5.1
we discuss if SBSMU can be proven to be convergent, and if it is possible to
parallelize it. This covers RQ1. In Section 5.2, we address RQ2.1 by evaluating
the experiments with regards to robustness to hyperparameters and datasets.
Lastly, Section 5.3 covers RQ2.2 and RQ2.3 by considering how SBSMU performs
in terms of minimum loss and time to convergence.

5.1 Convergence and Parallelization

RQ1 asks whether it is possible to prove the convergence of stochastic MU, and
whether the updates can be parallelized. In short, we are able to prove the
convergence of SBSMU for sufficiently high values of α, and we are also able to
parallelize the algorithm.

5.1.1 Conditional Proof of Convergence

Using the well-known MM algorithm, we are able to prove that the loss is non-
increasing under SBSMU. The proof is presented in Section 3.2 and relies on a
certain condition on the bound-and-scale parameter. This confirms RQ1.1.

The bound-and-scale step in SBSMU is parameterized by the hyperparameter
α, which plays a central role in the convergence proof. The key challenge in
achieving convergence is to counteract the impact of what we call cross-change:
the changes in the loss for all entries of the ground truth except the one we are
currently learning from. The bound-and-scale step accomplishes this as long as
the convergence condition holds. Specifically, the term α

1−α upper bounds the
rate of cross-change relative to the magnitude of change in the factor matrix. In
practice, this means that when the learning signals from different entries point
in the same direction, lower values of α are sufficient. Conversely, when different
entries suggest different directions, the value of α needs to be big enough to
counteract the potential impact of cross-change.

This condition is more likely to hold if SBSMU is applied to clustering. Clus-
tering datasets based on similarity matrices is presented in Section 2.2. It is the
main application for symmetric NMF. In a clustering problem, the entries in the
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ground truth matrix represent similarities between samples. The ground truth
matrix is constructed by applying the same similarity metric to every pair of en-
tries in the original dataset. This process imposes some structure on the ground
truth matrix. For example, if a and b are similar and b and c are similar, then a
and c should be somewhat similar as well. All samples that belong in one cluster
hence attract the corresponding rows in the factor matrix closer. As a result,
learning from one entry in the similarity matrix is likely to reduce the loss for
other entries as well. As a result, the cross-change is smaller and in turn, smaller
values can be chosen for α.

The convergence condition gives us some hints on how to tune the bound-
and-scale parameter α when applying SBSMU in practice. Since the term α

1−α
represents an upper bound, higher values are more likely to converge. This is
apparent in the hyperparameter experiment, where high values of α lead to lower
minimum losses. However, lower values increase the effect of the current sample
on the update and in turn increase the convergence rate. Thus the optimal
setting is the lowest possible α that still yields convergence. Here, it may be an
advantage that the convergence condition is not only a theoretical construct in
the proof, but computable at every iteration. It can therefore provide feedback
on the choice of α.

The proof confirms the need for an algorithm that augments the naive attempt
to apply stochastic partial derivatives. In Section 3.1.3, we give an intuitive
explanation for why the naive stochastic approach fails to converge. In the proof,
the issue is formalized as the need for counteracting the cross-change. SBSMU
does this by applying the bound-and-scale step. To reflect this additional step in
the proof, we introduce the bound-and-scale-divergence. The bound-and-scale-
divergence formalizes how the bound-and-scale step counteracts the cross-change
as long as the convergence condition on α holds. Hence SBSMU successfully
augments the naive approach to produce a converging algorithm.

5.1.2 Parallelization

Section 3.3.5 shows how we parallelize SBSMU. We base our approach on the
Hogwild algorithm. The authors behind Hogwild showed that algorithms with
sparse data access can be parallelized without locking objects. Sparse data access
means that the algorithm only accesses a fraction of the variables that are updated
every iteration. SBSMU fulfills this criterion, as each update accesses at most
two rows in the factor matrixW . This allows us to use workers that perform the
update loop completely independently of each other, while they still share the
same factor matrix.

An important advantage of the Hogwild algorithm is that it does not require
object locking or any other communication between the workers. This greatly
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simplifies implementation, because it reduces the need for special objects and
communication protocols. For the same reason it reduces the risk of error, and
parallelization issues are notoriously hard to debug.

5.2 Robustness

RQ2.1 asks how robust SBSMU is to different datasets, hyperparameter config-
urations and random factors. The random factors are the initialization of W
and the order in which the indices are chosen. We can evaluate RQ2.1 based on
the experimental results and on the theoretical work. In particular, the hyper-
parameter experiment tests how SBSMU performs with different random seeds,
datasets and configurations. In this experiment, we performed a grid search
with different configurations on 8 different datasets. Because each configuration
and dataset was tested with 10 different random seeds, we can also assess how
sensitive SBSMU is to the random factors. In addition, the proof provides some
information on the robustness to different values for the bound-and-scale variable
and the learning rate.

Different Hyperparameter Configurations within Datasets

SBSMU is parameterized by three different values: the bound-and-scale param-
eter α, the learning rate η and the stratified sampling threshold β. The proof
provides some hints on the robustness to different values for the bound-and-scale
parameter and fixes the learning rate to a specific value. β is an optimization
variable and not included in the proof. In the experiments, SBSMU seems to be
robust to different configurations of η and β for high values of alpha.

The proof suggests that high values of α are more likely to converge, but
yield a slower convergence rate. As discussed previously, α must upper bound
the cross-change speed. SBSMU is therefore more likely to converge for higher
values. At the same time the rate of convergence is higher for lower values.

In the theoretical section, the value of the learning rate η is fixed to a value
depending on the loss function. For the Euclidean distance, η = 1/3 and for the I-
divergence η = 1/2. With these values, convergence is guaranteed. However, the
proof can be relaxed to include lower values, and other settings may be beneficial
in practice.

Experimentally, SBSMU is sensitive to the configuration, but it appears that
this is only the case for relatively low values of α. For all of the datasets tested
in the hyperparameter experiment, performance varied greatly depending on the
configuration. The worst configuration produced an average minimum loss that
was several orders of magnitude greater than that of the best configuration.
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However, SBSMU appears more robust if we only consider the configurations
where α = 0.99999. For these configurations, the difference between the worst
and best is always within one order of magnitude. In general, the higher the value
of α, the smaller the impact of η and β on the average minimum loss. This is
an important insight because the highest values of α also give the lowest average
minimum losses overall.

It seems that a good standard configuration is α = 0.99999, β = 0.5 and
η = 0.5. β is here simply set to the middle of its domain and η is set to the value
derived in the proof. With this configuration, the average minimum loss is within
15% of the best result for all datasets. Whether 15% is significant depends on the
application, and the discrepancy may be larger for other datasets. Performing
a hyperparameter search to find a better configuration could therefore still be
necessary. In that case the data suggests that the search should be limited to
α ≥ 0.9999.

Optimal Hyperparameter Configurations across Datasets

Another factor that potentially impacts how different hyperparameter configu-
rations perform in comparison is the dataset. SBSMU is robust to the tested
datasets for high values of α. Nevertheless, it is evident that the optimal con-
figuration varies significantly depending on the dataset, with the exception that
the best configurations consistently include a high α ≥ 0.9999.

In the convergence condition in the proof, α indirectly depends on the mag-
nitude of the partial derivative components. As a result, α would be heavily
dependent on the dataset at hand if their magnitude varies significantly between
datasets. To remedy this, we normalize the data in the experiments to reduce
variation in the magnitude of partial derivative components.

Experimentally, it seems that the optimal configuration for SBSMU to a large
extent depends on the dataset to be factorized. For the 8 datasets tested, there
were large differences in the best configurations we found. In particular, there
appears to be no general trend for the best configurations when it comes to β
and η. For some datasets, the best configuration had high values of both β and
η. For others, the best configuration had low values of both, or a high value for
one and a low value for the other.

However, high values of α gave consistently better performance than lower val-
ues of α. For all the datasets tested, the best configuration included α ≥ 0.9999.
This was also true in the MNIST experiment, where the best configuration we
found used α = 0.999999. We therefore believe that a relatively good perfor-
mance can be expected by using a standard configuration, without any tuning of
hyperparameters.
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Random Factors

The data from both the hyperparameter experiment and the MNIST experiment
suggests that SBSMU is not particularly sensitive to the random factors. The
impact of these factors can be evaluated by considering how much the minimum
loss varies with different random seeds. In the hyperparameter experiment, the
standard deviation of the minimum loss is < 5% for all datasets. In the MNIST
experiment, the standard deviation of the average minimum loss of SBSMU is
lower than those of EGD and MU, both in absolute numbers and as percentages.
These results suggest that SBSMU is relatively stable to different random seeds.
This is important, because high sensitivity to initialization is undesirable in most
applications. If SBSMU depended heavily on how it is initialized, it would be
necessary to run it multiple times to ensure a good outcome.

5.3 Performance Comparison

Based on RQ2.2 and RQ2.3, we hoped to achieve two improvements by introduc-
ing stochasticity:

• Lower minimum loss by escaping local minima. A stochastic algo-
rithm is not monotonically decreasing with the respect to the loss, which
may allow it to escape local minima. We lose the theoretically guaranteed
convergence, but may be able to achieve a lower loss in practice.

• Increased convergence rate by constant time updates. Stochasticity
may increase the rate of convergence. For large datasets, each update is
calculated and applied in a fraction of the time it takes for a full-batch
algorithm.

Here we evaluate these potential areas for improvement, mostly based on empir-
ical data from the experiments.

Focusing first on minimum loss, results from the experiments with MNIST
suggest that SBSMU outperforms PSGD but not MU or EGD. In the MNIST
experiment, the average minimum loss achieved by SBSMU was 9 orders of mag-
nitude lower than that achieved by PSGD. Thus SBSMU outperformed the only
stochastic benchmark by a wide margin. Nevertheless, we also found that the
average minimum loss of SBSMU was greater than that of both MU and EGD.
It is worth noting that the relative difference was small, as the average minimum
losses of SBSMU, MU and EGD differed by < 1%. However, it is not possible
to say whether this difference would be of importance in applications. It may for
example translate to a greater difference in homogeneity in a clustering problem.
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Similarly, SBSMU was outperformed by MU in terms of minimum loss in the
Higgs experiment. The relative difference was much larger than in the MNIST ex-
periment. The minimum loss achieved by SBSMU was more than 5 times greater
than that of MU. Since we only performed a single run with each algorithm, it
was not possible to perform a statistical analysis on these results. However, in
the hyperparameter experiment and the MNIST experiment, the standard devi-
ations we calculated were all < 5%. Assuming that this also holds for Higgs, the
difference between SBSMU and MU is clearly significant.

It is unclear whether the proposed mechanism, whereby stochasticity allows
SBSMU to escape local minima, has merit. Clearly, SBSMU was not able to find
better local optima than the deterministic algorithms for MNIST or Higgs. This
does not support the hypothesis, but neither does it completely refute it, as we
only considered two datasets.

Regardless of whether SBSMU is able to escape local minima in practice,
stochasticity may prevent it from achieving complete convergence. While the full-
batch MU is monotonically decreasing, this is not the case for SBSMU. There may
be entries in the dataset that pull the values of W in different directions. Since
the learning rate is constant, there is no mechanism that forces SBSMU to settle
down completely. Note that this explanation does not conflict with the proof
of convergence. The proof shows that the loss is nonincreasing in expectation.
However, the minimum that this expected value represents may be higher than
that found by MU.

In terms of time to convergence, the results from the MNIST experiment
showed MU outperforming SBSMU, while SBSMU outperformed PSGD. The
rank of EGD depends on the threshold in loss where we consider the algorithms
to have converged. EGD eventually achieved the lowest average loss. With
a sufficiently low threshold it thus outperformed both MU and SBSMU. The
first 50-60 seconds saw most of the decrease in loss for SBSMU, MU and EGD,
with a reduction in average loss of about 9 orders of magnitude. Conversely, the
remaining 9 minutes produced less than 10% in decrease for any of the three. If we
focus on the period of rapid decline over the first minute, MU reached convergence
fastest, followed by SBSMU, EGD and then PSGD. PSGD performed far worse
than the other algorithms, regardless of the threshold. Over the full 10 minutes
it reduced the loss by less than one order of magnitude.

The results from the Higgs experiment were similar in that MU outperformed
SBSMU in time to convergence. We only sampled losses every 15 minutes in this
experiment, so it is not possible to determine how close the two algorithms were.
The data shows that MU reduced the loss by 12-13 orders of magnitude after a
single iteration, and that SBSMU had reached a similar level after 15 minutes.
However, SBSMU never reached an average loss lower than or equal to that of
MU. Hence, regardless of any threshold, MU had a lower convergence time than
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SBSMU.
When discussing convergence time, it is also worth considering the question

of initialization cost. This is not included in the plots in the MNIST experiment
and the Higgs experiment. SBSMU takes 7-8 seconds to initialize, mostly due
to the time it takes to start the processes used for parallelization. As a result,
the initialization is near constant with respect to the size of the dataset and
negligible when the factorization runs for several minutes or hours. However,
the initialization cost is far from negligible for small datasets that may take
< 1 second to converge. Hence, SBSMU is unlikely to be a suitable choice for
factorizing small datasets.
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6 Evaluation
Here we evaluate our work, including the merits and limitations of what we have
presented in the previous chapters. In Section 6.1, we summarize our answers
to the research questions based on the discussion. Section 6.2 addresses the
limitations of our work. Finally, Section 6.3 outlines possible avenues for future
research.

6.1 Conclusions

The research questions presented in Section 1.1 ask whether stochasticity can
be introduced to MU for symmetric NMF, and if so, how the algorithm would
perform. More specifically, RQ1.1 asks if the algorithm can be proven to converge
and RQ1.2 if it can be parallelized. RQ2.1 asks how robust the algorithm is to
different settings. Finally, RQ2.2 and RQ2.3 asks how it performs in terms of
minimum loss and convergence time, respectively. We were indeed able to develop
a stochastic multiplicative algorithm for symmetric NMF, namely SBSMU. In the
remainder of this section, we answer each of the research questions with respect
to SBSMU.

SBSMU can be proven to converge under a certain condition on the bound-
and-scale parameter. We provide the proof in Section 3.2. The convergence
condition links the bound-and-scale parameter to the speed of cross-change. For
a given iteration of SBSMU, the cross-change is the change in loss for all entries
except those in the current mini-batch. The proof from Section 3.2 demonstrates
how the bound-and-scale step in SBSMU counteracts the cross-change. As long
as α is sufficiently close to 1, so that α

1−α upper bounds the speed of cross-change,
the algorithm will converge.

Furthermore, SBSMU can easily be parallelized without object locking. We
show how parallelization can be implemented in Section 3.3.5, and use this ap-
proach in the experiments. The approach is based on the Hogwild framework,
and utilizes the fact that data access to the factor matrix is sparse.

The data suggests that SBSMU is generally robust to the random factors and
relatively robust to datasets and configurations. Although the optimal config-
uration appears to vary significantly between datasets, it consistently contains
α ≥ 0.9999. Furthermore, there is relatively little variation in minimum loss for
different values of the two other parameter, η and β, as long as α ≥ 0.9999.
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The performance of SBSMU is not on par with the best of the benchmarks.
In terms of minimum loss, the experiments on MNIST and Higgs suggest that
SBSMU is better than PSGD, but significantly worse than EGD and MU. Con-
sidering time to converge, the data again suggests that SBSMU is better than
PSGD and worse than MU, while the comparison with EGD is unclear.

6.2 Limitations

In this section we seek to address the main limitations of our work. We first
discuss limitations regarding the scope of this thesis and assumptions made in
our theoretical work. We intentionally kept the scope narrow in order to be able
to investigate the research questions in-depth. The second group of limitations
are those related to our experiments. Some stem from the inherent drawbacks of
empirical research, while others are due to practical trade-offs we made because
of limited time and resources.

6.2.1 Scope and Theoretical Analysis
The scope of our work is limited to symmetric NMF with either the Euclidean
distance or the I-divergence. The theoretical analysis and proof in Section 3 have
only been evaluated in this context. It may be that SBSMU can be extended to
other NMF problems, and it is likely that the algorithm can be used with other
separable loss functions. Similarly, it may be that the proof holds for other loss
functions in its current form. However, we make no claims about the validity of
these conjectures.

For the optimization of SBSMU and the experimental work, we have further
limited our scope to the factorization of sparse matrices. This is because the most
likely applications of a stochastic algorithm for symmetric NMF involves very
large, sparse matrices. Furthermore, we only consider the I-divergence because
that is the loss function most often used to factorize sparse datasets. We intro-
duce several techniques for optimizing the execution time of SBSMU in Section
3.3. Among these techniques, stratified sampling and simplified update calcula-
tion for zero-valued terms are only applicable when factorizing sparse matrices.
The remaining techniques, parallelization, compilation and random number gen-
eration in lists, should in theory work for dense matrices as well. Preliminary
experiments confirmed this.

The convergence proof in Section 3.2 relies on a condition on the bound-and-
scale parameter α, stated in Theorem 3.2.1. The theorem assumes that α

1−α
upper bounds the speed of cross-change, specifically the rate of cross-change
relative to the change in the factor matrix. This means that convergence is only
guaranteed for values of α that are sufficiently close to 1. We have not been able to
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theoretically upper bound the speed of cross-change, and so we cannot determine
a specific minimum for α. However, the speed of cross-change is computable,
and in practice it appears that the optimal value of α is relatively consistent for
different datasets.

6.2.2 Experimental Results

Regarding the conclusions we draw from our experimental results, there are some
limitations that apply to all empirical research. The problem of induction is a
central issue in empirical research, as it is inherently problematic to induce general
rules from specific observations. The conclusions we draw attempt to generalize
from a handful of datasets and a limited number of randomly initialized trials.
It is impossible to know with certainty whether the patterns we observe would
hold for every possible dataset or random initialization. However, we have taken
two steps to mitigate this. Firstly, we ran our experiments on multiple datasets
and ensured that these represent a number of different domains. Secondly, we
ran each experiment multiple times with different random seeds and recorded the
variance. The exception was the experiment on Higgs, where doing multiple runs
would have been prohibitively expensive.

Aside from the unavoidable problem of induction, there are some limitations
that stem from how we designed the experiments:

• Unoptimized benchmark algorithms. In the benchmark experiment
and the big data experiment, we relied on our own implementations of
the benchmark algorithms. We used the same libraries as for the SBSMU
implementation and applied straightforward optimizations, but did not par-
allelize the benchmark algorithms or implement problem-specific improve-
ments. Furthermore, we did not perform hyperparameter searches for EGD
and MU. We performed a limited hyperparameter search for PSGD during
preliminary experiments. In conclusion, the benchmark algorithms may
have performed better if we had spent more time on their implementation
and configuration.

• Time limits. Throughout the experiments, we ran the factorization al-
gorithms with a time limit that sometimes terminated them before con-
vergence. The time limits were imposed due to limited computational
resources, and were chosen to allow most of the algorithms to converge.
Nevertheless, the algorithms may have been able to achieve lower mini-
mum losses given more time. This is particularly relevant for PSGD, which
clearly did not have enough time to find a local minimum for any of the
large datasets in the benchmark experiment.
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• Limited loss sampling. We found the minimum losses and generated the
plots by samplingW during the factorization process. Calculating the loss
after every iteration would not have been computationally feasible, partic-
ularly for the stochastic algorithms and the large datasets. The limited
number of samples means that we may have missed patterns. Furthermore,
for the algorithms without monotonically decreasing loss, we may not have
sampled the true minimum loss. In practice, this means that the true low-
est losses of SBSMU and PSGD are likely to be lower than they appear in
the data.

These limitations mean that we cannot draw strong conclusions from the em-
pirical experiments. For example, we cannot state with certainty that the con-
figuration α = 0.99999, β = 0.5, η = 0.5 will always close to optimal results for
SBSMU. We can only state that the experiments support this hypothesis.

6.3 Future Work

There are several potential avenues for future research. Here we present the ones
we believe show the greatest promise.

Heuristics for Adaptive Learning Rates

Optimization algorithms often need to find a balance between exploration and
exploitation. Exploration is a coarse search in the solution space, implemented
by updates that represent large steps. This is typically useful in the first part
of the search, where the goal is to explore as much of the solution space as
possible. Towards the end of the search, the focus shifts to exploitation of the
most promising areas. This is achieved by performing fine-grained searches in
the areas surrounding the best known solutions.

In SBSMU, this trade-off is mainly controlled by the learning rate η. Higher
values of η mean larger steps and thus more exploration of the solution space.
Lower values of η put more emphasis on exploitation. In the current version of the
algorithm η is fixed, which means that it is not possible to prioritize exploration
initially and exploitation later on. It is likely that an adaptive learning rate,
enabling this shift, would be beneficial. Preliminary experiments with gradually
decreasing learning rates did not lead to lower minimum losses or faster conver-
gence. However, finding the right heuristic could yield significant improvements.

Application of SBSMU to Other NMF Problems

This work only considers symmetric factorization of sparse matrices. SBSMU
could be applied to other NMF problems, such as linear NMF and projective
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NMF. The pseudocode in Section 3.1.4 is specific to symmetric NMF. However,
the manner in which stochasticity is introduced and the bound-and-scale step
itself can in theory be applied directly to other NMF problems. Furthermore,
the application of SBSMU to other loss functions beyond Euclidean distance and
I-divergence should only require changing the partial derivative components.

Extension of the Empirical Work

By extending our empirical work, other researchers would either strengthen or
refute the conclusions we put forward. We discussed the most important limita-
tions of our experiments in Section 6.2. They include the fact that we only tested
SBSMU on 10 different datasets. Furthermore, while we included 8 datasets in
the hyperparameter experiment, we only evaluated performance for 2 datasets.
While these results give some indication of how SBSMU performs, it would be
useful to perform more experiments. Beyond applying SBSMU to more datasets,
the results would be strengthened by increasing the time limits and the frequency
of loss sampling.

Adaptive Tuning of the Bound-and-Scale Parameter

The proof of convergence in Section 3.2 relies on a computable assumption on
the bound-and-scale parameter α. It provides a lower bound for the value of
alpha in each iteration, where values closer to the bound are preferable because
they result in a higher rate of convergence. Checking this convergence condition
is computationally expensive and cannot be done at every iteration. However,
an extension of SBSMU that checks and adapts α at certain intervals could
improve performance. This approach would adjust α based on the dataset and
the progression of the factorization. In turn, it could reduce the need to perform
expensive hyperparameter searches with α.

Proving a Minimum for the Bound-and-Scale Parameter

Although our proof shows that SBSMU is more likely to converge for higher values
of α, we do not prove the existence of a minimum value for α. We require that
α

1−α upper bounds the speed of cross-change, which is the rate of cross-change
relative to the rate of change in the factor matrix. Proving the existence of an
upper bound on the cross-change and quantifying it would strengthen the proof,
and provide a theoretical minimum for the value of α.
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Appendices

A Mathematical Notation

Table A.1 contains an overview of the mathematical notation we use in this thesis.

Notation Definition
X Ground truth matrix, with X ∈ Rn×n≥0 in symmetric NMF and

X ∈ Rn×m≥0 in linear NMF
W Factor matrix, with W ∈ Rn×r≥0
H 2nd factor matrix in linear NMF, with H ∈ Rr×m≥0
X̂ Approximation of X, where X̂ = WW> in symmetric NMF

and X̂ =WH in linear NMF
W̃ Factor matrix as a variable
X̃ Approximation matrix as a variable
Xij Entry at row i and column j in matrix X
r Rank of the factor matrix
α Bound-and-scale variable
β Stratified sampling variable
η Learning rate
LEU Euclidean distance
LI I-divergence
L Unspecified loss function
L(ij) Stochastic approximation of L based on Xij

∇al
∂L

∂Wal
(W )

∇+
al,∇

−
al Positive and negative components of ∇al

∇ij,al
∂L(ij)

∂Wal
(W )

ψmin, ψmax Constants used in the unified development procedure
ω Exponentiated gradient descent variable

Table A.1: Overview of notation
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B Stochastic Update Rule Derivation

Here we show how the update rule in SBSMU can be derived from F (ij) as defined
in Section 3.2. The partial derivative of the stochastic majorization function is

∂G(ij)(W̃ ,W )

∂W̃ al

=
∂

∂W̃ al

[
Wal

ψmax

(
W̃ al

Wal

)ψmax

∇+
ij,al

− Wal

ψmin

(
W̃ al

Wal

)ψmin

∇−ij,al

]
+ constant (B.1)

=

(
W̃ al

Wal

)ψmax−1

∇+
ij,al −

(
W̃ al

Wal

)ψmin−1

∇−ij,al. (B.2)

The partial derivative of the bound-and-scale-divergence is

∂H(W̃ ,W )

∂W̃ al

=
∂

∂W̃ al


(
W̃al

Wal

)ψmax

− 1

ψmax
−

(
W̃al

Wal

)ψmin

− 1

ψmin

 (B.3)

=

(
W̃ al

Wal

)ψmax−1

−

(
W̃ al

Wal

)ψmin−1

. (B.4)

Combining the above results, the partial derivative of F (ij) is

∂F (ij)(W̃ ,W )

∂W̃ al

=
∂

∂W̃ al

1

2

[
G(ij)(W̃ ,W ) +

α

1− α
H(W̃ ,W )

]
(B.5)

=
1

2

(
W̃ al

Wal

)ψmax−1(
∇+
ij,al +

α

1− α

)
− 1

2

(
W̃ al

Wal

)ψmin−1(
∇−ij,al +

α

1− α

)
.

(B.6)
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Setting (B.6) equal to zero and solving for W̃ al gives the stochastic update rule,

∂F (ij)(W̃ ,W )

∂W̃ al

= 0 (B.7)

⇔

(
W̃ al

Wal

)ψmax−1(
∇+
ij,al +

α

1− α

)
=

(
W̃ al

Wal

)ψmin−1(
∇−ij,al +

α

1− α

)
(B.8)

⇔

(
W̃ al

Wal

)ψmax−ψmin

=
∇−ij,al +

α
1−α

∇+
ij,al +

α
1−α

(B.9)

⇔ W̃ al =Wal

(
α+ (1− α)∇−ij,al
α+ (1− α)∇+

ij,al

) 1
ψmax−ψmin

. (B.10)
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C Random Seeds

The random seeds used in the experiments are listed in table C.2. The seeds were
chosen uniformly at random from the range [0, 231 − 1].

Table C.2: Random seeds used in experiments.

Experiment Random seeds
Hyperparameter 1573942128 0274259859 1978143047

1059581820 0923533011 1243444734
0976315392 1283209697 0347312645
0403974349

MNIST 1244102535 2063541227 1096982489
1916869805 2004766057 1872543914

Higgs 1244102535
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D Datasets

Table D.3 summarizes the preprocessing applied to every dataset used in this
work.

Table D.3: Datasets preprocessing

Dataset Preprocessing
20Newsgroups Choose a vocabulary of 10 000 words based on maximum

information gain using the Rainbow software [35]. Apply
TF-IDF to the resulting term frequency matrix. Generate
similarity matrix using cosine similarity, make it sparse by
applying 5NN. Enforce symmetry by adding its transpose.
Scale to [0, 1].

AML/ALL Generate sparse matrix by applying 5NN, enforce symmetry
by adding its transpose. Scale to [0, 1].

CUReT Downsample from 200 × 200 to 100 × 100 pixels per image,
extract scattering features and apply PCA to reduce the di-
mensionality further. Generate sparse matrix by applying
10NN, enforce symmetry by adding its transpose. Scale to
[0, 1].

Dolphins Use adjacency matrix. Scale to [0, 1].
Football Use adjacency matrix. Scale to [0, 1].
Gisette Generate sparse matrix by applying 10NN, enforce symmetry

by adding its transpose. Scale to [0, 1].
Higgs Generate similarity matrix using KGraph [14] with 5 neigh-

bors. Enforce symmetry by adding its transpose. Scale to
[0, 1].

Iris Generate sparse matrix by applying 5NN, enforce symmetry
by adding its transpose. Scale to [0, 1].

MNIST Generate similarity matrix using KGraph [14] with 10 neigh-
bors, enforce symmetry by adding its transpose. Scale to
[0, 1].

Strike Use adjacency matrix. Scale to [0, 1].
Wine Generate sparse matrix by applying 5NN, enforce symmetry

by adding its transpose. Scale to [0, 1].
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E Benchmark Algorithms

Projected Stochastic Gradient Descent

Stochastic gradient descent was originally proposed by Léon Bottou [4]. Applied
to matrix factorization, the updates are of the form

Wal ←Wal − η∇ij,al. (E.11)

In order to use updates of this form for NMF, a projection step is needed to
ensure non-negativity [8]. This can be done by simply taking the maximum of 0
and the updated value. The update rule for NMF is then given by

Wal ← max (0,Wal − η∇ij,al) . (E.12)

Combining Projected SGD with the I-divergence, negative values have to be
projected to a positive constant instead of 0 as in Equation (E.12). This is a
result of the form of the gradient. As derived in Section 3.1.2, gradients of the
I-divergence contain the term

−Xij

X̂ij

. (E.13)

If Xij is positive and X̂ij =
∑
kWikWjk approaches zero, this term approaches

negative infinity. Subtracting it from Wik leads to infinitely big entries in W ,
which in turn lead to divergence of the algorithm.

Having normalized the data, we empirically set the positive constant to 10−16.
With this adapted projection step, the final update rule used in the experiments
is

Wal ← max
(
10−16, Wal − η∇ij,al

)
. (E.14)

Exponentiated Gradient Descent

Exponentiated gradient descent is an optimization algorithm where the updates
take the form [26]

Wal ←Wal exp (−ηal∇al). (E.15)
To ensure stability, the learning rate ηal is typically set so that it negatively

correlates with the magnitude of W

ηal =
ω∑
iWil

, (E.16)

where ω ∈ (0, 2) [8].
The update rule (E.15) is multiplicative and maintains the nonnegativity of

W . It is equivalent to gradient descent applied in the log space

ln(Wal)← ln(Wal)− ηal∇al. (E.17)
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F Hyperparameter Experiment Results
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Figure F.1: Hyperparameter experiment results for 20Newsgroups (1/2).
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Figure F.2: Hyperparameter experiment results for 20Newsgroups (2/2).
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Figure F.3: Hyperparameter experiment results for AML/ALL (1/2).
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Figure F.4: Hyperparameter experiment results for AML/ALL (2/2).
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(d) Last loss, β = 0.3

Figure F.5: Hyperparameter experiment results for CUReT (1/2).
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(f) Last loss, β = 0.9

Figure F.6: Hyperparameter experiment results for CUReT (2/2).
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(d) Last loss, β = 0.3

Figure F.7: Hyperparameter experiment results for Dolphins (1/2).
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(d) Last loss, β = 0.7
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(f) Last loss, β = 0.9

Figure F.8: Hyperparameter experiment results for Dolphins (2/2).
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(d) Last loss, β = 0.3

Figure F.9: Hyperparameter experiment results for Football (1/2).
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(f) Last loss, β = 0.9

Figure F.10: Hyperparameter experiment results for Football (2/2).
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(d) Last loss, β = 0.3

Figure F.11: Hyperparameter experiment results for Gisette (1/2).
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(d) Last loss, β = 0.7
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(f) Last loss, β = 0.9

Figure F.12: Hyperparameter experiment results for Gisette (2/2).
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Figure F.13: Hyperparameter experiment results for Iris (1/2).
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Figure F.14: Hyperparameter experiment results for Iris (2/2).
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Figure F.15: Hyperparameter experiment results for Wine (1/2).
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Figure F.16: Hyperparameter experiment results for Wine (2/2).
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