
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

Oscar Nissen

Automating Tank Operations in
Smolt Production - Control of an
Underwater Manipulator

Master’s thesis in Cybernetics and Robotics
Supervisor: Martin Føre
Co-supervisor: Herman Biørn Amundsen

June 2021

M
as

te
r’s

 th
es

is





Oscar Nissen

Automating Tank Operations in Smolt
Production - Control of an Underwater
Manipulator

Master’s thesis in Cybernetics and Robotics
Supervisor: Martin Føre
Co-supervisor: Herman Biørn Amundsen
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Sammendrag

Formålet med denne master oppgaven var å utlede en matematisk modell
av en robotarm (manipulator) til bruk for automatisering av identifiserte
operasjoner innen smolt produksjonsanlegg. Arbeidet er utført som en del
av en masteroppgave ved NTNU Trondheim i samarbeid med SINTEF Ocean.

Et litteratursøk innen manipulator fluid dynamikk har blitt gjennomført. Basert
på funnene i litteratursøket, ble en rekke metoder relatert til undervannsmanip-
ulatorer og andre robotsystemer kombinert til en generalisert fremgangsmetode
for robot armer til bruk under vann. Den matematiske modellen som beskriver
manipulatorens dynamiske oppførsel under vann, ble deretter brukt i et In-
verse Dynamics Controller system for å kontrollere posisjonen til robotarmens
end-effector.

Inverse Dynamics Control systemet ble utviklet og simulert i Matlab Simulink ved
bruk av en B-spline Trajectory Planner fra Robotic System Toolbox. Simulerin-
gene ble utført i form av to casestudier relatert til typiske produksjonsoperasjoner
i et smoltanlegg.

Denne oppgaven har lagt et godt grunnlag for videre utvikling og forskning
innen den matematiske modelleringen og kontrollen av robotarm systemer
innen smoltproduksjon gjennom å lage en metode for å definere og simulere
manipulatorer i undervannsmiljøer ved bruk av Matlab og Simulink.
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Abstract

This thesis aims at creating a mathematical model for a mobile robotic
manipulator system to automate identified operations within smolt production
facilities. The work has been done as part of a masters thesis at NTNU Trondheim
in collaboration with SINTEF Ocean.

A literature review within the field of manipulator fluid dynamics has been
conducted. Based on these findings, a set of methods from different studies and
literature, related to underwater manipulators and vehicle-manipulator-systems,
were combined and a generalized method for underwater robot manipulators
was proposed. The mathematical model describing the manipulator underwater
dynamics was then applied in an Inverse Dynamics Controller for end-effector
position tracking. The input to the control system was formed by trajectory
planner.

The inverse dynamics control system was created and simulated in Matlab
Simulink using a B-spline trajectory planner provided by the Robotics System
Toolbox. The simulations were performed in the form of two case studies related
to smolt production operations.

This thesis has laid a good foundation for further development and research within
the mathematical modelling and control of robotic manipulator systems within
smolt production by creating a method for defining and simulating manipulators
in underwater environments using Matlab and Simulink.
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Chapter 1

Introduction

The aquaculture industry is predicted to be an influential contributor to keeping
up with the ever-increasing toll on the world’s food supplies [3]. In Norway,
the aquaculture industry is dominated by Atlantic salmon production, which is
currently the most significantly farmed finfish in marine aquaculture [12]. To
accommodate the required increase in the production of salmon, technological
advancements are needed. Increased automation of the day-to-day operations
within aquaculture can contribute to an improved production level. Part of
the solution in the day-to-day operations of fish farms is to increase the use
of Unmanned Underwater Vehicles (UUVs) and other technological solutions.
Adapting autonomous and robotic solutions is already an ongoing process. There
is a general trend in the aquaculture industry of shifting production methods from
manual operations and experienced-based reasoning towards a more objective
approach using autonomous systems in different stages of salmon production
[24]. This trend, going from experienced-based to knowledge-based reasoning
to improve fish farming operations, is based on the concept of Precision Fish
Farming (PFF) [14].

1.1 Smolt Production

Improving the aquaculture industry’s production of Atlantic salmon through the
concept of PFF and the use of new technology is not only for the fish farming
operations out in the sea but also for the stages of land-based production. One
particularly interesting stage of salmon production is the smolt phase. In this
phase, the smoltification process occurs, a process in which the salmon changes
appearance and adapts the ability to live in seawater (see Figure 1.1). Following
the smoltification process in a land-base facility, the salmon has grown to the
stage of post smolt, becoming ready for a life in one of the fish farms out at sea.

The smolt stage of salmon fish farming is decisive for its further growth and
survival rate. Modern fish farming techniques accentuate the production of
larger post-smolt because they are older and more robust when transferred from
land-based facilities to sea cages. The reduced time spent at sea also means
less exposure to sea lice. This parasite is currently the biggest concern for
the Norwegian fish farming industry due to the treatment producing reduced
growth and fish quality, as well as higher mortality [61]. More robust fish when
transported to sea and less exposure to sea lice have resulted in a noticeable
improvement in the average survival rate during the sea phase [44]. Although
the longer land-based production results in increased production costs, based on
current prices, it remains profitable compared to the risk of lower production

1



1. Introduction
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Figure 1.1: The life stages of the Atlantic salmon in captivity.

volumes due to sea lice. As a result, many new post-smolt facilities are now
planned for construction [5]. Increasing the number of post-smolt facilities will
eventually increase the burden on land-based facilities to be able to undertake
the challenges of up-scaling production.

1.2 Autosmolt 2025 and Robot Manipulators

Today, smolt production plants are still based on the same principles and methods
as the first generation of such plants established 40 years ago. Autosmolt 2025
is an ongoing project where the objective is to bring smolt production closer to
the realization within the framework of Industry 4.0 by applying principles of
PFF [54]. One of the research areas of the Autosmolt project is about creating a
foundation for future fully unmanned smolt production sites. Smolt production
is a biological factory process with different tasks that need to be finished daily.
To complete the tasks and to optimize production, without human intervention,
the introduction of robots will be necessary (see Figure 1.2.

Robot manipulators (robot arms) are considered to be suitable instruments
for performing underwater operations and are typically equipped on UUVs
[55]. These manipulators are composed of a sequence of rigid bodies (links)
interconnected by joints with a suitable interchangeable tool attached to the end-
effector. Underwater manipulators have been used for a variety of subsea tasks
in different applications within offshore oil and gas, marine renewable energy
and marine civil engineering industries as well as in marine science applications
[48]. A common work scenario for an underwater robot on a science mission is to

2
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Figure 1: Foundation for the next generation of autonomous smolt production. 
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Figure 1.2: Autosmolt 2025: Foundation for the next generation of autonomous
smolt production [54]

perform a task, such as picking up a rock or sampling a biological specimen from
the water column, while holding the position and attitude of the vehicle fixed
(stationary) [37]. These are similar operations to the day-to-day tasks required
in a smolt tank.

Figure 1.3: Day-to-day operations of robot manipulators in a smolt tank.

An illustration of how different day-to-day operations in a smolt tank would look
like, is presented in Figure 1.3. Not only is the use of underwater robots practical
in terms of repetitive tasks and the general operation of smolt production, but
it might also be advantageous for securing fish welfare during daily operations.
Studies have shown that stress levels is an important factor in fish welfare
and mortality, in particular during transportation [20]. Cleaning a smolt tank
currently requires transportation of the fish to another tank, and emptying

3
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the tank for manual cleaning. This is both time consuming and stressful for
the fish. To avoid scaring or stressing the fish by using robots, it is however
important that the robot is small in size and slow moving [27]. Although, there
are no specific studies related to the presence of robots performing day-to-day
operations in smolt tanks, UUVs with robot manipulators attached, might be
favorable for fish welfare as well as for optimizing the day-to-day opeartions.

1.2.1 The Reach Bravo 7 Robot Manipulator

This master thesis will be a continuation of the authors’ specialization project
thesis (see Appendix B for the delivery files) related to a robot arm produced
by Blueprint Lab, called Reach Bravo 7. The specialization project thesis was
inspired by an earlier master thesis that explored the possibility for automated
operations using a robot arm in smolt production facilities [56]. Selected
operations for automation were cleaning of tanks, controlled feeding, and removal
of dead fish and waste. To perform these operations Reach Bravo 7 was chosen
on the basis of a comparative study.

Figure 1.4: The Blueprint Lab Reach Bravo 7 robot manipulator [29]

1.3 Research Objectives

In order to add to the vision of the AUTOSMOLT 2025 project, this master
thesis will be a continuation of the previously performed work on the Reach
Bravo 7 robot manipulator. The central research question of the master thesis is
defined as:

How do you go about creating a mathematical model of an underwater
robotic manipulator to be controlled and virtually tested for automated smolt
production?

4



Research Objectives

Following the research question, a set of sub-tasks were determined:

1. Perform literature study of manipulator fluid dynamics mod-
elling.
Methods for implementing fluid dynamics on submerged robot manipulators
should be investigated and evaluated in order to create an accurate model
of the underwater effects.

2. Create a mathematical model describing the underwater dynam-
ics.
Based on the literature study and building on the land-based model
developed in the specialization project, an expanded model for an
underwater manipulator is to be made.

3. Suggest and implement a suitable control system.
In order to control the manipulator position in an underwater environment,
a suitable control system will be chosen and implemented in MATLAB
while considering the nonlinearities of the manipulator and fluid dynamics.

4. Suggest and implement methods for trajectory planning.
There are different methods for planning the trajectory of the robot
manipulator. These will be explored, and a selected method is to be
implemented in conjunction with the control system in MATLAB.

5. Simulation experiments.
Simulations will be performed in MATLAB, verifying the manipulator
model and evaluating the control system performance in a smolt tank
through virtual experiments, conducting operations suitable for smolt
production.

5



1. Introduction

1.4 Outline

The rest of the thesis is organised as follows:

Part I
Part I includes the requisite theory to create a control framework for a robot
manipulator in an underwater environment. Chapter 2 establishes some essential
building blocks by covering the setup of coordinate frames, and some conventional
symbolic representations typically used when developing mathematical models
for robot manipulators. Building on the previous chapter, Chapter 3 presents
solutions to the problems of forward and inverse kinematics by applying kinematic
diagrams in combination with the Denavit Hartenberg Convention. Chapter
Chapter 4 presents an approach to determine the dynamic equations of motion
based on the Euler-Lagrange method. Then in chapter 5, a new framework for
modelling hydrodynamic effects onto a robotic manipulator is proposed, and
how this may be added to the original dynamical model. The combination of
kinematics and dynamics qualifies the contingency to control the manipulator
motion. Chapter 6 discusses possible control algorithms for position control to
follow, or track, a desired trajectory. Also included in chapter 6, is a presentation
of possible trajectory planning methods.

Part II
Part II involves a specific focus on the Reach Bravo 7 Manipulator by employing
the theoretical denotations from part I. Chapter 7 contains the mathematical
modeling of the Bravo 7 including its system description, forward and inverse
kinematics solutions, and land-based and underwater dynamics model. Based on
the mathematical model, a simulation setup is formed in Chapter 8 involving the
use of Matlab and Simulink and a description of the setup of two case studies
relevant for smolt production.

Part III
Part III presents and discusses the results from the simulations created in Part
II. At the very end, a conclusion is put forth linked to the research objectives in
Section 1.3

6
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Chapter 2

How to Mathematically Describe
Robot Manipulators

This chapter1 covers the system setup and symbolic representation related to
development of the robot manipulator mathematical models. Section 2.3 is
especially important because it compiles and explains how robot manipulators
will be described in the remaining chapters based on a set of coordinate frames.

2.1 Mechanical Structure of a Robot Manipulator

A robot manipulator is essentially a mechanical arm operating under computer
control. The arm is composed of a sequence of rigid bodies (links) interconnected
by joints to form a chain of links. The joints establish conjunctions in the chain
that allows for relative motion of neighboring links. Generally, these joints
are fitted with position sensors granting the possibility to measure the relative
position of the adjacent links. In the case of rotary or revolute joints, these
displacements are called joint angles. For sliding or prismatic joints, the relative
displacements are referred to as joint offsets. More complicated joints exist, but
they are typically represented as a combination of revolute and prismatic joints.

Figure 2.1 depicts how revolute and translation joints are illustrated in [57]. The
links represent the spatial relationship between two joints and are displayed as
simple lines between the joints. Although the chain of links makes up the majority
of the robot arm, it is the end-effector that manipulates the surroundings and
performs the desired tasks. The space in which the end-effector can affect its
environment depends on the position of the manipulator base. Considering
how the base can be moving, this brings an increased level of complexity when
modelling the motion of the manipulator. Figure 2.2a shows an example of a
manipulator consisting of a base, two revolute joints, one prismatic joint, and an
end effector.

2.2 Symbolic Representation

Figure 2.2a shows a typical three degree of freedom or degrees of freedom (DoF)
kinematic arrangement of a robot arm. This manipulator is defined as a spherical
geometric type arm [57] due to its explicit combination of joint types. Figure
2.2b is a slightly altered version of 2.2a with a non-straight link referred to as

1This chapter is based on a similar chapter in the specialization project thesis. Chapter
2.4 is new.
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2. How to Mathematically Describe Robot Manipulators

Figure 2.1: Symbolic illustrations of the different types of joints for a robot
manipulator [57].

(a) Symbolic representation of spherical
robot arm.

(b) Symbolic representation of a robot
arm with a non-straight link.

Figure 2.2: Symbolic representation of two different spherical robot arms.

a shoulder offset. Having a shoulder offset tend to make the modelling slightly
more complicated. Independent of its mechanical structure, the robot arm always
have a base and an end-effector. A robot arm is always fixed to a base, but the
base itself may be mobile. The end-effector is a gripper or a tool that may be
used to influence the environment.

2.3 Coordinate Frames

To mathematically describe the configuration space and work space of the robot
manipulator, coordinate frames are typically attached at the end of each link.
The position of the coordinate frames may then be described in reference to a
defined inertial frame (also called world frame). This way all objects, including
the manipulator, may be referenced in relation to the inertial frame. By assuming
the individual manipulator links are rigid and the base is fixed, it is possible to
decide the position of any of the coordinate frames as a function of the joint
variables. In the case of Figure 2.3 the inertial frame is established at the base

10



Model Components

of the robot arm and its origin is symbolically given by 2.1.

{O0} = (xo, yo, zo) (2.1)

The position of the end-effector frame {O3} with respect to the inertial coordinate
system is represented as o0

3 =
[
x0

3 y0
3 z0

3
]T . Hence, for any manipulator with

n joints, the position of the end-effector is given by 2.2.

o0
n =

[
x0
n y0

n z0
n

]T (2.2)

Figure 2.3: Symbolic representation of spherical robot arm with added coordinate
frames.

2.4 Model Components

As previously described, the robot manipulator consists of multiple segments that
need to be coordinated in terms of position and orientation and therefore requires
advanced methods to form any type of analytical description. Consequently,
this section includes a set of useful definitions and a description of the primary
components that will be used to in the coming chapters develop the robot
manipulator mathematical model.
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2. How to Mathematically Describe Robot Manipulators

2.4.1 Definitions

Joint variable:
Represents the relative displacement between adjacent links either in form of
linear movement (prismatic join) or an angular rotation (revolute joint). The
joint variable is denoted as q1 · · · qn for a n degrees of freedom robot manipulator.

Joint configuration:
A combination of a set of joint variable values resulting in a specific "shape" of
the robot manipulator.

Configuration space:
The set of all possible joint configurations for a robot manipulator.

Workspace:
A set of points that can be reached by the end-effector. The workspace is
constrained by the geometry of the manipulator as well as by the mechanical
limitations of the joints.

2.4.2 Primary Components

Kinematics:
a geometrical description of the relationship between the joint position
(workspace) and the joint configuration (configuration space).

Dynamics:
relationships between the torques applied to the joints and the consequent
movements of the links

Control:
computation of the joint torques (control actions) necessary to execute a desired
motion.

Trajectory Planning:
planning the desired movements of the manipulator.

12



Chapter 3

Kinematics

1Manipulator kinematics is the study of how joints connected to a chain of rigid
bodies are transformed into viable kinematic motion without taking forces into
account. The relationship is strictly geometric, and consequently, the forces and
torques are ignored. The kinematic analysis aims to mathematically describe the
bond between the joint variables and the position and orientation of different
parts of the robot structure. This requires a systematic approach, especially
when the number of joints and links increases. The systematic approach that
describes the joints’ cumulative effect throughout the kinematic chain is the
foundation for solving the forward and inverse kinematics problems.

Section 3.1 in this chapter describes how to solve the forward kinematics using
the Denavit-Hartenberg convention. Then Section 3.2 possible analytical and
numerical solutions to the inverse kinematics problem, including a closer look at
the spherical wrist manipulator configuration.

3.1 Forward Kinematics

The problem of forward kinematics for a robot manipulator seeks to mathe-
matically formulate the position and orientation (pose) of the end-effector as
a function of the joint variables. The method of solving forward kinematics
is concise, flexible, and applicable regardless of the type and the number of
joints in the robot arm. Calculating the forward kinematics is vital when getting
familiar with a new robot manipulator. The solution can be found by following
a systematic approach.

3.1.1 Kinematic Diagram

A good first step of any kinematic analysis is to draw a kinematic diagram
similar to the symbolic representation introduced in Section 2.2. This type of
schematic is helpful to aid the understanding of the robot manipulator system
and to describe it mathematically. To avoid misconceptions about the labeling
scheme, when explaining any of the approaches used here and in later chapters,
a set of preliminary rules are defined below.

Preliminary Rules:

1The content in this chapter is a modified and more detailed version of the same chapter
in the specialization project thesis.
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3. Kinematics

For a manipulator with n joints numbered from 1 to n, there are n+1 links, where
the links are numbered from 0 to n. The preliminary rules are demonstrated in
Figure 3.1.

• Link 0 is equal to the base of the manipulator.

• Joint i connects link i− 1 to i and moves them relative to each other.

• Link i extends joint i to joint i+ 1.

• There are at least one more frame than there are joints - one frame must
be on the end-effector.

• All coordinate axes are drawn either up, down, right, left or in the first
and third quadrant.

3.1.2 The Denavit-Hartenberg Convention

When the number of joints grows, the kinematic analysis becomes increasingly
complex. The introduction of the Denavit Hartenberg (DH) convention simplifies
the kinematic analysis by systematically describing the geometrical structure of a
kinematic chain of links and joints. Central to the convention is the attachment
of the coordinate frames. The definition of the frames requires consistency,
but the frame placements are not unique [57][53]. Mathematically speaking, as
long as frame i is rigidly attached to link i, there is considerable freedom when
choosing the placement of the origin and the coordinate axes of the frame. The
flexibility in terms of the coordinate axes has resulted in various variations of
the notation. In this thesis the distal variant DH convention, described in [35],
is practiced. By being consistent in regards to the defined variations, any of the
DH conventions lead to simplifications of the kinematic modeling method.

Assigning the Coordinate Frames

There are rules that needs to be followed when assigning the frames based on
the DH convention [57]:

• The Z axis must be the axis of rotation (revolute joint) or the direction of
motion (prismatic joint).

• The X axis must be perpendicular to the Z axis of the frame before it.

• The X axis must intersect the Z axis of the frame before it.

• The Y axis must be drawn such that the frame follows the right-hand rule.
Assigning the y-axis is rarely required when using the DH-convention.
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Forward Kinematics
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Figure 3.1: Kinematic diagram of an Elbow Manipulator with added coordinate
frames according to the DH convention.

The DH convention and the preliminary rules are exemplified in Figure 3.1.
Every link has its own coordinate frame which is connected to the far end of the
link. There is always the same amount of frames as the number of links. The
base is referred to as link 0.

Denavit-Hartenberg Parameters

Following the DH rules for assigning the coordinate frames, the description of
the kinematic structure is broken down into four parameters as defined in Table
3.1. How the parameters relate to the kinematic diagram is depicted in Figure
3.1. Note that the definitions may be different for other variations of the DH
convention.

Symbol Definition Type of value
𝜃௜ The angle between 𝑥௜ିଵ and 𝑥௜ measured about 𝑧௜ିଵ. Joint variable(𝑞௜) if joint 

is revolute. 
𝑑௜ Distance along 𝑧௜ିଵ from 𝑂௜ିଵ  to the intersection of the 𝑥௜

and 𝑧௜ିଵ axes. 
Joint variable(𝑞௜) if joint 
is prismatic.

𝑎௜ Distance along 𝑥௜ from 𝑂௜ to the intersection of the 𝑥௜ and 
𝑧௜ିଵ axes.

Constant 

𝛼௜ The angle between 𝑧௜ିଵ and 𝑧௜ measured about  𝑥௜ . Constant

Table 3.1: Explanation of the Denavit Hartenberg parameters.
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3. Kinematics

Denavit-Hartenberg Table

The DH table is a summary of the DH parameter values identified for link 1 to
n and is the result of the DH convention. The table is a compact overview of
the manipulator’s geometrical description and its possible movements. It is not
uncommon to include the joint variables’ physical constraints in the DH table.

The DH table for the Elbow Manipulator from Figure 3.1 is presented in Table
3.2. The table shows the manipulator configuration for each of the three links.
An example of how the parameters are decided for each link is described below.
The descriptions are very much conditioned on the definitions in Table 3.1.

Link 1:
Link 1 is affected by the rotary motion from joint 1, represented by the joint
variable q1. Joint 1 is not a prismatic joint, and therefore d1 is a constant equal
to the distance from O0 to the intersection of the z0 and x0 axes in the direction
of z0. Since the intersection of the z0 and x1 axes is identical to the center of the
second coordinate frame ({O1}), a1 is equal to 0. Lastly, to be able to rotate the
first frame in such that z0 becomes parallel to the z1 axis, it has to be rotated π

2
radians about x1. Thus, the value of α1 is π

2 .

Link 2/3:
Link 2 and Link 3 have the same relative position and orientation, which means
they have a similar method of derivation of the DH parameter values. The links
are rotated by joint 2 and joint 3, respectively, with joint variables q2 and q3.
The coordinate frames {O1},{O2} and {O2} have all parallel axes, and therefore
d2,d3,α2 α3 become 0. Unlike Link 1, the constant values of a2 and a3 are not 0
. This is because each frame is shifted along the x-axes of the frame that follows.

Link 𝑑௜ 𝜃௜ 𝑎௜ 𝛼௜

1 𝑑ଵ 𝑞ଵ 0 𝜋
2ൗ

2 0 𝑞ଶ 𝑎ଶ 0

3 0 𝑞ଷ 𝑎ଷ 0

Table 3.2: The DH table for the Elbow Manipulator from Figure 3.1.

3.1.3 Solution to the Forward Kinematics Problem

The transformation matrix is a vital part of the calculation and presentation of
the forward kinematics solution. In three-dimensional space, the transformation
of a rigid object from one coordinate frame to another is described in regards to
the frame pose. The transformation matrix is a mathematical representation of
this transformation. For a robot manipulator, the transformation matrix is used
to relate the linear and rotational movements of the joint to its neighboring links.

16



Inverse Kinematics

These link transformations can be combined of all the links between frame 0 and
frame n. The resulting transformation matrix T 0

n represents the positional and
rotational "awareness" of the origin of frame n relative to frame 0.

T 0
n =

[
R0
n o0

n

01×3 1

]
(3.1)

T 0
n ∈ R4×4 is the transformation matrix, R0

n is a 3× 3 rotation matrix which
expresses the orientation of frame n relative to frame 0 and o0

n is the position in
relation to frame 0. A more general depiction for arbitrary frames k and j is
given in (3.2)

T kn =
{
Ak+1Ak+2 . . .Aj−1Aj if k < j

I if k = j
(3.2)

where Ai = A(qi) ∈ R4×4 is the homogeneous transformation matrix expressing
the pose of frame i with respect to i− 1. Hence, the pose is a function of the
joint variable.

Ai =
[
Ri−1

1 oi−1
i

0 1

]
(3.3)

The way to solve the forward kinematics problem is to decide the transformation
matrix from the base frame to the manipulator end-effector. First, the
parameters and variables from the DH table are used to decide each homogeneous
transformation matrix A1, A2, · · · , Ae for each link where e denotes the end-
effector.

Ai(qi) =


cθi

−sθi
cαi

sθi
sαi

aicθi

sθi
cθi
cαi

−cθi
sαi

aisθi

0 sαi
cαi

di
0 0 0 1

 cθi = cos(θi) , sθi = sin(θi) (3.4)

Calculating this matrix is fairly straight forward since the parameter values αi
and ai is taken directly from the DH-table, involving di and θi as the possible
unknowns. The resulting transformation matrix T 0

e from (3.2) describes the
transformation from link-frame 0 to the end-effector e . In other words, the
solution to the forward kinematics problem.

3.2 Inverse Kinematics

Inverse kinematics is the reverse process of forward kinematics as it seeks to
find what joint angles or positions (joint variables) are required to achieve a
specific end-effector pose. Since the joint variables are normally governed by
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3. Kinematics

actuator motors, inverse kinematics can be used for robot control purposes.
The usefulness of inverse kinematics becomes apparent when the goal of the
end-effector is to interact with an object within its workspace.

Interaction with any sort of object requires knowledge of the pose of the object
for the end-effector to match this pose. Hence, the transformation matrix of the
object is assumed to be known. With the known pose, the inverse kinematics
solution can be used to match the pose of the end-effector to the pose of the object.
The solution is usually not unique, and there may be several combinations of
joint values corresponding to the particular robot end-effector pose. Furthermore,
for higher DoF robot manipulators, there are even more sets of possible joint
variable solutions to keep track of. This makes inverse kinematics a difficult
problem to solve for complex robot structures.

There are both analytical and numerical approaches to the inverse kinematics
problem, and the most practical approach depends on the robot manipulator and
its level of complexity. The problem becomes increasingly difficult as the number
of joints in the robot increases. For typical robot configurations or particular
classes of robots, solutions are often available in published literature [7]. On the
other hand, some robot configurations might not have proper inverse kinematics
solutions, implying a significant probability of singularities or solutions too
complicated to be solved with a particular approach. For manipulators with six
or more DoF, the possibility of finding a solution to the problem is very much
dependent on a particular configuration called a spherical wrist, as it allows
three joints to be modelled as one.

Spherical Wrist

Today, almost all industrial robots have a setup involving a spherical wrist with
the purpose of simplifying the coordination between the motion of the arm and
that of the end-effector [53]. The spherical wrist is a special type of manipulator
configuration consisting of three revolute joints where all joint axes intersect at
a common point called the wrist center [57]. The spherical wrist is pictured as
a kinematic diagram in Figure 3.2. The intersecting axes become a spherical
coordinate system, and the three joint variables can then be described as Roll,
Pitch and Yaw motions for a single frame. Usually, the spherical wrist is added
to an articulated part of a 6 DoF manipulator to orient the end-effector in space
[57].

The spherical wrist greatly simplifies the calculation of the kinematics problems
in general, but is especially important for the inverse kinematics solution.
Although the spherical wrist consists of three joints, these three joints act
as one contribution to the transformation and rotational movements of the
end-effector. Therefore, the inverse kinematics problem of a 6 DoF manipulator
may be partitioned into two simpler problems. First, the position of the wrist
center is found based on the articulated part. Then, by only addressing the
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Inverse Kinematics

spherical wrist, the orientation of the wrist is found. Ultimately, the position and
orientation of the end-effector is found separately. For a manipulator without a
spherical wrist the position and orientation are coupled, and this complicates
the coordination between the motion of the arm and that of the wrist [53].In
conclusion, while the forward kinematics can be determined using standardized
methods, the solving of the inverse kinematics is an often complex problem that
is dependent with the manipulator design. Particularly, the complexity of the
problem will often increase with more DoF and with a lack of a spherical wrist.

𝑧ଷ, 𝑥ହ

𝑧ହ
𝑧ସ

𝑥ସ

Articulated part

Gripper
𝑞ସ

𝑞ହ

𝑞଺

Yaw

Pitch

Roll

Figure 3.2: Spherical wrist with three joint axes intersecting at a common point.

3.2.1 Analytical Approaches

There are two analytic approaches to decide the closed-form solutions of the
inverse kinematics problem, one of them is the geometrical approach [57][53][7].
The geometric solution is preferred for simple robots, e.g. a two link robot
arm. This solution requires trigonometric intuition to find a solution. The
main advantage is that it gives an insight into the multiple joint configuration
possibilities resulting in the same end-effector pose. When the number of joints
grow beyond two, the geometric solution tend to become too difficult to solve.
Even when it is possible to find a geometric solution, there is typically a low
level of generalization within the solution method. Hence, the chance of finding
a solution is dependant on previous experience and expertise within the subject.

A more generalized approach to the analytical solution, is the algebraic approach.
Referencing (3.5), the transformation matrix is given and therefore the equations
for ri,j and (x0

e, y
0
e , z

0
e) may be found by the method of forward kinematics.

These equations can then be used to decide the unknown joint variables
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3. Kinematics

q = [q1, q2, . . . qe]T . Similar to the geometric approach, there is no general
method for finding the closed-form solution, which makes the algebraic approach
challenging for complex robot manipulators.

T 0
e (q) =


r11 r12 r13 x0

e

r21 r22 r23 y0
e

r31 r32 r33 z0
e

0 0 0 1

 (3.5)

There are publications with the conclusion that any six DoF robot with a
spherical wrist have an analytical solution [51]. However, the criterion that a
spherical wrist confirms an analytical solution, called the Pieper Criterion, has
also been shown to be questionable in terms of its completeness. Deciding if
a robot arm has an analytical solution is therefore challenging. If the Pieper
Criterion was assumed to be true, both the analytical approaches are still time
consuming and error prone when used for complex robot manipulators.

3.2.2 Numerical Approaches

An alternative to the analytical solution is the numerical solution which is
applicable when the analytical solution does not exist, or it is just too hard to
figure out [57][53][7]. A general solution for a six joint robot manipulator with
no spherical wrist usually calls for a numerical solution. The numerical approach
relies on the fact that it is always possible to determine the forward kinematics of
the robot manipulator. One numerical approach is formulated as an optimization
problem followed by an iterative solution. There are other approaches, but they
will not be described in detail in this thesis. The optimization solution is based
on the DH-convention.

The setup of the numerical optimization approach can be described in the
following manner. First, to reach the desired pose, the joint variables q need to
be adjusted until they match the desired joint values q∗. This can be setup as a
mathematical optimization problem by inserting the adjusted joint values for
each step until the forward kinematics matches the desired pose [7]. A formal
mathematical formulation of the optimization problem is to minimize the error
between the forward kinematics solution and the desired pose T ∗(q∗)

Minimize E(q) =
∥∥∥[T (q)]t − T ∗(q∗)

∥∥∥ (3.6)

subjected to workspace and geometrical constraints. These constraints are
usually designed with the aim of avoiding singular poses. However, because the
possibility for singular poses is always present, the stability of the numerical
solution and its convergence rate cannot be guaranteed for any of the numerical
approaches [51].
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Inverse Kinematics

The numerical solution has three main drawbacks [7]:

1. Slow for practical applications.

2. Not always able to find all the possible solutions, hence the identified pose
may be sub-optimal.

3. Might be unstable due to singularities. Singularities occur when the robot
is outside its workspace or in an impossible configuration.

Since the analytical approach has poor scalability and the numerical solution
is unusable for most real-time problems, there is currently research invested
in finding better and more generalized solutions. The Jacobian-based inverse
kinematics solver and techniques described by [41] allow for a numerical solution
as an efficient real-time solver. Another interesting approach for robots satisfying
the Pieper-criterion is presented in [36]. Following the rapid development of
artificial intelligence, this technology is key for further developments within
robotics research. One example of inverse kinematics solvers based on artificial
intelligence is [15] that proposes a solution algorithm based on improved back
propagation neural network.. Another example is [65] which is able to mimic
human robotics experts to form a solution, using a Behaviour Tree. In the end,
based on the available research today, if an analytical solution can be found, it is
always preferable to a numerical solution for the execution speed and the ability
to pick the desired joint configuration among multiple solutions.
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Chapter 4

Dynamics

1While the problem of kinematics is about describing the motion of the robot
manipulator while disregarding the acting forces, the dynamics problem seeks to
find the explicit relation between forces and robot motion. This relation appears
in the form of the equation of motion, also called the dynamic model of the
robot manipulator. The dynamic model is valuable for computations used for
simulation, analysis of manipulator structures and design of control algorithms
[53]. The most important concepts required for the derivation of the equation
of motion are mentioned in Spong [57] and described in more detail in Egeland
[10].

Section 4.1 presents the equations of motion and two different approaches
to determine the dynamic model. The Euler-Lagrange and Newton-Euler
approaches are introduced and a comparison between the methods is described
briefly. Section 4.2 involves the derivation of the equation of motion using the
Euler-Lagrange method for a n-DOF robot arm. The derivation using Newton-
Euler is not presented any further in this project thesis. A more general and
compact derivation of the inertial matrix for robot manipulators is also added
at the end of section 4.2. The last section of the chapter (Section 4.3) explains
the difference between the forward and inverse dynamics based on the setup of
the equations of motion.

4.1 Equations of Motion

Dynamics is the analysis of motion caused by forces. This requires parameters
like mass and inertia to calculate the acceleration of the bodies. The goal is to
create a mathematical model describing the motion of a structure in terms of
the forces and torques acting on it. The equation of motion is a compact version
of this mathematical model typically called the dynamic model.

The motion of a robot manipulator is affected by internal and external forces
acting on its rigid links. In this chapter, a land-based manipulator is assumed
without any form of external forces, except gravity. Such forces tend to be
situational and are therefore usually omitted for any sort of general-purpose
dynamics model. The remaining forces are the internal mechanical forces of the
manipulator. The mechanical connection between the links comes in the form
of force and torque exerted by neighboring links where each link is supported

1Most of this chapter is based on a chapter in the specialization project thesis, but is
slightly modified. Specifically, Section 4.1 involves some extra details regarding the method of
choice.

23



4. Dynamics

by the preceding links [7]. Joint torques are applied from the actuators in each
joint and might be controlled to achieve a particular manipulator state. Figure
4.1 demonstrates a simple two-dimensional robot arm and its corresponding
free-body diagram. The diagram displays the forces between the links (F ), the
torques (τ) provided by the actuators, and the gravitational weight (G) acting
on the center of mass (CoM). The type and values of all forces acting on the
robot manipulator depend on the type of robot and its interactions with the
working environment.

𝐹஻

𝐹ଶ

𝐹ଵ 𝐹ா

𝐸

𝐵
𝜏஻

𝜏ଶ

𝜏ଵ

𝐺

𝐺ଶ

𝐺ଵ

: Center of Mass

Figure 4.1: Simple 2-DOF 2D robot arm with corresponding free body diagram.

When it comes to describing the dynamics there are different approaches.
Two common approaches, often described in robotics literature, are the Euler-
Lagrange and Newton-Euler approaches [57][53]. The two different formulations
lead to the same matrix form of the equations of motion (4.1), but the route to
get there and the structure of the equations within the matrices are different.

M(q)q̈ +C(q, q̇)q̇ +G(q) = τ (4.1)

where

q = vector of joint variables
τ = vector of joint torques
M = inertia matrix
C = centrifugal and Coriolis terms
G = gravity vector.

Table 4.1 presents a compact summary of some of the comparable factors
regarding the equations of motion. Contrasting conceptual approaches and
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Euler-Lagrange Method

different methods of derivation lead to distinct method properties. The Euler-
Lagrange approach necessitates the use of coordinate transformations. The result
is a highly structured but computationally inefficient formulation. The Newton
Euler formulation gives efficient recursive equations but is also more challenging
to use when deriving advanced control laws [8]. Therefore, for real-time control
and simulation, the equations of Newton-Euler are often favored; however, if
working with Lyapunov designs or passivity, the energy-based Euler-Lagrange
equations might be more suitable [10]. Ultimately, the two methods have their
own merits and demerits. Therefore, the choice of method may conclusively be
based on a combination of personal preference and problem practicality.

Another method to be mentioned is Kane’s method, which in some sense is
a combination of the Euler-Lagrange and Newton-Euler method [58]. Kane’s
method provides a straight forward approach for incorporating environmental
external forces in to the dynamic model. Similarly to the Newton-Euler it is
less computationally demanding than the Euler-Lagrange approach, while also
eliminating some of the unnecessary force calculations of the Newton-Euler
approach. The method has also been proven to result in a more accurate
approximation than the Euler-Lagrange, when modeling a two-link manipulator
[47].

In this thesis, the method of choice is Euler-Lagrange. Having a well-structured
formulation is advantageous when presenting the dynamics of a complex robot
manipulator, making it easy to presents the procedure and the results in an
orderly manner as a foundation for continued work. Additionally, the Euler-
Lagrange is the method most familiar to the author.

Euler-Lagrange Method Newton-Euler Method

Conceptual approach: Energy based. Newton's second law (force 
balance).

Derivation: Each link of the manipulator is 
treated in turn.

Manipulator treated as one 
system.

Equations of motion: Structured form. Less structured form.

Computations: Less efficient. Efficient.

Table 4.1: Comparing the Euler-Lagrange and Newton-Euler approach.

4.2 Euler-Lagrange Method

The Euler-Lagrange method is based on the basics of Lagrange mechanics.
Lagrange mechanics is a tool to build mathematical models for complex
mechanical systems. The mechanical system is described in terms of energy.
The energy based description requires the computation of the kinetic (K) and
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4. Dynamics

potential (P) energy. In terms of these energy equations, the Lagrange equation
(L) is computed as

L = K − P. (4.2)

For a robot manipulator, building the Lagrange equation can be done in a
systematic manner. The Lagrangian framework is convenient for a system based
on a configuration relative to a reference frame. The configuration is described
in terms of a vector of generalized coordinates. When working with a robot arm,
the generalized coordinates are equal to its joint variables q(t) ∈ Rn, where n
is the number of joints. One basic assumption about the manipulator which is
required before calculating the Lagrange equation, is that the n links in motion
are considered as rigid bodies [53].

4.2.1 Kinetic Energy

One way to calculate the general kinetic energy for a n-link robot is by employing
the linear and angular velocity Jacobians to decide the inertia matrix together
with the derivative of the joint variables [57]. The linear and angular velocities
are expressed in terms of the Jacobian matrices in the form of (4.3) and (4.4)
respectively.

Jv = [Jv1 ...Jvn
] (4.3)

Jω = [Jω1 ...Jωn
] (4.4)

The value of the Jacobians depends on the type of joint, and is summarized as

Jvi
=
{
zi−1 × (on − oi−1) for revolute joint i
zi−1 for prismatic joint i

(4.5)

Jωi =
{
zi−1 for revolute joint i
0 for prismatic joint i

(4.6)

where zi and on can be found directly from the transformation matrices found
in the forward kinematics problem, see (4.7).

{
zi given by the first three elements in the third column of T 0

i

oi given by the first three elements in the fourth column of T 0
i

(4.7)
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Euler-Lagrange Method

Hence, only the third and fourth columns of the transformation matrices are
required to evaluate the the velocity Jacobians.

If the mass of link i is denoted as mi, it is possible to calculate the inertia matrix
of link i (Mi) by using the velocity Jacobians, the inertia tensor (Ii) and the
rotation matrix (Ri) of the link. In this thesis the gear ratio, denoted as (Jm) in
Spong [57], is assumed to be negligible. Thus, the inertia matrix is calculated as

Mi(q) = miJvi
(q)TJvi

(q) + Jωi
(q)TRi(q)IiRi(q)TJωi

(q) (4.8)

where Ii is the inertia tensor in the body attached frame of link i, but evaluated
around the link center of mass (see figure 4.1). The matrix values are only
dependent on the geometrical configuration of the rigid body [57]. Consequently,
the inertia matrix given by (4.9) is constant and independent of any motion.
Furthermore, the value of the inertia matrix is typically included in the robot
documentation.

Ii =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

∣∣∣∣∣∣
i

(4.9)

The inertial matrix for an n-Link robot is found as a sum of the inertia matrix
of all the links.

M(q) =
n∑
i=1

Mi(q) (4.10)

In the end, the kinetic energy for a n-Link robot becomes

K = 1
2 q̇

TM(q)q̇ (4.11)

where

qT = [q1, q2, · · · , qn]. (4.12)

and
q̇T = [q̇1, q̇2, · · · , q̇n]. (4.13)
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4. Dynamics

4.2.2 Potential Energy

In the case of rigid dynamics of a robot manipulator, gravity is typically the only
source of potential energy. The potential energy of the i-th link is computed
while assuming the mass of the entire link is concentrated at its center of mass
as illustrated in figure 4.1.

Pi = gT0 rcimi (4.14)

The sum of the contributions from each link, is the total amount of potential
energy stored the n-link robot and is given by

P =
n∑
i=1

gT0 rcimi (4.15)

where g0 is the gravity acceleration vector and rci is the coordinate vector of
the center of mass of link i. Both g0 and rci are given relative to the base frame
[57]. By denoting the vectors as

rci = [rcx, rcy, rcz]T (4.16)

and
g0 = [gx, gy, gz]T . (4.17)

4.2.3 Euler-Lagrange Equation

Based on the Lagrangian equation (4.2), the Euler-Lagrange equation for an
n-link manipulator is calculated as

d

dt

∂L
∂q̇
−
∂L
∂q

= τ . (4.18)

.

Here, τ is a vector (4.19) which represents the input generalized forces equal
to the motor torques at the joints [10]. The torque τk is associated with the
generalized coordinate qk [53].

τ =


τ1
τ2
...
τn

 (4.19)
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From the calculation of the Euler-Lagrange equation [57], it is possible to rewrite
(4.18) as

n∑
i=1

Mkj(q)q̈j +
n∑

i,j=1
cijk(q)q̇iq̇j + φk(q) = τk, k = 1, ..., n (4.20)

where φk and Dkj may be calculated individually, and Cijk (known as Christoffel
symbols [57]) can be found from Dkj , see (4.21 - 4.24) .

φk(q) = ∂P
∂qk

(4.21)

Mkj(q) =
∂( ∂K∂q̇j

)
∂q̇k

(4.22)

cijk(q) = 1
2

{∂Mkj

∂qi
+ ∂Mki

∂qj
− ∂Mij

∂qk

}
(4.23)

Ckj =
n∑
i=1

cijk(q)q̇i = 1
2

n∑
i=1

{∂Mkj

∂qi
+ ∂Mki

∂qj
− ∂Mij

∂qk

}
q̇i (4.24)

In the case of manipulators of higher complexity, which implies higher degrees
of freedom, the Euler-Lagrange equation for an n-link manipulator is normally
written in a matrix form, equivalent to how the equation of motion (4.1) is
presented in section 4.1.

The correlation between (4.1) and (4.20) implies the following characteristics:

φk = the k-th element of the gravity vector G(q) ∈ Rn
Mkj = the k, j-th element of the manipulator inertia matrix M(q) ∈ Rn×n
Ckj = the k, j-th element of the centrifugal and Coriolis terms matrix

C(q, q̇) ∈ Rn×n.

As a result of the characteristics above, the equation of motion for an n-link
robot manipulator includes matrices on the form of 4.25.
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
τ1
τ2
...
τn

 =


M11 M12 . . . M1n
M21 M22 . . . M2n
... . . . . . . ...

Mn1 Mn2 . . . Mnn


︸ ︷︷ ︸

M(q)


q̈1
q̈2
...
q̈n

+


C11 C12 . . . C1n
C21 C22 . . . C2n
... . . . . . . ...

Cn1 Cn2 . . . Cnn


︸ ︷︷ ︸

C(q,q̇)


q̇1
q̇2
...
q̇n

+


φ1
φ2
...
φn


︸ ︷︷ ︸
G(q)

(4.25)

M(q) can be computed either as done in (4.10) or (4.22).

4.3 Forward Dynamics

The matrix form of the Euler-Lagrange equation (4.1) is referred to as inverse
dynamics because the equation setup maps motion to torque (4.26). This is
useful for determining control laws [57].

(q, q̇, q̈)→ τ (4.26)

Forward dynamics is the other way around, where the joint acceleration q̈ is
determined as a function of the joint torque. Solving the forward dynamics
is useful for simulations of the manipulator because it maps torque to motion
(4.27).

τ → (q, q̇, q̈) (4.27)

To be able to define the motion, based on the torque values, the Euler-Lagrange
equation needs to be altered. The joint accelerations (4.28) are found based on
the inverse of the inertia matrix [57].

q̈ = M−1(q)
[
τ −C(q, q̇)q̇− g(q)

]
(4.28)

The form of (4.28) is the forward dynamics model in its explicit form whereM is
invertible[57]. M(q) might be a big and complex matrix, hence the inverse can
become exceedingly complex [10]. In this case, having the model in its implicit
form (4.29) or working with M(q)−1 numerically is sometimes required.

M(q)q̈ = [τ −C(q, q̇)q̇−G(q)
]

(4.29)
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Chapter 5

Dynamics for Underwater
Manipulators

In order to accurately describe the dynamics of a robot manipulator submerged
in water, the model must take into account hydrodynamic and hydrostatic added
effects. Land-based manipulators, as was modeled in Chapter 4, operate in
air which is much lighter relative to the manipulator. Hence, environmental
contributions were ignored. In underwater applications, the impact of the
environment cannot be neglected [26]. The joint torques have to overcome
the added weight along with the hydrodynamic load induced by the relative
motion of the arm and the water. The expanded dynamics model for a multibody
system is usually decoupled into independently computed inertia, drag force, fluid
accelerations, and buoyancy, although these phenomena are strongly coupled
[26][64][40]. It is important to note that the theory of fluid dynamics is complex,
and it is challenging to develop a reliable model for most of the hydrodynamic
effects [1].

This chapter1 proposes a generalized method, by combining and modifying
methods from different studies and literature, for adding underwater effects to
the equations of motion, specifically directed at smolt production fish tanks. At
first, in Section 5.1 a couple of preliminary notations and a set of assumptions for
the computations will be presented. Section 5.2 explains the updated equations
of motion with added underwater effects. Lastly, Section 5.3, 5.4 and 5.5 presents
the suggested methods for calculating the added mass, drag forces and buoyancy
forces respectively.

5.1 Preliminary Notations and Assumptions

To create a hydrodynamics model of a system with multiple rigid bodies, it is
practical to focus on one link at a time. Individual focus on the links allows for
utilization of some of the general methods for single-bodied systems presented in
literature [19][1][33]. The body-fixed reference frames have axes x, y and z in line
with the DH-notation, with the corresponding angular movement q around the z-
axis. A reoccurring challenge is related to the combination of the DH-convention
with the underwater effects. Due to the highly three dimensional nature of these
effects, the use of DH-notations, with a main focus on the relative motion of the

1This chapter is completely new, and not based on specific chapters in the specialization
project thesis.
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links alone, will either require necessary alterations to the computations, or act
as an argument for simplifications.

Due to the complexity of fluid dynamics, a number of key assumptions are to be
made:

1. The robot manipulator is considered to be moving from a fixed based;
totally submerged in water at all times.

2. The links are approximated as circular cylinders with link specific mass,
radius and length values.

3. The current in the tank is assumed constant and irrotational in the base
frame of the manipulator [1].

4. The skin friction is assumed to be zero.

5. The water density is assumed to be ρ = 1000 kg/m3

Assumption 1 was based on the fact that calculating the hydrodynamic effects
on partially submerged bodies escalates the complexity within the dynamic
model [33]. Hence, to limit the scope, the thesis only considers fully submerged
bodies. In terms of assumption 2, it is common to model the links as cylinders
when working with hydrodynamics of underwater arms, because it represents a
manageable problem and it is close to the real world [38]. For assumption 5, the
water density will vary based on the water’s salinity and temperature. However,
as these variations are small, the water density is assumed to be constant. This
is a common assumption to make [1].

5.2 Dynamics for Underwater Rigid Bodies

For an underwater robot manipulator there are two additional sources creating
forces on rigid bodies. In the previously calculated land-based model, the only
forces included in the model were the internal mechanical forces together with
gravity. For the underwater environment, there are now added external forces.
This means the sum of generalized forces on the rigid links of the manipulator
becomes

τ = τhd + τhs︸ ︷︷ ︸
External

+τm (5.1)

where τhd are the hydrodynamic forces, τhs are the hydrostatic forces and τm are
the forces from the manipulator alone, as found in (4.1). The term hydrostatic
implies the force is not a function of the relative movement between body and
water [1]. Buoyancy is the only hydrostatic effect. The hydrodynamic forces are
due to the water motion, and there are multiple hydrodynamic effects to take into
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consideration. The resulting equations of motion with the added hydrodynamic
and hydrostatic forces, inspired by the works of [19], [1] and [33], is given by

Mm(q)q̈+Cm(q, q̇)q̇+MAq̈ +CA(q, q̇) +ND(q, q̇)︸ ︷︷ ︸
hydrodynamic forces

+Gm(q) +GB(q)︸ ︷︷ ︸
hydrostatic forces

= τ

(5.2)

where the matrices MA ∈ R6×6, CA ∈ R6×6 and ND ∈ R6×1 represent the
hydrodynamic added mass inertia matrix, added mass Coriolis and centripetal
terms, and the drag forces respectively. GB ∈ R1×6 is the buoyancy forces. Mm,
Cm and Gm are the same as in (4.1).

5.3 Added Mass Effects

When the manipulator components are accelerated in an underwater environment,
they create an additional hydrodynamic reaction force affecting the robot arm’s
movements. This effect is described by an added mass contribution. Besides,
since the added mass is proportional to the vehicle acceleration [42], it is
sometimes denoted as a virtual mass. The reaction force opposes the motion of
the manipulator. Therefore, the applied force from the actuators must overcome
the added inertia and the manipulators’ own inertia. The added mass effect
on the inertia is neglected for land-based robots due to the low density of air
compared to water [1]. Ultimately, the added mass will be a function of the
fluid density and the body’s surface geometry. The properties of the inertia and
Coriolis and centrifugal matrices will change accordingly.

Parts of the hydrodynamic effect on the robot manipulator’s inertia is compiled
in a matrix called the added mass matrix MA ∈ R6×6. For an ideal fluid
with low manipulator velocity, no currents or waves, and if assuming frequency
independent matrices [1][43], the Added Mass matrix is symmetric and positive
definite:

MA = MT
A > 0 (5.3)

Water is often assumed to have the properties of an ideal fluid. By approximating
the manipulator as a a chain of cylindrical shaped links moving in slow speeds,
the added mass contribution of link i can be approximated by [19]

MAi
= −diag{Xu̇, Yv̇, Zẇ,Kψ̇,Mφ̇, Nq̇}|i (5.4)

where
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Xu̇ = −0.1mi

Yv̇ = −πρr2
iLi

Zẇ = −πρr2
iLi

Kψ̇ = 0
Mφ̇ = − 1

12πρr
2
iL

3
i

Nq̇ = − 1
12πρr

2
iL

3
i .

Li, mi and ri are the length, mass and circular section radius of link i respectively.
The mass coefficients mentioned above are calculated by applying strip theory to
the cylindrical links [18]. Deriving the hydrodynamic effects, using strip theory,
benefit from the simplified geometric assumption on the links being cylinders.

As a result of the added mass having a restrictive effect on a rigid body’s
operational and rotational motion, it contributes to the Coriolis and centripetal
terms as well. Adopting the same approach as in Chapter 4, the Coriolis
and centripetal terms are found with the Christoffel symbols on the added
mass inertia matrix MA. However, since (5.4) is independent of the joint
angles, the added mass effect to the Coriolis and centripetal matrix would be
theoretically nonexistent. According to [19], a simplified hydrodynamic Coriolis
and centrifugal matrix for a single rigid body can be calculated based on the
constant terms of 5.4, the linear velocities, and the Euler-angle velocities. To
correlate these parameters in terms of the DH-convention makes for complex
computations with little benefit due to low manipulator velocity. Furthermore,
literature on underwater dynamics for manipulators tend to ignore this effect
[40][34][49][52][63]. In conclusion, the added mass effect on the Coriolis and
centripetal terms CA are set to zero.

5.4 Drag Forces

The drag force is a force on a body opposing its motion. When a manipulator
moves through water, the viscosity of the fluid causes damping effects in the
form of drag and lift forces. The drag force is a sum of two resistive fluid forces:
friction drag and pressure drag [62]. The direction of friction drag is collinear
to the body surface while pressure drag is parallel with the flow velocity. The
friction drag us usually neglected because its values tend to be small.

When calculating the pressure drag in water, a general formulation is given by
[43]

D = 1
2CDρAV

2 (5.5)

which involves the drag coefficient CD, the water density ρ, the projected area A
perpendicular to the flow direction, and the body velocity relative to the fluid V .
The velocity squared dependency is the dominant feature. The water density is
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normally set to 1000kg/m3. The drag coefficient is a value that summarizes the
complex dependencies of shape and flow conditions related to drag. The value
of the drag coefficient is sometimes assumed to be constant [33], other times it
is set to vary with the development of the flow conditions [38].

5.4.1 Previous Work

In scientific studies, the determination of the functional drag force on underwater
manipulators has been done using different methods, involving varying levels of
complexity in regards to the drag coefficient. Originally, studies seeking to model
the drag force on manipulators assumed a constant drag coefficient [40][33], or a
drag coefficient varying based on the angle of attack and the Reynolds Number
[49]. However, none of these papers were validated experimentally. McLain
[37] then proved experimentally that using constant coefficient values did not
result in an accurate model of the drag on a manipulator for a three dimensional
flow. The inaccuracy was mainly a result of how the fluid velocities form varying
pressure gradients along the length of each link.

Building on the work of McLain, [39] performed more detailed experiments
validating the use of a variable drag coefficient on a single link. The conclusion
was that the the drag coefficient of a cylinder is a function explicitly of how far the
the cylinder has traveled.In [31] the same model formulation based on distance
traveled was used, but with a two-linked manipulator, further emphasizing the
flow characteristics effect on neighboring links. The two-linked manipulator
showed that the drag is also a function of the angle between the two links. To
account for the flow in 3D, a standard strip theory approach was applied in all
the studies mentioned.

5.4.2 Computation of the Drag

Given the complexity of fluid flow and the difficulty of performing reliable
simulations, the drag computations must be consistently evaluated in terms of
possible approximations. Therefore the process towards tolerating the physical
inaccuracies of the drag coefficient by cause of computational complexity is
described initially. In the end, a proposed solution, based on the fluid flow angle
of attack, is presented.

Variable Drag Coefficient

Determining the drag force often involve approximations regarding the fluid
behaviour which means the level of abstraction in the model may vary. One of
the decisions to be made in terms of complexity, is whether to use a constant or
variable drag coefficient. By assuming the drag coefficient of a manipulator link
is not constant, but a function of how far the link has traveled, [37] proposes the
following drag force for a cylindrical link in 2D:
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FD = Cd(s/D)1
2ρDU

2 (5.6)

where ρ is the water density, CD is the drag coefficient, s is the link’s displacement
from its initial resting position, D is the diameter of the link and U is the velocity
of the link. The ratio s/D represents the distance travelled based on the link
diameter.

Using strip theory, the analysis can be extended to three dimensions. The strip
theory approach is depicted in Figure 5.1 a model that accurately describes the
drag force on a segmented part of the link is represented on the form:

dFDi
= Cdi

(liθ/D)1
2ρD|U |Udl (5.7)

where dl is the length of the link segment. The distance traveled of the ith
segment is due solely to rotation about the current link-frame: si = liθ.

Adding the contributions from each of the segmented parts of the link results in
the total drag force:

Fd =
n∑
i=1

dFdi
(5.8)

where n is the number of segments used in the model.

The progressive development to model the drag force, even with simplifications,
results in a relatively high level of complexity for a single link system. This
is exemplified in [38], where the variable drag coefficients are simplified even
further to what is labeled as average coefficient functions. Still a function of
the distance travelled by the link. The level of complexity is elevated all the
more for a manipulator with multiple DoF. A legitimate assumption to lower
the computational demand, for complicated manipulators in particular, is to use
a constant drag coefficient.

Proposed Solution Based on Angle of attack

The drag force is proportional to the squared relative velocity, and the velocity
value is therefore a decisive component when calculating the drag. In general,
an accurate account for the relative velocity is based on the angle of attack αd
of the flow velocity UF on the body (see Figure 5.2a) [11]. By rewriting the
general formula (5.5) to

FD = 1
2CNρU

2lD, (5.9)
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Figure 5.1: Diagram of Strip-Theory Implementation

where D is the link diameter and l is the link length, it is possible to decompose
the relative velocity U to the normal and tangential directions (see 5.2b). CN
is a notation used to illustrate that the drag will generate a force normal to
the link’s axis. Since the current is assumed to be constant and irrotational,
it is possible to decompose the relative velocity V the relative velocity to the
normal and tangential directions: U = [Ux Uy Uz]T . Applying the cross-flow
principle [33] the value of the coefficient becomes

CN = CD sin2 αd. (5.10)

For simplicity, the function arguments of the drag coefficient CD are omitted.

The calculation the total drag force on each link, is based on the algorithm
proposed by Lévesque [33]. A modified version of the algorithm is presented
in the Appendix A.1. The computations involve a secondary local system of
orthonormal unit vectors dL, eL and hL (see Figure 5.2a). The main purpose
of the secondary system is to standardize the geometric definitions of every link
due to the fact that the current DH representation of the link motions is directly
associated with the specific joints, and so are the coordinate frames. Thus, the
benefit of the unit vectors is to be used as reference axes when determining
the direction of the resulting drag force on the link (perpendicular to the links
longitudinal axis dL). Figure 5.2b includes the X, Y and Z axes corresponding
to the stationary base frame of the manipulator as a reference.

An important part of the algorithm is to determine αd for each link, which is
computed with regard to the direction of the flow with respect to the link (the
direction of U). This requires the unit vector dLi along the link’s longitudinal
axis, in the local coordinate frame, as depicted in Figure 5.2a. Most robot
manipulators have a rotational joint rotating around the vertical direction. Thus,
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the longitudinal unit vector of the first link becomes dL1 = ez =
[
0 0 1

]T .
Building from the first link, it is then possible to determine dL for the remaining
links according to the following deduction

idLi = Ri
0

0dLi

= R0T
i

0dLi

:⇔ RT
i

i−1dLi

(5.11)

where the rotation matrix property of R−1
i = RT

i has been applied and Ri is
the the description of the orientation in Ai (see (3.3)). The leading subscript is
used to underline the local coordinate system of the variable.

The angle of attack αd can then be computed based on the relation:

cosαd = |u · dL| (5.12)

where αd is the acute angle between the axis of the link and the direction of the
flow relative to this link, given by the unit vector u = U/

√
U2.

Referencing the strip theory depicted in Figure 5.1 the drag force can be found for
each strip, similar to (5.7). For strip j on link i, the following force calculations
are then performed:

dFij = 1
2(ρCNijU

2
ijDidli)cij (5.13)
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where cij =
[
ch ce cd

]T represents the direction of the resulting drag force
on the link (perpendicular to the link’s longitudinal axis):

ch = (u · hL)/c, (5.14)
ce = (u · eL)/c, (5.15)

cd = 0, (5.16)

c = arccos π2 − αd . (5.17)

The resulting torque force on strip j is given by

dNij = rij × dFij (5.18)

where rij is the length between strip j and the center of mass of link i.

In the end, the total force torque over the link length is then found by adding
the contributions of all the strips such that

NDi =
nLi∑
j=1

dNij . (5.19)

where nLi
is the chosen number of strips.

Current Effects

Any current affecting the movements of a robot manipulator can be included
in the equations of motion through the relative velocity vector U . For an
underwater vehicle the effect of a small current has to be considered also in
structured environments such as a pool [2]. The current is an external disturbance
and can be set to affect all the terms in the dynamics of an underwater vehicle
[18], but here it will be assumed to only affect the drag forces on the manipulator.
This is essentially due to the low manipulator velocities combined with the
directly coupled effect on the drag and its velocity squared dependency. For a
robot manipulator, its motion velocities are usually small such that that drag
values are almost negligible. However, as the drag forces are dependant on the
relative velocity of body and fluid, with current velocities of significant value,
the hydrodynamic effects might have a much larger impact on the dynamics of
the manipulator system.

Smolt tanks are by design induced with a current in order to create an optimal
environment for the fish. An optimal flow domain in culture tanks is vital for fish
growth and welfare [60]. With fish present, different recirculation aquaculture
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systems (RAS) tank was proven to have water rotational velocities of maximum
40 cm/s and minimum of 25-26 cm/s [22]. The tanks also exhibited a relatively
uniform water velocity field in the vertical water column. For the computations
it is helpful to simplify the current as constant and irrotational. No real flow
is irrotational. It is essentially a way to simplify the flow fields and make the
calculation of fluid dynamics solvable [19].

Neighboring Links

Even though not taken into consideration in this thesis, it is worth to briefly
mention how neighboring links affect the drag on each other. For a robot arm
with multiple links, the joint torque values from the drag force on one link is
affected by the flow characteristics of all the links that follow up to and including
the end-effector. Therefore, the joint angles of the neighboring links will have an
effect on the drag force of all the links that are not the last link [31].

5.5 Buoyancy

Buoyancy is the resultant force caused by the hydrostatic pressure acting on
a submerged robot arm. When submerged, the links of the arm is affected by
hydrostatic forces acting on all surfaces in contact with the water. The forces
acting on the sides tend to cancel each other out as they are equal and opposite.
However, in the vertical direction, the magnitude of the pressure increases with
depth. Thus, due to higher hydrostatic forces pushing from below there is a
resultant force in the upward direction called buoyancy. Buoyancy forces work
against gravity and are directed upwards. This is the only hydrostatic effect on
an immersed manipulator [1].

The value of the buoyancy force is proportional to the volume of the water
displaced by the link. For a single link of the manipulator, this means the
buoyancy is highly dependant on the volume of its fully or partially immersed
body. The buoyancy of a fully immersed link is given by

B = ρgV (5.20)

where ρ is the water density, g is the gravitational acceleration and V is the
link volume. Similar to how the gravity force acts on the center of mass, the
buoyancy force acts in the center of buoyancy.

Calculation the buoyancy force and the equivalent joint torque is done relative to
the base frame, with R0

i describing the orientation [13]. The z-axis of the base
frame is assumed stationary, and always has a z-axis in the upward direction.
Thus, the buoyancy is of positive value, opposite of gravity found in (4.17). If
the center of buoyancy for link i is denoted as rbi =

[
xb yb zb

]T the buoyancy
force is given by
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FBi = ρgVi

[
R0

i ez

rbiR
0
i ez

]
(5.21)

where ez =
[
0 0 1

]T and rBi is the position vector of the center of buoyancy
with respect to the origin of frame i. The total effect of the buoyancy on link i
is then found as

GBi = JT
i (q)A0

i (q)FBi(q) (5.22)

where J =
[
Jv Jω

]T is the manipulator Jacobian. It is worth mentioning
that if the center of buoyancy does not coincide with the center of gravity, the
buoyancy forces may add a rotational motion depending on the relative size of
the two forces.
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Chapter 6

Positional Control of Robot
Manipulators

With the ensured derivation of the underwater equations of motion and kinematics
for the robot manipulator, designing a motion control algorithm is a legitimate
next step. A robot manipulator is essentially a positioning device. The process
of positioning the end-effector is decided by the actuator forces in each joint. The
end-effector position is therefore a multi-variable problem based on the actuator
forces. Coupled with the manipulator control system, is usually the trajectory
planner with the ability to design trajectories that generates the reference points
for the control system to follow.

The rest of this chapter1 is presented in a sequential order, opening with the
establishment of the input reference values from the trajectory planner (Section
6.1) followed by the control system setup using, with a special focus on Inverse
Dynamics Control (Section 6.2). In the last section, a set of alternative control
techniques are briefly discussed (Section 6.3).

6.1 Trajectory Planning

The main objective of the trajectory planner is to provide reference values for
the position control system. The reference values are often either assigned for a
point-to-point motion or a motion made by a sequence of points. If the goal is to
go from an initial to a final point, how the trajectory planner gets there, is decided
by the technique for generating the trajectory. The same concept applies when
provided a sequence of points; the only difference is that multiple points result
in shorter distances for each motion. Thus, when the circumstances demand
more control of the motion, e.g., to avoid obstacles, a solution can be to add
more waypoints to the path. This is obviously more computationally demanding.
Moreover, the extra reference values inherently affect the computational demand
in the control system as well. Note that trajectory planning is distinct from path
planning in that it is parametrized by time.

Trajectory planning is not just about going from A to B, but to a greater extent
about how to get there. One of the first design choices is regarding whether to
generate a trajectory in the joint-space or configuration-space. The configuration-
space suggests the waypoints are described by the pose of the manipulator. At

1This chapter is completely new, and not based on specific chapters in the specialization
project thesis.
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the same time, the joint-space configuration implies waypoints described directly
by the joint positions (angles or displacements depending on the joint type).
In terms of model complexity, compared to the joint-space, the configuration-
space method is much more demanding due to the computation of the inverse
kinematics for every change in the manipulator’s joint positions, especially for
optimization-based inverse kinematics solvers. The configuration-space solution
tend to provide a smoother and more "natural" motion from A to B. [6].

A next step towards a constructing trajectories between two configurations is to
specify the dynamic aspects of the motions. For a generated trajectory there
are always constraints on the motion. The starting- and end-point are the most
obvious constraints, but there are more. For example constraints on the initial
and final velocities, and accelerations. For the end-point, the final velocity is
typically set to zero. However, if a waypoint is the middle of a sequence of
points, zero velocity is not necessarily needed. These constraints are usually
dependant on the specific task given to the manipulator. Nevertheless, there are
infinitely many trajectories that will satisfy a finite number of constraints on
the waypoints.

There are various techniques to interpolate the joint configuration or pose over
time. Due to the infinite number of possible, it is common practice to choose
trajectories from a finitely parameterizabel family [57]. One such family is the
polynomial approach where a polynomial of degree n − 1 generates a smooth
curve satisfying n constraints based on n independent coefficients that are to
be chosen. One example is the quintic polynomial trajectory which require a
fifth order polynomial to satisfy six constraints [57]. Other employed trajectory
methods are:

The trapezoidal velocity method [57][6] (also called the LSPB method)
based on linear segments with parabolic blends with a trapezoidal velocity
profile.

The cubic splines method [46] based on optimized cubic spline
interpolation.

The B-splines method based on fifth-order B-spline interpolation [16].

The remaining question is about which trajectory planner to choose. The answer
to this is typically dependant on the type of task the robot manipulator is set to
do. Still, a rather generalized comparison of three promising methods (quintic
polynomials, cubic splines and fifth-order B-spline) was performed by [17]. The
conclusion was that the fifth-order B-splines method yielded the optimal results
with the least amount of jerk. The jerk value is defined as the derivation of
acceleration. Lower jerk values implies smoother movements by the manipulator.
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Whichever trajectory planer is chosen, its output is typically represented as qd,
q̇d and q̈d because they represent the desired joint variable. A more detailed
description of how a control system may be designed to use this reference value,
follows in the next section.

6.2 Control System

The control system for the joint space control problem allows for the actual
manipulator motion q to track the reference input qd. Similar to the trajectory
planner, the position control system can be based on either the joint space the
the configuration space. In this section, the main focus will be on the joint space
control. To successfully control a manipulator, the time history of the generalized
forces τ on the joint actuators has to be determined as to guarantee execution
of the given task while satisfying transient and stead-state requirements [53].
The generalized forces are contingent on the manipulator’s dynamic properties
in order to know how much force has to be exerted for the desired position.
Too little force and the manipulator will be slow and sluggish; too much force
and the arm will crash into objects in its path and may end up oscillating
about its desired position, or become unstable. In order to track a desired joint
trajectory accurately, the controller has to be capable of removing the potential
disturbances as well.

For a control scheme to be beneficial for an underwater manipulator it must be
able to cope with the highly nonlinear, time varying and uncertain dynamics
as presented in Chapter 4 and 5. Robot manipulators are inherently nonlinear
systems. Hence, linear PID or PD control methods are not suitable mainly due
to their lack of effectiveness and robustness to the uncertainties and disturbances
to be accounted for. The result is poor dynamic accuracy when trajectory
tracking comes into play and the dynamic performance of the manipulator varies
according to its configuration [25]. To have any success with a PID controller, the
system needs a decentralized control scheme. This type of manipulator control
strategy is based on individual control of each joint axis. Another way to control
an underwater manipulator is to use a nonlinear centralized control scheme,
which takes advantage of the dynamics model by eliminating the nonlinearities
[53]. One conventional method to overcome the nonlinearities of the system is
the Inverse Dynamics Controller (IDC) method [57][53]. This method has also
been specifically adopted for underwater robot manipulators [50].

6.2.1 Inverse Dynamics Control

IDC is a nonlinear control technique which provides trajectory tracking by
calculating the required joint actuator torques to achieve a given trajectory
[53][57] .The main idea is to linearize a nonlinear system using a nonlinear
feedback based on the inverse dynamics. The result is an exact linearization of
the robot dynamics [53]. This is possible due to how the manipulator dynamics
are arranged. Because the inertia matrixM is of full rank and invertible for any
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manipulator configuration[57]. Considering the previously covered underwater
dynamic equations of an n-link robot (5.2):

u = M(q)q̈ + n(q, q̇) (6.1)

where u = τ is the control law for the actuators,M is the sum of the manipulator
inertiaMm and the added-mass inertiaMa, and n(q, q̇) is the remaining terms.
To establish the linear closed loop system, the nonlinear control law is chosen as
[57]

u = M(q)aq + n(q, q̇) . (6.2)

A proposed controller design based on the IDC fundamentals, is depicted in
Figure 6.1. This control architecture consists of of an inner and outer loop. The
function of the inner loop is to obtain the linear and decoupled input/output
relationship, whereas the outer loop is there to stabilize the overall system [53].

Trajectory 
Planner

Linear 
Controller

Nonlinear 
Compensation

Robot  
Manipulator Model

𝐪𝐝 𝐪̇𝐝 𝐪̈𝐝 𝐪 𝐪̇
𝐚𝐪 𝐮 = 𝛕

Linearized System

Figure 6.1: Basic inner/outer loop Inverse Dynamics Control architecture.

The linearized system is then described by the new input q̈ = aq which is chosen
to be

aq(t) = −K0q(t)−K1q̇d + r(t) . (6.3)

r(t) is the chosen reference input consisting of the desired joint angles qd,
velocities q̇d and accelerations q̈d :

r(t) = q̈d(t) +K0qd(t) +K1q̇d . (6.4)

Finally, with the proceeding tracking error e(t) = q − qd , the complete form of
the input for the combined system is given by

46



Control System

aq(t) = K0(qd − q) +K1(q̇d − q) + q̈d. (6.5)

The resulting system is indeed linear, as well as decoupled [57]. A further detailed
version controller design depicting the detailed computations, is shown in Figure
6.2.

Trajectory 
Planner

Robot  
Manipulator Model

𝐪

𝐪̈𝐝

𝐮

𝐪̇

  𝐧(𝐪, 𝐪̇)

  𝐌(𝐪)

+

  𝑲𝟎

  𝑲𝟏

𝐚𝐪

𝐪̇𝐝

𝐪𝐝 − 𝐪

𝐪̇𝐝 − 𝐪̇

𝐪𝐝

Nonlinear Compensation

Linear Control
+

+

−

+

+
+−

+

Linearized System

Figure 6.2: Expansive and detailed Inverse Dynamics Control architecture.

Performance

The inverse dynamics approach is a good foundation and beneficial for further
work with position control on a manipulator, including more advanced methods.
From a control viewpoint. the IDC approach is described as attractive [53],
extremely important [57], and even the perfect [23] approach for robot applications.
For a manipulator, the technique is attractive due to the resulting linearized
and decoupled system which allows for well-known linear control methods.
Additionally, from already determined dynamic equations, the process of setting
up the IDC system is relatively straightforward even for a complex manipulator.
Accordingly, for manipulator systems with detailed information about the model
parameters involved, IDC is a functional robust controller for which variations
in robot parameters do not affect performance [4]. In other words, it is capable
of removing disturbances and other uncertainties for a well modeled system.

Even though the IDC system has multiple advantages, the IDC approach also has
its limitations, particularly for unpredictable physical systems. The technique of
nonlinear compensation and decoupling is based on the assumption of perfect
cancellation of the dynamic terms. Perfect cancellation is rarely a luxury when
talking about the relationship between the modelled and the real-world system.
This is mainly due to mathematical suppositions and uncertainties. Therefore,
the implementation of the IDC first and foremost requires that the parameters
related to the system dynamics are accurately known. Additionally, a complete
form of the equations of motion is to be known, considering any external
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disturbances of significant value. These conditions are difficult to achieve and
thus raising questions regarding the robustness of the control system. Specifically,
regarding imperfect knowledge of manipulator mechanical parameters or external
disturbance parameters, and model dependence on end-effector payloads is not
exactly known and thus not perfectly compensated. Apart from the model
specific limitations, the IDC has two major faults in regard to the control system
response. One is that the transient state response of the system is insufficient,
and secondly the overall response of the system is very slow.

From an implementation viewpoint, as for any control technique, there is a list
of advantages and disadvantages to be considered. In modern control theory, a
nonlinear control system can be solved using several available control approaches.
Adopting the IDC system is still a candid method to observe the manipulator
system, and perhaps as a basis of choice for increasingly complicated control
schemes.

6.3 Alternative Control Algorithms

The IDC control scheme lacks the adequate robustness because it is sensitive to
time varying and uncertain model parameters and external disturbances. The
parameters needs to be known exactly. There are however alternative control
algorithms with focus on a robust and adaptive control to maintain performance
despite parametric uncertainties [53]. A robust controller is a fixed controller,
static or dynamic, designed to satisfy performance specifications over a given
range of uncertainties whereas an adaptive controller incorporates a type of
on-line parameter estimation [57]. These two types of controllers does well at
counteracting different types of uncertainties, and therefore can be combined for
improved results. A robust controller counteracts the uncertainties regarding the
model approximations and an adaptive controller will try to adapt the model to
the real underwater manipulator dynamics.

In literature there are various control algorithms proposed for underwater
manipulators specifically. A robust controller is proposed by [32] combining a
computed torque controller and a sliding mode controller (SMC) with a neural
network controller acting as a compensator, maintaining the control performance
when the initial uncertainty assumptions cease to be valid. Another example is
[21] which involves a disturbance observer controller that simplifies the complex
model into a system with disturbance error, and a non-regressor based adaptive
controller designed according to the new model. In [55] there are summaries of
even more examples of proposed control algorithms for underwater manipulators.
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Chapter 7

Mathematical Modelling

This chapter1 involves the mathematical modelling derivation of the Bravo 7
based on the material in Part II. Section 7.1 describes important information
details provided by Blueprint Lab. Then Section 7.2 and 7.3 presents the forward
and inverse kinematics solutions. In the end Section 7.4 describes both the
land-based and underwater dynamics models.

7.1 Bravo Reach 7

Blueprint Lab is the company behind the Reach Bravo 7, a robot arm released in
2020 [28] designed to conduct inspection, maintenance and repair tasks typically
reserved for human divers in subsea operations [30]. This section involves a
description of available information about the Bravo 7 used in this thesis as
well as some schematics used in the mathematical modelling. The information
available from Blueprint Lab is added to the delivery file of the this master thesis,
see Appendix B for more information. The documentation was of particular
interest as it included the kinematic, dynamic and hydrodynamic properties.

7.1.1 System Description

The Bravo 7 is described as a "7-Function" robot manipulator, which is another
way of saying it has seven DoF. More specifically, the Bravo 7 has a total of
six revolute joints making up the first six DoF. The seventh DoF makesup
the end-effector and its ability to grasp objects or perform other tasks with
different tools attached. The schematics in figure 5.1 shows the position of the
six joints and their possible rotational movements. In figure 7.1a coordinate
frames are added at each joint ({0} − {5}). The last two coordinate frames
{6} and {7} describes the beginning and end of the end-effector tool. All the
actuators includes electric motors.

Some important features from the datasheet related to operating in smolt tanks:

1. All-electric motors, zero oil: This is important to avoid the risk of
possible oil contamination into the smolt tank.

2. Task specific end-effectors: Allows the ability to change end-effector
based on the task at hand, e.g, for picking up fish or washing the tank
walls.

1Sections 7.1, 7.2, 7.3 and 7.4.1 are based on the specialization project thesis, but the
content is improved and elaborated. Section 7.4.2 is new.
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3. High mobility and compactness: Is important for work in a
dynamically changing environment such as smolt tanks. Additionally,
a smaller size is advantageous to reduce the change of scaring the fish (as
mentioned in the introduction).

4. Specifically designed for UUVs: Due to a reach of only 0.9 meters,
attaching the Bravo 7 to an UUVs will be necessary to make it useful in a
big smolt tank.

(a) Schematics of Bravo 7 with added
coordinate frames (from Bravo 7 docu-
mentation, see Appendix B).

(b) Schematics of Bravo 7 showing possi-
ble joint movements (from Bravo 7 data
sheet, see Appendix B))

Figure 7.1: Two different schematics of Reach Bravo 7 from Blueprint Lab.

7.1.2 Denavit Hartenberg Parameters

The documentation from Blueprint Lab provides a DH-table consisting of the
DH-parameters. By examining how the the parameters are presented in the
table, it may be confirmed that it is based on the distal variant version of the
DH-convention. This is is an important observation as to avoid confusion when
working with the forward kinematics. Another thing to take notice of, is the
added constant values to the three first joint variables. The constants are added
for the chosen zero-configuration, meaning the configuration where all joint
variables are set equal to zero. The zero-configuration is visualized using the
Peter Corke Robotics Toolbox for MATLAB [7] in Figure 7.2.

7.2 Forward Kinematics

The computation of the forward kinematics for the Bravo 7 is based on the
material from Section 3.1.

7.2.1 Kinematic Diagram and Denavit Hartenberg Table

Following the preliminary rules and frame rules of the DH-convention in Section
3.1.2, a kinematic schematic of the Bravo 7 is depicted in Figure 7.3. The
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Reach Bravo Kinematics and Dynamics

Blueprint Lab

August 2020

1 Kinematics

Link d (mm) θ a (mm) α
0 107.4 θ0 + π 46.0 π/2
1 0.0 θ1 − π/2 + θa 293.6 0.0
2 0.0 θ2 − π/2− θa 40.8 −π/2
3 -160.0 θ3 40.8 −π/2
4 0.0 θ4 40.8 −π/2
5 -223.5 θ5 0.0 π/2
6 0.0 −π/2 120.0 0.0

Table 1: Standard DH Parameters for Bravo 7 where θa = tan−1
(

5.2
293.55

)

Figure 1: Bravo 7 joint frames (x,y,z)

1

Table 7.1: Distal variant DH-table for Bravo 7 where θa = tan−1( 5.2
293.55 ) (from

Bravo 7 documentation, see Appendix B)

Figure 7.2: Bravo 7 zero-configuration visualization using Peter Corke Robotics
Toolbox [7].

kinematic schematic was created based on the DH-table 7.2. The DH-table in
table 7.2 is similar to table 7.1, but with a couple of alterations. The numbering
of the links are not the same, i.e. link 0 is changed to link 1 and so on. This is
according to personal preference and is the same convention as the one used in
[57]. Another alteration is regarding the joint variables. The joint variables are
set as qi instead of θi .

Link di [m] q୧  [rad] 𝑎௜ [m] αi [rad]

1 0.1074 q1 + π 0.046 π
2ൗ

2 0 q2 − π
2ൗ + θa 0.2936 0

3 0 q3 − π
2ൗ − θa 0.0408 − π

2ൗ

4 - 0.160 q4 0.0408 − π
2ൗ

5 0 q5 0.0408 − π
2ൗ

6 - 0.2235 q6 0 π
2ൗ

Table 7.2: Altered DH table directly based on figure 7.3, without tool length.
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107.4

1.

40.8

0.

293.6

X Y Z  |  [mm]

2.

120.0
Link 1

Link 2

Link 6

223.5

6.

4.

3.

5.

Link 3

Figure 7.3: Kinematic schematic of Reach Bravo 7 in its zero-angle configuration
(not made up to scale).

7.2.2 Forward Kinematics Solution

As mentioned in section 3.1, when the DH-table is complete it is possible to
form the forward kinematics solution from the base frame to the far end of
any of the links directly from the table. The solution comes in the form of a
transformation matrix. Table 7.2 does not include the end-effector (of length
120mm) which means the forward kinematics solution from link 0 (the base) to
link 6 becomes T 0

6 (q). The joint variables are defined based on Table 7.2 to be
q = [q1, q2, q3, q4, q5, q6]T .

T 0
6 (q) = A1A2A3A4A5A6 =


r11 r12 r13 x0

6
r21 r22 r23 y0

6
r31 r32 r33 z0

6
0 0 0 1

 (7.1)

The transformation matrix in (7.1) is too big and complex to be added here, even
in its simplest symbolic form. A1 · · ·A6 are the homogeneous transformation
matrices expressing the pose of each frame with respect to its preceding frame.
The matrices are in their simplest symbolic form. In the terms of table 7.2, the
symbols are simplified as ci = cos(θi) and si = sin(θi) and the variable values
can be inserted directly from the table. See B for the forward kinematics Matlab
function file.

7.3 Inverse Kinematics

Due to the structure of the Bravo 7 robot, the solution to the inverse kinematics
problem is a complex and comprehensive affair. The geometrical structure of the

54



Dynamics Model

Bravo 7 is complicated compared to other robot arm configurations because of
its non-straight links. Furthermore, it has no spherical wrist and . As mentioned
in section 3.2, a spherical wrist simplifies the derivation of the inverse kinematics
and there is a lower probability that an analytical solution exists.

Even though a numerical solution was most likely the only possibility for the
Bravo 7 manipulator, a geometrical an algebraic solution were attempted. For
the geometrical method, finding a solution for the three first joints was possible,
but challenging due to the the non-straight form of link 1. Going further than
three joints was deemed unattainable. An algebraic solution was attempted
by using the IKBT (Inverse Kinematics Behavioural Tree) method, which is a
framework created for automatic inverse kinematics solving [65]. However, a
solution were only found for a maximum of four joints. The framework is also
made for manipulator with a spherical wrist, thus making the validity of the
solution questionable. In the end a numerical optimization approach was chosen
which involved the same mathematical formulation as presented in Section 3.2.2.
The Matlab function used the fsolve function from the Optimization Toolbox
[45] with the Levenberg-Marquardt algorithm, a nonlinear least-squares algorithm
solver [59].

7.4 Dynamics Model

This section explains the procedure that was used to develop the Matlab code
for the dynamics model both with and without underwater effects. The base
model is presented first, and then the underwater effects are added.

7.4.1 Land-based Dynamics

The Euler-Lagrange approach for determining the land-based dynamics model
was derived in Chapter 4. Section 7.2 then showed the method for calculating the
transformation matrix with forward kinematics for Bravo 7. The transformation
matrix and some additional parameters from the Blueprint Lab documentation
were used for finding a symbolic representation of the land-based dynamic model
in this section. All the required parameter values was found in Table 7.3. Because
the table is from the Blueprint Lab documentation, the link numbering is shifted
compared to Figure 7.3. Thus link i in the table is equal to link i + 1 in the
computations.

Kinetic Energy

The kinetic energy of Bravo 7 was computed by first determining the inertia
matrix using the velocity Jacobians, inertia tensor, rotation matrix, joint variable
and mass of all the links. The mass and inertia tensors are constants found in
Table 7.3. As the robot only consists of revolute joints, the velocity Jacobians
were computed the same way for every joint, see equation (4.3) and (4.4). By
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Table 7.3: Inertial properties for Bravo 7 from the Blueprint Lab documentation
(link 7 is for interlocking jaws in the closed position)

reference to (3.1), (3.2) and (4.5), the velocity Jacobian and rotation matrix
were found from the transformation matrix for each link as presented below.

Link 1

The transformation matrix T 0
1 is used to find:

Jv1 = z0 × (o6 − o0) (7.2)

Jω1 = z0 (7.3)
R1 = R0

1 (7.4)

o0 = [0, 0, 0]T and z0 = [0, 0, 1]T .

Link 2

The transformation matrix T 0
2 is used to find:

Jv2 = z1 × (o6 − o1) (7.5)

Jω2 = z1 (7.6)
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R2 = R0
2 (7.7)

Link 3

The transformation matrix T 0
3 is used to find:

Jv3 = z2 × (o6 − o2) (7.8)

Jω3 = z2 (7.9)

R3 = R0
3 (7.10)

Link 4

The transformation matrix T 0
4 is used to find:

Jv4 = z3 × (o6 − o3) (7.11)

Jω4 = z3 (7.12)

R4 = R0
4 (7.13)

Link 5

The transformation matrix T 0
5 is used to find:

Jv5 = z4 × (o6 − o4) (7.14)

Jω5 = z4 (7.15)

R5 = R0
5 (7.16)

Link 6

The transformation matrix T 0
6 is used to find:

Jv6 = z5 × (o6 − o5) (7.17)

Jω6 = z5 (7.18)

R6 = R0
6 (7.19)

With the computed Jacobians ready, the inertia matrix for each link was
computed as in (4.8), making it possible to find the kinetic energy by using
(4.11)
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Potential Energy

The computation of potential energy only depends on the mass, the center of
mass and the gravitational acceleration. The coordinate vector for the center of
mass for every link was found in Table 7.3. This coordinate vector is in reference
to the link frame and not the reference frame. Thus, the coordinate vector rci

in 4.15 had to be transformation from the link frame to the base frame as done
below.

rc1 = r0
c1

= R0
1r

1
c1

(7.20)

rc2 = r0
c2

= R0
2r

2
c2

(7.21)

rc3 = r0
c3

= R0
3r

3
c1

(7.22)

rc4 = r0
c4

= R0
4r

1
c4

(7.23)

rc5 = r0
c5

= R0
5r

5
c5

(7.24)

rc6 = r0
c6

= R0
6r

1
c6

(7.25)

The potential energy was then computed as in (4.15) where g0 = [0, 0,−9.81]T .

Land-based Equations of Motion

The symbolic equation for the equations of motion (4.1) with q, q̇ and q̈ as
input variables, required the inertia matrix M , centrifugal and Coriolis terms
matrix C, and gravity vector G to be computed first. The inertia matrix was
calculated as a result of the kinetic energy, which leaves C and G.

Calculating the gravity vector is straight forward. Every vector input is a
partial derivative of the equation for potential energy with respect to the general
coordinates q. For bravo 7 this means that the gravity vector becomes

G =



∂P
∂q1

∂P
∂q2

∂P
∂q3

∂P
∂q4

∂P
∂q5

∂P
∂q6

.


(7.26)

The centrifugal and Coriolis terms matrix is not as straight forward to calculate.
It requires the Christoffel symbols to be found for all the links. The element of
row k and column j of matrix C is found according to (4.24).
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Ckj = 1
2

6∑
i=1

{∂Dkj

∂qi
+ ∂Dki

∂qj
− ∂Dij

∂qk

}
q̇i (7.27)

With G and C readily calculated, the left side of the equations of motion (4.1)
is completed

7.4.2 Underwater Dynamics

The computation of the underwater dynamics for Bravo 7 was done based on
the material introduced in Chapter 6 with the assumptions listed in Section 5.1.

Added Mass Effects

The added mass for link i was computed as in equation (5.4), with the length and
mass for the approximated circular cylinders as the only link specific inputs. All
links were assumed to have a diameter of D = 80 mm based on the information
in the Bravo 7 data sheet. The water density was set to ρ = 1000kg/m3.
Furthermore, the link lengths were based on the DH-table where L1 = 107.4 mm,
L2 = 293.6 mm, L3 = 40.8 mm, L4 = 160.0 mm, L6 = 40.8 mm and L6 = 223.5
mm. At last, the mass of each link was found in Table 7.3. When the added
mass matrix MAi was determined for each link, the total added mass effect on
the inertia of the Bravo 7 was found as

MA =
6∑
i=1

MAi . (7.28)

Drag Forces

The drag force computations were based on the presented material in Section
5.4. As previously indicated, the drag force is a complex variable to model,
meaning the numerical computation time during simulation had to be taken
into consideration. The computation time is very much dependent on the
number of strips used as well [33]. The simulation time of the Bravo 7 were
already computationally demanding, without any underwater effects considered.
Therefore, the drag forces were modeled assuming a constant drag coefficient
of CD = 1.1 which is a typical value for cylinders [38], and with the number
of strips set to nLi = 10. The drag force was then computed following the
algorithm in Appendix A.1. The current velocity UF was set as a variables that
allowed for simulations of varying conditions. The output of the algorithm was

NDi =
10∑
j=1

NDi (7.29)
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where NDi =
[
NDx

NDy
NDz

]T
i

consists of its vector force components
according to the local link frame. Due to the equations of motion in (5.2) being
simplified as a total force on each joint, the resulting drag force was converted
into its resultant force torque:

NDi =
√
N2
Dx

+N2
Dy

+N2
Dz

(7.30)

Hence, the addition to the equations of motion for the Bravo 7 manipulator was
set to

ND =
[
ND1 ND2 ND3 ND4 ND5 ND6

]T (7.31)

Buoyancy

The computation of the buoyancy forces were based on the presented material
in Section 5.5. The general buoyancy force for the links of the fully immersed
Bravo 7 was calculated as

Bi = ρgzVi . (7.32)

The water density ρ was the same as used for the added mass and the gravitational
acceleration was set to gz = 9.81m/s2. The volume was the only link specific
value, and was provided by the Bravo 7 documentation in Table 7.4.

Table 7.4: Hydrodynamic properties for Bravo 7 from the Blueprint Lab
documentation.

To calculate the specific buoyancy force relative to the base frame, in the z-
direction, both the rotation matrix and the center of buoyancy of each link
was required. The rotation of each link was previously found in the forward
kinematics solution (Section 7.2.2), where the rotation matrix for link i R0

i is
from T 0

i . The center of buoyancy rb is given by the Bravo 7 documentation,
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see Table 7.4. The calculation of the buoyancy force for each link was then
computed as according to (5.21) and the equivalent joint force torque according
to (5.22). Similar to the drag forces, the resulting buoyancy forces for each link
was set to the resultant force torque value:

GBi
=
√
G2
Bx

+G2
By

+G2
Bz

(7.33)

At last, the addition to the equations of motion for the Bravo 7 manipulator was
set to

GB =
[
GB1 GB2 GB3 GB4 GB5 GB6

]T (7.34)

Equations of Motion with Added Underwater Effects

Setting up the equations of motion with added underwater effects was done
according to (5.2). Due to the added mass Coriolis and centripetal terms being
neglected, only the added mass inertia matrix, the drag forces and the buoyancy
forces were added to land-based model for form the underwater dynamics model.
All the mentioned matrices were computed already, thus resulting in a complete
dynamics model on the following form:

M(q)q̈ +C(q, q̇)q̇ +N(q, q̇) +G(q) = τ (7.35)

where

M = Mm +MA

C = Cm

G = Gm +GB

N = ND

The Matlab script for setting up the symbolic expression is added among the
delivery files, see Appendix B.
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Simulation Setup

8.1 Inverse Dynamics Control in Simulink

To perform the positional control of the Bravo 7, the IDC was chosen to track the
desired trajectories. Simulations for testing the system performance of the IDC
system with and without added underwater effects on Bravo 7 was performed
in Simulink [9]. An image of the Simulink setup is provided in Figure 8.1 and
the Simulink file is among the delivery files (see Appendix B). The setup is very
similar to the one presented in Figure 6.2 with similar color codes to enhance
the system setup correlation to the theoretical model.

Figure 8.1: Inverse Dynamics Control setup in Simulink.

8.1.1 Trajectory Planner

For the trajectory planner, various techniques were tested. This was made
possible due to the Robotics System Toolbox for Simulink [9] with added
trajectory planner blocks. The possible trajectory planners were based on
the trapezoidal velocity, cubic splines and B-splines methods. Ultimately, the
B-splines method was chosen because it provided the smoothest version of the
desired trajectory with the least amount of waypoints. In terms of how the
B-spline method performs, there is little documentation available, but some
observations were made during testing. The method clearly prioritized the first
and the last waypoints. However, the waypoints in between the start- and
endpoint were typically only used as constraints. In other words, these B-spline
trajectory planner would hit the first and last waypoints while staying within
the waypoints on the way. How close the desired trajectory were to the set
waypoints were dependent on the distance between each waypoint.

The input to the trajectory planner was set in joint space, and consequently the
waypoints had to be converted from the configuration space (Cartesian space)
to the joint space using inverse kinematics. Converting to the joint space from
the configuration space was necessary to control the end-effector and make sense
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of its position in the XYZ-plane. The inverse kinematics conversion was done
by performing the optimization method described in Section 7.3. Due to the
optimization method possibly having multiple joint configuration for a given
end-effector waypoint, each waypoint were found with the previous waypoint as
input.

8.1.2 Dynamics Model Matlab Functions

The Simulink blocks in Figure 8.1 denoted Inverse Dynamics and Forward
Dynamics, are Simulink function blocks. The function blocks consists of the
forward and inverse dynamics forms of the equations of motion as described in
Section 4.3. The functions are Matlab functions that were used to first linearize
the system (inverse dynamics) and then calculate the joint accelerations (forward
dynamics) as output to the feedback loop of the IDC. The inertia matrix for
the Bravo 7 is big and complex and the simulation of the dynamics model was
therefore solved numerically in a Simulink environment by having the joint values
as input in every time step.

The Matlab functions for the Simulink function blocks were generated from
symbolic expressions. All the required computations for the matrices required in
the equations of motion were first written symbolically by using the computational
approaches presented in Chapter 7. Then the symbolic expressions were converted
to a Matlab function by using the built-in function of matlabFunction. All the
matrix equations were then chosen as outputs, and set to form either an inverse
or forward dynamics form of the equations of motion. Additionally, the variable
inputs were decided as the joint position, joint velocity and the current velocity.

8.2 Case Studies

In relation to the smolt production, there were two operations simulated for the
case studies:

1. Dead Fish Pickup:

The robot manipulator was controlled to follow the desired trajectory
and reach the pickup point. The desired trajectory was implemented
as a descending motion where the end-effector was lowered towards an
end-position for the pickup.

2. Tank Cleaning:

The robot manipulator was controlled to follow the desired trajectory to
cover a area of interest. The desired trajectory was implemented as a
circular motion of the end-effector.
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8.2.1 Performing the Simulations

The orientation of the end-effector was constant for the entire duration of the
simulations. Additionally, the Bravo 7 was initialized in its zero-configuration
before it started tracking the desired trajectory. All the simulations were
performed with an artificial error of 10 g added to the weight to the mass of
each link. The intention was to slightly unsettle the perfect cancellation between
the nonlinear dynamics system and the the nonlinear compensation.

Below is a step-by-step presentation of how the simulation of the case studies
were performed:

1. Pick all the waypoints in the configuration space (as few as possible to
complete the desired trajectory).

2. Convert the waypoints to the joint space by using inverse kinematics with
the previous waypoint as input.

3. Choose a suitable time frame for the simulation.

4. Run numeric simulation in Simulink using the ODE23s solver (solver was
picked based on trial-and-error).

5. Create desired plots in Matlab.

8.2.2 Dead Fish Pickup Inputs

The trajectory planner had four waypoint inputs in the configuration space,
given by the following XYZ-coordinates (in order): (−0.25, 0, 0.07), (0, 0, 0)
(0.425, 0, 0), (0.65, 0.04, 0). This means the desired trajectory of the end-effector
is set to descend to 0.65 m below its base frame origin and pickup a dead fish.
Based on these configuration space waypoints, the inverse kinematics gives the
following joint configuration waypoints:

Qw =


0 0 0 0

1.0594 0.1992 −0.4219 −1.3937
−2.7557 −1.3608 0.7762 2.6877

0 0 0 0
−0.1255 0.4092 1.9251 2.7939

0 0 0 0

 (8.1)

where each column represents the joint variables q.

8.2.3 Tank Cleaning Inputs

The trajectory planner had seven waypoint inputs in the configuration space,
given by the following XYZ-coordinates (in order): (0, 0, 0), (0.5, 0, 0), (0, 0.5, 0),
(−0.5, 0, 0), (0,−0.5, 0), (0.25,−0.5, 0) , (0.5, 0, 0). This means the desired
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8. Simulation Setup

trajectory of the end-effector is set to follow a circle of radius 0.5 m around its
base frame origin.

The joint configuration inverse kinematics gives the following joint configuration
waypoints:

Qw =


0 0 2.1340 3.1416 4.3901 5.3086 6.2832

0.1992 −0.6287 −1.4202 −1.5337 −1.4017 −1.4251 −0.8779
−1.3608 1.1882 2.9776 2.6877 2.8054 2.9089 1.5527

0 0 1.5535 0 1.5621 1.6822 3.1416
0.4092 2.1303 1.1005 −0.3049 −1.3946 −2.3249 −2.2457

0 0 −1.5677 −3.1416 −1.7353 −1.7086 −3.1416


(8.2)

where each column represents the joint variables q.
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Chapter 9

Results

This chapter involves results related to the implemented control system and
trajectory planner. The results are all plots from the Matlab Simulink simulation
of two relevant case study operations related to real-life smolt production. The
intention is to present the general system performance as well as showcasing
potential manipulator tasks.

9.1 Case Studies with Trajectory Visualization

The case studies are demonstrated by various plots simulated in Matlab, using
the Simulink model presented in Section 8.1, with input waypoints from the
trajectory planner setup described in Section 8.1.1. The dead fish pick up and
the tank cleaning operations were the two case studies simulated The simulations
were performed with and without the hydrodynamic and hydrostatic effects
included in the model according to the step-by-step procedure presented in
Section 8.2.1.

9.1.1 Dead Fish Pickup

The fish pickup operation was simulated with the desired trajectory following
the waypoint inputs from Section 8.2.2 resulting in a descending motion towards
the bottom of the smolt tank. The arm is assumed to be attached to a fully
stationary vehicle with the resulting z-axis pointing towards the wall of the tank
and the x-axis pointing towards the bottom of the tank.

Without Underwater Effects

First, a plot showing how each joint position is able to reach its desired value and
then track this value over time is presented in Figure 9.1. Then a position plot
in the zx-plane is presented in 9.2. The zx-plane is interesting for this operation,
since the end-effector is lowered in the x-direction. The starting position (the
green circle) is decided by the zero-configuration of the manipulator. Initially,
the manipulator has to move from its zero-configuration before reaching the
desired trajectory.The last trajectory plot in Figure 9.3 is a visualization of the
end-effector positioning in three dimensions. Note the positive x-direction is the
downward motion of the end-effector.

69



9. Results

0 1 2 3 4 5 6 7 8 9 10

-2

0

2

Joint 1

Real Joint Position
Desired Joint Position

0 1 2 3 4 5 6 7 8 9 10

-2

0

2

Joint 2

0 1 2 3 4 5 6 7 8 9 10

-2

0

2

Joint 3

0 1 2 3 4 5 6 7 8 9 10

-2

0

2

Joint 4

0 1 2 3 4 5 6 7 8 9 10

-2

0

2

Joint 5

0 1 2 3 4 5 6 7 8 9 10

-2

0

2

Joint 6

Trajectory Joint Positions - Picking Up Fish, no Underwater Effects

Figure 9.1: Simulation plot of real vs. desired joint positions for the dead fish
pickup operation, without added underwater effects.

With Added Underwater Effects

The same three plots, as for the case with no underwater effects, are presented
in Figure 9.4, 9.5 and 9.6. An additional plot of the error between the desired
and real trajectory positions is included in Figure 9.7.

9.1.2 Tank Cleaning

The tank cleaning operation is showcased by circular motion while imagining a
rotating brush at the end-effector. The input waypoints are presented in Section
8.2.3 Similar to the fish pickup operation, the arm is assumed to be attached to
a fully stationary underwater vehicle with the resulting z-axis pointing towards
the wall of the tank and the x-axis pointing towards the bottom of the tank.

Without Underwater Effects

The first plot in Figure 9.8 demonstrating the control systems ability to track
the desired joint positions. The second plot in Figure 9.9 is performed in the
xy-plane. This is due to the fact that the wall of the tank is parallel to the
xy-plane and is where the cleaning operation was to be performed. The last plot
is once more a three dimensional plot of the end-effector trajectory.
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Figure 9.2: Trajectory plot of the real vs. desired trajectory for the tank cleaning
operation in the zx-plane, without added underwater effects.

With Added Underwater Effects

The same three plots, as for the case with no underwater effects, are presented in
Figure 9.11, 9.12 and 9.13. An additional plot of the error between the desired
and real trajectory positions is included in figure 9.14.
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Figure 9.3: 3D trajectory plot of the real vs. desired trajectory for the dead fish
pickup operation in the zyx-space, without added underwater effects.
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Figure 9.4: Simulation plot of real vs. desired joint positions for the dead fish
pickup operation, with added underwater effects
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Figure 9.5: Trajectory plot of the real vs. desired trajectory for the dead fish
pickup operation in the zx-plane, with added underwater effects.
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Figure 9.6: 3D trajectory plot of the real vs. desired trajectory for the dead fish
pickup operation in the zyx-space, with added underwater effects.
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Figure 9.7: Error between the desired and real joint values for the dead fish
pickup operation, with added underwater effects.
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Figure 9.8: Simulation plot of real vs. desired joint positions for the tank cleaning
operation, without added underwater effects.
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Figure 9.9: Trajectory plot of the real vs. desired trajectory for the tank cleaning
operation in the xy-plane, without added underwater effects.
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Figure 9.10: 3D trajectory plot of the real vs. desired trajectory for the tank
cleaning operation in the xyz-space, without added underwater effects.
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Figure 9.11: Simulation plot of real vs. desired joint positions for the tank
cleaning operation, with added underwater effects.
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Figure 9.12: Trajectory plot of the real vs. desired trajectory for the tank
cleaning operation in the xy-plane, with added underwater effects.
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Figure 9.13: 3D trajectory plot of the real vs. desired trajectory for the tank
cleaning operation in the xyz-space, with added underwater effects.
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Figure 9.14: Error between the desired and real joint values for the tank cleaning
operation, with added underwater effects.
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Chapter 10

Discussion

This chapter contains the discussion regarding the performance of the system
based on the background material from Part I and the results in Chapter 9. At
first, in Section 10.1 some of the expected model and control system limitations
are discussed, before moving on to discussing the results from Section 10.2. The
last part of the chapter, in Section 10.2.6, presents a list containing suggestions
for possible future work based on the findings in this master thesis.

10.1 Model and Control System Limitations

As for most research related to mathematical modeling of physical systems, the
research in this thesis involves certain limitations. The setup of the manipulator
and fluid dynamics are highly complex systems. Thus, combining the two systems
demands an appropriate amount of simplifications compared to the real world to
avoid too slow and demanding computations. Simplifications, although necessary,
can become prominent sources of error.

Regarding the robot manipulator, the model limitations are, in fact, not directly
coupled to the mathematical modeling but rather its role in the control system.
The model derivation, based on the DH-convention, is based on established robot
manipulator research and has been proven to create precise models. However, the
physical inputs need to form perfect cancellation of the nonlinearities. Normally,
the physical input parameters are not perfect, making the IDC somewhat limited.

The introduction of the underwater effects amplifies the limitations of the IDC
while also involving very hard-to-model physical effects. The simplifications to
the hydrodynamic effects on the manipulator might be acceptable for certain
conditions, but a smolt tank involves currents and added turbulence from the fish.
Furthermore, the simplified added mass effect assumes no currents. Currently,
the model in this thesis assumes only the drag force to be affected by the relative
velocity. Each of the mentioned components, factors into external disturbances
of possible significant value. Therefore, limitations of the current control system
approach are to be expected if used to control the Bravo 7 in a real-world smolt
tank. Still, the simulations displayed below, do involve perfect cancellation of
the physical parameters and should perceived perfectible with this in mind.
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10.2 Simulations and Results

The IDC system performance is the main interest regarding the system
performance, but in virtue of the results in the previous chapter, the performance
of trajectory planner also becomes a noteworthy part of the discussion. To make
the link to the result section unambiguous, the two case studies are discussed in a
separate manner, with the similar captions as in the result section. In general, the
trajectory tracking ability of the IDC system was expected to perform quite well
because of the perfect nonlinear compensation of the dynamics model. However,
the perfect cancellation also emphasize the limitations of the simulations relative
to the real-world scenario of a fish-tank.

10.2.1 Simulink Model Performance

The general performance of the Simulink model setup with Matlab-function
blocks were acceptable for the case studies, but proved to have restrictions
regarding the added underwater effects and certain other configurations. As
soon as the Simulink setup had compiled the setup with a given set of waypoints,
the simulation speed of the performed case studies were acceptable. However, if
too many waypoints or for some specific waypoint combinations, the simulations
became extremely slow or resulted in error messages. Usually, the error messages
were fixed by lowering the relative tolerance value or by changing the numerical
simulation method, which again resulted in slow simulations. A more specific
limitation of the Simulink model setup, was related to the simulations with added
underwater effects. These simulations were only allowed to set the current speed
as low as 1 m/s. For lower speeds, a diffuse error message was presented which,
based on some investigation, were confirmed to be specific for Simulink. Because
the error was related to the current speed, the cause is very likely related to the
drag force model. In conclusion, the Simulink setup with the Matlab-function
blocks worked well for the case studies, but proved to have limitations beyond
this scope.

10.2.2 Dead Fish Pickup without Underwater Effects

The plot results of the simulated dead fish pickup operation with no underwater
effects were generally as expected. The joint positions in Figure 9.1 showed
excellent tracking of the desired joint positions, with little sign to the slow
transient response mentioned in Chapter 6. The trajectory plot in the zx-plane
displayed the systems’ promising ability to perform the motion for the pickup.
The three dimensional trajectory plot confirmed the notion of a well behaved
system as can be seen in Figure 9.3.

10.2.3 Dead Fish Pickup with Underwater Effects

The resulting plots from the tank cleaning operations with added underwater
effects were interesting, but not unexpected. From Figure 9.4 it is at first hard
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to see much difference compared to the same simulation without underwater
effects. Still, joint 5 shows a resulting steady state error when tracking its desired
position. The steady state error proves the effect on the position tracking from
the hydrodynamic and hydrostatic forces. In Figure 9.5 and 9.6 the resulting
trajectory tracking with the present steady state error shows up as a shifted real
trajectory unable to track the desired positions. Thus, the endpoint of the fish
pickup is missed by about 2 cm. An error of this magnitude is relatively small,
especially since the current speed of 1 m/s is way above the typical values for
smolt tanks. Furthermore, the IDC was never tuned for the added underwater
effects. One conclusion may be that the underwater effects have little impact on
the control of the manipulator when under water. However, the unrealistically
perfect cancellation of the nonlinearities for this simulation still makes a difficult
case in terms of supporting this conclusion without any further research.

10.2.4 Tank Cleaning without Underwater Effects

The resulting plots from the tank cleaning operations with no water effects showed
particularly promising results in regards to the trajectory tracking. For the joint
positions and xy-plane trajectory plots, much of the same as for dead fish picking
operation could be repeated. In particular, the result in Figure 9.9 displayed
perfect trajectory tracking of the desired outputs from the trajectory planner.
Still, the trajectory planner is the weak link in this scenario. Even though the
waypoints are set for a z-value constantly equal to zero, the trajectory planner
has difficulties keeping the desired trajectory constant. For the manipulator to
clean a flat surface, this generated trajectory lowers the control and quality of
the performed operation. A possible solution could be to involve a lot more
waypoints, but one major implication of more waypoints is the slow simulations.

10.2.5 Tank Cleaning with Underwater Effects

The resulting plots from the tank cleaning operations with added underwater
effects displays a control system struggling to track the desired trajectory. The
results for the joint positions in Figure 9.11 presents difficulties controlling joint 4
and joint 5, but without steady state errors. In other words, a more unpredictable
error compared to the dead fish pickup operation. Due to the unpredictable
behaviour, the Bravo 7 manipulator ends up both over-reaching and under-
reaching relative to the desired trajectory, as can be seen in Figure 9.12 and 9.13.
By disregarding the lackluster attempt from the trajectory planner to follow the
waypoints, the error between the desired and controlled trajectory is sometimes
as big as 5 cm in various directions. Even though the end-effector seems to
hit the end-points, the cleaning operation should follow the desired trajectory
through the whole time frame. In the end, it its challenging to make predictions
about how the IDC system would perform with lower current velocities, but
unpredictable behaviour due to the underwater effects is a definitely a possibility
to be taken into consideration.
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10.2.6 Future Work

Discussing what the results above implies for the use of the Bravo 7 in smolt tanks
is for the most part related to future work possibilities. The mathematical models
and the subsequent IDC system created here makes for a good foundation for
further work. In reality, the properties of the IDC clearly suggests that a different,
more robust control system, is required to handle the added underwater effects
when controlling the Bravo 7 manipulator. Due to the manipulator complexity,
working towards a more efficient models for simulation is also important. Other
possibilities are to improve the dynamics modelling for the underwater effects,
and to look into more suitable techniques for trajectory planning.

Based on the discussion and the current implementation, there are several
possibilities to use this thesis as basis for future work. Some suggestions are
listed below:

1. Implement more robust control algorithms:
There are various control methods for underwater manipulators better
suited than the IDC system for the parameter uncertainties in the model
and for handling the nonlinearities. A summary of some of these methods
is provided in [55].

2. Improve the underwater dynamics model: Use Kane’s Method for
developing the dynamic equations is should give more efficient computations
as well as providing a straightforward approach for incorporating external
hydrodynamic forces into the model. [58].

3. Implement own Trajectory Planner: There is little documentation
regarding the trajectory planner from the Robotics System Toolbox in
Simulink. A specifically implemented trajectory planner for the Bravo 7
robot arm for use in smolt operations would provide more control of the
generated trajectories. Especially important for including the physical
constraints of the Bravo 7.

4. Improve the setup for the Trajectory Planner input: An improved
inverse kinematics method for deciding the end-effector waypoints in the
Cartesian space.
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Chapter 11

Conclusion

This thesis has first and foremost presented a thorough presentation to solving
the research objectives introduced in Chapter 1. The conclusive remarks and
findings, directly linked to the research question sub-tasks, are stated below.

1. Perform a literature study on manipulator fluid dynamics
modelling.

The literature study established a set of relevant underwater effects for a
manipulator system. The added effects to the dynamics model included
added mass effects, drag forces (involving current effects), and buoyancy.
How to calculate these effects and the necessary simplifications for a robot
manipulator were also part of the study. Additionally, a review of the
feasibility and possibility of a variable drag coefficient was performed.
One observation from the literature study was the lack of updated work
involving a specific focus on complex underwater manipulators, especially
tailored with the DH-convention in mind. Still, a decent amount of studies
on underwater vehicle-manipulator-systems were found to be helpful.

2. Create a mathematical model describing the underwater dynam-
ics.

Based on the literature study a generalized method was proposed for
calculating the added underwater effects to the land-based manipulator
dynamics model. The symbolic expression for the mathematical model was
developed in Matlab. The symbolic expression was then converted to a
function file by using the built-in matlabFunction. This was considered
to be an orderly and transparent method for developing the complex
mathematical models involved, but the conversion to the function file was
terribly time-consuming.

3. Suggest and implement a suitable control system.

In order to control the manipulator end-effector position in an underwater
environment, an Inverse Dynamics Controller was chosen due to being
an established control method for robot manipulators and thus forming
a valuable base for future work. The control system was implemented
in Matlab Simulink by including the symbolic model expressions using
Matlab-function blocks. Setting up the Simulink model for an Inverse
Dynamic control system formed a precise connection to the theoretical
model; nevertheless, it caused some debugging issues and unpredictabilities
as a simulation setup. More specifically, the simulations were sometimes
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slow, and there was a chance of obscure error messages appearing for
selective configurations.

4. Suggest and implement methods for trajectory planning.
A trajectory planner was implemented as a Simulink block from the Robotic
Systems Toolbox, allowing for quick testing of different trajectory planning
techniques. A trapezoidal velocity-, polynomial- and B-spline trajectory
planner were tested. Based on literature evidence and through testing, the
B-spline trajectory planner was preferred. The main problem with the use
of this trajectory planner was the lack of documentation. Therefore, it was
challenging to figure out what was causing unwanted system behaviors.

5. Simulation experiments.
Simulations were performed in Matlab Simulink, and the trajectories
were plotted in the Cartesian space, conduction two smolt production case
studies: pickup of dead fish and a tank cleaning operation. Both operations
were simulated considering two model setups: with and without the added
underwater effects included in the dynamics model. A comparison of the
IDC system performance based on the plotted results was then discussed
for the two setups.
As expected, the control system performed well for the land-based dynamics
model. The only system flaw was the unanticipated poor execution of the
trajectory planner when creating the desired trajectory for the circular
cleaning motion. Otherwise, the position tracking was performed with little
sign of errors. When the underwater effects were added, the position control
was affected, causing a steady-state error for the dead fish pickup and
more unpredictable errors for the cleaning trajectory. Still, the error values
were relatively small. Thus, considering the simulations were performed
with no further tuning of the control gains and with current speeds more
than doubling what would be expected, the end-effector position tracking
performance was good for all the case studies. Conclusively, the IDC
system performed well. However, the simulated perfect cancellation of the
physical system is too unrealistic, making for a very low probability of
acceptable performance, regarding the manipulator position control, in a
real-world smolt tank.

Regarding the more generalized research question from the introduction, a
mathematical model of an underwater manipulator has been created and used to
control the end-effector position of the Bravo 7 manipulator performing typical
day-to-day tasks for smolt production. Although adopting an unrealistically
clever IDC system for an already complex nonlinear manipulator system, with
the addition of hard-to-model manipulator fluid dynamics, the work in this thesis
should be a good foundation for further development and research within smolt
production automation.
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Appendix A

Algorithms

A.1 Drag Force Algorithm

All variables used in the algorithm exists for link i = 1 to n with the corresponding
strip j = 1 to nLi

.

Inputs:

UF = flow/current velocity
Vpi = velocity realtive to the base frame of the origin of the local coordinate frame
Li = length of link i
nLi

= number of integration strips i
Upi = the relative velocity of the point corresponding to the origin of coordinate frame i
li,j = the position vector from the local frame origin to strip j
ωi = angular velocity of link i where ωi = [0 0 q̇i]T
CD = drag coefficient

Steps to compute the drag on link i:

Step 1. uFi = RT
i uFi−1 where uFi = [cos qi sin qi 0]T

Step 2. Upi = UFuFi − Vpi

Step 3. dLi = RT
i dLi−1 where dL1 = [0 0 1]T

Step 4. dli = Li

nLi

Step 5. dli = dlidLi

Step 6. for j = 1 to nLi

a. li,j = li,j−1 + dli where li,0 = [0, 0, 0]T

b. Uij = Upi − ωi × lij

c. U2
ij = Uij ·Uij

d. uij = Uij√
U2

ij

e. αdi,j = arccos |ui,j · dLi | where dLi = [0 0 1]T

f. CNij
= [C2

D + (sinαdi,j
)4]1/2

g. dFij = 1
2 (ρCNij

U2
ijDidli)cij

87



A. Algorithms

h. dNij = rij × dFij

Step 7. NDi =
∑nLi
j=1 dNij
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Appendix B

Contents of Delivered ZIP-File

PDF Files

• Project Thesis: The specialization project thesis.

• Master Thesis: The master thesis.

• Project Task Description: The given project description with background
information for the master thesis.

• Bravo Reach7 Documentation: Documentation of the Bravo Reach 7 robot
from Blueprint Lab. Contains important parameter values for the
mathematical model.

• Bravo Reach7 Datasheet: Datasheet of the Bravo Reach 7 robot from
Blueprint Lab. Contains a general introduction of the manipulator as
well as physical specifications.

Matlab Files

• getDCGfunc_v4.m: Matlab function to set up the matrices for the
dynamics model in symbolic form..

• bravo_fk.m: Matlab function to compute the forward kinematics.

• bravo_ik.m: Matlab script to compute optimization problem of the inverse
kinematics.

Simulink Files

• inverse_dynamics_control.m: Simulink diagram of the inverse dynamics
controller.
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