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Problem description

The NTNU Cyborg project began in 2015 and involves an interdisciplinary development of a robot interfaced
with biological neural networks. The project aims at having a robot (i.e., the Cyborg) roam around Glass-
gården at NTNU Gløshaugen autonomously while interacting with the students it encounters. An important
contribution towards autonomy is the implementation of robot vision. Robots today can perform a large
variety of tasks without the use of a camera. However, sometimes a camera is necessary when performing
certain tasks, such as object detection and generating accurate 3D maps of its environment. To contribute
towards making the Cyborg become autonomous, the student shall:

• Update the old Unified Robot Description Format (URDF) to visualize the current version of the Cyborg
and display the model in RViz. This includes the body panels and the LED dome of the Cyborg and a
separate model adding the ZED stereo camera.

• Implement and evaluate Visual Simultaneous Localisation and Mapping (VSLAM) with the Cyborg
using the ZED stereo camera.

• Implement and evaluate object detection using You Only Look Once (YOLO) with the ZED stereo
camera to detect students

• Demonstrate a navigation controller in Robotic Operating System (ROS) capable of detecting and
following students using YOLO.



Abstract

The NTNU Cyborg project aims at having the Cyborg roam around Glassgården at NTNU Gløshaugen
autonomously while interacting with the students it encounters. An essential contribution to this is the
implementation of a robust and permanent robot vision module, enabling means of performing VSLAM and
object detection. The latter has been implemented before in Robotic Operating System (ROS). However,
it has not been developed using an updated Unified Robot Description Format (URDF) model and fully
integrated with RViz. RViz is a popular 3D visualization tool in ROS used for task performance and displaying
data such as camera images, lasers, robot models and more.

This report aims to create a more robust robot vision by integrating the ZED stereo camera with an updated
robot model to perform object detection and VSLAM in RViz. 3D computer-aided design (CAD) models
from SolidWorks, created by previous students, were exported as URDF files and added to the old robot
model provided by Adept MobileRobots. The new robot model was used to perform VSLAM with Real-Time
Appearance-Based Mapping (RTAB-Map) in ROS. Moreover, You Only Look Once (YOLO) object detection
was implemented to detect students and publish depth measurements. The measurements were used as input
to a navigation controller designed to follow students. A coordinate frame was created to track the position
of a detected student in RViz continuously.

The new robot model was successfully created and used throughout the report. The position of the detected
student was published to RViz and sent as navigation goals to the navigation controller. The Cyborg managed
to follow the student inside the Cyborg office and in a simulated environment. Finally, VSLAM produced a
2D and 3D map of the Cyborg office with satisfactory accuracy.
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Abstrakt

NTNU Cyborg prosjektet har som mål å ha en Kyborg vandre autonomt rundt i Glassgården ved NTNU,
mens den har interaksjoner med studentene den møter. Et essensielt bidrag til dette er implementering av en
robust robotsyn modul, som muliggjør utførelse av Visual Simultaneous Localisation and Mapping (VSLAM)
og objekt detektering. Sistnevnte har blitt implementert i Robotic Operating System (ROS) før, men har ikke
blitt utviklet ved bruk av en oppdatert Unified Robot Description Format (URDF) robot modell integrert
i RViz. RViz er et populært 3D visualiseringsverktøy i ROS som blir brukt til utførelse av oppgaver og
visualisering av data som kamera bilder, lasere, robot modeller og mer.

Denne rapporten har som mål å utvikle mer robust robotsyn ved å integrere et ZED stereo kamera med
en oppdatert robot modell for utførelse av objekt deteksjon og VSLAM i RViz. 3D computer-aided design
(CAD) modeller fra SolidWorks, lagd av tidligere studenter, ble eksportert som URDF filer og lagt til i den
gamle robot modellen fra Adept MobileRobots. Den nye robot modellen ble brukt til å utføre VSLAM med
RTAB-Map i ROS. I tillegg ble You Only Look Once (YOLO) objekt deteksjon implementert for å detektere
studenter og publisere dybdemålinger. Disse målingene ble brukt som input til en navigasjonskontroller
designet for å følge studenter. Et koordinat system ble lagd for å oppdatere posisjonen til den detekterte
studenten i RVIZ kontinuerlig.

Den resulterende robot modellen ble vellykket og brukt gjennom hele rapporten. Posisjonen til den detekterte
studenten ble publisert til RViz og sendt som navigasjonsmål til navigasjonskontrolleren. Kyborgen klarte å
følge studenten på Kyborg kontoret og i et simulert miljø. Til slutt ble et 2D og 3D kart av Kyborg kontoret
lagd ved bruk av VSLAM, med tilstrekkelig nøyaktighet.
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Acronyms

AMCL Adaptive Monte Carlo Localization.

API Application Programming Interface.

CAD computer-aided design.

CNN Convolutional Neural Networks.

CUDA Compute Unified Device Architecture.

EiT Experts in Teamwork.

FOV Field of View.

GPU Graphics Processing Unit.

NTNU Norges teknisk-naturvitenskapelige universitet.

R-CNN Region Based Convolutional Neural Networks.

ROS Robotic Operating System.

RTAB-Map Real-Time Appearance-Based Mapping.

SDK Software Development Kit.

SLAM Simultaneous localization and mapping .

SVM Support Vector Machine.

URDF Unified Robot Description Format.

VSLAM Visual Simultaneous Localisation and Mapping.

XML Extensible Markup Language .

YOLO You Only Look Once.
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1 Introduction

1.1 The NTNU Cyborg project

The NTNU Cyborg project is an ongoing project, beginning in 2015, that in the end aims at being able
to communicate between living nerve tissue and a robot [1]. Additionally, having a robot that serves as
a platform for studying neural signaling properties, robotics and hybrid bio-robotic machines, the project
also aims to bring NTNU to the forefront of international research within these areas. The project has the
potential of integrating different disciplines to the project within areas such as robotics, mechatronics, sensor
technology, artificial intelligence, psychology and much more.

Visually, the robot has undergone several changes over the years, as shown in figure 1. Figure 1a shows the
2016 contribution, with a skeleton frame and the motion-sensing device Kinect. In 2017, the ZED camera
was used instead, as shown in figure 1b. From figure 1c, the size of the robot was compressed, adding a 3D
printed casing and a dome on top. Figure 1d shows the robot as it stands today. The 3D printed casing has
been given a paint job, and the NTNU logo was added to the front panel. Moreover, LED strips were added
to the dome.

(a) 2016 (b) 2017 (c) 2018 (d) 2019 (current)

Figure 1: The different visual improvements of the Cyborg

1.2 Motivation

The Cyborg is currently intended to showcase the project by having it roam around the hallways at Glassgår-
den at NTNU autonomously while interacting with the people it encounters. An essential contribution to this
is the implementation of robot vision. This allows the robot, with the use of state-of-the-art object detection
algorithms, to detect objects, e.g., humans, and autonomously navigate to them based on the receiving depth
measurements. Additionally, having a camera mounted on the robot can enable 2D and 3D Visual Simul-
taneous Localisation and Mapping (VSLAM), an important tool towards autonomy. Additionally, having a
permanent camera solution enables live monitoring of the robot, as long as it is connected to the internet.

Moreover, implementing an updated robot model for simulation and task performance has several benefits to
the Cyborg project: It provides more accurate collision avoidance, an accurate visual representation of the
robot and provides new coordinate frames that can be used as a frame of reference when expressing objects
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relative to it. For example, if a robot has a camera attached to it and wants to express an object detected
by the camera relative to the robot, it must know the camera’s location in the first place. If the required
coordinate frame already has been implemented, any transformation of the coordinate frames can be done
using existing packages in ROS.

1.3 Limitation on the Cyborg battery

As of writing this report, the Robot has had - and still has - some problems with its battery. The battery
does not charge. Consequently, testing on the Cyborg is limited to the Cyborg office. The main reason is to
prevent any excessive use of the battery. This will not be mentioned any further throughout the report.
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2 ROS - Robotic Operating System

This section gives an introduction to Robotic Operating System (ROS), and some of its key elements such
as ROS nodes, topics, messages and more.

2.1 What is ROS?

ROS is a collection of frameworks and tools, well suited for robots, that provide functionalities to that of an
operating system. ROS provides services that are designed for a heterogeneous computer cluster [2], such as
hardware abstraction and low-level device control [3]. Its initial release was 14 years ago in 2007 and has over
the years released 13 different distributions [4]. The first distribution was released on March 2, 2010, called
ROS Box Turle. Its most recent release (ROS1) is ROS Noetic Ninjemys, released on May 23. 2020. In 2014,
ROS2 was announced [5]. The goal of ROS2 is to adapt to the changes that have been made to ROS over
the years, leveraging what is great about its previous version and implement the necessary improvements.
The latest ROS2 distribution is currently Galactic Geochelone, released on May 23. 2021.

2.2 Nodes

Nodes in ROS are processes that perform computation [6] and are important for the flow of information. If a
node is sending out information, it means that it is a publisher. If a node is receiving information, then it a
subscriber. A simple example using nodes in ROS could be to create a controller node that sends out velocity
commands to another node that uses this information to command a robot to move. Nodes can be a publisher
and a subscriber, or they can be by themselves. The active nodes can be found using $ rosnode list from
terminal.

2.3 Topics

When a node publishes information, the information that is sent out is published to a topic. For topics
to exist, an existing node has to publish to it in the first place. This way, the production of information
is decoupled from its consumption, meaning that any existing node can subscribe to a particular topic,
given that the information is of interest. There can be multiple publishers and subscribers for a single topic
simultaneously, and a single node can publish and/or subscribe to multiple topics. $ rostopic list shows
all topics that are being published. A simple diagram of two nodes and a topic can be found in figure 2

Figure 2: Simple graph of two nodes and a topic
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2.4 Messages in ROS

The information that is published to a topic is structured as a ROS message. There exist multiple message
types in ROS that are used to represent information such as velocity, position, orientation, and more. Each
message is defined by a type, and a name, where the type is the type of message (e.g., an integer), and the
name is the name of the message variable. The ROS community provides a large variety of messages that
can be used in multiple projects. However, sometimes it can be convenient to create a custom message. This
can be done if the project at hand requires some information that could be very specific to a type of task.
In ROS, messages are labeled name_of_message.msg and are located in folders called msgs.

2.5 Rosbag - Recording topics

ROS provides a set of tools that enables recording of topics called a rosbag. This tool can listen to a topic and
store all incoming messages. This can be done from terminal using $ rosbag record <topic1>. A rosbag
can also play back to a topic. For example, if a rosbag has been recording data from a topic containing the
string "/hello_world", it can publish its contents back to the topic it originated from with the same message.
Rosbags can be very useful when creating a map of an unknown environment. For example, if a LiDAR is
used to publish laser scans, it can be stored in a rosbag and played back later to construct the map in RViz.
The content of a rosbag can be played from terminal using $ rosbag play <name_of_bag>

2.6 Packages

In ROS, the software is organized in packages and can contain nodes, a ROS-independent library, third-party
software, configuration files and more that constitutes a module [7]. A ROS package is created by running
$ catkin_create_package.

When creating a package, two important files are generated in the root of the package: package.xml and
CMakeLists.txt. The package.xml contains information such as the package’s name, the author, version
numbers, description of the package and the maintainer. It also contains information about dependencies on
other packages [8].

CMakeLists.txt is a file that describes how to build the code and where to install it to [9]. It uses commands
such as find_package() to find other CMake/Catkin packages needed to build, generate_messages() to invoke
for example message generation and more.

2.7 Roscore

Roscore is an essential element when running ROS. Communication between nodes is established when roscore
is running and is achieved by running roscore in terminal. This starts up the following [10]:

• A ROS Master

• A ROS Parameter Server

• A rosout logging node

The ROS Master has the role of enabling individual ROS nodes to locate one another to communicate with
each other [11]. The Parameter Server enables nodes to store and retrieve parameters at run time. These
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types of parameters could be the ROS distribution and the version that is in use [12]. The last one is the
rosout logging node, which is the name of the console log reporting mechanism in ROS [13].

2.8 actionlib - Performing long term tasks

Sometimes, when a request has been sent to a node, it is beneficial to receive a reply to the request. It could
be the case of knowing whether or not a navigation goal request has been completed or not, or whether the
goal is possible to perform or not. All of this is provided by the actionlib library, and is achieved through a
client- and server application.

Figure 3: A client- and server application interface [14]

Figure 3 shows how actionlib uses the client and server to communicate. The client application consists of an
actionclient which can receive function calls from user code and send callbacks to the user code. Similarly,
the actionserver can send callbacks to user code, and receive function calls. The communication between the
client- and server application is via a ROS Action Protocol. This protocol consists of ROS topics that have
a specified ROS namespace to transport messages. The structure of this action protocol can be seen from
figure 4.

Figure 4: Communication between the ActionClient and ActionServer via a ROS Action Protocol [15]

Three important messages that the ActionClient and the ActionServer uses to communicate are:

• Goal

• Feedback
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• Result

The goalmessage is sent to an ActionServer from an ActionClient. The message type of a goal depends on the
type of project. In terms of robot navigation, it is common to use move_base_msgs/MoveBaseActionGoal:

std_msgs/Header header

uint32 seq

time stamp

string frame_id

actionlib_msgs/GoalID goal_id

time stamp

string id

move_base_msgs/MoveBaseGoal goal

geometry_msgs/PoseStamped target_pose

std_msgs/Header header

uint32 seq

time stamp

string frame_id

geometry_msgs/Pose pose

geometry_msgs/Point position

float64 x

float64 y

float64 z

geometry_msgs/Quaternion orientation

float64 x

float64 y

float64 z

float64 w

The target pose_pose defines the header, position and orientation of the target goal. The header and goal_id
contain information about the goal itself.

The feedback is responsible for providing information about the process of the goal, e.g., the current position
of the robot along a specified path generated from a given goal. This provides a valuable tool to monitor the
progress of the goal. This information is sent from the ActionServer to the ActionClient.

The result is a message that is sent once, in contrast to the feedback which publishes several times. This
message is only published upon completing a given goal, e.g., the final position of a robot after navigating to
the end goal. This information is sent from the ActionServer to the ActionClient.

2.9 tf - How ROS keeps track of coordinate frames

Whenever a robot moves, all the corresponding coordinate frames will move relative to a frame of reference.
To keep track of these changes, Robotic Operating System (ROS) uses a package called tf. This enables ROS
to track multiple coordinate frames over time. It tracks all frames in a tree structure. The edges represent
transforms, whereas the nodes represent the frames [16]. It uses composite transformations to find positions
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and orientations of different coordinate frames. An example of a composite transformation between three
frames, going from node D via the edge to node B, then from node B via the edge to node A is given by the
following equation:

TAD = TAB ·T
B
D

This is an essential concept, as it allows ROS to constantly keep track of the different parts of the robot
relative to the environment by having direct mathematical transformations between them. More information
on this package, and how it works, can be found on the ROS Wiki [17] and from its Application Programming
Interface (API) documentation [18].

2.10 How URDF works

The Unified Robot Description Format (URDF) is a format used to display a model, e.g., robot, in a simulated
environment such as RViz, and is based on two important concepts: links and joints. A robot link is a
component that constitutes the physical part of the robot. A joint allows for rotational- or translational
movement of a link. A practical example of this is how the human arm works. The forearm is the link and
can rotate because it is connected to the elbow, i.e., the joint. If the joint is taken away, then the forearm
will no longer be able to move.

URDF files use Extensible Markup Language (XML), and describe some important properties that are
needed when defining a robot model:

• robot name: Defines the name of the robot that is being created for the particular URDF file.

• link name: Defines the name of a particular link

• visual : Defines the visual properties of the robot, i.e. what the user sees during simulation.

– Geometry : Defines geometric properties for a given link, such as a box or an imported mesh file

– origin - rpy and xyz: Defines the position and orientation of the frame for a given link, respectively.
This includes roll (r) pitch (p) and yaw (y), and the x-, y-, z coordinates of the frame. Changing
these values will change the position and orientation of the entire link in the simulation.

• Joint name: Defines the name of a particular joint

– parent link : Defines the parent link connected by the specified joint.

– child link : Defines the successor link, i.e., the child for the given parent connected by the specified
joint.

• Inertial : Defines properties such as the mass of the link and the inertia.

Although this is not a complete list that constitutes a fully defined URDF file, it does cover some of the
basic elements that are used to define a robot model. The following is a short example of how to create a
cylindrical robot model, extracted from the ROS Wiki [19]:

1 <robot name="myfirst">
2 <link name="base_link">
3 <visual >
4 <geometry >
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5 <cylinder length="0.6" radius="0.2"/>
6 </geometry >
7 </visual >
8 </link>
9 </robot >

The code starts with the opening tag <robot name"myfirst"> and closes it with </robot> on line 9. This
means that any code between line 1 and line 9 is related to the robot called myfirst. This also applies for
the the link, which has the opening tags on line 2 and the closing tags on line 8. This means that any code
within these tags defines the link base_link.

2.11 The ROS navigation stack

The navigation stack in ROS takes information from a robot’s odometry, and sensor readings as input and out-
puts safe velocity commands for navigation [20]. The sensor readings must be of type sensor_msgs/LaserScan
or sensor_msgs/PointCloud. Additionally, odometry must be of type nav_msgs/Odometry, and tf must be
running transforms for all coordinate frames. The navigation stack also requires a base controller. The
base controller is responsible for sending velocity commands to the robot in the form of a geometry_Twist
message to the topic labeled /.../cmd_vel. The base controller contains linear and angular velocities in the
x-,y- and z-direction. Optionally, a map can be included in the navigation stack as well. Figure 5 shows the
configuration of the Cyborg with the navigation stack.

Figure 5: Navigation stack setup with RosAria

The white circles represent the configuration provided by the navigation stack, whereas the blue boxes are
platform-specific. The latter corresponds to a controller, odometry source and laser scanner provided by
the RosAria node and transform messages provided by tf. The grey boxes are optional data available from
the navigation stack to improve the overall system, such as a map and Adaptive Monte Carlo Localization
(AMCL). AMCL is a probabilistic localization system for robots moving in 2D and is included in the navi-
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gation stack. This algorithm takes a laser-based map, tf messages and laser scans as input and outputs pose
estimates.

The node responsible for sending velocity commands to the base controller is move_base. This node is divided
into two different planners: Local planner and global planner. The global planner is responsible for long-term
plans over the entire environment, whereas the local planner refers to obstacle avoidance and determining
velocity commands to the robot for safe navigation. The recovery_behaviors may be performed in situations
where the robot is considered stuck. Moreover, the global- and local planner have two corresponding costmaps:
local- and global costmap respectively. A costmap is a map that is divided into different cells, where each
cell has been given a cost according to some cost function. The cost function determines whether there is an
obstacle nearby or not.

Figure 6: Cell cost as a function of the distance from a robot to an obstacle

The move_base node is configured according to the costmap_2d package [21]. The costmap_2d node provides
a method of propagating cost values outwards from each occupied cell that decreases with distance. This
means that the further away an obstacle is, the lower the cell cost and vice versa. This is visualized in figure
6. This process is divided into five cell weight categories:

• Lethal

• Inscribed

• Possibly circumscribed
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• Freespace

• Unknown

The categories are determined by the robot’s footprint, its inscribed and circumscribed region and the center
cell, which corresponds to a cell in the costmap. The cost function is a continuously exponentially decaying
function or a discretized cost decay function. The lethal cost is the case when the robot is definitely in
collision and must be avoided at all times. This is why it is given the highest cost value. Note that the cost
values in the figure are arbitrary and may vary. The inscribed cost occurs when the center of a cell is within
the radius of the inscribed circle, resulting in a collision. Possibly circumscribed is when the center cell is
inside the circumscribed region, but outside the inscribed region. Whether the robot is in collision or not, in
this case, depends on the robot’s orientation. Freespace cost is assumed to be zero, meaning that the robot
is safe from any collision in this space. Finally, the unknown cost is defined as the distance between the
circumscribed region and the freespace. This is a buffer zone created by costmap_2d that allows the user to
define a custom minimal distance that a robot is allowed to an obstacle. An example of how a 2D costmap
looks like is shown in figure 7. The red area are cells that represent obstacles in the costmap, whereas the
blue area is when the center of an obstacle cell is within the inscribed radius of the robot. The red polygon
represents the footprint of the robot. From this costmap configuration, the blue cells must never intersect
the inscribed region to avoid collisions. The gray area represents safe space for navigation.

Figure 7: An example of a costmap

The costmap_2d package contains a set of user-specified parameters that define the local- and global costmap
and the base controller. They are configured in 4 different .yaml files:

• costmap_common_params.yaml
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• global_costmap_params.yaml

• costmap_common_params.yaml

• base_local_planner_params.yaml

The costmap_common_params are parameters that are used by both the local- and the global costmap. For
the Cyborg, the file is defined by the following lines:

1 obstacle_range: 2.5

2 raytrace_range: 3.0

3 #footprint: [[x0, y0], [x1, y1], ... [xn, yn]]

4 robot_radius: 0.4

5 inflation_radius: 0.55

6 observation_sources: laser_scan_sensor point_cloud_sensor

7

8 # This configuration must be used when simulating the robot

9 laser_scan_sensor: {sensor_frame: frame_name, data_type: LaserScan,

10 topic: /RosAria/sim_S3Series_1_laserscan, marking: true, clearing: true}

11 point_cloud_sensor: {sensor_frame: frame_name, data_type: PointCloud,

12 topic: /RosAria/sim_S3Series_1_pointcloud, marking: true, clearing: true}

13 # This configuration must be used when using the real robot:

14 laser_scan_sensor: {sensor_frame: frame_name, data_type: LaserScan,

15 topic: /RosAria/S3Series_1_laserscan, marking: true, clearing: true}

16 point_cloud_sensor: {sensor_frame: frame_name, data_type: PointCloud,

17 topic: /RosAria/S3Series_1_pointcloud, marking: true, clearing: true}

Obstacle, on line 1, defines the maximum distance an object can be from the sensor and be added to the
costmap. Setting this to 2.5 means that any objects within 2.5 meters of the sensor will be added to the
costmap. Line 2 defines the raytrace_range to be 3.0 meters. This is the distance a robot requires to clear
up from a given sensor reading. This is known as the freespace. Footprint, on line 3, defines the center of
the Cyborgs’ footprint. Line 4 defines the robot_radius for a circular robot. The inflation_radius defines
the minimum distance for which all cells are given equal cost. This means that any obstacles with a distance
of 0.55 meters or more will be given equal weights, whereas any cells less than this distance will be given
weights according to figure 6. Line 6 defines the observation_sources which represents the laser scanners in
this case. These sources are the laser_scan_sensor and point_cloud_sensor provided by the RosAria node.
The sources are defined on line 9-12 for the simulated Cyborg using MobileSim and line 14-17 is for the real
Cyborg.

The global_costmap_params.yaml is configured in the following way:

1 global_costmap:

2 global_frame: /map

3 robot_base_frame: base_link

4 update_frequency: 1.0

5 static_map: true
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Where global_frame and robot_base_frame are defined as the map- and base link frame. The update_frequency
defines the frequency, in Hz, at which the costmap will run its update loop. Finally, the static_map is used
to define how the costmap node will initialize itself. If it is set as true, it will initialize itself based on the
map served by the map_server. The parameters for the local costmap are defined similarly:

1 local_costmap:

2 global_frame: odom

3 robot_base_frame: base_link

4 update_frequency: 1.0

5 publish_frequency: 2.0

6 static_map: false

7 rolling_window: true

8 width: 6.0

9 height: 6.0

10 resolution: 0.05

The global_frame here is odom and the robot_base_frame is base_link. The update_frequency and static_map
are the same as the previous file. The publish_frequency on line 5 defines the rate at which the costmap will
publish visualization information. rolling_window determines whether the costmap will be centered around
the cyborg or not as it moves. The width and height defines, in meters, the size of the costmap, whereas
resolution defines the resolution of the map in meters per cell. The last configuration file needed to set up
the move_base node is the base_local_planner_params.yaml, which is defined as the following:

1 TrajectoryPlannerROS:

2 max_vel_x: 1.8

3 min_vel_x: 0.1

4 max_vel_theta: 3.1

5 min_in_place_vel_theta: 3.1

6 acc_lim_theta: 2.6

7 acc_lim_x: 0.5

8 acc_lim_y: 0.5

9 holonomic_robot: false

It defines the velocity and acceleration limits of the robot on line 2-5 and line 6-8, respectively. The last line
defines whether the robot is holonomic or not.

The move_base stack uses actionlib (see section 2.8) to send or cancel goal requests to the robot. To request
a navigation goal request, it has to be of the message type geometry_msgs/PoseStamped.
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3 Hardware and Software

3.1 Hardware

This section describes the relevant hardware used throughout this report.

3.1.1 ZED stereo camera

The ZED stereo camera, shown in figure 8, is a 3D Camera by Stereolabs for depth sensing, motion tracking
and real-time 3D mapping [22]. It provides a path range from 0.3 meters up to 25 meters and has a maximum
output resolution of 4416x1242 (2.2k). In addition, it has multiple third-party integrations such as Tensorflow,
Matlab, OpenCV, ROS and more.

Figure 8: ZED stereo camera

3.1.2 Desktop computer

The desktop computer used in this report has the following hardware:

• NVIDIA GeForce GTX 1060 6GB

• Intel(R) Core(TM) i5-3570K CPU @ 3.40GHz 3.40 GHz

• Motherboard: B75MA-P45

• 8 GB RAM

• ENERMAX MAXPRO II 600W PSU

3.1.3 Jetson Nano Developer Kit

The Jetson Nano by Nvidia, seen in figure 9 is a small and powerful computer capable of running multiple
neural networks in parallel [23]. The following list contains the relevant hardware [24]:

• GPU: 128-core NVIDIA Maxwell™ architecture-based GPU

• CPU: Quad-core ARM® A57

• Memory: 4 GB 64-bit LPDDR4; 25.6 gigabytes/second
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Figure 9: Jetson Nano developer kit

3.1.4 The NTNU Cyborg

The NTNU Cyborg consists of a Pioneer LX by Adept MobileRobots (went out of business in 2018) and
student contributions (see section 1.1) The following list shows the relevant hardware:

• Intel D525 64-bit dual core CPU @1.8 GHz

• Intel GMA 3150 integrated graphics processing unit

• Intel 6235ANHMW wireless network adapter

• Ports for ethernet, RS-232, USB, VGA, and various other analog and digital I/O

• SICK 300 and SICK TiM 510 laser scanner

• A 60 A h battery, expected to power the robot continuously for up to 13 hours

3.2 Software

This section describes the relevant software used throughout this report.

3.2.1 RosAria

RosAria is a package that provides a ROS interface for most Adept MobileRobots, such as the Pioneer LX.
The RosAria node publishes data from the robot’s embedded controller by ARIA and can be used to send
velocity commands to the robot via the RosAria/cmd_vel topic. It also publishes important topics such as
the robot’s pose, which contains odometry information of the robot, and the motor state defining whether
the motor is on or off. The information from the laser scanner can also be obtained through the RosAria
node.

3.2.2 RViz

RViz is a popular graphical tool in ROS and is used to display various information such as the robot model,
path, odometry, maps and more. RViz can be launched using the following command in terminal, given that
roscore is launched:
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$ rosrun rviz rviz

This will open the RViz window. A new display can be added by pressing the add button on the lower-left
corner of figure 10.

Figure 10: Default view of RViz

This opens a new window where a new display can be added based on the display type (see figure 11a), or
by a given active topic (see figure 11b). Most displays in RViz can visualize the given information as long
as there is an active topic publishing the information needed. For example, the path of the robot can be
displayed in RViz only if a topic is publishing to a topic containing the message nav_msgs/Path, as specified
from the section called "Description" in figure 11
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(a) Adding visuals to RViz based on display type. (b) Adding visuals to RViz based on the active topic.

Figure 11: Adding a new display in RViz based on display type and by active topics.

In the case of displaying the robot model, a URDF file of the robot must be defined. Additionally, the
parameter called robot_description must be set to contain the file path of the URDF file. Note that in this
case, RViz is actively looking for a ROS parameter and not a topic. The parameter can be set using a launch
file. The following lines show how such a launch file can be constructed:

1 <launch >
2 <!-- Structure:
3 <param name = "robot_description" textfile = "$(find name_of_ros_package)/

path_from_package_to_urdf/robot_name.urdf" /> -->
4

5 <!-- Practical example: -->
6 <param name = "robot_description" textfile = "$(find robot_state_publisher)/amr -ros -config/

cyborg_description/urdf/cyborg_fine.urdf" />
7 </launch >

The parameter name robot_description is defined on line 6 with the location of a text file from the
robot_state_publisher package. This enables RViz to detect this file as the display type RobotModel, which
can be added to the world. To view the model, a transform between the links that have been imported to
RViz and the frame of reference must be active. This is done by running the tf package, described in section
2.9. The frame of reference, or the Fixed frame, is located under the Global Options display. By default,
the frame of reference will be an empty map but can be changed as long as there exist other coordinate
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frames. Examples of different frames are the odometry frame and the different link frames, such as the frame
of the base link. It is important to set the fixed frame as something that is considered stationary, such that
everything moves relative to it. In the case of using SLAM with RViz, setting the map as the fixed frame
will move the robot relative to the map that is being created.

3.2.3 MobileSim

MobileSim is a software that enables communication with a simulated robot by MobileRobots. It is a useful
tool for testing code, as it uses the RosAria package, which is also used on the real Cyborg. This means that
the same RosAria node will connect to the fake robot, subscribe to the cmd_vel topic, and publish fake laser
scans and odometry information. Figure 12 shows what the simulator looks like with the map of Glassgården.

Figure 12: Mobilesim - Displaying the Pioneer LX with a map of Glassgården.

3.2.4 zed_ros_wrapper - ROS wrapper for the ZED camera

The ZED ROS wrapper is a ROS package compatible for all ZED cameras and provides access to all camera
sensors and parameters. Its primary node, zed, provides a variety of topics from its left and right lens, such
as the image, and its sensors, such as IMU data. The package also provides a launch file that opens the
camera with ROS and publishes all the necessary information to ROS topics.

3.2.5 zed_ros_examples - Collection of ROS examples with the ZED camera

The zed_ros_examples is a collection of examples demonstrating the various capabilities of the ZED camera,
such as ZED with rtabmap (see section 4). This package includes the necessary launch files for running the
different examples and can be modified to fit the requirements for a given project. This package uses the
ROS wrapper and must therefore be installed first.

17



3.2.6 ZED SDK

The ZED SDK is software made by Stereolabs and is architectured around the camera class [25]. The Camera
class is the main interface with the camera and can be opened using the class method open() and passing
the function InitParameters() as the arguments. The InitParameters() function contains important
initial parameters such as the camera resolution, frames per second, depth mode, input type and more. The
input type is useful when another node has already opened the camera. Furthermore, by specifying the
set_from_stream parameter from InputType(), with the IP address of the broadcasting computer and the
port on which to listen to, allows for remote streaming.

Another important class method is grab(), which is used to grab the latest images. A set of runtime
parameters are passed as arguments that defines the sensing mode, enabling depth and more.
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4 RTAB-Map - An RGB-D SLAM approach

Real-Time Appearance-Based Mapping (RTAB-Map) is a SLAM method based on RGB-D, Stereo and Li-
dar graphs using incremental appearance-based loop closure detector [26]. Loop closure is the process of
determining whether an agent, e.g., a robot, has returned to a previously visited location [27]. Loop clo-
sure detection is useful for correcting drift in odometry and correcting the map. It suffers, however, from
significant dynamic changes to the environment, such as people or objects being present in areas previously
empty. This should be considered when planning to map the environment to ensure robustness towards false
positives. The map is created through map generation and exploration, i.e., by driving around and exploring
new areas. RTAB-Map is based on occupancy grid. Occupancy grid mapping addresses the problem of
generating maps from noisy and uncertain measurement data, assuming that the pose of the robot is known
[28]. This method estimates the posterior probability:

p(m|z1:t, x1:t) (1)

Equation 1 calculates the probability of map m, given the set of measurements z1:t from 1 to t, and state x1:t
from time 1 to t. The state x represents the set of robot poses from 1 to t [29]. The map m can be split into
a set of grid cells with index i, denoted mi. Here, p(mi) represents the probability of a cell being occupied or
not, e.g. if there is an obstacle there of not. The time complexity for equation 1 is therefor O(2|m|), where m
is the number of grids, which can be 10 000 or much more. To reduce the time complexity, one can instead
look at each cell mi individually:

p(m|z1:t, x1:t) =
∏
i

p(mi|z1:t, x1:t) (2)

Equation 2 now represents the posterior probability of the map as a product of each individual cell. Since
each cell has the probability of being occupied or not, the time complexity for this case is the number of
cells multiplied with the different states it can be in (i.e. occupied or not), or O(2|m|). The downside of this
approach is that any dependency of neighboring cells cannot be modeled, as this approach assumes each cell
are independent of each other.

4.1 rtabmap in ROS

RTAB-Map is available as two ROS packages: rtabmap [30] and rtabmap_ros [31]. The latter is a ROS
wrapper of RTAB-Map. This package provides several useful nodes:

• rtabmap: The main node where the graph of the map is incrementally built and optimized when a loop
closure is detected.

• rtabmapviz: This enables a visual interface of RTAB-Map, similar to RViz

• Visual and LiDAR Odometry: Uses visual and LiDAR odometry

• rgbd_odometry: Uses RGBD images to compute odometry. This approach uses visual features from
the RBG images along with the info from depth images.

• stereo_odometry: Uses stereo images to compute odometry. The visual features are extracted from the
left images, along with depth information from the depth images, and attempts to find similar features
on the right images.
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The rtabmap node can be configured in two ways:

1. Mapping mode

2. Localization mode

The mapping mode will continuously create a map through exploration of the environment. By default,
any previously generated map will be deleted when the rtabmap is started. To avoid this, the argument
"–delete_db_on_start" must be set to false. The second mode is the localization mode. This will not create
any new map, nor will it expand on any existing map through exploration. This is useful when a map has
already been made, and any further improvement is not necessary. However, this mode is limited to the size
of the existing map, meaning that any localization will fail for the unexplored area.
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5 Types of object detection algorithms

Object detection in terms of computer vision is identifying and locating one or several objects within an
image or video. This section describes some popular methods of object detection.

5.1 R-CNN, Fast R-CNN and Faster R-CNN

Region Based Convolutional Neural Networks (R-CNN) is a method of detecting objects in images by using
a method called selective search [32]. Selective search extracts 2000 regions from a given image which is
defined as region proposals. These regions are used for classification and are fed into a Convolutional Neural
Networks (CNN). CNN is an effective method of detecting patterns in images such as edges, shapes, colors
etc., using different filters [33]. The CNN will take the 2000 region proposals as input, extract features and
feed it into an Support Vector Machine (SVM). The goal of the SVM is to find a plane, called the hyperplane,
capable of separating the different data points into classes based on the different features [34]. In other words,
the hyperplane will be a plane in an N-dimensional space, where N denotes the number of features. If N = 2,
the plane will be a line in 2D space. This method will create several hyperplanes, and the optimal hyperplane
will be placed such that it has the maximum distance between the data points of all classes.

There are some disadvantages with this method of object detection:

• Using 2000 region proposals per image takes a long time in terms of training the network.

• Since it is rather slow at detecting objects, the method is not suitable for real time video.

• The selective search algorithm does not get "better" at detecting regions over time, meaning that the
proposed regions might not be sufficiently good for every image.

In later years, improved versions of this algorithm have been implemented called Fast R-CNN and Faster
R-CNN. These methods aim at fixing some of the disadvantages of its predecessor. Figure 13 shows a time
comparison between the different R-CNN methods.

Figure 13: Speed comparison between R-CNN, Fast R-CNN and Faster R-CNN
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5.2 YOLO -You Only Look Once

You Only Look Once (YOLO) is a method of detecting and locating objects using a single neural network
on the entire image, in contrast to classification networks such as fast RCNN, which perform detection on
the given region proposals. Consequently, YOLO does not have to perform prediction multiple times for
various regions in an image. This also means that it requires only a single forward propagation through a
neural network to detect the different objects [35]. The prediction that is being made is based on predicting
a class of an object in the picture and the corresponding bounding box for specifying the object’s location
[36]. Images are typically split into a 19x19 grid cells, where each cell is predicting five bounding boxes.
This approach detects more bounding boxes than there are actual objects in the image. Therefore, only the
bounding boxes with high object probability are chosen. Figure 14 shows how objects are detected from an
SxS grid as input.

Figure 14: Process of detecting objects from an SxS grid image

A popular method of implementing YOLO is with Darkent, which is an open-source neural network frame-
work. This is written in C and CUDA technology. This is a fast approach when using a Graphics Processing
Unit (GPU) provided by Nvidia. Furthermore, YOLO is orders of magnitude faster than other object detec-
tion algorithms, which makes it suitable for live video.
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6 Creating a Cyborg robot model for display in RViz

This section describes the process of using SolidWorks to export a 3D computer-aided design (CAD) model
into a Unified Robot Description Format (URDF) file and combine it with an old robot model to display
the current version of the Cyborg. This is done in two parts: One model shall display the robot without the
ZED camera and one with the ZED camera.

6.1 Creating the URDF file for the Cyborg

The robot model that has been used in RViz over the years of ROS development on the Cyborg has been the
pioneer-lx.urdf provided by Mobilesim (see figure 17a). This model did not accurately represent the current
version of the Cyborg, which can be seen in figure 1d. The following parts were missing in the old model and
had to be added:

• Front panel

• Back panel

• LED Dome

A complete 3D CAD model of the parts mentioned above was available in SolidWorks. A Solidworks plug-in
for exporting 3D CAD models to URDF files was used. An Experts in Teamwork (EiT) project in the spring
of 2018 had already assembled the current version into a complete assembly (see appendix B.1). Since only
the three mentioned parts above were needed, any other parts were suppressed from the assembly.

Before the parts could be exported as a URDF file, two coordinate frames were created: Body frame and
Dome frame. The purpose of these frames was to create frames of reference. These frames can be seen from
figure 15.
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Figure 15: Reference frames for the body- and dome link

After the two frames were created, the Export as URDF tool was selected. The robot was configured with
two links: The body_link and dome_link. Figure 16a shows the front- and back panel being selected as the
body_link. Moreover, the global origin coordinate system was defined as the Body frame. The body_link
was given one child link; the dome_link, defined in figure 16b. The child link consisted of the dome marked
in blue or the head assembly as it was defined in SolidWorks. Additionally, a joint connecting the parent and
child link was defined as the dome_joint. The reference coordinate system was the Dome frame. Since there
were no more links to define, the dome_link had zero child links.

The resulting configuration had one joint and two links: Dome_joint and body_link and dome_link, re-
spectively. The position and orientation of the origin of the joint were defined under the configure joint
properties menu. The origin was set to x = y = 0 and z = 0.26541, which corresponded to the distance
between the body_frame and dome_frame. The orientation of the joint was set to zero. The necessary link
properties were defined in the Configure Link Properties. The position and orientation of the visual- and
collision meshes were set to zero for both links. The inertial properties were unchanged. Finally, the URDF
was exported with the necessary meshes from SolidWorks.
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(a) Defining the body link

(b) defining the dome link

Figure 16: SolidWorks URDF Exporter
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Since there already was a robot model for the Pioneer LX by Adept MobileRobots, the next step was to
combine the old and new files into one URDF file. To achieve this, a custom joint had to be created. This
joint was responsible for connecting the newly created body_link with the base link of the old model.

1 <joint
2 name="body_joint"
3 type="fixed">
4 <origin
5 xyz="0 0 0.0.372"
6 rpy="0 0 0" />
7 <parent
8 link="base_link" />
9 <child

10 link="body_link" />
11 <axis
12 xyz="0 0 0" />
13 </joint >

The joint type was defined as fixed, meaning that the links connected to this joint do not move relative to
the joint. The origin of the joint was located 0.372 m above the floor. This corresponded to the height of the
Pioneer LX (see Appendix A.1). Additionally, the parent and child link were set as base_link and body_link
respectively. Next, the remaining code from the new URDF file was directly pasted into the old URDF.

Before the robot model was complete, changes to the body and dome joint orientation relative to the base_link
had to be adjusted. A rotation of π

2 radians for both links aligned them with the rest of the robot. The
same was done for the collision properties of the two links. Additionally, the robot’s deck from the original
pioneer-lx.urdf was removed, as the Cyborg had no such deck. The last finishing touch was to give the robot
its white color. This was done by defining the red, green, blue and alpha (rgba) properties, where alpha
defined the transparency of the links. These values were set to 1.

6.1.1 Evaluation of the URDF file

A comparison between the old and the new robot model can be seen from figure 17a and figure 17b, respec-
tively. The deck on top of the old model was removed, and the two links: body_link and dome_link was
added to the model connected by a custom joint called dome_joint. Moreover, the robot was given a white
color to match the real Cyborg.
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(a) Old model of the Pioneer-lx in RViz (b) Complete model of the Cyborg in RViz

The joint- and link configuration can be seen from figure 18 and 19. The base_link had three children:
r_wheel, l_wheel and body_link. Additionally, the dome_link was defined as the child link to the body_link.
The resulting joints had the same orientation as the existing ones.

Figure 18: Joint configuration for the Cyborg
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view_frames Result

base_link

body_link

Broadcaster: /robot_state_publisher
Average rate: 10000.000 Hz

Most recent transform: 0.000 ( 1612344757.433 sec old)
Buffer length: 0.000 sec

l_wheel

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1612344757.430 ( 0.002 sec old)
Buffer length: 4.900 sec

r_wheel

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1612344757.430 ( 0.002 sec old)
Buffer length: 4.900 sec

dome_link

Broadcaster: /robot_state_publisher
Average rate: 10000.000 Hz

Most recent transform: 0.000 ( 1612344757.433 sec old)
Buffer length: 0.000 sec

Recorded at time: 1612344757.433

Figure 19: tf frames for the Cyborg model

6.2 Adding the ZED camera to the robot model

The ZED camera was also added and placed in front of the robot. The zed_wrapper package already had a
URDF file for the ZED camera and was combined with the new robot model. Figure 20 shows the links of
the ZED camera. The "main" link was the zed_camera_center. This was also the only link with any visual
properties, i.e. the visual model represented in RViz was completely defined from zed_camera_center.

Figure 20: The tf tree for the ZED URDF model, displaying the different frames.

To include the camera with the Cyborg URDF, a custom joint was created which connected the base link,
i.e. the Pioneer LX, with the zed_camera_center:

1 <joint name="zed_camera_center_joint" type="fixed">
2 <parent link="base_link"/>
3 <child link="zed_camera_center"/>
4 <origin xyz="0.299 0.0 0.387" rpy="0.0 0.0 0.0" />
5 </joint >

The joint name was labeled zed_camera_center_joint. The parent link was set as base_link, whereas the
child link was set as zed_camera_center. The origin offset was set to x = 0.299, y = 0.0 and z = 0.387.
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The coordinates were relative to the base_link frame. The x location was approximated to be 0.299, i.e.,
a little less than half the length of the robot base. The height of the camera, i.e. the z-direction, was
z = hrobot + hZED

2 where hrobot was the height of the robot and hzed was the height of the camera (see
appendix A.2). These values were 0.372 meters and 0.030 meters, respectively.

6.2.1 Evaluation

The RViz model of the ZED camera is shown in figure 21, which displays its main link: zed_camera_center.

Figure 21: Location of the joint of the ZED camera in RViz

The resulting new robot model is shown in figure 22a. The camera was successfully placed on top of the base
link, all the way to the front of the Cyborg. The joint configuration can be seen on figure 22b. The camera’s
location on the robot model was designed to match the camera’s location on the real Cyborg.
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(a) Cyborg robot model with ZED camera dis-
played in RViz.

(b) Joint location for the Cyborg model with
the ZED Camera

Additionally, the tf frame tree can be seen from figure 23. The base_link was the parent link, whereas the
zed_center was the child link. Moreover, the zed_center had two child links: the right- and left-camera links,
which defined the location of the respective lenses. Moreover, the zed_left_camera had a child link called
zed_depth_camera, the frame where all depth measurements were relative to.
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Figure 23: tf frames for the Cyborg and ZED camera
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7 Integrating Visual simultaneous localization and mapping (VS-

LAM) with the Cyborg

This section describes the process of using the ZED camera to create 2D and 3D maps using RTAB-Map in
ROS.

7.1 Specification and Requirements

A framework for running VSLAM with the Cyborg shall be implemented. This includes:

• Creating a complete launch file using RTAB-Map running VSLAM with the Cyborg using the updated
URDF file from section 6.2.

– The ability to integrate laser scans provided by the RosAria node shall also be included.

• The RTAB-Map shall run on the desktop computer and listen to the ZED camera broadcast by the
Jetson Nano.

7.2 Implementing VSLAM

Before any VSLAM software could be implemented, two necessary packages had to be installed:
zed_ros_wrapper and zed_ros_examples. Both packages required installing the ZED Application Program-
ming Interface (API) and its Compute Unified Device Architecture (CUDA) dependency. ZED SDK version
3.4.2 [37] was chosen, along with CUDA 11.1[38] on the desktop computer. ZED SDK for Jetpack 4.5 was
installed on the Jetson Nano.

The zed_ros_wrapper contained a launch file which started the camera with ROS. This had to be modified
to include the new Cyborg URDF created in section 6. The main launch file which launched the camera was
zed.launch. This also launched the zed_camera.launch.xml, which included the URDF file. The following
line was added to zed_camera.launch.xml:

<param name="$(arg camera_name)_description" textfile = "$(find zed_wrapper)/urdf/Cyborg.
urdf" />

This specified ROS to set the parameter zed_description to contain the Cyborg URDF from the ROS package
zed_wrapper for display in RViz. Changing the robot model required some changes to the parameters related
VSLAM. The common.yaml, provided by zed_wrapper, set the floor_alignment parameter to true. This
automatically calculated the camera/floor offset. Additionally, two_d_mode was set to true, which forced the
robot to navigate along the horizontal plane. From rtabmap.yaml, provided by RTAB-Map, the parameter
frame_id was changed from base_link to zed_camera_center. Originally, the base link of the ZED camera
model had the same location as the zed_camera_center. Since the Cyborg model was used instead, the
location of the new base_link was different and therefore had to be changed.
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Figure 24: Rtabmap launch configuration

The next step was to edit the launch files to work with laser scans provided by RosAria. Figure 24 shows
the configuration of topics needed to run the rtabmap node using depth data and laser scans. The required
topics, given that the parameter subscribe_depth was true, were: odom, rgb/Image, rgb/camera_info and
depth/Image. These topics had to be published by the zed_wrapper, which ran the camera. The direction
of the arrows represent the required remapping of topics. The zed_wrapper node published to topics with
a different name than the ones contained inside the rtabmap node. Remapping is a way to "trick" ROS
nodes to think that they are publishing/subscribing to a topic of interest by using the remap argument. For
example, remapping the zed/zed_node/odom topic provided by the zed_wrapper node to /odom causes the
rtabmap node to subscribe to that information, even though the information is from a completely different
topic.

The inclusion of laser scan or laser cloud readings required some modifications to sl_rtabmap.launch.xml:

1 <!-- Laser scan topics -->
2 <arg name= "laser_scan_topic" default="/RosAria/S3Series_1_laserscan" />
3 <arg name= "scan_cloud_topic" default="/RosAria/S3Series_1_pointcloud" />

This stored the name of the laser topics into arguments, which was used later in zed_rtabmap.launch:

1 <!-- RTABmapviz -->
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2 <node name="rtabmapviz" pkg="rtabmap_ros" type="rtabmapviz" output="screen" args=""
launch -prefix="">

3 <remap from="rgb/image" to="$(arg rgb_topic)"/>
4 <remap from="depth/image" to="$(arg depth_topic)"/>
5 <remap from="rgb/camera_info" to="$(arg camera_info_topic)"/>
6 <remap from="odom" to="$(arg odom_topic)"/>
7 <remap from="grid_map" to="map" />
8 <remap from="scan" to="$(arg laser_scan_topic)"/>
9 <remap from="scan_cloud" to="$(arg scan_cloud_topic)"/>

10 </node>
11 <!-- RTABmap -->
12 <node name="rtabmap" pkg="rtabmap_ros" type="rtabmap" output="screen" args="$(arg args)"

launch -prefix="">
13 <rosparam command="load" file="$(find zed_rtabmap_example)/params/rtabmap.yaml" />
14 <remap from="rgb/image" to="$(arg rgb_topic)"/>
15 <remap from="depth/image" to="$(arg depth_topic)"/>
16 <remap from="rgb/camera_info" to="$(arg camera_info_topic)"/>
17 <remap from="odom" to="$(arg odom_topic)"/>
18 <remap from="grid_map" to="map" />
19 <remap from="scan" to="$(arg laser_scan_topic)"/>
20 <remap from="scan_cloud" to="$(arg scan_cloud_topic)"/>

This launched two different nodes: rtabmapviz and rtabmap on line 2 and 11, respectively. Line 3-7 and
14-18 were already implemented in the example launch files. Line 8-9 and 19-20 were added such that the
nodes would subscribe to the laser topics.

VSLAM was tested within the Cyborg office, seen on figure 25. The camera was first launched on the Jetson
Nano: $ roslaunch zed_wrapper zed.launch

$ rosservice call zed/zed_wrapper/start_remote_stream The parameter start_remote_stream was en-
abled, which allowed the Jetson Nano to broadcast to the desktop computer:
$roslaunch zed_rtabmap_example zed_rtabmap.launch stream:=<ip_address>

Which launched the nodes related to RTAB-Map and specified the IP address of the Jetson Nano.

Figure 25: The Cyborg office
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7.3 Evaluation of the VSLAM

The resulting launch- and configuration files for implementing RTAB-Map with the Cyborg using laser scan
measurements can be found in the attached zip file. The generated 2D map can be seen from figure 26, which
displays the robot model in the 2D map generated by the rtabmap node. The map was accurate, despite
it looking "noisy". The black areas represent obstacles, whereas the white areas represent free space. The
map managed to capture the free space in the middle of the office, between the tables on the right and left
side, and the area under the tables. The mapping process lasted approximately 1 minute by maneuvering
the robot around the office.

Figure 26: A 2D occupancy grid map of the Cyborg office, provided by the rtabmap node.

A 3D map was also generated and is shown on figure 27a. As comparison, figure 27b shows the correspondence
between the 3D map and the actual office. It produced satisfactory results, where some of the features, such
as the wooden cabinet, the wall at the end and the tables, are visible to some degree. The map could be
improved by mapping for a more extended period and maneuvering more back and forth in the office to
capture details it might have missed on the first run.

(a) 3D map provided by the rtabmap node in
RViz.

(b) The corresponding 3D mapped part of the
Cyborg office.
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A comparison between the 2D and 3D map is also presented in figure 28. The 2D and 3D features overlap
well, suggesting that both maps are working well at displaying obstructing objects.

Figure 28: A 3D map on top of the 2D map of the Cyborg office during VSLAM.

The resulting 2D and 3D maps performed better than expected, as the cyborg office is a relatively small
office with various obstructing objects. This meant that a large number of objects and obstructions had
to be detected. Despite this, the unoccupied and occupied space was accurately detected. However, some
mapping error did occur and is depicted in figure 29 by the black circle. The camera should have stopped
mapping beyond the wall by the window. Instead, it kept adding to the map. The reason behind this could
be due to rapid movements, tricking the rtabmap node into believing that a new area had been detected.
Another explanation could be that it detected the window above and added that to the map. This error has
no impact on the maneuverability of the Cyborg if used as a navigation map. The Cyborg has no chance of
getting to that part, as it detected a wall there.
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Figure 29: Error in the map, marked by the black circle.
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8 Implementing object detection with the Cyborg

This section describes how YOLO object detection was implemented using the ZED stereo camera.

8.1 Implementing YOLO using the ZED camera

A python script called zed_darknet.py was included from the zed-yolo GitHub repository by Stereolabs
[39]. This was a Python 3 wrapper for identifying objects in images. One of the imported classes was cv2.
However, cv2 was imported under Python 2 by default with ROS Kinetic. To make cv2 work with Python
3, the following lines were added:

1 import sys
2 sys.path.remove('/opt/ros/kinetic/lib/python2 .7/dist -packages ')
3 import cv2

4 if __name__ == "__main__":
5 rospy.init_node("Object_detection_node", anonymous = False)
6 pub = rospy.Publisher("person_position", FloatVector , queue_size = 10)
7 floatvector = FloatVector ()
8 while not rospy.is_shutdown ():
9 main(sys.argv [1:])

To create an interface between ROS and YOLO, a ROS node was initialized on line 5 called object_detection_node.
This node published to the person_position topic with the message type FloatVector. This was a custom
ROS message containing a Point array. An object of this message was created on line 7. Themain() function
on line 9 was specified to run while the ROS node was active. This function was responsible for performing
the object detection and depth calculations.

10 thresh = 0.6
11 config_path = "../ libdarknet/cfg/yolov3.cfg"
12 weight_path = "yolov3.weights"
13 meta_path = "coco.data"

The first part of the main() function was to declare the detection threshold. This was set to 0.6, where the
maximum threshold was 1. The threshold defined the lowest confidence score needed for an object to be
detected, i.e., any objects with a confidence score greater than the threshold value would be accepted. The
config_path defined where to find the structure of the neural network for YOLO version 3. The weight_path
contained the weights for the given network and the meta_path contained information about the different
classes, e.g. people and dogs.

14 init = sl.InitParameters ()
15 init.coordinate_units = sl.UNIT.METER
16 init.set_from_stream(str("10.22.67.168") ,30000)
17 cam = sl.Camera ()
18 if not cam.is_opened ():
19 log.info("Opening ZED Camera ...")
20 status = cam.open(init)
21 if status != sl.ERROR_CODE.SUCCESS:
22 log.error(repr(status))
23 exit()
24 runtime = sl.RuntimeParameters ()
25 # Use STANDARD sensing mode
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26 runtime.sensing_mode = sl.SENSING_MODE.STANDARD
27 mat = sl.Mat()
28 point_cloud_mat = sl.Mat()

The next step was to open the ZED camera using the ZED Python API. The initial parameters for the camera
were defined on line 14-16. The camera was specified to receive data from a broadcaster with a specified IP
address and port. Line 17-23 created a camera object, passed the initial parameters to the open() function
and checked if the camera was successfully opened or not. If the camera failed to open, e.g., the IP address
of the broadcaster was wrong, the code was instructed to exit. The runtime parameters were defined on
line 24. The sensing mode was set to standard, whereas the rest of the parameters were given their default
values. Moreover, mat and point_cloud_mat were declared as objects of the Mat() class on line 27 and 28
respectively.

29 err = cam.grab(runtime)
30 if err == sl.ERROR_CODE.SUCCESS:
31 cam.retrieve_image(mat , sl.VIEW.LEFT)
32 image = mat.get_data ()
33 cam.retrieve_measure(point_cloud_mat , sl.MEASURE.XYZRGBA)
34 depth = point_cloud_mat.get_data ()
35 # Do the detection
36 detections = detect(netMain , metaMain , image , thresh)

The runtime parameters were passed to the grab() function on line 29 to grab the latest images from the
camera. Line 30 checked if the camera returned successful behavior such that it could proceed with the code.
Line 31 used the cam object to retrieve images from the left camera using the mat object. The image, on
line 32, retrieved the data from the mat object in the form of a NumPy array. Next, on line 33, the depth
measurements were retrieved and then converted into a NumPy array on line 34. Finally, the object detection
took place on line 36, which used the detect() function.

The detection() function returned an array with information about the detection: index 0 returned the
name of the detected object, e.g. a person. Index 1 returned the confidence score of the detected person,
Index 2 gave information about the pixel location of the bounding box for the detected object and index 4
returned the index of the detected object from the coco.names file. For example, the person object had index
0 in coco.names.

37 if detection [0] == "person":
38 if xd != -1 and yd != -1 and zd != -1:
39 point = Point ()
40 point.x = xd
41 point.y = yd
42 point.z = zd
43 floatvector.point.append(point)
44 pub.publish(floatvector)

An if-statement was implemented only to perform calculations if the label of the detected object was a person.
This was done on line 37. Additionally, when a detected object was too close to- or too far from the camera,
the given depth values were set to -1. A new if-statement was implemented on line 38 to only publish values
when the camera received valid depth measurements. This stated that if any values in the x-, y-, or z direction
was not equal to -1, it meant that new depth measurements were received. The depth values were then be
published on line 44. The depth information was defined as a Point message, but published as a FloatVector.
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8.1.1 Evaluating YOLO object detection

The object detection performance can be seen from figure 30. The best performing YOLO version in terms
of frames per second (FPS) was YOLOV3-tiny. The FPS for the desktop computer was 27 FPS, whereas
the Jetson NANO only managed 6 FPS. The detection itself performed well. YOLOV3 performed the worst
in terms of FPS, but had the best detection performance. This made sense, though; Adding more layers to
the CNN yielded better detection, but at the cost of being more computationally demanding and therefore
causing a drop in FPS. The worst performing weight in terms of detection was YOLOV2-tiny. The detection
was slower and sometimes failed to detect as it failed to reach the given threshold value.

Figure 30: Object performance in terms of FPS for the Jetson Nano and the desktop computer.

Figure 31 shows two graphs of two different rosbags, each recording depth measurements of a detected student.
Figure 31a shows the graph of a student that was constantly moving. The x-axis shows the time in seconds,
whereas the y-axis shows the distance in meters from the camera to the person. The depth measurements
seemed to be good, with some noise in the y-direction. Figure 31b shows the depth measurements of a person
standing completely still. It was clear that this measurement contained a significant amount of noise. Note
that the y-axis was scaled differently to that of figure 31a.
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(a) Depth measurements while moving around.

(b) Depth measurements while standing completely still.

Figure 31: Depth measurement results.

The resulting confidence score from walking back and forth in the cyborg office with the camera directly
pointed at the student can be seen from figure 32. This shows the confidence scores produced by the different
weights. YOLOv3 yielded the best result with a confidence score close to 1 most of the time, whereas the
minimum score was 0.8741. It had no problem detecting the person throughout the test. The small peaks
happened when the person was changing the direction, i.e., turning around.
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The second-best result came from YOLOv2, which had satisfactory results with a relatively small dispersion
in the measurements. However, it got very close to a confidence score of 0.6. Any lower than this, and it
would no longer be able to detect the student. Both YOLOv3-tiny and YOLOv2-tiny had less satisfactory
results, with a higher disparity and a lower average than the previous two. Additionally, these weights would
occasionally fail to detect the student walking, as the confidence score would reach below 0.6 on multiple
occasions.

Figure 32: Showing how the confidence score for the different weights changed over time.

Table 1: The variance of the confidence score measurements

Weights Variance(σ2)
YOLOv3 0.00014646
YOLOv3-tiny 0.0091
YOLOv2 0.0016
YOLOv2-tiny 0.0094

The variance of the different weights can be found in table 1. It shows that YOLOv3 had a significantly
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smaller variance compared to the rest of the weights. YOLOv2 had a much higher variance than YOLOV3,
but lower than both YOLOv2-tiny and YOLOv3-tiny, which both had very similar variance. The similarity
in the variance for both the tiny weights came from the fact that both methods had 15 layers in the neural
network. YOLOv3 had 106 layers, and YOLOv2 had only 31 layers, which explains the results.
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9 ROS Navigation - Autonomous tracking of students using object

detection

This section describes the procedures of creating a navigation controller capable of detecting a student using
the object detection implemented in section 8 and follow the student.

9.1 Specification and Requirements

Based on the object detection module implemented in section 8, and the navigation stack described in section
2.11, the following specification and requirements are:

• The robot shall be capable of detecting people and receive navigation goals using the move_base
package

• Two coordinate frames shall be implemented: person_detection_frame and person. The former shall be
used as the frame of reference for incoming depth measurements, and the latter shall track the person
at all times by updating its position relative to person_detection_frame.

• Mount the camera and the Jetson Nano onto the Cyborg and enable streaming for the ZED camera.
The desktop computer shall listen to the stream and run all ROS nodes related to the navigation
controller and object detection. The Jetson Nano shall run only the ZED node.

• The Cyborg Computer shall only run the RosAria node, as well as costmap_2d navigation (see section
2.11)

• (Optional) Publish path information about where the student has moved and display it in RViz.
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9.2 Creating a Navigation controller for the Cyborg

This section describes the implementation of a controller capable of navigating the Cyborg towards a detected
student within the Cyborg Office.

9.2.1 Implementation the controller

Two new coordinate frames were implemented: person_detection_frame and person. The first frame was
designed to match the orientation of the coordinate frame of the ZED camera. The latter was designed to
represent the position of a student relative to a map. The default orientation of the axis provided by the
ZED API is shown in figure 33a.

(a) ZED coordinate system.

(b) zed_left_camera_frame.

Figure 33: The default coordinate frame from the ZED API is represented on the left. The
zed_left_camera_frame is represented in RViz on the right.

To create the person_detection_frame, the origin and orientation had to be defined. From figure 33b, the
origin of zed_left_camera_center could be used as the frame of reference to represent the origin of the new
frame. However, the orientation had to be adjusted to match figure 33a. Therefore, by creating a new frame
relative to the zed_left_camera_frame, the orientation was adjusted by performing a roll angle of 3π

4 to align
the x-axis, followed by a yaw angle of 3π

4 to align the y- and z-axis. Finally, the depth measurements from
section 8 had to be averaged to avoid the noisy readings from figure 31b. The corresponding implementation
in ROS was done in C++:

1 class TFClass
2 {
3 public:
4 TFClass ()
5 {
6 pointsub_ = point_nh_.subscribe("/person_position", 1, &TFClass :: caimplementedllback ,

this);
7 optimized_point_pub_ = point_nh_.advertise <geometry_msgs ::Point >("

Optimized_person_distance" ,10000,true);
8 }
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A class called TFClass was created, with its constructor on line 4. Line 6 subscribed to the data provided by
the /person_position topic and passed it to a callback function. A publisher was created on the subsequent
line, which published a geometry_msgs Point message to the Optimized_person_distance topic.

9 void callback(const ros_detection :: FloatVector :: ConstPtr& pointData)
10 {
11 quat_.setRPY (4.71238898 , 0, 4.71238898);
12 quat_.normalize ();
13 transform_.setOrigin(tf:: Vector3 (0,0,0));
14 transform_.setRotation(quat_);
15 br_.sendTransform(tf:: StampedTransform(transform_ , ros::Time::now(), "

zed_left_camera_frame", "person_detection_frame"));

Here, the callback function was created, containing the subscribed data in pointData. Next, an object of
the tf::Quaternion class used the setRPY() method to get the quaternion angles from the roll pitch and yaw
angle. The roll and yaw angles were set as 3π

4 . The corresponding quaternion angles were normalized on line
12. The origin was set as (0, 0, 0), which corresponded to the same origin as ”zed_left_camera_frame”.
On line 15, an object of class tf::TransformBroadcaster broadcast the data to person_detection_frame,
relative to ”zed_left_camera_frame”.

The subscribed data that was passed to the callback function was quite noisy and had to be averaged over a
set of incoming measurements:

16 temp_point_.x = 0;
17 temp_point_.y = 0;
18 temp_point_.z = 0;
19 int count = 0;
20 current_size_ = pointData ->point.size();
21

22 if (current_size_ >=10)
23 {
24 for (int i = current_size_ -10; i < current_size_; i++)
25 {
26 temp_point_.x = temp_point_.x + pointData ->point[i].x;
27 temp_point_.y = temp_point_.y + pointData ->point[i].y;
28 temp_point_.z = temp_point_.z + pointData ->point[i].z;
29 count ++;
30 }
31 testpoint_.x = temp_point_.x/count;
32 testpoint_.y = temp_point_.y/count;
33 testpoint_.z = temp_point_.z/count;
34 optimized_point_pub_.publish(testpoint_);
35 }
36 }

On line 16-18, a class attribute called temp_point_ of message type geometry_msgs::Point had its x-, y- and
z attributes set to zero. Moreover, a counter called count was set to zero on line 19. On line 20, a variable
called current_size_ continuously kept track of the size of the incoming array of depth measurements. The
if-statement on line 21 specified to average the incoming messages if the number of incoming messages was
greater than or equal to 10. The for-loop on line 23 looped over the current index of the subscribed array
subtracted by ten up to the current index. The values were added up on line 26-28 while updating the
count variable on line 29. Outside this for-loop, a new variable of message geometry_msgs::Point, testpoint_
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assigned its x-, y- and z-variables as the average of the data from the for-loop. Finally, the point was published
on line 34.

37 int main(int argc , char **argv)
38 {
39 ros::init(argc , argv , "personTF");
40 TFClass pathobj;
41 ros::spin();
42 return 0;
43 }

Inside the main function, the ROS node "personTF" was initialized. On line 40, an object of the TFClass
was created and ran the class constructor. Finally, ros::spin() kept the program from exiting until the node
was stopped.

A second frame was created to track the position of the detected student relative to the global /map frame.
The procedure consisted of taking the measurements from the /Optimized_person_distance topic, which was
relative to the person_detection_frame, and transform them into the /map frame using tf. Additionally, a
publisher was created, which calculated the angle of a detected student relative to the horizontal Field of
View (FOV) of the camera (see figure 34).

Figure 34: Horizontal FOV for the ZED camera.

The equation for the FOV was given by:

FOV_angle = π − atan2
( z
x

)
(3)
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Moreover, the distance between the Cyborg and the student was given by:

d =
√
x2 + z2 (4)

The implementations were made in C++:

1 class PersonBroadcaster
2 {
3 public:
4 PersonBroadcaster ()
5 {
6 dist_sub_ = nh_.subscribe("/Optimized_person_distance",1, &PersonBroadcaster ::callback ,

this);
7 path_pub_ = nh_.advertise <nav_msgs ::Path >("person_path" ,1, true);
8 move_base_pub_ = nh_.advertise <geometry_msgs ::Point >("move_base_goal_topic",1,true);
9 anglePub_ = nh_.advertise <std_msgs ::Float64 >("FOV_angle", 1, true);

10 distancePub_ = nh_.advertise <std_msgs ::Float64 >("distance", 1, true);
11 }

A class called PersonBroadcaster was created. Its constructor was defined on line 4, which created a subscriber
to the /Optimized_person_position topic, and passed the data to a callback function. Moreover, four
publishers were defined on line 7-10, which published to the following topics: person_path which contained
the path of the detected person, move_base_goal_topic which contained a navigation goal, the FOV_angle
containing the angle of the detected student and finally the /distance topic which defined the distance between
the Cyborg and the detected student.

12 void callback(const geometry_msgs :: Point:: ConstPtr& pointData)
13 {
14 personpose_.pose.position.x = pointData ->x;
15 personpose_.pose.position.y = 0;
16 personpose_.pose.position.z = pointData ->z;
17 personpose_.pose.orientation.w = 1;
18 personpose_.header.stamp = ros::Time (0);
19 personpose_.header.frame_id = "person_detection_frame";

Inside the callback function, the position of the detected student was assigned to personpose_, which was of
type geometry_msgs::PoseStamped. The x and z-position were given by the corresponding x- and z- position
provided by pointData. The y-position of the student was set to zero, corresponding to a constant height
of 0 relative to person_detection_frame. As the Cyborg was confined to the horizontal plane, it made little
sense to track the vertical changes of a detected student. Only the quaternion angle w was defined in this
case, and was set to 1. On line 19, the frame_id was defined to be "person_detection_frame", which was
the frame that the measurements originated from.

20 listener_.waitForTransform("map","person_detection_frame",ros::Time::now(),ros:: Duration
(3.0));

21 listener_.transformPose("map", personpose_ , mappose_);
22 transform_.setRotation(tf:: Quaternion(mappose_.pose.orientation.x,mappose_.pose.

orientation.y,mappose_.pose.orientation.z,mappose_.pose.orientation.w));
23 transform_.setOrigin(tf:: Vector3(mappose_.pose.position.x, mappose_.pose.position.y,

mappose_.pose.position.z));
24 br_.sendTransform(tf:: StampedTransform(transform_ , ros::Time::now(), "map", "person"));

48



Line 20 specified ROS to wait for an available transform between the map and person_detection_frame. On
the following line, transformPose() was used to represent the data provided in personpose_ to the map
frame. The resulting transformation between the frames was assigned to the variable mappose_ of type
geometry_msgs::PoseStamped. On line 22, the pose for a new coordinate frame was defined as the pose of
mappose_. Finally, on line 24, the new coordinate frame person was created relative to the map frame.

25 path_.header.stamp = ros::Time::now();
26 path_.header.frame_id = "map";
27 posestamped_.header.stamp = ros::Time::now();
28 posestamped_.header.frame_id = "map";
29 posestamped_.header.seq = seq;
30 posestamped_.pose.position = mappose_.pose.position;
31 posestamped_.pose.orientation = mappose_.pose.orientation;
32 path_.poses.push_back(posestamped_);
33 path_pub_.publish(path_);
34 move_base_pub_.publish(posestamped_.pose.position);
35 FOV_angle.data = -std::atan2(pointData ->z, pointData ->x) * 180 / 3.141592 +90;
36 anglePub_.publish(FOV_angle);
37 dist = std::sqrt(std::pow(x,2) + std::pow(z,2));
38 dist_pub.publish(dist);
39 seq ++;

Next, the path of the person frame was defined throughout line 25-32, and published on line 33. The
stamp of the path message was defined on line 25, and the frame was defined on line 26. The position
and orientation of the class attribute posestamped of type geometry_msgs::PoseStamped was defined on
line 27-31. This variable was appended to the pose attribute of path_ by using the push_back function.
Next, on line 33, the path was published to the person_path topic, and the navigation goal was published to
move_base_goal_topic on line 34. The FOV_angle was defined according to equation 3 and the distance
between the Cyborg and the student was defined according to equation 4. Finally, the variable seq was
incremented for each time the callback was called on line 39.

A final C++ file implemented a navigation controller that sent out navigation goals to the Cyborg.

1 int main(int argc , char** argv)
2 {
3 ros::init(argc ,argv ,"ControllerNode");
4 ros:: NodeHandle nh;
5 actionlib :: SimpleActionClient <move_base_msgs :: MoveBaseAction > myclient("move_base", true);
6 ROS_INFO("Waiting for the move_base action server");
7 myclient.waitForServer ();
8 ROS_INFO("Connected to the move base server");
9 ROS_INFO("");

10

11 tf:: TransformListener listener;
12 move_base_msgs :: MoveBaseGoal goal;
13

14 while(true)
15 {
16 movebaseaction(nh, listener , goal , myclient);
17 }
18 return 0;
19 }
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Inside main() a ROS node called "ControllerNode" was created, as well as a node handle on line 4. An object
called myclient of class actionlib::SimpleActionClient was created on line 5. The waitForServer() method was
called on line 7, which specified the program to wait until a connection to the server had been established.
On line 11, an object of the tf:TransformListener and an object of class move_base_msgs::MoveBaseGoal
was created, which was used inside the movebaseaction() function on line 16. This function was inside a
while loop that ran continuously until the program was forced to shut down. Four different arguments were
passed to the function on line 16: The ROS node handle, the listener object, the goal object and the myclient
object.

20 void movebaseaction(ros:: NodeHandle& nh, tf:: TransformListener& listener , move_base_msgs ::
MoveBaseGoal& goal ,

21 actionlib :: SimpleActionClient <move_base_msgs :: MoveBaseAction >& myclient)
22 {
23

24 geometry_msgs :: Point point = *(ros::topic :: waitForMessage <geometry_msgs ::Point >("
move_base_goal_topic", nh));

25 std_msgs :: Float64 FOV_angle = *(ros:: topic:: waitForMessage <std_msgs ::Float64 >("/FOV_angle"
, nh));

26 std_msgs :: Float64 distance = *(ros::topic:: waitForMessage <std_msgs ::Float64 >("/distance",
nh));

The inputs to the function on line 20 was called by reference. In C++, this meant that the address of the
variable was passed to the function, not the value itself. On line 24-26, the data from three different topics
were obtained using ros:: topic:: waitForMessage. This specified ROS to wait for a single incoming message.
The topics were: move_base_goal_topic, FOV_angle and distance. This function returned the address of
the value stored in memory for the specific topic. The value was obtained using the dereference operator
asterix (*).

27 tf:: StampedTransform stamp;
28 listener.waitForTransform("map","base_link",ros::Time::now(),ros:: Duration (3.0));
29 listener.lookupTransform("map","base_link",ros::Time (0), stamp);
30

31 goal.target_pose.header.frame_id = "map";
32 goal.target_pose.header.stamp = ros::Time::now();
33 goal.target_pose.pose.position.x = point.x;
34 goal.target_pose.pose.position.y = point.y;
35 goal.target_pose.pose.position.z = 0;
36 goal.target_pose.pose.orientation.x = stamp.getRotation ().x();
37 goal.target_pose.pose.orientation.y = stamp.getRotation ().y();
38 goal.target_pose.pose.orientation.z = stamp.getRotation ().z();
39 goal.target_pose.pose.orientation.w = stamp.getRotation ().w();

The stamp object was created and passed to the lookupTransform function to obtain the pose of base_link
of the robot relative to the map frame. On line 31-39, the navigation goal was defined (see section 2.8). The
frame_id of the target was defined as the map frame, which was the inertial frame. The position of the
target was the points x and y from move_base_goal_topic. The robot was incapable of moving vertically,
such that the z-coordinate was set to 0. The orientation of the target was defined as the orientation of the
Cyborg, or the base_link, at the time lookupTransfrom was called.

40 ROS_INFO_STREAM("Sending the following navigation goal: " << goal);
41 myclient.sendGoal(goal);
42 ROS_INFO_STREAM("Angle = "<<FOV_angle);
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43 ros:: Duration (1).sleep ();
44 while (myclient.getState () == actionlib :: SimpleClientGoalState :: ACTIVE && std::abs(

FOV_angle.data) < 20 && distance.data <= 1)
45 {
46 ROS_INFO_STREAM(myclient.getState ().toString ().c_str());
47 FOV_angle = *(ros:: topic:: waitForMessage <std_msgs ::Float64 >("/FOV_angle", nh));
48 ROS_INFO_STREAM("CURRENT ANGLE IS :" << FOV_angle);
49 }
50 }

The goal was sent using the sendGoal() method on line 41. The program was then instructed to wait for
1 second such that the robot had enough time to generate a plan and start executing it before running the
while loop on line 44. The while loop ran as long as a goal was active, a detected person was within ± 20°of
the maximum FOV and the student was within 1 meter of the Cyborg. Thus, the while loop acted more
or less as a wait function; While the conditions were met, no new plans were generated. This allowed the
Cyborg to move along the latest generated plan continuously. Otherwise, a new plan would be generated.

A flowchart of the navigation controller can be seen from figure 35.
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Figure 35: Flowchart for the navigation controller.

Before running the different nodes, the package.xml and CMakeLists.txt had to be modified to include the
necessary imported classes. In CMakeLists.txt, the following changes were made:

find_package(catkin REQUIRED COMPONENTS

message_generation

roscpp

tf

)

The message_generation had to be included for generating language bindings of messages [40]. Next, the
roscpp was included as the nodes were written in C++ and the roscpp provided an interface with ROS topics,
services and parameters [41]. Finally, tf was included to include the necessary functionalities from the tf
package.
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add_message_files(

FILES

FloatVector.msg

)

The custom ROS message FloatVector had to be specified inside the add_message_files() function to be
considered a ROS message.

generate_messages(

DEPENDENCIES

tf

)

To generate any added messages (not including custom messages), they had to be specified in the gener-
ate_messages() function. After the messages and various libraries were specified, the nodes had to be made
executable from:

add_executable(\${PROJECT_NAME}_node src/frames.cpp)

target_link_libraries(\${PROJECT_NAME}_node \${catkin_LIBRARIES})

add_executable(\${PROJECT_NAME}_tf src/get_tf.cpp)

target_link_libraries(\${PROJECT_NAME}_tf \${catkin_LIBRARIES})

add_executable(\${PROJECT_NAME}_actionclient src/action_client_interface.cpp)

target_link_libraries(\${PROJECT_NAME}_actionclient \${catkin_LIBRARIES})

Note that PROJECT_NAME was ros_detection. These changes made is possible to run the different C++
files from terminal using
$ rosrun ros_detection <node_name>

Additionally, the Package.xml had to be modified:

<build_depend>message_generation</build_depend>

<build_depend>message_runtime</build_depend>

<build_depend>roscpp</build_depend>

<build_depend>tf</build_depend>

<build_export_depend>roscpp</build_export_depend>

<exec_depend>message_runtime</exec_depend>

<exec_depend>roscpp</exec_depend>

<exec_depend>tf</exec_depend>

This built and/or executed the dependencies roscpp, tf message_generation and message_runtime.

After running YOLO, the nodes related to the navigation controller was started in the following order (for the
desktop computer): ros_detection_node, ros_detection_tf and ros_detection_actionclient. This required
having a student directly in front of the camera before starting the nodes.
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9.2.2 Evaluation of the controller

The resulting coordinate frame person_detection_frame can be seen from figure 36. The position and
orientation matched the coordinate frame from figure 33a.

Figure 36: The new person_detection_frame displayed in RViz with the Cyborg model.

Moreover, the person frame was successfully created and is shown in figure 37
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Figure 37: Showing the person coordinate frame in RViz.

The data used to broadcast the person frame was significantly less noisy than the data from figure 31b.
However, the improved noise reduction came at the cost of having a less responsive frame. The larger
amount of data it averaged, the less noisy the data became. However, this came at the price of having a less
responsive frame, as it has to constantly wait for a certain amount of measurements before it can update its
position. Having too small of a sampling size cause the data to become turbulent again, but more responsive.
After testing with different sampling amounts, it was concluded that a sample of 10 measurements yielded
a good combination of noise reduction and having a fast, responsive frame. The path of a student walking
around the Cyborg office can be seen in figure 38. The path followed a smooth trajectory without jumping
due to spikes in the measurements. Although these spikes in measurements might not matter when standing
in a big room with few obstacles, inside the office, it did matter. When navigating in rooms like the Cyborg
office, being able to track accurately is essential. A sudden jump in position might send the robot towards
an obstacle, causing the robot to get stuck.
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Figure 38: The green line shows the path taken by a detected student inside the Cyborg office.

The navigation controller ran successfully and was capable of navigating the Cyborg towards a detected
person using object detection implemented in section 8. Figure 39 shows a test of the Cyborg in the Cyborg
Office.
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(a) Active pursuit mode

(b) Generating a new goal

Figure 39: Testing the navigation controller on the Cyborg.

Figure 39a shows the active pursuit mode, where the detected person was within 1 meter of the Cyborg, as
well as being within ± 20°of the camera’s FOV. The frame in front of the Cyborg was the student it was
following, and the frame to the left was the inertial map frame. On the right side, a picture of the terminal
window displayed the current goal and the message informing that it was running the active pursuit mode.
The light green line from the robot to the red arrow displayed the path generated by the navigation controller
from the Cyborg to the student. The red arrow shows the goal position and orientation. Figure 39b shows
the case when the student stepped outside the maximum angle of ± 20 °. This caused the controller to
generate a new goal.

The design of this controller performed well. The constraints ensured that a detected student would not leave
the robot’s FOV nor the maximum distance that the camera was capable of detecting people.
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9.3 Creating a Navigation controller in a simulated environment

This section describes the implementation of a navigation controller in a simulated environment using Mo-
bileSim.

9.3.1 Specification and Requirements

Based on the object detection module implemented in section 8, and the navigation stack described in section
2.11, the following requirements and specifications are:

• Redesign the controller from section 9.2 to work with MobileSim.

• The speed of the Cyborg shall be regulated as a function of the distance between the Cyborg and the
detected student

9.3.2 Implementation

The robot model was designed to have the camera in front of the Cyborg. This meant that in a real-life sce-
nario, any object outside the camera’s FOV would no longer be detected. Using a simulated robot, the camera
would no longer move together with the Cyborg. For example, if the simulated robot was instructed to move
towards a student being detected by the ZED camera, the robot would move. However, the camera would be
stationary in real life. Therefore, the camera could not be used during the simulation. To work around this,
a new design was implemented. The two nodes implemented in section 9.2, i.e. detection_frame_node and
personTF, was used to set up the two coordinate frames person_detection_frame and person. A student
was then instructed to move around while having its path recorded by a rosbag. The resulting path was then
used as the target of the navigation goal.

When the rosbag was played, the information it contained was published to the topic it received it from in
the first place. Since this path was prerecorded relative to a stationary camera, the distance- and fov_angle
topic could not be used. The student’s position relative to the camera during the simulation was not the
same as the distance of the recorded path of the student in the simulation relative to the simulated robot.
This meant that a new relative distance between the simulated robot and the student along the prerecorded
path had to be calculated. This is depicted in detail in figure 40
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Figure 40: Representing the position of a student on an arbitrary path relative to different coordinate systems.

FMap represented the stationary map frame, FZED represented the camera frame during the recording and
FRobot represented the simulated robot. The green line represented an arbitrary path of a student, where the
point pt represented the student along the path at time t. Moreover, pZED represented the position of the
person at time t relative to the camera and pRobot represented the position relative to the simulated robot.
The position needed to represent the distance between the simulated robot and the student was therefore
pRobot.

The position and orientation of FZED and FRobot relative to FMap was represented by two homogeneous
transformation matrices: TMap

Map,Robot and TMap
Map,ZED, respectively. The position of the student relative to

FMap was given by:

pt = pMap
t = TMap

Map,Robotp
Robot
t (5)
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Equation 5 can be rearranged to obtain an expression for pRobott :

pRobott =
(
TMap
Map,Robot

)−1
pMap
t (6)

The horizontal distance d, defined as the distance along the x and y axis, was given by:

d =
√
x2 + y2 (7)

Additionally, when pRobott was known, the FOV angle could be calculated using equation 3. This was
implemented in distance.cpp

1 class Distance
2 {
3 public:
4 Distance ()
5 {
6 path_sub_ = nh_.subscribe("/person_path" ,1, &Distance ::callback , this);
7 dist_pub_ = nh_.advertise <std_msgs ::Float64 >("relative_distance" ,10000,true);
8 FOV_pub_ = nh_.advertise <std_msgs ::Float64 >("FOV_angle" ,10000,true);
9 }

A class called Distance was created. Inside the constructor on line 4, a subscriber to the topic /person_path
passed data to a callback function. Furthermore, two new publishers were created: "relative_distance" and
"FOV_angle".

10 void callback(const nav_msgs ::Path:: ConstPtr& pathData)
11 {
12 seq = pathData ->header.seq;
13 posestamped_ = pathData -> poses[seq];
14 posestamped_.header.frame_id = "map";
15 posestamped_.header.stamp = ros::Time (0);
16 posestamped_pub_.publish(posestamped_);
17 listener_.waitForTransform("person_detection_frame","map",ros::Time::now(),ros:: Duration

(3.0));
18 listener_.transformPose("person_detection_frame", posestamped_ ,personpose_);
19 float x = personpose_.pose.position.x;
20 float z = personpose_.pose.position.z;
21 distance.data = std::sqrt(std::pow(x,2) + std::pow(z,2));
22 dist_pub_.publish(distance);
23 FOV_angle.data = -std::atan2(z,x) * 180 / 3.141592 +90;
24 FOV_pub_.publish(FOV_angle);
25 }

The callback function contained the student’s path, which was stored in posestamped_ on line 13. Next,
the pose of the detected student at any given time was transformed into person_detection_frame on line 18.
This implementation was equivalent to equation 6. The distance from the simulated robot and the student
was calculated on line 21, according to equation 7 and published on line 22. The FOV was defined on line
23 according to equation 3 and published on line 24.

An exponential function was used to regulate the speed of the Cyborg. The function was given by the
following equation:
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f(x) = abx (8)

Furthermore, the constants a and b from equation 8 could be found using two sets of two points (x1, y1) and
(x2, y2):

a =
y1
bx1

a =
y2
bx2

b =

(
y1
y2

) 1
∆x

∆x = x1 − x2

(9)

Using the points (0.5, 0.2) and (2, 0.8) gave the following constants:

∆x = 0.5− 2 = −1.5

b =

(
0.2

0.8

)− 2
3

≈ 2.5198

a =
0.2

2.51980.5
≈ 0.12599

(10)

Additionally, the function was designed such that if the distance from the robot and the student was less
than or equal to 0.5, the output would be 0.2, and if the distance was greater than or equal to 2 meters, the
output would be 0.8. A function, g(x) was given by:

g(x) =


0.2, if x < 0.5

f(x), if 0.5 ≤ x ≤ 2.0

0.8, if x > 2.0

Using the values from equation 10 in equation 8, the corresponding plot of g(x) can be found in figure 41.

61



Figure 41: The resulting velocity function g(x).

The output of g(x) was used to tune the parameter max_vel_theta (see section 2.11), by using the dy-
namic_reconfigure ROS package. This package enabled means to update parameters at runtime without
having to restart any nodes [42]. The complete implementation was done in a python file called active.py:

1 #!/usr/bin/env python
2 import dynamic_reconfigure.client
3 import numpy as np
4 import math

Line 1 used a shebang referencing to the python interpreter. Line 2 imported the dynamic reconfigure client
used to change ROS parameters at runtime. Line 3 imported the numpy library, and line 4 imported the
math library. Next, the function f(x) was defined:

5 def f(x):
6 x1 = 0.5
7 x2 = 2.0
8 y1 = 0.2
9 y2 = 0.8

10 b = (y1/y2)**(1/(x1-x2))
11 a = y2/b**x2
12 return(a*b**x)

This function defined the constants calculated from equation 10 and returned the output of equation 8.
Moreover, a listener function was created which initialized a node and subscribed to an active topic:

13 def listener ():
14 rospy.init_node('velocity_node ', anonymous=True)
15 rospy.Subscriber("distance", Float64 , callback)
16 rospy.spin()
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The node was called "velocity_node" and subscribed to the "distance" topic. Line 16 kept python from
exiting until the node was stopped.

17 def callback(data):
18 distance = data.data
19 if distance >= 0.5 and distance <= 2:
20 cost = f(distance)
21 if distance < 0.5:
22 cost = 0.1
23 if distance > 2:
24 cost = 0.8
25 client = dynamic_reconfigure.client.Client("move_base/TrajectoryPlannerROS", timeout=4,

config_callback=None)
26 client.update_configuration ({"max_vel_x":cost})
27 pub = rospy.Publisher('velocity ', Float64 , queue_size =10)
28 pub.publish(cost)

Line 17 created the callback function, which took the argument data containing the distance. Line 19, 21 and
23 contained the conditions of g(x), based on the distance. Line 25 created the object client of the class dy-
namic_reconfigure. The first argument of the class method client.Client was "move_base/TrajectoryPlannerROS",
which contained the parameter max_vel_theta. The next line specified to update max_vel_theta with the
variable cost, containing the output of g(x). Finally, on line 27 and 28, a new publisher was created and
published the velocity commands to the velocity topic.

9.3.3 Evaluation of the simulated controller

The path of the rosbag recording can be seen from figure 42.

Figure 42: Path of the student, recorded by a rosbag.
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Figure 43 shows three plots: The path of the Cyborg vs. the path of the student, the distance between them
and the velocity commands sent to the robot. The Cyborg was capable of following the student throughout
the simulation. However, it did not follow the line perfectly. This was because the Cyborg was instructed
to follow different points along the student’s path, not the actual line itself. The commanded speed also
behaved as expected, showing that it never exceeded the limits of 0.2 and 0.8 (20% to 80%) of the maximum
velocity. Finally, the Cyborg never lost track of the student.

Figure 43: Results from simulations.

The simulation could not take place inside the Cyborg office, as it was too small. Moreover, any maps
outside the office did not match the map used in MobileSim. This caused the Cyborg to either lose odometry
information or get stuck on objects that were not supposed to be there in the first place. Consequently, the
simulation ran without a map. This meant that the controller was tested without collision avoidance.

The different nodes and topics related to the detection of the student are shown in figure 44. The ob-
ject_detection_node was publishing the position of the student to /person_position, which detection_frame_node
subscribed to. The detection_frame_node created the person_detection_frame and published the optimized
depth measurements to personTF, which finally created the person frame. Note that the topics FOV_angle
and relative_distance did not appear here. The controller node did use the data from these topics, albeit
using the waitForMessage function, which is not equivalent to subscribing to a topic.

Figure 44: ROS computational graph related to object detection.
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Figure 45 shows how the ControllerNode worked. The controller node published to move_base/goal and
move_base/cancel, which was provided by the SimpleActionClient interface. The navigation goals were then
interfaced with the move_base node, which published the velocity commends to /cmd_vel. Additionally,
the laser scan and point cloud data from the RosAria node were used for localization.

Figure 45: ROS computational graph related to the navigation controller.
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10 Discussion

Performing VSLAM using RTAB-Map in section 7 has two important advantages: It provides 2D and 3D
maps, as well as being accurate. However, it had problems detecting the edges of the Cyborg Office, compared
to using only LiDAR, which does this well. Additionally, it is more computationally demanding compared
to a method that only provides 2D maps.

YOLO object detection from section 8 has a significant advantage, compared to other methods of object
detection: It is orders of magnitude faster at detecting objects. Additionally, YOLO is accurate and regularly
improved for each new version (the newest version as of writing this report is YOLOv4).

However, it does not distinguish between different students. Consequently, if two students are standing in the
same room at different locations, YOLO would not distinguish between the two. Consequently, the /person
topic would contain the location of two different students.

The controller design, implemented in section 9 had the advantage of always being able to navigate towards
a student as long as two conditions were met: A student was detected and there was a safe maneuverable
passage between the Cyborg and the student. No human intervention was needed.

Section 7, 8 and 9 uses the approach of having a desktop computer doing the most computationally demanding
tasks (such as object detection or VSLAM), whereas the Jetson Nano and the Cyborg embedded computer
ran a small selection of nodes. This approach has significant advantages: It is much cheaper, as most people
have laptops or desktop computers more powerful than the embedded computer and Jetson Nano combined.
Additionally, it is much faster to run object detection or VSLAM on a remote desktop computer than on
hardware the size of the Jetson Nano (without completely blowing up the budget). Previous projects have
used the Nvidia Jetson TX2 developer kit, capable of running object detection, but at about ten times the
cost of the Jetson Nano.

Proposed future work

The following is a list of proposed future work for students interested working on the Cyborg project in the
future:

• Create a new map of Glassgården: The RTAB-Map ros wrapper proved to be good at performing
VSLAM, even in areas such as the Cyborg office. Therefore, creating a new map of Glassgården using
RTAB-Map is recommended.

• Upgrade the ROS distribution: The embedded Cyborg computer uses the Kinetic Kame ROS
distribution. However, this is no longer supported as it reached its End Of Life (EOL) in 2021. It is
therefore recommended to upgrade to a newer distribution, e.g., ROS Noetic Ninjemys, which reaches
its EOL in May 2025.
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11 Conclusion

In section 6, two URDF models were created: Section 6.1 created a complete model of the current version
of the Cyborg and evaluated in section 6.1.1. The second model, presented in section 6.2, included the
ZED camera (see section 3) and was evaluated in section 6.2.1. Both models were created successfully and
visualized in RViz, displaying the necessary coordinate frames.

The new robot model was later used in section 7, which implemented VSLAM with RTAB-Map in ROS.
A framework for adding LiDAR measurements, provided by the Cyborg, was implemented. The VSLAM
capabilities were evaluated in section 7.3, which provided a 2D and 3D map of the Cyborg office.

In section 8, object detection with YOLO and Darknet was implemented and evaluated in section 8.1.1. The
YOLOv3 provided the best results and managed to detect a student within the Cyborg office successfully.

Along with the new robot model, YOLO was used to develop a navigation controller in section 9 aimed
at following a student within the Cyborg office. The implementation was done in two parts: A controller
was created and tested on the Cyborg in section 9.2. From this, two coordinate frames were created: per-
son_detection_frame and person. The former was used as a frame of reference for the detected student, and
the latter contained the position of the detected student. The Cyborg was instructed to navigate whenever a
student was detected. A constraint was implemented to prevent the student from leaving the cameras FOV:
The controller updated the navigation goal whenever the student was more than 20 °of the FOV. The Cyborg
managed to follow the student during testing successfully.

The second controller, from section 9.3 was tested in a simulated environment using MobileSim. A velocity
regulator was implemented, which adjusted the speed of the Cyborg as a function of the distance between
the Cyborg and the student. The Cyborg successfully managed to follow the student along a pre-recorded
path.

11.1 State of the Cyborg as of writing this report

The main concern regarding the Cyborg and the Cyborg project is the batteries. There are three different
batteries available at NTNU, as well as three separate charging ports. However, for some unknown reason,
the battery does not charge most of the time. When it does, it will charge to a certain point (sometimes
11%) and proceed to drain the battery. Fixing the batteries should therefore be the project’s main priority.
Moreover, the rack rails on the Pioneer LX are currently loose and must be locked to the robot such that the
3D printed casing can slide on and off with ease.

The robot is currently using the embedded computer to connect to the internet via Eduroam, meaning that it
has a dynamic IP address. This is inconvenient for remote access to the Cyborg, as the connection will be lost
as soon as the Cyborg is connected to another router (which changes the IP address). The router provided
to the Cyborg project is a Linksys WRT54GL router, a model soon to be 20 years old. It is recommended
to upgrade to a newer router and mount it to the Cyborg to set up a static IP. It is also recommended to
invest in a Jetson Nano. This report proved that expensive hardware is not required, as long as a computer
is powerful enough to perform any demanding processes remotely. However, it is recommended that the
remote computer has a graphics card provided by Nvidia when performing object detection. Alternatively,
the Cyborg project could invest in more expensive hardware, such as the Jetson TX2, to perform all (or
most) of the necessary processes.

67



A Dimensions

A.1 Pioneer LX

Pioneer LX User's Guide, Rev. A
Page 55 of 125

Chapter 6: Payloads

The height of your payload will affect the center of gravity, covered in the next section.
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Figure 6-1. Platform Frame Dimensions, for Attaching Payload

Center of Gravity

As much as possible, you should keep the payload center of gravity centered on the Pioneer
LX, and as low (close to the platform top) as possible. This will give you the best stability, par-
ticularly when crossing thresholds or irregularities in the floor.

The following figure shows the center of gravity of the platform, without payload.
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A.2 ZED Stereo Camera

  Detailed Specifications 
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Technical Specifications

Functional SDK Diagram

Mechanical Drawing
Dimensions are in mm

 3
0 

 120 

 175 

 3
3 

1/4”- 20 Thread

Physical

Dimensions

Weight

Power

Operating Temperature

175 x 30 x 33 mm (6.89 x 1.18 x 1.3’’)

170g  (0.37 lb)

380mA / 5V USB Powered

0°C to +45°C  (32°F to 113°F)

System Requirements
Win 10, Win 8 Win 7
Ubuntu 18.0/16.04
CentOS, Debian (via Docker)
USB3.0 Interface

SDK Requirements
Dual-core 2.3GHz or faster
Minimum 4GB RAM Memory
Nvidia GPU (1)  Compute capability ≥ 3.0
      (1) Compatible with Nvidia Jetson Nano, TX2, Xavier

Camera Control
The ZED API provides low level access and 
control of the device and related sensors. 
The API allows for precise manipulation 
of common parameters such as frame 
rate, exposition time, white balance, gain, 
low light sensitivity. The API will also provide 
different resolutions.

Depth Range

Depth Map Resolution

0.5 m to 25 m (1.6 to 82 ft)

Native video resolution  (in Ultra mode)

Baseline 120 mm (4.7’’)

Depth Sensing

Depth Accuracy < 2% up to 3m
< 4% up to 15m

RGB Sensor Type

Active Array Size

Focal Length 

Shutter

Interface 

1/3” 4MP CMOS

2688x1520 pixels per sensor (4MP)

2.8mm  (0.11’’)  - f/2.0

Electronic synchronized rolling shutter

USB 3.0 - Integrated 1.5m cable

Video Output

Output Resolution

Field of View

Side by Side 2x (2208x1242) @15fps  

2x (1920x1080) @30fps 

2x (1280x720) @60fps 

Max. 90° (H) x 60° (V) x 100° (D) 

2x (672x376) @100fps  

Output Format YUV 4:2:2 

APPLICATION
LAYER

ZED

STEREO CAMERA DEPTH PERCEPTION

Fusion

ZED SDK

VISUAL-INERTIAL LOCALIZATION
STEREO SLAM

STATIC ENVIRONMENT MAPPING

External Sensors

Jetson Nano / TX2 / Xavier
Desktop

USB 3.0

www.stereolabs.com

[H]
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B 3D CAD Models

B.1 The Cyborg assembly
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