
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Tor Istvan Stadler Kjetså

MLOps - challenges with
operationalizing machine learning
systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
Co-supervisor: Bjarne Grimstad

May 2021

M
as

te
r’s

 th
es

is

Tor Istvan Stadler Kjetså

MLOps - challenges with
operationalizing machine learning
systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
Co-supervisor: Bjarne Grimstad
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Assignment

MLOps is the discipline of operationalizing machine learning systems. Machine learning
systems are usually complex and particularly vulnerable to errors. They are typically of
higher complexity than traditional/non-adaptive software systems. Unpredictable data that
changes over time, combined with adaptive software learning from this data, introduces a
new set of challenges. Recent years have seen a surge in the technological development of
MLOps, and it is in the process of being established as a new scientific field. This means
that literature in this area is limited.

This thesis researches testing of machine learning systems and MLOps, and associated
challenges. It investigates how machine learning systems are typically developed and what
are the components making up their life cycle. This thesis aims to highlight the challenges
faced when operationalizing these systems. The thesis takes on a system perspective, but
also elaborates on important details concerning the components in such a system. An
important contribution of this thesis is gathering relevant information and literature to be
presented in a systematic manner, which can be demanding in a new and unestablished
field.

This thesis is conducted in collaboration with Solution Seeker, a company delivering AI-
as-a-service to the process industry.

Tasks:

• Perform a study on machine learning theory, with emphasis on deep learning, and a
study on MLOps.

• Investigate how testing can be performed on machine learning systems.

• Make a systematic overview of a typical machine learning life cycle. Describe the
different components in this life cycle.

• Implement an experimental machine learning system; a simple machine learning sys-
tem applied to a process system, to highlight challenges.

• Discuss testing, challenges, and technology choices and provide advice for good prac-
tice regarding operationalizing a machine learning system.

i

Preface

I wish to thank my supervisor Sverre Hendseth for helping me make this assignment my
own and for encouraging me to pursue what I myself find interesting, using his impressive
ability to having me answer my own questions. I also wish to thank my co-supervisor and
future colleague Bjarne Andre Grimstad for providing professional insights and consistently
pushing me on to the next level.

May, 2021
NTNU, Trondheim

Tor Istvan Stadler Kjetså

ii

Abstract

There is an increasing demand for machine learning applications within several industries.
While good machine learning models exist, there is a widespread struggle in operationaliz-
ing them. A lack of tools and established best practices on how to operationalize machine
learning system results in many models being left on the shelf. Machine learning systems
differ from traditional software in that they are dynamic and stochastic. This poses new
challenges, especially in terms of testing. MLOps is the newly emerged discipline of opera-
tionalizing machine learning system. However, exactly what it involves is yet to be formally
established. This thesis aims to investigate the challenges associated with operationaliz-
ing machine learning systems, the current status of MLOps, and propose a set of best
practices for how to go about operationalizing a machine learning system. A study is per-
formed on machine learning theory, with emphasis on deep learning to be familiarized with
the concept and to provide background for challenges and requirements concerning opera-
tionalization. Further, an investigation is conducted on methodologies for testing machine
learning systems. Current research on MLOps is explored, and an overview is presented
of the typical components in a machine learning life cycle, and how they integrate. A
set of modern technologies related to MLOps are reviewed. Lastly, an experimental minia-
ture machine learning system is implemented, providing first-hand experience with machine
learning development, and highlighting associated challenges. Some of the investigated test-
ing methodologies are found useful, and others are more specific or experimental. Based
on the research and work conducted throughout this thesis, a set of best practices for how
to approach the operationalization of machine learning systems is proposed, addressing
common challenges, including technology choices. The developed machine learning system
exhibits a minimum viable product and can be used for testing some general machine
learning-related techniques.

iii

Terminology

In the machine learning field there exists a plethora of terms and phrases that are not
common lingo within ordinary software development. This section aims to elaborate on
some of these in order to provide clarity concerning the terminology in this thesis.

ML: the term machine learning is often abbreviated as ML.

ML life cycle: constitutes the different steps required to build and maintain a machine
learning system. A life cycle signifies a continuous process.

Traditional software/Software 1.0: software without machine learning.

Software 2.0: software that applies machine learning.

Big Data: large amounts of data. Refers the increased availability of data during the last
decades.

(ML/Data/Deployment) Pipeline: a series of transformations or operations applied
to data or code between its source and destination.

Online learning: frequently updating/retraing a machine learning model using a contin-
uous stream of data.

ML Ops/MLOps/Model Ops/Model Operations: are used interchangeably, this the-
sis refers to the term as MLOps.

iv

Table of Contents

Assignment i

Preface ii

Abstract iii

Terminology iv

1 Introduction 1

1.1 Scope . 3

1.2 Methodology and structure . 3

2 Deep Learning 6

2.1 Course 1: Neural Networks and Deep Learning 6

2.2 Course 2: Improving Deep Neural Networks: Hyperparameter Tuning, Reg-
ularization and Optimization . 11

2.2.1 Setting up the optimization problem 15

2.2.2 Optimization algorithms . 17

2.2.3 Hyperparameter tuning . 19

2.2.4 Batch normalization . 20

2.3 Course 3: Structuring Machine Learning Projects 22

2.3.1 Orthogonalization . 22

2.3.2 Setting up the goal . 23

2.3.3 Error analysis . 23

2.3.4 Data set distributions . 24

v

2.3.5 Learning from multiple tasks . 25

2.3.6 End-to-end deep learning . 25

2.4 Course 4: Convolutional Neural Networks (CNNs) 26

2.4.1 Examples of efficient convolutional network architectures 29

2.5 Course 5: Sequence Models . 31

3 Techniques for Testing Machine Learning Systems 38

3.1 Conventional Software Testing . 38

3.1.1 Pre-train testing . 39

3.2 CheckList: Three Types of Behavioural Testing 39

3.3 Improving Dependability of Machine Learning Applications 41

3.4 Testing Deep Neural Networks . 42

3.5 Developing Bug-free Machine Learning Systems with Formal Mathematics . 45

4 Employing MLOps 47

4.1 Machine Learning Pipeline . 47

4.2 Machine Learning Operations (MLOps) . 49

4.2.1 A four-step model of MLOps . 53

5 Components in the Machine Learning Life Cycle 59

5.1 Data Operations . 64

5.2 Training, Validating and Refinement . 64

5.3 Model Evaluation . 66

5.4 Deployment . 69

5.5 Monitoring . 70

6 Modern Technologies for Machine Learning Operationalization 72

6.1 Docker and Kubernetes . 72

6.1.1 Docker . 72

6.1.2 Kubernetes . 73

6.2 Run:AI . 73

6.3 Apache Kafka . 74

6.4 Dataflow . 75

vi

6.5 Apache Spark . 76

6.6 MLflow . 78

6.7 Databricks . 79

7 Miniature Machine Learning System 81

7.1 System Specification . 81

7.2 Design Choices . 81

7.3 Configurability . 82

7.4 Process Simulator for Data Generation . 82

7.4.1 CSTR with van de Vusse reaction . 82

7.4.2 Modelling framework . 84

7.5 Neural Network . 85

7.6 Setting up Modular Machine Learning Pipelines 86

7.7 Demonstration . 87

8 Discussion 92

8.1 Testing . 92

8.2 MLOps . 93

8.3 Technologies . 94

8.4 Miniature machine learning system . 96

9 Conclusion 97

9.1 Advice for best practices . 97

9.2 Miniature machine learning system . 98

9.3 Future Work . 99

Bibliography 100

Appendix . 113

A Program files for miniature machine learning system 113

B GoogLeNet . 132

vii

Chapter 1
Introduction

Machine learning is a method of data analysis that automates analytical model building by
using algorithms that improve automatically by the use of data. While artificial intelligence
(AI) is the broad science of mimicking human abilities, machine learning is a specific subset
of AI that trains a machine how to learn. Machine learning itself is not a brand new science,
but the ability to rapidly and automatically apply complex mathematical calculations to
large amounts of data (big data) is a recent development. As such; machine learning is not
a new science, but one that has gained fresh momentum [1].

Deep learning is a subset of machine learning which has emerged from the era of big data.
Deep learning algorithms are applied to particularly complex problems because of charac-
teristics that provide good prediction performance [2, 3, 4]. Deep learning is manifesting
as an important technique for providing predictive analytics solutions for large-scale data
sets, and has, in the last decade, attracted much attention from the academic communities
within speech recognition, computer vision, language processing, and information retrieval
[2, 5, 6, 7, 8].

Deep learning systems are the type primarily considered in this thesis. Still, most of the
research is general and largely applicable to other machine learning systems.

The fresh momentum gained by machine learning has extended its range of applications,
and many industries are attempting to adopt this technology and apply it to their domains.
This has led to increasing demand for operationalized machine learning systems.

Operationalizing a system, in the context of machine learning, involves migrating machine
learning from theory and statistics into production where it can perform real-time predic-
tions to be used by the system into which it is integrated. Deep learning can be used in
control systems where there is an abundance of data, but the correlation between input and
output is too complex to model with mathematics in a practical manner, or as predictive
systems where forecasts are made based on correlations in data that are beyond human
comprehension ability. Some examples of this are presented below.

Johansson et al. [9] present an operational system where an ensemble of online machine
learning algorithms are used to predict heat demand, to improve a district heating and
cooling (DHC) system. Since DHC systems are demand-driven, the ability to predict future
demand is a valuable feature in terms of optimizing energy efficiency. The heat demand in
all the households and other units controlled by a DHC system is influenced by a lot of

1

variables and is thus difficult to model using mathematical equations. Using empirical
data to train machine learning algorithms has been proven beneficial for this system.
Using online learning has also enabled the algorithms to adjust to new data, e.g. seasonal
differences.

Lagerquist et al. [10] present the development of convolutional neural networks to predict
next-hour tornado occurrence. The National Weather Service (NWS) is responsible for
issuing tornado warnings and generally issues warnings at lead times up to 30 minutes.
And although the skill of NWS tornado warnings has generally improved over time, critical
success index (CSI)1 and lead time have stagnated in the last decade [12]. What has not
stagnated is the amount of data available to forecasters; this has increased significantly and
includes dual-polarization radar observations, high-resolution satellite observations, and
forecasts from convection-allowing models. This data is a valuable resource and encourages
the development of a machine learning system. The predictors during this experiment
were proximity sounding and storm-centred radar images. Comparison with ProbSevere, a
machine learning model currently used for operational severe weather prediction, suggests
that the developed models would be useful operationally.

Nallaperuma et al. [13] propose an expansive smart traffic management platform (STMP)
based on several machine learning techniques, including deep learning. During the last
decades, the technological landscape of transportation has gradually integrated disruptive
technology paradigms into current transportation management systems, leading to intel-
ligent transportation systems (ITS) [14, 15]. Internet of Things (IoT), sensor networks
and social media have lead to increased efficiency of data collection, with voluminous and
continuous streams of real-time data. Nallaperuma et al. [13] reports that the volatile
data generation and the dynamicity of data generated that originates from these sources
present challenges for and impede the effectiveness of many existing AI techniques. One
of the main challenges is that of concept drift2. The solution proposed revolves around
frequent updates/retraining of the machine learning model, using the continuous stream
of new data, i.e. online learning. The STMP combines this technique with several types of
machine learning algorithms and data from a variety of sources to produce a platform that
has been successfully demonstrated on 190 million records of smart sensor network traffic
data generated by 545,851 commuters and corresponding social media data on the arterial
road network of Victoria, Australia.

Operationalizing machine learning requires integrating machine learning models with sup-
porting software and production pipelines to form a complete system. Data must be struc-
tured and directed into the machine learning algorithm, and the resulting output must
be interpreted and acted upon. The machine algorithm itself simply outputs data. This is
where data scientists and software engineers must collaborate to achieve operationalization.

Machine learning systems possess a larger degree of scientific characteristics and mathemat-
ical complexity compared to traditional software - they combine data and code in dynamic,
adaptive stochastic systems. Such systems invoke a completely new set of demands and
challenges that do not apply to traditional software systems.

A distinct challenge is testing. The dynamic nature of machine learning systems necessi-
tates frequent testing. The stochastic nature renders traditional software testing techniques

1Also called the threat score (TS), is a verification measure of categorical forecast performance equal
to the total number of correct event forecasts (hits) divided by the total number of storm forecasts plus
the number of misses (hits + false alarms + misses) [11].

2Concept drift primarily refers to an online supervised learning scenario when the relation between the
input data and the target variable changes over time [16].

2

insufficient. Testing is important for achieving quality assurance, and well-defined tests al-
low for automating processes.

MLOps (abbreviated from Machine Learning Operations) refers to the discipline of oper-
ationalizing machine learning systems. At its core, MLOps is a set of practices on how to
build, deploy, monitor, and maintain machine learning pipelines in production or opera-
tional systems. Being a relatively ripe field in rapid development, MLOps has experienced
a lack of attention in terms of establishing guidelines and best practices.

Naturally, most available papers present a successfully operationalized machine learning
system; it is less appealing to share the inability to figure out how to put a spectacular
machine learning model to use. However, various reports highlight the struggle in opera-
tionalizing machine learning.

According to Deeplearning.ai [17], only 22% of companies using machine learning have
successfully deployed a model. Research from Gartner shows that only 53% of AI prototypes
make it into production, due to a lack of tools [18]. Matt Macaux, Global Field CTO for
HPE Ezmeral [19], reports that ∼ 60% models are built, but not operationalized [20], also
mentioning the lack of tools as a reason.

MLOps requires both machine learning expertise and software engineering operating in
harmony - a gap between software engineers and data scientists hinders its utility [21, 22]

1.1 Scope

The scope of this thesis includes a review of the fundamentals of deep learning and a more
concise review of some well-established techniques and extensions in the field. How to test
machine learning systems is discussed, and associated challenges and possible approaches
are addressed through reviews of some methodologies of varying prevalence. Also within
the scope is research on MLOps; considering different definitions, discussing its prevalence
and how it fits in with related disciplines and evaluating its importance. Complementing
this is a systematic overview of a machine learning life cycle accommodating MLOps. Some
components of particular interest are discussed in more detail. The scope further includes
a short review of a set of modern technologies related to MLOps. Lastly, within the scope
is developing a miniature machine learning system. This includes a neural network, a
simulator for a CSTR with a Van de Vusse reaction, and supporting modules required to
build pipelines.

1.2 Methodology and structure

The coverage of MLOps, machine learning pipelines, machine learning deployment, and
other closely related fields is scarce in terms of acclaimed literature. Evolution of and
discussions about the topics are heavily influenced by ad hoc applications, unpublished
articles, and blog posts. This means that a keen eye and a selective attitude is of the
essence regarding research in this area. As a result of this, a solid understanding of the
fundamentals of deep learning, as well as first-hand exposure to challenges in machine
learning development, is considered of increased value as learning resources.

Chapter 2 provides an immersion into deep learning through a series of courses offered
by Coursera [4]. The first three courses involve the fundamentals of how deep learning

3

works, challenges associated with it, and some techniques for how to structure machine
learning projects. Much of the content also applies to machine learning in general. The
insight provided by these courses is highly relevant for understanding the techniques for
and challenges associated with operationalizing machine learning systems. Courses number
four and five introduce techniques that extend the basic deep learning functionality. These
techniques are widely adopted in deep learning applications and are in many cases essential
for their feasibility and performance levels. A detailed explanation of them is not highly
relevant for the remainder of this thesis, but a review of their high-level structure and
functionality highlights the complexity and computational power required by some machine
learning systems - making them demanding to operationalize.

A task that is particularly difficult when performed on machine learning systems is testing.
Adaptivity and stochasticity require frequent testing and non-binary test results. Such tests
can be difficult to create. The basic idea of machine learning is to have the algorithm build
itself, making it inherently difficult to inspect its structure and logic to verify its correctness.
Testing of machine learning systems is discussed in chapter 3. This chapter also includes
reviews of some papers presenting testing approaches of various prevalence. These reviews
are results of an optimistic search for acclaimed testing methods and help to illustrate the
variety of use cases and approaches within this area.

Chapter 4 involves research on the current state of MLOps and what it constitutes, includ-
ing important preliminaries and how to go about employing it, such as machine learning
pipelines and organizational philosophies.

Chapter 5 presents typical components in a machine learning life cycle organized in a pro-
posed architecture. Particularly noteworthy components are elaborated on in greater detail
and supplemented with references to relevant literature. The illustrative architecture and
corresponding component overview are intended to form a basis for structuring a sustain-
able machine learning life cycle. The chapter works to highlight the benefit of thinking in
terms of MLOps from an early development stage and is formulated to appeal to both data
scientists and software engineers in order to form a common understanding and bridge the
gap between them.

Chapter 6 reviews a selection of technologies in the business of supplying support for ma-
chine learning operationalization. There is only so much insight to be gained from reading
about a technology as opposed to testing it. However, their solutions and focus areas help
highlight some of the challenges associated with operationalizing machine learning from a
more practical point of view, contrasting the hitherto theoretically dominated perspective.

Chapter 7 presents the development of a miniature machine learning system and its ul-
timate functionality. The system consists of a neural net modelling an industrial process,
chosen to be a CSTR with a Van de Vusse reaction, in the form of a simulator, along with
the building blocks for training and prediction pipelines.

This machine learning system is an integral part of this thesis in the sense that its devel-
opment was initiated early in the process and has functioned as a touchstone throughout
it, by allowing first-hand exposure to the machine learning scene. The process of actually
writing code and implementing a system offers a different perspective on challenges and
needs as opposed to that of reading research papers. As a result, developing - as a parallel
process throughout this thesis - has directed the structure of it.

Along with this influence; the system itself forms the foundation of a valuable tool in terms
of testing techniques and technologies. It provides a shortened feedback loop, as the system

4

can run locally, data can be quickly produced through simulations, and the configurable
size of the neural network offers relatively fast training jobs.

In chapters 8 and 9 methodologies for testing are discussed and evaluated. Challenges
for machine learning are summarized, and current MLOps approaches are discussed. A
brief personal view is offered on modern technologies, complemented with comments on
how to approach technology selection. Insight gained machine learning development is
presented, and possible additions to form a more complete system are discussed. These
reflections contribute to a proposed set of advise for best practice in approaching the
operationalization of machine learning systems.

5

Chapter 2
Deep Learning

This chapter provides insight into the fundamentals of machine learning theory - with spe-
cific emphasis on deep learning, constituting important groundwork for the remainder of
this thesis. To understand the challenges and requirements discussed in later chapters it is
important to be familiar with the basics of deep learning. This chapter also highlights some
popular extensions to basic deep learning functionality in sections 2.4 and 2.5. These ex-
tensions have grown to be established as state of the art techniques, and are vital to several
active deep learning focus areas, such as image recognition and natural language processing
(NLP). They bring attention to the complexity and computational power associated with
deep learning, and some practical applications are mentioned.

The research is conducted through aspecialization1 on deep learning, named Deep Learning
Specialization, offered by Coursera [4]. The specialization is quite detailed and consists of
five courses:

• Course 1: Neural Networks and Deep Learning

• Course 2: Improving Deep Neural Networks: Hyperparameter Tuning, Regularization
and Optimization

• Course 3: Structuring Machine Learning Projects

• Course 4: Convolutional Neural Networks

• Course 5: Sequence Models

each of which is divided into approximately 4 weekly sub-modules. The most important
parts of the courses are summarized throughout this chapter. Everything discussed in this
chapter, except where a different source is explicitly specified, is from courses by Coursera
[4].

2.1 Course 1: Neural Networks and Deep Learning

Deep learning is a sub-science of machine learning; and it refers to training neural networks,
often very large ones. The adjective “deep” is used to emphasize the use of multiple layers

1Coursera-term for a collection of courses

6

in a neural network, as illustrated in fig. 2.1.

Figure 2.1: A simple and a deep neural network, as illustrated by Vazquez [23].

What is a neural network?

A neural network is, as the name implies, a network of neurons. A neuron is a unit that
takes a number of inputs x, multiplies by weights w and adds biases b, as shown in eq. (2.1).

N∑
i=1

wixi + bi (2.1)

The result is passed to an activation function whose output is the output of the neuron.
This output can be either the output of the entire neural network or be passed as an input
to the next layer in the neural network. Figure 2.2 illustrates a single neuron.

Figure 2.2: The structure of a single neuron, as illustrated by Ganesh [24].

As mentioned, a deep neural network consists of multiple layers. The layers that are neither
input nor output layers are referred to as hidden layers. This because the outputs of these
layers are not visible outside the neural network, but function as part-computations that
contribute to the network as a whole.

7

Activation function

The activation function is a nonlinear function that essentially determines the significance
of the summation in the neuron, represented in a way that is favourable for the succeeding
layers of the neural network. The activation function can, in theory, be anything, but not
all choices are equally likely to be successful. A simple example of an activation function
is the ReLU (Rectified Linear Unit)-function. Say the purpose of a neural network is to
predict the price of a house, and the inputs are attributes like area, neighbourhood, parking
space, etc. Whatever the inputs, weights and biases sum to, the price of a house cannot
be negative. Thus there is no purpose for the activation function of the output layer to
output a negative number. The ReLU-function computes ReLU(z) = max(0, z), yielding
an output that is always non-negative.

Some common activation functions are:

• sigmoid: φ(z) = 1
1+e−z

• tanh: φ(z) = ez−e−z

ez+e−z

• ReLU: φ(z) = max(0, z)

• leaky ReLU: φ(z) = max(a ∗ z, z) where a is a small constant, e.g. a = 0.01, so that
the slope of the function is decreased when below zero.

The cost function

To measure how well a neural network performs, it is needed to define exactly what it is
that the neural network is meant to achieve. This is where the cost function enters. A neural
network will work to minimize the defined cost function, and the predictions it produces
will be the predictions that the neural network “believes” will produce the lowest cost. The
most common cost function is the mean squared error (MSE) between the prediction of
the neural network, Ŷ and the actual measurement, Y , shown in eq. (2.2)

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (2.2)

The cost function is usually denoted J(w, b), where w are the weights, and b the biases.
Note: The loss function refers to the error of a single training example, while the cost
function refers to the average of the loss function over the entire training set.

Gradient Descent - forward and backward propagation

Gradient descent is an algorithm that the neural network uses to minimize the defined cost
function. The gradient descent algorithm starts with an initial guess for values for weights
and biases in the neural network. Followingly, forward propagation is performed. Forward
propagation is the process of the neural network applying its weights, biases and activation
functions to a given input to produce an output. As the weights and biases are randomly
initialized, the resulting prediction is likely to be far off. To adjust the weights and biases,
their derivatives with respect to the cost function are computed for every layer in the neural

8

network. The weights and biases are then adjusted by “taking a step” in the direction of
their respective derivatives. The length of this step is decided by the learning rate. This
process is referred to as backward propagation or backpropagation, as it propagates the
error backwards in the neural network. By performing forward and backward propagation
over several iterations the neural network will eventually end up with weights and biases
that produce an optimal (or close to optimal) output with respect to the cost function.
Figure 2.3 gives a schematic of gradient descent. A caveat for gradient descent is that it only

Figure 2.3: Schematic of gradient descent, as illustrated by Moawad [25].

guarantees convergence to a local minimum, and thus works sub-optimally for non-convex
functions - which have several local minima.

Logistic Regression

Logistic regression is a relatively simple learning algorithm used for binary classification
problems; when all output labels Y in a supervised learning problem are either zero or
one. In such a case one would want the neural network to produce an output prediction
Ŷ ∈ [0, 1], based on the input features X. Ŷ represents the estimated probability for
Y = 1. With the use of an activation function, the network will convert this estimate into
an output of 1 or 0.

Weight initialization

When initializing the weights in a neural network, they must be randomly initialized, not
initialized to zero. Zero-valued weights eliminate the influence of input values on a neuron,
since they are multiplied by zero. Succeeding activations will be equal because all hidden
units are computing the exact same function. In backpropagation, when computing the

9

derivatives of each hidden unit, they will also be identical, due to them having the same
influence on the output. After each iteration, when the weights are updated, it is proved by
induction that the hidden units will still compute the same function. Thus, the functionality
is equal to that of using only one hidden unit. This concept is referred to as hidden units
being symmetric. On the other hand, biases can be initialized to zero.

Shallow versus deep neural network

Figure 2.1 illustrates a shallow and a deep neural network. Shallow versus deep is a matter
of degree. Over the last years, the machine learning community has realized that there
are functions that very deep neural networks can learn, which shallower models are often
unable to. It might be hard to predict in advance exactly how deep the neural network
should be.

Parameters and hyperparameters

The parameters in a neural network are the weights and biases that are adjusted as the
network is trained. There are other characteristics as well, that make up a model, specifying
the structure of the neural network and how it is trained. These are called hyperparameters.
A common hyperparameter is the learning rate, which decides how much the weight and
biases are adjusted at each iteration. The number of layers in a neural network can also be
considered a hyperparameter. Another hyperparameter, discussed in the next section is the
regularization parameter. Optimal hyperparameter values are not so easy to obtain, and
they often differ between the domains to which machine learning is applied. As a result,
hyperparameter tuning is usually subject to iterative development. This is discussed in
section 2.2

Supervised Learning, Unsupervised Learning, Reinforcement Learning

There are three primary methods of machine learning, the following definitions are taken
from [1]:

• Supervised learning algorithms are trained using labelled data. Input data with
corresponding output labels are fed into the algorithm. The algorithm then compares
its output with the actual label and then adjusts itself to best fit its output with the
given labels. The goal is that when an algorithm is trained on enough labelled data, it
can correctly predict the label of unlabeled input data, e.g. label an image as a cat or
not a cat. Most machine learning examples in this thesis are instances of supervised
learning.

• Unsupervised learning algorithms are used on unlabeled data. The algorithm is
not given any “correct answer”, the goal is to explore the data and find some struc-
ture in it. This might reveal patterns between different features that the human
eye is unable to recognize. An example of unsupervised learning is identifying peo-
ple/customers that should be treated similarly in marketing campaigns.

• Reinforcement learning algorithms use trial and error to discover which actions, in
which states, yields the highest reward. A reinforcement learning algorithm consists
of three main components: the agent is the decision-maker; the environment describes

10

what the agent interacts with; the actions make up the possibilities that the agent
must decide between. The objective is for the agent to choose actions that yield the
highest combined reward over a given period. Reinforcement learning is often used
for robotics, gaming, and navigation.

2.2 Course 2: Improving Deep Neural Networks: Hyperpa-
rameter Tuning, Regularization and Optimization

Splitting data sets

All the data available for creating a neural network must be divided into separate data
sets with distinct purposes; a training set, a validation/development set, and a testing set.
Setting up the data sets well can help speed up the iterative development process. The
training set builds the neural net. The validation set is then used to assess how the net
is trained and consider whether to perform any adjustments. The validation set can also
be used to determine which model to use from a selection of trained models. An example
of this is cross-validation, where the training set is divided into k parts, and the model is
trained on k− 1 of these parts and validated on the last one. This requires k models to be
trained from scratch since each of the k parts should act as the validation set once. Not
all training procedures involve a validation set, e.g. if the amount of data is scarce, using
some of it for validation might not be prioritized.

The test set is used for the final assessment of the model. After the net is subjected to
the test set, no adjustments based on the test results should be performed. Doing this is
referred to as data leakage, where the model is exposed and tailored to the data it should
be tested on. Data leakage renders the test results invalid, as they no longer give any
information regarding the predictive power of the neural network. As the validation set
is used to tune the model, the validation set and the test set should come from the same
distribution, to score the model as accurately as possible.

In the previous era of machine learning, it was common practice to split the data with a ra-
tio of 70/30 in a train/test split, and perhaps 60/20/20 in a train/validate/test split. In the
modern big data era, where there might be millions of examples to train on, these fractions
have changed, and a more common split ratio is around 98/1/1 for train/validate/test.

Bias and variance

A model that suffers from high bias is said to have underfitted the data, while a model
with high variance has overfitted the data. Underfitting the data signifies not paying much
attention to it and thus ending up with an oversimplified model, insensitive to important
data features. Overfitting is the exact opposite, where the data is paid too much attention
to, and the resulting model is poor at generalizing unseen data.

Bias is the difference between the mean prediction by the model and the correct values.
Variance is the variability of model predictions.

Figure 2.4 illustrates combinations of low and high bias and variance with the use of a
bullseye target, and fig. 2.5 illustrates the behaviour of an underfitted, an overfitted, and
a well-balanced model.

11

Figure 2.4: Low and high bias and variance, illustrated with bullseyes by Fortmann-Roe
[26].

Figure 2.5: Overfitting and underfitting compared with good balance, as illustrated by
Singh [27].

12

The key indicators of bias and variance are the training set and validation set errors. A high
training set error indicates that the algorithm suffers from high bias, and has underfitted
the training data. A high difference between the training set error and the validation set
error indicates that the algorithm suffers from high variance. Since the algorithm performs
much worse on unseen data, it has probably overfitted the data and generalized poorly.
These assessments are based on the assumptions that the base error2 is relatively small,
and that the training and validation sets are from the same distribution.

At the early stages of machine learning, the bias-variance tradeoff was an important consid-
eration, as one was improved at the expense of the other. This is not as relevant in modern
machine learning, as it is possible to improve both without affecting the other. If the al-
gorithm suffers from high bias, then a possible solution is to extend the neural network,
by adding more layers. Obtaining more data or altering the architecture of the neural net
might also counteract bias. The latter two measures can be effective for addressing high
variance as well. Perhaps the most efficient tool for counteracting overfitting, however, is
called regularization.

Regularization

Regularization is the practice of regulating the degree to which the model fits the data.
The most common regularization technique is called L2 regularization. L2 regularization
uses the squared L2-norm (Euclidean distance) of the weights vector. This is multiplied
with a regularization parameter, λ, and divided by 2m, where m denotes the number of
training examples. To achieve regularization, this term is added to the cost function J to
penalize large weight values.

In a neural network, there are several hidden layers, and the weights are represented by
a matrix, W , containing the weight vectors for each layer, w[l]. When implementing L2-
regularization for a neural network, it is actually the squared Frobenius norm that is
applied to the cost function. The squared Frobenius norm is the sum of all the squared
L2-norms of the vectors in the matrix. Equation (2.3) shows a cost function where L2
regularization is implemented. Here J denotes the cost function, L the loss function for
each training example,W the weight matrix, w[l] the weight vector for layer l, and b the bias
vector. λ is the regularization parameter, L and m are the number of layers and training
examples, respectively, and ŷ(i) and y(i) are the prediction and actual value, respectively,
for training example i. ||W ||2F =

∑L
l=1 ||w[l]||2 denotes the squared Frobenius norm of the

weight matrix, W .

J(W, b) =
1

m

m∑
i=1

L(ŷ(i), y(i)) +
λ

2m

L∑
l=1

||w[l]||2 (2.3)

It is possible to add the bias of the respective layer b[l] to the regularization term, but
this has limited impact and is often not prioritized. A less frequently used regularization
technique is L1 regularization, where the squared L2-norm is substituted with the L1-norm

2The base error, or the optimal error, is the error one could expect for a near-perfect classifier. For
difficult problems, the base error is usually higher.

13

(Manhattan distance), resulting in eq. (2.4).

J(W, b) =
1

m

m∑
i=1

L(ŷ(i), y(i)) +
λ

2m

L∑
l=1

|w[l]| (2.4)

The general difference between L1 and L2 regularization is that L1 regularization is more
prone to shrinking some weights to zero, effectively removing some features’ impact on the
output, yielding a network with lower complexity. This can work well for feature selection3

in cases where there a huge number of features. L2 regularization shrinks the weights
overall, but are more incentivised to penalising large values than further shrinking small
values, due to the squared term. Thus, L2 regulates the impact of all features but removes
fewer.

Another powerful regularization technique is dropout regularization. In dropout regulariza-
tion, each node in each layer is given a probability of whether or not it will be included
in an iteration of forward propagation. If the node is not included, all outputs from it are
omitted in the proceeding computation and the following backpropagation. The process
is repeated for each training example, resulting in a different set of nodes being used at
each iteration. This contributes to regulating the importance of each feature and thus pre-
vents overfitting. The dropout is only applied during training, to regulate the weighting -
when testing, applying dropout will result in noisy predictions. A downside with dropout
is that the cost function is no longer well-defined. Since random nodes are omitted at each
iteration, it is difficult to verify that the cost function is monotonically decreasing. Even
though no guarantees are offered, it is possible to run through the training set once without
dropout, and verify that the cost function is decreasing, first, and then applying dropout,
hoping no bugs have been introduced.

An alternative regularization approach is data augmentation. To avoid the algorithm over-
fitting data and focusing on less important features, it is possible to augment the training
data to provide a more diverse training set. Say the goal is to train an algorithm that can
recognize pictures of cats. If all the images in the training set contain cats facing towards
the right, the algorithm might struggle when presented with a cat facing to the left. Simply
adding a flipped copy of the cat pictures in the training set will make the algorithm focus
less on the orientation of the cat, and more on more important features.

The last regularization technique to be mentioned is early stopping. This technique involves
running the algorithm on the validation set after each training iteration, and monitoring
how the cost function behaves. If the cost function starts increasing halfway through the
training procedure, it is possible to halt the training procedure prematurely, when the
weights are not finished adjusting. The main caveat with this approach is that it couples
the tasks of optimizing the cost function and regulating the algorithm, making the process
more complicated.

3Feature selection involves selecting a subset of relevant features to train on. Effects are: simplified
model, shorter training times, reduced overfitting.

14

2.2.1 Setting up the optimization problem

Normalizing inputs

One measurement that can be taken to speed up the training, is normalizing the inputs.
This consists of two steps; the first being to subtract the mean from the data, according
to eq. (2.5), where x is the training data, and µ is the mean.

µ =
1

m

m∑
i=1

x(i)

x := x− µ
(2.5)

The second step is to normalize the variances, as shown in eq. (2.6), where σ2 is the
variance, and thus σ is the standard deviation. (x(i))2 denotes element-wise multiplication.
Note that the mean is already subtracted.

σ =
1

m

m∑
i=1

(x(i))2

x :=
x

σ

(2.6)

The complete normalization of the inputs is then described by eq. (2.7).

x :=
x− µ
σ

(2.7)

It is important to use the same µ and σ when normalizing the test set, as the training set
and the test set should be subjected to the same normalization.

The purpose of normalizing the inputs is that it results in a more symmetric cost function,
where each iteration yields a greater decrease. This is illustrated in fig. 2.6. The cost
function is likely to have significantly more than three dimensions, but this is difficult to
illustrate.

Vanishing/Exploding gradients

In a deep neural network, layers that are deep into the network are subjected to several,
recurring matrix multiplications. If the weight matrices, and followingly the activation
functions, take on large values, or simply values that are greater than 1, then the com-
puted values will grow exponentially. This is reflected in backpropagation when computing
the gradients, as they are made up of the derivatives of each layer multiplied together.
If the derivatives are large (> 1), they will accumulate, and the gradients will increase
exponentially, referred to as exploding gradients. Alternatively, if the derivatives are small
(< 1), the gradients decrease exponentially, causing vanishing gradients. Exploding gradi-
ents result in an unstable network, incapable of learning effectively. Vanishing gradients
can result in a model with so small gradients that the weights are effectively prevented
from altering their values.

15

Figure 2.6: The cost function with unnormalized and normalized inputs, illustrated by Ng
et al. [4].

A partial solution to this problem is formed through weight initialization heuristics. One
such heuristic, which is especially effective for tanh activation functions, involves initializing
the weights in accordance with eq. (2.8), where U signifies a uniform distribution, and n[l−1]

denotes the number of nodes in layer l − 1, i.e. the number of inputs to layer l.

Wij = U

[
− 1√

n[l−1]
,

1√
n[l−1]

]
(2.8)

Xavier initialization [28] is a modification to this heuristic, where the boundaries are
changed, as in eq. (2.9).

Wij = U

[
−

√
6√

n[l−1] + n[l]
,

√
6√

n[l−1] + n[l]

]
(2.9)

He initialization [29] in eq. (2.10) is an alternative which works better for ReLU -like
activation functions.

Wij = U

[
−

√
2√

n[l−1]
,

√
2√

n[l−1]

]
(2.10)

These heuristics have proven to counter the problems of vanishing or exploding gradients.
However, they are just heuristics and are not guaranteed to work, but may provide a good
starting point.

Note: Coursera [4] refers to eq. (2.8) as Xavier initialization, and also presents an al-
ternative version of Xavier initialization that is similar to eq. (2.9), but with

√
2 in the

nominators instead of
√

6. The official paper by Glorot and Bengio [28], however, refers to
eq. (2.8) as a “common heuristic” and presents Xavier initialization (“normalized initial-
ization”, as it is referred to in the paper) as it is shown in eq. (2.9).

16

2.2.2 Optimization algorithms

Applying machine learning is a highly empirical, and highly iterative process. To find a
good model, one must usually train several and pick the best one. For this reason, it is
highly beneficial that the training jobs proceed quickly, which can be a challenge in the
context of big data. Having good optimization algorithms can significantly help speed up
the training jobs.

Mini-batch gradient descent

Normal gradient descent iterates through the entire training set before making adjustments
to the weights. If the training set is very large, this can be a slow process, since each iteration
through the training set takes a long time. By dividing the training set into several mini-
batches, and making adjustments to the weights after each mini-batches, the model will
make more frequent progress, and the training procedure will finish more quickly. This
technique is called mini-batch gradient descent. The following optimization algorithms are
all usually implemented with the mini-batch characteristic.

Exponentially weighted averages

Exponentially weighted averages (EWA) is a key component in several optimization al-
gorithms. It is a technique for analyzing data by creating a series of averages of different
subsets of the full data set. These averages provide a smoother, less noisy curve, than the
raw data points. The technique can be considered to capture general trends in how the
data evolve, which can be beneficial for optimization. The weighted average at each time
t, Vt is the weighted average at the previous time Vt−1 times a factor β added with the
data point at the corresponding time, θt times 1−β. The computation procedure is shown
in eq. (2.11).

Vt = βVt−1 + (1− β)θt (2.11)

The EWA represents the average over approximately the 1
1−β preceding data points. The

higher the value for β ∈ [0, 1], the smoother the curve, but the slower the EWA is to adjust
to new data.

The initial EWA, V0 is not necessarily a good estimate and might cause a bias that leads to
poor EWA. A technique to counter this is bias correction, shown in eq. (2.12). This helps
the EWA, especially in the initial phase, since for large values of t the βt term becomes
negligible.

Vt :=
Vt

1− βt
(2.12)

Gradient descent with momentum

The idea of gradient descent momentum is to compute an exponentially weighted average
of the gradients, and then use this to update the weights and biases instead. This will lead
to less drastic changes to the parameters, analogous to them having a type of momentum.

17

This can help to eliminate oscillations when approximating the local minimum of the cost
function. The gradients and weight and bias updates are thus computed in accordance with
eqs. (2.13) to (2.16).

Vdw := βVdw + (1− β)dw (2.13)

Vdb := βVdb + (1− β)db (2.14)

w := w − αVdw (2.15)

b := b− αVdb (2.16)

Bias correction is usually not necessary in this context but can be applied if preferred.

RMSprop (root mean square prop)

Like gradient descent with momentum, the goal of RMSprop is to dampen out oscillations
and focus the descent towards the minimum. RMSprop also utilizes exponentially weighted
averages, but a new notation Sdw is used to distinguish from gradient descent with mo-
mentum. Equations (2.17) to (2.20) show how gradients, weights and biases are updated
in RMSprop, where dw2, db2 signifies element-wise multiplication. The ε is added to the
denominator to avoid dividing by very small numbers that cause exhaustive weight and
bias updates. ε = 10−8 is a good default value [4, 30].

Sdw := βSdw + (1− β)dw2 (2.17)

Sdb := βSdb + (1− β)db2 (2.18)

w := w − α dw√
Sdw + ε

(2.19)

b := b− α db√
Sdb + ε

(2.20)

The intuition is that too-large gradients in sub-optimal directions causing oscillations will
be dampened out since the learning rate is divided by a large number, while too-small
gradients in the optimal direction will be magnified when divided by a smaller number.

Adam optimization

The Adam optimization algorithm essentially combines gradient descent with momen-
tum and RMSprop. Adam is an acronym for “Adaptive Movement Estimation”. Adam has

18

proven to be a widely successful algorithm and is perhaps the most popular one in the
machine learning community. Vdw, Vdb, Sdw and Sdb are computed in accordance with
eqs. (2.13), (2.14), (2.17) and (2.18). In order to distinguish between them, β is substi-
tuted with β1 and β2 for gradient descent with momentum and RMSprop, respectively.
For Adam, bias correction is usually implemented, giving eqs. (2.21) to (2.24), where t
denotes the number of iterations.

V corrected
dw =

Vdw
1− βt1

(2.21)

V corrected
db =

Vdb
1− βt1

(2.22)

Scorrecteddw =
Sdw

1− βt2
(2.23)

Scorrecteddb =
Sdb

1− βt2
(2.24)

Finally, the weights and biases are updated with eqs. (2.25) and (2.26).

w := w − α
V corrected
dw√

Scorrecteddw + ε
(2.25)

b := b− α
Scorrecteddb√
Scorrecteddb + ε

(2.26)

The values for the hyperparameters are suggested to be α = 0.001, β1 = 0.9, β2 = 0.999
and ε = 10−8 [30].

Learning rate decay

Another measure towards faster training procedures is to reduce the learning rate over time.
This will maintain fast learning early in the training phase, but also help the algorithm
converge when it is nearing the optimum. This can be implemented with eq. (2.27), where
the initial learning rate α0 and the decay rate ζ are tunable hyperparameters. nepoch denotes
what number epoch the training procedure is in, i.e. how many times it has passed through
the training data.

α =
α0

1 + ζnepoch
(2.27)

2.2.3 Hyperparameter tuning

As has become apparent by now, neural nets are largely dependent on hyperparameters.
Choosing the correct hyperparameter values can be challenging, especially if the neural net

19

in question depends on a multitude of them. Some hyperparameters are more important
than others. Ng et al. [4] names the learning rate alpha as the most important one, and
then secondarily the number of hidden units, the mini-batch size, and the momentum term
β if gradient descent with momentum is used as the optimization algorithm. The hyperpa-
rameters specific to the Adam optimizer rarely need tuning. Naturally, the regularization
parameter λ, and the dropout rate are also important if regularization is implemented.

A classical approach to hyperparameter tuning is setting up a selection of values for each
hyperparameter in an n-dimensional grid, where n is the number of hyperparameters. Each
cell in this grid represents a unique combination of hyperparameter values. Training thus
ensues with each of these combinations to find the best one. This approach is not that
popular anymore as one end up wasting many training jobs on tuning hyperparameters
that are less important, and additionally, the same values for important hyperparameters
are tested multiple times. A better approach is in fact to sample random values.

When sampling at random, the best approach is not always to do so uniformly over the
range of valid values. When searching for the number of hidden units to have in a layer, or
the number of layers the neural network should have, uniform sampling over a linear scale
might be a valid approach. However, in the case of the learning rate α, for which [0.0001, 1]
is a reasonable range of values, a uniform search over a linear scale will yield ∼ 90% of
samples within the range [0.1, 1]. Using a logarithmic scale instead yields the same amount
of samples in the ranges [0.0001, 0.001], [0.001, 0.01], [0.01, 0.1], and [0.1, 1], which is a
much more reasonable approach. The scale on which values are picked is important to keep
in mind when sampling hyperparameter values.

Hyperparameter optimization is discussed further in chapter 5.

When maintaining a machine learning system over time, the data might gradually change
over time, or the algorithm might be subjected to small alterations. This might cause
the best hyperparameter settings to get stale. Thus it is recommended to reevaluate the
hyperparameters in regular intervals.

Ng et al. [4] mentions two major schools of thought for hyperparameter tuning. The first one
is referred to as the panda approach, where one model is watched carefully over the course
of several days. The learning curve is monitored continuously, and the hyperparameters
are altered continually based on the observations made. This is a typical approach when
computational resources are scarce. It is called the panda approach due to the similarity
between how a panda reproduces - it has very few babies, and pay much attention to them.

The second approach is the caviar approach. In the caviar approach several models, with
different hyperparameter settings, are trained in parallel, and the most promising one is
chosen. This is an analogy to how fish reproduce, laying thousands of eggs, and has thus
been named the caviar approach.

2.2.4 Batch normalization

One of the most important ideas in the rise of deep learning; batch normalization, is an
algorithm created by Ioffe and Szegedy [31], to expedite the hyperparameter search problem
and make the neural network more robust. As discussed in section 2.2, normalizing the
inputs can alter the contour of the cost function so that training proceeds faster. Batch
normalization applies this concept to deep neural networks. As the parameters of layers
change during training, the distribution of the inputs to the succeeding layer changes. Ioffe

20

and Szegedy [31] refer to this phenomenon as internal covariance shift and explain that
it slows down the training process by requiring lower learning rates and careful parameter
initialization, and causes models with saturating nonlinearities to be notoriously difficult
to train.

The idea behind the algorithm is to normalize layer inputs and integrate the process of
doing so as part of the model architecture. Normalization is performed for each mini-batch.
Applying this algorithm allows for much higher learning rates and less careful initialization,
and, in some cases, provides a degree of regularization. The normalization addresses the
internal covariance shift, rendering the learnable parameters less susceptible to extreme
alterations when faced with input data containing unfamiliar characteristics, which in turn
allows for higher learning rates and reduces overfitting.

It is possible to normalize either zi, the value before the activation function, or ai, the
value after the activation function, which is the actual input to the succeeding layer. In
practice, normalizing zi is done more often, and is the approach recommended by Ng et al.
[4].

Similarly to when normalizing inputs eqs. (2.5) to (2.7), the outputs of all hidden units
before passing through the activation function, z[l](i), i ∈ [1,m], where m denotes the
number of hidden units in layer l, are normalized with zero mean and unity variance, as in
eqs. (2.28) to (2.30). l, denoting the layer, is from here on omitted for brevity. In eq. (2.30)
ε is added to the denominator in case σ = 0.

µ =
1

m

m∑
i

z(i) (2.28)

σ2 =
1

m

m∑
i

(z(i) − µ)2 (2.29)

z(i)norm =
z(i) − µ√
σ2 + ε

(2.30)

Often a different distribution is desired for hidden units. If the activation function for
the respective hidden unit is a sigmoid function, one might desire a larger variance or a
different mean to better utilize the nonlinearity of the sigmoid function, instead of limiting
the range to the linear regime. Thus z̃(i) is computed from eq. (2.31), where γ and β are
learnable parameters, that control the mean and variance of the hidden unit values.

z̃(i) = γz(i)norm + β (2.31)

The z̃(i)s are then substituted for the z(i)s for the succeeding computations in the neural
network.

One thing to note about batch normalization is that, due to eq. (2.28), any bias b(i) added
to z(i) is removed, and might as well be omitted or valued to zero. It is in a way replaced
by β, which adds a constant to the resulting z̃(i).

At test time, one might need to process one example at a time, instead of mini-batches.
This provides a problem in terms of µ and σ2 since it makes no sense to compute these
from one example. The solution to this problem is to estimate values for µ and σ2 for each

21

layer, using the computed values for the respective layers during the training phase. The
most common way to do this is by computing an exponentially weighted average for µ and
σ2 for each layer, based on the µ and σ2 for computed each mini-batch on the respective
layer during training.

2.3 Course 3: Structuring Machine Learning Projects

Effective means for structuring machine learning projects are beneficial for operationaliza-
tion, providing clarity and resulting in effort more efficiently being translated into progress.

A challenge with deep learning is that when a reasonably good, but not sufficient model
has been achieved, it is difficult to figure out what to change to further improve the model.
This challenge can result in entire teams spending much time on changes that ultimately
have no or little impact, effectively laying all the work to waste. To cope with this, there
are some strategies for analyzing the problem and identifying the most promising measures
for improving the model.

2.3.1 Orthogonalization

The concept of orthogonalization involves obtaining a clear overview of what to tune to
achieve a certain effect. It is derived from orthogonality, e.g. orthogonal vectors, which have
a dot product of zero, meaning that they affect completely separate features in a system.
Achieving orthogonalization allows for a systematic tuning process, much more likely to
translate effort into progress.

Say that a model is performing below par. Instead of assuming that collecting more training
data will increase the performance, it is wise to take a closer look at the model, to try and
pinpoint exactly what needs to be improved.

Investigating how well the algorithm performs on the training set is a good start. If the
algorithm does not fit well with the training data, then adding more data is not likely
to effectively solve the problem. Adding more hidden units and/or layers to the neural
network might enable the algorithm to identify more characteristics in the training data,
thus increasing training set performance. Another approach could be to switch to a different
optimization algorithm.

If the problem lies not with the test set, a natural next step is to investigate the validation
set performance. If this is not satisfactory, tuning the regularization parameters could help
increase performance. Alternatively, collecting more training data is a valid course of action
for improving validation set performance.

If the algorithm performs well on the validation set, but badly on the test set, a likely
reason is that the algorithm has overfitted the validation set, and a solution might be to
increase the size of the validation set.

Finally, if the algorithm performs well on the training, validation, and test sets, but is not
delivering good results for real-world data, then likely the distribution for the validation
and test sets is not representative enough, or the cost function is not well-defined.

These steps form a systematic approach, where problems are closely examined to deduce
the most promising courses of action.

22

Early stopping is a technique that aligns badly with orthogonalization. Early stopping
affects how well the algorithm fits the training set, while simultaneously being used to
improve validation set performance, thus affecting two things.

2.3.2 Setting up the goal

Defining concise goals allows for more efficient and frequent evaluations of model per-
formance. This is auspicious in an operationalized system, where models require regular
updates.

Single number evaluation metric

When evaluating model performance, several metrics provide different insights. This is
beneficial in terms of achieving a clearer picture of the model, but it poses problems when
comparing different models, some models can score high on some metrics and low on others.
Creating a single metric that combines several metrics in a weighted manner that makes
sense for the model offers more easily accessible insights into the models, and makes it
simpler to compare them. Typical evaluation metrics, as well as some combinations, are
discussed in chapter 5.

Satisficing and optimizing metric

Combining several metrics into one metric can be difficult. A technique that can be used
is distinguishing between satisficing and optimizing metrics. Optimizing metrics are the
metrics that should be optimized, the ones where a high a score as possible is desired, such
as accuracy. Satisficing metrics are metrics that only need to reach a certain threshold,
and are not considered much beyond this threshold. An example of a satisficing metric is
the run time of a classifier; as long as the classifier finishes within a certain time period,
e.g. 100 milliseconds, it is not necessary to make it run faster.

2.3.3 Error analysis

Error analysis involves examining the misclassifications or erroneous predictions made by a
model to understand what characteristics the algorithm struggles with. E.g., a classifier for
cat pictures has 90% accuracy, and it turns out that out of the 10% misclassified pictures,
70% of them are of dogs. This might motivate working on a solution for distinguishing
especially between dogs and cats. On the contrary, if 2% of the misclassified pictures are
actually raccoons, then focusing on a solution that distinguishes between raccoons and
cats, is perhaps not worth the effort.

Cleaning up incorrectly labelled data

Sometimes data can be incorrectly labelled, which naturally has a bad impact on the
algorithm. However machine learning algorithms are relatively robust to random errors, so
long as only a small percentage of the training set is incorrectly labelled, and thus cleaning
up the errors might not be worth the effort. Systematic errors, e.g. consequently labelling
images of dogs as images of cats, are worse and should be cleaned up.

23

2.3.4 Data set distributions

It is imperative that the validation and test sets are from the same distribution. If they
are not, the algorithm is prone to optimize on false premises, which will lead to poor
performance on the test set.

Training and testing on different distributions

There are scenarios when the application subject to development is particularly specific,
yielding much training data that is related to but not within the primary domain of interest.
Imagine a speech recognition system for a music application. Such a system must recognize
a lot of song names, and names of bands and artists, as well as commands for playing,
pausing, skipping, etc. The amount of speech data in this domain may be limited, while
the amount of general speech data is much larger. In this case, it can be beneficial to use
all speech data available, and not just the data from the music application domain.

In such a situation it is important that the data from outside the domain is only used in
the training set, and not in the validation or test set. Using it in the training set is likely
to improve how well the algorithm recognizes different characteristics, which is positive.
Using the data in the validation or test set, however, will lead the algorithm to optimize
on false premises, and not optimize for the actual implementation.

Bias and variance with mismatched data distributions

As discussed in section 2.2, comparing the error on the training set with the error on
the validation set can provide insight into whether the algorithm is suffering from bias or
variance. These assessments can not be made when the training and validation sets are
from different distributions. To address this, a new data set is created from the training
set, called the training-validation set. The training-validation set is not explicitly trained
on but comes from the same distribution as the training set. Comparing the error on the
training set with the error on the training-validation set can now reveal bias or variance.
Comparing the training and training-validation sets with the validation set can reveal
something else; if the errors differ largely, this indicates data mismatch, signifying that the
algorithm is trained well, but for the wrong distribution.

To address data mismatch, it is possible to conduct error analysis and pinpoint the specifics
of how the data in the validation and test sets differ from the data in the training set. When
the differences are identified, it is possible to conduct artificial data synthesis to perform
alterations on the training data, making it more similar to the validation and test data.
Taking the example of speech recognition for a music application, it could be that the data
in the validation and test set have much background noise, while the training data does
not. Sampling similar background noise and synthesizing this with the training data might
help to solve this problem.

24

2.3.5 Learning from multiple tasks

Transfer learning

Transfer learning is when knowledge that a neural network has gained from solving one task
can be applied to solve different tasks. This is a very powerful tool in deep learning. This
can be done by taking a trained neural network, removing the last layer which produces
the output and the weights that are fed into this layer, and replacing them with a new
layer and a new set of initialized weights. The modified network can now be trained on
a much smaller data set for the new application. Optionally, the already trained weights
can be frozen, so that they are not adjusted by the new training data. A rather humorous
and quite magnificent example of transfer learning comes from Japan, where a neural net
created to identify pastries turned out to be able to recognize cancer cells [32].

Multi-task learning

Multi-task learning is when a neural network is designed to perform multiple tasks, i.e.
predict multiple things. When the tasks have the same input and share some low-level
features this has its advantages, as compared to training separate neural networks for each
task. An example is a self-driving car that needs image recognition for deciding when to
stop. There are many reasons why a car should stop; there could be a stop sign, a red
traffic light, a pedestrian, etc. The images containing these objects can be very similar in
structure; they are likely to contain the sky, other traffic signs, cars, road markings, etc.,
and some images could contain multiple objects that should trigger a stop signal. A neural
net can then be trained to output several predictions on whether a relevant object is in
the picture or not.

2.3.6 End-to-end deep learning

Many data processing or learning systems consist of multiple stages. The idea of end-to-
end deep learning is these stages with just a single neural network. Traditionally, speech
recognition required many stages; first a processing algorithm for extracting low-level fea-
tures of audio, then a machine learning algorithm to identify phonemes4 in the audio clip.
Then the phonemes are combined to form words, which in turn are combined to form
transcripts. An end-to-end approach for speech recognition will take the original audio clip
as the input and output the transcripts, with a single neural network. End-to-end deep
learning is a pure machine learning approach. Allowing the algorithm to fully explore and
capture the characteristics and statistics of the data, rather than being forced to reflect
human perceptions, such as phonemes, might yield better performance. Eliminating hand-
designed components will also simplify the system. This is a double-edged sword, however,
since potentially useful hand-designed components are excluded. Another caveat is that
end-to-end deep learning requires vast amounts of data to fulfil its potential.

4Phonemes are the “basic units” of sound.

25

2.4 Course 4: Convolutional Neural Networks (CNNs)

Computer vision

Computer vision has gained a lot of traction with the rise of deep learning. Computer
vision is used in applications such as facial recognition, which is widely used for unlocking
phones, and object detection, used in self-driving cars, to mention a few. Due to the rapid
development in this area, the computer vision research community has been inventive and
creative in terms of forming new architectures and algorithms for neural networks. These
have been found to be applicable in many other areas of research as well.

One of the challenges in computer vision that have fueled innovation is that the inputs
can be really big. A 1000 by 1000 pixel image results in a 3 × 1000 × 1000 = 3, 000, 000
dimensional input. The dimension is multiplied by 3 because each pixel must be represented
in 3 channels to incorporate the RGB values of each pixel. A fully connected layer with 1000
hidden units yields a 1000 by 3.000.000 dimensional matrix, which is incredibly large. With
that many parameters, it is difficult to collect enough data to avoid overfitting. Moreover,
the computational requirements of such a network are immense. A fully connected layer
is a layer in which every neuron is connected to every neuron in the preceding layer. An
alternative to this, which has emerged from computer vision research, is the convolutional
layer.

What a convolutional layer does is that it takes the input tensor5 and convolves it with a
filter to produce a feature map, which makes up the next layer. The filter, also sometimes
referred to as the kernel, is a tensor of lower dimension than the input, constructed in
a way that extracts the features of interest. Traditionally, they are constructed by hand,
but they can be learned as well. The convolution operation demands far fewer connections
between layers and is thus less computationally expensive, and it allows for the extraction
of general features without overfitting. Figure 2.7 illustrates how input is convolved with
a filter to produce a feature map. Asterisk, ∗ is used to denote convolution. All elements
in the filter are element-wise multiplied with the elements in an overlapping region in the
input. These products are then summed up and stored in the corresponding region in the
output/result. The region is then shifted one place to the right, and the process is repeated.
After the rightmost region, the process starts again from the left, shifted one place down.
This is repeated until the region in the bottom right corner is covered.

Edge detection using convolution

Edges in an image are features that are commonly detected using convolution. For this
purpose, the filter design is, in fact, rather intuitive. Imagine a matrix with pixel values
for a grey-scale image, where the lower the value, the darker the pixel. fig. 2.8 illustrates
how a vertical edge detection-filter convoluted with the original image produces a feature
map where an edge is detected.

Padding

A downside with convolution is that every time it is applied, the resulting feature map
has lower dimensions than the input, i.e. the image shrinks. The dimension of the output,

5A tensor is an umbrella term of which specific instances include scalars, vectors, and matrices.

26

Figure 2.7: The convolution operation, as illustrated by Prijono [33].

Figure 2.8: Vertical edge detection using convolution, as originally illustrated by Ng et al.
[4], and revised by datahacker.rs [34].

where the input is an n×n matrix, and the filter a f×f matrix, is (n−f+1)×(n−f+1),
given by eq. (2.32)

Dim(X ∗ f) = (n− f + 1)× (n− f + 1)

,where X ∈ Rn×n, f ∈ Rf×f
(2.32)

Another caveat is that the edge pixels in an image have much less impact on the output
than what the middle pixels, which are iterated over multiple times, have. Padding is a
concept that addresses both these problems. It involves adding a border - conventionally
consisting of 0s, also called zero-padding - around the input. Figure 2.9 illustrates a case
where padding with a border of size p = 1 is applied. As seen, the output has the same
dimensions as the original input. This is referred to as same convolution. Convolution with
no padding is called valid convolution.

27

Figure 2.9: Padding of size p = 1 applied to the input of a convolution operation, originally
illustrated by Ng et al. [4], and revised by datahacker.rs [34].

Strided convolutions

It is possible to adjust the step size, or the stride in a convolution operation. The stride,
s denotes how many places the region is shifted after each multiplication-summation pro-
cedure. A higher stride results in a lower-dimensional output. Equation (2.33) shows the
dimension of the output, taking both padding and stride into consideration.

Dim(X ∗ f) = bn+ 2p− f
s

+ 1c × bn+ 2p− f
s

+ 1c

,where X ∈ Rn×n, f ∈ Rf×f
(2.33)

Pooling layers

An alternative, but somewhat similar operation to convolution is the pooling operation.
There are two types; max pooling and average pooling. Max pooling is used the most -
average pooling is quite rarely applied. In pooling, the filter contains no elements but
applies a max-operation or an average-operation to the region. Thus, a pooling operation
contains no learnable parameters, just the hyperparameters f and s for filter size and
stride, respectively. It is possible to apply padding also in pooling layers, but this is rarely
done. Figure 2.10 illustrates the two pooling operations. Equation (2.33) also applies to
the output dimensions of a pooling operation.

The intuition behind max pooling is that it detects features in different locations of the
input (image). A high number in a region signifies that there is a feature there, and this
information is conveyed deeper into the network. If there is no particular feature, then the
highest number will be relatively low. There is discussion whether this intuition really aligns
with reality. Nonetheless, max pooling has proven to work well in a lot of experiments.

28

Figure 2.10: To the left: max pooling, to the right: average pooling. Originally illustrated
by Ng et al. [4], and revised by datahacker.rs [34].

2.4.1 Examples of efficient convolutional network architectures

ResNets

Deep residual nets, or ResNets, are the result of an architecture presented by He et al.
[35]. As networks grow deeper, they become harder to train, due to challenges such as
vanishing and exploding gradients. The motivation behind ResNets is to facilitate the
training of even deeper neural networks without degrading training performance. They are
based on the notion of skip connections and residual blocks, fig. 2.11. A skip connection
is an activation that is passed on to a layer that is even deeper than the layer directly
following the activation. The block into which this activation is passed is a residual block.

Figure 2.11: A skip connection into a residual block, as illustrated by He et al. [35].

ResNets have been proven successful in improving the training of very deep neural networks.
Figure 2.12 shows as ResNet and a plain neural net.

29

Figure 2.12: A plain neural net and a ResNet. Illustrated by He et al. [35].

Inception Network

Inception is a deep convolutional neural network architecture proposed by Szegedy et al.
[36]. The inspiration behind the name is actually the famous “we need to go deeper” internet
meme [37], which is listed as the first reference in [36].

Raj [38] mentions some problems that the ResNet architecture addresses. Images in training
sets can vary with respect to the position of, and the area covered by the object of interest.
This makes the choice of filter size for the convolution operation hard, as larger filter sizes
are in general preferred for information that is distributed globally over the image, while
smaller filter sizes are preferred for more locally concentrated information. Stacking large
convolutional operations is computationally expensive, and results in very deep networks
which are prone to overfitting. While improved utilization of the computing resources
inside the network is the main hallmark of the Inception architecture, it impacts the other
problems as well.

The Inception architecture involves performing multiple operations in parallel on the same
layer. This produces a network that is, in a sense, wider, as opposed to deeper. Several
iterations of the architecture are presented in the paper, and more in later papers, but to
convey the general structure fig. 2.13 illustrates the naïve version of the Inception module.

Figure 2.13: The naïve version of the Inception module, as illustrated by Szegedy et al.
[36].

30

The actual network developed in Szegedy et al. [36] is called GoogLeNet, and is shown in
fig. 1 in appendix B.

2.5 Course 5: Sequence Models

Sequence models are models that deal with sequence data, e.g. speech recognition, where
an input audio clip is mapped to a text transcript, or sentiment classification, where the
input is a phrase, and the output classifies the sentiment in the phrase. In the former, both
the input and the output are sequences, while in the latter only the input is a sequence.
Other examples are music generation; DNA sequence analysis; video activity recognition;
and more.

Note: This section does not deal with convolution, and ∗ now denotes element-wise multi-
plication.

Recurrent Neural Networks (RNNs)

Recurrent neural networks have had a great impact on areas such as speech recognition
and natural language processing.

A problem with using standard neural networks for sequence models is that not all data
examples of sequences have the same length, and the output sequences can also vary in
length. To cope with this in a standard neural network, a maximum size must be set,
and unused space filled with zeros or some sort of null value. This is not a good solution.
Another problem with a naïve neural network architecture is the inability to share features
learned across different positions in a sequence. If a model for name detection detects a
name early in a sentence, this should weigh in on its ability to detect the same name
later in the same sentence. Recurrent neural networks solve these problems. An RNN is
illustrated in fig. 2.14. Tx and Ty are used to denote the input and output sequence length,
respectively. The < t >-superscript is used to denote the t-th element in a sequence, so
x<t>, t ∈ Tx are all elements in the same example.

Figure 2.14: Simple representation of RNN architecture. Illustrated by Ng et al. [4], and
revised by [34].

As shown in fig. 2.14, the activation for each element is passed as an input to the prediction
for the next element. This addresses the second problem with standard neural networks,
enabling the RNN to use features learned from previous elements. The initial activation

31

function a<0> is normally simply a vector of zeros. The architecture in fig. 2.14 also allows
for varying sizes of inputs and outputs between examples but requires each input-output
pair to be of equal length.

Forward propagation ensues with eqs. (2.34) and (2.35): one activation is passed on to
the next element, and a second internal activation function computes the output for each
element. The activation that is passed on need to be accounted for in backpropagation,
and that is why backpropagation for RNNs is sometimes referred to as backpropagation
through time.

a<t> = g<t>a (waa ∗ a<t−1> + wax ∗ x<t> + ba) (2.34)

ŷ<t> = g<t>y (wya ∗ a<t> + by) (2.35)

This architecture only enables later elements to use features learned from previous elements,
and not vice versa. Bidirectional recurrent networks (BRNNs) address this later in this
section.

Different RNN architectures

There are four possible input-output size combinations:

• Many-to-many

• Many-to-one

• One-to-many

• One-to-one

Figure 2.14 is an example of a many-to-many RNN, but with the specific case where
Tx = Ty. In a machine translation algorithm, where a sentence in one language is translated
into a different language, for example, usually Tx 6= Ty. In such a case the neural network
is separated into two parts; an encoder that “reads and understands” the sentence, and a
decoder that translates the sentence into another language. This is illustrated in fig. 2.15.

A one-to-one RNN is just a standard neural network. Many-to-one and one-to-many, as
are the cases for sentiment analysis and music generation, respectively, are illustrated in
fig. 2.16.

32

Figure 2.15: A many-to-many RNN separated into an encoding part and a decoding part.
Illustrated by datahacker.rs [34]

Figure 2.16: To the left: a many-to-one RNN architecture. To the right: a one-to-many
RNN architecture. Illustrated by datahacker.rs [34].

Language models

For natural language processing systems, a language model is usually applied to improve
performance. A language model estimates the probability of a word appearing in a sentence,
depending on how common it is and what word is preceding it. It is built by analyzing
large amounts of text in the language, and optionally in the domain, in which the natural
language processing system operates.

Vanishing gradients with RNNs

With sequence data, elements in the same sequence, but far away from each other can
have relations that are important for the output. This is common in natural language
processing. Whether a noun is singular or plural affects the verb form to be used in the
sentence. However, there can be many elements between the appearances of the noun and
the verb. As a result, RNNs are particularly susceptible to vanishing gradients during the
backpropagation of a sequence, because this decreases the effect elements have on other

33

elements that are not in close vicinity. Following are brief explanations for two solutions
to this, Gated Recurrent Unit and Long Short Term Memory.

Gated Recurrent Unit (GRU)

GRUs are modified hidden units in an RNN, intended to help the model in capturing
long-term dependencies, such as mentioned above. The idea behind GRU is to store the
activation of an element and pass it on for later use. this is done by adding a memory cell
c<t>, a candidate value c̃<t>, and an update gate Γu to each unit in the layer in the RNN.
c<t> stores the memory of whether an element is single or plural, and passes it on to the
next unit. In a GRU, the memory cell and the activation is the same signal; c<t> = a<t>.
Γu decides whether the stored memory, received from an earlier unit, should be applied to
this element, i.e. whether the verb should be in singular or plural form. The purpose of c̃<t>

is to evaluate whether the memory received from the previous unit should be replaced.

Γu is computed by a sigmoid function. In the simplified GRU; if Γu ≈ 1, the memory cell
value c<t> is replaced by the candidate value c̃<t>. If Γu ≈ 0, the cell value c<t> is passed
on to the next unit.

In a full GRU, another gate is added; the relevance gate, Γr. This modifies the computation
of c̃<t>, by adding a factor of how relevant the potential new memory is.

A GRU is implemented with eqs. (2.36) to (2.39).

c̃<t> = tanh(Wc[Γr ∗ c<t−1>, x<t>] + bc) (2.36)

Γu = σ(Wu[c<t−1>, x<t>] + bu) (2.37)

Γr = σ(Wr[c
<t−1>, x<t>] + br) (2.38)

c<t> = Γu ∗ c̃<t> + (1− Γu) ∗ c<t−1> (2.39)

Long Short Term Memory (LSTM)

LSTM is another unit for learning long-range connections in a sequence and is even more
powerful than the GRU. LSTM was developed by Hochreiter and Schmidhuber [39]. In
LSTMs, the memory cell and the activation are no longer the same signal, so c<t> 6= a<t>.
It is possible to use a relevance gate, Γr for LSTM, but it is rarely done. Instead, two new
gates are added: the forget gate, Γf , and the output gate Γo. An LSTM is governed by
eqs. (2.40) to (2.45).

c̃<t> = tanh(Wc[Γr ∗ c<t−1>, x<t>] + bc) (2.40)

Γf = σ(Wf [c<t−1>, x<t>] + bf) (2.41)

34

Γu = σ(Wu[a<t−1>, x<t>] + bu) (2.42)

Γo = σ(Wo[c
<t−1>, x<t>] + bo) (2.43)

c<t> = Γu ∗ c̃<t> + Γf ∗ c<t−1> (2.44)

a<t> = Γo ∗ tanh(c<t>) (2.45)

As seen in both GRUs and LSTMs, the gates are implemented quite similarly, mainly dif-
fering in their respective weights and biases. This is because they are intended to represent
a binary output, thus the name “gate”, of some property posed by the combination of the
input x<t>, and the memory cell c<t−1> or activation a<t−1> received from the previous
layer. Because the memory cell and the activation is no longer the same signal, two separate
gates are needed for computation; Γu and Γo. Another thing to notice is the introduction of
a separate forget gate Γf , replacing the (1− Γu) term from the GRU. Figures 2.17 to 2.19
illustrates a normal RNN unit, a GRU, and an LSTM. The relevance gate Γr is omitted
for simplicity.

Figure 2.17: Normal RNN unit. Illustrated by datahacker.rs [34].

35

Figure 2.18: GRU without Γr. Illustrated by datahacker.rs [34].

Figure 2.19: LSTM without Γr. Illustrated by datahacker.rs [34].

Both GRU and LSTM aim to achieve a form of memorization to apply learned features
to other elements regardless of distance. LSTM is more comprehensive than GRU, and in
general more powerful. It is often the default choice for the first iteration of a development
cycle. However, the GRU is a simpler model, making it easier to build a big network, and it
runs a bit faster than LSTM computationally. There is no widespread consensus on which
is the best choice, as they each win out on different problems.

Bidirectional RNNs

A common architecture for sequence models, especially for natural language processing,
is the bidirectional recurrent neural network (BRNN). As mentioned previously, RNNs
enables the usage of learned features from previous elements, but not from future elements
- they are unidirectional. A BRNN adds connections from the later units to the earlier
units in a “backward layer”, as shown in fig. 2.20. This connection enables units to apply
information from later units, before asserting their prediction. How this is done is not
investigated in further detail in this thesis, but is covered by Schuster and Paliwal [40].

BRNNs are commonly combined with LSTM, but can also be implemented with GRU or a
regular RNN unit. An example of where BRNN can be useful is in name entity recognition.

36

Given the sentence “Bear Grylls enjoys nature”, upon analysing the first word “Bear”, the
algorithm has no way of telling whether it is a name or not. The sentence could turn out
to be "Bear with me for a second", in which case “Bear” would not be a name. Without
knowledge about the rest of the sentence, the algorithm lacks the preconditions for making
the correct prediction.

Figure 2.20: A BRNN with separate backward and forward layer. Illustrated by Mei et al.
[41].

Deep RNNs

The illustrations and explanations of RNNs so far have all considered a one-layer network
for simplicity. Naturally, RNNs are usually applied in a deep sense, like in fig. 2.21.

Figure 2.21: High-level overview of a deep RNN, as illustrated by [4]

37

Chapter 3
Techniques for Testing Machine Learning
Systems

Reliable methods for testing are important to ensure a correctly functioning system and
to sustain rapid development and, by extension, automated processes. This is necessary
to maintain an operationalized machine learning system. Testing machine learning sys-
tems presents challenges because conventional software testing techniques do not always
apply. The stochasticity of machine learning systems poses difficulties in terms of defining
a reliable test oracle1. Their dynamic nature requires frequent testing, making effective
testing methods desirable. Noisy data, non-convex objectives, model miss-specification,
and numerical instability can all cause undesired behaviours in machine learning systems
[43], making it difficult to pinpoint the origin of a bug. There is an important distinction
between evaluating and testing models; evaluating involves measuring the predictive per-
formance of a model with respect to relevant metrics. Testing involves revealing bugs in
the system and ensuring that the learned logic is as intended.

This chapter presents what value traditional software testing techniques and data checks
offer machine learning systems. Further, a proven approach for behavioural testing of NLP
models is presented and, to highlight the extensivity of the challenge, a selection of methods
based on different approaches with various prevalence are reviewed.

3.1 Conventional Software Testing

Machine learning systems introduce new and more complex requirements in terms of test-
ing, but that doesn’t mean that the need for traditional software testing disappears. Ma-
chine learning systems consist of several components that deal only with traditional soft-
ware and/or data, and are not affected by the machine learning algorithm itself. Most
components require standard software testing.

Mohandas [44] and Jordan [45] combine to form a typical software testing suite:

• Unit tests: tests on individual components that each have a single responsibility.
Atomicity is important in this context; units must have a single responsible so that

1An oracle is a mechanism for determining whether a program has passed or failed a test [42].

38

they are easily testable.

• Integration tests: tests the combined functionality of individual components, i.e.
how components integrate with each other. These tests typically take longer to run
as they observe higher-level behaviour.

• Regression tests: testing previously encountered bugs to ensure that new changes
do not reintroduce them.

From [45], conventions associated with the testing suite include:

• Avoid merging code unless all tests are passing.

• Always write tests for newly introduced logic.

• When fixing a bug, write a test to capture the bug and prevent future regressions.

3.1.1 Pre-train testing

Standard testing techniques and data checks can also be performed before the model is
created. This is referred to as pre-train testing [45]. The main purpose of pre-train testing
is to detect errors and faults that are susceptible to occur during, or as a result of, training,
prior to initiating actual training. Identifying errors and faults early on prevents wasting
an entire training job.

From [45], some tests that can be performed without trained parameters include:

• Verifying the validity of training and validation sets, e.g. checking for missing or
faulty values.

• Verifying the shape of the model output.

• Checking that the output values are valid (e.g. that all outputs of a classification
algorithm are between 0 and 1 and that the sum of all outputs do not exceed 1).

• Verifying decreasing loss after one batch of training.

• Training on different devices.

3.2 CheckList: Three Types of Behavioural Testing

This section reviews the paper “Beyond Accuracy: Behavioral testing of NLP models with
CheckList” by Ribeiro et al. [46]. The paper is spoken highly of and referenced in several
settings [44, 45, 47], including by Victor Sanh (Hugging Face [48]), Ambarish Jash (Google
AI [49]), and Piero Molino (Stanford University [50], Ludwig [51], and former Uber AI [52])
in a webinar offered by Comet ML [53].

Behavioural testing involves treating the model as a black box and test input data against
expected outputs. Ribeiro et al. [46] introduce a task agnostic methodology for testing
NLP models based on the principles of behavioural testing, with a tool called CheckList.
Ribeiro et al. [46] define three types of tests:

39

• Minimum functionality tests (MFT)

• Invariance tests (INV)

• Directional expectation tests (DIR)

CheckList is designed to test NLP models, but the concept behind it might be adopted
and applied to other models. This section focuses on the concept rather than the tool
itself. Ribeiro et al. [46] recommend structuring tests around the capabilities the model
is expected to acquire from training. For an NLP model, these capabilities might include:
vocabulary and part of speech - whether a model has the necessary vocabulary, and whether
it can appropriately handle the impact of words with different parts of speech on the task;
sentiment - ability to identify words that carry positive, negative, or neutral sentiment;
name entity recognition (NER) - detecting names; fairness - outputs that should be inde-
pendent of certain variables; robustness - to typos or irrelevant changes; negation - changes
that negate the output; temporal relationships - understanding the order of events [46]. Ca-
pabilities in an image recognition model might include: object rotation; perspective shift ;
lighting conditions; weather conditions [45]. The examples are intentionally many since this
is deemed to highlight the motivation behind these tests; the training data might include
coincidental correlations which cause the model to learn unintended patterns.

Minimum functionality tests

Minimum functionality tests (MFT), inspired by unit tests in traditional software testing,
are collections of simple labelled examples to check the behaviour within a capability. MFTs
are particularly useful for detecting when a model uses “shortcuts” to handle complex inputs
without actually mastering the relevant capability [46]. MFTs quantify model performance
for specific cases, similarly to how unit tests isolate and test atomic components [45].

Invariance tests

Invariance tests (INV) involve applying label-preserving perturbations to inputs with the
expectation that the model prediction remains unchanged. Different capabilities need dif-
ferent perturbation functions, e.g. altering an independent variable to test fairness, or
introducing a typo to test robustness.

Directional expectation tests

Directional expectation tests (DIR) are similar to invariance tests, with the distinction
that the prediction is expected to change in a certain way after applying a perturbation to
the input.

Invariance tests and directional expectation tests are inspired by metamorphic testing,
which is discussed in section 3.3. They allow testing on unlabelled data since they test
behaviour with respect to relationships between predictions before and after perturbations
are applied [46].

CheckList revealed critical bugs in commercial systems developed by large software com-
panies, indicating that it complements current practices well [46]. CheckList is applied

40

Figure 3.1: CheckListing a commercial sentiment analysis model developed by Google.
Illustrated by Ribeiro et al. [46].

to a commercial sentiment analysis model developed by Google in fig. 3.1, which shows
examples of test cases and how well the model performed on them.

3.3 Improving Dependability of Machine Learning Applica-
tions

The section reviews the paper “Improving dependability of Machine Learning Applications”
by Murphy and Kaiser [54].

Murphy and Kaiser [54] presents a methodology for improving the dependability of machine
learning systems, consisting of three approaches: niche oracle-based testing, parameterized
random testing, andmetamorphic testing. These approaches are not intended as alternatives
but in combination. The paper places machine learning applications, being software systems
with no reliable test oracle available, in the category of “non-testable programs” from [55].
It is naturally possible to pass a data point with a known label into a machine learning
algorithm, and see whether it produces the correct result or not, but this is not a sufficient
representation for the general case. In machine learning, as in any software testing, it is
possible only to show the presence of bugs, but not their absence [54]. As they put it,
the research in Murphy and Kaiser [54] “seeks to address the issue of how to devise test

41

cases that are likely to reveal bugs, and how one can indeed know whether a test actually
is revealing a bug, given that we do not know what the output should be in the general
case.”.

Niche oracle-based testing

The first approach uses a “niche oracle”, a test oracle that only applies to a very small subset
of the input domain, for which the expected output, in fact, can be known in advance. In
this approach, small predictable data sets are hand-crafted, such that a particular model
will be obtained if the algorithm is implemented correctly. This particular model thus
functions as a test oracle for a small data set, a niche oracle. These data sets are typically
quite trivial, but the tests function as preliminaries before other testing can proceed. This
approach bears similarities to MFTs discussed in section 3.2.

Parameterized random testing

This approach is based on the notion of random testing [56, 57]. Random testing is a
convenient way to produce large input data sets, in the absence of sufficient real-world
data sets. This addresses the limitation of niche oracle-based testing, where the data sets
are small. A challenge is that, due to the randomness, there is no test oracle specifying the
expected output. In the parameterized random testing-approach, the randomness that is
used to generate large data sets is parameterized based on the different equivalence classes
that are intended for testing.2 Although this approach does not result in any oracle, it
helps reveal defects and inconsistencies in some cases [54].

Metamorphic testing

Metamorphic testing, also discussed in [58, 59], is designed as a general technique where
existing test cases, particularly those that have not revealed any failure, are used as bases
for creating follow-up test cases intended to find uncovered flaws. The methodology re-
volves around reusing input test data to create additional test cases whose outputs can
be predicted, allowing the application to act as a “pseudo-oracle” for itself, by specifying
the behaviour that is expected upon changes to the input. Even though the output of the
follow-up test case is as expected, it is based on the output of the initial test case, meaning
that both outputs could be wrong. Still, metamorphic testing forms a powerful technique
for revealing defects [54].

3.4 Testing Deep Neural Networks

The section reviews the paper “Testing Deep Neural Networks” by Sun et al. [60].
2The equivalence classes devised, and used to guide the generation of appropriate input data sets for

the three approaches, in Murphy and Kaiser [54] are: small vs. large data sets; repeating vs. non-repeating
attribute values; missing vs. non-missing attribute values; repeating vs. non-repeating labels; negative
labels vs. non-negative-only labels; predictable vs. non-predictable data sets; and combinations thereof.
These were devised after analysis of the MartiRank and SVM algorithms, the algorithms which, in the
paper, are subjected to the three test approaches.

42

Sun et al. [60] propose a family of four novel test criteria that are tailored to the structural
features of deep neural networks and their semantics. The criteria are inspired by the
MC/DC (modified condition/decision coverage) criterion but are designed for the specific
attributes of deep neural networks. MC/DC, developed by NASA [61], is a method of
measuring the extent to which safety-critical software has been adequately tested. At its
core is the idea that if a decision can be made, all possible factors that contribute to that
decision must be tested [60].

The paper is quite extensive, and the reader is referred to [60] for deeper immersion in the
criteria and their derivations than what is provided in this section.

Sun et al. [60] state that the core idea of their criteria is “to ensure that not only the
presence of a feature needs to be tested but also the effects of less complex features on a
more complex feature must be tested.”. This formulation is influenced by the claim that
nodes in a deeper layer in a deep neural network represent more complex attributes of the
input [62]. Further, Sun et al. [60] consider every feature, i.e. a subset of nodes in a layer,
as a decision, and say that its conditions are those features connected to it in the preceding
layer, to integrate the context of MC/DC.

Feature changes

The criteria are defined by capturing different ways of instantiating the changes of the
conditions and the decision. Sun et al. [60] consider the observed on a feature to be either
a sign change or a value change. A sign change occurs if the sign of all nodes in a feature
differs on two separate test cases; e.g.

sign(nk,j , x1) 6= sign(nk,j , x2)∀nk,j ∈ ψk,l

, where nk,j is a node j in layer k in ψk,l. And ψk,l is feature l in layer k, and x1 and x2 are
test cases. A sign change is denoted by sc(ψk,l, x1, x2). A non-sign change occurs if the sign
of no nodes in a feature differs on two separate test cases. A non-sign change is denoted by
nsc(ψk,l, x1, x2). Value change is dependent on the value function[60], g −→ {true, false},
which expresses the deep neural network developer’s intuition or knowledge about what
constitutes a significant change on a feature ψk,l, by specifying the difference between two
vectors ψk,l[x1] and ψk,l[x2]. There are no formal restrictions on the form of the value
function other than that it needs to be evaluated efficiently, for practical reasons. Thus
value change signifies that a test case x1 constitutes a significant change on feature ψk,l,
compared to test case x2:

g(ψk,l, x1, x2) = true

, and is denoted by vc(g, ψk,l, x1, x2).

The four test criteria

A test criterion is defined on an instance of a deep neural network, with a set of test cases,
a set of feature pairs, and a coverage method [60]. The essence of the four test criteria are

43

the four coverage methods, which Sun et al. [60] define as follows:

Sign-Sign Coverage, or SS Coverage
A feature pair α = (ψk,i, ψk+1,j) is SS-covered by two test cases x1, x2, denoted by
SS(α, x1, x2), if the following conditions are satisfied by the deep neural network instances
N (x1) and N (x2):

• sc(ψk,i, x1, x2) and nsc(Pk \ ψk,i, x1, x2)

• sc(ψk+1,j , x1, x2)

where Pk is the set of nodes in layer k.

In worded form from [60]: SS coverage provides evidence that the sign change of a condition
feature ψk,i independently affects the sign of the decision feature ψk+1,j , of the next layer .

Value-Sign Coverage, or VS Coverage
Given a value function g, a feature pair α = (ψk,i, ψk+1,j) is VS-covered by two test cases
x1, x2, denoted by V Sg(α, x1, x2), if the following conditions are satisfied by the deep
neural network instances N (x1) and N (x2):

• vc(g, ψk,i, x1, x2) and nsc(Pk, x1, x2)

• sc(ψk+1,j , x1, x2)

In worded form from[60]: Intuitively, the first condition describes the value change of nodes
in layer k and the second requests the sign change of the feature ψk+1,j . In addition to
vc(g, ψk,i, x1, x1), nsc(Pk, x1, x2), which denotes no sign changes for any node at layer k is
needed. This is to ensure that the overall change to the activations in layer k is relatively
small.

Sign-Value Coverage, or SV Coverage
Given a value function g, a feature pair α = (ψk,i, ψk+1,j) is SV-covered by two test cases
x1, x2, denoted by SV g(α, x1, x2), if the following conditions are satisfied by the deep
neural network instances N (x1) and N (x2):

• sc(ψk,i, x1, x2) and nsc(Pk \ ψk,i, x1, x2)

• vc(g, ψk+1,j , x1, x1) and nsc(ψk,i, x1, x1)

In worded form from [60]: The first condition is identical to the first condition for SS
Coverage. The second condition considers the feature value change vc(g, ψk+1,j , x1, x1)
with respect to a value function g by independently modifying one of its condition features’
sign. Intuitively, SV Coverage captures the significant change of a decision feature’s value
that complements the sign change case.

Value-Value Coverage, or VV Coverage
Given two value functions g1 and g2, a feature pair α = (ψk,i, ψk+1,j) is VV-covered by two
test cases x1, x2, denoted by V V g1,g2(α, x1, x2), if the following conditions are satisfied by
the deep neural network instances N (x1) and N (x2):

• vc(g1, ψk,i, x1, x2) and nsc(Pk, x1, x2)

44

• vc(g2, ψk+1,j , x1, x2) and nsc(ψk+1,j , x1, x2)

In worded form from [60]: Intuitively, VV coverage targets scenarios in which there is no
sign change for a condition feature, but the decision feature’s value is changed significantly.

The test conditions required by these criteria exhibit particular conditions between the
condition feature and the decision feature, and generating test cases for them are not
trivial [60]. As discussed in [63], random test case generation is inefficient for coverage
testing of deep neural networks, since every new input generates new coverage. Sun et al.
[60] consider the symbolic encoding in the concolic testing3 method in [64] expressive
enough to encode test conditions required by their criteria. Sun et al. [60] also present a
new test case generation algorithm based on gradient descent search, which scales better
to large deep neural networks.

Other proposed structural test coverage criteria for deep neural networks include neuron
coverage [65] and some extensions of it [66]: neuron boundary coverage, multisection neuron
coverage, and top neuron coverage, and safety coverage [67].

3.5 Developing Bug-free Machine Learning Systems with For-
mal Mathematics

The section reviews the paper “Developing bug-free machine learning systems with formal
mathematics” by Selsam et al. [43].

Due to the many potential causes for undesired behaviour in a machine learning system,
implementation errors can be extremely difficult to detect. Selsam et al. [43] demonstrate a
methodology in which developers use an interactive proof assistant [68, 69, 70, 71, 72, 73, 74]
(via [43]) to both implement their system and to state a formal theorem that defines what
it means for their system to be correct. This methodology enables developers to find and
eliminate implementation errors systematically without recourse to empirical testing. Its
structure is abstractly illustrated in fig. 3.2.

Figure 3.2: High-level comparison between standard methodology for testing machine learn-
ing systems and the methodology presented by Selsam et al. [43], as illustrated by Selsam
et al. [43].

The interactive proof assistant consists of: a programming language; a language to state
mathematical theorems; and a set of tools for constructing formal proofs4 of such theorems.

3Concolic testing combines program execution and symbolic analysis to explore the execution paths of
a software program [64].

4In Selsam et al. [43] the term formal proof means a proof that is in a formal system, and so can be
checked by a machine.

45

In the approach, developers first use the theorem language to state a formal mathematical
theorem, defining what it means for their implementation to be free of errors in terms of
the underlying mathematics. Implementing the system with the programming language
ensues, and developers use the set of tools to construct a formal proof of the previously
stated theorem, which states that their implementation is correct. The interactive proof
assistant will then expose any implementation errors systematically, by yielding impossible
proof obligations.

The ultimate goal is to abstract the mathematics and logic to be checked by a machine so
that cognitive demand during development is reduced.

Selsam et al. [43] report that their initial application of the methodology imposed many new
requirements that increased the overall workload, but the development process as a whole
was experienced as less cognitively demanding. They also suggest that their methodology
can be adopted incrementally, by having the specifications not cover functional correctness,
or not all theorems proved. This is subject to the assurance level of the applications.
Selsam et al. [43] thus expect that pragmatic use of their methodology could be useful for
developing a wide range of machine learning systems to varying standards of correctness.

46

Chapter 4
Employing MLOps

A good machine model yields little reward if it is not available for practical use or applicable
to real-world data. To fully utilize a machine learning system, it must be operationalized.
Operationalizing is a demanding task that poses several challenges. As such, teams struggle
in how to approach operationalization of machine learning systems. This chapter investigate
methods for organizing this process, both in terms of useful software tools, and on a more
organizational level, exploring the discipline of MLOps.

4.1 Machine Learning Pipeline

The section introduces the machine learning pipeline, a valuable technique for structuring
and defining modules in a machine learning application. Also presented are other useful
pipelines.

Note: pipeline/pipelining in this context does not refer to the technique for implementing
instruction-level parallelism within a CPU, also known as “instruction pipelining”.

The overarching purpose of a pipeline is to streamline all processes needed for an application
to fulfil its purpose.

Pipelines exist in various forms. A data pipeline is a series of transformations that are
applied to data between its source and a destination and is one of the core concepts in
data engineering [21]. A deployment pipeline makes up the automatic process of taking
code from version control to production deployment, through acceptance tests and devel-
opment environments [75], and is instrumental to DevOps. These successful applications
have inspired the machine learning pipeline. This section elaborates on why a pipeline is
useful and explains how it can be used in machine learning.

One use case for a pipeline is to obtain an automated workflow [76], so that little hu-
man interaction is required for an iteration of the application it is applied to. This is a
highly desired property in a deployment pipeline, e.g. a CI/CD pipeline (abbreviated from
Continuous Integration & Continuous Delivery/Deployment). Continuous integration
signifies the practice of developers merging their changes into the main branch (of version
control) frequently, and is sustained by automatically building a new build that is run on
automated tests [77]. Upon integrating more frequently, it is easier to detect bugs, and
potential bug fixes requires less work. It also saves developers from spending a lot of time

47

implementing large changes that turn out not to be feasible. The backbone of this practice
is the automation of building and testing, which, if done manually, requires so much time
that continuous integration is not feasible. Continuous Delivery/Deployment is the
extension of continuous integration, where integrated code is automatically deployed into
a testing and/or production environment [77]. This allows for reliable and quick delivery of
bug fixes, features and configuration changes into production [75]. “Continuous delivery”
and “continuous deployment” are used interchangeably, but [77] defines the difference as
“continuous delivery” requiring human intervention, typically in the form of a button click,
before actually deploying, while “continuous deployment” implies that new releases are de-
ployed automatically, without human intervention, and are only prevented in the case of
failed tests.

Another effect of pipelines is modularity in a workflow. A machine learning pipeline can
be created by splitting machine learning workflows into independent, reusable modular
parts that can be pipelined together to create models [76]. Smaller parts with well-defined
purposes improve readability and run time visibility, make maintenance and debugging
easier, and provide a better foundation in terms of scalability. Modularity also allows for a
higher degree of independence for each module, e.g. concerning the programming language
or framework to be used in its development.

Algorithmia [76] emphasizes three problems that arise when scaling a monolithic (non-
modular) architecture:

• Volume: when deploying multiple versions of the same model, the whole workflow is
run every time, even though the first steps are identical. This results in unnecessary
use of computation power and time.

• Variety: upon expanding the model portfolio code from the beginning of the work-
flow must be copied and pasted, which is inefficient.

• Versioning: some parts of the workflow are more prone to frequent changes, and
when these changes are due, all script must be updated manually, which is time-
consuming and creates room for errors.

Algorithmia [76] then suggests creating a pipeline from a more modular architecture to
address these problems:

• Volume: only call the separate parts of the workflow when needed and cache or store
results for later use, if necessary.

• Variety: parts from the beginning of the workflow can simply be pipelined into new
models without being replicated.

• Versioning: only one copy of each part to update. The remaining modules all depend
on the one copy where changes are implemented.

The steps in creating a machine learning model include, among other things, data pre-
processing and training, which are essentially data transformations. These transformations
are often achieved through the use of scripts or cells in a notebook and are thus hard to man-
age and run reliably [21]. One can thus integrate machine learning-related transformations
into a data pipeline to create a machine learning pipeline. For a machine learning system,
one would typically create two such pipelines; one for training and one for serving/making

48

predictions. This is due to the difference in how each process formats and accesses data.
This difference is particularly prominent in models that serve real-time requests/streamed
data, as opposed to batches [21].

The machine learning pipeline is created as a pure code artefact, which is independent of
specific data instances, meaning it can be versioned with source control, and its deployment
can be automated with a regular CI/CD pipeline [21]. This is illustrated in fig. 4.1.

Figure 4.1: ML pipeline in CI/CD pipeline as illustrated by Breuel [21]

4.2 Machine Learning Operations (MLOps)

“Would you spend many years and big money training athletes and then send them to the
Olympic Games, only to make them stay in their hotel instead of competing?... Models that
do nothing more than provide static insights in a slideshow are not truly “operational”, and
they don’t drive real business change.” - Sweenor et al. [78]

The machine learning era has made way for a new discipline named MLOps. This section
explains its emergence, describes what it is, and discusses its importance and status as a
research topic.

What is MLOps, and why is it needed?

Defined by Sweenor et al. [78]; “ML Ops is a cross-functional, collaborative, continuous
process that focuses on operationalizing data science by managing statistical, data sci-
ence, and machine learning models as reusable, highly available software artefacts, via a
repeatable deployment process.”

Simply put; the purpose of MLOps is to get machine learning systems into production
so that they can fully serve their purpose, instead of being reduced to a statistical tool
that hardly ever sees the light of day. The term “MLOps” is derived from “machine learn-
ing” and “operations” in the same way that “DevOps” originates from “development” and
“operations”, and can be simplified as “DevOps for ML”. In reality, it is a mix of many
disciplines; machine learning, data science, data engineering, software development, De-
vOps, etc. There exists no official consensus on the disciplines involved, and thus “MLOps”
is deemed a practical and concise term. Its diverse composition might be a reason why

49

MLOps has not been given the attention it deserves; no discipline considers MLOps to be
a part of it.

MLOps is a continuous process in the way that an important part of it is to continuously
monitor the system in production, and in the event of a machine learning model needing
to be updated, other parts are set in motion as well. However, “process” is a slightly
inaccurate term, so perhaps it is more correct to say that MLOps is a set of practices and
that continuous monitoring is one of these practices.

Although there are preliminary preparation steps, the step when a system actually enters
an operationalized state is deployment. Limited ability to deploy machine learning systems
is a widespread problem [79, 80, 81]. In Algorithmia’s report from 2019 [80, 81] the majority
of companies report on spending between 8 and 90 days to deploy a single model, and 18%
even longer than that. According to [17] (2019), only 22% of companies using machine
learning have successfully deployed a model.

Due to the current infancy of MLOps, it cannot simply be employed and, as a result, solve
these problems. Hopkins [20] writes about MLOps in collaboration with HPE Ezmeral [19],
an MLOps platform. According to Hopkins [20] Matt Maccaux1 states that between 80-85%
of companies employing MLOps are unable to put models into practice and that some 60%
of all machine learning models across the enterprise have been built but not operationalized,
due to a lack of implementation tools. Further from [20], Matheen Raza2 claims that at
its most efficient and effective “MLOps must enable enterprises to standardize the machine
learning lifecycle while providing users with the flexibility to deploy their machine learning
applications across their choice of infrastructure - either on-premises, in multiple clouds,
or at the edge - while also maintaining enterprise-grade security and governance.”.

Why are machine learning systems so difficult as compared to traditional soft-
ware?

DevOps is extremely useful in traditional software development, enabling frequent releases
of traditional software by abstracting away and automating much of the complexity in-
volved in deploying new versions. This begs the question of why companies struggle so
much with operationalizing their machine learning systems.

One of the root causes is that, as opposed to traditional software, where changes are only
performed in the code before a new release, machine learning systems experience alter-
ations along three axes: the code, the model and the data [22]. Code is predictable, being
crafted in a controlled development environment. Data comes from the continuously chang-
ing “unending source of entropy that is the real world” [21], which renders it unpredictable.
The model changes in a controllable manner, on the volition of the developers. However, its
contents depend on the unpredictable data, yielding unpredictable characteristics. This un-
predictability presents difficulties in automation and abstraction, and testing as discussed
in chapter 3.

In terms of data, challenges occur - not solely because of its unpredictable nature - but
also due to its sheer volume. Code can be stored and versioned with classic version control
tools, such as Git, but this is highly impractical with large amounts of data that change
frequently. The essence of a machine learning algorithm is that it builds itself, using data.
Thus, versioning a machine learning model by tracking the changes in its contents; weights

1Matt Maccaux is the Global Field CTO for HPE Ezmeral.
2Matheen Raza is Senior Manager, GTM Strategy for HPE Ezmeral.

50

and other parameters, provides little value. Developers and data scientists have no way
of making sense of that information. To version a model, it needs to be associated with
metadata; the version of the code at the time of its creation, the hyperparameters used for
training, and, perhaps most importantly, the data that was used for training [21].

Incorporating MLOps

To successfully incorporate MLOps in your organization, it is paramount that it is given
sufficient attention. One thing that more or less all sources on MLOps agree on is the
importance of a close-knitted, cross-functional team [78, 21, 82, 83, 22]. Using a software
project as a metaphor for the team, with each team member/faction making up each of the
modules in the software project: it is of the essence that each of the modules receives the
input it expects and that they produce the output expected from other modules. Naturally,
the concept of cross-functional teams is not particularly revolutionizing; being considered
important in practically any organization. It is considered particularly important in this
context, however, because to be able to produce the output expected, one must first be
familiar with the other modules. This may involve attaining new skills within other disci-
plines. If this groundwork fails to be performed properly, a team risks wasting time, having
to redo work that was based on presumptions about the requirements.

In fact, the task of knitting all the involved disciplines together is so comprehensive, and
the presence of an actor with a certain amount of knowledge within several disciplines,
who can function as a “gap-bridger”, is so valuable, that Sweenor et al. [78] propose the
role of MLOps engineer. The MLOps engineer is essentially in charge of managing the
model life cycle, including provenance, version control, approval, testing, deployment, and
replacement. The models must also be managed in a central repository to enable approvals,
electronic signatures, version control, tracking and reuse. Thus, an MLOps engineer is
ideally someone with enough knowledge about machine learning models to understand
how to deploy them, and enough knowledge about operational systems to understand how
to integrate, scale, and monitor models. The MLOps engineer is depicted among other
relevant roles in fig. 4.2.

51

Figure 4.2: The role of the MLOps engineer throughout the entire pipeline, as illustrated
by Sweenor et al. [78]

Sweenor et al. [78] elaborate on the collaborative team in fig. 4.2:
The data engineer ensures that all data sources are available and provides curated data
sets to the other analysts. The data scientist explores the data, and trains and builds the
predictive machine learning model. After this, they collaborate with the MLOps engineer
to test the trained model on production data in a development/“sandbox”3 environment.
If the model produces satisfactory test results, the MLOps engineer deploys it into final
production environments. Data scientists and MLOps engineers both communicate with the
business user to understand what the model should predict and what regulatory constraints
are applicable. The application designer collaborates with the data scientist, deciding which
models to use and how best to integrate them, and the application developer writes the
actual code for integrating the model into the application. The DevOps engineer leads the
system from development to IT Operations, which maintains the infrastructure and ensures
that the application and its models run, perform, and scale optimally.

The importance of a well-defined team and, situationally, a specified MLOps engineer is
further manifested by [86], which reports that 40% of respondents say that they work with
both models and infrastructure, in a survey with responses from 331 professionals in the
machine learning domain from 63 different countries.

3A sandbox is a testing environment that isolates untested code changes and outright experimentation
from the production environment or repository. [84] via [85].

52

4.2.1 A four-step model of MLOps

There is little consensus as to exactly what MLOps includes. The scope and purpose of
MLOps, and thus how it is divided into separate parts, is influenced by the role of the
author of the literature addressing it. Sweenor et al. [78] define four main steps of MLOps:
Build, Manage, Deploy and Integrate, and Monitor. Agrawal and Mittal [87] prefer
to divide MLOps into five steps: Business Understanding, Data Acquisition, Model
Development, Model Deployment, and Model Monitoring.

The scope of this thesis best coincides with the four-step model. The five-step division
emphasizes the process of deciding whether or not machine learning should be applied to
a problem, considering use case, data availability, etc. While this is important, this thesis
focuses on the case where a machine learning model is ready, but the operationalization
remains. The four-step model does not make up a complete guide of MLOps, but it does
offer insight into the diversity of its contents and addresses several important aspects.
Following is a systematic review of the four-step model presented by Sweenor et al. [78].
Contextual elaborations and reflections by the author of this thesis and other sources are
added occasionally, for completeness and for emphasizing relevance.

Build

The building step described by Sweenor et al. [78] revolves around machine learning in
its data scientific term. Data scientists orient themselves in the data landscape to make
sure that training data provides characteristics that are representable for data that will be
encountered in the real world, once the model is deployed. They must then set up machine
learning and data pipelines that perform necessary operations on the data and the model.
Feature engineering is performed to optimize the potential of the machine learning models.
After this, the models are trained and tested until satisfactory behaviour is achieved.

Feature engineering involves analyzing variables in data and determining what transfor-
mations to apply to these variables with the purpose of increasing the predictive power
of a machine learning model. It is also possible to create new variables to achieve this
purpose. It is critical that these engineered features can be reproduced in the operational
system [78]. If not, the model will be unable to perform predictions due to lack of necessary
features.

Testing the model includes examining the model’s performance and accuracy through exe-
cuting it on data that is representative of the production environment. Often, in practice,
there are several environments; development environment, testing environment, as well as
other pre-production environments, including environments where new models are run in
parallel with the current one, to best evaluate any potentially increased performance. Such
agility can often be provided by modern cloud-based technologies, without adding much
overhead in cost and effort [78].

Manage

What Sweenor et al. [78] describes as the managing step includes the MLOps engineer,
described previously in this section, and how that role integrates with other roles in a
collaborative, cross-functional team. Also included in the managing step is attempting to
control model proliferation. Multiple people working along the machine learning pipelines

53

causes frequent creation of models for testing purposes. Over time it becomes clear that
several of these models address the same problems, but this is not sufficiently communicated
between team members. Automation techniques, e.g. AutoML [88, 89], make it easy to
generate new models. This is a good thing in terms of streamlining testing and development,
but it also poses problems in how it results in a greater need to track, govern, and manage
models across the organization [78].

In terms of managing model proliferation, Sweenor et al. [78] claims that the best way to
centralize, and thus avoid multiple model generation sources, is to reuse and repurpose
models from a centrally managed repository, which tracks who is building which model
and keeps track of existing versions. Multiple people can then use a single, approved model
for multiple applications. Such an approach provides insight into the progress of the data
science team and the number of models it is building. It tracks connections between data,
models, and projects, and is searchable [78].

Tracking and managing models lead to important insights and overviews. It enables quick
transitions between models when deemed necessary. It also provides the means necessary for
analysis; determining which alterations to the model resulted in certain effects. Consistent
version tracking is essential for reproducibility [21], and for compliance - compliance is
important in many organizations, and thus being able to identify which version of a model
performed a specific prediction can be vital [78].

Due to the dynamic and data-dependent nature of machine learning models, they are more
difficult to track than traditional software. Version control for models should track the
data and parameters that were used to build each version, as well as the model outputs;
accuracy, coefficients, etc. This to achieve a clear provenance and a way to track how the
model was produced [78].

Both models and metadata can be tracked using standard version control, such as Git.
It is important not to tie the model life cycle to the code life cycle, as training and code
releases should happen on different schedules [21]. Data is usually too large and mutable
for standard version control to be a practical solution. The ideal solution would be a
purpose-built tool, but as of now, there is no clear consensus in the market [21].

Deploy and integrate

“In the Deploy and Integrate step, the model stops looking in the rearview mirror at histor-
ical data and looks through the windshield at live, real-world data” - Sweenor et al. [78].

Deployment and integration are closely intertwined. Sweenor et al. [78] define “deployment”
as the process of taking a model from the environment in which it is developed and turning
it into an executable form. “Integration” is followingly defined as the process of taking that
deployed model and embedding it within an external system. Deployment options usually
depend on integration endpoints and vice versa. Thus, Sweenor et al. [78] conclude that
the best way to approach deployment is as a function of how the model will be integrated,
and the best way to regard integration is as an extension of deployment.

The goal of deploying and integrating is to make an actual impact on the business ap-
plication. This impact naturally depends on the application in question. E.g., in the case
of embedding product recommendations from a machine learning model into a mobile ap-
plication, the model does not represent the main purpose of the application and must be
integrated in a way that aligns well with the application development. Contrastingly, in

54

the case of using time series data from an industrial process to train a machine learning
algorithm to model the process, the machine learning model is the very essence of the
application, and integration can be done in a way that better accommodates the model.

Nonetheless, a machine learning model must be integrated into an application that facil-
itates it. This can largely alter the software development life cycle [78], and thus MLOps
comes into play also on parts that are not directly related to the machine learning model.
The degree to which the software development life cycle is changed naturally depends on
the prominence the machine learning model exhibits in the application.

Sweenor et al. [78] recommend entirely decoupling the machine learning models from the
application, by providing them as a set of APIs that developers can test and incorporate
into their code. This requires thorough documentation from the data scientists, describing
how the models are to be used, what are their required inputs and expected outputs,
their limitations and domains of applicability, levels of accuracy and confidence, and data
dependencies [78]. This process is subject to close collaboration between data scientists
and developers upon iterations of model development and refinement - it cannot simply be
“thrown over the wall” [78].

Due to the unpredictable nature of data, a predictive model may quickly become highly
inaccurate and needs to be swapped or disabled. The model must be integrated into the
application in a way that allows for this to happen without requiring a new version of the
application [78].

To detect if a model is deteriorating in performance, it needs to be continuously monitored.

Monitor

Monitoring starts once a model has been deployed. The monitor step described by Sweenor
et al. [78] covers three types of metrics: statistical, performance, and business/ROI (Return
of Investment). Also included in the monitor step are the tasks of automatic retraining and
remodelling, thus monitoring extends to continuously reviewing the model, and retraining
or replacing it when deemed necessary.

Sweenor et al. [78] divide statistical metric tracking into three practices:

• Accuracy tracking includes misclassification rate, confidence rate, or other error rates
decided by the data scientists. When these rates fall below a given threshold the model
should be retrained or remodelled.

• Champion-challenger is a practice of continually comparing the model in production
(champion) with a potentially better model (challenger). A challenger model – either
an updated version of the champion model, or a different model altogether – is run
periodically, and its results are compared to those of the champion model. The most
accurate model is chosen to run in production.

• Population stability involves constantly checking the distribution of data sets over
time for reasonable consistency, to ensure that the current models are still relevant.

An obvious challenge with accuracy tracking is that there are no verified labels to which

55

the predictions can be compared. Else the predictions would have no purpose. In some
cases, there might be an indirect way of assessing the quality of the predictions, such as
measuring the amounts of clicks of an advert recommendation. In other cases, one has to
rely on statistical measurements, by comparing predictions made in separate time periods,
and check if they deviate more than any acceptable reason indicates that they should [21].

Performance metrics are less subjected to interpretation. Their purpose is to evaluate how
well the infrastructure supports the models. Performance metrics include input/output,
execution time, number of records scored per second, as well as hardware metrics, such as
memory and CPU usage [78].

Business metrics and ROI evaluate the impact of the model in a business sense and thus
serve as an important check against statistical metrics [78]. The statistical metrics deter-
mine how well a model performs in terms of the specified desired behaviour. The business
metrics determine how much this desired behaviour actually impacts the business that the
model is intended to improve. It is possible that the model is performing optimally, but
that its purpose has no significant impact on the business. When the business metrics and
statistical metrics do align, it indicates that the model is beneficial for the business, and
yields return on investment of operationalizing machine learning [78].

It is important to monitor metrics across slices, to detect problems affecting specific seg-
ments. Different segments could be erroneous, but tested globally these errors might null
each other out, and pass by undetected [21].

Model drift, also known as concept drift, is a phenomenon that occurs when real-world
variables change over time, resulting in deteriorating accuracy of the model predictions.
Such changes may occur due to real-world variables changing in their distribution, or their
relationship to each other, or new variables may be introduced, that were not present at
the time of creation of the current model [78]. When this happens, the model is no longer
a good representation of the real-world process. To counteract model drift, models require
constant monitoring and updating [78].

Updating the model involves either retraining the model; keep the current variables and
model structure, but use newer data - or complete remodelling; add, remove, or alter
variables, and restructure the model. In a scenario where real-world variables have changed
in their relationship to each other, the model is likely to be improved through retraining.
The structure is the same, but how the variables combine to influence the output is altered.
Retraining requires the least effort and is in most cases sufficient to counteract model drift
[78]. Remodelling might be required in a scenario where one or several real-world variables
that affect the process have been newly introduced or neglected during initial creation.
Figure 4.3 illustrates model decay over time, and how retraining improves performance.

Sweenor et al. [78] present a series of steps that ensue when a model is retrained and pro-
moted to production, and include proposed ways of conducting them:

• Model accuracy assessment is based on a set of Gini coefficients4. If outside allowable
limits, models are automatically reevaluated using a genetic algorithm for searching
the parameter space. Candidate models are regularized with Elastic Net 5, decreasing
variance at the cost of introducing some bias.

4Gini coefficient measures the inequality among values of a variable. It is a metric commonly used in
econometric studies. [90].

5Regularization technique.

56

Figure 4.3: Model decay and the effect of retraining as illustrated by Sweenor et al. [78].

• Model updates and explainability includes assessment of business goals, variable im-
portance, overfit, bias, outliers, and regulatory perspectives. The current and prior
models are evaluated in a champion-challenger setting.

• Model diagnostics involves assessing local predictive power and accuracy across the
predictor space. Areas of concern can be identified by assessing particular regions of
the predictor space per recent trends. Statistical hypothesis test results and model
diagnostic metrics provide more global insight. Model diagnostic metrics may include
Akaike information criterion (AIC), Bayesian information criterion (BIC), the area
under the ROC curve (AUROC), and visualizations such as ROC curves and lift
charts. These metrics are discussed in chapter 5.

• Model versioning, approval and audit relates to keeping track of new model versions.
In most cases of retraining, models are retrained on new data to account for vari-
ance in market conditions that have occurred since previous model training. Thus,
several versions of the models must be saved and governed and should be available
for auditing and compliance assessments.

Whether retraining or remodelling is the appropriate action and what the respective trig-
gers should be are decisions to be made by the team behind the model.

Automating monitoring

Several steps of the retraining phase are time-consuming and inefficient when performed
through human interaction. It is desirable to automate model drift detection and retraining
initiation, both for efficiency and accuracy. Several metrics can be subjected to automatic
computation and evaluation, and frequent, automated, champion-challenger procedures
are likely to provide better models in production. A human can still be in charge of the
ultimate approval of redeployment, as a safety measurement, but automating several tasks
can significantly reduce the workload, allowing for more frequent iterations, resulting in all
over better performance.

57

Sweenor et al. [78] conclude that the sequence of build, manage, deploy and integrate, and
monitor introduces structure and logical flow around analytics pipelines and allows the
organization to realize the value of data science through MLOps. The sequence ensures
that the best model gets embedded into a business system and that the deployed models
are consistent with business requirements. They also claim that companies that build this
kind of methodical thinking into their data science have a big competitive advantage over
those that consistently fail to operationalize models by failing to prioritize action over mere
insight.

58

Chapter 5
Components in the Machine Learning Life
Cycle

This section presents an architecture consisting of typical components in a machine learning
life cycle. The goal is to paint a clear picture of the entire operationalization process
with descriptions that are interpretable by both software engineers and data scientists.
The architecture provides clarity around which modules interact with each other, which
domain each module mainly operates in, and how the modules can be separated. Such an
architecture is hoped to function as a base for planning the structure and operationalizing
of a machine learning system, with concrete modules to associate with needs, challenges,
and solutions.

The architecture is illustrated in fig. 5.1, with component descriptions in tables 5.1, 5.2
and 5.3.

Upon considering what techniques, tools or technologies to use, fig. 5.1 and tables 5.1, 5.2
and 5.3 can be convenient, low-effort resources for evaluating how well a potential asset
aligns with the machine learning system in question.

59

Figure 5.1: Architecture of a machine learning life cycle. Illustrated by the author.

Figure 5.1 consists of three pipelines and aims to illustrate how the components integrate.
The codebase pipeline is only included for completeness, and not addressed further. The
prediction pipeline represents the functionality of the system when online and in produc-
tion. The training pipeline is marked as online/offline. In a highly automated well-designed
system this pipeline can be online and operating with little human interaction. The is how-
ever a demanding feat, and many systems will employ an offline training pipeline - perhaps
with some parts being online and automated. Coloured boxes represent a rough grouping of
what type of operations the different components perform. For the sake of simplicity, some
details and connections are left out; these connections along with a selection of components
considered particularly interesting are further discussed later in this section. Tables 5.1,
5.2 and 5.3 provide brief descriptions of each component and their roles in the life cycle.

60

Component Descriptions
Component Inputs Outputs Purpose Why is it

important?
Data
gathering Measurements

from the real
world.

Sensor data
organized in
data storage
facilities (e.g.
databases).

Gather data
for ML model
to train and
test on.

More diverse,
and more data
and results in
better model
performance.

Data pre-
processing Raw data from

several
sources.

Data from
different
sources,
cleaned and
verified, with
the possible
addition of
engineered
data,
aggregated
into a single
data set.

Making data
usable for the
ML model.

Eliminate
errors that
might cause
the ML model
to misbehave.

Data set
splitting A single data

set.
Three data
sets: a training
set, a
validation set,
and a test set.

Separate data
into sets to be
used for
training,
validating, and
testing.

Clearly
organizes the
separate data
sets.

Pre-train
testing Training set,

hyperparame-
ters, and
empty,
initialized ML
model (e.g.
neural net).

Test results
and detailed
info if
available, and
baseline
models.

Detecting
errors and
bugs that
would render a
training job
useless before
said training
job is
initiated. Also,
provide
baseline
models.

Reducing the
amount of
unnecessary
training jobs
saves time and
power.
Baseline
models
indicate
expected
performance
level.

Table 5.1: Description of ML components in fig. 5.1

61

Component Descriptions
Component Inputs Outputs Purpose Why is it

important?
Training &
validation Training set,

validation set,
hyperparame-
ters, and the
same empty,
initialized ML
model used in
pre-train
testing.

A trained
model.

Building the
actual ML
model.

The
component
that produces
an ML model.
The other
components
ultimately
facilitates this
component.

Hyper-
parameter
tuning

None, or
possibly
validation
results

Hyper-
parameters

Provide
different
combinations
of hyperpa-
rameter
values

Hyper-
parameters
affect the
performance of
the model.
Several values
should be
tested to
ensure optimal
or near
optimal model
performance.

Model
evaluation
and testing

Trained model
and test set.

Evaluation
metric scores
(e.g. accuracy)
and test
results.

Evaluating
how well the
trained model
performs and
ensuring
correctly
learned logic.

Exposing the
trained model
to unseen data
is necessary in
order to
ensure that
the model
behaves as
intended.

Review and
approval Evaluation

metric scores
and test
results.

Approval or
disapproval of
model.

Investigate
evaluation
metric scores
and test
results and
consider
whether they
are
satisfactory.

Ensure correct
logic and
certain
performance
level before
predictions
can be trusted.

Table 5.2: Description of ML components in fig. 5.1

62

Component Descriptions
Component Inputs Outputs Purpose Why is it

important?
Deployment The approved

ML model
The ML model
implemented
in a form
where it can
be used and
supported
(e.g. an API
endpoint)

Making the
ML model
operative, so
that it is
available for
use by the
system as a
whole.

Puts the
model into
production
where it is
integrated into
the entire
online system.

Prediction Pre-processed
unseen,
real-world
data.

Model
predictions.

Use the
trained model
to make
predictions on
real-world
data.

This
component
performs the
predictions
that make up
the ultimate
goal of the ML
system.

Monitoring Model
predictions
and metrics
(e.g.
statistical,
performance,
business).

Notifications/
alerts if metric
values exceed
pre-defined
thresholds.

Detecting
faults or errors
that occur in
production or
deteriorating
model
performance.

Provides
insight to help
determine
when the
model should
be retrained/
remodelled.

Visualization Model
predictions
and metric
values.

Illustrative/
visual repre-
sentations of
model
predictions
and metrics.

Offering
insight about
how the model
behaves to the
team behind
it.

The team
behind the
model must
understand
how it
behaves, e.g.
for analytical,
compliance
and business
purposes.

Table 5.3: Description of ML components in fig. 5.1

63

5.1 Data Operations

Data gathering, data pre-processing and data set building are components that deal with
data management. These are important as they lay the foundation for the machine learn-
ing model and impact its potential. The boundaries between these components are not
universally defined, e.g. run:ai [91] includes aggregating data from several sources into a
single data set as part of the data gathering component, while Mohandas [44] considers it
part of data pre-processing. In this thesis, aggregating data is part of data pre-processing,
as described in table 5.1.

The most pivotal part of data gathering is making sure that the data collected is compre-
hensive enough to train a good model and representative enough of the data that will be
encountered in production.

The purpose of data pre-processing is to prepare the data for the succeeding steps in the
pipeline. At its core, it is aggregating data from several sources into one single data set,
cleaning data to ensure that all feature values are in the same format and of the same data
type, and filling in or omitting missing values. Further operations may include extracting
data, using only what is necessary, scaling data, and engineering extra features that may be
beneficial for the training process. Feature engineering is also mentioned in section 4.2.1.

Data set building, also referred to as splitting, splits the pre-processed data set into a
training set, a validation set, and a test set. The training set is used to train the machine
learning model. The validation set is used to estimate the accuracy of the machine learning
model, and to tune hyperparameter values. The test set is used for final evaluation of the
performance of the model. Mohandas [44] specifies a set of criteria for building these data
sets:

• Each data set should be representative of data that the machine learning model will
encounter in production.

• Output values should be equally distributed across all data sets.

• Data should be shuffled in a way that prevents input variance.

• Random shuffles should be avoided if this can lead to data leaks, e.g. in time series.

All of these operations have further research potential [92, 44].

5.2 Training, Validating and Refinement

Training involves feeding data into the algorithm, which adjusts itself to best fit the data
by altering its internal learnable parameters. Training proceeds quite straightforwardly,
assuming all pre-training tests are passed. The aspects subject to pre-train testing can be
monitored during the actual training as well, to ensure that everything runs smoothly.

To ensure that the trained model is satisfactory, it must be validated. This is done using
a validation set.

Since it can be difficult to form a notion about how well a model should perform, comparing
multiple models is a favourable approach. Several models, with different settings or different
training data, can be trained and compared, and the most promising one selected for use.

64

One technique for doing this is cross-validation, mentioned in chapter 2, where the training
set is divided into several parts, and each of these parts are in turn used as the validation
set, while the remaining parts are used for training.

Another comparison, which is natural to conduct, is with previous models. If training
is initiated as part of retraining, the new model should be compared with the old one to
ensure that it is an improvement. In addition to previous models, comparisons can be made
with baseline models. Baseline models are simple models that provide reasonable results
and does not require much time to build [93]. Linear regression and logistic regression are
some examples of baseline models. Baseline models give a lower boundary for how well
the trained machine learning model should perform. If the trained model does not provide
significantly improved performance to that of the baseline models, one should reconsider
the structure of the model, or whether the problem at hand requires machine learning to
be solved at all. Baseline models can be produced early on, e.g. in the pre-train testing
component, and used for comparisons during validation.

As discussed in chapter 2, bias and variance are essential metrics for validation. However,
several metrics should be employed to obtain more comprehensive insights. Metrics used
for final model evaluation, discussed in section 5.3, are also applicable for validation.

In section 4.2.1, AIC and BIC are mentioned. These criteria were developed to assess
the relative quality of statistical models, and have been adopted for machine learning
model selection [94, 95, 96, 97]. AIC (Akaike Information Criterion) is a metric developed
by Akaike [98]. The core concept is to penalize the inclusion of additional variables to a
model, countering overfitting. A lower AIC implies a better model. AIC is most widely used
for comparing models, rather than evaluating them in isolation [99, 100]. BIC (Bayesian
Information Criterion) is a variant of AIC, developed by Schwarz [101], where the penalty
for additional variables is increased. AIC and BIC are computed by eqs. (5.1) and (5.2),
respectively, where k denotes the number of free parameters in the model, and L̂ is the
maximum value of the likelihood function for the model. n is the number of observations,
i.e. the number of examples in the validation set.

AIC = 2k − 2ln(L̂) (5.1)

BIC = kln(n)− 2ln(L̂) (5.2)

More detailed information about applications of and intuition behind AIC and BIC are
found in [94, 95, 99, 100, 96].

Although a model has been singled out based on these comparisons, it is still room for
tuning it at a lower level.

Hyperparameter tuning

In addition to the internal parameters that are learned throughout the training process, the
model is defined by a set of hyperparameters; learning rate, regularization parameters, etc.
Hyperparameter optimization (HPO) is the process of choosing the optimal set of these
hyperparameters [22].

There are several HPO techniques; some are mentioned in chapter 2, and a selection is

65

briefly explained/repeated here:

• Grid search is the most basic one [102]. In grid search, a finite set of values is speci-
fied for each hyperparameter, and the grid search algorithm evaluates the Cartesian
product of these sets to find the most optimal combination of hyperparameters.

• Random search samples combinations of hyperparameter values at random a specified
amount of times. This is especially effective compared to grid search when some
hyperparameters have much more impact than others [102, 103], which is often the
case [103, 104].

• Bayesian optimization, as explained by Feurer and Hutter [102], is an iterative algo-
rithm with two key characteristics: a probabilistic surrogate model and an acquisi-
tion function to decide which point to evaluate next. In each iteration, the surrogate
model is fitted to all observations of the target function made so far. The acquisition
method, using the predictive distribution of the probabilistic model, then determines
the utility of different candidate points. This includes a trade-off between exploration
and exploitation.

Since tuning, i.e. parameter fitting, neural networks are blackbox1 functions [105, 106],
these, and most HPO techniques involve multiple training cycles of the machine learning
model [22]. The HPO also grows exponentially with the number of hyperparameters, as
each new hyperparameter adds a new dimension to the search space. This results in HPO
techniques being very expensive and resource-heavy in practice, especially for deep learning
applications, as discussed by Yang and Shami [107].

In addition to providing methods and heuristics for obtaining good hyperparameter set-
tings, HPO techniques lay the foundation for automating hyperparameter tuning, reducing
the need for human interaction [102]. The computations are equally resource-heavy when
automated, but resources are often cheaper than data scientists and engineers, and au-
tomated computations can execute 24/7, resulting in a more effective refinement process.
Another benefit of automated HPO is that it is more reproducible than manual search
[102].

Hyperparameter optimization and selection are active and broad areas of research with
significant importance for machine learning [102, 107, 103, 108].

5.3 Model Evaluation

The component constitutes both testing and evaluation. However, since testing is discussed
in chapter 3 this section covers model evaluation.

Evaluating the model constitutes measuring how well it performs with respect to a selection
of metrics designed to provide insight into the model.

1When there is a function that we cannot access but we can only observe its outputs based on some
given inputs, it is called a black-box function. On the other hand, black-box optimization (BBO) deals with
optimizing these functions. Tuning of large neural networks is considered as an example of these functions.
[105]

66

Evaluation metrics

Ng et al. [4] mentions in chapter 2 that scoring models with a single metric make it easier
to compare them with each other. However, that single metric is usually a combination of
multiple metrics, weighted in the way that best represents the model and the requirements.
Which metrics are most important also depend on the application of the machine learning
model.

What metrics to use depend on what type of model is being evaluated. In a classification
model, there are four types of outcomes [109, 110]:

• True positives involve correctly predicting that an observation belongs to a class.

• True negatives involve correctly predicting that an observation does not belong to a
class.

• False positives involve wrongly predicting that an observation belongs to a class.

• False negatives involve wrongly predicting that an observation does not belong to a
class.

From [109, 110], common metrics for classification models include:

• Accuracy is the percentage of correct predictions for the test data.

accuracy =
correct predictions
all predictions

• Precision is the fraction of true positives among all predicted positives, in a specific
class.

precision =
true positives

true positives + false positives

• Recall is the fraction of true positives among all actual positives, in a specific class.

recall =
true positives

true positives + false negatives

• Specificity is the fraction of true negatives among all actual negatives.

specificity =
true negatives

false positives + true negatives

• F1 score is the harmonic mean of precision and recall. A drawback of this is the equal
importance given to precision and recall. This can be adjusted with a weighted form
of F1 score.

F1 score =
2

1
precision + 1

recall

• PR curve is the curve between precision and recall for various threshold values. AUC
(Area Under Curve) is often appended to this - the higher the AUC, the better.
Figure 5.2 illustrates a PR curve on the right-hand side.

67

• ROC curve (Receiver Operating Characteristics) is the curve plotted against recall
(true positive rate) and 1− specificity (false positive rate). AUC is used often also
in this context, and intuitively, the higher the AUC, the better. Figure 5.2 illustrates
a ROC curve on the left-hand side.

Figure 5.2: To the left: a ROC curve, to the right: a PR curve. Both comparing a logistic
regression model with a no skill classifier. Illustrated by Brownlee [111].

Regression models operate in the continuous domain and are not eligible for the metrics
applied to classification models. Many metrics for regression models include the error of
a prediction, which is the difference between the predicted value and the actual value:
e = ypred − y, where e is error, ypred is the predicted value, and y is the actual value. n
denotes the number of data points, and i the i-th data point. From [109, 112], common
metrics for regression models include:

• Bias and variance can be evaluated on the test set as well.

• MAPE - Mean Absolute Percentage Error.

MAPE =
1

n

∑ |ei|
yi

• MAE - Mean Absolute Error.

MAE =
1

n

n∑
i=1

|ei|

• MSE - Mean Squared Error.

MSE =
1

n

n∑
i=1

|ei|

• MSE - Root Mean Squared Error.

RMSE =

√√√√ 1

n

n∑
i=1

|ei|

68

• Explained variance compares the variance within the expected outcomes to the vari-
ance in the error of the model.

EV = 1−
V ar(y − ypred)

y

• R2 coefficient represents the proportion of variance in the outcome that the model
is capable of predicting based on its features. y denotes the mean of y.

R2 = 1−
∑n

i=1(yi − ypredi)∑n
i=1(yi − y)

The aforementioned metrics are purely statistical, and even though they can be applied in
different variations, they provide only a mathematical insight into the model. Paleyes et al.
[22] claims that simply measuring the accuracy of the model is not sufficient to understand
its performance, and that performance metrics should reflect audience priorities. More
specific metrics, such as KPIs 2 and other business-driven measures, should be defined and
measured [22].

5.4 Deployment

The deployment and integration step in the four-step model from Sweenor et al. [78],
discussed in section 4.2 is also relevant for this component. This section elaborates further
on deployment.

For an application to be able to use the machine learning model, it needs to be deployed.
Deploying a model involves taking it from development and turning it into an executable
form, in which it can be integrated into an application or another external system. Sweenor
et al. [78] and Breuel [21] recommend decoupling the model and the application that it will
integrate to. Updates to the application and the model are invoked on different schedules,
and updating one should not consequently require an update of the other. Decoupling the
two also results in increased modularity, of which advantages are discussed in section 4.1.

DevOps focuses on techniques and tools for deploying and maintaining traditional software
systems, and though some principles can be applied directly to operationalizing machine
learning, there are several unique challenges [22].

A widespread topic in traditional software, that machine learning can benefit from is code
reuse. Reusing data and models can result in savings in terms of time, effort or infras-
tructure [22]. Paleyes et al. [22] presents Pinterest as an illustrative case in their approach
towards learning image embeddings [113]. Pinterest uses three models internally, which
use similar embeddings. To facilitate individual iterations on the models, they were ini-
tially maintained completely separately. This naturally posed problem as the effort put
into working on these embeddings was tripled. To cope with this, the teams investigated
the possibility of learning a universal set of embeddings. This they achieved, and reuse in
this manner resulted in simplifying their deployment pipelines and improving performance
on individual tasks.

Paleyes et al. [22] points out how there might appear to exist a clear separation of respon-
sibilities between researchers/data scientists and software engineers; the former produce

2A Key Performance Indicator (KPI) is a type of performance measurement that demonstrates the
success of an organization’s activity or objective.

69

the model while the latter build infrastructure for it to run on, while in reality their areas
of concern often overlap in deployment. Considering model inputs and outputs and per-
formance metrics, contributors from both disciplines work on much of the same code. It is
thus beneficial to integrate the data scientist team into the development process so that
they acquire ownership of the product code at the same level as the software engineers.
This approach has been proven to produce long term benefits regarding speed and quality
of product delivery, despite posing onboarding challenges [114].

For further and more detailed information about deployment, the reader is referred to
[83, 115, 114, 82].

5.5 Monitoring

The monitoring step in the four-step model from Sweenor et al. [78], discussed in section 4.2
is also relevant for this component. This section elaborates further on monitoring.

When deployed and operative, the model must be kept under watch continuously to ensure
that it is performing at a satisfactory level. Monitoring involves keeping track of several
metrics and, based on their values, decide upon when the model needs an update. The
monitoring process should also provide insight that facilitates the detection of faults or
errors that may occur unpredictably in the production environment.

The process of defining metrics is overlapping in the monitoring and the testing phase.
It stands to reason that most of the metrics specified to evaluate the model in terms of
deployment adequacy are also subject to monitoring when the model is in production.
Threshold values are defined for these metrics, and procedures are implemented to trigger
alerts when metric values are observed below their respective thresholds, which indicates
that it is time to update the model.

Klaise et al. [116] directs attention to the importance of outlier detection to flag predictions
that cannot be used in production. The paper mentions two reasons behind the occurrence
of such predictions; the models being unable to generalize outside of the training set, and
overconfident predictions on out-of-distribution instances due to poor calibration. Another
word for the former is extrapolation - obtaining higher-dimensional insights from lower-
dimensional training - which is infamously difficult in machine learning [117, 118, 119, 120].
Figure 5.3 illustrates a simple example of extrapolation.

Figure 5.3: The challenge of extrapolating, as illustrated by Munroe [121].

Regular model updates are often required to ensure that it reflects the most recent data
trends and the environment [22]. Multiple techniques exist for adapting models to new

70

data, e.g. regular training and continual learning [122].

The decision to update models in production is also affected by practical considerations,
particularly concept drift, which directly impacts the quality and frequency of the model
update procedure [22]. The phenomenon can have significant adverse effects on model
performance, e.g. in classification problems [123], or in AutoML context [88].

Concept drift can arise in and affect a variety of industries, e.g. in the finance industry
[124], marine images [125], and predictive maintenance for wear and tear of industrial
machinery [126].

Ackermann et al. [127] highlight a problem with currently available end-to-end machine
learning platforms; the final machine learning solutions are usually so sensitive to problems
specifics that their needs are not fulfilled by out-of-the-box tools.

For further and more detailed information about monitoring, the reader is referred to
[128, 127, 22].

71

Chapter 6
Modern Technologies for Machine
Learning Operationalization

This chapter presents a selection of modern technologies that offer solutions intended to
simplify aspects of operationalizing machine learning systems. There exist a plethora of
technologies, and it is difficult to evaluate at first glance which ones are worthwhile delving
deeper into. Many technologies apply a buzz-word oriented terminology, and occasionally
invent their own words to describe what they offer, which may cause some confusion or
information overload. Dissecting formulations and extracting information for comparisons
on general grounds is difficult and extremely time-consuming, and by intuition; the ones
that convey themselves in an unintelligible manner are perhaps the ones who have the
least to offer. The technology reviews are mainly based on the respective technologies’
official websites, as well as various articles and blog posts weighing in on them. Personal
perceptions of the technologies are further expressed in chapter 8.

6.1 Docker and Kubernetes

Kubernetes and Docker are two well-established technologies in software system opera-
tionalization. They are not tailored for machine learning systems but often used in combi-
nation with or as a basis for other technologies. Due to their renown and them not being
machine learning-specific technologies, their reviews are limited to contain only basic func-
tionality.

6.1.1 Docker

Docker is an open platform for developing, shipping, and running applications. Docker
enables the separation of applications from infrastructure while managing them in a similar
fashion, so software can be delivered quickly [129]. It is basically a container management
engine, creating containers with automated application deployment on top of operating
systems. A container is a software unit that packages up, i.e. containerizes, code and all its
dependencies, enabling the application to run quickly and reliably on different computing
environments [130].

72

6.1.2 Kubernetes

Kubernetes is an open-source system for automating deployment, scaling, and management
of containerized applications [131]. It is often used in combination with Docker, where
Docker containerizes applications, and Kubernetes manages them. The applications are
deployed across a cluster of machines. The cluster is controlled by a master server, and
nodes denote the other servers in the cluster. The master compares the desired state (set
by the user) to the state of the cluster and decides which nodes to run to obtain the desired
state.

6.2 Run:AI

The Run:AI software platform aims to enable data science teams to fully utilize all available
resources, speeding up machine learning workload execution, both on-premise and in the
cloud [132].

The technology involves a software layer that sits on top of the hardware, decoupling data
science workloads from the underlying hardware, as in fig. 6.1.

Figure 6.1: Run:AI as an abstraction layer between hardware and AI workloads. Illustrated
by [133].

This is reminiscent of virtualization, which initially does not seem effective when the goal
is to exploit as much performance as possible from the underlying hardware/AI, intuitively
by being close to the metal [133]. In [133], Omri Geller, CEO and co-founder of Run:AI,
states: “Traditional computing uses virtualization to help many users or processes share
one physical resource efficiently; virtualization tries to be generous. But a deep learning
workload is essentially selfish since it requires the opposite; it needs the full computing
power of multiple physical resources for a single workload, without holding anything back.
Traditional computing software just can’t satisfy the resource requirements for deep learn-
ing workloads.”. Run:AI claims to offer a different kind of virtualization, with a rebuilt
software stack for deep learning that exceeds the limits of traditional computing, making
training faster and cheaper [133].

Run:AI aims to address the diversity of hardware AI by adding support for several deep

73

learning dedicated chips so that there is no degraded performance when using Run:AI as
a third party software layer, instead of directly using what is offered by the chip manufac-
turers [133].

In [133] Geller also points out that Run:AI addresses the diversity in AI workloads as well.
Different types of AI algorithms need to run with different optimizations: different in terms
of distribution strategy, hardware chips, etc. Run:AI facilitates this.

Run:AI’s virtualization software is based on powerful distributed computing and schedul-
ing concepts from High-Performance Computing (HPC) but is implemented as a simple
Kubernetes plugin. The virtualization software speeds up data science workflows and of-
fers visibility. It also enables IT teams to manage expensive resources more efficiently, thus
reducing idle GPU time [132].

Key features, as presented by Run:AI themselves [132]:

• Pool GPU Compute - pool resources to ensure visibility and control over prioritization
and allocation of resources. Heterogeneous resources are pooled so they can be used
within two logical environments; build and train. These environments are tailored for
the different characteristics of building and training jobs to increase utilization.

• Guaranteed Quotas - automatic and dynamic provisioning of GPUs to break the
limitations of static limitations. Projects are allowed to use more GPUs than their
quota allows, to reduce idle resource time.

• Elasticity - dynamically change the number of resources allocated to a job to accel-
erate data science delivery and increase GPU utilization.

• Kubernetes-based Scheduler - easily orchestrate distributed training with batch schedul-
ing, gang scheduling and topology awareness. Run:AI is easily integrated with Ku-
bernetes as a plug-in, requiring no advanced setup.

• Gradient Accumulation - run training jobs even when there are not enough available
resources. Instead of suspending a job, it is shrunk using the elasticity feature. In
this state, gradients are accumulated during a training job, enabling the job to run
with limited resources.

6.3 Apache Kafka

Apache Kafka is an open-source distributed event streaming platform offering high-performance
data pipelines, streaming analytics, data integration, and mission-critical applications [134].

Event streaming is analogous to the human body’s central nervous system, where appli-
cations are always ready to handle incoming events instead of polling at regular intervals
[134]. Event streaming ensures a continuous flow and interpretation of data to facilitate
the right information at the right place, at the right time [134].

Event streaming is applicable to several use cases, such as payment processing, capturing
and analyzing IoT data, and serving as the foundation for data platforms, event-driven
architectures, and microservices [134].

Kafka can be deployed in various ways; on bare-metal hardware, virtual machines and
containers, and in the cloud or on-premises. Kafka’s event streaming consists of three key
capabilities:

74

• To publish (write) and subscribe to (read from) streams of events. This includes
continuous export/import of data between systems.

• To store streams of events for as long as desired.

• To process streams of events, either as they occur or retrospectively.

Kafka consists of servers and clients that communicate via a high-performance TCP net-
work protocol. Kafka is run as a cluster of one or more servers, where some servers form
the storage layer, called the brokers. The clients allow for writing distributed applications
and microservices that read, write, and process streams of events in parallel, at scale, and
in a fault-tolerant manner. Clients are divided into producers, which publish events, and
consumers, which subscribe to and processes events. A key element for Kafka’s scalability
is that the producers and consumers are decoupled and agnostic of each other. Events are
organized and stored in topics.

The core cabailities of Kafka, as they present them [134], are:

• High throughput - using a cluster of machines with latencies as low as 2ms to deliver
messages at network limited throughput.

• Scalable - production clusters that can scale up to a thousand brokers, trillions of
messages per day, petabytes of data, and hundreds of thousands of partitions. Storage
and processing can be elastically expanded and contracted.

• Permanent storage - storing streams of data safely in a distributed, durable, and
fault-tolerant cluster.

• High availability - allows for stretching clusters efficiently over availability zones or
connecting separate clusters across geographic regions.

Kafka [134] defines their ecosystem to consist of:

• Built-in stream processing - using event-time and exactly-once processing to process
streams of events with joins, aggregations, filters, transformations, and more.

• Connect interface - out-of-the-box Connect interface that integrates with hundreds
of event sources and sinks.

• Client libraries - accepts a variety of languages for reading, writing, and processing
streams of events.

• Open-source tools - a large collection of open-source tools.

6.4 Dataflow

"Unified stream and batch data processing that’s serverless, fast, and cost-efficient." [135].

Dataflow focuses on addressing the following use cases:

• Stream analytics - making data more organized and accessible from the instant it
is generated. Dataflow provides a streaming solution with the resources needed to

75

ingest, process, and analyze data in real-time streams with fluctuating volume. The
solution is abstracted to reduce complexity and make analytics accessible to both
data analysts and engineers.

• Real-time AI - offering analytics through AI solutions for anomaly detection, pattern
recognition, and predictive forecasting.

• Sensor and log data processing - an intelligent IoT platform provides business insights
from the users’ global device network.

Dataflow presents their key features as:

• Autoscaling of resources and dynamic work rebalancing - data inputs are partitioned
automatically and constantly rebalanced to even out worker resource utilization and
reduce the effect of “hot keys”1 on pipeline performance. This data-aware resource
scaling contributes to minimizing pipeline latency, maximising resource utilization,
and reducing cost per data record.

• Flexible scheduling and pricing for batch processing - get a lower price for batch
processing on jobs with flexibility in job scheduling time. Jobs are guaranteed to be
retrieved for execution within a six-hour window.

• Ready-to-use real-time AI patterns - enabling customers to build intelligent solutions
ranging from predictive analysis and anomaly detection to real-time personalization
and other advanced analytics use cases. Real-time reactions with near-human intel-
ligence to facilitate large torrents of events are enabled with Dataflow’s real-time AI
capabilities. With ready-to-use patterns, real-time AI capabilities allow for real-time
reactions with near-human intelligence to large torrents of events.

The business-level benefits that Dataflow [135] claims to provide are:

• Streaming data analytics with speed - enable fast, simplified streaming data pipeline
development with lower data latency.

• Simplify operations and management - allowing teams to focus on programming
instead of managing server clusters as Dataflow’s serverless approach removes oper-
ational overhead from data engineering workloads.

• Reduce total cost of ownership - by pairing resource autoscaling with cost-optimized
batch processing capabilities, Dataflow can offer “virtually limitless” capacity to man-
age seasonal and spiky workloads without overspending.

6.5 Apache Spark

The descriptions from [136, 137, 138] combined yields the following summary. Apache Spark
is an open-source unified analytics engine for large-scale data processing. It handles both
batches and real-time streams. Apache Spark can distribute data processing tasks across
multiple computers, also known as clustering, either on its own or in tandem with other

1A hot key is a key with enough elements to negatively impact pipeline performance. These keys limit
Dataflow’s ability to process elements in parallel, which increases execution time [135].

76

distributed computing tools, such as Kubernetes. These two qualities are paramount within
the world of big data and machine learning. Spark provides easy-to-use APIs that abstract
away much of the work associated with distributed computing and big data processing,
enabling developers to spend less time and energy on this.

The Apache Spark cluster architecture fundamentally consists of two main components: a
driver and executors. The driver separates the application code into multiple tasks that
are distributed across worker nodes. On these worker nodes are executors, which run the
tasks assigned to them. To mediate between the components, a cluster manager is required
- either Spark’s own, or a third party application, e.g. Kubernetes. The architecture is
illustrated in fig. 6.2

Figure 6.2: Spark cluster architecture. Illustarted by [138].

Apache Spark focuses on providing [136, 138]:

• Speed - Spark provides an in-memory engine that significantly increases the process-
ing speed. This is done primarily by reducing the number of operations consisting of
reading or writing to disk.

• Real-time stream processing - Spark can handle real-time streaming combined with
the integration of other frameworks.

• Multiple workload support - Spark can run multiple workloads, including interac-
tive queries, real-time analytics, machine learning, and graph processing. Multiple
workloads can be combined seamlessly in one application.

• Increased usability - Spark supports applications written in Java, Scala, Python, and
R.

• Advanced analytics - Spark supports stream processing, graph processing, machine
learning, and SQL queries.

Apache Spark is an extensive technology, with several sub-technologies developed through
several iterations with contributions from over 1200 developers [138]. The key compo-
nents of Apache Spark are [136, 137, 138]:

77

• Spark Core - the heart of Apache Spark, responsible for providing distributed task
transmission, scheduling, and I/O functionality.

• Spark MLlib - Spark’s machine learning library aims to make practical machine
learning scalable and easy. It provides several machine learning algorithms, function-
ality for featurization, pipelines, persistence - saving and loading algorithms, models,
pipelines, etc., and utilities such as linear algebra, statistics, data handling, etc.

• Deep Learning Pipelines - is an extension of the pipelines from Spark MLib. The
extended functionality includes: image loading, applying pre-trained models as trans-
formers in a pipeline, transfer learning, distributed hyperparameter tuning, and de-
ploying models in DataFrames and SQL

• Structured Streaming - provides a higher-level API and easier abstraction for writing
applications. Streaming computations can be expressed the same way as batch com-
putations on static data. The Spark SQL engine takes care of running it incrementally
and continuously and updating the results as data arrives.

• Spark SQL - a module for structures data processing. Includes information about
the structure of the data and the computation being performed, which is used to
perform extra optimizations. This with the help of a query optimizer called Catalyst
that produces an efficient query plan for performing the required calculations across
the cluster.

• Spark Graph X - module with a selection of distributed algorithms for processing
graph structures. Allows for performing graph operations on dataframes, including
taking advantage of Catalyst for graph queries.

6.6 MLflow

MLflow is an open-source platform for managing the end-to-end machine learning life cycle.
This includes experimentation, reproducibility, deployment, and a central model registry
[139].

MLflow is very versatile and integrates with a large number of other technologies. It works
with any machine learning library and language since all functions are accessible through
a REST API and CLI. MLflow runs the same way in any cloud. Through integration with
Apache Spark, it scales to big data [139].

According to their website [139], MLflow’s key features are:

• MLflow Tracking - track experiments to record and compare parameters and results.
The tracking component enables extensive tracking of parameters, code versions,
metrics, and output files, which can be visualized at will. Available through UI as
well as API.

• MLflow Projects - package machine learning code in a reusable, reproducible form
to share with other data scientists or transfer to production. Accessible through
an API and CLI, the Project format includes tools for running projects, enabling
chaining together projects to form workflows. MLflow Projects are, at the core, just
a convention for organizing and describing code.

78

• MLflow Models - manage and deploy models from a variety of ML libraries to a
variety of model serving and inference platforms. MLflowModel packages the machine
learning models with an MLmodel file that defines the flavour the model should be
viewed in. This allows the models to be easily shipped to various downstream tools.
MLflow models can be hosted as REST endpoints.

• MLflow Registry - a centralized model store for managing models’ full life cycle stage
transitions; from staging to production. It offers model versioning and annotations
and can assign different stages to distinct model versions. It is available both through
a set of APIs and through UI.

6.7 Databricks

In their own words [136]; “Databricks is an environment that makes it easy to build,
train, manage, and deploy machine learning and deep learning models at scale. Databricks
integrates tightly with popular open-source libraries and with the MLflow machine learning
platform API to support end-to-end machine learning lifecycle from data preparation to
deployment.”

The creators of Databricks are behind several other technologies, such as Apache Spark
and MLFlow, which are discussed in sections 6.5 and 6.6, respectively. Databricks mainly
focuses on integrating with these and other technologies, and offer extensions that are built
on top of these. These extensions are not open source and must be purchased.

Databricks extends Apache Spark with:

• Databricks Runtime ML - built on Databricks Runtime and is a ready-to-go environ-
ment optimized for machine learning and data science. It automates the creation of
a cluster optimized for machine learning. Databricks Runtime is a highly optimized
Apache Spark engine, running on auto-scaling infrastructure. It has added some
components and updates to Apache Spark to improve the usability, performance and
security of big data analytics.

• Managed Delta Lake - aiming to simplify data architectures by unifying data, ana-
lytics and AI workloads on one platform.

• Integrated workspace - for developing models, and offering real-time collaboration.
Allows for publishing notebooks as interactive dashboards, and provides one-click
visualizations.

• Workflow automation - containing APIs to build workflows in notebooks. Also offers
production streaming with monitoring.

• Enterprise security - end-to-end data security and compliance. Provides access con-
trol for notebooks, clusters, jobs, and structured data. Offers audit logs and data
encryption.

• More integrations - via authenticated ODBC/JDBC, REST APIs, and data source
connectors.

• Expert support

Managed MLflow is the extended version of MLflow which offers:

79

• Notebooks and workspace integration

• Scalable cloud/clusters for project runs

• ACL-based stage transition in model management.

• Built-in batch interference and stream analytics

• Security and management

80

Chapter 7
Miniature Machine Learning System

This chapter explains the development of a miniature machine learning system. The system
is designed to run locally, and besides its purpose as a learning resource, it can function
as a low-effort testing tool for evaluating techniques and tools for operationalizing and
automating machine learning systems, with a short feedback loop. The deep neural network
in the system models an industrial process, the van de Vusse reactor, by training on data
generated from a developed simulator. Takeaways from the development of this system is
discussed in chapter 8.

7.1 System Specification

The machine learning system should fulfil the following criteria:

• Include a deep neural network and procedures to train and test it.

• Means for producing large amounts of data, and processing it.

• The neural network should model an industrial process, and make predictions based
on time series data.

• The system as a whole should be configurable, and a user who is unfamiliar with the
code should be able to make desired changes.

• Visualization should be available for relevant components.

• Have a modular architecture, i.e. consists of several single-purposed modules that
can be combined in pipelines.

7.2 Design Choices

Justifications and choices are discussed in the succeeding sections, where relevant. This
section provides a summarized overview of the design choices made for the system.

Python is chosen as the programming language, due to familiarity and to it being a highly
popular language for machine learning development [140]. Together with Python, Conda

81

[141] is used as a package management system. This is a measure taken to increase the
portability of the system. Pytorch [142] is a machine learning framework that accompanies
Python and simplifies many machine learning-related operations. Further mathematical
functionality is provided by Numpy [143], a Python library.

Configuration is made possible through config.json. json is intuitive, easily configurable,
and easy to both integrate and manage. The simulator is developed using the CasADi
framework [144], which is discussed in section 7.4.2.

Visualization is an important tool for obtaining insight into the different components/modules
of the system, and to ensure that they function as expected. An effort has thus been put
into developing generalized plotting functionality that can support multiple use cases. The
visualization functionality largely relies on matplotlib [145], a comprehensive library for
creating visualizations in Python.

A README.md, explaining how to use the system is found in appendix A

7.3 Configurability

It is desirable that the machine learning system is configurable so that functionality can
be altered, different testing scenarios can be performed, and the performance of the model
can be attempted enhanced, easily, and without requiring familiarity with the code.

The configurable aspects are mentioned when relevant in the succeeding sections. The
means for configuration, a file named config.json is found in appendix A.

7.4 Process Simulator for Data Generation

To create a system that can be tested quickly and frequently, it is important to have a
vast, or preferably infinite, source of data. The simulator does not represent the perfect
real-world dynamics of a CSTR with a van de Vusse reaction, due to simplifications, but
the dynamics are reasonably realistic. This does not matter in this context, as the purpose
is to investigate the machine learning system itself, and not to provide the best possible
model for the CSTR. The implementation of the simulator is shown in appendix A, in
simulate_vandevusse.py.

7.4.1 CSTR with van de Vusse reaction

A continuous stirred-tank reactor (CSTR) is a common model for a chemical reactor in
chemical engineering and environmental engineering. A CSTR often refers to a model used
to estimate the key unit operation variables when using a continuous agitated-tank reactor
to reach a specified output. The mathematical model works for all fluids: liquids, gases and
slurries.

A van de Vusse reaction is highly nonlinear and shows exotic behaviour, such as the inverse
response [146]. For this reason it is an interesting topic to investigate in terms of control
and stabilization [147, 148, 149, 150]. Hajizadeh and Hosseini [151] presents an artificial
neural networks based control of CSTRs with the van de Vusse reaction, and Luz and

82

Santos [152] presents an approach for predicting the dynamics of this process with neural
networks. This motivated the use of the van de Vusse reaction in this thesis.

In the van de Vusse reaction, cyclopentenol (B) is produced from cyclopentadiene (A),
with the formation of cyclopentanadiol (C) and dicyclopentadiene (D) as byproducts,
according to the reactions in eq. (7.1) [146]. As described by Engell and Klatt [153], the
reaction occurs in a jacketed CSTR reactor, due to the exothermic nature of the reaction.

A
k1=⇒ B

k2=⇒ C

2A
k3=⇒ D

(7.1)

A is fed into the reaction. B is desired species. C and D are undesired species, byproducts.
k1, k2 and k3 are reaction rates.

As per Luz and Santos [152], considering the constant density throughout the reactor and
ideal level control, for simplicity, the dynamics of the system is described by the differential
equations in eqs. (7.2) to (7.7), resulting from the mass and energy balance of the reactor
and the cooling jacket. The reaction rates are shown in eq. (7.8), parameters for the process
are listed in table 7.2, and state and input variables are listed in table 7.1.

dCA
dt

=
Fin
VR

[CAin − CA]− k1(T)CA − 2k3(T)C2
A (7.2)

dCB
dt

= −Fin
VR

CB + k1(T)CA − k2(T)CB (7.3)

dCC
dt

= −Fin
VR

CC + k2(T)CB (7.4)

dCD
dt

= −Fin
VR

CD + k3(T)C2
A (7.5)

dT

dt
=
Fin
VR

[Tin − T] +
kWAR
ρCpVR

[Tk − T]

− 1

ρCp
[k1(T)CA∆H1 + k2(T)CB∆H2 + k3(T)C2

A∆H3]

(7.6)

dTk
dt

=
Qk

mkCpk
+
kWAR
mkCpk

[T − Tk] (7.7)

k1 = k1010−
E1

T+273.15

k2 = k2010−
E2

T+273.15

k3 = k3010−
E3

T+273.15

(7.8)

83

Symbol Variable

State variables
Ci Concentration of species i in CSTR [mol/l]
T Temperature in CSTR [C◦]
Tk Temperature of cooling jacket [C◦]

Input variables Fin Inlet feed rate [l/hr]
Qk Jacket cooling rate [kJ/hr]

Table 7.1: State and input variables in a CSTR with van de Vusse reaction

Parameter Value Denotes
CAin 5.1 Inlet feed concentration [mol/l]
Tin 104.9 Inlet feed temperature [C◦]
k10 1.287 ∗ 1012 A->B Pre-exponential factor [1/hr]
k20 1.287 ∗ 1012 B->C Pre-exponential factor [1/hr]
k30 9.043 ∗ 109 2A->D Pre-exponential factor [1/hr]
E1 9758.3 A->B Activation Energy [K]
E2 9758.3 B->C Activation Energy [K]
E3 8560 2A->D Activation Energy [K]

∆H1 4.2 A->B Heat of Reaction [kJ/molA]
∆H2 −11 B->C Heat of Reaction [kJ/molB]
∆H3 −41.85 2A->D Heat of Reaction [kJ/molA]
ρ 0.9342 Density [kg/l]
Cp 3.01 Heat capacity of reactants [kJ/(kg ∗K)]
kW 4032 Thermal conductivity [kJ/(h ∗K ∗m2)]
AR 0.215 Area of jacket cooling [m2]
VR 10 Reactor volume [l]
mK 5 Mass of cooling [kg]
CpK 2 Heat capacity of cooling [kJ/(kg ∗K)]

Table 7.2: Parameters in a CSTR with van de Vusse reaction

7.4.2 Modelling framework

CasADi [144] and Python are the framework and programming language used to develop
the simulator. CasADi is an open-source software tool for nonlinear optimization and algo-
rithmic differentiation, with functionality that exceeds the requirements for the simulator.
The complete simulator implementation can be found in appendix A.

One of the core aspects of CasADi is the symbolic framework. With this, the user can
construct symbolic expressions using a MATLAB inspired everything-is-a-matrix syntax,
i.e. vectors are n× 1 matrices, and scalars 1× 1 matrices.

The simulator applies the sx symbolics, which is a part of the symbolic framework. The sx
data type represents matrices whose elements consist of symbolic expressions, and is used
for the state and input variables in the plant, as shown in an excerpt from
simulate_vandevusse.py:

x = SX.sym('x', nx) # Concentration of A, B, C, D, temperature in CSTR, T
and temp of cooling jacket T_k↪→

p = SX.sym('p', nu) # Feed rate F_in and Jacket cooling rate, Qk

u is usually used to denote the input in a control system. When creating integrators in

84

CasADi, the convention is to use p, representing a set of parameters that affect the ODEs
(Ordinary Differential Equations). These parameters include, but are not limited to, input
variables. p is therefore used to represent the symbolic matrix, while the actual input values
are stored in u, and makes up the values of p at the time of the simulation.

CasADi uses the freely available SUNDIALS suite [154], which contains the two popular
integrators CVodes and IDAS for ODEs and DAEs (Differential Algebraic Equations) re-
spectively. This simulator uses CVodes. The integrator is defined simply as shown in an
excerpt from simulate_vandevusse.py:

xdot = vertcat(dCA, dCB, dCC, dCD, dT, dTk)
ode = {'x':x, 'ode': xdot, 'p': p}
opts = {'tf': dt} # Sets correct step size in integrator
ode_solver = integrator('F', 'cvodes', ode, opts)

, where dCA, dCB, dCC, dCD, dT and dTk are the ODEs in eqs. (7.2), (7.3), (7.4), (7.5),
(7.6) and (7.7), respectively. vertcat is a function to perform vertical concatenation. ’F’
has no functionality other than being a name for the integrator, ode is the set of ODEs for
the integrator to solve and opts include specifying the time step of each integration.

The simulation starts by invoking simulate_vdv, defined as shown in an excerpt from
simulate_vandevusse.py:

def simulate_vdv(x0, u):
states = [x0]
for k in range(u.shape[0]):

res = ode_solver(x0=x0, p = u[k])
x0 = res["xf"]
states.append(x0)

return np.concatenate(states, axis = 1)

, with x0 and u as initial state values and input sequence, respectively.

7.5 Neural Network

The neural net implementation in this system is based on an example provided by Solution
Seeker AS in conjunction with an exercise from the course TTK28 [155] at NTNU in
autumn 2020. Modifications have been performed to generalize the net, and the training
and testing procedures, to facilitate their usage in this ML system.

The neural net is implemented with the PyTorch framework [142], a popular framework
for machine learning development with Python.

The neural net consists of two hidden fully connected layers with 50 neurons each. The
training procedure uses Adam optimization, an MSE loss function, and L2 regularization.
Hyperparameters, such as the number of training epochs, learning rate and L2 regular-
ization factor are subject to configuration through the config.json file. The input and
output columns can also be configured, to alter which features the neural net learns from
and which states it should predict.

85

It is also possible to specify whether or not training should be conducted on a previously
trained net, so to train it further.

The complete implementation of the neural net class and the training and testing proce-
dures can be found in appendix A.

7.6 Setting up Modular Machine Learning Pipelines

The system consists of several modules which each serve one purpose. Due to the size of the
project, and the controlled area it is developed in, not all modules are as comprehensive
as described in chapter 4, nor are all the modules included. A training pipeline and a
prediction pipeline are defined, but neither is automated; separate modules are invoked
manually, sequentially to produce the workflow of a pipeline. The pipelines are illustrated
in fig. 7.1.

Figure 7.1: Flow of the training and prediction pipeline in the developed miniature machine
learning system

Training pipeline

Data gathering is conducted through generate_input_vandevusse.py which generates an
input sequence per configured specifications.
simulate_vandevusse.py uses the generated input sequence to simulate the CSTR for the
specified amount of time. The simulation results and input sequence are stored to be used
in data pre-processing.

Data pre-processing in this system does not involve operations to verify the data, as it
is not considered necessary in a small, controlled development environment with only one
data source. The data pre-processing component consists of
steady_state_extraction.py which extracts only data points from periods when the

86

specified variable is in a steady state. The duration and perturbation thresholds for the
steady-state are also configurable. The steady-state data set is then stored for training.

Data set building demands little effort and is done with a few lines of code. As such, this
process is performed at the start of the training and testing procedures, using a set of
indices to extract the testing set.

After splitting the data set, the training set is divided into batches of specified size, and
training ensues with a specified number of epochs. The net is evaluated on the validation
set after each epoch, and once more with visual representation after training is completed.
Refinement and hyperparameter tuning need to be done manually by the user, through
config.json.

Upon testing, the data set is loaded, and the test set extracted and fed into the trained
neural net, which performs predictions. Visual representation ensues, and metrics for MSE,
MAE and MAPE are computed. Reviewing the model is a task subject to human assess-
ment. No behavioural tests are performed on the model.

Prediction pipeline

A separate pipeline makes up the prediction workflow. For organizational purposes, the
data storage files should be changed, so as not to confuse training data with “production”
data. Just as for the training pipeline, the prediction pipeline starts with
generate_input_vandevusse.py to generate an input sequence. Depending on which fea-
tures the neural net is trained on, simulate_vandevusse.py is invoked as well. If none of
the states in the CSTR are used as input features for the neural net, it is not necessary to
perform the simulation prior to prediction.

If one only wishes to predict on steady-state data, and avoid transients, the next operation
is steady_state_extraction.py. If not, no further data pre-processing is necessary. Given
that the net is trained on steady-state data, extracting steady state is likely to yield
better average accuracy, due to the net not performing predictions on data points that are
difficult to predict. The predictions performed, however, will not be any more accurate,
and ultimately one only ends up with fewer predictions.

Finally, make_predictions_batch.py uses the neural net to perform predictions on the
new data and visualizes the results. There is no functionality for performing predictions
on an input data stream.

7.7 Demonstration

The section demonstrates the training and prediction pipelines.

For this purpose, the configuration file is on the same format as the example in appendix A.
The most important settings are:

• The "input_cols" which decides the input for the neural network - the features
that are trained on. For the demonstration this includes the input variables and the
concentration levels of the species in the CSTR.

• The output of the neural net, "output_cols", is the temperature in the CSTR, T,

87

sometimes referred to as Tout. "all_output_cols" is not used, but simply present
as an overview of the possible features.

• "further_train_existing_net": "false" decides that a new net is initialized, in-
stead of further training an already trained net.

• "hidden_layers", "training_batch_size", "shuffle_training_data"
, "n_epochs", "learning_rate" and "l2_regularization" are hyperparameters
that decide the structure and specifics of the neural network.

• "n_iterations" decides the time horizon of the simulation, and "samples_per_hour"
determines the sampling time.

• Under "input_generation"−→"options" is decided how many iterations an input
variable should stay constant for in "input_interval_size", and whether just one or
both input variables are changed at each interval is decided by "perturbation_style",
where the unused option is "double". The remaining values are self-explanatory.

• Under "data_extraction" is decided the threshold value perturbation for steady-
state. the threshold duration for the steady-state, and the steady-state variable.

Training pipeline

The data gathering step, which invokes generate_input_vandevusse.py and
simulate_vandevusse.py, produces the initial data set. The data is plotted in figs. 7.2
and 7.3.

Figure 7.2: Input data for training pipeline.

88

Figure 7.3: States in CSTR for training pipeline.

The next step is to invoke steady_state_extraction.py, performing the necessary pre-
processing before training is initiated. The state on which steady state is considered is the
temperature in the CSTR, T. Figure 7.4 shows the states post-extraction.

Figure 7.4: States in CSTR extracted at time of steady state for T

After pre-processing, training is initiated through train_model.py. After training, the
trained neural net is subjected to the validation set, resulting in the metric scores shown
in fig. 7.5. The validation set consists of random samples from the data set after the
training set has been extracted. There is no continuity in the data points, and plotting the
predictions is messy and provides little insight.

Error on validation data
MSE: 0.4395087957382202
MAE: 0.6225247979164124
MAPE: 0.686882495880127 %

Figure 7.5: Metric scores for trained neural net on validation set

The last step in this training pipeline is testing the model with test_model.py. Figure 7.6
shows how the trained net performs on the test data.

89

Figure 7.6: Model predictions on test set versus actual values. The left plot shows contin-
uous graphs, while the right plot shows each individual data point, which are only those
in steady state.

Prediction pipeline

The configuration file is changed so that generated data is stored in the “production” data
set. After this, the data gathering step is performed to generate new data, shown in fig. 7.7.

Figure 7.7: Temperature values for the “production” data.

No pre-processing is performed. In this context, the steady-state extraction does not make
sense; the extraction is performed on the steady-state of T, which is the output of the
neural network, and which the value is unknown for in the data subject to predictions.
This drawback is discussed in chapter 8. The next step is then to invoke the neural net
to perform predictions, through make_predictions_batch.py. The predictions performed
by the neural net are plotted in fig. 7.8.

90

Figure 7.8: Predictions on “production” data performed by the neural network. The leftmost
plot shows the isolated predictions. The right hand side shows the predictions compared
with the “unknown” actual values.

91

Chapter 8
Discussion

8.1 Testing

As systems become operationalized and more processes are automated, testing grows in-
creasingly important to sustain rapid development and reliable operation.

Machine learning models are stochastic and thus difficult to test using conventional meth-
ods. An machine learning system, however, consists of several modules that facilitate the
machine learning algorithm, but whose behaviour does not rely on the algorithm. Thus,
conventional methods for software testing and data validation can be applied to direct the
resulting behaviour of the machine learning algorithm as much as possible in the intended
direction.

Testing machine learning systems involves testing the behaviour, i.e. the learned logic of
the machine learning algorithm. This is inherently difficult because for machine learning
algorithms there exists no reliable test oracle to indicate what the correct output is for
an arbitrary input. CheckList introduces three types of tests; one (MFT) involves testing
against a small set of test cases with known correct output, and the two others (INV and
DIR) involve testing how the output changes based on perturbations to the input. Check-
List is proven to work well on NLP models and constitutes a very promising methodology.
Although there is no documentation, to the best of my knowledge, of the test types being
successfully applied to different types of models, it can be speculated that doing so would
yield results. This belief is supported by another similar methodology consisting of niche
oracle-based testing (similar to MFT), metamorphic testing (similar to INV and DIR), and
parameterized random testing, which successfully detected new bugs in systems to which it
was applied. The creators behind the methodology have however not been able to deter-
mine its adequacy, and the tested systems do not represent deep neural networks, which
are proven to respond inefficiently to randomly generated test cases.

It would be interesting to investigate the applicability of these tests on regression models.
It would be challenging due to the increased difficulty of producing test cases with known
correct output, and to determine expected output change based on input perturbations.
The actual outputs would likely also be increasingly difficult to evaluate since the domain
is continuous and not binary, or even discrete.

For safety-critical deep neural network systems with a high level of quality assurance,

92

it is possible to adopt a set of coverage criteria based on the MC/DC criterion develop
by NASA. These criteria are developed to verify the learned logic by investigating the
behaviour of each individual neuron in a deep neural network using concolic test case gen-
eration. Although the experiments performed with the criteria show promising results, the
testing procedure is comprehensive and demanding to implement, and likely not worthwhile
applying to a general system with more relaxed safety standards.

An experimental methodology suggests using mathematics to interactively verify the ma-
chine learning program during development, effectively developing a bug-free system. It
might work in specific cases, but is only available with a specifically developed program-
ming language, and appears to slow down the development process significantly, as the
creators themselves admit to experiencing a substantial increase in workload. In its cur-
rent state, the methodology is not deemed practically applicable. Further research might
pave the way for a new programming language paradigm that can be useful for machine
learning development, but this is not likely to be the case in the foreseeable future.

Instead of extensive testing, one might decide to approach the assurance of desired be-
haviour by ensuring that only acceptable inputs occur. Good outlier detection can be used
to disregard predictions outside the scope in which the system is tested, and thus function
as a safety measure or compensation for lack of testing. This may degrade performance,
but can in many cases be an acceptable sacrifice.

8.2 MLOps

Multiple disciplines are combined to form MLOps. MLOps is the synergy between these
disciplines, as opposed to a patchwork. The disciplines in questions are roughly grouped
under data science or software engineering. MLOps is prone to become a secondary consid-
eration for all team members instead of an established area of concern on its own. Decisions
concerning machine learning systems are thus not weighed into from an MLOps perspec-
tive but from the perspective of all its associated disciplines, which are dominated by their
primary responsibilities.

A dedicated role in the form of an MLOps engineer addresses this problem by incorporating
a persona with sufficient skill in all or multiple MLOps-related disciplines into the team.
The MLOps engineer manages tasks that lie on the boundary between disciplines, oversees
the processes and should approach decisions with a nuanced MLOps perspective.

An MLOps engineer is definitely valuable. It might, however, not bridge gaps between
disciplines completely, but simply create smaller gaps. In addition to incorporating an
MLOps engineer, one should strive to achieve a common understanding of the requirements,
challenges, and possibilities in the system, allowing the team members to proceed with a
unified mindset. The overview in chapter 5 provides the basis for such a unification, tying
together software architecture and data science. It is believed that such an overview must
be extended by more detailed descriptions and tailored to the system in question.

Employing MLOps with a four-step sequence of build, manage, deploy and integrate, and
monitor is claimed to “ensure that the best model gets embedded into a business system
and that the deployed models are consistent with business requirements”. The claim is a
bit flippant, since if it was that easy, then problem solved. Not taking too much away
from the proposed sequence, however; it is a clever sequence with well-defined areas of
responsibility, and addresses common challenges and advises on solutions. It incorporates

93

a way of thinking; it is important to approach MLOps systematically and integrate it fully
instead of treating it as a separate process. I do not doubt that this sequence is helpful, and
perhaps sufficient for many teams, but I would hesitate to give it the status of a generalized
blueprint.

In the four-step sequence, deploy and integrate, and monitor are heavily emphasized, while
the entire development process is compressed into the building step. One might argue that
deployment, integration, and monitoring are of higher importance for operationalization
since they represent putting the model into production and making sure it functions prop-
erly while there. This is, after all, the ultimate goal of operationalizing - having the model
actually influence a system, as opposed to simply providing statistics. My criticism is that
deploying, integrating, and monitoring an arbitrary machine learning system, does not yield
an operationalized system. MLOps must be facilitated from the early development stage
with the creation of well-defined single-responsibility modules that can be tested effectively
and integrated to form pipelines. The system must be structured to retrain or remodel at
volition, and to support continual champion-challenger processes. It is not that develop-
ment is completely ignored in the four-step sequence, but it is given a disproportionate
amount of attention. The overview from chapter 5 complements the four-step sequence by
providing more details about the structure and requirements in the development phase. It
is not comprehensive enough to form an out-of-the-box template but directs attention to
an important area.

Facilitating MLOps involves designing a sustainable and robust system, which provides nec-
essary operations through easy access and efficient execution. Pipelines provide an interme-
diate layer between modules and the entire system which results in propitious abstractions.
This allows development to proceed by defining necessary pipelines for the entire system,
and followingly designing modules to make up these pipelines. Modular pipelines motivate
well-defined modules and are advantageous in terms of scalability, maintainability, etc. On
a higher level, pipelines contribute to a modular system that allows for decoupling indepen-
dent processes, such as application code and machine learning models. Having to redeploy
the application due to an updated machine learning model, or vice versa, is unnecessary.

Towards the end of this thesis, Coursera [4] released a specialization on MLOps. There
was unfortunately no time to complete it, but the fact that it was released emphasizes the
relevance of MLOps.

8.3 Technologies

It is only so much insight to be gained about a technology through reading about it, as
opposed to using it. In the early stages of this thesis, it was considered to employ some
technologies with the developed miniature machine learning system, but it was deemed too
time-consuming to be fruitful, and most technologies apply to a much larger scale than the
developed system constitutes, rendering the idea infeasible. The solutions offered by the
technologies do, however, provide some insight into practical challenges in MLOps. The
most focused areas appear to be data streaming, computation resources, pipeline support,
and analytics and insights. Following are some preliminary reflections on the technologies,
based on my perceptions.

Docker and Kubernetes are prevalent in traditional software systems, and are useful also
in machine learning systems, complemented by other technologies.

94

Apache Spark constitutes the most comprehensive technology, covering multiple areas. It
has been developed through several iterations and shows characteristics of contributions
from a large number of developers in how it has adopted and improved aspects from
a variety of technologies. It appears to be at the very forefront with the quality of the
solutions it offers, from real-time streaming, clustering, query optimization, deep learning
pipelines, etc. It is not clear to what degree one can pick and choose from its solutions,
although it appears to be reasonably flexible as it is open-source, and the creators explicitly
mention the possibility of integrating Kubernetes as a cluster manager.

Run:AI focuses on efficient computations and auspicious resource allocation for the cus-
tomer, through what appears to be a novel variation of virtualization. Its features do not
extend notably into other areas, and thus Run:AI does not require that you commit to
several solutions as a package deal. On the downside, it is not open source or freely avail-
able. Given that their solution actually works for maximizing the utilization of resources,
and that this a desired feature for the system in question, it seems like a good choice of
technology.

Apache Kafka provides the means for incorporating distributed event streaming into your
system in a wide variety of ways. It is also open-source. Given that distributed event
streaming is a desired feature, Apache Kafka seems to be the go-to technology.

Dataflow focuses on autoscaling of resources and analytics. It is a part of Google Cloud
and is not free of charge. I suspect that it is favourable towards integration with other
Google products. This might cause seamless integration and constitute a desirable trait
for some companies. For other companies, it might constitute bothersome commitment
requirements.

MLflow is open source and integrates with several other technologies. It aims to man-
age the end-to-end machine learning life cycle. To me, what it offers does not seem very
comprehensive; just simple additions to the development process through some tracking
and packaging tools. It might be that this is a good thing; that it just offers simple addi-
tions that make management a little simpler without having to commit to any significant
restructuring.

Databricks offers paid extensions to open source solutions, specifically Apache Spark and
MLflow. Their extensions do not strike me as particularly useful, including interactive
notebooks, which have been pointed out to be difficult to manage and run reliably [21],
and tools that do not seem appealing to the average software developer. The extensions
do include support and security, which can be advantageous for teams that are unable
or unwilling to handle these issues themselves. These “premium memberships” of Apache
Spark and MLflow raise doubts about how complete the technologies are in their standard
editions.

Upon choosing technologies I perceive it as highly important to consider the capabilities
of the development team that will employ them, and which groups in the company they
primarily support. The results of using a technology and how enjoyable it is to use are
two different aspects. E.g., a technology might offer valuable insights and accessible user-
friendly interfaces for analysts or managers, but be difficult to integrate and employ for
the developers.

95

8.4 Miniature machine learning system

Developing the machine learning system has highlighted the utility of pipelines, especially
in terms of development. Well-defined modules emphasize what a task actually involves,
making it easier to develop with sustainability in mind. The modules are also much sim-
pler to debug. Providing input to modules, through a configuration file, allows for the
modules to be used in multiple pipelines, reducing the total workload. The challenge of
data pre-processing is emphasized through the management of multiple data sets, and how
good feature engineering, e.g. steady-state extraction, requires sound mathematical com-
prehension. Another challenge that was highlighted is creating pipelines to accommodate
data streams, as opposed to batches. This might have been manageable through integra-
tion with Apache Kafka. Although not all components of a machine learning life cycle were
extensively implemented, insight was gained concerning their functionality and complexity.

The machine learning system was developed with the primary intention of investigating
the components, and how they integrate. Extensive functionality of each component and
performance of the neural network was never the objective. Still, some possibilities for
increased functionality have been thought of.

Hyperparameter tuning with some sort of HPO technique could have been implemented and
automated in a fashion to provide a better performing neural net. In the current system,
the user is required to manually alter the hyperparameter values in the configuration file
before initiating the training procedure. This is slow and tedious, and a machine learning
system should have a better approach for this.

The steady-state extraction involves extracting data points where a chosen state in the
CSTR is in steady state. In the demonstration, section 7.7: the state making up the output
of the neural net, T , is the selected state. By analyzing the time constant of the system,
steady-state extraction could have been performed based on the input variables. This is
intuitively not the most efficient use of steady-state extraction. As seen in fig. 7.6, the
neural net does not noticeably consider steady-state in prediction.

By deriving an expected time interval between input perturbation and states reaching a
steady state, it is possible to extract data points a certain period after the last input
perturbation. This is likely to be more useful in an actual industrial process, where input
values are subject to direct influence, and thus accurate and continuous observation. This
is not the case for the states in the process - even though there are techniques for obtaining
estimates of the states, combining measurements and mathematics, these estimates are not
as reliable as the values for input variables. Moreover, extracting data based on the observed
steady-state of the state subject to prediction, in production, makes no sense, since there
is no point in making a prediction if the state is observable. During training, extracting
the output variable offers some benefit; given that the time between input perturbations is
sufficiently large, extracting steady state data points provides a correlation between input
and output values that is easier to train.

It could also have been interesting to attempt to integrate certain technologies into the
system, such as Apache Kafka and Docker, to provide an automated event-driven system
in a containerized form, which would have provided a more complete product in terms of
demonstration and deliverability.

96

Chapter 9
Conclusion

The challenges and difficulties faced when operationalizing machine learning systems are
widespread problems. Due to the rapid evolution of machine learning technology and the
emergence of big data leading to a significant increase in possible applications for ma-
chine learning, the focus has mainly been on increasing potential through better and more
diverse machine learning models, rather than realising potential through sustainable de-
velopment. Operationalizing machine learning systems requires both data scientists and
software engineers. Unclear communication between these factions imposes an obstacle for
operationalization. The differences between machine learning systems and traditional soft-
ware systems poses challenges when applying conventional operationalization techniques
to machine learning.

Testing the logic of a system requires new techniques when applied to stochastic systems,
such as machine learning systems, where there is no reliable test oracle. An approach
involving behavioural tests based on a small selection of test cases where an oracle can be
derived and metamorphic testing seems promising. A proven example is CheckList which
employs tests based on these techniques on NLP models. There are other approaches based
on neuron coverage testing and interactive formal verification, where the former is mainly
intended for safety-critical deep learning systems, and the latter is too underdeveloped to
be considered practical.

9.1 Advice for best practices

Incorporating a dedicated MLOps engineer into a cross-disciplinary team helps to define
responsibilities and helps bridge the gap between disciplines. The MLOps engineer is ide-
ally proficient in multiple MLOps-related disciplines and is in charge of managing the
model life cycle, including version control, approval, testing, deployment, and replacement.
The MLOps engineer must make sure the processes proceed in alignment with MLOps
principles.

To further bridge the gap between data scientists and software engineers a common under-
standing of the requirements, needs and challenges associated with different components
from all perspectives should be established. A tool for this can be an illustrative overview of
the architecture depicting how modules integrate to form pipelines and listing the inputs,
outputs and purposes of each module systematically in a manner that is understandable

97

for all involved disciplines.

Modularity should be obtained with pipelines for defining, and possibly automating, work-
flows such as training, prediction and deployment. Modularity should be incorporated on
a higher level as well, decoupling the machine learning model from the application, so that
updates can be performed independently of each other. To achieve the letter, one can think
of deployment as a function of how a model is integrated, and integration as an extension
of deployment.

Techniques from related disciplines should be used for what they are worth, extensive test-
ing with conventional techniques on components that do not rely on the machine learning
algorithm results in higher quality assurance. Applicable deployment techniques from De-
vOps, e.g. the CI/CD pipeline, contribute to more automated and manageable processes.

Aim for automation. Automated processes make the life cycle easier to manage and, with
well-defined testing, increases reliability. Automation also allows for processes to run con-
tinuously, enabling more frequent model updates, and more comprehensive hyperparameter
optimization.

When choosing technologies, teams should keep their level of skills in mind. Some tech-
nologies attempt to tailor the complete machine learning life cycle and focus on features
such as integrated notebooks, user interfaces, and visualizations of everything. This might
be good for a business whose area of expertise is not cutting edge technology but rather
applies some machine learning as a secondary feature of their business. Typically a model
which requires little maintenance and is developed by a small team, but offers insights and
predictions that are interesting for non-technical staff. Teams and companies that are more
technologically advanced and continually look to improve their models and extend their
applications should choose flexible technologies, which focus on modular parts and can
be integrated into various environments without much setup. Some technologies deemed
promising are Docker, Kubernetes, Apache Kafka, Apache Spark, and Run:AI.

9.2 Miniature machine learning system

The developed machine learning system constitutes a minimum viable product in the form
of a testing tool but would benefit from further development. Developing it offered insight
into machine learning pipelines; separating the workflow into multiple pipelines resulted in
more structure and overview during development.

It also provided clarity concerning the area of responsibility for each component. Even
though not all possible extensions and additions to functionality were fulfilled, insight was
gained concerning the challenges and importance of each module, as well as the amount of
work required to implement it. Some components were revealed to be relatively straight-
forward, while other components could have benefited from including more mathematical
features.

This thesis attempts to shine a light on the field of MLOps. Gathering information from
various literature and providing my interpretation will hopefully provide some clarity and
make it easier to navigate through the field. Sculley et al. [128] addresses the technical debt
of machine learning, and I also believe that actors in the machine learning field should lift
their head above the water more often, and share their experiences and research so that
MLOps will see a more prosperous development.

98

9.3 Future Work

Increasing the functionality of the machine learning system in terms of a testing suite:

• Integrate Docker and Apache Kafka and create an automated pipeline. This can
enable support for data streams, and create a containerized system that can be
deployed, or simply easily run on a new system.

• Implement automated hyperparameter tuning. Looking into HPO techniques and
ways to implement and automate them will result in a more comprehensive system.

• Enhance steady-state extraction by extracting data based on the time constant of
the system

To further investigate operationalization of machine learning systems:

• AutoML is a discipline that can be useful in terms of operationalization. Some sources
are [88, 89].

• Holistic approaches is the name of a section in [22]. It involves thinking outside
the box when approaching operationalization of machine learning systems, instead of
adopting and modifying techniques from traditional software systems. Data Oriented
Architectures (DOA)[156, 157] is an example of such an approach.

99

Bibliography

[1] SAS Institute Inc. Machine Learning: What it is and why it matters | SAS, 2021. URL
https://www.sas.com/en_us/insights/analytics/machine-learning.html.

[2] Dong Yu, Li Deng, Inseon Jang, Panos Kudumakis, Mark Sandler, and Kyeongok
Kang. Deep learning and its applications to signal and information processing. IEEE
Signal Processing Magazine, 28(1):145–154, 2011. ISSN 10535888. doi: 10.1109/MS
P.2010.939038.

[3] Itamar Arel, Derek Rose, and Thomas Karnowski. Deep machine learning-A new
frontier in artificial intelligence research. IEEE Computational Intelligence Magazine,
5(4):13–18, 10 2010. ISSN 1556603X. doi: 10.1109/MCI.2010.938364.

[4] Andrew Ng, Kian Katanforoosh, and Younes Bensouda Mourri. Deep Learning Spe-
cialization, 2021. URL https://www.coursera.org/specializations/deep-lear
ning.

[5] George E. Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition. IEEE Transactions on
Audio, Speech and Language Processing, 20(1):30–42, 1 2012. ISSN 15587916. doi:
10.1109/TASL.2011.2134090.

[6] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel Rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath,
and Brian Kingsbury. Deep neural networks for acoustic modeling in speech recog-
nition: The shared views of four research groups. IEEE Signal Processing Magazine,
29(6):82–97, 2012. ISSN 10535888. doi: 10.1109/MSP.2012.2205597.

[7] Dan Claudiu Cireşan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhu-
ber. Deep, big, simple neural nets for handwritten digit recognition. Neural Compu-
tation, 22(12):3207–3220, 12 2010. ISSN 08997667. doi: 10.1162/NECO{_}a{_}0
0052. URL http://direct.mit.edu/neco/article-pdf/22/12/3207/842857/ne
co_a_00052.pdf.

[8] Xue-Wen Chen and Xiaotong Lin. Big data deep learning: Challenges and perspec-
tives. IEEE Access, 2:514–525, 2014. ISSN 21693536. doi: 10.1109/ACCESS.2014.
2325029.

[9] Christian Johansson, Markus Bergkvist, Davy Geysen, Oscar De Somer, Niklas
Lavesson, and Dirk Vanhoudt. Operational Demand Forecasting in District Heating

100

https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
http://direct.mit.edu/neco/article-pdf/22/12/3207/842857/neco_a_00052.pdf
http://direct.mit.edu/neco/article-pdf/22/12/3207/842857/neco_a_00052.pdf

Systems Using Ensembles of Online Machine Learning Algorithms. In Energy Pro-
cedia, volume 116, pages 208–216. Elsevier Ltd, 6 2017. doi: 10.1016/j.egypro.2017.
05.068.

[10] Ryan Lagerquist, Amy McGovern, Cameron R. Homeyer, David John Gagne, and
Travis Smith. Deep learning on three-dimensional multiscale data for next-hour tor-
nado prediction. Monthly Weather Review, 148(7):2837–2861, 7 2020. ISSN 15200493.
doi: 10.1175/MWR-D-19-0372.1. URL https://journals.ametsoc.org/view/jo
urnals/mwre/148/7/mwrD190372.xml.

[11] Space Weather Prediction Center and National Oceanic And Atmospheric Adminis-
tration. Forecast Verification Glossary. URL https://www.swpc.noaa.gov/sites/
default/files/images/u30/Forecast%20Verification%20Glossary.pdf.

[12] Harold E. Brooks and James Correia. Long-term performance metrics for National
Weather Service Tornado warnings. Weather and Forecasting, 33(6):1501–1511, 12
2018. ISSN 15200434. doi: 10.1175/WAF-D-18-0120.1. URL https://verificati
on.nws.noaa.gov/services/public/.

[13] Dinithi Nallaperuma, Rashmika Nawaratne, Tharindu Bandaragoda, Achini Adikari,
Su Nguyen, Thimal Kempitiya, Daswin De Silva, Damminda Alahakoon, and Dak-
shan Pothuhera. Online Incremental Machine Learning Platform for Big Data-Driven
Smart Traffic Management. IEEE Transactions on Intelligent Transportation Sys-
tems, 20(12):4679–4690, 12 2019. ISSN 15580016. doi: 10.1109/TITS.2019.2924883.
URL https://ieeexplore.ieee.org/abstract/document/8759919.

[14] Ibai Lana, Javier Del Ser, Manuel Velez, and Eleni I. Vlahogianni. Road Traffic
Forecasting: Recent Advances and New Challenges. IEEE Intelligent Transportation
Systems Magazine, 10(2):93–109, 6 2018. ISSN 19411197. doi: 10.1109/MITS.2018.
2806634. URL https://ieeexplore.ieee.org/document/8344781.

[15] Eleni I. Vlahogianni, Matthew G. Karlaftis, and John C. Golias. Short-term traffic
forecasting: Where we are and where we’re going. Transportation Research Part C:
Emerging Technologies, 43:3–19, 6 2014. ISSN 0968090X. doi: 10.1016/j.trc.2014.0
1.005. URL https://www.sciencedirect.com/science/article/pii/S0968090X1
4000096.

[16] João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM Computing Surveys, 46
(4), 3 2014. ISSN 15577341. doi: 10.1145/2523813. URL http://dx.doi.org/10.
1145/2523813.

[17] Deeplearning.ai. Companies Slipping on AI Goals, Self Training for Better Vision,
Muppets and Models, China Vs US?, Only the Best Examples, Proliferating Patents,
12 2019. URL https://info.deeplearning.ai/the-batch-companies-slippin
g-on-ai-goals-self-training-for-better-vision-muppets-and-models-chi
na-vs-us-only-the-best-examples-proliferating-patents.

[18] Inc. Gartner. Gartner Identifies the Top Strategic Technology Trends for 2021. Tech-
nical report, Gartner, 2020. URL https://www.gartner.com/en/newsroom/press-
releases/2020-10-19-gartner-identifies-the-top-strategic-technology-
trends-for-2021.

[19] Hewlett Packard Enterprise. HPE Ezmeral Software Platform for Digital Transfor-
mation | HPE. URL https://www.hpe.com/us/en/ezmeral.html.

101

https://journals.ametsoc.org/view/journals/mwre/148/7/mwrD190372.xml
https://journals.ametsoc.org/view/journals/mwre/148/7/mwrD190372.xml
https://www.swpc.noaa.gov/sites/default/files/images/u30/Forecast%20Verification%20Glossary.pdf
https://www.swpc.noaa.gov/sites/default/files/images/u30/Forecast%20Verification%20Glossary.pdf
https://verification.nws.noaa.gov/services/public/
https://verification.nws.noaa.gov/services/public/
https://ieeexplore.ieee.org/abstract/document/8759919
https://ieeexplore.ieee.org/document/8344781
https://www.sciencedirect.com/science/article/pii/S0968090X14000096
https://www.sciencedirect.com/science/article/pii/S0968090X14000096
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813
https://info.deeplearning.ai/the-batch-companies-slipping-on-ai-goals-self-training-for-better-vision-muppets-and-models-china-vs-us-only-the-best-examples-proliferating-patents
https://info.deeplearning.ai/the-batch-companies-slipping-on-ai-goals-self-training-for-better-vision-muppets-and-models-china-vs-us-only-the-best-examples-proliferating-patents
https://info.deeplearning.ai/the-batch-companies-slipping-on-ai-goals-self-training-for-better-vision-muppets-and-models-china-vs-us-only-the-best-examples-proliferating-patents
https://www.gartner.com/en/newsroom/press-releases/2020-10-19-gartner-identifies-the-top-strategic-technology-trends-for-2021
https://www.gartner.com/en/newsroom/press-releases/2020-10-19-gartner-identifies-the-top-strategic-technology-trends-for-2021
https://www.gartner.com/en/newsroom/press-releases/2020-10-19-gartner-identifies-the-top-strategic-technology-trends-for-2021
https://www.hpe.com/us/en/ezmeral.html

[20] Curt Hopkins. Operationalizing machine learning: The future of practical AI, 4 2020.
URL https://www.hpe.com/us/en/insights/articles/operationalizing-mac
hine-learning--the-future-of-practical-ai-2004.html.

[21] Cristiano Breuel. ML Ops: Machine Learning as an Engineering Discipline. 1 2020.
URL https://towardsdatascience.com/ml-ops-machine-learning-as-an-eng
ineering-discipline-b86ca4874a3f.

[22] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D. Lawrence. Challenges in Deploying
Machine Learning: a Survey of Case Studies. The ML-Retrospectives, Surveys &
Meta-Analyses Workshop, NeurIPS 2020, 11 2020. URL http://arxiv.org/abs/20
11.09926.

[23] Favio Vazquez. Deep Learning made easy with Deep Cognition. Becoming Human:
Artificial Intelligence Magazine, 2017. URL https://becominghuman.ai/deep-le
arning-made-easy-with-deep-cognition-403fbe445351.

[24] Satya Ganesh. Weights and Bias in a Neural Network. Towards Data Science, 2020.
URL https://towardsdatascience.com/whats-the-role-of-weights-and-bia
s-in-a-neural-network-4cf7e9888a0f.

[25] Assaad Moawad. Neural networks and back-propagation explained in a simple way.
Medium - DataThings, 2018. URL https://medium.com/datathings/neural-net
works-and-backpropagation-explained-in-a-simple-way-f540a3611f5e.

[26] Scott Fortmann-Roe. Understanding the Bias-Variance Tradeoff, 2012. URL http:
//scott.fortmann-roe.com/docs/BiasVariance.html.

[27] Seema Singh. Understanding the Bias-Variance Tradeoff, 2018. URL https://towa
rdsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b2
29.

[28] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 249–256, 2010. URL http:
//www.iro.umontreal.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rec-
tifiers: Surpassing Human-Level Performance on ImageNet Classification. In Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV), pages
1026–1034, 2015.

[30] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization.
In 3rd International Conference on Learning Representations, ICLR 2015 - Con-
ference Track Proceedings. International Conference on Learning Representations,
ICLR, 12 2015. URL https://arxiv.org/abs/1412.6980v9.

[31] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd
International Conference on Machine Learning, pages 448–456. PMLR, 6 2015. URL
http://proceedings.mlr.press/v37/ioffe15.html.

[32] James Somers. The Pastry A.I. That Learned to Fight Cancer, 2021. URL https:
//www.newyorker.com/tech/annals-of-technology/the-pastry-ai-that-lea
rned-to-fight-cancer.

102

https://www.hpe.com/us/en/insights/articles/operationalizing-machine-learning--the-future-of-practical-ai-2004.html
https://www.hpe.com/us/en/insights/articles/operationalizing-machine-learning--the-future-of-practical-ai-2004.html
https://towardsdatascience.com/ml-ops-machine-learning-as-an-engineering-discipline-b86ca4874a3f
https://towardsdatascience.com/ml-ops-machine-learning-as-an-engineering-discipline-b86ca4874a3f
http://arxiv.org/abs/2011.09926
http://arxiv.org/abs/2011.09926
https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351
https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351
https://towardsdatascience.com/whats-the-role-of-weights-and-bias-in-a-neural-network-4cf7e9888a0f
https://towardsdatascience.com/whats-the-role-of-weights-and-bias-in-a-neural-network-4cf7e9888a0f
https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e
https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
http://www.iro.umontreal.
http://www.iro.umontreal.
https://arxiv.org/abs/1412.6980v9
http://proceedings.mlr.press/v37/ioffe15.html
https://www.newyorker.com/tech/annals-of-technology/the-pastry-ai-that-learned-to-fight-cancer
https://www.newyorker.com/tech/annals-of-technology/the-pastry-ai-that-learned-to-fight-cancer
https://www.newyorker.com/tech/annals-of-technology/the-pastry-ai-that-learned-to-fight-cancer

[33] Benny Prijono. Student Notes: Convolutional Neural Networks (CNN) Introduction
– Belajar Pembelajaran Mesin Indonesia, 2018. URL https://indoml.com/2018/
03/07/student-notes-convolutional-neural-networks-cnn-introduction/.

[34] datahacker.rs. Deep Learning | Master Data Science, 2021. URL http://datahack
er.rs/deep-learning/.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 2016-December, pages 770–778.
IEEE Computer Society, 12 2016. ISBN 9781467388504. doi: 10.1109/CVPR.2016.90.
URL http://image-net.org/challenges/LSVRC/2015/.

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–9. CVPR, 2015.

[37] We Need To Go Deeper | Know Your Meme, 2010. URL https://knowyourmeme.c
om/memes/we-need-to-go-deeper.

[38] Bharath Raj. A Simple Guide to the Versions of the Inception Network , 2018. URL
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the
-inception-network-7fc52b863202.

[39] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Com-
putation, 9(8):1735–1780, 11 1997. ISSN 08997667. doi: 10.1162/neco.1997.9.8.1735.
URL http://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.
9.8.1735.pdf.

[40] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997. ISSN 1053587X. doi:
10.1109/78.650093.

[41] Xiaoguang Mei, Erting Pan, Yong Ma, Xiaobing Dai, Jun Huang, Fan Fan, Qinglei
Du, Hong Zheng, and Jiayi Ma. Spectral-Spatial Attention Networks for Hyperspec-
tral Image Classification. Remote Sensing, 11:963, 5 2019. doi: 10.3390/rs11080963.

[42] Cem Kaner. A Course in Black Box Software Testing, 2004. URL http://www.test
ingeducation.org/k04/OracleExamples.htm.

[43] Daniel Selsam, Percy Liang, and David L Dill. Developing Bug-Free Machine
Learning Systems With Formal Mathematics. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, pages 3047–3056. PMLR, 7 2017. URL
https://github.com/Theano/Theano/issues/4770.

[44] Goku Mohandas. MLOps - Made With ML, 2021. URL https://madewithml.com
/courses/mlops/.

[45] Jeremy Jordan. Effective testing for machine learning systems., 8 2020. URL https:
//www.jeremyjordan.me/testing-ml/.

[46] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond
Accuracy: Behavioral Testing of NLP Models with CheckList. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pages 4902–
4912. Association for Computational Linguistics, 2020. URL https://github.com
/marcotcr/checklist.

103

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/
http://datahacker.rs/deep-learning/
http://datahacker.rs/deep-learning/
http://image-net.org/challenges/LSVRC/2015/
https://knowyourmeme.com/memes/we-need-to-go-deeper
https://knowyourmeme.com/memes/we-need-to-go-deeper
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
http://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
http://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
http://www.testingeducation.org/k04/OracleExamples.htm
http://www.testingeducation.org/k04/OracleExamples.htm
https://github.com/Theano/Theano/issues/4770
https://madewithml.com/courses/mlops/
https://madewithml.com/courses/mlops/
https://www.jeremyjordan.me/testing-ml/
https://www.jeremyjordan.me/testing-ml/
https://github.com/marcotcr/checklist
https://github.com/marcotcr/checklist

[47] Yulia Gavrilova. Machine Learning Testing: A Step to Perfection, 2020. URL https:
//serokell.io/blog/machine-learning-testing.

[48] Clement Delangue and Julien Chamound. Hugging Face – The AI community build-
ing the future. URL https://huggingface.co/.

[49] Google LLC. Google AI. URL https://ai.google/.

[50] Stanford University. Stanford University. URL https://www.stanford.edu/.

[51] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. Ludwig: a type-based
declarative deep learning toolbox, 9 2019. URL https://ludwig-ai.github.io/lu
dwig-docs/.

[52] Uber Technologies Inc. Uber AI. URL https://www.uber.com/us/en/uberai/.

[53] Gideon Mendels. Live Panel: How do top researchers from Google, Stanford and
Hugging Face approach new ML problems?, 2020. URL https://vimeo.com/user
124635767.

[54] Christian Murphy and Gail Kaiser. Improving the Dependability of Machine Learn-
ing Applications. Technical report, Department of Computer Science, Columbia
University, 2011. URL https://academiccommons.columbia.edu/doi/10.7916/D
8P2761H.

[55] Elaine J Weyuker. On Testing Non-testable Programs. The Computer Journal, 25
(4):465–470, 1982. doi: https://doi.org/10.1093/comjnl/25.4.465. URL https:
//academic.oup.com/comjnl/article/25/4/465/366384.

[56] Joe W. Duran and Simeon C. Ntafos. An Evaluation of Random Testing. IEEE
Transactions on Software Engineering, SE-10(4):438–444, 1984. ISSN 00985589. doi:
10.1109/TSE.1984.5010257.

[57] Richard Hamlet. Random Testing. In Encyclopedia of Software Engineering, pages
970–978. John Wiley & Sons, Inc., 1 2002. doi: 10.1002/0471028959.sof268. URL
https://onlinelibrary.wiley.com/doi/full/10.1002/0471028959.sof268ht
tps://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof268https:
//onlinelibrary.wiley.com/doi/10.1002/0471028959.sof268.

[58] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic Testing: A New Approach
for Generating Next Test Cases. Technical report, Department of Computer Science,
The Hon Kong University of Science and Technology, 1998. URL http://arxiv.or
g/abs/2002.12543.

[59] Zhi Quan Zhou, D H Huang, T H Tse, Zongyuan Yang, Haitao Huang, and T Y Chen.
Metamorphic Testing and Its Applications. In Proceedings of the 8th International
Symposium on Future Software Technology (ISFST). Software Engineers Association,
Japan, 2004.

[60] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and
Rob Ashmore. Testing Deep Neural Networks. arXiv, 3 2018. URL http://arxiv.
org/abs/1803.04792.

[61] Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson.
A Practical Tutorial on Modified Condition/ Decision Coverage. Technical report,
NASA Scientific and Technical Information Program Office, 2001. URL http://ww
w.sti.nasa.gov.

104

https://serokell.io/blog/machine-learning-testing
https://serokell.io/blog/machine-learning-testing
https://huggingface.co/
https://ai.google/
https://www.stanford.edu/
https://ludwig-ai.github.io/ludwig-docs/
https://ludwig-ai.github.io/ludwig-docs/
https://www.uber.com/us/en/uberai/
https://vimeo.com/user124635767
https://vimeo.com/user124635767
https://academiccommons.columbia.edu/doi/10.7916/D8P2761H
https://academiccommons.columbia.edu/doi/10.7916/D8P2761H
https://academic.oup.com/comjnl/article/25/4/465/366384
https://academic.oup.com/comjnl/article/25/4/465/366384
https://onlinelibrary.wiley.com/doi/full/10.1002/0471028959.sof268 https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof268 https://onlinelibrary.wiley.com/doi/10.1002/0471028959.sof268
https://onlinelibrary.wiley.com/doi/full/10.1002/0471028959.sof268 https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof268 https://onlinelibrary.wiley.com/doi/10.1002/0471028959.sof268
https://onlinelibrary.wiley.com/doi/full/10.1002/0471028959.sof268 https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof268 https://onlinelibrary.wiley.com/doi/10.1002/0471028959.sof268
http://arxiv.org/abs/2002.12543
http://arxiv.org/abs/2002.12543
http://arxiv.org/abs/1803.04792
http://arxiv.org/abs/1803.04792
http://www.sti.nasa.gov
http://www.sti.nasa.gov

[62] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Under-
standing Neural Networks Through Deep Visualization. In Deep Learning Work-
shop, 31st International Conference on Machine Learning, 6 2015. URL http:
//arxiv.org/abs/1506.06579.

[63] Augustus Odena, Catherine Olsson, David G Andersen, and Ian Goodfellow. Tensor-
Fuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In Proceedings of
the 36th International Conference on Machine Learning, pages 4901–4911. PMLR,
2019. URL http://proceedings.mlr.press/v97/odena19a.html.

[64] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. Concolic Testing for Deep Neural Networks. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering,
pages 109–119, New York, NY, USA, 2018. ACM. ISBN 9781450359375. URL https:
//doi.org/10.1145/3238147.3238172.

[65] Pei Kexin, Yinzhi Cao, Junfeng Yang, and Suman Jana. DeepXplore: Automated
Whitebox Testing of Deep Learning Systems CCS CONCEPTS. In Proceedings of
the 26th Symposium on Operating Systems Principles, volume 17, pages 1–18, New
York, NY, USA, 2017. ACM. ISBN 9781450350853. URL https://doi.org/10.1
145/3132747.3132785.

[66] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, Yadong Wang, and Chun-Yang Chen.
DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, volume 18, pages 120–131, New York, NY, USA, 2018. ACM. ISBN
9781450359375. URL https://doi.org/10.1145/3238147.3238202.

[67] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. Feature-guided black-
box safety testing of deep neural networks. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), volume 10805 LNCS, pages 408–426. Springer Verlag, 2018.
ISBN 9783319899596. doi: 10.1007/978-3-319-89960-2{_}22. URL https:
//doi.org/10.1007/978-3-319-89960-2_22.

[68] The Coq Development Team. The Coq Proof Assistant Reference Manual: Version
8.5. Technical report, INRIA, 2016. URL http://www.opencontent.org/openpub.

[69] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob
von Raumer. The lean theorem prover (system description). In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 9195, pages 378–388. Springer Verlag, 2015.
doi: 10.1007/978-3-319-21401-6{_}26. URL http://leanprover.github.io.

[70] M.J. Gordon, A.J. Milner, and CP Wadsworth. Edinburgh lcf: a mechanised logic of
computation. Lecture notes computer science, 78, 1979.

[71] Michael J. C. Gordon and T. F. Melham. Introduction to Hol a Theorem Proving
Environment for Higher Order Logic, 1993. URL https://philpapers.org/rec/G
ORITH.

[72] John Harrison. HOL light: A tutorial introduction. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 1166, pages 265–269. Springer Verlag, 1996. ISBN

105

http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1506.06579
http://proceedings.mlr.press/v97/odena19a.html
https://doi.org/10.1145/3238147.3238172
https://doi.org/10.1145/3238147.3238172
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22
http://www.opencontent.org/openpub
http://leanprover.github.io.
https://philpapers.org/rec/GORITH
https://philpapers.org/rec/GORITH

3540619372. doi: 10.1007/BFb0031814. URL https://link.springer.com/chapte
r/10.1007/BFb0031814.

[73] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283. Springer, 2002. URL https://book
s.google.no/books?hl=en&lr=&id=R6ul20M6nTIC&oi=fnd&pg=PR2&dq=Isabelle
/HOL:++a++proof++assistant++for++higher-order+logic&ots=ex4SpHJNPg&sig
=18lDo7zU4Ll64erSEH-4dEbINOw&redir_esc=y#v=onepage&q=Isabelle%2FHOL%3A
%20%20a%20%20proof%20%20assistant%20%20for%20%20higher-order%20logic&f
=false.

[74] S Owre, J M Rushby, and N Shankar. PVS: A Prototype Verification System. In
Automated Deduction CADE-11, pages 748–752. Springer, 1992. doi: https://doi.or
g/10.1007/3-540-55602-8{_}217.

[75] Dan Merron. Deployment Pipelines (CI/CD) in Software Engineering – BMC Soft-
ware | Blogs, 5 2020. URL https://www.bmc.com/blogs/deployment-pipeline/.

[76] Algorithmia. The ML pipeline and why it’s important | Algorithmia Blog, 9 2020.
URL https://algorithmia.com/blog/ml-pipeline.

[77] Sten Pittet. Continuous integration vs. continuous delivery vs. continuous deploy-
ment. URL https://www.atlassian.com/continuous-delivery/principles/con
tinuous-integration-vs-delivery-vs-deployment.

[78] David Sweenor, Steven Hillion, Dan Rope, Dev Kannabiran, and Thomas Hill. ML
Ops: Operationalizing Data Science. O’Reilly Media Inc., Sebastapol, CA, first edi-
tion edition, 2020. ISBN 978-1-492-07463-2.

[79] Anthony Mullen, Saniye Aleybi, Van Baker, Arun Chandrasekaran, Alexander Lin-
den, Magnus Revang, and Svetlana Sicular. Predicts 2020: Artificial Intelligence —
the Road to Production, 12 2019. URL https://www.gartner.com/en/documents
/3975770/predicts-2020-artificial-intelligence-the-road-to-produc.

[80] Kyle Wiggers. Algorithmia: 50% of companies spend between 8 and 90 days deploying
a single AI model | VentureBeat. VentureBeat: The Machine, 12 2019. URL https:
//venturebeat.com/2019/12/11/algorithmia-50-of-companies-spend-upwards
-of-three-months-deploying-a-single-ai-model/.

[81] Lawrence E Hecht. Add It Up: How Long Does a Machine Learning Deployment
Take? – The New Stack. TheNewStack, 12 2019. URL https://thenewstack.io/a
dd-it-up-how-long-does-a-machine-learning-deployment-take/.

[82] Yingnong Dang, Qingwei Lin, and Peng Huang. AIOps: Real-World Challenges
and Research Innovations. In Proceedings - 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion, ICSE-Companion 2019, pages 4–
5. Institute of Electrical and Electronics Engineers Inc., 2019. ISBN 9781728117645.
doi: 10.1109/ICSE-Companion.2019.00023. URL https://www.moogsoft.com/res
ources/aiops/guide/everything-aiops/.

[83] Danilo Sato, Arif Wider, and Christoph Windheuser. Continuous Delivery for Ma-
chine Learning. Martin Fowler, 9 2019. URL https://martinfowler.com/article
s/cd4ml.html.

[84] Margaret Rouse. Sandbox Definition. TechTarget. URL http://searchsecurity.t
echtarget.com/definition/sandbox.

106

https://link.springer.com/chapter/10.1007/BFb0031814
https://link.springer.com/chapter/10.1007/BFb0031814
https://books.google.no/books?hl=en&lr=&id=R6ul20M6nTIC&oi=fnd&pg=PR2&dq=Isabelle/HOL:++a++proof++assistant++for++higher-order+logic&ots=ex4SpHJNPg&sig=18lDo7zU4Ll64erSEH-4dEbINOw&redir_esc=y#v=onepage&q=Isabelle%2FHOL%3A%20%20a%20%20proof%20%20assistant%20%20for%20%20higher-order%20logic&f=false
https://books.google.no/books?hl=en&lr=&id=R6ul20M6nTIC&oi=fnd&pg=PR2&dq=Isabelle/HOL:++a++proof++assistant++for++higher-order+logic&ots=ex4SpHJNPg&sig=18lDo7zU4Ll64erSEH-4dEbINOw&redir_esc=y#v=onepage&q=Isabelle%2FHOL%3A%20%20a%20%20proof%20%20assistant%20%20for%20%20higher-order%20logic&f=false
https://books.google.no/books?hl=en&lr=&id=R6ul20M6nTIC&oi=fnd&pg=PR2&dq=Isabelle/HOL:++a++proof++assistant++for++higher-order+logic&ots=ex4SpHJNPg&sig=18lDo7zU4Ll64erSEH-4dEbINOw&redir_esc=y#v=onepage&q=Isabelle%2FHOL%3A%20%20a%20%20proof%20%20assistant%20%20for%20%20higher-order%20logic&f=false
https://books.google.no/books?hl=en&lr=&id=R6ul20M6nTIC&oi=fnd&pg=PR2&dq=Isabelle/HOL:++a++proof++assistant++for++higher-order+logic&ots=ex4SpHJNPg&sig=18lDo7zU4Ll64erSEH-4dEbINOw&redir_esc=y#v=onepage&q=Isabelle%2FHOL%3A%20%20a%20%20proof%20%20assistant%20%20for%20%20higher-order%20logic&f=false
https://books.google.no/books?hl=en&lr=&id=R6ul20M6nTIC&oi=fnd&pg=PR2&dq=Isabelle/HOL:++a++proof++assistant++for++higher-order+logic&ots=ex4SpHJNPg&sig=18lDo7zU4Ll64erSEH-4dEbINOw&redir_esc=y#v=onepage&q=Isabelle%2FHOL%3A%20%20a%20%20proof%20%20assistant%20%20for%20%20higher-order%20logic&f=false
https://books.google.no/books?hl=en&lr=&id=R6ul20M6nTIC&oi=fnd&pg=PR2&dq=Isabelle/HOL:++a++proof++assistant++for++higher-order+logic&ots=ex4SpHJNPg&sig=18lDo7zU4Ll64erSEH-4dEbINOw&redir_esc=y#v=onepage&q=Isabelle%2FHOL%3A%20%20a%20%20proof%20%20assistant%20%20for%20%20higher-order%20logic&f=false
https://www.bmc.com/blogs/deployment-pipeline/
https://algorithmia.com/blog/ml-pipeline
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.gartner.com/en/documents/3975770/predicts-2020-artificial-intelligence-the-road-to-produc
https://www.gartner.com/en/documents/3975770/predicts-2020-artificial-intelligence-the-road-to-produc
https://venturebeat.com/2019/12/11/algorithmia-50-of-companies-spend-upwards-of-three-months-deploying-a-single-ai-model/
https://venturebeat.com/2019/12/11/algorithmia-50-of-companies-spend-upwards-of-three-months-deploying-a-single-ai-model/
https://venturebeat.com/2019/12/11/algorithmia-50-of-companies-spend-upwards-of-three-months-deploying-a-single-ai-model/
https://thenewstack.io/add-it-up-how-long-does-a-machine-learning-deployment-take/
https://thenewstack.io/add-it-up-how-long-does-a-machine-learning-deployment-take/
https://www.moogsoft.com/resources/aiops/guide/everything-aiops/
https://www.moogsoft.com/resources/aiops/guide/everything-aiops/
https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/cd4ml.html
http://searchsecurity.techtarget.com/definition/sandbox
http://searchsecurity.techtarget.com/definition/sandbox

[85] Sandbox (software development) - Wikipedia. URL https://en.wikipedia.org/w
iki/Sandbox_(software_development).

[86] Sasu Mäkinen, Henrik Skogström, Eero Laaksonen, and Tommi Mikkonen. Who
Needs MLOps: What Data Scientists Seek to Accomplish and How Can MLOps
Help? 2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering
for AI (WAIN) of 43rd International Conference on Software Engineering (ICSE), 3
2021. URL http://arxiv.org/abs/2103.08942.

[87] Sumeet Agrawal and Anant Mittal. Automate and Productize Machine Learning Al-
gorithms MLOps: 5 Steps to Operationalize Machine Learning Models White Paper.
Technical report, Informatica, 2020.

[88] Bilge Celik and Joaquin Vanschoren. Adaptation Strategies for Automated Machine
Learning on Evolving Data. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021. ISSN 19393539. doi: 10.1109/TPAMI.2021.3062900. URL
https://ieeexplore.ieee.org/abstract/document/9366792.

[89] Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A survey of the state-of-the-art.
Knowledge-Based Systems, 212, 1 2021. ISSN 09507051. doi: 10.1016/j.knosys.2020.
106622.

[90] Analyttica Datalab. Gini Coefficient or Gini Index in our Data Science & Analytics
platform, 2018. URL https://medium.com/@analyttica/gini-coefficient-or-
gini-index-in-our-data-science-analytics-platform-d0408fc83772.

[91] run:ai. Machine Learning Operations, 2021. URL https://www.run.ai/guides/ma
chine-learning-operations/.

[92] Pranjal Pandey. Data Preprocessing : Concepts. Introduction to the concepts of
Data. . . | by Pranjal Pandey | Towards Data Science. Towards Data Science, 2019.
URL https://towardsdatascience.com/data-preprocessing-concepts-fa946
d11c825.

[93] Dennis Li, Euxhen Hasanaj, and Shuo Li. Baselines. Machine Learning Blog , MLD,
Carnegie Mellon University, 2020. URL https://blog.ml.cmu.edu/2020/08/31/3
-baselines/.

[94] Amit Ganatra, Gaurang Panchal, Devyani Panchal, and Y.P. Kosta. Searching Most
Efficient Neural Network Architecture Using Akaike’s Information Criterion (AIC).
Article in International Journal of Computer Applications, 1(5):975–8887, 2010. doi:
10.5120/126-242. URL https://www.researchgate.net/publication/43656073.

[95] Zhiye Zhao, Yun Zhang, and Hongjian Liao. Design of ensemble neural network using
the Akaike information criterion. Engineering Applications of Artificial Intelligence,
21(8):1182–1188, 12 2008. ISSN 09521976. doi: 10.1016/j.engappai.2008.02.007.

[96] Min Qi and Guoqiang Peter Zhang. An investigation of model selection criteria for
neural network time series forecasting. European Journal of Operational Research,
132(3):666–680, 8 2001. ISSN 03772217. doi: 10.1016/S0377-2217(00)00171-5.

[97] Alboukadel Kassambara. Regression Model Accuracy Metrics: R-square, AIC, BIC,
Cp and more . In Machine Learning Essential: Practical Guide in R. STHDA, 1
edition, 2018. ISBN 978-1986406857. URL http://www.sthda.com/english/arti
cles/38-regression-model-validation/158-regression-model-accuracy-me
trics-r-square-aic-bic-cp-and-more/.

107

https://en.wikipedia.org/wiki/Sandbox_(software_development)
https://en.wikipedia.org/wiki/Sandbox_(software_development)
http://arxiv.org/abs/2103.08942
https://ieeexplore.ieee.org/abstract/document/9366792
https://medium.com/@analyttica/gini-coefficient-or-gini-index-in-our-data-science-analytics-platform-d0408fc83772
https://medium.com/@analyttica/gini-coefficient-or-gini-index-in-our-data-science-analytics-platform-d0408fc83772
https://www.run.ai/guides/machine-learning-operations/
https://www.run.ai/guides/machine-learning-operations/
https://towardsdatascience.com/data-preprocessing-concepts-fa946d11c825
https://towardsdatascience.com/data-preprocessing-concepts-fa946d11c825
https://blog.ml.cmu.edu/2020/08/31/3-baselines/
https://blog.ml.cmu.edu/2020/08/31/3-baselines/
https://www.researchgate.net/publication/43656073
http://www.sthda.com/english/articles/38-regression-model-validation/158-regression-model-accuracy-metrics-r-square-aic-bic-cp-and-more/
http://www.sthda.com/english/articles/38-regression-model-validation/158-regression-model-accuracy-metrics-r-square-aic-bic-cp-and-more/
http://www.sthda.com/english/articles/38-regression-model-validation/158-regression-model-accuracy-metrics-r-square-aic-bic-cp-and-more/

[98] Hirotugu Akaike. A New Look at the Statistical Model Identification. IEEE
Transactions on Automatic Control, 19(6):716–723, 1974. ISSN 15582523. doi:
10.1109/TAC.1974.1100705.

[99] Sachin Date. The Akaike Information Criterion. Learn about the AIC and how to
use it | by Sachin Date | Towards Data Science, 2019. URL https://towardsdatas
cience.com/the-akaike-information-criterion-c20c8fd832f2.

[100] Rebecca Bevans. Akaike Information Criterion | When & How to Use It, 2020. URL
https://www.scribbr.com/statistics/akaike-information-criterion/.

[101] Gideon Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 6
(2):461 – 464, 1978. doi: 10.1214/aos/1176344136. URL https://doi.org/10.121
4/aos/1176344136.

[102] Matthias Feurer and Frank Hutter. Hyperparameter Optimization. In Automated
Machine Learning, pages 3–33. Springer, Cham, 2019. ISBN 3-030-05317-2. doi:
10.1007/978-3-030-05318-5{_}1. URL https://doi.org/10.1007/978-3-030-05
318-5_1.

[103] James Bergstra and Joshua Bengio. Random Search for Hyper-Parameter Opti-
mization. Journal of Machine Learning Research, 13:281–305, 2012. URL https:
//www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.

[104] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An Efficient Approach for
Assessing Hyperparameter Importance. In Proceedings of the 31st International Con-
ference on Machine Learning, PMLR, pages 754–762, 2014.

[105] Nidhal El-Omari. What is the meaning of "black box optimization"?, 5 2020. URL
https://www.researchgate.net/post/What_is_the_meaning_of_black_box_opt
imization/5fe512ed8a8a836a7c486ea0/citation/download.

[106] Charles Audet and Warren Hare. Introduction: Tools and Challenges in Derivative-
Free and Blackbox Optimization. In Springer Series in Operations Research and
Financial Engineering, pages 3–14. Springer Nature, 2017. doi: 10.1007/978-3-319-
68913-5{_}1. URL https://doi.org/10.1007/978-3-319-68913-5.

[107] Li Yang and Abdallah Shami. On hyperparameter optimization of machine learn-
ing algorithms: Theory and practice. Neurocomputing, 415:295–316, 11 2020. ISSN
18728286. doi: 10.1016/j.neucom.2020.07.061. URL https://www.sciencedirect.
com/science/article/pii/S0925231220311693.

[108] Philipp Probst, Bernd Bischl, and Anne-Laure Boulesteix. Tunability: Importance
of Hyperparameters of Machine Learning Algorithms. Journal of Machine Learning
Research, 20, 2 2018. URL http://arxiv.org/abs/1802.09596.

[109] Jeremy Jordan. Evaluating a machine learning model., 2017. URL https://www.je
remyjordan.me/evaluating-a-machine-learning-model/.

[110] Kartik Nighania. Various ways to evaluate a machine learning model’s performance
| by Kartik Nighania | Towards Data Science, 2018. URL https://towardsdatasci
ence.com/various-ways-to-evaluate-a-machine-learning-models-performa
nce-230449055f15.

[111] Jason Brownlee. ROC Curves and Precision-Recall Curves for Imbalanced Classifi-
cation, 2020. URL https://machinelearningmastery.com/roc-curves-and-prec
ision-recall-curves-for-imbalanced-classification/.

108

https://towardsdatascience.com/the-akaike-information-criterion-c20c8fd832f2
https://towardsdatascience.com/the-akaike-information-criterion-c20c8fd832f2
https://www.scribbr.com/statistics/akaike-information-criterion/
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a
https://www.researchgate.net/post/What_is_the_meaning_of_black_box_optimization/5fe512ed8a8a836a7c486ea0/citation/download
https://www.researchgate.net/post/What_is_the_meaning_of_black_box_optimization/5fe512ed8a8a836a7c486ea0/citation/download
https://doi.org/10.1007/978-3-319-68913-5
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://www.sciencedirect.com/science/article/pii/S0925231220311693
http://arxiv.org/abs/1802.09596
https://www.jeremyjordan.me/evaluating-a-machine-learning-model/
https://www.jeremyjordan.me/evaluating-a-machine-learning-model/
https://towardsdatascience.com/various-ways-to-evaluate-a-machine-learning-models-performance-230449055f15
https://towardsdatascience.com/various-ways-to-evaluate-a-machine-learning-models-performance-230449055f15
https://towardsdatascience.com/various-ways-to-evaluate-a-machine-learning-models-performance-230449055f15
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/

[112] Nicolas Vandeput. Forecast KPIs: RMSE, MAE, MAPE & Bias, 2019. URL https:
//towardsdatascience.com/forecast-kpi-rmse-mae-mape-bias-cdc5703d242d.

[113] Andrew Zhai, Hao-Yu Wu, Eric Tzeng, Dong Huk Park, and Charles Rosenberg.
Learning a Unified Embedding for Visual Search at Pinterest. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’19, pages 2412–2420, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450362016. doi: 10.1145/3292500.3330739.
URL https://doi.org/10.1145/3292500.3330739.

[114] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. Software
Engineering for Machine Learning: A Case Study. In Proceedings - 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice, ICSE-SEIP 2019, pages 291–300. Institute of Electrical and Electronics
Engineers Inc., 5 2019. ISBN 9781728117607. doi: 10.1109/ICSE-SEIP.2019.00042.

[115] Arif Wider and Christian Deger. Getting Smart: Applying Continuous Delivery to
Data Science to Drive Car Sales , 2017. URL https://www.thoughtworks.com/ins
ights/blog/getting-smart-applying-continuous-delivery-data-science-d
rive-car-sales.

[116] Janis Klaise, Arnaud Van Looveren, Clive Cox, Giovanni Vacanti, and Alexandru
Coca. Monitoring and explainability of models in production. arXiv, 7 2020. URL
http://arxiv.org/abs/2007.06299.

[117] Andre Ye. Real Artificial Intelligence: Understanding Extrapolation vs Generaliza-
tion. Towards Data Science, 2020. URL https://towardsdatascience.com/real-
artificial-intelligence-understanding-extrapolation-vs-generalizatio
n-b8e8dcf5fd4b.

[118] Michael McCartney, Matthias Haeringer, and Wolfgang Polifke. Comparison of Ma-
chine Learning Algorithms in the Interpolation and Extrapolation of Flame Describ-
ing Functions. Journal of Engineering for Gas Turbines and Power, 142(6), 6 2020.
ISSN 15288919. doi: 10.1115/1.4045516. URL http://asmedigitalcollection.as
me.org/gasturbinespower/article-pdf/142/6/061009/6538416/gtp_142_06_0
61009.pdf.

[119] Subham S Sahoo, Christoph H Lampert, and Georg Martius. Learning Equations
for Extrapolation and Control. In Proceedings of the 35th International Conference
on Machine Learning, pages 4442–4450. PMLR, 7 2018. URL http://proceeding
s.mlr.press/v80/sahoo18a.html.

[120] Thomas G. Dietterich. Should we expect machine learning to extrapolate?, 2018.
URL https://medium.com/@tdietterich/should-we-expect-machine-learning
-to-extrapolate-89f1196f63f2.

[121] Randall Munroe. Extrapolating. URL https://xkcd.com/605/.

[122] Tom Diethe, Tom Borchert, Eno Thereska, Borja Balle, and Neil Lawrence. Continual
Learning in Practice. arXiv, 3 2019. URL http://arxiv.org/abs/1903.05202.

[123] Syed Muslim Jameel, Manzoor Ahmed Hashmani, Hitham Alhussain, Mobashar
Rehman, and Malaysia Arif Budiman. A Critical Review on Adverse Effects of

109

https://towardsdatascience.com/forecast-kpi-rmse-mae-mape-bias-cdc5703d242d
https://towardsdatascience.com/forecast-kpi-rmse-mae-mape-bias-cdc5703d242d
https://doi.org/10.1145/3292500.3330739
https://www.thoughtworks.com/insights/blog/getting-smart-applying-continuous-delivery-data-science-drive-car-sales
https://www.thoughtworks.com/insights/blog/getting-smart-applying-continuous-delivery-data-science-drive-car-sales
https://www.thoughtworks.com/insights/blog/getting-smart-applying-continuous-delivery-data-science-drive-car-sales
http://arxiv.org/abs/2007.06299
https://towardsdatascience.com/real-artificial-intelligence-understanding-extrapolation-vs-generalization-b8e8dcf5fd4b
https://towardsdatascience.com/real-artificial-intelligence-understanding-extrapolation-vs-generalization-b8e8dcf5fd4b
https://towardsdatascience.com/real-artificial-intelligence-understanding-extrapolation-vs-generalization-b8e8dcf5fd4b
http://asmedigitalcollection.asme.org/gasturbinespower/article-pdf/142/6/061009/6538416/gtp_142_06_061009.pdf
http://asmedigitalcollection.asme.org/gasturbinespower/article-pdf/142/6/061009/6538416/gtp_142_06_061009.pdf
http://asmedigitalcollection.asme.org/gasturbinespower/article-pdf/142/6/061009/6538416/gtp_142_06_061009.pdf
http://proceedings.mlr.press/v80/sahoo18a.html
http://proceedings.mlr.press/v80/sahoo18a.html
https://medium.com/@tdietterich/should-we-expect-machine-learning-to-extrapolate-89f1196f63f2
https://medium.com/@tdietterich/should-we-expect-machine-learning-to-extrapolate-89f1196f63f2
https://xkcd.com/605/
http://arxiv.org/abs/1903.05202

Concept Drift over Machine Learning Classification Models. (IJACSA) Interna-
tional Journal of Advanced Computer Science and Applications, 11(1), 2020. URL
www.ijacsa.thesai.org.

[124] Andrés R Masegosa, Ana M Martínez, Darío Ramos-López, Helge Langseth,
Thomas D Nielsen, and Antonio Salmerón. Analyzing concept drift: A case study
in the financial sector. Intelligent Data Analysis, 24:665–688, 2020. ISSN 1571-4128.
doi: 10.3233/IDA-194515.

[125] Daniel Langenkämper, Robin van Kevelaer, Autun Purser, and Tim W. Nattkem-
per. Gear-Induced Concept Drift in Marine Images and Its Effect on Deep Learning
Classification. Frontiers in Marine Science, 7:506, 7 2020. ISSN 22967745. doi:
10.3389/fmars.2020.00506. URL www.frontiersin.org.

[126] Jan Zenisek, Florian Holzinger, and Michael Affenzeller. Machine learning based
concept drift detection for predictive maintenance. Computers and Industrial Engi-
neering, 137:106031, 11 2019. ISSN 03608352. doi: 10.1016/j.cie.2019.106031.

[127] Klaus Ackermann, Hareem Naveed, Jason Bennett, Joe Walsh, Andrea Navarrete
Rivera, Michael Defoe, Adolfo De Unánue, Sun Joo Lee, Crystal Cody, Lauren
Haynes, and Rayid Ghani. Deploying machine learning models for public policy:
A framework. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, volume 18, pages 15–22. Association for
Computing Machinery, 7 2018. ISBN 9781450355520. doi: 10.1145/3219819.3219911.
URL https://doi.org/10.1145/3219819.3219911.

[128] D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan Dennison.
Hidden Technical Debt in Machine Learning Systems. In Advances in neural infor-
mation processing systems, pages 2503–2511, 2015. URL https://web.kaust.edu.
sa/Faculty/MarcoCanini/classes/CS290E/F19/papers/tech-debt.pdf.

[129] Docker Inc. Docker Docs, 2021.

[130] Emre Ceylan. Docker in a Nutshell. What is Docker? Medium, 2020. URL https:
//medium.com/dev-jam/docker-in-a-nutshell-f2e315211195.

[131] The Kubernetes Authors. Kubernetes. URL https://kubernetes.io/.

[132] Run:ai. Run:AI Platform - Build and Train Models with Unlimited Compute. URL
https://www.run.ai/platform/.

[133] George Anadiotis. Run:AI takes your AI and runs it, on the super-fast software stack
of the future. Big on Data, ZDNet, 2019. URL https://www.zdnet.com/article/
take-your-ai-and-run-it-on-the-super-fast-software-stack-of-the-futu
re/.

[134] The Apache Software Foundation. Apache Kafka, . URL https://kafka.apache.o
rg/.

[135] Google. Dataflow | Google Cloud. URL https://cloud.google.com/dataflow.

[136] Databricks. Databricks. URL https://databricks.com/product/open-source.

[137] Ian Pointer. What is Apache Spark? The big data platform that crushed Hadoop .
InfoWorld, 2020. URL https://www.infoworld.com/article/3236869/what-is-
apache-spark-the-big-data-platform-that-crushed-hadoop.html.

110

www.ijacsa.thesai.org
www.frontiersin.org
https://doi.org/10.1145/3219819.3219911
https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS290E/F19/papers/tech-debt.pdf
https://web.kaust.edu.sa/Faculty/MarcoCanini/classes/CS290E/F19/papers/tech-debt.pdf
https://medium.com/dev-jam/docker-in-a-nutshell-f2e315211195
https://medium.com/dev-jam/docker-in-a-nutshell-f2e315211195
https://kubernetes.io/
https://www.run.ai/platform/
https://www.zdnet.com/article/take-your-ai-and-run-it-on-the-super-fast-software-stack-of-the-future/
https://www.zdnet.com/article/take-your-ai-and-run-it-on-the-super-fast-software-stack-of-the-future/
https://www.zdnet.com/article/take-your-ai-and-run-it-on-the-super-fast-software-stack-of-the-future/
https://kafka.apache.org/
https://kafka.apache.org/
https://cloud.google.com/dataflow
https://databricks.com/product/open-source
https://www.infoworld.com/article/3236869/what-is-apache-spark-the-big-data-platform-that-crushed-hadoop.html
https://www.infoworld.com/article/3236869/what-is-apache-spark-the-big-data-platform-that-crushed-hadoop.html

[138] The Apache Software Foundation. Apache Spark - Unified Analytics Engine for Big
Data, . URL https://spark.apache.org/.

[139] MLflow Projects. MLflow - A platform for the machine learning lifecycle. URL
https://mlflow.org/.

[140] Thomas Elliott. The State of the Octoverse: machine learning, 2019. URL https:
//github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/.

[141] Anaconda Software Distribution, 2020. URL https://docs.anaconda.com/.

[142] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-a
n-imperative-style-high-performance-deep-learning-library.pdf.

[143] Charles R Harris, K Jarrod Millman, Stefan J.van der Walt, Ralf Gommers, Pauli
Virtanen, Cournapeau David, Eric Wieser, Julian Taylor, Berg Sebastian, Nathaniel J
Smith, Robert Kern, Matti Picus Hoyer, Stephan, Marten H van Kerkwijk, Brett
Matthew, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe, Pearu Peterson,
Gerard-Marchant Pierre, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E Oliphant. Array programming with NumPy.
Nature, 585(7825):357–362, 9 2020. doi: 10.1038/s41586-020-2649-2. URL https:
//doi.org/10.1038/s41586-020-2649-2.

[144] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz Diehl.
CasADi - A software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation, 2018. URL https://web.casadi.org/.

[145] J D Hunter. Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[146] J.G. van de Vusse. Plug-flow type reactor versus tank reactor. Chemical Engineering
Science, 19(12):994–996, 1964. ISSN 0009-2509. doi: https://doi.org/10.1016/0009
-2509(64)85109-5. URL https://www.sciencedirect.com/science/article/pii/
0009250964851095.

[147] Hong Chen, H Kremling, and Frank Allgöwer. Nonlinear Predictive Control of a
Benchmark CSTR. Proceedings of the 3rd European Control Conference, Rome-Italy.,
pages 3247–3252, 4 1995.

[148] Jiri Vojtesek and Petr Dostál. From steady-state and dynamic analysis to adaptive
control of the CSTR reactor. Simulation in Wider Europe - 19th European Conference
on Modelling and Simulation, ECMS 2005, 4 2005.

[149] Jiri Vojtesek, Petr Dostal, and Vladimir Bobal. Control of nonlinear system - Adap-
tive and predictive control. In IFAC Proceedings Volumes (IFAC-PapersOnline),
volume 7, pages 898–903. IFAC Secretariat, 2009. ISBN 9783902661548. doi:
10.3182/20090712-4-tr-2008.00147.

[150] Jiri Vojtesek and Petr Dostal. Adaptive Control of Chemical Reactor. In Interna-
tional Conference Cybernetics and Informatics, 2010.

111

https://spark.apache.org/
https://mlflow.org/
https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
https://docs.anaconda.com/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://web.casadi.org/
https://www.sciencedirect.com/science/article/pii/0009250964851095
https://www.sciencedirect.com/science/article/pii/0009250964851095

[151] Iman Hajizadeh and Seyed Mohsen Hosseini. Artificial Neural Networks Based Con-
trol of CSTRs with Van de Vusse Reaction. Intelligent Automation and Soft Com-
puting, 2014. URL https://www.researchgate.net/publication/273754874.

[152] Eric M L Luz and Brunno F Santos. Development of Intelligent Models for the
Prediction the Dynamics of Nonlinear Process. Chemical Engineering Transactions,
74:763–768, 2019. doi: DOI:10.3303/CET1974128.

[153] S. Engell and K. U. Klatt. Nonlinear control of a non-minimum-phase CSTR. In
American Control Conference, pages 2941–2945. IEEE, 1993. ISBN 0780308611. doi:
10.23919/acc.1993.4793439. URL https://ieeexplore.ieee.org/abstract/doc
ument/4793439/.

[154] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban,
Dan E Shumaker, and Carol S Woodward. SUNDIALS: Suite of nonlinear and dif-
ferential/algebraic equation solvers. ACM Transactions on Mathematical Software
(TOMS), 31(3):363–396, 2005.

[155] Bjarne Grimstad and NTNU. TTK28 Modeling with neural networks - Institutt for
teknisk kybernetikk, NTNU, 2020. URL https://www.itk.ntnu.no/emner/fordyp
ning/TTK28.

[156] Neil D. Lawrence. Modern Data Oriented Programming. In Advances and Challenges
in Machine Learning Languages, Centre for Mathematical Sciences, Cambridge, 2019.
URL http://inverseprobability.com/talks/notes/modern-data-oriented-pr
ogramming.html.

[157] Tom Borchert. Milan: An Evolution of Data-Oriented Programming, 2020. URL
https://tborchertblog.wordpress.com/2020/02/13/28/.

112

https://www.researchgate.net/publication/273754874
https://ieeexplore.ieee.org/abstract/document/4793439/
https://ieeexplore.ieee.org/abstract/document/4793439/
https://www.itk.ntnu.no/emner/fordypning/TTK28
https://www.itk.ntnu.no/emner/fordypning/TTK28
http://inverseprobability.com/talks/notes/modern-data-oriented-programming.html
http://inverseprobability.com/talks/notes/modern-data-oriented-programming.html
https://tborchertblog.wordpress.com/2020/02/13/28/

Appendix

A Program files for miniature machine learning system

README.md

README.md file for miniature machine learning system, referred to in chapter 7. Explains
the structure of the system.

113

Miniature Machine Learning System

This system provides a configurable neural network class, and a simulator for a CSTR with a van de

Vusse reaction, which can generate data to be used for training, and testing the neural network.

The neural network can be applied to a different process, by configuring its input features and

outputs. Data must then be fetched from a different source, or the van de Vusse-simulator can be

used as a template for developing your own simulator for a different process.

Info

The system is build with Python, uses Conda for packet management, and the PyTorch machine

learning framework. The CasADi framework is used to develop the simulator.

The system as it is provides basic functionality for performing different tests of various ML techniques

or technologies. The system would massively benefit from further development to create more

extensive functionlity.

Contents

The system consist of:

config.json, in which desired configurations for the system are performed.

neural_net_class.py - implements the class for the neural net.

train_model.py - splits the data set, trains the model, and subjects the trained model to the

validation set.

test_model.py - also splits data set, as the split data sets aren't stored. Tests model, and

visualizes reults.

make_predictions_batch.py - performs predicitons on batches of data. Pretty much similar

functionality to test_model.py, other then performing on a completely separate data set.

Provides a frame for if real production data would be made available at a later iteration.

generate_input_vandevusse.py - generates input data for the simulator in a selection of

different ways.

simulate_vandevusee.py - performs the simulation of the CSTR with van de Vusse reaction

subject to the generated input data. Output data is stored, so as to be used by neural network.

steady_state_extraction.py - extracts only data points from intervals where a specified feature

is in steady state.

plotting.py - contains different plotting functions that help streamline the visualization process.

Configurability

The system is created so that any necessary configurations can be performed in config.json, without

requiring much knowledge about the code base. The options are as follows:

Neural net

"further_train_existing_net": true/false - decides whether to perform training on an already

existing net, or to initialize a new one.

"prev_net_file": "path/to/file" - the path to the net that should be further trained if above

option is set to true.

"trained_net_storage_file": "path/to/file" - where to store the trained net. Also the net that is

loaded when testing the model.

"data_set": "path/to/file" - path to the data set that should be trained, validated, and tested on.

"input_cols": ["feature1", "feature2",] - the features that make up the input of the neural net.

"output_cols": ["output1", ...] - the output feature of the neural net

"all_output_cols": ["all possible output features"] - not used, but kept for the purpose of

keeping track of possible outputs.

"hidden_layers": [size_l1,size_l2,] - the number of hidden layers in the neural net and their

sizes.

"training_batch_size": x - training batch size

"shuffle_training_data": true/false - whether or not to shuffle traiing data prior to training.

"n_epochs": n - number of epochs for the training procedure.

"learning_rate": x - learning rate in training procedure.

"l2_regularization": x - regularization coefficient in training procedure.

Vdv Model - The process in the simulator

"load_initial_state_values_from_file": true/false - whether or not to load initial values from a

file.

"initial_state_values_file": "path/to/file" - file for initial values if above is true. Also where the

last last state values in the simulation are stored. In case one wants to "continue" a simulation.

"initial_state_values": [x1, x2, x3, ...] - initial values for the states in the process, if not loaded

from file.

"simulation_result_dataset_storage_file":"path/to/file" - where to store the simulation results.

"n_iterations": n - number of iterations to simulate for

"simulation":

"samples_per_hour": t - how many samples per hour in the simulation process. dt =

1/"samples_per_hour". Decides the step size of the integrator in the simulator.

Input generation

"options":

"input_interval_size": n, how many iterations the input should stay constant for before

changing,

"perturbation_style": "single"/"double"/"F_only"/"Qk_only"- decides how the

perturbation should ensue. "single" perturbates one of the inputs, chosen randomly, at

the end of each interval. "double" changes both inputs. "F_only" changes only the input

feed. "Qk_only" changes only the jacket cooling rate.

"F_min":fl - minimum value for input feed

"F_max":fu - maximum value for input feed

"Fin_0":f0 - initial value for input feed

"max_change_Fin": df - maximum change in input feed at each interval.

"Qk_min":ql - minimum value for jacket cooling rate

"Qk_max":qu - maximum value for jacket cooling rate

"Qk_0":q0 - initial value for jacket cooling rate

"max_change_Qk": dq - maximum change in jacket cooling rate at each interval

"storage_file": "path/to/file" - where to store the generated input sequence

Data extraction

"steady_state_variable": "feature1" - which feature should be in a steady state in the extracted

data points.

"state_change_threshold": x - the threshold change in feature value allowed in steady state

"steady_period_duration_threshold": t - how many iterations must the feature be in steady

state to make up a steady state period.

"raw_data_file": "path/to/file" - file to fetch data to perform extraction on.

"steady_state_data_storage_file": "path/to/file" - storage for extracted data.

Predictions

"prediction_net_file": "path/to/file" - net to use for predictions.

"prediction_input_data": "path/to/file" - file to data to predict on.

Pipelines

Training pipeline

Invoke the modules in the following order:

generate_input_vandevusse.py -> simulate_vandevusse.py -> steady_state_extraction.py ->

train_model.py -> test_model.py

Prediciton pipeline

Invoke the modules in the following order:

generate_input_vandevusse.py -> simulate_vandevusse.py -> make_predictions_batch.py

Further work

The system consists of several components, which forms ML pipelines. More components could be

implemented into the system, such as hyperparameter optimization, more extensive data pre-

processing, etc. The system is modular, and integrating extra components should provide few

problems.

The steady_state_extraction.py module could also benefit from more extensive functionality, e.g. by

performing analyses of the dynamics of the simulation process to implement more helpful steady

state extraction. This could include investigating the time constant, allowing for extracting data based

on the steady state of the input, which are the features we know are always measurable.

It would be interesting to integrate other technologies into this system, such as Docker, in order to

create a containerized system that could be deployed somewhere. Kafka is also an option in order to

enable the functionality of an event-driven system.

Automating the pipelines would also be auspicious, and a step in the right direction of creating a

system that could be subjected to a proper form of MLOps.

Configuration

Configuration file for miniature machine learning system, referred to in chapter 7.

1 {
2 "neural_net":
3 {
4 "further_train_existing_net": false,
5 "prev_net_file": "neural-nets/trained_nn",
6 "trained_net_storage_file": "neural-nets/trained_nn_wo_temps",
7 "data_set": "data/vdv_steady_state_dataset.csv",
8 "input_cols": ["CAin", "CBin", "CCin", "CDin","Fin", "Qk"],
9 "output_cols": ["Tout"],

10 "all_output_cols": ["CAout", "CBout", "CCout", "CDout", "Tout",
"Tkout"],↪→

11 "hidden_layers": [50,50],
12 "training_batch_size": 10,
13 "shuffle_training_data": true,
14 "n_epochs":100,
15 "learning_rate":0.001,
16 "l2_regularization":0.01
17 },
18 "vdv_model":
19 {
20 "initial_state_values": [2.2291, 1.0417, 0.91397, 0.91520, 79.591,

77.69],↪→

21 "initial_state_values_file": "data/vdv_initial_states.csv",
22 "simulation_result_dataset_storage_file":"data/vdv_dataset.csv",
23 "load_initial_state_values_from_file": false,
24 "n_iterations": 288000,
25 "simulation":
26 {
27 "samples_per_hour": 3600
28 },
29 "input_generation":
30 { "options":
31 {
32

33 "input_interval_size": 14400,
34 "perturbation_style": "single",
35 "F_min":10,
36 "F_max":150,
37 "Fin_0":14.9,
38 "max_change_Fin": 5,
39 "Qk_min":-8500,
40 "Qk_max":-500,
41 "Qk_0":-1113.5,
42 "max_change_Qk": 25
43 },
44 "storage_file": "data/vdv_input_sequence.csv"
45 },

118

46 "data_extraction":
47 {
48 "steady_state_variable": "Tout",
49 "state_change_threshold": 0.005,
50 "steady_period_duration_threshold": 120,
51 "raw_data_file": "data/vdv_dataset.csv",
52 "steady_state_data_storage_file":

"data/vdv_steady_state_dataset.csv"↪→

53 }
54 },
55 "predictions":
56 {
57 "prediction_net_file": "neural-nets/trained_nn_wo_temps",
58 "prediction_input_data": "data/prod/vdv_dataset.csv"
59 }
60

61 }

Simulator

Simulator for CSTR with van de Vusse reaction for miniature machine learning system,
referred to in chapter 7.

1 from casadi import *
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import pandas as pd
5 import json
6

7 # local imports
8 from utils import plotting
9

10 # Fetch configuration
11 with open ('config.json') as config_file:
12 config = json.load(config_file)
13 #print(config)
14 try:
15 input_sequence_file =

config['vdv_model']['input_generation']['storage_file']↪→

16 initial_state_values_file =
config['vdv_model']['initial_state_values_file']↪→

17 except:
18 input_sequence_file = "data/vdv_input_sequence.csv"
19 initial_state_values_file = "data/vdv_initial_states.csv"
20

21 output_result_file = "data/vdv_simulation_results.csv"
22 dataset_file = "data/vdv_dataset.csv"
23 prod_batch_file = "data/prod/vdv_dataset.csv"
24

25 # Hard coded values

119

26 #n = 14400 # number of iterations # decided by input sequence
27 #TF = n*dt*60 # Time horizon
28 #dt = 1/3600 # step size # Sample once per second
29

30 # Fetched from config.json
31

32 n = config['vdv_model']['n_iterations']
33 dt = 1/config['vdv_model']['simulation']['samples_per_hour']
34

35 # model parameters
36 params = {
37 "CA0": 5.1,
38 "T0":104.9,
39 "k10": 1.287e12,
40 "k20": 1.287e12,
41 "k30": 9.043e9,
42 "E1": 9758.3,
43 "E2": 9758.3,
44 "E3": 8560,
45 "dHr1": 4.2,
46 "dHr2": -11,
47 "dHr3": -41.85,
48 "rho": 0.9342,
49 "Cp": 3.01,
50 "kw": 4032,
51 "AR": 0.215,
52 "VR": 10.0,
53 "mK": 5,
54 "CpK": 2
55 }
56

57

58 nx = 6 # number of states in plant
59 nu = 2 # number of input control variables
60

61 x = SX.sym('x', nx) # Concentration of A, B, C, D, temperature in CSTR, T
and temp of cooling jacket T_k↪→

62 p = SX.sym('p', nu) # Feed rate F_in and Jacket cooling rate, Qk
63

64 # reaction rates for A->B, B->C and 2A -> D
65 k1 = params["k10"]*np.exp(-params["E1"]/(x[4] + 273.15))
66 k2 = params["k20"]*np.exp(-params["E2"]/(x[4] + 273.15))
67 k3 = params["k30"]*np.exp(-params["E3"]/(x[4] + 273.15))
68

69 r1 = k1*params["VR"]*x[0]
70 r2 = k2*params["VR"]*x[1]
71 r3 = k3*params["VR"]*(x[0]**2)
72

73

74 # ODEs
75 # concentrations

120

76 dCA = (-r1 - 2*r3 + p[0]*(params["CA0"]-x[0]))/params["VR"]
77 dCB = (r1 - r2 - p[0]*x[1])/params["VR"]
78 dCC = (r2 - p[0]*x[2])/params["VR"]
79 dCD = (r3 - p[0]*x[3])/params["VR"]
80

81 # temperatures
82 dT = (p[0]*(params["T0"]-x[4])/params["VR"] +

(params["kw"]*params["AR"]*(x[5]-x[4])↪→

83 -r1*params["dHr1"] - r2*params["dHr2"] -
r3*params["dHr3"])/(params["VR"]*params["rho"]*params["Cp"]))↪→

84 dTk = (p[1] + params["kw"]*params["AR"]*(x[4] -
x[5]))/(params["mK"]*params["CpK"])↪→

85

86

87 # Create ODE set and integrator
88 xdot = vertcat(dCA, dCB, dCC, dCD, dT, dTk)
89 ode = {'x':x, 'ode': xdot, 'p': p}
90 opts = {'tf': dt} # Sets correct step size in integrator
91 ode_solver = integrator('F', 'cvodes', ode, opts)
92

93

94 # Function for simulation
95 def simulate_vdv(x0, u):
96 states = [x0]
97 for k in range(u.shape[0]):
98 res = ode_solver(x0=x0, p = u[k])
99 x0 = res["xf"]

100 states.append(x0)
101 return np.concatenate(states, axis = 1)
102

103 ## Beginning of simulation procedure
104

105 # Input sequence for simulation
106 try:
107 df_u = pd.read_csv(input_sequence_file, index_col=0)
108 except:
109 print('Error reading input sequence file. Defaulting to constant u.')
110 # Values for u yielding optimal concentration level of A
111 u = [14.19, -1113.5]
112 u = np.tile(u, (n,1))
113 df_u = pd.DataFrame(data=u, columns = ['Fin', 'Qk'])
114

115 u = df_u.values
116 #print(u)
117

118 # Inital state values
119 if config["vdv_model"]["load_initial_state_values_from_file"]:
120 try:
121 x0 = np.concatenate(pd.read_csv(initial_state_values_file,

index_col=0).to_numpy())↪→

122 print("x0 read from file:\n", x0)

121

123 except:
124 x0 = config['vdv_model']['initial_state_values']
125 print("Could not load initial values from file, x0 defaults

to:\n", x0)↪→

126 else:
127 x0 = config['vdv_model']['initial_state_values']
128 print("x0 initialized to:\n", x0)
129

130

131 x0 = DM(x0)
132

133 states = simulate_vdv(x0, u)
134 TF = dt*u.shape[0]*60 #Time horizon in minutes for visualization
135 plotting.plot_vdv(states, u, TF, source='Casadi Model')
136

137

138 df_states = pd.DataFrame(data=states.T, columns=['CA', 'CB', 'CC', 'CD',
'T', 'Tk'])↪→

139 df_last_states = pd.DataFrame(data=states.T[-1].reshape((6,1)).T,
columns=['CA0', 'CB0', 'CC0', 'CD0','T0', 'TK0'])↪→

140

141

142 data_set = np.concatenate((states.T[:-1], u, states.T[1:]), axis = 1)
143

144 ## Uncomment to shuffle data set
145 #np.random.shuffle(data_set)
146

147 df_data_set = pd.DataFrame(data=data_set,
148 columns=['CAin', 'CBin', 'CCin', 'CDin', 'Tin', 'Tkin', 'Fin', 'Qk',

'CAout', 'CBout', 'CCout', 'CDout', 'Tout','Tkout'])↪→

149

150 # Write results to files
151 try:
152 df_last_states.to_csv(initial_state_values_file) # final state values
153 df_states.to_csv(output_result_file) # time series for all states
154 df_data_set.to_csv(dataset_file) # data set for training ML model
155 #df_data_set.to_csv(prod_batch_file) # same as above, but to seperate

file to simulate production setting↪→

156 except:
157 print("Error, could not save simulation results to file")

Neural Net Class

Neural net class for miniature machine learning system, referred to in chapter 7.

1 import matplotlib.pyplot as plt
2 import pandas as pd
3 import torch
4 from torch.utils.data import DataLoader
5 from math import sqrt

122

6

7

8 class NeuralNet(torch.nn.Module):
9 """

10 PyTorch offers several ways to construct neural networks.
11 Here we choose to implement the network as a Module class.
12 This gives us full control over the construction and clarifies our

intentions.↪→

13 """
14

15 def __init__(self, layers):
16 """
17 Constructor of neural network
18 :param layers: list of layer widths. Note that len(layers) =

network depth + 1 since we incl. the input layer.↪→

19 """
20 super().__init__()
21

22 self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
23

24 assert len(layers) >= 2, "At least two layers are required (incl.
input and output layer)"↪→

25 self.layers = layers
26

27 # Fully connected linear layers
28 linear_layers = []
29

30 for i in range(len(self.layers) - 1):
31 n_in = self.layers[i]
32 n_out = self.layers[i+1]
33 layer = torch.nn.Linear(n_in, n_out)
34

35 # Initialize weights and biases
36 a = 1 if i == 0 else 2
37 layer.weight.data = torch.randn((n_out, n_in)) * sqrt(a / n_in)
38 layer.bias.data = torch.zeros(n_out)
39

40 # Add to list
41 linear_layers.append(layer)
42

43 # Modules/layers must be registered to enable saving of model
44 self.linear_layers = torch.nn.ModuleList(linear_layers)
45

46 # Non-linearity (e.g. ReLU, ELU, or SELU)
47 self.act = torch.nn.ReLU(inplace=False)
48

49 def forward(self, input):
50 """
51 Forward pass to evaluate network for input values
52 :param input: tensor assumed to be of size (batch_size, n_inputs)
53 :return: output tensor

123

54 """
55 x = input
56 for l in self.linear_layers[:-1]:
57 x = l(x)
58 x = self.act(x)
59

60 output_layer = self.linear_layers[-1]
61 return output_layer(x)
62

63 def get_num_parameters(self):
64 return sum(p.numel() for p in self.parameters())
65

66 def save(self, path: str):
67 """
68 Save model state
69 :param path: Path to save model state
70 :return: None
71 """
72 torch.save({
73 'model_state_dict': self.state_dict(),
74 }, path)
75

76 def load(self, path: str):
77 """
78 Load model state from file
79 :param path: Path to saved model state
80 :return: None
81 """
82 checkpoint = torch.load(path, map_location=torch.device("cuda" if

torch.cuda.is_available() else "cpu"))↪→

83 self.load_state_dict(checkpoint['model_state_dict'])

Training procedure

Training module for miniature machine learning system, referred to in chapter 7.

1 import matplotlib.pyplot as plt
2 import pandas as pd
3 import torch
4 from torch.utils.data import DataLoader
5 from math import sqrt
6 import numpy as np
7 from pathlib import Path
8 import json
9

10 # local imports
11 from flow_net_class import FlowNet as Net
12 from utils import plotting
13

14 # We set a fixed seed for repeatability

124

15 random_seed = 12345
16 torch.manual_seed(random_seed)
17

18 ## Get path to source directory
19 src_dir = Path(__file__).parent.parent.absolute()
20

21 with open (src_dir / 'config.json') as config_file:
22 config = json.load(config_file)
23

24 # Load dataset
25 #df = pd.read_csv(src_dir / 'data/vdv_steady_state_dataset.csv',

index_col=0)↪→

26 try:
27 df = pd.read_csv(src_dir / config["neural_net"]["data_set"],

index_col=0)↪→

28 except:
29 print("Unable to load dataset")
30

31 # Split data sets
32 low_index = int(df.shape[0]*0.65)
33 up_index = int(df.shape[0]*0.95)
34 test_set = df.iloc[low_index:up_index]
35

36 # Define the target and features
37 INPUT_COLS = config['neural_net']['input_cols']
38 OUTPUT_COLS = config['neural_net']['output_cols']
39

40 # Make a copy of the dataset and remove the test data
41 train_val_set = df.copy().drop(test_set.index)
42

43 # Sample validation data without replacement (10%)
44 val_set = train_val_set.sample(frac=0.1, replace=False,

random_state=random_seed)↪→

45

46 # The remaining data is used for training (90%)
47 train_set = train_val_set.copy().drop(val_set.index)
48

49 # Check that the numbers add up
50 n_points = len(train_set) + len(val_set) + len(test_set)
51 print("Verify:\nLength of dataset = Length of training set + Length of

validation set + length of test set")↪→

52 print(f'{len(df)} = {len(train_set)} + {len(val_set)} + {len(test_set)} =
{n_points}')↪→

53

54

55

56 def train(
57 net: torch.nn.Module,
58 train_loader: DataLoader,
59 val_loader: DataLoader,
60 n_epochs: int,

125

61 lr: float,
62 l2_reg: float,
63) -> torch.nn.Module:
64 """
65 Train model using mini-batch SGD
66 After each epoch, we evaluate the model on validation data
67

68 :param net: initialized neural network
69 :param train_loader: DataLoader containing training set
70 :param n_epochs: number of epochs to train
71 :param lr: learning rate (default: 0.001)
72 :param l2_reg: L2 regularization factor (default: 0)
73 :return: torch.nn.Module: trained model.
74 """
75

76 # Define loss and optimizer
77 criterion = torch.nn.MSELoss(reduction='mean')
78 optimizer = torch.optim.Adam(net.parameters(), lr=lr)
79

80 # Train Network
81 for epoch in range(n_epochs):
82 for inputs, labels in train_loader:
83 # Zero the parameter gradients (from last iteration)
84 optimizer.zero_grad()
85

86 # Forward propagation
87 outputs = net(inputs)
88

89 # Compute cost function
90 batch_mse = criterion(outputs, labels)
91

92 reg_loss = 0
93 for param in net.parameters():
94 reg_loss += param.pow(2).sum()
95

96 cost = batch_mse + l2_reg * reg_loss
97

98 # Backward propagation to compute gradient
99 cost.backward()

100

101 # Update parameters using gradient
102 optimizer.step()
103

104 # Evaluate model on validation data
105 mse_val = 0
106 for inputs, labels in val_loader:
107 mse_val += torch.sum(torch.pow(labels - net(inputs), 2)).item()
108 mse_val /= len(val_loader.dataset)
109 print(f'Epoch: {epoch + 1}: Val MSE: {mse_val}')
110

111 return net

126

112

113

114

115

116 # Get input and output tensors and convert them to torch tensors
117 x_train = torch.from_numpy(train_set[INPUT_COLS].values).to(torch.float)
118 y_train = torch.from_numpy(train_set[OUTPUT_COLS].values).to(torch.float)
119

120 x_val = torch.from_numpy(val_set[INPUT_COLS].values).to(torch.float)
121 y_val = torch.from_numpy(val_set[OUTPUT_COLS].values).to(torch.float)
122

123 # Create dataset loaders
124 # Here we specify the batch size and if the data should be shuffled
125 train_dataset = torch.utils.data.TensorDataset(x_train, y_train)
126 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=10,

shuffle=True)↪→

127

128 val_dataset = torch.utils.data.TensorDataset(x_val, y_val)
129 val_loader = torch.utils.data.DataLoader(val_dataset,

batch_size=len(val_set), shuffle=False)↪→

130

131

132 # # Construct and initialize the model
133

134 # TODO: load previously trained model instead of creating new if wanted.
135

136 layers = [len(INPUT_COLS), 50, 50, len(OUTPUT_COLS)]
137 net = Net(layers)
138

139 print(f'Size of layers: {layers}')
140 print(f'Number of model parameters: {net.get_num_parameters()}')
141

142

143 # # Train the model
144 # Hyperparameters
145 n_epochs = config['neural_net']['n_epochs']
146 lr = config['neural_net']['learning_rate']
147 l2_reg = config['neural_net']['l2_regularization']
148

149 # Load existing net if specified
150 if config["neural_net"]["further_train_existing_net"]:
151 try:
152 net.load(src_dir / config["neural_net"]["prev_net_file"])
153 print("Loaded existing net from " +

config["neural_net"]["prev_net_file"])↪→

154 except:
155 print("Unable to load existing net from " +

config["neural_net"]["prev_net_file"])↪→

156

157

158 net = train(net, train_loader, val_loader, n_epochs, lr, l2_reg)

127

159 net.save(src_dir / config["neural_net"]["trained_net_storage_file"])
160

161 # # Load model instead of training
162

163 # net.load(src_dir / "neural-nets/trained_nn")
164

165 # # Evaluate the model on validation data
166

167 # Predict on validation data
168 pred_val = net(x_val)
169

170 # Plot prediction
171 dt = 1/config["vdv_model"]["simulation"]["samples_per_hour"]
172 input_sequence_val = val_set[['Fin', 'Qk']].values[1:]
173

174 # Limit to 0:50 to avoid data point overload
175 time = np.linspace(0, (df.shape[0]-1)*60*dt, df.shape[0])
176 time = time[0:50]
177 sources = {'Neural Net': pred_val.detach().numpy()[0:50].T, 'Model':

y_val.detach().numpy()[0:50].T}↪→

178 plotting.vdv_plot_states_cmp(sources, time = time, output_cols =
OUTPUT_COLS, dt = dt)↪→

179

180 # plt.figure(figsize=(16, 9))
181 # plt.plot(y_val.numpy()[0:100], label='Missing T')
182 # plt.plot(pred_val.detach().numpy()[0:100], label='Estimated T')
183 # plt.legend()
184 # plt.show()
185

186 # Compute MSE, MAE and MAPE on validation data
187 print('Error on validation data')
188

189 mse_val = torch.mean(torch.pow(pred_val - y_val, 2))
190 print(f'MSE: {mse_val.item()}')
191

192 mae_val = torch.mean(torch.abs(pred_val - y_val))
193 print(f'MAE: {mae_val.item()}')
194

195 mape_val = 100*torch.mean(torch.abs(torch.div(pred_val - y_val, y_val)))
196 print(f'MAPE: {mape_val.item()} %')

Testing procedure

Testing module for miniature machine learning system, referred to in chapter 7.

1 import matplotlib.pyplot as plt
2 import pandas as pd
3 import torch
4 from torch.utils.data import DataLoader
5 from math import sqrt

128

6 from pathlib import Path
7 import numpy as np
8 import json
9

10 #local
11 from flow_net_class import FlowNet as Net
12 from utils import plotting
13

14

15

16

17 ## Get path to source directory
18 src_dir = Path(__file__).parent.parent.absolute()
19

20 # TODO: absolute path
21 with open (src_dir / 'config.json') as config_file:
22 config = json.load(config_file)
23

24 dt = 1/config['vdv_model']['simulation']['samples_per_hour']
25

26 #INPUT_COLS = ['CAin', 'CBin', 'CCin', 'CDin', 'Tin', 'Tkin','Fin', 'Qk']
27 #OUTPUT_COLS = ['CAout', 'CBout', 'CCout', 'CDout', 'Tout', 'Tkout']
28 INPUT_COLS = config['neural_net']['input_cols']
29 OUTPUT_COLS = config['neural_net']['output_cols']
30

31 layers = [len(INPUT_COLS), 50, 50, len(OUTPUT_COLS)]
32 net = Net(layers)
33

34 ## Load Net
35 #net.load(src_dir / "neural-nets/trained_nn")
36 net.load(src_dir / config["neural_net"]["trained_net_storage_file"])
37

38 ## Load dataset and define test_set
39 #df = pd.read_csv(src_dir / 'data/vdv_steady_state_dataset.csv',

index_col=0)↪→

40 try:
41 df = pd.read_csv(src_dir / config["neural_net"]["data_set"],

index_col=0)↪→

42 except:
43 print("Unable to load dataset")
44

45 low_index = int(df.shape[0]*0.65)
46 up_index = int(df.shape[0]*0.95)
47 test_set = df.iloc[low_index:up_index]
48

49 # Fetch time array to plot against
50 df_time = pd.read_csv(src_dir / 'data/vdv_steady_state_time.csv',

index_col = 0)↪→

51 time = np.concatenate(df_time.values, axis = 0)
52 time = time[low_index:up_index]
53

129

54 # # Evaluate the model on test data
55

56 # Get input and output as torch tensors
57 x_test = torch.from_numpy(test_set[INPUT_COLS].values).to(torch.float)
58 y_test = torch.from_numpy(test_set[OUTPUT_COLS].values).to(torch.float)
59

60 # Make prediction
61 pred_test = net(x_test)
62

63 # Visualization
64 input_sequence_val = test_set[['Fin', 'Qk']].values[:-1]
65

66 #plot_vdv(states=pred_test.detach().numpy().T, u= input_sequence_val,
TF=input_sequence_val.shape[0]*dt, source='Neural Net')↪→

67 #plotting.vdv_plot_states(states=pred_test.detach().numpy().T,
source='Neural Net')↪→

68 #plotting.vdv_plot_states(states=y_test.detach().numpy().T, source =
'Model')↪→

69

70 # All datapoints
71 #sources = {'Neural Net': pred_test.detach().numpy().T, 'Model':

y_test.detach().numpy().T}↪→

72

73 # Only datapoints with steady state
74

75 ss_predictions = pred_test.detach().numpy().T
76 ss_measurements = y_test.detach().numpy().T
77 sources = {'Neural Net': ss_predictions, 'Model': ss_measurements}
78

79 plotting.vdv_plot_states_cmp(sources, time=time, output_cols=OUTPUT_COLS)
80

81 # Separated steady state periods:
82

83 if np.argwhere(np.diff(time)>1.9*60*dt).shape[0] > 0:
84 #print(np.argwhere(np.diff(time)>(60+1)/config['vdv_model']['simulatio c

n']['samples_per_hour']).shape)↪→

85 periods = np.split(np.arange(0, time.shape[0], 1),
np.concatenate(np.argwhere(np.diff(time)>1.9*60*dt)+1))↪→

86 #periods = np.split(np.arange(0, time.shape[0], 1),
np.concatenate(np.argwhere(np.diff(time)>0.017)+1))↪→

87

88 print("Number of periods: ", len(periods))
89 plotting.vdv_plot_states_cmp_period_sep(sources, time=time,

output_cols=OUTPUT_COLS, periods=periods)↪→

90

91

92 # Compute MSE, MAE and MAPE on test data
93 print('Error on test data')
94

95 mse_test = torch.mean(torch.pow(pred_test - y_test, 2))
96 print(f'MSE: {mse_test.item()}')

130

97

98 mae_test = torch.mean(torch.abs(pred_test - y_test))
99 print(f'MAE: {mae_test.item()}')

100

101 mape_test = 100*torch.mean(torch.abs(torch.div(pred_test - y_test,
y_test)))↪→

102 print(f'MAPE: {mape_test.item()} %')

131

B GoogLeNet

Figure 1: GoogLeNet, created and illustrated by Szegedy et al. [36].

132

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Tor Istvan Stadler Kjetså

MLOps - challenges with
operationalizing machine learning
systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
Co-supervisor: Bjarne Grimstad

May 2021

M
as

te
r’s

 th
es

is

	Assignment
	Preface
	Abstract
	Terminology
	Introduction
	Scope
	Methodology and structure

	Deep Learning
	Course 1: Neural Networks and Deep Learning
	Course 2: Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization
	Setting up the optimization problem
	Optimization algorithms
	Hyperparameter tuning
	Batch normalization

	Course 3: Structuring Machine Learning Projects
	Orthogonalization
	Setting up the goal
	Error analysis
	Data set distributions
	Learning from multiple tasks
	End-to-end deep learning

	Course 4: Convolutional Neural Networks (CNNs)
	Examples of efficient convolutional network architectures

	Course 5: Sequence Models

	Techniques for Testing Machine Learning Systems
	Conventional Software Testing
	Pre-train testing

	CheckList: Three Types of Behavioural Testing
	Improving Dependability of Machine Learning Applications
	Testing Deep Neural Networks
	Developing Bug-free Machine Learning Systems with Formal Mathematics

	Employing MLOps
	Machine Learning Pipeline
	Machine Learning Operations (MLOps)
	A four-step model of MLOps

	Components in the Machine Learning Life Cycle
	Data Operations
	Training, Validating and Refinement
	Model Evaluation
	Deployment
	Monitoring

	Modern Technologies for Machine Learning Operationalization
	Docker and Kubernetes
	Docker
	Kubernetes

	Run:AI
	Apache Kafka
	Dataflow
	Apache Spark
	MLflow
	Databricks

	Miniature Machine Learning System
	System Specification
	Design Choices
	Configurability
	Process Simulator for Data Generation
	CSTR with van de Vusse reaction
	Modelling framework

	Neural Network
	Setting up Modular Machine Learning Pipelines
	Demonstration

	Discussion
	Testing
	MLOps
	Technologies
	Miniature machine learning system

	Conclusion
	Advice for best practices
	Miniature machine learning system
	Future Work
	Bibliography
	Appendix
	Program files for miniature machine learning system
	GoogLeNet

